
VAX FORTRAN
User Manual
Order Number: AA—D035E—TE

June 1988

This manual describes how to compile, link, execute, and debug VAX
FORTRAN programs on a VMS system. It also describes special features
provided by VAX FORTRAN and a variety of system resources of interest to
VAX FORTRAN programmers.

Revision/Update Information: This revised manual supersedes the VAX
FORTRAN User's Guide (order number
AA—D035D—TE).

Operating System and Version: VMS Version 5.0 or higher

Software Version: VAX FORTRA; ~~ Version 5.0

digital equipment corporation
maynard, massachusetts

First printing, September 1984
Revised, June 1988

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1984, 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request
the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DEC/CMS EduSystem
DEC/MMS IA5
DECnet MASSBUS
DECsystem-10 PDP
DECSYSTEM-20 PDT
DECUS RSTS
DECwriter RSX

UNIBUS
VAX
VAXcluster
VMS
VT

d Ge80 a TM

ZK4670

Contents

PREFACE xxiii

CHAPTER 1 COMPILING VAX FORTRAN PROGRAMS 1-1

1.1 FUNCTIONS OF THE COMPILER 1-1

1.2 THE FORTRAN COMMAND 1-2
1.2.1 Specifying Input Files 1-3
1.2.2 Specifying Output Files 1-4
1.2.3 Qualifiers to the FORTRAN Command 1-6

1.2.3.1 /ANALYSIS_DATA Qualifier • 1-7
1.2.3.2 /CHECK Qualifier • 1-8
1.2.3.3 /CONTINUATIONS Qualifier • 1-9
1.2.3.4 /CROSS_REFERENCE Qualifier • 1-9
1.2.3.5 /DEBUG Qualifier • 1-10
1.2.3.6 /D_LINES Qualifier • 1-1 1
1.2.3.7 /DIAGNOSTICS Qualifier • 1-1 1
1.2.3.8 /DML Qualifier • 1-1 1
1.2.3.9 /EXTEND_SOURCE Qualifier • 1-12
1.2.3.10 /F77 Qualifier • 1-12
1.2.3.1 1 /G_FLOATING Qualifier • 1-13
1.2.3.12 /14 Qualifier • 1-14
1.2.3.13 /LIBRARY Qualifier • 1-14
1.2.3.14 /LIST Qualifier • 1-14
1.2.3.15 /MACHINE _CODE Qualifier • 1-15
1.2.3.16 /OBJECT Qualifier • 1-15
1.2.3.17 /OPTIMIZE Qualifier • 1-15
1.2.3.18 /PARALLEL Qualifier • 1-16
1.2.3.19 /SHOW Qualifier • 1-16
1.2.3.20 /STANDARD Qualifier • 1-17
1.2.3.21 /WARNINGS Qualifier • 1-18

1.3 USING TEXT LIBRARIES 1-20
1.3.1 Using the LIBRARY Commands 1-21

1.3.2 Naming Text Modules 1-22

iii

1.3.3 Specifying Library Files on the FORTRAN Command
Line

1.3.4 Search Order of Libraries
1.3.4.1 User-Supplied Default Libraries • 1-24
1.3.4.2 System-Supplied Default Library • 1-25

1-23
1-23

1.4 USING THE VAX COMMON DATA DICTIONARY 1-25
1.4.1 Accessing the CDD from VAX FORTRAN Programs _ 1-27
1.4.2 Creating CDD Structure Declarations 1-28
1.4.3 VAX FORTRAN and CDDL Data Types 1-28

1.5 COMPILER DIAGNOSTIC MESSAGES AND ERROR
CONDITIONS 1-30

1.6 COMPILER OUTPUT LISTING FORMAT 1-31
1.6.1 Source Code Section 1-31
1.6.2 Machine Code Section 1-32
1.6.3 Storage Map Section 1-35
1.6.4 Compilation Summary Section 1-39

CHAPTER 2 LINKING AND RUNNING VAX FORTRAN PROGRAMS 2-1

2.1 LINKING VAX FORTRAN PROGRAMS 2-1

2.1.1 Functions of the Linker 2-2
2.1.2 The LINK Command 2-2

2.1.2.1 Linker Output File Qualifiers • 2-3
2.1.2.2 /DEBUG and /TRACEBACK Qualifiers • 2-6
2.1.2.3 Linker Input File Qualifiers • 2-6

2.1.3 Linker Messages 2-7

2.2 RUNNING VAX FORTRAN PROGRAMS 2-8
2.2.1 The RUN Command 2-8
2.2.2 System Processing at Image Exit 2-8
2.2.3 Interrupting a Program 2-9
2.2.4 Returning Status Values to the Command

Interpreter 2-10

2.3 FINDING AND CORRECTING RUN-TIME ERRORS 2-10

iv

l~!

l~

2.3.1 Effects of Error-Related Command Qualifiers 2-11

CHAPTER 3 USING THE VMS DEBUGGER 3-1

3.1 OVERVIEW 3-1

3.2 FEATURES OF THE DEBUGGER 3-3

3.3 GETTING STARTED WITH THE DEBUGGER 3-4
3.3.1 Compiling and Linking a Program to Prepare for

Debugging 3-4
3.3.2 Starting and Terminating a Debugging Session 3-5
3.3.3 Aborting Program Execution or Debugger

Commands 3-6
3.3.4 Issuing Debugger Commands 3-7
3.3.5 Viewing Your Source Code 3-10

3.3.5.1 Noscreen Mode • 3-10
3.3.5.2 Screen Mode • 3-1 1

3.3.6 Controlling and Monitoring Program Execution 3-13
3.3.6.1 Starting and Resuming Program Execution

GO and STEP • 3-13
3.3.6.2 Determining Where Execution Is Suspended

SHOW CALLS • 3-15
3.3.6.3 Suspending Program Execution

SET BREAK • 3-16
3.3.6.4 Tracing Program Execution

SET TRACE • 3-1$
3.3.6.5 Monitoring Changes in Variables

SET WATCH • 3-19
3.3.7 Examining and Manipulating Data 3-21

3.3.7.1 Displaying the Values of Variables
EXAMINE • 3-21

3.3.7.2 Changing the Values of Variables
DEPOSIT • 3-22

3.3.7.3 Evaluating Expressions EVALUATE • 3-23
3.3.7.4 Notes on Debugger Support for

VAX FORTRAN • 3-24
3.3.8 Controlling Symbol References 3-25

3.3.8.1 Module Setting SET MODULE • 3-25
3.3.8.2 Resolving Multiply Defined Symbols • 3-26

v

3.4 SAMPLE DEBUGGING SESSION 3-27

3.5 DEBUGGER COMMAND SUMMARY 3-31
3.5.1 Starting and Terminating a Debugging Session 3-32
3.5.2 Controlling and Monitoring Program Execution 3-32
3.5.3 Examining and Manipulating Data 3-33
3.5.4 Controlling Type Selection and Symbolization 3-33
3.5.5 Controlling Symbol Lookup 3-34
3.5.6 Displaying Source Code 3-34
3.5.7 Using Screen Mode 3-35
3.5.8 Editing Source Code 3-36
3.5.9 Defining Symbols 3-36
3.5.10 Using Keypad Mode 3-36
3.5.11 Using Command Procedures and Log Files 3-37
3.5.12 Using Control Structures 3-37
3.5.13 Debugging Multiprocess Programs 3-37
3.5.14 Additional Commands 3-38

CHAPTER 4 VAX FORTRAN INPUT/OUTPUT 4-1

4.1 OVERVIEW OF VAX FORTRAN I/O 4-1
4.1.1 Identifying Logical Input/Output Units 4-1
4.1.2 Types of I/O Statements 4-2
4.1.3 Interprocess Communication 4-3
4.1.4 Forms of I/O Statements 4-3

4.2 ELEMENTS OF I/O PROCESSING 4-4
4.2.1 File Specifications 4-5
4.2.2 Logical Names and Logical Unit Numbers 4-6

4.2.2.1 FORTRAN Logical Names • 4-8
4.2.2.2 Implied FORTRAN Logical Unit Numbers • 4-9
4.2.2.3 File Specification in the OPEN Statement • 4-10
4.2.2.4 Assigning Files to Logical Units

Summary • 4-1 1

vi

l.~

4.2.3 File Organizations, I/O Record Formats, and Access
Modes 4-12
4.2.3.1
4.2.3.2
4.2.3.3
4.2.3.4

File Organizations • 4-12
Internal Files • 4-13
I/O Record Formats • 4-14
Record Access Modes • 4-17

CHAPTER 5 ERROR PROCESSING 5-1

5.1 RUN-TIME LIBRARY DEFAULT ERROR PROCESSING 5-2

5.2 USING THE ERR AND END SPECIFIERS 5-6

5.3 USING THE IOSTAT SPECIFIER 5-7

CHAPTER 6 USING VAX FORTRAN IN THE COMMON LANGUAGE
ENVIRONMENT 6-1

6.1 VAX PROCEDURE-CALLING STANDARD 6-2
6.1.1 Register and Stack Usage 6-2
6.1.2 Return Values of Procedures 6-3
6.1.3 Argument Lists 6-4

6.2 ARGUMENT-PASSING MECHANISMS 6-6
6.2.1 Passing Arguments by Reference %REF Function _ 6-7
6.2.2 Passing Arguments by Descripton %DESCR

Function 6-7
6.2.3 Passing Arguments by Immediate Value %VAL

Function 6-8
6.2.4 Passing Addresses %LOC Function 6-8
6.2.5 Examples of Argument Passing Built-in Functions 6-9
6.2.6 Object Code Examples 6-9

6.2.6.1 Argument-Passing Examples • 6-9
6.2.6.2 Examples of Argument List Built-In

Functions • 6-1 1
6.2.6.3 Character Function Example • 6-13

vii

6.3 VMS SYSTEM ROUTINES 6-13
6.3.1 VMS Run-Time Library Routines 6-14
6.3.2 VMS System Services Routines 6-14

6.4 CALLING ROUTINES GENERAL CONSIDERATIONS 6-15

6.5 CALLING VMS SYSTEM SERVICES 6-16
6.5.1 Obtaining Values for System Symbols 6-17
6.5.2 Calling System Services by Function Reference 6-18
6.5.3 Calling System Services as Subroutines 6-19
6.5.4 Passing Arguments to System Services 6-19

6.5.4.1
6.5.4.2
6.5.4.3
6.5.4.4
6.5.4.5

Immediate Value Arguments • 6-26
Address Arguments • 6-26
Descriptor Arguments • 6-27
Data Structure Arguments • 6-29
Examples of Passing Arguments • 6-29

CHAPTER 7 USING VMS RECORD MANAGEMENT SERVICES 7-1

7.1 RMS DATA STRUCTURES AND SERVICES 7-2
7.1.1 RMS Data Structures 7-2

7.1.1.1 Using FORSYSDEF Modules to Manipulate
RMS Data Structures • 7-4

7.1.1.2 The File Access Block • 7-6
7.1.1.3 The Record Access Block • 7-8
7.1.1.4 The Name Block • 7-12
7.1.1.5 Extended Attributes Blocks • 7-14

7.1.2 RMS Services 7-16
7.1.2.1 Declaring RMS System Service Names • 7-16
7.1.2.2 Arguments to RMS Services • 7-16
7.1.2.3 Checking Status from RMS Services • 7-17
7.1.2.4 Opening a File • 7-19
7.1.2.5 Closing a File • 7-20
7.1.2.6 Writing Data • 7-20
7.1.2.7 Reading Data • 7-21
7.1.2.8 Other Services • 7-21

7.2 USER-WRITTEN OPEN PROCEDURES 7-22
7.2.1 Examples of USEROPEN Routines 7-23
7.2.2 RMS Control Structures 7-26

viii V

7.3 EXAMPLE OF BLOCK MODE I/O USAGE 7-32

CHAPTER 8 INTERPROCESS COMMUNICATIONS 8-1

8.1 LOCAL PROCESSES SHARING AND EXCHANGING DATA 8-1
8.1.1 Sharing Images in Shareable Image Libraries 8—Z
8.1.2 Sharing Data in Installed Common Areas 8-3

8.1.2.1 Synchronizing Access • 8-4
8.1.3 Sharing Data in Files 8-5
8.1.4 Using Mailboxes to Pass Information 8-6

8.1.4.1 Creating a Mailbox • 8-7
8.1.5 Sending and Receiving Data Using Mailboxes 8-7

8.2 REMOTE PROCESSES SHARING AND EXCHANGING DATA 8-9
8.2.1 Remote File Access 8-9
8.2.2 Network Task-to-Task Communication 8-10

CHAPTER 9 CONDITION-HANDLING FACILITIES 9-1

9.1 USING THE CONDITION-HANDLING FACILITY 9-3
9.1.1 Default Condition Handler 9-5
9.1.2 User-Program Interactions with the CHF 9-6

9.1.2.1 Establishing and Removing Condition
Handlers • 9-6

9.1.2.2 Signaling a Condition • 9-7
9.1.2.3 Condition Values and Symbols Passed

to CHF • 9-10
9.1.3 How to Write a Condition Handler 9-13

9.1.3.1
9.1.3.2

9.1.3.3

Operations Performed in Handlers • 9-13
Coding Requirements of Condition
Handlers • 9-14
Returning from a Condition Handler • 9-17

ix

9.1.4 Use of LIB$ Routines as Condition Handlers 9-18
9.1.4.1 Overflow/Underflow Detection Enabling

Routines • 9-19
9.1.4.2 Floating Underflow Exceptions • 9-20
9.1.4.3 Floating Reserved Operand Faults • 9-21
9.1.4.4 Matching Condition Values to Determine

Program Behavior • 9-22
9.1.4.5 Converting Faults and Traps • 9-24
9.1.4.6 Changing a Signal to a Return Status • 9-26
9.1.4.7 Changing a Signal to a Stop • 9-26

9.1.5 Condition Handler Examples 9-27

CHAPTER 10 VAX FORTRAN IMPLEMENTATION NOTES 10-1

10.1 VAX FORTRAN PROGRAM SECTION USAGE 10-1

10.2 STORAGE ALLOCATION AND FIXED-POINT DATA TYPES 10-3
10.2.1 Integer Data Types 10-4

10.2.1.1 Relationship of INTEGER*2 and INTEGER*4
Values • 10-4

10.2.1.2 Integer Constant Typing • 10-4
10.2.1.3 Integer-Valued Intrinsic Functions • 10-5

10.2.2 BYTE (LOGICAL*1) Data Type 10-6
10.2.3 Zero-Extend Intrinsic Functions for Converting Data

Types 10-6

10.3 ITERATION COUNT MODEL FOR INDEXED DO LOOPS 10-7
10.3.1 Cautions Concerning Program Transportability 10-7
10.3.2 Iteration Count Computation 10-8

10.4 ENTRY STATEMENT ARGUMENTS 10-9

10.5 FLOATING-POINT DATA 10-11
10.5.1 Floating-Point Data Characteristics 10-11

10.5.1.1 Reserved Operand Faults • 10-12
10.5.1.2 Representation of 0.0 • 10-13
10.5.1.3 Sign Bit Tests • 10-13

10.5.2 Effect of the /G_FLOATING Qualifier 10-13

x

10.5.3 Conversion Between D_floating and G _floating Data
Types 10-14
10.5.3.1 Run-Time Library Conversion Functions • 10-15
10.5.3.2 Run-Time Library Conversion

Subroutines • 10-15
10.5.3.3 Sample Conversions • 10-16

CHAPTER 11 PERFORMANCE OPTIMIZATIQN 11-1

11.1 GENERAL OPTIMIZATION ISSUES 11-2
11.1.1 Importance of Algorithms Used in Source Programs _ 11-3
11.1.2 Characteristics of Optimized and Unoptimized

Programs 11-4
11.1.3 Compiler Structure 11-5

11.2 EFFECTS OF COMPILER OPTIMIZATIONS ON DEBUGGING 11-5

11.3 GLOBAL ANALYSIS OF THE USE OF VARIABLES AND ARRAYS 11-7
11.3.1 Criteria for Selecting Variables and Arrays for Global

Analysis 11-8
11.3.2 Factors Influencing Global Analysis 11-8

1 1.3.2.1 Effects of EQUIVALENCE Statements • 1 1-9
1 1.3.2.2 Effects of Volatile Declarations • 1 1-9
1 1.3.2.3 Effects of Inline Expansion of Statement

Functions • 1 1-1 1
1 1.3.2.4 Effects of Variable Format Expressions • 1 1-13

11.4 SPEED OPTIMIZATIONS 11-13
11.4.1 Effects of Global Analysis on Speed Optimizations 11-14
11.4.2 Removal Optimizations 11-14

1 1.4.2.1 Compile-Time Operations • 1 1-15
1 1.4.2.2 Flow Boolean Operations • 1 1-16
1 1.4.2.3 Compound Logical Expressions in IF

Statements • 1 1-17
1 1.4.2.4 Common Subexpression Elimination • 1 1-18
1 1.4.2.5 Code Motions • 1 1-19
1 1.4.2.6 Value Propagations • 1 1-20
1 1.4.2.7 Dead Store Elimination • 1 1-22

xi

11.4.3 Replacement Optimizations 11-23
1 1.4.3.1 Store Delaying Optimizations • 1 1-24
1 1.4.3.2 Register Usage • 1 1-24
1 1.4.3.3 Using Autoincrement and Autodecrement Mode

Addressing • 1 1-27
1 1.4.3.4 Strength Reduction Optimizations • 1 1-29
1 1.4.3.5 Tradeoff Policy Applied to Register Use • 1 1-30
1 1.4.3.6 Block Moves and Block Initializations • 1 1-30
1 1.4.3.7 Locality of Reference • 1 1-32

11.4.4 Operation-Specific Optimizations 11-33
1 1.4.4.1 Constants as Code Literals • 1 1-33
1 1.4.4.2 JSB for Floating Math Functions • 1 1-34
1 1.4.4.3 Code Alignment • 1 1-34
1 1.4.4.4 SIN and COS Functions • 1 1-34
1 1.4.4.5 Mixed Real/Complex • 1 1-35
1 1.4.4.6 Peephole Optimizations • 1 1-35

11.4.5 Improving Performance of I/O Operations 11-36
1 1.4.5.1 Using Unformatted I/O • 1 1-37
1 1.4.5.2 Using the OPEN Statement's RECORDTYPE

Keyword • 1 1-37
1 1.4.5.3 Avoiding Run-Time Formats • 1 1-38
1 1.4.5.4 Avoiding the Use of the BACKSPACE

Statement • 1 1-39
1 1.4.5.5 Using OPEN Statement Keywords to Control

I/O • 1 1-39
1 1.4.5.6 Using Alternative I/O Methods • 1 1-41
1 1.4.5.7 Implied-DO Loop Collapsing • 1 1-42
1 1.4.5.8 Additional I/O Optimizations • 1 1-43

11.5 SPACE OPTIMIZATIONS 11-44
11.5.1 Data Size Optimizations 11-44

1 1.5.1.1 Constant Pooling • 1 1-44
1 1.5.1.2 Argument List Merging • 1 1-44
1 1.5.1.3 Dead Variable Elimination • 1 1-45

11.5.2 Code Size Optimizations 11-45
1 1.5.2.1 Local Storage Allocation • 1 1-45
1 1.5.2.2 Jump Branch Resolution • 1 1-45
1 1.5.2.3 Dead Code Eliminations • 1 1-45

11.6 COMPILER OPTIMIZATION EXAMPLE 11-47

xii

CHAPTER 12 USING STRUCTURES AND RECORDS 12-1

12.1 STRUCTURES 12-2

12.2 RECORDS 12-3

12.3 USES OF RECORDS 12-3

CHAPTER 13 USING CHARACTER DATA

13.1 CHARACTER SUBSTRINGS

13.2 BUILDING CHARACTER STRINGS

13.3 CHARACTER CONSTANTS

13.4 DECLARING CHARACTER DATA

13.5 INITIALIZING CHARACTER VARIABLES

13.6 PASSED-LENGTH CHARACTER ARGUMENTS

13-1

13-2

13-3

13-4

13-5

13-5

13-6

13.7 CHARACTER INTRINSIC FUNCTIONS 13-7
13.7.1 CHAR Intrinsic Function 13-7
13.7.2 (CHAR Intrinsic Function 13-7
13.7.3 INDEX Intrinsic Function 13-8
13.7.4 LEN Intrinsic Function 13-8
13.7.5 LGE, LGT, LLE, LLT Intrinsic Functions 13-8

13.8 CHARACTER I/O 13-9

13.9 CHARACTER DATA EXAMPLES 13-10

CHAPTER 14 USING INDEXED FILES 14-1

14.1 CREATING AN INDEXED FILE 14-2

14.2 WRITING INDEXED FILES 14-4
14.2.1 Duplicate Values in Key Fields 14-4
14.2.2 Preventing the Indexing of Alternate Key Fields 14-6

14.3 READING INDEXED FILES 14-6

14.4 UPDATING RECORDS 14-8

14.5 DELETING RECORDS 14-8

14.6 CURRENT RECORD AND NEXT RECORD POINTERS 14-9

14.7 EXCEPTION CONDITIONS 14-9

L/
CHAPTER 15 VAX FORTRAN SUPPORT FOR PARALLEL PROCESSING 15-1

15.1 OVERVIEW OF VAX FORTRAN PARALLEL PROCESSING 15-2

15.2

xiv

PREPARING PROGRAMS FOR PARALLEL PROCESSING 15-6
15.2.1 Coding Restrictions Within Parallel DO Loops 15-7

15.2.1.1 Coding Restrictions Flagged by the
Compiler • 15-8

15.2.1.2 Coding Practices that May Cause Unpredictable
Results • 15-8

15.2.2 Coding Techniques for Improving Execution
Efficiency 15-9

15.2.3 Use of Other Languages in Parallel-Processing
Programs 15-11

15.2.4 Use of Random Number Generators Within Parallel
DO Loops 15-12

15.2.5 Influence of Parallel Processing on Exception
Handling 15-15

l~

15.3 DATA DEPENDENCE PROBLEMS CAUSED BY PARALLEL
PROCESSING 15-16
15.3.1 Acceptable Forms of Dependence 15-18

15.3.1.1 Temporary Variables • 15-19
15.3.1.2 Read-Only Variables • 15-20
15.3.1.3 Variables Defined and Not Used • 15-20

15.3.2 Using Code Transformations to Resolve
Dependences 15-21
15.3.2.1 Loop Alignment • 15-22
15.3.2.2 Code Replication • 15-24
15.3.2.3 Loop Distribution • 15-25

15.3.3 Using Locks to Resolve Dependences 15-26

15.4 TUNING ISSUES RELATED TO PARALLEL PROCESSING 15-28
15.4.1 System Parameters Set with the SYSGEN Utility 15-28
15.4.2 User Parameters Set with the Authorize Utility 15-31
15.4.3 Other Tuning Considerations 15-32

15.5 DEBUGGING PROGRAMS WITH PARALLEL DO LOOPS 15-32

15.6 SAMPLE USE OF PARALLEL PROCESSING 15-39
15.6.1 Matrix Arithmetic 15-39
15.6.2 Linear Recurrences 15-40

15.7 VAX FORTRAN PARALLEL-PROCESSING SUPPORT
MECHANISMS 15-44
15.7.1 /PARALLEL Qualifier on FORTRAN Command Line 15-44
15.7.2 Compiler Directives for Parallel Processing 15-46

15.7.2.1 DO_PARALLEL Directive • 15-46
15.7.2.2 SHARED, CONTEXT_SHARED, and PRIVATE

Directives • 15-47
15.7.2.3 LOCKON and LOCKOFF Directives • 15-50

15.7.3 Customizing the Parallel-Processing Run-Time
Environment 15-52

15.7.4 NWORKERS Intrinsic Function 15-55

xv

APPENDIX A WORKING WITH THE MULTIPROCESS DEBUGGING
CONFIGURATION A-1

A.1 GETTING STARTED A-2
A.1.1 Establishing a Multiprocess Debugging

Configuration A-2
A.1.2 Invoking the Debugger A-2
A.1.3 The Visible Process and Process-Specific

Commands A-3
A.1.4 Obtaining Information About Processes A-4
A.1.5 Bringing a Spawned Process Under Debugger

Control A-5
A.1.6 Broadcasting Commands to Selected Processes A-7
A.1.7 Controlling Execution A-8

A.1.7.1 Controlling Execution with SET MODE
NOINTERRUPT • A-9

A.1.7.2 Putting Selected Processes on Hold • A-9
A.1.8 Changing the Visible Process A-11
A.1.9 Dynamic Process Setting A-11
A.1.10 Monitoring the Termination of Images A-12
A.1.11 Terminating the Debugging Session A-13
A.1.12 Releasing Selected Processes from Debugger

Control A-13
A.1.13 Aborting Debugger Commands and Interrupting

Program Execution A-13

A.2 SUPPLEMENTAL INFORMATION A-15
A.2.1 Specifying Processes in Debugger Commands A-15
A.2.2 Monitoring Process Activation and Termination A-17
A.2.3 Interrupting the Execution of an Image to Connect It

to the Debugger A-17
A.2.3.1 Using the CTRL/Y -DEBUG Sequence to Invoke

the Debugger • A-18
A.2.3.2 Using the CONNECT Command to Interrupt an

Image • A-19
A.2.4 Screen Mode Features for Multiprocess Debugging _ A-20
A.2.5 Setting Watchpoints in Global Sections A-22
A.2.6 Compatibility of Multiprocess Commands with the

Default Configuration A-23

xvi

A.3 SYSTEM MANAGEMENT CONSIDERATIONS FOR
MULTIPROCESS DEBUGGING A-23
A.3.1 User Quotas A-24
A.3.2 System Resources A-24

APPENDIX B CONTENTS OF THE FORTRAN SYSTEM LIBRARY
FORSYSDEF B-1

APPENDIX C USING SYSTEM SERVICES EXAMPLES C-1

C.1 CALLING RMS PROCEDURES C-2

C.2 SYNCHRONIZING PROCESSES USING AN AST ROUTINE C-3

C.3 ACCESSING DEVICES USING SYNCHRONOUS I/O C-5

C.4 COMMUNICATING WITH OTHER PROCESSES C-7

C.5 SHARING DATA C-11

C.6 DISPLAYING DATA AT TERMINALS C-14

C.7 CREATING, ACCESSING, AND ORDERING FILES C-16

C.8 MEASURING AND IMPROVING PERFORMANCE C-19

C.9 ACCESSING HELP LIBRARIES C-20

C.10 CREATING AND MANAGING OTHER PROCESSES C-22

xvii

APPENDIX D COMPATIBILITY: VAX FORTRAN AND FORTRAN-66 D-1

D.1 MINIMUM ITERATION COUNT FOR DO LOOPS D-2

D.2 EXTERNAL STATEMENT D-3

D.3 OPEN STATEMENT KEYWORD DEFAULTS D-4
D.3.1 BLANK Keyword Default D-4
D.3.2 OPEN Statement's STATUS Keyword Default D-5

D.4 X FORMAT EDIT DESCRIPTOR D-6

D.5 OPEN OPERATION ON A CONNECTED UNIT D-6

APPENt~IX E COMPATIBILITY: VAX FORTRAN AND PDP-11
FORTRAN E-1

E.1 LANGUAGE DIFFERENCES E-1
E.1.1 Logical Tests E-2
E.1.2 Floating-Point Results E-2
E.1.3 Character and Hollerith Constants E-3
E.1.4 Logical Unit Numbers E-4
E.1.5 Assigned GO TO Label List E-4
E.1.6 DISPOSE='PRINT' Specification E-4

E.2 RUN-TIME SUPPORT DIFFERENCES E-5
E.2.1 Run-Time Library Error Numbers E-5
E.2.2 Error Handling and Reporting E-6

E.2.2.1 Continuing After Errors • E-6
E.2.2.2 I/O Errors with IOSTAT or ERR Specified • E-6
E.2.2.3 OPEN/CLOSE Statement Errors • E-6

E.2.3 OPEN Statement Keywords E-7

E.3 UTILITY SUBROUTINES E-7
E.3.1 ASSIGN Subroutine E—g
E.3.2 CLOSE Subroutine E-9

xviii

E.3.3 ERRSET Subroutine E-9
E.3.4 ERRTST Subroutine E-10
E.3.5 FDBSET Subroutine E-11
E.3.6 I RAD50 Subroutine E-12
E.3.7 RAD50 Function E-13
E.3.8 RAN Function E-14
E.3.9 RAN DU Subroutine E-14
E.3.10 R50ASC Subroutine E-15
E.3.11 USEREX Subroutine E-16

APPENDIX F DIAGNOSTIC MESSAGES F-1

F.1 DIAGNOSTIC MESSAGES FROM THE VAX FORTRAN
COMPILER F-2
F.1.1 Source Program Diagnostic Messages F-3
F.1.2 Compiler-Fatal Diagnostic Messages F-39
F.1.3 Compiler Limits F-40

F.2 DIAGNOSTIC MESSAGES FROM THE VAX RUN-TIME SYSTEM F-41

F.3 DICTIONARY ERROR MESSAGES F-58

EXAMPLES

1-1 Sample Listing of Source Code 1-32
1-2 Sample Listing of Machine Code 1-33

1-3 Sample Storage Map Section 1-38
1-4 Sample Compilation Summary 1-40
2-1 Sample VAX FORTRAN Program and Traceback 2-13
6-1 Subroutine Using a Data Structure Argument 6-30

6-2 CTRL/C Trapping Example 6-31

11-1 RELAX Source Program 11-47

11-2 RELAX Machine Code (Optimized) 11-48

13-1 Character Data Program Example 13-10

15-1 Sample VAX FORTRAN Parallel-Processing Source Program 15-34

15-2 Sample Parallel-Processing Debugging Session 15-35

xix

F-1 Sample Diagnostic Messages (Listing Format) F-5

FIGURES

1-1 Creating and Using a Text Library 1-21

3-1 Debugger Keypad Key Functions 3-9

6-1 Structure of a VAX Argument List 6-5

6-2 Example of a VAX Argument List 6-6

9-1 Sample Stack Scan for Condition Handlers 9-2

10-1 General Format of Floating-Point Data 10-11

15-1 Processing an Indexed DO Loop in Parallel 15-3

TABLES

1-1 FORTRAN Command Qualifiers 1-6

1-2 Commands to Control Library Files 1-22

2-1 LINK Command Qualifiers 2-3

2-2 /DEBUG and /TRACEBACK Qualifiers ~ 2-11

4-1 Available I/O Statements 4-4

4-2 Predefined System Logical Names 4-7

4-3 Implicit FORTRAN Logical Units 4-9

4-4 Valid Combinations of Record Access Mode and File
Organisation 4-17

5-1 Summary of Run-Time Errors 5-3

6-1 VAX Register Usage 6-2

6-2 Function Return Values 6-3
6-3 Run-Time Library Facilities 6-14
6-4 System Services 6-15
6-5 VAX FORTRAN Implementation 6-20
6-6 Variable Data Type Requirements 6-27
7-1 RMS Fields Available with USEROPEN 7-28
9-1 Effects of Calls to LIB$SIGNAL or LIB$STOP 9-9
9-2 Severity Codes for Exception Condition Values 9-11
9-3 Condition-Handler Function Return Values 9-17
10-1 PSECT Names and Attributes 10-2
10-2 VAX FORTRAN PSECT Attributes 10-3

u
xx

15-1 VAX FORTRAN Parallel-Processing Support Mechanisms 15-5

15-2 Sysgen Parameters Requiring Changes for Parallel Processing _ 15-29

A-1 Debugging States A-5

A-2 Process Specifications A-15

A-3 Changed and New Keypad Key Functions A-21

B-1 Contents of System Library FORSYSDEF B-1

E-1 Default Logical Unit Numbers E-4

F-1 Source Program Diagnostic Messages F-6

F-2 Compiler-Fatal Diagnostic Messages F-40

F-3 Compiler Limits F-41

F-4 Run-Time Diagnostic Messages F-43

F-5 Run-Time Diagnostic Messages for Parallel Processing F-55

F-6 CRX Error Messages F-59

xxi

Preface

This manual explains how to create, compile, link, execute, and debug
VAX FORTRAN programs on a VMS operating system.

This manual is designed to serve as a reference document, not as a tutorial
document.

Intended Audience

This manual is intended for programmers and students who have a basic
understanding of the FORTRAN language. It is not necessary for the
reader to have a detailed understanding of the VMS operating system, but
some familiarity with VMS is helpful. For detailed information concerning
VMS or the VAX FORTRAN language, refer to the manuals listed under
the heading Associated Documents.

Structure of This Document

This manual contains 15 chapters and 6 appendixes. The topics covered in
the various chapters and appendixes are as follows:

• Chapter 1 describes the FORTRAN command line used to compile
VAX FORTRAN programs.

• Chapter 2 describes how to link and run a VAX FORTRAN program.

• Chapter 3 describes the VMS Debugger and any special considerations
involved in debugging VAX FORTRAN programs.

• Chapter 4 provides information on types and forms of I/O; file
specifications, organizations, and access modes; environment variables
and logical unit numbers; and I/O record formats.

• Chapter 5 describes how to control certain types of I/O errors using
ERR, END, and IOSTAT specifiers in your I/O statements.

• Chapter 6 describes how to call routines and pass arguments to them.

• Chapter 7 describes how to utilize VMS Record Management Services
(RMS) from a VAX FORTRAN program.

• Chapter 8 gives an introduction on how to exchange and share data
among both local and remote processes.

• Chapter 9 describes facilities that can be used to handle in a struc-
tured and consistent fashion special conditions (errors or program-
generated status conditions) that occur in large programs with many
program units.

• Chapter 10 discusses a number of language features that may be
implemented on VAX FORTRAN in a way that differs from other
implementations of the FORTRAN language.

• Chapter 11 discusses source code optimizations performed by the VAX
FORTRAN compiler.

• Chapter 12 describes how to use structures and records in VAX
FORTRAN programs.

• Chapter 13 describes how to handle character data in VAX FORTRAN
programs.

• Chapter 14 describes how to manipulate files using indexed sequential
access.

• Chapter 15 describes the parallel processing support provided by VAX
FORTRAN.

• Appendix A describes the debugging support for parallel processing.

• Appendix B identifies the VAX FORTRAN include files that define
symbols for use in VAX FORTRAN programs.

• Appendix C contains examples of the use of a variety of system
services.

• Appendix D details the differences between VAX FORTRAN and
FORTRAN-66.

• Appendix E details the differences between VAX FORTRAN and
PDP-11 FORTRAN.

• Appendix F explains the diagnostic messages that may be encountered
by VAX FORTRAN programs.

xxiv

Associated Documents

The VAX FORTRAN Language Reference Manual defines the format and use
of statements in the VAX FORTRAN language.

The VMS documentation set provides detailed information on the VMS
operating system.

Conventions Used in this Document

The following syntactic conventions are used in this manual:

• Uppercase words and letters used in examples indicate that you should
type the word or letter as shown.

• Lowercase words and letters used in syntax specifications indicate that
you are to substitute a word or value of your choice.

• Brackets ([]) indicate optional command elements.

• Braces ({ }) are used to enclose lists from which one command element
is to be chosen.

• A horizontal ellipsis (. . .)indicates that the preceding item can be
repeated one or more times.

• A vertical ellipsis in an example indicates that not all of the statements
are shown.

• Conventions observed in references to typed data are as follows:

— "Real" (lowercase) is used to refer to the REAL*4 (REAL), REAL*8,
and REAL* 16 data types as a group.

— "Complex" (lowercase) is used to refer to the COMPLEX*8
(COMPLEX) and COMPLEX* 16 (DOUBLE COMPLEX) data
types as a group.

— "Logical" (lowercase) is used to refer to the LOGICAL*2 and
LOGICAL*4 data types as a group.

— "Integer" (lowercase) is used to refer to the INTEGER*2 and
INTEGER*4 data types as a group.

xxv

In addition, the following notations are used to denote special nonprinting
characters:

Tab character <; tab

Space character ~

Summary of Changes

The documentation for VAX FORTRAN Version 5.0 is a major revision to
the documentation provided for VAX FORTRAN Version 4.0.

The organization of the manual set has been changed. The manual set
now comprises a language reference manual and a user manual.

• The language reference manual provides a detailed description of the
VAX FORTRAN implementation of the FORTRAN language.

• The user manual describes how to compile, link, execute, and debug
VAX FORTRAN programs. It also describes special features provided
by VAX FORTRAN and a variety of system resources of interest to
VAX FORTRAN programmers.

Major areas of change in the user manual are as follows:

• Many minor error corrections have been made throughout the entire
manual.

• The chapters in the Version 4.0 user manual about the VMS operating
system and the EDT editor have been removed. (Information on these
topics can now be acquired only from the VMS documentation set.)

• The chapter on debugging has been entirely rewritten (and shortened).

• The chapter on calling conventions, "FORTRAN Call Conventions,"
has been revised, expanded, and renamed. Its new name is "Using
VAX FORTRAN in the Common Language Environment."

• Anew chapter, "VAX FORTRAN Support for Parallel Processing," has
been added.

• Anew appendix, "Working with the Multiprocess Debugging
Configuration," has been added. (The information in this appendix
is not available in the VMS Debugger Manual for VMS Version 5.0.
It will be included in that manual when the manual is next revised
or updated. To avoid duplication of information, the appendix will
then be removed from the next version of the VAX FORTRAN User
Manual.)

xxvi

f"1
• Nevv qualifiers for the FORTRAN command line are documented.

• New error messages covering "standards" (FORTRAN-77) checking
and Version 5.0 language extensions are documented.

xxvii

Chapter 1

Compiling VAX FORTRAN Programs

This chapter describes how to use the FORTRAN command to compile
your source programs intp object modules. The following topics are
discussed:

• The functions of the compiler (Section 1.1)

• The syntax of the FORTRAN command and its qualifiers (Section 1.2)

• The use of text libraries (Section 1.3)

• The Common Data Dictionary (CDD) (Section 1.4)

• Compiler diagnostic messages and error conditions (Section 1.5)

• Compiler output listing format (Section 1.6)

1.1 Functions of the Compiler

The primary functions of the VAX FORTRAN compiler are as follows:

• To verify the VAX FORTRAN source statements and to issue messages
if the source statements contain any errors

• To generate machine language instructions from the source statements
of the VAX FORTRAN program

• To group these instructions into an object module for the VMS linker

When the compiler creates an object file, it provides the linker with the
following information:

• The program unit name. The program unit name is taken from the
name specified in the PROGRAM, SUBROUTINE, FUNCTION, or

Compiling VAX FORTRAN Programs 1-1

BLOCK DATA statement in the source program. If a program unit
does not contain any of these statements, the source file name is used,
with $MAIN (or $DATA, for block data subprograms) appended.

• A list of all entry points and common block names that are declared
in the program unit. The linker uses this information when it binds
two or more program units together and must resolve references to
the same names in the program units.

• Traceback information. Traceback information is used by the system
default condition handler when an error occurs that is not handled
by the program itself. The traceback information permits the default
handler to display a list of the active program units in the order of
activation, which aids program debugging.

• A symbol table if specifically requested (/DEBUG qualifier). A
symbol table lists the names of all external and internal variables
within a module, with definitions of their locations. The table is of
primary use in program debugging.

The linker is described in Chapter 2.

1.2 The FORTRAN Command

The FORTRAN command initiates compilation of a source program.

The command has the following form:

FORTRAN [/qualifiers] f ile-spec-list [/qualifiers]

/qualifiers
Indicates either special actions to be performed by the compiler or special
properties of input or output files.

file-spec-list
Specifies the source files containing the program units to be compiled.
You can specify more than one source file. If source file specifications are
separated by commas (,), the programs are compiled separately. If source
file specifications are separated by plus signs (+), the files are concatenated
and compiled as one program.

1-2 Compiling VAX FORTRAN Programs

In interactive mode, you can also enter the file specification on a separate
line by typing the command FORTRAN, followed by a carriage return.
The system responds with the following prompt:

File:

Type the file specification immediately after the prompt and then press the
RETURN key.

1.2.1 Specifying Input Files

In specifying a list of input files on the FORTRAN command line, you can
use abbreviated file specifications for those files that share common device
names, directory names, or file names. The system applies temporary
file specification defaults to those files with incomplete specifications.
The defaults applied to an incomplete file specification are based on the
previous device name, directory name, or file name encountered in the
list.

For example, the following FORTRAN command line shows how tem-
porary defaults are applied to a list of file specifications given a current
default device and directory name of USR2:[MONROE]:

$ FORTRAN USR1: [ADAMS] TEST1, TEST2 , [JACKSON] SUMMARY ,USR3: [FINAL]

The preceding FORTRAN command compiles the following files:

USR1 : [ADAMS] TEST1. FOR
USR1: [ADAMS] TEST2 . FOR'
USR1:[JACKSON]SUMMARY.FOR
USR3: [F I NAL] SUMMARY .FOR

To override a temporary default with your current default directory,
specify the directory as a null value. For example:

$ FORTRAN [ALPHA] TEST1, []TEST2

In this case, the empty brackets indicate that the compiler is to use your
current default directory to locate TEST2.

You must use the /LIBRARY qualifier in your FORTRAN command if text
libraries are accessed by programs in the source files that you specify. The
/LIBRARY qualifier is discussed at length in Section 1.3.3.

Compiling VAX FORTRAN Programs 1-3

1.2.2 Specifying Output Files

The output produced by the compiler includes the object and listing files.
You can control the production of these files by using the appropriate
qualifiers on the FORTRAN command line.

The production of listing files depends on whether you are operating in
interactive mode or batch mode:

• In interactive mode, the compiler does not generate listing files by
default; you must use the /LIST qualifier to generate the listing file.

• In batch mode, the compiler generates a listing file by default. To
suppress it, you must use the /NOLIST qualifier.

The compiler generates an object file by default. During the early stages
of program development, you may find it helpful to use the /NOOBJECT
qualifier to suppress the production of object files until your source
program compiles without errors. If you do not specify /NOOBJECT, the
compiler generates object files as follows:

• If you specify one source file, one object file is generated.

• If you specify multiple source files, separated by commas, each source
file is compiled separately and an object file is generated for each
source file.

• If you specify multiple source files, separated by plus signs, the source
files are concatenated and compiled, and one object file is generated.

You can use both commas and plus signs in the same command line to
produce different combinations of concatenated and separate object files
(see Example 4 in this section).

To produce an object file with an explicit file specification, you must
use the /OBJECT qualifier, in the form /OBJECT=file-spec (see Section
1.2.3.16). Otherwise, the object file has the name of its corresponding
source file and a file type of OBJ. By default, the object file produced from
concatenated source files has the name of the first source file. All other
file specification fields (node, device, directory, and version) assume the
default values.

The following examples show a variety of FORTRAN commands. Each
command is followed by a description of the output files it produces.

1-4 Compiling VAX FORTRAN Programs

Examples:

1.

2.

3.

$ FORTRAN/LIST AAA,BBB,CCC

Source files AAA.FOR, BBB.FOR, and CCC.FOR are compiled as
separate files, producing object files named AAA.OBJ, BBB.OBJ, and
CCC.OBJ; and listing files named AAA.LIS, BBB.LIS, and CCC.LIS.

$ FORTRAN XXX+YYY+ZZZ

Source files XXX.FOR, YYY.FOR, and ZZZ.FOR are concatenated and
compiled as one file, producing an object file named XXX.OBJ, but no
listing file. (A listing file named XXX.LIS would be produced in batch
mode.)

$ FORTRAN/OBJECT=SQUARE/NOLIST
_File: CIRCLE

RET

The source file CIRCLE.FOR is compiled, producing an object file
named SQUARE.OBJ, but no listing file.

4 $FORTRAN AAA+BBB,CCC/LIST

Two object files are produced: AAA.OBJ (comprising AAA.FOR and
BBB.FOR) and CCC.OBJ (comprising CCC.FOR). One listing file is
produced: CCC.LIS (comprising CCC.FOR).

5. $ FORTRAN ABC+CIRC/NOOBJECT+XYZ

When you include a qualifier in a list of files that are to be concate-
nated, the qualifier affects all files in the list. The command shown in
the previous example completely suppresses the object file. That is,
source files ABC.FOR, CIRC.FOR, and XYZ.FOR are concatenated and
compiled, but no object file is produced.

Compiling VAX FORTRAN Programs 1-5

1.2.3 Qualifiers to the FORTRAN Cornrnand

FORTRAN command qualifiers influence the way in which the compiler
processes a file. In many cases, the simplest form of the FORTRAN
command is sufficient. However, you can select appropriate optional
qualifiers if special processing is required.

Table 1-1 lists the FORTRAN command qualifiers. Sections 1.2.3.2
through 1.2.3.21 describe each qualifier in detail.

You can override some qualifiers specified on the command line by
using the OPTIONS statement. The qualifiers specified by the OPTIONS
statement affect only the program unit where the statement occurs. See
the VAX FORTRAN Language Reference Manual for more information about
the OPTIONS statement.

Table 1-1: FORTRAN Command Qualifiers
Qualifier Negative Form Default

/ANAI_YSIS_DATA(=filename]

/CHECK=

(NOJBOUNDS
(NO)OVERFI.O~ti'
(NO)UNDERF[.OVV
ALI.
NONE

/CONTINUATIONS=n

/CROSS_REFERENCE

[NO)SYMBO(.S

/DEBUG= (NO)TRACEBACK
A[.L.
NON E

}
}

/NOANAI.YSIS_DATA /NOANALYSIS_DATA

/NOCHECK CHECK=(NOBOUNDS,OVERFLOW,NOUNDERFLOW)

None /CONTINUATIONS=19

/NOCROSS_REFERENCE /NOCROSS_REFERENCE

/NODEBUG /DEBUG=(NOSYMBOLS,TRACEBACK)

/D_[.INES /NOD_LINES /NOD_[.INES

/DIAGNOSTICS(=filename) /NODIAGNOSTICS /NOD[AGNOSTICS

/DML None None

/EXTEND_SOURCE /NOEXTEND_SOURCE /NOEXTEND_SOURCE

/F77 /NOF77 /F77

/G_FLOATING /NOG_FLOATING /NOG_FLOATWG

/14 /NO[4 /14

/[.IBRARY None Not applicable

1-6 Compiling VAX FORTRAN Programs

Table 1-1 (Cont.y: FORTRAN Command Qualifiers
Qualifier Negative Form Default

/LIST(=file-spec] /NOI_IST /NOLIST (interactive)
/FIST (hatch)

/MACHINE_CODE /NOMACHINE_CODE: /NOMACHINE:_CODE

/OBJECT(=file-spec] /NOOBJECT /OBJECT

/OPTIMIZE /NOOPTIMIZ.E /OPTIMIZE

/PARALLEL /NOI'ARALI.EI. /NOPARALLEI..

[NO]DICTIUNARY
NO INCLUDE []

/NOSHOW /SHOW=(NODICT[ONARY,NOINCLUDE,MAP,
NOf REPROCESSOR,SINGLE)

[NO]MAP
/SH01N [NO]PREPROCESSOR

(NOJSINGLE
A I_L
NONE

/STANDARD=

/WARNINGS=

{
{

[NO]SEMANTIC
(NO]SOURCE_FORM
(NO]SYNTAX
ALL
NONE

(NO]DECLARATIONS
(NOJGENERAL
[NOJULTR[X
(NOJVAXELN
A l.l.
NONE

}
}

/NOSTANDARD /NOSTANDARD

/NOV~'ARNINGS /WARNINGS=(NODECI_ARATIONS,GENERAL,
NOUI_TRIX,NOVAXELIv`)

1.2.3.1 /ANALYSIS_DATA Qualifier

The /ANALYSIS_DATA qualifier produces a file that contains analysis
data about the source code being compiled.

The qualifier has the following form:

/ANALYSIS_DATA=filename.type

The default file name is the name of the primary source file. The default
file type is ANA (that is, filename.ANA).

If you do not specify the /ANALYSIS—DATA qualifier, the default behav-
ior for the VAX FORTRAN compiler is /NOANALYSIS_DATA.

Source-code analysis files are reserved for use with DIGITAL products
such as, but not limited to, the VAX Source Code Analyzer.

Compiling VAX FORTRAN Programs 1-7

1.2.3.2 /CHECK Qualifier

The /CHECK qualifier produces run-time checks for the conditions
indicated.

The qualifier has the following form:

{ ALL
/CHECK = { ([NO) BOUNDS , [NO) OVERFLOW , [NO] UNDERFLOW)

{ NONE

1

}

}

BOUNDS
Specifies that each dimension of an array reference or substring subscript
reference is to be checked to determine whether it is within the range of
the dimension specified by the array or character variable declaration. The
default is NOBOUNDS.

OVERFLOW
Specifies that BYTE, INTEGER*2, and INTEGER*4 calculations are to
be checked for arithmetic overflow. Real and complex calculations are
always checked for overflow and are not affected by /NOCHECK. Integer
exponentiation is performed by a routine in the mathematical library. The
routine in the mathematical library always checks for overflow, even if
/CHECK=NOOVERFLOW is specified.

UNDERFLOW
Specifies that real and complex calculations are to be checked for floating
underfloor. See Section 9.1.4.2 for information about floating underfloor.

ALL
Specifies that OVERFLOti'V, BOUNDS, and UNDERFLOW checking is to
be performed.

NONE
Specifies that no checking is to be performed.

The default is /CHECK=OVERFLOW. Note that /CHECK is the equivalent
of /CHECK=ALL, and /NOCHECK is the equivalent of /CHECK=NONE.

1-8 Compiling VAX FORTRAN Programs

P"1
1.2.3.3 /CONTINUATIONS Qualifier

The /CONTINUATIONS qualifier specifies the number of continuation
lines allowed in a source program statement.

The qualifier has the following form:

/CONTINUATIONS=n

n
Is an integer from 0 to 99.

If you omit the /CONTINUATIONS qualifier, the default value is 19.

Because the compiler has to assume maximum-length continuation lines
(66 or 126 characters) when allowing space for continuation-line se-
quences, the actual number of continuation lines allowed in any given
statement usually exceeds the limit specified by the /CONTINUATIONS
qualifier.

NOTE

A common problem is the attempt to use the character zero as
a continuation indicator character in source code. This is not
allowed. Aline with a continuation indicator character of 0 is
treated as an initial line; it does not cause an increase in the
continuation value associated with the preceding line.

1.2.3.4 /CROSS_REFERENCE Qualifier

The /CROSS_REFERENCE qualifier specifies that the storage-map section
of the listing file is to include information about the use of symbolic
names. The cross-reference contains the numbers of the lines in which the
symbols are defined and referenced.

The qualifier has the following form:

/CROSS_REFERENCE

The /CROSS_REFERENCE qualifier is ignored if the listing file is not
being generated.

The default is /NOCROSS_REFERENCE.

See Section 1.6.3 for a description of the listing format used when
/CROSS_REFERENCE is specified.

Compiling VAX FORTRAN Programs 1-9

1.2.3.5 /DEBUG Qualifier

The /DEBUG qualifier specifies that the compiler is to provide infor-
mation for use by the VMS Debugger and the run-time error traceback
mechanism.

The qualifier has the following form:

{ ALL
/DEBUG = { ([NO] SYMBOLS , [NO] TRACEBACK)

{ NONE

}

}

}

SYMBOLS
Specifies that the compiler is to provide the debugger with local sym-
bol definitions for user-defined variables, arrays (including dimension
information), structures, parameter constants, and labels of executable
statements.

TRACEBACK
Specifies that the compiler is to provide an address correlation table
so that the debugger and the run-time error traceback mechanism
can translate virtual addresses into source program routine names and
compiler-generated line numbers.

ALL
Specifies that the compiler is to provide both local symbol definitions and
an address correlation table.

NONE
Specifies that the compiler is to provide no debugging information.

The default is /DEBUG=TRACEBACK if you do not specify the /DEBUG
qualifier. Note that /DEBUG is the equivalent of /DEBUG=ALL, and
/NODEBUG is the equivalent of /DEBUG=NONE.

NOTE

The use of /NOOPTIMIZE is strongly recommended when
the /DEBUG qualifier is used. Optimizations performed by
the compiler can cause several different kinds of unexpected
behavior when using the VMS Debugger. See Section 11.2 for
more information on this subject.

For more information on debugging and traceback, see Section 2.3 and
Chapter 3.

1-10 Compiling VAX FORTRAN Programs

1.2.3.6 / D_LI N ES Qualifier

The /D_LINES qualifier specifies that lines with a D in column 1 are to
be compiled and are not to be treated as comment lines.

The qualifier has the following form:

/D_LINES

The default is /NOD_LINES, which means that lines with a D in column
1 are treated as comments.

1.2.3.7 /DIAGNOSTICS Qualifier

The /DIAGNOSTICS qualfier creates a file containing compiler messages
and diagnostic information.

The qualifier has the following form:

/DIAGNOSTICS [=file -spec]

The default is /NODIAGNOSTICS.

If you omit the file specification, the diagnostics file defaults to the name
of your source file (with a file type of DIA).

The diagnostics file is reserved for use with DIGITAL layered products
such as the VAX Language-Sensitive Editor.

1.2.3.8 /DML Qualifier

The /DML qualifier specifies that the FORTRAN Data Manipulation
Language (DML) preprocessor is to be invoked before the compiler. The
preprocessor produces an intermediate file of VAX FORTRAN source code
in which FORTRAN DML commands are expanded into VAX FORTRAN
statements. The compiler is then automatically invoked to compile this
intermediate file.

The qualifier has the following form:

/DML

Use the /SHOW=PREPROCESSOR qualifier in conjunction with the
/DML qualifier to cause the preprocessor-generated source code to be in-
cluded in the listing file. For more information on the DML preprocessor,
refer to the VAX DBMS FDML Reference Manual.

Compiling VAX FORTRAN Programs 1-11

NOTE

Because the intermediate file is deleted by the FORTRAN
DML preprocessor immediately after compilation is complete,
the Language Sensitive Editor and the Source Code Analyzer
cannot access the source program when the /DML qualifier is
used.

1.2.3.9 /EXTEND_SOURCE Qualifier

The /EXTEND_SOURCE qualifier specifies that the compiler is to extend
the length of VAX FORTRAN statement fields to column 132, instead of
column 72 (the default).

The qualifier has the following form:

/EXTEND_SOURCE

This qualifier can also be specified on the OPTIONS statement. The
default in either case is /NOEXTEND_SOURCE.

If a source line is longer than 132 characters, a fatal read error is signaled
and the compilation is terminated.

1.2.3.10 /F77 Qualifier

The /F77 qualifier specifies that FORTRAN-77 interpretation rules
are used for those statements that have a meaning incompatible with
FORTRAN-66. See Appendix D for a discussion of these incompatibilities.

The qualifier has the following form:

/F77

The default is /F77. If you specify /NOF77, the compiler selects
FORTRAN-66 interpretations in cases of incompatibility.

1-12 Compiling VAX FORTRAN Programs

1.2.3.11 /G_FLOATING Qualifier

The /G _FLOATING qualifier controls how the compiler implements
REAL*8, COMPLEX*16, DOUBLE PRECISION, and DOUBLE COMPLEX
quantities.

The qualifier has the following form:

/G_FLOATING

The /NOG _FLOATING qualifier, the default, causes the compiler to
implement double-precision quantities using the VAX D_floating data
type. The /GLOATING qualifier causes the compiler to implement
such quantities using the VAX G _floating data type.

If your program requires the G _floating form of double precision for its
correct operation (that is, it uses a range larger than 10**38), you should
use the /G _FLOATING qualifier in an OPTIONS statement in your
source program. The implementation of REAL* 8 in VAX FORTRAN is
further discussed in the VAX FORTRAN Language Reference Manual.

Note that you should not mix the D_floating and G _floating data types
in routines that pass double-precision quantities between themselves.

NOTE

VMS systems support both D_floating and G_floating imple-
mentations of the REAL*8 data type. On different systems,
however, the performance of a program can vary widely, de-
pending on whether your program is compiled with the
Gloating option in effect or the D_floating option in effect.
The disparity exists when a particular system supports one
floating type in hardware and the other supports it in software.

Thus, if you wish to optimize performance and if range and
accuracy constraints do not disallow the use of either of the
options, you must determine which implementation (D_floating
or G _floating) is most efficient on the system you will be
running your program on and then compile your program using
the appropriate compilation option.

You can select G floating or D_floating by means of an
OPTIONS statement in your source program or by means of
qualifiers on the FORTRAN command line.

See the VAX FORTRAN Language Reference Manual for more information
on floating-point data types.

Compiling VAX FORTRAN Programs 1-13

1.2.3.12 / 14 Qualifier

The /I4 qualifier controls how the compiler interprets INTEGER and
LOGICAL declarations that do not have a specified length.

The qualifier has the following form:

/I4

The default is /I4, which causes the compiler to interpret INTEGER and
LOGICAL declarations as INTEGER*4 and LOGICAL*4. If you specify
/NOI4, the compiler interprets them as INTEGER*2 and LOGICAL*2.

1.2.3.13 /LIBRARY Qualifier

The /LIBRARY qualifier specifies that a file is a text library file.

The qualifier has the following form:

text-library-file/LIBRARY

The /LIBRARY qualifier can be specified on one or more text library files
in a list of files concatenated by plus signs (+). At least one of the files in
the list must be a nonlibrary file. The default file type is TLB.

The use of text libraries is discussed at length in Section 3.3.

1.2.3.14 /LIST Qualifier

The /LIST qualifier specifies that a source listing file is to be produced.

The qualifier has the following form:

/LIST [=file-spec]

You can include a file specification for the listing file. If you do not, it
defaults to the name of the first source file and to a file type of LIS.

In interactive mode, the compiler does not produce a listing file unless you
include the /LIST qualifier. In batch mode, the compiler produces a listing
file by default. In either case, the listing file is not automatically printed;
you must use the PRINT command to obtain a line printer copy of the
listing file.

See Section 1.6.1 for a discussion on the format of listing files.

1-14 Compiling VAX FORTRAN Programs

1.2.3.15 /MACHINE_CODE Qualifier

The /MACHINE _CODE qualifier specifies that the listing file is to include
a symbolic representation of the object code generated by the compiler.
Generated code and data are represented in a form similar to a VAX
MACRO assembly listing. Do not attempt to assemble this listing file;
several items included in the listing file are not supported by VAX MACRO
assembler.

The qualifier has the following form:

/MACHINE_CODE

This qualifier is ignored if no listing file is being generated. The default is
/NOMACHINE _CODE.

See Section 1.6.2 for a description of the format of a machine code listing.

1.2.3.16 /OBJECT Qualifier

The /OBJECT qualifier specifies the name of the object file.

The qualifier has the following form:

/OBJECT [=file-spec]

The default is /OBJECT. The negative form, /NOOBJECT, can be used
to suppress object code (for example, when you want to test only for
compilation errors in the source program).

If you omit the file specification, the object file defaults to the name of the
first source file and to a file type of OBJ.

1.2.3.17 /OPTIMIZE Qualifier

The /OPTIMIZE qualifier specifies that the compiler is to produce opti-
mized code.

The qualifier has the following form:

/OPTIMIZE

The default is /OPTIMIZE. The negative form /NOOPTIMIZE should be
used during a debugging session to ensure that the debugger has sufficient
information to locate errors in the source program. (See Chapter 11 for
information on optimizations performed by the VAX FORTRAN compiler.)

Compiling VAX FORTRAN Programs 1-15

1.2.3.18 /PARALLEL Qualifier

The /PARALLEL qualifier controls whether special processing to support
parallel processing is performed during compilation.

The qualifier has the following form:

/PARALLEL

The default is /NOPARALLEL. See Chapter 15, especially Section 15.7.1,
for details on the use of the /PARALLEL qualifier.

1.2.3.19 /SHOW Qualifier

The /SHOW qualifier controls whether optionally listed source lines and
a symbol map are to appear in the source listing. (Optionally listed source
lines are text-module source lines and preprocessor-generated source
lines.)

The /LIST qualifier must be specified in order for the /SHOW qualifier to
take effect.

The qualifier has the following form:

{ ALL }
/SHOW = { ([NO] DICTIONARY , [NO] INCLUDE , [NO] MAP , [NO] PREPROCESSOR , [NO] SINGLE) }

{ NONE }

ALL
Specifies that all optionally listed source lines are to be included in the
listing file.

INCLUDE
Specifies that the source lines from any file or text module specified by
INCLUDE statements are to be included in the source listing.

DICTIONARY
Specifies that VAX FORTRAN source representations of any CDD records
referenced by DICTIONARY statements are to be included in the listing
file.

MAP
Specifies that the symbol map is to be included in the listing file. If the
/CROSS—REFERENCE qualifier is specified, MAP is ignored.

1-16 Compiling VAX FORTRAN Programs

PREPROCESSOR
Specifies that preprocessor-generated source lines are to be included in
the listing file. The negative form, NOPREPROCESSOR, specifies that the
preprocessor-generated source lines are to be excluded from the source
listing.

SINGLE
Specifies that symbolic names of parameter constants are to be included
in cross-reference listings even if they are not referenced outside the
PARAMETER statements in which they are declared. The negative
form, NOSINGLE, specifies that names of parameter constants are to be
suppressed if they are only declared and not referenced elsewhere. This is
useful for cross-reference listings of small programs that specify INCLLTDE
declarations but use only a small number of the parameter constant names
that have been declared.

NONE
Specifies that no optionally listed source lines are to be included in the
listing file.

The /SHOW qualifier defaults are NOPREPROCESSOR, NOINCLUDE,
NODICTIONARY, MAP, SINGLE.

Specifying the qualifier /SHOW without any arguments is equivalent to
specifying /SHOW=ALL; specifying /NOSHOW without any arguments is
equivalent to specifying /SHOW=NONE.

1.2.3.20 /STANDARD Qualifier

The /STANDARD qualifier specifies that the compiler is to generate
informational diagnostics for VAX extensions to FORTRAN-77 that can be
determined at compile-time.

The qualifier has the following form:

{ ALL }

/STANDARD = { ([NO] SEMANTIC , [NO] SOURCE_FORM , [NO] SYNTAX) }
{ NONE }

SEMANTIC
Specifies that an informational message is to be issued for ANSI standard
conforming statements that become nonstandard due to the way in
which they are used. Data type information and statement locations are
considered when determining semantic extensions. Specifying SEMANTIC
checking also enables SYNTAX checking to be performed.

Compiling VAX FORTRAN Programs 1-17

SOURCE_FORM
Specifies that an informational message is to be issued for statements that
use tab formatting or contain lowercase characters.

SYNTAX
Specifies that an informational message is to be issued for syntax ex-
tensions to the current ANSI standard. SYNTAX extensions include
nonstandard statements and languages constructs.

ALL
Specifies that informational messages are to be issued for semantic, source
form, and syntax extensions to the current ANSI standard.

NONE
Specifies that no informational messages are to be issued for extensions to
the current ANSI standard.

The default is /NOSTANDARD, which is equivalent to
/STANDARD=NONE.

If you specify the /NOWARNINGS qualifier, the /STANDARD qualifier
is ignored. Specifying /STANDARD with no arguments is equivalent to
specifying /STANDARD=(SEMANTIC, NOSOURCE _FORM, SYNTAX).

1.2.3.21 /WARNINGS Qualifier

The /WARNINGS qualifier specifies that the compiler is to generate
informational (I) and warning (W) diagnostic messages in response to
informational and warning-level errors.

The qualifier has the following form:

{ ALL
/WARNINGS = { ([NO] DECLARATIONS , [NO) GENERAL , [NO] ULTRIX , [NO] VAXELN)

{ NONE

}

}

}

DECLARATIONS
Causes the compiler to print warnings for any untyped data item used
in the prograrr. DECLARATIONS acts as an external IMPLICIT NONE
declaration. The default is NODECLARATIONS. See the description of
the IMPLICIT statement in the VAX FORTRAN Language Reference Manual
for information about the effects of IMPLICIT NONE.

1-18 Compiling VAX FORTRAN Programs

GENERAL
Causes the compiler to generate informational and warning diagnostic
messages. An informational message (I) indicates that a correct VAX
FORTRAN statement may have unexpected results or contains nonstan-
dard syntax or source form. A warning message (W) indicates that the
compiler has detected acceptable, but nonstandard, syntax or has per-
formed some corrective action; in either case, unexpected results may
occur. To suppress informational and warning diagnostic messages, spec-
ify the negative form of this qualifier (NOGENERAL). The default is
GENERAL.

UL TR/X
Causes the compiler to issue diagnostics for language features not sup-
ported by VAX FORTRAN on ULTRIX systems. Through the use of this
option, you can develop VAX FORTRAN programs on a VMS system and
use those programs without modification on both ULTRIX and VMS
systems. The default is NOULTRIX.

Vi4XELN
Causes the compiler to issue diagnostic messages for language features
not supported by VAX FORTRAN on a VAXELN system. The default is
NOVAXELN.

ALL
Causes the compiler to print all informational and warning messages,
including warning messages for any untyped data items and for language
features not supported on ULTRIX or VAXELN. Specifying ALL has the
effect of specifying (DECLARATIONS, GENERAL, ULTRIX, VAXELN).

NONE
Suppresses all informational and warning messages.

Appendix B discusses compiler diagnostic messages.

Compiling VAX FORTRAN Programs 1-19

1.3 Using Text Libraries

A text library contains modules of source text that you can incorporate in a
program by using the INCLUDE statement. Modules within a text library
are like ordinary text files, but they differ in the following ways:

• They contain a unique name, called the module name, that is used to
access them.

• Several can be contained within the same library file.

Modules in text libraries can contain any kind of text; this section only
discusses their use when VAX FORTRAN language source is used.

Use the LIBRARY command of the VMS Librarian Utility to create and
modify modules in text libraries. Text libraries have a default file type of
TLB.

Use one of the following methods to access a source module in a text
library.

• Specify only the name of the module in an INCLUDE statement in
your VAX FORTRAN source program.

• Specify the name of both the library and module in an INCLUDE
statement in your VAX FORTRAN source program.

• Define a default library using the logical name FORT$LIBRARY (see
Section 1.3.4.1).

• Specify the name of the library using the /LIBRARY qualifier on the
FORTRAN command line that you use to compile the source program
(see Section 1.3.3).

For information on how to use INCLUDE statements, see the VAX
FORTRAN Language Reference Manual.

Figure 1-1 shows the creation of a text library and its use in compiling
VAX FORTRAN programs.

1-20 Compiling VAX FORTRAN Programs

n Figure 1: Creating and Using a Text Library

COMMAND

$ LIBRARY/TEXT/CREATE FORFILES
$_FILE: APPLIC.SYM,DECLARE.FOR

$ FORTRAN METRIC • FORFILES/LIBRARY

Create a library
containing the

modules APPLIC
and DECLARE

Process the input file
METRIC.FOR, and

locate the INCLUDE
files in library

FORFILES.TLB

INPUT/OUTPUT FILES

APPLIC.SYM

DECLARE.FOR

FORFILES.TLB

METRIC.FOR

ZK-792-82

1.3.1 Using the LIBRARY Commands

Table 1-2 summarizes the commands that create libraries and provide
maintenance .functions. For a complete list of the qualifiers for the
LIBRARY command and a description of other DIGITAL Command
Language (DCL) commands listed in Table 1-2, see the Guide to Llsing
VMS Command Procedures.

Compiling VAX FORTRAN Programs 1-21

Table 1-2: Commands to Control Library Files

Function Command Syntaxi

Create a library

Add one or more modules
to a library

Replace one or more
modules in a library

Specify the names of
modules to be added
to a library

Delete one or more
modules from a library

Copy a module from a
library into another file

List the modules in a
library

LIBRARY/TEXT/CREATE library-name file-spec,...

LIBRARY/TEXT/INSERT library-name file-spec,...

LIBRARY/TEXT/REPLACE library-name file-spec,...2

LIBRARY/TEXT/INSERT library-name file-spec/MODULE=
module-name

LIBRARY/TEXT/DELETE=(module-name,...) library-name

LIBRARY/TEXT/EXTRACT=module-name/OUTPUT=
file-spec library-name

LIBRARY/TEXT/LIST=file-spec library-name

1 The LIBRARY command qualifier /TEXT indicates a text module library. By default, the LIBRARY command
assumes an object module library.

2 REPLACE is the default function of the LIBRARY command if no other action qualifiers are specified. If no
module exists with the given name, /REPLACE is effectively /INSERT.

1.3.2 Naming Text Modules

When the LIBRARY command adds a module to a library, it uses by
default the file name of the input file as the name of the module. In
the example in Figure 1-1, the LIBRARY command adds the contents of
the files APPLIC.SYM and DECLARE.~OR to the library and names the
modules APPLIC and DECLARE.

Alternatively, you can name a module in a library with the /MODULE
qualifier. For example:

$ LIBRARY/TEXT/INSERT FORFILES DECLARE. FOR/MODULE=EXTERNAL_DECLARATIONS

1-22 Compiling VAX FORTRAN Programs

The preceding command inserts the contents of the file DECLARE.FOR
into the library FORFILES under the name EXTERNAL _DECLARATIONS.

r

This module can be included in a VAX FORTRAN source file during
compilation with the following statement:

INCLUDE 'FORFILES(EXTERNAL_DECLARATIONS)'

1.3.3 Specifying Library Files on the FORTRAN Command Line

The /LIBRARY qualifier is used on the FORTRAN command line to
identify text libraries. If a source file that you are compiling includes a
module from a text library, you concatenate the name of the text library
to the name of the source file and append the /LIBRARY qualifier to the
text library name. Concatenation is specified with a plus sign (+). For
example:

$ FORTRAN APPLIC+DATAB/LIBRARY

Whenever an INCLUDE statement occurs in APPLIC.FOR, the compiler
searches the library DATAB.TLB for the source text module identified in
the INCLUDE statement and incorporates it into the compilation. See
the VAX FORTRAN Language Reference Manual for a description of the
INCLUDE statement.

1.3.4 Search Order of Libraries

When more than one library is specified on a FORTRAN command line,
the VAX FORTRAN compiler searches the libraries each time it processes
an INCLUDE statement that specifies a text module name. The compiler
searches the libraries in the order specified on the command line. For
example:

$ FORTRAN APPLIC+DATAB/LIBRARY+NAMES/LIBRARY+GLOBALSYMS/LIBRARY

When the VAX FORTRAN compiler processes an INCLUDE statement
in the source file APPLIC.FOR, it searches the libraries DATAB.TLB,
NAMES.TLB, and GLOBALSYMS.TLB, in that order, for source text
modules identified in the INCLUDE statement.

On a command that requests multiple compilations, a library must be
specified for each compilation in which it is needed. For example:

$ FORTRAN METRIC+DATAB/LIBRARY, APPLIC+DATAB/LIBRARY

Compiling VAX FORTRAN Programs 1-23

u

In this example, VAX FORTRAN compiles METRIC.FOR and APPLIC.FOR
separately and uses the library DATAB.TLB for each compilation.

After the compiler has searched all libraries specified on the command
line, it searches the user-supplied default library, if any, specified by
the logical name FORT$LIBRARY. Then, it searches the system-supplied
default library SYS$LIBRARY:FORSYSDEF.TLB.

1.3.4.1 User-Supplied Default Libraries

You can define one of your private text libraries as a default library for
the VAX FORTRAN compiler to search. The VAX FORTRAN compiler
searches the default library after it searches libraries specified in the
FORTRAN command.

To define a default library, assign an equivalence for the logical name
FORT$LIBRARY, as in the following example of the DCL command
ASSIGN.

$ ASSIGN DBAO : [LIB] DATAB FORT$LIBRARY

While this assignment is in effect, the compiler automatically searches
the library DBAO:[LIB]DATAB.TLB for any include modules that it cannot
locate in libraries explicitly specified, if any, on the FORTRAN command
line.

You can define the logical name FORT$LIBRARY in any logical name
table. If the name is defined in more than one table, the VAX FORTRAN
compiler uses the equivalence for the first match it finds in the normal
order of search first the process table, then the group table, and finally
the system table. Thus, if FORT$LIBRARY is defined in both the process
and group logical name tables, the process logical name table assignment
overrides the group logical name table assignment.

If FORT$LIBRARY is defined as a search list, the compiler opens the first
text library specified in the list. If the include module is not found in that
text library, the search is terminated and an error message is issued.

1-24 Compiling VAX FORTRAN Programs

1.3.4.2 System-Supplied Default Library

When the VAX FORTRAN compiler cannot find the include modules in
libraries specified on the FORTRAN command line or in the default library
defined by FORT$LIBRARY, it then searches the system-supplied library
SYS$LIBRARY:FORSYSDEF.TLB.

SYS$LIBRARY identifies the device and directory containing system li-
braries and is normally defined by the system manager. FORSYSDEF.TLB
is a library of include modules supplied by VAX FORTRAN. It contains lo-
cal symbol definitions and structures required for use with system services
and return status values from system services.

Refer to Appendix B for more information on the contents of FORSYSDEF.

1.4 Using the VAX Common Data Dictionary

The Common Data Dictionary (CDD) is an optional VAX software product
available under a separate license. The CDD allows you to maintain a set
of shareable data definitions (language-independent structure declarations)
that are defined by a system manager or data administrator. See the VAX
Common Data Dictionary Utilities Reference Manual and the VAX CDD Data
Definition Language Reference Manual for detailed information about the
CDD.

CDD data definitions are organized hierarchically in much the same way
that files are organized in directories and subdirectories. For example, a
dictionary for defining personnel data might have separate directories for
each employee type. A directory for salesmen might have subdirectories
that include data definitions for records such as salary and commission
history or personnel history.

Descriptions of data definitions are entered into the dictionary in a special-
purpose language called CDDL (Common Data Dictionary Language). The
CDDL compiler converts the data descriptions to an internal form thus
making them independent of the language used to access them and
inserts them into the CDD.

During the compilation of a VAX FORTRAN program, CDD data def-
initions can be accessed by means of DICTIONARY statements. If
the data attributes of the data definitions are consistent with VAX
FORTRAN requirements, the data definitions are included in the VAX
FORTRAN program. CDD data definitions, in the form of VAX FORTRAN
source code, appear in source program listings if you specify the

Compiling VAX FORTRAN Programs 1-25

/SHOW=DICTIONARY qualifier on the FORTRAN command line or
the /LIST qualifier in the DICTIONARY statement.

The advantage in using the CDD, instead of VAX FORTRAN source,
for structure declarations is that CDD record declarations are language
independent and can be used with several supported VAX languages.

The following examples demonstrate how data definitions are written for
the CDD. The first example is a structure declaration written in CDDL.
The second example shows the same structure as it would appear in a
VAX FORTRAN output listing.

• CDDL Representation:

PAYROLL_RECORD STRUCTURE.
SALESMAN STRUCTURE.

NAME DATATYPE IS TEXT 30.
ADDRESS DATATYPE IS TEXT 40.
SALESMAN_ID DATATYPE IS UNSIGNED NUMERIC 5.

END SALESMAN STRUCTURE.
END PAYROLL_RECORD STRUCTURE.

• VAX FORTRAN Source Code Representation:

STRUCTURE /PAYROLL_RECORD/
STRUCTURE SALESMAN

CHARACTER*30 NAME
CHARACTER*40 ADDRESS
STRUCTURE SALESMAN_ID

CHARACTER*3 %FILL
END STRUCTURE

END STRUCTURE
END STRUCTURE

The CDD provides two utilities for creating and maintaining a dictionary:

• The Dictionary Management Utility (DMU) used for creating and
maintaining the CDD's directory hierarchy, history lists, and access
control lists.

• The Dictionary Verify/Fix Utility (CDDV) used for repairing dam-
aged dictionary files.

See the VAX Common Data Dictionary Utilities Reference Manual for details.

1-26 Compiling VAX FORTRAN Programs

1.4.1 Accessing the CDD from VAX FORTRAN Programs

DMU commands create directories and define record paths. Once these
paths are established, records can be extracted from the CDD by means of
DICTIONARY statements in VAX FORTRAN programs.

At compile time, the CDD record and its attributes are extracted from the
designated CDD record node. Then, the compiler converts the extracted
record into a VAX FORTRAN structure declaration and includes it in the
object module.

The DICTIONARY statement incorporates VAX Common Data Dictionary
data definitions into the current VAX FORTRAN source file during com-
pilation. It can occur anywhere in a VAX FORTRAN source file that a
specification statement (such as a STRUCTURE...END STRUCTURE block)
is allowed. The format of the DICTIONARY statement is described in the
VAX FORTRAN Language Reference Manual.

A DICTIONARY statement must appear as a statement by itself; it cannot
be used within a VAX FORTRAN structure declaration. For example,
consider the following DICTIONARY statement:

INTEGER*4 PRICE
DICTIONARY 'ACCOUNTS'

This would result in a declaration of the following form:

INTEGER*4 PRICE
STRUCTURE /ACCOUNTS/

STRUCTURE NUMBER
CHARACTER*3 LEDGER
CHARACTER*5 SUBACCOUNT

END STRUCTURE
CHARACTER*12 DATE

END STRUCTURE

When you extract a record definition from the CDD, you can choose to
include this translated record in the program's listing by using the /LIST
qualifier in the DICTIONARY statement or the /SHOW=DICTIONARY
qualifier in the FORTRAN command line.

CDD data definitions can contain explanatory text in CDDL's DESCRIPTION
IS clause. If you specify /SHOW=DICTIONARY on the FORTRAN com-
mand (or /LIST in the DICTIONARY statement), this text is included in
the VAX FORTRAN output listing as comments.

Compiling VAX FORTRAN Programs 1-27

Because the DICTIONARY statement generally contains only structure
declaration blocks, you will usually also need to include one or more
RECORD statements in your program to make use of these structures.
(See the VAX FORTRAN Language Reference Manual for information about
structure declaration blocks or the RECORD statement.)

1.4.2 Creating CDD Structure Declarations

CDD source files must be written in the Common Data Dictionary
Language (CDDL). You enter them using a VMS editor (for example,
EVE), just as you would any other file. After you have created a CDD
source file, you can then invoke the CDD compiler to insert your record
definitions into the CDD. See the VAX CDD Data Definition Language
Reference Manual for detailed information about the CDDL language and
compiler.

1.4.3 VAX FORTRAN and CDDL Data Types

The CDD supports some data types that are not native to VAX FORTRAN.
If a data definition contains a field declared with an unsupported data
type, VAX FORTRAN replaces the field with one declared as an inner
STRUCTURE containing a single CHARACTER %FILL field of an ap-
propriate length. The VAX FORTRAN compiler does not attempt to
approximate a data type that it does not support. For example, CDD's
data type UNSIGNED LONG is not supported by VAX FORTRAN. As
a result, if the field FIELDI is declared to be UNSIGNED LONG using
CDDL, VAX FORTRAN would replace the definition of FIELD 1 with the
following declaration:

STRUCTURE FIELDI
CHARACTER* 4 '/.FILL

END STRUCTURE

VAX FORTRAN does not declare it as INTEGER*4, which would result in
signed operations if the field was used in an arithmetic expression.

The following table summarizes the CDDL data types and corresponding
VAX FORTRAN data types. For further information on CDDL data types

1-28 Compiling VAX FORTRAN Programs

see the Common Data Dictionary Data Definition Language Reference Manual.

CDDL Data Type VAX FORTRAN Data Type

DATE

DATE AND TIME

VIRTUAL

BIT m ALIGNED

BIT m

UNSPECIFIED

TEXT

VARYING TEXT

VARYING STRING

D_FLOATING

D_FLOATING COMPLEX

F_FLOATING

F_FLOATING COMPLEX

G _FLOATING

G_FLOATING COMPLEX

H _FLOATING

H _FLOATING COMPLEX

SIGNED BYTE

UNSIGNED BYTE

SIGNED WORD

UNSIGNED WORD

SIGNED LONGWORD

UNSIGNED LONGWORD

SIGNED QUADWORD

UNSIGNED QUADWORD

SIGNED OCTAWORD

UNSIGNED OCTAWORD

PACKED NUMERIC

STRUCTURE (length 8)

STRUCTURE (length n)

ignored

STRUCTURE (length n+7/8)

STRUCTURE (length n+7/8)

STRUCTURE (length n)

CHARACTER*n

STRUCTURE (length n)

STRUCTURE (length n)

REAL*8 (/NOG_FLOAT only)

COMPLEX*16 (/NOG_FLOAT only)

REAL*4

COMPLEX*8

REAL*8 (/G_FLOAT only)

COMPLEX* 16 (/G _FLOAT only)

REAL* 16

STRUCTURE (length 32)

LOGICAL* 1

STRUCTURE (length 1)

INTEGER*2

STRUCTURE (length 2)

INTEGER*4

STRUCTURE (length 4)

STRUCTURE (length 8)

STRUCTURE (length 8)

STRUCTURE (length 16)

STRUCTURE (length 16)

STRUCTURE (length n)

Compiling VAX FORTRAN Programs 1-29

CDDL Data Type VAX FORTRAN Data Type

SIGNED NUMERIC

UNSIGNED NUMERIC

LEFT OVERPUNCHED

LEFT SEPARATE

RIGHT OVERPUNCHED

RIGHT SEPARATE

STRUCTURE (length n)

STRUCTURE (length n)

STRUCTURE (length n)

STRUCTURE (length n)

STRUCTURE (length n)

STRUCTURE (length n)

NOTE

D_floating and G _floating data types cannot be mixed in one
subroutine because both types cannot be handled simultane-
ously. You can use both types, each in a separate subroutine,
depending on the OPTIONS statement qualifier in effect for
the individual subroutine. See the VAX FORTRAN Language
Reference Manual for a discussion of the handling of REAL*8
data types in VAX FORTRAN.

The compiler issues an error message whenever it encounters a CDD
feature that conflicts with VAX FORTRAN. It ignores any CDD features
that it does not support.

1.5 Compiler Diagnostic Messages and Error Conditions

One of the functions of the VAX FORTRAN compiler is to identify syntax
errors and violations of language rules in the source program. If the
compiler locates any errors, it writes messages to your default output
device; thus, if you enter the FORTRAN command interactively, the
messages are displayed on your terminal. If the FORTRAN command is
executed in a batch job, the messages appear in the log file for the batch
job.

When it appears on the terminal, a message from the compiler has the
following form:

%FORT-s-ident, message text
[text-in-error) in module module-name at line n

Diagnostic messages usually provide enough information for you to
determine the cause of an error and correct it.

1-30 Compiling VAX FORTRAN Programs

Each compilation with diagnostic messages terminates with a summary
that indicates the combined number of error, warning, and informational
messages generated by the compiler. The diagnostic summary has the
following form:

%FORT-s-ident, source-file -spec completed with n diagnostics

If the compiler creates a listing file, it also writes the messages to the
listing. Messages typically follow the statement that caused the error.

Additional information about diagnostic messages, including descriptions
of the individual messages, is contained in Appendix F.

1.6 Compiler Output Listing Format

A compiler output listing produced by a FORTRAN command with the
/LIST qualifier consists of the following sections:

• A source code section

• A machine code section optional

• A storage map section (cross-reference) optional

• A compilation summary

Sections 1.6.1 through 1.6.4 describe the compiler listing sections in detail.

1.6.1 Source Code Section

The source code section of a compiler output listing displays the source
program as it appears in the input file, with the addition of sequential line
numbers generated by the compiler. Example 1-1 shows a sample of a
source code section of a compiler output listing.

Compiler-generated line numbers appear in the left margin and are used
with the %LINE prefix in debugger commands. If you create the source
file with an editor that generates line numbers, those numbers also appear
in the source listing. In this case, the editor-generated line numbers appear
in the left margin, and the compiler-generated line numbers are shifted to

Compiling VAX FORTRAN Programs 1-31

Example 1-1: Sample Listing of Source Code

0001 SUBROUTINE RELAX2(EPS)

0002
0003 PARAMETER (M=40, N=60)

0004 DIMENSION X(O:M,O:N)

0005 COMMON X

0006
0007 LOGICAL DONE

0008
0009 1 DONE _ .TRUE.

0010
0011 DO 10 J=1,N-1

0012 DO 10 I=1,M--1

0013 XNEW= (X(I-1,J)+X(I+1,J)+X(I,J-1)+X(I,J+1))/4

0014 IF (ABS (XP1EW-X (I , J)) . GT . EPS) DOIv'E _ .FALSE .

0015 10 X(I,J) =XNEW

0016
0017 IF (.NOT. DONE) GO TO 1

0018
0019 RETURN

0020 END

the right. The %LINE specification still applies to the compiler-generated
line numbers, not the editor-generated line numbers.

If editor-generated line numbers are present in the source code listing,
those numbers are reflected in compile-time error messages that contain
line numbers. Otherwise, if editor-generated line numbers are not present
in the source code listing, compiler-generated line numbers are used for
this purpose. Run-time error messages that contain line numbers refer
to the compiler-generated line numbers in the source code section of
the compiler output listing. (See Appendix E for a summary of error
messages.)

1.6.2 Machine Code Section

The machine code section of a compiler output listing provides a symbolic
representation of the compiler-generated object code. The representation
of the generated code and data is similar to that of a VAX MACRO
assembly listing.

The machine code section is optional. To receive a listing file with a
machine code section, you must specify the following:

$ FORTRAN/LIST/MACHINE_CODE

1-32 Compiling VAX FORTRAN Programs

Example 1-2 shows a sample of a machine code section of a compiler
output listing.

Example 1-2: Sample Listing of Machine Code

.TITLE RELAX2

.IDENT O1

0000
0000 X:

0000

.PSECT $BLANK

.PSECT $CODE

0001
0000 RELAX2: :
0000 .WORD ~M<IV,R2,R3,R4,R6,R7>

0009
0002 NOP
0003 NOP
0004 1:
0004 MNEGL #1, RO

0011
0007 MOVL #1, R1
OOOA NOP
OOOB NOP
OOOC L$1:

0012
OOOC MOVL #1, R2
GOOF MULL3 #41, R1, R3
0013 MOVAF X [R3] , R4
OO1B NOP
OO1C L$2:

0013
001 C ADDF3 8 (R4) , (R4) + , R6
0021 ADDF2 -164(84), R6
0026 ADDF2 164(84), R6
002B MULF2 #~X3F80, R6

0014
0032 SUBF3 (R4), R6, R7
0036 BICW2 # X8000, R7
003B CMPF R7, @EPS(AP)
003F BLEQ L$3
0041 CLRL RO

Example 1-2 Cont'd. on next page

Compiling VAX FORTRAN Programs 1-33

Example 1--2 (Cont.~: Sample Listing of Machine Code

0043 L$3:
0015

0043 MOVL R6, (R4)
0046 AOBLEQ #39, R2, L$2
004A AOBLEQ #59, R1, L$1

0017

004E BLBC R0, .1
0019

0051 RET
.END

The following list provides a detailed explanation of how generated code
and data are represented in machine code listings.

• Machine instructions are represented by VAX MACRO mnemonics and
syntax. To enable you to identify the machine code that is generated
from a particular line of source code, the compiler-generated line
numbers that appear in the source code listing are also used in the
machine code listing. These numbers appear in the right margin,
preceding the machine code generated from individual lines of source
code.

• The first line contains a .TITLE assembler directive, indicating the
program unit from which the machine code was generated.

— For a main program, the title is as declared in a PROGRAM
statement. If you did not specify a PROGRAM statement, the
main program is titled filename$MAIN, where filename is the
name of the source file.

— For a subprogram, the title is the name of the subroutine or
function.

— For a BLOCK DATA subprogram, the title is either the name
declared in the BLOCK DATA statement or filename$DATA (by
default).

• The lines following .TITLE provide information such as the contents
of storage initialized for FORMAT statements, DATA statements,
constants, and subprogram argument call lists.

• The VAX general registers (0 through 12) are represented by RO
through R 12. When register 12 is used as the argument pointer, it
is represented by AP; the frame pointer (register 13) is FP; the stack
pointer (register 14) is SP; and the program counter (register 15) is PC.
Note that the relative PC for each instruction or data item is listed at
the left margin, in hexadecimal.

1-34 Compiling VAX FORTRAN Programs

• Variables and arrays defined in the source program are shown as they
were defined in the program. Offsets from variables and arrays are
shown in decimal.

• VAX FORTRAN source labels referenced in the source program are
shown with a period prefix (.). For example, if the source program
refers to label 300, the label appears in the machine code listing
as .300. Labels that appear in the source program, but are not ref-
erenced or are deleted during compiler optimization, are ignored.
They do not appear in the machine code listing unless you specified
/NOOPTIMIZE.

• The compiler may generate labels for its own use. These labels
appear as L$n, where the value of n is unique for each such label in a
program unit.

• Integer constants are shown as signed integer values; real and complex
constants are shown as unsigned hexadecimal values preceded by ~X.

• Addresses are represented by the program section name plus the
hexadecimal offset within that program section. Changes from one
program section to another are indicated by PSECT lines.

1.6.3 Storage Map Section

The storage map section of the compiler output listing is printed after each
program unit, or module. It is not generated when a fatal compilation
error is encountered.

The storage reap section summarizes information in the following
categories:

• Program sections: The program section summary describes each
program section (PSECT) generated by the compiler. The descriptions
include:

PSECT number (used by most of the other summaries)

Name-

Size in bytes

Attributes

PSECT usage and attributes are described in Section 10.1.

Compiling VAX FORTRAN Programs 1-35

• Total memory allocated: Following the program sections, the compiler
prints the total memory allocated for all program sections compiled in
the following form:

Total Space Allocated nnn

• Entry points: The entry point summary lists all entry points and their
addresses. If the program unit is a function, the declared data type of
the entry point is also included.

• Statement functions: The statement function summary lists the entry
point address and data type of each statement function. If all of the
references to a statement function generate inline code, the body of
the statement function is not compiled, and a double asterisk (**)
appears instead of an address.

• Variables: The variable summary lists all simple variables, with the
data type and address of each. If the variable is removed as a result of
optimization, a double asterisk (**) appears in place of the address.

• Records: The record summary lists all record variables. It shows the
address, the structure that defines the fields of the individual records,
and the total size of each record.

• Arrays: The array summary is similar to the variable summary. In
addition to data type and address, the array summary gives the total
size and dimensions of the array. If the array is an adjustable array
or assumed-size array, its size is shown as a double asterisk (**), and
each adjustable dimension bound is shown as a single asterisk (*).

• Record Arrays: The record array summary is similar to the record
summary. The record array summary gives the dimensions of the
record array in addition to address, defining structure, and total size.
If the record array is an adjustable array or assumed-size array, its
size is shown as a double asterisk (**), and each adjustable dimension
bound is shown as a single asterisk (*).

• Namelists: The namelist summary lists names of namelists.

• Labels: The label summary lists all user-defined statement labels.
FORMAT statement labels are suffixed ,with an apostrophe ('). If the
label address field contains a double asterisk (**), the label was not
used or referred to by the compiled code.

• Functions and subroutines: The functions and subroutines summary
lists all external routine references made by the source program. This
summary does not include references to routines that are dummy
arguments because the actual function or subroutine name is supplied
by the calling program.

1-36 Compiling VAX FORTRAN Programs

A heading for an information category is printed in the listing only when
entries are generated for that category.

Cross-reference information is optional. It is supplied only when you
specify the /LIST and /CROSS_REFERENCE qualifiers on the FORTRAN
command line.

When you request cross-referencing, the compiler supplies information on
the following entities:

• Parameter constants: The parameter constant summary lists all of the
PARAMETER constants along with the data type of each.

• Field scalars: The field scalar summary lists all of the scalar fields
declared within a structure block. It shows the starting offset within
the structure for each scalar field, the name of the structure containing
each scalar field, and the datatype and size (in bytes) of each scalar
field.

• Field arrays: The field array summary lists all of the array fields
declared within a structure block. It shows the starting offset within
the structure for each array field; the name of the structure containing
each array field; and the datatype, size (in bytes), and dimensions of
each array field.

The compiler also supplies attributes and line-number references if you
request cross-referencing, The attributes indicate whether a variable or
array appears in common and whether it appears in an EQUIVALENCE
statement.

The compiler supplies the following reference information for each name:

• A source line number indicates where the name was referenced.
• An equal sign (_) next to a line number indicates that the value of a

variable or array was modified at that line.
• A number sign (#) next to a line number indicates the line where the

symbol was defined.

• The character A next to a line number indicates an actual argument
that may have been modified.

• The character D next to a line number indicates that data initialization
occurred at that point in the program.

• A number in parentheses (n) next to a line number indicates that the
name appeared n times on that line.

Compiling VAX FORTRAN Programs 1-37

Example 1-3: Sample Storage Map Section

PROGRAM SECTIONS

Name

0 $CODE
3 $BLANK

Total Space Allocated

Bytes Attributes

82 PIC CON REL LCL SHk EXE RD NOWRT LONG
10004 PIC OVR REL GBL SHR NOEXE RD WRT LONG

10086

ENTRY POINTS

Address Type Name References

0-00000000 RELAX2 1#

VARIABLES

Address Type Name Attributes References

** L*4 DONE 7 9=
AP-00000004@ R*4 EPS 1 14

** I*4 I 12= 13(4)
** I*4 J 11= 13(4)
** R*4 XNEW 13= 14

14= 17

14 15
14 15
15

ARRAYS

Address Type Name Attributes Bytes Dimensions References

3-00000000 R*4 X COMM 10004 (0:40, 0:60) 4 5 13(4) 14 15=

PARAMETER CONSTANTS

Type Name References

I*4 M 3# 4 12

I*4 N 3# 4 11

LABELS

Address Label References

0-00000004 1 9# 17
** 10 it 12 15#

Example 1-3 shows an example of a storage map section with cross-
reference information.

As shown in Example 1-3, a section size is specified as a number of bytes,
expressed in decimal. A data address is specified as an offset from the
start of a program section, expressed in hexadecimal. The symbol AP can
appear instead of a program section. When it does, the address refers to
a dummy argument, expressed as the offset from the argument pointer

1-38 Compiling VAX FORTRAN Programs

(AP). Indirection is indicated by an at sign (~a) following an address field.
In this case, the address specified by the program section (or AP) plus the
offset points to the address of the data, not to the data itself.

1.6.4 Compilation Summary Section

The final entries on the compiler output listing are the compiler qualifiers
and compiler statistics.

If the /CROSS_REFERENCE qualifier is specified, an explanation of the
reference flags is printed at the top of the compilation summary.

The body of the compilation summary contains information about
OPTIONS statement qualifiers (if any), FORTRAN command line quali-
fiers, and compilation statistics.

The first line under "Command Qualifiers" echoes the command line that
you used to invoke the compiler. The set of qualifiers after the command
line shows the qualifier defaults that were in effect during the compilation.

"Compiler Statistics" shows the machine resources used by the compiler.

Example 1-4 shows a sample compilation summary.

Compiling VAX FORTRAN Programs 1-39

Example 1--4: Sample Compilation Summary

KEY TO REFERENCE FLAGS
_ - Value Modified
- Defining Reference
A - Actual Argument, possibly modified
D - Data Initialization

(n) -Number of occurrences on line

OPTIONS QUALIFIERS

/CHECK=(NOBOUNDS,OVERFLOW,NOUNDERFLOW)
/F77 /NOG_FLOATING /NOI4

COMMAND QUALIFIERS

FORTRAN /LISTING/MACHINE_CODE/CROSS_REFERENCE RELAX2

/CHECK=(NOBOUNDS,OVERFLOW,NOUNDERFLOW)
/DEBUG=(NOSYMBOLS,TRACEBACK)
/SHOW=(NODICTIONARY,NOINCLUDE,MAP,NOPREPROCESSOR,SINGLE)
/STANDARD=(NOSEMANTIC,NOSOURCE_FORM,NOSYNTAX)
/WARNINGS=(NODECLARATIONS,GENERAL,NOULTRIX,NOVAXELN)
/CONTINUATIONS=19 /CROSS_REFERENCE /NOD_LINES /NOEXTEND_SOURCE
/F77 /NOG_FLOATING /I4 /MACHINE_CODE /OPTIMIZE /NOPARALLEL
/NOANALYSIS_DATA
/NODIAGNOSTICS
1LIST=file-spec.LIS
/OBJECT=file-spec.OBJ

COMPILATION STATISTICS

Run Time: 1.17 seconds
Elapsed Time: 2.23 seconds
Page Faults: 138
Dynamic Memory: 326 pages

1-40 Compiling VAX FORTRAN Programs

Chapter 2

Linking and Running VAX FORTRAN
Programs

This chapter describes how to produce an executable image from a VAX
FORTRAN object file, how to execute the resulting image, and how to
isolate run-time errors.

2.1 Linking VAX FORTRAN Programs

This section describes how to use the VMS Linker Utility and object
module libraries to combine object modules into executable programs. It
discusses the following topics:

The functions performed by the linker

• The LINK command and its input and output files

The topics in this chapter are confined to areas of particular interest
to VAX FORTRAN programmers. For additional information on linker
capabilities and detailed descriptions of LINK command qualifiers and
options, see the VMS Linker i,ltility ~'Vlanuat.

Linking and Running VAX FORTRAN Programs 2-1

2.1.1 Functions of the Linker

The primary functions of the linker are to allocate virtual memory within
the executable image, to resolve symbolic references among modules being
linked, to assign values to relocatable global symbols, and to perform
relocation. The linker's end product is an executable image that you can
run on a VMS system.

For any VAX FORTRAN program unit, the object module generated by
the compiler may contain calls and references to VAX FORTRAN run-time
procedures, which the linker locates automatically in the default system
object module libraries. The libraries are described in the VMS Linker
Utility Manual.

2.1.2 The LINK Command

The LINK command initiates the linking of the object file. The command
has the following form:

LINK [/command-qualifiers] file -spec [/file -qualifiers] . . .

/command-qualifiers
Specifies output file options.

file-spec
Specifies the input object file to be linked.

/file-qualifiers
Specifies input file options.

In interactive mode, you can issue the LINK command without a file
specification. The system then requests the file specifications with the
following prompt:

File:

You can enter multiple file specifications by separating them with commas
(,) or plus signs (+). When used with the LINK command, the comma
has the same effect as the plus sign; that is, a single executable image is
created from the input files specified. If no output file is specified, the
linker produces an executable image with the same name as that of the
first object module and with a file type of EXE. Table 2-1 lists the linker
qualifiers of particular interest to VAX FORTRAN users.

2-2 Linking and Running VAX FORTRAN Programs

Table 2-1: LINK Command Qualifiers
Function Qualifiers Defaults
Request output file and
define a file specification

/EXECUTABLE[=file-spec]
/SHAREABLE[=file-spec]

/EXECUTABLE=name.EXE
where

name is the name
of the first input file.

/NOSHAREABLE

Request and specify the
contents of a memory
allocation listing.

/BRIEF
/[NO]CROSS_REFERENCE
/FULL
/[NO]MAP

/NOCROSS_REFERENCE
/NOMAP (interactive)
/MAP=name.MAP (batch)

where name is the name
of the first input file.

Specify the amount of
debugging information.

/[NO]DEBUG
/[NO]TRACEBACK

/NODEBUG
/TRACEBACK

Indicate that input files
are libraries and specifi-
cally include certain mod-
ules.

/INCLUDE=(modulename...)
/LIBRARY
/SELECTIVE_SEARCH

Not applicable.

Request or disable the
searching of default user
libraries and system
libraries.

/[NO]SYSLIB
/[NO]SYSSHR
/[NO]USERLIBRARY[=table]

/SYSLIB
/SYSSHR
/USERLIBRARY=ALL

Indicate that an input file
is a linker options file.

/OPTIONS Not applicable.

2.1.2.1 Linker Output File Qualifiers

You can use qualifiers on the LINK command line to control the output
produced by the linker. You can also specify whether the debugging or
the traceback facility is to be included. (The /DEBUG and /TRACEBACK
qualifiers are described in Section 2.1.2.2.)

Linking and Running VAX FORTRAN Programs 2-3

Linker output consists of an image file and, optionally, a map file. The
qualifiers that control image and map files are described under the head-
ings that follow.

Image File Qualifiers

The image file qualifiers are /[NO]EXECUTABLE and /[NO]SHAREABLE.
The use and effects of these two qualifiers are as follows:

• /EXECUTABLE If you do not specify an image file qualifier, the
default is /EXECUTABLE, and the linker produces an executable
image.

To suppress production of an image, specify /NOEXECUTABLE. For
example, in the following command, the file CIRCLE.OBJ is linked,
but no image is generated:

$ LINK/NQEXECUTABLE CIRCLE

The /NOEXECUTABLE qualifier is useful if you want to verify the
results of linking an object file without actually producing the image.

To designate a file specification for an executable image, use the
/EXECUTABLE qualifier in the form:

/EXECUTABLE=file-spec

For example, in the following command, the file CIRCLE.OBJ is linked
and the executable image generated by the linker is named TEST.EXE:

$ LINK/EXECUTABLE=TEST CIRCLE

• /SHAREABLE A shareable image has aII of its internal references
resolved, but must be linked with one or more object modules to
produce an executable image. A shareable image file, for example,
can contain a library of routines or can be used by the system man-
ager to create a global section for all users. To create a shareable
image, specify the /SHAREABLE qualifier, as shown in the following
example:

$ LINK/SHAREABLE CIRCLE

To include a shareable image as input to the linker, you can insert
the shareable image into ashareable-image library and specify the
library as input to the LINK command. By default, the linker au-
tomatically searches the system-supplied shareable-image library
SYS$LIBRARY:IMAGELIB.OLB after searching any libraries you

2-4 Linking and Running VAX FORTRAN Programs

specify on the LINK command line. You can also include a share-
able image by using a linker options file. See the VMS Linker Utility
Manual for more information.

If you specify (or default to) /NOSHAREABLE, the image produced
cannot be linked with other images.

Map File Qualifiers

The map file qualifiers indicate whether a map file is to be generated and,
if so, the amount of information to be included in the map file.

The map qualifiers are specified as follows:

/ [NO] MAP [=file-spec] [{ /BRIEF }] [/CROSS_REFERENCE]
[{ /FULL }]

In interactive mode, the default is to suppress the map; in batch mode, the
default is to generate the map.

If you do not include a file specification with the /MAP qualifier, the map
file has the name of the first input file and a file type of MAP. It is stored
on the default device in the default directory.

The /BRIEF and /FULL qualifiers define the amount of information
included in the map file. They function as follows:

• /BRIEF produces a summary of the image's characteristics and a list of
contributing modules.

• /FULL produces a summary of the image's characteristics and a list of
contributing modules (as produced by /BRIEF). It also produces a list,
in symbol-name order, of global symbols and values (program, sub-
routine, and common block names, and names declared EXTERNAL)
and a summary of characteristics of image sections in the linked
image.

If neither /BRIEF nor /FULL is specified, the map file, by default, contains
a summary of the image's characteristics, alist of contributing modules
(as produced by /BRIEF), and a list of global symbols and values, in
symbol-name order.

You can use the /CROSS—REFERENCE qualifier with either the default
or /FULL map qualifiers to request cross-reference information for global
symbols. This cross-reference information indicates the object modules
that define or refer to global symbols encountered during linking. The
default is /NOCROSS_REFERENCE.

Linking and Running VAX FORTRAN Programs 2-5

2.1.2.2 /DEBUG and /TRACEBACK Qualifiers

The /DEBUG qualifier indicates that the debugger (see Chapter 3) is
to be included in the executable image and that local symbol informa-
tion contained in the object modules is to be included. The default is
/NODEBUG.

When you use the /TRACEBACK qualifier, run-time error messages are
accompanied by a symbolic traceback that shows the sequence of calls that
transferred control to the program unit in which the error occurred. If you
specify /NOTRACEBACK, this information is not produced. The default is
/TRACEBACK.

If you specify /DEBUG, the traceback capability is automatically included,
and the /TRACEBACK qualifier is ignored. (See Section 2.3.1 for a sample
traceback list.)

2.1.2.3 Linker Input File Qualifiers

Input file qualifiers affect the file specifications of input files. Input files
can be object files, shareable files previously linked, or library files.

The qualifiers that control linker input files are the /LIBRARY qualifier
and the /INCLUDE qualifier.

• The /LIBRARY qualifier specifies that the input file is an object-
module or shareable-image library that is to be searched to resolve
undefined symbols referenced in other input modules. The default file
type is OLB.

The /LIBRARY qualifier has the following form:

/LIBRARY

• The /INCLUDE qualifier specifies that the input file is an object-
module or shareable-image library and that the modules named are
the only modules in the library to be explicitly included as input. In
the case of shareable-image libraries, the module is the shareable-
image name.

The /INCLUDE qualifier has the following form:

/INCLUDE=module-name

At least one module name is required. To specify more than one,
enclose the module names in parentheses and separate the names
with commas.

2-6 Linking and Running VAX FORTRAN Programs

The default file type is OLB. The /LIBRARY qualifier can also be used,
with the same file specification, to indicate that the same library is to
be searched for unresolved references.

2.1.3 Linker Messages

If the linker detects any errors while linking object modules, it displays
messages about their cause and severity. If any errors or fatal conditions
occur (severities E or F), the linker does not produce an image file.

Linker messages are descriptive; you do not normally need additional
information to determine the specific error. Some of the more common
errors that occur during linking are as follows:

• An object module has compilation errors. This error occurs when
you attempt to link a module that had warnings or errors during
compilation. Although you can usually link compiled modules for
which the compiler generated messages, you should verify that the
modules actually produce the output you expect.

• The modules that are being linked define more than one transfer
address. The linker generates a warning if more than one main
program has been defined. This can occur, for example, when an
extra END statement exists in the program. In this case, the image file
created by the linker can be run; the entry point to which control is
transferred is the first one that the linker finds.

• A reference to a symbol name remains unresolved. This error occurs
when you omit required module or library names on the LINK com-
mand line and the linker cannot locate the definition for a specified
global symbol reference.

If an error occurs when you link modules, you can often correct it simply
by reentering the command string and specifying the correct routines or
libraries.

Linking and Running VAX FORTRAN Programs 2-7

2.2 Running VAX FORTRAN Programs

This section describes the following considerations for executing VAX
FORTRAN programs on a VMS operating system:

• Using the RUN command to execute programs interactively
• Passing status values to the command interpreter

2.2.1 The RUN Command

The RUN command initiates execution of a program. The command has
the following form:

RUN [/ [NO] DEBUG] file -spec

You must specify the file name. If you omit optional elements of the
file specification, the system automatically provides a default value. The
default file type is EXE.

The /DEBUG qualifier allows you to use the debugger, even if you
omitted this qualifier on the FORTRAN and LINK command lines. Refer
to Section 2.3 for details.

Before the image is activated, the system initializes to zero all variables
and arrays that are not initialized by means of DATA statements. (Note: It
is not considered a good programming practice to rely on this, however.)

2.2.2 System Processing at Image Exit

When the main program executes an END statement, or when any
program unit in the program executes a STOP statement, the image is
terminated. In a VMS operating system, the termination of an image, or
image exit, causes the system to perform a variety of clean-up operations
during which open files are closed, system resources are freed, and so on.

2-8 Linking and Running VAX FORTRAN Programs

2.2.3 Interrupting a Program

When you execute the RUN command interactively, you cannot execute
any other program images or DCL commands until the current image
completes. However, if your program is not performing as expected if,
for instance, you have reason to believe it is in an endless loop you
can interrupt it using the CTRL/Y key sequence. (You can also use the
CTRL/C key sequence, unless your program takes specific action in
response to CTRL/C.) For example:

$ RUN APPLIC
~ CTRL/Y

This command interrupts the program APPLIC. After you have interrupted
a program, you can terminate it by entering a DCL command that causes
another image to be executed or by entering the DCL commands EXIT or
STOP.

Following aCTRL/Y interruption, you can also force an entry to the
debugger by entering the DEBUG command.

Some of the other DCL commands you can enter have no direct effect on
the image. After using them, you can resume the execution of the image
with the DCL command CONTINUE. For example:

$ RUN APPLIC
CTRL/Y
$ SHOW TRANSLATION INFILE

INFILE _ (undefined)
$ DEFINE INFILE DBA1:[TESTFILES]JANUARY.DAT

$ CONTINUE

For a complete list of the commands you can enter following aCTRL/Y
interruption without affecting the current image, see the VMS Command
Definition Utility Manual.

As noted previously, you can use CTRL/C to interrupt your program; in
most cases, the effect of CTRL/C and CTRL/Y is the same. However,
some programs (including programs you may write) establish particular
actions to take to respond to CTRL/C. If a program has no CTRL/C
handling routine, then CTRL/C is the same as CTRL/Y.

Linking and Running VAX FORTRAN Programs 2-9

2.2.4 Returning Status Values to the Command Interpreter

If you run your program as part of a command procedure, it is frequently
useful to return a status value to the command procedure indicating
whether the program actually executed properly. To return such a status
value, call the EXIT system subroutine rather than terminating execution
with a STOP, RETURN, or END statement. The EXIT subroutine can
be called from any executable program unit. It terminates your program
and returns the value of the argument as the return status value of
the program. See the VAX FORTRAN Language Reference Manual for a
description of the EXIT subroutine.

When the command interpreter receives a status value from a terminating
program, it attempts to locate a corresponding message in a system
message file or auser-defined message file. Every message that can be
issued by a system program, command, or component, has a unique 32-bit
numeric value associated with it. These 32-bit numeric values are called
condition symbols. Condition symbols are described in Section 9.1.2.3.

The command interpreter does not display messages on completion of a
program under the following circumstances:

• The EXIT argument specifies the value 1, corresponding to SUCCESS.
• The program does not return a value. If the program terminates with

a RETURN, STOP, or END statement, a value of 1 is always returned
and no message is displayed.

2.3 Finding and Correcting Run-Time Errors

Both the compiler and the VMS Run-Time Library include facilities for
detecting and reporting errors. You can use the VMS Debugger and the
traceback facility to help you locate errors that occur during program
execution.

2-10 Linking and Running VAX FORTRAN Programs

2.3.1 Effects of Error-Related Command aualifiers

At each step in compiling, linking, and executing your program, you can
specify command qualifiers that affect how errors are processed.

• At compile time, you can specify the /DEBUG qualifier on the
FORTRAN command line to ensure that symbolic information is
created for use by the debugger.

• At link time, you can also specify the /DEBUG qualifier on the LINK
command line to make the symbolic information available to the
debugger.

• At run time, you can specify the /DEBUG qualifier on the RUN
command line to invoke the debugger.

Table 2-2 summarizes the /DEBUG and /TRACEBACK qualifiers.

Table 2-2: /DEBUG and /TRACEBACK Qualifiers
Command Qualifier Effect

FORTRAN /DEBUG The VAX FORTRAN compiler creates symbolic data
needed by the debugger.

Default: /DEBUG=(NOSYMBOLS,TRACEBACK)

LINK /DEBUG Symbolic data created by the VAX FORTRAN
compiler is passed to the debugger.

Default: /NODEBUG

/TRACEBACK Traceback information is passed to the debugger.
Traceback will be produced.

Default: /TRACEBACK

RUN /DEBUG Invokes the debugger. The DBG> prompt will
be displayed. Not needed if $LINK/DEBUG was
specified.

/NODEBUG If /DEBUG was specified in the LINK command
line, RUN/NODEBUG starts program execution
without first invoking the debugger.

If an exception occurs and these qualifiers are not specified at any point in
the compile-link-execute sequence, a traceback list is generated by default.

Linking and Running VAX FORTRAN Programs 2-11

To perform symbolic debugging, you must use the /DEBUG qualifier
with both the FORTRAN and LINK command lines; you do not need to
specify it with the RUN command. If /DEBUG is omitted from either the
FORTRAN or LINK command lines, you can still use it with the RUN
command to invoke the debugger. However, any debugging you perform
must then be done by specifying virtual addresses rather than symbolic
names.

If you linked your program with the debugger, but wish to execute the
program without debugger intervention, specify the following command:

RUN/NODEBUG program-name

If you specify LINK/NOTRACEBACK, you receive no traceback in the
event of errors. A sample source program and a traceback are shown in
Example 2-1.

When an error condition is detected, you receive the appropriate message,
followed by the traceback information. The Run-Time Library displays a
message indicating the nature of the error and the address at which the
error occurred (user PC). This is followed by the traceback information,
which is presented in inverse order to the calls. Note that values can be
produced for relative and absolute PC, with no corresponding values for
routine name and line. These PC values reflect procedure calls internal to
the Run-Time Library.

Of particular interest are the values listed under "routinE~ name" and "line."
The names under "routine name" show which routine or subprogram
called the Run-Time Library, which subsequently reported the error. The
value given for "line" corresponds to the compiler-generated line number
in the source program listing (not to be confused with editor-generated
line numbers). With this information, you can usually isolate the error in
a short time.

If you specify either LINK/DEBUG or RUN/DEBUG, the debugger
assumes control of execution and you do not receive a traceback list if an
error occurs. To display traceback information, you can use the debugger
command SHOW CALLS.

You should specify the /NOOPTIMIZE qualifier on the FORTRAN com-
mand line whenever you use the debugger; see Section 1.2.3.17.

2-12 Linking and Running VAX FORTRAN Programs

Example 2-1: Sample VAX FORTRAN Program and
Traceback

0001 PROGRAM TRACE_TEST
0002 I = 1
0003
0004 CALL SUB 1(I)
0005 END

0001 SUBROUTINE SUB1(I)
0002 I=I+1

0003 CALL SUB2
0004 RETURN
0005 END

0001
0002 SUBROUTINE SUB2
0003 COMPLEX W
0004 COMPLEX Z
0005
0006 DATA W/(0.,0.)/
0007 Z = LOG(W)
0008 RETURN
0009 END

%MTH-F-INVARGMAT, invalid argument to math library
user PC 000034D4

'/°TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line relative PC absolute PC
00001368 00001368
0000X51 0000X51
000034D4 000034D4

SUB2 SUB2 7 00000011 00000439

SUB1 SUB1 3 OOOOOOOC 00000424

TRACE_TEST TRACE_TEST 4 00000014 00000414

Linking and Running VAX FORTRAN Programs 2-13

Chapter 3

Using the VMS Debugger

This chapter is an introduction to using the VMS Debugger with VAX
FORTRAN programs. This chapter provides the following information:

• An overview of the debugger (Sections 3.1 and 3.2)

• Information to get you started using the debugger (Section 3.3)
• A sample terminal session that demonstrates using the debugger

(Section 3.4)

• A list of the debugger commands by function (Section 3.5)

For complete reference information on the VMS Debugger, see the VMS
Debugger Manual. Online HELP is available during debugging sessions.

3.1 Overview

A debugger is a tool that helps you locate run-time errors quickly. It
is used with a program that has already been compiled and linked suc-
cessfully, but does not run correctly. For example, the output may be
obviously wrong, or the program goes into an infinite loop or terminates
prematurely. The debugger enables you to observe and manipulate the
program's execution interactively so you can locate the point at which the
program stopped working correctly.

The VMS Debugger is a symbolic debugger, which means that you can
refer to program locations by the symbols (names) you used for those
locations in your program the names of variables, subroutines, labels,
and so on. You do not need to use virtual addresses to refer to memory
locations.

Using the VMS Debugger 3-1

The debugger recognizes the syntax, expressions, data typing, and other
constructs of VAX FORTRAN, as well as the following other languages
supported on VAX:

Ada
BASIC
BLISS
C
COBOL
DIBOL
MACRO-32
Pascal
PL/I
RPG II
SCAN

If your program is written in more than one language, you can change
from one language to another during a debugging session. The current
source language determines the format used for entering and displaying
data, as well as other features that have language-specific settings (for
example, comment characters, operators and operator precedence, and
case sensitivity or insensitivity).

By issuing debugger commands at your terminal, you can perform the
following operations:

• Start, stop, and resume the program's execution

• Trace the execution path of the program

• Monitor selected locations, variables, or events

• Examine and modify the contents of variables, or force events to occur

• Test the effect of some program modifications without having to edit,
recompile, and relink the program

Such techniques allow you to isolate an error in your code much more
quickly than you could without the debugger.

Once you have found the error in the program, you can then edit the
source code and compile, link, and run the corrected version.

This chapter describes how to debug programs that run in only one
process. Additional techniques for debugging multiprocess programs are
covered in Appendix A.

3-2 Using the VMS Debugger

3.2 Features of the Debugger

The VMS Debugger provides the following features to help you debug
your programs:

• Online HELP Online HELP is always available during a debugging
session and contains information on all of the debugger commands
and also information on selected topics.

• Source Code Display You can display lines of source code during a
debugging session.

• Screen Mode You can capture and display various kinds of infor-
mation in scrollable windows, which -can be moved around the screen
and resized. Automatically updated source, instruction, and register
displays are available. You can selectively direct debugger input,
output, and diagnostic messages to displays.

• Keypad Mode When you invoke the debugger, several commonly
used debugger command sequences are assigned by default to the
keys of the numeric keypad (if you have a VT100, VT52, or LK201
keyboard).

• Source Editing As you find errors during a debugging session, you
can use the EDIT command to invoke any editor available on your
system. (You first specify the editor you want with the SET EDITOR
command.)

• Command Procedures The debugger allows you to execute a
con :nand procedure to recreate a debugging session, to continue a
previous session, or to avoid typing the same debugger commands
many times during a debugging session.

• Symbol Definitions You can define your own symbols to represent
lengthy commands, address expressions, or values.

• Initialization Files You can create an initialization file containing
commands to set your default debugging modes, screen display
definitions, keypad key definitions, symbol definitions, and so on.
In addition, you may want to have special initialization files for
debugging specific programs.

• Log Files You can record the commands you issue during a debug-
ging session and the debugger's responses to those commands in a log
file. You can use log files to keep track of your debugging efforts, or
you can use them as command procedures in subsequent debugging
sessions.

Using the VMS Debugger 3-3

3.3 Getting Started with the Debugger

This section explains how to use the debugger with VAX FORTRAN
programs. The section focuses on basic debugger functions, to get you
started quickly. It also provides any debugger information that is specific
to VAX FORTRAN. For more detailed information that is not specific to a
particular language, see the VMS Debugger Manual.

3.3.1 Compiling and Linking a Program to Prepare for Debugging

Before you can use the debugger, you must compile and link your pro-
gram. The following example shows how to compile and link a VAX
FORTRAN program (consisting of a single compilation unit named
INVENTORY.FOR) prior to using the debugger.

$ FORTRAN/DEBUG/NOOPTIMIZE INVENTORY
$ LINK/DEBUG INVENTORY

The /DEBUG qualifier on the FORTRAN command line causes the com-
piler to write the debug symbol records associated with INVENTORY.FOR
into the object module INVENTORY.OBJ. These records allow you to use
the names of variables and other symbols declared in INVENTORY.FOR
in debugger commands. (If your program has several compilation units,
each of the program units that you want to debug must be compiled with
the /DEBUG qualifier.)

Use the /NOOPTIMIZE qualifier when you compile a program in prepa-
ration for debugging. Otherwise, the object code is optimized (to reduce
the size of the program and make it run faster), so that the contents of
some program locations may be inconsistent with what you might expect
from viewing the source code. (After debugging the program, recompile
it without the /NOOPTIMIZE qualifier.) See Chapter 11 for a detailed
description of the various optimizations performed by the compiler and
how these affect debugging.

The /DEBUG qualifier on the LINK command line causes the linker to in-
clude all symbol information that is contained in INVENTORY.OBJ in the
executable image. This qualifier also causes the VMS image activator to
start the debugger at run time. (If your program has several object mod-
ules, you may need to specify the other modules on the LINK command
line.) For a description of the effects of specifying the /DEBUG qualifier
on the FORTRAN, LINK, and RUN command lines, see Sections 1.2.3.5
and 2.3.

3-4 Using the VMS Debugger

3.3.2 Starting and Terminating a Debugging Session

You can invoke the debugger in either the default or multiprocess config-
uration to debug programs that run in either one or several processes,
respectively. The configuration depends on the current value of the logical
name DBG$PROCESS. Thus, before invoking the debugger, issue the DCL
command SHOW LOGICAL DBG$PROCESS to determine the current
definition of DBG$PROCESS.

This chapter covers programs that run in only one process. For such
programs, DBG$PROCESS either should be undefined, as in the following
example, or should have the value DEFAULT:

$ SHOW LOGICAL DBG$PROCESS
'/.SHOW-S-NOTRAN , no translation for logical name DBG$PROCESS

If DBG$PROCESS has the value MULTIPROCESS, enter the follow-
ing command to debug programs that run in only one process (see
Appendix A for details on multiprocess debugging):

$ DEFINE DBG$PROCESS DEFAULT

You can now invoke the debugger by issuing the DCL command RUN.
The following messages then appear on your screen:

$ RUN INVENTORY

VAX DEBUG Version Version 5.0

'/.DEBUG-I-INITIAL, language is FORTRAN, module set to 'INVENTORY'

DBG>

The "INITIAL" message indicates that the debugging session is initialized
for a VAX FORTRAN program and that the name of the main program
unit is INVENTORY. The DBG> prompt indicates that you can now
type debugger commands. At this point, if you type the GO command,
program execution begins and continues until it is forced to pause or stop
(for example, if the program prompts you for input or an error occurs).

When you invoke the debugger for either amixed-language pro-
gram that includes an Ada package or a program compiled with the
/CHECK=UNDERFLOW or /PARALLEL qualifier, the following message,
instead of the one shown previously, appears:

$ RUN INVENTORY

VAX DEBUG Version Version 5.0

'/.DEBUG-I-INITIAL, language is FORTRAN, module set to 'INVENTORY'

'/.DEBUG-I-NOTATMAIN, type GO to get to start of main program

DBG>

Using the VMS Debugger 3-5

The "NOTATMAIN" message indicates that execution is suspended before
the start of the main program, so that you can execute initialization code
under debugger control. Typing the GO command places you at the start
of the main program. At that point, type the GO command again to start
program execution. Execution continues until it is forced to pause or stop
(for example, if the program prompts you for input or if an error occurs).

To end a debugging session and return to DCL level, type EXIT or press
CTRL/Z:

DBG> EXIT

The following message indicates that your program has completed execu-
tion successfully:

%DEBUG-I--EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion'
DBG>

If you want to continue debugging after seeing this message, type EXIT
and start a new debugging session with the DCL command RUN. You
could also restart execution from within the debugging session with a
command such as GO %LINE 1. However, this may produce unexpected
results if, for example, some variables are initialized differently from when
you first invoked the debugger.

3.3.3 Aborting Program Execution or Debugger Commands

If your program loops during a debugging session so that the debug-
ger prompt does not reappear, press CTRL/C. This interrupts program
execution and returns you to the prompt. For example:

DBG> GO

(infinite loop)
cTR~~c
Interrupt
%DEBUG-W-ABORTED, command aborted by user request
DBG>

3-6 Using the VMS Debugger

Do not press CTRL/Y from within a debugging session. Pressing CTRL/Y
aborts the session and returns you to the DCL prompt ($)rather than the
debugger prompt.

You can also press CTRL/C to abort the execution of a debugger com-
mand. This is useful if a command takes a long time to complete. For
example:

DBG> EXAMINE/BYTE 1000:101000
1000: 0
1004: 0
1008: 0
1012: 0
1016: 0)
CTRL/C ! Should have typed 1000:1010

%DEBUG-W-ABORTED, command aborted by user request
DBG>

If your program already has aCTRL/C AST service routine enabled, use
the SET ABORT_KEY command to assign the debugger's abort function to
another CTRL-key sequence. For example:

DBG> SET ABORT_KEY = CTRL_P
DBG> GO

CTRL/P
%DEBUG-W-ABORTED, command aborted by user request
DBG>

Note, however, that many CTRL-key sequences have VMS predefined
functions, and the SET ABORT_KEY command enables you to over-
ride such definitions within the debugging session (see the VMS DCL
Concepts Manual). Some of the CTRL-key characters not used by the VMS
operating system are G, K, N, and P.

3.3.4 Issuing Debugger Commands

You can issue debugger commands any time you see the debugger prompt
(DBG >). Type the command at the keyboard and press the RETURN
key. You can issue several commands on a line by separating the com-
mand strings with semicolons (;). As with DCL commands, you can
continue a command string on a new line by ending the previous line
with a hyphen (-).

Using the VMS Debugger 3-7

Alternatively, you can use the numeric keypad to issue certain commands.
Figure 3-1 identifies the predefined key functions. You can also redefine
key functions with the DEFINE/KEY command.

Most keypad keys have three predefined functions DEFAULT, GOLD,
and BLUE.

• To obtain a key's DEFAULT function, press the key.

• To obtain its GOLD function, first press the PF1 (GOLD) key, and
then the key.

• To obtain its BLUE function, first press the PF4 (BLUE) key, and then
the key.

In Figure 3-1, the DEFAULT, GOLD, and BLUE functions are listed within
each key's outline, from top to bottom, respectively. For example,

• Pressing keypad key 0 issues the STEP command.

• Pressing key PF1 and then key 0 issues the STEP/INTO command.
• Pressing key PF4 and then key 0 issues the STEP/OVER command.

Type the command HELP KEYPAD to get help on the keypad key
definitions.

3-8 Using the VMS Debugger

Figure 3-1: Debugger Keypad Key Functions

F 17

DEFAULT

(SCROLL I

f18

MOVE

F19

EXPAND

(EXPAND •I

F20

CONTRACT

(EXPAND I

PF1

GOLD

GOLD

GOLD

DISP SRC.INST.OUT
DISP INST,REG.OUT
DISP 2 SRC.2 INST

SCROIILEFT

SCROLL;IEFT 255

SCROLIiLEFT

EXAMINE

EXAM-IPrevl
DISP 3 SRC.3 INST

PF2

HELP DEFAULT

HELP GOLD

HELP BLUE

5

EX SOU 0• % PC

SNOW CALLS

SNOW CALLS 3

2

SCROLLiDOWN

SCROIL`BOTTOM

SCROLL. DOWN

STEP

STEP INTO

STEP OVER

PF3

SET MODE SCREEN

SET MODE NOSCR

DISP GENERATE

PFd

BLUE

BLUE

BLUE

DISPLAY next
SET PROC next
DISP 2 SRC

6

DISP next at FS

DISP SRC. OUT

SCROII/RIGHT GO
SCROII/RIGHT 255 SEL SOURCE next

SCROLL/RIGHT SEL INST next

♦~ 3

SEL SCRULL next
SEl OUTPUT next
DISP 3 SRC

RESET

RESET

RESET

ENTER

ENTER

LK201 Keyboard:

Press Keys 2,4,6,8

F 17 SCROLL

F18 MOVE

F 19 EXPAND

F20 CONTRACT

VT-100 Keyboard:

Type Keys 2,4,6,8

SET KEY/STATE=DEFAULT SCROLL

SET KEY/STATE=MOVE MOVE

SET KEY/STATE=EXPAND EXPAND

SET KEY/STATE~ONTRACT CONTRACT

'"MOVE"

7

MOVE DOWN

MOVE DOWN 999

MOVE DOWN 5

MOVE RIGHT

MOVE RIGHT 999

MOVE RIGHT 10

"EXPAND" C EXPAND UP

EXPAND UP 999

EXPAND UP 5

EXPAND IEFT

EXPAND LEFT 999

EXPAND LEFT 10

~ J
~2

EXPAND DOWN

EXPAND DOWN 999

EXPAND DOWN 5

C EXPAND RIGHT

EXPAND RIGHT 999

EXPAND RIGHT 10

"CONTRACT"

EXPAND IEFT -1

EXPAND LEFT -999

EXPAND IEFT -10

C EXPAND UP -1

EXPAND UP •999

EXPAND UP -5

EXPAND DOWN •1

EXPAND DOWN •999

EXPAND DOWN -5

~ J

6

EXPAND RIGHT -1

EXPAND RIGHT -999

EXPAND RIGHT -10

ZK-7462-HC

Using the VMS Debugger 3-9

3.3.5 Viewing Your Source Code

The debugger provides two modes for displaying information: noscreen
mode and screen mode. By default, when you invoke the debugger, you
are in noscreen mode, but you may find that it is easier to view your
source code in screen mode. Both modes are briefly described in the
following sections.

3.3.5.1 Noscreen Mode

Noscreen mode is the default, line-oriented mode of displaying input and
output. To invoke noscreen mode from screen mode, press the keypad key
sequence GOLD-PF3. See the sample debugging session in Section 3.4 for
a demonstration of noscreen mode..

In noscreen mode, you can use the TYPE command to display one or
more source lines. For example, the following command displays line 3 of
the module whose code is currently executing:

DBG> TYPE 3
module MAIN

3: J = 4
DBG>

The display of source lines is independent of program execution. To
display source code from a module other than the one whose code is
currently executing, use the TYPE command with a path name to specify
the module. (See the description of the STEP command in Section 3.3.6.1
for information about path names.)

For example, the following command displays lines 16 through 21 of
module TEST:

DBG> TYPE TEST\16:21

You can also use the EXAMINE/SOURCE command to display the source
line for a routine or any other program location that is associated with an
instruction.

Note that the debugger also displays source lines automatically when
it suspends execution at a breakpoint or watchpoint or after a STEP
command, or when a tracepoint is triggered (see Section 3.3.6).

3-10 Using the VMS Debugger

If the debugger cannot locate source lines for display, it issues a diagnostic
message. Source lines may not be available for a variety of reasons. For
example:

• The module was compiled or linked without the /DEBUG command
qualifier.

• Execution is currently suspended within a system or shareable image
routine for which no source code is available.

• The module may need to be set with the SET MODULE command.
Module setting is explained in Section 3.3.8.1.

• The source file was moved to a different directory after it was com-
piled (the location of source files is embedded in the object modules).
In this case, use the SET SOURCE command to specify the new
location.

3.3.5.2 Screen Mode

To invoke screen mode, press keypad key PF3. In screen mode, the
debugger splits the screen into three displays named SRC, OUT, and
PROMPT, by default. The following example shows how your screen will
appear in screen mode.

- SRC: module MAIN -scroll-source
1: PROGRAM MAIN
2: I = 7

-> 3. J = 4
4: K = I + J
5: END

- OUT -output
stepped to MAIN\'/.LINE 4
MAIN\I: 7
MAIN\J: 0

- PROMPT -error-program-prompt
DBG> STEP 2
DBG> EXAMINE I,J
DBG>

Using the VMS Debugger 3-11

The SRC display, at the top of the screen, shows the source code of the
module (compilation unit) where execution is currently suspended. An
arrow in the left column points to the next line to be executed, which
corresponds to the current value of the program counter, PC. (The PC
is a VAX register that contains the address of the next instruction to be
executed.) The line numbers, which are assigned by the compiler, match
those in a listing file.

The OUT display, in the middle of the screen, captures the debugger's
output in response to the commands that you issue.

The PROMPT display, at the bottom of the screen, shows the debugger
prompt (DBG >), your input, debugger diagnostic messages, and program
output. In the example, the two debugger commands that have been
issued (STEP 2 and EXAMINE I,J) are displayed.

(The zero value reported by the debugger for J indicates that line 3 has
not been executed yet; line 3 will subsequently assign the value 4 to J.)

The SRC and OUT displays can be scrolled to display information beyond
the window's edge. Press keypad key 8 to scroll up and keypad key 2 to
scroll down. Use keypad key 3 to change the display to be scrolled (by
default, the SRC display is scrolled). Scrolling a display does not affect
program execution .

In screen mode, if the debugger cannot locate source lines for the program
unit where execution is currently suspended, it tries to display source
lines in the next routine down on the call stack for which source lines
are available. If this is possible, the debugger also issues the following
message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .0~%PC.
Displaying source in a caller of the current routine.

In such cases, the arrow in the SRC display identifies the call statement in
the calling routine.

3-12 Using the VMS Debugger

3.3.6 Controlling and Monitoring Program Execution

This section discusses the following topics:

• Starting and resuming program execution with the GO command

• Stepping through the program's code with the STEP command

• Determining where execution is currently suspended with the SHOW
CALLS command

• Suspending program execution with breakpoints

• Tracing program execution with tracepoints

• Monitoring changes in variables with watchpoints

3.3.6.1 Starting and Resuming Program Execution-GO and STEP

The GO and STEP commands allow you to start or resume program
execution. The GO command starts execution, and the STEP command
executes a specified number of source lines or instructions.

The GO Command

The GO command is usually issued only after you have established
breakpoints, tracepoints, and watchpoints (described in Sections 3.3.6.3,
3.3.6.4, and 3.3.6.5).

• If you set a breakpoint in the path of execution and then issue the GO
command, execution is suspended at that breakpoint.

• If you set a tracepoint, the path of execution through that tracepoint is
monitored.

• If you set a watchpoint, execution is suspended when the value of the
watched variable changes.

Yotx can also use the GO command to test for an exception condition or
an infinite loop. If an exception condition that is not handled by your
program occurs, the debugger takes control and displays the DBG
prompt so that you can issue commands. If you are using screen mode,
the pointer in the source display indicates where execution stopped. You
can use the SHOW CALLS command (explained in Section 3.3.6.2) to
identify the currently active routine calls (the call stack).

Using the VMS Debugger 3-13

If an infinite loop occurs, the program does not terminate, so the debugger
prompt does not reappear. To obtain the prompt, interrupt execution by
pressing CTRL/C (see Section 3.3.3). You can then look at the source
display and a display generated by the SHOW CALLS command to find
where execution is suspended.

The STEP Command

The STEP command allows you to execute a specified number of source
lines or instructions, or to execute the program to the next instruction of a
particular kind, for example, to the next CALL instruction.

By default, the STEP command executes a single executable source line at
a time. In the following example, the STEP command executes one line,
reports the action ("stepped to . . . "), and displays the line number (27)
and source code of the next line to be executed:

DBG> STEP
stepped to TEST\COUNT\%LINE 27

27: X=X+ 1
DBG>

Execution is now suspended at the first machine code instruction for
line 27 of the module TEST; line 27 is in COUNT, a subroutine within
the module TEST. TEST\COUNT\%LINE 27 is a path name. The de-
bugger uses path names to refer to symbols. (You do not need to use a
path name in referring to a symbol, however, unless the symbol is not
unique. If the symbol is not unique, the debugger issues an error message.
See Section 3.3.8.2 for more information on resolving multiply defined
symbols.)

The STEP command can execute a number of lines at a time. In the
following example, the STEP command executes three lines:

DBG> STEP 3

Note that only those source lines for which code instructions were gener-
ated by the compiler are recognized as executable lines by the debugger.
The debugger skips over any other lines, for example, comment lines and
specification statements.

You can specify different stepping modes, such as stepping by instruction
rather than by line (SET STEP INSTRUCTION). You may also want to
adjust the stepping mode used when a routine call is encountered in the
source code. By default, the debugger steps over called routines; execution
is not suspended within a called routine, although the routine is executed.
Issuing the SET STEP INTO command causes the debugger to suspend

3-14 Using the VMS Debugger

execution within called routines, as well as within the routine that is
currently executing.

3.3.6.2 Determining Where Execution Is Suspended-SHOW CALLS

The SHOW CALLS command is useful when you are unsure where
execution is suspended during a debugging session (for example, after a
CTRL/C interruption).

The SHOW CALLS command displays a traceback that lists the sequence
of calls leading to the routine where execution is currently suspended. For
each routine (beginning with the one where execution is suspended), the
debugger displays the following information:

• The name of the module that contains the routine
• The name of the routine

• The line number at which the call was made (or at which execution is
suspended, in the case of the current routine)

• The corresponding PC addresses (the relative PC address from the
start of the routine, and the absolute PC address of the program)

For example:

DBG> SHOW CALLS
module name routine name line rel PC abs PC

*TEST PRODUCT 18 00000009 0000063C
*TEST COUNT 47 00000009 00000647
*MY_PROG MY_PROG 21 OOOOOOOD 00000653
DBG>

This example indicates that execution is currently at line 18 of routine
PRODUCT (in module TEST), which was called from line 47 of routine
COUNT (in module TEST), which was called from line 21 of routine
MY_PROG (in module MY_PROG).

Using the VMS Debugger 3-15

3.3.6.3 Suspending Program Execution-SET BREAK

The SET BREAK command allows you to select breakpoints. Breakpoints
are locations at which program execution is suspended. When you reach a
breakpoint, you can issue commands to check the call stack, examine the
current values of variables, and so on.

In the following example, the SET BREAK command sets a breakpoint on
the subroutine COUNT. The GO command then starts execution. When
the subroutine COUNT is encountered, execution is suspended. The
debugger reports that the breakpoint at COUNT has been reached ("break
at . . . "), displays the source line (54) where execution is suspended, and
prompts you for another command. At this breakpoint, you could step
through the subroutine COUNT, using the STEP command, and use the
EXAMINE command (discussed in Section 3.3.7.1) to check on the current
values of X and Y.

DBG> SET BREAK COUNT

DBG> GO

break at PROG2\COUNT
54: SUBROUTINE COUNT(X,Y)

DBG>

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers,
subroutine names, instructions, virtual memory addresses, or byte offsets).
With high-level languages, you typically use subroutine names, labels, or
line numbers, possibly with path names to ensure uniqueness.

Subroutine names and labels should be specified as they appear in the
source code. Line numbers may be derived from either a source code
display or a listing file. When specifying a line number, use the prefix
%LINE, and when specifying a label, use the prefix %LABEL. (Otherwise,
the debugger interprets the line numbers as memory locations.) For
example, the next command sets a breakpoint at line 41 of the module
whose code is currently executing; the debugger suspends execution when
the PC value is at the start of line 41.

DBG> SET BREAK '/.LINE 41

Note that you can set breakpoints only on lines that resulted in machine
code instructions. If you try to do otherwise (for example, if you try to
set a breakpoint on a comment line), the debugger issues a warning. To
set a breakpoint on a line number in a module other than the one whose

3-16 Using the VMS Debugger

code is currently executing, specify the module's name in a path name.
For example:

DBG> SET BREAK SCREEN_IO\'/.LINE 58

You do not always need to specify a particular program location, such
as line 58 or COUNT, to set a breakpoint. You can set breakpoints on
events, such as exceptions. You can also use the SET BREAK command
with the /LINE qualifier (but no parameter) to break on every line, or
with the /CALL qualifier to break on every CALL instruction, and so on.
For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

You can conditionalize a breakpoint (with a WHEN clause) or specify that
a list of commands be executed at the breakpoint (with a DO clause). For
example, the next command sets a breakpoint on the label LOOP3. The
DO (EXAMINE TEMP) clause causes the value of the variable TEMP to be
displayed whenever the breakpoint is triggered.

DBG> SET BREAK '/.LABEL 10 DO (EXAMINE TEMP)

DBG> GO

break at COUNTER\%LABEL 10
37: 10 DO I = 1 TO 10

COUNTER\TEMP: 284.19
DBG>

To display the currently active breakpoints, issue the SHOW BREAK
command:

DBG> SHOW BREAK
breakpoint at SCREEN_IO\'/.LINE 58
breakpoint at COUNTER\'/.LABEL 10

do (EXAMINE TEMP)

DBG>

If any portion of your program was written in Ada, two breakpoints
that are associated with Ada tasking exception events are automatically
established when you invoke the debugger. When you issue a SHOW
BREAK command under these conditions, the following breakpoints are
displayed:

DBG> SHOW BREAK
Breakpoint on ADA event "DEPENDENTS_EXCEPTION" for any value
Breakpoint on ADA event "EXCEPTION_TERMINATED" for any value

Using the VMS Debugger 3-17

These breakpoints are equivalent to issuing the following commands:

DBG> SET BREAK/EVENT=DEPENDENTS_EXCEPTION

DBG> SET BREAK/EVENT=EXCEPTION_TERMINATED

To cancel a breakpoint, issue the CANCEL BREAK command, specify-
ing the program location or event exactly as you did when setting the
breakpoint. The CANCEL BREAK/ALL command cancels all breakpoints.

3.3.6.4 Tracing Program Execution-SET TRACE

The SET TRACE command allows you to select tracepoints Tracepoints
are locations for tracing the execution of your program without stopping
its execution. After setting a tracepoint, you can start execution with
the GO command and then monitor the path of execution, checking for
unexpected behavior. By setting a tracepoint on a routine, you can also
monitor the number of times the routine is called.

As with breakpoints, every time a tracepoint is reached, the debugger
issues a message and displays the source line. However, at tracepoints, the
program continues executing, and the debugger prompt is not displayed.
For example:

DBG> SET TRACE COUNT
DBG> GO

trace at PROG2\COUNT
54: SUBROUTINE COUNT(X,Y)

When using the SET TRACE command, specify address expressions,
qualifiers, and optional clauses exactly as with the SET BREAK command.

The /LINE qualifier causes the SET TRACE command to trace every
line and is a convenient means of checking the execution path. By default,
lines are traced within all called routines, as well as the currently executing
routine. If you do not want to trace through system routines or through
routines in shareable images, use the /NOSYSTEM or /NOSHARE
qualifiers. For example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

3-18 Using the VMS Debugger

The /SILENT qualifier suppresses the trace message and the display
of source code. This is useful when you want to use the SET TRACE
command to execute a debugger command at the tracepoint. For example:

DBG> SET TRACE/SILENT %LINE 83 DO (EXAMINE STATUS)
DBG> GO

SCREEN_IO\CLEAR\STATUS: 'OFF'

3.3.6.5 Monitoring Changes in Variables-SET WATCH

The SET WATCH command allows you to set watchpoints that will be
monitored continuously as your program executes. With high-level
languages, you typically set watchpoints on variables (and, occasionally,
on arbitrary program locations). If the program modifies the value of a
watched variable, the debugger suspends execution and displays the old
and new values.

To set a watchpoint on a variable, specify the variable's name with the
SET WATCH command. For example, the following command sets a
watchpoint on the variable TOTAL:

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the
watchpoint is triggered.

The following example shows the effect on program execution when your
program modifies the contents of a watched variable.

DBG> SET WATCH TOTAL
DBG> GO

watch of SCREEN_IO\TOTAL at SCREEN_IO\%LINE 13
13: TOTAL =TOTAL + 1

old value: 16
new value: 17

break at SCREEN_I0.%LINE 14
14: CALL POP (TOTAL)

DBG>

Using the VMS Debugger 3-19

In this example, a watchpoint is set on the variable TOTAL, and the GO
command is issued to start execution. When the value of TOTAL changes,
execution is suspended. The debugger reports the event ("watch of . . . ")
and identifies where TOTAL changed (line 13) and the associated source
line. The debugger then displays the old and new values and reports
that execution has been suspended at the start of the next line (14). (The
debugger reports "break at . . . ", but this is not a breakpoint; it is the
effect of the watchpoint.) Finally, the debugger prompts for another
command.

When a change in a variable occurs at a point other than at the start of a
source line, the debugger gives the line number plus the byte offset from
the start of the line.

Note that this general technique for setting watchpoints always applies
to "static" variables. A static variable is associated with the same virtual
memory Location throughout program execution.

A variable that is allocated on the stack or in a register (a "nonstatic"
variable) exists only when its defining routine is active (on the call stack).
If you try to set a watchpoint on a nonstatic variable when its defining
subroutine is not active, the debugger issues a warning:

DBG> SET WATCH Y
%DEBUG-W-SYMNOTACT, nonstatic variable 'Y' is not active

A convenient technique for setting a watchpoint on a nonstatic variable
is to set a breakpoint on the defining subroutine, also specifying a DO
clause to set the watchpoint whenever execution reaches the breakpoint.
In the fallowing example, a watchpoint is set on the nonstatic variable Y
in routine COUNTER:

DBG> SET BREAK COUNTER DO (SET WATCH Y)
DBG> GO

break at routine MOD4\COUNTER
%DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction
DBG> SHOW WATCH
watchpoint of MOD4\COUNTER\Y [tracing every instruction]
DBG>

The debugger monitors nonstatic watchpoints by tracing every instruc-
tion. Because this slows execution speed compared to monitoring static
watchpoints, the debugger lets you know when it is monitoring nonstatic
watchpoints.

3-20 Using the VMS Debugger

When execution eventually returns to the calling routine, the nonstatic
variable is no longer active, so the debugger automatically cancels the
watchpoint and issues a message to that effect.

As explained in Section 3.3.1, if you specify the /OPTIMIZE qualifier (or
take the default) when compiling your program, certain variables in your
program may be removed by the compiler. If you try to set a watchpoint
on one of these variables, the debugger issues the following warning:

%DEBUG-W-UNALLOCATED, entity 'symbol' was not allocated in memory (was optimized away)

3.3.7 Examining and Manipulating Data

This section explains how to use the EXAMINE, DEPOSIT, and
EVALUATE commands to display and modify the contents of variables
and to evaluate expressions. It also notes restrictions on the use of these
commands with VAX FORTRAN programs.

Note that, before you can examine or deposit into a nonstatic variable (as
defined in the previous section), its defining routine must be active (that
is, currently residing on the call stack).

3.3.7.1 Displaying the Values of Variables-EXAM 1 N E

To display the current value of a variable, use the EXAMINE command.
The EXAMINE command has the following form:

EXAMINE variable-name

The debugger recognizes the compiler-generated data type of the specified
variable and retrieves and formats the data accordingly. The following
examples show some uses of the EXAMINE command.

Examine a string variable:

DBG> EXAMINE EMPLOYEE NAME
PAYROLL\EMPLOYEE_NAME: "Peter C. Lombardi"
DBG>

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Using the VMS Debugger 3-21

Examine atwo-dimensional array of integers (three per dimension):

DBG> EXAMINE INTEGER_ARR.AY
PROG2\INTEGER_ARRAY

(1,1) :
(1,2):

27
31

(1, 3) : 12
(2, 1) : 15
(2 , 2) : 22
(2,3) : 18

DBG>

Examine element 4 of aone-dimensional array of characters:

DBG> EXAMINE CHAR_ARRAY(4)
PROG2\CHAR_ARRAY(4): 'M'
DBG>

The EXAMINE command can be used with any kind of address expres-
sion, not just a variable name, to display the contents of a program
location. The debugger associates certain default data types with untyped
locations. You can override the defaults for typed and untyped locations
if you want the data to be interpreted and displayed in some other data
format.

See Section 3.3.7.3 for a comparison of the EXAMINE and EVALUATE
commands.

3.3.7.2 Changing the Values of Variables-DEPOSIT

To change the value of a variable, use the DEPOSIT command. The
DEPOSIT command has the following form:

DEPOSIT variable-name =value

The DEPOSIT command is like an assignment statement in VAX
FORTRAN.

In the following examples, the DEPOSIT command assigns new values
to different variables. The debugger checks that the value assigned,
which can be a language expression, is consistent with the data type and
dimensional constraints of the variable.

Deposit a string value (it must be enclosed in quotation marks or
apostrophes):

DBG> DEPOSIT PARTNUMBER = "WG-7619.3-84"

3-22 Using the VMS Debugger

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENTWIDTH + 10

Deposit element 12 of an array of characters:

DBG> DEPOSIT C_ARRAY(12) _ 'K'

Note that you cannot deposit an entire array aggregate with a single
DEPOSIT command, only an element.

As with the EXAMINE command, the DEPOSIT command lets you specify
any kind of address expression, not just a variable name. You can override
the defaults for typed and untyped locations if you want the data to be
interpreted in some other data format.

3.3.7.3 Evaluating Expressions-EVALUATE

The EVALUATE command allows you to evaluate a language expression.
The EVALUATE command has the following form:

EVALUATE language -expression

The debugger recognizes the operators and expression syntax of the
currently set language. In the following example, the value 45 is assigned
to the integer variable WIDTH; the EVALUATE command then obtains the
sum of the current value of WIDTH plus 7:

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH + 7
52
DBG>

In the next example, the values .TRUE. and .FALSE. are assigned to
the LOGICAL* 1 variables WILLING and ABLE, respectively, and the
EVALUATE command then obtains the logical conjunction of these values:

DBG> DEPOSIT WILLING = .TRUE.
DBG> DEPOSIT ABLE _ .FALSE.
DBG> EVALUATE WILLING .AND. ABLE
0
DBG>

The following example shows how the EVALUATE and EXAMINE com-
mands are similar. When the expression following the command is a
variable name, the value reported by the debugger is the same for either
command.

Using the VMS Debugger 3-23

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH
45
DBG> EXAMINE WIDTH
SIZE\WIDTH: 45

The following example shows an important difference between the
EVALUATE and EXAMINE commands:

DBG> EVALUATE WIDTH + 7
52
DBG> EXAMINE WIDTH + 7
SIZE\WIDTH: 131584

With the EVALUATE command, WIDTH + 7 is interpreted as a language
expression, which evaluates to 45 + 7, or 52. With the EXAMINE com-
mand, WIDTH + 7 is interpreted as an address expression: Seven bytes
are added to the address of WIDTH, and whatever value is in the resulting
address is reported (in this instance, 131584).

3.3.7.4 Notes on Debugger Support for VAX FORTRAN

In general, the debugger supports the data types and operators of VAX
FORTRAN and of the other debugger-supported languages. However,
there are certain language-specific limitations or other differences. (For
information on the supported data types and operators of any of the
languages, type the HELP LANGUAGE command at the DBG > prompt.)

• Even though the VAX type codes for unsigned integers (BU, WU, LU)
are used internally to describe the LOGICAL data types, the debugger
(like the compiler} treats LOGICAL variables and values as being
signed when used in language expressions.

• The debugger prints the numeric values of LOGICAL variables or
expressions instead of .TRUE. or .FALSE. Normally, only the low-
order bit of a LOGICAL variable or value is significant (0 is .FALSE.
and 1 is .TRUE.). However, VAX FORTRAN does allow all bits in a
LOGICAL value to be manipulated and LOGICAL values can be used
in integer expressions. For this reason, it is at times necessary to see
the entire integer value of a LOGICAL variable or expression, and that
is what the debugger shows.

• COMPLEX constants such as (1.0,2.0) are not supported in debugger
expressions.

• Floating point numbers of type REAL*8 and COMPLEX*16 may be
represented by D_Floating or G _Floating depending on compiler
switches.

3-24 Using the VMS Debugger

n

3.3.8 Controlling Symbol References

In most cases, the way the debugger handles symbols (variable names,
and so on) is transparent to you. However, the following two areas may
require action on your part:

• Module setting

• Multiply defined symbols

3.3.8.1 Module Setting-SET MODULE

To facilitate symbol searches, the debugger loads symbol records from the
executable image into arun-time symbol table (RST), where they can be
accessed efficiently. Unless a symbol record is in the RST, the debugger
cannot recognize or properly interpret that symbol.

Because the RST uses memory, the debugger loads it dynamically, antici-
pating what symbols you might want to reference during execution. The
loading process is called module setting because all of the symbol records
of a given module are loaded into the RST at one time.

At debugger startup, only the module containing the image transfer ad-
dress is set. As your program executes, whenever the debugger interrupts
execution, it sets the module where execution is suspended. This allows
you to reference the symbols that should be visible at that location.

If you try to reference a symbol in a module that has not been set, the
debugger issues a warning. For example:

DBG> EXAMINE K
%DEBUG-W-NOSYMBOL, symbol 'K' is not in symbol table
DBG>

You must then use the SET MODULE command to manually set the
module containing that symbol:

DBG> SET MODULE MOD3
DBG> EXAMINE K
MOD3\ROUT2\K: 26
DBG>

The SHOW MODULE command lists the modules of your program and
identifies which modules have been set.

Using the VMS Debugger 3-25

Note that dynamic module setting may slow down the debugger as
more and more modules are set. If performance becomes a problem,
you can reduce the problem with the CANCEL MODULE or SET MODE
NODYNAMIC commands:

• Use the CANCEL MODULE command to reduce the number of
modules that are set.

• Use the SET MODE NODYNAMIC command to disable dynamic
module setting. (The SET MODE DYNAMIC command enables
dynamic module setting.)

3.3.8.2 Resolving Multiply Defined Symbols

The debugger finds the symbols that you reference in commands according
to the following conventions. First, it looks in the PC scope (also known
as scope 0), according to the scope and visibility rules of the currently
set language. This means that the debugger first searches for a symbol
within the routine surrounding the current PC value (where execution is
currently suspended). If the symbol is not found, the debugger searches
the nesting program unit, then its nesting unit, and so on. (The precise
order of search depends on the currently set language and guarantees that
the proper declaration of a multiply defined symbol is selected.)

The debugger allows you to reference symbols throughout your program,
not just those that are visible at the current PC value. This enables you
to set breakpoints in arbitrary areas, examine arbitrary variables, and so
on. Therefore, if the symbol is not visible in the PC scope, the debugger
also searches the scope of the calling routine (if any), then its caller, and
so on, until the symbol is found. Symbolically, this search list is denoted
0,1,?, . . . ,n, where scope 0 is the PC scope and n is the number of calls
in the call stack. Within each scope, the debugger uses the visibility rules
of the currently set language to locate symbols.

If the debugger cannot resolve a symbol ambiguity, it issues a warning.
For example:

DBG> EXAMINE Y
%DEBUG-W-NOUNIQUE, symbol 'Y' is not unique
DBG>

You can then use apath-name prefix to uniquely specify a declaration of
the given symbol. First, use the SHOW SYMBOL command to identify all
path names associated with the given symbol; then use the desired path
name when referencing the symbol. For example:

3-26 Using the VMS Debugger

DBG> SHOW SYMBOL Y
data MOD7\ROUT3\BLOCKI\Y
data MOD4\ROUT2\Y
DBG> EXAMINE MOD4\ROUT2\Y
MOD4\ROUT2\Y: 12
DBG>

If you need to refer to a particular declaration of Y repeatedly, use the
SET SCOPE command to establish a new default scope for symbol
lookup. Then, references to Y without a path-name prefix will specify
the declaration of Y that is visible in the new scope region. For example:

DBG> SET SCOPE MOD4\ROUT2
DBG> EXAMINE Y
MOD4\ROUT2\Y: 12
DBG>

To display the current scope for symbol lookup, use the SHOW SCOPE
command. To restore the default scope, use the CANCEL SCOPE
command.

3.4 Sample Debugging Session

The sample debugging session presented in this section involves the
following source program:

1: INTEGER INARR(20), OUTARR(20)
2: C
3: C ---Read the input array from the data file.
4: OPEN(UNIT=8, FILE='DATAFILE.DAT', STATUS='OLD')

5: READ (8,*) N, (INARR(I), I=1,N)

6: C
7: C ---Square all nonzero elements and store in OUTARR.

8: K = 0
9: DOl0I=1, N
10: IF(INARR(I) .NE. 0) THEN
11: OUTARR(K) = INARR(I)**2
12: ENDIF
13: 10 CONTINUE
14 : C
15: C ---Print the squared output values. Then stop.
16: PRINT 20, K
17: 20 FORMAT(' Number of nonzero elements is',I4)

18 : DO 40 I = 1, K
19: PRINT 30, I, OUTARR(I)
20: 30 FORMAT(' Element',I4,' has value',I6)

21: 40 CONTINUE
22: END

Using the VMS Debugger 3-27

The program reads a sequence of integer numbers from a data file (lines
4 and 5) and saves these numbers in the array INARR. The program
then enters a loop (lines 8 through 13) where it copies the square of each
nonzero integer into another array, OUTARR. Finally, the program prints
the number of nonzero elements in the original sequence and the square
of each such element (lines 16 through 21).

The error in the program occurs when variable K, which keeps track of
the current index into OUTARR, is not incremented in the loop on lines 9
through 13. The statement K = K + 1 should be inserted just before
line 11.

To find this error, first compile, link, and run the program as follows:

$ FORTRAN/DEBUG/NOOPTIMIZE SQUARES
$ LINK/DEBUG SQUARES
$ RUN SQUARES

VAX DEBUG Version Version 5.0

%DEBUG-I-INITIAL, language is FORTRAN, module set to 'SQUARES$MAIN'
DBG>

You can now issue debugger commands. To step forward four lines, type
the following command:

DBG> STEP 4
stepped to SQUARES$MAIN\%LINE 9
DBG>

To check the current values of variables N and K, type the following
command:

DBG> EXAM N, K
SQUARES$MAIN\N: 9
SQUARES$MAIN\K: 0
DBG>

The values of N and K are both correct at this point in the execution.
Now, issue the command STEP 2 to enter the loop that copies and squares
all nonzero elements of INARR into OUTARR.

DBG> STEP 2
stepped to SQUARES$MAIN\%LINE 11
DBG>

3-28 Using the VMS Debugger

To check whether I and K have the expected values, type the following
command:

DBG> EXAM I,K
SQUARES$MAIN\I: 1
SQUARES$MAIN\K: 0
DBG>

I has the expected value (namely 1), but K has the value 0, which is not
the expected value. Now you can see the error in the program: K should
be incremented in the loop just before it is used in line 11. To check
this hypothesis, patch the program by issuing the following debugger
commands:

DBG> DEPOSIT K = 1
DBG> SET TRACE/SILENT '/.LINE 11 DO(DEPOSIT K = K + 1)
DBG>

The first command gives K the value it should have now, namely 1. The
second command specifies that the debugger should perform the debugger
command DEPOSIT K = K + 1 each time line 11 is reached and just before
it is executed. The /SILENT qualifier suppresses the "trace at" message
that would otherwise appear each time line 11 is executed. The program
is now patched and should perform correctly.

Line 22 is a suitable location to set a breakpoint that will stop program
execution after testing the correctness of your patch. To set a breakpoint
at that line, type the following command:

DBG> SET BREAK '/.LINE 22
DBG>

Now, run your program to test your patch. Type the GO command to
execute the program until it reaches the breakpoint at line 22.

DBG> GO
Number of nonzero elements is 6
Element 1 has value 16
Element 2 has value 36
Element 3 has value 9
Element 4 has value 49
Element 5 has value 81
Element 6 has value 1

break at SQUARES$MAIN\'/.LINE 22
22: END

DBG>

Using the VMS Debugger 3-29

The program output shows that the program appears to work properly
with the DEPOSIT K = K + 1 patch. You can now use the EDIT command
to invoke the VAX Language-Sensitive Editor, or another editor previously
established with the SET EDITOR command:

DBG> EDIT

The editor positions the cursor at the same line that is marked by the
pointer in the debugger's source display.

The corrected portion of the source code is as follows:

8: K = 0
9: DO 10 I = 1, N
10: IF(INARR(I) .NE. 0) THEN
11: K=K+ 1
12: OUTARR(K) = INARR(I)**2
13: ENDIF
14: 10 CONTINUE

Now, you can compile, link, and run the program again under debugger
control to check that it behaves correctly:

$ FORTRAN/DEBUG/NOOPTIMIZE SQUARES
$ LINK/DEBUG SQUARES
$ RUN SQUARES

To set a breakpoint at line 12 that will display the values of I and K
automatically, type the following command (the subsequent GO command
starts execution):

3-30 Using the VMS Debugger

DBG> SET BREAK '/.LINE 12 DO (EXAMINE I , K)
DBG> GO

SQUARES$MAIN\I:
SQUARES$MAIN\K:
DBG> GO

1
1

SQUARES$MAIN\I: 2
SQUARES$MAIN\K: 2
DBG> GO

SQUARES$MAIN\I: 4
SQUARES$MAIN\K: 3

At the first breakpoint, the value of K is 1, indicating that the program
is executing correctly thus far. Each additional GO command shows
the current values of I and K. After two GO commands, K is now 3,
as expected, but note that I is 4. The reason is that one of the INARR
elements was 0, so lines 11 and 12 were not executed (and K was not
incremented) on one iteration of the DO loop. This confirms that the
program is executing correctly.

3.5 Debugger Command Summary

This section lists all of the debugger commands and any related DCL
commands in functional groupings, along with brief descriptions.

During a debugging session, you can get online HELP on any command
and its qualifiers by typing the HELP command followed by the name of
the command in question. The HELP command has the following form:

HELP command

Using the VMS Debugger 3-31

3.5.1 Starting and Terminating a Debugging Session

($) RUN' Invokes the debugger if LINK/DEBUG was
used

($) RUN/[NO)DEBUG I Controls whether the debugger is invoked when
the program is executed

CTRL/Z or EXIT Ends a debugging session, executing all exit
handlers

QUIT Ends a debugging session without executing any
exit handlers declared in the program

CTRL/C Aborts program execution or a debugger com-
mand without interrupting the debugging
session

J SET 1 ABORT_KEY
l SHOW J

Assigns the default CTRL/C abort function to
another CTRL-key sequence or identifies the
CTRL-key sequence currently defined for the
abort function

($) CTRL/Y -DEBUG' The sequence CTRL/Y -DEBUG interrupts
a program that is running without debugger
control and invokes the debugger

ATTACH Passes control of your terminal from the current
process to another process (similar to the DCL
command ATTACH)

SPAWN Creates a subprocess; lets you issue DCL
commands without interrupting your debugging
context (similar to the DCL command SPAWN)

1 This is a DCL command, not a debugger command.

3.5.2 Controlling and Monitoring Program Execution

GO Starts or resumes program execution

STEP Executes the program up to the next line,
instruction, or specified instruction

SET STEP Establishes or displays the default qualifiers for
SHOW the STEP command

3-32 Using the VMS Debugger

SET
SHOW
CANCEL

SET
SHOW
CANCEL

SET
SHOW
CANCEL

SHOW CALLS

BREAK

TRACE

} WATCH

1

SHOW STACK

CALL

Sets, displays, or cancels breakpoints

Sets, displays, or cancels tracepoints

Sets, displays, or cancels watchpoints

Identifies the currently active subroutine calls

Gives additional information about the currently
active subroutine calls

Calls a subroutine

3.5.3 Examining and Manipulating Data

EXAMINE

SET MODE [NO]OPERANDS

DEPOSIT

EVALUATE

Displays the value of a variable or the contents
of a program location

Controls whether the address and contents of
the instruction operands are displayed when
you examine an instruction

Changes the value of a variable or the contents
of a program location

Evaluates a language or address expression

3.5.4 Controlling Type Selection and Symbolization

SET 1
SHOW }RADIX
CANCEL

SET
SHOW TYPE
CANCEL

SET MODE [NO]G_FLOAT

Establishes the radix for data entry and display,
displays the radix, or restores the radix

Establishes the type for program locations that
are not associated with a compiler generated
type, displays the type, or restores the type

Controls whether double-precision floating-
point constants are interpreted as G _FLOAT or
D_FLOAT

Using the VMS Debugger 3-33

3.5.5 Controlling Symbol Lookup

SHOW SYMBOL Displays symbols in your program

SET Sets a module by loading its symbol records
SHOW MODULE into the debugger's symbol table, identifies a set
CANCEL module, or cancels a set module

SET Sets a shareable image by loading data struc-
SHOW IMAGE tures into the debugger's symbol table, identifies
CANCEL a set image, or cancels a set image

SET MODE [NO)DYNAMIC

SET
SHOW SCOPE

ANCEL

SET MODE [NO]LINE

Controls whether modules and shareable
images are set automatically when the debugger
interrupts execution

Establishes, displays, or restores the scope for
symbol lookup

Controls whether code locations are displayed
in terms of line numbers or routine-name +byte
offset

SET MODE [NO)SYMBOLIC Controls whether code locations are displayed
symbolically or in terms of numeric addresses

SYMBOLIZE Converts a virtual address to a symbolic address

3.5.6 Displaying Source Code

TYPE Displays lines of source code

EXAMINE/SOURCE Displays the source code at the location speci-
fied by the address expression

SET Creates, displays, or cancels a source directory
SHOW SOURCE search list
CANCEL

SEARCH Searches the source code for the specified string

3-34 Using the VMS Debugger

SET SEARCH
SHOW

SET STEP [NOJSOURCE

J SET
l sHow
f SET
1 sHow

} MAX_SOURCE_
FILES

} MARGINS

Establishes or displays the default qualifiers for
the SEARCH command

Enables or disables the display of source code
after a STEP command has been executed or at
a breakpoint, tracepoint, or watchpoint

Establishes or displays the maximum number of
source files that may be kept open at one time

Establishes or displays the left and right margin
settings for displaying source code

3.5.7 Using Screen Mode

SET MODE [NO]SCREEN

SET MODE [NO]SCROLL

DISPLAY

SET
SHOW
CANCEL

SET
SHOW
CANCEL

SELECT

SHOW SELECT

SCROLL

SAVE

EXTRACT

EXPAND

MOVE

DISPLAY

WINDOW

Enables or disables screen mode

Controls whether an output display is updated
line by line or once per command

Modifies an existing display

Creates, identifies, or deletes a display

Creates, identifies, or deletes a window
definition

Selects a display for a display attribute

Identifies the displays selected for each of the
display attributes

Scrolls a display

Saves the current contents of a display and
writes it to another display

Saves a display or the current screen state and
writes it to a file

Expands or contracts a display

Moves a display across the screen

Using the VMS Debugger 3-35

SET TERMINAL
SHOW

{ CTRL/W
DISPLAY/REFRESH

Establishes or displays the height and width of
the screen

Refreshes the screen

3.5.8 Editing Source Code

EDIT

J SET 1 EDITOR l sHow ~

Invokes an editor during a debugging session

Establishes or identifies the editor invoked by
the EDIT command

3.5.9 Defining Symbols

DEFINE

DELETE

j SET DEFINE
l SHOW

SHOW SYMBOL/DEFINED

Defines a symbol as an address, command,
value, or process group

Deletes symbol definitions

Establishes or displays the default qualifier for
the DEFINE command

Identifies symbols that have been defined

3.5.10 Using Keypad Mode

SET MODE [NO]KEYPAD

DEFINE/KEY

DELETE/KEY

SET KEY

SHOW KEY

3-36 Using the UMS Debugger

Enables or disables keypad mode

Creates key definitions

Deletes key definitions

Establishes the key definition state

Displays key definitions

3.5.11 Using Command Procedures and Log Files

DECLARE

J SET 1 LOG l sHow ~
SET OUTPUT [NO]LOG

SET OUTPUT
[NO]SCREEN _LOG

SET OUTPUT [NO]VERIFY

SHOW OUTPUT

f SET ~ ATSIGN
1 SHOW

~a file-spec

Defines parameters to be passed to command
procedures

Specifies or identifies the debugger log file

Controls whether a debugging session is logged

Controls whether, in screen mode, the screen
contents are logged as the screen is updated

Controls whether debugger commands are
displayed as a command procedure is executed

Displays the current output options established
by the SET OUTPUT command

Establishes or displays the default file speci-
fication that the debugger uses to search for
command procedures

Executes a command procedure

3.5.12 Using Control Structures

IF

FOR

REPEAT

WHILE

EXITLOOP

Executes a list of commands conditionally

Executes a list of commands repetitively

Executes a list of commands repetitively

Executes a list of commands conditionally

Exits an enclosing WHILE, REPEAT, or FOR
loop

3.5.13 Debugging Multiprocess Programs

CONNECT

DEFINE/PROCESS_GROUP

Brings a process under debugger control

Assigns a symbolic name to a list of process
specifications

Using the VMS Debugger 3-37

DO

SET MODE [NO]INTERRUPT

J SET ~ PROCESS l sHow
SET PROMPT

/[1V0]SUFFIX

DISPLAY, SET DISPLAY
/[NOJPROCESS
/SUFFIX

Executes commands in the context of one or
more processes

Controls whether execution is interrupted
in other processes when it is suspended in
some process

Modifies the multiprocess debugging envi-
ronment or displays process information

Enables you to specify aprocess-specific
prompt-string suffix

/PROCESS makes an existing display pro-
cess specific or creates a process specific
display. /SUFFIX appends a process identi-
fying suffix to a display name (may be used
with any command that specifies a display).

3.5.14 Additional Commands

SET PROMPT

SET OUTPUT [NO]TERMINAL

SET LANGUAGE
SHOW

SET EVENT_
SHOW FACILITY

SHOW EXITJ-IANDLERS

J SET ~ TASK 1 sHow
DISABLE
ENABLE AST
SHOW

SET MODE [NO]SEPARATE

3-38 Using the VMS Debugger

Specifies the debugger prompt

Controls whether debugger output is dis-
played or suppressed, except for diagnostic
messages

Establishes or displays the current language

Establishes or identifies the current run-time
facility for language-specific events

Identifies the exit handlers declared in the
program

Modifies the tasking environment or displays
task information

Disables the delivery of ASTs in the pro-
gram, enables the delivery of ASTs, or
identifies whether delivery is enabled or
disabled

Controls whether a separate window is
created on a MicroVAX workstation for
debugger input and output (this command
has no effect on VT-series terminals)

Chapter 4

VAX FORTRAN Input/Output

This chapter describes FORTRAN input/output (I/O) as implemented
for VAX FORTRAN and provides information about FORTRAN I/O in
relation to the VAX Record Management Services (RMS) and the VAX
Run-Time Library (RTL).

The following topics are addressed in this chapter:

• Overview of FORTRAN I/O (Section 4.1)
• Elements of I/O Processing (Section 4.2)

4.1 Overview of VAX FORTRAN I/O

This section introduces the concept of logical units, briefly describes the
scope of interprocess communications, and lists and describes the different
types of I/O statements and the optional forms of I/O statements.

4.1.1 Identifying Logical Input/Output Units

Logical unit numbers are integers from 0 to 99. For example:

READ (2,100) I,X,Y

This READ statement specifies that data is to be entered from the device
or file corresponding to logical unit 2, in the format specified by the
FORMAT statement labeled 100.

VAX FORTRAN Input/Output 4-1

FORTRAN programs are inherently device independent. The association
between the logical unit number and the physical device or file occurs at
execution time. If necessary, you can change this association at execution
time to match the needs of the program and the available resources. You
do not need to change the logical unit numbers specified in the program.

READ, WRITE, and REWRITE statements refer explicitly to a logical unit
from which or to which data is to be transferred. The logical unit can be
connected to a device or file by means of an OPEN statement. (See the
VAX FORTRAN Language Reference Manual for more information on the
OPEN statement.)

ACCEPT, TYPE, and PRINT statements do not refer explicitly to a logical
unit (a file or device) from which or to which data is to be transferred;
they refer implicitly to a default logical unit. The ACCEPT statement is
normally connected to the default input device, and the TYPE and PRINT
statements are normally connected to the default output device. These
defaults can be overridden with appropriate logical name assignments (see
Section 4.2.2.1).

4.1.2 Types of I/O Statements

The type of an I/O statement depends on the organization of the file
being accessed. The various types of I/O are as follows:

• Sequential I/O transfers records sequentially to or from files or I/O
devices such as terminals.

• Direct Access I/O transfers records selected by record number to and
from sequential (fixed length) or relative organization files.

• Keyed I/O transfers records, based on data values (keys) contained
in the records, to and from indexed files.

• Internal I/O transfers data between variables and arrays defined
within a program.

4-2 VAX FORTRAN Input/Output

4.1.3 Interprocess Communication

You can use standard FORTRAN I/O statements to communicate between
processes on either the same computer or different computers.

• Mailboxes permit interprocess communication on the same computer.

• DECnet network facilities permit interprocess communication on
different computers. DECnet can also be used to access files on
different computers.

Information on the preceding types of operations is provided in Chapter 8.

4.1.4 Forma of 1/0 Statements

Each type of I/O statement can be coded in a variety of forms. The
form you select depends on the nature of your data and how you want it
treated. The I/O statement forms are formatted, unformatted, list-directed,
and namelist-directed.

• Formatted I/O statements contain explicit format specifiers that are
used to control the translation of data from internal (binary) form
within a program to external (readable character) form in the records,
or vice versa.

• List-directed and namelist-directed I/O statements are similar to
formatted statements in function. However, they use different mecha-
nisms to control the translation of data: formatted I/O statements use
explicit format specifiers, and list-directed and namelist-directed I/O
statements use data types.

• Unformatted I/O statements do not contain format specifiers and
therefore do not translate the data being transferred. Unformatted
I/O is especially appropriate where the output data will subsequently
be used as input data. Unformatted I/O saves execution time by
eliminating the data translation process, preserves greater precision in
the external data, and usually conserves file storage space.

I/O statements transfer all data as records. The amount of data that a
record can contain depends on whether you use unformatted or formatted
I/O to transfer the data. With unformatted I/O, the I/O statement alone
specifies the amount of data to be transferred; with formatted I/O, the I/O
statement and its associated format specifier jointly determine the amount
of data to be transferred.

VAX FORTRAN Input/Output 4-3

Normally, the data transferred by an I/O statement is read from or written
to a single record. It is possible, however, for formatted, list-directed, and
namelist-directed I/O statements to transfer data from or to more than
one record.

Table 4-1 shows the various I/O statements, by category, that can be used
in FORTRAN programs.

Table 4-1: Available I/O Statements

Statement Category
Statement Name

READ WRITE REWRITE ACCEPT TYPE PRINT

Sequential

Formatted Yes Yes No Yes Yes Yes
List-Directed Yes Yes No Yes Yes Yes
Namelist-Directed Yes Yes No Yes Yes Yes
Unformatted Yes Yes No No No No

Direct

Formatted Yes Yes Yes No No No
Unformatted Yes Yes No No No No

Indexed

Formatted Yes Yes Yes No No No
Unformatted Yes Yes Yes No No No

Internal

Formatted Yes Yes No No No No
List-Directed Yes Yes No No No No
Unformatted No No No No No No

4.2 Elements of I/O Processing

This section describes, in general terms, the following elements of VAX
FORTRAN I/O processing:

• VMS file specifications (Section 4.2.1)

• Logical names, as used in FORTRAN, and logical unit numbers
(Section 4.2.2)

4-4 VAX FORTRAN Input/Output

• FORTRAN file organizations, I/O record formats, and access modes
(Section 4.2.3)

4.2.1 File Specifications

The information about file specifications is abbreviated in this section,
concentrating on how to identify files in I/O statements. Fora de-
tailed description of VMS file specifications, see the Guide to VMS File
Applications.

A complete VMS file specification has the form:

node::device:[directory]filename.filetype;version

For example:

BOSTON :: USER.D : [SMITH] TEST .DAT ; 2

You can associate a file specification with a logical unit by using a logical
name assignment (see Section 4.2.2) or by using the OPEN statement (see
Section 4.2.2.3). If you do not specify such an association or if you omit
elements of the file specification, the system supplies default values, as
follows:

• If you omit the node, the local computer is used.

• If you omit the device or directory, the current user default is used.

• If you omit the file name, the system supplies FOROnn (where nn is
the logical unit number).

• If you omit the file type, the system supplies DAT.

• If you omit the version number, the system supplies either the highest
current version number (for input) or the highest current version
number plus 1 (for output).

VAX FORTRAN Input/Output 4-5

For example, if your default device is USERD and your default directory is
SMITH, and you specified the following statements:

READ (8,100)

WRITE (9,200)

Then, the default input and output file specifications, respectively, would
be as follows:

USERD : [SMITH] FOR008 . DAT ; n

and

USERD: [SMITH]FOR009.DAT;m

Where n equals the highest current version number of FOR008.DAT and
m is 1 greater than the highest existing version number of FOR009.DAT.

4.2.2 Logical Names and Logical Unit Numbers

You can use the logical name mechanism of the VMS operating system
to associate logical units with file specifications. A logical name is an
alphanumeric string, up to 63 characters long, that you can use instead of
a file specification.

The operating system supplies a number of predefined logical names that
are already associated with particular file specifications. Table 4-2 lists the
logical names of special interest to FORTRAN users. FORTRAN logical
unit names are shown in Table 4-3.

4-6 VAX FORTRAN Input/Output

Table 4-2: Predefined System Logical Names
Name Meaning Default

SYS$COMMAND Default command stream For an interactive user, the
default is the terminal; for a
batch job, the default is the
batch job input command file.

SYS$DISK Default disk device As specified by user.

SYS$ERROR Default error stream For an interactive user, the
default is the terminal; for a
batch job, the default is the
batch job log file.

SYS$INPUT Default input stream For an interactive user, the
default is the terminal; for a
batch job, the default is the
batch command file.

SYS$OUTPUT Default output stream For an interactive user, the
default is the terminal; for a
batch job, the default is the
batch log file.

You can dynamically create a logical name and associate it with a file
specification by means of the VMS commands ASSIGN or DEFINE. For
example, before program execution, you can associate the logical names in
your program with the file specification appropriate to your needs.

For example:

$ ASSIGN USERD: [SMITH]TEST.DAT;2 LOGNAM

The preceding command creates the logical name LOGNAM and asso-
ciates it with the file specification USERD:[SMITH]TEST.DAT;2. As a
result, this file specification is used whenever the logical name LOGNAM
is encountered during program execution.

Logical names provide great flexibility because they can be associated with
either a partial or complete file specification (that is, with either a device
or a device and a directory), or even another logical name.

VAX FORTRAN Input/Output 4-7

4.2.2.1 FORTRAN Logical Names

Usually, VAX FORTRAN I/O is performed by associating a logical unit
number with a device or file. VMS logical names provide an additional
level of association; auser-specified logical name can be associated with a
logical unit number.

VAX FORTRAN provides predefined logical names in the following form:

FOROnn

The notation nn represents a logical unit number.

By default, each FORTRAN logical name is associated with a file named
FOROnn.DAT on your default disk under your default directory. For
example:

WRITE (1"/,200)

If you enter the preceding statement without including an explicit file
specification, the data is written to a file named FOR017.DAT on your
default disk under your default directory.

You can change the file specification associated with a FORTRAN logical
unit number by using the DCL commands ASSIGN or DEFINE to change
the file associated with the corresponding FORTRAN logical name. For
example:

$ ASSIGN USERD:[SMITH]TEST.DAT;2 FOR017

The preceding command associates the FORTRAN logical name FOR017
(and therefore logical unit 17) with file TEST.DAT;2 on device USERD in
directory [SMITH].

You can also associate the FORTRAN logical names with any of the
predefined system logical names, as shown in the following examples:

• The following command associates the default command stream with
the default input device (for example, the batch input stream):

$ ASSIGN SYS$INPUT SYS$COMMAND

• The following command associates logical unit 10 with the default
output device (for example, the batch output stream):

$ ASSIGN SYS$OUTPUT FORO10

4-8 VAX FORTRAN Input/Output

4.2.2.2 Implied FORTRAN Logical Unit Numbers

The ACCEPT, PRINT, and TYPE statements, and optionally the READ
and WRITE statements use implicit logical unit numbers and names. They
do not include explicit logical unit numbers, -and each logical name is,
in turn, associated by default with one of the system's predefined logical
names. Table 4-3 shows these relationships.

Table 4-3: Implicit FORTRAN Logical Units
FORTRAN System

READ (*,f) iolist FOR$READ SYS$INPUT

READ f,iolist FOR$READ SYS$INPUT

ACCEPT f,iolist FOR$ACCEPT SYS$INPUT

WRITE (*,f) iolist FOR$PRINT SYS$OUTPUT

PRINT f,iolist FOR$PRINT SYS$OUTPUT

TYPE f,iolist FOR$TYPE SYS$OUTPUT

READ (5),iolist FOR005 SYS$INPUT

WRITE (6),iolist FOR006 SYS$OUTPUT

You can change the file specifications associated with these FORTRAN
logical names, as you would any other FORTRAN logical name, by means
of the DCL commands ASSIGN or DEFINE. For example:

$ ASSIGN USERD: [SMITH]TEST.DAT;2 FOR$READ

Following execution of the preceding command, the READ statement's
logical name (FOR$READ) refers to the file TEST.DAT;2 on device USERD
in directory [SMITH].

VAX FORTRAN Input/Output 4-9

4.2.2.3 File Specification in the OPEN Statement

You can use the FILE and DEFAULTFILE keywords of the OPEN state-
ment to specify the complete definition of a particular file to be opened on
a logical unit. (The VAX FORTRAN Language Reference Manual describes
the OPEN statement in greater detail.) For example:

OPEN (UNIT=4, FILE='USERD:[SMITH]TEST.DAT;2', STATUS='OLD')

In the preceding example, the file TEST.DAT;2 on device USERD in
directory SMITH is to be opened on logical unit 4. Neither the default file
specification (FOR004.DAT) nor the FORTRAN logical name FOR004 is
used. The value of the FILE keyword can be a character constant, variable,
or expression.

In the following interactive example, the file name is supplied by the user
and the DEFAULTFILE keyword supplies the default values for the file
specification string.

CHARACTER*9 DOC
TYPE *, 'ENTER FILE NAME (WITHIN APOSTROPHES)'
ACCEPT *, DOC
OPEN (UNIT=2, FILE=DOC,
1 DEFAULTFILE='USERD: [ARCHIVE].TXT',
1 STATUS='OLD')

In the preceding example, the file to be opened is located on device
USERD in directory ARCHIVE, with the file name supplied in DOC and
the file type TXT. The DEFAULTFILE specification overrides your process
default device and directory.

You can also specify a logical name as the value of the FILE keyword, if
the logical name is associated with a file specification. For example:

$ ASSIGN USERD:[SMITH]TEST.DAT LOGNAM

The preceding command assigns the logical name LOGNAM to the file
specification USERD:[SMITH]TEST.DAT. The logical name can then be
used in an OPEN statement, as follows:

OPEN (UNIT=19, FILE='LOGNAM', STATUS='OLD')

When an I/O statement refers to logical unit 19, the system uses the file
specification associated with logical name LOGNAM.

If the value specified for the FILE keyword has no associated file specifica-
tion, it is regarded as a true file name rather than as a logical name. That
is, if LOGNAM had not been previously associated with the file specifi-
cation USERD:[SMITH]TEST.DAT by means of an ASSIGN or DEFINE

4-10 VAX FORTRAN Input/Output

command, then the above OPEN statement indicates that a file named
LOGNAM.DAT is located on the default device, in the default directory.

A logical name specified in an OPEN statement must not contain brackets,
semicolons, or periods. The system treats any name containing these
punctuation marks as a file specification, not as a logical name.

4.2.2.4 Assigning Files to Logical Units-Summary

As described in the preceding sections, you can assign files to logical units
in the following ways:

• By using default logical names. In the following example, the READ
statement causes the logical unit FOR00 7 to be associated with the file
FOR007.DAT by default, and the TYPE statement causes the logical
unit FOR$TYPE to be associated with SYS$OUTPUT by default.

READ (7,100)

TYPE 100

• By specifying a logical name in an OPEN statement. For example:

OPEN (UNIT=7, FILE='LOGNAM', STATUS='OLD')

• By supplying a file specification in an OPEN statement. For example:

OPEN (UNIT=7, FILE='FILNAM.DAT', STATUS='OLD')

A logical name used with the FILE keyword of the OPEN statement must
be associated with a file specification, and the character expression speci-
fied for the logical name must contain no punctuation marks. Otherwise,
the logical name is treated as a true file specification.

Use the DCL command SHOW LOGICAL to determine the current
associations of logical names and file specifications.

Use the DCL command ASSIGN or DEFINE to change the association of
logical names and file specifications.

Use the DCL command REASSIGN to remove the association of a logical
name and a file specification. For example:

$ REASSIGN logical-name

VAX FORTRAN Input/Output 4-11

4.2.3 File Organizations, I/O Record Formats, and Access Modes

A distinction must be made between the way in which files are organized
and the way in which records are accessed.

• The term file organization applies to the way records are physically
arranged on a storage device.

• The term record access refers to the method used to read records from
or write records to a file, regardless of its organization.

A file's organization is specified when the file is created, and cannot
be changed. In contrast, record access is specified each time the file is
opened, and can be different each time.

The following sections describe in general terms the elements of
FORTRAN I/O processing: file organizations, internal files, I/O record
formats, and record access modes.

4.2.3.1 File Organizations
A file is a collection of logically related records that are arranged in a
specific order and treated as a unit. The arrangement, or organization, of a
file is determined when the file is created.

VAX FORTRAN supports three kinds of file organization: sequential,
relative, and indexed. The organization of a file is specified by means
of the ORGANIZATION keyword in the OPEN statement, as described
in the section on the OPEN statement in the VAX FORTRAN Language
Reference Manual.

Files are normally stored on disk. Sequential files, however, can be
stored on either magnetic tape or disk. Other peripheral devices, such as
terminals, card readers, and line printers, are treated as sequential files.

The three kinds of file organization are discussed individually under the
headings that follow.

Sequential Organization

A sequentially organized file consists of records arranged in the sequence
in which they are written to the file (the first record written is the first
record in the file, the second record written is the second record in the file,
and so on). As a result, records can be added only at the end of the file.

Sequential file organization is permitted on all devices supported by the
VMS operating system.

4-12 VAX FORTRAN Input/Output

Relative Organization

A relative file consists of numbered positions, called cells. These cells are
of fixed equal length and are consecutively numbered from 1 to n, where
1 is the first cell, and n is the last available cell in the file. Each cell either
contains a single record or is empty.

Records in a relative file are accessed according to cell number. A cell
number is a record's relative record number, that is, its location relative to
the beginning of the file. By specifying relative record numbers, you can
directly retrieve, add, or delete records regardless of their locations.

Relative files are supported only on disk devices.

Indexed Organization

An indexed file consists of two or more separate sections: one section
contains the data records and the other sections contain indexes. When
an indexed file is created, each index is associated with a specification
defining a field, called a key field, within each record. A record in an
indexed file must contain at least one key. This mandatory key, called the
primary key, determines the location of the records within the body of the
file.

The keys of all records are collected to form one or more structured in-
dexes, through which records are always accessed. The structure of the
indexes allows a program to access records in an indexed file either ran-
domly, by specifying particular key values, or sequentially, by retrieving
records with increasing key values. In addition, keyed access and sequen-
tial access can be mixed. The term Indexed Sequential Access Method
(ISAM) refers to this dynamic access feature.

Indexed files are supported only on disk devices. See Chapter 14 for more
information on indexed files.

4.2.3.2 Internal Files
An internal file is designated internal storage space that is manipulated to
facilitate internal I/O. Its use with formatted and list-directed sequential
READ and WRITE statements eliminates the need to use the ENCODE
and DECODE statements for internal I/O.

An internal file consists of a character variable, a character array element,
a character array, or a character substring; a record in an internal file
consists of any of these data items except a character array.

VAX FORTRAN Input/Output 4-13

If an internal file is made up of a single character variable, array element,
or substring, that file comprises a single record whose length is the same
as the length of the variable, array element, or substring. If an internal file
is made up of a character array, that file comprises a sequence of records,
with each record consisting of a single array element. The sequence
of records in an internal file is determined by the order of subscript
progression.

A record in an internal file can be read only if the character variable, array
element, or substring comprising the record has been defined; that is, a
value has been assigned to the record.

Prior to data transfer, an internal file is always positioned at the beginning
of the first record.

4.2.3.3 1/O Record Formats

An I/O record is a collection of data items, called fields, that are logically
related and are processed as a unit.

NOTE

I/O records are not to be confused with record entities declared
in a program as structured data items. There is no relationship
between structured data items and I/O records. Structured data
items are described in the VAX FORTRAN Language Reference
Manual.

Generally, each FORTRAN I/O statement transfers one record. The ex-
ceptions are formatted, list-directed, and namelist-directed I/O statements,
which can transfer additional records.

If an input statement does not use all of the data fields in a record, the
remaining fields are ignored. If an input statement requires more data
fields than the record contains, either an error condition occurs or, in the
case of formatted input, all fields are read as spaces.

If an output statement attempts to write more data fields than the record
can contain, an error condition occurs. If an output statement transfers
less data than is required to fill affixed-length record, the record is filled
with spaces (if it is a formatted record) or zeros (if it is an unformatted
record).

4-14 VAX FORTRAN Input/Output

Records are stored in one of four formats:

• Fixed-length

• Variable-length

• Segmented

• Stream

Fixed-length and variable-length formats can be used with sequential,
relative, or indexed file organization. Segmented format is unique to
FORTRAN; it is not used by other VMS-supported languages. It can
only be used with sequential file organization, and only for unformatted
sequential access. You should not use segmented records for files that
are read by programs written in languages other than FORTRAN. Stream
format can only be used with sequential file organization.

The various kinds of I/O record formats are discussed individually under
the headings that follow.

Fixed- Length Records

When you specify fixed-length records, you are specifying that all records
in the file contain the same number of bytes. When you create a file that
is to contain fixed-length records, you must specify the record size. (The
VAX FORTRAN Language Reference Manual discusses fixed-length records.)
A sequentially organized file opened for direct access must contain fixed-
length records, to allow the record position in the file to be computed
correctly.

Variable-Length Records

Variable-length records can contain any number of bytes, up to a specified
maximum. These records are prefixed by a count field, indicating the
number of bytes in the record. The count field comprises two bytes on
a disk device and four bytes on magnetic tape. The value stored in the
count field indicates the number of data bytes in the record. Variable-
length records in relative files are actually stored in fixed-length cells, the
size of which must be specified by means of the RECL keyword of the
OPEN statement (see the VAX FORTRAN Language Reference Manual for
details). This RECL value specifies the largest record that can be stored in
the file.

The count field of avaraable-length record is available when you read the
record by issuing a READ statement with a Q format descriptor. You can
then use the count field information to determine how many bytes should
be in an I/O list.

VAX FORTRAN Input/Output 4-15

Segmented Records

A segmented record is a single logical record consisting of one or more
variable-length, unformatted records in a sequentially organized file. Each
variable-length record constitutes a segment. The length of a segmented
record is arbitrary. Segmented records are useful when you want to write
exceptionally long records but cannot or do not wish to define one long
variable-length record. Unformatted data written to sequentially organized
files using sequential access is stored as segmented records by default.

Because there is no limit on the size of a segmented record, each variable-
length record in the segmented record contains control information to
indicate that it is one of the following:

• The first segment

• The last segment

• The only segment

• None of the above

This control information is contained in the first two bytes of each seg-
ment of a segmented record. Therefore, when you wish to access an
unformatted sequential file that contains variable-length records, you must
specify RECORDTYPE='VARIABLE' when you open the file. Otherwise,
the first two bytes of each record will be mistakenly interpreted as control
information, and errors will probably result.

Stream Records

A stream-type record is avariable-length record whose length is indicated
by explicit record terminators embedded in the data, not by a count.
These terminators are automatically added when you write records to a
stream-type file and are removed when you read records.

4-16 VAX FORTRAN Input/Output

There are three varieties of stream-type files, each using a different record
terminatcr:

• STREAM files use the 2-character sequence consisting of a carriage-
return and aline-feed as the record terminator.

• STREAM _CR files use only acarriage-return as the terminator.

• STREAM_LF files use only aline-feed as the terminator.

4.2.3.4 Record Access Modes

Access mode is the method a program uses to retrieve and store records
in a file. The access mode is specified as part of each I/O statement. VAX
FORTRAN supports three record access modes:

• Sequential

• Direct

• Keyed

Your choice of record access mode is affected by the organization of the
file to be accessed. For example, the sequential access mode can be used
with sequential, relative, and indexed files; but the keyed access mode can
be used only with indexed organization files.

Table 4-4 shows all of the valid combinations of access mode and file
organization.

Table 4-4: Valid Combinations of Record Access Mode and
File Organization

Access Mode
File Organization

Sequential Direct Keyed

Sequential Yes Yes' No

Relative Yes Yes No

Indexed Yes No Yes

1 Fixed-length records only.

The three kinds of access mode are discussed individually under the
headings that follow.

VAX FORTRAN Input/Output 4-17

Sequential Access Mode

If you select sequential access mode for files with sequential or relative
organization, records are written to or read from the file starting at the
beginning and continuing through the file, one record after another. For
files with indexed organization, sequential access can be used to read or
write all records according to the direction of the key and the key values.
Sequential access to indexed files can also be used with keyed access to
read or write a group of records at a specified point in the file.

When you use sequential access for files with sequential and relative
organization, a particular record can be retrieved only after all of the
records preceding it have been read.

Writing records by means of sequential access also varies according to the
file organization.

• For a file with sequential organization, new records can be written
only at the end of the file.

• For a file with relative organization, a new record can be written
at any point, replacing the existing record in the specified cell. For
example, if two records are read from a relative file and then a record
is written, the new record occupies cell 3 of the file.

• For a file with indexed organization, records can be written in any
order, and READ operations refer to the next record with the same or
next higher specified key value.

Direct Access Mode

If you select direct access mode, you determine the order in which records
are read or written. Each READ or WRITE statement must include the
relative record number, indicating the record to be read or written.

You can access relative files directly. You can also access a sequential disk
file directly if it contains fixed-length records. Because direct access uses
cell numbers to find records, you can issue successive READ or WRITE
statements requesting records that either precede or follow previously
requested records. For example, the following statements, appearing in a
program in the order shown here, read record 24 and then read record 10.

READ (12,REC=24) I
READ (12,REC=10) J

4-18 VAX FORTRAN Input/Output

Keyed Access Mode

If you select keyed access mode, you determine the order in which records
are read or written by means of character values or integer values called
keys. Each READ statement contains the key that locates the record. The
key value in the I/O statement is compared with index entries until the
record is located.

When you insert a new record, the values contained in the key fields of
the record determine the record's placement in the file; you do not have to
indicate a key.

You can use keyed access only for files v,~ith an indexed organization.

Your program can mix keyed access and sequential access I/O statements
on the same file. You can use keyed I/O statements to position the file
to a particular record and then use sequential I/O statements to access
records with increasing key values in the current key-of-reference.

VAX FORTRAN Input/Output 4-19

Chapter 5

Error Processing

During execution, your program may encounter errors or exception con-
ditions. These conditions can result from errors that occur during I/O
operations, from invalid input data, from argument errors in calls to the
mathematical library, from arithmetic errors, or from system-detected
errors. The Run-Time Library provides default processing for error con-
ditions, generates appropriate messages, and takes action to recover from
errors whenever possible. You can, however, explicitly supplement or
override default actions by using the following methods:

• To transfer control to error-handling code v~~ithin the program, use the
error (ERR) and end-of-file (END) specifiers in I/O statements.

• To identify FORTRAN-specific errors based on the value of IOSTAT,
use the I/O status specifier (IOSTAT) in I/O statements.

• To tailor error processing to the special requirements of your applica-
tions, use the VAX condition-handling facility (including user-written
condition handlers). (See Chapter 9 for information on user-written
condition handlers.)

These error-processing methods are complementary; you can use all of
them within the same program. However, before attempting to write
a condition handler, you should be familiar with the VAX condition-
handling facility (CHF) and with the condition-handling description in
Chapter 9.

This chapter describes how the Run-Time Library processes errors. It
also provides information about using I/O specifiers for explicit error
processing and control, and shows how these methods affect the default
error processing of the Run-Time Library.

Error Processing 5-1

5.1 Run-Time Library Default Error Processing

The Run-Time Library contains condition handlers that process a number
of errors that may occur during FORTRAN program execution. A default
action is defined for each FORTRAN-specific error recognized by the Run-
Time Library. The default actions described throughout this chapter occur
unless overridden by explicit error-processing methods.

The way in which the Run-Time Library actually processes errors depends
upon several factors:

• The severity of the error.

• Whether an I/O error-handling specifier or a condition handler was
used.

• Whether the error permits continuation.

Table 5-1 lists the FORTRAN-specific errors processed by the Run-Time
Library. For each error, the table shows the message text, the symbolic
condition name, the FORTRAN-specific error code, and the severity code.
(Refer to Table E-4 for more detailed descriptions of errors processed by
the Run-Time Library.)

The condition symbols shown in the left column are the status codes
signaled by the Run-Time Library I/O support routines. You can define
these symbolic values in your program by including the module $FORDEF
from the system-supplied default library FORSYSDEF.TLB.

The error numbers shown in the second column are the standard DIGITAL
FORTRAN error numbers that are compatible with other versions of
DIGITAL FORTRAN. These are the error values returned to IOSTAT vari-
ables when an I/O error is detected. These numbers are also used to index
the error table maintained by the ERRSET and ERRTST subroutines. (See
Appendix E for descriptions of the ERRSET and ERRTST subroutines.)

The codes in the third column indicate the severity of the error conditions.
All FORTRAN-specific errors have severity codes of either error (E) or
severe error (F). As shown in the table, most FORTRAN-specific errors
are severe. If no explicit recovery action is specified for a severe error,
program execution terminates by default.

The letter C in the severity column of the table means that you can
continue execution immediately after the error, if auser-written condition
handler specifies that execution should continue. If the letter C is not
present, you cannot continue execution immediately after the error. If you
attempt to do so, program execution terminates.

5-2 Error Processing

When errors occur for which no recovery method is specified, the program
exits; that is, an error message is printed and execution of the program
terminates. To prevent program termination, you must include an appro-
priate I/O error-handling specifier (see Sections 5.2 and 5.3) or a condition
handler that performs an unwind. (See Chapter 9 for information on
user-written condition handlers.)

Table 5-1: Summary of Run-Time Errors

FORTRAN Condition Error
Symbol Number Severity Message Text

FOR$_NOTFORSPE' 1 F

FOR$_SYNERRNAM 17 F

FOR$_TOOMANVAL 18 F

FOR$_INVREFVAR 19 F

FOR$_REWERR

FOR$_DUPFILSPE

FOR$_INPRECTOO

FOR$_BACERR

FOR$_ENDDURREA

FOR$_RECNUMOUT

FOR$_OPEDEFREQ

FOR$_TOOMANREC

FOR$_CLOERR

FOR$_FILNOTFOU

FOR$_OPEFAI

FOR$_MIXFILACC

FOR$_INVLOGUNI

FOR$_ENDFILERR

FOR$_UNIALROPE

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

Not aFORTRAN-specific error

Syntax error in NAMELIST input

Too many values for NAMELIST variable

Invalid reference to variable in NAMELIST
input

REWIND error

Duplicate file specifications

Input record too long

BACKSPACE error

End-of-file during read

Record number outside range

OPEN or DEFINE FILE required

Too many records in I/O statement

CLOSE error

File not found

Open failure

Mixed file access modes

Invalid logical unit number

ENDFILE error

Unit already open

1 Error number 1 (FOR$_NOTFORSPE) indicates that an error was detected that was not aFORTRAN-specific

error; that is, it was not reportable through any other message in the table. If you call ERRSNS, an error of

this kind returns a value of 1. Use the fifth argument of the call to ERRSNS (condval) to obtain the unique
system condition value that identifies the error. Refer to the VAX FORTRAN LafiRuaRe Refereeice Mafival for

more information about the ERRSNS subroutine.

Error Processing 5-3

Table 5-1 (Cont.~: Summary of Run-Time Errors
FORTRAN Condition Error
Symbol Number Severity Message Text

FOR$_SEGRECFOR 35 F Segmented record format error

FOR$_ATTACCNON 36 F Attempt to access non-existent record

FOR$_INCRECLEN 37 F Inconsistent record length

FOR$_ERRDURWRI 38 F Error during write

FOR$_ERRDURREA 39 F Error during read

FOR$_RECIO_OPE 40 F Recursive I/O operation

FOR$_INSVIRMEM 41 F Insufficient virtual memory

FOR$_NO_SUCDEV 42 F No such device

FOR$_FILNAMSPE 43 F File name specification error

FOR$_INCRECTYP 44 F Inconsistent record type

FOR$_KEYVALERR 45 F Keyword value error in OPEN statement

FOR$_INCOPECLO 46 F Inconsistent OPEN/CLOSE parameters

FOR$_WRIREAFIL 47 F Write to READONLY file

FOR$_INVARGFOR 48 F Invalid argument to FORTRAN Run-Time
Library

FOR$_INVKEYSPE 49 F Invalid key specification

FOR$_INCKEYCHG 50 F Inconsistent key change or duplicate key

FOR$_INCFILORG 51 F Inconsistent file organization

FOR$_SPERECLOC 52 F Specified record locked

FOR$_NO_CURREC 53 F No current record

FOR$_REWRITERR 54 F REWRITE error

FOR$_DELERR 55 F DELETE error

FOR$_UNLERR 56 F UNLOCK error

FOR$_FINERR 57 F FIND error

FOR$_LISIO_SYN '` 59 F,C List-directed I/O syntax error

FOR$_INFFORLOO 60 F Infinite format loop

2 The ERR transfer is taken after completion of the I/O statement for continuable errors numbered 59, 61,
63, 64, and 68; the resulting file status and record position are the same as though no error had occurred.
However, other I/O errors take the ERR transfer as soon as the error is detected; thus, file status and record
position are undefined.

5-4 Error Processing

Table 5-1 ~Cont.): Summary of Run-Time Errors
FORTRAN Condition Error
Symbol Number Severity Message Text

FOR$_FORVARMIS 2

FOR$_SYNERRFOR

FOR$_OUTCONERR 2,3

FOR$_INPCONERR`

FOR$_OUTSTAOVE

FOR$_INPSTAREQ

FOR$_VFEVALERR 2

SS$_INTOVF

SS$_INTDIV

SS$_FLTOVF

SS$_FLTOVF_F

SS$_FLTDIV

SS$_FLTDIV F

SS$_FLTUND

SS$~LTUND_F

SS$_SUBRNG

MTH$_WRONUMARG

MTH$_INVARGMAT

MTH$_UNDEXP 4

MTH$_LOGZERNEG ~

MTH$_SQUROONEG 4

61

62

63

64

66

67

68

70

71

72

72

73

73

74

74

77

80

81

82

83

84

F,C

F

E,C

F,C

F

F

F,C

F,C

F,C

F,C

F,C

F,C

F,C

F,C

F,C

F,C

F

F

F,C

F,C

F,C

Format/variable-type mismatch

Syntax error in format

Output conversion error

Input conversion error

Output statement overflows record

Input statement requires too much data

Variable_ format expression value error

Arithmetic trap, integer overflow

Arithmetic trap, integer zero divide

Arithmetic trap, floating overflow

Arithmetic fault, floating overflow

Arithmetic trap, zero divide

Arithmetic fault, zero divide

Arithmetic trap, floating underfloor

Arithmetic fault, floating underfloor

Subscript out of range

Wrong number of arguments

Invalid argument to math library

Undefined exponentiation

Logarithm of zero or negative value

Square root of negative value

2The ERR transfer is taken after completion of the I/O statement for continuable errors numbered 59, 61,
63, 64, and 68; the resulting file status and record position are the same as though no error had occurred.
However, other I/O errors take the ERR transfer as soon as the error is detected; thus, file status and record
position are undefined.

3If no ERR address has been defined for error 63, the program continues after the error message is printed.
The entire overflowed field is filled with asterisks to indicate the error in the output record.

4 Function return values for errors numbered 82, 83, 84, 87, 88, and 89 can be modified by means of
user-written condition handlers. (See Chapter 9 for information about user-written condition handlers.)

Error Processing 5-5

Table 5-1 ~Cont.): Summary of Run-Time Errors

FORTRAN Condition
Symbol

Error
Number Severity Message Text

MTH$_SIGLOSMAT ~

MTH$_FLOOVEMAT ~

MTH$_FLOUNDMAT

FOR$_ADJARRDIM

INVMATKEY

87

88

89

93

94

F,C

F,C

F,C

F,C

F

Significance lost in math library

Floating overflow in math library

Floating underflow in math library

Adjustable array dimension error

Invalid key match specifier for key direction

~ Function return values for errors numbered 82, 83, 84, 87, 88, and 89 can be modified by means of
user-written condition handlers. (See Chapter 9 for information about user-written condition handlers.)

'If error number 93 (FOR$_ADJARRDIM) occurs and auser-written condition handler causes execution to
continue, any reference to the array in question may cause an access violation.

See Table F-4 for more detailed descriptions of errors processed by the
Run-Time Library.

5.2 Using the ERR and END Specifiers

When a severe error occurs during program execution, the Run-Time
Library default action is to print an error message and terminate the
program. You can use the ERR and END specifiers in I/O statements
to override this default by transferring control to a specified point in
the program. No error message is printed, and execution continues at
the designated statement. For example, consider the following WRITE
statement:

WRITE (8,50,ERR=400)

If an error occurs during execution of this statement, the Run-Time Library
transfers control to the statement at label 400. Similarly, you can use the
EI~TD specifier to handle an end-of-file condition that might otherwise be
treated as an error. For example:

READ (12,70,END=550)

5-6 Error Processing

You can also specify ERR as a keyword in an OPEN, CLOSE, or INQUIRE
statement. For example:

OPEN (UNIT=10, FILE='FILNAM' , STATUS='OLD' , ERR=999)

If an error is detected during execution of this OPEN statement, control
transfers to statement 999.

5.3 Using the IOSTAT Specifier

You can use the IOSTAT specifier to continue program execution after
an I/O error and to return information about I/O operations. It can
supplement or replace the END and ERR transfers. Execution of an I/O
statement containing the IOSTAT specifier suppresses printing of an error
message and causes the specified integer variable, array element, or scalar
field reference to become defined as one of the following:

• A value of -1 if an end-of -file condition occurs

• A value of 0 if neither an error condition nor an end-of-file condition
occurs

• A positive integer value if an error condition occurs (this value is one
of the FORTRAN-specific error numbers listed in Table 5-1)

Following execution of the I/O statement and assignment of an IOSTAT
value, control transfers to the END or ERR statement label, if any. If there
is no control transfer, normal execution continues.

You can include SYS$LIBRARY:FORSYSDEF.TLB($FORIOSDEF) in your
program to obtain symbolic definitions for the values of IOSTAT. The
symbolic names in this file have a form similar to the FORTRAN condition
symbols:

Condition symbol IOSTAT value

FOR$_error FOR$IOS_error

Note that the values of the IOSTAT symbols are not the same as the
values of the condition symbols described in Table 5-1.

The following example uses the IOSTAT specifier and the FORIOSDEF
module to detect and process an OPEN error.

Error Processing 5-7

CHARACTER*40 FILN
INCLUDE '($FORIOSDEF)'

10 ACCEPT *, FILN
OPEN (UNIT=1, FILE=FILN, STATUS='OLD', IOSTAT=IERR, ERR=100)

(process the input file)

100 IF (IERR .EQ. FOR$IOS_FILNOTFOU) THEN
TYPE *, 'File:', FILN, 'Does not exist, enter new filename'

ELSE IF (IERR .EQ. FOR$IOS_FILNAMSPE) THEN
TYPE *, 'File:', FILN, 'Was bad, enter new filename'

ELSE
TYPE *, 'Unrecoverable error, code =', IERR
STOP

END IF
GO TO 10
END

5-8 Error Processing

Chapter 6

Using VAX FORTRAN in the Common
Language Environment

VAX FORTRAN provides you with a variety of mechanisms for gaining
access to procedures and system services external to your FORTRAN
programs. By including CALL statements or function references in your
source program, you can use procedures such as mathematical func-
tions, VMS system services, and routines written in languages other than
FORTRAN.

The terms subprogram, subroutine, and function are used throughout this
chapter.

• A subprogram is a closed, ordered set of instructions that performs
one or more specific tasks. Every subprogram has one or more entry
points and, optionally, an argument list.

• Subroutines and functions are specific types of subprograms. A sub-
routine is a subprogram that does not return a value, and a function
is a subprogram that returns a value by assigning that value to the
function's identifier.

The VAX FORTRAN compiler operates within the VMS common language
environment. This environment defines certain calling procedures and
guidelines that allow you to call routines written in different languages or
system routines from VAX FORTRAN. This chapter provides information
on the VAX procedure-calling standard and how to access VAX system
services. Detailed information about calling and using the RMS (Record
Management Services) system services is provided in Chapter 7.

Using VAX FORTRAN in the Common Language Environment 6-1

6.1 VAX Procedure-Calling Standard

Programs compiled by the VAX FORTRAN compiler conform to the
standard defined for VAX procedure calls (see the manual Introduction
to VMS System Routines). This standard prescribes how registers and
the system-maintained call stack can be used, how function values are
returned, how arguments are passed, and how procedures receive and
return control.

When writing routines that can be called from VAX FORTRAN programs,
you should give special consideration to the argument list descriptions in
Section 6.1.3 and to the object code format description in Section 6.2.6.

6.1.1 Register and Stack Usage

The VAX Procedure Calling and Condition Handling Standard defines
several registers and their uses, as listed in Table 6-1.

Table 6-1: VAX Register Usage
Register Use

PC Program counter

SP Stack pointer

FP Current stack frame pointed

AP Argument pointer

R 1 Environment value (when necessary)

R0, R 1 Function value return registers

By definition, any called routine can use registers R2 through R11 for
computation, and the AP register as a temporary register.

In the VAX Procedure Calling and Condition Handling Standard, a stack is
defined as a LIFO (last-in/first-out) temporary storage area that the system
allocates for every user process.

The system keeps information on the stack about each routine call in the
current image. That is, each time you call a routine, the system creates a
structure, known as a call frame, on the stack.

6-2 Using VAX FORTRAN in the Common Language Environment

The call frame for each active process contains the following:

• A pointer for the call frame of the previous routine call. This pointer
corresponds to the frame pointer (FP).

• The argument pointer (AP) for the previous routine call.

• The storage address of the call to the routine; that is, the address of
the instruction following the call to the current routine. This address
is called the program counter (PC).

• The contents of other general registers. Based on a mask specified
in the control information, the system restores the saved contents of
these registers when control returns to a calling routine.

When a routine completes execution, the system uses the frame pointer in
the call frame for the current routine to locate the frame for the previous
routine. The system then removes the call frame for the current routine
from the stack.

6.1.2 Return Values of Procedures

A procedure is a VAX FORTRAN subprogram that performs one or more
computations for other programs. Procedures can be either functions or
subroutines. Both functions and subroutines can return values by storing
them in variables specified in the argument list or in common blocks.
However, a function, unlike a subroutine, can also return a value to
the calling program by assigning the value to the function's name. The
method that function procedures use to return values depends on the data
type of the value, as summarized in Table 6-2.

Table 6-2: Function Return Values

Data Type Return Method

Logical General register RO
Integer
REAL*4

REAL*8 R0: High-order result
R1: Low-order result

COMPLEX*8 R0: Real part
R1: Imaginary part

Using VAX FORTRAN in the Common Language Environment 6-3

Table 6-2 (Copt.): Function Return Values

Data Type Return Method

REAL*16
COMPLEX•16

Character

An extra entry is added as the first entry of the argument
list. This new first-argument entry points to the result.

An extra entry is added as the first entry of the argument
list. This new first-argument entry points to a character
string descriptor. At run time, storage is allocated to contain
the value of the result, and the proper address is stored in
the descriptor.

See the VAX FORTRAN Language Reference Manual for information on
defining and invoking subprograms.

6.1.3 Argument Lists

You use an argument list to pass information to a routine and receive
results.

The VAX procedure-calling standard defines an argument list as a se-
quence of longword (4-byte) entries. Figure 6-1 shows the structure of a
typical argument list.

6-4 Using VAX FORTRAN in the Common Language Environment

Figure 6-1: Structure of a VAX Argument List

0 n

argl

arg2

argn

ZK~5503~86

The first longword stores the number of arguments (the argument count:
n) as an unsigned integer value in the first byte of the longword. It must
have a value between 0 and 255. It indicates how many arguments follow
in the list. The upper three bytes in the argument-count entry must
contain all zeros. The longwords labeled argl through argn are the actual
arguments.

The argument list contains the arguments that are passed to the subpro-
gram. Depending on the passing mechanisms for these arguments, the
forms of the arguments contained in the argument list vary. For example,
if you pass three arguments, the first by value, the second by reference,
and the third by descriptor, the argument list would contain the value
of the first argument, the address of the second, and the address of the
descriptor of the third. Figure 6-2 shows this argument list.

Using VAX FORTRAN in the Common Language Environment 6-5

Figure 6-2: Example of a VAX Argument List

0 3

value of the first parameter

address of the second parameter

address of descriptor of the third parameter

ZK-5504-86

Memory for VAX FORTRAN argument lists and for VAX descriptors
(generated from the use of %DESCR or by passing CHARACTER data) is
usually allocated statically.

Omitted arguments for example, CALL X(A„B) are represented by an
argument list entry that has a value of zero.

See Section 6.2.6.1 for examples of object code generated for VAX
FORTRAN argument lists.

6.2 Argument-Passing Mechanisms

The VAX procedure-calling standard defines three mechanisms by which
arguments are passed to procedures:

• By immediate value The argument list entry contains the value.
• By reference The argument list entry contains the address of the

value.

• By descriptor The argument list entry contains the address of a
descriptor of the value.

By default, VAX FORTRAN uses the reference and descriptor mechanisms
to pass arguments, depending on the argument's data type:

• The reference mechanism is used to pass all actual arguments that are
numeric: logical, integer, real, and complex.

• The descriptor mechanism is used to pass all actual arguments that are
character.

6-6 Using VAX FORTRAN in the Common Language Environment

In some cases, a function reference or call to anon-FORTRAN procedure
requires arguments in a form other than that provided by the reference
and descriptor mechanisms, the VAX FORTRAN default mechanisms.
Calls to VMS system services are such a case. VAX FORTRAN provides
three built-in functions for passing arguments when you cannot use the
default mechanisms. It also provides abuilt-in function for computing
addresses for use in argument lists. These built-in functions are as follows:

• %VAL, %REF, %DESCR argument list built-in functions

• %LOC general usage built-in function

Except for the %LOC built-in function, which can be used in any arith-
metic expression, these functions can appear only as unparenthesized
arguments in argument lists. Note that the argument list built-in functions
and %LOC built-in function are rarely used to call a procedure written in
VAX FORTRAN.

The use of these functions in system service calls is described in
Section 6.5.4. The sections that follow describe their use in general.

6.2.1 Passing Arguments by Reference—%REF Function

The %REF function passes the argument list entry by reference. It has the
form:

%REF (arg)

The argument list entry generated by the compiler is the address of the
argument (arg). The argument value can be a record name, a procedure
name, or a numeric or character expression, array, or array element. In
VAX FORTRAN, this is the default mechanism for passing numeric values.

6.2.2 Passing Arguments by Descripton—%DESCR Function

The %DESCR function passes the argument list entry by descriptor. It has
the form:

%DESCR(arg)

Using VAX FORTRAN in the Common Language Environment 6-7

The argument list entry generated by the compiler is the address of a
descriptor of the argument (arg). The argument value can be any type
of FORTRAN expression. The argument value cannot be a record name,
record array name, or record array element. The compiler can generate
VAX descriptors for all FORTRAN data types.

In VAX FORTRAN, the descriptor mechanism is the default mechanism
for passing character arguments because the subprogram may need to
know the length of the character argument. In particular, VAX FORTRAN
always generates code to refer to character dummy arguments through the
addresses in their descriptors.

6.2.3 Passing Arguments by Immediate Value—%VAL Function

The %VAL function passes the argument list entry as a 32-bit immediate
value. It has the form:

%VAL(arg)

The argument list entry generated by the compiler is the value of the
argument (arg). Because argument list entries are longwords, the argument
value must be an INTEGER, LOGICAL, or REAL*4 constant, variable,
array element, or expression. If the value is a byte or word, it is sign
extended to a longword. (The ZEXT intrinsic function can. be used to
produce azero-extended value, rather than asign-extended value.)

You may need to use the %VAL function when passing an address
argument to a VAX FORTRAN subprogram. Address arguments can occur
in argument lists passed to routines written in other languages. Using the
%VAL function to pass an address argument pointing to a data item is
equivalent to passing the item itself by reference.

6.2.4 Passing Addresses—%LOC Function

The %LOC built-in function computes the address of a storage element
as an INTEGER*4 value. You can then use this value in an arithmetic
expression.

The %LOC function is particularly useful for certain system services or
non-FORTRAN procedures that may require argument data structures
containing the addresses of storage elements. Note that the data structures
should be declared volatile to protect them from possible optimizations.
The effects of volatile declarations and the situations in which they should

6-8 Using VAX FORTRAN in the Common Language Environment

be used are discussed at length in Section 11.3.2.2. (See the discussion
of the VOLATILE statement in the VAX FORTRAN Language Reference
Manual for information on declaring volatile data structures.)

6.2.5 Examples of Argument Passing Built-in Functions

The following examples demonstrate the use of the argument list built-in
functions.

1. The first constant is passed by reference. The second constant is
passed by immediate value.

CALL SUB(2,y°VAL(2))

2. The first character variable is passed by descriptor. The second
character variable is passed by reference.

CHARACTER*10 A,B
CALL SUB(A,%REF(B))

3. The first array is passed by reference. The second array is passed by
descriptor.

INTEGER IARY(20), JARY(20)
CALL SUB(IARY,%DESCR(JARY))

See Section 6.2.6.2 for examples that include the generated object code.

6.2.6 Object Code Examples

The following sections present examples of VAX FORTRAN calls and their
corresponding object code (as represented in MACRO).

6.2.6.1 Argument- Passing Examples

The format used in the following examples shows VAX FORTRAN source
code, followed by argument lists generated in object code.

Using VAX FORTRAN in the Common Language Environment 6-9

Example 1:

This example shows how the compiler generates an argument list for the
arguments specified in the CALL statement.

VAX FORTRAN Source Code:

REAL X
INTEGER J(10)
CHARACTER*15 C

CALL SUB(X,J(3),C)

Object Code:

ARGLST: .LONG 3
.ADDR X
.ADDR J+8

.ADDR L$1

L$1: .WORD 15
.BYTE 14
.BYTE 1
.ADDR C

Count
Address of X

Address of J(3)

C descriptor address

Length of C
Character type code

Scalar class code

Address of C

The compiler can initialize the addresses of real variable X and array
element J(3) because they are explicitly specified in the CALL statement.
Similarly, the compiler has enough information to generate an initialized
descriptor for the character string C.

Example 2:

In this example, the VAX FORTRAN source code defines a real array
X, comprising 10 elements, and a character variable C, comprising 15
elements.

VAX FORTRAN Source Code:

REAL X(10)
CHARACTER*15 C
CALL SUB(X(I),C(J:K))

Object Code:

ARGLST: .LONG 2
.LONG 0
.ADDR L$1

L$1: .WORD 0
.BYTE 14
.BYTE 1

.LONG 0

Count
X(I) initialized at run time

C(J:K) descriptor address

C(J:K) length, set at run time

Character type code
Scalar class code
Base address of C(J:K), set at

run time

6-10 Using VAX FORTRAN in the Common Language Environment

Run-Time Argument List Initialization Code:

MOVL
MOVAF
SUBL3
SUBL3
MOVW

MOVAB C [RO] , L$1 +4

I,RO
X-4[RO],ARGLST+4

#1,J,R0
RO,K,R1
R1,L$1

CALLG ARGLST,SUB

Compute address of X (I) and
store it in the argument list
Compute the length of C(J:K)

Store length of C(J:K) in argument
list
Store base address of C(J:K) in
argument list
Call subroutine SUB

The actual arguments passed to subroutine SUB are the Ith element of
array X and the substring C(J:K). The compiler generates an argument
list consisting of three longwords: the first is the count and the next two
are the address of the Ith element of X and the address of the descriptor
of substring C(J:K). Note that the addresses of X(I) and C(J:K) and the
length of C(J:K) are initialized to zero because these values are unknown
at compile time.

6.2.6.2 Examples of Argument List Built-In Functions

The following examples show the VAX FORTRAN source code, followed
by the generated object code.

Example 1: %VAL

VAX FORTRAN Source Code:

CALL SUB (4,%VAL(6) ,'/°VAL(-1) ,%VAL(ZEXT(-1)))

Object Code:

ARGLST: .LONG 4
.ADDR CON4
.LONG 6
.LONG FFFFFFFF
.LONG OOOOFFFF

CON4: .LONG 4

Count
Address of constant
value
Sign-extended value
Zero-extended value

In this example, the compiler generates an address for the constant 4 in
the first entry, but generates the actual value (6) in the following entry.
Note that the constants are placed in read-only storage so that any attempt
to change the value of a constant causes an access violation.

Using VAX FORTRAN in the Common Language Environment 6-11

Example 2: %REF

VAX FORTRAN Source Code:

CHARACTER*10 C,D
CALL SUB (C ,'/.REF (D))

Object Code:

ARGLST: .LONG 2
.ADDR L$1
.ADDR D

L$1: .WORD 10
.BYTE 14
.BYTE 1
.ADDR C

Count
Address of C descriptor
Address of D

Length
Type code
Class code
Address

In this example, the argument list entry for D is the address of D. The
compiler does not generate a descriptor for D, as it does for C, even
though C and D are both specified in the source program as character
variables.

Example 3: %DESCR

VAX FORTRAN Source Code:

CALL SUB (X , %DESCR (X))

Object Code:

ARGLST: .LONG 2
.ADDR X
.ADDR L$1

L$1: .WORD 4
.BYTE 10
.BYTE 1
.ADDR X

Count
Address of X
Address of X descriptor

Length
Type code
Class code
Address

In this example, the first argument list entry contains an address and the
second entry contains a pointer to a descriptor.

6-12 Using VAX FORTRAN in the Common language Environment

r"1
6.2.6.3 Character Function Example

The following example demonstrate how character function argument lists
are generated.

VAX FORTRAN Source Code:

CHARACTER*10 C,D
D = C(I,J)

Object Code:

ARGLST: .LONG 3
.ADDR L$1
.ADDR I
.ADDR J

L$1: .WORD 10
.BYTE 14
.BYTE 1
.LONG 0

SUBL2 #lO,SP
MOVL SP,L$1+4

CALLG ARGLST,C
MOVC3 #10,(SP),D
MOVL R1,SP

Count
Address of function descriptor
Address of I
Address of J

Length
Type code
Class code
Address

Allocate space for 10 characters
Set address
Call function C
Move result to D
Remove result from stack

In this example, an additional argument list entry is allocated (the descrip-
tor of the return value of the character function C).

6.3 VMS System Routines

System routines are VMS routines that perform common tasks, such as
finding the square root of a number or allocating virtual memory. You can
call any system routine from your program, provided that VAX FORTRAN
supports the data structures required to call the routine. The system
routines used most often are VMS Run-Time Library routines and system
services. System routines are documented in detail in the VMS Run-Time
Library Routines Volume and the VMS System Services Reference Manual.

Using VAX FORTRAN in the Common Language Environment 6-13

6.3.1 VMS Run-Time Library Routines

The VMS Run-Time Library is a library of commonly-used routines
that perform a wide variety of functions. These routines are grouped
according to the types of tasks they perform, and each group has a prefix
that identifies those routines as members of a particular VMS Run-Time
Library facility. Table 6-3 lists all of the language-independent Run-Time
Library facility prefixes and the types of tasks each facility performs.

Table 6-3: Run-Time Library Facilities
Facility Prefix Types of Tasks Performed

DTK$ DECtalk routines that are used to control DIGITAL's DECtalk
device

LIB$ Library routines that obtain records from devices, manipulate
strings, convert data types for I/O, allocate resources, obtain
system information, signal exceptions, establish condition
handlers, enable detection of hardware exceptions, and
process cross-reference data

MTH$ Mathematics routines that perform arithmetic, algebraic, and
trigonometric calculations

OTS$ General-purpose routines that perform tasks such as data type
conversions as part of a compiler's generated code

SMG$ Screen-management routines that are used in designing,
composing, and keeping track of complex images on a video
screen

STR$ String manipulation routines that perform such tasks as
searching for substrings, concatenating strings, and prefixing
and appending strings

PPL$ Parallel processing routines that help you implement concur-
rent programs on single-CPU and multiprocessor systems

6.3.2 VMS System Services Routines

System services are system routines that perform a variety of tasks, such as
controlling processes, communicating among processes, and coordinating
I/Q.

6-14 Using VAX FORTRAN in the Common Language Environment

Unlike the VMS Run-Time Library routines, which are divided into
groups by facility, all system services share the same facility prefix (SYS$).
However, these services are logically divided into groups that perform
similar tasks. Table 6-4 describes these groups.

Table 6-4: System Services
Group Types of Tasks Performed

AST

Change Mode

Condition Handling

Event Flag

Information

Input/Output

Lock Management

Logical Names

Memory Management

Process Control

Security

Time and Timing

Allows processes to control the handling of ASTs

Changes the access mode of particular routines

Designates condition handlers for special purposes

Clears, sets, reads, and waits for event flags, and
associates with event flag clusters

Returns information about the system, queues, jobs,
processes, locks, and devices

Performs I/O directly, without going through VAX RMS

Enables processes to coordinate access to shareable
system resources

Provides methods of accessing and maintaining pairs of
character string logical names and equivalence names

Increases or decreases available virtual memory, controls
paging and swapping, and creates and accesses shareable
files of code or data

Creates, deletes, and controls execution of processes

Enhances the security of VMS systems

Schedules events, and obtains and formats binary time
valuds

6.4 Calling Routines—General Considerations

The basic steps for callinf routines are the same whether you are calling a
routine written in VAX FORTRAN, a routine written in some other VAX
language, a system service, or a VMS Run-Time Library routine.

Using VAX FORTRAN in the Common Language Environment 6-15

To call a subroutine, you use the CALL statement. To call a function, you
reference the function name in an assignment statement or as an argument
in another routine call. In any case, you must specify the name of the
routine being called and all arguments required for that routine. Make
sure the data types and passing mechanisms for the actual arguments you
are passing coincide with those declared in the routine.

If you do not want to specify a value for a required parameter, you can
pass a null argument by inserting a comma (,) as a placeholder in the
argument list. If you use any passing mechanism other than the default,
you must specify the passing mechanism in the CALL statement or the
function call.

6.5 Calling VMS System Services

You can invoke system services in a VAX FORTRAN program with a
function reference or a subroutine CALL statement that specifies the
system service you want to use. To specify a system service, use the form:

SYS$service-name(arg,. . . ,arg)

You pass arguments to the system services according to the requirements
of the particular service you are calling; the service may require an
immediate value, an address, the address of a descriptor, or the address of
a data structure. Section 6.5.4 describes the VAX FORTRAN syntax rules
for each of these cases. See the VMS System Services Reference Manual for
a full definition of individual services.

The basic steps for calling system services are the same as those for calling
any external routine. However, when calling system services (or Run-Time
Library routines), additional information is often required. The sections
that follow describe these requirements.

6-16 Using VAX FORTRAN in the Common Language Environment

~./

~J

n

6.5.1 Obtaining Values for System Symbols

VMS uses symbolic names to identify return status values, condition
values, and function codes for system services:

• Return status values are used for testing the success of system service
calls.

• Condition values are used for error recovery procedures (see
Chapter 9).

• Function codes are the symbolic values used as input arguments to
system service calls.

The values chosen determine the specific action desired of the service.

The VMS System Services Reference Manual describes the symbols that are
used with each system service. The VMS 1/O User's Reference Volume
describes the symbols that are used with I/O-related services.

The VAX FORTRAN symbolic definition library FORSYSDEF contains
VAX FORTRAN source definitions for related groups of system symbols.
Each related group of system symbols is stored in a separate text module;
for example, the module $IODEF in FORSYSDEF contains PARAMETER
statements that define the I/O function codes.

The modules in FORSYSDEF correspond to the symbolic definition macros
that VMS MACRO programmers use to define system symbols. The
modules have the same names as the macros and contain VAX FORTRAN
source code, which is functionally equivalent to the MACRO source code.
To determine whether you need to include other symbol definitions for
the system service you want to use, refer to the documentation for that
particular system service. If the documentation states that values are
defined in a macro, you must include those symbol definitions in your
program.

For example, the description for the flags argument in the SYS$MGBLSC
(Map Global Section) system service states that "Symbolic names for the
flag bits are defined by the $SECDEF macro." Therefore, when you call
SYS$MGBLSC, you must include the definitions provided in the $SECDEF
macro.

Note that the module $SYSSRVNAM in FORSYSDEF contains declarations
for all system-service names. It contains the necessary INTEGER and
EXTERNAL declarations for the system-service names. (The module
also contains comments describing the arguments for each of the system
services.) In addition, note that module $SSDEF contains system-service

Using VAX FORTRAN in the Common Language Environment 6-17

return status codes and is generally required whenever you access any of
the services.

The modules in FORSYSDEF contain definitions for constants, bit masks,
and data structures. See Section 6.5.4.4 for a description of how to create
data arguments in VAX FORTRAN. Refer to Appendix B for a list of
modules that are in FORSYSDEF.

You can access the modules in the FORSYSDEF library with the INCLUDE
statement, using the following format:

INCLUDE '(module-name)'

The notation module-name represents the name of a module contained in
FORSYSDEF. The library FORSYSDEF is searched if the specified module
was not found in a previously searched library.

6.5.2 Calling System Services by Function Reference

In most cases, you should check the return status after calling a system
service. Therefore, you should call system services by function reference
rather than by issuing a call to a subroutine.

For example:

INCLUDE '($SSDEF)'
INCLUDE '($SYSSRVNAM)'
INTEGER*2 CHANNEL

MBX_STATUS = SYS$CREMBX(,CHANNEL 'MAILBOX')
IF (MBX_STATUS .NE. SS$_NORMAL) GO TO 100

In this example, the system service referenced is the Create Mailbox
system service. An INTEGER*2 variable (CHANNEL) is declared to
receive the channel number.

The function reference allows a return status value to be stored in the
variable MBX _STATUS, which can then be checked for correct completion
on return. If the function's return status is not SS$_NORMAL, failure is
indicated and control is transferred to statement 100. At that point, some
form of error processing can be undertaken.

6-18 Using VAX FORTRAN in the Common Language Environment

You can also test the return status of a system service as a logical value.
The status codes are defined so that when they are tested as logical values,
successful codes have the value true and error codes have the value
false. Thus, the fourth line in the example above could be changed to the
following:

IF (.NOT. MBX_STATUS) GO TO 100

Refer to the VMS System Services Reference Manual for information con-
cerning return status codes. The return status codes are included in the
description of each system service.

6.5.3 Calling System Services as Subroutines

Subroutine calls to system services are made in the same way that calls
are made to any other subroutine. For example, to call the Create Mailbox
system service, issue a call to SYS$CREMBX, passing the appropriate
arguments to it, as follows:

CALL SYS$CREMBX(,CHANNEL 'MAILBOX')

This call corresponds to the function reference described in Section 6.5.2.
The main difference is that the status code returned by the system service
is not tested. For this reason, you should avoid this method of calling
system services whenever it is anticipated that the service could fail for
any reason.

6.5.4 Passing Arguments to System Services

The description of each system service in the VMS System Services
Reference Manual specifies the argument-passing method for each ar-
gument. Four methods are supported:

• By immediate value

• By address this is the VAX FORTRAN default and is termed "by
reference"

• By descriptor this is the VAX FORTRAN default for CHARACTER
arguments

• By data structure

These methods are discussed separately in Sections 6.5.4.1 through 6.5.4.4.

Using VAX FORTRAN in the Common Language Environment 6-19

You can determine the arguments required by a system service from the
service description in the VMS System Services Reference Manual. Each
system service description indicates the service name, the number of
arguments required, and the positional dependency of each argument.
Table 6-5 lists the VAX FORTRAN declarations that you can use to pass
any of the standard VMS data types as arguments.

Table 6-5: VAX FORTRAN Implementation
VMS Data Type VAX FORTRAN Declaration

access_bit_names INTEGER*4(2,32)
or
STRUCTURE /access_bit_names/

INTEGER*4 access_name_len
INTEGER*4 access_name_buf

END STRUCTURE !access_bit_names
RECORD /access_bit_names/ my_names(32)

access mode

address

address_range

BYTE

INTEGER*4

INTEGER*4(2)
or
STRUCTURE /address_range/

INTEGER*4 low address
INTEGER*4 high address

END STRUCTURE

arg_list INTEGER*4(n)

ast_procedure EXTERNAL

boolean LOGICAL*4

byte signed BYTE

byte_unsigned BYTE'

channel INTEGER*2

char string CHARACTER*n

complex number COMPLEX*8
COMPLEX* 16

cond_value INTEGER*4

1 Unsigned data types are not directly supported by VAX FORTRAN. However, in most
cases you can substitute the signed equivalent, provided you do not exceed the range of
the signed data structure.

6-20 Using VAX FORTRAN in the Common Language Environment

Table 6-5 (Cont.~: VAX FORTRAN Implementation
VMS Data Type VAX FORTRAN Declaration

context

date time

device name

ef_cluster_name

ef_number

exit_handler_block

fab

file protection

floating point

function code

identifier

io_status_block

INTEGER*4

INTEGER*4(2)

CHARACTER*n

CHARACTER*n

INTEGER*4

STRUCTURE /exhblock/
INTEGER*4 Oink
INTEGER*4 exit_handler_addr
BYTE(3) /0/
BYTE arg_count
INTEGER*4 coed_value
i
! .(optional arguments . . .
! . one argument per longword)
i

END STRUCTURE !cntrlblk

RECORD /exhblock/ myexh_block

INCLUDE '($FABDEF)'
RECORD /fabdef/ myfab

INTEGER*4

REAL*4
REAL*8
DOUBLE PRECISION
REAL* 16

INTEGER*4

INTEGER*4

STRUCTURE /iosb/
INTEGER*2 iostat, !return status
2 term _offset, !Loc. of line terminator
2 terminator, !value of terminator
2 term _size !size of terminator

END STRUCTURE

RECORD /iosb/ my_iosb

Using VAX FORTRAN in the Common Language Environment 6-21

Table 6-5 (Cont.~: VAX FORTRAN Implementation

VMS Data Type VAX FORTRAN Declaration

item _list _2

item_list_3

STRUCTURE /itmist/
UNION
MAP
INTEGER*2 buflen,code
INTEGER*4 bufadr
END MAP
MAP
INTEGER*4 end_list /0/
END MAP
END UNION

END STRUCTURE !itmist

RECORD /itmist/ my_itmist_2(n)
(Allocate n records, where n is the number item codes
plus an extra element for the end-of-list item)

STRUCTURE /itmist/
UNION
MAP
INTEGER*2 buflen,code
INTEGER*4 bufadr,retlenadr
END MAP
MAP
INTEGER*4 end_list /0/
END MAP
END UNION

END STRUCTURE (itmist

RECORD /itmist/ my_itmist_2(n)
(Allocate n records where n is the number item codes plus
an extra element for the end-of-list item)

6-22 Using VAX FORTRAN in the Common Language Environment

Table 6-5 ~Cont.): VAX FORTRAN Implementation
VMS Data Type VAX FORTRAN Declaration

item _list _pair

item _quota_list

lock ~d

lock_status_block

lock_value_block

logical _name

longword_signed

longword_unsigned

mask _byte

STRUCTURE /itmlist_pair/
UNION
MAP

INTEGER*4 code
INTEGER*4 value

END MAP
MAP

INTEGER*4 end—list /0/
END MAP
END UNION

END STRUCTURE !itmist_pair

RECORD /itmist_pair/ my_itmist_pair(n)
(Allocate n records where n is the number item codes plus
an extra element for the end-of-list item)

STRUCTURE /item _quota~ist/
MAP
BYTE quota name
INTEGER*4 quota value
END MAP
MAP
BYTE end_quota_list
END MAP

END STRUCTURE litem_quota_list

INTEGER*4

STRUCTURE/lksb/
INTEGER*2 cond_value
INTEGER*2 unused
INTEGER*4 locked
BYTE(16)

END STRUCTURE !lock_status~ock

BYTE(16)

CHARACTER*n

INTEGER*4

INTEGER*4'

INTEGER* 1

1 Unsigned data types are not directly supported by VAX FORTRAN. However, in most
cases you can substitute the signed equivalent, provided you do not exceed the range of
the signed data structure.

Using VAX FORTRAN in the Common Language Environment 6-23

Table 6-5 ~Cont.): VAX FQRTRAN Implementation
VMS Data Type VAX FORTRAN Declaration

mask _longword

mask_quadword

mask _word

null _arg

octaword_signed

octaword_unsigned

page protection

procedure

processed

process name

quadword_signed

quadword_unsigned

rights holder

rights_id

rab

section _id

section_name

system _access_id

time name

uic

user_arg

varying_arg

vector_byte_signed

INTEGER*4

INTEGER*4(2)

INTEGER*2

%VAL(0)

INTEGER*4(4)

INTEGER*4(4)'

INTEGER*4

INTEGER*4

INTEGER*4

CHARACTER*n

INTEGER*4(2)

INTEGER*4(2)'

INTEGER*4(2)
or
STRUCTURE /rights holder/

INTEGER*4 rights_id
INTEGER*4 rights mask

END STRUCTURE !rights holder

INTEGER*4

INCLUDE '($RABDEF)'
RECORD /rabdef/ myrab

INTEGER*4(2)

CHARACTER*n

INTEGER*4(2)

CHARACTER*23

INTEGER*4

Any longword quantity

INTEGER*4

BYTE(n)

'Unsigned data types are not directly supported by VAX FORTRAN. However, in most
cases you can substitute the signed equivalent, provided you do not exceed the range of
the signed data structure.

6-24 Using VAX FORTRAN in the Common Language Environment

Table 6-5 (Copt.): VAX FORTRAN Implementation

VMS Data Type VAX FORTRAN Declaration

vector byte_
unsigned

vector_longword_
signed

vector~ongword_
unsigned

vector_quadword_
signed

vector_quadword_
unsigned

vector_word_signed

vector word_
unsigned

word signed

word unsigned

BYTE(n) I

INTEGER*4(n)

INTEGER*4(n)'

INTEGER*4(2, n)

INTEGER*4(2,n)'

INTEGER*2(n)

INTEGER*2(n)'

INTEGER*2(n)

INTEGER*2(n)'

1 Unsigned data types are not directly supported by VAX FORTRAN. However, in most
cases you can substitute the signed equivalent, provided you do not exceed the range of
the signed data structure.

Many arguments to system services are optional. However, if you omit an
optional argument, you must include a comma (,) to indicate the absence
of that argument. For example, the SYS$TRNLNM system service takes
five arguments. If you omit the last two arguments, you must include
commas to indicate their existence, as follows:

ISTAT =SYS$TRNLNM(,'LNM$FILE_DEV','LOGNAM' „)

An invalid reference results if you specify the arguments as follows:

ISTAT = SYS$TRNLNM('LOGNAM',LENGTH,BUFFA)

This reference provides only three arguments, not the required six.

When you omit an optional argument, the compiler supplies a default
value of zero.

Using VAX FORTRAN in the Common Language Environment 6-25

6.5.4.1 Immediate Value Arguments

Use value arguments when the description of the system service specifies
that the argument is a "number," "mask," "mode," "value," "code," or
"indicator." You must use the %VAL built-in function (see Section 6.2.3)
whenever this method is required.

Immediate value arguments are used for input arguments only.

6.5.4.2 Address Arguments

Use address arguments when the description of the system service
specifies that the argument is "the address of." (However, refer to
Section 6.5.4.3 to determine what to do when "the address of a descriptor"
is specified.) In VAX FORTRAN, this argument-passing method is called
"by reference." Because this method is the VAX FORTRAN default for
passing numeric arguments, you need to specify the %REF built-in func-
tion only when the data type of the argument is not logical, integer, real,
or complex.

The argument description also gives the hardware data type required.

For arguments described as "address of an entry mask" or "address of
a routine," declare the argument value as an external procedure. For
example, if a system service requires the address of a routine and you
want to specify the routine HANDLER3, include the following statement
in the declarations portion of your program:

EXTERNAL HANDLER3

This specification defines the address of the routine for use as an input
argument.

Address arguments are used for both input and output.

• For input arguments that refer to byte, word, or longword values, you
can specify either constants or variables. If you specify a variable, you
must declare it to be equal to or longer than the data type required.
Table 6-6 lists the variable data type requirements for both input and
output arguments.

• For output arguments you must declare a variable of exactly the
length required to avoid including extraneous data. If, for example,
the system returns a byte value in aword-length variable, the leftmost
eight bits of the variable are not overwritten on output. The variable,
therefore, does not contain the data you expect.

6-26 Using VAX FORTRAN in the Common language Environment

To store output produced by system services, you must allocate
sufficient space to contain the output. You make this allocation by
declaring variables of the proper size. For an illustration, refer to the
Translate Logical Name system service example in Section 6.5.4.3.
This service returns the length of the equivalent name string as a
2-byte value.

If the output is a quadword value, you must declare an array of the
proper dimensions. For example, to use the Get Time system service
(SYS$GETTIM), which returns the time as a quadword binary value,
you would declare the following:

INCLUDE '($SYSSRVNAM)'
INTEGER*4 SYSTIM(2)

ISTAT = SYS$GETTIM(SYSTIM)

The type declaration INTEGER*4 SYSTIM(2) establishes a vector
consisting of two longwords, which are then used to store the time
value.

Table 6-6: Variable Data Type Requirements

VMS Type Required Input Argument Declaration
Output Argument
Declaration

Byte

Word

Longword

Quadword

Indicator

Character string descriptor

Entry mask or routine

BYTE, INTEGER*2, INTEGER*4 BYTE

INTEGER*2, INTEGER*4 INTEGER*2

INTEGER*4 INTEGER*4

Properly dimensioned array Properly dimensioned
array

LOGICAL

CHARACTER*n CHARACTER*n

EXTERNAL

6.5.4.3 Descriptor Arguments

Descriptor arguments are used for input and output of character strings.
Use a descriptor argument when the argument description specifies
"address of a character string descriptor." Because this method is the
VAX FORTRAN default for character arguments, you need to specify the

Using VAX FORTRAN in the Common Language Environment 6-27

%DESCR built-in function only when the data type of the argument is not
character.

On input, a character constant, variable, array element, or expression is
passed to the system service by descriptor. On output, two items are
needed:

• The character variable or array element to hold the output string

• An INTEGER*2 variable that is set to the actual length of the output
string

Thus, in the following example of the Translate Logical Name system
service (SYS$TRNLNM), the logical name LOGNAM is translated to its
associated name or file specification, and the output string and string
length are stored in the variables EQV_BUFFER and W_NAMELEN,
respectively:

INCLUDE '($LNMDEF)'
INCLUDE '($SYSSRVNAM)'

STRUCTURE /LIST/
INTEGER*2 BUF_LEN/255/
INTEGER*2 ITEM_CODE/LNM$_STRING/
INTEGER*4 TRANS_LOG
INTEGER*4 TRANS LEN
INTEGER*4 END_ENTRY/0/

END STRUCTURE !LIST

CHARACTER*255 EQV_BUFFER
INTEGER*2 W_NAMELEN

RECORD/LIST/ ITEM_LIST
ITEM_LIST.TR.ANS_LOG = %LOC(EQV_BUFFER)
ITEM_LIST.TRANS_LEN = %LOC(W_NAMELEN)

ISTAT = SYS$TRNLNM(, 'LNM$FILE_DEV', 'FOR$SRC', ,ITEM_LIST)
IF (ISTAT) PRINT *, EQV_BUFFER(:W_NAMELEN)
END

6-28 Using VAX FORTRAN in the Common Language Environment

6.5.4.4 Data Structure Arguments

Data structure arguments are used when the argument description specifies
"address of a list," "address of a control block," or "address of a vector."
The data structures required for these arguments are constructed in VAX
FORTRAN with structure declarations blocks and the RECORD statement.
The storage declared by a RECORD statement is allocated in exactly the
order given in the structure declaration, with no space between adjacent
items. For example, the item list required for the SYS$GETJPI system
service requires a sequence of items of two words and two longwords
each. By declaring each item as part of a structure, you ensure that the
fields and items are allocated contiguously:

STRUCTURE /GETJPI_STR/
INTEGER*2 BUFLEN, ITMCOD
INTEGER*4 BUFADR, RETLEN

END STRUCTURE

RECORD /GETJPI_STR/ LIST(5)

If a given field is provided as input to the system service, the calling
program must fill the field before the system service is called. You can
accomplish this with data initialization (for fields with values that are
known at compile time) and with assignment statements (for fields that
must be computed).

When the data structure description requires a field that must be filled
with an address value, use the %LOC built-in function to generate the
desired address (see Section 6.2.4). When the description requires a
field that must be filled with a symbolic value (system-service function
code), you can define the value of the symbol by the method described in
Section 6.5.1.

6.5,4.5 Examples of Passing Arguments

Example 6-1 shows a complete subroutine that uses a data structure
argument to the SYS$GETJPI system service.

Using VAX FORTRAN in the Common language Environment 6-29

Example 6-1: Subroutine Using a Data Structure Argument

C Subroutine to obtain absolute and incremental values of

C process parameters:
C CPU time, Buffered I/O count, Direct I/O count, Page faults.

SUBROUTINE PROCESS_INFO(ABS_VALUES, INCR_VALUES)

C Set up implicit data types so that data types indicate sizes

IMPLICIT INTEGER*2(W), INTEGER*4(L)

C DefinE the symbolic values used in the GETJPI call

INCLUDE '($JPIDEF)'
INCLUDE '($SYSSRVNAM)'

C Declare the arguments and working storage

INTEGER*4 ABS_VALUES(4), INCR_VALUES(4), LCL_VALUES(4)

C Declare the SYS$GETJPI item list data structure in a structure declaration

STRUCTURE /GETJPI_STR/
INTEGER*2 BUFLEN /4/, ITMCOD /0/
INTEGER*4 BUFADR, RETLEN /0/

END STRUCTURE

C Create a record with the fields defined in the structure declaration

RECORD /GETJPI_STR/ LIST(5)

C Assign all static values in the item list

LIST(1),ITMCOD = JPI$_CPUTIM
LIST(2),ITMCOD = JPI$_BUFIO
LIST(3),ITMCOD = JPI$_DIRIO
LIST(4),ITMCOD = JPI$_PAGEFLTS

C Assign all item fields requiring addresses

LIST(1).BUFADR = %LOC(LCL_VALUES(1))
LIST(2).BUFADR = %LOC(LCL_VALUES(2))
LIST (3) .BUFADR = '/°LOC (LCL_VALUES (3))
LIST(4).BUFADR = %LOC(LCL_VALUES(4))

C Perform the system service call

CALL SYS$GETJPI(,,,LIST,,,)

Example 6-1 Cont'd. on next page

6-30 Using VAX FORTRAN in the Common Language Environment

Example 6-1 (Copt.): Subroutine Using a Data Structure Argument

C Assign the new values to the arguments

DO I=1 , 4
INCR_VALUES(I) = LCL_VALUES(I) - ABS_VALUES(I)

ABS_VALUES(I) = LCL_VALUES(I)

END DO
RETURN
END

Example 6-2 is an example of the typical use of an I/O system service.
The program invokes SYS$QIOW to enable CTRL/C trapping. When
the program runs, it prints an informational message whenever it is
interrupted by a CTRL/C, and then it continues execution.

Example 6-2: CTRL/C Trapping Example

PROGRAM TRAPC
INCLUDE '($SYSSRVNAM)'
INTEGER*2 TT_CHAN
COMMON TT_CHAN
CHARACTER*40 LINE

C Assign the I/O channel. If unsuccessful stop

C otherwise initialize the trap routine.

ISTAT = SYS$ASSIGN ('TT',TT_CHAN „)

IF (.NOT. ISTAT) CALL LIB$STOP(%VAL(ISTAT))

CALL ENABLE_CTRLC

C Read a line of input and echo it

10 READ (5,'(A)',END=999) LINE

TYPE *, 'LINE READ: ', LINE

GO TO 10
999 END

SUBROUTINE ENABLE_CTRLC
INTEGER*2 TT_CHAN
COMMON TT_CHAN
EXTERNAL CTRLC_ROUT

C Include I/O symbols

INCLUDE '($IODEF)'
INCLUDE '($SYSSRVNAM)'

Example 6-2 Cont'd. on next page

Using VAX FORTRAN in the Common Language Environment 6-31

Example 6-2 (Copt.►: CTRL/C Trapping Example

C Enable CTRL/C trapping and specify CTRLC_ROUT
C as routine to be called when CTRL/C occurs

ISTAT = SYS$QIOW(,%VAL(TT_CHAN),
1 %VAL(IO$_SETMODE .OR. IO$M_CTRLCAST),
1 , , , CTRLC_ROUT „ %VAL (3) , , ,)
IF (.NOT. ISTAT) CALL LIB$STOP(%VAL(ISTAT))
RETURN
END

SUBROUTINE CTRLC_ROUT
PRINT *, 'CTRL-C pressed'
CALL ENABLE_CTRLC
RETURN
END

6-32 Using VAX FORTRAN in the Common Language Environment

Chapter 7

Using VMS Record Management
Services

This chapter describes how to call VMS Record Management Services
(RMS) directly from VAX FORTRAN programs. RMS is used by all utilities
and VAX native-mode languages for their I/O processing. In this way, all
of these utilities and user programs written in native mode languages can
access files efficiently, flexibly, with device independence, and taking full
advantage of the capabilities of the underlying VMS operating system.

You need to know the basic concepts concerning files on VMS systems
and calling system services before reading this chapter. In particular, you
should be familiar with the basic file concepts covered in the Guide to
VMS File Applications. You also need to know the system-service calling
conventions covered in Chapter 6 of this manual.

In addition, you should have access to the VMS Record Management
Services Manual. That manual, although not written specifically for
VAX FORTRAN programmers, is the definitive reference source for all
information on the use of RMS.

After reading this chapter, you will be able to understand the material
in the VMS Record Management Services Manual in terms of FORTRAN
concepts and usage. You will also be able to take advantage of the
material in the Guide to VMS File Applications, which covers more areas of
RMS in greater detail than this chapter.

In particular, after reading this chapter, you should read the first two
chapters in the VMS Record Management Services Manual; they explain
many of the concepts introduced here in greater detail and provide a good
introduction to RMS.

Using VMS Record Management Services 7-1

The easiest way to call RMS services directly from VAX FORTRAN is
to use a USEROPEN routine. A USEROPEN routine is a subprogram
that you specify in an OPEN statement. The VAX FORTRAN Run-Time
Library (RTL) I/O support routines call the USEROPEN routine in place
of the RMS services at the time a file is first opened for I/O.

The advantage of using a USEROPEN routine is that the VAX FORTRAN
RTL sets up the RMS data structures on your behalf with initial field
values that are based on parameters specified in your OPEN statement.
This initialization usually eliminates most of the code needed to set up the
proper input to RMS Services. As a result, you can use USEROPEN rou-
tines to take advantage of almost all of the power of RMS without most of
the declarations and initialization code normally required. Section 7.2 de-
scribes how to use USEROPEN routines and gives examples. You should
be familiar with the material in Section 7.1 before reading Section 7.2.

7.1 RMS Data Structures and Services

This section introduces the RMS data structures and services and describes
how to use them in VAX FORTRAN programs. The first subsection
describes the RMS data structures and how to declare and use them. 'The
second subsection describes the RMS system services and how to call
them from VAX FORTRAN.

7.1.1 RMS Data Structures

RMS system services have so many options and capabilities that it is
impractical to use anything other than several large data structures to
provide their arguments. You should become familiar with all of the RMS
data structures before using RMS system services.

The RMS data structures are as follows:

• File Access Block (FAB) used to describe files in general.
• Record Access Block (RAB) used to describe the records in files.
• Name Block (NAM) used to give supplementary information about

the name of files beyond that provided with the FAB.
• Extended Attributes Blocks (XABs) a family of related blocks that are

linked to the FAB to communicate to RMS any file attributes beyond
those expressed in the FAB.

7-2 Using VMS Record Management Services

The RMS data structures are used both to pass arguments to RMS services
and to return information from RMS services to your program. In particu-
lar, an auxiliary structure, such as a NAM or XAB block, is commonly used
explicitly to obtain information optionally returned from RMS services.

The VMS Record Management Services Manual describes how each of these
data structures is used in calls to RMS services. In this section, a brief
overview of each block is given, describing its purpose and how it is
manipulated in VAX FORTRAN programs.

In general, there are six steps to using the RMS control blocks in calls to
RMS system services:

1. Declare the structure of the blocks and the symbolic parameters used
in them by including the appropriate definition modules from the
FORTRAN-supplied default library FORSYSDEF.TLB.

2. Declare the memory allocation for the blocks that you need with a
RECORD statement.

3. Declare the system service names by including the module
$SYSSRVNAM from FORSYSDEF.TLB.

4. Initialize the values of fields needed by the service you are calling.
In MACRO, facilities are provided to initialize most of the fields in
the RMS data structures to reasonable default values. This default
initialization capability is not provided for FORTRAN programs. The
structure definitions provided for these blocks in the FORSYSDEF
modules provide only the field names and offsets needed to reference
the RMS data structures. You must assign all of the field values
explicitly in your VAX FORTRAN program.

Two fields of each control block are mandatory; they must be filled
in with the correct values before they are used in any service call.
These are the block id (BID, or COD in the case of XABs) and
the block length (BLN). These are checked by all RMS services to
ensure that their input blocks have proper form. These fields are
initialized automatically by the appropriate declaration macro for VAX
MACRO users but must be assigned explicitly in your VAX FORTRAN
programs, unless you are using the control blocks provided by the
FORTRAN RTL I/O routines, which initialize all control block fields.
See Table 7-1 for a list of the control field values provided by the
FORTRAN RTL I/O routines.

5. Invoke the system service as a function reference, giving the con-
trol blocks as arguments according to the specifications in the RMS
reference manual.

Using VMS Record Management Services 7-3

6. Check the return status to ensure that the service has completed
successfully.

Steps 1-4 are described for each type of control block in Sections 7.1.1.2 to
7.1.1.5. See Section 7.1.2 for descriptions of steps 5 and 6.

7.1.1.1 Using FORSYSDEF Modules to Manipulate RMS Data Structures

The FORTRAN-supplied definition library FORSYSDEF.TLB contains the
required FORTRAN declarations for all of the field offsets and symbolic
values of field contents described in the VMS Record Management Services
Manual. The appropriate INCLUDE statement needed to access these
declarations for each structure is described wherever appropriate in the
text that follows.

In general, you need to supply one or more RECORD statements to
allocate the memory for the structures that you need. For information
on manipulating VAX FORTRAN records, refer to Chapter 12. See the
VMS Record Management Services Manual for a description of the naming
conventions used in RMS service calls. Only the convention for the
PARAMETER declarations is described here.

The FORSYSDEF modules contain several different kinds of PARAMETER
declarations. The declarations are distinguished from each other by the
letter following the dollar sign ($) in their symbolic names. Each is useful
in manipulating field values, but the intended use of the different kinds of
PARAMETER declarations is as follows:

• Declarations that define only symbolic field values are identified by
the presence of a "C_" immediately after the block prefix in their
names. For example, the RAB$B_RAC field has three symbolic values,
one each for sequential, keyed, and RFA access modes. The symbolic
names for these values are RABC_SEQ, RABC_KEY, and
RAB$C—IZFA. You use these symbolic field values in simple assign-
ment statements. For example:

INCLUDE '($RABDEF~'
RECORD /RABDEF/ MYRAB

MYRAB.RAB$B_RAC = RAB$C_SEQ

7-4 Using VMS Record Management Services

• Declarations that use mask values instead of explicit values to define
bit offsets are identified by the presence of "M_" immediately after
the block prefix in their names. For example, the FAB$L_FOP field is
an INTEGER*4 field with the individual bits treated as flags. Each flag
has a mask value for specifying a particular file processing option. For
instance, the MXV bit specifies that RMS should -maximize the version
number of the file when it is created. The mask value associated with
this bit has the name FAB$M_MXV. In order to use these parameters,
you must use .AND. and .OR. to turn off and on specific bits in the
field without changing the other bits. For example, to set the MXV
flag in the FOP field, you would use the following program segment:

INCLUDE '($FABDEF)'
RECORD /FABDEF/ MYFAB

MYFAB.FAB$L_FOP = MYFAB.FAB$L_FOP .OR. FAB$M_MXV

• Two types of declarations that define symbolic field values are also
used to define flag fields within a larger named field. These are
identified by the presence of "S_" or "V_" immediately after the block
prefix in their names. The "S_" form of the name defines the size
of that flag field (usually the value 1, for single bit flag fields), and
the "V_" form defines the bit offset from the beginning of the larger
field. These forms of the names can be used with the symbolic bit
manipulation functions to set or clear the fields without destroying
the other flags. Thus, performing the same operation as the previous
example using the "V_" and "S_" flags would be done as follows:

INCLUDE '($FABDEF)'
RECORD /FABDEF/ MYFAB

MYFAB.FAB$L_FOP = IBSET(MYFAB.FAB$L_FOP,FAB$V_MXV)

For most of the FAB, RAB, NAM, and XAB fields that are not supplied
using symbolic values, you will need to supply sizes or pointers. For the
sizes, you can use ordinary numeric constants or other numeric scalar
quantities. For instance, to set the maximum record number into the
FAB$L _MRN field, you could use the following statement:

MYFAB.FAB$L_MRN = 5000

Using VMS Record Management Services 7-5

To supply the required pointers, usually from one block to another, you
must use the %LOC built-in function to retrieve addresses. For example,
to fill in the FAB$L _NAM field in a FAB block with the address of the
NAM block that you want to use, you can use the following program
fragment:

INCLUDE '($FABDEF)'
INCLUDE '($NAMDEF)'

RECORD /FABDEF/ MYFAB, /NAMDEF/ MYNAM

MYFAB.FAB$L_NAM = %LOC(MYNAM)

7.1.1.2 The File Access Block

The File Access Block (FAB) is used for calling the following services:

SYS$CLOSE
SYS$CREATE
SYS$DISPLAY
SYS$ENTER
SYS$ERASE
SYS$EXTEND

SYS$OPEN
SYS$PARSE
SYS$REMOVE
SYS$RENAME
SYS$SEARCH

The purpose of the FAB is to describe the file being manipulated by these
services. In addition to the fields that describe the file directly, there are
pointers in the FAB structure to auxiliary blocks used for more detailed
information about the file. These auxiliary blocks are the NAM block and
one or more of the XAB blocks.

To declare the structure and parameter values for using FAB blocks,
include the $FABDEF module from FORSYSDEF. For example:

INCLUDE '($FABDEF)'

To examine the fields and values declared, use the /LIST qualifier after
the right parenthesis. Each field in the FAB is described at length in the
VMS Record Management Services Manual.

If you are using a USEROPEN procedure, the actual allocation of the FAB
is performed by the FORTRAN Run-Time Library I/O support routines,
and you only need to declare the first argument to your USEROPEN
routine to be a record with the FAB structure. For example:

Calling program:

EXTERNAL MYOPEN

OPEN (UNIT=8, USEROPEN=MYOPEN)

7-6 Using VMS Record Management Services

USEROPEN routine:

INTEGER FUNCTION MYOPEN(FABARG, RABARG, LUNARG)
INCLUDE '($FABDEF)'

RECORD /FABDEF/ FABARG

Usually, you need to declare only one FAB block. In some situations,
however, you need to use two different FAB blocks. For example, the
SYS$RENAME service requires two FAB blocks, one to describe the
old file name and one to describe the new file name. In any of these
cases, you can declare whatever FAB blocks you need with a RECORD
statement. For example:

INCLUDE '($FABDEF)'

RECORD /FABDEF/ OLDFAB, NEWFAB

If you use any of the above service calls without using a USEROPEN
routine, you must initialize the required FAB fields in your program. The
FAB fields required for each RMS service are listed in the descriptions of
the individual services in the VMS Record Management Services Manual.
In addition, most services fill in output values in the FAB or one of its
associated blocks. These output fields are also described with the service
descriptions.

In the example programs supplied in the VMS Record Management Services
Manual, these initial field values are described as they would be used
in MACRO programs, where the declaration macros allow initialization
arguments. Thus, in each case where the MACRO example shows a field
being initialized in a macro, you must have a corresponding initialization
at run time in your program.

For example, the VMS Record Management Services Manual contains an
example that shows the use of the ALQ parameter for specifying the initial
allocation size of the file in blocks:

.TITLE CREAT - SET CREATION DATE
Program that uses XABDAT and XABDAT_STORE

.PSECT LONG WRT,NOEXE

MYFAB: $FAB ALQ=500, FOP=CBT, FAC=<PUT>, -
FNM=<DISK$: [PROGRAM]SAMPLE_FILE.DAT>, -
ORG=SEQ, RAT=CR, RFM=VAR, SHR=<NIL>, MRS=52, XAB=MYXDAT

Using VMS Record Management Services 7-7

As described in the section on the XAB$L _ALQ field (in the same man-
ual), this parameter sets the FAB field FAB$L_ALQ: This means that to
perform the same initialization in VAX FORTRAN, you must supply a
value to the FAB$L _ALQ field using arun-time assignment statement.
For example:

MYFAB.FAB$L_ALQ = 500

The FAB$B_BID and FAB$B_BLN fields must be filled in by your program
prior to their use in an RMS service call, unless they have already been
supplied by the VAX FORTRAN RTL I/O routines. You should always
use the symbolic names for the values of these fields, for example:

INCLUDE '($FABDEF)'

RECORD /FABDEF/ MYFAB

MYFAB.FAB$B_BID = FAB$C_BID
MYFAB.FAB$B_BLN = FAB$C_BLN

STATUS = SYS$OPEN()

7.1.1.3 The Record Access Block

The Record Access Block (RAB) is used for calling the following services:

SYS$CONNECT SYS$READ
SYS$DELETE SYS$RELEASE
SYS$DISCONNECT SYS$REWIND
SYS$FIND SYS$SPACE
SYS$FLUSH SYS$TRUNCATE
SYS$FREE SYS$UPDATF.
SYS$GET SYS$WAIT
SYS$NXTVOL SYS$WRITE
SYS$PUT

The purpose of the RAB is to describe the record being manipulated by
these services. The RAB contains a pointer to the FAB used to open the
file being manipulated, making it unnecessary for these services to have
a FAB in their argument lists. Also, a RAB can point to only one kind of
XAB, a terminal XAB.

To declare the structure and parameter values for using RAB blocks,
include the $RABDEF module from FORSYSDEF. For example:

INCLUDE '($RABDEF)'

7-8 Using VMS Record Management Services

To examine the fields and values declared, use the /LIST qualifier after
the right parenthesis. Each field in the RAB is described at length in the
VMS Record Management Services Manual.

If you are using a USEROPEN procedure, the actual allocation of the
RAB is performed by the VAX FORTRAN Run-Time Library I/O support
routines, and you only need to declare the second argument to your
USEROPEN routine to be a record with the RAB structure. For example:

Calling program:

EXTERNAL MYOPEN

OPEN (UNIT=8, USEROPEN=MYOPEN)

USEROPEN routine:

INTEGER FUNCTION MYOPEN(FABARG, RABARG, LUNARG)

INCLUDE '($RABDEF)'

RECORD /RABDEF/ RABARG

If you need to access the RAB used by the FORTRAN I/O system for
one of the open files in your program, you can use the FOR$RAB system
function. You can use FOR$RAB even if you did not use a USEROPEN
routine to open the file. The FOR$RAB function takes a single argument,
the unit number of the open file for which you want to obtain the RAB
address. The function result is the address of the RAB for that unit.

If you use the FOR$RAB function in your program, you should declare it
to be INTEGER if you assign the result value to a variable. If you do not,
your program will assume that it is a REAL function and will perform an
improper conversion to INTEGER.

To use the result of the FOR$RAB call, you must pass it to a subprogram
as an actual argument using the %VAL built-in function. This allows the
subprogram to access it as an ordinary VAX FORTRAN record argument.
For example, the main program for calling a subroutine to print the RAB
fields could be coded as follows:

Using VMS Record Management Services 7-9

If you need to access other control blocks in use by the RMS services for
that unit, you can obtain their addresses using the link fields they contain.
For example:

SUBROUTINE DUMPRAB(RAB)

INTEGER*4 FABADR
INCLUDE '($RABDEF)'
RECORD /RABDEF/ RAB

FABADR = RAB.RAB$L_FAB

CALL DUMPFAB (%VAL (FABADR))

In this example, the routine DUMPRAB obtains the address of the associ-
ated FAB by referencing the RAB$L _FAB field of the RAB. Other control
blocks associated with the FAB, such as the NAM and XAB blocks, can be
accessed using code similar to this example.

Usually, you need to declare only one RAB block. Sometimes, however,
you may need to use more than one. For example, the multistream
capability of RMS allows you to connect several RABs to a single FAB.
This allows you to simultaneously access several records of a file, keeping
a separate context for each record. In any case, you can declare whatever
RAB blocks you need with a RECORD statement. For example:

INCLUDE '($RABDEF)'

RECORD /RABDEF/ RAB1, RABARRAY(10)

If you use any of the above service calls without using a USEROPEN
routine, you must initialize the required RAB fields in your program. The
RAB fields required for each RMS service are listed in the descriptions
of individual services in the VMS Record Management Services Manual. In
addition, most services fill in output values in the RAB. These output fields
are also described with the service descriptions.

7-10 Using VMS Record Management Services

In the example programs supplied in the VMS Record MaflagemefTt Services
Manual, these initial field values are described as they would be used
in MACRO programs, where the declaration macros allow initialization
arguments. Thus, in each case where the MACRO example shows a field
being initialized in a declaration macro, you must have a corresponding
initialization at run time in your program.

For example, the VMS Record Management Services Manual contains an
example that shows the use of the RAC parameter for specifying the
record access mode to use:

.TITLE CREATEIDX -CREATE INDEXED FILE

.IDENT /V001/

.SBTTL Control block and buffer storage

.PSECT DATA NOEXE.LONG

Define the source file FAB and RAB control blocks.

SRC_FAB:
$FAB FAX=<GET>,-

FNM=<SRC:>
SRC RAB:

$RAB FAB=SRC_FAB,-
RAC=SEQ,-
UBF=BUFFER,-
USZ=BUFFER_SIZE

File access for GET only
DAP file transfer mode
Name of input f i 1 e

Address of associated FAB
Sequential record access
Buffer address
Buffer size

In the example, sequential access mode is used. As described in the
section on the RAC field (in the same manual), this parameter sets the
RAB$B_RAC field to the value RAB$C_SEQ. This means that to perform
the same initialization in FORTRAN, you must supply RAC field values
by a run-time assignment statement. For example:

MYRAB.RAB$B_RAC = R.AB$C_SEQ

The RAB$B_BID and RAB$B_BLN fields must be filled ir. by your pro-
gram prior to their use in an RMS service call, unless they have been
supplied by the FORTRAN RTL I/O routines. You should always use the
symbolic names for the values of these fields. For example:

Using VMS Record Management Services 7-11

INCLUDE '($RABDEF)'

RECORD /RABDEF/ MYRAB

MYRAB.RAB$B_BID = RAB$C_BID
MYRAB.RAB$B_BLN = RAB$C_BLN

STATUS = SYS$CONNECT(MYRAB)

7.1.1.4 The Name Block

The Name Block (NAM) can be used with the FAB in most FAB-related
services in order to supply to or receive from RMS more detailed infor-
mation about a file name. The NAM block is never given directly as an
argument to an RMS service, to supply it you must link to it from the
FAB. See Section 7.1.1.1 for an example of this.

To declare the structure and parameter values for using NAM blocks,
include the $NAMDEF module from FORSYSDEF. For example:

INCLUDE '($NAMDEF)'

To examine the fields and values declared, use the /LIST qualifier after
the right parenthesis. Each field in the NAM is described at length in the
VMS Record Management Services Manual.

If you are using a USEROPEN procedure, the actual allocation of the
NAM is performed by the VAX FORTRAN Run-Time Library I/O support
routines. Because the NAM block is linked to the FAB, it is not explicitly
given in the USEROPEN routine argument list. Thus, to access the NAM,
you need to call a subprogram, passing the pointer by value and accessing
the NAM in the subprogram as a structure. For example:

Calling program:

EXTERNAL MYOPEN

OPEN (UNIT=8, USEROPEN=MYOPEN)

7-12 Using VMS Record Management Services

USEROPEN routine:

INTEGER FUNCTION MYOPEN(FABARG, RABARG, LUNARG)

INCLUDE '($FABDEF)'

RECORD /FABDEF/ FABARG

CALL NAMACCESS('/.VAL(FABARG.FAB$L_NAM))

NAM accessing routine:

SUBROUTINE NAMACCESS(NAMARG)

INCLUDE '($NAMDEF)'

RECORD /NAMDEF/ NAMARG

IF (NAMARG.NAM$B_ESL .GT. 132} GO TO 100

Usually, you only need to declare one NAM block. You can declare
whatever NAM blocks you need with a RECORD statement. For example:

INCLUDE '($NAMDEF)'

RECORD /NAMDEF/ NAM1, NAM2

Most often, you use the NAM block to pass and receive information about
the components of the file specification, such as the device, directory,
file name, and file type. For this reason, most of the fields of the NAM
block are CHARACTER strings and lengths. Thus, when using the NAM
block, you should be familiar with the argument passing mechanisms for
CHARACTER arguments described in Section 6.5.4.3.

Your program must fill in the NAM$B_BID and NAM$B_BLN fields prior
to their use in an RMS service call, unless they have been supplied by the
VAX FORTRAN RTL I/O routines. You should always use the symbolic
names for the values of these fields. For example:

INCLUDE '($NAMDEF)'

RECORD /NAMDEF/ MYNAM

MYNAM.NAM$B_BID = NAM$C_BID
MYNAM.NAM$B_BLN = NAM$C_BLN

Using VMS Record Management Services 7-13

7.1.1.5 Extended Attributes Blocks

Extended Attribute Blocks (XABs) are a family of related structures for
passing and receiving additional information about files. There are nine
different kinds of XABs:

• Allocation Control (XABALL)

• Date and Time (XABDAT)

• File Header Characteristics (XABFHC)

• Journaling (XABJNL)

• Key Definition (XABKEY)

• Protection (XABPRO)

• Revision Date and Time (XABRDT)

• Summary (XABSUM)

• Terminal (XABTRM)

The XABs are described in the VMS Record Management Services Manual.
XABs are generally smaller and simpler than the FAB, RAB, and NAM
blocks because each describes information about a single aspect of the
file. You do not have to use all of them; for any given call to an RMS
service routine, use only those that are required. Often the XAB fields
override the corresponding fields in the FAB. For example, the allocation
XAB describes the file's block allocation in more detail than the FAB$L _
ALQ field can. For this reason, XAB$L _ALQ (the allocation field in the
XABALL structure) always overrides the FAB$L _ALQ value.

The XABs used for any given RMS service call are connected to the FAB
in a linked list. The head of the list is the FAB$L SCAB field in the FAB.
This field contains the address of the first XAB to be used. Each successive
XAB in the list links to the next using the XAB$L _NXT field. This field
contains the address of the next XAB in the list. The order of the XABs in
the list does not matter, but each kind of XAB must not appear more than
once in the list.

The only kind of XAB that can be connected to a RAB instead of a FAB
is the terminal XAB. It is linked to the RAB with the RAB$L _XAB field.
This is needed because the terminal control information is dynamic and
potentially changes with each record operation performed.

7-14 Using VMS Record Management Services

To declare the structure and parameter values for using the different XAB
blocks, include the appropriate XAB definition module from FORSYSDEF.
(The names of the XAB definition modules are listed previously in this
section.) Also, because the XABs are a family of related control blocks,
you also need to include the $XAB module from FORSYSDEF.TLB in
order to declare the fields common to all XABs. For example, to declare
the fields used in the Date and Time XAB, use the following declarations:

INCLUDE '($XABDAT)'
INCLUDE '($XAB)'

To examine the fields and values declared, use the /LIST qualifier after
the right parenthesis. All of the fields in the XABs are described in detail
in the VMS Record Management Services Manual.

If you are using a USEROPEN procedure, the actual allocation of the
XABs used by the open operation is performed by the VAX FORTRAN
Run-Time Library I/O support routines. Because the XAB blocks are
linked to the FAB, it is not explicitly given in the USEROPEN routine
argument list. Thus, to access the XABs, you need to call a subprogram
and pass a pointer to it using the %VAL built-in function. For an example
of this method, see Section 7.1.1.3.

To allocate space for an XAB block in your program, you need to declare
it with a RECORD statement. For example:

INCLUDE '($XABDAT)'
INCLUDE '($XABPRO)'

RECORD /XABDATDEF/ MYXABDAT, /XABPRODEF/ MYXABPRO

For each XAB that you declare in your program, you must supply the
correct COD and BLN fields explicitly. These field offsets are common to
all XABs and are contained in the $XAB module in FORSYSDEF.TLB. The
block id and length are unique for each kind of XAB and the symbolic
values for them are contained in the separate XAB declaration modules
in FORSYSDEF.TLB. For example, to properly initialize a Date and Time
XAB, you could use the following code segment:

INCLUDE '($XABDAT)'
INCLUDE '($XAB)'
RECORD /XABDATDEF/ MYXABDAT

MYXABDAT.XAB$B_COD = XAB$C_DAT
MYXABDAT.XAB$B_BLN = XAB$C_DATLEN

Using VMS Record Management Services 7-15

7.1.2 RMS Services

In general, you need to do the same things when calling an RMS service
that you need to do when calling any VMS service, that is, declare the
name, pass arguments, and check status values. (See Section 6.5 for
general information on calling VMS system services.) However, RMS
services have some additional conventions and ease-of-use features that
you should be aware of . For a more complete description of each RMS
service, refer to the VMS Record Management Services Manual.

7.1.2.1 Declaring RMS System Service Names
As with the other system services, you should use the $SYSSRVNAM
module in FORSYSDEF to declare the names of all of the RMS services.
For example:

INCLUDE '($SYSSRVNAM)'

This module contains comments describing each VMS system service,
including all of the RMS services, and INTEGER'«4 and EXTERNAL
declarations for each. Including the module allows you to use the names
of the RMS services in your programs without further declaration.

7.1.2.2 Arguments to RMS Services

See Section 6.5.4 for a general discussion of passing arguments to system
services.

Most RMS services require three arguments. The first is the control block
to be used, generally a RAB or FAB, and is mandatory. The second and
third arguments are the addresses of routines to be called if the RMS
service fails or succeeds, and these are optional. Some RMS services take
other arguments, but these services are rarely needed. You should always
refer to the documentation for the specific service that you are calling for
detailed information on its arguments.

Most RAB and FAB fields are ignored by most RMS services. The docu-
mentation of each service in the VMS Record Management Services Manual
describes which fields are input for that service and which are output,
for each control block used. Services that take a FAB as an argument are
called the File Control services. Services that take a RAB as an argument
are called the Record Control services. Typically, you need to use both
when doing RMS I/O in your program.

7-16 Using VMS Record Management Services

In general, fields that are not documented as required for input to a
service are ignored and can be left uninitialized. The exceptions are the
Block Id (BID or COD) and Block Length (BLN) fields; these must always
be initialized. See the preceding sections about the respective blocks for
examples of how to initialize these fields.

The output of many RMS services provides the values required for input
to other RMS services. For this reason, you usually only need to initialize
a few fields in each block to their nondefault values. This is especially
true when using RMS blocks declared with the VAX FORTRAN RTL I/O
routines, for instance, when using USEROPEN routines or the FOR$RAB
function.

7.1.2.3 Checking Status from RMS Services

You should always invoke RMS services as functions, rather than calling
them as subroutines (see Section 6.5.2 for a general discussion of this
topic). It is particularly important to check the status of RMS services
because they usually do not cause an error when they fail. If the status is
not checked immediately, the failure will go undetected until later in the
program where it will be difficult to diagnose.

In most cases, you only need to check for success or failure by testing
whether the returned status is true or false. Some services have alternate
success-status possibilities. You should always check for these in cases
where the program depends on the correct operation of the services. The
RMS services have a unique set of status return symbols not used by any
of the other VMS system services. You should always use these symbols
whenever you check the individual status values returned. To obtain
the declarations for these symbols, include the $RMSDEF module from
FORSYSDEF.TLB. For example:

INCLUDE ' ($RMSDEF)'

This statement includes in your program the declarations for all of the
symbolic RMS return values.

The VMS Record Management Services Manual documents the symbolic
values, both success and failure, that can be returned from each of the ser-
vices. Your program should always test each service-result status against
these symbolic values and take appropriate action when a failure status is
detected. You should always declare status variables as INTEGER*4 type
in order to avoid unexpected numeric conversions. The recommended
action depends on whether you are using RMS services in a USEROPEN
routine.

n

Using UMS Record Management Services 7-17

In a USEIZOPEN routine, the VAX FORTRAN RTL I/O routines that
invoke your USEROPEN routine are expecting an RMS status as an output
value. For this reason, you need to return the RMS status value as the
function value for both failure and success conditions. For example:

INTEGER FUNCTION MYOPEN(FAB,RAB,LUN)

INCLUDE '($SYSSRVNAM)' ! Declare RMS service names

MYOPEN = SYS$OPEN(FAB)
IF (.NOT. MYOPEN) RETURN

RETURN
END

In this case, if the SYS$OPEN service fails, it returns an error status into
the function result variable MYOPEN. If the test of MYOPEN does not
indicate success, the function returns the actual RMS status as its value.
Then, the RTL I/O routines will signal the appropriate FORTRAN error
normally, as if a USEROPEN routine had not been used.

If the SYS$OPEN call succeeds, the program continues, and the RMS$_
NORMAL success status will ultimately be returned to the FORTRAN
RTL. This value will cause the OPEN statement that specifies MYOPEN to
complete successfully.

However, if you are not using a USEROPEN routine, your program must
indicate the error status directly, unless it is prepared to deal with it.
Often, the easiest way to indicate an error and issue a helpful message is
to signal the RMS condition directly with ~LIB$SIGNAL or LIB$STOP. For
example:

INCLUDE '($SYSSRVNAM)' ! Declare RMS service names
INTEGER*4 STATUS ! Declare a status variable

STATUS = SYS$GET(MYRAB)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

See Chapter 9 for more information on the use of LIB$SIGNAL and
LIB$STOP.

7-18 Using VMS Record Management Services

7.1.2.4 Opening a File

To perform input or output operations on a file, your program must first
open the file and establish an active RMS I/O stream. To open a file, your
program generally needs to call either the SYS$CREATE or SYS$OPEN
services, followed by the SYS$CONNECT service. When you use an
OPEN statement without a USEROPEN routine, the VAX FORTRAN RTL
I/O routines do this for your program.

SYS$OPEN and SYS$CREATE provide the following file opening options:

• Use the SYS$OPEN service to open an existing file. SYS$OPEN
returns an error status if the file cannot be found.

• Use the SYS$CREATE service to intentionally create a new file.

• Use SYS$CREATE with the CIF bit in the FAB$L _FOP field to open
a file that may or may not exist. The SYS$CREATE service will either
open the file (if it exists) or create a new one (if it does not exist). (You
can use the SUP bit to force SYS$CREATE to create a new file even if
one already exists.)

The value of the FAB$B_FAC field of the FAB indicates to RMS what
record operations are to be done on the file being opened. If a record
operation that was not indicated by the FAC field (such as a SYS$PUT)
is attempted, the record service will not perform the operation and will
return a failure status. This is an important file protection feature, it
prevents you from accidentally corrupting a file when you use the wrong
RMS service.

The SYS$CONNECT service establishes an active I/O stream, using a
RAB, to a file that has been previously opened by your program. RMS
identifies all active I/O streams by a unique identifier, called the Internal
Stream Identifier (IFI). This value is stored in the RAB$W_ISI field of
the RAB for each active stream being processed. This field must always
be zero when calling SYS$CONNECT. The SYS$CONNECT service
initializes this field so that subsequent operations using that RAB can be
uniquely identified. Under some circumstances, you can establish more
than one simultaneously active I/O stream to the same file. See the VMS
Record Management Services Manual for more information on this topic.

Using VMS Record Management Services 7-19

7.1.2.5 Closing a File

To close a file, use the SYS$CLOSE service. This terminates all active I/O
streams under way on that file and frees all RMS resources being used for
processing that file. Use the SYS$DISCONNECT service if you want to
end one active I/O stream, but want to continue processing the file using
another stream. This service sets the RAB$W_ISI value to zero so that the
RAB can be reused for another stream.

7.1.2.6 Writing Data

To write data to a file, use the SYS$PUT or SYS$WRITE service. Your
program must set the PUT bit in the FAB$B_FAC field when the file is
opened; otherwise, the service attempting the write operation will fail.

Use the SYS$PUT service when you want to write data in record mode (the
default). In record mode, RMS buffers data automatically and performs
the actual output operation for a whole group of records at a time. This is
the mode used for all VAX FORTRAN WRITE statements. Because most
programs and utilities can read data written in record mode, this mode
should be used when the data being written is to be read and processed
by a general program or utility.

Use the SYS$WRITE service when you want to bypass the record manage-
ment capabilities of RMS and write blocks of data directly to the device
without additional buffering. This mode is called block mode I/O and is
generally much faster and uses fewer CPU resources than record mode.
For this reason, it is the preferred mode for writing large amounts of
unformatted data to a device. However, this mode shc~ald only be used
when the program that needs to read the data can also use block mode.
If the program that is to read the data cannot use block mode, you must
use some other means to guarantee that the data being written can be
accessed. For instance, it is not generally possible to read data written
with SYS$WRITE using ordinary VAX FORTRAN READ statements. You
should read the special restrictions on using block mode in the VMS
Record Management Services Manual because SYS$WRITE may be subject
to different device dependencies than SYS$PUT (record mode).

7-20 Using VMS Record Management Services

7.1.2.7 Reading Data

To read data from a file, use the SYS$GET or SYS$READ service. Your
program must set the GET bit in the FAB$B_FAC field when the file is
opened; otherwise, the service attempting the read operation will fail.

Use the SYS$GET service when you want to read data in record mode (the
default). In this mode, RMS buffers data automatically and performs the
actual input operation for a whole group of records at a time. This is the
mode used for all VAX FORTRAN READ statements. This mode should
be used whenever the program or utility that wrote the data used record
mode, unless your reading program can buffer and deblock the data itself.

Use the SYS$READ service when you want to bypass the record manage-
ment capabilities of RMS and read blocks of data directly from the device
without buffering or deblocking. This mode is called block mode I/O and
is generally much faster and uses fewer CPU resources than record mode.
For this reason, it is the preferred mode for reading large amounts of
unformatted data from a device. However, this mode should only be used
when the data was written by a utility or program that wrote the data in
block mode. If the file was written using record mode, RMS control in-
formation may be intermixed with the data, making it difficult to process.
You should read the special restrictions on using block mode in the VMS
Record Management Services Manual before using SYS$READ, however,
because SYS$READ may be subject to different device dependencies than
SYS$GET (record mode).

7.1.2.8 Other Services

RMS provides many other file and record processing services beyond just
Opening, Closing, Reading and Writing. Other file processing services
include the following:

• SYS$PARSE and SYS$SEARCH process wildcard and incomplete file
specifications and search for a sequence of files to be processed

• SYS$DISPLAY retrieves file attribute information

• SYS$ENTER inserts a file name into a directory file

• SYS$ERASE deletes a file and removes the directory entry used to
specify it

• SYS$EXTEND increases the amount of disk space allocated to the
file

• SYS$REMOVE removes directory entries for a file

Using VMS Record Management Services 7-21

l~l
• SYS$RENAME removes a directory entry for a file and inserts a new

one in another directory

Other record processing services include the following:

• SYS$FIND positions the record stream at the desired record for later
reading or writing

• SYS$DELETE deletes a record from the file

• SYS$SPACE skips over one or more blocks in block I/O mode.

• SYS$TRUNCATE truncates a file after a given record

• SYS$UPDATE updates the value of an existing record

For complete descriptions of these and other RMS services, refer to the
VMS Record Management Services Manual.

7.2 User-Written Open Procedures

The USEROPEN keyword in an OPEN statement provides you with a way
to access RMS facilities that are otherwise not available to VAX FORTRAN
programs.

The USEROPEN keyword specifies auser-written external procedure
(USEROPEN procedure) that controls the opening of a file. It has the
form:

USEROPEN =procedure-name

The notation procedure-name represents the symbolic name of a user-
written open procedure. -The procedure name must be declared in an
EXTERNAL statement.

When an OPEN statement with or without the USEROPEN keyword
is executed, the Run-Time Library uses the OPEN statement keywords
to establish the RMS File Access Block (FAB) and the Record Access
Block (RAB), as well as its own internal data structures. If a USEROPEN
keyword is included in the OPEN statement, the Run-Tune Library then
calls your USEROPEN procedure instead of opening the file according to
its normal defaults. The procedure can then provide additional parameters
to RMS and can obtain results from RMS.

In order, the three arguments passed to auser-written open procedure by
the Run-Time Library are as follows:

• The address of the FAB

7-22 Using VMS Record Management Services

• The address of the RAB

• The address of a longword containing the unit number

Using this information, your USEROPEN procedure can then perform the
following operations:

• Modify the FAB and RAB (optional).

• Issue SYS$OPEN and SYS$CONNECT functions or SYS$CREATE
and SYS$CONNECT functions when VAX FORTRAN I/O is to be
performed (required). Your USEROPEN procedure should invoke
the RMS SYS$OPEN routine if the file to be opened already exists
(STATUS='OLD') or should call the RMS SYS$CREATE routine for
any other file type (STATUS='NEW', 'UNKNOWN', or not specified).
Note that the status value specified in the OPEN statement is not
represented in either the FAB or RAB.

• Check status indicators returned by RMS services (required). Your
procedure should return immediately if an RMS service returns a
failure status.

• Obtain information returned by RMS in the FAB and RAB by storing
FAB and RAB values in program variables (optional).

• Return a success or failure status value to the Run-Time Library
(required). The RMS services SYS$CREATE, SYS$OPEN, and
SYS$CONNECT return status codes. Thus, it is not necessary to
set a separate status value as the procedure output if execution of one
of these macros is the final step in your procedure.

For more information about the FAB and RAB, see the VMS Record
Management Services Manual.

7.2.1 Examples of USEROPEN Routines

The following OPEN statement either creates a 1000-block contiguous
file or returns an error. (The default VAX FORTRAN interpretation of
the INITIALSIZE keyword is to allocate the file contiguously on a best-
effort basis, but not to generate an error if the space is not completely
contiguous.)

EXTERNAL CREATE_CONTIG
OPEN (UNIT=10, FILE='DATA', STATUS='NEW',

1 INITIALSIZE=1000, USEROPEN=CREATE_CONTIG)

Using VMS Record Management Services 7-23

User-written open procedures are often coded in BLISS or MACRO; how-
ever, they can also be coded in VAX FORTRAN using VAX FORTRAN's
record handling capability.

The following function creates a file after setting the RMS FOP bit
(FAB$V_CTG) to specify contiguous allocation.

C UOPENI
C
C Program to demonstrate the use of a simple USEROPEN routine
C

PROGRAM UOPENI
EXTERNAL CREATE_CONTIG

C OPEN the file specifying the USEROPEN routine
C

OPEN (UNIT=10, FILE='DATA', STATUS='NEW',
1 INITIALSIZE=1000, USEROPEN=CREATE_CONTIG)

STOP
END

C CREATE_CONTIG
C
C Sample USEROPEN function to force RMS to allocate contiguous
C blocks for the initial creation of a f ile .
C

INTEGER FUNCTION CREATE_CONTIG(FAB,RAB,LUN)

C Required declarations
C

INCLUDE '($FABDEF)' ! FAB Structure
INCLUDE '($RABDEF)' ! RAB Structure
INCLUDE '($SYSSRVNAM)' ! System service name declarations
RECORD /FABDEF/ FAB, /RABDEF/ RAB

C
C

C
C

Clear the "Contiguous-best-try" bit, set the "Contiguous" bit

FAB.FAB$L_FOP = FAB.FAB$L_FOP .AND. .NOT. FAB$M_CBT
FAB.FAB$L_FOP = FAB.FAB$L_FOP .OR. FAB$M_CTG

Perform the create and
connect, and return status

CREATE_CONTIG = SYS$CREATE(FAB)
IF (.NOT. CREATE_CONTIG) RETURN
CREATE_CONTIG = SYS$CONNECT(RAB)
RETURN
END

7-24 Using VMS Record Management Services

The next example shows the relationship between a VAX FORTRAN
function and a USEROPEN procedure. In this case, the USEROPEN
keyword on the OPEN statement specifies the name of a VAX FORTRAN
procedure that permits use of the RMS variable-with-fixed-length-control
(VFC) record format feature. This feature is used here to obtain a text
editor's line sequence numbers that are prefixed to file records.

VAX FORTRAN program:

C Function to retrieve text editor files, with line numbers
C Example of USEROPEN keyword of OPEN statement

INTEGER FUNCTION SOSOPEN(UNIT_NUMBER, FILENAME)

CHARACTER FILENAME*(*)
INTEGER*2 LINE_NUMBER(0:99)
INTEGER*4 UNIT_NUMBER, SUCCESS_CODE
EXTERNAL GET_CNTRL_FLD
COMMON /LINE_SEQS/LINE_NUMBER

C Perform the open

OPEN (UNIT=UNIT_NUMBER, FILE=FILENAME, STATUS='OLD',
1 USEROPEN=GET_CNTRL_FLD, IOSTAT=SUCCESS_CODE)

SOSOPEN = SUCCESS_CODE
RETURN
END

USEROPEN procedure:

INTEGER FUNCTION GET_CNTRL_FLD (FAB,RAB,LUN)
INCLUDE '($SYSSRVNAM)'
INCLUDE '($FABDEF)'
INCLUDE '($RABDEF)'
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER*4 LUN, STATUS
INTEGER*2 LINE_NUMBER (0:99)
COMMON /LINE_SEQS/ LINE_NUMBER

C Set size of header field into FAB

FAB.FAB$B_FSZ = 2

C Set address into RAB

RAB.RAB$L_RHB = %LOC (LINE_NUMBER(LUN))

C Perform the open

STATUS = SYS$OPEN (FAB)

C If opened ok, connect stream to file

IF (STATUS) STATUS = SYS$CONNECT (R.AB)

C Return status

Using VMS Record Management Services 7-25

GET_CNTRL_FLD =STATUS
RETURN
END

The file is created with the VFC record type. It uses the 2-byte fixed
control field to store a 16-bit unsigned integer. To access this control field
from VAX FORTRAN, a USEROPEN procedure must tell RMS the size of
the field it wants (FAB$B_FSZ) and the location of a variable in which to
place the line number when a record is read (RAB$L _RHB).

The USEROPEN procedure in this example, GET_CNTRL _FLD, de-
termines which logical unit is being opened and stores in the RAB the
address of an element in the common array LINE _NUMBER.

The USEROPEN procedure then opens the file and connects the record
stream. If the operation is successful, a success status is returned from
GET_CNTRL _FLD. Otherwise, a failure status is returned, causing the
Run-Time Library to report that the operation failed.

Each time a READ is done from the file, RMS places the line number
in the appropriate array element. (The LINE _NUMBER array has 100
elements, corresponding to the logical unit numbers 0 through 99.)

7.2.2 RMS Control Structures

Use of the USEROPEN keyword has some restrictions. The Run-Time
Library constructs the following RMS control structures before calling the
USEROPEN procedure:

FAB File Access Block

RAB Record Access Block

NAM Name Block

XAB Extended Attributes Blocks

ESA Expanded String Area

RSA Resultant String Area

A USEROPEN procedure should not alter the allocation of these struc-
tures, although it can modify the contents of many of the fields. Your
procedure can also add additional XAB control blocks by linking them
anywhere into the XAB chain. However, you must exercise caution when
changing fields that have been set as a result of VAX FORTRAN key-
words, because the Run-Time Library may not be aware of the changes.
For example, do not attempt to change the record size in your USEROPEN

7-26 Using VMS Record Management Services

procedure; instead, use the VAX FORTRAN keyword RECL. Always use
an OPEN statement keyword if one is available.

Although the FAB, RAB, and NAM blocks remain defined during the time
that the unit is opened, the XAB blocks are present only until the file has
been successfully opened. In addition, the locations of the ESA and RSA
strings are changed after the file is opened. Therefore, your USEROPEN
procedure should not store the addresses of the RMS control structures.
Instead, have your program call FOR$RAB to obtain the address of the
RAB once the file is opened and then access the other structures through
the RAB.

NOTE

Future releases of the Run-Time Library may alter the use
of some RMS fields. Therefore, you may have to alter your
USEROPEN procedures accordingly.

Table 7-1 shows which FAB, RAB, and XAB fields are either initialized
before your USEROPEN procedure is called or examined upon return from
your USEROPEN procedure. All fields are initialized in response to OPEN
statement keywords or default to zero. Fields labeled with a hyphen (-)
are initialized to zero. Fields labeled with an asterisk (*)are returned by
RMS.

Using VMS Record Management Services 7-27

Table 7-1: RMS Fields Available with USEROPEN
Field Name Description VAX FORTRAN OPEN Keyword and Value

FAB$L_ALQ Allocation quantity n if INITIALS(ZE=n

FAB$B_BKS Bucket size (BLOCKSIZE + 511)/512

FAB$W_BLS Block size n if BLOCKS1ZE=n

FAB$L_CTX Context - (Reserved for future use by DIGITAL)

FAB$W_DEQ Default fi le extension quantity n if EXTENDSIZE=n

FAB$L_DEV Device characteristics

FAB$L_DNA Default file specification string UNIT=nn
address Set to FOROnn.DAT or FORREAD.DAT, FORACCEPT.DAT, FORTYPE.DAT,

or FORPRINT.DAT or to default file specification string

FAB$B_DNS Default file specification string size Set to length of default fi le specification string

FAB$B_FAC File access READONLY
Set to 0 if READONLY (Rti9S default), else set to FAB$M_GET + FAB$M_
PUT + FAB$M_UPD + FAB$M_TRN + FAB$M_DEL

FAB$L_FNA File specification string address FILE=filename if FILE present, else set to FOROnn, FOR$READ,
FOR$ACCEPT, FOR$TYPE, FOR$PRINT, SYS$1NPUT, or SYS$OUTPUT

FAB$B_FNS File specification string size

FAB$L _FOP File processing options

FAB$V_CBT Contiguous best try

FAB$V_CIF Create if nonexistent

FAB$V_CTG Contiguous allocation

FAB$V_DFW Deferred write

FAB$V_DLT Delete on close service

FAB$V_ESC Escape, nonstandard processing

FAB$V_INP Input, make this SYS$INPUT

FAB$V_KFO Known file open

FAB$V_MXV Maximize version number

FAB$V_NAM Name block inputs

FAB$V_NEF Not positioned at end of file

FAB$V_NFS Not fi le structured

7-28 Using VMS Record Management Services

Set to length of file specification string

1 if IN1TlALSIZE=n

1 if READONLY not specified and STATUS=~UNKNOWN~ or STATUS
omitted

1

Set at FORTRAN close, depending upon DISP keyword in OPEN or
CLOSE, or STATUS kevw~ord in CLOSE

1 unless ACCESS= ~APPEND~

~1
Table 7-1 (Cont.~: RMS Fields Available with USEROPEN
Field Name Description VAX FORTRAN OPEN Keyword and Value

FAB$V_OFf' Output file parse

FAB$V_f'OS Current position (after closed file)

f=AB$V_PPF Process permanent file

FAB$V_RCK Read check

FAB$V_RVVC Re~ti•ind on close service

FAB$V_RWO Rewind on open service

FAB$V_SCF Submit command (when closed) Set at FORTRAN close, depending upon DISP keyword in OPEN or
CLOSE, or STATUS kevword in CLOSE

FAB$V_Spl_ Spool to printer Set at FORTRAN close, depending upon DISP kevword in OPEN or
CLOSE, or STATUS kevword in CLOSE

FAB$V_SQO Sequential only 1 if a network file and ACCESS=~SEQUENTIAL~ or ~APPEND~, else 0

FAB$V_SUP Supersede

FAB$V_TEF Truncate at end-of-file

FAB$V_TMD Temporary, marked for delete 1 if STATUS= ~SCRATCH~, else 0

FAB$V_TMf' Temporary (file with no directory
entn•)

FAB$V_UFM User file mode

FAB$V_UFO User file open or create file only

FAB$V_b'VCK Write check

FAB$B_FSZ Fixed control area size

FAB$W_IFI Internal file identifier

FAB$l._MRN Maximum record number n if h1AXREC=n

FAB$VV_MRS Maximum record size n if RECORDTYf'E=~FIXED~ or ORGANIZATION=~RELATIVE~ or

=~INDEXED~, else 0

FAB$l._NAM

FAB$B_ORG

Name block address

File organization

FAB$B_RAT Record attributes

FAB$V_FTN FORTRAN carriage control

FAB$V_CR Print 1.F and CR

Set to address of name block; both the expanded and resultant string areas

are set up, but the related filename string is not

FAB$C_IDX if ORGANIZATION=~INDEXED~
f=A6$C_REL if ORGANIZATION=~RELATIVE~

FAB$C_SEQ if ORGANIZATION=~SEQUENTIAL~ or omitted

1 if CARRIAGECUNTROL=~FORTRAN~ or not specified

1 if CARRIAGECONTROL=~LIST~

Using VMS Record Management Services 7-29

Table 7-1 ~Cont.►: RMS Fields Available with USEROPEN
Field Name Description VAX FORTRAN OPEN Keyword and Value

F~16$V_BI.K Uo n~~t crass block houndariE~c 1 if NOSE ANBI.00KS

FAB$B_RFM Record format FAB$C_FIX if RE:CORDTYf E-~FIXED~

FAB$C_VAR if RECORDTYE E=~VARIABI.E~
FAB$C__VAR if RECORDTYPE=~SEGMENTED~

FAB$C_STM if RE:CORDTY[C=~STREAM~
FAB$C__STMCR if RFCORDTYf E_ ~STREAM_CR~
h~A6$C_STMLF if RECORDTITE=~STREAM_LF~

Fr1B$B_RTV Retric~yal ~,•indot,• size -

FAB$I._SDC Spooling; de,•ice iharactE~ristics

FAB$B_SHR File sharing;

FAB$~'_('UT Allcn,• other [UT~ 1 if SHARED

FAB$~'_GET Alloy,• otht~r GETS 1 if SHARED

FAB$~'_DE1. Allot,• ether DEI.ETEs 1 if SHARED

f=AB$V_Uf'D Ailo~,• ether U[DATE: 1 if SHARED

FAB$V_NII. Allow no other operations

FAB$V_U['1 Utter-provided interlock -

FAB$V_!~1SE Multistream allo~~•ed -

1=A6$I._XAB Extended attrihute block address The XAB chain always has a File Header Characteristics (FHC) extended
attrihute block in order to g;et longest record length (XAB$W_LRL). If the
KL•Y=key~,•ord is specified, key index definition blocks will also he present.
DIGITAL. may add additional XABs in the future. Your USEROf EN

procedure mat• insert XABs anywhere in the chain. l

Rr>B$l. _BKT

Rt1B$I._CTX

R~>B$I._FAB

RAB$~ti_ISl

IZAB$l. _KBf~

IZAB$B_KK1=

R;16$B_KS7-

IZAB$B_!~1BC

RAB$B_h16F

Buckt~t c c~dt~

Contest

FAB address

Internal ti tream 1D

Kc~y buffer addre°ss

KE~y of rE~frrrnrE~

Kt~y si~c~

hlultihlrck count

!~1ultihuffer count

7-30 Using VMS Record Management Services

- (Reser,•ed for futurE~ use by DIGITAL)

SE~t to address of FAB

SE~t to address of long;t,•oni mntainin~ logical record number if
ACCESS=~DIRECT~

if BI.00KSIZE=n, use (n + 511)/512

n if BUFFERCOUNT=n

~'1
Table 7-1 (Copt.): RMS Fields Available with USEROPEN
Field Name Description VAX FORTRAN OPEN Keyword and Value

RAB$l. _f BF ('romps buffer addrt>~~

RAB$B_PS7_ Prompt huller size

RAB$B_RAC Record arres~ mode

RAB$C_KEY If ACCESS=~DIRECT~ or ~KEYED~

RAB$C_SEQ if ACCESS-~SEQUENTIAI.~ or
~Af f ENDS, or ACCESS omitted

RAB$C_RFA

RAB$l. _RBF Record address

RAB$L_RHB Berard header buffer

RAB$l. _BOP Berard processing options

RAB$V_ASY Asvnrhronous

RAB$V_B10 Block 1/O

RAB$V_CCO Cancel CTRL/O

RAB$V_CVT Con~~ert to uppercase

RAB$V_EOF End-of-file

RAB$V_KGE Kev greater than or equal to

RAB$V_KGT Kev greater than

RAB$V_L1M Limit

RAB$V_LOC locate mode

RAB$V_NLK No lock

RAB$V_NXR Nonexistent record

IZAB$V_I'MT Prompt

RAB$V_f TA Purge h~pe-ahead

RAB$V_RAH Read-ahead

RAB$V_RLK Read locked record allo~.~ed

RAB$V_RNE Read no echo

RAB$V_RNF Read no filter

RAB$V_TMO Timeout

KAB$V_TPT Truncate on f UT

RAB$V_UIF Update if

Set later

1 if ACCESS=~A('f ENDS

l

1

1

1 if ACCESS=~DIRECT~

Using VMS Record Management Services 7-31

Table 7-1 ~Cont.): RMS Fields Available with USEROPEN

Field Name Description VAX FORTRAN OPEN Keyword and Value

RAB$V_ULK Manuel unlocking;

RAB$V_4ti'BH 1~Vrite-behind 1

RAB$~ti~_RSZ Reronj ;ile Set later

RAB$B_~Tti10 Timeout period

RAB$l._UBf= User record area address Set later

RAB$W_USZ User record area si~.e het later

Note that RMS does not allow multiple instances of the same type XAB.
To be compatible with future releases of the Run-Time Library, your
procedure should scan the XAB chain for XABs of the type to be inserted.
If one is found, it should be used instead.

7.3 Example of Block Mode I/O Usage

The following example shows a complete application of calling the
RMS block I/O services SYS$WRITE and SYS$READ directly from
VAX FORTRAN. The example is in the form of a complete program
called BIO.FOR that writes out an array of REAL*8 values to a file us-
ing SYS$WRITE, closes the file, and then reads the data back in using
SYS$READ operations with a different I/O transfer size. This program
consists of five routines:

BIO Main control program

BIOCREATE USEROPEN routine to create the file

BIOREAD USEROPEN routine to open the file for READ access

OUTPUT Function that actually outputs the array

INPUT Function that actually reads the array and checks it

7-32 Using VMS Record Management Services

Main Program BIO

C BIO.FOR
C
C Program to demonstrate the use of RMS Block I/O operations
C f rom VAX FORTRAN.
C

OPTIONS /EXTEND_SOURCE O
PROGRAM BIO

C Declare the Useropen routines as external
C

EXTERNAL BIOCREATE, BIOREAD

C Declare status variable, functions, and unit number
C

LOGICAL*4 STATUS, OUTPUT, INPUT
INTEGER*4 IUN/1/

C Open the file
C

OPEN(UNIT=IUN, FILE='BIODEMO.DAT', FORM='UNFORMATTED',
1 STATUS='NEW', RECL=128, BLOCKSIZE=512,
1 ORGANIZATION='SEQUENTIAL', IOSTAT=IOS,
1 ACCESS='SEQUENTIAL', RECORDTYPE='FIXED',
1 USEROPEN=BIOCREATE, INITIALSIZE=100)

IF (IOS .NE. 0) STOP 'Create failed' Q

C Now perform the output
C

STATUS = OUTPiJT ('/.VAL (FOR$RAB (IUN)))
IF (.NOT. STATUS) STOP 'Output failed'

C close the file for output
C

CLOSE (UNIT=IUN)

C Confirm output complete
C

TYPE *, 'Output complete, file closed'

C Now open the file for input

C
OPEN(UNIT=IUN, FILE='BIODEMO.DAT', FORM='UNFORMATTED',

1 STATUS='OLD', IOSTAT=IOS, USEROPEN=BIOREAD, DISP='DELETE')

IF (IOS .NE. 0) STOP 'Open for read failed'

C Now read the file back
C

STATUS = INPUT ('/.VAL (FOR$RAB (IUN)))
IF (.NOT. STATUS) STOP 'Input failed'

C Success, output that all is well

C
STOP 'Correct completion of Block I/O demo'

END

Using VMS Record Management Services 7-33

Notes:

O The /EXTEND_SOURCE option is used to suppress the sequence
number field.

© Most of the necessary OPEN options for the file are specified with
OPEN statement parameters. This is recommended whenever an
OPEN statement qualifier exists to perform the desired function
because it allows the VAX FORTRAN RTL I/O processing routines
to issue appropriate error messages when an RMS routine returns an
error status.

Note the discrepancy between RECL and BLOCKSIZE in the first
OPEN statement. Both keywords specify 512 bytes, but the number
given for RECL is 128. This is because the unit implied in the RECL
keyword is longwords for unformatted files.

When using Block I/O mode, the blocksize used in the I/O operations
is determined by the routine that actually does the operation. Thus,
the OUTPUT routine actually transfers two 512-byte blocks at a time;
whereas, the INPUT routine actually transfers four 512-byte blocks
at once. In general, the larger the transfers, the more efficiently the
I/O is performed. The maximum I/O transfer size allowed by RMS is
65535 bytes.

© The error processing in this routine is very crude; the program sim-
ply stops with an indicator of where the problem occurred. In real
programs, you should provide more extensive error processing and
reporting functions.

O The function FOR$RAB is used to supply the appropriate RAB address
to the OUTPUT and INPUT routines. The %VAL function is used
to transform the address returned by the FOR$RAB function to the
proper argument passing mechanism so that the dummy argument
RAB in INPUT and OUTPUT can be addressed properly.

USEROPEN Functions BIOCREATE and BIOREAD

Aside from the normal declarations needed to define the symbols properly,
the only interesting aspect to these routines is the setting of the BIO bit
in the File Access field of the FAB. This is the only condition required
for block I/O. If you wish to perform both block and record I/O on the
file without closing it, you need to set the BRO bit as well. For more
information on mixing block and record mode I/O, see the VMS Record
Management Services Manual. Note that the only difference between
BIOCREATE and BIOREAD is the use of SYS$CREATE and SYS$OPEN
services, respectively.

7-34 Using VMS Record Management Services

C BIOCREATE
C
C USEROPEN routine to set the Block I/O bit
C and create the BLOCK I/O demo file.
C

INTEGER FUNCTION BIOCREATE(FAB, RAB, LUN)
INTEGER LUN

C Declare the necessary interface names
C

INCLUDE '($FABDEF)'
INCLUDE '($RABDEF)'
INCLUDE '($SYSSRVNAM)'

C Declare the FAB and RAB blocks
C

RECORD /FABDEF/ FAB, /RABDEF/ RAB

C Set the Block I/O bit in the FAC (GET and PUT
C bits set by RTL)
C

FAB.FAB$B_FAC = FAB.FAB$B_FAC .OR. FAB$M_BIO

C Now do the Create and Connect
C

BIOCREATE = SYS$CREATE(FAB)
IF (.NOT. BIOCREATE) RETURN
BIOCREATE = SYS$CONNECT(RAB)
IF (.NOT. BIOCREATE) RETURN

C Nothing more to do at this point, just return
C

RETURN
END

C BIOREAD
C
C USEROPEN routine to set the Block I/O bit and
C open the Block I/O demo file for reading
C

INTEGER FUNCTION BIOREAD(FAB, RAB, LUN)
INTEGER LUN

C Declare the necessary interface names
C

INCLUDE '($FABDEF)'
INCLUDE '($RABDEF)'
INCLUDE '($SYSSRVNAM)'

C Declare the FAB and RAB blocks
C

RECORD /FABDEF/ FAB, /RABDEF/ RAB

Using VMS Record Management Services 7-35

C Set the Block I/O bit in the FAC (GET and PUT
C bits set by RTL)
C

FAB.FAB$B_FAC = FAB.FAB$B_FAC .OR. FAB$M_BIO
C
C Now do the Open and Connect
C

BIOREAD = SYS$OPEN(FAB)
IF (.NOT. BIOREAD) RETURN
BIOREAD = SYS$CONNECT(RAB)
IF (.NOT. BIOREAD) RETURN

C Nothing more to do at this point, just return
C

RETURN
END

OUTPUT Routine

The following routine initializes the array A and performs the SYS$WRITE
operations. Beyond the normal RTL initialization, only the RSZ and
RBF fields in the RAB need to be initialized in order to perform the
SYS$WRITE operations. The %LOC function is used to create the address
value required in the RBF field. One of the main reasons that block n rode
I/O is so efficient is that it avoids copy operations by using the data areas
of the program directly for the output buffer. If the program specified, for
a write to a disk device, a value for RSZ that was not an integral multiple
of 512, the final block would be only partly filled.

c
C OUTPUT
C
C Function to output records in block I/O mode
C

OPTIONS /EXTEND_SOURCE
LOGICAL FUNCTION OUTPUT(RAB)

C Declare RMS names
C

INCLUDE '($RABDEF)'
INCLUDE '($SYSSRVNAM)'

C Declare the RAB
C

RECORD /RABDEF/ RAB

C Declare the Array to output
C

REAL*8 A(6400)

C Declare the status variable
C

INTEGER*4 STATUS

7-36 Using VMS Record Management Services

C Initialize the array

C
DO I=6400,1,-1

A(I) = I
ENDDO

C Now, output the array, two 512-byte (64 elements)

C blocks at a time
C

OUTPUT = .FALSE.
RAB.RAB$W_RSZ = 1024

DO I=0,99,2

C
C
C

For each block, set the buffer address to the

proper array element

RAB.RAB$L_RBF = %LOC(A(I*64+1))

STATUS = SYS$WRITE(RAB)
IF (.NOT. STATUS) RETURN

ENDDO

C Successful output completion

C
OUTPUT = .TRUE.
RETURN
END

INPUT Routine

The following routine reads the array A from the file and verifies its
values. The USZ and UBF fields of the RAB are the only fields that need
to be initialized. The I/O transfer size is twice as large as the OUTPUT
routine. The reason that this can be done is that the OUTPUT routine
writes, to a disk device, an integral number of 512-byte blocks. This
method cannot be used if the writing routine either specifies an RSZ that
is not a multiple of 512 or attempts to write to a magnetic tape device.

c
C INPUT
C
C Function to input records in block I/O mode

C
OPTIONS /EXTEND_SOURCE
LOGICAL FUNCTION INPUT(RAB)

C Declare RMS names

C
INCLUDE '($RABDEF)'

INCLUDE '($SYSSRVNAM)'

C Declare the RAB

C
RECORD /RABDEF/ RAB

Using VMS Record Management Services 7-37

C
C

C
C

C
C
C

C
C
C

Declare the Array to output

REAL*8 A(6400)

Declare the status variable

INTEGER*4 STATUS

Now, read the array, four 512-byte (64 elements)

blocks at a time

INPUT = .FALSE.
RAB.RAB$W_USZ = 2048

DO I=0,99,4

For each block, set the buffer address to

the proper array element

RAB.RAB$L_UBF = %LOC(A(I*64+1))

STATUS = SYS$READ(RAB)
IF (.NOT. STATUS) RETURN

ENDDO

C Successful input completion if data is correct

C
DO I=6400,1,-1

I F (A (I) . NE . I) RETURN

ENDDO

INPUT = .TRUE.
RETURN
END

7-38 Using VMS Record Management Services

Chapter 8

Interprocess Communications

This chapter contains information on how to exchange and share data
among local and remote processes. (Local processes involve a single VAX
processor, and remote processes involve separate VAX processors that are
interconnected by means of DECnet.)

8.1 Local Processes—Sharing and Exchanging Data

Interprocess communication mechanisms provided for local processes
provide the following capabilities:

• Program image sharing in shareable image libraries

• Data sharing in installed common areas

• Data sharing in files

• Information passing by means of mailboxes

• Information passing over DECnet-VAX network links

These capabilities are discussed in the sections that follow.

Interprocess Communications 8-1

8.1.1 Sharing Images in Shareable Image Libraries

If you have a routine that is invoked by more than one program, you
should consider establishing it as a shareable image and installing it on
your system.

Establishing a routine as a shareable image provides the following benefits:

• Saves disk space The executable images to which the shareable
image is linked do not actually include the shareable image. Only one
copy of the shareable image exists.

• Simplifies maintenance If you use transfer vectors and the
GSMATCH option, you can modify, recompile, and relink a shareable
image without having to relink the executable images that reference it.

Installing a shareable image as shared (INSTALL command, /SHARED
qualifier) can also save memory.

The steps to creating and installing a shareable image are as follows:

1. Compile the source file containing that routine that you want to
establish as a shareable image.

2. Link the shareable image object file that results from step 1, specifying
any object files that contain routines referenced by the shareable
image object file.

The VMS Linker provides a variety of options that you should con-
sider before performing the link operation. See the VMS Linker Utility
Manual for detailed information on shareable images and linker
options.

3. Create a shareable image library using the Library Utility's LIBRARY
command. See the Guide to Creating VMS Modular Procedures for
detailed information on creating shareable image libraries.

4. Install the shareable image (the results of step 3) on your system as a
shared image by using the Install Utility's INSTALL command (with
the /SHARED qualifier). For detailed information on how to perform
this operation, see the VMS Install Utility Manual.

Any programs that access a shareable image must be linked with that
image. When performing the link operation, you must specify one of the
following items on your LINK command:

• The name of the shareable image library containing the symbol table
of the shareable image. Use the /LIBRARY qualifier to identify a
library file.

8-2 Interprocess Communications

• A linker options file that contains the name of the shareable image
file. Use the /SHAREABLE qualifier to identify a shareable image file.
(If you specify the /SHAREABLE qualifier on the LINK command line
and you do not specify an options file, the linker creates a shareable
image of the object file you are linking.)

The resulting executable image contains the contents of each object
module and a pointer to each shareable image.

8.1.2 Sharing Data in Installed Common Areas

Sharing the same data among two or more processes can be done using
installed common areas.

Typically, you use an installed common area for interprocess communica-
tion or for two or more processes to access the same data simultaneously.

To communicate between processes using a common area, first install the
common area as a shareable image:

1. Create the common area Write a VAX FORTRAN program that
declares the variables in the common area and defines the common
area. This program should not contain executable code. For example:

COMMON /WORK_AREA/ WORK_ARRAY(8192)
END

2. Make it a shareable image Compile the program containing the
common area and use the LINK/SHAREABLE command to create a
shareable image containing the common area.

$ FORTRAN INC_COMMON
$ LINK/SHAREABLE INC_COMMON

3. Install the shareable image Invoke the interactive Install Utility.
When the INSTALL> prompt appears, type the following: the
CREATE command, the complete file specification of the shareable
image that contains the common area (file type defaults to EXE), and
the qualifiers /WRITEABLE and /SHARED. (This operation requires
CMKRNL privilege.) The Install utility installs your shareable image
and reissues the INSTALL > prompt. Type EXIT to exit.

$ INSTALL
INSTALL> CREATE DISK$USER:[INCOME.DEV]INC_COMMON/WRITEABLE/SHARED
INSTALL> EXIT

Interprocess Communications S-3

A disk containing an installed image cannot be dismounted until you
invoke the Install Utility and type DELETE, followed by the complete
file specification of the image. To exit from the Install Utility, use the
EXIT subcommand.

See the VMS Install Utility Manual for additional information about
the Install Utility.

When the common area has been installed, use the following steps to
access the data from any program:

1. Include the same variable definitions and common area definitions in
the accessing program.

2. Compile the program.

3. Link the accessing program against the installed common area pro-
gram. Use an options file to specify the common area program as a
shareable image.

LINK commands:

$ LINK INCOME, INCOME/OPTION
$ LINK REPORT, INCOME/OPTION

Specification in linker options file:

INC_COMMON/SHAREABLE

4. Execute the accessing program.

In the previous series of examples, the two programs INCOME and
REPORT access the same area of memory through the installed common
area WORK_AREA.

8.1.2.1 Synchronizing Access

Typically, programs accessing shared data use common event flag clusters
to synchronize read and write access to the data. In the simplest case, one
event flag in a common event flag cluster might indicate that a program
is writing data and a second event flag in the cluster might indicate that
a program is reading data. Before accessing the shared data, a program
must examine the common event flag cluster to ensure that accessing the
data does not conflict with an operation already in progress.

See the VMS System Services Reference Manual for detailed information
about the use of event flags.

8-4 Interprocess Communications

8.1.3 Sharing Data in Files

With the RMS file-sharing capability, you can allow file access by more
than one program at a time or by the same program on more than one
logical unit.

There are two kinds of file sharing: read sharing and write sharing.

• Read sharing occurs when multiple programs are reading a file at the
same time.

• Write sharing takes place when at least one program is writing a file
and at least one other program is either reading or writing the same
file.

All three file organizations relative, indexed, and sequential —permit
read and write access to shared files.

The extent to which file sharing can take place is determined by two
factors: the type of device on which the file resides and the explicit
information supplied by the user. These factors have the following effects:

• Device type Sharing is possible only on disk files.

• Explicit file-sharing information supplied by accessing programs
Whether file sharing actually takes place depends on information
provided to VMS RMS by each program accessing the file. In VAX
FORTRAN programs, this information is supplied by the READONLY
and SHARED keywords in the OPEN statement.

Read sharing is accomplished when READONLY is specified by all
programs accessing the file. Write sharing is accomplished when the
program specifies SHARED.

Programs that specify READONLY or SHARED can access a file
simultaneously, with the exception that a file opened for READONLY
cannot be accessed by a program that specifies SHARED.

If READONLY or SHARED is not specified by both the program that
initially opened a file and any other program that attempts to access
that file, the latter program's attempt to access the file will fail. That
is, a program without a READONLY or SHARED keyword will fail
in its attempt to open a file currently being accessed by some other
program, just as a program specifying READONLY or SHARED will
fail to open a file if the program currently accessing that file did not
specify READONLY or SHARED.

Interprocess Communications 8-5

When two or more programs are write sharing a file, each program should
use one of the error-processing mechanisms described in Chapter 9. Use
of one of these controls, the RMS record-locking facility, prevents program
failure due to arecord-locking error.

The RMS record-locking facility, along with the logic of the program,
prevents two processes from accessing the same record at the same time.
Record locking ensures that a program can add, delete, or update a record
without having to check whether the same record is simultaneously being
accessed by another process.

When a program opens a relative, sequential, or indexed file specifying
SHARED, RMS locks each record as it is accessed. When a record is
locked, any program attempting to access it fails with arecord-locked er-
ror. A subsequent I/O operation on the logical unit unlocks the previously
accessed record. Thus, no more than one record on a logical unit is ever
locked.

Locked records can be explicitly unlocked by means of VAX FORTRAN's
UNLOCK statement. The use of this statement minimizes the amount
of time that a record is locked against access by other programs. The
UNLOCK statement should be used in programs that retrieve records from
a shared file but do not attempt to update them. See the VAX FORTRAN
Language Reference Manual for additional information about the UNLOCK
statement and its syntax.

For additional information about record locking for shared files, see the
Guide to VMS File Applications.

See the section on condition handling in Chapter 14 for information on
how to handle record locking for indexed files.

8.1.4 Using Mailboxes to Pass Information

It is often useful to exchange data between processes: for example, to
synchronize execution or to send messages.

A mailbox is arecord-oriented pseudo I/O device that allows you to
pass data from one process to another. Mailboxes are created by the
Create Mailbox system service (SYS$CREMBX). The following sections
describe how to create mailboxes and how to send and receive data using
mailboxes.

S-6 Interprocess Communications

f"1
8.1.4.1 Creating a Mailbox

SYS$CREMBX creates the mailbox and returns the number of the I/O
channel assigned to the mailbox. You must specify a variable for the I/O
channel. You should also specify a logical name to be associated with the
mailbox. The logical name identifies the mailbox for other processes and
for VAX FORTRAN I/O statements. The SYS$CREMBX system service
also allows you to specify the message and buffer sizes, the mailbox
protection code, and the access mode of the mailbox; however, the default
values for these arguments are usually sufficient.

The following segment of code creates a mailbox named MAILBOX. The
number of the I/O channel assigned to the mailbox is returned in KHAN.

INCLUDE '($SYSSRVNAM)'
INTEGER*2 KHAN
ISTATUS = SYS$CREMBX(,ICHAN 'MAILBOX')

For more information about calling system services, see Chapter 6. For
more information about the arguments supplied to the Create Mailbox
system service, see the VMS System Services Reference Manual.

NOTE

Do not use MAIL as the logical name for a mailbox. If you do
so, the system will not execute the proper image in response to
the VMS command MAIL.

8.1.5 Sending and Receiving Data Using Mailboxes

Sending data to and receiving data from a mailbox is no different from
other forms of VAX FORTRAN I/O. The mailbox is simply treated as a
record-oriented I/O device.

Use VAX FORTRAN formatted sequential READ and WRITE statements
to send and receive messages. The data transmission is performed syn-
chronously. That is, a program that writes a message to a mailbox waits
until the message is read, and a program that reads a message from a mail-
box waits until the message is written before it continues transmission.
When the writing program closes the mailbox, an end-of-file condition is
returned to the reading program.

Do not attempt to write a record of zero length to a mailbox; the program
reading the mailbox interprets this record as an end-of-file. Zero-length
records are produced by consecutive slashes in FORMAT statements.

Interprocess Communications 8-7

The sample program below creates a mailbox assigned with the logical
name MAILBOX. The program then performs an open operation specifying
the logical name MAILBOX as the file to be opened. It then reads file
names from FNAMES.DAT and writes them to the mailbox until all of the
records in the file have been transmitted.

CHARACTER FILENAME*64
INCLUDE '($SYSSRVNAM)'
INTEGER*2 KHAN
INTEGER*4 STATUS

STATUS = SYS$CREMBX(,ICHAN 'MAILBOX')
IF (.NOT. STATUS) GO TO 99

OPEN (UNIT=9, FILE='MAILBOX',
1 STATUS='NEW', CARRIAGECONTROL='LIST', ERR=99)

OPEN (UNIT=8, FILE='FNAMES.DAT', STATUS='OLD')

10 READ (8,100,END=98) FILENAME
WRITE (9,100) FILENAME

100 FORMAT(A)
GO TO 10

98 CLOSE (UNIT=8)
CLOSE (UNIT=9)
STOP

99 WRITE (6,*) 'Mailbox error'
STOP
END

The sample program below reads messages from a mailbox that was
assigned the logical name MAILBOX when it was created. The messages
comprise file names, which the program reads. The program then types
the files associated with the file names.

CHARACTER FILNAM*64, TEXT*133
OPEN (UNIT=1, FILE='MAILBOX', STATUS='OLD')

1 READ (1,100,END=12) FILNAM
100 FORMAT (A)

OPEN (UNIT=2, FILE=FILNAM, STATUS='OLD')
OPEN (UNIT=3, FILE='SYS$OUTPUT', STATUS='NEW')

2 READ (2,100,END=10) TEXT
WRITE (3,100) TEXT
GO TO 2

10 CLOSE (UNIT=2)
CLOSE (UNIT=3)
GO TO 1

12 END

8-8 Interprocess Communications

U

8.2 Remote Processes—Sharing and Exchanging Data

If your computer is a node in a DECnet-VAX network, you can com-
municate with other nodes in the network by means of standard VAX
FORTRAN I/O statements. These statements let you exchange data with
a program at the remote computer (task-to-task communication) and ac-
cess files at the remote computer (resource sharing). There is no apparent
difference between these intersystem exchanges and the local interprocess
and file access exchanges.

Remote file access and task-to-task communications are discussed sepa-
rately in the sections that follow.

8.2.1 Remote File Access

To access a file on a remote system, include the remote node name in the
file name specification. For example:

BOSTON::DBAO:[SMITH]TEST.DAT;2

To make a program independent of the physical location of the files it
accesses, you can assign a logical name to the network file specification as
shown in the following example:

$ ASSIGN MIAMI::DR4:[INV]INVENT.DAT INVFILE

The logical name INVFILE now refers to the remote file and can be used
in the program. For example:

OPEN (UNIT=10, FILE='INVFILE', STATUS='OLD')

To process a file on the local network node, reassign the logical name; you
do not need to modify the source program.

Interprocess Communications 8-9

8.2.2 Network Task-to-Task Communication

Network task-to-task communication allows a program running on one
network node to interact with a program running on another network
node. This interaction is accomplished with standard VAX FORTRAN I/O
statements and looks much like an interactive program/user session.

The steps involved in network task-to-task communications are as follows:

1. Request the network connection. The originating program initiates
task-to-task communication. It opens the remote task file with a
special file name syntax: the name of the remote task file is preceded
with TASK= and surrounded with quotation marks. For example:

BOSTON: :"TASK=UPDATE"

Unless the remote task file is contained in the default directory for
the remote node's DECnet account, you must specify the pertinent
account information (a user name and password) as part of the node
name:

BOSTON"username password": :"TASK=UPDATE"

The form of the remote task file varies, depending on the remote
computer's operating system. For VMS systems, this task file is a
command file with a file type of COM. The network software submits
the command file as a batch job on the remote system.

2. Complete the network connection. When the remote task starts, it
must complete the connection back to the host. On VMS, the remote
task completes this connection by performing an open operation
on the logical name SYS$NET. When opening the remote task file or
SYS$NET, specify either FORM='UNFORMATTED' or the combination
of FORM='FORMATTED' and CARRIAGECONTROL='NONE`.

3. Exchange messages. When the connection is made between the two
tasks, each program performs I/O using the established link.

Task-to-task communication is synchronous. This means that when
one task performs a read, it waits until the other task performs a write
before it continues processing.

4. Terminate the network connection. To prevent losing data, the
program that receives the last message should terminate the network
connection using the CLOSE statement. When the network connection
is terminated, the cooperating image receives an end-of-file error.

5-10 Interprocess Communications

The following is a complete example showing how VAX FORTRAN
programs can exchange information over a network. In this example, the
originating program prompts for an integer value and sends the value to
the remote program. The remote program then adds one to the value and
returns the value to the originating program. It is assumed that the remote
operating system is a VMS system.

The originating program on the local node contains the following source
code:

OPEN (UNIT=10, FILE='PARIS::"TASK=REMOTE"',
1 STATUS='OLD', FORM='UNFORMATTED',
2 ACCESS='SEQUENTIAL', IOSTAT=IOS, ERR=9999)

C Prompt for a number

PRINT 101
101 FORMAT ($,' ENTER A NUMBER:

ACCEPT *,N
C Perform the network I/O

WRITE (UNIT=10, IOSTAT=IOS, ERR=9999) N

READ (UNIT=10, IOSTAT=IOS, ERR=9999) N

C Output the number and process errors

PRINT 102, N
102 FORMAT (' The new value is ',I11)

GO TO 99999
9999 PRINT *, 'Unexpected I/O Error Number ', IOS

99999 CLOSE (UNIT=10)
END

The task file REMOTE.COM on the remote node contains the following
VMS commands:

$ DEFINE SYS$PRINT NL:
$ RUN DBO : [NET] REMOTE . EXE

$ PURGE/KEEP=2 REMOTE.LOG

! Inhibit printing of log
! Run remote program
! Delete old log files

The remote program PARIS::DBO:[NET]REMOTE.EXE contains the follow-
ing source code:

OPEN (UNIT=10, FILE='SYS$NET', FORM='UNFORMATTED',

1 ACCESS='SEQUENTIAL', STATUS='OLD')

READ (UNIT=10) N
N = N + 1
WRITE (UNIT=10) N
CLOSE (UNIT=10)
END

For more information on using DECnet, refer to the VMS Networking
Manual and Introduction to DECnet.

Interprocess Communications 8-11

Chapter 9

Condition-Handling Facilities

An exception condition, as the term is used in this chapter, is an event,
usually an error, that occurs during the execution of a program and is
detected by system hardware or software or by logic in a user application
program. A special type of routine, known as acondition-handler routine,
is used to resolve exception conditions.

This chapter does not address error handling in a general sense, but only
as it relates to the creation and use of condition-handler routines. (Refer
to Chapter 5 for a general discussion of error handling.)

Examples of the types of exception conditions detected by system hard-
ware and software are as follows:

• Hardware exceptions include such things as floating overflows, mem-
ory access violations, and the use of reserved operands.

• Software exceptions include such things as output conversion er-
rors, end-of-file conditions, and invalid arguments to mathematical
procedures.

When an exception condition is detected by system hardware or software
or by your program, that condition is signaled (by means of a signal call) to
the condition-handling facility (CHF). The CHF then invokes one or more
condition-handler routines that will attempt to either resolve the condition
or terminate the processing in an orderly fashion.

The CHF allows a main program and each subprogram that follows it,
regardless of call depth, to establish acondition-handler routine (one per
program unit). Each of these condition-handler routines can potentially
handle any or all software or hardware events that are treated as exception
conditions by the user program or by the system hardware or software.
Note that more than one condition handler for a given condition may be
established by different program units in the call stack.

Condition-Handling Facilities 9-1

The address of the condition handler for a particular program unit is
placed in the call frame for that unit in the run-time call stack. (The
presence of a condition handler is indicated by a nonzero address in the
first longword of the program unit's stack frame.)

Figure 9-1 shows the run-time call stack.

Figure 9-1: Sample Stack Scan for Condition Handlers

Signals-LIB$SIGNAL or LIB$STOP

Procedure-based
Condition-Handling

Facility

Top of Run-time Call Stack

i

Procedure B
stack frame

0

Procedure A
stack frame

Main Program
stack frame

0

~►-

Bottom of Stack

:SP

:FP

--- User CHF handler

Catchall Vector

1
I

Last Chance handler
or

Traceback handler

ZK-7461-HC

9-2 Condition-Handling Facilities

Notes to Figure 9-1

1. The lines to the left of the run-time call stack depict the search path
taken by the CHF, not pointers or control flow.

2. User CHF handlers are strictly optional and can be established for
any of the program units (procedures) in an application program.
For example, handlers for procedure B and the main program could
have been shown in this diagram in addition to the handler actually
shown for procedure A.

When the program unit returns to its caller, the call frame is removed and
the condition handler for that program unit can no longer be accessed by
the CHF. (Multiple condition handlers may be accessed by the CHF in
the processing of a single exception condition signal. This is discussed in
Section 9.1.3.3.)

Throughout this chapter, the term program unit refers to an executable
FORTRAN main program, subroutine, or function.

The remainder of this chapter describes the Condition-Handling Facility
(CHF) in detail how it operates, how user programs can interact with it,
and how users can code their own condition-handling routines.

9.1 Using the Condition-Handling Facility

The Condition-Handling Facility (CHF) receives control and coordinates
processing of all exception conditions that are signaled to it. The signals
are issued under the following circumstances:

• When a user program detects an application-dependent exception
condition

• When a VAX FORTRAN system hardware or software component
detects asystem-defined exception condition

In cases where the default condition handling is insufficient (see Section
9.1.1), you can develop your own handler routines and use the routine
LIB$ESTABLISH to identify your handlers to the CHF. Typically, your
needs for special condition handling are limited to the following types of
operations:

• To respond to condition codes that are signaled instead of being
returned, as in the case of integer overflow errors. (Section 9.1.4.6
describes the system-defined handler LIB$SIG _TO_RET. It allows
you to treat signals as return values.)

Condition-Handling Facilities 9-3

• To modify part of a condition code, for example, the severity (see
Section 9.1.2.3). (If you want to change the severity of any condition
code to a severe error, you can optionally issue a call to LIB$STOP
instead of writing a condition handler for that purpose.)

• To add additional messages to those messages associated with the
originally signaled condition code or to log the occurrence of various
application-specific or system-specific conditions.

When an exception condition is detected by a system hardware or software
component or by a component in the user application program, the
component calls the CHF by means of a signal routine (LIB$SIGNAL
or LIB$STOP), passing a value to the CHF that identifies the condition.
The CHF takes program control away from the routine that is currently
executing and begins searching for acondition-handler routine to call. If
it finds one, it establishes a call frame on the run-time call stack and then
invokes the handler. The handler routine then attempts to deal with the
condition.

The sections that follow describe the CHF in detail how it operates, how
user programs can interact with it, and how users can code their own
condition-handling routines.

• Section 9.1.1 describes default condition handlers established by the
system.

• Section 9.1.2 describes how a user program makes a condition han-
dler known to the CHF and how it signals a condition and passes
arguments.

• Section 9.1.3 describes how to write acondition-handling routine.

• Section 9.1.4 describes several condition-handling routines available in
the VAX FORTRAN Run-Time Library.

• Section 9.1.5 contains some examples of the use of condition handlers.

9-4 Condition-Handling Facilities

("1
9.1.1 Default Condition Handler

When the system creates a VAX FORTRAN user process, it establishes a
system-defined condition handler that will be invoked by the CHF in the
following circumstances:

• No user-established condition handlers exist in the call stack. (Any
user-established condition handlers in the call stack are always in-
voked before the default handler is invoked.)

• All of the user-established condition handlers in the call stack re-
turn the condition code SS$_RESIGNAL to the CHF. (The SS$_
RESIGNAL condition code causes the CHF to search for another
condition handler. See Section 9.1.3.3.)

When establishing the default handler, the system has two handlers to
chose from: the traceback handler and the catchall handler.

• Traceback Handler. Displays the message associated with the signaled
condition code, the traceback message, the program unit name and
line number of the statement that resulted in the exception condition,
and the relative and absolute program counter values. In addition,
the traceback handler displays the names of the program units in
the current calling sequence and the line number of the invocation
statements. (For exception conditions with a severity level of warning
or error, the number of the next statement to be executed is also
displayed.)

After displaying the error information, the traceback handler continues
program execution or, if the error is severe, terminates program exe-
cution. If the program terminates, the condition value (see Table 5-1)
becomes the program exit status.

• Catchall Handler. Displays the message associated with the condition
code and then either continues program execution or, if the error is
severe, terminates execution. If the program terminates, the condition
value (see Table 5-1) becomes the program exit status.

The /DEBUG and /TRACEBACK qualifiers on the FORTRAN and
LINK command lines, respectively determine which default handler is
enabled. If you take the defaults for these qualifiers, the traceback handler
is established as the default handler. To establish the catchall handler as
the default, you would specify /NODEBUG or /DEBUG=NOTRACEBACK
on the FORTRAN command line and /NOTRACEBACK on the LINK
command line.

Condition-Handling Facilities 9-5

9.1.2 User-Program Interactions with the CHF

User-program interactions with the CHF are strictly optional and applica-
tion dependent. In each program unit, you have the option of establishing
(and removing) a single condition handler to handle exceptions that may
occur in that program unit or in subsequent subprograms (regardless of
call depth). Once a program unit returns to its caller, its call frame is
removed and any condition handler that the program unit has established
thus becomes inaccessible.

The condition handler established by the user program can be coded to
handle an exception condition signaled by either system hardware, a VAX
FORTRAN system software component, or the user program itself. User-
program signals are issued by means of the LIB$STOP and LIB$SIGNAL
routines described in Section 9.1.2.2.

Although condition handlers offer a convenient and structured approach to
handling exception conditions, they can have a significant impact on run-
time performance. For commonly occurring application-specific conditions
within a loop, for example, it may be wise to use other methods of dealing
with the conditions. The best use of the facility is in large applications
in which occasional exception conditions requiring special handling are
anticipated.

The following sections describe how to establish and remove condition
handlers and how to signal exception conditions.

9.1.2.1 Establishing and Removing Condition Handlers

Establishing a condition handler involves placing the address of a con-
dition handling routine in the stack frame (longword 0) for the current
program unit in the run-time call stack. This is done by issuing a call to
the LIB$ESTABLISH routine. The form of the call is as follows:

CALL LIB$ESTABLISH (new-handler)

new-handler
Is the name of the routine to be set up as a condition handler.

LIB$ESTABLISH moves the address of the condition-handling routine
into longword 0 of the calling program unit's stack frame and returns the
previous contents of longword 0.

9-6 Condition-Handling Facilities

When the CHF receives control as a result of an exception condition, it
searches for condition handlers beginning with the stack frame for the
current program unit. If the current program unit has not established
a condition handler, the CHF searches the previous stack frames for a
handler until it either finds auser-established condition handler or reaches
the default condition handler established by the system.

The handler itself could be user written or selected from a list of utility
functions provided with VAX FORTRAN. The following example shows
how a call to establish auser-written handler might be coded.

EXTERNAL HANDLER
CALL LIB$ESTABLISH(HANDLER)

In the preceding example, HANDLER is the name of a FORTRAN function
subprogram that is established as the condition handler for the program
unit containing these source statements. A program unit can remove an
established condition handler in two ways:

• Issue another LIB$ESTABLISH call specifying a different handler

• Issue the LIB$REVERT call

The LIB$REVERT call has no arguments and is issued as follows:

CALL LIB$REVERT

This call removes the condition handler established in the current program
unit.

When the program unit returns to its caller, the condition handler as-
sociated with that program unit is automatically removed (that is, the
program unit's stack frame, which contains the condition handler address,
is removed from the stack).

9.1.2.2 Signaling a Condition

When a prescribed condition requiring special handling by a condition
handler is detected by logic in your program, you issue a condition signal
in your program in order to invoke the CHF. A condition signal consists
of a call to one of the two system-supplied signal routines in either of the
following forms:

CALL LIB$SIGNAL(condition-value, arg, . . . , arg)

CALL LIB$STOP(condition-value, arg, . . . , arg)

Condition-Handling Facilities 9-7

condition-value
Is an INTEGER*4 value that identifies a particular exception condition
(see Section 9.1.2.3), and can only be passed using the %VAL argument-
passing mechanism.

arg
Are optional arguments to be passed to user-established condition han-
dlers and the system default condition handlers. These arguments consist
of messages and formatted-ASCII-output arguments (see the VMS Run-
Time Library Routines Volume).

The CHF uses these parameters to build the signal argument array
SIGARGS (see Section 9.1.3.2) before passing control to a condition
handler.

Whether you issue a call to LIB$SIGNAL or LIB$STOP depends on the
following considerations:

• If the current program unit can continue after the signal is made, call
LIB$SIGNAL. The condition handler can then determine whether
program execution continues. After the signal is issued, control is
never returned to the user program until one of the condition handlers
in the call stack resolves the exception condition and indicates to the
CHF that program execution should continue.

• If the condition does not allow the current program unit to continue,
call LIB$STOP. Note that the only way to override a LIB$STOP signal
is to perform an urTwind operation (see Section 9.1.3.3).)

Table 9-1 lists all of the possible effects of a LIB$SIGNAL or LIB$STOP
call.

9-8 Condition-Handling Facilities

Table 9-1: Effects of Calls to LIB~SIGNAL or LIB~STOP

Call to:
Signaled

Condition
Severity
• 2:0 -

Default
Handler

Gets Control

Handler
Specifies
Continue

Handler
Specifies

UNWIND

No Handler
Is Found

(stack bad)

LIB$SIGNAE
or

hardware
exception

4
c ondihon
mc~~tia};c~

RFT
FZET U'~1~'VINI)

(aII
last

chance
hancflc~r

F XIT

- ~3
condition
mc~~~af;e

EXIT
FZET UN~,'VIN()

(-all
last

c hanc e
handler

EXIT

LIB$ST()P
tort c~
~ ~i

c oncfihon
mc~titia};t'

EXIT

' cannot
continua "

EXIT
l!Nti1/I'~l[)

Call
latit

chance
handler

EXIT

ZK-5162-t36

In Table 9-1, "cannot continue" indicates an error that results in the
following message:

IMPROPERLY HANDLED CONDITION, ATTEMPT TO CONTINUE FROM STOP

To pass the condition value, you must use the %VAL argument-passing
mechanism (see Section 6.2.3). Condition values are usually expressed
as condition symbols (see Section 6.5.1). Condition symbols have the
following forms:

fac$_symbol (DIGITAL-defined)

or

fac__symbol (user-defined)

Condition-Handling Facilities 9-9

fac
Is a facility name prefix.

symbol
Identifies a specific condition. (Refer to Table 5-1 for a list of FORTRAN-
related condition symbols.)

In the following example, a signal call passes a condition symbol associ-
ated with the mathematical procedures library.

CALL LIB$SIGNAL(%VAL(MTH$_FLOOVEMAT))

You can include additional arguments to provide supplementary informa-
tion about the error.

When your program issues a condition signal, the CHF searches for a
condition handler by examining the preceding call frames, in order, until it
either finds a procedure that handles the signaled condition or reaches the
default condition handler.

The following section describes condition values and condition symbols in
detail.

9.1.2.3 Condition Values and Symbols Passed to CH F

The VMS system uses condition values to indicate that a called procedure
has either executed successfully or failed, and to report exception condi-
tions. Condition values are INTEGER*4 values. They consist of fields that
indicate which software component generated the value, the reason the
value was generated, and the severity of the condition. A condition value
has the following fields:

31 28 27 16 15

 SS

control bits facility number

 ~s

9-10 Condition-Handling Facilities

S

3 2 0

message number

SS

condition identification

condition value

severity code

ZK-7459-HC

The facility number field identifies the software component that generated
the condition value. Bit 27 = 1indicates auser-supplied facility; bit 27 = 0
indicates a system facility.

The message number field identifies the condition that occurred. Bit 15 = 1
indicates that the message is specific to a single facility; bit 15 = 0 indicates
a system-wide message.

Table 9-2 gives the meanings of values in the severity code field.

Table 9-2: Severity Codes for Exception Condition Values
Code (Symbolic Name) Severity Response

0 (STS$K_WARNING) Warning Execution continues,
unpredictable results

1 (STS$K_SUCCESS) Success Execution continues,
expected results

2 (STS$K_ERROR) Error Execution continues,
erroneous results

3 (STS$K_INFORMATION) Information Execution continues,
informational message
displayed

4 (STS$K_SEVERE) Severe error Execution terminates, no
output

5 - 7 - Reserved for use by
DIGITAL

The symbolic names for the severity codes are defined in the $SSDEF
module in the FORTRAN Symbolic Definition Library (FORSYSDEF).

A condition handler can alter the severity code of a condition value
either to allow execution to continue or to force an exit, depending on the
circumstances.

The condition value is passed in the second element of tha array
SIGARGS. (See Section 9.1.3.2 for detailed information about the con-
tents and use of the array SIGARGS.) In some cases, you may require
that a particular condition be identified by an exact match. That is, each
bit of the condition value (31:0) must match the specified condition. For
example, you may want to process a floating overflow condition only if its
severity code is still 4 (that is, only if a previous handler has not changed
the severity code).

Condition-Handling Facilities 9-11

In many cases, however, you may want to respond to a condition regard-
less of the value of the severity code. To ignore the severity and control
fields of a condition value, use the LIB$MATCH _COND routine (see
Section 9.1.4.4).

The FORTRAN Symbolic Definition Library (FORSYSDEF) contains
modules that define condition symbols. When you write a condition
handler, you can specify any of the following modules, as appropriate,
with an INCLUDE statement:

• $FORDEF This module contains definitions for all condition symbols
from the FORTRAN-specific library routines. Refer to Table 5-1 for a
list of the FORTRAN error numbers (IOSTAT values) associated with
these symbols. These symbols have the form:

FOR$_error

For example:

FOR$_INPCONERR

• $LIBDEF This module contains definitions for all condition symbols
from the VMS general utility library facility. These symbols have the
form:

LIB$_condition

For example:

LIB$_INSVIRMEM

• $MTHDEF This module contains definitions for all condition sym-
bols from the mathematical procedures library. These symbols have
the form:

MTH$_condition

For example:

MTH$_SQUROONEG

• $SSDEF This module contains definitions for system services status
codes, which are frequently used in FORTRAN condition handlers.
These symbols have the form:

SS$_status

For example:

SS$_FLTOVF

9-12 Condition-Handling Facilities

9.1.3 How to Write a Condition Handler

The following sections describe how to code condition handlers for your
own applications.

9.1.3.1 Operations Performed in Handlers

A condition handler responds to an exception by analyzing arguments
passed to it and by taking appropriate action. Possible actions taken by
condition handlers are as follows:

• Condition correction

• Condition reporting

• Execution control

First, the handler must determine whether it can correct the condition
identified by the condition code passed by the signal call. If possible, the
handler takes the appropriate corrective action and execution continues.
If it cannot correct the condition, the handler may resignal the condition.
That is, it may request that another condition handler, associated with an
earlier program unit in the call stack, attempt to process the exception.

Condition reporting performed by handlers can involve one or more of the
following actions:

• Maintaining a count of exceptions encountered during program
execution.

• Signaling the same condition again (that is, resignaling) in order to
send the appropriate message to your terminal or log file.

• Changing the severity field of the condition value and resignaling the
condition.

• Signaling a different condition, for example, to produce a message ap-
propriate to a specific application. (The condition handler must estab-
lish the application-specific condition handler using LIB$ESTABLISH
and then signal the condition using LIB$SIGNAL.)

Condition-Handling Facilities 9-13

Execution can be affected in a number of ways, such as:

• Continuing from the point of exception. However, if the signal was
issued by means of a call to LIB$STOP, the program exits.

• Returning control (unwinding) to the program unit that established the
handler. Execution resumes at the point of the call that resulted in the
exception. The handler establishes the function value to be returned
by the called procedure.

• Returning control (unwinding) to the establisher's caller (that is, to
the program unit that called the program unit that established the
handler). The handler establishes the function value to be returned by
the program unit that established the handler.

See Section 9.1.3.3 for information about returning from condition
handlers.

9.1.3.2 Coding Requirements of Condition Handlers

A VAX FORTRAN condition handler is an INTEGER*4 function that has
two argument arrays passed to it by the CHF. To meet these requirements,
you could define a condition handler as follows:

INTEGER*4 FUNCTION HANDLER(SIGARGS,MECHARGS)
INTEGER*4 SIGARGS(*), MECHARGS(5)

The CHF creates the signal and mechanism argument arrays SIGARGS
and MECHARGS and passes them to the condition handler.

The array SIGARGS is used by condition handlers to obtain information
passed as arguments in the LIB$SIGNAL or LIB$STOP signal call. The
contents of SIGARGS are as follows:

Array Element Contents

SIGARGS(1) Argument count

SIGARGS(2) Condition code

SIGARGS(3 to n-1) Zero or more additional arguments

SIGARGS(n) PC (program counter)

SIGARGS(n+1) PSL (processor status longword)

9-14 Condition-Handling Facilities

lJ

~,J

• The first array element, SIGARGS(1), indicates how many additional
arguments are being passed in this array. The count does not include
this first element.

• The second element, SIGARGS(2), indicates the signaled condition
(condition value) specified by the call to LIB$SIGNAL or LIB$STOP.
If more than one message is associated with the exception condition,
the condition value in SIGARGS(2) belongs to the first message. See
Section 9.1.2.3 for a discussion of condition values.

• The third element, SIGARGS(3), is the message description for the
message associated with the condition code in SIGARGS(2). The
format of the message description varies depending on the type of
message being signaled. For more information, see the SYS$PUTMSG
description in the VMS System Services Reference Manual.

Additional arguments, SIGARGS(n-1), may be specified in the call to
LIB$SIGNAL or LIB$STOP (see Section 9.1.2.2).

• The second-to-last element, SIGARGS(n), contains the value of the
program counter (PC).

If the condition that caused the signal was a fault (occurring during
the instruction's execution), the PC contains the address of the call
instruction that signaled the condition code.

If the condition that caused the signal was a trap (occurring at the
end of the instruction), the PC contains the address of the instruction
following the call that signaled the condition code.

See Section 9.1.4.5 for additional information about faults and traps.

• The last element, SIGARGS(n+1), reflects the value of the processor
status longword (PSL) at the time the signal was issued.

A condition handler is usually written in anticipation of a particular
condition code or set of condition codes. Because handlers are invoked
as a result of any signaled condition code, you should begin your handler
routine by comparing the condition code passed to the handler (element 2
of SIGARGS) against the condition codes expected by the handler. If the
signaled condition code is not an expected code, you should resignal the
condition code by equating the function value of the handler to the global
symbol SS$_RESIGNAL (see Section 9.1.3.3).

Condition-Handling Facilities 9-15

The array MECHARGS is used to obtain information about the procedure
activation of the program unit that established the condition handler.
MECHARGS is a 5-element array; its values are defined as follows:

Array Element Contents

MECHARGS(1) Argument count

MECHARGS(2) Establisher

MECHARGS(3) Call depth

MECHARGS(4) Function value (RO)

MECHARGS(5) R1

• MECHARGS(1) contains the argument count of this array, not includ-
ing this first element (that is, the value 4).

• MECHARGS(2) contains the address of the call frame for the program
unit that established the handler.

• MECHARGS(3) contains the number of calls made between the
program unit that established the handler and the program unit that
signaled the condition code.

• MECHARGS(4) and MECHARGS(5) contain the values of registers RO
and R 1 at the time of the signal. When execution continues or when a
stack unwind occurs, these values are restored to RO and R1.

By changing these register values, a handler performing an un-
wind can alter the function value returned to a program unit (see
Section 9.1.3.3 for details about an unwind operation).

Inside a condition handler, you can use any other variables that you
need to use. If they are shared with other program units (for example,
in common blocks), make sure that they are declared volatile. This will
ensure that compiler optimizations do not invalidate the handler actions.
See Section 11.3.2.2 and the VAX FORTRAN Language Reference Manual
for more information on the VOLATILE statement.

9-16 Condition-Handling Facilities

9.1.3.3 Returning from a Condition Handler

One way that condition handlers control subsequent execution is by
specifying a function return value. Function return values and their effects
are defined in Table 9-3.

Table 9-3: Condition-Handler Function Return Values
Symbolic Values Effects

SS$_CONTINUE

SS$_RESIGNAL

If you eyuate the function value of the condition
handler to SS$_CONTINUE, the handler returns
control to the program unit at the statement that
signaled the condition (fault) or the statement
following the one that signaled the condition (trap).
(The effects of faults and traps are described in
Section 9.1.4.5.)

If you equate the function value of the condition
handler to SS$_RESIGNAL or do not specify a
function value (function value of zero), the CHF will
search for another condition handler in the call stack.
If you modify SIGARGS or MECHARGS before
resignaling, the modified arrays are passed to the
next handler.

Alternatively, a condition handler can request a call stack unwind by
calling SYS$UNWIND before returning. Unwinding the call stack removes
call frames, starting with the call frame for the program unit in which the
condition occurred, and returns control to an earlier program unit in
the current calling sequence. In this case, any function return values
established by condition handlers are ignored by the CHF.

You can unwind the call stack whether the condition was detected by
hardware or signaled by means of LIB$SIGNAL or LIB$STOP. Unwinding
is the only way to continue execution after a call to LIB$STOP.

A stack unwind is typically made to one of two places:

• To the establisher of the condition handler that issues the
SYS$UNWIND. To do this, you pass the call depth (third ele-
ment of the MECHARGS array) as the first argument in the call to
SYS$UNWIND. Do not specify a second argument. For example:

CALL SYS$UNWIND(MECHARGS(3) ,)

Control returns to the establisher and execution resumes at the point
of the call that resulted in the exception.

Condition-Handling Facilities 9-17

• To the establisher's caller. To do this, do not specify any arguments in
the call to SYS$UNWIND. For example:

CALL SYS$UNWIND(,)

Control returns to the program unit that called the establisher of the
condition handler that issues the call to SYS$UNWIND.

The actual stack unwind is not performed immediately after the condition
handler issues the call to SYS$UNWIND. It occurs when a condition
handler returns control to the CHF.

During the actual unwinding of the call stack, SYS$UNWIND examines
each frame in the call stack to determine whether a condition handler
was declared. If a handler was declared, SYS$UNWIND calls the handler
with the condition value SS_$UNWIND (indicating that the stack is being
unwound) in the condition name argument of the signal array. When a
condition handler is called with this condition value, that handler can
perform any procedure-specific clean-up operations that may be required.
After the condition handler returns, the call frame is removed form the
stack.

Section 9.1.5 contains an example of the use of SYS$UNWIND.

9.1.4 Use of SIB$ Routines as Condition Handlers

In addition to the routines described previously in this section
(LIB$ESTABLISH, LIB$REVERT, LIB$SIGNAL, and LIB$STOP), the
Run-Time Library contains the following routines for use by condition
handling routines or for use as condition handlers:

• Routines to enable or disable signaling of hardware exceptions:

LIB$DEC_OVER Enables or disables signaling of decimal overflow

LIB$FLT_UNDER Enables or disables signaling of floating-point
underflow

LIB$INT_OVER Enables or disables signaling of integer overflow

9-1 S Condition-Handling Facilities

• Routines for use as condition handling routines:

LIB$FIXUP_FLT Changes floating-point reserved operand to a
specified value

LIB$MATCH_COND Matches condition value

LIB$SIG _TO_RET Converts any signal to return status

LIB$SIG_TO_STOP Converts a signaled condition to a condition that
cannot be stopped

LIB$SIM _TRAP Simulates afloating-point trap

The sections that follow give details on the preceding routines.

9.1.4.1 Overflow/underflow Detection Enabling Routines

You can use the following VAX FORTRAN Run-Time Library routines
to enable or disable the signaling of decimal overflow, floating-point
underflow, and integer overflow:

• LIB$DEC_OVER enables or disables the reporting of decimal
overflow.

• LIB$FLT_UNDER enables or disables the reporting of floating-point
underflow.

• LIB$INT_OVER enables or disables the reporting of integer overflow.

You cannot disable the signaling of integer divide-by-zero, floating-point
overflow, and floating-point or decimal divide-by-zero.

When the signaling of a hardware condition is enabled, the occurrence of
the exception condition results in a severe error. When the signaling of a
hardware condition is disabled, the occurrence of the condition is ignored
and the processor executes the next instruction in the sequence.

Each of the LIBDEC_OVER, LIBFLT_UNDER, and LIB$INT_OVER
routines takes a single argument. The argument passed is the address
of a BYTE value containing the setting you want to establish for decimal
overflow, floating-point underflow, or integer overflow, respectively. Bit 0
set to 1 means enable; bit 0 set to 0 means disable.

Options relating to the processing of floating-point underflow exceptions
are described at length in the next section.

Condition-Handling Facilities 9-19

9.1.4.2 Floating Underflow Exceptions

VAX FORTRAN, by default, does not enable underflow exceptions. If the
result of an operation is smaller than the smallest representable floating-
point number, the result is set to zero, program execution continues, and
no error message is given.

VAX FORTRAN does, however, provide the facilities for reporting and
processing underflow exceptions. You can enable underflow exceptions for
all or part of a routine, and you can either choose VAX FORTRAN default
processing or provide auser-written handler. These options are discussed
under the headings that follow:

Specifying CHECK=UNDERFLOW

When you specify the /CHECK=UNDERFLOW option on either the
FORTRAN command line or an OPTIONS statement, the compiler takes
two actions:

• For subprograms and main programs, it generates code to enable
underflow exceptions at the beginning of each routine.

• For main programs only, it causes the FORTRAN-specific condition
handler FOR$UNDERFLOW_HANDLER to become established at run
time in a call frame preceding the main program's call frame.

If an operation in the main program or subprogram underflows and it
is not processed by another handler, FOR$UNDERFLOW_HANDLER
assumes control and performs the following actions:

1. Increments a count of the number of underflows

2. Changes an underflow fault to an underflow trap

3. Prints an error message and generates a traceback for the first two
underflows

4. Stores a zero in the result

5. Continues program execution

When the program exits, an informational message is printed, giving the
total number of underflows generated by the program.

If the main program is not written in FORTRAN or if it is not compiled
with the /CHECK=UNDERFLOW option, a system default handler, not
FOR$UNDERFLOW_HANDLER, assumes control when an underflow
exception occurs. It prints a traceback listing and terminates the program
execution.

9-20 Condition-Handling Facilities

Establishing a Handler for Underflow

If you wish to handle underflow in a manner different from FOR$UNDERFLOW_
HANDLER, you can establish a user handler (see Section 9.1.4.5). The
user-established handler assumes control before the default handler
(because the default handler is established in a frame above the main
program). The user program thus has complete control over how the
exception is processed.

Note that when you write a handler for floating underflow, you must be
careful to account for both faults and traps (refer to Section 9.1.4.5).

In some cases, it is not possible to compile the main program with the
/CHECK=UNDERFLOW option, for example, when the main program
is not written in FORTRAN. Given these circumstances, if you would
like to have the behavior of FOR$UNDERFLOW_HANDLER in effect for
underflow exceptions, you could use the following code in any FORTRAN
routine in your application program to establish FOR$UNDERFLOW_
HANDLER explicitly:

EXTERNAL FOR$UNDERFLOW_HANDLER
CALL LIB$ESTABLISH(FOR$UNDERFLOW_HANDLER)

Any combination of routines in a program can establish FOR$UNDERFLOW_
HANDLER without interfering with the proper behavior of the handler.
However, make sure that you establish the handler before the occurrence
of any operations that could cause underflow.

Enabling and Disabling Underflow Exceptions

You can enable or disable underflow exceptions for parts of a routine by
invoking the routine LIB$FLT_UNDER as a function. LIB$FLT_UNDER
takes one argument: to enable underflow in the current routine, specify 1;
to disable underflow in the current routine, specify 0.

9.1.4.3 Floating Reserved Operand Faults

Certain errors resulting from floating-point operations generate special
values, called floating reserved operands. Errors that occur in math library
procedures and the floating overflow or division-by-zero traps are primary
examples of conditions that produce floating reserved operands.

A floating reserved operand has a sign bit of 1 and an exponent of 0.
A floating reserved operand fault occurs when a VAX floating-point
instruction retrieves a floating reserved operand. To continue program
execution after this fault, you must provide a condition handler that
changes the reserved operand to a nonreserved value and restarts the

Condition-Handling Facilities 9-21

instruction. As with other faults, if you restart the instruction without first
correcting the condition, you create an infinite loop of faults.

You can use the routine LIB$FIXUP_FLT to replace a reserved operand
with a new value and restart the instruction. This procedure can be either
established as a condition handler or called from auser-written condition
handler:

• The following statements establish LIB$FIXUP_FLT as a condition
handler:

EXTERNAL LIB$FIXUP_FLT
CALL LIB$ESTABLISH(LIB$FIXUP_FLT)

By default, the procedure replaces the reserved operand with a zero
value and continues program execution.

• The following statements invoke LIB$FIXUP_FLT from auser-written
condition handler:

INTEGER*4 FUNCTION HANDLER(SIGARGS, MECHARGS)
INTEGER*4 SIGARGS(*), MECHARGS (5)
HANDLER = LIB$FIXUP_FLT(SIGARGS, MECHARGS, 1.OE0)
RETURN
END

This user-written condition handler returns the success or failure sta-
tus value returned by LIB$FIXUP_FLT. If the correction is successful,
execution continues; if not, the condition is resignaled. The third
argument to LIB$FIXUP_FLT is optional and explicitly specifies the re-
served operand replacement value; it must be a REAL*4 value. If you
omit this argument, however, LIB$FIXUP_FLT automatically supplies
a value of zero. (See Section 10.5.1.1 for additional information on
floating-point reserved operands.)

9.1.4.4 Matching Condition Values to Determine Program Behavior

In many condition-handling situations, you may want to respond to an
exception condition regardless of the value of the severity code passed
in the condition value. To ignore the severity and control fields of a
condition value, use the LIB$MATCH _COND routine as a function in the
following form:

index =LIB$MATCH_COND(SIGARGS (2) ,con-1, . . .con-n)

9-22 Condition-Handling Facilities

index
Is an integer variable that is assigned a value for use in a subsequent
computed GOTO statement.

con
Is a condition value.

The LIB$MATCH_COND function compares bits 27:3 of the value in
SIGARGS(2) with bits 27:3 of each specified condition value. If it finds a
match, the function assigns the index value according to the position of
the matching condition value in the list. That is, if the match is with the
third condition value following SIGARGS(2), then index = 3. If no match
is found, index = 0. The value of the index can then be used to transfer
control, as in the following example:

INTEGER*4 FUNCTION HANDL(SIGARGS,MECHARGS)
INCLUDE '($FORDEF)'
INTEGER*4 SIGARGS(*), MECHARGS(5)

INDEX=LIB$MATCH_COND(SIGARGS (2),FOR$_FILNOTFOU,
1 FOR$_NO_SUCDEV,FOR$_FILNAMSPE,FOR$_OPEFAI)

GO TO (100,200,300,400), INDEX
HANDL=SS$_RESIGNAL
RETURN

If no match is found between the condition value in SIGARGS(2) and
any of the values in the list, then INDEX = 0, and control transfers to the
next executable statement after the computed GOTO. A match with any
of the values in the list transfers control to the corresponding statement
in the GOTO list. Thus, if SIGARGS(2) matches FOR$_OPEFAI, control
transfers to statement 400. Note the use of condition symbols to represent
condition values. Refer to Table 5-1 for a list of the FORTRAN-related
condition symbols and their meanings.

Condition-Handling Facilities 9-23

9.1.4.5 Converting Faults and Traps

You can have your program signal a condition by calling LIB$SIGNAL
or LIB$STOP directly, as described in Section 9.1.2.2. However, most
conditions are signaled on behalf of your program by the system hardware
or software in response to a system event. These conditions are processed
by the CHF and handled in the same way as calls to LIB$SIGNAL and
LIB$STOP. This section describes some of the system events that signal
conditions on behalf of your program.

If a VAX processor detects an error while executing a machine instruction,
it can take one of two actions.

• The first action, called a fault, preserves the contents of registers and
memory in a consistent state so that the instruction can be restarted.

• The second action, called a trap, completes the instruction, but with a
predefined result. For example, if an integer overflow trap occurs, the
result is the correct low-order part of the true value.

The action taken when an exception occurs depends upon the type of
exception. For example, faults are taken for access violations and for
detection of a floating reserved operand. Traps are taken for integer
overflow and for integer divide-by-zero exceptions. However, when a
floating overflow, floating underflow, or floating divide-by-zero exception
occurs, the action taken depends upon which type of VAX processor is
executing the instruction.

• Early versions of the VAX-11/780 processor trap when these errors
occur. For floating overflow or divide-by-zero, a floating reserved
operand is stored in the destination; for floating underflow, a zero is
stored in the destination. (Note that most of these processors have
been updated and now assume the error-handling behaviors of newer
processors.)

• All other VAX processors fault on these exceptions, allowing the error
to be corrected and the instruction restarted.

If a program that expects floating traps runs on a VAX processor that
faults, execution may continue incorrectly. For example, if a condition
handler merely causes execution to continue after a floating trap, a re-
served operand is stored and the next instruction is executed. However,
the same handler used on a processor that faults causes an infinite loop of
faults because it restarts the erroneous instruction. Therefore, you should
write floating-point exception handlers that take the appropriate actions
for both faults and traps.

9-24 Condition-Handling Facilities

Separate sets of condition values are signaled by the processor for faults
and traps. Exceptions and their condition code names are as follows:

Exception Fault Trap

Floating overflow SS$_FLTOVF_F SS$_FLTOVF

Floating underflow SS$_FLTUND_F SS$_FLTUND

Floating divide-by-zero SS$_FLTDIV_F SS$_FLTDIV

To convert afloating-point fault to a floating-point trap, you can use
the LIB$SIM_TRAP routine either as a condition handler or as a called
routine from auser-written handler.

The arguments passed to LIB$SIM _TRAP are as follows:

LIB$SIM_TRAP (sig-args,mch-args)

sig-args
Contains the address of the signal argument array (see Section 9.1.3.2).

mch-args
Contains the address of the mechanism argument array (see Section 9.1.3.2).

LIB$SIM_TRAP simulates afloating-point fault as if a floating-point trap
had occurred and sets the PC to point to the instruction after the one that
caused the exception condition. Thus, it enables your program to continue
execution without resolving the original condition. LIB$SIM _TRAP
intercepts only floating-point overflow, underflow, and divide-by-zero
faults.

Note that the PDP-11 FORTRAN compatibility error-processing routines
ERRSET and ERRTST implicitly enable LIB$SIM _TRAP so that faults are
converted to traps.

Condition-Handling Facilities 9-25

9.1.4.6 Changing a Signal to a Return Status '"

When it is preferable to detect errors by signaling, but the calling proce- ~,
dure expects a returned status, LIB$SIG _TO_RET may be used by the I,
procedure that signals. LIB$SIG _TO_RET is a condition handler that
converts any signaled condition to a return status. The status is returned ~~~
to the caller of the procedure that established LIB$SIG _TO_RET. '~

The arguments for LIB$SIG _TO_RET are the same as those passed to ~~
LIB$SIM_TRAP (see Section 9.1.4.5). '~

You can establish LIB$SIG_TO_RET as a condition handler b s ecif in i' Y p Y g
it in a call to LIB$ESTABLISH. You can also establish it by calling it from
a user-written condition handler. If LIB$SIG_TO_RET is called from a 'I
condition handler, the signaled condition is returned as a function value
to the caller of the establisher of that handler when the handler returns to ~'i
the CHF. When a signaled exception condition occurs, LIB$SIG _TO_RET
procedure does the following: ~~

• Places the signaled condition value in the image of RO that is saved as ~'
part of the mechanism argument vector.

• Calls the unwinds stem service ($UNWIND) with the default argu- I',Y
meets. After returning from LIB$SIG_TO_RET (when it is established ~
as a condition handler) or after returning from the condition handler
that called LIB$SIG _TO_RET (when LIB$SIG _TO_RET is called
from within a condition handler), the stack is unwound to the caller of
the procedure that established the handler.

Your calling procedure is then able to test R0, as if the called procedure
had returned a status, and specify an error recovery action.

9.1.4.7 Changing a Signal to a Stop

The routine LIB$SIG_TO_STOP causes a signal to appear as though it
had been signaled by a call to LIB$STOP. LIB$SIG _TO_STOP can be
established as a condition handler or called from within auser-written
condition handler.

The argument that you passed to LIB$STOP is a 4-byte condition value
(see Section 9.1.2.3). The argument must be passed using the %VAL
argument-passing mechanism.

When a signal is generated by LIB$STOP, the severity code is forced to
severe and control cannot be returned to the procedure that signaled the
condition.

9-26 Condition-Handling Facilities

9.1.5 Condition I~landler Examples

The examples in this section demonstrate the use of condition handlers in
typical FORTRAN procedures.

Example 1:

The following example uses a matrix inversion procedure, with the logical
function name INVERT, to indicate the success or failure of the procedure.
That is, if the matrix can be inverted, INVERT returns the .TRUE. logical
value. If the matrix is singular, INVERT returns the .FALSE. logical value.
During execution of the matrix inversion procedure, a floating overflow
or divide-by-zero exception may occur. A condition handler (HANDL) is
provided to recover from these exceptions and return the value .FALSE.
to the calling program. Note that the condition handler is defined as an
INTEGER*4 function.

LOGICAL FUNCTION INVERT (A,N)
DIMENSION A(N,N)
EXTERNAL HANDL
CALL LIB$ESTABLISH(HANDL)
INVERT = .TRUE.

!INVERT THE MATRIX

RETURN
END

! ESTABLISH HANDLER
! ASSUME SUCCESS

INTEGER*4 FUNCTION HANDL(SIGARGS, MECHARGS)
INTEGER*4 SIGARGS(*), MECHARGS(5)
INCLUDE '($SSDEF)'
HANDL = SS$_RESIGNAL ! ASSUME RESIGNAL

IF (LIB$MATCH_COND(SIGARGS(2),
1 SS$_FLTOVF,SS$_FLTOVF_F,SS$_FLTDIV,SS$_FLTDIV_F) .NE. 0) THEN

MECHARGS(4) _ .FALSE.
CALL SYS$UNWIND(,)

END IF

RETURN
END

If an exception occurs during the execution of INVERT, the condition
handler (HANDL) is called. The handler must first determine whether
it can deal with the signaled condition and therefore tests the condition
value (SIGARGS(2)).

Condition-Handling Facilities 9-27

If the condition is floating overflow or floating division-by-zero, the
condition handler uses tl-►e unwind procedure to force a return to the
procedure that called INVERT. The logical value .FALSE. is stored in the
saved RO element of the mechanism vector (MECHARGS(4)). This value
is used as the function value for INVERT when the unwind occurs. The
handler calls SYS$UNWIND and returns; the condition handling facility
then gets control and actually performs the unwind operation. Note that
the function value from the user-written condition handler (HANDL =
SS$_RESIGNAL) is ignored if SYS$UNWIND is called.

If the exception condition is not a floating overflow or division-by-zero,
the condition handler returns a value of SS$_RESIGNAL, indicating that
it is unable to deal directly with the condition. The immediately preceding
procedure activation is then checked for a condition handler, continuing
until an established condition handler or the default condition handler is
reached.

Example 2:

This example of a condition handler processes the conditions MTH$_
FLOOVEMAT and MTH$_FLOUNDMAT. The purpose of the condition
handler is to modify the value returned by the math run-time library
from the default value (floating reserved operand -0.0) to the largest
representable floating-point value, and to suppress the printing of an error
message.

C MAIN PROGRAM

EXTERNAL HDLR
CALL LIB$ESTABLISH (HDI~R)

X = EXP (Y)

END

INTEGER*4 FUNCTION HDLR (SIGARGS,MECHARGS)
INTEGER*4 SIGARGS(*), MECHARGS(5)
INCLUDE '($SSDEF)'
INCLUDE '($MTHDEF)'

IF (SIGARGS (2) .EQ. MTH$_FLOOVEMAT) THEN
MECHARGS(4) _ 'FFFF7FFF'X
MECHARGS(5) _ 'FFFFFFFF'X
HDLR = SS$_CONTINUE

ELSE
HDLR = SS$_RESIGNAL

END IF

RETURN
END

9-28 Condition-Handling Facilities

When an exception condition occurs, HDLR is called, and it compares the
condition value (SIGARGS(2)) with MTH$_FLOOVEMAT. If the condition
is not MTH$_FLOOVEMAT, then SS$_RESIGNAL is returned, and the
preceding procedure activations are searched for an established handler.

The recovery technique used in HDLR depends upon a particular coding
convention used in mathematical procedures in the Run-Time Library. If
an error is detected in a math library procedure, the following steps are
performed:

1. A default function value is stored in registers RO and R1. Typically,
this is the floating reserved operand, -0.0.

2. An exception condition is signaled by calling LIB$SIGNAL. The
contents of registers RO and R1 are preserved in the mechanism vector
(MECHARGS(4), MECHARGS(5)).

3. The value in registers RO and R1 that exists following the signal is
stored as the function value.

If the condition is MTH$_FLOOVEMAT, HDLR stores the largest repre-
sentable floating-point value in the saved RO and R1 elements of array
MECHARGS. HDLR returns the function value SS$_CONTINUE, arld
execution continues in the math library procedure. No error message is
printed. The values in MECHARGS(4) and MECHARGS(5) are restored
to RO and R1 by the condition handling facility; they are then returned as
the function value by the math library procedure.

Example 3:

This example of a condition handler determines the reason for a system
service failure. The condition handler only handles one type of exception,
namely, system service failures. All other exceptions are resignaled, al-
lowing them to be handled by the system default handlers. This condition
handler is useful because the system traceback handler only indicates
that a system service failure occurred, not which specific error caused the
failure.

Condition-Handling Facilities 9-29

Source Program:

C SSCOND.FOR
C
C This program defines and establishes its own

C condition handling routine to handle system service
C f ailures.
C

IMPLICIT INTEGER*4 (A-Z)
EXTERNAL SSHAND

C
C Establish condition handler
C

CALL LIB$ESTABLISH (SSHAND)

TYPE *, 'Handler established.'
C
C Enable system service failure mode
G

CALL SYS$SETSFM (%VAL(1)) Q
C
C Generate a bad system service call
C

CALL SYS$QIOW()
C

END
C

IPJTEGER*4 FUNCTION SSHAND (SIGARGS, MECHARGS) O
C
C This routine is to be used as a condition handler
C f.or system service failures.
C

IMPLICIT INTEGER*4 (A-Z)
INTEGER*4 SIGARGS(*), MECHARGS(5)
INTEGER*2 MSGLEN
CHARACTER*120 ERRMSG
INCLUDE '($SSDEF)'

C
C
C

C
C
C

1

C

C
C

If not system service fail, resignal

IF (SIGARGS(2) .NE. SS$_SSFAIL) THEN
SSHAND= SS$_RESIGNAL

If system service failure

ELSE

9-30 Condition-Handling Facilities

STAT=SYS$GETMSG(%VAL(SIGARGS(3)), MSGLEN,
ERRMSG „) Q

IF (.NOT. STAT) CALL LIB$STOP(%VAL(STAT))

TYPE *, 'System service call failed with error:'
TYPE *, ERRMSG(1:MSGLEN)

This is where the handler would perform

C
C

C
ENDIF

RETURN
END

corrective measures.

SSHAND = SS$_RESIGNAL

Program Output:

$RUN SSCOND
Handler established
System service call failed with error: Q
%SYSTEM-F-IVCHAN, invalid I/O channel
%SYSTEM-F-SSFAIL, system service failure exception, status=0000013C,
PC=7FFEDE06, PSL=03C00000
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line relative PC absolute PC

7FFEDE06 7FFEDE06
SSCOND$MAIN SSCOND$MAIN 23 00000038 0000063E

Notes to Example 3:

O LIB$ESTABLISH is used by the main program to establish the condi-
tion handler SSHAND.

© System service failure mode is enabled so errors in system service
calls will initiate a search for a condition handler. The system service
$SETSFM allows system service errors to be signaled. Therefore, the
program need not check error status after each system service call.
The condition handler can respond to all errors generated by system
service calls.

© A system service error is generated by not specifying any arguments to
$QIOW. The LIB$SIGNAL routine could also be used here to generate
any exception condition name to test the condition handier.

D SSHAND is declared as an INTEGER*4 function in order to enable it
to return a status code in R0.

© The signal and mechanism arrays must be dimensioned. Notice that
the mechanism array always contains five elements, but the signal
array varies according to the number of additional arguments.

O The handler checks the error condition to determine whether it is
one of the conditions that it can handle. The LIB$MATCH_COND
routine would be useful here if the routine wanted to check for one of
a collection of conditions. The condition handler should always test

Condition-Handling Facilities 9-31

for specific errors, and handle only those errors for which it is written. ~"'~
Other errors should simply be resignaled. ~,

O The $GETMSG system service is used to translate the error code into I,
the associated error message.

If the routine did not remedy the exception condition, it will return ~~~
with a value of SS$_RESIGNAL. ~,

O Output from user-written condition handling routine.

m Output from the system-defined condition handlers.

t.l

9-32 Condition-Handling Facilities

Chapter 10

VAX FORTRAN Implementation Notes

This chapter discusses aspects of the relationship between the VAX
FORTRAN language and its implementation on the VAX system. The
purpose is to provide insights that will allow you to use VAX FORTRAN
in a way that makes the best use of its features. The following topics are
addressed:

• Program sections

• Storage allocation

• DO loops

• ENTRY statement arguments

• Floating-point data representation

VAX FORTRAN calling conventions are treated separately in Chapter 6.

10.1 UAX FORTRAN Program Section Usage

The storage required by a VAX FORTRAN program unit is allocated in
contiguous areas called program sections (PSECTs). The VAX FORTRAN
compiler implicitly declares three PSECTs:

$CODE Contains all executable code.

$PDATA — Contains read-only data (for example, constants).

$LOCAL Contains read/write data that is local to the program unit.

VAX FORTRAN Implementation Notes 10-1

In addition, each common block you declare causes allocation of a PSECT
with the same name as the common block. (The unnamed common block
PSECT is named $BLANK.) Memory allocation and sharing are controlled
by the linker according to the attributes of each PSECT; PSECT names
and attributes are listed in Table 10-1.

Each module in your program is named according to the name specified in
the PROGRAM, BLOCK DATA, FUNCTION, or SUBROUTINE statement
used in creating the module. The defaults applied to PROGRAM and
BLOCK DATA statements are source-file-name$MAIN and source-file-
name$DATA, respectively.

Table 10-1: PSECT Names and Attributes
PSECT
Name Use Attributes

$CODE Executable code

$PDATA Read-only data: literals,
read-only FORMAT
statements

$LOCAL Read/write data local
to the program unit:
user local variables,
compiler temporary
variables, argument
lists, and descriptors

$BLANK Blank common block

names Named common blocks

PIC, CON, REL, LCL, SHR, EXE, RD, NOWRT,
LONG

PIC, CON, REL, LCL, SHR, NOEXE, RD, NOWRT,
LONG

PIC, CON, REL, LCL, NOSHR, NOEXE, RD, WRT,
LONG

PIC, OVR, REL, GBL, SHR, NOEXE, RD, WRT,
LONG

PIC, OVR, REL, GBL, SHR, NOEXE, RD, WRT,
LONG

You can use the CDEC$ PSECT directive to change some of the attributes
of a common block. See the VAX FORTRAN Language Reference Manual
for information on the CDEC$ PSECT compiler directive statement.
Table 10-2 describes the meanings of VAX FORTRAN PSECT attributes.

10-2 VAX FORTRAN Implementation Notes

lJ

Table 10-2: VAX FORTRAN PSECT Attributes
Attribute Meaning

PIC/NOPIC Position independent or position dependent

CON/OVR Concatenated or overlaid

REL/ABS Relocatable or absolute

GBL/LCL Global or local scope

SHR/NOSHR Shareable or nonshareable

EXE/NOEXE Executable or nonexecutable

RD/NORD Readable or nonreadable

WRT/NOWRT Writable or nonwritable

LONG/QUAD Longword or quadword alignment

When the linker constructs an executable image, it divides the executable
image into sections. Each image section contains PSECTs that have
the same attributes. By arranging image sections according to PSECT
attributes, the linker is able to control memory allocation. The linker
allows you to allocate memory to your own specification by means of
commands you include in an options file that is input to the linker. The
options file is described in the VMS Linker Utility Manual.

10.2 Storage Allocation and Fixed-Point Data Types

The default storage unit for VAX FORTRAN is the longword (four bytes).
A storage unit is the amount of memory needed to store a REAL*4,
LOGICAL*4, or INTEGER*4 value. REAL*8 and COMPLEX*8 values
are stored in two successive storage units; REAL* 16 and COMPLEX* 16
are stored in four successive units. These relative sizes must be taken
into account when you associate two or more variables through an
EQUIVALENCE or COMMON statement or by argument association.

You can, however, declare integer and logical variables as 2-byte values
to save space, to receive system service output values, or to be compatible
with PDP-11 FORTRAN. Either specify the /NOI4 qualifier on the
FORTRAN command line or explicitly declare a variable as INTEGER*2
or LOGICAL*2. This allows you to take advantage of the VAX processor's
ability to manipulate both 16- and 32-bit data efficiently.

VAX FORTRAN Implementation Notes 10-3

10.2.1 Integer Data Types

VAX FORTRAN supports INTEGER*2 and INTEGER*4 data types, which
occupy two and four bytes of storage, respectively. The types can be
mixed in computations; such mixed-type computations are carried out to
32 bits of significance and produce INTEGER*4 results.

If you do not override the default storage allocation with the /NOI4
qualifier, four bytes are allocated for integer values.

10.2.1.1 Relationship of INTEGER~2 and INTEGER*4 Values

INTEGER*2 values are stored as signed binary numbers in twos comple-
ment and they occupy two bytes of storage. INTEGER*4 values are also
stored as signed binary numbers in twos complement, but they occupy
four bytes of storage. The lower addressed word of an INTEGER*4 value
contains the low-order part of the value.

INTEGER*2 values are a subset of INTEGER*4 values. That is, an
INTEGER*4 value in the range -32768 to 32767 can be treated as an
INTEGER*2 value. Conversion from INTEGER*4 to INTEGER*2 (without
checks for overflow) consists of simply ignoring the high-order 16 bits
of the INTEGER*4 value. This type of conversion provides an important
VAX FORTRAN usage, as shown in the following example:

CALL SUB(2)

By providing an INTEGER*4 constant as the actual argument, SUB exe-
cutes correctly even if its dummy argument is typed as INTEGER*2.

10.2.1.2 Integer Constant Typing

Integer constants are generally typed according to the magnitude of the
constant. In most contexts, INTEGER*2 and INTEGER*4 variables and
integer constants can be freely mixed. You are responsible, however,
for preventing integer overflow conditions like those in the following
example:

INTEGER*2 I
INTEGER*4 J
I = 32767
J = I + 3

10-4 VAX FORTRAN Implementation Notes

In this example, I and 3 are INTEGER*2 values, and an INTEGER*2
result is computed. The 16-bit addition, however, will overflow the valid
INTEGER*2 range and be treated as -32766. This value is converted to
INTEGER*4 type and assigned to J. The overflow will be detected and
reported if the default /CHECK=OVERFLOW qualifier is specified when
the program unit is compiled.

Contrast the preceding example with the following apparently equivalent
program, which produces different results:

INTEGER*2 I
INTEGER*4 J
PARAMETER (I=32767)
J = I + 3

In this case, the compiler performs the addition of the constant 3 and
the parameter constant 32767, producing a constant result of 32770. The
compiler recognizes this as an INTEGER*4 value. Thus, J is assigned the
value 32770.

10.2.1.3 Integer-Valued Intrinsic Functions

A number of the intrinsic functions provided by VAX FORTRAN produce
integer results from real arguments (for example, INT). (See the VAX
FORTRAN Language Reference Manual for more information on intrinsic
functions.) In order to support such functions in a manner compatible
with both INTEGER*2 and INTEGER*4 modes, two versions of these
integer-valued intrinsic functions are supplied. The compiler chooses the
version that matches the /I4 qualifier setting on the FORTRAN command
line, that is, /I4 or /NOI4. This process is similar to generic function
selection except that the selection is based on the mode of the compiler,
rather than on the argument data type.

In some cases, you may need to use the version of an integer-valued
intrinsic function that is the opposite of the compiler qualifier setting.
For this reason, a pair of additional intrinsic function names are pro-
vided for each standard integer-valued intrinsic function. The names
of the INTEGER*2 versions are prefixed with I, and the names of the
INTEGER*4 versions with J (for example, IIABS and JIABS).

VAX FORTRAN Implementation Notes 10-5

10.2.2 BYTE LOGICAL* 1) Data Type

VAX FORTRAN's BYTE data type lets you take advantage of the byte-
processing capabilities of the VAX processor. BYTE, or LOGICAL* 1, is
a signed integer data type and is useful for storing and manipulating
Hollerith data.

In general, when different data types are used in a binary operation,
the lower-ranked type is converted to the higher-ranked type prior to
computation. (Data type rank is discussed in the VAX FORTRAN Language
Reference Manual.) However, in the case of a byte variable and an integer
constant in the range representable as a byte variable (-128 to 127), the
integer constant is treated as a byte constant; and the result is also of
BYTE data type.

10.2.3 Zero-Extend Intrinsic Functions f or Converting Data Types

VAX FORTRAN normally converts a smaller fixed-point data type to a
larger fixed-point data type by sign-extending the smaller value. This
means that the high-order bits of the larger data type are set to the same
value as the sign bit of the smaller data type. Thus, if you are converting
a BYTE value to an INTEGER*4 value, the bits of the three high-order
bytes of the INTEGER*4 value are set to the same value as the sign bit of
the BYTE value. Generic and specific conversion functions are provided
with VAX FORTRAN:

• The generic function ZEXT allows you to zero-extend, instead of sign-
extend, avalue to either INTEGER*2 or INTEGER*4, depending on
the setting of the /I4 qualifier in the FORTRAN command line. This
means that the high-order bits of the larger data type are set to zero,
rather than to the sign bit of the smaller data type.

• The specific functions IZEXT and JZEXT zero-extend a value to either
INTEGER*2 or INTEGER*4, respectively. The argument to IZEXT
can be any fixed-point data type that occupies one or two bytes of
storage, and the argument to JZEXT can be any fixed-point data type
that occupies one, two, or four bytes of storage.

You use the zero-extend functions primarily for bit-oriented operations.
The following is an example of the use of the ZEXT function:

INTEGER*2 W_VAR /'FFFF'X/
INTEGER*4 L VAR
L_VAR =ZEXT(W_VAR)

10-6 VAX FORTRAN Implementation Notes

This example stores an INTEGER*2 quantity in the low-order 16 bits
of an INTEGER*4 quantity, with the resulting value of L _VAR being
'OOOOFFFF'X. If the ZEXT function had not been used, the resulting
value of this example would have been 'FFFFFFFF'X because W_VAR
would have been converted to the left-hand operand's data type by sign
extension.

When you are using the zero-extend intrinsic functions, it is important
to remember that integer constants in the range of -32768 to 32767
are INTEGER*2. Therefore, JZEXT(-1) is equal to 65535. The storage
requirements for integer constants are never less than two bytes. Integer
constants within the range of constants that can be represented by a single
byte still require two bytes of storage.

10.3 Iteration Count Model for Indexed DO Loops

The VAX FORTRAN DO statement has the following features:

• The control variable can be an integer or real variable.

• The initial value, step size, and final value of the control variable can
be any expression that produces a result with an integer or real data
type.

• The number of times the loop is executed (the iteration count) is de-
termined at the initialization of the DO statement; it is not reevaluated
during successive executions of the loop. Thus, the number of times
the loop is executed is not affected by changes to the values of the
parameter variables used in the DO statement.

10.3.1 Cautions Concerning Program Transportability

Some common practices associated with the use of DO statements may not
have the intended effects when used with VAX FORTRAN. For example:

• Assigning a value to the con ~rol variable within the body of the
loop that is greater than the final value does not always cause early
termination of the loop.

• Modifying astep-size variable or a final value variable within the
body of the loop does not modify the loop behavior or terminate the
loop.

VAX FORTRAN Implementation Notes 10-7

• Using a negative step size (for example, DO 10 I = 1,10,-1) in order
to set up an arbitrarily long loop that is terminated by a conditional
control transfer within the loop results in zero iterations of the loop
body if /F77 is in effect. A zero step size may result in an error (refer
to the iteration count computation in Section 10.3.2).

10.3.2 Iteration Count Computation

This description of how the iteration count of an indexed DO loop is
calculated assumes a DO statement of the following form:

DO label, V=ml,m2,m3

(Where ml, m2, and m3 are any expressions.) Given an indexed DO loop
of this form, the iteration count is computed as follows:

count = MAX(O,INT((m2-ml+m3)/m3))

This method of computation:

• Makes possible an iteration count of zero (in which case, the body of
the loop is not executed).

• Permits the step size (m3) to be negative or positive, but not zero.

• Gives awell-defined and predictable count value for expressions
resulting from any combination of the allowed result types. (Note,
however, that the effects of round-off error inherent in any floating-
point computation may cause the count to be greater or less than
desired when real values are used.)

• Differs from the usual FORTRAN-66 implementations: the minimum
count value in that version was one and the current minimum value is
zero (refer to Section A.1 for compatibility information). Thus, when
the /F77 qualifier (the default) is used, the minimum count is zero,
and when /NOF77 is used, the minimum count is one.

Under certain conditions it is not necessary to compute the iteration count
explicitly. For example, if all of the parameters are of type integer and if
the parameter values are not modified in the loop, then the FORTRAN-
generated code controls the number of iterations of the loop by comparing
the control variable directly with the final value.

10-8 VAX FORTRAN Implementation Notes

10.4 ENTRY Statement Arguments

The association of actual and dummy arguments is described in the
VAX FORTRAN Language Reference Manual. In general, that description
suffices for most cases. However, the VAX FORTRAN implementation of
argument association in ENTRY statements differs from that of some other
implementations of FORTRAN.

As described in Chapter 6, VAX FORTRAN uses the reference and de-
scriptor mechanisms to pass arguments to called procedures (for numeric
and character arguments, respectively). Some other implementations
of FORTRAN use the copy-in/copy-out method. This distinction be-
comes crucial when reference is made to dummy arguments in ENTRY
statements.

While standard FORTRAN allows you to use the same dummy arguments
in different ENTRY statements, it permits you to refer only to those
dummy arguments that are defined for the ENTRY point being called. For
example:

SUBROUTINE SUB1(X,Y,Z)

ENTRY ENT1(X,A)

ENTRY ENT2(B,Z,Y)

Given this, you can make the following references:

CALL Valid References

SUB1 X Y Z

ENT1 X A

ENT2 B Z Y

FORTRAN implementations that use the copy-in/copy-out method,
however, permit you to refer to dummy arguments that are not defined in
the ENTRY statement being called. For example:

VAX FORTRAN Implementation Notes 10-9

SUBROUTINE INIT(A,B,C)
RETURN
ENTRY CALC(Y,X)

END

You can use this nonstandard method in copy-in/copy-out implemen-
tations because a separate internal variable is allocated for each dummy
argument in the called procedure. When the procedure is called, each
scalar actual argument value is assigned to the corresponding internal
variable. These variables are then used whenever there is a reference to
a dummy argument within the procedure. On return from the called pro-
cedure, modified dummy arguments are copied back to the corresponding
actual argument variables.

When an entry point is referenced, all of its dummy arguments are defined
with the values of the corresponding actual arguments, and they may
be referenced on subsequent calls to the subprogram. However, it is
not advisable to attempt this in programs that are to be executed on
VAX FORTRAN, or on other systems that use the call-by-reference (or
descriptor) method.

VAX FORTRAN creates associations between dummy and actual argu-
ments by passing the address of each actual argument, or descriptor, to
the called procedure. Each reference to a dummy argument generates an
indirect address reference through the actual argument address. When
control returns from the called procedure, the association between actual
and dummy arguments ends. The dummy arguments do not retain their
values and therefore cannot be referenced on subsequent calls. Thus, to
perform the sort of nonstandard references shown in the previous exam-
ple, the subprogram must copy the values of the dummy arguments. For
example:

SUBROUTINE INIT(A1,B1,C1)
SAVE A,B,C
A=A1
B=B1
C=C1
RETURN
ENTRY CALC(Y,X)

END

Note that the use of the SAVE statement in this example ensures that the
values of A, B, and C will be retained from one call to the next.

10-10 VAX FORTRAN Implementation Notes

10.5 Floating-Point Data

A floating-point value is represented by 4 to 16 contiguous bytes, depend-
ing upon the specific data type. The number of exponent and fraction
bits also depends upon the specific data type. The bits are numbered
from right to left, 0 through n. Bit 15 is the sign bit. Figure 10-1 shows
the general format of floating-point data (broken lines indicate where
boundaries change, depending upon the specific data type).

Figure 10-1: General Format of Floating-Point Data

15 0
S
I
G
N

EXPONENT ~ FRACTION

FRACTION

'31

I

FRACTION
16 I

— ~

Z K-796-82

:A

Individual floating-point data types are explained in the VAX FORTRAN
Language Reference Manual. Data characteristics are described in
Section 10.5.1.

10.5.1 Floating-Point Data Characteristics

Certain FORTRAN programming practices that are commonly used,
though not permitted under the rules for standard FORTRAN, may not
produce the expected results with VAX FORTRAN. These are described in
the following sections.

VAX FORTRAN Implementation Notes 10-11

10.5.1.1 Reserved Operand Faults

Accessing afloating-point variable that contains an invalid floating-point
value (-0.0), indicated by an exponent field of 0 and a sign bit of 1, causes
a reserved operand fault in the VAX hardware. An error is reported and,
by default, your program terminates.

There are four ways to create reserved operand values:

• The VAX hardware stores a reserved operand value as the result of
the floating-point arithmetic traps, floating overflow, and floating zero
divide.

• The mathematical function library returns a reserved operand value
if the function is called incorrectly or if the argument is invalid. For
example:

SQRT(-1.0)

This return value can be modified with a condition handler (see
Chapter 9).

Integer arithmetic and logical operations can create reserved operand
bit patterns in floating-point variables and arrays associated with
integers. Associations of this kind can occur through EQUIVALENCE,
COMMON, or argument association. For example:

EQUIVALENCE (X,I)
I = 32768
X=X+1.0

Adding 1.0 to X causes a reserved operand fault because the integer
value 32768 is a reserved operand when interpreted as a floating-point
value.

• Octal and hexadecimal constants can be used to create reserved
operand values.

The first two cases occur when invalid programs or data are used. The last
two cases can occur inadvertently in a program and may not be detected
by other implementations of FORTRAN.

10-12 VAX FORTRAN Implementation Notes

10.5.1.2 Representation of 0.0

The VAX hardware defines 0.0 as any bit pattern that has an exponent
field of 0 and a sign bit of 0, regardless of the value of the fraction. When
a bit pattern that is defined as 0.0 is used in a floating-point operation,
the VAX hardware sets the fraction field to 0. One possible effect is that
nonzero integers equivalenced to floating-point values may be interpreted
as zero.

Logical operations can have a similar effect, as shown in the following
example:

REAL*4 X
EQUIVALENCE (X,I)
I=64
IF (X .EQ. 0) GO TO 10

The branch will always be taken because the bit pattern that represents
the integer value is equivalent to zero when interpreted as a floating-point
value.

10.5.1.3 Sign Bit Tests

The bit used as the sign bit of a floating-point value is not the same bit
as the sign bit of an equivalenced INTEGER*4 value. Consequently, you
must test the sign of a value by testing the correct data type. For example:

EQUIVALENCE (X,I)
I = 40000
IF (X .GT. 0) GO TO 10

The branch is not taken because the bit pattern that represents the integer
value 40000 is negative (bit 15 is set) when interpreted as a floating-point
value.

10.5.2 Effect of the /G _FLOATING Qualifier

The /G _FLOATING compiler qualifier causes double-precision quantities
to have the G _floating type. If this qualifier is not used, the D_floating
type is assumed.

Program units that exchange double-precision values should use either
G _floating or D_floating data types, but not both. Because their formats
are different, mixing the two types can produce unpredictable results.
Under certain circumstances, however, you may want to convert one data
type to the other (refer to Section 10.5.3). Passing a REAL*4 variable

VAX FORTRAN Implementation Notes 10-13

as an actual argument to a routii•~e in which the corresponding dummy
argument is of the G _floating data type can also give incorrect results.

10.5.3 Conversion Between D_f loating and G _floating Data Types

Although you should not normally mix the D_floating and the
G_floating implementations of REAL*8, there may be times when you
must convert one to the other so that the values are compatible within
the same program. For example, you may have a program that uses
G_floating values for its double-precision work but which must access
an unformatted file of D_floating values. The Run-Time Library provides
procedures that perform conversions between the D_floating and the
G _floating data types.

It is possible for your program to manip~alate REAL*8 variables whose
representations are the opposite of that specified by the /G _FLOATING
qualifier. You must not perform floating-point arithmetic on such values.
However, these variables can appear in unformatted I/O statements, in
assignment statements, and as actual arguments.

You should be aware of the following properties of the Run-Time Library
data type conversion procedures:

• Conversion from D_floating to G _floating may involve rounding of
the values.

• Conversion from G _floating to D_floating is exact; there is no
rounding of the values. However, if the G _floating value is not
representable as a D_floating value, one of the following occurs:

— If the value is too large, the procedure signals an overflow (and
produces a floating reserved operand).

— If the value is too small, the procedure produces a value of 0.0. If
the calling procedure enabled floating underflow, the procedure
signals floating underflow.

• If you attempt to convert a floating reserved operand, the procedure
signals a reserved operand fault.

The Run-Time Library provides two conversion functions and two conver-
sion subroutines.

10-14 VAX FORTRAN Implementation Notes

10.5.3.1 Run-Time Library Conversion Functions

One function converts D_floating values to G _floating values and the
other performs the opposite conversion. These functions have the forms:

MTH$CVT_D_G(D_value)

MTH$CVT_G_D(G_value)

D_value
Is a REAL* 8 (D_floating) value to be converted to the corresponding
G _floating representation.

G_value
Is a REAL* 8 (G _floating) value to be converted to the corresponding
D_floating representation.

You must declare these function names as REAL*8 to prevent them from
being implicitly typed as integer.

10.5.3.2 Run-Time Library Conversion Subroutines

One subroutine converts arrays of D_floating values to G _floating values,
and the other performs the opposite conversion. These subroutines have
the forms:

CALL MTH$CVT_DA_GA(D_source, G_dest, count)

CALL MTH$CVT_GA_DA(G_source, D_dest, count)

D_source
Is an array of REAL*8 (D_floating) values to be converted to the
G _floating type.

G_source
Is an array of REAL* 8 (G _floating) values to be converted to the
D_floating type.

G_dest, D_dest
Are the REAL* 8 arrays in which the converted values are to be stored.

count
Is an INTEGER*4 value that is the number of array elements to be
converted.

VAX FORTRAN Implementation Notes 10-15

You can perform an in-place conversion by specifying the same array as
the source and the destination argument. However, you must not specify
a partial overlap between the source and destination arrays. The following
calls on the conversion subroutines are valid:

CALL MTH$CVT_DA_GA(X,Y,100)

CALL MTH$CVT_GA_DA(X(6),X(6),95)

10.5.3.3 Sample Conversions
The following VAX FORTRAN program reads 100 D_floating values from
an unformatted file, converts them to G _floating values, calculates aroot-
mean-square in G_floating, and writes the result to another unformatted
file as a D_floating value.

OPTIONS /G_FLOATING

REAL*8 X(100), ROOT, SUM
REAL*8 MTH$CVT_G_D

READ(1) X
CALL MTH$CVT_DA_GA(X,X,100)

SUM =0.0
DO I=1,100

SUM = SUM + X(I)**2
END DO
ROOT = SQRT(SUM/100)

WRITE (2) MTH$CVT_G_D(ROOT)
TYPE *, 'The root-mean-square is', ROOT
END

10-16 VAX FORTRAN Implementation Notes

Chapter 17

Performance Optimization

The objective of optimization is to produce source and object programs
that can achieve the greatest amount of processing with the least amount
of time and memory. Realizing this objective requires programs that are
carefully designed and written, and a compiler that uses compilation
techniques that make optimum use of the architecture of the computer on
which the programs are executed.

The language elements you use in the source program directly affect the
compiler's ability to optimize the object program. Therefore, you should
be aware of the ways in which you can assist compiler optimization. In
addition, this awareness will often make it easier for you to track down
the source of a problem when your program exhibits unexpected behavior.

The VAX FORTRAN compiler produces efficient code through the use
of compilation techniques that take advantage of operations provided
by VAX native-mode architecture and VAX hardware. The primary goal
of optimization performed by the VAX FORTRAN compiler is faster
execution. A secondary goal is to reduce the size of the object program.

This chapter describes optimization techniques used by the compiler
and coding practices that promote optimization, both in relation to the
compiler and in relation to VAX systems in general.

The chapter is divided into six major sections:

• Section 11.1 covers a variety o.f issues, including how optimization
affects machine code and diagnostics, how the selection of source-
program algorithms affect efficiency, and how the compiler functions.

• Section 11.2 discusses why debugging is best done on programs
that have been compiled with the /NOOPTIMIZE qualifier on the
FORTRAN command line.

Performance Optimization 11-1

• Section 11.3 describes how the compiler performs a global analysis of
the variables and arrays used in a program unit. It explains how the
variables are selected and the constructs and declarations in the source
code that influence that selection.

• Section 11.4 describes optimizations that improve the running time of
programs.

• Section 11.5 describes optimizations that decrease the memory used
by programs.

• Section 11.6 provides an example that illustrates the optimizations
described earlier in the chapter and demonstrates the performance
enhancements.

In this chapter, much of the material in the later sections assumes that you
are familiar with material in earlier sections. Understanding the material
in Section 11.3 is particularly important.

11.1 General Optimization Issues

This section presents background information that you need to know in
order to use your time and efforts wisely when trying to improve the run-
time performance of your programs. This section provides information in
the following areas:

• An explanation of how sound coding practices can have a far greater
influence on efficiency than compiler optimizations.

• A description of the differences and similarities of optimized and
unoptimized code.

• An overview of how the compiler operates and of the internal data
structures that the compiler uses.

11-2 Performance Optimization

11.1.1 Importance of Algorithms Used in Source Programs

Solving any given problem with a computer program can usually be
done in a variety of ways. The method you chose typically has more
effect on the performance of the program than any amount of compiler
optimization. Thus, in an effort to improve the performance of a program,
it is often useful to look for a faster general method, instead of trying to
make the individual operations faster.

To illustrate the importance of the algorithm used to solve a problem,
consider the problem of searching for a given value in a sorted list. You
can use many different methods to search for a value, and each method
has advantages and disadvantages relative to the others. Each method
is characterized by a certain number of fundamental operations that it
must perform. For instance, the fundamental operations of a simple linear
search are tests. For example:

C Assumes A is sorted in ascending order
C Returns the value of INDEX at which A(INDEX) .EQ. VAL

C Returns INDEX = 0 if none
C

SUBROUTINE SEARCH (A,N,VAL,INDEX)
INTEGER A(N),VAL
INDEX = 0
DO 30 I=1,N
IF (VAL-A(I)) 10, 20, 30

10 INDEX = 0
RETURN

20 INDEX = I
RETURN

30 CONTINUE
END

No matter how well the compiler optimizes the tests, it will take, on
average, N tests (including the loop ending tests) to find the desired value.
Alternatively, consider the following binary search method, which is more
complicated but takes only about 2 * (LOG N (base 2)) tests:

Performance Optimization 11-3

SUBROUTINE SEARCH (A,N,VAL,INDEX)
INTEGER A(N),VAL, HIBOUND, LOBOUND
HIBOUND = N
LOBOUND = 1
DO 40 WHILE (HIBOUND .GE. LOBOUND)

I = (HIBOUND + LOBOUND)/2
IF (A(I)—VAL) 10, 20, 30

10 LOBOUND = I + 1
GO TO 40

20 INDEX = I
RETURN

30 HIBOUND = I — 1
40 CONTINUE

INDEX = 0
END

Note that for N = 1000, the sequential search will average about 1000 tests
in the loop, and the binary search will average about 20 (including the
loop termination tests). No matter how much optimization is applied to
the linear search, it will be much slower than the binary search.

Compiler optimization generally makes only the operations specified by
your source program run faster; it cannot make algorithm transformations.
For this reason, it is important that you try to use a faster algorithm before
trying to improve the optimization of the individual operations.

11.1.2 Characteristics of Optimized and Unoptirnized Programs

Optimized programs produce results and run-time diagnostic mes-
sages identical to those produced by equivalent unoptimized programs.
However, an optimized program may produce fewer run-time diagnostics,
and the diagnostics may occur at different source program statements or in
a different order. For example:

Unoptimized Code Optimized Code

A=X/Y

B=X/Y

DO 10, I=1, 10

t = X/Y

A=t

Fs=t

DO 10, I=1,10

10 C(I) = C(I)*t

The value of Y may be 0.0. Thus, the unoptimized program may produce
up to 12 divide-by-zero errors at run time (if you provide code in your
program to handle the error); whereas, the optimized program never

11-4 Performance Optimization

produces more than one. (Note that t is a temporary variable created by
the compiler.)

Eliminating redundant calculations and moving invariant calculations out
of loops can affect detection of arithmetic errors; you should keep this in
mind when you include error-detecting routines in your program.

11.1.3 Compiler Structure

This section describes the overall design of the VAX FORTRAN compiler
and how it achieves its optimizations.

The compiler transforms your source program to VAX object code in a
series of stages, called phases. Each phase transforms the program in a
certain way and gathers information in preparation for the next phase.
The order of the phases is chosen so that the transformations in the earlier
phases increase the effectiveness of the later phases. Some phases are
optional. The phases that are executed. for any given program depend on
the following factors: the complexity of the program, the source errors
detected in the program, the use of the /NOOPTIMIZE qualifier, and the
optimizations that actually take effect.

At various points in the compilation process, the program is represented in
a series of intermediate forms as data structures in VAX memory. In gen-
eral, these structures are considerably larger than either the original source
representation or the final object representation. The actual operation of
each phase consists of modifications to these internal data structures.

Note that the compiler tries to trade off slower compile time for faster run
time. This limits the number and kinds of constructs that the compiler can
optimize.

11.2 Effects of Compiler Optimizations on Debugging

The VAX FORTRAN compiler provides the /NOOPTIMIZE qualifier to
disable many of its optimizations. This qualifier is provided to facilitate
debugging of FORTRAN programs with the VMS Debugger. If the
/NOOPTIMIZE qualifier is not used, many debugging commands do not
work as expected.

Performance Optimization 11-5

Some of the ways that optimizations can affect debugging operations are
as follows:

• Coding order. Some compiler optimizations cause code to be gener-
ated in an order that differs from the order in which it appears in the
source. Sometimes code is eliminated altogether. This causes unex-
pected behavior when you are using the debugger to step through the
code or to display the source lines.

• Control flow. If there are no intervening labels, the compiler assumes
that statements are executed in the sequence in which they appear in
source code. The compiler also eliminates label definitions if they are
not needed in the machine code. As a result, you cannot reference
such labels using the debugger %LABEL commands.

• Use of condition codes. This optimization technique takes advantage
of the way in which the VAX condition codes are set. For example,
consider the following source code:

x=x+2.5
IF (X . LT . 0.0) GO TO 20

To determine whether to branch, the optimized machine code uses
the condition code settings after 2.5 is added to X, instead of explicitly
testing the new value of X. Thus, if you attempt to set a debugging
breakpoint at the second line and deposit a different value into X, you
will not achieve the intended result because the condition codes no
longer reflect the value of X. In other words, deposited value of the
variable does not influence whether the branch is taken.

• Use of registers. Some compiler optimizations make use of VAX
general-purpose registers to speed up operations. When the value of
a variable is being held in a register, its value in memory is generally
invalid. A spurious value is often displayed if the EXAMINE com-
mand is issued for a variable under these circurr*~~stances. Sometimes
the compiler is able to determine that the value of a variable is not
needed in memory at all. In this case, the variable is not allocated a
memory address, and double asterisks (**) are given in the address
field for the variables in the memory map part of the compiler output
listing. Attempting to examine such a variable will result in a warning
message from the debugger.

You can avoid these problems, as well as several others, by compiling with
the /NOOPTIMIZE qualifier. In general, the use of the /NOOPTIMIZE
qualifier affects compile speed only marginally.

11-6 Performance Optimization

If you do not suppress optimization, you should specify the /LIST and
/MACHINE _CODE qualifiers on the FORTRAN command line. This
is necessary because you may need to refer to a compiler listing of the
machine code generated by the compiler.

The use of some features of the VAX architecture will cause programs
to violate the rules and prohibitions of the VAX FORTRAN language.
In many of these cases, these rules cannot be checked efficiently at
either compile time or run time, and no error messages are generated.
However, the use of these features will, in some cases, interact with
compiler optimizations and cause unexpected results. In most cases, you
can overcome such problems by declaring the affected variables with the
VOLATILE statement (see Section 11.3.2.2). While tracking down the
problem, you may find it convenient to use the /NOOPTIMIZE qualifier
to disable all optimizations.

11.3 Global Analysis of the Use of Variables and Arrays

The compiler optimizes an entire program unit at a time. Several of its
phases are devoted to tracing the values of variables and array elements
as they are created and used in different parts of the program unit. This
process is called global data-flow analysis and is an important part of
many optimizations. One particular usage of the language degrades the
effectiveness of this process and thus prevents optimizations that would
be possible if a different source construct were used to perform the same
function. This usage is the assigned GOTO statement.

An assigned GOTO statement degrades optimizations because the com-
piler treats any labels that have been assigned to any variable as possible
destinations of the C~OTO. For example, consider the following program
fragment:

A = 5.0
ASSIGN 10 TO LAB

GO TO LAB

ASSIGN 20 TO LAB

20 A=X+Y

10 B=A+4.0

Performance Optimization 11-7

In this example, the compiler would try to propagate the value of 5.0 for
A to the assignment to B. If this were possible, that statement could be
simplified to B = 9.0. However, the second ASSIGN statement means
that the compiler must assume that A can be changed before its use. If
a computed GOTO statement or a simple GOTO statement were used
instead of an assigned GOTO, the compiler could do the necessary
analysis to allow the optimization.

11.3.1 Criteria for Selecting Variables and Arrays for Global Analysis

The global data flow analysis done by the compiler primarily consists
of tracing the use of variables and arrays throughout a program unit.
The speed with which this analysis can be accomplished depends partly
on how many variables and arrays are to be analyzed. For this reason,
the compiler puts an upper limit on the number of variables and arrays
for which it performs the global analysis. The compiler uses heuristic
methods to select the variables and arrays in the program unit that would
benefit most from analysis. It then limits its analysis to those variables
and arrays that are selected.

In general, the selection methods are biased toward the most heavily used
variables and arrays. Each appearance of a variable or array in the source
program counts as a use, with extra counts being given to uses inside DO
loops.

11.3.2 Factors Influencing Global Analysis

The use of EQUIVALENCE statements, volatile declarations, statement
functions, and variable format expressions can affect global analysis.
These factors are discussed in the sections that follow.

11-8 Performance Optimization

11.3.2.1 Effects of EQUIVALENCE Statements

Quantities in EQUIVALENCE groups share memory locations. When
variables and arrays are used in EQUIVALENCE statements, the optimizer
must ensure that the effects of using one variable or array in the equiv-
alence group are accounted for with regard to assignments to the other
variables and arrays. For example:

EQUIVALENCE (A,B)
A = 4.0

B = X + 1

Z=A+5.0

The compiler does not allow the value of 4.0 for A to be propagated to the
assignment to Z because of the assignment to B.

For this reason, the variables and arrays used in EQUIVALENCE state-
ments in each separate PSECT (common block) are grouped together and
analyzed as if they were a single array during global analysis. As a result,
global analysis is usually more effective if unnecessary EQUIVALENCE
statements are avoided.

In particular, EQUIVALENCE statements are often used to decrease the
memory requirements of programs originally written for use on computers
with address spaces that are smaller than those provided by VAX systems.
Because this exercise is usually unnecessary on a VAX processor, you
can often improve compiler optimization in these programs by removing
unnecessary EQUIVALENCE statements. In general, for best optimization,
you should separate the uses of arrays and variables by the role they
fill and not use the same storage location for two different roles within
the program. In addition to performance benefits, the removal of the
unnecessary EQUIVALENCE statements can make debugging easier.

11.3.2.2 Effects of Volatile Declarations

VAX FORTRAN provides the VOLATILE statement as an extension to the
standard FORTRAN-77 language. Its purpose is to allow your programs
to use certain run-time features of the VAX environment that violate the
rules and prohibitions of the FORTRAN language, but at the same time
take full advantage of the optimization capabilities of the VAX FORTRAN
compiler.

Performance Optimization 11-9

When variables, arrays, or common blocks are declared volatile, they
are never selected for global analysis. In addition, many of the local
optimizations described in this section are disabled. If these optimizations
are not disabled, they may cause the program to exhibit unexpected
behavior. In general, this unexpected behavior will be intzrmittent and
hard to trace. Some of the circumstances in which volatile declarations
should be used are as follows:

• When using variables in shared global common. Using a combination
of link-time and run-time options, it is possible for two different
FORTRAN programs running at the same time to use shared memory
to communicate. These programs may be running on a single CPU
sharing standard main memory, or they may be running on different
CPUs accessing a block of storage in a multiport memory unit.

In addition, some special I/O devices can be controlled by sharing
memory with a FORTRAN program. This shared memory must be
declared as common blocks and must be page aligned. This usage is
referred to as shared global common. This method is often the fastest
way for two programs to communicate large amounts of data on VAX.

Shared global commons should always be declared VOLATILE when
the contents may change without synchronization with the program
unit. See Section 8.1.2 for more information about how to use shared
global commons.

• When using variables in a condition handler. FORTRAN programs can
take advantage of the VAX condition handling mechanisms. These
mechanisms can be used in various cases in which control is taken
away from the normal execution order of the program and given to a
special routine called a condition handler.

When writing programs that use these exception mechanisms, you
should always declare as volatile any variables or arrays that are
shared between the condition handler and the program. Failure to do
this may result in one of the following problems:

— Cause the condition handler to use an incorrect value for the
shared quantity

— Cause the program to ignore handler modifications of the shared
quantity

See Chapter 9 for more information about the use of the VAX excep-
tion handling mechanisms.

11-10 Performance Optimization

• When remembering the addresses of arguments in a subroutine. Some
subprograms have the capability to retain the addresses of their
arguments after they have returned, and can reuse those addresses
in later calls even though the arguments do not explicitly appear in
the argument list for those calls. When calling such subprograms, you
should always declare the arguments whose addresses are retained as
volatile. This prevents the compiler from holding them in registers
across later calls.

Most often, this situation applies to those systems of routines for
which you must make an initialization call with an array to be used
for "working storage" while the system is being used. The arrays used
for working storage should be declared as volatile.

11.3.2.3 Effects of Inline Expansion of Statement Functions

The compiler attempts to expand statement functions directly inline, in-
stead of calling them as functions. This has several performance benefits:

• It allows the expression inside the statement function to participate in
the global analysis performed on the rest of the program.

• It saves the overhead of a subprogram call and return.

• It eliminates both the need to store the actual arguments in memory
before the call and the need to retrieve them from memory after the
call .

For example:

Unoptimized Code Optimized Code

SUM(A,B) =A+B SUM(A,B) =A+B

Y=3.14 Y=3.14

X=6.14

You can determine from a compiler output listing whether a statement
function is always expanded inline. For program units that contain
statement functions, a summary of the statement functions is printed at
the bottom of the listing. The address and data type of each statement
function is listed. If double asterisks (**) appear in the address field, the
statement function was expanded inline each time it was referenced.

Performance Optimization 11-11

Not all statement functions can be expanded inline, however. The follow-
ing conditions limit the compiler's ability to expand statement functions
inline:

• Use of excessively large code segments. If the body of the statement
function generates alarge-sized code sequence, it will not be ex-
panded. This is because large statement functions benefit relatively
less from the advantages of expansion discussed previously. Also,
expanding large statement functions can cause the calling program to
grow to an excessive size. The cutoff point is approximately twenty
machine instructions; it varies depending on data type and operation
complexity.

• Use o f external function calls. If the body of the statement function
contains a call to an external function or to another unexpanded
statement function, it will not be expanded. Again, this is because
such functions benefit relatively less from the expansion than do other
functions.

• Use of CHARACTER operations. If the function returns a CHARACTER
result or uses any CHARACTER variables, arrays, operations, or argu-
ments, it will not be expanded. This is because character operations
on VAX processors destroy the contents of several registers and would
significantly degrade other optimizations if expanded inline.

• Incorrect use of arguments. If the actual arguments do not match the
formal arguments to the statement function in order, number, or
data type, it will not be expanded. Some usages generate a warning
message, such as a mismatch in the number of arguments. Others
generate correct results if called, but not if expanded. In these cases,
no expansion is done, but a warning is not given.

If a statement function is not expanded inline, it degrades other optimiza-
tions besides calls to itself. In particular, it prevents any local variables
used in the statement function body from being selected for global analy-
sis. For this reason, you should limit the use of local variables in statement
functions to those cases that match the criteria described in the preceding
list.

11-12 Performance Optimization

11.3.2.4 Effects of Variable Format Expressions

VAX FORTRAN provides variable format expressions (VFEs) for increased
flexibility and performance of formatted I/O (see Section 11.4.5). Using
VFEs is generally preferable to using run-time format expressions because
it allows the compiler to use the efficient compile-time format interface
to the FORTRAN RTL I/O support routines. Using a variable in a VFE,
however, does prevent the variable from being selected for global analysis.
For this reason, variables used in VFEs should not be used elsewhere.

11.4 Speed Optimizations

Speed optimizations reduce the running time of programs. They fall into
four categories:

• Reritoval optimizations. Remove unnecessary operations from the
program.

• Replacement optimizations. Make necessar-~ operations more efficient.

• Operation-specific optimizations. Apply to certain individual operations.

• 1/O optiritizations. Reduce I/O system overhead and are controlled by
how you set up I/O operations in your source program.

Sections 11.4.2 through 11.4.4 provide detailed information about these
optimizations.

Being aware of these optimizations may make it easier for you to write
your programs in a straightforward and general way. In many cases,
you can also gain a performance benefit by modifying an existing source
program to take advantage of them, as shown by the examples, but this
practice can often lead to errors and makes the program harder to read.

Performance Optimization 11-13

11.4.1 Effects of Global Analysis on Speed Optimizations

Global analysis is required for both removal and replacement
optimizations.

For removal optimizations, both arrays and variables must be analyzed.
The upper limit on the number of variables and arrays that the compiler
will analyze for these optimizations is 128. If the number of variables
and arrays in the program unit is more than 128, the compiler selects
126 of the variables and arrays that are most heavily used, and treats all
remaining local variables and. arrays as if they were a single array and
all remaining COMMON variables and arrays as if they were a different,
single array.

For replacement optimizations, only variables need to be analyzed, not
arrays. However, because replacement optimizations require additional
analysis beyond that required for removal optimizations, the compiler sep-
arately selects a set of variables for this additional analysis. The maximum
number of variables for this kind of analysis is 32. (Most replacement op-
timizations involve the use of the VAX general-purpose registers. Because
the number of registers available for use by optimizations is 13, select-
ing additional variables beyond 32 would not generally result in more
replacement optimizations.)

The selection criteria for variables used for this analysis is more restrictive
than those for removal optimizations.- In particular, variables whose usage
prevents them from being loaded into registers are not selected. These in-
clude variables used in common blocks, variables used in EQUIVALENCE
statements, variables declared volatile, variables used in statement func-
tions that do not get expanded in-line, and variables used in variable
format expressions (see Section 11.3.2).

11.4.2 RemovalOptirnizations

Because removal optimizations eliminate run-time operations from pro-
grams, their effect on program performance is generally greater than that
of replacement optimizations. The following sections describe some of the
removal optimizations.

11-14 Performance Optimization

11.4.2.1 Compile-Time Operations

The compiler attempts to perform as many operations as possible at
compile time. This removes them entirely from the object program.

Constant Operations

The compiler performs the following computations on expressions involy-
ing constants (including PARAMETER constants) at compile time:

• Negation of constants. Constants preceded by unary minus signs are
negated at compile time. For example, the following statement is
computed as a single move instruction:

x = -10.0

• Arithmetic operators on integer, real, and complex constants. Expressions
involving +, —, *, or /operators are evaluated at compile time. For
example:

Unoptimized Code Optimized Code

PARAMETER (NN=27) PARAMETER (NN=27)

I=2*NN+J I=54+ J

Evaluation of some constant functions and operators is performed at
compile time. In particular, the CHAR, ABS, MAX, MIN, and MOD
functions of constants, concatenation of string constants, and logical
and relational operations involving constants are performed at compile
time.

• Type conversions o f constants. Lower-ranked constants are converted
to the data type of the higher-ranked operand at compile time. For
example:

Unoptimized Code Optimized Code

X = 10 * Y X = 10.0 * Y

• Array address calculations. Array address calculations involving con-
stant subscripts are simplified at compile time whenever possible.
For example, the following statement is compiled as a single move
instruction:

DIMENSION I(10,10)
I(1,2) = I(4,5)

Performance Optimization 11-15

Initialization of Argument Lists

Argument lists are initialized at compile time whenever the address of the
argument can be determined at compile time. For example, the following
statement is compiled as a single CALL instruction.

CALL SUBX(M, A(3,4))

(See Section 6.1.3 for additional information about argument lists.)

Delaying Optimizations

The compiler eliminates operations that can be shown at compile time to
have no effect, or that can be transformed so as to be unnecessary.

For example, a number of operations can be mathematically proven to
leave the result unchanged. These operations are eliminated. For example,
the following statement is compiled as a simple move instruction:

It is also possible to eliminate more complicated combinations. For exam-
ple, the following statement is compiled as a move negated instruction:

X=Y* -1.0

Another example of operations that can be shown to have no effect at
compile time involves some unary minus and .NOT. operations. These
operations can also be delayed until they can be proven to be unnecessary,
and if so, they are eliminated. In the following example, both negations
are eliminated:

x = -Y * -z

11.4.2.2 Flow Boolean Operations

In general, it is not necessary to actually generate a temporary logical
variable with the value of the logical expression used in an IF statement.
In most cases, the compiler avoids generating these unnecessary temporary
variables. Instead, it makes use of compare operations and condition codes
that are a more efficient means of controlling program behavior.

11-16 Performance Optimization

11.4.2.3 Compound Logical Expressions in 1 F Statements

Unnecessary operations in compound logical expressions in IF statements
can often be avoided. Many compound logical expressions do not need
to be evaluated completely and a partial evaluation suffices to determine
the final outcome. For example, if e 1 in the following expression has the
value .FALSE., e2 is not evaluated:

IF (el .AND. e2) GO TO 20

Effectiveness

In addition, the compiler changes the order of evaluation of the compo-
nents of the expression to do the simplest first. Thus, in the following
example, the subexpression X .GT. Y is evaluated first, and if it evaluates
.TRUE., the array element comparison is not performed:

IF (A(I,J) .GT. B(M,N) .OR. X .GT. Y) GO TO 20

Correctness

The FORTRAN-77 language prohibits programs that depend on the
order of evaluation of their subexpressions. This dependency can arise
from the occurrence of side effects within compound logical expressions
in IF statements, as described previously. For example, if the following
statement was used repetitively, the function RAN would be called during
some executions but not on others because the compiler would evaluate
A .GT. B first and would avoid the RAN call if it evaluates as .FALSE.:

IF (RAN (K) .GT. 0.5 .AND. A .GT. B) GO TO 20

Because the RAN call has a side effect on its argument, different sequences
of random numbers will be generated depending on the sequence of
values of A and B. This affects the control flow of the program and, as a
result, different answers may be generated (that is, answers different from
those that would be generated if RANK) were always evaluated).

For this reason, you should always explicitly reference functions with side
effects prior to their use in logical expressions. For example, the preceding
program could be made to conform to the language rules as follows:

RANVAL =RAN (K)
IF (RANVAL .GT. 0.5 .AND. X .GT. Y) GO TO 20

Performance Optimization 11-17

11.4.2.4 Common Subexpression Elimination

The same subexpression often appears in more than one computation
within a program unit. For example:

A = B*C + E*F

H=A+G-B*C

IF ((B*C)-H) 10,20,30

In this code sequence, the common subexpression B*C appears three
times. If the values of the operands of this subexpression do not change
between computations, its value can be computed once and the result can
be used in place of the subexpression. Thus, the preceding sequence is
compiled as follows:

t = B*c
A=t+E*F

H = A + G + t

IF ((t) -H) 10,20,30

Note that two computations of B*C have been removed. This optimization
is called common subexpression elimination.

Of course, you could have optimized the source program yourself to avoid
the redundant calculation of B*C. The following example shows a more
significant application of this kind of compiler optimization. In this case,
you could not reasonably modify the source code to achieve the same
effect. Consider the following statements:

DIMENSION A(25,25), B(25,25)
A(I,J) = B(I,J)

Without optimization, these statements can be compiled as follows:

A(tl) _ $(t2)

Variables tl and t2 represent equivalent expressions. The compiler elimi-
nates this redundancy by producing the following optimization:

A(t) = B(t)

11-18 Performance Optimization

n

11.4.2.5 Code Motions
Execution speed is enhanced by taking invariant computations out of
loops. This optimization is called loop hoisting. Loop hoisting can be
unconditional or conditional.

Unconditional Loop Hoisting

If the compiler detected the following sequence, it would recognize
that the subexpression 3.0*Q has the same value each time the loop is
executed:

DO 10, I=1,100
10 F = 3.0*Q*A(I) + F

Thus, it would change the sequence as follows:

t = 3.0*Q
DO 10 I=1,100

This moves the calculation of 3.0*Q out of the loop, thus saving 99
multiply operations.

Conditional Loop Hoisting

Moving code out of loops is possible even if some of the code is not
always executed in each iteration of the loop. For example:

DIMENSION A(25,25), B(25,25)

DO 10 I=1,25
IF (I .GT. K) THEN

A(I,J) = A(K,J)
ELSE

B(I,J) = B(K,J)
ENDIF

10 CONTINUE

In this case, the subscript computations can be moved out of the loop, and
the preceding sequence is compiled as follows:

t2 = t1+K

DO 10 I=1,25
IF (I .GT. K) THEN

A(tl+I) = A(t2)
ELSE

B(tl+I) = B(t2)
ENDIF

10 CONTINUE

Performance Optimization 11-19

This example shows that all of the multiplications and half of the additions
used in array addressing computations are eliminated from the loop by
conditional hoisting.

11.4.2.6 Value Propagations

The compiler keeps track of the values assigned to variables and traces
the values to all of the places that they are used. If it is more efficient
to use the value than the variable, the compiler makes this change. This
optimization, called value propagation, can have several beneficial effects.

The following sections describe the propagation of variables, the propaga-
tion of constants, and the elimination of variables.

Propagation of Variables

One beneficial effect is to remove unnecessary memory references from
the program. For example:

Unoptimized Code Optimized Code

A=Z

X = F(X) + A X =F(X) + Z

Note that two operations have been removed from the program: storing Z
into variable A and retrieving A from memory.

Propagation of Constants

Additional improvements are possible when the quantity being propagated
is a constant known at compile time. This special case is called constant
propagation.

Constant propagation has several benefits:

• Run-time operations can be replaced with compile-time operations.
For example:

11-20 Performance Optimisation

Unoptimized Code Optimized Code

PI=3.14 PI=3.14

PIOVER2 = PI/2 PIOVER2 = 1.57

In this case, the divide operation has been removed from the program.
This process is repeated and further constant propagations are often
possible.

• Comparisons and branches can be avoided at run time. For example:

Unoptimized Code Optimized Code

I=100 I=100

IF (I . LT . 1) GO TO 100 A (100) = 3.0*Q

• In some cases, several statements can be eliminated. For example:

Unoptimized Code Optimized Code

I=100 I=100

IF (I .GT. 1) GO TO 10 10 Y = 3.0*Q

M = N*J

K=M+I

10 Y = 3.0*Q

The statements immediately following the test are removed because
they can never be executed.

Performance Optimization 11-21

In addition to propagating constant values from program assignments,
the compiler propagates constant values from DATA statements. When
compiling subprograms, the compiler analyzes the program to ensure
that this is done correctly if the subroutine is called more than once. For
example:

Unoptimized Code Optimized Code

SUBROUTINE SUBA(K,M,N)

DATA I,J/3,4/

M = I * 4

N = J * 4

IF (K . GT . 0) J = K

SUBROUTINE SUBA(K,M,N)

DATA I,J/3,4/

M = 12

N=J*4

IF (K . GT . 0) J = K

The value of 3 is propagated from the DATA initialization of I, eliminating
a multiply operation. The value of 4 for J is not propagated because it
may not retain its initialization after the first call t0 SUBA.

Variable Elimination

Occasionally, value propagation can eliminate the need for a variable. You
can determine whether a variable has been eliminated from the program
by looking at the storage map section Of the compiler output listing. If
the memory address of the variable is given as double asterisks (**), the
variable has been eliminated.

11.4.2.7 Dead Store Elimination

Sometimes a variable is assigned a value, but that value is never used
in the program. In this case, the assignment is eliminated as well as any
calculation that the assignment requires. For example:

Unoptimized Code Optimized Code

X=Y*Z

If the first assignment to X is never used in the program, it is removed.
If this causes previous assignments to Y and Z in the program to be

11-22 Performance Optimization

unnecessary, they are removed also. This process is continued until all
unnecessary operations are removed.

NOTE

Some programs used for performance analysis contain such
unnecessary operations. When attempting to measure the
performance of programs compiled with VAX FORTRAN, you
should not use such programs because they will give unrealistic
results. Programs used for performance evaluation should
always use their results in output statements or subprogram
calls.

11.4.3 Replacement Optimizations

Many well-written programs contain few opportunities for removal opti-
mizations, as described in Section 11.4.2. So, although these optimizations
have a large effect each time they are used, they may provide little benefit
to your program. On the other hand, replacement optimizations usually
make only a modest improvement in program efficiency each time they
are used, but are much more frequently usable. For this reason, replace-
ment optimizations can produce more overall improvement than removal
optimizations.

In general, replacement optimizations do not lend themselves well to
being illustrated in source examples, unlike the removal optimizations
discussed previously. Often, replacement optimizations can be described
only in technical terms specific to the VAX architecture. For this reason,
you should be familiar with the VAX Architecture Handbook in order to
fully understand the material in this section.

NOTE

In some examples, the code listed under the heading "opti-
mized code" is not the exact code that would be generated by
the compiler. Actual machine code may vary depending on
optimizations elsewhere in the program. The examples are only
intended to help explain the optimizations being discussed.

The following sections describe the various areas in which replacement
optimizations take effect.

Performance Optimization 11-23

11.4.3.1 Store Delaying Optimizations

The FORTRAN language specifies that expressions in assignment state-
ments are to be completely evaluated before the assignment is performed.
In most cases, however, the same answer results on VAX processors if the
appropriate 3 operand form of the operation is performed. In these cases,
the compiler will use the 3 operand form of the operation to eliminate the
need for a temporary variable, and a separate move instruction to put the
result into its proper place. For example, consider the following source
code:

X = 3.0*Q

This statement results in the following object code:

Unoptimized Code Optimized Code

MULF3 #3.0, Q, RO MULF3 #3.0, Q, X

MOVL R0, X

11.4.3.2 Register Usage

For most programs, the compiler is able to generate code that uses the
VAX general-purpose registers instead of ordinary memory locations.
Because operations using the registers are often much faster than equiva-
lent operations that reference memory locations, such programs are much
faster than equivalent unoptimized programs. The remainder of this sec-
tion describes the optimizations that make use of the VAX general-purpose
registers.

Using Registers to Hold Temporary Operation Results

The VAX general-purpose registers are most frequently used to hold the
values of temporary results of subexpressions, even if the /NOOPTIMIZE
qualifier is used. Registers can be used in many other ways to speed up
programs, but no more than 13 of them are available at any point during
the program; as a result, it is important to minimize using them to hold
expression results. The compiler does this by reordering the evaluation
of complicated expressions so as to reuse the same registers as much as
possible during the evaluation. The compiler always computes the most
complicated subexpression first in an operation and then, for the next
operation, reuses the registers that are no longer needed. For example,
consider the following statement:

A = B*C + D*E + F*G

11-24 Performance Optimization

This statement results in object code that uses only two registers:

MULF3 C, B, RO
MULF3 E, D, R1
ADDF2 R1, RO
MULF3 G, F, R1
ADDF3 R1, R0, A

Using Registers to Hold Variables

The compiler uses registers to hold the values of program variables when-
ever the FORTRAN language does not require them to be in memory.
The compiler may hold the same variable in different registers at different
points in the program. For example:

V = 3.0*Q

X =SIN (Y)*V

V = PI*X

Y =COS (Y) *V

The compiler may choose one register to hold the first use of V and a
different register to hold the second. Both registers may be used for other
purposes at points in between. Thus, there may be points in time when
the value of the variable does not exist anywhere. If the value of V is
never needed in memory, it will be eliminated from the program entirely.
As with variables eliminated by value propagation, double asterisks (**)
are given for these variables in the memory map part of the listing.

Using Registers to Index into Arrays

Often variables are held in registers to index into arrays. For example,
consider the following statement:

A(I) = B(J) + C(K)

This statement results in the following code (in the absence of other
optimization effects, such as loops involving I, J, or K):

MOVL I, R12
MOVL K, RO
MOVL J, R1
ADDF3 C-4 [RO] , B-4 [R1] , A-4 [R12)

Performance Optimization 11-25

Most expressions, however, do not use all different index variables. For
example, the following statement is more representative of normal usage:

A (K) = B (K) + C (K)

In this case, K will be loaded into only one register and will be used to
index into all three arrays at the same time. The compiler will do this
even if K must normally be held in memory (if K is in shared global
common, for instance). The optimized code is as follows:

MOVL K, RO
ADDF3 K-4 [RO] , B-4 [RO] , A-4 [RO]

Using base Registers for Arrays and Common Blocks

In most cases, shrinking the size of the code generated will also increase
the speed with which the code is executed. Thus, it is important not
only to minimize the number of operations performed, but to use the
minimum size for the operand specifications involved in the operations.
The FORTRAN compiler uses the general-purpose registers, called base
registers, for this purpose.

Reducing the size of operand specifications can often be accomplished by
loading a register with either the memory address of the operand or an
address close to the operand. Then, the operand specifier can use a small
offset, 0, 1, or 2 bytes, rather than a large 4-byte offset that is used when
base registers are not used. Base registers are used for addressing local
variables and arrays, common blocks, and dummy arrays. For example,
consider the following source code:

COMMON /C1/ A(10) , B(10) , C(10)

A(I) = B(I) + C(I)

These source statements result in the following object code:

Unoptimized Code

MOVL I, RO
ADDF3 C-4 [RO] , B-4 [RO] , A-4 [RO]

Optimized Code

MOVAL A, R12

MOVL I, RO
ADDF3 C-4 (R12) [RO] , B-4 (R12) [RO] , A-4 (R12) [RO]

In the unoptimized case, the ADDF3 takes 19 bytes. In the optimized
case, it takes seven bytes.

11-26 Performance Optimization

11.4.3.3 Using Autoincrement and Autodecrement Mode Addressing

In order to reduce both memory requirements and execution time, the
compiler also uses base registers in an additional way. Specifically, the
compiler can make use of the autoincrement and autodecrement register
modes available to operand specifiers in the VAX architecture. The
compiler uses these modes when it detects that a pointer to an array can
be updated at the same time that the array is referenced. For example,
consider a simple summing loop such as the following:

DO 10 K=1,1000
10 X=X+A(K)

These statements result in the following object code:

Unoptimized Code Optimized Code

MOVL #1, K

L$1: MOVL K, RO

ADDF2 A-4 [RO] , X

AOBLEQ #1000, K, L$1

MOVL #1, K

MOVAL A, RO

AOBLEQ #1000, K, L$1

In general, the array reference will need to be recomputed each time
around the loop. This process can be greatly speeded up if, each time the
array is referenced, the base register pointing to the array can be updated
so that it always points to the correct element. The autoincrement and
autodecrement address modes can accomplish this.

The following requirements must be met before the autoincrement or
autodecrement modes can be used:

• The array index expressions cannot be too complicated; they must
be simple additions or subtractions of the loop index variable with
expressions that do not change within the Loop.

• The successive array references within the Ioop must occur according
to the order of subscript progression, as defined by the description
of arrays within the VAX FORTRAN Language Reference Manual. In
general, this means that the leftmost subscript should vary the fastest
(that is, be in the innermost loop).

• The increment value of the loop must be a constant (a PARAMETER
constant can be used).

Performance Optimization 11-27

• The compiler can use autoincrement even if the loop steps by more
than one increment at a time. However, there must be at least as
many array references within the loop as the increment value. For
instance, autoincrement cannot be used for the following loop:

DO 10 I=2,100,2

10 X=X+B(I)

Autoincrement cannot be used because the loop contains only one
reference to B; this allows only one opportunity to update the base
register, and autoincrement requires two opportunities. This means
that you can freely use "loop unrolling" techniques, for reducing loop
overhead, without sacrificing efficiency of array index calculation.

The following example shows a loop (unrolled) that results in a substantial
speedup because of the use of autoincrement address modes for the array
references:

Source Code:

DO 50 I = MP1,N,4
DY(I) = DY(I) + DA*DX(I)
DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
DY(I + 3) = DY(I + 3) + DA*DX(I + 3)

50 CONTINUE

Optimized Code:

MOVL MP1, I
MOVAF DX (I) , R3
MOVAF DY(I), R4

L$1: MULF3 (R3)+, DA, R5
ADDF2 R5, (R4)+
MULF3 (R3)+, DA, R5
ADDF2 R5, (R4)+
MULF3 (R3)+, DA, R5
ADDF2 R5, (R4)+
MULF3 (R3)+, DA, R5
ADDF2 R5, (R4)+
ACBL N, #4, I, L$1

In this example, each of the array references in the loop uses an autoin-
crement mode. Note that the successive references to the arrays use the
same or increasing array indexes. This is recommended because it allows
the most autoincrement references and the smallest offset values. The
compiler is, however, equally effective at optimizing loops in which the
array indexes are successively decreasing rather than increasing.

11-28 Performance Optimization

In the case of decreasing array indexes, autodecrement address modes
are used and you should use monotonically decreasing array indexes
for maximum effectiveness. It is even possible to use both modes in the
same loop, but this requires the compiler t0 use multiple registers for
indexing because the same register cannot be used simultaneously for both
autoincrement and autodecrement.

11.4.3.4 Strength Reduction Optimizations

If autoincrement or autodecrement address modes cannot be used for array
addressing in a loop, it is still possible to speed up part of the addressing
computation. Because the technique for doing this involves introducing
an add operation in place of a multiply, it is called "reduction in operator
strength," or simply "strength reduction." Basically, the technique involves
using an add instruction to update an array pointer each time around the
loop instead Of recomputing the array index when it requires a multiply.
For example:

REAL*8 A(25,100)

V = 0
DO 10 I=1,100

These statements result in the following object code:

Unoptimized Code Optimized Code

CLRD V CLRD V

MOVL #1, R12 MOVL #1, R3

L$1: MULL #25, R12, RO MOVL K, R12

ADDL2 K , RO MOVAD A-8 [R12] , R4

ADDD2 A-208 [RO] , V L$1 : ADDD2 (R4) , V

AOBLEQ #100, R12, L$1 ADDL2 #200, R4

AOBLEQ #100, R3, L$1

In the preceding example, the unoptimized code sequence computes
successive values of A(K,I) by using MULL3 and ADDL2 operations and
a context index register mode for the ADDD2. In the optimized code
sequence, the MULL3 and ADDL2 are replaced by a single ADDL2 that
updates the pointer into A. It also allows the reference in the ADDD2
instruction to use the shorter, indirect mode instead of context indexing.

Performance Optimization 11-29

11.4.3.5 Tradeoff Policy Applied to Register Use

In a large program, there are usually more quantities that would benefit
from being in registers than there are registers to hold them. In this case,
the compiler must apply tradeoffs in determining how to use the registers.
In general, the compiler tries to use the registers for temporary operation
results first, including array indexes; then for variables; then for base
registers; then for all other usages. The decision criteria are complicated,
however, and this hierarchy may not always be followed.

In general, finding the best choice Of register usages for a given program
requires a very large amount of computation. Essentially, the only way to
do this is to try all of the methods and choose the best. If this approach
was used, however, it would lead t0 unacceptably long compile times.
For this reason, the compiler uses heuristic algorithms, and a modest
amount of computation, to attempt to determine a good usage for the
registers. Thus, the compiler will often not choose the best way to apply
the registers, but it will normally use them in a way that achieves results
significantly faster than that of an unoptimized program.

11.4.3.6 Block Moves and Block Initializations

Occasionally, statements in loops are well adapted to the use of special
VAX instructions for moving a large amount of data in one operation.
Typically, the data movement operations involve assigning one array to
another (block moves) or filling an array with a uniform initial value (block
initializations). Block moves and block initializations take advantage of the
VAX MOVC3 and MOVCS instructions, respectively. When the compiler
detects these usages, it generates the appropriate special VAX instruction.
For example, consider the following loop:

DO 10 I=1,1000
10 A(I} = B(I}

These statements result in the following object code:

Unoptimized Code Optimized Code

MOVL #1, I

L$1: MOVL I, RO

MOVL B-4 [RO] , A-4 [RO]

AOBLEQ #1000, I, L$1

MOVC3 #4000, B, A

MOVL #1001, I

11-30 Performance Optimization

Another typical usage is initializing an array with zeros. For example:

DO 10 I=1,1000
10 A(I) = 0.0

These statements result in the following object code:

Unoptimized Code Optimized Code

MOVL #1, I

L$1: MOVL I, RO

AOBLEq #1000, I, L$1

MOVC5 #0 , (SP) , #0 , #4000 , A

MOVL #1001, I

A program must meet the following requirements before the compiler can
use these special instructions.

• The array addresses used in the loop must be uniformly increasing by
one element on each iteration of the loop.

• Other than their assignment or initialization, the arrays involved must
not appear in the loop or have any dependences in the loop.

• The arrays must not overlap in memory. The most common overlap
cases are the assignment of one dummy array to another, or to or from
an array in COMMON. These overlap cases may occur in some calls
but not others. Because the potential exists, the optimization cannot
be performed in these cases.

As long as these requirements are met, even subsections of arrays can be
assigned using MOVC3. For example:

DOUBLE PRECISION A(1000,1000), B(1000,1000)
INTEGER M(1000), N(1000)

DO 10 I=201,800
A(I-200, J) = B(I+200,x)

10 M(I-200) = N(I+200)

These statements result in the use of a single MOVC3 instruction to assign
600 elements of B starting at B(401,K) and ending at B(1 OOO,K) to elements
of A starting at A(1,J) and ending at A(600,J). They also result in the use
of another MOVC3 instruction to assign N(401) through I~T(1000) to M(1)
through M(600). Any number of such assignments in the same loop can
be replaced by MOVC3 instructions as long as the assignments do not
have dependencies on each other.

Performance Optimization 11-31

Use of the MOVCS instruction has some additional limitations. It can only
initialize arrays in the following ways:

• Floating-point and complex arrays can only be initialized to 0.0 and
(0.0,0.0), respectively.

• Integer and logical arrays can be initialized with 0 or — l .

11.4.3.7 Locality of Reference

The virtual memory architecture of the VAX series of computers allows
the use of very large arrays without the need for overlays or for large
amounts of physical memory equivalent to the size of the program. This
is accomplished by storing the pages of memory on disk when they are
not being used, and then copying them into memory when their values
are needed or they are being assigned. The machines are designed to
make this copying activity totally transparent and very fast. Usually, it is
so fast that it is not a significant contributor to the running time of a VAX
FORTRAN program.

Most programs do not reference memory addresses randomly; instead,
they usually reference groups of addresses that are close to each other.
This typical clustering of address references is called locality of reference.

One of the ways that the VAX series of computers makes the required
copying efficient is by taking advantage of locality of reference. Whenever
a given page of memory requires copying, the system also copies the
pages near it, which reduces the need for future copies. This technique
is called page clustering. You can improve the speed of your programs
by taking advantage of page clustering. This can be done by avoiding
references to widely scattered memory addresses.

Order of Subscript Progression with Array References

In FORTRAN programming, certain coding practices defeat the page clus-
tering technique and greatly increase the amount of copying to and from
disk. The most common of these inefficient practices is the referencing
of arrays in an order that does not correspond to the order of subscript
progression. The following example demonstrates good coding practice:

DIMENSION A(1000,1000) , B(1000,1000)

DO 10 J=1,1000
DO 10 I=1,1000

10 A(I,J) = B(I,J)*X

11-32 Performance Optimization

The resulting object code executes very efficiently on VAX processors
because each reference to A and B is adjacent in memory to the previous
one, thus allowing page clustering to drastically reduce the number of disk
copy operations.

The following example of superficially similar loops demonstrates poor
coding practice:

DO 10 I=1,1000
DO 10 J=1,1000

10 A(I,J) = B(I,J)*X

These loops execute much less efficiently on VAX processors than the
previous loops because each reference to A and B is about 1000 elements
away from the previous reference. In this case, the running time of the
program will be dominated by the copying of the arrays to and from the
system disk.

To improve the performance of a program that suffers from excessive page
faults, it is important to understand the concepts of locality of reference,
page clustering, and the order of subscript progression of arrays. Then,
when you identify a program with excessive page copying, you will be
able to modify the program in a way that eliminates the problem.

11.4.4 Operation-Specific Optimizations

A number of speed optimizations do not fall into the categories de-
scribed previously. These are described briefly in Sections 11.4.4.1
through 11.4.4.6. In general, they are ways of implementing specific
VAX FORTRAN usages to take better advantages of the VAX architecture.

11.4.4.1 Constants as Code Literals

Constants used in operations are most often inserted into the executable
object code directly as literal operand specifiers. For example, consider the
following source code:

I = 14

Performance Optimization 11-33

This statement results in the following object code:

Unoptimized Code Optimized Code

K$1: .LONG 14

MOVL K$1, I

MOVL #14, I

11.4.4.2 JSB for Floating Math Functions

Optimized calling sequences are used for the REAL*4, REAL*8, and
REAL* 16 versions of some intrinsic functions. For example, consider the
following source code:

X =SIN (Y)

This statement results in the following object code:

Unoptimized Code Optimized Code

CALLG arglist, MTH$SIN MOVF Y, RO

JSB MTH$SIN_R4

11.4.4.3 Code Alignment

Labels used as the objects of frequent branch instructions are aligned on
longword boundaries to improve the speed of the branch operations. This
optimization results in NOP instructions in the generated code. The NOP
instructions generally appear at loop tops and before labels generated by
the compiler to implement ELSE or ELSE IF constructs.

11.4.4.4 SIN and COS Functions

When the SIN and COS functions (or SIND and COSD functions) are
both referenced using the same argument, the compiler uses an optimized
calling sequence, which computes both using a single call.

11-34 Performance Optimization

11.4.4.5 Mixed Real/Complex

Operations on COMPLEX data types are optimized if the other operand
is REAL. Normally, such an operation is performed by converting the
REAL to a COMPLEX and then performing the operation using the
two COMPLEX quantities. The optimization avoids the conversion and
performs a simplified operation. The compiler performs this optimization
on the +, -, and *operations if either operand is REAL, and on the
/ operation if the right operand is REAL. For example, consider the
following source code:

COMPLEX A, B

B = A + R

These statements result in the following object code:

Unoptimized Code Optimized Code

MOVF R, RO

MOVF #0, R1

ADDF3 RO , A , B

ADDF3 R1, A+4, B+4

ADDF3 R , A , B

MOVF A+4, B+4

11.4.4.6 Peephole Optimizations

The final representation of the intermediate code is examined on an
instruction-by-instruction basis to find operations that can be replaced
by shorter, faster operations. For example, consider the following source
code:

A = 0.0

This statement results in the following object code:

Unoptimized Code Optimized Code

MOVF #40, A CLRF A

The two most common peephole optimizations are test elimination and
conversion of operations from a 3 operand form to a 2 operand form.

These optimizations are described in the remainder of this section.

Performance Optimization 11-35

Test Elimination

IF statements can frequently be optimized when the variables used in their
test conditions are computed immediately before the IF statement. For
example, consider the following source code:

I = M*N
IF (I .GT. 0) THEN

In this case, because the value of I is already indicated by the VAX
condition codes at the time the IF statement is executed, it does not need
to be explicitly compared with zero. When the compiler detects this
situation, it eliminates the compare operation.

Conversion of 3 Operand Form to 2 Operand Form

Many VAX arithmetic and logical operations exist in both 2 operand
and 3 operand forms. The 3 operand forms are generally used because
they often prevent the need for MOV instructions (see Section 11.4.3.1).
However, in many cases in which both input and output operands are
the same register or memory location, the 2 operand form can be used
instead. The methods used to choose locations for the results of temporary
operations are designed to take advantage of this possibility. The 2
operand form has advantages in both execution time and memory space.
For example, consider the following source code:

A = A + B

This statement results in the following object code:

Unoptimized Code Optimized Code

ADDF3 B, A, A ADDF2 B, A

11.4.5 Improving Performance of 1/0 Operations

Many FORTRAN programs spend more time and resources performing
input and output operations than they do performing computations.
In these programs, making the I/O operations more efficient is more
worthwhile than making the computations more efficient. This section
discusses some techniques that you can use to make your I/O operations
more efficient.

11-36 Performance Optimization

11.4.5.1 Using Unformatted I/O

FORTRAN formatted input and output operations are often compute
bound. That is, they often spend as much time converting input characters
into internal form and the internal form into output characters as they do
performing the actual data transfers to and from the output device. For
this reason, you should limit your use of formatted I/O to those situations
in which it is necessary for someone to provide input or to examine the
output.

In cases where the input comes from another program or where the output
is processed by another program, you should use unformatted I/O instead
of formatted I/O. For example, to write the array A(25,25), you should
use an unformatted WRITE statement:

WRITE (7) A

This is much more efficient than a formatted WRITE statement. For
example:

WRITE (7,100) A
100 FORMAT (25(' ' ,25F5.21))

Using unformatted I/O has several benefits:

• It minimizes the CPU resources needed to perform the I/O operation
because it avoids the translation to and from internal form.

• It increases the accuracy of floating-point data because it avoids a
roundoff error on both input and output.

• It makes more efficient use of the capabilities of the I/O devices
because it allows more data to be transmitted in a single operation.

11.4.5.2 Using the OPEN Statement's RECORDTYPE Keyword

For unformatted I/O, the default record type for the OPEN statement's
RECORDTYPE keyword is 'SEGMENTED'. Each record is broken up
into chunks called segments, and the I/O is performed on the segments
rather than the records. This is not the most efficient way to perform
unformatted I/O, but is used because it is the only way that works
regardless of the size of the records.

You can often significantly improve the speed of the unformatted I/O by
using the 'FIXED' or 'VARIABLE' record type.

• If the size of the records you are writing is always the same, you
should always use the 'FIXED' record type. This allows the I/O

Performance Optimization 11-37

subsystem to write exactly the data in your records; no space is wasted
and no extra processing is needed.

• If your records are not all the same size, you can use the 'VARIABLE'
record type and achieve some benefit over the use of 'SEGMENTED'.
This record type requires the I/O subsystem to append a length word
(which contains the number of bytes in the record) at the beginning
of each record. It also requires the I/O subsystem to provide an
additional level of buffering beyond that required for the 'FIXED'
record type. This is better than using the 'SEGMENTED' type, which
requires additional processing and buffering for each segment as well
as for each record.

11.4.5.3 Avoiding Run-Time Formats

When performing formatted I/O, two computation steps are required for
each format string used.

1. The format string must be parsed to determine exactly what kind of
formatting is required.

2. Each format code is matched with a corresponding data element
from the I/O list of the program's I/O statement and the appropriate
translation is performed.

When run-time formatting is used, both of these steps must be performed
each time the I/O statement is executed. Run-time formatting is required
when the format specifier in the I/O statement is the name of an array, an
array element, or a nonconstant character expression.

The compiler avoids the first step of the formatting process when you do
not use run-time formatting. It parses the FORMAT string at compile time
and reduces it to a compact internal form that needs little processing at
run-time to determine how each data item is to be translated.

You should minimize your use of run-time formats. In many cases,
the use of variable format expressions can replace the use of run-time
formats. Variable format expressions allow you to vary the exact format
specification at run time while retaining the performance advantages of
compiler preprocessing of FORMAT statements.

11-38 Performance Optimization

l~J

U

11.4.5.4 Avoiding the Use of the BACKSPACE Statement

The backspace operation is not directly supported on most VAX I/O
devices (including magnetic tape drives) and therefore must be simulated
by rereading the input file from the beginning. This simulation uses
extra buffering to avoid rereading the input file with every BACKSPACE
statement, but it is less efficient than using a direct access read when
reading a disk file.

If a reread capability is required, it is more efficient to read the record into
an internal file and read the internal file several times than to read and
backspace to the record.

11.4.5.5 Using OPEN Statement Keywords to Control 1/O

You can use the BLOCKSIZE and BUFFERCOUNT keywords in an OPEN
statement in order to enhance the efficiency of I/O operations.

• BLOCKSIZE One of the ways to reduce I/O overhead when you
are using sequential access mode is to transfer larger blocks of data
with each I/O operation. In this way, you can take advantage of
the high data-transfer rates of the I/O devices, while minimizing the
computational overhead of each I/O operation. In order to transfer
larger blocks of data, use the BLOCKSIZE keyword when opening the
file

• BUFFERCOUNT Often, you can improve the total execution time
of a program by overlapping some of the computation with the
I/O operations. The VAX Record Management Services (used by
the VAX FORTRAN I/O system) does this automatically by using
multiple buffers when it performs I/O operations. The use of multiple
buffers allows the program to be processing one buffer while the I/O
system is reading into, or writing from, another. You can control
the use of multiple buffers in several ways, most easily by using the
BUFFERCOUNT keyword when opening a file.

See the VAX FORTRAN Language Reference Manual for more information
on the use of these keywords.

The following example shows the effect on the elapsed time of different
values of BLOCKSIZE and BUFFERCOUNT on a typical VAX configura-
tion. The example gives the relative elapsed CPU time for a program that
writes and reads a 1000-element REAL array 100 times on aVAX-11/780.

Performance Optimization 11-39

The program has the following OPEN statement:

OPEN (UNIT=1, STATUS='NEW',
1 FORM='UNFORMATTED', RECORDTYPE='FIXED',
1 RECL=1000, BLOCKSIZE=IBLK, BUFFERCOUNT=IBUF)

The measures of relative elapsed CPU time achieved by this program
(with BUFFERCOUNT settings of 1-4) are as follows:

BLOCKSIZE
BUFFERCOUNT

1 2 3 4

4000 1.00 1.00 .99 .99

8000 .69 .67 .67 .66

12000 .58 .54 .53 .53

As the example shows, you can reduce the elapsed time significantly by
choosing the number and size of I/O buffers appropriately. However,
because the optimal values are highly application dependent, you should
experiment to determine which values produce the best results for any
given program.

The OPEN and CLOSE statements provide explicit control over I/O
devices and files, as shown in the following examples.

• The following statement allocates space for a file when the file is
opened; this is a more efficient method than that of extending the size
of the file dynamically.

OPEN (UNIT=1, STATUS='NEW', INITIALSIZE=200)

• The following statement specifies a large blocking factor for I/O
transfers. If the file is on magnetic tape, the physical tape blocks are
8192 bytes long; if the file is on disk, 16 disk blocks are transferred by
each I/O operation, thus enhancing I/O performance (but requiring
more memory).

OPEN (UNIT=3, STATUS='NEW', BLOCKSIZE=8192)

• The following statement creates a file with implicit carriage control.
Because the first character of each record is not used for carriage
control, it can contain actual data.

OPEN (UNIT=2, STATUS='NEW', FORM='FORMATTED',
1 CARRIAGECONTROL='LIST')

11-40 Performance Optimization

11.4.5.6 Using Alternative i/O Methods

You can use alternative I/O methods when performance requirements call
for faster I/O operations than can be achieved using standard FORTRAN
I/O operations or when you need to use special features of the VAX I/O
system that are not supported in the FORTRAN language. However, these
alternative methods are not recommended unless you need them; their
use makes your program nonstandard and thus degrades your ability to
transport it to other computer systems.

The VAX/VMS I/O architecture has several levels, the highest level being
the language support routines in the Run-Time Library. These routines
in turn call the general I/O routines of the VMS Record Management
Services (RMS) package, which are used for performing I/O by all
DIGITAL-supported VAX native-mode language processors. RMS routines
are described in the VMS Record Management Services Manual.

Often, you can access special features of RMS simply by using a
USEROPEN routine. The USEROPEN keyword of the OPEN state-
ment is used to specify the address of auser-written routine that will be
called by the RTL I/O support routines instead of actually performing the
RMS OPEN operation directly. Your USEROPEN routine can then modify
the RMS control structures to access RMS features not directly supported
by OPEN statement keywords. The use of the USEROPEN keyword is
described in Chapter 7.

You can also call RMS I/O service routines directly from your FORTRAN
program. To do this, you will need to become familiar with how to set up
and manipulate the large data structures used by RMS in its service calls.
These structures are called the File Access Block (FAB), Record Attributes
Block (RAB), Extended Attributes Block (XAB), and File Name Descriptor
Block (NAM). Refer to Section 6.5 for information on how to call VMS
system service routines from FORTRAN programs. Refer to Chapter 7 for
more information about calling RMS.

The lowest level of I/O services on the VMS system is the QIO level.
This level specifies the actual operations that are to be performed by
the peripheral devices. The QIO services are also callable directly from
FORTRAN programs. These services also require data structures for
specifying their arguments. Refer to the VMS 1/O User's Reference Manual:
Part 1 for more information on how to use the QIO services.

Performance Optimization 11-41

When using these alternative I/O methods, you should never try to
use more than one level on the same I/O stream at the same time. For
instance, do not mix standard FORTRAN read and write operations with
direct calls to the RMS service routines for I/O on the same file at the
same time. Such usage is not supported and cannot be made to work
without a detailed understanding of every level involved. In addition,
DIGITAL reserves the right to modify the interfaces used by the compiled
code to the FOR~t'RAN RTL I/O system, as well as the interfaces from
these routines to RMS.

11.4.5.7 Implied-C,O Loop Collapsing

In general, each I/O element in a FORTRAN I/O statement is processed
by a separate call to the VAX FORTRAN Run-Time Library I/O processing
routines. The computation overhead of these calls is most significant
when using implied-DO loops. In the case of implied-DO loops, the
compiler performs an optimization to reduce this overhead. In particular,
for each innermost implied-DO loop in a nested group, it replaces the loop
with a single call to an optimized Run-Time Library I/O routine that can
transmit many I/O elements at once. This optimization is performed for
both formatted and unformatted I/O, but is more effective in the case of
unformatted I/O.

Behaviors of Formatted and Unformatted I/O

In formatted I/O, even though most calls to the Run-Time Library I/O
support routines have been eliminated, the individual data items still
require translating to or from external form. Thus, although the implied-
DO loops are collapsed for formatted I/O, substantial processing is still
needed for this type of I/O.

For unformatted I/O, on the other hand, collapsing the implied-DO loops
often removes most of the processing required to perform the I/O. In
particular, if the unformatted I/O transmits data items that are physically
adjacent in memory, a level of buffering is eliminated and efficiency is
substantially improved. For example:

DIMENSION A(200,300)

READ (5) ((A(I,J),I=1,200),J=1,300)

This usage is particularly efficient because the compiler collapses the
innermost loop and 200 elements at a time are read using a single block
move operation. Note that efficiency is significantly degraded if the loops
are nested in the opposite order. This is because block moves cannot be

~ 1-42 Performance Optimization

done, and locality of reference is destroyed because the natural order of
subscript progression is not used.

Source Code Requirements for Optimization

Certain usages prevent the compiler from collapsing implied-DO loops
and must be avoided if you intend to take advantage of this optimization.

When using formatted I/O, the implied-DO loop cannot be collapsed if
the FORMAT statement contains a variable format expression or does
not precede the I/O statement in the source program. This is necessary
because the optimization is performed on the first phase of the com-
piler. Thus, it is impossible to test for the presence of a variable format
expression in the FORMAT statement if it follows the I/O statement.

In addition, certain usages of the implied-DO loop control variables
prevent collapsing in both formatted and unformatted I/O statements.
In particular, collapsing cannot be done if the control variable is used
as a dummy argument or in a COMMON statement, EQUIVALENCE
statement, or VOLATILE statement. In addition, the control variable must
be of INTEGER data type.

NOTE

The value of the loop control variable is unpredictable when the
I/O statement terminates with an end of file or error condition.
Your program should only reference the terminal value of this
variable if the I/O statement completes normally.

11.4.5.8 Additional 1/O Optimizations

You can often reduce the execution time of your FORTRAN programs by
changing your programs to reflect the following considerations:

• Certain kinds of I/O lists can be optimized more effectively than
others. For instance, an I/O list consisting of a single unformatted
element (variable or array) does not have to be buffered in the Run-
Time Library buffers. Also, implied-DO loops consisting of a single
unnested element are transmitted as a single call to the Run-Time
Library.

• To obtain minimum I/O processing, the record length of direct access
sequential organization files should be a divisor or multiple of the
device block size of 512 bytes (for example, 32 bytes, 64 bytes, and
so on). For relative organization files, RMS adds one overhead byte
for fixed-length records and three overhead bytes for variable-length
records, so the record length should be adjusted accordingly.

Performance Optimization 11-43

• If the approximate size of the file is known, it is more efficient to
allocate disk space when a file is opened than to extend the file
incrementally as records are written. You can make this allocation
using the INITIALSIZE keyword in the OPEN statement.

11.5 Space Optimizations

Even though the VAX architecture allows the use of large memory spaces
without overlays, it is still important to minimize the use of memory.
Doing this often results in additional speed improvements and generally
improves system throughput. The memory space optimizations performed
by the compiler are described in the sections that follow. These fall into
two categories: data size and code size.

11.5.1 Data Size Optimizations

The compiler optimizes the use of data space by avoiding duplication
of quantities requiring space and by eliminating data items that are not
actually used by the program.

11.5.1.1 Constant Pooling

Only one copy of a gi~~en constant value is ever allocated memory space.
If that constant value is ~sFd in several places i:~ the program, all refer-
ences point to that vait~e.

11.5.1.2 Argument List Merging

Argument-list data structures are built by the compiler to describe actual
argument lists used by your program. Only one copy of a given actual
argument list is built, even if it is used by more than one CALL or
FUNCTION reference. For example:

XYZ = A + FUNC(B,C)

CALL SUBA(B,C)

The argument list (B,C) is allocated only once in memory.

11-44 Performance Optimization

11.5.1.3 Dead Variable Elimination

Variables whose uses have all been removed by value propagation op-
timizations, or by register usages, are not allocated in memory. In the
memory map section of the compiler output listing, such variables appear
with double asterisks (**) for their memory locations.

11.5.2 Code Size Optimizations

The compiler performs several optimizations that reduce the amount of
memory required by the object code. These optimizations also frequently
reduce execution time.

11.5.2.1 Local Storage Allocation

The allocation of local variables and arrays declared in your program (that
is, those variables and arrays not in common blocks or dummy arguments)
is chosen so as to minimize the offsets from the base register used to
address them. The VAX instruction modes allow offsets of different sizes

(o,

1, 2, or 4 bytes) for exactly this purpose. A considerable execution
speed advantage can often be achieved by using the smallest necessary
offset size.

11.5.2.2 Jump Branch Resolution

In addition to allowing different sizes of operand offsets, the VAX instruc-
tion set includes a variety of branch-type instructions for controlling the
flow of program execution. These different branch instructions allow dif-
ferent offset sizes for code space optimization. The compiler optimizes the
use of these instructions in order to choose the smallest offsets required
for each branch in the program.

11.5.2.3 Dead Code Eliminations

The compiler can sometimes detect that some parts of the program will
never be executed. In this case, it removes the code entirely. It does this
in several different ways and in several phases of the compiler. These
dead code eliminations do not necessarily mean that poor program-
ming practice has been followed; often, it is simply the result of using
PARAMETER constants. For this reason, no warning messages are given
when dead code is eliminated.

Performance Optimization 11-45

Code Reordering for Branch Elimination

The compiler reduces the number of branch type instructions in the
program by arranging the order in which the statements appear in the
machine code. This optimization effectively removes unneeded GOTO
operations from the machine code.

Elimination of Unreachable Code

Source code that can never actually be executed is said to be dead code.
For example:

IF (.FALSE.) A = B

In this case, the assignment statement will never be executed.

Even though the existence of dead code in a program does not generally
affect execution speed, it does occupy memory space needlessly. It also
causes larger offsets to be needed in branch instructions that span the dead
code. The compiler detects dead code in two ways and always eliminates
it from the object program.

• Lexically detected -warning issued. The compiler detects dead code first
by identifying source statements that cannot be reached. For example:

GO TO 100
I = J*K

The assignment statement in this example can never be executed
because the GOTO statement is unconditional and because the as-
signment statement has no label that can be referenced by a control
statement, such as DO or GOTO. When the compiler detects such us-
age, it issues a warning message indicating that the statement cannot
be reached.

• Detected by value propagation - no warning issued. Sometimes, it is
not apparent from the source program that the dead code cannot be
reached. For example:

I = 100

In this example, the assignment can never be executed because the
value of I will never be less than 0. When the compiler detects such
usage, it does not issue a warning that the code cannot be reached.

11-46 Performance Optimization

Elimination of Operations on Dead Variables

The compiler analyzes the use of selected variables to determine if they
have any effect on the output of the program unit. If they do not, they are
called dead variables. The compiler optimizes both speed and space by
eliminating all operations on dead variables.

11.6 Compiler Optimization Example

The example in this section shows many of tie optimization techniques
used by the VAX FORTRAN compiler. The first part (Example 11-1)
shows a complete FORTRAN subroutine, a relaxation function often used
in engineering applications. This subroutine is atwo-dimensional function
used to obtain the values of a variable at coordinates on a surface, for
example, temperatures distributed across a metal plate.

The second part (Example 11-2) shows the VAX machine code generated
by the FORTRAN compiler. Several compiler optimizations are indicated
by the circled numbers next to the generated code lines. These are
described in the notes that follow the example.

Example 11-1: RELAX Source Program

0001 SUBROUTINE RELAX2(EPS)

0002
0003 PARAMETER (M=40, N=60)

0004 DIMENSION X(O:M,O:N)

0005 COMMON X

0006
0007 LOGICAL DONE

0008
0009 1 DONE _ .TRUE.

0010

Example 11-1 Cont'd. on next page

Performance Optimization 11-47

Example 11-1 (Copt.): RELAX Source Program

0011 DO 10 J=1,N-1
0012 DO 10 I=1,M-1
0013 XNEW = (X(I-1,J)+X(I+l,J)+X(I,J-1)+X(I,J+1))/4
0014 IF (ABS(XNEW-X(I,J)) .GT. EPS) DONE _ .FALSE.

0015 10 X(I,J) = XNEW
0016
0017 IF (.NOT. DONE) GO TO 1
0018
0019 RETURN
0020 END

Example 11-2: RELAX Machine Code (Optimized)

.TITLE RELAX2

.IDENT O1

0000
0000 X:

.PSECT $BLANK

0000 .PSECT $CODE

0000 RELAX2::
0000 .WORD ~M<IV,R2,R3,R4,R6,R7>

0
0002 NOP
0003 NOP
0004 .1:
0004 MNEGL #1, RO

0007 MOVL #1, R1
OOOA NOP
OOOB NOP
OOOC L$1:

0

0001

0009

0011

Example 11-2 Cont'd. on next page

11-48 Performance Optimization

Example 11-2 (Copt.): RELAX Machine Code (Optimized)

0012

OOOC MOVL #1, R2
OOOF MULL3 #41, R1, R3
0013 MOVAF X [R3] , R4
OO1B NOP
OO1C L$2:

0013

OO1C
0021

ADDF3
ADDF2

8(R4), (R4)+,
-164(R4), R6

R6

0026 ADDF2 164(R4), R6
002B MULF2 #~X3F80, R6 ~'

0014

0032 SUBF3 (R4), R6, R7

0036 BICW2 # X8000, R7

003B CMPF R7, @EPS(AP)
003F BLEQ L$3
0041 CLRL RO
0043 L$3:

0015

0043 MOVL R6, (R4)

0046 AOBLEQ #39, R2, L$2

004A AOBLEQ #59, R1, L$1
0017

004E BLBC R0, .1
0019

0051 RET
.END

Notes to Example 'f 1—~

O All local variables are eliminated, so no $LOCAL PSECT is needed
(and no base register is needed to point to it).

© Loop tops are aligned on longword boundaries using NOP
instructions.

© Register assignment for DONE; short form of constant.

o Register assignment for J.
© Register assignment for I.

O Common subexpression (J*41) is hoisted from loop and assigned to a
register.

O Base address (X(1,1)) is loaded into a register. Six references to it.

Autoincrement address mode for X(I-1,J).

O Register 6 is used for all temporary variables for line 7.

Performance Optimization 11-49

m

Peephole optimization; a divide by 4.0 is replaced by a multiply
by 0.25.

m

XNEW loaded into Register 6, allowing for two-operand multiply.

® In-line ABS function.

® Flow Boolean optimization for IF statement.

m DO loop control using a single AOBLEQ (add one and branch less
than or equal) instruction.

® Logical test and branch in a single instruction.

m

Only 82 code bytes total (25 less than VAX FORTRAN, Version 3).

11-50 Performance Optimization

Chapter 12

Using Structures and Records

VAX FORTRAN structures and records allow you to group associated data
items together in a common entity declaration instead of handling them in
separate variable and array declarations.

Like arrays, records can contain one or more data elements. Unlike arrays,
however, the data elements in a record, called fields, can have different
data types. Also, each field of a record has a unique name that identifies
it; whereas, each element of an array is identified by a unique numeric
index.

This chapter provides an overview of how records can be used in VAX
FORTRAN programs. Detailed information about the specifics of record
use is provided in the VAX FORTRAN Language Reference Manual. Topics
addressed in that manual include the following:

• The way to reference records and how records appear in memory

• The use of records in assignment statements

• The format of the RECORD statement

• The format of structure declaration blocks, which define the fields or
groups of fields within a record

Using Structures and Records 12-1

12.1 Structures

In vAX FORTRAN, structures are used to describe the form of records.
You can think of these structures as templates that define the form and .
size of records.

You define a structure with a block of statements, beginning with a
STRUCTURE statement and ending with an END STRUCTURE statement.
You can use the following statements within a structure declaration block:

• Statements that appear very much like data type declaration state-
ments. These statements form structure declaration blocks and
describe the fields contained within the structure.

• Statements that define substructures (nested structure declarations and
RECORD statements) and mapped common areas (union declarations).
These constructs are not discussed in this chapter; see the VAX
FORTRAN LarTguage Reference Manual for details.

• PARAMETER statements. A PARAMETER statement in a structure
declaration block has its normal effect of assigning a symbolic name to
a constant.

You specify the name of a structure in the STRUCTURE statement. The
RECORD statement uses this name to identify the structure that is to be
made into a record (or structured field).

The following example defines the structure DATE. It contains three fields:
DAY, MONTH, and YEAR. Note that the field YEAR is initialized with
1986. Any records defined to have the structure DATE will have their
YEAR field initialized to 1986.

STRUCTURE /DATE/
LOGICAL*1 DAY, MONTH
INTEGER*2 YEAR /1986/

END STRUCTURE

The following example defines the structure PERSON, which might
be used to hold information about an individual. It contains the fields
NAME, SEX, and BIRTH_DATE. Note that the fields NAME and
BIRTH _DATE are themselves structured; that is, they are substructures
within the structure PERSON. NAME's structure declaration (unnamed)
contains the fields LAST_NAME, FIRST_NAME, and MIDDLE _INITIAL.
BIRTH _DATE has the structure of DATE, the structure defined in the
preceding example.

12-2 Using Structures and Records

STRUCTURE /PERSO^1/

STRUCTURE NAME
CHARACTER*20 LAST_NAME, FIRST_NAME

CHARACTER*1 MIDDLE_INITIAL

END STRUCTURE
LOGICAL*1 SEX
RECORD /DATE/ BIRTH_DATE

END STRUCTURE

See the VAX FORTRAN Language Reference Manual for detailed informa-
tion about structure declarations and their syntactical elements.

12.2 Records

You use the RECORD statement to define record scalars and arrays, in
much the same way that you use type declaration statements. For exam-
ple, the following RECORD statement, based on the structure PERSON
shown in the preceding section, could be used:

RECORD /PERSON/ FATHER, MOTHER, CHILDREN(10)

The preceding statement creates twelve records with the structure
PERSON. In each of the twelve records, all fields are initially undefined,
with the exception of BIRTH_DATE.YEAR, which has been initialized to
1986 in the structure declaration DATE.

See the VAX FORTRAN Language Reference Manual for information about
how to reference records and fields and about how they appear in
memory.

12.3 Uses of Records

When you have several data arrays, each containing a different, though
related, type of information, the use of records allows you to use the same
index to refer to each array.

As an example, consider a FORTRAN program that maintains and manip-
ulates asymbol table. The symbol table consists of three arrays: the first
contains the symbol names, the second contains the symbol values, and
the third contains a flag signaling whether the symbol is defined. As an
example, the declaration in FORTRAN-77 could be as follows:

PARAMETER (MAXSYM=1000)
CHARACTER*16 SYMBOL_NAME(MAXSYM)
INTEGER*4 SYMBOL_VALUE(MAXSYM)

LOGICAL*1 SYMBOL_FLAG(MAXSYM)

Using Structures and Records 12-3

Note that each array is declared separately and that the data items,
although related, are declared (and later manipulated) separately. For
example, to read or write such related information from or to a file, you
must specify each piece individually, as in the following WRITE statement:

WRITE (10) SYMBOL_NAME(I), SYMBOL_VALUE(I), SYMBOL_FLAG(I)

With structures and records, however, the definition allows you to group
the related information together and to refer to that information as a
whole in many cases. Thus, the symbol table declaration could appear as
follows:

STRUCTURE /SYM/
CHARACTER*16 NAME
INTEGER*4 VALUE
LOGICAL*i FLAG

END STRUCTURE

RECORD /SYM/ SYMBOL(MAXSYM)

These declarations create only one array, the record array SYMBOL. Each
element of SYMBOL has the form (structure) of SYM. This means that
each element of SYMBOL consists of the three fields NAME, VALUE, and
FLAG. Note that the related information about an individual symbol
its name, value, and flag is now one element of a record array. As
a result, you can refer to a symbol table (that is, SYMBOL instead of
individual arrays such as SYMBOL_NAME), a single symbol I (for
example, SYMBOL(I) instead of SYMBOL_NAME(I)), or any of the fields
in symbol I (for example, SYMBOL(I).NAME). Thus, the previous WRITE
statement would be changed as follows:

WRITE (10) SYMBOL(I)

This statement is equivalent to the following statement:

WRITE (10) SYMBOL(I).NAME, SYMBOL(I).VALUE, SYMBOL(I).FLAG

Without records, VAX FORTRAN programs would have to use COMMON
blocks in some cases such as with arguments of system service calls
to pass structured information to subroutines (see Section 6.5.4.4 for
information on data structure arguments). Such routines expect to receive
the address of either a list, control block, or vector, and the COMMON
statement constructs these arguments, with no empty spaces between
adjacent items, in order of declaration. The resulting COMMON blocks
can be used as records but do not have the flexibility of records.

12-4 Using Structures and Records

For example, a call to the SYS$GETJPI system service requires the ad-
dress of a sequence of items consisting of two words followed by two
longwords. With records, this call can be achieved with the following
code:

STRUCTURE /GETJPI_ITEM/
INTEGER*2 W_LEN, W_CODE
INTEGER*4 L_ADDR, L_LENADDR/0/

END STRUCTURE
RECORD /GETJPI_ITEM/ GETJPIARG(5)

GETJPIARG(4).W_LEN = 4
GETJPIARG(4).W_CODE = JPI$_CPUTIM
GETJPIARG(4).L_ADDR = %LOC(LCL_VALUES(4))

CALL SYS$GETJPI(,,,GETJPIARG,,,)

As this example shows, the primary advantage to using records is that
they enable you to group conceptually related data together in one
entity regardless of conflicts in data types.

Using Structures and Records 12-5

Chapter 13

Using Character Data

VAX FORTRAN's character data type allows you to easily manipulate
alphanumeric data. You can use character data in the form of character
variables, arrays, constants, and expressions. A concatenation operator
(//) can be used to form a single character string from two or more
separate strings.

This chapter provides information on the following topics:

• Character substrings (Section 13.1)

• Building character strings (Section 13.2)

• Character constants (Section 13.3)

• Declaring character data (Section 13.4)

• Initializing character variables (Section 13.5)

• Passed-length character arguments (Section 13.6)

• Character library functions (Section 13.7)

• Character input/output (Section 13.8)

Section 13.9 provides an example of how character data can be used in
VAX FORTRAN programs.

Using Character Data 13-1

13.1 Character Substrings

You can select certain segments (substrings) from a character variable,
character array element, or character record field by specifying the name
of the variable, array element, or record field, followed by delimiter values
indicating the positions of the leftmost and rightmost characters in the
substring. For example, you could define the character variable NAME to
contain the following string:

ROBERT~WILLIAM~BOB~JACKSON

To extract the substring BOB from the variable NAME, you would specify
the following:

NAME(16:18)

If you omit the first value, you are indicating that the first character of
the substring is the first character in the variable. For example, you could
specify the variable as follows:

NAME(:18)

This results in the following substring:

ROBERT~WILLIAM~BOB

If you omit the second value, you are specifying the rightmost character to
be the last character in the variable. For example, you could specify the
variable as follows:

NAME(16:)

This results in the following substring:

BOB~JACKSON

13-2 Using Character Data

13.2 Building Character Strings

It is sometimes useful to create strings from two or more separate strings.
This is done by means of the concatenation operator, the double slash
(//). For example, you might want to create a variable called NAME,
consisting of the values of the variables FIRSTNAME, MIDDLENAME,
NICKNAME, and LASTNAME. To do so, define each as a character
variable of a specified length. For example:

CHARACTER*42 NAME
CHARACTER*12 FIRSTNAME,MIDDLENAME,LASTNAME
CHARACTER*6 NICKNAME

Concatenation is accomplished as follows:

NAME = FIRSTNAME//MIDDLENAME//NICKNAME//LASTNAME

Thus, if the variables contained the following values:

FIRSTNAME _ 'ROBERT'
MIDDLENAME _ 'WILLIAM'
NICKNAME _ 'BOB'
LASTNAME _ 'JACKSON'

The values would be stored individually as follows:

ROBERTeeeeee
WILLIAMeeeee
BOBeee
JACKSONeeeee

Then, when concatenated and stored in NAME, they form the following
string:

ROBERTeeeeeeWILLIAMeeeeeBOBeeeJACKSONeeeee

Applying the substring extraction facility described in Section 13.1, you
can get the stored nickname by specifying the variable as follows:

NAME(25:30)

This picks up the 6-character substring BOBe e e (including trailing blanks)
in the .variable NAME.

Using Character Data 13-3

13.3 Character Constants

Character constants are strings of characters enclosed in apostrophes. You
assign a character value to a character variable in much the same way you
assign a numeric value to a real or integer variable. For example:

XYZ = 'ABC'

As a result of this statement, the characters ABC are stored in location
XYZ. Note that if XYZ's length is less than three bytes, the character string
is truncated on the right. For example, the following source statements
produce a result of AB:

CHARACTER*2 XYZ

XYZ = 'ABC'

If, on the other hand, the variable is longer than the constant, it is padded
on the right with blanks. For example:

CHARACTER*6 XYZ

XYZ = 'ABC'

This results in the following string being stored in XYZ:

ABC~O~

The previous contents of XYZ are overwritten. Thus, if the previous
contents of XYZ were DEFGHI, the result would still be ABC000.

You can give character constants symbolic names by using the
PARAMETER statement. For example:

CHARACTER*(*) TITLE
PARAMETER (TITLE _ 'THE METAMORPHOSIS')

This PARAMETER statement example assigns the symbolic name TITLE
to the character constant THE METAMORPHOSIS.

You can use the symbolic name TITLE anywhere a character constant is
allowed.

To include an apostrophe as part of the constant, specify two consecutive
apostrophes. For example:

CHARACTER*(*) TITLE
PARAMETER (TITLE _ 'MARTHA " S VINEYARD')

This results in t~1e character constant MARTHA'S VINEYARD.

13-4 Using Character Data

The value assigned to a character parameter can be any compile-time
constant character expression. Note in particular that the CHAR intrinsic
function (see Section 13.7.1) with a constant argument is a compile-time
constant expression; therefore, you can assign nonprinting characters to
parameter constants. For example:

CHARACTER*(*) CRLF
PARAMETER (CRLF=CHAR(13)//CHAR(10))

13.4 Declaring Character Data

To declare variables or arrays as character type, use the CHARACTER
type declaration statement, as shown in the following example:

CHARACTER*10 TEAM(12), PLAYER

This statement defines a 12-element character array (TEAM), each element
of which is 10 bytes long, and a character variable (PLAYER), which is
also 10 bytes long.

You can specify different lengths for variables in a CHARACTER statement
by including a length value for specific variables. For example:

CHARACTER*6 NAME, AGE*2, DEPT

In this example, NAME and DEPT are defined as 6-byte variables, while
AGE is defined as a 2-byte variable.

13.5 Initializing Character Variables

Use the DATA statement to preset the value of a character variable. For
example:

CHARACTER*10 NAME, TEAM (5)
DATA NAME/' '/, TEAM/'SMITH','JONES',
1 'DOE','BROWN','GREEN'/

Note that NAME contains 10 blanks, while each array element in TEAM
contains the corresponding character value, right-padded with blanks.

To initialize an array so that each of its elements contains the same value,
use a DATA statement of the following type:

CHARACTER*5 TEAM(10)
DATA TEAM/10*'WHITE'/

Using Character Data 13-5

The result is a 10-element array in which each element contains WHITE.

You can also initialize character variables within the character declaration,
as shown in the following example:

CHARACTER*10 METALS (3)/'LEAD','IRON','GOLD'/

13.6 Passed-Length Character Arguments

In writing subprograms that manipulate ch~:~ acter data, you can get
the subprogram to accept actual character arguments of any length by
specifying the length of the dummy argument as passed-length. To
indicate apassed-length dummy argument, use an asterisk (*) as follows:

SUBROUTINE REVERSES)
CHARACTER*(*) S

The passed-length notation indicates that the length of the actual argu-
ment is used when processing the dummy argument string. This length
can change from one invocation of the subprogram to the next. For
example:

CHARACTER A*20, B*53

CALL REVERSE (A)
CALL REVERSE (B)

In the first call to REVERSE, the length of S is 20; in the second call, the
length of S is 53.

You can use the CHARACTER*(*) notation to define the length of param-
eter character constants. The actual length is then the length of the char-
acter constant that is assigned to the parameter name in a PARAMETER
statement.

The FORTRAN function LEN can be used to determine the actual length
of the string (see Section 13.7.4).

13-6 Using Character Data

13.7 Character Intrinsic Functions

VAX FORTRAN supports the following character intrinsic functions:

• CHAR

• ICHAR

• INDEX

• LEN

• LGE, LGT, LLE, LLT

The following sections describe these functions.

13.7.1 CHAR Intrinsic Function

The CHAR function returns a 1-byte character value equivalent to the
integer ASCII code value passed as its argument. It has the form:

CHAR (i)

The notation i represents an integer expression equivalent to an ASCII
code.

13.7.2 !CHAR Intrinsic Function

The ICHAR function returns an integer ASCII code equivalent to the
character expression passed as its argument. It has the form:

ICHAR(c)

The notation c represents a character expression. If c is longer than one
byte, the ASCII code equivalent to the first byte is returned and the
remaining bytes are ignored.

Using Character Data 13-7

13.7.3 INDEX Intrinsic Function

The INDEX function is used to determine the starting position of a sub-
string. It has the form:

INDEX(cl,c2)

The notations c 1 and c2 represent character expressions. Character expres-
sion cl specifies the string to be searched for a match with the value of
the substring specified in character expression c2.

If the INDEX function finds an instance of the specified substring (c2),
it returns an integer value corresponding to the starting location in the
string (c 1). For example, if the substring sought is CAT, and the string that
is searched contains DOGCATFISHCAT, the return value of the INDEX
function is 4.

If the INDEX function cannot find the specified substring, it returns the
value 0.

If there are multiple occurrences of the substring, INDEX locates the first
(leftmost) one. Use of the INDEX function is illustrated in Example 13-1.

13.7.4 LEN Intrinsic Function

The LEN function returns an integer value that indicates the length of a
character expression. It has the form:

LEN (c)

The notation c represents a character expression.

13.7.5 LGE, LGT, LLE, LLT Intrinsic Functions

The lexical comparison functions LGE, LGT, LLE, and LLT are defined by
the FORTRAN-77 standard to make comparisons between two character
expressions using the ASCII collating sequence. The result is the logical
value .TRUE, if the lexical relation is true, and .FALSE. if the lexical
relation is not true. The functions have the forms:

LGE(ci,c2)
LGT(cl,c2)
LLE(cl,c2)
LLT(cl,c2)

13-8 Using Character Data

The notations cl and c2 represent character expressions.

You may want to use these functions in FORTRAN programs that may be
used on computers that do not support the ASCII character set. In VAX
FORTRAN, the lexical comparison functions are equivalent to the .GE.,
.GT., .LE., .LT. relational operators. For example, the following statements
are equivalent:

IF (LLE(stringl, strnng2)) GO TO 100
IF (stringl .LE. string2) GO TO 100

13.8 Charecter I/O

The character data type simplifies the transmission of alphanumeric data.
You can read and write character strings of any length from 1 to 65535
characters. For example:

CHARACTER*24 TITLE

READ (12,100) TITLE
100 FORMAT (A)

These statements cause 24 characters read from logical unit 12 to be stored
in the 24-byte character variable TITLE. Compare this with the code
necessary if you used Hollerith data stored in numeric variables or arrays:

INTEGER*4 TITLE(6)

READ (12,100) TITLE
100 FORMAT (6A4)

Note that you must divide the data into lengths suitable for peal or (in this
case) integer data and specify I/O and FORMAT statements to match. In
this example, aone-dimensional array comprising six 4-byte elements is
filled with 24 characters from logical unit 12.

Using Character Data 13-9

13.9 Character Data Examples

Example 13-1 is a program that uses the VAX FORTRAN character data
type to manipulate the letters of the alphabet.

Example 13-1: Character Data Program Example

CHARACTER C, ALPHABET*26

DATA ALPHABET/'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/

WRITE (6,90)
90 FORMAT (' CHAR.ACTER EXAMPLE PROGRAM OUTPUT'/)

DO I=1,26
WRITE (6,*) ALPHABET
ALPHABET = ALPHABET(2:)//ALPHABET(1:1)

END DO

CALL REVERSE(ALPHABET)
WRITE (6,*) ALPHABET

CALL REVERSE(ALPHABET(1:13))
WRITE (6,*) ALPHABET

CALL FIND_SUBSTRINGS(' WW', ALPHABET)
CALL FIND_SUBSTRINGS('A', 'DAJHDHAJDAHDJA4E CEUEBCUEIAWSAWQLQ')

WRITE (6,*) 'END OF CHARACTER EXAMPLE PROGRAM'
END

SUBROUTINE REVERSES)
CHARACTER T, S*(*)

J = LEN (S)
DO I=1,J/2

T = S(I:I)
S(I : I) = S(J: J)
S(J:J) = T
J = J - 1

END DO
END

SUBROUTINE FIND_SUBSTRINGS(SUB,S)
CHARACTER*(*) SUB, S
CHARACTER*132 MARKS

I = 1
MARKS =

Example 13-1 Cont'd. on next page

13-10 Using Character Data

Example 13-1 (Copt.): Character Data Program Example

10 J = INDEX(S(I:),SUB)
IF (J .NE. 0) THEN

MARKS (I : I) _ ' #'
I = I+1

IF (I .LE. LEN(S)) GO TO 10
END IF

WRITE (6,91) S, MARKS
91 FORMAT (2(/1X,A))

END

The program in Example 13-1 produces the following output:

CHARACTER EXAMPLE PROGRAM OUTPUT

ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGHIJKL
NOPQRSTUVWXYZABCDEFGHIJKLM
OPQRSTUVWXYZABCDEFGHIJKLMN
PQRSTUVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMNOP
RSTUVWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TU1►'WXYZABCDEFGHIJKLMNOPQRS
UVWXYZABCDEFGHIJKLMNOPQRST
VWXYZABCDEFGHIJKLMNOPQRSTU
WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHIJKLMNOPQRSTUVW
YZABCDEFGHIJKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY
ZYXWWTSRQPONMLKJIHGFEDCBA
NOPQRSTUVWXYZMLKJIHGFEDCBA

NOPQRSTUVWXYZMLKJIHGFEDCBA

DAJHDHAJDAHDJA4E CEUEBCUEIAWSAWQLQ

END OF CHARACTER EXAMPLE PROGRAM

Using Character Data 13-11

Chapter 14

Using Indexed Files

Traditionally, sequential and direct access have been the only file access
modes available to FORTRAN programs. To overcome some of the
limitations of these access modes, VAX FORTRAN supports a third access
mode, called keyed access, which allows you to retrieve records, at
random or in sequence, based on key fields that are established v~~hen you
create a file with indexed organization. (See Section 4.2.3.4 for details
about keyed access mode.)

You can access files with indexed organization using sequential access or
keyed access, or a combination of both.

• Keyed access retrieves records randomly based on the particular key
fields and key values that you specify.

• Sequential access retrieves records in a sequence based on the direc-
tion of the key and on the values within the particular key field that
you specify.

The combination of keyed and sequential access is commonly referred to
as the Indexed Sequential Access Method (ISAM). Once you have read a
record by means of an indexed read request, you can then use a sequential
read request to retrieve records with ascending key field values, beginning
with the key field value in the record retrieved by the initial read request.

Indexed organization is especially suitable for maintaining complex files
in which you want to select records based on one of several criteria. For
example, amail-order firm could use an indexed organization file to store
its customer list. Key fields could be a unique customer order number, the
customer's zip code, and the item ordered. Reading sequentially based on
the zip-code key field would enable you to produce a mailing list sorted
by zip code. A similar operation based on customer-order-number key

Using Indexed Files 14-1

field or item-number key field would enable you to list the records in
sequences of customer order numbers or item numbers.

This chapter provides information of the following topics:

• Creating an indexed file (Section 14.1)

• Writing records to an indexed file (Section 14.2)

• Reading records from an indexed file (Section 14.3)

• Deleting records from an indexed file (Section 14.5)

• Updating records in an indexed file (Section 14.4)

In addition, information is provided about the effects of read and write
operations on positioning your program to records within an indexed file
(Section 14.6) and about how to build logic into your programs to handle
exception conditions that commonly occur (Section 14.7).

14.1 Creating an Indexed File

You can create a file with an indexed organization by using either the
FORTRAN OPEN statement or the RMS EDIT/FDL Utility.

• Use the OPEN statement to specify the file options supported by
FORTRAN.

• Use the EDIT/FDL Utility to select features not directly supported by
FORTRAN.

Any indexed file created with EDIT/FDL can be accessed by FORTRAN
I/O statements.

When you create an indexed file, you define certain fields within each
record as key fields. One of these key fields, called the primary key,
is identified as key number zero and must be present in every record.
Additional keys, called alternate keys, can also be defined; they are num-
bered from 1 through a maximum of 254. An indexed file can have as
many as 255 key fields defined. In practice, however, few applications
require more than 3 or 4 key fields.

The data types used for key fields must be either INTEGER*2,
INTEGER*4, or CHARACTER.

14-2 Using Indexed Files

In designing an indexed file, you must decide the byte positions of the
key fields. For example, in creating an indexed file for use by a mail-order
firm, you might define a file record to consist of the following fields:

STRUCTURE /FILE_REC_STRUCT/
INTEGER*4 ORDER_NUMBER
CHARACTER*20 NAME
CHARACTER*20 ADDRESS
~HAR.ACTER*19 CITY
CHARACTER*2 STATE
CHARACTER*9 ZIP_CODE
INTEGER*2 ITEM_NUMBER

END STRUCTURE

Positions
Positions
Positions
Positions
Positions
Positions
Positions

RECORD /FILE_REC_STRUCT/ FILE_REC

1:4, key 0
5:24
25:44
45:63
64:65
66:74, key 1
75:76, key 2

Given this record definition, you could use the following OPEN statement
to create an indexed file:

OPEN (UNIT=10, FILE='CUSTOMERS.DAT', STATUS='NEW',

1 ORGANIZATION='INDEXED', ACCESS='KEYED',

2 RECORDTYPE='VARIABLE', FORM='UNFORMATTED',

3 RECL=19,
4 KEY=(1:4:INTEGER, 66:74:CHARACTER, 75:76:INTEGER),

5 IOSTAT=IOS, ERR=9999)

This OPEN statement establishes the attributes of the file, including
the definition of a primary key and two alternate keys. Note that the
definitions of the integer keys do not explicitly state INTEGER*4 and
INTEGER*2. The data type sizes are determined by the number of
character positions allotted to the key fields, which in this case are 4 and
2 character positions, respectively.

If you specify the KEY keyword when opening an existing file, the key
specification that you give must match that of the file.

VAX FORTRAN uses RMS default key attributes when creating an indexed
file. These defaults are as follows:

• The values in primary key fields cannot be changed when a record is
rewritten. Duplicate values in primary key fields is prohibited.

• The values in alternate key fields can be changed. Duplicate values in
alternate key fields is permitted.

You can use the EDIT~FDL Utility or a USEROPEN routine to over-
ride these defaults and to specify other values not supported by VAX
FORTRAN, such as null key field values, null key names, and key data
types other than integer and character.

Using Indexed Files 14-3

Refer to the VAX FORTRAN' LarlRuaRe Reference Mafival for information
on the use of the USEROPEN keyword in OPEN statements. The VMS
Record Managerrrerit Services MafTual provides additional information on
indexed file options.

Use of the EDIT/FDL Utility is explained in detail in the VMS File
Definition Language Facility Manual and the Guide to VMS File Applications.

14.2 Writing Indexed Files

You can write records to an indexed file with either formatted or unfor-
matted indexed WRITE statements. Each write operation inserts a new
record into the file and updates the key indexes so that the new record
can be retrieved in a sequential order based on the values in the respective
key fields.

For example, you could add a new record to the file for the mail-order
firm (see Section 14.1) with the following statement:

WRITE (UNIT=l0,I0STAT=IOS,ERR=9999) FILE_REC

The next sections discuss the following topics:

• The effects of writing records with duplicate values in key fields

• The method by which you can prevent an alternate key field in a
record from being indexed during a write operation

14.2.1 Duplicate Values in Key Fields

It is possible to write two or more records with the same value in a
single key field. The attributes specified far the file when it was created
determine whether this duplication is allowed. By default, VAX FORTRAN
creates files that allow duplicate alternate key field values and prohibit
duplicate primary key field values. If duplicate key field values are present
in a file, the records with equal values are retrieved on a first-in/first-out
basis.

For example, assume that five records are written to an indexed file in this
order (for clarity, only key fields are shown):

14-4 Using Indexed Files

ORDER_NUMBER ZIP_CODE ITEM_NUMBER

1023 70856 375

942 02163 2736

903 14853 375

1348 44901 1047

1263 33032 690

If the file is later opened and read sequentially by primary key (ORDER_
NUMBER), the order in which the records are retrieved is not affected by
the duplicated value (375) in the ITEM_NUMBER key field. In this case,
the records would be retrieved in the following order:

ORDER~tUMBER ZIP_CODE ITEM_NUMBER

903 14853 375

942 02163 2736

1023 70856 375

1263 33032 690

1348 44901 1047

However, if the read operation is based on the second alternate key
(ITEM_NUMBER), the order in which the records are retrieved is affected
by the duplicate key field value. In this case, the records would be
retrieved in the following order:

ORDER_NUMBER ZIP_CODE ITEM~IUMBER

1023 70856 375

903 14853 375

1263 33032 690

1348 44901 1047

942 02163 2736

Notice that the records containing the same key field value (375) are
retrieved in the order in which they were written to the file.

Using Indexed Files 14-5

14.2.2 Preventing the Indexing of Alternate Key Fields

When writing to an indexed file that contains variable-length records, you
can prevent entries from being added to the key indexes for any alternate

.key fields. This is done by omitting the names of the alternate key fields
from the WRITE statement. The omitted alternate key fields must be
at the end of the record; another key field cannot be specified after the
omitted key field.

For example, the last record (ORDER~tUMBER 1263) in the mail-order
example could be written with the following statement:

WRITE (UNIT=l0,I0STAT=IOS,ERR=9999) FILE_REC.ORDER_NUMBER,

1 FILE_REC.NAME, FILE_REC.ADDRESS, FILE_REC.CITY,

1 FILE_REC.STATE, FILE_REC.ZIP_CODE

Because the field name FILE_REC.ITEM_NUMBER is omitted from the
WRITE statement, an entry for that key field is not created in the index.
As a result, an attempt to read the file using the alternate key ITEM _
NUMBER would not retrieve the last record and would produce the
following listing:

ORDER~tUMBER ZIP_CODE ITEM~TUMBER

1023 70856 375

903 14853 375

1348 44901 1047

942 02163 2736

You can omit only trailing alternate keys from a record; the primary key
must always be present.

14.3 Reading Indexed Files

You can read records in an indexed file with either sequential or indexed
READ statements (formatted or unformatted) under the keyed mode of
access. By specifying ACCESS='KEYED' in the OPEN statement, you
enable both sequential and keyed access to the indexed file.

14-6 Using Indexed Files

Indexed READ statements position the file pointers (see Section 14.6)
at a particular record, determined by the key field value, the key-of-
reference, and the match criterion. Once you retrieve a particular record
by an indexed READ statement, you can then use sequential access READ
statements to retrieve records with increasing key field values.

The form of the external record's key field must match the form of
the value you specify in the KEY keyword. Thus, if the key field con-
tains character data, you should specify the KEY keyword value as a
CHARACTER data type. If the key field contains binary data, then the
KEY keyword value should be of INTEGER data type.

Note that if you write a record to an indexed file with formatted I/O,
the data type is converted from its internal representation to an external
representation. As a result, the key value must be specified in the external
form when you read the data back with an indexed read. Otherwise, a
match will occur when you do not expect it.

The following FORTRAN program segment prints the order number and
zip code of each record where the first five characters of the zip code are
greater than or equal to '10000' but less than `50000':

C Read first record with ZIP_CODE key greater than or
C equal to '10000'.

READ (UNIT=l0,KEYGE='10000',KEYID=I,IOSTAT=IOS,ERR=9999)
1 FILE_REC

C While the zip code previously read is within range, print
C the order number and zip code, then read the next record.

DO WHILE (FILE_REC.ZIP_CODE .LT. '50000')
PRINT *, 'Order number', FILE_REC.ORDER_NUMBER, 'has zip code',

1 FILE_REC.ZIP_CODE
READ (UNIT=l0,I0STAT=IOS,END=200,ERR=9999)

1 FILE_REC

C END= branch will be taken if there are no more records
C in the file.

END DO
200 CONTINUE

The error branch on the keyed READ in this example is taken if no record
is found with a zip code greater than or equal to '10000'; an attempt
to access a nonexistent record is an error. If the sequential READ has
accessed all records in the file, however, an end-of-file status occurs, just
as with other file organizations.

If you want to detect a failure of the keyed READ, you can examine the
I/O status variable, IOS, for the appropriate error number (see Table 5-1
for a List of the returned error codes).

Using Indexed Files 14-7

14.4 Updating Records

The REWRITE statement updates existing records in an indexed file. You
cannot replace an existing record simply by writing it again; a WRITE
statement would attempt to add a new record.

An update operation is accomplished in two steps. First, you must read
the record in order to make it the current record. Next, you execute
the REWRITE statement. For example, to update the record containing
ORDER_NUMBER 903 (see prior examples) so that the NAME field
becomes 'Theodore Zinck', you might use the following FORTRAN code
segment:

READ (UNIT=IO,KEY=903,KEYID=O,IOSTAT=IOS,ERR=9999) FILE_REC

FILE REC.NAME _ 'Theodore Zinck'
REWRITE (UNIT=l0,I0STAT=IOS,ERR=9999) FILE_REC

When you rewrite a record, key fields may change. The attributes specified
for the file when it was created determine whether this type of change is
permitted.

14.5 Deleting Records

To delete records from an indexed file, you use the DELETE statement.
The DELETE and REWRITE statements are similar; a record must first be
locked by a READ statement before it can be operated on.

The following FORTRAN code segment deletes the second record in the
file with ITEM_NUMBER 375 (refer to previous examples):

READ (UNIT=IO,KEY=375,KEYID=2,IOSTAT=IOS,ERR=9999)
READ (UNIT=l0,I0STAT=IOS,ERR=9999) FILE_REC
IF (FILE_REC.ITEM_NUMBER .EQ. 375) THEN

DELETE (UNIT=10, IOSTAT=IOS, ERR=9999)
ELSE

PRINT *, 'There is no second record. '
END IF

Deletion removes a record from all defined indexes in the file.

14-8 Using Indexed Files

14.6 Current Record and Next Record Pointers

The RMS file system maintains two pointers into an open indexed file: the
next record pointer and the current record pointer.

• The next record pointer indicates the record to be retrieved by a
sequential read. When you open an indexed file, the next record
pointer indicates the record with the lowest primary key field value.
Subsequent sequential read operations cause the next record pointer to
be the one with the next higher value in the same key field. In case of
duplicate key field values, records are retrieved in the order in which
they were written.

• The current record pointer indicates the record most recently retrieved
by a READ operation; it is the record that is locked from access
by other programs sharing the file. The current record is the one
operated on by the REWRITE statement and the DELETE statement.
The current record is undefined until a read operation is performed
on the file. Any file operation other than a read causes the current
record pointer to become undefined. Also, an error results if a rewrite
or delete operation is performed when the current record pointer is
undefined.

14.7 Exception Conditions

You can expect to encounter certain exception conditions when using
indexed files. The two most common of these conditions involve valid
attempts to read locked records and invalid attempts to create duplicate
keys. Provisions for handling both of these situations should be included
in awell-written program.

When an indexed file is shared by several users, any read operation may
result in a "specified record locked" error. One way to recover from this
error condition is to ask if the user would like to reattempt the read. If
the user's response is positive, then the program can go back to the READ
statement. For example:

Using Indexed Files 14-9

INCLUDE '($FORIOSDEF)'

100 READ (UNIT=l0,I0STAT=IOS) DATA

IF (IOS .EQ. FOR$IOS_SPERECLOC) THEN

TYPE *, 'That record is locked. Press RETURN'

TYPE *, 'to try again, or CONTROL_Z to discontinue'
READ (UNIT=*,FMT=*,END=900)
GO TO 100

ELSE IF (IOS .NE. 0) THEN

CALL ERROR (IOS)
END IF

You should avoid looping back to the READ statement without first
providing some type of delay (caused by a request to try again, or to
discontinue, as in this example). If your program reads a record but does
not intend to modify the record, you should place an UNLOCK statement
immediately after the READ statement. This technique reduces the time
that a record is locked and permits other programs to access the record.

The second exception condition, creation of duplicate keys, occurs when
your program tries to create a record with a key field value that is already
in use. When duplicate key field values are not desirable, you might have
your program prompt fora new key field value whenever an attempt is
made to create a duplicate. For example:

INCLUDE '($FORIOSDEF)'

200 WRITE (UNIT=l0,I0STAT=IOS) KEY_VAL, DATA

IF (IOS .EQ. r~R$IOS_INCKEYCHG) THEN
TYPE *, 'This key field value already exists. Please enter'
TYPE *, 'a different key field value, or press CONTROL_Z'
TYPE *, 'to discontinue this operation.'
READ (UNIT=*,FMT=300,END=999) KEY_VAL
GO TO 200

ELSE IF (IOS .NE. 0) THEN
CALL ERROR (IOS)

END IF

14-10 Using Indexed Files

Chapter 15

VAX FORTRAN Support for Parallel
Processing

This chapter describes how to achieve parallel processing using features
incorporated in the VAX FORTRAN programming language.

This chapter provides the following information:

• An overview of VAX FORTRAN support for parallel processing
(Section 15.1)

• A review of how to prepare VAX FORTRAN parallel applications
(Section 15.2)

• A description of the data dependence problems associated with
parallel processing and the methods you can use to resolve some of
these problems (Section 15.3)

• A description of system and user account parameters that you may
need to tune for parallel processing (Section 15.4)

• A discussion about how to debug a VAX FORTRAN program executing
in parallel (Section 15.5)

• An example of a VAX FORTRAN program that can be run in parallel
and some sample transformations of DO loops containing linear
recurrences (Section 15.6)

• Detailed descriptions of the /PARALLEL qualifier for the FORTRAN
command line, VAX FORTRAN compiler directive statements, logical
names used by the VAX FORTRAN Run-Time Library, and an intrinsic
function for use in VAX FORTRAN parallel-processing applications
(Section 15.7)

VAX FORTRAN Support for Parallel Processing 15-1

15.1 Overview of VAX FORTRAN Parallel Processing

Parallel processing entails executing segments of a program concurrently
on two or more processors in a multiprocessing system (for example, a
VAX 8300 or VAX 8800; not to be confused with a VAXcluster system).
Running a program in parallel on multiple processors instead of serially
on a single processor can significantly reduce the amount of elapsed time
required to run the program. Running in parallel, however, consumes
more system resources (CPU time and memory) than running serially.
Trading off a reduction in system throughput for a reduction in elapsed
time is a decision that depends on the application being executed and the
environment in which it is being executed.

To achieve maximum benefit, only compute-intensive code sequences
should be considered for running in parallel. For example, program
segments dealing with arithmetic operations performed on arrays (ma-
trix arithmetic) are generally good candidates for parallel processing.
You can identify other compute-intensive code segments using the VAX
Performance and Coverage Analyzer (PCA) software product. After iso-
lating code sequences that are candidates for parallel processing, you can
then analyze the sequences in detail and make any coding changes that
are necessary.

Mechanisms provided by VAX FORTRAN support parallel processing of
indexed DO loops. Processing an indexed DO loop in parallel means that
the iterations in the loop are divided among multiple processors and are
executed concurrently.

NOTE

Throughout this chapter, indexed DO loops to be processed in
parallel are referred to as parallel DO loops.

The compiler must decompose each parallel DO loop into groups of loop
iterations that can be executed in parallel. Depending on the design and
implementation of the compiler, this decomposition can either be handled
automatically by the compiler or be specified manually by the program-
mer. VAX FORTRAN Version 5.0 supports directed decomposition, which
is a variation of the manual method. With VAX FORTRAN, you direct the
actions of the compiler using compiler directives, but the compiler hides
the operating system and hardware mechanisms that are used to achieve
parallelism. This means that you must determine where decomposition
is safe (no unacceptable data dependences) and desirable (sufficient work
in the loop). After performing this analysis, you must mark each indi-
vidual DO loop that is to be decomposed and run in parallel. You must

15-2 VAX FORTRAN Support for Parallel Processing

also make any coding changes that are needed to ensure correct results
when iterations of a parallel DO loop are executed separately in parallel
processes.

NOTE

In many instances, you can prepare an indexed DO loop for
parallel execution simply by identifying it as a parallel DO loop
and allowing the parallel-processing defaults to take effect.

Unlike a normal, nonparallel, indexed DO loop, which is executed serially
(that is, iterations are executed in sequence, lower bound through upper
bound), a parallel DO loop is executed simultaneously in two or more
processes, with each process executing a segment of the iterations in the
loop. Figure 15-1 shows how a program containing an indexed DO loop
might be executed in parallel. Note that the main process executes all of
the nonparallel (serial) code in the program and that each process executes
a 50-iteration segment of the iterations in the loop.

Figure 15-1: Processing an Indexed DO Loop in Parallel

Executing Images

Main Process

initialization

serial code

parallel DO loop
(DO I = 1,150)

DO I = 1, 50
loop body

ENDDO

serial code

Subprocess 1

DO I = 51,100
loop body

ENDDO

Subprocess 2

DO I = 101,150
loop body

ENDDO

ZK-7460-HC

VAX FORTRAN Support for Parallel Processing 15-3

The subprocesses are created during the initialization phase. They are not
activated, however, until a parallel DO loop is encountered. When they
complete the execution of their portion of the iterations in a parallel DO
loop, they are placed in a wait state until the next parallel DO loop is
encountered.

The order in which the individual iterations will complete is indeterminate;
thus, no single iteration of the parallel DO loop can reliably depend on
the values established in memory locations shared with other iterations.
Understanding the implications this has for data use within a parallel DO
loop is fundamental to an understanding of how to effectively use VAX
FORTRAN parallel-processing support mechanisms. Section 15.3 provides
a detailed analysis of the problems associated with the use of data in
parallel DO loops.

Because of the overhead associated with parallel processing, a parallel
DO loop should contain a total of 1000 or more instruction executions in
order to produce a marked improvement in elapsed execution time. For
example, a loop with two iterations and 500 instructions in each iteration
meets this criteria. A loop with more iterations and fewer instructions in
each iteration can also suffice, as in the following case:

DO I=1,100

[10 instructions]

ENDDO

If a parallel DO loop invokes a subprogram containing another parallel
DO loop, only the parallel DO loop of the calling program will be run in
parallel. Each of the processes executing the outermost parallel DO loop
will execute all of the iterations in the innermost parallel DO loop in a
serial, nonparallel fashion.

VAX FORTRAN supplies the following mechanisms to assist parallel
processing:

15-4 VAX FORTRAN Support for Parallel Processing

l~/

Table 15-1: VAX FORTRAN Parallel-Processing Support
Mechanisms

FORTRAN Command Line QualiFier

/[NO]PARALLEL Use the /PARALLEL qualifier on your FORTRAN
command line when compiling program units that
are part of a program to be run in parallel. The use
of the qualifier determines whether the compiler
generates coding structures that are needed to
support parallel execution.

Compiler Directive Statements

DO_PARALLEL Use the DO_PARALLEL directive to identify an in-
dexed DO loop as a parallel DO loop and, optionally,
to indicate how the loop iterations are to be divided
up among the various processors.

SHARED Use the SHARED, CONTEXT_SHARED, and
CONTEXL SHARED PRIVATE directives to control the sharing or non-
PRIVATE sharing of memory locations during the execution of

applications containing parallel DO loops.

LOCKON Use the LOCKON and LOCKOFF directives to ensure
LOCKOFF that certain statements within a parallel DO loop are

executed in only one process at a time.

Run-time Environment Control Mechanisms

FOR$PROCESSES Assign values to the logical names FOR$PROCESSES,
FOR$SPIN_WAIT FOR$SPIN_WAIT, or FOR$STALL _WAIT to adjust
FOR$STALL _WAIT some aspects of the run-time environment in which

your program will be executed.

Intrinsic Function

NWORKERS Use the NWORKERS intrinsic function, optionally, as
an aid in dividing up iterations of a parallel DO loop
among parallel processes.

Sections 15.7.1 to 15.7.4 describe in detail the mechanisms shown in this table.

Once you become familiar with VAX FORTRAN's parallel-processing
support mechanisms, you will usually be able to quickly determine
whether an indexed DO loop can be run in parallel. Then, in most
instances, you will have to make only a few minor coding changes to
prepare the loop for parallel processing.

VAX FORTRAN Support for Parallel Processing 15-5

15.2 Preparing Programs for Parallel Processing

Whether dealing with new or existing code, it is essential to fully un-
derstand how data is used (accessed or modified) within a parallel DO
loop. It is also important to understand how the data is used in routines
called from within a parallel DO loop and in code encountered after the
completion of a parallel DO loop. Otherwise, it will not be possible for
you to identify those indexed DO loops that can be executed in parallel
without introducing erroneous or unpredictable results.

Developing a VAX FORTRAN parallel-processing program and preparing
it for execution involves the following special steps and considerations:

1. Find the compute-intensive indexed DO loops in your program. Loops
with a large number of iterations are always prime candidates. Those
with a small number of iterations are candidates only if they involve
extensive computational operations. (See Section 15.1.)

2. Determine whether the loops can be run in parallel by analyzing in
both parallel and nonparallel processing contexts any variables that
are defined in the loop. If necessary, recode or restructure the DO
loops so that they can run in parallel and with optimum efficiency.
(See Section 15.3.)

3. Ensure that variables and common blocks referenced within the
parallel DO loop have the correct memory allocation attribute (shared
or private) and that the attributes you establish for them are not in
conflict with their attributes and use outside the parallel DO loop.
By default, all common blocks are shared. Variables are also shared
by default unless they are referenced in a subprogram called from
within a parallel DO loop. In the exception case, they are always
treated as private. Note that loop control variables must be declared
as private. (See Sections 15.3 and 15.7.2.2.)

4. Precede each parallel DO loop with a DO—PARALLEL directive,
which identifies it as a parallel DO loop. (See Section 15.7.2.1.)

5. Compile the program with the /NOPARALLEL qualifier (default)
and then run and debug the program, in serial mode, for any logic or
coding errors.

6. After verifying that the program executes without errors in serial
mode, recompile the program with /PARALLEL in effect. All rou-
tines from the main program through any routine in the call tree
containing a parallel DO loop must be compiled with the /PARALLEL
qualifier in effect. Other routines do not need to be compiled with
the /PARALLEL qualifier unless they use shared common blocks.

15-6 VAX FORTRAN Support for Parallel Processing

Included in the routines that do not need to be compiled with the
/PARALLEL qualifier are routines called (directly or indirectly) from
within a parallel DO loop. These routines can be compiled with
the /NOPARALLEL qualifier because they are executed serially
within each of the processes executing the parallel DO loop. (See
Section 15.7.1.)

7. Optionally, adjust the run-time environment by defining logical names
that are used by the run-time environment during the execution of a
program containing parallel DO loops. (See Section 15.7.3.)

8. Compare the results of serial execution of the program with the results
of parallel execution. If necessary, debug the program while executing
it in parallel mode. (See Section 15.5.)

The preceding list presents a general checklist of considerations that are
involved in preparing VAX FORTRAN parallel-processing applications.

The sections that follow provide details on the following topics:

• Coding restrictions

• Coding options affecting execution efficiency

• Use of other languages within a VAX FORTRAN parallel-processing
application

• Parallel processing effects on random number generators

• Parallel processing effects on exception handling

15.2.1 Coding Restrictions Within Parallel DO Loops

Several VAX FORTRAN language constructs and statements that are valid
within nonparallel DO loops should not be used in parallel DO loops.
Because iterations of a parallel DO loop are executed in an indeterminate
order and in different processes, the use of any of these items within a
parallel DO loop results in unpredictable run-time behavior.

VAX FORTRAN Support for Parallel Processing 15-7

15.2.1.1 Coding Restrictions Flagged by the Compiler

If the following coding restrictions for parallel DO loops are not observed,
the compiler will generate acompile-time error. If these restrictions are
not met in a source program, it will be impossible for the program to
generate valid results.

• The loop control variable for a parallel DO loop must be of data type
INTEGER.

• The loop control variable for the DO loop must be a private variable.

• The maximum length of a name for a shared common block is 26
characters.

• Only comment lines and blank lines can be placed between a DO_
PARALLEL directive and the indexed DO loop statement to which it
is coupled.

• I/O statements are not allowed within the body of a parallel DO loop.
• The control statements PAUSE and STOP are not allowed within the

body of a parallel DO loop.

• Private symbols and common blocks referenced within the body of a
parallel DO loop cannot be used in a SAVE statement.

• ADO loop with a branch (GOTO) into or out of its body cannot be
run in parallel.

Additional coding restrictions associated with the use of compiler direc-
tives are described in Section 15.7.2.

15.2.1.2 Coding Practices that May Cause Unpredictable Results

Unpredictable results may occur if the following restrictions are not
observed within code that executes in a parallel processing context, that is,
within code that executes after entry into and before exit from a parallel
DO loop.

• Resolving data-dependence problems is the major issue associated
with parallel processing. Restrictions involving data dependence are
as follows:

— Data dependences involving shared variables must not exist
between iterations of a parallel DO loop.

— Data dependences involving private variables must not exist
between code within a parallel DO loop and code executed before
entry into or after the completion of the parallel DO loop.

15-8 VAX FORTRAN Support for Parallel Processing

See Section 15.3 for information on how to handle data dependences.

• System services or run-time library routines that change the context of
a process (for example, a change in privileges, priority, access mode,
or logical names) must not be called from within a parallel DO loop.
(This includes calls to the run-time library's LIB$ESTABLISH routine.)

• The RETURN statement must not be used from within a parallel DO
loop.

• I/O statements and the control statements PAUSE and STOP must not
be used in a routine called at any call level from within a parallel
DO loop.

• Private symbols and common blocks must not be referenced in a
SAVE statement in a routine called at any call level from within a
parallel DO loop.

• If a dummy argument is referenced within a parallel DO loop, the
corresponding actual argument must reside in shared memory. This
means that the caller of the routine containing the parallel DO loop
(and any previous callers) must be compiled with the /PARALLEL
qualifier.

• The use of random number generators within a parallel DO loop must
be done with care because parallel processing affects how the numbers
are generated. See Section 15.2.4 for a detailed description of how
parallel processing affects random number generators.

The compiler does not flag any of these coding usages.

15.2.2 Coding Techniques for Improving Execution Efficiency

Coding techniques described in this section involve maximizing the
work being done within a parallel DO loop and balancing the workload
distributed among the processors executing the parallel DO loop.

Maximizing Workload Within Parallel DO Loops

As a general rule, the more work you include within the parallel DO loop,
the more efficient the processing will be.

The following example illustrates a case in which an inner DO loop can
be run in parallel and the outer DO loop cannot be run in parallel because
of a data dependence problem. By interchanging the loops and thus

VAX FORTRAN Support for Parallel Processing 15-9

including more work within the parallel DO loop processing is made
more efficient.

Original DO Loop Revised DO Loop

CPAR$ PRIVATE J,I

CPAR$ CONTEXT_SHARED A

CPAR$ DO_PAR.ALLEL

DO I = 1 ,100 DO J = 1, 300

DO J = 1 , 300 DO I = 1 ,100

A(I,J) = A(I+1,J) + 1 A(I,J) = A(I+1,J) + 1

ENDDO ENDDO

ENDDO ENDDO

Balancing Workload Distribution Across Processors

By default, VAX FORTRAN distributes iterations to the processes in a way
that works well when all of the iterations do about the same amount of
work or when they contain unpredictable amounts of work. In special
circumstances, such as the two described here, it may be advisable to
manually adjust the distribution of loop iterations in order to balance the
workload. To do this, you specify the size of the iteration segments to be
distributed among the processes using the DO_PARAI.LEL directive.

The number of loop iterations executed by each of the parallel processes
can, depending On the code within the loop, have a significant impact on
execution efficiency. In some cases, the work being done inside the loop
will influence how you should distribute it among the processes.

For example, in the following parallel DO loop, it might be very inefficient
to divide the iterations into blocks of 50:

DO I = 1,100

I F (I . LT . 50) THEN
CALL SUB(I)

ENDIF

ENDDO

In this situation, an iteration block size of 25 would probably be much
more efficient on a system with two processors, depending on the amount
of work being done by SUB.

15-10 VAX FORTRAN Support for Parallel Processing

In the next example, the amount of work done by the individual iterations
is unbalanced (later iterations do less work). When patterns like this
exist, manual assignment of the iterations can work better than taking the
default.

NPROCS = NWORKERS()
CPAR$ DO_PARALLEL ((N-K)+(2*NPROCS-1)) / (2*NPROCS)

DO J=K+1,N
DO I=J,N

A(I,J) = A(I,J) - A(J,K)*A(I,K)
ENDDO

ENDDO

The iterations are divided into 2*NPROCS segments. As a result, each
process gets one iteration segment that contains a large amount of work
and a second iteration segment that contains a small amount of work.
In this way, you can balance the amount of work done in the parallel
processes.

15.2.3 Use of Other Languages in Parallel-Processing Programs

The main program in an application that uses VAX FORTRAN parallel-
processing support mechanisms must be a VAX FORTRAN program and
must be compiled with the /PARALLEL qualifier.

Routines that do not invoke, directly or indirectly, a VAX FORTRAN
routine containing a parallel DO loop can be written in any language and
can be used without restrictions.

Those routines that do invoke, directly or indirectly, a VAX FORTRAN
routine containing a parallel DO loop have the following restrictions:

• Actual arguments that correspond to dummy arguments referenced
within a parallel DO loop must be accessible to all processes, that
is, be declared as shared. Two methods of doing this with non-
FORTRAN routines are as follows:

— The routine declaring the actual argument allocates it on the stack.

— The routine declaring the actual argument maps it to a shared
common block.

• For routines not written in VAX FORTRAN and called from within a
parallel DO loop, any static variables are treated as private by each
process.

VAX FORTRAN Support for Parallel Processing 15-11

15.2.4 Use of Random Number Generators Within Parallel DO Loops

A random number generator is an example of a subprogram that keeps
state across its calls, and thus is not normally safe for use within a parallel
loop. The subprogram uses a seed to create a random number, and
also produces a new seed value to be used on the next call. In VAX
FORTRAN, the RAN function (described in the VAX FORTRAN Language
Reference Manual) takes the seed as an argument, so the user can decide
whether to use a shared variable or a local variable for the seed. This
allows several choices for generating random numbers within a parallel
loop. (Although this discussion concentrates on use of the RAN function,
much of it applies to user-written functions and subroutines as well.)

A random number generator should produce sequences of values that are
not correlated, over either a short span or a long span. Also, to simplify
debugging, it is sometimes useful to be able to rErun a program with the
same sequence of values.

The most conservative approach to using random numbers in a parallel
loop is to precompute all of the random numbers the application will need
by calling the RAN function in serial code before entering the parallel
loop. Unfortunately, this is usually neither convenient nor efficient.

It is possible to call the RAN function within a parallel loop, but you
must be careful. If the same variable is used as a seed in each iteration
of a parallel loop, as in the following example, the results will not be
satisfactory:

C -- Don't do this! --
CP4R$ CONTEXT_SHARED ISEED
CPAR$ DO_PARALLEL

DO 20 J=1,100
DO 20 I=1,100

20 A (I , J) =RAN (ISEED)

Nothing prevents several different processes from each reading the same
value of the seed, so different columns of the resulting array will contain
matching runs of values. (This example stores the random values so they
could be examined; a real application would normally just do computa-
tions based on the random values. There is no need to store the values in
an application program.)

One solution is to place LOCKON/LOCKOFF directives around uses of
the RAN function. This has two disadvantages:

• The lock directives can significantly reduce the parallelism in the
application if random numbers are heavily used.

15-12 VAX FORTRAN Support for Parallel Processing

• It is not possible to reproduce a run using the same val _`s from
the random number generator because the order in which different
iterations seize the lock is unpredictable.

Another solution is to use a different seed for each iteration of the parallel
loop. Calling RAN does not require synchronization if this is done,
and the only problem is initializing the seed for each iteration. VAX
FORTRAN's RAN function produces a sequence of random values that
repeats after 2**32 calls; the initial seed selects a starting point within this
sequence. If you use a different seed for each iteration of the parallel loop,
you will want their initial values to be widely spaced across the sequence.

The coding in the following example produces poor spacing. It results in
each iteration using the same sequence offset by one, so that for nearly
every element A(I,J), there is another element A(I+1,K) with the same
value:

C -- Don't do this! --
COMMON /SEEDS/ ISEED(100)

CPAR$ SHARED /SEEDS/
C Initialize seeds -- poor way

ISEED(1)=1234567
DO 10 I=2,100

ISEED(I)=ISEED(I-1)
10 T=RAN(ISEED(I))
CPAR$ DO_PARALLEL

DO 20 J=1,100
DO 20 I=1,100

20 A (I , J) =RAN (I SEED (J))

The following technique gives well-spaced starting values for different
seeds:

SUBROUTINE INIT_SEEDS (SEEDS,N,ISEED)
INTEGER N,ISEED,SEEDS(N)

C
C This subroutine initializes an array of random-number generator

C seeds so that they are about equally spaced along the 2**32 long

C sequence of values that can be produced by VAX FORTRAN's random

C number generator.

VAX FORTRAN Support for Parallel Processing 15-13

C
REAL*16 RSPACE
REAL*16 MAGIC,CUR_SEED

C
C Parameters controlling VAX FORTRAN's random number generator.

INTEGER MPLR,ADDEND
PARAMETER (MPLR=69069, ADDEND=1)

c
C Get the magic number that controls the spacing. Avoid powers of 2.

ISPACE _ (2.OD0**32-1)/N
D PRINT *,ISPACE

MAGIC = RSPACE(ISPACE)
C
C Fill the array of seeds. To avoid overflows, treat integers that
C are greater than 2**31-1 as negative.

SEEDS(1) = ISEED
CUR SEED = ISEED
IF (CUR_SEED.LT.0) CUR_SEED = CUR_SEED + 2.OQ0**32
DO I=2,N

CUR_SEED = ((MPLR-1)*CUR_SEED + ADDEND)*MAGIC + CUR_SEED
CUR_SEED = MOD(CUR_SEED, 2.OQ0**32)
IF (CUR_SEED.GE.2.OQ0**31) THEN
SEEDS(I) = CUR_SEED - 2.OQ0**32

ELSE
SEEDS(I) = CUR_SEED

ENDIF
ENDDO

END

FUNCTION RSPACE(SPACE)
REAL*16 RSPACE
INTEGER SPACE

C
C This function computes a magic number used in initializing seeds
C f or the VAX FORTRAN random number generator. The result of this
C function can be used to determine the n'th random number.
C
C We compute
C ADDEND * MOD((MPLR**SPACE - 1) / (MPLR-1), 2**32)
C by expanding ((MPLR-1)+1)**N using the binomial theorem.
C
C Parameters controlling VAX FORTRAN's random number generator.
C We depend on the fact that MPLR is odd (so MOD((MPLR-1)**16,2**32)=0)

INTEGER MPLR,ADDEND
PARAMETER (MPLR=69069, ADDEND=1)

15-14 VAX FORTRAN Support for Parallel Processing

C
C We'll need exact products of 32-bit numbers, so use H_float temps

REAL*16 POWN.SUM,BINOM,MOD_15
C
C In order to compute binomial coefficients, we need a modulus that
C is divisible by all the integers up to 15, as well as 2**32.

MOD_15 = 2.OQ0**32
DO I=3,15

MOD 15 = MOD 15*I

ENDDO
C

C Compute (((MPLR-1)+1)**SPACE - 1) / (MPLR-1). We expand using the
C binomial theorem, but
C - omit the first term (which is 1)
C - drop terms after the 16th (since MOD((MPLR-1)**16,2**32)=0)
C - divide the other terms by (MPLR-1)
C We take the results modulo 2**32 often, so the numbers don't grow
C too big.
C

POWN = 1.OQ0
SUM = O.OQO
BINOM = 1.OQ0
DO I=1,16

BINOM = MOD((BINOM * (SPACE-I+1))/I, MOD_15)
SUM = MOD(SUM+BINOM*POWN, 2.OQ0**32)

D PRINT *,BINOM,POWN,SUM
D PRINT

POWN =MOD(POWN*(MPLR-1), 2.OQ0**32)
ENDDO

C
C Multiply by addend and return.

RSPACE = MOD(SUM*ADDEND, 2.OQ0**32)

END

This technique has the following advantages:

• The random number generator can be called without interrupting the
parallel loop.

• The sequence of values returned is reproducible.

• The same results are produced regardless of the number of processes
used to execute the program.

15.2.5 Influence of Parallel Processing on Exception Handling

During the execution of~a parallel DO loop, a condition handler estab-
lished outside a parallel DO loop cannot take the action of unwinding the
call stack beyond the routine containing the parallel DO loop.

Any unhandled exceptions that occur during the execution of a parallel
DO loop have the effect of terminating all of the subprocesses.

VAX FORTRAN Support for Parallel Processing 15-15

15.3 Data Dependence Problems Caused by Parallel Processing

The major concern associated with running an indexed DO loop in parallel
is data dependence. In general, a data dependence exists in a program
whenever a particular memory location is accessed multiple times, with at
least one access being a store operation (for example, an assignment).

The dependence is "carried" by an indexed DO loop if it is possible to
access the same memory location on two or more iterations of that loop,
with at least one access being a store operation.

If a data dependence is carried by an indexed DO loop, the results of
running it in parallel will almost always differ from the results of running
it serially.

To enable you to control some instances of data dependence problems as-
sociated with executing indexed DO loops in parallel, VAX FORTRAN sup-
ports the directives SHARED, CONTEXT_SHARED, PRIVATE, LOCKON,
and LOCKOFF.

Within a parallel DO loop, the LOCKON and LOCKOFF directives isolate
statements that must be run one at a time because of an unacceptable data
dependence problem involving the use of a shared variable (scalar, array,
or record) or a shared common block. See Section 15.7.2.3 for detailed
descriptions of the LOCKON and LOCKOFF directives.

NOTE

The term variable is used in this chapter to denote data items
that can be scalars, arrays, or records.

The SHARED, CONTEXT_SHARED, and PRIVATE directives govern how
data items are shared (or not shared) among parallel processes. You use
the PRIVATE directive to control the allocation of both common blocks
and variables, the SHARED directive for common blocks only, and the
CONTEXT SHARED directive for variables only.

• The PRIVATE directive causes user-specified variables and common
blocks to be private (nonshared). That is, each of the processes
executing iterations of a parallel DO loop maintains unique copies of
private variables and common blocks in separate memory locations
that are not shared with the other processes.

15-16 VAX FORTRAN Support for Parallel Processing

Because private data items are not shared among the processes execut-
ing aparallel DO loop, they must always be defined in a loop iteration
before they are used within that iteration. This is necessary because
only the iterations of the parallel DO loop being executed by the main
process would have access to the private data items defined before
entry into the loop.

Similarly, private variables and common blocks should not be used af-
ter the completion of a parallel DO loop without being redefined. This
is necessary because only the values of private data items established
in the main process are accessible when serial processing resumes.
Any values established by the subprocesses are lost.

• The SHARED directive causes user-specified common blocks to be
shared among all of the processes executing a program in both
parallel and serial processing contexts.

• The CONTEXT SHARED directive causes user-specified variables to
be treated as shared or private variables, depending on the context
in which they are used. Context-shared variables use the same
memory location throughout any one invocation of a subprogram
(subroutine or function), including any parallel DO loops contained
within the subprogram. However, if the subprogram has several
concurrent invocations (because it is invoked from within a parallel
DO loop), each invocation will use different memory locations for its
context-shared variables.

SHARED and CONTEXT_SHARED are the defaults for program units
compiled with the /PARALLEL qualifier on the FORTRAN command line.
PRIVATE and CONTEXT_SHARED are the defaults for program units
compiled with the /NOPARALLEL qualifier (default) on the FORTRAN
command line.

The memory allocation attribute of each common block private or
shared must be the same within all compilation units in a program to be
run in parallel. Thus, after analyzing how the common blocks in parallel
DO loops are to be treated, you must then ensure that the usage is not in
conflict with usage in other areas of the program.

Actual arguments that correspond to dummy arguments referenced within
a parallel DO loop must be accessible to all processes, that is, be declared
as shared.

See Section 15.7.2.2 for detailed descriptions of the SHARED, CONTEXT_
SHARED, and PRIVATE directives.

VAX FORTRAN Support for Parallel Processing 15-17

The sections that follow describe how to treat various forms of data
dependence problems:

• Section 15.3.1 provides information on acceptable forms of data
dependence (which require use of the SHARED, CONTEXT_SHARED,
or PRIVATE directives).

• Section 15.3.2 and 15.3.3 provide information on how to recode loops
to avoid problems with unacceptable forms of data dependence and
how to use locks (LOCKON and LOCKOFF directives).

15.3.1 Acceptable Forrns of Dependence

Only three cases of data dependence are acceptable during the execution
of a parallel DO loop. In these cases, the dependence is not carried across
loop iterations. In all other cases of data dependence, unpredictable results
will occur unless some form of synchronization is used to control access to
the data. The acceptable cases are as follows:

• Temporary variables whose values are established inside the loop
before being used in the same iteration and not used outside the loop.

• Read-only variables whose values are established before entry into the
loop and not modified within the loop.

• Variables defined in only one loop iteration and not involved in a
dependence that crosses loop iterations (that is, they are not used in
any other iteration).

In all other cases of data dependence involving DO loops, the DO loops
cannot be run in parallel with predictable results unless one of the
following actions is taken:

• You recode (transform) the loop in a way that allows it to be run in
parallel with predictable results. This can be done either by converting
an unacceptable data dependence into one of the acceptable data
dependences described in the preceding list or by recoding the parallel
DO loop and moving the unacceptable data dependence outside the
loop.

• You use synchronization mechanisms LOCKON and LOCKOFF
directives to control access to the memory location associated with
the data dependence.

These techniques for resolving unacceptable cases of data dependence are
described in Section 15.3.2 and Section 15.3.3.

15-18 VAX FORTRAN Support for Parallel Processing

Detwiled explanations of the acceptable cases of data dependence are
provided in the sections that follow.

15.3.1.1 Temporary Variables

A temporary variable is always defined before it is used in each iteration
of a parallel DO loop. For example:

DO I = 1,100

TVAR = A (I) + 2
D(I) =TVAR + Y(I-1)

ENDDO

In this example, the memory location associated with TVAR is defined in
each loop iteration before it is used. Thus, in any single loop iteration,
TVAR always has a predictable value.

Directive Requirements

You use the PRIVATE directive to protect temporary variables that meet
the following criteria:

• They are accessed within more than one DO loop iteration.

• They are not involved in a data dependence that crosses between
any of the iterations. That is, they do not have any "loop carried"
dependences.

• If they are used after the completion of the DO loop, they are rede-
fined before they are used.

When you declare a variable as private, each process executing iterations
of the DO loop uses a separate memory location in which to maintain
the value of the variable. If you do not declare a variable as private, each
process will share the same memory location. (Sharing a memory location
might produce erroneous results because the order in which the various
DO loop iterations access memory locations is indeterminate.)

Loop control variables are a prime example of variables that require a
memory allocation attribute of private. See Section 15.7.2.2 for additional
information about the PRIVATE directive.

VAX FORTRAN Support for Parallel Processing 15-19

15.3.1.2 Read-Only Variables

A read-only variable is defined before entry into a parallel DO loop and
referenced but not modified within the loop. For example:

DO I = 1,100

A(I) = B(I) + C(I)

ENDDO

In this example, the values in the memory locations associated with arrays
B and C are never modified inside the loop.

Directive Requirements

You use the CONTEXT_SHARED directive to ensure that the values
of read-only variables (established in the main process) are accessible
to the subprocesses unless the variable is in a common block. If the
variable is in a common block, you use the SHARED directive to establish
the common block, not the variable, as shared. (Note that the correct
treatment of read-only variables can also be established by allowing the
default behavior for the /PARALLEL qualifier to take effect.)

See Section 15.7.2.2 for additional information about the CONTEXT_
SHARED and SHARED directives.

15.3.1.3 Variables Defined and Not Used

Using variables that are defined in only one iteration of an indexed DO
loop and not used in any of the other iterations is commonly done in
indexed DO loops performing array arithmetic. For example:

DO I = 1,100

X(I) = X(I) + Y

ENDDO

In this example, none of the memory locations associated with X(I) is used
in more than one loop iteration. In cases like this, data dependence never
crosses from one loop iteration to another.

15-20 VAX FORTRAN Support for Parallel Processing

Directive Requirements

As with read-only variables, you must identify the variable in question
as acontext-shared variable by using the CONTEXT_SHARED directive
or by allowing the default for the /PARALLEL qualifier to take effect. If
the variable is not given a memory allocation attribute of shared, it cannot
be accessed by code that executes after the completion of the loop. If the
variable is in a common block, you must declare the common block as
shared by using the SHARED directive or by taking the default. These
declarations ensure that the values defined by each of the subprocesses
are accessible to the main process after the completion of the loop. See
Section 15.7.2.2 for additional information about the CONTEXT SHARED
directive.

15.3.2 Using Code Transformations to Resolve Dependences

Unless you use locks (LOCKON and LOCKOFF directives), an indexed
DO loop cannot be run in parallel with predictable results whenever
a loop-carried dependence occurs that is, when a value is stored in a
single memory location during one iteration and used during another.
This restriction exists regardless of the order in which the use and store
operations occur. This is because the decomposed form of the loop will
not necessarily fetch from and store to all of the shared locations in the
same sequence as the original form of the loop. In many cases, however,
you can recode a DO loop in a way that eliminates this type of problem.

The sections that follow describe three coding techniques that can be
used to eliminate data dependence problems that would otherwise require
either the use of locks or the removal of an indexed DO loop from
consideration as a candidate for parallel processing. The use of these
techniques is preferable to the use of locks, especially for small loops,
because the system overhead generated by locks can be large. The
three coding techniques are loop alignment, code replication, and loop
distribution.

All of the examples in the following sections are constructed to demon-
strate the coding techniques, not to exemplify indexed DO loops that
would be candidates for parallel processing.

VAX FORTRAN Support for Parallel Processing 15-21

15.3.2.1 Loop Alignment

Loop alignment entails converting references to a memory location so that
the references within a loop iteration "align" with each other, eliminating
memory location offsets that would cause data dependence to cross
between loop iterations.

The code in the following DO loop demonstrates an alignment problem:

DO I = 2,N

A(I) = B(I)
C(I) = A(I+1)

ENDDO

The value in memory location A(I+1) is used in one loop iteration and
then the next iteration stores another value into that location, referencing
it as location A(I).

When the code is executed serially, the value in memory location A(I+1)
is always used before another value is stored into that memory location.
This is not true, however, when the code is executed in parallel. For ex-
ample, if loop iterations 4 and 5 execute in separate processes and iteration
5 executes before iteration 4, the value that iteration 4 accesses from the
memory location associated with A(I+1) will be the value established by
iteration 5 in the memory location associated with A(I).

The way to remedy this dependence is to bring into "alignment" the two
references to the memory location in array A, that is, the references to
A(I) and A(I+1). This can be done by changing the second assignment
statement as follows:

Original Statement Revised Statement

This eliminates the data dependence problem associated with the previous
references to memory locations in array A. However, to compensate for
the change to the array reference, the loop control values may have to be
adjusted and appropriate IF constructs may have to be added in order to
achieve the same effect as the original loop.

It is also important, of course, to maintain the order in which memory
locations are accessed. In this case, memory location A(I+1) in the original
DO loop is used in one iteration and then stored into in the next iteration
(as memory location A(I)). By aligning the references, each iteration
operates on only one memory location and, in the original order of the

15-22 VAX FORTRAN Support for Parallel Processing

operations, array A's memory locations are stored into before they are
used. Thus, in the revised DO loop being prepared for parallel processing,
the statement performing the use operation must be moved ahead of the
statement performing the store operation in order to preserve the original
order of these operations.

In the example given here, the following additional changes would have
to be made to the loop:

Original DO Loop Revised DO Loop

CPAR$ PRIVATE I

CPAR$ DO_PARALLEL

DO I = 2,N DO I = 2,N+1

A(I) = B(I) IF (I .GT 2) C(I-1) = A(I)

C(I) = A(I+1) IF (I .LE N) A(I) = B(I)

ENDDO ENDDO

Alternatively, you could compensate for the change to the array reference
by distributing certain statements outside the loop:

Original DO Loop Revised DO Loop

CPAR$ PRIVATE I

IF (N .GE. 2) A(2) = B(2)

CPAR$ DO_PARALLEL

DO I = 2,N DO I = 3,N

A(I) = B(I) C(I-1) = A(I)

C(I) = A(I+1) A(I) = B(I)

ENDDO ENDDO

IF (N .GE. 2) C(N) = A(N+1)

Note that when statements are distributed outside the loop, tests must be
made to control when those statements are to be executed. Otherwise,
they would always be executed and that behavior would be in error.

VAX FORTRAN Support for Parallel Processing 15-23

Also, when using the loop alignment technique to resolve a data depen-
dence, you should check to ensure that the coding changes that you make
to bring one reference into alignment doesn't cause previously aligned
references to become unaligned.

15.3.2.2 Code Replication

Code replication entails duplicating certain operations in order to eliminate
a data dependence problem.

The following example illustrates a data dependence problem that can be
resolved by code replication:

DO I = 2,100
A(I) = B(I) + C(I)

ENDDO

This example contains aloop-carried dependence between memory
locations A(I) and A(I-1). The value at memory location A(I-1) is not
always predictable because, in some instances, it will not be defined in
one loop iteration before another loop iteration attempts to use it. For
example, if iterations 2-50 are executing in the main process and iterations
51-100 are executing in a subprocess, it can be assumed that loop iteration
51 will attempt to use memory location A(I-1) before loop iteration 50 has
stored a value in that memory location, referencing it as memory location
A(I).

To eliminate this problem, you can establish the value of A(I-1) in a new
memory location and then eliminate the reference to the old memory
location, substituting a reference to the duplicated memory location. For
example, you could revise the DO loop as follows:

15-24 VAX FORTRAN Support for Parallel Processing

Original DO Loop Revised DO Loop

CPAR$ PRIVATE I,TA

A (2) = B (2) + C (2)

CPAR$ DO_PARALLEL

DO I = 2 ,100 DO I = 3 ,100

A(I) = B(I) + C(I) A(I) = B(I) + C(I)

D(I) = A(I) + A(I-1) TA = B(I-1) + C(I-1)

ENDDO D(I) = A(I) + TA

ENDDO

In this situation, you simply compute the value of memory location A(I-1),
store it into temporary variable TA, and replace the reference to A(I-1)
with a reference to variable TA. (Note that variable TA must be declared
as PRIVATE.)

Notice that some of the calculations are pulled out of the loop and the
iteration count is modified. This is necessary because the reference to A(I)
in the original loop used its original value, not one computed by B(I)+C(I).
Use of the code replication technique will always require this type of
modification in order to bring references back into alignment.

15.3.2.3 Loop Distribution

Loop distribution entails breaking down a loop with data dependence
problems into several loops one or more of which can be run in parallel.
For example, consider the following DO loop:

DO I = 1,100

C(I) =BCI) - A(I)
ENDDO

This loop can be distributed as follows:

DO I 1,100

ENDDO
DO I 1,100

C(I) = B(I) - A(I)
ENDDO

VAX FORTRAN Support for Parallel Processing 15-25

Given these changes, the second loop can now be executed in parallel.
The first loop, however, contains a linear recurrence and cannot be run in
parallel without producing unpredictable results. This is because, in some
instances during parallel execution, predictable values will not be defined
in the memory locations associated with A(I-1) before the locations
are accessed. For example, if loop iterations 1-50 are executing on one
processor and loop iterations 51-100 are executing on another processor, it
can be assumed in most cases that loop iteration 51 will attempt to access
a value in memory location A(I-1) before iteration 50 has executed (and
stored the necessary value at that location).

15.3.3 Using Locks to Resolve Dependences

In certain situations, you can use LOCKON and LOCKOFF directives
within a parallel DO loop to resolve a data dependence problem involving
common blocks or variables that reside in shared memory.

NOTE

You should use locks (LOCKON and LOCKOFF directives)
only when you have no other recourse. Before you use locks,
you should always try to eliminate a dependence problem by
modifying your source code. Using locks negates some of the
performance benefit achieved from parallel processing.

When you place these directives around a segment of code containing
the data dependence, you ensure that the code segment is executed in
only one process at a time that is, you ensure that it cannot be executed
in parallel. This can be useful in a variety of situations. For example, if
an indexed DO loop is performing a summing operation, the statement
updating the sum could be locked, as shown in the following code:

LOGICAL*4 LCK
CPAR$ PRIVATE I,Y
CPAR$ CONTEXT_SHARED LCK,SUM

LCK = .FALSE.

CPAR$ DO_PARALLEL
DO I = 1,1000

Y =some calculation
CPAR$ LOCKON LCK

SUM =SUM + Y
CPAR$ LOCKOFF LCK

ENDDO

15-26 VAX FORTRAN Support for Parallel Processing

l~J

U

A lock is off if the lock variable has a value of .FALSE.; it is on if the
lock variable has a value of .TRUE. In the previous example, LCK has
the value .FALSE. when the LOCKON directive is first reached by one
of the processes executing the parallel DO loop. The LOCKON directive
determines that the lock is off (.FALSE.), sets the lock on (.TRUE.),
and allows execution to continue into the code following the LOCKON
directives. When the next process reaches the LOCKON directive, it must
wait until the lock is unlocked.. This is done when the earlier process
executes the LOCKOFF directive, and the waiting process is then able to
pass through the lock. The operation of the lock in this case is essentially
a toggling operation in which the lock is alternately turned on by the
LOCKON directive and off by the LOCKOFF directive as these directives
are executed by the various processes executing iterations of the parallel
DO loop.

In this instance, the lock ensures approximately the same results as a serial
execution of the loop. The results may differ slightly because differences
in the orders in which the various values of Y are added to SUM may
cause the result to be rounded off differently. In parallel execution, this
order is unpredictable, and generally different from the order of a serial
execution of the loop.

The benefit from using locks is that the code preceding the lock is able
to execute in parallel while the locks provide serial control over a data
dependence that would otherwise produce unacceptable results.

The following example illustrates a situation in which locks could be set at
several points within a parallel DO loop.

CPAR$ DO_PARALLEL
DO L = 1, N

[work)

CPAR$ LOCKON LK1 <
DO J = 1 , 100

CPAR$ LOCKON LK2 t
DO I = 1, 100

CPAR$ LOCKON LK3 't
A(I,J) = A(I,J) +whatever

CPAR$ LOCKOFF LK3
ENDDO

CPAR$ LOCKOFF LK2 f
ENDDO

CPAR$ LOCKOFF LK1 <

Lock
-option

3

Lock
-option

2

ENDDO

Options shown in this example are as follows:

• Lock the entire matrix Option 1.

Lock
-option

1

VAX FORTRAN Support for Parallel Processing 15-27

• Lock one column Option 2.

• Lock one element Option 3.

The point at which the lock is set should optimally result in the least
amount of lock overhead and the greatest amount of parallel processing.
In this instance, option 1 has the lowest overhead and option 3 has the
highest parallelism. Option 2, however, provides the best balance between
high parallelism and low overhead with one hundred less overhead than
option 3 and one hundred times more parallelism than option 1.

See Section 15.7.2.3 for details on the coding requirements associated with
LOCKON and LOCKOFF directives.

15.4 Tuning Issues Related to Parallel Processing

Parallel-processing programs may fail to execute because of insufficient
system resources. You may have to adjust some resource-utilization
parameters both for the entire system and for individual user accounts.
You may also want to adjust some parameters in order to achieve better
performance for programs executing in parallel. These types of considera-
tions are addressed in the sections that follow.

You may also find it advisable to adjust system resources to accommodate
the needs of the multiprocessing configuration of the VMS Debugger.
System management considerations related to the debugger are described
in Section A.3.

15.4.1 System Parameters Set with the SYSGEN Utility

When a parallel application is executed, much of the local memory and
many common blocks of the application are mapped to global sections
(VMS's way of sharing data between processes). Users must ensure that
the number of global sections, global pages, and global page file sections
required by a parallel application are available. To allow enough space
for this global data, some of the system's sysgen parameters may need
to be increased. The three sysgen parameters that are most important
are GBLPAGFIL, GBLPAGES, and GBLSECTIONS. Note that these
parameters are not dynamic; you must reboot your system in order for any
modifications to them to take effect. You should adjust the parameters
one at a time in order to avoid modifying some of them unnecessarily.

15-28 VAX FORTRAN Support for Parallel Processing

You should use the SYS$UPDATE:AUTOGEN.COM command procedure
to modify these parameters. Using AUTOGEN.COM, parameters related
to those you are modifying are changed for you automatically. For details
on how' to use this procedure, refer to the installation guide for the
operating system software installed on your system.

Table 15-2: Sysgen Parameters Requiring Changes for
Parallel Processing

Parameter Name Currentl Default Minimum Maximum Unit Dynamic

GBLSECTIONS 512 128 20 4095 Sections No

GBLPAGES 32768 4096 512 -1 Pages No

GBLPAGFIL 7000 1024 128 -1 Pages No

1 Values listed under this heading are typical values.

GBLSECTIONS—Global section descriptor count

If the count is not high enough, the following diagnostic message is
issued:

'/.SYSTEM-F-GSDFULL, global section descriptor table is full

The GBLSECTIONS parameter sets the number of global section descrip-
tors established in permanently resident memory at bootstrap time. Each
global section must have a descriptor. Thus, the number of global section
descriptors determines the maximum number of global sections that can
exist on the system at any one time.

Each descriptor requires 32 bytes of permanently resident memory. To
avoid wasting permanently resident memory, you should attempt to
minimize the value you give to the GBLSECTIONS parameter.

GBLPAGES Global page table entry count

If the count is not high enough, the following diagnostic message is
issued:

'/.SYSTEM-F-GPTFULL, global page table is full

The GBLPAGES parameter establishes the size of the global page table
and the maximum number of global pages that can be created. For every
128 entries in the global page table, four bytes are added to permanently
resident memory in the form of a system page table entry. (When you
increase GBLPAGES beyond the default setting, you may want to increase

VAX FORTRAN Support for Parallel Processing 15-29

the SYSMWCNT by one for each multiple of 128 entries that you add to
the default setting.)

One way of calculating the number of global pages required to run an
application using the VAX FORTRAN parallel processing support is to
obtain a LINK map and add up the size of the PSECTs that will be shared.

To get a link map, specify the /MAP/FULL qualifiers on your LINK
command line. To calculate the approximate number of global pages
required for your application, go through the link map and add up
the decimal sizes of the PSECTs for shared COMMON blocks and the
$LOCAL PSECT. (The link map gives you the size of PSECTs in bytes.)
In addition, the VAX FORTRAN parallel processing run-time support
requires approximately 3 global pages for its own use, so add 1536 bytes
to the number of bytes required for the PSECTs. Then, to determine
the number of global pages required for the application, divide the total
number of bytes by 512.

The GBLPAGFIL and GBLPAGES parameters must both be at least as
large as the number of global pages required for your application.

You can minimize the amount of global memory required by an appli-
cation by specifically declaring any common blocks as private if it is not
necessary for them to be shared. The default memory attribute for com-
mon blocks is shared in program units compiled with the /PARALLEL
qualifier, and, as noted previously, shared common blocks are mapped to
global sections.

GBLPAGFIL-Global page file limit

If the limit is not high enough, the following diagnostic message is issued:

%SYSTEM-F-EXGBLPAGFIL, exceeded global page file limit

The GBLPAGFIL parameter establishes the maximum number of global
pages with page file backing store that can be created. Global page file
sections are allocated from the paging file at bootstrap time. When you
increase this parameter you may want to increase the size of the paging
files as well. The current size of the paging files can be seen using the
DCL command SHOW MEMORY. For example:

$ SHOW MEMORY

[other memory information removed]

Paging File Usage (pages): Free Reservable Total
DISK$PAGE:[PAGE]SWAPFILE2.SYS;1 68280 68280 79992
DISK$PAGE:[PAGE]PAGEFILE2.SYS;1 73490 60190 79992

15-30 VAX FORTRAN Support for Parallel Processing

15.4.2 User Parameters Set with the Authorize Utility

Two of the authorization quotas, the PRCLM and PGFLQUO quotas,
may need to be adjusted for any account that will be running parallel
applications.

• The PRCLM quota determines the number of subprocesses that a
user's process can create. For applications involving parallel DO
loops, it must be at least equal to the number you specify for the
FOR$PROCESSES logical name. (During debugging operations, one
additional process must be available for the debugger.)

• The PGFLQUO quota is a pooled quota. It restricts the total pages
that user processes can use in the system paging file. It is shared by
all processes in a j ob and thus may require an adjustment to allow for
the additional processes used in parallel processing. It may need to
be as high as the value that results from multiplying the total number
of writable pages (shown in the Image Section Synopsis in the image
map produced by the linker) times the number of processes.

If either of these quotas is not high enough, the following diagnostic
message is issued:

%SYSTEM-F-EXQUOTA, exceeded quota

These quotas are adjusted using the VMS Authorize Utility and are
established only at login time. This implies that any current user of the
account must log off and back on again before the quotas will change
for that user. The following user listing shows example settings for the
PRCLM and PGFLQUO quotas:

Username: USER_J Owner: Joe User
Account: NONE UIC: [360,100] ([USER_J])
CLI: DCL Tables: DCLTABLES
Default : USRD$: [USER_J]

[other user information removed from this listing display]

Prclm: 10 DIOlm: 18 WSdef: 300
Prio: 4 ASTlm: 30 WSquo: 500
Queprio: 0 TQElm: 20 WSextent: 2048
CPU : (none) Enqlm : 200 Pgf lquo : 20000

[other user information removed from this listing display]

VAX FORTRAN Support for Parallel Processing 15-31

Use the Authorize Utility's MODIFY command to change these quotas.
For example:

UAF> MODIFY USER_J/PGFLQUOTA=20000

15.4.3 Other Tuning Considerations

Parallel processing applications typically use large amounts of memory.
To get better performance for an application, you may find it advis-
able to make adjustments to the working set size parameters (WSMAX,
WSQUOTA, WSEXTENT) both for the system and for user accounts.
Refer to the Guide to VMS Performance Management for information on
how to adjust working set size.

15.5 Debugging Programs with Parallel DO Loops

This section provides a brief introduction into how to debug a VAX
FORTRAN parallel-processing application the steps you must take and
the considerations involved.

Section 3.5.13 lists the debugger commands used to control a multipro-
cessing debugging session. Details about the use of the commands are
available in the online help provided for the debugger. An overview of
the features of the multiprocess debugging configuration is provided in
Appendix A. (Note: The overview provided in Appendix A is not oriented
to VAX FORTRAN applications, but to parallel processing in general.)

To test a new or revised program containing parallel DO loops, you
should first compile it with the /NOPARALLEL qualifier, and run and
debug it serially for any logic and coding errors. (Note: You can serially
debug a program compiled with the /PARALLEL qualifier if you have set
FOR$PROCESSES=1 (see Section 15.7.3). In this way, you can alternate
between serial and parallel debugging without recompiling.)

You should also specify bounds checking (/CHECK=BOUNDS) when
compiling your program. This can be helpful because array references that
are outside the boundaries of an array declaration may produce results
that differ in serial and parallel executions of the code in which they
occur. To resolve problems with array references that are out of bounds,
you should either eliminate the out of bounds condition or analyze the
dependences associated with the references and transform your source
code as necessary.

15-32 VAX FORTRAN Support for Parallel Processing

After eliminating logic and coding errors detected during the serial exe-
cution of your program, you should then recompile the program with the
/PARALLEL qualifier and run the program in parallel. If errors occur (that
is, if results differ between serial and parallel executions), examine the use
of variables and common blocks in the source code, looking for problems
with data dependences that are carried across parallel DO loop iterations
or into or out of a parallel DO loop. (See Section 15.3 for information
on data dependence problems.) If you are able to isolate one or more
data dependence problems, change the source code as necessary and then
recompile the program again and repeat the parallel test run.

If you are unable to fix the errors that occur during the parallel execution
of your program by analyzing and changing your source code, you will
have to use the debugger to isolate the errors while your program is
executing in parallel.

Example 15-1 illustrates a program that requires debugging. The program
was compiled and linked without diagnostic messages from either the
compiler or the linker. It executes properly when run serially. However,
the program produces erroneous results when it is run in parallel because
the array Z and the variable TEMP are declared improperly. (Z must
be shared because different locations in it will be modified in parallel
iterations of the loop, and TEMP must be private because it is modified
and used in parallel iterations of the loop.)

VAX FORTRAN Support for Parallel Processing 15-33

Example 15-1: Sample VAX FORTRAN Parallel-Processing
Source Program

1: C A matrix multiplication program
2: C
3: C This program demonstrates that
4: C A * I = A (where I is an identity matrix)
5: C
6: PROGRAM MATRIX MUL
7:
8:
9:
10:
11: COMMON /MATRIX/ X,Y
12: COMMON /MATZ/ Z
13:
14: INTEGER X(M,N),Y(N,N),Z(M,N)
15:

16: CPAR$ SHARED /MATRIX/
17: CPAR$ PRIVATE /MATZ/,I,J,K
18
19: C Initialize the X and Z matrices
20: C and the Y matrix to be the identity matrix
21:
22: DO 100 J=1,N
23: DO 100 I=1,M

25: 100 X(I,J) = I * (J + 10)
26:
27: DO 130 J=1,N
28: DO 130 I=1,N
29: 130 Y(I,J) = 0
30:
31: DO 150 J=1,N
32: 150 Y(J,J) = 1
33:
34: CPAR$ DO_PARALLEL 1
35: DO 200 J = 1, N
36: DO 250 I = 1, M
37: TEMP = 0
38: DO 300 K = 1, N
39: TEMP = TEMP + X(I,K)*Y(K,J)
40: 300 CONTINUE
41: 250 Z(I,J) = TEMP
42: 200 CONTINUE
43:
44: WRITE(*,*) X
45: WRITE(*,*) Z
46:
47: END

INTEGER M,N,I,J,K,TEMP
PARAMETER(M= 3, N= 3) ! use small number for debugging

15-34 VAX FORTRAN Support for Parallel Processing

The key to parallel debugging is to compare what happens to variables in
the parallel DO loop iterations in which they are either used or modified.

Example 15-2 illustrates a typical terminal dialog fora debugging session
involving the program shown in Example 15-1. This example shows how
to control execution in two parallel processes and how to switch back
and forth between the processes. Underlining is used in the example to
indicate user input. The highlighted numbers in the example dialog are
keyed to notes that explain the debugging operations being performed.

Example 15-2: Sample Parallel-Processing Debugging
Session

$ FORTRAN/DEBUG/NOOPT/PARALLEL MATRIX
$ LINK/DEBUG MATRIX

$ DEFINE/JOB DBG$PROCESS MULTIPROCESS
$ RUN MATRIX

VAX DEBUG VERSION T5.0-00 MP

0

'/.DEBUG-I-INITIAL, language is FORTRAN, module set to MAIN
'/.DEBUG-I-NOTATMAIN, type GO to get to start of main program
predefined trace on activation at FOR$INIT_PARALLEL+36 in '/.PROCESS_NUMBER 1

DBG_1> go
!predefined trace on activation at FOR$INIT_PARALLEL+36 in '/.PROCESS_NUMBER 2
!break at routine MATRIX_MUL in '/.PROCESS_NUMBER 1
! 22: DO 100 J=1,N
DBG_1> show process/all
! Number Name Hold State Current PC
!* 1 HUANG break MATRIX_MUL\%LINE 22
! 2 FOR$20200DD5_O1 interrupted 475018

Example 15-2 Cont'd. on next page

VAX FORTRAN Support for Parallel Processing 15-35

Example 15-2 ~Cont.~: Sample Parallel-Processing Debugging
Session

DBG_1> do (set break '/.line 36) Q
DBG_1> go
!break at MATRIX_MUL\'/.LINE 36 in '/.PROCESS_NUMBER 2
! 36: DO 250 I = 1, M
!break at MATRIX_MUL\'/.LINE 36 in '/.PROCESS_NUMBER 1
! 36 : DO 250 I = 1, M
DBG_1> set process/hold/all

DBG_1> do (set watch temp; set break '/.line 41)
DBG_i> go
!watch of MATRIX_MUL\TEMP at MATRIX_MUL\'/.LINE 39+4 in '/.PROCESS_NUMBER 1
! 39: TEMP = TEMP + X(I,K)*Y(K,J)
! old value: 0
! new value: it
!break at MATRIX_MUL\'/.LINE 40 in %PROCESS_NUMBER 1
! 40: 300 CONTINUE
DBG_1> go
!break at MATRIX_MUL\%LINE 41 in '/.PROCESS_NUMBER 1
! 41: 250 Z(I,J) = TEMP
DBG_1> examine temp
!MATRIX_MUL\TEMP: 11
DBG_1> set process '/.proc 2 0
DBG_2> go
!watch of MATRIX_MUL\TEMP at MATRIX_MUL\'/ALINE 37 in %PROCESS_NUMBER 2
! 37: TEMP = 0
! old value: 11
! new value: 0
!break at MATRIX_MUL\'/.LINE 38 in '/.PROCESS_NUMBER 2
! 38: DO 300 K = 1, N
DBG_2> go
!watch of MATRIX_MUL\TEMP at MATRIX_MUL\'/.LINE 39+4 in '/.PROCESS_NUMBER 2
! 39: TEMP = TEMP + X(I,K)*Y(K,J)
! old value: 0
! new value: 12
!break at MATRIX_MUL\'/.LINE 40 in %PROCESS_NUMBER 2
! 40: 300 CONTINUE
DBG_2> go
! break at MATRIX_MUL\%LINE 41 in '/.PROCESS_NUMBER 2
! 41: 250 Z(I,J) = TEMP

Example 15-2 Cont'd. on next page

15-36 VAX FORTRAN Support for Parallel Processing

Example 15-2 (Copt.): Sample Parallel-Processing Debugging
Session

DBG_2> examine temp
!MATRIX_MUL\TEMP: 12
DBG_2> step
!stepped to MATRIX_MUL\'/,LINE 37 in '/.PROCESS_NUMBER 2
! 37: TEMP = 0
DBG 2> examine z
!MATRIX_MUL\Z
! (1,1): 0
! (2,1) : 0
! (3,1) : 0

! (2,2): 0
! (3 , 2) : 0
! (1,3): 0
! (2 , 3) : 0
! (3,3): 0
DBG_2> set process '/,proc 1
DBG_1> step
!stepped to MATRIX_MUL\Y.LINE 37 in '/.PROCESS_NUMBER 1
! 37: TEMP = 0
DBG 1> examine z
!MATRIX_MUL\Z

! (2,1): 0
! (3,1): 0
! (1,2) : 0
! (2,2): 0
! (3,2) : 0
! (1,3): 0
! (2 , 3) : 0
! (3,3): 0
DBG_1> quit

Notes to Example 15-2:

O Establish a multiprocessing debugging configuration before invoking
the debugger.

© The messages issued at the start of a multiprocess debugging session
differ from those issued for asingle-process debugging session because
of special initialization done for the multiprocessing configuration.
Also, a predefined tracepoint is triggered whenever a new process
comes under debugger control.

© Entering the SHOW PROCESS command shows that a subprocess has
been created and is now under debugger control.

VAX FORTRAN Support for Parallel Processing 15-37

O Set a breakpoint on the first line inside the parallel DO loop that
appears to be causing the problem. (The DO command broadcasts the
debugger command specified in parentheses to all of the processes.)

© Setting all of the processes in a hold state confines execution to the
visible process. This allows you to control execution of each process
separately.

O Set a watchpoint on a variable that may be causing the problem. Also,
set a breakpoint on the place where its value is used. (Note: When
execution is suspended in any process, execution in all other processes
is interrupted as well. By default (SET PROCESS/DYNAMIC), the
process in which execution is suspended is automatically established
as the visible process.)

O Watch execution in process 1. Notice that TEMP has a value of 11
before it is stored in matrix Z.

Switch to the other process to watch the execution of the same code.
Notice that the value of TEMP that process 1 is going to use has been
overwritten. Also notice that the prompt has changed from DBG _1
to DBG _2. A command is executed only in the context of the visible
process, unless it is broadcast to other processes by means of the DO
command.

O Now, switch back to process 1 and compare the contents of array Z.
Notice that the value placed in the array by process 2 is not in the
process 1 display. This indicates that you have a sharing problem. If
Z is not shared, the results of computations in process 2 will be lost.

Also, note that process 1 has stored the value 12 instead of the value
11 in Z(1,1). This indicates another sharing problem: process 2 has
overwritten the value established by process 1 in the variable TEMP,
and thus process 1 stores the wrong value in array Z. The variable
TEMP must be declared as a private variable.

At this point, the correct contents of matrix Z should be as follows:

(1,1) : 11
(2,1) : 0
(3,1) : 0
(1,2) : 12
(2 , 2) : 0
(3 , 2) : 0
(1,3) : 0
(2,3) : 0
(3 , 3) : 0

15-38 VAX FORTRAN Support for Parallel Processing

n

15.6 Sample Use of Parallel Processing

This section contains an example of the use of parallel DO loops in an
application involving matrix multiplication and several advanced examples
of conversions of DO loops involving linear recurrences.

15.6.1 Matrix Arithmetic

DO loops containing array operations are prime candidates for parallel
processing. The following program shows the use of parallel DO loops in
an application involving matrix multiplication:

PROGRAM MATMUL
INTEGER M,N
PARAMETER(M= 200, N= 250)

C The matrix arrays must be shared
C
CPAR$ SHARED /MATX/

COMMON /MATX/ X,Y,Z
REAL X(M,N),Y(N,N),Z(M,N)

C The control variables for the parallel DO loop and the DO loops
C nested in the parallel DO loop must be PRIVATE
C
CPAR$ PRIVATE I,J,K

INTEGER*4 I,J,K

REAL MTH$RANDOM
INTEGER*4 SEED

C
C Initialize the X matrix first

SEED = SECNDS(0.)

DO 100 J=1,N
DO 100 I=1,M

100 X(I,J) = MTH$RANDOM(SEED)

C Now initialize the Y matrix to the identity matrix

DO 105 J=1,N
DO 105 I=1,N

105 Y(I,J) = 0

DO 110 J=1,N
110 Y(J,J) = 1

VAX FORTRAN Support for Parallel Processing 15-39

C Do the outer most DO loop in parallel
C
CPAR$ DO_PARALLEL
C

DO 220 J = 1,N
DO 210 I=1,M

210 Z(I,J) = 0.0
DO 220 K=1,N
DO 220 I=1,M
Z(I,J) = Z(I,J) + X(I,K)*Y(K,J)

220 CONTINUE

C Verify the results
C

DO 155 J=1,N
DO 155 I=1,M

IF (X(I,J) NE. Z(I,J)) THEN
160 WRITE(*,*) 'Error in matrix multiplication...'

CALL EXIT(1)
ENDIF

155 CONTINUE

CALL EXIT(1)

END

15.6.2 Linear Recurrences

Some dependences in a DO loop involve linear recurrences, that is,
situations in which the value derived from a statement depends on an
earlier execution of that statement. For example:

Some DO loops with recurrences can be recoded for parallel execution.
However, this is more difficult (and often less productive) than the other
techniques described in Section 15.3.2.

The examples shown here involve loops with linear recurrences.
Transforming these loops requires a significant effort because the or-
der in which the arithmetic operations are performed in the loops can
never be guaranteed to be the same for both serial and parallel execution.
However, even though the arithmetic operations are performed in differ-
ent order, you can achieve the same results in some cases by transforming
the loops. (Final results may differ slightly because of roundoff differences
introduced by varying the order of the arithmetic operations.)

15-40 VAX FORTRAN Support for Parallel Processing

NOTE

A loop with linear recurrences should be considered as a
candidate for parallel processing only under the following
circumstances:

• You determine that it is extremely compute intensive and
will thus benefit markedly from parallel processing.

• It is not contained within an outer loop that can be more
easily prepared for parallel processing.

Otherwise, it should not be considered for transformation
because resolving a recurrence problem can be very difficult.

The original DO loops in the examples are part of the "Livermore Loops"
program prepared at Lawrence Livermore National Laboratory, Livermore,
California.l

The examples are Kernel 3 (Inner Product) and Kernel 5 (Tri-Diagonal
Elimination, Below Diagonal). Other kernels involving linear recurrences
can be converted with the same techniques shown here. Note that many
of the kernels in this program do not involve recurrences and can be
converted without difficulty.

The following variables and directives would have to be added to the
subroutine containing the kernels in order to support the DO loops in
their parallel forms:

c
C Extra variables and directives required for parallel execution
C

REAL*8 SP,TP
REAL*8 SUMS(0:31),PRODS(0:31)
INTEGER LCHUNK,ICHUNK,NPROCS

CPAR$ SHARED_ALL
CPAR$ PRIVATE I,J
CPAR$ PRIVATE SP,TP

NPROCS = NWORKERS () !Establish the number of
!available processors

~ The "Livermore Loops" program is copyrighted by and reproduced with the permission of the Regents of
the University of California.

VAX FORTRAN Support for Parallel Processing 15-41

Kernel 3

The DO loop in Kernel 3 (Inner Product) in its serial form appears as
follows:

Q= o.o
DO 3 K= 1,N

In its parallel form, the loop could be transformed as follows:

C Parallel part, phase 1. Compute one partial sum in each worker.
C

LCHUNK = (N+NPROCS-1)/NPROCS
CPAR$ DO_PARALLEL 1

DO I=O,NPROCS-1
TP=0.0
DO J=I*LCHUNK+1, MIN(N,I*LCHUNK+LCHUNK)

ENDDO
SUMS(I)=TP

ENDDO

C Serial part, phase 2 Add up the partial sums.
C

Q=SUMS(0)
DO I=1,NPROCS-1

Q=Q+SUMS(I)
ENDDO

Kernel 5

The DO loop in Kernel 5 (Tri-Diagonal Elimination, Below Diagonal) in its
serial form appears as follows:

DO 5 I = 2,N
5 X(I)= Z(I) * (Y(I) - X(I-1))

In its parallel form, the loop could be transformed as follows:

LCHUNK = 2*N / (2*NPROCS+3)
ICHUNK = N - NPROCS * LCHUNK

15-42 VAX FORTRAN Support for Parallel Processing

C Parallel part, phase 1
C
CPAR$ DO_PARALLEL 1

DO J = O,NPROCS-1
I F (J . EQ . 0) THEN

TP = X(1) ! Completely solve first chunk.
DO I = 1, ICHUNK-1
TP = Z(1+I)*(Y(1+I)-TP)
X(1+I) = TP

END DO
ELSE ! Derive coefficients form remaining chunks.

SP = 1.0
TP = 0.0
DO I = ICHUNK+J*LCHUNK-LCHUNK, ICHUNK+J*LCHUNK-1

TP = Z(1+I)*(Y(1+I)-TP)
END DO
PRODS(J) = SP

END IF
SUMS(J) = TP

END DO

C Serial part, phase 2. Combine coefficients to get starting points.

C
DO J = 1,NPROCS-1
SUMS (J) = PRODS (J) *SUMS (J -1) + SUMS (J)

ENDDO

C Parallel part, phase 3. Solve each remaining chunk based on

C its starting point.

C
CPAR$ DO_PARALLEL 1

DO J = 1,NPROCS
TP = SUMS(J-1)
DO I = ICHUNK+J*LCHUNK-LCHUNK, ICHUNK+J*LCHUNK-1

TP = Z(1+I)*(Y(1+I)-TP)
X(1+I) = TP

END DO
END DO

VAX FORTRAN Support for Parallel Processing 15-43

15.7 VAX FORTRAN Parallel-Processing Support Mechanisms

VAX FORTRAN provides the following mechanisms for use with parallel-
processing applications:

• A qualifier on the FORTRAN command line:

/PARALLEL

• Compiler directive statements:

DO~'ARALLEL
PRIVATE
SHARED
CONTEXT_SHARED
LOCKON
LOCKOFF

• Logical names:

FOR$PROCESSES
FOR$SPIN_WAIT
FOR$STALL _WAIT

• An intrinsic function:

NWORKERS

These parallel-processing support mechanisms are described in detail in
the sections that follow.

15.7.1 /PARALLEL Qualifier on FORTRAN Command Line

The /PARALLEL qualifier directs the VAX FORTRAN compiler to perform
special processing required for program units in a program to be run in
parallel.

The /PARALLEL qualifier does not have any arguments. It has the form:

FORTRAN / [NO] PARALLEL [/other-qualifiers] filename .FOR

Specifying /NOPARALLEL has the same effect as omitting the
/PARALLEL qualifier; that is, compiler directive statements relating to
parallel processing (DO_PARALLEL, PRIVATE, SHARED, CONTEXT_
SHARED, LOCKON, LOCKOFF) are treated as comments and no object
code to support execution of parallel DO loops is generated.

15-44 VAX FORTRAN Support for Parallel Processing

Specifying /PARALLEL causes the compiler to interpret parallel-
processing compiler directive statements in the source code, to generate
object code to support execution of parallel DO loops, and to give memory
allocation attributes of shared and context-shared to common blocks and
variables, respectively.

Compilation units containing subprograms (subroutines or functions)
that meet the following criteria must be compiled with the /PARALLEL
qualifier:

• All subprograms that call, directly or indirectly, a subprogram contain-
ing aparallel DO loop

• All subprograms that contain parallel DO loops

• All subprograms that reference data items within common blocks
established as shared within other subprograms

When a compilation unit is compiled with a /PARALLEL qualifier, all
variables and common blocks are treated, by default, as follows:

• All common blocks declared in the compilation unit are mapped to
a global section. This allows them to be shared among all of the
processes running in parallel.

• All variables declared in the subprograms are context-shared. They
are handled in a way that allows them to be either shared among the
parallel processes or private to each parallel process, depending on
where the subprogram appears in the call tree, that is, its call level.
All variables in or above the subprogram call level containing the
parallel DO loop are shared by default; all variables in subprograms
called directly or indirectly from within the parallel DO loop are
private. (All subprograms called directly or indirectly from within
parallel DO loops execute serially within the process executing the
loop iteration from which the call originates.)

Use the PRIVATE directive to override the default statuses that are
given to variables (context-shared) and common blocks (shared) by the
/PARALLEL qualifier.

VAX FORTRAN Support for Parallel Processing 15-45

15.7.2 Compiler Directives for Parallel Processing

To support parallel processing, VAX FORTRAN provides the following
compiler directive statements:

DO_PARALLEL
SHARED[_ALL]
CONTEXT_SHARED[—ALL]
PRIVATE[~LL]
LOCKON
LOCKOFF

As described in the chapter on compiler directives in the VAX FORTRAN
Language Reference Manual, directives are prefixed, starting in column 1,
with a 5-character identifier and a space (or tab). In the case of parallel
directives, the 5-character identifier is CPAR$. For example:

CPAR$ PRIVATE_ALL

Unless the /PARALLEL qualifier is specified on the FORTRAN command
line for the program unit, all of these directives are interpreted as comment
lines.

A compiler directive cannot be continued across multiple lines in a source
program, and any blanks appearing after column 6 are insignificant.

15.7.2.1 DO_PARALLEL Directive

The DO_PARALLEL directive identifies an indexed DO loop that is to be
executed in parallel.

The directive has the format:

column 1

I
CPAR$ DO_PARALLEL [distribution-size]

The DO_PARALLEL directive must precede the DO statement for each
parallel DO loop. No source code lines, other than comment lines and
blank lines, can be placed between the DO_PARALLEL directive and the
DO statement.

You can specify how the DO loop iterations are to be divided up among
the processors executing the parallel DO loop. For example, if a parallel
DO loop has 100 iterations and you specify a distribution size of 25,
iterations will be distributed to each processor for execution in sets of 25.
When a process completes one set of iterations, it then begins processing

15-46 VAX FORTRAN Support for Parallel Processing

the next set. If the number that you specify for distribution size does not
divide evenly into the number of iterations, any remaining iterations are
run in the last process.

The expression that you use to specify the distribution size must be capa-
ble of being evaluated as a positive integer. If necessary, it is converted
to an integer. For example, 5.2 is acceptable and is converted to 5. The
number 0.2 is not acceptable, however, because it is converted to 0.

You can use the intrinsic function NWORKERS to help establish the
distribution size (see Section 15.7.4).

15.7.2.2 SHARED, CONTEXT_SHARED, and PRIVATE Directives

The SHARED, CONTEXT_SHARED, and PRIVATE directives can be in-
terspersed with declaration statements within program units in a program
to be run in parallel. The functions of these directives are as follows:

• The SHARED directive causes memory locations for user-specified
common blocks to be shared among all of the processes executing a
parallel DO loop.

• The PRIVATE directive causes memory locations for user-specified
variables and common blocks to be private to each of the processes
executing iterations of a parallel DO loop.

• The CONTEXT_SHARED directive causes user-specified variables to
be treated in memory as shared or private variables, depending on the
context in which they are used.

The SHARED, CONTEXT_SHARED, and PRIVATE directives have no ef-
fect on code that is executing in a nonparallel context (that is, in code that
is executed before entry into a parallel DO loop and after the completion
of the loop). Note that any given common block should have the same
attribute (shared or private) in all program units in a program to be run in
parallel.

The SHARED, CONTEXT_SHARED, and PRIVATE directives have the
following format:

column 1

I
CPAR$ PRIVATE name [,name] .. .
CPAR$ PRIVATE_ALL

CPAR$ SHARED common_name[,common_name]. .
CPAR$ SHARED_ALL
CPAR$ CONTEXT_SHARED var_name[,var_name]. . .
CPAR$ CONTEXT_SHARED_ALL

VAX FORTRAN Support for Parallel Processing 15-47

PRIVATE_ALL
PRIVATE name[,name]...

Identifies those variables (scalars, arrays, and records) and common
blocks that must have unique memory locations within each of the
processes executing a parallel DO loop.

An attribute of private must be given to loop control variables of
parallel DO loops. Variables that are always defined in each loop
iteration before being used should also be declared as private.

If common blocks or variables are declared as private in any routine,
they must be declared as private (or default to private) in all of the
other routines that reference them.

Values for private variables and common blocks established before
entry into a parallel DO loop should not be used inside the loop.
Similarly, values for private variables and common blocks established
inside a parallel DO loop should not be used outside the loop after its
completion.

PRIVATE _ALL causes all variables and common blocks declared
in a routine to be private unless they are explicitly declared as
shared. PRIVATE _ALL does not disallow the use of the SHARED
and CONTEXT SHARED directives; it merely establishes the default
behavior for data sharing as PRIVATE, overriding the default behavior
(SHARED—ALL and CONTEXT_SHARED~LL) established by the
/PARALLEL qualifier.

Commas are required between the names, and common block names
must be enclosed by slashes (for example, /name/ or, for blank
common, / /).

SHARED_ALL
SHARED common_name[,common_name]...

Identifies common blocks that are to be shared among all of the
processes executing the compilation unit in both parallel and nonpar-
allel (serial) processing contexts. Specifying variables on a SHARED
directive is disallowed.

Common blocks containing variables that meet the following criteria
must be shared:

• Those defined before entry into a loop and used without first
being redefined within any of the loop iterations.

15-48 VAX FORTRAN Support for Parallel Processing

• Those defined inside a parallel DO loop and used without first
being redefined by code executed after completion of the loop.

SHARED—ALL does not disallow the use of the PRIVATE directive;
it merely reinforces the default behavior for data sharing established
by /PARALLEL. By default, all common blocks in a compilation unit
compiled with the /PARALLEL qualifier are shared.

Common block names must be enclosed by slashes (for example,
/name/ or, for blank common, / /). Commas are also required
between the names.

CONTEXT_SHARED~LL
CONTEXT SHARED var_name[,var_name]...

Identifies those variables (scalars, arrays, and records) that are to
reside in a shared memory location throughout any one invocation
of a subprogram (subroutine or function), including any parallel
loops contained with the subprogram. However, if a subprogram
has several concurrent invocations (because it is called from within
a parallel loop), each invocation will use different memory locations
for these variables. (This context adjustment is handled automatically
by the compiler and is not a programming consideration.) Specifying
common blocks On a CONTEXT_SHARED directive is disallowed.

By default, all variables in a routine compiled with the /PARALLEL
qualifier are context-shared.

Commas are required between variable names specified on a
CONTEXT_SHARED directive.

The following restrictions apply to the use of SHARED, CONTEXT_
SHARED, and PRIVATE directives:

• Arrays cannot be dimensioned within CONTEXT_SHARED and
PRIVATE directives. For example, the array reference in the follow-
ing directive would generate acompile-time error because of the
dimensioning associated with ARRAY 1:

CPAR$ PRIVATE ARRAYI(10,20),VAR1,/COMMON_1/

The following statements show how to do this properly:

REAL*4 ARRAYI(10,20)
CPAR$ PRIVATE ARRAYI,VAR1,/COMMON_1/

• Private variables and common blocks cannot be referenced in a SAVE
statement.

VAX FORTRAN Support for Parallel Processing 15-49

• Common blocks cannot contain both shared and private variables.
Any common block that has this property must be split into separate
shared and private common blocks.

• Variables declared within a common block cannot be specified on a
CONTEXT_SHARED or PRIVATE directive.

• Variables (scalars, arrays, and records) cannot be specified in both
CONTEXT SHARED and PRIVATE directives within the same pro-
gram unit.

• Every program unit that references a common block must declare it
as shared or private. All of the declarations must match. The decla-
rations can be made explicitly by specifying directives or implicitly by
taking the compiler defaults. The defaults are as follows:

— In program units compiled with the /NOPARALLEL qualifier, all
common blocks are private.

— In program units compiled with the /PARALLEL qualifier, all
common blocks are shared.

In general, ensure that the attributes and usage of variables outside
parallel DO loops conform, as necessary, to constraints imposed by their
attributes and their usage within the loop. For example, common blocks
and variables must be declared to have the same memory allocation
attributes (shared or private) in both parallel and nonparallel processing
contexts, and private variables given values within a parallel DO loop
cannot be used reliably after the completion of the loop without being
redefined.

See Section 15.3.1 for information about when to use SHARED,
CONTEXT_SHARED, and PRIVATE directives to resolve certain types
of data dependence problems.

15.7.2.3 LOCKON and LOCKOFF Directives

The LOCKON and LOCKOFF directives can be used within a parallel DO
loop to prevent multiple processes from executing selected statements in
parallel. These directives force the multiple processes executing a parallel
DO loop to execute selected statements serially. This can be useful when
a statement (or set of statements) creates an unacceptable data dependence
problem that cannot be resolved by other means.

15-50 VAX FORTRAN Support for Parallel Processing

The ability to set locks becomes useful when variables or common blocks
have conflicting status requirements. For example, they are involved in a
data dependence that crosses loop iterations (which requires them to be
private) and they are used in code outside the loop (which requires them
to be shared).

The LOCKON and LOCKOFF directives have the following forms:

column 1

CPAR$ LOCKON lock-variable
CPAR$ LOCKOFF lock-variable

A lock variable can be a variable or a dummy argument. It must have a
data type of LOGICAL*4. For all of the processes to have access to it, it
must have a memory allocation attribute of shared. A lock variable can be
established in two ways:

• It can be declared in a shared common block.

• It can be declared as acontext-shared variable within the routine
containing the parallel DO loop.

The lock is in effect when the lock variable has a value of .TRUE. and
unlocked when the lock variable has a value of .FALSE.

The LOCKON and LOCKOFF directives perform the following operations:

LOCKON Waits, if necessary, for the lock variable to become .FALSE.,
then sets it to .TRUE. (that is, locks the lock), and then
proceeds.

LOCKOFF Sets the lock variable to .FALSE. (that is, unlocks the lock).

These directives use the VAX interlocked instructions to guarantee proper
synchronization on a multiprocessor. Do not use any other statements
to modify the lock variable while another process may be executing a
LOCKON or LOCKOFF directive.

See Section 15.3.3 for examples of how locks are used in parallel DO
loops.

VAX FORTRAN Support for Parallel Processing 15-51

15.7.3 Customizing the Parallel-Processing Run-Time Environment

To allow the user to tune the parallel-processing run-time environment
in which a program is executed, the VAX FORTRAN Run-Time Library
defines the following logical names:

Logical Name Use

FOR$PROCESSES

FOR$SPIN _WAIT
FOR$STALL_WAIT

Controls the number of processes used to execute a VAX
FORTRAN program in parallel (32 maximum)

Control CPU usage when waiting, for work or synchro-
nization, in a VAX FORTRAN program executing in
parallel

You can define your own values for the logical names using the DCL
commands DEFINE or ASSIGN. For example:

$ DEFINE FOR$PROCESSES 4

The values defined when a program starts parallel execution remain in
effect until execution is completed.

Controlling the Number of Processes FOR$PROCESSES

The logical name FOR$PROCESSES defines the number of processes
to be used when executing a VAX FORTRAN program in parallel. To
define FOR$PROCESSES, you must specify a nonzero, positive num-
ber. The maximum number is 32. If you do not define a value for
FOR$PROCESSES, a default value equal to the number of processors that
are currently active on the system is used.

Being able to adjust the number of processes can be helpful for a variety
of reasons:

• It enables you to execute your parallel program in a single process.
This allows you to debug the logic within your parallel DO loops
as they execute in a serial, nonparallel fashion. (Note that running
a program with parallel DO loops in one process (serially) does not
reduce the initialization overhead associated with the parallel DO
loops.)

• It enables you to compare the performance impact of executing a
parallel program with a varying number of processes.

15-52 VAX FORTRAN Support for Parallel Processing

• It enables you to gauge the tradeoffs between increasing system
overhead and increasing execution time. For example, in a time-
sharing environment, you may find it advisable to reduce the number
of processes in order to minimize contention for system resources.

FOR$PROCESSES is useful when you are executing a VAX FORTRAN
program in parallel on a multiprocessor with more than two proces-
sors and you do not want to contend for the use of all of the available
processors.

Controlling Internal Spin Waits FOR$SPI N _WAIT

The logical name FOR$SPIN_WAIT allows you to tune the synchroniza-
tion method used when a VAX FORTRAN program runs in parallel.

The synchronization methods used by a program running in parallel in a
multitasking environment must deal with two conflicting goals:

• To respond as quickly as possible to a synchronization flag. The
common way to accomplish this is to repeatedly test for an appropriate
flag in a shared storage location. Doing this test in a tight loop ensures
a quick response when the flag is reset. This solution, however,
conflicts with the second goal.

• To avoid wasting valuable CPU cycles that might be used by another
program.

Because of this conflict, a tradeoff must be made between the fastest
response to the synchronization flags and fairness to other programs.

The FORTRAN Run-Time Library allows you to affect this tradeoff by
defining a value for FOR$SPIN_WAIT. You can define it to be any
nonnegative integer. This value specifies how many iterations of the spin-
wait loop will execute before the executing process gives up the processor
and allows VMS to schedule another process.

• A value of 0 is a special case that tells the run-time support to use
the fastest synchronization at the expense of wasted CPU cycles. This
value is appropriate for running a program in parallel on a system that
is dedicated to running that single program.

• Other positive values tell the run-time support to use more or fewer
spin-wait iterations, with higher values indicating more iterations.
Thus, a value of 1 ensures the least wasted cycles at the cost of the
slowest synchronization response.

VAX FORTRAN Support for Parallel Processing 15-53

It is usually not necessary to define this logical name. The default value
(1000) established by the run-time system should be adequate for most
programs.

Controlling the State of a Process FOR$STALL_WAIT

When a subprocess is waiting to work on a parallel DO loop, it can be
either in an active state on the system or in an inactive state. When a
subprocess is inactive, it becomes less responsive because it has to become
active again before it can respond to the parallel DO loop.

As a second level of control over the internal spin waits in the parallel
processing environment, the logical name FOR$STALL_WAIT allows you
to control the time that a subprocess stays active, or computable, on the
system. To control how long it remains active, you define a value for
the logical name FOR$STALL _WAIT. This nonnegative value specifies
the number of times that the subprocess will give up the CPU before
becoming inactive.

• A value of 0 tells the run-time support to always maintain the sub-
process as active, thus being more responsive when a parallel DO
loop becomes available. A value of 0 is appropriate for programs that
contain mostly parallel DO loops.

• Other positive values tell the run-time support to stay active for a
longer or shorter interval, with higher values directing it to stay active
longer. Thus, a value of 1 ensures that a subprocess waiting for a
parallel DO loop will stay active for the shortest time interval. A
value of 1 is appropriate when the program has large segments of
code before, after, or between parallel DO loops.

It is usually not necessary to define this logical name. The default value
(10 times the number of subprocesses) established by the run-time system
should be adequate for most programs.

15-54 VAX FORTRAN Support for Parallel Processing

15.7.4 NWORKERS Intrinsic Function

The intrinsic function NWORKERS requires no arguments and returns an
INTEGER*4 value that represents the total number of processes executing
an application. NWORKERS will be most useful in parallel applications
for determining the size of the iteration segments to be executed in the
parallel processes. For example:

CPAR$ DO_PARALLEL (N+NWORKERS()-1) / NWORKERS()
DO I = 1, N

ENDDO

In this example, the size of each iteration segment to be executed in the
parallel processes would be the total number of iterations in the parallel
DO loop divided by the number of available processes. (Specifying
"(N+NWORKERS()-1)" guarantees that you do not get an illegal segment
value of 0.)

Using NWORKERS, you can adjust the size of the iteration segment
automatically to the number of processors available on the system on
which the application is run.

VAX FORTRAN Support for Parallel Processing 15-55

Appendix A

Working with the Multiprocess
Debugging Configuration

This appendix assumes that you are familiar with the configuration of
the VMS Debugger that supports single-process debugging (referred to
in this appendix as the "default debugging configuration"). It covers only
the extensions that are provided to support multiprocess debugging. (See
Chapter 3 for information about how to use the debugger for single-
process debugging.)

This appendix provides information in the following areas:

• Basic information that you need to perform multiprocess debugging
(Section A.1)

• Supplemental information on more advanced concepts and usage than
those described in Section A.1 (Section A.2)

• System management considerations associated with multiprocess
debugging (Section A.3)

The information in this appendix is oriented toward multiprocess debug-
ging in general, not toward VAX FORTRAN parallel-processing debug-
ging. See Section 15.5 for an overview specifically oriented toward VAX
FORTRAN debugging.

Working with the Multiprocess Debugging Configuration A-1

A.1 Getting Started

This section gives a quick overview of the multiprocess debugging en-
vironment, by running through the basic steps and commands. Later
sections are referenced for additional details. See the debugger's on-line
HELP for complete details on commands.

A.1.1 Establishing a Multiprocess Debugging Configuration

Before invoking the debugger, enter the following command to establish a
multiprocess configuration:

$ DEFINE/JOB DBG$PROCESS MULTIPROCESS

This command establishes a multiprocess configuration for the job tree in
which the command was issued. As a result, once a debugging session
is started, any debuggable image running in the same job tree can be
controlled from that one session. (An image is debuggable if it has been
compiled and linked with the /DEBUG qualifier.)

A.1.2 Invoking the Debugger

This section explains the usual way of starting a multiprocess debugging
session. See Section A.2.3 for additional techniques for invoking the
debugger (for example, using the CONNECT command or a CTRL/Y -
DEBUG sequence).

You typically initiate the execution of a multiprocess program by running
the main image in the main (master) process. Once the main image
is running in the main process, the program will spawn one or more
subprocesses to run additional images by issuing a LIB$SPAWN run-time
library call or a $CREPRC system service call. (Note: VAX FORTRAN
performs this step during the initialization phase.)

If the main image is debuggable, the debugger is invoked when you run
the image. For example:

$ RUN MAIN_PROG
VAX DEBUG Version X5.0-3 MP

%DEBUG-I-INITIAL, language is FORTRAN, module set to MAIN_PROG
%DEBUG-I-NOTATMAIN, type GO to get to start of main program
predefined trace on activation at routine MAIN_PROG in %PROCESS_NUMBER 1
DBG 1>

A-2 Working with the Multiprocess Debugging Configuration

As with aone-process program, the debugger displays its banner and
prompt just prior to the start of execution of the main image. However,
note two differences the "predefined trace on . . . "message and the
debugger prompt.

In a multiprocess configuration, the debugger traces each new process that
is brought under control. In this case, the debugger traces the first process,
which runs the main image of the program. (%PROCESS_NUMBER is a
built-in symbol that identifies a process number, just as %LINE identifies
a line number.)

The significance of the prompt suffix (_1) is explained in the next section.

A.1.3 The Visible Process and Process-Specific Commands

The previous example shows that the debugger prompt in a multipro-
cess debugging configuration is different from that found in the default
configuration.

In a multiprocess configuration, "dynamic prompt setting" is enabled
(SET PROMPT/SUFFIX=PROCESS_NUMBER) by default. Therefore, the
prompt has aprocess-specific suffix that indicates the process number of
the visible process. The debugger assigns a process number sequentially,
starting with process 1, to each process that comes under the control of a
given debugging session.

The visible process is the process that is the default context for issuing
process-specific commands. Process-specific commands are those that start
execution (STEP, GO, and so on) and those used for looking up symbols,
setting breakpoints, looking at the call stack and registers, and so on.
Commands that are not process specific are those that do not depend on
the mapping of virtual memory but, rather, affect the entire debugging
environment (for example, keypad mode and screen mode commands).

Unless dynamic prompt setting is disabled (SET PROMPT/NOSUFFIX),
the debugger prompt suffix always identifies the visible process (for
example, DBG _1 >). The SET PROMPT command provides several
options for tailoring the prefix and suffix of the prompt string to your
needs.

Working with the Multiprocess Debugging Configuration A-3

A.1.4 Obtaining Information About Processes

Use the SHOW PROCESS command to obtain information about processes
that are currently under control of your debugging session. By default,
SHOW PROCESS displays one line of information about the visible
process. The following example shows the kind of information displayed
immediately after you invoke the debugger:

DBG_1> SHOW PROCESS
Number Name Hold State Current PC
* 1 JONES activated MAIN_PROG\'/.LINE 2
DBG_1>

A one-line SHOW PROCESS display provides the following information
about each process specified:

• The process number assigned by the debugger. In this case, the
process number is 1 because this is the first process known to tree
debugger. The asterisk in the leftmost column (*)marks the visible
process.

• The VMS process name. In this case, the VMS process name is
JONES.

• Whether the process has been placed on hold with a SET PROCESS
/HOLD command, as explained in Section A.1.7.2. In this case, the
process has not been placed on hold.

• The current debugging state for that process. A process is in the
"activated" state when it is first brought under debugger control (that
is, before it has executed any part of the program under debugger
control). Table A-1 summarizes the possible debugging states that
may appear in the state column.

• The location (symbolized, if possible) where execution of the image
is suspended in that process. In this case, the image has not started
execution.

A-4 Working with the Multiprocess Debugging Configuration

Table A-1: Debugging States
Activated The image and its process have just been brought

under debugger control, either through a DCL RUN
/DEBUG command, a debugger CONNECT command,
a CTRL/Y -DEBUG sequence, or by the program
signaling SS$DEBUG while it was not under debugger
control.

Break' A breakpoint was triggered.

Interrupted Execution was interrupted in that process, either
because execution was suspended in some other
process or because the user interrupted program
execution with the abort-key sequence (CTRL/C, by
default).

Step' A STEP command has completed.

Terminated The image has terminated execution but the process is
still under debugger control. Therefore, you can obtain
information about the image and its process.

Trace' A tracepoint was triggered.

Unhandled exception An unhandled exception was encountered.

Watch of A watchpoint was triggered.

'See the SHOW PROCESS command in the command dictionary for a list of additional
states.

The SHOW PROCESS/ALL command provides information about all
processes that are currently under debugger control. In the case of the
previous example, a SHOW PROCESS/ALL command would show only
process 1. The SHOW PROCESS/FULL command provides additional
details about processes.

A.1.5 Bringing a Spawned Process Under Debugger Control

This section describes, in general, how the debugger interacts with
spawned processes.

NOTE

Most of the information in this section is not pertinent to
the debugging of parallel DO loops. The connect operations
described in this section are performed for you automatically
during the initialization phase.

Working with the Multiprocess Debugging Configuration A-5

To illustrate the interaction, assume that you are entering a few STEP
commands and, in the middle of a step, MAIN _FROG spawns a process
to run a debuggable image called TEST.

Because DBG$PROCESS has the value MULTIPROCESS, the spawned
process is now requesting to connect to the current debugging session, and
image TEST is suspended at the start of execution.

While the spawned process is waiting to be connected, it is not yet known
to the debugger and cannot be identified in a SHOW PROCESS/ALL
display. You can bring the process under debugger control using either of
the following methods:

• Enter a command, such as STEP, that starts execution.

• Enter the CONNECT command without specifying a parameter. The
CONNECT command is preferable in those cases when you do not
want the program to execute any further.

The following example shows how to use the CONNECT command:

DBG_1> STEP
stepped to MAIN_PROG\'/.LINE 18 in '/.PROCESS_NUMBER 1
18: LIB$SPAWN("RUN/DEBUG TEST")
DBG 1> STEP
stepped to MAIN_PROG\'/.LINE 21 in '/.PROCESS_NUMBER 1
21: X = 7
DBG_1> CONNECT
predefined trace on activation at routine TEST •in '/.PROCESS_NUMBER 2
DBG_1>

In this example, the second STEP command takes you past the
LIB$SPAWN call that spawns the process. The CONNECT command
brings the waiting process under debugger control. After entering the
CONNECT command, you may need to wait a moment for the pro-
cess to connect. The "predefined trace on . . . "message, as explained
in Section A.1.2, indicates that the debugger has taken control of a new
process and identifies that process as process 2, the second process known
to the debugger in this session.

A SHOW PROCESS/ALL command, entered at this point, identifies the
debugging state for each process and the location at which execution is
suspended:

DBG_1> SHOW PROCESS/ALL
Number Name Hold State Current PC

* 1 JONES step MAIN_PROG\'/.LINE 21
2 JONES_1 activated TEST\'/.LINE 1+2

DBG_1>

A-6 Working with the Multiprocess Debugging Configuration

Note that the CONNECT command brings any processes that are waiting
to be connected to the debugger under debugger control. If no processes
are waiting, you can press CTRL/C to abort the CONNECT command
and display the debugger prompt.

A.1.6 Broadcasting Commands to Selected Processes

By default, process-specific commands are executed in the context of the
visible process. The DO command enables you to execute commands in
the context of one or more processes that are currently under debugger
control. This capability is referred to as "broadcasting" commands to
processes.

Use the DO command without a qualifier to execute commands in the
context of all of the processes. For example, the following command
executes the SHOW CALLS command for all processes that are currently
under debugger control (processes 1 and 2, in this case):

DBG_1> DO (SHOW CALLS)
For '/°PROCESS_NUMBER 1

module name routine name line rel PC abs PC
*MAIN_PROG MAIN_PROG 21 0000001E 0000041E

For %PROCESS_NUMBER 2
module name routine name line rel PC abs PC
TEST TEST 1+2 00000008 0000040E

Use the DO command with the /PROCESS= qualifier to execute com-
mands in the context of selected processes. For example, the following
command executes the commands SET MODULE START and EXAMINE
X in the context of process 2 (see Section A.2.1 for information on how to
specify processes in debugger commands):

DBG_1> DO/PROCESS=(%PROC 2) (SET MODULE START; EXAMINE X)

Working with the Multiprocess Debugging Configuration A-7

A.1.7 Controlling Execution

Program execution in a multiprocess debugging environment follows these
conventions:

• When you enter a command that starts program execution, such as
STEP or GO, the command is executed in the context of the visible
process. However, images in any other upheld processes (processes
that have not been placed on hold with a SET PROCESS/HOLD
command) are also allowed to execute. Similarly, if you use the DO
command to broadcast a command to start execution in one or more
processes, the command is executed in the context of each specified
upheld process, but images in any other upheld processes are also
allowed to execute. In all cases, a hold condition is ignored in the
visible process. (See Section A.1.7.2 for additional information about
the behavior of processes when on hold.)

• Once execution is started, the way in which it continues depends on
whether the command SET MODE [NO]INTERRUPT was entered.
By default (SET MODE INTERRUPT), execution continues until it is
suspended in any process. At that point, execution is interrupted in
any other processes that were executing images, and the debugger
prompts for input.

These concepts are illustrated next by continuing with the example in
Section A.1.5 that shows the two STEP commands.

In that example, the "stepped to..." messages indicate that both commands
are executed in the context of process 1, the visible process. The second
STEP command spawns process 2. The SHOW PROCESS/ALL example
of Section A.1.5 indicates that execution in processes 1 and 2 is suspended
at MAIN_PROG\%LINE 21 and TEST\%LINE 1+2, respectively.

At this point, entering another STEP command followed by SHOW
PROCESS/ALL results in the following display:

DBG 1> STEP
stepped to MAZN_PROG\%LINE 23 in %PROCESS_NUMBER 1
23: Y = 15
DBG_1> SHOW PROCESS/ALL
Number Name Hold State Current PC
* 1 JONES step MAIN_PROG\%LINE 23

2 JONES_1 interrupted TEST\%LINE 3+1

DBG 1>

A-8 Working with the Multiprocess Debugging Configuration

The STEP command is executed in the context of process 1, the visible
process. After the STEP, execution in process 1 is suspended at MAIN_
PROG\%LINE 23. However, the STEP command also causes execution
to start in process 2. The completion of the STEP in process 1 causes
execution in process 2 to be interrupted at TEST\%LINE 3+1.

Section A.1.7.1 describes another mode of execution, which is provided by
the command SET MODE NOINTERRUPT.

A.1.7.1 Controlling Execution with SET MODE NOINTERRUPT

SET MODE NOINTERRUPT allows execution to continue without inter-
ruption in other processes when it is suspended in some process. This is
especially useful if, for example, you want to broadcast a STEP command
to several processes with the DO command and complete execution of the
STEP in all these processes. For example:

DBG 1> SET MODE NOINTERRUPT
DBG_1> DO (STEP)

In this example, the DO command executes the STEP command in the
context of all processes. The visible process and any other upheld pro-
cesses start execution. Because the command SET MODE NOINTERRUPT
was entered, the prompt is displayed only after the STEP has completed
(or execution has been otherwise suspended at a breakpoint or watchpoint)
in all processes that were executing.

When SET MODE NOINTERRUPT is in effect, as long as execution
continues in any process, the debugger does not prompt for input. In such
cases, use CTRL/C to interrupt all processes and display the prompt.

A.1.7.2 Putting Selected Processes on Hold

As indicated in the preceding sections, a command that starts execution is
executed in the context of the visible process, but it also causes execution
to start in other processes. If you want to inhibit execution in a process,
put it on hold. For example, the following SET PROCESS/HOLD com-
mand puts process 2 on hold. The subsequent STEP command is executed
in the context of process 1, the visible process. Execution also starts in any
other processes that are not on hold, but not in process 2:

DBG_1> SET PROCESS/HOLD '/.PROC 2
DBG 1> STEP

Working with the Multiprocess Debugging Configuration A-9

A SHOW PROCESS display indicates whether a process is on hold. For
example:

DBG_1> SHOW PROCESS/ALL
Number Name Hold State Current PC

* 1 JONES step MAIN_PROG\%LINE 24

2 JONES_1 HOLD interrupted TEST\%LINE 3+1

DBG 1>

To "uphold" a process, enter the command SET PROCESS/NOHOLD,
specifying the process that you want to release from the hold condition.

Note that a hold condition is ignored in the visible process. Therefore,
the command SET PROCESS/HOLD/ALL is a convenient way to confine
execution to the visible process. In the following example, execution starts
only in the visible process:

DBG_1> SET PROCESS/HOLD/ALL
DBG 1> STEP

This feature is useful if, for example, you want to use the CALL command
to execute a dump routine that is not part of the execution stream of your
program.

The preceding discussions also apply if you use the DO command to
broadcast a GO, STEP, or CALL command to several processes. The
GO, STEP or CALL command is executed in the context of each specified
upheld process, and execution also starts in any other upheld process. The
following example shows the execution behavior when all processes are
placed on hold and commands are broadcast to all processes. Execution
starts only in the visible process (process 1, in this example):

DBG_1> SET PROCESS/HOLD/ALL
DBG_1> DO (EXAMINE X; STEP)
For %PROCESS_PJUMBER 1

MAIN_PROG\X: 78
For %PROCESS_NUMBER 2

TEST\X: 29
stepped to MAIN_PROG\%LINE 26 in %PROCESS_NUMBER 1
26: K = K + 1
DBG 1>

A-10 Working with the Multiprocess Debugging Configuration

A.1.8 Changing the Visible Process

Use the SET PROCESS command (with the default /VISIBLE qualifier)
to establish another process as the visible process. For example, the
following command makes process 2 the visible process:

DBG_ 1 > SET PROCESS '/.PROC 2
DBG 2>

In this example, because dynamic prompt setting is enabled by default,
the SET PROCESS command has also caused the prompt string suffix to
change. It now indicates that process 2 is the visible process. All process-
specific commands are now executed in the context of process 2. For
example, a SHOW CALLS command would display the call stack for the
image running in process 2.

A.1.9 Dynamic Process Setting

By default, "dynamic process setting" is enabled (SET PROCESS
/DYNAMIC). As a result, whenever the debugger suspends program
execution, the process in which execution is suspended becomes the visi-
ble process automatically. Dynamic process setting occurs in the following
situations: when a breakpoint or watchpoint is triggered, at an excep-
tion condition, on the completion of a STEP command, or when the last
process performs an image exit.

When dynamic process setting is disabled (/NODYNAMIC), the visible
process remains unchanged until you specify another process with the SET
PROCESS/VISIBLE command.

Dynamic process setting is illustrated in the following example, which also
illustrates dynamic prompt setting:

Working with the Multiprocess Debugging Configuration A-11

DBG_1> SHOW PROCESS/ALL
Number Name Hold State Current PC

* 1 JONES step MAIN_PROG\'/.LINE 22

2 JONES_1 interrupted TEST\'/.LINE 4

DBG_ 1> DO/PROCESS= ('/.PROC 2) (SET BREAK '/.LINE i l)

DBG 1> GO

break at TEST\'/.LINE 11 in '/.PROCESS_NUMBER 2

DBG_2> SHOW PROCESS/ALL
Number Name Hold State Current PC

1 JONES interrupted MAIN_PROG\'/.LINE 28

* 2 JONES_1 break TEST\'/.LINE 11

DBG 2>

In this example, process 1 is initially the visible process, as indicated by
the prompt and the SHOW PROCESS display. The DO command sets
a breakpoint in the context of process 2. Execution is resumed with the
GO command and is suspended at the breakpoint in process 2. Process
2 is now the visible process, as indicated by the prompt and the SHOW
PROCESS display.

If you had entered the command SET MODE NOINTERRUPT and then
had started execution in several processes with the DO command, the
prompt would not be displayed until after execution was suspended in
all processes. In this case, the visible process remains unchanged, unless
the last process performs an image exit (and thereby becomes the visible
process).

A.1.10 Monitoring the Termination of Images

When the main image of a process runs to completion, the process goes
into the "terminated" debugging state. This condition is traced by default,
as if you had entered the command SET TRACE/TERMINATING.

When a process is in the terminated state, it is still known to the de-
bugger and appears in a SHOW PROCESS/ALL display. You can enter
commands to examine variables, and so on.

When the last image of the program exits, the debugger gains control and
displays its prompt.

A-1 Z Working with the Multiprocess Debugging Configuration

A.1.11 Terminating the Debugging Session

To terminate the entire debugging session, use the EXIT or QUIT com-
mand without specifying any parameters. When you do not specify
parameters, the behavior of EXIT and QUIT is analogous to their behavior
for the default debugging configuration. (QUIT does not execute any
user-declared exit handlers.)

A.1.12 Releasing Selected Processes from Debugger Control

To release selected processes from debugger control without terminating
the debugging session, use the EXIT or QUIT command, specifying one
or more process specifications as parameters. For example, the following
command terminates the image running in process 2, and releases the
process from debugger control:

DBG_3> EXIT '/.PROC 2
DBG 3>

Subsequently, process 2 does not appear in a SHOVE' PROCESS display.
See the command dictionary for complete details on the EXIT and QUIT
commands.

A.1.13 Aborting Debugger Commands and Interrupting Program Execution

Use CTRL/C (not CTRL/Y) to abort the execution of a debugger command
or to interrupt program execution. This is useful if a command takes a
long time to complete or your program loops. Control is returned to the
debugger rather than to the DCL command interpreter. For example:

DBG 1> GO

cTR~~c ~
'/.DEBUG-W-ABORTED, command aborted by user request
DBG_1> EXAMINE/BYTE 1000:101000 !should have typed 1000:1010

1000: 0
1004: 0
1008: 0
1012: 0
1016: 0
CTRL/C

'/.DEBUG-W-ABORTED, command aborted by user request

DBG_1>

Working with the Multiprocess Debugging Configuration A-13

Pressing CTRL/C interrupts execution in every process that is currently
running an image. This is indicated as an "interrupted" state in a SHOW
PROCESS display. Pressing CTRL/C also interrupts any debugger com-
mand that is currently executing.

If your program already has aCTRL/C AST service routine enabled, use
the SET ABORT_KEY command to assign the debugger's abort function to
another CTRL-key sequence. For example:

DBG 1> SET ABORT KEY =CTRL P
DBG 1> GO

CTRL/P
%DEBUG-W-ABORTED, command aborted by user request
DBG_1> EXAMINE/BYTE 1000:101000 !should have typed 1000:1010
1000: 0
1004: 0
1008: 0
1012: 0
1016: 0
CTRL/P

%DEBUG-W-ABORTED, command aborted by user request
DBG 1>

Note, however, that many CTRL-key sequences have VMS predefined
functions, and the SET ABORT_KEY command enables you to over-
ride such definitions within the debugging session (see the VMS DCL
Coircepts Manual). Some of the CTRL-key characters not used by the VMS
operating system are G, K, N, and P.

A-14 Working with the Multiprocess Debugging Configuration

A.2 Supplementallnformation

Section A.1 describes the fundamental operations associated with multi-
process debugging. This section provides details on advanced concepts
and usages that relate to multiprocess debugging.

A.2.1 Specifying Processes in Debugger Commands

When specifying processes in debugger commands, you can use any of
the forms listed in Table A-2, except when specifying processes with the
CONNECT command.

The CONNECT command is used to bring a process that is not yet known
to the debugger under debugger control. Therefore, when specifying a
process with CONNECT, you can use only its VMS process name or VMS
process identification number (PID). You cannot use its debugger-assigned
process number or any of the process built-in symbols (for example,
%NEXT_PROCESS). (As noted earlier in this appendix, the CONNECT
command is not used in the debugging of VAX FORTRAN parallel DO
loops.)

Table A-2: Process Specifications
[%PROCESS_NAME] process-name

[%PROCESS_NAME] "process-name"

%PROCESS_PID process_id

The VMS process name, if that name
contains no spaces or lowercase
characters' .

The VMS process name, if that name
contains spaces or lowercase charac-
ters. You can also use apostrophes
(') instead of quotation marks (").

The VMS process identification
number (PID, a hexadecimal number).

1 The process name can include the wildcard character (*)

Working with the Multiprocess Debugging Configuration A-15

Table A-2 (Copt.): Process Specifications
%PROCESS_NUMBER process-number

(or %FROG process-number)
The number assigned to a process
when it comes under debugger
control. Anew number is assigned
sequentially, starting with 1, to each
process. If a process is released from
debugger control (with the EXIT
or QUIT command), the number is
not reused during the debugging
session. Process numbers appear in a
SHOW PROCESS display. Processes
are ordered in a circular list so they
can be indexed with the built-in
symbols %PREVIOUS_PROCESS
and %NEXT_PROCESS.

process-group-name A symbol defined with the DEFINE
/PROCESS_GROUP command to
represent a group of processes.

%NEXT_PROCESS The next process after the visible
process in the debugger's circular
process list.

%PREVIOUS_PROCESS The process previous to the visible
process in the debugger's circular
process list.

%VISIBLE _PROCESS The process whose stack, register set,
and images are the current context for
looking up symbols, register values,
routine calls, breakpoints, and so on.

You can omit the %PROCESS_NAME built-in symbol when entering
commands. For example:

DBG_2> SHOW PROCESS %FROG 2, JONES_3

You can define a symbol to represent a group of processes (DEFINE
/PROCESS_GROUP). This enables you to enter commands in abbreviated
form. For example:

DBG_1> DEFINE/PROCESS_GROUP SERVERS=FILE_SERVER, NETWORK_SERVER
DBG_1> SHOW PROCESS SERVERS
Number Name Hold State Current PC

* 1 FILE_SERVER step FS_PROG\%LINE 37
2 NETWORK_SERVER break NET_PROG\%LINE 24

DBG 1>

A-16 Working with the Multiprocess Debugging Configuration

The built-in symbols %VISIBLE _PROCESS, %NEXT_PROCESS, and
%PREVIOUS—PROCESS are useful in control structures (IF, WHILE,
REPEAT, and so on) and in command procedures.

.2.2 Monitoring Process Activation and Termination

By default, a tracepoint is triggered when a process comes under debugger
control and when it performs an image exit. These predefined trace-
points are equivalent to those resulting from entering the commands SET
TRACE/ACTIVATING and SET TRACE/TERMINATING, respectively.
You can set breakpoints on these events by means of the SET BREAK
/ACTIVATING and SET BREAK/TERMINATING commands.

To cancel the predefined tracepoints, use the CANCEL TRACE
/PREDEFINED command with the /ACTIVATING and /TERMINATING
qualifiers. To cancel any user-defined activation and termination break-
points, use the CANCEL BREAK command with the /ACTIVATING and
/TERMINATING qualifiers (the /USER qualifier is assumed by default
when canceling breakpoints or tracepoints).

The debugger prompt is displayed when the first process comes under
debugger control. This enables you to enter commands before the main
image has started execution, just as with aone-process program.

Also, the debugger prompt is displayed when the last process performs
an image exit. This enables you to enter commands after the program has
completed execution, just as with aone-process program.

.2.3 Interrupting the Execution of an Image to Connect It to the Debugger

You can interrupt a debuggable image that is running without debugger
control in a process and connect it to the debugger.

There are two general scenarios:

• To start a new debugging session, use the CTRL/Y -DEBUG sequence
from DCL level.

• To interrupt the image and connect it to an existing debugging session,
use the CONNECT command.

Working with the Multiprocess Debugging Configuration A-17

A.2.3.1 Using the CTRL/Y -DEBUG Sequence to Invoke the Debugger

You use the CTRL/Y -DEBUG sequence with the multiprocess debugging
configuration exactly as with the default configuration. That is, run
the image from DCL level with the RUN/NODEBUG command, then
press CTRL/Y to interrupt the image. The DEBUG command causes the
debugger to be invoked.

The following example shows how you might start a new debugging
session:

$ DEFINE/JOB DBG$PROCESS MULTIPROCESS
$ RUN/NODEBUG PROG2

CTRL/Y'
Interrupt
$ DEBUG

VAX DEBUG Version X5.0-3 MP

%DEBUG-I-INITIAL, language is FORTRAN, module set to SUB4
trace on activation at SUB4\%LINE 12 in %PROCESS_NUMBER 1
DBG_1>

In this example, the DEFINE/JOB command establishes a multiprocess
debugging configuration. The RUN/NODEBUG command starts the
execution of image PROG2 without debugger control. The CTRL/Y -
DEBUG sequence interrupts execution and invokes the debugger.

The VAX DEBUG banner indicates that a new' debugging session has been
started. The process-specific prompt (DBG_1 >) indicates that this is a
multiprocess configuration and that execution is suspended in process 1,
which is running image PROG2.

The activation tracepoint identifies the location at which execution was
interrupted (and at which the debugger took control of the process). You
can also use the SHOW CALLS command to display the call stack at that
location.

After the debugger has been invoked, you can use the CONNECT com-
mand to bring other processes under debugger control. In the previous
example, you could use the CONNECT command to bring processes un-
der debugger control that were created by PROG2 before you interrupted
its execution (see Section A.2.3.2).

A-18 Working with the Multiprocess Debugging Configuration

When using the CTRL/Y -DEBUG sequence, if a multiprocess debugging
session already exists in the same job tree as the image that is interrupted,
the image connects to that particular session. In this case, because a new
session is not started, the VAX DEBUG banner is not displayed when the
debugger takes control. This situation could occur if, for example, you
entered aSPAWN/NOWAIT command from the session, started execution
with aRUN/NODEBUG command, and then entered aCTRL/Y -DEBUG
sequence.

A.2.3.2 Using the CONNECT Command to Interrupt an Image

The CONNECT command, used without a parameter, was introduced in
Section A.1.5. (As noted in that section, the CONNECT command is not
used in the debugging of VAX FORTRAN parallel DO loops.)

When used with a parameter, the CONNECT command enables you to
interrupt a debuggable image that is running without debugger control
and bring it under control of your current debugging session.

The image may have been activated as follows:

• By your program issuing a LIB$SPAWN run-time library call or a
$CREPRC system service call to spawn a process and run an image
without debugger control

• By starting execution with aRUN/NODEBUG command entered at
DCL level

In the following example, the CONNECT command causes the image
running in process JONES_3 to be interrupted and to come under control
of the current debugging session. Process JONES_3 must be in the same
job tree as the session.

DBG_1> CONNECT JONES_3

Note that a process is not identified by a debugger process number until it
is connected to a debugging session. Therefore, when specifying a process
with the CONNECT command, you can use only its VMS process name
or VMS process identification number (PID).

The effect of the CONNECT command is equivalent to attaching to a
process from a debugging session and then entering the sequence CTRL/Y
- DEBUG to interrupt the running image and invoke the debugger.
However, the CONNECT command is simpler for you to enter and
also enables you to interrupt a process to which you cannot attach.

Working with the Multiprocess Debugging Configuration A-19

A.2.4 Screen Mode Features for Multiprocess Debugging

Screen mode displays, whether predefined or user defined, are associated
with the visible process, by default. For example, SRC shows the source
code where execution is suspended in the visible process, OUT shows the
output of commands executed in the context of the visible process, and so
on.

By using the /PROCESS qualifier with the SET DISPLAY and DISPLAY
commands you can create process-specific displays or make existing
displays process-specific, respectively. The contents of aprocess-specific
display are generated and modified in the context of that process. You can
make any display to be process specific except for the PROMPT display.
For example, the following command creates the automatically updated
source display SRC_3, which shows the source code where execution is
suspended in process 3:

DBG_2> SET DISPLAY/PROCESS=('/.PROC 3) SRC_3 -
_DBG_2> AT RS23 SOURCE (EXAM/SOURCE .%SOURCE_SCOPE\%PC)

You assign attributes to process-specific displays in the same way you
assign them to displays that are not process specific. For example, the
following command makes display SRC_3 the current scrolling and source
display that is, it causes the output of SCROLL, TYPE, and EXAMINE
/SOURCE commands to be directed at SRC_3:

DBG_2> SELECT/SCROLL/SOURCE SRC_3

If you enter aDISPLAY/PROCESS or SET DISPLAY/PROCESS command
without specifying a process, the specified display is then specific to the
process that was the visible process when you entered the command. For
example, the following command makes OUT~C specific to process 2:

DBG_2> DISPLAY/PROCESS OUT_X

The /SUFFIX qualifier appends a process identifying suffix that denotes
the visible process to a display name. This qualifier can be used directly
after a display name in any command that specifies a display (for example,
SET DISPLAY, EXTRACT, SAVE). It is especially useful within command
procedures, in conjunction with display definitions or with key definitions
that are bound to display definitions.

In a multiprocess configuration, the predefined tracepoint on process ac-
tivation automatically creates a new source display and a new instruction
display for each new process that comes under debugger control. The
displays have the names SRC_n and INST_ri, respectively, where n is
the process number. These processes are initially marked as removed.

A-20 Working with the Multiprocess Debugging Configuration

They are automatically canceled by the predefined tracepoint on process
termination.

Several predefined keypad key sequences enable you to configure your
screen with the process-specific source and instruction displays that are
created automatically when a process is activated. Table A-3 identifies the
keypad keys and describes their general effects. The table also describes
any changes to the keypad keys from previous versions of the debugger.
Use the SHOW KEY command to determine the exact commands issued
by these key combinations.

Table A-3: Changed and New Keypad Key Functions
Key State Command Invoked or Function

COMMA GOLD SELECT/SOURCE %NEXT_SOURCE. Selects the next
source display in the display list as the current source
display. This function was previously assigned to KP3
in the BLUE state.

KP9 GOLD SET PROCESS/VISIBLE %NEXT_PROCESS. Makes
the next process in the process list the visible process.

KP9 BLUE Displays two predefined process-specific source dis-
plays, SRC_n. These are located at Q1 and Q2,
respectively, for the visible process and for the next
process on the process list.

KP7 BLUE Displays two sets of predefined process-specific source
and instruction displays, SRC_n and INST_n. These
consist of source and instruction displays for the visible
process at Q 1 and RQ 1, respectively, and source and
instruction displays for the next process on the process
list at Q2 and RQ2, respectively.

KP3 BLUE Displays three predefined process-specific source
displays, SRC_n. These are located at S1, S2, and S3,
respectively, for the previous, current (visible), and next
process on the process list.

KP 1 BLUE Displays three sets of predefined process-specific source
and instruction displays, SRC_n and INST n. These
consist of source and instruction displays for the
visible process at S2 and RS2, respectively; source and
instruction displays for the previous process on the
process list at S 1 and RS 1, respectively; and source and
instruction displays for the next process on the process
list at S3 and RS3, respectively.

Working with the Multiprocess Debugging Configuration A-21

A.2.5 Setting Watchpoints in Global Sections

You can set watchpoints in global sections. A global section is a region
of virtual memory that is shared among all processes of a multiprocess
program. A watchpoint that is set on a location in a global section
a global section watchpoint triggers when any process modifies the
contents of that location.

Note that, when setting watchpoints on arrays or records, performance
is improved if you specify individual elements rather than the entire
structure with the SET WATCH command.

If you set a watchpoint on a location that is not yet mapped to a global
section, the watchpoint is treated as a conventional static watchpoint. For
example:

DBG_1> SET WATCH ARR(1)
DBG_1> SHOW WATCH
watchpoint of PPL3\ARR(1)

When ARR is subsequently mapped to a global section, the watchpoint is
automatically treated as a global section watchpoint and an informational
message is issued. For example:

DBG_1> GO
%DEBUG-I-WATVARNOWGBL, watched variable PPL3\ARR(1) has been remapped

to a global section
predefined trace on activation at routine PPL3 in %PROCESS_NUMBER 2

1: PROGRAM PPL3
predefined trace on activation at routine PPL3 in y°PROCESS_NUMBER 3

1: PROGRAM PPL3
watch of PPL3\ARR (1) at PPL3\%LINE 93 in %PROCESS_NUMBER 2

93 : ARR (1) = I NDE~C
old value: 0
new value: 1

break at PPL3\%LINE 94 in y°PROCESS_NUMBER 2
94: ARR(I) = I

Once the watched location is mapped to a global section, the watchpoint
is visible from each process. For example:

DBG_2> DO (SHOW WATCH)
For '/.PROCESS_NUMBER 1
watchpoint of PPL3\ARR(1) [global-section watchpoint]

For '/°PROCESS_NUMBER 2
watchpoint of PPL3\ARR(1) [global-section watchpoint]

For %PROCESS_NUMBER 3
watchpoint of PPL3\ARR(1) [global-section watchpoint]

A-22 Working with the Multiprocess Debugging Configuration

A.2.6 Compatibility of Multiprocess Commands with the Default Configuration

All of the commands, qualifiers, and built-in symbols that are provided
for multiprocess debugging are also understood in the default debugging
configuration and have analogous behaviors (where applicable). For
example:

• The EXIT command without a parameter specified terminates a
debugging session in both configurations.

• ADO command without the /PROCESS qualifier executes the com-
mands specified in all processes.

• In the default configuration, the "visible" process is the process that
runs the entire program. It is identified as process 1 in a SHOW
PROCESS display.

• Built-in symbols such as %PROCESS~IUMBER and %VISIBLE _
PROCESS are interpreted correctly in the default configuration.

This compatibility is especially useful because it allows command pro-
cedures used for multiprocess debugging to also be used for debugging
programs that run in only one process.

A.3 System Management Considerations for Multiprocess
Debugging

Several users debugging programs that occupy several processes can place
a significant load on a system. This section describes the resources used
by the multiprocess debugger and how to tune your system accordingly.

Note that the following discussion covers only the resources used by
the debugger. You may also have to tune your system to support the
execution of the multiprocess programs themselves (see Section 15.7.3).

Working with the Multiprocess Debugging Configuration A-23

A.3.1 User Quotas

Each user needs sufficient PRCLM quota to create an additional subpro-
cess for the debugger, beyond the number of processes needed for the
multiprocessing program. This quota may need to be increased to account
for the debugger subprocess.

BYTLM, ENQLM, FILLM, and PGFLQUO are pooled quotas. These quotas
may need to be increased to account for the debugger subprocess:

• Each user's ENQLM quota should be increased by at least the number
of processes being debugged.

• Each user's PGFLQUO quota may need to be increased. If a user has
insufficient PGFLQUO, the debugger may fail to activate, or produce
"virtual memory exceeded" errors during execution.

• Each user's FILLM and BYTLM quotas may need to be increased.
The debugger requires enough FILLM and BYTLM quotas to open
each image file being debugged, the corresponding source files, and
the DEBUG input, output, and log files. The DEBUG SET MAX _
SOURCE _FILES command can be used to limit the number of source
files kept open by the debugger at any one time.

A.3.2 System Resources

The kernel and main debugger communicate through global sections. The
main debugger communicates with up to 8 kernel debuggers through a 65-
page global section. Therefore, the SYSGEN parameters GBLPAGES and
GBLSECTIONS may need to be increased. For example, if 10 users are
using the debugger simultaneously, 10 global sections (GBLSECTIONS),
using a total of 650 global pages (GBLPAGES), are required by the
debugger.

A-24 Working with the Multiprocess Debugging Configuration

Appendix B

Contents of the FORTRAN System
Library FORSYSDEF

Table B-1 is a list of the modules contained in the FORTRAN system
library FORSYSDEF. The modules consist of definitions, in FORTRAN
source code, of related groups of system symbols that can be used in
calling VMS system services. FORSYSDEF also contains modules that
define the condition symbols and the entry points for Run-Time Library
procedures.

Section 6.5.1 describes the procedure for accessing the modules listed
below from a FORTRAN program. Section 9.1.2.3 describes condition
values and symbols.

Table B-1: Contents of System Library FORSYSDEF

Module Name Description

$ACCDEF Accounting manager request type codes

$ACCDEF Access control list entry structure definitions

$ACCDEF Access control list interface definitions

$ACRDEF Accounting record definitions

$ARGDEF Argument descriptor for object language procedure records

$ARMDEF Access rights mask longword definitions

$ATRDEF File attribute list description—used to read and write file
attributes

$BRKDEF Breakthru ($BRKTHRU) system service input definitions

Contents of the FORTRAN System Library FORSYSDEF B-1

Table B-1 (Copt.): Contents of System Library FORSYSDEF
Module Name Description

$CHFDEF

$CHKPNTDEF

$CHKPRO

$CHFDEF

$CLIDEF

$CLISERVDEF

$CLIVERBDEF

$CLSDEF

$CQUALDEF

$CRDEF

$CREDEF

$CRFDEF

$CRFMSG

$DCDEF

$DEVDEF

$DIBDEF

$DMPDEF

$DMTDEF

$DSCDEF

$DSTDEF

$DTKDEF

$DTKMSG

$DVIDEF

$ENVDEF

$EOMDEF

$EOMWDEF

Condition handling argument list offsets

Create checkpointable processes flag definitions

Item definitions for $CHKPRO (check protection) system
services

Check protection ($CHKPRO) system service definitions

Command language interface definitions—define the offset
values for structures used to communicate information to CLI

CLI service request code definitions

CLI generic verb codes definitions

Security classification mask block—contains security and
integrity level categories for nondiscretionary access controls

Common Qualifier package definitions

Card reader status bits

Create options table definitions for library facility

CRF$_INSRTREF argument list

Return status codes for cross reference program

Device adapter, class, and type definitions

I/O device characteristics

Device information block definitions

Header block definitions of system dump file

Flag bits for the Dismount ($DISMOU) system service

Descriptor type definitions

Debug symbol table definitions

Definitions for RTL DECtalk management facility

Return status codes for RTL DECtalk management facility

Device and volume information data identifier definitions

Environment definitions in object file

End of module record in object/image files

End of module record in object/image with word of psect
value

B-2 Contents of the FORTRAN System Library FORSYSDEF

Table B-1 (Copt.): Contents of System Library FORSYSDEF

Module Name Description

$EPMDEF Global symbol definition record in object file—entry point
definitions

$EPMWDEF Global symbol definition record in object file—entry point
definitions with word of psect value

$ERADEF Erase type code definitions

$FABDEF RMS File access block definitions

$FALDEF Messages for the FAL (File Access Listener) facility

$FIBDEF File identification block definitions

$FIDDEF File ID structure

$FMLDEF Formal argument definitions appended to procedure defini-
tions in global symbol definition record in object file

$FORDEF Condition symbols for FORTRAN-specific Run-Time Library

$FORIOSDEF FORTRAN IOSTAT error numbers

$FSCNDEF Descriptor codes for SYS$FILESCAN

$GPSDEF Global symbol definition record in object file—psect
definitions

$GSDEF Global symbol definition (GSD) record in object file

$GSYDEF Global symbol definition record in object file—symbol
definitions

$HLPDEF Data structures for help processing

$IACDEF Image activation control flags

$IDCDEF Object file IDENT consistency check structures

$IODEF I/O function codes

$JPIDEF Job/process information request type codes

$KGBDEF Key grant block definitions—formats of records in rights
database file

$LADEF Laboratory peripheral accelerator device types

$LATDEF Error messages for LAT facility

$LBRCTLTBL Librarian control table definitions

$LBRDEF Library type definitions

$LCKDEF Lock manager definitions

Contents of the FORTRAN System Library FORSYSDEF 6-3

Table B-1 (Cont.~: Contents of System Library FORSYSDEF
Module Name Description

$LEPMDEF

$LHIDEF

$LIBCLIDEF

$LIBDCFDEF

$LIBDEF

$LIBDTDEF

$LIBVMDEF

$LKIDEF

$LNKDEF

$LNMDEF

$LPDEF

$LPRODEF

$LSDFDEF

$LSRFDEF

$LSYDEF

$MHDEF

$MNTDEF

$MSGDEF

$MTDEF

$MTHDEF

$NAMDEF

$NCSDEF

$NSARECDEF

$OBJRECDEF

$OPCDEF

$OPCMSG

$OPDEF

Global symbol definition record in object file—module local
entry point definitions

Library header information array offsets

Definitions for LIB$ CLI callback procedures

Definitions for LIB$DECODE _FAULT procedure

Condition symbols for the general utility library

Interface definiitons for LIB$DT (date/time) package

Interface definiitons for LIB$VM (virtual memory) package

Get lock information data identifier definitions

Linker option record definition in object file

Logical name flag definitions

Line printer characteristic codes

Global symbol definition record in object file—module local
procedure definition in object file

Module local symbol definition in object file

Module local symbol reference in object file

Module local symbol definition

Module header record definition in object file

Flag bits and function codes for the MOUNT system service

Symbolic names to identify mailbox message senders

Magnetic tape characteristic codes

Condition symbols from the mathematical procedures library

RMS name block field definitions

Interface definitions for National Character set package

Security auditing record definitions

Object language record definition

Operator communication manager request type codes—return
status codes

OPCOM message definitions

Opcode values

B-4 Contents of the FORTRAN System library FORSYSDEF

Table B-1 (Cont.y: Contents of System Library FORSYSDEF
Module Name Description

$OPRDEF Operator communications message types and values

$OTSDEF Language-independent support procedure (OTS$) return
status codes

$PCCDEF Printer/terminal carriage control specifiers

$PLVDEF Privileged library vector definitions

$PQLDEF Quota types for process creation quota list

$PR730DEF VAX 11 /730 processor specific definitions

$PR750DEF VAX 11/750 processor specific definitions

$PR780DEF VAX 11/780 processor specific definitions

$PRCDEF Create process ($CREPRC) system service status flags and
item codes

$PRDEF Processor register definitions

$PRODEF Global symbol definition record in object file—procedure
definition

$PROWDEF Global symbol definition record in object file—procedure
definition with word of psect value

$PRTDEF Protection field definitions

$PRVDEF Privilege bit definitions

$PSLDEF Processor status longword (PSL) mask and symbolic names
for access modes

$PSWDEF Processor status word mask and field definitions

$QUIDEF Get queue information service definitions

$RABDEF RMS record access block definitions

$RMEDEF RMS escape definitions

$RMSDEF RMS return status codes

$SBKDEF Open file statistics block

$SCRDEF Screen package interface definitions

$SDFDEF Symbol record in object file

$SDFWDEF Symbol record in object file with word of psect value

$SECDEF Attribute flags for private/global section creation and
mapping

Contents of the FORTRAN System library FORSYSDEF B-5

Table B-1 (Copt.): Contents of System Library FORSYSDEF
Module Name Description

$SFDEF

$SGPSDEF

$SHRDEF

$SJCDEF

$SMGDEF

$SMGMSG

$SMGTRMPTR

$SMRDEF

$SORDEF

$SRFDEF

$SRMDEF

$SSDEF

$STRDEF

$STSDEF

$SYIDEF

$SYSSRVNAM

$TIRDEF

$TPADEF

$TRMDEF

$TT2DEF

$TTDEF

$UICDEF

$USGDEF

$XABALLDEF

$XABCXFDEF

$XABCXRDEF

$XABDATDEF

Stack frame offset definitions

Global symbol definition record in object file—P-section
definition in shareable image

Definitions for shared messages

Send to job controller service definitions

Definitions for RTL screen management

Messages for the Screen Management facility

Terminal capability pointers for RTL SMG$ facility

Define symbiont manager request codes

Messages for the Sort/Merge facility

Global symbol definition record in object file—symbol
reference definitions

SRM hardware symbol definitions

System service failure and status codes

String manipulation procedures (STR$) return status codes

Status codes and error codes

Get system information data identifier definitions

System service entry point descriptions

Text information and relocation record in object file

TPARSE control block

Define symbols to the item list QIO format

Terminal special symbols

Terminal device characteristic codes

Format of user identification code (UIC)

Disk usage accounting file produced by ANALYZE/DISK_
STRUCTURE

Allocation XAB definitions

RMS context XAB associated with FAB

RMS context XAB associated with RAB

Date/time XAB definitions

B-6 Contents of the FORTRAN System Library FORSYSDEF

Table B-1 (Cont.~: Contents of System Library FORSYSDEF
Module Name Description

$XABDEF

$XABFHCDEF

$XABJNLDEF

$XABKEYDEF

$XABPRODEF

$XABRDTDEF

$XAESUMDEF

$XABTRMDEF

$XADEF

$XFDEF

$XKDEVDEF

$XKSTSDEF

$XMDEF

$XWDEF

DTK$ROUTINES

LIB$ROUTINES

MTH$ROUTINES

NCS$ROUTINES

OTS$ROUTINES

PPL$DEF

PPL$ROUTINES

SMG$ROUTINES

SOR$ROUTINES

STR$ROUTINES

Definitions for all XABs

File header characteristics XAB definitions

Journal XAB definitions

Key definitions XAB field definitions

Protection XAB field definitions

Revision date/time XAB definitions

Summary XAB field definitions

Terminal control XAB field definitions

DR11-W definitions for device specific characteristics

DR32 device characteristic codes

3271 device status block

Definitions for 3271 line status block (returned by IO$_
RDSTATS)

DMC-11 device characteristic codes

System definition for software DDCMP

Routine definitions for DECtalk facility

Routine definitions for general purpose run-time library
procedures

Routine definitions for mathematics run-time library
procedures

Routine definitions for National Character set procedure

Routine definitions for language-independent support
procedures

Definitions for Parallel Processing library facility

Routine definitions for Parallel Processing library facility

Routine definitions for Screen Management procedures

Routine definitions for Sort/Merge procedures

Routine definitions for string manipulation procedures

Contents of the FORTRAN System Library FORSYSDEF B-7

Appendix C

Using System Services—Examples

This appendix contains examples that involve accessing VMS system
services from VAX FORTRAN programs. The individual examples address
the following operations:

1. Calling RMS Procedures (Section C.1)

2. Synchronizing Processes Using an AST Routine (Section C.2)

3. Accessing Devices Using Synchronous I/O (Section C.3)
4. Communicating with Other Processes (Section C.4)

5. Sharing Data (Section C.5)

6. Gathering and Displaying Data at Terminals (Section C.6)

7. Creating, Accessing, and Ordering Files (Section C.7)

8. Measuring and Improving Performance (Section C.8)

9. Accessing Help Libraries (Section C.9)

10. Creating and Managing Other Processes (Section C.10)

Each example includes the source program (with comments), a sample use
of the program, and explanatory notes.

Using System Services—Examples C-1

C.1 Calling RMS Procedures

When you explicitly call an RMS system service, the order of the argu-
ments in the call must correspond with the order shown in the VMS Record
Management Services Manual. You must use commas to reserve a place
in the call for every argument. If you omit an argument, the procedure
uses a default value of zero. For more information on calling RMS system
services, see Chapter 7.

The procedure name format is SYS$procedure_name when calling an
RMS routine from FORTRAN. The following example shows a call to
the RMS procedure SYS$SETDDIR. This RMS procedure sets the default
directory fora process.

Source Program:
C SETDDIR.FOR
C
C This program calls the RMS procedure $SETDDIR to change
C the default directory for the process.
C

IMPLICIT INTEGER (A - Z)
CHARACTER*17 DIR /'[EX.PROG.FOR]'/
STAT = SYS$SETDDIR (DIR„)
IF (.NOT. STAT) TYPE *, 'ERROR'
END

Sample Use:
$ DIRECTORY

Directory WORK$:[EX.PROG.FOR.CALL]

BASSUM.BAS;1
GETMSG.EXE;1
MACSUM.MAR;2
SHOWSUM.FOR;6

BASSUM.OBJ;1
GETMSG.FOR;14
SETDDIR.FOR;3
SHOWSUM.LIS;2

Total of 15 files .

$ FORTRAN SETDDIR
$ LINK SETDDIR
$ RUN SETDDIR
$DIRECTORY

Directory WORK$:[EX.PROG.FOR]

CALL.DIR;1
HAND.DIR;1
RMS.DIR;1

COMU.DIR;1
INTR.DIR;1
SHAR.DIR;1

Total of 12 files .

C-2 Using System Services—Examples

COBSUM.COM;1
GETMSG.LIS;2
SETDDIR.LIS;1
SHOWSUM.OBJ;2

DEVC.DIR;1
LNKR.DIR;1
SYNC.DIR;1

0

DOCOMMAND.FOR;2
GETMSG.OBJ;1
SHOWSUM.EXE;1

0

FIL.DIR;1
MNAG.DIR;1
TERM.DIR;1

Notes:

O The default directory name is initialized into a CHARACTER variable.

© The call to $SETDDIR contains one argument, the directory name,
which is passed by descriptor, the default argument passing mech-
anism for CHARACTERs. The omitted arguments are optional, but
commas are necessary to reserve places in the argument list.

© The DIRECTORY command shows that the following directory is the
default:

WORK$:[EX.V4PROG.FOR.CALL]

This directory contains the file SETDDIR.FOR.

O Another DIRECTORY command shows that the default directory has
changed. The following directory is the new default directory:

WORK$:[EX.PROG.FOR].

C.2 Synchronizing Processes Using an AST Routine

The following example demonstrates how to request and declare an AST
procedure.

Source Program:

c
C
C

ASTPROC.FOR

C This program sets a 10-second timer that requests
C an AST. The main program then performs arithmetic
C operations for the user, interrupted after 10
C seconds by the timer AST.
C

IMPLICIT INTEGER*4 (A-Z)
INCLUDE '($SYSSRVNAM)'
EXTERNAL AST_PROC
DIMENSION BIN_DELAY(2)
VOLATILE BIN_DELAY
CHARACTER*9 DELAY /'0 ::10.00'/

C
C Convert delay interval to binary and set timer

C
RESULT = SYS$BINTIM(DELAY, BIN_DELAY)
IF (.NOT. RESULT) CALL LIB$STOP('/.VAL(RESULT))
STATUS = SYS$SETIMR(,BIN_DELAY, AST_PROC,)
IF (.NOT. STATUS) CALL LIB$STOP('/.VAL(STATUS))

Using System Services—Examples C-3

c
C Prompt user for 2 numbers and multiply them

C
100 TYPE *, 'Enter two integers to be multiplied.

TYPE *, '(Enter two zeros to quit)'
ACCEPT *, NUM1, NUM2
PRODUCT = NUM1 * NUM2
IF (PRODUCT .EQ. 0) GO TO 200
TYPE *, 'The product is:', PRODUCT

GO TO 100
200 CONTINUE

END
C
C

SUBROUTINE AST_PROC
C
C This subprogram is called as an AST procedure.
C It prints the current time at the terminal.
C

C
C

C

IMPLICIT INTEGER (A-Z)
INCLUDE '($BRKDEF)'
CHARACTER*23 CUR_TIME
CHARACTER*18 MSG /' The time is now:
CHARACTER*41 OUT_MSG
STRUCTURE /BRKTHRU_IOSB/

INTEGER*2 STATUS
INTEGER*2 NUM_WRITTEN
INTEGER*2 NUM_TIMEOUTS
INTEGER*2 NUM_NOBROADCAST

END STRUCTURE
RECORD /BRKTHRU_IOSB/ IOSB

~/

STATUS = LIB$DATE_TIME(CUR_TIME)
IF (.NOT. STATUS) CALL LIB$STOP('/.VAL(STATUS))
OUT_MSG = MSG // CUR_TIME
STYPE = BRK$C_DEVICE
STATUS = SYSgBRKTHRUW ('/.VAL(1), OUT_MSG, 'SYS$t7UTPUT',

1 '/.VAL (STYPE) , '/.REF (IOSB))
IF (.NOT. STATUS) CALL LIB$STOP('/.VAL(STATUS))
IF (.NOT. IOSB.STATUS) CALL LIB$STOP('/.VAL(IOSB.STATUS))

RETURN
END

C-4 Using System Services—Examples

Sample Use:

$ RUN ASTPROC
Enter two integers to be multiplied.
(Enter two zeros to quit)
12, 12
The product is: 144
Enter two integers to be multiplied.
(Enter two zeros to quit)
23, 45

The time is now: 14-July-1984 13:25:10 71 Q

The product is: 1035
Enter two integers to be multiplied.
(Enter two zeros to quit)
0, 0

Notes:

O If any variables or arrays are used or modified by the AST routine,
you should declare them as volatile in the other routines that reference
them. See Section 11.3.2.2 and the description of the VOLATILE
statement in the VAX FORTRAN Language Reference Manual.

© The third parameter in the $SETIMR call is the address of the entry
point of the AST procedure to be executed when the timer expires.
Note that the AST procedure must be declared as EXTERNAL.

© If you want the AST routine to be executed repeatedly, rather than
just once, you can reset the timer at the end of the AST routine.

O When the AST is delivered, the AST routine interrupts the program
and outputs a message.

C.3 Accessing Devices Using Synchronous 1/0

The following example performs output to a terminal via the SYS$QIOW
system service.

Using System Services—Examples C-5

Source Program:
C QIOW.FOR

C
C This program demonstrates the use of the $QIOW

C system service to perform synchronous I/O to

C a terminal.
C

IMPLICIT INTEGER*4 (A - Z)
INCLUDE '($SYSSRVNAM)'
INCLUDE '($IODEF)'
CHARACTER*24 TEXT_STRING /'This is from a SYS$QIOW.'/ 0
CHARACTER*il TERMINAL /'SYS$COMMAND'/

INTEGER*2 TERM_CHAN
STRUCTURE /TT_WRITE_IOSB/

INTEGER*2 STATUS
INTEGER*2 BYTES_WRITTEN
INTEGER*4 %FILL

END STRUCTURE
RECORD /TT_WRITE_IOSB/ IOSB

C
C Assign the channel number

C
STAT = SYS$ASSIGN (TERMINAL, TERM_CHAN „)

IF (.NOT. STAT) CALL LIB$STOP ('/.VAL(STAT))

C
C Output the message twice
C

DO I=1,2
STAT = SYS$Q I OW ('/.VAL (1) ,'/.VAL (TERM_CHAN) ,

1 '/.VAL(IO$_WRITEVBLK),IOSB,,,

1 '/.REF (TEXT_STRING) ,
1 %VAL(LEN(TEXT_STRING)) „

IF (.NOT. STAT) CALL LIB$STOP ('/.VAL(STATUS))

IF (.NOT. IOSB.STATUS) CALL LIB$STOP ('/.VAL(IOSB.STATUS))

ENDDO
END

Sample Use:

$ FORTRAN QIOW
$ LINK QIOW
$ RUN QIOW
This is from a SYS$QIOW.
This is from a SYS$QIOW.

C-6 Using System Sen►ices—Examples

Notes:

O If SYS$QIO and a SYS$WAITFR are used instead of SYS$QIOW, you
must use a VOLATILE declaration for any program variables and
arrays that can be changed while the operation is pending.

© TERM _GRAN receives the channel number from the SYS$ASSIGN
system service.

The process permanent logical name SYS$COMMAND is assigned
to your terminal when you log in. The SYS$ASSIGN system service
translates the logical name to the actual device name.

© SYS$QIO and SYS$QIOW accept the CHAN argument by immediate
value, unlike SYS$ASSIGN, which requires that it be passed by
reference. Note the use of %VAL in the call to SYS$QIOW but not in
the call to SYS$ASSIGN.

The function IO$_WRITEVBLK requires values for parameters P1, P2,
and P4.

• P1 is the starting address of the buffer containing the message.
So, TEXT_STRING is passed by reference.

• P2 is the number of bytes to be written to the terminal. A 21 is
passed, since it is the length of the message string.

• P4 is the carriage control specifier; a 32 indicates single space
carriage control.

A SYS$QIOW is issued, ensuring that the output operation will be
completed before the program terminates. Change the SYS$QIOW to
a SYS$QIO and see what happens.

C.4 Communicating with Other Processes

The following example shows how to create a global pagefile section
and how two processes can use it to access the same data. One process
executes the program PAGEFILI, which creates and v~~rites to a global
pagefile section. PAGEFILI then waits for a second process to update the
section. The second process executes PAGEFIL2, which maps and updates
the pagefile section.

Because PAGEFIL2 maps to the temporary global pagefile section created
in PAGEFILI, PAGEFILI must be run first. The two processes coordinate
their activity through common event flags.

Using System Services—Examples C-7

Source Program:

C PAGEFILI.FOR

C
C This program creates and maps a global page frame section.

C Data in the section is accessed through an array.

C
IMPLICIT INTEGER*4 (A-Z)

INCLUDE '($SECDEF)'

INCLUDE '($SYSSRVNAM)'
DIMENSION MY_ADR(2)
COMMON /MYCOM/ IARRAY(50)
CHARACTER*4 NAME/'GSEC'/
VOLATILE /MYCOM/

C
C Associate with common cluster MYCLUS

C
CALL SYS$ASCEFC (%VAL (64) , 'MYCLUS' „)

C
C Get the starting and ending addresses of the section

C
MY_ADR(1) _ %LOC(IARRAY(1)) O
MY_ADR (2) _ '/.LOC (IARRAY (50))
SEC_FLAGS = SEC$M_PAGFIL.OR.SEC$M_GBL.OR.SEC$M_WRT.OR.SEC$M_DZRO

C
C Create and map the temporary global section

C
STATUS = SYS$CRMPSC(MY_ADR,,,'/.VAL(SEC_FLAGS), O
1 NAME , , ,'/.VAL (0) ,'/.VAL (1) , , ,)

IF (.NOT. STATUS) CALL LIB$STOP('/.VAL(STATUS))

C
C Manipulate the data in the global section

C
DO 10 I = 1,50

IARRAY(I) = I

10 CONTINUE
C

STATUS = SYS$SETEF(%VAL(72))
IF (.NOT. STATUS) CALL LIB$STOP('/.VAL(STATUS))
TYPE *,'Waiting for PAGEFIL2 to update section'
STATUS = SYS$WAITFR(%VAL(73))

C
C Print the modified pages
C

TYPE *, 'Modified data in the global section:'

WRITE (6,100) (IARRAY(I), I=1,50)
100 FORMAT(10I5)

END

C-8 Using System Services—Examples

C PAGEFIL2.FOR
C
C This program maps and modifies a global section
C after PAGEFILI creates the section. Programs
C PAGEFILI and PAGEFIL2 synchronize the processing
C of the global section through the use of common
C event flags.
C

IMPLICIT INTEGER*4 (A - Z)
INCLUDE '($SECDEF)'
INCLUDE '($SYSSRVNAM)'
DIMENSION MY_ADR(2)
COMMON /MYCOM/ IARRAY(50)
VOLATILE /MYCOM/

C
MY_ADR (1) _ '/.LOC (IARRAY (1))
MY_ADR (2) _ '/.LOC (IARR.AY (50))

C
C Associate with common cluster MYCLUS and wait for
C event flag to be set
C

STATUS = SYS$ASCEFC(%VAL(64),'MYCLUS' „)
IF (.NOT . STATUS) CALL LIB$STOP ('/.VAL (STATUS))
STATUS = SYS$WAITFR (%VAL(72))
IF (.NOT. STATUS) CALL LIB$STOP ('/.VAL(STATUS))

0

C
C Set flag to allow section to be written
C

FLAGS = SEC$M_WRT
C
C Map the global section
C

STATUS = SYS$MGBLSC(MY_ADR,,,'/.VAL(FLAGS),'GSEC' „)
IF (.NOT. STATUS) CALL LIB$STOP ('/.VAL(STATUS))

C
C Print out the data in the global section and
C multiply each value by two
C

TYPE *, 'Original data in the global section:'
WRITE (6,100) (IARR.AY(I), I=1,50)

100 FORMAT (10I5)
DO 10 I=1,50
IARRAY (I) = IARR.AY (I) * 2

10 CONTINUE
C
C Set an event flag to allow PAGEFILI to continue execution
C

STATUS = SYS$SETEF ('/.VAL (73))
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))
END

Using System Services—Examples C-9

The options file PAGEFIL.OPT contains the following line of source text:

PSECT_ATTR=MYCOM,PAGE
COLLECT=SHARED_CLUS,MYCOM

Sample Use

$ FORTRAN PAGEFILI
$ FORTRAN PAGEFIL2
$ LINK PAGEFILI,PAGEFIL/OPTIONS
$ LINK PAGEFIL2,PAGEFIL/OPTIONS

O

0
0

$ RUN PAGEFILI !****Process 1****
Waiting for PAGEFIL2 to update section
Modified data in the global section:

2 4 6 8 10 12 14 16 18 20
22 24 26 28 30 32 34 36 38 40
42 44 46 48 50 52 54 56 58 60
62 64 66 68 70 72 74 76 78 80
82 84 86 88 90 92 94 96 98 100

$ RUN PAGEFIL2 !****Process 2****
Original data in the global section:

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

Notes:

O The $CRMPSC system service maps pages starting at page boundaries.
Because all named common blocks in VAX FORTRAN are longword
(not page) aligned, you must ensure that IARRAY starts on a page
boundary. The PSECT construct in the options file for the linker
accomplishes this. PAGEFILI and PAGEFIL2 are linked with an
options file.

© If any variables or arrays are used or modified by the AST routine,
you should declare them as volatile in the other routines that reference
them. See Section 11.3.2.2 and the description of the VOLATILE
statement in the VAX FORTRAN Language Reference Manual.

© Associate to a common event flag cluster to coordinate activity. The
processes must be in the same UIC group.

O The $CRMPSC system service creates and maps a global pagefile
section.

C-10 Using System Services—Examples

The starting and ending process virtual addresses of the section are
placed in MY_ADR. The output argument SYS_ADR receives the
starting and ending system virtual addresses. The flag SEC$M_
GLOBAL requests a global section. The flag SEC$M _WRT indicates
that the pages should be writable as well as readable. The SEC$M_
DZRO flag requests pages filled with zeros. The SEC$M _PAGFIL flag
requests a temporary pagefile section.

© Data is written to the pagefile section.

O PAGEFIL2 maps the existing section as writable by specifying the
SEC$M_WRT flag.

O Data is read from the pagefile section.

Data is modified in the pagefile section.

O The COLLECT option instructs the linker to create a cluster named
SHARED_CLUS and to put the PSECT MYCOM into that cluster.
This prevents the problem of inadvertently mapping another PSECT
in a page containing all or part of MYCOM. Clusters are always
positioned on page boundaries.

C.5 Sharing Data

The program called SHAREDFIL is used to update records in a relative
file. The SHARE qualifier is specified on the OPEN statement to invoke
the RMS file sharing facility. In this example, the same program is used to
access the file from two processes:

Source Program:

C SHAREDFIL. FOR
C
C This program can be run from two or more processes

C to demonstrate the use of an RMS shared file to share
C data. The program requires the existence of a
C relative file named REL.DAT.

C
IMPLICIT INTEGER*4 (A - Z)
CHARACTER*20 RECORD
INCLUDE '($FORIOSDEF)' 0

Using System Services—Examples C-11

C
OPEN (UNIT=1, FILE='REL', STATUS='OLD', SHARED,

1 ORGANIZATION='RELATIVE', ACCESS='DIRECT',
1 FORM='FORMATTED')

C
C Request record to be examined
C
100 TYPE 10
10 FORMAT ('$Record number (CTRL Z to quit): ')

READ (*,*, END=1000) REC_NUM
C
C Get record from file
C

READ (1,20, REC=REC_NUM, IOSTAT=STATUS)
1 REC_LEN, RECORD

20 FORMAT (Q, A)

C
C Check I/O status
C

IF (STATUS .EQ. 0) THEN
TYPE *, RECORD(1:REC_LEN)

ELSE IF (STATUS .EQ. FOR$IOS_ATTACCNON) THEN
TYPE *, 'Nonexistent record.'
GOTO 100

ELSE IF (STATUS .EQ. FOR$IOS_RECNUMOUT) THEN
TYPE *, 'Record number out of range.'
GOTO 100

ELSE IF (STATUS .EQ. FOR$IOS_SPERECLOC) THEN
TYPE *, 'Record locked by someone else.'
GOTO 100

ELSE
CALL ERRSNS (, RMS_STS, RMS_STV „)
CALL LIB$SIGNAL ('/.VAL (RMS_STS) ,

1 %VAL(RMS_STV))
ENDIF

C-12 Using System Services—Examples

C
C Request updated record
C

TYPE 30
30 FORMAT ('$New Value or CR: ')

READ (*,20) REC_LEN, RECORD
IF (REC_LEN .NE. 0) THEN
WRITE (1,40, REC=REC_NUM, IOSTAT=STATUS)

1 RECORD(1:REC_LEN)
40 FORMAT (A)

IF (STATUS .NE. 0) THEN
CALL ERRSNS (, RMS_STS, RMS_STV „)
CALL LIB$SIGNAL(%VAL(RMS_STS),%VAL(RMS_STV))

ENDIF
ENDIF

C
C Loop
C

GOTO 100
C
1000 END

Sample Use:

$ FORTRAN SHAREDFIL
$ LINK SHAREDFIL
$ RUN SHAREDFIL
Record number (CTRL Z to quit): 2
MSPIGGY
New Value or CR: FOZZIE
Record number (CTRL Z to quit): 1
KERMIT
New Value or CR:
Record number (CTRL Z to quit): 'Z

$ RUN SHAREDFIL
Record number (CTRL Z to quit): 2
Record locked by someone else.
Record number (CTRL Z to quit): 2
Record locked by someone else.
Record number (CTRL Z to quit): 2
FOZZIE
New Value or CR: MSPIGGY
Record number (CTRL Z to quit): 'Z

0

Using System Services—Examples C-13

Notes:

O The module FORIOSDEF must be included to define the symbolic
status codes returned by FORTRAN I/O statements.

© This program requires a relative file named REL.DAT.

© The SHARED qualifier is used on the OPEN statement to indicate
that the file can be shared. Because manual locking was not specified,
RMS automatically controls access to the file. Only read and update
operations are allowed in this example. No new records may be
written to the file.

O The second process is not allowed to access record #2 while the first
process is accessing it.

© Once the first process has finished with record #2, the second process
can update it.

C.6 Displaying Data at Terminals

The following example calls SMG routines to format screen output.

No sample run is included for this example because the program requires
a video terminal in order to execute properly.

Source Program:

C SMGOUTPUT.FOR
C
C This program calls Run-Time Library Screen Management
C routines to format screen output.
C

IMPLICIT INTEGER*4 (A-Z)
INCLUDE '($SMGDEF)' O

C
C Establish terminal screen as pasteboard
C

STATUS = SMG$CREATE_PASTEBOARD (NEW_PID,,,)
IF (.NOT. STATUS) CALL LIB$STOP('/°VAL(STATUS))

C
C Establish a virtual display region
C

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (15,30,DISPLAY_ID,,,)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C-14 Using System Services--Examples

C
C Paste the virtual display to the screen, starting at

C row 5, column 15
C

STATUS = SMG$PASTE_VIRTUAL_DISPLAY(DISPLAY_ID,NEW_PID,2,15) O
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C
C Put a border around the display area

C
STATUS = SMG$LABEL_BORDER(DISPLAY_ID,'This is the Border')

IF' (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C
C Write text lines to the screen

C
STATUS = SMG$PUT_LINE (DISPLAY_ID,')
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS)) O
STATUS = SMG$PUT_LINE (DISPLAY_ID,'Howdy, pardner',2,, ,,)

IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

STATUS = SMG$PUT_LINE (DISPLAY_ID,'Double spaced lines.. .',2,, ,,)

IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

STATUS = SMG$PUT_LINE (DISPLAY_ID,'This line is blinking',2, Q
1 SMG$M_BLINK,O „)

IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

STATUS = SMG$PUT_LINE (DISPLAY_ID,'This line is reverse video',2,

1 SMG$M_REVERSE,O „)

IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

DO I = 1, 5
STATUS = SMG$PUT_LINE (DISPLAY_ID,'Single spaced lines. . .)

IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

ENDDO
C

END

Notes:

O The INCLUDE statement incorporates the $SMGDEF module from
FORSYSDEF.TLB into the source program. This module contains
symbol definitions used by the screen management routines.

© The call to SMG$CREATE_PASTEBOARD creates a pasteboard upon
which output will be written. The pasteboard ID is returned in the
variable NEW_PID.

No value is specified for the output device parameter, so the output
device defaults to SYS$OUTPUT. Also, no values are specified for
the PB_ROWS or PB_COLS parameters, so the pasteboard is created
with the default number of rows and columns. The defaults are the
number of rows and the number of columns on the physical screen of
the terminal to which SYS$OUTPUT is assigned.

© The created virtual display is 15 lines long and 30 columns wide. The
virtual display initially contains blanks.

Using System Services—Examples C-15

O The virtual display is pasted to the pasteboard, with its upper left
corner positioned at row 2, column 15 of the pasteboard. Pasting
the virtual display to the pasteboard causes all data written to the
virtual display to appear on the pasteboard's output device, which is
SYS$OUTPUT the terminal screen.

At this point, nothing appears on the screen because the virtual
display contains only blanks. However, because the virtual display
is pasted to the pasteboard, the program statements described below
cause text to be written to the screen.

© A labeled border is written to the virtual display.

O Text lines are written to the virtual display. The LINE ~DV parame-
ter specifies double spacing.

O These statements use the RENDITION _SET and RENDITION _
COMPLEMENT parameters to display blinking and reverse video text.

= Single spaced text is displayed.

C.7 Creating, Accessing, and Ordering Files

In the following example, each record in a relative file is assigned to a
specific cell in that file. On sequential write operations, the records are
written to consecutive empty cells. Random write operations place the
records into cell numbers as provided by the REC=n parameter.

C-16 Using System Services—Examples

Source Program:

C RELATIVE.FOR
C
C This program demonstrates how to access a relative file
C randomly. It also performs some I/O status checks.
C

C

IMPLICIT INTEGER*4 (A - Z)
STRUCTURE /EMPLOYEE_STRUC/

CHARACTER*5 ID NUM
CHARACTER*6 NAME
CHARACTER*3 DEPT
CHARACTER*2 SKILL
CHARACTER*4 SALARY

END STRUCTURE
RECORD /EMPLOYEE_STRUC/ EMPLOYEE_REC
INTEGER*4 REC_LEN
INCLUDE '($FORIOSDEF)' 0

OPEN (UNIT=1, FILE='REL', STATUS='OLD',
1 ORGANIZATION='RELATIVE', ACCESS='DIRECT',
1 FORM='UNFORMATTED',RECORDTYPE='VARIABLE')

C
C Get records by record number until a-o-f
C Prompt for record number
C
100 TYPE 10
10 FORMAT ('$Record number: ')

READ (*,*, END=1000) REC_NUM
C
C Read record by record number
C

READ (1,REC=REC_NUM,IOSTAT=STATUS} EMPLOYEE_REC
C
C Check I/O status
C

IF (STATUS .EQ. 0) THEN
WRITE (6) EMPLOYEE_REC O

ELSE IF (STATUS .EQ. FOR$IOS_ATTACCNON) THEN
TYPE *, 'Nonexistent record.'

ELSE IF (STATUS .EQ. FOR$IOS_RECNUMOUT) THEN
TYPE *, 'Record number out of range.'

ELSE
CALL ERRSNS (, RMS_STS, RMS_STV „)
CALL LIB$SIGNAL ('/,VAL (RMS_STS) ,

1 %VAL(RMS_STV))

ENDIF
C
C
C

GOTO 100
1000 END

Loop

Using System Services—Examples C-17

Sample Use:

$ FORTRAN RELATIVE
$ LINK RELATIVE
$ RUN RELATIVE
Record number: 7
08001FLANJE119PL1920
Record number: 1
07672ALBEHA210SE2100
Record number: 30
Nonexistent record.
Record number: "Z

Notes:

O The INCLUDE statement defines all FORTRAN I/O status codes.

© The OPEN statement defines the file and record processing charac-
teristics. Although the file organization is specified as relative, RMS
would in fact obtain the file organization from an existing file. If the
file's organization were not relative, the file OPEN statement would
fail.

The file is being opened for unformatted I/O because the data records
will be read into a VAX FORTRAN record (EMPLOYEE _REC), and
VAX FORTRAN does not allow records to be used in formatted I/O.

© The READ statement reads the record specified in REC_NUM, rather
than the next consecutive record. The status code for the record
operation is returned in the variable STATUS.

O These statements test the record operation status obtained in comment
3. Note, the status codes returned by RMS and VAX FORTRAN are
not numerically or functionally similar.

© RMS status codes actually require two parameters. These values can
be obtained using the ERRSNS subroutine.

C-18 Using System Services—Examples

C.8 Measuring and Improving Performance

This example demonstrates how to adjust the size of the process working
set from a program.

Source Program:

C ADJUST.FOR

C
C This program demonstrates how a program can control

C its working set size using the $ADJWSL system service.
C

IMPLICIT INTEGER (A-Z)
INCLUDE '($SYSSRVNAM)'
INTEGER*4 ADJUST_AMT /0/
INTEGER*4 NEW_LIMIT /0/

C
CALL LIB$INIT_TIMER

C
DO 100 ADJUST_AMT= -50,70,10

C
C Modify working set limit

C
RESULT = SYS$ADJWSL(%VAL(ADJUST_AMT), NEW_LIMIT)

IF (.NOT. RESULT) CALL LIB$STOP(%VAL(RESULT))

C
TYPE 50, ADJUST_AMT, NEW_LIMIT

50 FORMAT(' Modify working set by', I4,

1 New working set size =', I4)

100 CONTINUE
C

CALL LIB$SHOW_TIMER
END

0

Using System Services—Examples C-19

Sample Use:

$ SET WORKING_SET/NOADJUST
$ SHOW WORKING_SET

Working Set /Limit= 150 /Quota= 200 /Extent= 200
Adjustment disabled Authorized Quota= 200 Authorized Extent= 200

$ FORTR.AN ADJUST
$ LINK ADJUST
$ RUN ADJUST
Modify working set by -50 New working set size = 100
Modify working set by -40 New working set size = 60
Modify working set by -30 New working set size = 41
Modify working set by -20 New working set size = 41
Modify working set by -10 New working set size = 41
Modify working set by 0 New working set size = 41
Modify working set by 10 New working set size = 51
Modify working set by 20 New working set size = 71
Modify working set by 30 New working set size = 101
Modify working set by 40 New working set size = 141
Modify working set by 50 New working set size = 191
Modify working set by 60 New working set size = 200 0
Modify working set by 70 New working set size = 200
ELAPSED: 0 00:00:01.58 CPU: 0:00:00 11 BUFIO: 1 DIRIO: 2 FAULTS: 25

Notes:

O The SYS$ADJWSL is used to increase or decrease the number of pages
in the process working set.

© The DCL SHOW WORKING _SET command displays the current
working set limit and the maximum quota.

© Notice that the program cannot decrease the working set limit beneath
the minimum established by the operating system.

O Similarly, the process working set cannot be expanded beyond the
authorized quota.

C.9 Accessing Help Libraries

The following example demonstrates how to obtain text from a help
library. After the initial help request has been satisfied, the user is
prompted and can request additional information.

C-20 Using System Services—Examples

Source Program:

C HELPOUT.FOR
C
C This program satisfies an initial help request
C and enters interactive HELP mode. The library
C used is SYS$HELP:HELPLIB.HLB.
C

IMPLICIT INTEGER*4 (A - Z)
CHARACTER*32 KEY
EXTERNAL LIBPUT_OUTPUT,LIBGET_INPUT

C
C Request a HELP key
C

0

WRITE (6,2000)
2000 FORMAT(iX,'What Topic would you like HELP with? ',$)

READ (5,1000) KEY
1000 FORMAT (A32)
C
C Locate and print the help text
C

STATUS = LBR$OUTPUT_HELP(LIB$PUT_OUTPUT „KEY,
1 'HELPLIB' „ LIB$GET_INPUT)
IF (.NOT. STATUS) CALL LIB$STOP ('/.VAL(STATUS))
END

Sample Use:

$ FORTRAN HELPOUT
$ LINK HELPOUT
$ RUN HELPOUT
What topic would you like HELP with? TYPE

TYPE
Displays the contents of a file or a group of files on the
current output device.

Format:

TYPE file-spec [, ...]

Additional information available:

Parameters Qualifiers
/OUTPUT

TYPE Subtopic? /OUTPUT

TYPE
/OUTPUT

/OUTPUT=file-spec

Requests that the output from the TYPE command be written
to the specific file, rather than to SYS$OUTPUT.

TYPE Subtopic? 'Z

Using System Services—Examples C-21

Notes:

O To pass the address of LIB$PUT_OUTPUT and LIB$GET_INPUT,
they must be declared as EXTERNAL. You can supply your own
routines for handling input and output.

© The address of an output routine is a required argument. When
requesting prompting mode, the default mode, an input routine rnust
be specified.

C.1O Creating and Managing Other Processes

The following example demonstrates how a created process can use the
SYS$GETJPIW system service to obtain the PID of its creator process.
It also shows how to set up an item list to translate a logical name
recursively.

Source Program:

C GETJPI.FOR
C This program demonstrates process creation and
C control. It creates a subprocess then hibernates
C until the subprocess wakes it.
C

IMPLICIT INTEGER*4 (A - Z)
INCLUDE '($SSDEF)'
INCLUDE '($LNMDEF)'
INCLUDE '($SYSSRVNAM)'
CHARACTER*255 TERMINAL /'SYS$OUTPUT'/
CHARACTER*9 FILENAME /'GETJPISUB'/
CHARACTER*5 SUB_NAME /'OSCAR'/
INTEGER*4 PROCESS_ID /0/
CHARACTER*17 TABNAM /'LNM$PROCESS_TABLE'/
CHARACTER*255 RET STRING
CHARACTER*2 ESC NULL
INTEGER*4 RET ATTRIB
INTEGER*4 RET_LENGTH /10/
STRUCTURE /ITMLST3_3ITEMS/

STRUCTURE ITEM(3)
INTEGER*2 BUFFER_LENGTH
INTEGER*2 CODE
INTEGER*4 BUFFER_ADDRESS
INTEGER*4 RETLEN_ADDRESS

END STRUCTURE
INTEGER*4 END OF LIST

END STRUCTURE
RECORD /ITMLST3_3ITEMS/ TRNLST

C-22 Using System Services—Examples

c
C Translate SYS$OUTPUT
C Set up TRNLST, the item list for $TRNLNM
C

TRNLST.ITEM(1).CODE = LNM$_STRING
TRNLST.ITEM(1).BUFFER_LENGTH = 255
TRNLST.ITEM(1).BUFFER_ADDRESS = %LOC(RET_STRING)
TRNLST.ITEM(1).RETLEN_ADDRESS = 0

TRNLST.ITEM(2).CODE = LNM$_ATTRIBUTES
TRNLST.ITEM(2).BUFFER_LENGTH = 4
TRNLST.ITEM(2).BUFFER_ADDRESS = %LOC(RET_ATTRIB)
TRNLST.ITEM(2).RETLEN_ADDF~ESS = 0

TRNLST.ITEM(3).CODE = LNM$_LENGTH
TRNLST.ITEM(3).BUFFER_LENGTH = 4
TRNLST.ITEM(3).BUFFER_ADDRESS = %LOC(RET_LENGTH)
TRNLST.ITEM(3).RETLEN_ADDRESS = 0

TRNLST.END_OF_LIST = 0

C
C Translate SYS$OUTPUT

C
100 STATUS = SYS$TRNLNM (,TABNAM,TERMINAL(1:RET_LENGTH) „TRNLST)

IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))
IF (IAND(LNM$M_TERMInTAL, RET_ATTRIB).EQ. 0) THEN

TERMINAL = RET_STRING(1:RET_LEIv'GTH)
GO TO 100

ENDIF
C
C Check if process permanent file
C

IF (RET_STRING(1:2) .EQ. ESC_NULL) THEN
RET_STRING = RET_STRING(S:RET_LENGTH)

RET_LENGTH = RET_LENGTH - 4

ENDIF
C
C Create the subprocess
C

STATUS = SYS$CREPRC (PROCESS_ID, FILENAME „

1 RET_STRING(1:RET_LENGTH),,, ,

1 SUB_NAME , %VAL (4) , , ,)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

TYPE 10, PROCESS_ID
10 FORMAT (' PID of subprocess OSCAR is ', Z)

C
C Wait for wakeup by subprocess

C
STATUS = SYS$HIBER ()
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

C
TYPE *, 'GETJPI has been awakened.'

END

0

Using System Services—Examples C-23

C GETJPISUB.FOR
C This program is run in the subprocess OSCAR
C which is created by GETJPI. It obtains its
C creator's PID and then wakes it.
C

IMPLICIT INTEGER*4 (A - Z)
INCLUDE '($JPIDEF)'
INCLUDE '($SYSSRVNAM)'
STRUCTURE /GETJPI_IOSB/

INTEGER*4 STATUS
INTEGER*4 %FILL

END STRUCTURE
RECORD /GETJPI_IOSB/ IOSB
STRUCTURE /ITMLST3_lITEM/

STRUCTURE ITEM
INTEGER*2 BUFFER_LENGTH
INTEGER*2 CODE
INTEGER*4 BUFFER_ADDRESS
INTEGER*4 RETLEN_ADDRESS

END STRUCTURE
INTEGER*4 END_OF_LIST

END STRUCTURE
RECORD /ITMLST3_lITEM/ JPI_LIST

C
C Set up buffer address for GETJPI
C

JPI_LIST.ITEM.CODE = JPI$_OWNER
JPI_LIST.ITEM.BUFFER_LENGTH = 4
JPI_LIST.ITEM.BUFFER_ADDRESS = '/.LOC(OWNER_PID)
JPI_LIST.ITEM.RETLEN_ADDRESS = 0

C
C Get PID of creator
C

0

STATUS = SYS$GETJPIW ('/.VAL (1) , , , JPI_LIST , IOSB „)
IF (.NOT. STATUS) CALL LIB$STOP ('/.VAL(STATUS))
IF (.NOT. IOSB.STATUS) CALL LIB$STOP ('/.VAL(IOSB.STATUS))

C
C Wake creator
C

TYPE *, 'OSCAR is waking creator.'
STATUS = SYS$WAKE (OWNER_PID,)
IF (.NOT. STATUS) CALL LIB$STOP ('/.VAL(STATUS))

C
END

Sample Use:

$ FORTRAN GETJPI,GETJPISUB
$ LINK GETJPI
$ LINK GETJPISUB
$ RUN GETJPI
PID of subprocess OSCAR is 530048
OSCAR is waking creator.
GETJPI has been awakened.

C-24 Using System Services—Examples

Notes:

O The subprocess is created using SYS$CREPRC.
Q The process hibernates.

© The INCLUDE statement defines the value of all JPI$ codes including
JPI$_OWNER. JPI$_OWNER is the item code which requests the
PID of the owner process. If there is no owner process (that is, if the
process about which information is requested is a detached process),
the system service $GETJPIW returns a PID of zero.

O Because of the item code JPI$_OWNER in the item list, $GETJPIW
returns the PID of the owner of the process about which information
is requested. If the item code were JPI$_PID, $GETJPIW would return
the PID of the process about which information is requested.

Because the default value of 0 is used for arguments PIDADR and
PRCNAM, the process about which information is requested is the
requesting process, namely, OSCAR.

© The item list for SYS$GETJPIW consists of a single item descriptor
followed by a zero longword.

Using System Services—Examples C-25

Appendix D

Compatibility: VAX FORTRAN and
FORTRAN-66

VAX FORTRAN is based on American National Standard FORTRAN-77,
X3.9-19 78. As a result, it contains certain incompatibilities with
FORTRAN implementations that are based on the previous standard,
X3.9-1966. The following areas are affected:

• The minimum iteration count of DO loops

• The EXTERNAL statement

• The defaults for the OPEN statement's BLANK and STATUS keywords

• The X format edit descriptor

• The effect of attempting to open a connected unit

The VAX FORTRAN compiler selects FORTRAN-77 language inter-
pretations by default. If you are compiling FORTRAN-66 programs,
there are several actions that you can take to compensate for language
incompatibilities:

• You can modify your FORTRAN-66 programs so that they are com-
patible with FORTRAN-77 language interpretations.

Compiler diagnostics help you to identify OPEN statements in which
you should add an explicit STATUS keyword. Linker diagnostics
help you to locate EXTERNAL statements that must be changed to
INTRINSIC statements.

Compatibility: VAX FORTRAN and FORTRAN-66 D-1

• You can select FORTRAN-66 language interpretations by specifying
the /NOF77 qualifier on your FORTRAN command line or the
/NOF77 option on an OPTIONS statement. The /NOF77 option
affects the interpretation of the minimum iteration counts of DO
loops, the EXTERNAL statements, and the OPEN statement default for
BLANK and STATUS. It does not affect the X format edit descriptor.

You can redefine the FORTRAN command to include the /NOF77
command qualifier, thereby selecting FORTRAN-66 language interpre-
tations by default. To redefine the FORTRAN command, use a VMS
command language symbol definition of the form:

$ FOR*TRAN :__ "FORTRAN/NOF77"

You can include this symbol definition in your LOGIN command
file or in a system-wide LOGIN command file. In the latter case, the
FORTRAN command is redefined for all users. The asterisk (*) in the
symbol definition permits you to abbreviate the FORTRAN command
to three or more characters (FOR, FORT, and so on).

This appendix discusses each of the language differences. When possible,
it gives an example of how you can modify your FORTRAN-66 programs
to make them compatible with both VAX FORTRAN (FORTRAN-77) and
FORTRAN-66.

D.1 Minimum Iteration Count for DO Loops

In FORTRAN-77, the body of a DO loop is not executed if the end
condition of the loop is already satisfied when the DO statement is
executed (see Section 10.3.2). In most implementations of FORTRAN-66,
however, the body of a DO loop is always executed at least once.

The /[NO]F77 compilation qualifier and the /[NO]F77 option on the
OPTIONS statement both control the interpretation of the minimum
iteration count of DO loops.

If you intend to have either the /F77 qualifier or the /F77 option in effect
for aFORTRAN-66 program, you may want to ensure a minimum loop
count of one by modifying the program's DO statements. As an example,
consider the following statement in a FORTRAN-66 program:

DO 10, J=ISTART,IEND

D-2 Compatibility: VAX FORTRAN and FORTRAN-66

This DO statement specifies that the body of the loop is executed only
when IEND is greater than or equal to ISTART. However, you could
modify the statement to handle a situation in which IEND might be less
than ISTART. For example:

DO 10 J=ISTART,MAX(ISTART,IEND)

The body of this modified DO loop is executed at least once in both
FORTRAN-77 and FORTRAN-66.

D.2 EXTERNAL Statement

In FORTRAN-66, the EXTERNAL statement is used to specify that a
symbolic name is the name of either auser-defined external procedure
or aFORTRAN-supplied function, like SQRT or SIN. An EXTERNAL
statement is required to pass a procedure name as an actual argument.

In FORTRAN-77, the EXTERNAL and INTRINSIC statements accomplish
this function:

• Use the INTRINSIC statement for FORTRAN-supplied intrinsic
procedures (for example, SQRT).

• Use the EXTERNAL statement for user-supplied procedures.

In FORTRAN-66, EXTERNAL SQRT specifies the FORTRAN-supplied
real square root function. In FORTRAN-77, the identical syntax specifies
a user-defined function, and an error results at link time if there is no
user-defined function called SQRT.

The /[NO]F77 compilation qualifier and the /[NO]F77 option on the
OPTIONS statement both control the interpretation of the EXTERNAL
statement.

When you compile a program with the /NOF77 qualifier or use the
/NOF77 option in a program, EXTERNAL *SQRT specifies auser-supplied
function with the same name as aFORTRAN-supplied function. This syn-
tax is invalid in FORTRAN-77; the FORTRAN-77 EXTERNAL statement
must be used instead.

You cannot modify the EXTERNAL statements in your programs so that
the same source program works with both FORTRAN-77 and FORTRAN-
66 in all cases; you must substitute an equivalent statement:

Compatibility: VAX FORTRAN and FORTRAN-66 D-3

FORTRAN-66 FORTRAN-77

EXTERNAL USER

EXTERI~,'AL SQRT

EXTERNAL *SQRT

EXTERNAL USER (no change required)

INTRINSIC SQRT

EXTERNAL SQRT

D.3 OPEN Statement Keyword Defaults

The FORTRAN-66 language did not contain an OPEN statement; how-
ever, many implementations based on FORTRAN-66 do contain an OPEN
statement. The defaults for FORTRAN-77 OPEN statement keywords
differ from traditional FORTRAN defaults for the attributes that these
keywords control.

D.3.1 BLANK Keyword Default

In FORTRAN-77, the OPEN statement's BLANK keyword controls the
interpretation of blanks in numeric input fields. The FORTRAN-77 default
is BLANK='NULL'; that is, blanks in numeric input fields are ignored. The
FORTRAN-66 interpretation of blanks in numeric input fields is equivalent
to BLANK='ZERO'.

If a logical unit is opened without an explicit OPEN statement, VAX
FORTRAN and FORTRAN-66 both provide a default equivalent to
BLANK='ZERO'.

The BLANK keyword affects the treatment of blanks in numeric in-
put fields read with the D, E, F, G, I, O, and Z field descriptors. If
BLANK='NULL' is in effect, embedded and trailing blanks are ignored;
the value is converted as if the nonblank characters were right-justified
in the field. If BLANK='ZERO' is in effect, embedded and trailing blanks
are treated as zeros. The following example illustrates the difference in
how blanks in numeric input fields are interpreted in FORTRAN-77 and
in FORTRAN-66:

Source Program:

OPEN (UNIT=1, STATUS='OLD')
READ (1,10) I, J

10 FORMAT (2I5)
END

D-4 Compatibility: VAX FORTRAN and FORTRAN-66

Data record:

~1~2~~~~12

Results of READ:

FORTRAN-66 FORTRAN-77

I = 1020

J=12

I=12

J=12

The /[NO]F77 compilation qualifier and the /[NO]F77 option both control
the default value for the BLANK keyword. If your program treats blanks
in numeric input fields as zeros and you do not want to use either the
/NOF77 qualifier or the /NOF77 option, either include BLANK='ZERO'
in the OPEN statement or use the BZ edit descriptor in the FORMAT
statement.

D.3.2 OPEN Statement's STATUS Keyword Default

In FORTRAN-77, the OPEN statement's STATUS keyword specifies the
initial status of the file ('OLD', 'NEW', 'SCRATCH', or 'UNKNOWN').
The FORTRAN-77 default is STATUS='UNKNOWN'; that is, an existing
file is opened or a new file is created if the file does not exist. DIGITAL's
implementation of FORTRAN based on FORTRAN-66 had a keyword
TYPE, which is a synonym for STATUS; however, the default for TYPE is
TYPE=`NEW' .

The /[NO]F77 compilation qualifier and the /[NO]F77 option on the
OPTIONS statement both control the default value for the STATUS (or
TYPE) keyword.

If you use either the /F77 compilation qualifier or the /F77 option and
you do not specify STATUS (or TYPE) in an OPEN statement, the compiler
issues an informational message to warn you that it is using a default of
STATUS='UNKNOWN'. It is advisable to include an explicit STATUS
(or TYPE) keyword in every OPEN statement. If you do not, files that
you wish to retain may be overwritten. For example, a program that is
expected to write a new file will overwrite any existing version of that file
if the file's status is unknown; in some cases, this may not be the result
that you want.

Compatibility: VAX FORTRAN and FORTRAN-66 D-5

D.4 X Format Edit Descriptor

The nX edit descriptor causes transmission of the next character to or from
a record to occur at the position n characters to the right of the current
position. In a FORTRAN-77 output statement, character positions that
are skipped are not modified, and the length of the output record is not
affected. However, in many FORTRAN-66 implementations, the X edit
descriptor writes blanks and may extend the output record. For example,
consider the following statements:

WRITE (1,10)
10 FORMAT (1X, 'ABCDEF' ,T4,2X, '12345' ,3X)

These statements produce the following output records:

FORTRAN-66 FORTRAN-77

oABoo12345000 oABCD12345

Neither the /[NO]F77 compilation qualifier nor the /[NO]F77 option on
the OPTIONS statement affect the interpretation of the X edit descriptor.
To achieve the FORTRAN-66 effect, you must change nX to n(' ').

D.5 Open Operation on a Connected Unit

In FORTRAN-66, it is an error to execute an OPEN statement on a logical
unit that already has a file connected to it.

In FORTRAN-77, the behavior varies as follows:

• If the file specification (or the default) matches that of the currently
opened file, the new value (if any) of the BLANK keyword is used and
the new open request is otherwise ignored.

• If the file specifications do not match, the currently open file is closed
and the new file is opened.

In neither case is an error issued for FORTRAN-77.

There is no way to cause programs compiled with VAX FORTRAN to
exhibit the FORTRAN-66 behavior.

D-6 Compatibility: VAX FORTRAN and FORTRAN-66

Appendix E

Compatibility: VAX FORTRAN and
PDP-11 FORTRAN

VAX FORTRAN is a compatible superset of PDP-11 FORTRAN IV and
PDP-11 FORTRAN-77. Most PDP-11 FORTRAN programs can run on
VAX systems without modifications. Execution may be affected in some
cases, however, due to differences between the hardware architecture of
PDP-11 and VAX computers and differences between the IAS/RSX-11
and VMS operating environments. Execution also may be affected by the
FORTRAN-77 language interpretations described in Appendix D.

The issues discussed in this section concern differences in language,
run-time support, and utilities provided in the form of subroutines.

E.1 Language Differences

Differences related to language involve the following areas:

• Logical tests

• Floating-point results

• Character and Hollerith constants

• Logical unit numbers

• Assigned GO TO label list

• Effect of DISPOSE='PRINT' specification

Compatibility: VAX FORTRAN and PDP-11 FORTRAN E-1

E.1.1 Logical Tests

The logical constants .TRUE. and .FALSE. are defined, respectively, as all
ones and all zeros by both VAX FORTRAN and PDP-11 FORTRAN. The
test for .TRUE. and .FALSE. differs, however.

• VAX FORTRAN tests the low-order bit (bit 0) of a logical value. This
is the system-wide VAX convention for testing logical values.

• PDP-11 FORTRAN-77 tests the sign bit of a logical value: bit 7 for
LOGICAL* 1, bit 15 for LOGICAL*2, and bit 31 for LOGICAL*4.

PDP-11 FORTRAN IV tests the low-order byte of a logical value; all zeros
is a .FALSE. value, and any nonzero bit pattern is a .TRUE. value.

In most cases, this difference has no effect. It is significant only for
nonstandard FORTRAN programs that perform arithmetic operations on
logical values and then make logical tests on the result. For example:

LOGICAL*1 BA
BA=3
IF (BA) GO TO 10

VAX FORTRAN produces a value of .TRUE., PDP-11 FORTRAN-77
produces .FALSE., and PDP-11 FORTRAN IV produces .TRUE.

E.1.2 Floating-Point Results

Differences in results from math library routines may occur because of
new implementations of these routines that take advantage of the VAX
instruction set. The VAX functions produce results with an accuracy equal
to or greater than the corresponding PDP-11 functions, but there may be
differences.

In addition, floating-point constants without exponents are not imme-
diately converted to REAL*4, as is the case with PDP-11 FORTRAN.
This feature provides greater accuracy when such constants are used in
double-precision expressions.

E-2 Compatibility: VAX FORTRAN and PDP-11 FORTRAN

n

E.1.3 Character and Hollerith Constants

VAX FORTRAN supports both Hollerith constants, with the notation
nHa...a, and character constants, with the notation 'a...a'. In PDP-11
FORTRAN-IV, both notations are used for Hollerith constants. (Note that
Hollerith constants have no data type; Hollerith constants assume a data
type consistent with their use.)

In most cases, the conflicting use of the 'a...a' notation is not a problem;
VAX FORTRAN can determine from the program context whether a
character or a Hollerith constant is intended. There is, however, one case
in which this is not so. In an actual argument list for a CALL or function
reference, where the subprogram called is a dummy argument, a constant
in the 'a...a' notation is always passed as a character constant, never as
Hollerith. For example, consider the following source code:

SUBROUTINE S(F)

CALL F (' ABCD')

If the subroutine referenced by F expects a Hollerith constant (that is, the
dummy argument is a numeric data type), execution is not correct. The
actual and dummy arguments must agree in data type. This is not the
case in the preceding example. To avoid this problem, you must change
to the nHa...a notation, as follows:

SUBRCUTINE S(F)

CALL F(4HABCD)

Compatibility: VAX FORTRAN and PDP-11 FORTRAN E-3

E.1.4 Logical Unit Numbers

If you do not specify a logical unit number in an I/O statement, a default
unit number is used. The defaults used by VAX FORTRAN differ from
those used by PDP-11 FORTRAN-77, as shown in Table E-1.

Table E-1: Default Logical Unit Numbers

I/O Statement PDP-11 Unit VAX Unit

READ

PRINT

TYPE

ACCEPT

1

6

5

5

-4

-1
_2

-3

Note that PDP-11 FORTRAN-77 uses normal logical unit numbers; VAX
FORTRAN uses unit numbers that are unavailable to users. This feature
prevents conflicts between I/O statements that use the default logical unit
numbers and those that use explicit logical unit numbers. This should
have no visible effect on program execution.

E.1.5 Assigned GO TO Label List

The labels specified in an assigned GO TO libel list are checked by the
VAX FORTRAN compiler to ensure their validity in the program unit.
However, VAX FORTRAN, like PDP-11 FORTRAN IV, does not perform
a check at run time to ensure that a label actually assigned is in the list.
PDP-11 FORTRAN-77 does perform this check at run time.

E.1.6 DISPOSE='PRINT' Specification

On some PDP-11 systems, the file is deleted after being printed if you
specify DISPOSE='PRINT' in an OPEN or CLOSE statement. On VAX
FORTRAN, the file is retained after being printed.

E-4 Compatibility: VAX FORTRAN and PDP-11 FORTRAN

n

E.2 Run-Time Support Differences

Differences in run-time support between VAX FORTRAN and PDP-11
FORTRAN are reflected in run-time error numbers, in run-time error
reporting, and in some values for OPEN statement keywords.

E.2.1 Run-Time Library Error Numbers

Programs that use the ERRSNS subroutine may need to be modified
because certain PDP-11 FORTRAN run-time error numbers were either
deleted from or redefined in the VAX Run-Time Library. The following
error numbers are affected.

2 through 14

37 (INCONSISTENT RECORD LENGTH)

65 (FORMAT TOO BIG FOR 'FMTBUF')

72, 73, 82, 83, 84

75 (FPP FLOATING TO INTEGER
CONVERSION OVERFLOW)

86 (INVALID ERROR NUMBER)

91 (COMPUTED GO TO OUT OF RANGE)

92 (ASSIGNED LABEL NOT IN LIST)

Deleted; these error num-
bers reported fatal PDP-11
hardware conditions.

Redefined; continuation is not
allowed.

Deleted; this error cannot
occur because space is acquired
dynamically for run-time
formats.

Redefined; floating-point
arithmetic errors and math
library errors return -0.0 (a
hardware reserved operand)
rather than +0.0.

Deleted; error number 70 is
reported instead.

Deleted; error number 48 is
reported instead.

Deleted; no error is generated
by the VAX hardware when
this condition occurs. Program
execution continues in line.

Deleted; as described in
Section E.1.5, VAX FORTRAN
does not perform this check at
run time.

Compatibility: VAX FORTRAN and PDP-11 FORTRAN E-5

94 (ARRAY REFERENCE OUTSIDE ARRAY)

95 through 101

Deleted; error number 77 is
reported instead.

Deleted; these error numbers
reported PDP-11 FORTRAN
errors that cannot occur in
VAX FORTRAN.

E.2.2 Error Handling and Reporting

VAX FORTRAN differs from PDP-11 FORTRAN-77 in the way it treats
error continuation, I/O errors, and OPEN/CLOSE statement errors.
Section 5.1 describes Run-Time Library error handling.

E.2.2.1 Continuing After Errors

In PDP-11 FORTRAN, program execution after errors, such as floating
overflows, normally continues until 15 such errors occur. At that point,
execution is terminated. VAX FORTRAN, however, sets a limit of one
such error; program execution normally terminates when the first error
occurs. To change this behavior, you can take one of the following steps:

• Include a condition handler in your program to change the sever-
ity level of the error. Severity levels of Warning and Error permit
continuation. See Chapter 9.

• Include the ERRSET subroutine (see Section E.3.3). ERRSET alters the
Run-Time Library's default error processing to match the behavior of
PDP-11 FORTRAN-77.

E.2.2.2 I/O Errors with IOSTAT or ERR Specified

If an IOSTAT or ERR specification was included in the I/O statement,
VAX FORTRAN neither generates an error message nor increments the
image error count when an I/O error occurs. Under these circumstances,
PDP-11 FORTRAN both reports the error and increments the task error
count.

E.2.2.3 OPEN/CLOSE Statement Errors

Unlike PDP-11 FORTRAN, VAX FORTRAN reports only the first error
encountered in an OPEN or CLOSE statement. PDP-11 FORTRAN
reports all errors detected in processing these statements.

E-6 Compatibility: VAX FORTRAN and PDP-11 FORTRAN

E.2.3 OPEN Statement Keywords

For VAX FORTRAN, the space requested by the INITIALSIZE keyword is
allocated contiguously, if possible, on what is called abest-try basis. That
is, if you specify an INITIALSIZE value and sufficient contiguous space
is available, allocation is contiguous. If not enough contiguous space is
available, allocation is noncontiguous.

For PDP-11 FORTRAN-77, allocation of contiguous or noncontiguous
space depends on the sign of the value specified for the INITIALSIZE and
EXTENDSIZE keywords. To be compatible with PDP-11 FORTRAN, VAX
FORTRAN uses the absolute value of the user-supplied value.

E.3 Utility Subroutines

A number of utility subroutines are available for use with PDP-11
FORTRAN-77. All are supplied as part of PDP-11 FORTRAN-77, as
described in the PDP-11 FORTRAN-77 User's Guide.

The following subroutines are supplied as a standard part of VAX
FORTRAN:

DATE
ERRSNS
EXIT
IDATE
SECNDS
TIME

See the discussion of system subroutines in the VAX FORTRAN Language
Reference Manual for more information about these subroutines.

The remaining subroutines are provided only for purposes of compatibil-
ity; most have been superseded by features included in VAX FORTRAN,
while others have little applicability on VMS systems. The following
subroutines fall into this category:

ASSIGN
CLOSE
ERRSET
ERRTST
FDBSET
IRAD50
RAD50

Compatibility: VAX FORTRAN and PDP-11 FORTRAN E-7

RAN
RANDU
R50ASC
USEREX

Sections E.3.1 through E.3.11 describe these routines.

E.3.1 ASSIGN Subroutine

The ASSIGN subroutine enables you to assign a device or file to a logical
unit. The assignment remains in effect until the program terminates or
until the logical unit is closed by a CLOSE statement.

The ASSIGN subroutine must be called before the first I/O statement is
issued for that logical unit.

The CALL FDBSET, CALL ASSIGN, and DEFINE FILE statements can
be used together, but none can be used in conjunction with the OPEN
statement or INQUIRE statement for the same unit.

There are two other ways to assign a device or a file name to a logical
unit number: specify the FILE keyword in an OPEN statement or use the
ASSIGN system command.

A call to the ASSIGN subroutine has the form:

CALL ASSIGN (n [,name] [, icnt])

n

Is an integer value specifying the logical unit number.

name

Is a variable, array, array element, or character constant containing any
standard file specification.

icnt

Is an INTEGER*2 value that specifies the number of characters contained
in the string name.

E-8 Compatibility: VAX FORTRAN and PDP-11 FORTRAN

Notes

If only the unit number is specified, all previously specified file/device
associations pertaining to that unit are nullified and the defaults become
effective. If icnt is omitted (or specified as zero), the file specification (if
specified) is read until the first ASCII null character is encountered. If the
icnt argument is specified, the name argument must also be specified.

E.3.2 CLOSE Subroutine

The CLOSE subroutine closes the file currently open on a logical unit. A
call to the CLOSE subroutine has the form:

CALL CLOSE (n)

n
Is an integer value specifying the logical unit.

Notes

After the file is closed, the logical unit again assumes the default file-name
specification.

E.3.3 ERRSET Subroutine

The ERRSET subroutine determines the action taken in response to an
error detected by the Run-Time Library. The VMS condition handling
facility provides a more general method of defining actions to be taken
when errors are detected (see Chapter 9). A call to the ERRSET subroutine
has the form:

CALL ERRSET (number, contin, count, type, log, maxlim)

number
Is an integer value specifying the error number.

contin
Is a logical value:

.TRUE. Continue after error is detected.

.FALSE. Exit after error is detected.

Compatibility: VAX FORTRAN and PDP-11 FORTRAN E-9

count
Is a logical value:

.TRUE. Count the error against the maximum error limit.

.FALSE. Do not count the error against the maximum error limit.

type

Is a logical value:

.TRUE. Pass control to an ERR transfer label, if specified.

.FALSE. Return to routine that detected the error, for default error recovery.

log
Is a logical value:

.TRUE. Produce an error message for this error.

.FALSE. Do not produce an error message for this error.

maxlim

Is a positive INTEGER*2 value specifying the maximum error limit. The
default is set to 15 at program initialization.

Notes

• The error action specified for each error is independent of other errors.

• Null arguments are legal for all arguments, except number arguments,
and have no effect on the current state of that argument.

• An external reference to the ERRTET subroutines causes a special
PDP-11 FORTRAN compatibility error handler to be established be-
fore the main program is called. This special error handler transforms
the executing environment to approximate that of PDP-11 FORTRAN.

E.3.4 ERRTST Subroutine

The ERRTST subroutine checks for a specific error and resets the error flag
for that error. To perform appropriate actions in response to errors, you
should establish a condition handler, as described in Chapter 9. A call to
the ERRTST subroutine has the form:

CALL ERRTST (i,j)

E-10 Compatibility: VAX. FORTRAN and PDP-11 FORTRAN

Is an integer value specifying the error number.

I
Is a variable used for return value of error check:

j = 1:

j=2:

Notes

Error i has occurred.

Error i has not occurred.

• The ERRTST subroutine is independent of the ERRTET subroutine;
neither subroutine has any direct effect on the other.

• An external reference to the ERRTST subroutines causes a special
PDP-11 FORTRAN compatibility error handler to be established be-
fore the main program is called. This special error handler transforms
the executing environment to approximate that of PDP-11 FORTRAN.

Example:

CALL ERRTST (43,J)
GO TO (10 , 20) J

20 CONTINUE

If error 43 is detected, a branch is taken to statement 10 (J=1); if error 43 is
not detected, control passes to statement 20 (J=2).

E.3.5 FDBSET Subroutine

The FDBSET subroutine is used to specify special I/O options. The
recommended method of specifying I/O options is the OPEN statement.
A call to the FDBSET subroutine has the form:

CALL FDBSET (unit[,acc,share,numbuf,initsz,extend])

unit
Is an integer value specifying the logical unit.

acc
Is a character constant specifying the access mode to be used:

Compatibility: VAX FORTRAN and PDP-11 FORTRAN E-11

'READONLY' Establish read-only access.

`NEW' Create a new file.

'OLD' Access an existing file.

'APPEND' Extend an existing sequential file.

'UNKNOWN' Try 'OLD'; if no such file exists, use 'NEW'.

share
Is a character constant 'SHARE' indicating that shared access is allowed.

numbuf
Is an INTEGER*2 value specifying the number of buffers to be used for
multibuffered I/O.

initsz
Is an INTEGER*2 value specifying the number of blocks initially allocated
for a new file.

extend
Is an INTEGER*2 value specifying the number of blocks by which to
extend a file.

Notes

• FDBSET can be used only before issuing the first I/O statement for
the unit.

• The FDBSET and ASSIGN subroutines and the DEFINE FILE state-
ment can be used together, but none can be used in conjunction with
the OPEN statement or INQUIRE statement for the same unit.

• The unit argument must be specified. All other arguments are
optional.

E.3.6 IRAD50 Subroutine

The IRAD50 subroutine is used to convert Hollerith data to Radix-50
form. The IRAD50 subroutine can be called as a function subprogram if
the return value is desired (format 1), or as a subroutine if the return value
is not desired (format 2):

• Format 1: n = IRAD50 (icnt ,input ,output)

• Format 2: CALL IRAD50 (icnt,input,output)

E-12 Compatibility: VAX FORTRAN and PDP-11 FORTRAN

n
Is an INTEGER*2 value indicating how many characters are converted.

icnt
Is an INTEGER*2 value specifying the maximum number of characters to
be converted.

input
Is a Hollerith string to be converted to Radix-50.

output
Is a numeric variable or array element where the Radix-50 results are
stored.

Notes

• Three Hollerith characters are packed into each output word. The
number of output words is computed by the expression:

(ICNT+2)/3

~ Thus if a value of 4 is s ecified for icnt two out ut words will result p p ,
even if an input string of only one character is converted.

• Scanning of the input characters terminates on the first non-Radix-50
character in the input string.

E.3.7 RAD50 Function

The RAD50 function subprogram provides a simplified way to encode six
Hollerith characters as two words of Radix-50 data. It has the form:

RAD50 (name)

name
Is a numeric variable name or array element corresponding to a Hollerith
string.

Notes

The RAD50 function is equivalent to the following source statements:

FUNCTION RAD50 (A)
CALL IRAD50 (6,A,RAD50)
RETURN
END

Compatibility: VAX FORTRAN and PDP-11 FORTRAN E-13

E.3.8 RAN Function

The RAN function subprogram returns apseudo-random number as the
function value. It has the form:

R.AN (il , i2)

i1,i2
Are INTEGER*2 variables or array elements that contain the seed for
computing the random number. The values of i 1 and i2 are updated
during the computation to contain the updated seed.

Notes

• The algorithm for computing the random number value is identical to
the algorithm used in the RANDU subroutine (see Section E.3.9).

• The RAN function is equivalent to the following source statements:

FUNCTION RAN (I1,I2)
CALL RANDU (I1,I2,RAN)
RETURN
END

• This RAN function is distinguished from the single argument RAN
function by the number of arguments. The single argument form uses
a statistically better algorithm and is recommended when compatibility
with PDP-11 FORTRAN is not important.

E.3.9 RANDU Subroutine

The RANDU subroutine computes apseudo-random number as a single-
precision value uniformly distributed in the following range:

0.0 .LE. value .LT. 1.0

A call to the RANDU subroutine has the form:

CALL RANDU (il,i2,x)

E-14 Compatibility: VAX FORTRAN and PDP-11 FORTRAN

i1,i2
Are INTEGER*2 variables or array elements that contain the seed for
computing the random number. The values of i1 and i2 are updated
during the computation to contain the updated seed.

x
Is a real variable or array element where the computed random number is
stored.

Notes

The algorithm for computing the random number value is as follows:

If I1=0, I2=0, set the generator base as follows:

Otherwise, set it as follows:

X(n+1) _ (2**16+3)* X(n) mod 2**32

Store generator base X(n=1) in I1,I2.

Result is X(n+1) scaled to a real value Y(n=1), for 0.0 .LE. Y(n=1) .LT. 1.

E.3.10 R50ASC Subroutine

The R50ASC subroutine converts Radix-50 values to Hollerith strings. A
call to the R50ASC subroutine has the form:

CALL R50ASC (icnt,input,output)

icnt
Is an INTEGER*2 value specifying the number of ASCII characters to be
produced.

input
Is a numeric variable or array element containing the Radix-50 data. The
number of words of input equals (icnt+2)/3.

output
Is a numeric variable or array element where the Hollerith characters are
to be stored.

Compatibility: VAX FORTRAN and PDP-11 FORTRAN E-15

Notes

If the undefined Radix-50 code is detected or if the Radix-50 word exceeds
174777 (octal), question marks are placed in the output location.

E.3.11 USEREX Subroutine

The USEREX subroutine specifies a routine to be called as part of the
program termination process. This allows clean-up operations in non-
FORTRAN routines.

You can establish a termination handler directly by calling the system
service routine SYS$DCLEXH. A call to the USEREX subroutine has the
form:

CALL USEREX (name)

name

Specifies the name of the routine to be called. The routine name must
appear in an EXTERNAL statement in the program unit.

Notes

• The user exit subroutine is called as a VMS termination handler. See
the VMS System Services Reference Manual for information regarding
termination handlers.

• Do not attempt to perform FORTRAN I/O operations as part of an exit
handler.

E-16 Compatibility: VAX FORTRAN and PDP-11 FORTRAN

Appendix F

Diagnostic Messages

Diagnostic messages related to a VAX FORTRAN program can come from
the compiler, the linker, or the VAX run-time system:

• The VAX FORTRAN compiler detects syntax errors in the source pro-
gram, such as unmatched parentheses, invalid characters, misspelled
keywords, and missing or invalid parameters.

• The VAX linker detects errors in object file format and source program
errors such as undefined symbols.

• The VAX run-time system reports errors that occur during execution.

These messages are displayed on your terminal or in your log file. The
format of the messages is as follows:

%SOURCE-CLASS-MNEMONIC, message text

Diagnostic Messages F-1

The contents of the fields of information in diagnostic messages are as
follows:

The percent sign identifies the line as a message.

SOURCE A two-, three-, or four-letter code that identifies the origin
of the message; that is, whether it came from the compiler
(FORT), the linker (LINK), or the run-time system (FOR, SS, or
MTH).

CLASS A single character that determines message severity. The four
classes of error messages are: Fatal (F), Error (E), Warning (W),
and Informational (I). The definition of each class depends on
the source of the message. Definitions for each of the classes
are given in the section that details the error messages given by
a particular source.

MNEMONIC A 6- to 9-character name that is unique to that message.

message text Explains the event that caused the message to be generated.

This appendix lists and describes the messages issued by the compiler and
the run-time system. It also provides a summary of the DICTIONARY
messages that may accompany Common Data Dictionary messages.
Linker messages are described in the VMS System Messages and Recovery
Procedures Reference Volume.

F.1 Diagnostic Messages from the VAX FORTRAN Compiler

A diagnostic message issued by the compiler describes the detected error
and, in some cases, contains an indication of the action taken by the
compiler in response to the error.

Besides reporting errors detected in source program syntax, the compiler
issues messages indicating errors that involve the compiler itself, such as
I/O errors.

F-2 Diagnostic Messages

F.1.1 Source Program Diagnostic Messages

The severity-level classes of source program diagnostic messages, in order
of greatest to least severity, are as follows:

Code Description

F Fatal; must be corrected before the program can be compiled. No object
file is produced if an F-class error is detected during compilation.

E Error; should be corrected. An object file is produced despite the E-class
error, but the output or program result may be incorrect.

W Warning; should be investigated by checking the statements to which
W-class diagnostic messages apply. Warnings are issued for statements
that use acceptable, but nonstandard, syntax and for statements cor-
rected by the compiler. An object file is produced, but the program
results may be incorrect. Note that W-class messages are produced
unless the /NOWARNINGS qualifier is specified in the FORTRAN
command.

I Information; not an error message and does not call for corrective
action. However, the I-class message informs you that either a correct
VAX FORTRAN statement may have unexpected results or you have
used a VAX extension to FORTRAN-77.

Typing mistakes are a likely cause of syntax errors; they can cause the
compiler to generate misleading diagnostic messages. Beware especially of
the following:

• Missing comma or parenthesis in a complicated expression or
FORMAT statement.

• Misspelled variable names. The compiler may not detect this error, so
execution can be affected.

• Inadvertent Line continuation mark. This can cause a diagnostic
message for the preceding line.

• Extension of the statement line past column 72. This can cause
diagnostic messages because the statement is terminated early.

• Confusion between the digit 0 and the uppercase letter O. This can
result in variable names that appear identical to you but not to the
compiler.

Diagnostic Messages F-3

Another source of diagnostic messages is the inclusion of invalid ASCII
characters in the source program. With the exception of the tab, space,
and form-feed characters, nonprinting ASCII control characters are not
valid in a FORTRAN source program. As the source program is scanned,
such invalid characters are replaced by a question mark (?). However,
because the question mark cannot occur in a FORTRAN statement, a
syntax error usually results.

Because a diagnostic message indicates only the immediate cause, you
should always check the entire source statement carefully.

The following examples show how source program diagnostic messages
are displayed in interactive mode on your screen. Example F-1 shows
how these messages appear in listings.

'/.FORT-W-FMTEXTCOM, Extra comma in format list
[FORMAT (I3,)] in module MORTGAGE at line 13

'/.FORT-F-UNDSTALAB, Undefined statement label
[66] in module MORTGAGE at line 19

'/.FORT-F-ENDNOOBJ, DB1:[SMITH]MOR.FOR;1 completed
with 2 diagnostics -object deleted

Table F-1 is an alphabetical list of FORTRAN diagnostic error messages.
For each message, the table gives a mnemonic, an error code level, the
text of the message, and an explanation of the message.

F-4 Diagnostic Messages

Example F-1: Sample Diagnostic Messages (Listing Format)

0001 C Program to calculate monthly mortgage payments
0002
0003 PROGRAM MORTGAGE
0004
0005 TYPE 10
0006 10 FORMAT (' ENTER AMOUNT OF MORTGAGE ')
0007 ACCEPT 20, IPV
0008 20 FORMAT (I6)
0009
0010 TYPE 30
0011 30 FORMAT (' ENTER LENGTH OF MORTGAGE IN MONTHS ')
0012 ACCEPT 40, IMON
0013 40 FORMAT (I3,)
0014
%FORT-W-FMTEXTCOM, Extra comma in format list

[FORMAT (I3,)] in module MORTGAGE at line 13

0015
0016
0017

50
TYPE 50
FORMAT (' ENTER ANNUAL INTEREST RATE ')
ACCEPT 60, YINT

0018 60 FORMAT (F6.4)

0019 GO TO 66
0020 65 YI = YINT/12 !Get monthly rate
0021 IMON = -IMON
0022 FIPV = IPV * YI
0023 YI = YI + 1
0024 FIMON = YI**IMON
0025 FIMON = 1 - FIMON
0026 FMNTHLY = FIPV/FIMON
0027
0028 TYPE 70, FMNTHLY
0029 70 FORMAT (' MONTHLY PAYMENT EQUALS ',F7.3)
0030 STOP
0031 END
'/°FORT-F-UNDSTALAB, Undefined statement label

[66] in module MORTGAGE at line 19

Diagnostic Messages F-5

Table F-1: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

ADJARRBOU ~ E Adjustable array bounds must be dummy arguments or in common

Variables specified in dimension declarator expressions must either be
subprogram dummy arguments or appear in common.

ADJARRUSE F Adjustable array used in invalid context

A reference to an adjustable array was made in a context where such
a reference is not allowed.

ADJLENUSE F Passed-length character name used in invalid context

A reference to apassed-length character array or variable was made
in a context where such a reference is not allowed.

AGGREFSIZ F Aggregate reference exceeds 65535 bytes

Any aggregate reference larger than 65535 bytes cannot be used in
an I/O list or as an actual or dummy argument.

ALTRETLAB F Alternate return label used in invalid context

An alternate return argument cannot be used in a function reference.

ALTRETOMI E Alternate return omitted in SUBROUTINE or ENTRY statement

An asterisk was missing in the argument list of a subroutine for
which an alternate return was specified. Examples:

•

SUBROUTINE XYZ(A,B)

RETURN 1

•

ENTRY ABC (Q , R)

RETURN I+4

F-6 Diagnostic Messages

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

ALTRETSPE F Alternate return specifier invalid in FUNCTION subprogram

The argument list of a FUNCTION declaration contains an asterisk, or
a RETURN statement in a function subprogram specifies an alternate
return. Examples:

INTEGER FUNCTION TCB(ARG,*,X)

•

FUNCTION IMAX

RETURN I**

END

ARIVALREQ F Character expression where arithmetic value required

An expression that must be arithmetic (INTEGER, REAL, LOGICAL,
or COMPLEX) was of type CHARACTER.

ASSARRUSE F Assumed size array name used in invalid context

An assumed-size array name was used in a context in which the size
of the array was required, for example, in an I/O list.

ASSDOVAR W Assignment to DO variable within loop

The control variable of a DO loop was altered within the range of a
DO statement.

Diagnostic Messages F-7

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

ATTRIERR I

BADEND

BADFIELD F

BADRECREF F

CDDALNARY I

F-8 Diagnostic Messages

COMMON attributes conflict, using the default attribute

This error only occurs in conjunction with the CDEC$ PSECT
compiler directive statement and under any of the following
circumstances:

• A common block is declared as both GBL (global} and LCL
(local), both WRT (write) and NOWRT (nowrite), or both SHR
(shared) and NOSHR (noshared).

• More than one alignment (ALIGN=) to the COMMON block is
specified.

• The following combination of compiler directive statements
occurs:

CPAR$ SHARED com_blk
and
CDEC$ PSECT /com_blk/ ATTRI=something-not-page-alignment

• An alignment value exceeding the legal range is specified. The
alignment attribute can only take the value of 0 through 9.

F END [STRUCTURE I UNION I MAP) must match top

A STRUCTURE, UNION, or MAP statement did not have a corre-
sponding END STRUCTURE, END UNION, or END MAP statement,
respectively.

Field name not defined for this structure

A field name not defined in a structure was used in a qualified
reference.

Aggregate reference where scalar reference required

An aggregate reference was used where a scalar reference was
required.

CDD description specifies an aligned array (unsupported)

The CDD description contained an array field whose elements have
an alignment that VAX FORTRAN cannot accommodate.

When this error is encountered, the array is replaced by a structure of
the appropriate size.

Table F-1 (Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

CDDBITSIZ F CDD field specifies a bit size or alignment. Size or address rounded
up to byte alignment.

The CDD's bit datatype and bit alignment are not supported by VAX
FORTRAN.

CDDERROR I CDD description extraction condition

The VAX FORTRAN compiler was in the process of extracting a data
definition from the Common Data Dictionary when an error occurred.
See the accompanying messages for more information.

CDDINIVAL I CDD description contains Initial Value attribute (ignored)

A field that specified an initial value was present in the CDD
description being expanded.

When this error is encountered, the initial value is ignored.

CDDNOTSTR F CDD record is not a structure

A CDD record description was not structured. VAX FORTRAN
requires structure definitions (elementary field descriptions in CDDL).

CDDRECDIM F CDD record is dimensioned

VAX FORTRAN does not support dimensioned structures, for exam-
ple, arrays of structures.

CDDSCALED W CDD description specifies a scaled data type

VAX FORTRAN does not support scaled data types. The data
described by the CDD specified a scaled component.

CDDTOOBIG E Attributes for some member of CDD record description exceed
implementation's limit for member complexity

Some member of the CDD record description had too many at-
tributes and created a program that was too large. Change the CDD
description to make the field description smaller.

CDDTOODEEP E Attributes for CDD record description exceed implementation's limit
for record complexity

The CDD record description contained structures that were nested too
deeply. Modify the CDD description to reduce the level of nesting in
the record description.

Diagnostic Messages F-9

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

CHANAMINC E Character name incorrectly initialized with numeric value

A character data item with a length greater than one was initialized
with a numeric value in a DATA statement. Example:

CHARACTER*4 A
DATA A/14/

CHASBSLIM F Character substring limits out of order

The first character position of a substring expression was greater than
the last character position. Example:

C(5:3)

CHAVALREQ F Arithmetic expression where character value required

COLMAJOR F

COMVARDECL F

CONMEMEQV E

CONSIZEXC E

An expression that must be of type CHARACTER was of another
data type.

CDD description specifies that it is not a column major array

FORTRAN supports only column-major arrays. Change the CDD
description to specify acolumn-major array.

Common variable cannot be declared CONTEXT_SHARED or
PRIVATE

A variable within a common block cannot be specified in a
CONTEXT_SHARED or PRIVATE compiler directive statement.
Entire common blocks can be declared shared or private, but indi-
vidual elements within them cannot be declared context-shared or
private.

Conflicting memory attributes in an equivalenced group

Through the use of an EQUIVALENCE statement, certain memory
locations were given conflicting memory attributes (shared or context-
shared and private).

Constant size exceeds variable size in data initialization

A constant used for data initialization was larger than its correspond-
ing variable.

DBGOPT I The NOOPTIMIZE qualifier is recommended with the DEBUG
qualifier

Optimizations performed by the compiler can cause several different
kinds of unexpected behavior when using VMS Debugger. See
Chapter 11 for more information.

F-10 Diagnostic Messages

Table F-1 (Copt.►: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

DEFSTAUNK I Default STATUS='UNKNOWN' used in OPEN statement

The OPEN statement default STATE'S='UNKNOWN' may cause an
old file to be inadvertently modified.

DEPENDITEM I CDD description contains Depends Item attribute (ignored)

VAX FORTRAN does not support CDD's Depends Item attribute. No
action is required.

DICTABORT F DICTIONARY processing of CDD record description aborted

The VAX FORTRAN compiler was unable to process the CDD record
description. See the accompanying messages for further information.

DIRSTRREQ I Directive requires string constant, directive ignored

This error only occurs in conjunction with the use of the CDEC$
compiler directive statements: TITLE, SUBTITLE, and IDENT.

String values for the TITLE, SUBTITLE, and IDENT directives
cannot be more than 31 characters. Any other values, including
PARAMETER statement constants that are defined to be strings, are
invalid on these directives.

ENTDUMVAR F ENTRY dummy variable previously used in executable statement

The dummy arguments of an ENTRY statement were not used in a
previous executable statement in the same program unit.

EQVEXPCOM F EQUIVALENCE statement incorrectly expands a common block

A common block cannot be extended beyond its beginning by an
EQUIVALENCE statement.

EXCCHATRU E Non-blank characters truncated in string constant

A character or Hollerith constant was converted to a data type that
was not large enough to contain all of the significant characters.

EXCDIGTRU E Non-zero digits truncated in hex or octal constant

An octal or hexadecimal constant was converted to a data type that
was not large enough to contain all the significant digits.

EXCNAMDAT E Number of names exceeds number of values in data initialization

The number of constants specified in a DATA statement must match
the number of variables or array elements to be initialized. When
a mismatch occurs, any extra variables or array elements are not
initialized.

Diagnostic Messages F-11

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

EXCVALDAT E Number of values exceeds number of names in data initialization

The number of variables or array elements to be initialized must
match the number of constants specified in data initialization. When
a mismatch occurs, any extra constant values are ignored.

EXPSTAOVE F Compiler expression stack overflow

An expression was too complex or too many actual arguments were
included in a subprogram reference. A maximum of 255 actual
arguments can be compiled. You can subdivide a complex expression
or reduce the number of arguments.

EXTARYUSE I Extension to FORTRAN-77: Nonstandard use of array

One of the following extensions was detected:

• An array was used as a FILE specification in an OPEN statement.

• The file name of an INQUIRE statement was a numeric scalar
reference or a numeric array name reference

EXTCATDARG I Extension to FORTRAN-77: Concatenation of dummy argument

A character dummy argument appeared as an operand in a concate-
nation operation.

EXTCHAFOL E Extra characters following a valid statement

Superfluous text was found at the end of a syntactically correct
statement. Check for typing or syntax errors.

EXTCHARREQ I Extension to FORTRAN-77: Character required

A character variable was initialized with a noncharacter value by
means of a DATA statement.

EXTDATACOM I Extension to FORTRAN-77: Nonstandard DATA initialization

One of the following extensions occurred:

• An element in a blank common block was data initialized.

• An element of a named common block was data initialized
outside of the BLOCK DATA program unit.

F-12 Diagnostic Messages

Table F-1 (Coot.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

EXTDATORD I Extension to FORTRAN-77: DATA statement out of order

A DATA statement occurred prior to a declaration statement. All
DATA statements must occur after the declaration section of a
program.

EXTILBRNCH I Extension to FORTRAN-77: Nonstandard branch into block

A nonstandard branch into a DO loop or IF block was detected.

EXTILDOCNT I Extension to FORTRAN-77: Negative implied-Do iteration count

The iteration count of an implied DO was negative.

EXTMISSUB I Extension to FORTRAN-77: Missing array subscripts

Only one subscript was used to reference amulti-dimensional array
in an EQUIVALENCE statement.

EXTMIXCOM I Extension to FORTRAN-77: Mixed numeric and character elements
in common

A common block must not contain both numeric and character data.

EXTMIXEQV I Extension to FORTRAN-77: Mixed numeric and character elements
in EQUIVALENCE

A numeric variable or numeric array element cannot be equivalenced
to a character variable or character array element.

Diagnostic Messages F-13

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

EXTOPERAT I Extension to FORTRAN-77: Nonstandard operation

One of the following operations was detected:

• A logical operand and a nonlogical operand were used in the
same operation.

• Areal type expression and a complex type expression were used
in the same statement.

• A character operand and a noncharacter operand were used in
the same operation.

• A nonlogical expression was assigned to a logical variable.

• A noncharacter expression was assigned to a character variable.

• A character dummy argument appeared in a concatenation
operation and the result of the expression was not assigned to a
character variable.

• Logical operators were used with nonlogical operands.

• Arithmetic operators were used with nonnumeric operands.

EXTRECUSE I Extension to FORTRAN-77: Nonstandard use of field reference

A record reference (for example, record-name.field-name) was used in
a program compiled with the /STANDARD=[SYNTAX I ALL] qualifier
on the FORTRAN command line.

EXTUNDFUNC I Extension to FORTRAN-77: Function or Entry name undefined

A value was not assigned to either the function name or the entry
point name within the body of the function.

EXT COM I Extension to FORTRAN-77: nonstandard comment

FORTRAN-77 allows only the characters "C" and "*" to begin a
comment line; "c", "D", "d", and "!" are extensions to FORTRAN-77.

F-14 Diagnostic Messages

Table F-1 (Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

EXT_CONST I Extension to FORTRAN-77: nonstandard constant

The following constant forms are extensions to FORTRAN-77:

Form Example

Hollerith nH

Typeless 'xxxx'X or '0000'O

Octal "0000 or O0000

Hexadecimal Zxxxx

Radix-50 nR

Complex with
PARAMETER
components

COMPLEX*16 (www.xxxDn, yyy.zzzDn)

REAL* 16 yyy.zzzQn

EXT_DOEXPR I Extension to FORTRAN-77: Nonstandard loop expression

The upper bound expression, lower bound expression, or increment
expression of a DO loop was not of type integer, real, or double
precision.

EXT_FMT I Extension to FORTRAN-77: nonstandard FORMAT statement item

The following format field descriptors are extensions to FORTRAN-77:

$,O,Z All forms

A,L,I,F,E,G,D Default field width forms

P Without scale factor

Diagnostic Messages F-15

Table F-1 ~Cont.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

EXT_INTREQ I Extension to FORTRAN-77: Integer expression required

One of the following items was not of type integer:

• A logical unit number

• The record specifier, REC=recspec

• The arithmetic expression of a computed GOTO statement

• The RETURN [I]

• A subscript expression

• Array dimension bounds

• Character substring bounds expressions

EXT_KEY I Extension to FORTRAN-77: nonstandard keyword

A nonstandard keyword was used.

EXT_LEX I Extension to FORTRAN-77: nonstandard lexical item

One of the following nonstandard lexical items was used:

• An alternate return specifier with an ampersand (&) in a CALL
statement

• The apostrophe (') form of record specifier in a direct access I/O
statement

• A variable format expression

EXT_LOGREQ I Extension to FORTRAN-77: Logical expression required

One of the following syntax extensions was detected:

• A numeric expression was used in a logical IF statement.

• A numeric expression v~~as used in a block IF statement.

• A value other than .TRUE. or .FALSE. was assigned to a logical
variable.

• A logical variable was initialized with a nonlogical value by
means of a DATA statement.

F-16 Diagnostic Messages

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

EXT NAME I Extension to FORTRAN-77: nonstandard name

A name longer than six characters or one that contained a dollar sign
($) or an underscore (_) was used.

EXT_OPER I Extension to FORTRAN-77: nonstandard operator

The operators .XOR., %VAL, %REF, %DESCR, and %LOC are
extensions to FORTRAN-77. The standard form of .XOR. is .NEQV.
The %operators are extensions provided to allow access to non-
FORTRAN parts of the VMS environment.

EXT RETTYP I Extension to FORTRAN-77: Nonstandard function return type

One of the following conditions was detected:

• The function was not declared with a standard data type.

• The entry point was not declared with a standard data type.

EXT_SOURC I Extension to FORTRAN-77: tab indentation or lowercase source

The use of tab indentation or lowercase letters in source code is an
extension to FORTRAN-77.

EXT_STMT I Extension to FORTRAN-77: nonstandard statement type

A nonstandard statement type was used.

EXT_SYN I Extension to FORTRAN-77: nonstandard syntax

One of the following syntax extensions was specified:

• PARAMETER name = value-Error: No parentheses

• type name/value/—Error: Data initialization in type declaration

• DATA (ch (exp : exp) , v=e2) /values/—Substring initialization with
implied-DO in DATA statement

• CALL name (arg2 , , arg3) --Error: Null actual argument

• READ () , iolist-Error: Comma between I/O control and
element lists

• PARAMETER (name2=ABS (namely) —Error: Function use in
PARAMETER statement

• ei ** -e2-Error: Two consecutive operators

Diagnostic Messages F-17

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

EXT_TYPE I Extension to FORTRAN-77; nonstandard data type specification

The following DATA type specifications are extensions to
FORTRAN-77. The FORTRAN-77 equivalent is given where avail-
able. This message is issued when these types are used in the
IMPLICIT statement or in a numeric type statement.

Extension Standard

BYTE

LOGICAL* 1

LOGICAL*2 LOGICAL (with /NOI4 specified only)

LOGICAL*4 LOGICAL

INTEGER*2 INTEGER (with /NOI4 specified only)

INTEGER*4 INTEGER

REAL*4 REAL

REAL*8 DOUBLE PRECISION

REAL*16

COMPLEX*8 COMPLEX

COMPLEX* 16

DOUBLE COMPLEX

FLDNAME F Structure field is missing a field name

Unnamed fields are not allowed. The effect of an unnamed field can
be achieved by using %FILL in place of a field name in a typed data
declaration.

FMTEXTCOM W Extra comma in format list

A format list contained an extra comma. Example: FORMAT (I4 ,)

FMTEXTNUM E Extra number in format list

A format list contained an extraneous number. Example: FORMAT
(I4,3)

FMTINVCHA E Format item contains meaningless character

An invalid character or a syntax error was detected in a FORMAT
statement.

F-18 Diagnostic Messages

Table F-1 (Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

FMTINVCON E Constant in format item out of range

A numeric value in a FORMAT statement exceeds the allowable
range. Refer to the VAX FORTRAN Language Reference Manual for
information about range limits.

FMTMISNUM E Missing number in format list

An expected number was missing from a format list. Example: FORMAT
(F6.)

FMTMISSEP E Missing separator between format items

A required separator character was omitted between fields in a
FORMAT statement.

FMTNEST E Format groups nested too deeply

Format groups cannot be nested beyond eight levels.

FMTPAREN E Unbalanced parentheses in format list

The number of right parentheses must match the number of left
parentheses.

FMTSIGN E Format item cannot be signed

A signed constant is valid only with the P format code.

HOLCOURED E Count of Hollerith or Radix-50 constant too large, reduced

The value specified by the integer preceding the H or R was greater
than the number of characters remaining in the source statement.

IDOINVOP F Invalid operation in implied-DO list

An invalid operation was attempted in an implied-DO list in a
DATA statement, for example, a function reference in the subscript
or substring expression of an array or character substring reference.
Example:

DATA (A (SIN(REAL(I))), I=1,10) /101./

IDOINVPAR F Invalid DO parameters in implied-DO list

An invalid control parameter was detected in an implied-DO list in a
DATA statement, for example, an increment of zero.

Diagnostic Messages F-19

Table F-1 (Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

IDOINVREF F Invalid reference to name in implied-DO list

A control parameter expression in an implied-DO list in a DATA
statement contained a name that was not the name of a control
variable within the scope of any implied-DO list. Example:

DATA (A(J), J=1,10),(B(I), I=J,K) /1001./

Both J and K in the second implied-DO list are invalid names.

IDOSYNERR F Syntax error in implied-DO list in data initialization

Improper syntax was detected in an implied-DO list in data initializa-
tion, for instance, improperly nested parentheses.

ILBRANCH E Illegal branch into or out of parallel DO-loop

A branch into or out of a parallel DO loop is not allowed.

ILDIRSPEC E Illegal directive specification

A directive (either CPAR$ or CDEC$) was detected in the first 5
columns of a source code statement. The remainder of the directive
contains illegal syntax.

ILDOPARCTL F Illegal parallel DO-loop, control variable must be declared INTEGER

Only integer control variables can be used with parallel DO loops.

ILDOPARDIR E DO_PARALLEL directive must be followed by DO statement,
directive ignored

The first executable statement after a DO_PARALLEL compiler direc-
tive statement (CPAR$ DO_PARALLEL) must be a DO statement.

ILPARSTMT E Statement not permitted inside parallel DO-loop

I/O statements and RETURN, STOP, and PAUSE statements are not
permitted inside a parallel DO-loop.

IMPDECLAR W Use of implicit with declaration warnings

An IMPLICIT statement was used in a program compiled with
the /WARNINGS=DECLARATIONS qualifier on the FORTRAN
command line.

IMPMULTYP E Letter mentioned twice in IMPLICIT statement, last type used

A letter was given an implicit data type more than once. When this
error is encountered, the last data type given is used.

F-20 Diagnostic Messages

r1
Table F-1 (Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

IMPNONE E Untyped name, must be explicitly typed

The displayed name was not defined in any data type declaration
statement, and an IMPLICIT NONE statement was specified. Check
that the name was not accidentally created by an undetected syntax
error. Example:

DO 10 I = 1.10

The apparent DO statement is really an assignment to the accidentally
created variable DOlOI.

IMPSYNERR E Syntax error in IMPLICIT statement

Improper syntax was used in an IMPLICIT statement.

INCDONEST F DO or IF statement incorrectly nested

One of the following conditions was encountered:

• A statement label specified in a DO statement was used previ-
ously. Example:

10 I=I+1

J = J + 1

DO 10 K=1,10

Diagnostic Messages F-21

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

• ADO loop contains an incomplete DO loop or IF block.
Examples:

DO 10 I=1,10

J = J + 1

DO 20 K=1,10

J = J + K

10 CONTINUE

The start of the incomplete IF block can be a block IF, ELSE IF,
or ELSE statement.

DO 10 I=1,10

J = J + I

IF (J .GT 20) THEN

J = J - 1

ELSE

J = J + 1

10 CONTINUE

END IF

INCFILNES F INCLUDE files and/or DICTIONARY statements nested too deeply

Up to 10 levels of nested INCLUDE files and DICTIONARY state-
ments are permitted.

INCFUNTYP F Inconsistent function data types

The function name and entry points in a function subprogram must
be consistent within one of three groups of data types:

Group 1: All numeric types except REAL* 16, COMPLEX* 16
Group 2: REAL* 16, COMPLEX* 16
Group 3: Character

Example:

CHARACTER*15 FUNCTION I

REAL*4 G

ENTRY G

F-22 Diagnostic Messages

Table F-1 ~Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

INCLABUSE F Inconsistent usage of statement label

Labels of executable statements were confused with labels of
FORMAT statements or with labels of nonexecutable statements.
Example:

INCLENMOD F

GO TO 10

10 FORMAT (I5)

Incorrect length modifier in declaration

An unacceptable length was specified in a data type declaration, for
example:

INTEGER PIPES*8

INCMODNAM F Module name not found in library

When an INCLUDE statement of the form INCLUDE ' (module) ' is used,
several text libraries are searched for the specified module name.
These are, in order:

1. Libraries specified on the FORTRAN command line with the
/LIBRARY qualifier

2. The library specified using the logical name FORT$LIBRARY

3. The VAX FORTRAN system text library,
SYS$LIBRARY: FORSYSDEF.

The INCMODNAM message is issued when the specified module
name cannot be found in any of the libraries. Note that one of the
causes of this search failure may be an open failure on one of the
libraries. If a "$LIBRARY/LIST" command shows the module to be
present in the library, check to ensure that the library itself can be
read by the compiler.

INCOMPNSYSL W Unable to open system definition text library
SYS$LIBRARY:FORSYSDEF.TLB

In an attempt to include a text library, the compiler was unable to
open the FORTRAN system definition library.

INCOPEFAI F Open failure on INCLUDE file

The specified file could not be opened, possibly due to an incorrect
file specification, nonexistent file, unmounted volume, or a protection
violation.

Diagnostic Messages F-23

Table F-1 (Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

INCOPNFORT W Unable to open text library defined by FORT$LIBRARY

In an attempt to include a text library, the compiler was unable to
open the text library defined by the logical name FORT$LIBRARY.

INCSTAFUN E Inconsistent statement function reference

The actual arguments in a statement function reference did not agree
in either order, number, or data type with the formal arguments
declared.

INCSYNERR F Syntax error in INCLUDE file specification

The file-name string was not acceptable (invalid syntax, invalid
qualifier, undefined device, and so on).

INQUNIT F Missing or invalid use of UNIT or FILE specifier in INQUIRE
statement

An INQUIRE statement must have a UNIT specifier or a FILE
specifier, but not both.

INTFUNARG E Arguments incompatible with intrinsic function, assumed EXTERNAL

A function reference was made using an intrinsic function name,
but the argument list does not agree in order, number, or type with
the intrinsic function requirements. When this error is encountered,
the function is assumed to be supplied by you as an EXTERNAL
function.

INTVALREQ F Non-integer expression where integer value required

An expression that must be of type integer was of some other data
type.

INVACTARG E Invalid use of intrinsic function name as actual argument

A generic intrinsic function name was used as an actual argument.

INVASSVAR E Invalid ASSOCIATEVARIABLE specification

An ASSOCIATEVARIABLE specification in an OPEN or DEFINE FILE
statement was a dummy argument or an array element.

F-24 Diagnostic Messages

Table F-1 (Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

INVCHAUSE E Invalid character used in constant

An invalid character was detected in a constant. The following
characters are valid:

Hexadecimal: 0-9, A—F, a—f

Octal: 0-7

Radix-50: A—Z, 0-9, $, period, or space

For Radix-50, a space is substituted for the invalid character. For
hexadecimal and octal, the entire constant is set to zero.

INVCONST E Arithmetic error while evaluating constant or constant expression

The specified value of a constant was too large or too small to be
represented.

INVCONSTR F Invalid control structure using ELSE IF, ELSE, or END IF

The order of ELSE IF, ELSE, or END IF statements was incorrect.

ELSE IF, ELSE, and END IF statements cannot stand alone. ELSE
IF and ELSE must be preceded by either a block IF statement or an
ELSE IF statement. END IF must be preceded by either a block IF,
ELSE IF, or ELSE statement. Examples:

DO 10 I=1,10

J = J + I

ELSE IF (J .LE. K) THEN

Error: ELSE IF preceded by a DO statement.

IF (J .LT. K) THEN

J = I + J

ELSE

J = I - J

ELSE IF (J .EQ. K) THEN

END IF

Error: ELSE IF preceded by an ELSE statement.

INVDEVSPE E Invalid device specified, analysis data file not produced

The file specified by the /ANALYSIS_DATA qualifier could not be
written because it was not a random access file.

Diagnostic Messages F-25

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

INVDOTERM W Statement cannot terminate a DO loop

The terminal statement of a DO loop cannot be a GO TO, arith-
metic IF, RETURN, block IF, ELSE, ELSE IF, END IF, DO, or END
statement.

INVDUMARG E Dummy argument invalid in parallel memory
directive

Dummy arguments cannot be specified on a parallel memory direc-
tive.

INVENDKEY W Invalid END= keyword, ignored

The END keyword was used illegally in a WRITE, REWRITE, direct
access READ, or keyed access READ statement.

INVENTRY E ENTRY within DO loop or IF block, statement ignored

An ENTRY statement is not allowed within the range of a DO loop
or IF block.

INVEQVCOM F Invalid equivalence of two variables in common

Variables in common blocks cannot be equivalenced to each other.

INVFUNUSE F Invalid use of function name in CALL statement

A CALL statement referred to a subprogram name that was used as a
CHARACTER, REAL* 16, or COMPLEX* 16 function. Example:

IMPLICIT CHARACTER*10(C)

CSCAL =CFUNC (X)

CALL CFUNC (X)

INVINIVAR E Invalid initialization of variable not in common

An attempt was made in a BLOCK DATA subprogram to initialize a
variable that was not in a common block.

INVINTFUN E Name used in INTRINSIC statement is not an intrinsic function

A function name that appeared in the INTRINSIC statement was not
an intrinsic function.

INVIOSPEC F Invalid I/O specification for this type of I/O statement

A syntax error was found in the portion of an I/O statement that
precedes the I/O list. Examples:

TYPE (6) , J
WRITE 100, J

F-26 Diagnostic Messages

r'1
Table F-1 (Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

INVKEYOPE F Incorrect keyword in OPEN, CLOSE, or INQUIRE statement

An OPEN, CLOSE, or INQUIRE statement contained a keyword that
was not valid for that statement.

INVLEFSID F Left side of assignment must be variable or array element

The symbolic name to which the value of an expression is assigned
must be a variable, array element, or character substring reference.

INVLEXEME F Variable name, constant, or expression invalid in this context

An entity was used incorrectly; for example, the name of a subpro-
gram was used where an arithmetic expression was required.

INVLOGIF F Statement cannot appear in logical IF statement

A logical IF statement must not contain a DO statement or another
logical IF, IF THEN, ELSE IF, ELSE, END IF, or END statement.

INVNMLELE F Invalid NAMELIST element

A dummy argument or element other than variable or array name
appeared in a NAMELIST declaration.

INVNUMSUB F Number of subscripts does not match array declaration

More or fewer dimensions than were declared for the array were
referenced.

INVPERARG F Invalid argument to %VAL, %REF, %DESCR, or %LOC

The argument specified for one of the built-in functions was not
valid. Examples:

• '/,vAL (3.5Do) —Error: Argument cannot be REAL*8, REAL* 16,
character, or complex.

• '/,Loy (x+Y) —Error: Argument must not be an expression.

INVPERUSE E %VAL, %REF, or %DESCR used in invalid context

The argument list built-in functions %VAL, %REF, and %DESCR
cannot be used outside an actual argument list. Example:

X = '/.REF (Y)

INVQUAL I Invalid qualifier or qualifier value in OPTIONS statement

An invalid qualifier or qualifier value was specified in the OPTIONS
statement. When this error is encountered, the qualifier is ignored.

Diagnostic Messages F-27

Table F-1 (Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

INVRECUSE F Invalid use of record or array name

A statement in the program violated one of the following rules:

• An aggregate cannot be assigned to a nonaggregate or to an
aggregate with a structure that is not the same.

• An array name reference cannot be qualified.

• Aggregate references cannot be used in I/O lists of formatted
I/O statements.

INVREPCOU E Invalid repeat count in data initialization, count ignored

The repeat count in a data initialization was not an unsigned,
nonzero integer constant. When this error is encountered, the count
is ignored.

INVSBSREF E Substring reference used in invalid context

A substring reference to a variable or array that is not of type
character was detected. Example:

REAL X (10)
Y = X(J:K)

INVSTALAB W Invalid statement label ignored

An improperly formed statement label (namely, a label containing
letters) was detected in columns 1 to 5 of an initial line. When this
error is encountered, the statement label is ignored.

INVSUBREF F Subscripted reference to non-array variable

A variable that is not defined as an array cannot appear with
subscripts.

INVTYPUSE F Name previously used with conflicting data type

A data type was assigned to a name that had already been used in a
context that required a different data type.

IODUPKEY F Duplicated keyword in I/O statement

Each keyword subparameter in an I/O statement or auxiliary I/O
statement can be specified only once.

F-28 Diagnostic Messages

Table F-1 (Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

IOINVFMT F Format specifier in error

The format specifier in an I/O statement was invalid. It must be one
of the following:

• The label of a FORMAT statement

• An asterisk (*) in alist-directed I/O statement

• Arun-time format specifier: variable, array element, or character
substring reference

• An integer variable that was assigned a FORMAT label by an
ASSIGN statement

IOINVKEY F Invalid keyword for this type of I/O statement

An I/O statement contained a keyword that cannot be used with that
type of I/O statement.

IOINVLIST F Invalid I/O list element for input statement

An input statement I/O list contained an invalid element, such as an
expression or a constant.

IOSYNERR F Syntax error in I/O list

Improper syntax was detected in an I/O list.

LABASSIGN F Label in ASSIGN statement exceeds INTEGER*2 range

A label whose value is assigned to an INTEGER*2 variable by an
ASSIGN statement must not be separated by more than 32K bytes
from the beginning of the code for the program unit.

LENCHAFUN E Length specified must match CHARACTER FUNCTION declaration

The length specifications for all ENTRY names in a character function
subprogram must be the same. Example:

CHARACTER*15 FUNCTION F

CHARACTER*20 G

ENTRY G

LOGVALREQ F Non-logical expression where logical value required

An expression that must be of type LOGICAL was of another data
type.

Diagnostic Messages F-29

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

LOG4LCKREQ E Lock variable must be declared LOGICAL*4

The lock entity used in a LOCKON or LOCKOFF directive must be
declared to be LOGICAL*4.

LOWBOUGRE E Lower bound greater than upper bound in array declaration

The upper bound of a dimension declarator must be equal to or
greater than the lower bound.

MINDIGITS W CDD description specifies precision less than allowed for data type.
Minimum precision is supplied.

Some Common Data Dictionary data types specified a number of
digits that is incompatible with VAX FORTRAN data types. When
this error is encountered, the VAX FORTRAN compiler expands the
data type to conform to a VAX FORTRAN data type. No action
required.

MINOCCURS I CDD description contains Minimum Occurs attribute (ignored)

VAX FORTRAN does not support the CDD's Minimum Occurs
attribute. No action required.

MISSAPOS E Missing apostrophe in character constant

A character constant must be enclosed in apostrophes.

MISSCOM F Missing common block name

A common block name was omitted or specified improperly on a
SHARED directive.

MISSCONST F Missing constant

A required constant was not found.

MISSDEL F Missing operator or delimiter symbol

Two terms of an expression were not separated by an operator, or a
punctuation mark (such as a comma) was omitted. Examples:

• C I RCUM = 3.14 D I AM

• IF (I 10,20,30

MISSEND E Missing END statement, END is assumed

An END statement was missing at the end of the last input file.
When this error is encountered, an END statement is inserted.

F-30 Diagnostic Messages

n

Table F-1 (Copt.►: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

MISSEXPO

MISSKEY

MISSLABEL

MISSNAME

MISSUNIT

MISSVAR

MISSVARCOM

MULDECNAM

MULDECTYP

MULDEFLAB

E Missing exponent after E, D, or Q

A floating-point constant was specified in E, D, or Q notation, but the
exponent was omitted.

F Missing keyword

A required keyword, such as TO, was omitted from a statement such
as ASSIGN 10 TO I.

F Missing statement label

A required statement label reference was omitted.

F Missing variable or subprogram name

A required variable name or subprogram name was not found.

F Unit specifier keyword missing in I/O statement

An I/O statement must include a unit specifier subparameter.

F Missing variable or constant

An expression or a term of an expression was omitted. Examples:

• WRITE ()

• DIST = *TIME

E Missing variable or common name

A name of a variable or a common block that is required by a
compiler directive statement or a VOLATILE statement was omitted.

F Multiple declaration of name

A name appeared in two or more inconsistent declaration statements.

E Multiple declaration of data type for variable, first type used

A variable appeared in more than one data type declaration state-
ment. When this error is encountered, the first type declaration is
used.

E Multiple definition of statement label, second ignored

The same label appeared on more than one statement. When this
error is encountered, the first occurrence of the label is used.

Diagnostic Messages F-31

Table F-1 (Copt.►: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

MULFLDNAM F Multiply defined field name

Each field name within the same level of a given structure declaration
must be unique.

MULSPEPAR E Multiple specification of parallel memory attributes, first specification
used

A variable, array, record, or COMMON block was a given memory
attributes (shared and private or context-shared and private) in a
parallel directive. When this error is encountered, the first attribute
specified is the one that is used.

MULSTRNAM F Multiply defined STRUCTURE name

A STRUCTURE name must be unique among STRUCTURE names.

NAMTOOLON W Name longer than 31 characters

A symbolic name cannot exceed 31 characters. When this error is
encountered, the symbolic name is truncated to 31 characters.

NESTPARDO E Nested parallel DO-loops not permitted, directive ignored

A parallel DO-loop directive (CPAR$ DO_PARALLEL) was detected
within a DO-loop that was already marked as parallel. Nested
parallel DO-loop directives are not supported.

NMLIOLIST E I/O list not permitted with namelist I/O

An I/O statement with a namelist specifier incorrectly contained an
I/O list.

NODFLOAT W CDD description specifies the D_floating data type. The data cannot
be represented when compiling /G_FLOAT.

A D_floating data type was specified when compiling with the
/G_FLOATING qualifier. Ignore the warning message or recompile
the program using the /NOG_FLOATING qualifier.

NOGFLOAT W CDD description specifies G _floating data type. The data cannot be
represented when compiling /NOG _FLOAT.

A G _floating data type was specified when compiling with the
/NOG _FLOATING qualifier. Ignore the warning message or recom-
pile the program using the /G_FLOAT qualifier.

F-32 Diagnostic Messages

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

NOHFLOAT W CDD description specifies H _floating data type. The data cannot be
represented when compiling /NOG_FLOAT.

An H _floating data type was specified when compiling with the
/NOG _FLOATING qualifier. Ignore the warning message or recom-
pile the program using the /G _FLOATING qualifier.

NONCONSUB F Nonconstant subscript where constant required

Subscript and substring expressions used in DATA and EQUIVALENCE
statements must be constants.

NOPATH W No path to this statement

Program control could not reach this statement. When this situation
occurs, the statement is deleted. Example:

10 I=I+1

GO TO 10
STOP

NOSOUFILE F No source file specified

A command line was entered that specified only library file names
and no source files to compile.

OPEDOLOOP F Unclosed DO loop or IF block

The terminal statement of a DO loop or the END IF statement of an
IF block was not found. Example:

DO 20 I=1,10
X = Y
END

OPENOTPER F Operation not permissible on these data types

An invalid operation was specified, such as an .AND. of two real
variables.

PROSTOREQ F Program storage requirements exceed addressable memory

The storage space allocated to the variables and arrays of the program
unit exceeded the addressing range of the machine.

PRVCTLVAR I Control variable for parallel loop defaulting to PRIVATE

The control variable for a parallel DO loop was not explicitly declared
private.

Diagnostic Messages F-33

Table F-1 (Copt.): Source Program Diagnostic Messages

IVinemonic
Error
Code Text/Explanation

PRVSYMIL E PRIVATE symbol invalid in routine without parallel DO-loop

Symbols declared within a routine that does not contain a parallel
DO loop cannot be listed in a PRIVATE directive.

REDCONMAR W Redundant continuation mark ignored

A continuation mark was detected where an initial line is required.
When this error is encountered, the continuation mark is ignored.

REFERENCE I CDD description contains Reference attribute (ignored)

The CDD's Reference attribute is not supported by VAX FORTRAN.
No action required.

SAVPRICON E PRIVATE variable must not be declared SAVE

Symbols cannot be declared in both a PRIVATE directive and a SAVE
statement.

SHRCTLVAR E Control variable for parallel DO-loops must be declared PRIVATE

The control variable for a parallel DO-loop was explicitly declared
SHARED. Control variables for parallel DO-loops must be explicitly
declared PRIVATE.

SHRNAMLON E Shared COMMON name too long, limited to 26 characters

The maximum length of a COMMON block name specified in a
SHARED compiler directive statement is 26 characters.

SOURCETYPE I CDD description contains Source Type attribute (ignored)

VAX FORTRAN does not support the CDD's Source Type attribute.
No action required.

STAENDSTR F Statement not allowed within structure; structure definition closed

A statement not allowed in a structure declaration block was encoun-
tered. When this situation occurs, the compiler assumes that you
omitted one or more END STRUCTURE statements.

STAINVSTR E Statement not allowed within structure definition; statement ignored

A statement not allowed in a structure declaration block was encoun-
tered. Structure declaration blocks can only include the following
statements: typed data declaration statements, RECORD statements,
UNION/END UNION statements, MAP/END MAP statements, and
STRUCTURE/END STRUCTURE statements.

F-34 Diagnostic Messages

Table F-1 (Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

STANOTVAL E Statement not valid in this program unit, statement ignored

A program unit contained a statement that is not allowed; for
example, a BLOCK DATA subprogram containing an executable
statement.

STAOUTORD E Statement out of order, statement ignored

The order of statements was invalid. When this error is encountered,
the statement found to be out of order is ignored.

STATOOCOM F Statement too complex

A statement was too complex to be compiled. It must be subdivided
into two or more statements.

STRCONTRU E String constant truncated to maximum length

A character or Hollerith constant can contain up to 2000 characters.
A Radix-50 constant can contain up to 12 characters.

STRDEPTH F STRUCTUREs/UNIONs/MAPs nested too deeply

The combined nesting level limit for structures, unions, and maps is
20 levels.

STRNAME E Outer level structure is missing a structure name

An outer level STRUCTURE statement must have a structure name in
order for a RECORD statement to be able to reference the structure
declaration.

STRNOTDEF F Structure name in RECORD statement not defined

Either a RECORD statement did not contain a structure name en-
closed within slashes or the structure name contained in a RECORD
statement was not defined in a structure declaration.

SUBEXPVAL E Subscript or substring expression value out of bounds

An array element beyond the specified dimensions or a character
substring outside the specified bounds was referenced.

SUBNOTALL F Subqualifier not allowed with negated qualifier

A negated qualifier specified on the command line also specified
subqualifier values.

For example: /NOCHECK=UNDERFLOW

Diagnostic Messages F-35

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

TAGVA~RIAB I

TOOMANCOM F

TOOMANCON E

TOOMANDIM E

TOOMANYDO F

UNDARR F

UNDSTALAB F

UNSUPPTYPE I

VARINCEQV F

F-36 Diagnostic Messages

CDD description contains Tag Variable attribute (ignored)

VAX FORTRAN does not support the CDD's Tag Variable attribute.
No action required.

Too many named common blocks

VAX FORTRAN allows a maximun of 250 named common blocks.
You must reduce the number of named common blocks.

Too many continuation lines, remainder ignored

Up to 99 continuation lines are permitted, as determined by the
/CONTINUATIONS=n qualifier (the default is 19).

More than 7 dimensions specified, remainder ignored

An array can be defined as having up to seven dimensions.

DO and IF statements nested too deeply

DO loops and block IF statements cannot be nested beyond 128
levels.

Undimensioned array or statement function definition out of order

Either a statement function definition was found among executable
statements or an assignment statement involving an undimensioned
array was found.

Undefined statement label

A reference was made to a statement label that was not defined in
the program unit.

CDD description specifies an unsupported data type

The Common Data Dictionary description for a structure item at-
tempted to use a data type that is not supported by VAX FORTRAN.
The VAX FORTRAN compiler makes the data type accessible by
declaring it as an inner structure containing a single CHARACTER
%FILL field with an appropriate length. Change the data type to
one that is supported by VAX FORTRAN or use the VAX FORTRAN
built-in functions to manipulate the contents of the field.

Variable inconsistently equivalenced to itself

EQUIVALENCE statements specified inconsistent relationships
between variables or array elements. Example:

EQUIVALENCE (A(1), A(2))

Table F-1 ~Cont.~: Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

VAXELNUNS W This feature is unsupported on VAXELN

The specified VAX FORTRAN feature is not supported on a VAXELN
system.

VFUFEANEX W This feature is unsupported and non-executable on ULTRIX

The program attempted to use a VAX FORTRAN I/O feature that
is not available on an ULTRIX system. If the resulting program is
run on an ULTRIX system, arun-time error will be issued if this
statement is executed. Major VAX FORTRAN features not available
on an ULTRIX system include the following:

• OPEN and INQUIRE options:

— ORGANIZATION= 'RELATIVE' or 'INDEXED'

— ACCESS='KEYED'

— RECORDTYPE= 'STREAM' or 'STREAM_CR'

— KEY

— DEFAULTFILE

— USEROPEN

• I/O statements DELETE, REWRITE, and UNLOCK

• Read statement keyword attributes: KEY, KEYEQ, KEYGE,
KEYGT, KEYID

Diagnostic Messages F-37

Table F-1 (Copt.): Source Program Diagnostic Messages

Mnemonic
Error
Code Text/Explanation

VFUFEAUNS W This feature is unsupported on ULTRIX-32

The program attempted to use a VAX FORTRAN I/O feature that is
not available on an ULTRIX system. If the resulting program is run
on an ULTRIX system, this construct will be ignored. Major VAX
FORTRAN features not available on an ULTRIX system include the
following:

• OPEN statement keywords (and attributes):

— DISPOSE= 'PRINT', 'PRINT/DELETE', 'SUBMIT', 'SUBMIT
/DELETE'

— BUFFERCOUNT

— EXTENDSIZE

— INITIALSIZE

— NOSPANBLOCKS

— SHARED

• CLOSE statement keywords (and attributes):

— DISPOSE= 'PRINT', 'PRINT/DELETE', 'SUBMIT', 'SUBMIT
/DELETE'

— STATUS

VFUSRCUNA W Requested source is not available on ULTRIX

The program attempted to use one of the following VAX FORTRAN
I/O features that are not available on an ULTRIX system.

• The DICTIONARY statement.

• The INCLUDE statement for a text module from a library file.

ZERLENSTR E Zero-length string

The length specified for a character, Hollerith, hexadecimal, octal, or
Radix-50 constant must not be zero.

F-38 Diagnostic Messages

r"1
F.1.2 Compiler-Fatal Diagnostic Messages

Conditions can be encountered of such severity that compilation must
be terminated at once. These conditions are caused by hardware errors,
software errors, and errors that require changing the FORTRAN command.
Printed messages have the form:

FORT-F-MNEMONIC, error_text

The first line of the message contains the appropriate file specification
or keyword involved in the error. The operating system supplies more
specific information about the error whenever possible. For example, a file
read error might produce the following error message:

%FORT-F-READERR, error reading _DBAO:[SMITH]MAIN.FOR;3

-RMS-W-RTB , 512 byte record too big for user's buffer

-FORT-F-ABORT, abort

Table F-2 lists the diagnostic messages that report the occurrence of such
compiler-fatal errors. Because the exact content of the message depends
upon the individual problem, only the first line of the message is provided
here. Also, "file-spec" represents placement of the actual file specification
in the message, and "keyword-value" represents the specific keyword
value.

Diagnostic Messages F-39

Table F-2: Compiler- Fatal Diagnostic Messages
I/O Errors

FORT-F-OPENIN, error opening "file-spec" as input

FORT-F-NOSOUFILE, no source file specified

FORT-F-OPENOUT, error opening "file-spec" as output

FORT-F-READERR, error reading "file-spec"

FORT-F-WRITEERR, error writing "file-spec"

FORT-F-CLOSEIN, error closing "file-spec" as input

FORT-F-CLOSEOUT, error closing "file-spec" as output

Command Qualifier Messages

FORT-F-VALERR, specified value is out of legal range

FORT-F-BADVALUE, "keyword-value" is an invalid keyword value

FORT-F-SUBNOTALL, subqualifier not allowed with negated
qualifier

Compiler Internal Logic Error

FORT-F-BUGCHECK, internal consistency failure

If you receive the compiler internal logic error, FORT-F-BUGCHECK, you
should report both the error and the circumstance in which it occurred to
DIGITAL by means of a Software Performance Report (SPR).

F.1.3 Compiler Limits

There are limits to the size and complexity of a single VAX FORTRAN
program unit. There are also limits on the complexity of VAX FORTRAN
statements. Table F-3 describes some of these limits.

F-40 Diagnostic Messages

Table F-3: Compiler Limits

Language Element Limit

Structure nesting 20

DO and block IF statement nesting (combined) 128

Actual number of arguments per CALL 255
or function reference

Named common blocks 250

Format group nesting 8

Labels in computed or assigned GO TO list 500

Parentheses nesting in expressions 40

INCLUDE file nesting 10

Continuation lines 99

FORTRAN source line length 132 characters

Symbolic name length 31 characters

Constants

Character, Hollerith 2000 characters

Radix-50 12 characters

Array dimensions 7

Number of names in a NAMELIST group 250

The amount of data storage, the size of arrays, and the total size of
executable programs are limited only by the amount of process virtual
address space available, as determined at VMS system generation.

F.2 Diagnostic Messages from the VAX Run-Time System

Errors that occur during execution of your FORTRAN program are re-
ported by diagnostic messages from the Run-Time Library. These mes-
sages may result from hardware conditions, file system errors, errors
detected by RMS, errors that occur during transfer of data between the
program and an internal record, computations that cause overflow or
underflow, incorrect calls to the Run-Time Library, problems in array
descriptions, and conditions detected by the operating system. Refer to
the VMS Run-Time Library Routines Volume for more information.

Diagnostic Messages F-41

In order of greatest to least severity, the three classes of run-time diagnos-
tic messages are as follows:

Code Description

F Severe error; must be corrected. The program cannot complete execu-
tion and is terminated when the error is encountered.

E Error; should be corrected. The program may continue execution, but
the output from this execution may be incorrect.

W Warning; should be investigated. The program continues executing, but
output from this execution may be incorrect.

The following example shows how run-time messages are displayed:

%FOR-F-ADJARRDIM, adjustable array dimension error

Table F-4 is an alphabetical list of run-time diagnostic messages without
the message prefixes FOR, SS, and MTH. (Refer to Table 5-1 fora pre-
sentation of the messages in error-number sequence.) For each message,
Table F-4 gives a mnemonic, the message number, the class of the
message, the message text, and an explanation of the message.

NOTE

The letter "C" in the column under the heading "SEV" indicates
that program execution can continue immediately after the
error if auser-written condition handler specifies that execution
continue.

Table F-5 is an alphabetical list of diagnostic messages associated with the
run-time support for VAX FORTRAN parallel processing. The messages
are presented without their prefixes (FOR). For each message, Table F-5
gives a mnemonic, the class of the message, the message text, and an
explanation of the message.

F-42 Diagnostic Messages

r1
Table F-4: Run-Time Diagnostic Messages

Error Error
Mnemonic Number Code Text/Explanation

ADJARRDIM 93 F,C adjustable array dimension error

Upon entry to a subprogram, one of the following errors was
detected during the evaluation of dimensioning information:

• An upper-dimension bound was less than alower-
dimension bound.

• The dimensions implied an array that was larger than
addressable memory.

ATTACCNON 36 F attempt to access non-existent record

One of the following conditions occurred:

• A direct access READ, FIND, or DELETE statement
attempted to access a nonexistent record from a relative
organization file.

• A direct access READ or FIND statement attempted to
access beyond the end of a sequential organization file.

• A keyed access READ statement attempted to access a
nonexistent record from an indexed organization file.

BACERR 23 F BACKSPACE error

One of the following conditions occurred:

• The file was not a sequential organization file.

• The file was not opened for sequential access. (A unit
opened for append access may not be backspaced until a
REWIND statement is executed for that unit.)

• RMS detected an error condition during execution of a
BACKSPACE statement.

CLOERR 28 F CLOSE error

An error condition was detected by RMS during execution of a
CLOSE statement.

Diagnostic Messages F-43

Table F-4 (Copt.): Run-Time Diagnostic Messages
Error Error

Mnemonic Number Code Text/Explanation

DELERR 55 F DELETE error

One of the following conditions occurred:

• On a direct access DELETE, the file that did not have
relative organization.

• On a current record DELETE, the file did not have relative
or indexed organization, or the file was opened for direct
access.

• RMS detected an error condition during execution of a
DELETE statement.

DUPFILSPE 21 F duplicate file specifications

Multiple attempts were made to specify file attributes without
an intervening close operation. One of the following conditions
occurred:

• A DEFINE FILE statement was followed by another
DEFINE FILE statement.

• A DEFINE FILE statement was followed by an OPEN
statement.

• A CALL ASSIGN statement or CALL FDBSET statement
was followed by an OPEN statement.

F-44 Diagnostic Messages

Table F-4 (Cont.~: Run-Time Diagnostic Messages
Error Error

Mnemonic Number Code Text/Explanation

ENDDURREA 24 F end-of-file during read

One of the following conditions occurred:

• An RMS end-of-file condition was encountered during
execution of a READ statement that did not contain an
END, ERR, or IOSTAT specification.

• An end-of-file record written by the ENDFILE statement
was encountered during execution of a READ state-
ment that did not contain an END, ERR, or IOSTAT
specification.

• An attempt was made to read past the end of an internal
file character string or array during execution of a READ
statement that did not contain an END, ERR, or IOSTAT
specification.

ENDFILERR 33 F ENDFILE error

One of the following conditions occurred:

• The file was not a sequential organization file with
variable-length records.

• The file was not opened for sequential or append access.

• An unformatted file did not contain segmented records.

• RMS detected an error during execution of an ENDFILE
statement.

ERRDURREA 39 F error during read

RMS detected an error condition during execution of a READ
statement.

ERRDURWRI 38 F error during write

RMS detected an error condition during execution of a WRITE
statement.

FILNAMSPE 43 F file name specification error

A file-name specification given to an OPEN, INQUIRE, or
CALL ASSIGN statement was not acceptable to RMS.

Diagnostic Messages F-45

Table F-4 ~Cont.~: Run-Time Diagnostic Messages

Error Error
Mnemonic Number Code Text/Explanation

FILNOTFOU 29 F file not found

A file with the specified name could not be found during an
open operation.

FINERR 57 F FIND error

RMS detected an error condition during execution of a FIND
statement.

FLOOVEMAT 88 F,C floating overflow in math library

A floating overflow condition was detected during execution of
a math library procedure. The result returned was the reserved
operand, 0.

FLOUNDMAT 89 F,C floating underflow in math library

A floating underflow condition was detected during execution
of a math library procedure. The result returned was zero.

FLTDIV 73 F,C arithmetic trap, zero divide

During afloating-point or decimal arithmetic operation, an
attempt was made to divide by 0.0. If floating-point, the result
returned is the reserved operand, -0. If decimal, the result of
the operation is unpredictable.

FLTDIV F 73 F,C arithmetic fault, zero divide

During afloating-point arithmetic operation, an attempt was
made to divide by zero.

FLTOVF 72 F,C arithmetic trap, floating overflow

During an arithmetic operation, afloating-point value exceeded
the largest representable value for that data type. The result
returned was the reserved operand, -0.

FLTOVF F 72 F,C arithmetic fault, floating overflow

During an arithmetic operation, afloating-point value exceeded
the largest representable value for that data type.

FLTUND 74 F,C arithmetic trap, floating underflow

During an arithmetic operation, afloating-point value became
less than the smallest representable value for that data type
and was replaced with a value of zero.

F-46 Diagnostic Messages

Table F-4 (Copt.): Run-Time Diagnostic Messages
Error Error

Mnemonic Number Code Text/Explanation

FLTUND_F 74 F,C arithmetic fault, floating underflow

During an arithmetic operation, afloating-point value became
less than the smallest representable value for that data type.

FORVARMIS 61 F,C format/variable-type mismatch

An attempt was made either to read or write a real variable
with an integer field descriptor (I or L), or to read or write an
integer or logical variable with a real field descriptor (D, E, F,
or G). If execution continued, the following actions occurred:

• If I or L, conversion as if INTEGER*4.

• If D, E, F, or G, conversion as if REAL*4.

INCFILORG 51 F inconsistent file organization

One of the following conditions occurred:

• The file organization specified in an OPEN statement did
not match the organization of the existing file.

• The file organization of the existing file was inconsistent
with the specified access mode; that is, direct access was
specified with an indexed organization file, or keyed access
was specified with a sequential or relative organization file.

INCKEYCHG 50 F inconsistent key change or duplicate key

A WRITE or REWRITE statement accessing an indexed orga-
nization file caused a key field to change or be duplicated.
This condition was not allowed by the attributes of the file, as
established when the file was created.

Diagnostic Messages F-47

Table F-4 (Copt.): Run-Time Diagnostic Messages
Error Error

Mnemonic Number Code Text/Explanation

INCOPECLO 46 F inconsistent OPEN/CLOSE parameters

Specifications in an OPEN or CLOSE statement were inconsis-
tent. Some invalid combinations follow:

• READONLY with STATUS='NEW' or STATUS='SCRATCH'

• ACCESS='APPEND' with READONLY, STATUS='NEW',
or STATUS=`SCRATTCH'

• DISPOSE='SAVE', 'PRINT', or 'SUBMIT' with
STATUS='SCRATCH'

• DISPOSE='DELETE' with READONLY

INCRECLEN 37 F inconsistent record length

One of the following occurred:

• An attempt was made to create a new relative, indexed, or
direct access file without specifying a record length.

• An existing file was opened in which the record length did
not match the record size given in an OPEN or DEFINE
FILE statement.

INCRECTYP 44 F inconsistent record type

The RECORDTYPE value in an OPEN statement did not match
the record type attribute of the existing file that was opened.

INFFORLOO 60 F infinite format loop

The format associated with an I/O statement that included an
I/O list had no field descriptors to use in transferring those
values.

INPCONERR 64 F,C input conversion error

During a formatted input operation, an invalid character was
detected in an input field, or the input value overflowed the
range representable in the input variable. The value of the
variable was set to zero.

F-48 Diagnostic Messages

Table F-4 (Cont.~: Run-Time Diagnostic Messages
Error Error

Mnemonic Number Code Text/Explanation

INPRECTOO 22

INPSTAREQ 67

INSVIRMEM 41

INTDIV

INTOVF

71

70

INVARGFOR 48

INVARGMAT 81

F input record too long

A record was read that exceeded the explicit or default record
length specified when the file was opened. To read the file,
use an OPEN statement with a RECL value of the appropriate
size.

F input statement requires too much data

An unformatted READ statement attempted to read more data
than existed in the record being read.

F insufficient virtual memory

The VAX FORTRAN Run-Time Library attempted to exceed its
virtual page limit while dynamically allocating space.

F,C arithmetic trap, integer zero divide

During an integer arithmetic operation, an attempt was made
to divide by zero. The result of the operation was set to the
dividend, which is equivalent to division by one.

F,C arithmetic trap, integer overflow

During an arithmetic operation, an integer value exceeded byte,
word, or longword range. The result of the operation was the
correct low-order part.

F invalid argument to FORTRAN Run-Time Library

One of the following conditions occurred:

~ An invalid argument was given to a PDP-11 FORTRAN
compatibility subroutine, such as ERRSET.

• The VAX FORTRAN compiler passed an invalid coded
argument to the Run-Time Library. This can occur if the
compiler is newer than the Run-Time Library in use.

F invalid argument to math library

One of the mathematical procedures detected an invalid
argument value.

Diagnostic Messages F-49

Table F-4 ~Cont.): Run-Time Diagnostic Messages
Error Error

Mnemonic Number Code Text/Explanation

INVKEYSPE 49 F invalid key specification

A key specification in an OPEN statement or in a keyed access
READ statement was invalid. For example, the key length may
have been zero or greater than 255 bytes, or the key length
may not conform to the key specification of the existing file.

INVLOGUNI 32 F invalid logical unit number

A logical unit number greater than 99 or less than zero was
used in an I/O statement.

INVMATKEY 94 F invalid key match specifier for key direction

A keyed READ used an invalid key match specifier for the
direction of that key. Use KEYGE and KEYGT only on
ascending keys. Use KEYLE and KEYLT only on descending
keys. Use KEYNXT and KEYNXTNE to avoid enforcement of
key direction and match specifier.

INVREFVAR 19 F invalid reference to variable in NAMELIST input

The variable in error is shown as "varname" in the message
text. One of the following conditions occurred:

• The variable was not a member of the namelist group.

• An attempt was made to subscript the scalar variable.

• A subscript of the array variable was out-of-bounds.

• An array variable was specified with too many or too few
subscripts for the variable.

• An attempt was made to specify a substring of a nonchar-
acter variable or array name.

• A substring specifier of the character variable was out-of-
bounds.

• A subscript or substring specifier of the variable was not
an integer constant.

• An attempt was made to specify a substring using an
unsubscripted array variable.

KEYVALERR 45 F keyword value error in OPEN statement

An improper value was specified for an OPEN or CLOSE
statement keyword requiring a value.

F-50 Diagnostic Messages

I"1
Table F-4 (Cont.~: Run-Time Diagnostic Messages

Mnemonic
Error Error
Number Code Text/Explanation

LISIO_SYN 59

LOGZERNEG 83

MIXFILACC

NO_
CURREC

NO_
SUCDEV

F,C list-directed I/O syntax error

The data in alist-directed input record had an invalid for-
mat, or the type of the constant was incompatible with
the corresponding variable. The value of the variable was
unchanged.

F,C logarithm of zero or negative value

An attempt was made to take the logarithm of zero or a
negative number. The result returned was the reserved
operand, —0.

31 F mixed file access modes

One of the following conditions occurred:

• An attempt was made to use both formatted and unfor-
matted operations on the same unit.

• An attempt was made to use an invalid combination of
access modes on a unit, such as direct and sequential. The
only valid combination is sequential and keyed access on a
unit opened with ACCESS='KEYED'.

• An attempt was made to execute a FORTRAN I/O
statement on a logical unit that was opened by a program
coded in a language other than FORTRAN.

53

42

NOTFORSPE 1

F no current record

A REWRITE or current record DELETE operation was at-
tempted when no current record was defined.

F no such device

A file specification included an invalid or unknown device
name when an OPEN operation was attempted.

F not aFORTRAN-specific error

An error occurred in the user program or in the Run-Time
Library that was not aFORTRAN-specific error.

Diagnostic Messages F-51

Table F-4 (Copt.►: Run-Time Diagnostic Messages
Error Error

Mnemonic Number Code Text/Explanation

OPEDEFREQ 26 F OPEN or DEFINE FILE required for keyed or direct access

One of the following conditions occurred:

• A direct access READ, WRITE, FIND, or DELETE state-
ment specified a file that was not opened with a DEFINE
FILE statement or with an OPEN statement specifying
ACCESS='DIRECT'.

• A keyed access READ statement specified a file that
was not opened with an OPEN statement specifying
ACCESS='KEYED'.

OPEFAI 30 F open failure

An error was detected by RMS while attempting to open a
file in an OPEN, INQUIRE, or other I/O statement. This
message is issued when the error condition is not one of the
more common conditions for which specific error messages are
provided.

OUTCONERR 63 E,C output conversion error

During a formatted output operation, the value of a particular
number could not be output in the specified field length
without loss of significant digits. When this situation is
encountered, the field is filled with asterisks.

OUTSTAOVE 66 F output statement overflows record

An output statement attempted to transfer more data than
would fit in the maximum record size.

F-52 Diagnostic Messages

Table F-4 (Copt.►: Run-Time Diagnostic Messages
Error Error

Mnemonic Number Code Text/Explanation

RECIO_OPE 40 F recursive I/O operation

While processing an I/O statement for a logical unit, another
I/O operation on the same logical unit was attempted. One of
the following conditions may have occurred:

• A function subprogram that performs I/O to the same
logical unit was referenced in an e~;pression in an I/O list
or variable format expression.

• An I/O statement was executed at AST level for the same
logical unit.

• An exception handler (or a procedure it called) executed
an I/O statement in response to a signal from an I/O
statement for the same logical unit.

RECNUMOUT 25 F record number outside range

A direct access READ, WRITE, or FIND statement specified a
record number outside the range specified when the file was
created.

REWERR 20 F REWIND error

One of the following conditions occurred:

• The file was not a sequential organization file.

• The file was not opened for sequential or append access.

• RMS detected an error condition during execution of a
REWIND statement.

REWRITERR 54 F REWRITE error

RMS detected an error condition during execution of a
REWRITE statement.

SEGRECFOR 35 F segmented record format error

An invalid segmented record control data word was detected
in an unformatted sequential file. The file was probably either
created with RECORDTYPE='FIXED' or 'VARIABLE' in effect,
or was created by a program written in a language other than
FORTRAN.

Diagnostic Messages F-53

Table F-4 (Cont.~: Run-Time Diagnostic Messages
Error Error

Mnemonic Number Code Text/Explanation

SIGLOSMAT 87 F,C significance lost in math library

The magnitude of an argument or the magnitude of the ratio
of the arguments to a math library function was so large that
all significance in the result was lost. The result returned was
the reserved operand, —0.

SPERECLOC 52 F specified record locked

A read operation or direct access write, find, or delete operation
was attempted on a record that was locked by another user.

SQUROONEG 84 F C square root of negative value

An argument required the evaluation of the square root of a
negative value. The result returned was the reserved operand,
—0.

SUBIZNG 77 F,C trap, subscript out of range

An array reference was detected outside the declared array
bounds.

SYNERRFOR 62 F syntax error in format

A syntax error was encountered while the Run-Time Library
was processing a format stored in an array or character
variable.

SYNERRNAM 17 F syntax error in NAMELIST input "text"

The syntax of input to anamelist-directed READ statement
was incorrect. (The part of the record in which the error was
detected is sh-own as "text" in the message text.)

TOOMANREC 27 F too many records in I/O statement

One of the following conditions occurred:

• An attempt was made to read or write more than one
record with an ENCODE or DECODE statement.

• An attempt was made to write more records than existed.

TOOMANVAL 18 F too many values for NAMELIST variable "varname"

An attempt was made to assign too many values to a variable
during anamelist-directed READ statement. (The name of the
variable is shown as "varname" in the message text.)

F-54 Diagnostic Messages

Table F-4 (Copt.): Run-Time Diagnostic Messages
Error Error

Mnemonic Number Code Text/Explanation

UNDEXP 82 F,C undefined exponentiation

An exponentiation that is mathematically undefined was
attempted, for example, 0.**0. The result returned for floating-
point operations was the reserved operand, —0, and for integer
operations, zero.

UNIALROPE 34 F unit already open

A DEFINE FILE statement specified a logical unit that was
already opened.

UNLERR 56 F UNLOCK error

RMS detected an error condition during execution of an
UNLOCK statement.

VFEVALERR 68 F,C variable format expression value error

The value of a variable format expression was not within the
range acceptable for its intended use; for example, a field width
was less than or equal to zero. A value of one was assumed,
except for a P edit descriptor, for which a value of zero was
assumed.

WRONUMARG 80 F wrong number of arguments

An improper number of arguments was used to call a math
library procedure.

WRIREAFIL 47 F write to READONLY file

A write operation was attempted to a file that was declared
READONLY in the OPEN staterr:ent that is currently in effect.

Table F-5: Run-Time Diagnostic Messages for Parallel Processing
Error

Mnemonic Code Text/Explanation

COMSHRERR F Unable to share memory region from x to y

The FORTRAN Run-Time Library could not make the specified
memory region shared among the processes participating in the
parallel processing environment.

DEFVALUSED I Default value of xx used for logical name

A default value was used for the specified logical name.

Diagnostic Messages F-55

Table F-5 ~Cont.): Run-Time Diagnostic Messages for Parallel Processing
Error

Mnemonic Code Text/Explanation

FAIACTCPU F Failed to obtain active CPU count

The FORTRAN Run-Time Library could not obtain the active
CPU count. Thus, it was unable to set up the parallel processing
environment.

FAIDCLEXIT F Failed to declare an exit handler

The FORTRAN Run-Time Library could not declare an exit handler.
Thus, it was unable to set up the parallel processing environment.

FAIIDPRC F Failed to identify the process

The FORTRAN Run-Time Library could not identify the process.
Submit a Software Performance Report that describes the conditions
leading to the error.

FAIIMAGNAME F Failed to obtain image name

The FORTRAN Run-Time Library could not obtain the image name.
Thus, it was unable to set up the parallel processing environment.

FAIOWNERID F Failed to obtain owner process ID

The FORTRAN Run-Time Library could not obtain the owner
process identification. Thus, it was unable to set up the parallel
processing environment.

FAIPRCID F Failed to obtain process ID

The FORTRAN Run-Time Library could not obtain the process
identification. Thus, it was unable to set up the parallel processing
environment.

FAIPRCNAME F Failed to obtain process name

The FORTRAN Run-Time Library could not obtain the process
name. Thus, it was unable to set up the parallel processing
environment.

FAISHRSTACK F Unable to share the stack region from x to y
The FORTRAN Run-Time Library could not make the specified
stack region shared among processes participating in the parallel
processing environment.

FAISUBPRC F Failed to create subprocess

The FORTRAN Run-Time Library could not get the process iden-
tification. Thus, it was unable to set up the parallel processing
environment.

F-56 Diagnostic Messages

Table F-5 (Cont.~: Run-Time Diagnostic Messages for Parallel Processing
Error

Mnemonic Code Text/Explanation

FATINTERR F Fatal internal error in the FORTRAN Parallel Processing Run-Time
Library

The FORTRAN Run-Time Library detected an unrecoverable,
inconsistent condition. Submit a Software Performance Report that
describes the conditions leading to the error.

INVCOMADR F Invalid memory region addresses

The FORTRAN Run-Time Library detected invalid starting and
ending addresses far a shared memory region. Submit a Software
Performance Report that describes the conditions leading to the
error.

INVLCLADR F Invalid $LOCAL PSECT addresses

The FORTRAN Run-Time Library detec~ed invalid starting and
ending addresses fora $LOCAL PSECT. Submit a Soft:•~are
Performance Report that describes the conditions leading to the
error.

INVLOGNAM E Invalid logical name definition

A logical name was defined incorrectly.

INVNUMPRC F Invalid number of processes

The FORTRAN Run-Time Library detected an invalid number of
processes. Submit a Software Performance Report that describes the
conditions leading to the error.

INVUNWIND F Invalid stack unwinding encountered

The FORTRAN Run-Time Library detected an invalid attempt to
unwind the stack.

~ LOCALACCESS F Subprocess unable to access the shared $LOCAL PSECT

A subprocess could not access the shared $LOCAL PSECT.

LOCALSHRERR F Unable to share the $LOCAL PSECT

i The FORTRAN Run-Time Library could not make the $LOCAL
PSECT shared among the processes participating in the parallel
processing environment.

~ MEMSHRERR F Memor sharin error Y g
The FORTRAN Run-Time Library failed to share data among the
processes participating in the parallel processing environment.

Diagnostic Messages F-57

Table F-5 (Copt.): Run-Time Diagnostic Messages for Parallel Processing

Error
Mnemonic Code Text/Explanation

NOPARINIT I Parallel processing environment was not available

The VAX FORTRAN main program was not compiled with
/PARALLEL. As a result, the parallel processing environment was
not available.

NOTIMPRET F Routine not implemented. in this version of FORRTL2

An attempt was made to use a routine that is not implemented in
this ver~;ion of the FORTRAN Run-Time Library.

NOTRUNINPP I Unable to run the DO-Loop PC: xx in parallel

A parallel DO loop with the specified PC address cannot run in
parallel.

STACKSHRERR F Stack sharing error

The FORTRAN Run-Time Library could not make the stack shared
among the processes participating in the parallel processing
environment.

STKBUFOVR F Stack buffer overflow was detected

An internal limit on the number of shared stack regions that your
program can have was exceeded. Submit a Software Performance
Report that describes the conditions leading to the error.

SUBPRCDIED F Subprocess PID: xx terminated

A subprocess with the specified process ID was terminated.

TOOMANPRC E Too many processes, allowed a maximum of 32 processes

A limit on the number of processes participating in the FORTRAN
parallel processing environment was exceeded. The limit is cur-
rently 32.

F.3 DICTIONARY Error Messages

When an error occurs while using the Common Data Dictionary (CDD)
(that is, while compiling a DICTIONARY statement), error messages will
be generated from one or more of the following sources:

• The FORTRAN compiler, which generates error messages that begin
with %FORT. These messages appear in Table F-3.

F-58 Diagnostic Messages

V

lJ

• The Common Data Dictionary, which generates error messages that
begin with %CDD. These messages appear in Appendix D of the
VAX Common Data Dictionary Utilities Reference Manual. CDDL error
messages appear in Appendix C of the VAX Common Data Dictionary
Data Definition LariguaRe Reference 1V~arlual.

• The CRX, which generates error messages that begin with %CRX.
These messages are listed in this section.

Most CRX messages are related to errors that cannot be corrected by the
user. As indicated, submit an SPR to CDD or to the product that created
the record description when you receive one of these messages.

The informational messages are related to problems that do not inhibit the
production of an object file. They indicate, however, that your results may
not be as you had anticipated.

Table F-6: CRX Error Messages

Mneumonic

BADBASE

BADCORLEV

BADDIGITS

BADFORMAT

BADLENGTH

BADOCCURS

BADOFFSET

BADOVERLAY

Error
Code Message

E Field description specifies
base other than 2 or 10.

E Record description
specifies unsupported
core level.

E Field description specifies
improper number of
digits.

E Record description
specifies improper record
format.

E

E

E

E

User Action

Field description specifies
improper length.

Dimension description
improperly specifies
Minimum Occurs.

Field description specifies
improper offset.

Field description specifies
overlay for nonoverlay
field.

Correct the description to be base 2 or
10.

Submit SPR to CDD or to the product
that created the description.

Correct the field description to specify
the proper number of digits.

Submit SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

Diagnostic Messages F-59

Table F-6 (Cont.j: CRX Error Messages

Mneumonic
Error
Code Message User Action

BADPRTCL

BADREFER

BADSCALE

BADSTRIDE

E

E

E

BADTAGVAR E

INITVAL I

LITERALS I

MEMBADTYP E

NOCONTIN I

NOCORATT E

NOFORMAT E

NOLENGTH E

NOLOWER E

NOOFFSET E

f-60 Diagnostic Messages

E pathname does not
designate a node with
record protocol.

Field desci°iption specifies
reference for nonpointer
field.

Field description spec-
ifies scale greater than
precision.

Dimension description
specifies improper stride.

Field description specifies
tag for nonoverlay field.

Initial value in field de-
scription being ignored.

Literal definitions in
record description being
ignored.

Field description specifies
data type for field with
members.

Improper continuation
after a noncontinuable
condition.

Record description does
not specify core level.

Record description does
not specify record format.

Field description does not
specify length.

Dimension description
does not specify lower
bound.

Field description does not
specify offset.

Correct the pathname.

Submit SPR to CDD or to the product
that created the description.

Correct the precision or scale specified in
the field description.

Submit SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

No action.

No action.

Submit SPR to CDD or to the product
that created the description.

Submit a FORTRAN SPR.

Submit an SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

~'1
Table F-6 (Copt.): CRX Error Messages

r"1

Mneumonic
Error
Code Message User Action

NOOVERLAY E Field description does
not specify overlay for
overlay field.

E Dimension description
does not specify stride.

NOTCOMPUT E Field definition specifies
numeric attributes for
nonnumeric data.

NOSTRIDE

NOUPPER E Dimension description
does not specify upper
bound.

REFERENCE I Reference in over-
lay description being
ignored.

TAGVALUES I Tag values in over-
lay description being
ignored.

UNALIGNED E Field description specifies

UNKFACIL I

improper field alignment.

Unknown facility speci-
fied for record description
extraction.

Submit SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

Submit SPR to CDD or to the product
that created the description.

No action.

ivo action.

Correct the field description to specify
the proper alignment.

Submit a FORTRAN SPR.

Diagnostic Messages F-61

Index

A

Abort
See CTRL/C; CTRL/Y

Access modes
direct • 4-18
keyed • 4-19
sequential • 4-18

/ACTIVATING qualifier (DEBUG)
SET TRACE command • A-17

Activation (DEBUG)
predefined tracepoint, multiprocess program •

A-17
Actual arguments

She Arguments
Address correlation table

effect of /DEBUG qualifier • 1-10
Address expression

with DEPOSIT debugger command • 3-22
with EXAMINE debugger command • 3-21
with SET BREAK debugger command • 3-16
with SET TRACE debugger command • 3-18
with SET WATCH debugger command • 3-19

Allocation control block
XABALL (RMS) • 7-14

Allocation listing, memory
linker output • 2-3, 2-5

Allocation of disk space
SYS$EXTEND (RMS) • 7-21

Alphanumeric data
using character data type to manipulate •

13-1 to 13-11
I/O example • 13-10 to 13-11

Alternate key fields (ISAM)
definition • 14-2
discussion of use • 14-2, 14-3, 14-4, 14-6

/ANALYSIS_DATA qualifier • 1-7
ANSI standard

flagging extensions to
SYNTAX parameter (/STANDARD) • 1-18

Argument lists
VAX standards for• 6-4

Argument passing
character function example • 6-13
RMS arguments • 7-16 to 7-17
VAX FORTRAN built-in functions

examples • 6-11 to 6-12
Argument-pissing mechanisms

VAX FORTRAN built-in functions • 6-6
96DESCR function • 6-7
96REF function • 6-7
96VAL function • 6-8

VAX standard mechanisms • 6-6
Arguments

maximum allowed on CALL statement • F-41
Arguments, actual and dummy

declaring addresses as VOLATILE •
11-9 to 11-11

passed-length character arguments • 13-6
VAX FORTRAN implementation

of argument association • 10-9 to 10-10
Arithmetic overflow

check options at compilation • 1-8
Array dimensions

limit • F-41
Array references

/CHECK options at compilation • 1-8

Index-1

Arrays

global analysis optimizations • 1 1-7 to 1 1-13
VOLATILE effects • 1 1-9

initializing character arrays • 13-5
large array referencing techniques

to avoid page faulting • 1 1-32 to 1 1-33
output listing information • 1-36
use of in loops

to promote optimizations • 1 1-30 to 1 1-32
ASSIGN command (DCL) • 4-9, 4-1 1
Assigned GO TO

VAX FORTRAN vs. PDP-1 1 differences • E-4
ASSIGN subroutine

PDP-1 1 compatible • E-8 to E-9
AST procedures

example of use • C-3 to C-5
Asynchronous trap procedures

See AST procedures
Authorize Utility

tuning quotas
for parallel processing • 15-31

B
BACKSPACE statement

avoiding use of • 1 1-39
Batch job

compiler errors during • 1-30
$BLANK program section

use and attributes • 10-2
Block IF statement

nesting limit • F-41
Breakpoint (DEBUG) • 3-16

on activation (multiprocess program) • A-17
on termination (image exit) • A-17

Built-in functions (VAX FORTRAN)
°~DESCR function • 6-7
examples • 6-1 1 to 6-12
%LOC function • 6-8
%REF function • 6-7
used in passing arguments • 6-6
%VAL function • 6-8

BYTE data type
See LOGICAL• 1 data type

BYTLM quota
MP-DEBUG requirements • A-24

2-Index

c
Call

object code generated by • 6-9 to 6-1 1
CALL command (DEBUG)

multiprocess program • A-10
Call stack • 3-15

diagram of • 9-2
use by CHF • 9-3

CALL statement
maximum arguments allowed • F-41

CANCEL command (DEBUG) • 3-26
CANCEL SCOPE command (DEBUG) • 3-27
Catchall condition handler • 9-5
CDD

See also CDDV; CDDL
CDD records

including in source listing • 1-16
description of • 1-25 to 1-26
records

creating • 1-28
G_floating/D_floating caution • 1-30
including in source listing • 1-25

CDDL• 1-25
data types supported • 1-29 to 1-30
source representation • 1-26

CDDV • 1-26
Cells

in relative organization files • 4-13
CHARACTER

See also Arrays; Constants; Data types;
Variables

constants
definition • 13-4 to 13-5
general discussion of use •

13-1 to 13-1 1
I/O examples • 13-10 to 13-1 1

data type
declaration • 13-5

CHARACTER*n
See CHARACTER

Character and Hollerith constants
VAX FORTRAN vs. PDP-1 1 FORTRAN • E-3

Character arguments
passed length • 13-6

Character comparison library functions
LEN, INDEX, ICHAR, CHAR • 13-7 to 13-8

Character function argument lists
example • 6-13

Characters
flagging lowercase in output (/STANDARD) •

1-17
Character substrings • 13-2

concatenating • 13-3
CHAR function • 13-7
/CHECK=UNDERFLOW

effect on floating underfloor exceptions • 9-20
/CHECK qualifier • 1-8
CHF (Condition-Handling Facility)

See also Condition-handler routines
contrasted with ULTRIX Signal Facility • 9-1
default condition handlers • 9-5
overview • 9-3
use of call stack • 9-3

Close operations
closing a file using RMS • 7-20
error reporting

VAX FORTRAN vs. PDP-1 1 FORTRAN
behavior • E-6

CLOSE statement
DISPOSE='PRINT'

VAX FORTRAN vs. PDP-1 1 FORTRAN
behaviors • E-4

CLOSE subroutine
PDP-1 1 compatible • E-9

$CODE program section
use and attributes • 10-2

Code replication
parallel processing coding technique •

15-24 to 15-25
Coding practices

affecting performance optimizations
See Optimization techniques (user)

Command procedures
returning status values to • 2-10

Comment line indicators
D in column 1 (/D_LINES) • 1-1 1

Common, shared global
effects of optimization

use of VOLATILE declaration • 1 1-10
Common areas, installed

creation, installation, and use • 8-3 to 8-4
synchronizing access to • 8-4

Common blocks
effects of PRIVATE declaration • 15-16
effects of SHARED declaration • 15-17

Common blocks, named
maximum allowed • F-41

Common Data Dictionary
See CDD; CDDV; CDDL

Communications, network task-to-task •
8-9 to 8-1 1

Compilation options
qualifiers affecting output

contents of source listing file (/SHOW) •
1-16

debugging information (/DE6UG,
/OPTIMIZE) • 1-10, 1-15

messages (/STANDARD and /WARNINGS)
• 1-17 to 1-19

object code listing (/MACHINE_CODE) •
1-15

object file name (/OBJECT) • 1-15
source listing (/LIST) • 1-14

qualifiers affecting processing
checking overflow, bounds, underfloor

(/CHECK► • 1-8
continuation line limits (/CON"i'INUATIONS)

• 1-9
D in column 1 (/D_LINES) • 1-1 1
FDML preprocessing (/DML) • 1-11
FORTRAN-77 or FORTRAN-66 (/F77) •

1-12
G_floating vs. D_floating (/G_FLOATING)

• 1-13
INTEGER and LOGICAL defaults (/14) •

1-14
optimization (/OPTIMIZE) • 1-15
source line length (/EXTEND_SOURCE) •

1-12
text library files (/LIBRARY) • 1-14

Compilation summary
output listing section • 1-39

Compiler
See also FORTRAN command
coding restrictions/limits

summary of • F-40 to F-41
default file names • 4-9

Index-3

Compiler (cont'd.)
diagnostic messages issued by

compiler-fatal diagnostic messages •
F-39 to F-40

general description • 1-30
source program diagnostic messages •

F-2 to F-38
functions • 1-1 to 1-2
input to linker • 1-1 to 1-2

Compiler directive statements
See Directive statements

Compiler optimization techniques
See Optimization techniques

Completion status values
returning to command procs • 2-10

COMPLEX* 16
data type

G_floating vs. D_floating • 1-13
Concatenation operator (//) • 13-3
Condition-handler routines

See also CHF; Error handling
avoiding optimization problems

by declaring variables as VOLATILE •
11-10

catchall condition handler • 9-5
converting signal to return status

LIB$SIG_TO_RET • 9-26
definition of • 9-1
detecting decimal overflow

LIB$DEC_OVER • 9-19
detecting floating-point underflow

LIB$FLT_UNDER • 9-19
detecting integer overflow

LIB$INT_OVER • 9-19
establishing handlers

LiB$ESTABLISH • 9-6 to 9-7
examples of use • 9-27 to 9-32
fixing floating reserved operand faults

LIB$FIXUP_FLT • 9-22
matching condition values

LIB$MATCH_COND • 9-22
removing handlers

LIB$REVERT • 9-6 to 9-7
return values

SS$_CONTINUE • 9-17
SS$_RESIGNAL • 9-17

4—Index

Condition-handler routines (cont'd.)
signaling exception conditions

LIB$SIGNAL or LIB$STOP • 9-7 to 9-10
simulating floating trap

LIB$SIM_TRAP • 9-24
terminating handling for signals

LIB$SIG_TO_STOP • 9-26
traceback condition handler • 9-5
unwinding the call stack

SYS$UNWIND • 9-17 to 9-18
user written • 9-13 to 9-18

use of variables • 9-16
values and symbols passed • 9-10 to 9-13

Condition handlers
See Condition-handler routines; Error handling

Condition-Handling Facility
See CHF; Condition-handler routines

Condition signals
changing to return status

LIB$SIG_TO_RET • 9-26
Condition symbols, FORTRAN

summary of • 5-3 to 5-6
CONNECT command (DEBUG) • A-5, A-19
Constants

maximum size • F-41
CONTEXT_SHARED directive

description • 15-47 to 15-50
use with read-only variables • 15-20

Continuation lines
See also D_LINES qualifier
maximum allowed • F-41
VAX FORTRAN source code

source program limits, how to modify •
1-9

/CONTINUATIONS qualifier • 1-9
CONTINUE command (DCL) • 2-9
Conversions

D_ and G _floating data • 10-14 to 10-16
smaller to larger fixed-point data types • 10-6

Cross-reference information
compiling

/CROSS_REFERENCE qualifier • 1-9
/SHOW qualifier (SINGLE parameter) •

1-17
in output listing

compilation summary section • 1-39
storage map section • 1-37

Cross-reference information (cont'd.)

linking
/CROSS_REFERENCE qualifier • 2-3

/CROSS_REFERENCE qualifier • 1-9
effect on output listing • 1-37, 1-39
relationship to /SHOW MAP • 1-16

CTRL/C
handling routine • 2-9
interrupting interactive program execution • 2-9
use in debugger • 3-6, A-7, A-13

CTRL/Y
interrupting interactive program execution • 2-9
use in debugger • 3-6, A-13, A-18

D
D, in column 1

debugging statement indicator • 1-1 1
D_floating data implementation • 10-13 to 10-16

CDD caution • 1-30
effect of /G _FLOATING qualifier • 1-13

/D_LINES qualifier • 1-1 1
Data

exchanging
using mailboxes (SYS$CREMBX) •

8-6 to 8-8
using network task-to-task communica-

tions • 8-9 to 8-1 1
sharing

in files • 8-5 to 8-6
~~~ installed common areas • 8-4 
~~- shareable image libraries • 8-2 to 8-3 
~.~..~ng global pagefile section • 

C-7 to C-1 1 
Data ~~ependence, parallel-processing 

acceptable forms • 15-18 to 15-21 
definition • 15-16 
problems in parallel DU loops • 15-16 to 15-28 
recoding parallel applications • 15-21 to 15-28 
using locks to fix problems • 15-26 to 15-28 

Data Manipulation Language • 1-1 1 
Data structures 

See Records; RMS data structures; Structures 
Data types 

conversion techniques • 10-6 
FORTRAN-to-CDD mapping • 1-29 to 1-30 

Data types (cont'd.) 
INTEGER and LOGICAL 

setting default lengths • 1-14 
intrinsic functions for converting • 10-6 

Date and time control block 
See also Revision date and time control block 
XABDAT (RMS) • 7-14 

DBG$PROCESS • 3-5, A-2 
Dead store elimination 

optimization technique • 1 1-22 to 1 1-23 
DEASSIGN command (DCL) • 4-1 1 
DEBUG command • 2-9, A-18 
Debugger • 3-1 

command summary • 3-31 to 3-38 
invoking • 3-5 
invoking at run time • 2-9 
invoking in multiprocess debugging session • 

A-2 
prompt in multiprocessing session • A-3 

Debugging 
effect of optimizations on • 1 1-5 to 1 1-7 
parallel processing considerations • 

15-32 to 15-38 
Debugging configuration 

multiprocess • A-2 
Debugging statement indicator 

in source code • 1-1 1 
/DEBUG qualifier 

on FORTRAN command • 1-10, 3-4 
on LINK command • 2-3, 2-1 1 to 2-12, 3-4 
on RUN command • 2-8 

Decimal overflow 
condition handling routine 

LIB$DEC_OVER • 9-19 
DECnet • 4-3 

using to share and exchange data • 
8-9 to 8-1 1 

Decomposition, parallel processing 
VAX FORTRAN implementation of • 15-2 

Default 
file names • 4-9 
logical I/O unit names • 4-9 

DEFINE/PROCESS_GROUP command (DEBUG) • 
A-16 

Dependence, data 
See Data dependence 

DEPOSIT command (DEBUG) • 3-22 

Index-5 



%DESCR function 

See Built-in functions 
Diagnostic Messages 

See Messages 
/DIAGNOSTICS qualifier • 1-1 1 
DICTIONARY error messages • F-58 to F-61 
Dictionary Management Utility (DMU) • 1-26, 

1-27 
DICTIONARY parameter (/SHOW) • 1-16 
DICTIONARY statement • 1-27 
Direct access mode • 4-18 

see also Relative organization files 
Directed decomposition 

description of • 15-2 
Directive statements • 15-46 to 15-51 

See also DO_PARALLEL, SHARED, CONTEXT_ 
SHARED, PRIVATE, LOCKON, LOCKOFF 

format • 15-46 
Directory entries 

system services affecting 
list of • 7-21 

Disk space allocation 
SYS$EXTEND (RMS) • 7-21 

Display (DEBUG) 
process specific • A-20 
source code • 3-10 

/DML qualifier • 1-1 1 
DMU (Dictionary Management Utility) • 1-26, 

1-27 
DO command (DEBUG) • A-7, A-9 
DO loops 

See also Parallel DO loops 
VAX FORTRAN implementation • 

10-7 to 10-8 
DO statement 

nesting limit • F-41 
Double slash (// ) 

concatenation operator • 13-3 
DO_PARALLEL directive 

description • 15-46 to 15-47 
Dummy argument 

See Argument 
Dynamic module setting (DEBUG) • 3-26 
Dynamic process setting (DEBUG) • A-1 1 
Dynamic prompt setting (DEBUG) • A-3 

6-Index 

E 
END specifier 

in I/O statements • 5-1, 5-6 
END statement • 2-10 

effect on program execution • 2-8 
when not to use • 2-10 

ENQLM quota 
MP-DEBUG requirements • A-24 

Entry point 
main • 2-7 

Entry points 
output listing information • 1-36 

ENTRY statement 
VAX FORTRAN implementation 

of argument association • 10-9 to 10-10 
EQUIVALENCE statements 

affect on optimization • 1 1-9 
ERR 

error-handling specifier 
in I/O statements • 5-1, 5-6 

Error handling 
condition handlers • 5-1, 5-3 
processing performed by Run-Time Library • 

5-2 to 5-6 
summary of run-time errors • 5-3 to 5-6 
user controls in I/O statements 

ERR, END, and IOSTAT specifiers • 5-1 
Error numbers 

PDP-1 1 run-time error number differences • 
E-5 to E-6 

Error-related command qualifiers 
FORTRAN, LINK, RUN (DCL) 

summary • 2-1 1 
Errors 

compiler 
effect on linker • 2-7 

continuation after errors 
VAX FORTRAN vs. PDP-1 1 FORTRAN • 

E-6 
linking • 2-7 
severity 

effect on linker • 2-7 
ERRSET subroutine 

error table maintained by • 5-2 
PDP-1 1 compatible • E-9 to E-10 



ERRSNS subroutine 

example of use • C-11, C-16 
PDP-1 1 run-time error number differences • 

E-5 to E-6 
ERRTST subroutine 

error table maintained by • 5-2 
PDP-1 1 compatible • E-10 to E-1 1 

ESA (Expanded String Area) 
RMS control structure • 7-26, 7-27 

EVALUATE command (DEBUG) • 3-23 
Event handling 

See Condition handlers 
EXAMINE command (DEBUG) • 3-21 
Exception condition 

See also Condition handlers 
common when using indexed files • 

14-4 to 14-10 
definition • 9-1 

Exception handling 
parallel processing affect on • 15-15 

Executable image 
creating • 2-2 

/EXECUTABLE option (LINK) • 2-3, 2-4 
Execution 

interrupting execution of program • 2-9 
start/resume in debugger • 3-13, A-8 
suspending with watchpoint • A-22 

EXIT command (DCL) • 2-9 
EXIT command (DEBUG) 

multiprocess program • A-13 
EXIT system subroutine • 2-10 
Expanded string area 

See ESA 
Expression 

See Address expression; Language expression 
Expressions, parentheses in 

maximum allowed • F-41 
Extended access block 

See XAB 
/EXTEND_SOURCE qualifier • 1-12 

F 
/F77 qualifier • 1-12 
FAB 

fields for use by USEROPEN • 7-28 to 7-30 
general description • 7-6 to 7-8 

F-

FAB (cont'd.) 
symbol naming conventions • 7-6 to 7-8 

$FABDEF module 
in FORSYSDEF • 7-6 

Faults 
converting to traps (LIB$SIM_TRAP) • 9-24 
fixing floating reserved operand faults 

LIB$FIXUP_FLT • 9-22 
FDBSET subroutine 

PDP-1 1 compatible • E-1 1 to E-12 
FDML (FORTRAN Data Manipulation Language) • 

1-11 
File 

assigning to logical units 
summary • 4-1 1 

File access, remote • 8-9 
File access block 

See FAB 
File handling 

creating, accessing, and ordering 
examples of • C-16 to C-18 

File header characteristics 
control block for 

XABFHC (RMS) • 7-14 
File names 

compiler defaults • 4-9 
File organizations 

overview (sequential, relative, indexed► • 
4-12 to 4-13 

Fife processing, I/O related 
closing a file using RMS • 7-20 
opening a file using RMS • 7-19 
RMS services 

list of• 7-21 
File sharing • 8-5 to 8-6 

accessing remote files • 8-9 
RMS file-sharing capability • 8-5 to 8-6 

example of • C-1 1 to C-14 
shareable image libraries • 8-2 to 8-3 

File specification 
defining logical names for • 4-6 to 4-7 
OPEN statement keywords • 4-10 to 4-1 1 
use in I/O statements • 4-5 to 4-6 

FILLM quota 
MP-DEBUG requirements • A-24 

Fixed-length records 
format • 4-15 

Index-7 



Fixed-point data types 
storage allocations of • 10-3 to 10-7 

Floating-point data 
computational accuracy 

VAX FORTRAN vs. PDP-1 1 FORTRAN • 
E-2 

data characteristics • 10-1 1 to 10-13 
G_ vs. D_floating implementations • 

10-13 to 10-16 
Floating-point traps 

converting faults to traps 
LIB$SIM_TRAP • 9-24 

Floating-point underflow 
condition handling routine 

LIB$FLT_UNDER • 9-19 
Floating reserved operand faults 

condition handling routine 
LIB$FIXUP_FLT•9-22 

options for handling • 9-21 
Floating underflow exception 

effects of /CHECK=UNDERFLOW • 9-20 
enabling or disabling • 9-21 
options for handling • 9-20 

FOR$ 
prefix for condition symbols 

for run-time errors • 5-3 to 5-5 
FOR$PROCESSES • 15-52 
FOR$RAB system function • 7-9 to 7-10 
FOR$SPIN_WAIT • 15-52, 15-53 to 15-54 
FOR$STALL_WAIT • 15-52, 15-54 
Format groups 

nesting limits • F-41 
Formatted I/O 

See I/O operations 
Formatted I/O statements 

general description • 4-3 
FORSYSDEF 

$FABDEF module • 7-6 
list of modules • B-1 to B-7 
$NAMDEF module • 7-12 
$RABDEF module • 7-8 
symbol naming conventions 

PARAMETER declarations • 7-4 to 7-5 
use with RMS services • 7-3, 7-4 to 7-6 

FORSYSDEF.TLB • 1-25 
condition symbol values • 5-2 

FORT$LIBRARY • 1-24 
FORTRAN-66 

8-Index 

FORTRAN-66 (cont'd.) 
/NOF77 qualifier • 1-12 

FORTRAN-77 
/F77 qualifier (FORTRAN) • 1-12 
/STANDARD qualifier (FORTRAN) • 1-17 

FORTRAN-77, VAX FORTRAN implementation of 
BYTE and LOGICAL*1 data types • 10-6 
data type conversion • 10-6 
differences with PDP-1 1 FORTRAN IV • 

E-1 to E-16 
differences with PDP-1 1 FORTRAN-77 • 

E-1 to E-16 
DO loops • 10-7 to 10-8 
ENTRY statement arguments • 10-9 to 10-10 
floating-point data • 10-1 1 to 10-16 
PSECT use and attributes • 10-1 to 10-3 
storage allocation • 10-3 to 10-7 

FORTRAN command (DCL) • 1-2 to 1-19 
/ANALYSIS_DATA • 1-7 
/CHECK • 1-8 
/CONTINUATIONS • 1-9 
/CROSS_REFERENCE • 1-9 
/DEBUG • 1-10, 2-1 1, 2-12 
JDIAGNOSTICS • 1-1 1 
/DML • 1-1 1 
/D_LINES • 1-1 1 
/EXTEND_SOURCE • 1-12 
/F77 qualifier • 1-12 
format • 1-2 
/G_FLOATING • 1-13 
/14. 1-14 
/LIBRARY • 1-3, 1-14 
/LIST • 1-4, 1-5, 1-14 
/MACHINE _CODE • 1-15 
/OBJECT • 1-4, 1-15 
/OPTIMIZE • 1-15 
/PARALLEL • 15-44 to 15-45 
qualifier summary • 1-6 to 1-7 
/SHOW • 1-16 
specifying files in • 1-2, 1-3, 1-4 
/STANDARD • 1-17 
/WARNINGS • 1-18 

FORTRAN compiler 
See Compiler 

FORTRAN condition symbols 
for run-time errors • 5--3 to 5-6 

FORTRAN Data Manipulation Language 
See FDML 



FORTRAN logical names 
defaults and use • 4-8 

FORTRAN logical unit numbers • 4-9 
FORTRAN statements 

coding restrictions/limits 
summary of • F-40 to F-41 

maximum line length • 1-12 
FORTRAN symbolic definitions 

See FORSYSDEF 
/FULL qualifier (LINK) • 2-3, 2-5 
Function references 

avoiding optimization problems with 
in logical expressions • 1 1-17 

Function return values • 6-3 
Functions 

output listing information • 1-36 

G 
G _floating data implementation • 10-13 to 10-16 

CDD caution • 1-30 
/G_FLOATING qualifier • 1-13 

/G_FLOATING qualifier • 1-13 
GBLPAGES parameter 

MP-DEBUG requirements • A-24 
tuning for parallel processing • 15-28 to 15-30 

GBLPAGFIL parameter 
tuning for parallel processing • 15-28 to 15-30 

GBLSECTIONS parameter 
MP-DEBUG requirements • A-24 
tuning for parallel processing • 15-28 to 15-30 

Global analysis optimizations • 1 1-7 to 1 1-13 
effect on speed optimizations • 1 1-14 

Global common, shared 
effects of optimization 

use of VOLATILE declaration • 1 1-10 
Global pagefile section 

example of use • C-7 to C-1 1 
Global pages 

use by MP-DEBUG • A-24 
Global sections 

use by MP-DEBUG • A-24 
Global section watchpoint (DEBUG) • A-22 
GO command (DEBUG) • 3-13 

multiprocess program • A-8 
GO TO, assigned 

VAX FORTRAN vs. PDP-1 1 differences • E-4 

GO TO list, computed or assigned 
maximum labels allowed • F-41 

H 
Help (DEBUG) 

HELP command • 3-31 
online • 3-3 

Help libraries 
obtaining text from 

example of • C-20 to C-22 
/HOLD qualifier (DEBUG) 

SET PROCESS command • A-4, A-9 
Hollerith and character constants 

VAX FORTRAN vs. PDP-1 1 FORTRAN • E-3 
Hollerith constants 

maximum size • F-41 

i 

I/O 
character I/O. 13-10 to 13-1 1 

I/O, internal 

See Internal I/O 
I/O, synchronous 

accessing devices using SYS$QIOW • 
C-5 to C-7 

I/O errors 
VAX FORTRAN vs. PDP-1 1 FORTRAN 

handling • E-6 
I/O operations 

See also File processing; Terminal I/O 
block mode I/O 

example of using RMS • 7-32 to 7-38 
formatted vs. unformatted • 1 1-37 
reading data using RMS • 7-21 
record-processing RMS services 

list of • 7-21 
writing data using RMS • 7-20 

I/O optimizations 
use of variable format expressions • 1 1-13 
user options • 1 1-36 to 1 1-44 

I/O records 
See also Records 
general description • 4-3 

Index-9 



I/O statements 
forms of • 4-3 to 4-4 
OPEN statement interdependencies 

file specification • 4-10 to 4-1 1 
types of access modes • 4-2 

I/O units, logical 
See Logical I/O units 

/14 qualifier • 1-14 
ICHAR function • 13-7 
IF statements 

compound logical expressions in 
optimizations performed on • 1 1-17 

Image files 
creating • 2-2 

Image termination • 2-8 
IMPLICIT statement 

effect of /WARNINGS option • 1-18 
INCLUDE files 

including in output listing 
/SHOW qualifier • 1-16 

nesting limit • F-41 
/INCLUDE qualifier (LINK) • 2-3, 2-6 
INCLUDE statement • 1-20 

text fife library search • 1-23 
Indexed DO loops 

See DO loops; Parallel DO loops 
Indexed organization files 

See also Keyed access 
creating • 14-2 to 14-4 
deleting records from • 14-4 
exception conditions • 14-4 to 14-10 
general description • 4-13 
reading operations • 14-6 to 14-7 
record pointers 

next and last • 14-4 
RMS pointers • 14-9 
sequential access • 14-1 
updating records in • 14-4 
writing operations • 14-4 to 14-6 

Indexed sequential access method (ISAM) • 14-1 
INDEX function • 13-8 
Initialization 

debugger • 3-5 
INSTALL command (VMS) 

use to install shareable images • 8-2 
Installed common areas 

creation, installation, and use • 8-3 to 8-4 

10—Index 

Installed common areas (cont'd.) 
synchronizing access to • 8-4 

Integer 
constants 

setting default length • 1-14 
data type 

integer constant typing • 10-4 to 10-5 
relationship of •2 and •4 values • 10-4 

Integer overflow 
condition handling routine 

LIB$INT_OVER • 9-19 
Interactive program execution 

continuing • 2-9 
interrupting • 2-9 

Internal files • 4-13 to 4-14 
Internal I/O.4-13 to 4-14 
Interprocess communication • 4-3 

mechanisms supQorting • 8-1 to 8-1 1 
Interrupt 

See CTRL/C; CTRL/Y 
Intrinsic functions 

for converting data types • 10-6 
NWORKERS • 15-55 

IOSTAT 
error-handling specifier 

in I/O statements • 5-1, 5-7 to 5-8 
IRAD50 subroutine 

PDP-1 1 compatible • E-12 
ISAM • 14-1 
IZEXT intrinsic function 

data type conversion • 10-6 

J 
Journaling control block 

XABKEY (RMS) • 7-14 
JZEXT intrinsic function 

data type conversion • 10-6 

K 
Key definition control block 

XABKEY (RMS) • 7-14 
Keyed access mode • 4-19 

exception handling • 14-9 to 14-10 
general discussion • 14-1 to 14-10 
see also indexed organization files • 4-19 



Key fields 
primary and alternate 

definition • 14-2 
discussion of use • 14-2, 14-3, 14-4 

Keypad key definitions 
debugger predefined • A-21 

Keys, primary and alternate 
See Key fields 

L 

Labels 
in computed or assigned GO TO list 

maximum allowed • F-41 
Language expression 

with DEPOSIT debugger command • 3-22 
with EVALUATE debugger command • 3-23 

LEN function • 13-8 
Length 

default for INTEGER and LOGICAL 
affect of /14 qualifier • 1-14 

source line length 
/EXTEND_SOURCE qualifier • 1-12 

Length, record 
See Fixed-length records; Variable-length 

records; Segmented records; Stream 
records 

Lexical comparison library functions 
LLT, LLE, LGT, LGE • 13-8 

LGE function • 13-8 
LGT function • 13-8 
LIB$DATE_TIME 

example of use • C-6 
LIB$DEC_OVER • 9-19 
LIB$ESTABLISH • 9-6 to 9-7 

restriction on use • 15-9 
LIB$FIXUP_FLT • 9-22 
LIB$FLT_UNDER • 9-19 
LIB$GET_INPUT 

example of use • C-21 
LIB$INT_OVER • 9-19 
LIB$MATCH _COND • 9-22 
LIB$PUT_OUTPUT 

example of use • C-21 
LIB$REVERT • 9-6 to 9-7 
LIB$SIGNAL • 9-7 to 9-10 

example of use • 7-18, C-1 1, C-16 

LIB$SIGNAL routine 
changing to a stop • 9-26 

LIB$SIG _TO_RET • 9-26 
LIB$S!G_TO_STOP • 9-26 
LIB$SIM_TRAP • 9-24 
LIB$STOP • 9-7 to 9-10 

example of use • 7-18, C-6, C-8 
LIB$STOP routine 

continuing execution after LIB$STOP • 9-17 
Libraries 

See Text file libraries; Intrinsic functions 
LIBRARY command (DCL) • 1-21 
/LIBRARY qualifier 

on FORTRAN command • 1-3, 1-14 
on LINK command • 2-3 

/LIBRARY qualifier (LINK) • 2-6 
Library search order 

during compilation • 1-23 
Linear recurrences 

definition • 15-40 
Line number 

SET BREAK command (DEBUG) • 3- i 6 
SET TRACE command (DEBUG) • 3-19 
source display (DEBUG) • 3-12 

/LINE qualifier 
SET TRACE command (DEBUG) • 3-19 

LINK command (DCL) 
/DEBUG • 2-1 1, 2-12 
format • 2-2 
options • 2-2 to 2-7 
qualifiers • 2-2 

Linker 
errors • 2-7 
functions performed by • 2-2 
messages • 2-7 

LIS 
file type • 1-14 

List-directed I/O statements 
general description • 4-3 

Listing file 
See Output listing 

/LIST qualifier • 1-14 
LLE function • 13-8 
LLT function • 13-8 
Local processes 

sharing and exchanging data • 8-1 to 8-8 

Index-11 



$LOCAL program section 
use and attributes • 10-2 

%LOC function 
See Built-in functions 

LOCKOFF directive 
description • 15-50 to 15-51 

LOCKON directive 
description • 15-50 to 15-51 

Locks 
LOCKON and LOCKOFF directives • 

15-50 to 15-51 
use in parallel DO loops • 15-26 to 15-28 

LOGICAL* 1 data type 
treatment of • 10-6 

Logical constants 
testing order 

VAX FORTRAN vs. PDP-1 1 FORTRAN • 
E-2 

Logical expressions 
in function references 

avoiding optimization problems with • 
11-17 

Logical I/O units 
See also System logical names 
connection method 

implicitly by system default • 4-9 
default FORTRAN logical unit numbers • 4-9 
default numbers 

VAX FORTRAN vs. PDP-1 1 FORTRAN • 
E-4 

general discussion • 4-1 
OPEN statement options • 4-10 to 4-1 1 
system unit numbers and names • 4-6 to 4-7 

Logical names 
See also FORTRAN logical names; system 

logical names; logical I/O units 
associating with file specifications • 

4-6 to 4-7 
Loop alignment 

parallel processing coding technique • 
15-22 to 15-24 

Loop distribution 
parallel processing coding technique • 

15-25 to 15-26 
Loops 

See DO loops 

12-Index 

Lowercase characters 
flagging in output 

SOURCE_FORM parameter (/STANDARD) 
• 1-18 

M 

Machine code listing 
MACRO representation • 1-15 
output listing section • 1-32 to 1-35 

/MACHINE _CODE qualifier • 1-15 
MACRO code 

unsupported codes generated by VAX 
FORTRAN • 1-15 

used to represent object code • 1-15 
Mailboxes • 4-3 

SYS$CREMBX • 8-6 to 8-8 
MAIN option 

program transfer address • 2-7 
Manual decomposition 

description of • 15-2 
MAP parameter 

on LINK command • 2-3, 2-5 
/SHOW qualifier • 1-16 

Matrix arithmetic 
parallel processing example • 15-39 
parallel processing implications • 15-20 

MECHARGS array 
contents and use • 9-16 

Memory usage 
compiler optimization techniques • 

1 1-44 to 1 1-47 
Messages 

CDD and CDDL error messages • F-58 
compiler-fatal diagnostic messages • 

F-39 to F-40 
CRX error messages • F-58 to F-61 
DICTIONARY • F-58 to F-61 
effect of optimizations on • 1 1-4 to 1 1-5 , 
issued by compiler 

general description • 1-30 
linker messages • 2-7 
run-time messages • F-41 to F-58 
source program diagnostic messages • 

F-2 to F-38 
warning and informational 

affect of /STANDARD qualifier • 1-17 



Messages 
warning and informational (cont'd.) 

/WARNING qualifier • 1-18 
Message severity 

C (continuable) 
meaning to run-time system • F-42 

E (error) 
meaning to linker • 2-7 
meaning to run-time system • F-42 

F (fatal) 
meaning to linker • 2-7 
meaning to run-time system • F-42 

W (warning) 
meaning to run-time system • F-42 

Module 
setting (DEBUG) • 3-25 

MTH$ 
prefix for condition symbols 

for run-time errors • 5-5 
Multiprocess program 

See Parallel processing 

N 
NAM block 

general description of use • 7-12 to 7-13 
$NAMDEF module 

in FORSYSDEF • 7-12 
Name block (RMS) 

See NAM 
Name length, symbolic 

maximum • F-41 
Namelist-directed I/O statements 

general description • 4-3 
NAMELIST group 

number of names in • F-41 
Namelists 

output listing information • 1-36 
Nesting limits 

DO and block IF statements • F-41 
format groups • F-41 
INCLUDE file nesting • F-41 
parentheses in expressions • F-41 
structures • F-41 

Networking applications • 4-3 
Networking environments 

sharing and exchanging data in • 8-9 to 8-1 1 

%NEXT_PROCESS • A-15 
Nodes 

file specification default • 4-5 
/NOOPTIMIZE qualifier 

effect on debugging • 3-4 
when to use • 1 1-5 to 1 1-7 

NWORKERS intrinsic function • 15-55 

0 
OBJ 

file type • 1-15 
Object code 

generated by VAX FORTRAN calls • 
6-9 to 6-1 1 

Object code listing 
See Machine code listing 

Object files 
See also Compilation options 
naming 

/OBJECT qualifier • 1-15 
/OBJECT qualifier • 1-15 
Open operations 

error reporting 
VAX FORTRAN vs. PDP-1 1 FORTRAN 

behavior • E-6 
opening a file using RMS • 7-19 

Open procedures, user-written 
See USEROPEN routines 

OPEN statement 
DISPOSE='PRINT' 

VAX FORTRAN vs. PDP-1 1 FORTRAN 
behaviors • E-4 

file-sharing parameters • 8-5 
I/O statement interdependencies • 4-2, 4-5 

file organization • 4--12 
file specification • 4-1 1 

keywords pertaining to I/O. 1 1-37, 
1 1-39 to 1 1-40 

use with USEROPEN routines • 7-2 
Optimization 

affect on debugging • 1-10 
/OPTIMIZE qualifier • 1-15 

Optimization techniques, compiler 
code removal optimizations • 1 1-14 to 1 1-23 

compile-time operations • 1 1-15 to 1 1-16 

Index-13 



Optimization techniques, compiler (cont"d.) 

code replacement optimizations • 
11-23 to 11-33 
use of registers by compiler • 1 1-30 

global analysis optimizations • 1 1-7 to 1 1-13 
operation specific optimizations • 

1 1-33 to 1 1-36 
Optimization techniques, user 

adjustments to process working set • 
C-19 to C-20 

autoincrement/autodecrement address modes 
coding practices that enable • 

1 1-27 to 1 1-29 
BACKSPACE statements 

avoiding use of • 1 1-39 
EQUIVALENCE statements 

avoiding unnecessary use • 1 1-9 
function references 

in logical expressions • 1 1-17 
I/O optimizations • 1 1-36 to 1 1-44 
loop optimizations 

block moves/initializations within • 
1 1-30 to 11-32 

use of arrays within • 1 1-30 to 1 1-32 
page faults 

coding practices to reduce • 
11-32 to 1 1-33 

shared global common 
declaring variables as VOLATILE • 1 1-10 

statement functions 
promoting inline expansion of • 1 1-1 1 

user-developed algorithms 
impact of • 1 1-3 to 1 1-4 

variable format expressions 
restricting use of variables in • 1 1-13 

Optimized programs 
effect on debugging • 1 1-5 to 1 1-7 
effect on diagnostics • 1 1-4 to 1 1-5 
optimized vs. unoptimized • 1 1-4 to 1 1-5 
use of VOLATILE 

to disable optimizations • 1 1-9 
/OPTIMIZE qualifier • 1-15 
OPTIONS (MAIN) 

as program transfer address • 2-7 
/OPTIONS qualifier (LINK) • 2-3 
Output, screen 

formatting example • C-14 to C-16 
Output listing • 1-31 to 1-39 

14—index 

Output listing (cont'd.) 

See also Compilation options 
compilation summary section • 1-39 
machine code section • 1-32 to 1-35 
storage map section • 1-35 to 1-39 

Output options 
See Compilation options 

Overflow 
See also Arithmetic overflow 
detecting decimal overflow 

LIB$DEC_OVER • 9-19 
detecting integer overflow 

LIB$INT_OVER • 9-19 

P 

Page faults 
coding practices to reduce • 1 1-32 to 1 1-33 

Parallel DO loops 
coding restrictions • 15-7 to 15-9 
definition of • 15-2 
increasing efficiency of • 15-9 to 15-1 1 
use of locks in • 15-26 to 15-28 

Parallel processing 
acceptable data dependence • 15-18 to 15-21 
coding restrictions • 15-7 to 15-9 
compiling option (/PARALLEL) • 

15-44 to 15-45 
data dependence issues • 15-16 to 15-28 
debugging information • 15-32 to 15-38 
decomposition method • 15-2 
dependence problem resolution • 

15-21 to 15-28 
description of VAX FORTRAN implementation • 

15-1 to 15-55 
directive statements 

CONTEXT_SHARED • 15-47 to 15-50 
DO_PARALLEL • 15-46 to 15-47 
LOCKOFF • 15-50 to 15-51 
LOCKON • 15-50 to 15-51 
PRIVATE • 15-4~ to 15-50 
SHARED • 15-47 to 15-50 

influence on exception handling • 15-15 
overview of preparation for • 15-6 to 15-7 
/PARALLEL qualifier • 15-44 to 15-45 
recoding techniques 

code replication • 15-24 to 15-25 



Parallel processing 
recoding techniques (cont"d.) 

loop alignment • 15-22 to 15-24 
loop distribution • 15-25 to 15-26 

sample program • 15-39 
tuning-related issues • 15-28 to 15-32 
tuning run-time environment • 15-52 to 15-54 
use in performing matrix arithmetic • 15-20 
use of locks • 15-26 to 15-28 
use of non-FORTRAN languages • 15-1 1 
use of read-only variables • 15-20 
use of temporary variables • 15-19 

/PARALLEL qualifier • 15-44 to 15-45 
Parentheses in expressions 

maximum allowed • F-41 
Passed-length character arguments • 13-6 
Path name 

in debugging • 3-10, 3-14, 3-16, 3-17, 
3-26 

PAUSE statement 
restriction on use • 15-9 

PC (Program Counter) 
breakpoint (DEBUG) • 3-16 
SHOW CALLS display (DEBUG) • 3-15 
source display (DEBUG) • 3-12 
STEP command (DEBUG) • 3-14 

PCA (Performance and Coverage Analyzer) 
use in parallel processing applications • 15-2 

$PDATA program section 
use and attributes • 10-2 

PDP-1 1 FORTRAN 
differences with VAX FORTRAN • E-1 to E-16 
subroutines supported by VAX FORTRAN 

for compatibility purposes • E-7 to E-16 
Performance and Coverage Analyser 

See PCA 
Performance optimization 

definition • 1 1-1 
PGFLQUO quota 

MP-DEBUG requirements • A-24 
tuning for parallel processing • 15-31 

PRCLM quota 
MP-DEBUG requirements • A-24 

%PREVIOUS_PROCESS • A-15 
Primary key fields (ISAM) 

definition • 14-2 

PRIVATE directive 

description • 15-47 to 15-50 
use with temporary variables • 15-19 
use with variables and common blocks • 15-16 

Procedure-based signal handling 
See CHF 

Procedure-calling standard (VAX) • 6-2 to 6-13 
Procedures 

run-time 
linking • 2-2 

Process 
working set 

example of how to adjust • C-19 to C-20 
Processes 

activation tracepoint, predefined (DEBUG) • 
A-17 

connecting debugger to • A-5, A-19 
creation and management of • C-22 to C-25 
interprocess communication 

example • C-7 to C-1 1 
local 

sharing and exchanging data • 
8-1 to 8-8, C-7 to C-1 1 

multiprocess debugging • A-1 
remote 

sharing and exchanging data • 
8-9 to 8-1 1 

termination tracepoint, predefined (DEBUG) • 
A-17 

/PROCESS qualifier (DEBUG) 
DO command • A-7 
SET DISPLAY and DISPLAY commands • A-20 

Process working set 
example of how to adjust • C-19 to C-20 

/PROCESS_GROUP qualifier (DEBUG► 
DEFINE command • A-16 

°I~oPROCESS_NAME • A-15 
9~oPROCESS_NUMBER • A-15 
%PROCESS_PID • A-15 
Program counter 

See PC 
Program execution • 2-8 to 2-10 
Programs 

compiling • 1-1 
Program section 

See PSECT 

Index-15 



Prompt 
debugger (DBG> ) • 3-5, A-3 

Protection control block 
XABPRO (RMS) • 7-14 

PSECT • 1-35 
use and attributes of • 10-1 to 10-3 

Q 

QIO 
example of use • C-7 

QIO services • 1 1-41 
See also SYS$QIOW 

QUIT command (DEBUG) 
multiprocess program • A-13 

R 

R50ASC subroutine 
PDP-1 1 compatible • E-15 to E-16 

RAB 
See also FOR$RAB 
fields for use by USEROPEN • 7-30 to 7-32 
general description of use • 7-8 to 7-12 
obtaining address of • 7-9 to 7-10 

$RABDEF module 
in FORSYSDEF • 7-8 

RAD50 function subprogram 
PDP-1 1 compatible • E-13 

Radix-50 constants 
maximum size • F-41 

Random number generator (RAN function) 
how to use • 15-12 to 15-15 

RANDU subroutine 
PDP-1 1 compatible • E-14 

RAN function 
how to use • 15-12 to 15-15 

RAN function subprogram 
PDP-1 1 compatible • E-14 

Read-only variables 
directive requirements • 15-20 
use in parallel processing • 15-20 

Read operations 
See I/O operations 

Record access block 
See RAB 

16—Index 

Record access mode 
direct • 4-18 
keyed • 4-19 
sequential • 4-18 

Record arrays 
See also Array 
output listing information • 1-36 

Record I/O 
See I/O operations 

Record locking 
RMS facility for • 8-6 

Record Management Services 
See RMS 

Records 
See also Fixed-length records; Variable-length 

records; Segmented records; Stream 
records 

I/O records • 4-14 to 4-17 
deleting records from a file (DELETE) • 

14-4 
general description • 4-3 
in internal files • 4-14 
ISAM record pointers (current and next) • 

14-4 
record formats (fixed-length, seg-

mented, stream, variable-length) • 
4-15 to 4-17 

record operations on indexed files • 
14-4 to 14-8 

output listing information • 1-36 
structured data items 

overview • 12-3 to 12-5 
RECORD statement 

general description • 12-3 
References 

unresolved • 2-7 
%REF function 

See Built-in functions 
Relative files 

See Relative organization files 
Relative organization files 

See also Direct access mode 
general description • 4-13 

Remote file access • 8-9 
Remote processes 

sharing and exchanging data • 8-9 to 8-1 1 



Resultant string area 
See RSA 

Returning completion status values 
to a command pros • 2-10 

RETURN statement • 2-10 
restriction on use • 15-9 
when not to use • 2-10 

Return values, function • 6-3 
Revision date and time control block 

See also date and time control block 
XABRDT (RMS) • 7-14 

RMS 
See also VMS system services 
data structures 

constructed by RTL • 7-26 to 7-32 
FAB • 7-6 to 7-8 
field use by USEROPEN • 7-27 to 7-32 
NAM • 7-12 to 7-13 
RAB • 7-8 to 7-12 
steps to using • 7-3 to 7-4 
use by USEROPEN • 7-26 to 7-32 
XAB • 7-14 to 7-15 

data structures, list of • 7-2 
error signaling 

example of • C-1 1 to C-14 
example of call to RMS • C-2 to C-3 
file sharing capability • 8-5 to 8-6 
I/O optimizations • 11-41 to 11-42 
overview of how to use RMS services • 

7-16 to 7-22 
record locking facility • 8-5, 8-6 

$RMSDEF module • 7-17 
RMS pointers 

into indexed organization files • 14-9 
RSA (Resultant String Area) 

RMS control structure • 7--26, 7-27 
RST (run-time symbol table► • 3-25 
RTL 

See also LIB$xxxxx 
data conversion functions • 10-14 to 10-16 
data conversion subroutines • 10-14 to 10--16 
error processing performed by • 5-2 to 5-6 
FORTRAN I/O support routines 

used as result of USEROPEN • 7-2 
RUN command (DCL) • 2-8, 3-5 

continuing • 2-9 
effect of /DEBUG • 2-11, 2-12 
interrupting • 2-9 

Run-time call stack 
See Call stack 

Run-time error numbers 
VAX FORTRAN vs. PDP-1 1 FORTRAN • 

E-5 to E-6 
Run-time library 

See LIB$xxxxx; RTL 
Run-time performance 

effect of user-developed algorithms • 
1 1-3 to 1 1-4 

Run-time procedures 
linking • 2-2 

S 
Scope (DEBUG) • 3-26 
Screen management subroutines 

See also SMG$xxxxxx 
examples of use • C-14 to C-16 

Screen mode (DEBUG) • 3-10 
multiprocess program • A-20 

Screen output 
formatting example • C-14 to C-16 

Segmented records 
format • 4-16 

Sequential access mode • 4-18 
for indexed organization files • 14-1 

Sequential files 
see sequential organization files • 4-12 

Sequential organization files 
general description • 4-12 

SET ABORT_KEY command (DEBUG) • 3-7, 
A-14 

SET BREAK command (DEBUG) • 3-16 
SET MODE SCREEN command (DEBUG) • 3-10 
SET MODE [NO]DYNAMIC command (DEBUG) • 

3-26 
SET MODE [NO]INTERRUPT command (DEBUG) • 

A-8 
SET MODULE command (DEBUG) • 3-25 
SET PROCESS command (DEBUG) • A-9, A-11 
SET SCOPE command (DEBUG) • 3-27 
SET TRACE command (DEBUG) • 3-18 
SET WATCH command (DEBUG) • 3-19 
Shareable image libraries 

benefits • 8-2 
creating and installing • 8-2 to 8-3 

Index-17 



/SHAREABLE qualifier (LINK) • 2-3, 2-4 
SHARED directive 

description • 15-47 to 15-50 
Shared global common 

effects of optimization 
use of VOLATILE declaration • 1 1-10 

/SHARE qualifier 
SET TRACE command (DEBUG) • 3-19 

Sharing data 
See Data 

Sharing files 
See File sharing 

SHOW CALLS command (DEBUG) • 3-15 
SHOW LOGICAL command (DCL) • 4-1 1 
SHOW MODULE command (DEBUG) • 3-25 
/SHOW qualifier • 1-16 
SHOW SCOPE command (DEBUG) • 3-27 
SHOW SYMBOL command (DEBUG) • 3-26 
SIGARGS array 

contents and use • 9-14 
Signal handling routines 

See Condition-handler routines 
Signals, condition 

changing to return status 
LIB$SIG_TO_RET • 9-26 

/SILENT qualifier 
SET TRACE command (DEBUG) • 3-19 

SMG$CREATE _PASTEBOARD 
example of use • C-14 

SMG$CREATE _VIRTUAL _TERMINAL 
example of use • C-14 

SMG$LABEL _BORDER 
example of use • C-14 

SMG$PASTE _VIRTUAL _DISPLAY 
example of use • C-14 

SMG$PUT_LINE 
example of use • C-14 

SMG routines 
examples of use • C-14 to C-16 

Source code 
coding restrictions/limits 

summary of • F-40 to F-41 
Source code listing 

affect of /LIST qualifier • 1-14 
general description • 1-31 to 1-32 

Source display 
TYPE command (DEBUG) • 3-10 

18—Index 

Source display (DEBUG) • 3-10, 3-12 
multiprocess program • A-20 

Source files 
input to compiler • 1-3 

Source line (VAX FORTRAN) 
maximum length • F-41 

Source lines 
not available (DEBUG► • 3-1 1, 3-12 

Source program diagnostic messages • 
F-2 to F-38 

Source program optimizations 
effects of user-developed algorithms 

on run-time performance • 1 1-3 to 1 1-4 
Source programs 

compile options 
continuation line limits • 1-9 
maximum line length • 1-12 

SS$ 
prefix for condition symbols 

for run-time errors • 5-5 
SS$_CONTINUE 

use in condition handlers • 9-17 
SS$_RESIGNAL 

use in condition handlers • 9-17 
/STANDARD qualifier • 1-17 
Statement functions 

inline expansion optimization • 1 1-1 1 to 1 1-12 
output listing information • 1-36 

Statement labels 
output listing information • 1-36 

Status values 
See Return status values 

Status values, completion 
returning to a command proc • 2-10 

STEP command (DEBUG) • 3-14 
multiprocess program • A-8 

STOP command (DCL) • 2-9 
STOP statement • 2-10 

effect on program execution • 2-8 
restriction on use • 15-9 
when not to use • 2-10 

Storage allocation 
of fixed point data types • 10-3 to 10-7 

Storage map listing 
general description • 1-35 to 1-39 

Stream records 
format • 4-16 to 4-17 



Structure declaration blocks 

CDD data definitions, relationship to • 1-26 
overview • 12-2 

Structures 
See also Records 
general description • 12-2 to 12-3 
nesting limit • F-41 

STRUCTURE statement 
general description • 12-2 

Subexpression elimination optimization • 1 1-18 
Subprogram arguments 

passed-length character arguments • 13-6 
Subroutines 

output listing information • 1-36 
Substring references 

checking boundaries 
FORTRAN command option • 1-8 

/SUFFIX qualifier (DEBUG) • A-20 
Summary control block 

XABSUM (RMS) • 7-14 
Summary listing, compilation • 1-39 
Symbol 

local symbol definitions 
effect of /DEBUG qualifier • 1-10 

module setting (DEBUG) • 3-25 
records (DEBUG) • 3-4 
relation to path name (DEBUG) • 3-14 
resolving scope (DEBUG) • 3-26 

Symbolic definitions, FORTRAN 
See FORSYSDEF 

Symbolic names 
listing file information • 1-9 
maximum length • F-41 

Symbolic naming conventions 
See Naming conventions; System symbols 

Symbol map 
/SHOW qualifier 

affect of MAP parameter • 1-16 
Symbol table 

created by compiler • 1-2 
Synchronous I/O 

accessing devices using SYS$QIOW • 
C-5 to C-7 

SYNTAX parameter (/STANDARD) • 1-18 
SYS$ADJWSL 

example of use • C-19 

SYS$ASCEFC 
example of use • C-8 

SYS$ASSIGN 
example of use • C-8 

SYS$BINTIM 
example of use • C-3 

SYS$CLOSE (RMS) • 7-20 
data structure needed to use • 7-6 

SYS$CONNECT (RMS) 
data structure needed to use • 7-8 
use to open a file • 7-19 

example of • 7-25, 7-34 
SYS$CREATE (RMS) 

data structure needed to use • 7-6 
use to open a file • 7-19 

example of • 7-24, 7-34 
SYS$CREMBX • 8-6 to 8-8 

example of use • 8-8 
SYS$CREPRC 

example of use • C-22 
SYS$CRMPSC 

example of use • C-8 
SYS$DELETE (RMS) • 7-21 

data structure needed to use • 7-8 
SYS$DISCONNECT (RMS) • 7-20 

data structure needed to use • 7-8 
SYS$DISPLAY (RMS) • 7-21 

data structure needed to use • 7-6 
SYS$ENTER (RMS) • 7-21 

data structure needed to use • 7-6 
SYS$ERASE (RMS) • 7-21 

data structure needed to use • 7-6 
SYS$EXTEND (RMS) • 7-21 

data structure needed to use • 7-6 
SYS$FIND (RMS) • 7-21 

data structure needed to use • 7-8 
SYS$FLUSH (RMS) 

data structure needed to use • 7-8 
SYS$FREE (RMS) 

data structure needed to use • 7-8 
SYS$GET (RMS) • 7-21 

data structure needed to use • 7-8 
SYS$GETJPIW 

example of use • C-22 
SYS$HIBER 

example of use • C-22 
SYS$LIBRARY • 1-24, 1-25 

Index-19 



SYS$MGBLSC 

example of use • C-8 
SYS$NXTVOL (RMS) 

data structure needed to use • 7-8 
SYS$OPEN (RMS) 

data structure needed to use • 7-6 
example of use • 7-18, 7--25 
when to use • 7-19 

SYS$PARSE (RMS) • 7-21 
data structure needed to use • 7-6 

SYS$PUT (RMS) • 7-20 
data structure needed to use • 7-8 

SYS$QIO 
example of use • C-7 

SYS$QIOW 
See also QIO 
example of use • C--7 

SYS$READ (RMS) • 7-21 
data structure needed to use • 7-8 
example of use • 7-37 

SYS$RELEASE (RMS) 
data structure needed to use • 7-8 

SYS$REMOVE (RMS) • 7-21 
data structure needed to use • 7-6 

SYS$RENAME (RMS) 
data structure needed to use • 7-6 

SYS$REWIND (RMS) 
data structure needed to use • 7-8 

SYS$SEARCH (RMS) • 7-21 
data structure needed to use • 7-6 

SYS$SETDDIR 
example of use • C-2 

SYS$SETEF 
example of use • C-8 

SYS$SETIMR 
example of use • C-3 

SYS$SPACE (RMS) • 7-21 
data structure needed to use • 7-8 

SYS$TRNLNM 
example of use • C-22 

SYS$TRUNCATE (RMS) • 7-21 
data structure needed to use • 7-8 

SYS$UNWIND • 9-26 
use in condition handlers • 9-17 to 9-18 

SYS$UPDATE (RMS) • 7-21 
data structure needed to use • 7-8 

SYS$WAIT (RMS) 
data structure needed to use • 7-8 

20—Index 

SYS$WAITFR 
example of use • C--8 

SYS$WAKE 
example of use • C-22 

SYS$WRITE (RMS► • 7-20 
data structure needed to use • 7-8 
example of use • 7-36 

SYSGEN Utility 
tuning system parameters 

for parallel processing • 15-28 to 15-30 
/SYSLIB qualifier (LINK) • 2-3 
/SYSSHR qualifier (LINK) • 2-3 
System definition modules • 1-25 
System parameters 

tuning for parallel processing • 15-28 to 15-30 
/SYSTEM qualifier 

SET TRACE command (DEBUG) • 3-19 
System resources 

required for MP-DEBUG • A-23 to A-24 
System services 

See SYS$xxxxxx 
System symbols 

conventions in FORSYSDEF 
PARAMETER declarations • 7-4 to 7-5 

T 

Tab formatting 
flagging in output 

SOURCE_FORM (/STANDARD) • 1-18 
Task-to-task communications, network • 

8-9 to 8-1 1 
Temporary variables 

directive requirements • 15-19 
use in parallel processing • 15-19 

Terminal control block 
XABTRM (RM5) • 7-14 

Terminal I/O 
example of SYS$QIOW • C-5 to C-7 
formatting screen output • C-14 to C-16 

/TERMINATING qualifier (DEBUG) 
SET TRACE command • A-17 

Termination (DEBUG) 
debugging session • A-13 
multiprocess program • A-13, A-17 



Text file libraries 
creating and modifying 

LIBRARY command (DCL) • 1-20 to 1-22 
defining defaults • 1-24 
general discussion • 1-20 to 1-25 
INCLUDE searches • 1-23 
/LIBRARY qualifier • 1-14 
system-supplied default library 

FORSYSDEF.TLB • 1-25 
TLB 

fife type • 1-20 
Traceback 

SHOW CALLS command (DEBUG) • 3-15 
Traceback condition handler• 9-5 
Traceback mechanism 

effect of /DEBUG 
on LINK command • 2-3, 2-6, 

2-1 1 to 2-12 
effect of /DEBUG qualifier • 1-10 

/TRACEBACK qualifier (LINK) • 2-3, 2-6, 
2-1 1 to 2-12 

Tracepoint (DEBUG) • 3-18 
on activation (multiprocess program) • A-17 
on termination (image exit) • A-17 
predefined • A-17 

Traps 
converting faults to traps 

LIB$SIM_TRAP • 9-24 
Tuning 

parallel processing environment • 
15-28 to 15-32 

TYPE command (DEBUG) • 3-10 

U 

Underflow 
detecting floating-point underflow 

LIB$FLT_UNDER • 9-19 
Unformatted I/O 

See I/O operations 
Unformatted I/O statements 

general description • 4-3 
Units, logical I/O 

See Logical I/O units 
UNLOCK statement 

use of • 8-6 

Unoptimized programs 

differences and similarities 
to optimized programs • 1 1-4 to 1 1-5 

Unresolved references • 2-7 
Unwind operations 

See also SYS$UNWIND 
restrictions on use • 15-15 

User account parameters 
tuning for parallel processing • 15-31 

USEREX subroutine 
PDP-1 1 compatible • E-16 

/USERLIBRARY qualifier (LINK► • 2-3 
USEROPEN routines 

block mode I/O example • 7-34 to 7-36 
description of use • 7-2 
in-depth discussion of• 7-22 to 7-32 
restrictions on use • 7-26 to 7-27 

User quotas 
MP-DEBUG requirements • A-24 

User-written open procedures 
See USEROPEN routines 

V 

%VAL function 
See Built-in functions 

Value propagation optimization • 1 1-20 to 1 1-22 
Variable 

as address expression for SET WATCH 
(DEBUG► • 3-19 

global section (DEBUG) • A-22 
nonstatic (DEBUG) • 3-20, 3-21 
watchpoint (DEBUG) • A-22 

Variable format expressions 
effect on optimizations • 1 1-13 

Variable-length records 
format • 4-15 

Variable name 
in DEPOSIT debugger command • 3-22 
in EVALUATE debugger command • 3-23 
in EXAMINE debugger command • 3-21 

Variables 
See also Read-only variables; Temporary 

variables 
effects of CONTEXT_SHARED declaration • 

15-17 

Index-21 



Variables (cont'd.) 
global analysis of use 

for optimization purposes • 
1 1-7 to 1 1-13 

VOLATILE effects on global analysis • 
11-9, 11-10 

initializing character p✓ariables • 13-5 
output listing information • 1-36 
value propagation optimization • 

1 1-20 to 11-22 
VAX FORTRAN compiler 

See Compiler; FORTRAN command 
VAX procedure-calling standaf-d • 6-2 to 6-13 
Visible process (DEBUG) • A-3, A-4, A-1 1 
96VISIBLE _PROCESS • A-15 
VMS RMS 

See RMS 
VMS system services 

See SYS$xxxxxx 
VOLATILE declarations 

affect on optimizations • 1 1-9 to 1 1-1 1 

W 
/WARNINGS qualifier • 1-18 
Watchpoint (DEBUG) • 3-19 

global section • A-22 
multiprocess program • A-22 
nonstatic variable • 3-20 

Working set, process 
example of how to adjust • C-19 to C-20 

Working set size 
tuning for parallel processing • 15-32 

22—Index 

Write operations 
See I/O operations 

X 
XAB 

general description of use • 7-14 to 7-15 
XABALL (RMS) 

allocation control block • 7-14 
XABDAT (RMS) 

date and time control block • 7-14 
XABFHC (RMS) 

file header characteristics control block • 7-14 
XABJNL (RMS) 

journaling control block • 7-14 
XABKEY (RMS) 

key definition control block • 7-14 
XABPRO (RMS) 

protection control block • 7-14 
XABSUM (RMS) 

summary control block • 7-14 
XABTRM (RMS) 

terminal control block • 7-14 
XABxxx blocks 

initialized after open • 7-27 
nine kinds of XABs 

listing of • 7-14 

Z 
ZEXT intrinsic function 

data type conversion • 10-6 



Reader's Comments VAX FORTRAN 
User Manual 

AA—D035E—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less  

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version   of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

Phone  



Do N'ot Tear -Fold Here and Tape 

d 89a~ a 
TM 

-- Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications--Spit Brook 
ZK01-3/J35 
1 10 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

Ill~~~~~li~ll~~~~ll~~~~l~ll~l~~l~l~~l~~l~l~~~l~ll~~l 



Reader's Comments VAX FORTRAN 
User Manual 

AA—D035E—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: 

Accuracy (software works as manual says) 

Completeness (enough information) 

Clarity (easy to understand) 
Organization (structure of subject matter) 

Figures (useful) 
Examples (useful) 
Index (ability to find topic) 

Page layout (easy to find information) 

Excellent Good Fair Poor 

❑ ~ D D 
❑ ❑ ❑ ❑ 

❑ ❑ ❑ ❑ 

❑ ❑ ❑ ❑ 

~ D ~ D 
❑ ❑ ❑ ❑ 

O ❑ ❑ ❑ 

❑ ❑ ❑ ❑ 

I would like to see more/less  

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version   of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

Phone  



— Do Not Tear -Fold Here and Tape 

d a9ao a 
TM 

— Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 
1 10 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

a 
..~ 

.~ 
a 
~I 
brD 
~' 
C~ ...~ 
Q' 

~' 
U~ 


