
BASIC/RT11
LANGUAGE REFERENCE

MANUAL
DEC-11-LBACA-D-D

digital equipment: corporation • maynard. massachusetts

The information in this document is subject to change without notice
and should not be construed as a commi tment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear. in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(wit~ inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright@ 1973, 1974 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL I NDAC PS/8
COMPUTER LAB DNC KAl0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 OS/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

BAS.IC is a registered trademark of the Trustees of Dartmouth
College.

ii

)

PREFACE

This document describes the operating procedures for the BASIC/RTll
program and the features of the BASIC/RTll language.

The user should be somewhat familiar with the standard BASIC language.
If the user is totally unfamiliar with'BASIC it is suggested that a
BASIC primer be read prior to using this document. The BASIC language
as it pertains to BASIC/RTll is described in Chapters 5 and 6.
Chapters 1, 2, 3 and 4 provide an introduction to BASIC/RTll operating
procedures, arithmetic and string operations. Editing commands, error
messages and demonstration programs are covered in Chapters 7, 9 and
10.

The experienced BASIC user should pay
description of operating procedures
asserrbly language routines (Chapter 8)
commands and functions (Appendix D).

particular attention to the
(Chapter 1) and the use of

and the summary of statements,

Technical changes from previous versions are indicated
outer margin. Changes made after the DEC-11-LBACA-C-D
have the date of change printed in the lower left hand
page. Any previous change bars on a revised page have

October, 1974 iii

by bars in the
version also
corner of the

been deleted.

"""''
CONTENTS

Page

CHAPTER 1 INTRODUCTION

1.1 LOADING AND RUNNING BASIC 1-1

CHAPTER 2 RT- 11 BASIC ARITHMETIC

2.1 NUMBERS 2-1

2.2 VARIABLES 2-2

2 . 3 SUBSCRIPTED VARIABLES 2-2

2.4 EXPRESSIONS 2-4

2 . 5 ARITHMETIC OPERATIONS 2- 4
2.5.1 Priority of Arithmetic Operations 2-4
2.5 . 2 Relational Operators 2-6

CHAPTER 3 RT-11 BASIC STRINGS

3.1 STRINGS 3-1

3.2 STRING VARIABLES 3-1
3 . 2.1 Subscripted String Variables 3-1

3.3 STRING OPERATIONS 3- 2
3.3 . 1 Concatenation 3-2
3.3.2 Relational Operations 3-2

CHAPTER 4 IMMEDIATE MODE OPERATIONS

4.1 USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION 4-1

4.2 PROGRAM DEBUGGING 4-1

4.3 MULTIPLE STATEMENTS PER LINE 4- 2

4 . 4 RESTRICTIONS ON I MMEDIATE MODE 4-2

'~- ·-
CHAPTER 5 RT-11 BASIC STATEMENTS

5.1 STATEMENT NUMBERS 5 - 1

5.2 REMARK STATEMENT 5-1

5.3 THE ASSIGNMENT STATEMENT - LET 5-2

5.4 THE DIMENSION STATEMENT - DIM 5- 3

5.5 INPUT/OUTPUT STATEMENTS , 5-4
5.5.1 PRINT Statement 5-4
5 . 5.1.1 Printing Variables 5 - 4
5.5.1.2 Printing Strings 5-5

l 5.5.1.3 Use of Comma and Semicolon (" f " and n ; u) 5-6
5.5.1.4 Selecting Output Device 5- 7
5 .5 . 1.5 PRINT Statement - TAB Function 5- 8
5 . 5.2 INPUT Statement 5 - 8
5.5.2.1 Selecting Input Devices 5-9
5.5.3 DATA Statement 5-10

'--,.
, 5.5.4 READ Statement 5-10

V

1

RESTORE Statement

RANDOMIZE Statement

PROGRAM CONTROL
GO TO Statement

5.5.5

5.6

5.7
5.7.1
5.7.2
5.7.3
5.7.4

IF THEN, IF GO TO and IF END Statements
FOR-NEXT Statements

5.8
5.8.1
5.8.2
5.8.3

5.9
5.9.l
5.9.2
5.9.3

CHAPT::!R 6

6.1
6. 1.1
6.1.2
6.1.3
6.1.4
6.1. 5
6 .1. 6
6.1. 7
6 .1. 8
6.1. 9
6.1.10
6.1.11

GOSUB and RETURN Statements

PROGRAM TERMINATION
END Statement
STOP Statement
CHAIN Statement

FILE CONTROL
OPEN Statement
CLOSE Statement
OVERLAY Statement

BASIC/RT-11 FUNCTIONS

ARITHMETIC FUNCTIONS
Sine and Cosine Functions, SIN(x)
Arctangent Function, ATN(x)
Square Root Function, SQR(x)
Exponential Function, EXP(x)
Logarithm Function, LOG(x)
Absolute Function, ABS(x)
Integer Function, INT(x)
Random Number Function, RND(x)
Sign Function, SGN(x)
Binary Function, BIN(x$)
Octal Function, OCT(x$)

6.2 USER DEFINED FUNCTIONS

6.3 STRING FUNCTIONS
6.3.1 User-Defined String Functions

CHAPTER 7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

EDITING COMMANDS

SCRATCH COMMAND

OLD COMMAND

LIST/LISTNH COMMANDS

SAVE COMMAND

REPLACE COMMAND

RUN/RUNNH COMMANDS

CLEAR COMMAND

RENAME COMMAND

NEW COMMANL:>

vi

and COS(x)

5-11

5-12

5-13
5-13
5-14
5-15
5-18

5-20
5-20
5-20
5-20

5-21
5-22
5-25
5-26

6-1
6-2
6-2
6-3
6-4
6-4
6-6
6-6
6-7
6-8
6-9
6-9

6-10

6-15
6-16

7-2

7-3

7-3

7-5

7-5

7-6

7-6

7-7

7-7

.,

)

)

CHAPTER 8

8.1

8.2
8.2.1

8.3
8.3.1

8.4

8.5

8.6

8.7
8.7.1
8.7.2

8.8
8.8.l

CHAPTER 9

CHAPTER 10

APPEKDIX A

APPEKDIX B

APPEKDIC C

C.l

c.2

C.3

APPEKDIX D

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

CALL STATEMENT

SYSTEM FUNCTION TABLE
System Function Table When Using LPS or
GT Support

WRITING ASSEMBLY LANGUAGE ROUTINES
Sample User Functions

SYSTEM ROUTINES IN BASIC

REPRESENTATION OF NUMBERS IN BASIC

REPRESENTATION OF STRINGS IN BASIC

FORMAT OF TRANSLATED BASIC PROGRAM
Symbol Table Format
Translated Code

BACKGROUND ASSEMBLY LANGUAGE ROUTINE
Background Routine with LPS or GT Support

ERROR MESSAGES

DEMONSTRATION PROGRAMS

BOOTSTRAPPING THE RT-11 SYSTEM

ASCII CHARACTER SET

STATEMENTS, COMMANDS, FUNCTIONS

RT-11 BASIC STATEMENTS

COMMANDS

FUNCTIONS

RESERVED FOR FUTURE USE

APPEKDIX E BASIC ERROR MESSAGES

APPEKDIX F ASSEMBLING AND LINKING BASIC

F.l ASSEMBLING BASIC/RTll
F.1.1 Floating Point Math Package

F.2 LINKING BASIC/RTll
F.2.1 Linking BASIC/RTll With User Functions

APPENDIX G BASIC CORE MAP

APPENDIX H GETARG, STORE, SSTORE LISTING

vii

8-1

8-2

8-3

8-3
8-5

8-7

8-11

8-11

8-12
8-12

8-15

9-1

10-1

A-1

B-1

c-1

C-1

C-3

C-4

D-1

E-1

F-1

F-1
F-2

F-3
F-4

G-1

H-1

APPENDIX I

I.l

I.2

I.3
I.3.1
I.3.2
I.3.3

LABORATORY PERIPHERAL SYSTEM SUPPORT

INTRODUCTION

QESCRIPTION OF COMMANDS

MODULE O (REQUIRED MODULE)
"USE" (A,B,C •••)
"ACC" (BUF)
"RDB" (BUF,var)

Page

I-1

I-1

I-1

I-3
I-3
I-5
I-5

I.4 MODULE 1 (A/D CONVERSION AND NUMERIC READOUTS I-6
I.4.1 "ADC" (chan,var) I-6

I.5
I. 5.1
I. 5. 2
I. 5. 3
I. 5. 4

I.6
I.6.1
I.6.2
I.6.3
I. 6. 4

I. 7
I. 7.1
I. 7.2
I. 7. 3
I. 7.4
I. 7.5

MODULE 2 (REAL-TIME CLOCK)
"SETR" (rate,mode,preset)
"SETC (rate,time)
"HIST" (BUF,npts)
"WAIT" (n)

MODULE 3 (DIGITAL I/O)
"DIR" (n,var,NEWCSR)
"DOR" (m,n,NEWDOR)
"DRS" (BUF ,mode,npts ,M,NEWCSR)
"REL" (s ,dir)

MODULE 4 (DISPLAY)
"CLRD" (BUF, size, scale)
"PUTD" (BUF, Y)
"DIS" (BUF,n,i)
"FSH" (BUF,n,i)
"DXY" (BUF1,BUF2,n,i)

I.8 BUILDING A LOAD MODULE
I.8.1 LPS in Source Form

I.9 SUMMARY OF LPS COMMANDS

I.10 HARDWARE REQUIRED FOR LPS COMMANDS

I.11 LPS ERROR MESSAGES

I.12 EXAMPLE PROGRAMS

APPENDIX J GT GRAPHICS SUPPORT

J.l INTRODUCTION
J.1.1 Documentation Conventions

J.2
J.2.1

J.2.2
J.2.3
J.2.4
J.2.5
J.2.6
J.2.7
J.2.8

DISPLAY PROCESSOR CONTROL ROUTINES CALL SUMMARY
Display Buffer Control (DFIX, FREE, INIT,
and DCNT)
Scaling Instruction (SCAL and NOSC)
Positioning the Beam (APNT and RDOT)
Drawing Vectors (VECT)
Text Instruction (TE XT and STAT)
Subpictures (SUBP, DON, OFF, and ERAS)
Light Pen Interaction (LPEN and TRAK)
Graphic Arrays: Graphs and Figures (XGRA,
YGRA, AGET, APUT, FIGR, and FPUT)

viii

I-8
I-8
I-8
I-8
I-9

I-10
I-10
I-10
I-10
I-11

I-11
I-11
I-12
I-12
I-12
I-13

I-13
I-13 i

I-14

I-15

I-15

I-17

J-1

J-1
J-3

J-3

J-7
J-8
J-10
J-12
J-14
J-17
J-19

J-22

)

)

_ _)

INDEX

J.2.9
J.2.10

J.3
J.3.1
J.3.2

Timing Routines (TI.ME and TIMR)
Display Buffer Condensing, Storage,
and Retrieval (DSAV and RSTR)

BUILDING A LOAD MODULE
Assembling GT Sources
Technical Description of Display File
Management

ix

Page

J-29

J-30

J-32
J-37

J-39

X-1

CHAPTER 1

INTRODUCTION

BASIC/RTll is a single-user, conversational programming language which
uses simple English-type statements and familiar mathematical
notations to perform an operation. BASIC is one of the simplest
computer languages to learn and once learned has the facility of
advanced techniques to perform more intricate manipulations or express
a problem more efficiently.

BASIC/RTll interfaces with the RT-11 Monitor to provide powerful
sequential and random-access file capabilities and allows the user to
save and retrieve programs from peripheral devices. BASIC/RTll has
provision for alphanumeric character string I/O and string variables
(12K or larger systems) and allows user defined functions and assembly
language subroutine calls from user BASIC programs.

1.1 LOADING AND RUNNING BASIC

BASIC is loaded under the control of the RT-11 monitor (Refer to the
RT-11 System Reference Manual (DEC-11-ORUGA-A-D) for additional
information on the RT-11 system), by typing:

R BASIC

and the RETURN key.

Through replies to the initial dialogue, BASIC allows selection of the
functions to be loaded. Selectively loading functions maximizes space
available for the user's program by removing unwanted functions from
core.

When BASIC is first loaded with the R command, the dialogue described
below is printed. This is once-only dialogue and does not occur
again.

BASIC prints:

BASIC V0l-05
*

(or current version)

and awaits specification on inclusion of the optional functions shown
below. Refer to Chapter 6 for information on these functions.
Depending on the response (carriage return, A, Nor I) made to this
message, all functions (carriage return or A) are included, none of
the f~nctions (N) are included or the functions are listed and may be
individually selected for inclusion (I).

Selectively excluding functions can provide space for up to 20 or 30
additional user program lines.

Reply with one of the following codes:

1-1

Code Explanation

A ~Loads
or
carriage
return

all of the optional functions

Loads none of the optional functions N

I Allows the functions to be specified individually

If any character other than a carriage return, A, N, or I is typed,
the message is repeated. If the reply is I, BASIC prints

Y-YES N-NO

rum:

to allow specification of each function to be loaded as part of BASIC/
RTll.

Reply with a Y or N for the RND function and each additional function
as the names are printed. The optional functions are:

String BASIC

RND
ABS
SGN
BIN
OCT
TAB
LEN
ASC
CHR$
POS
SEG$
VAL
TRM$
STR$

No String

RND
ABS
SGN
BIN
OCT

Each exclusion of a function provides room for between
additional program lines. Excluding the POS and
provides approximately ten additional lines each.

two and five
SEG$ functions

If a "user function" has been linked (Refer to Appendix F) into BASIC
(to be referenced by a CALL statement) BASIC prints:

USER FNS LOADED

BASIC then prints the message

READY

and waits for a command or program line to be typed (refer to Chapter
4) •

Typing CTRL/C at any time returns BASIC to the RT-11 Monitor. To
continue BASIC after a CTRL/C return to the monitor, type the Monitor
command REENTER (RE). BASIC will then print the READY message.

1-2

)

,,...

\

'--

The program in core when the CTRL/C was executed is
user program execution may be terminated at
destroying the user program.

retained.
any time

Thus,
without

If the computer is turned off while BASIC is operating, the ?PWF error
message is output when power is turned on again. The user program is
not destroyed and BASIC returns to the READY state with all files
closed.

1-3

CHAPTER 2

RT-11 BASIC ARITHMETIC

2.1 NUMBERS

BASIC treats all numbers (real and integer) as decimal numbers--that
is, it accepts any decimal number, and assumes a decimal point after
an integer. The advantage of treating all numbers as decimal numbers
is that any number or symbol can be used in any mathematical
expression without regard to its type. Numbers used must be in the
approximate range 10-38<N<lo+38.

In addition to integer and real
and accepted by BASIC. This
notation, and in this format, a
number times some power of 10.

formats, a third format is recognized
format is called exponential or E-type
number is expressed as a decimal

The form is:

xxEn

where E
read:

represents "times 10 to the power of"; thus
"xx times 10 to the power of n". For example :

the number is

23.4E2 = 23.4*102 = 2340

Data may be input in any one or all three of these forms. Results of
computations are output as decimals if they are within the range
.0l<n<999999; othei:wise, they are output in E format. Numbers are
stored up to 24 bits of significance . If a number with more than 24
bits is entered, it is rounded and stored as 24 bits. BASIC handles
six significant digits in normal operati on and prints 6 decimal digits
as illustrated below:

Value Typed In

.01

.0099
999999
1000000

Value Output By BASIC

.01
9.90000E-03
999999
l.00000E+06

BASIC automatically suppresses the printing of leading and trailing
zeros in integer and decimal numbers, and, as can be seen from the
preceding examples, formats all exponen tial numbers in the form:

(sign) x.xxxxxE(+ or -)n

where x represents the number carried to six decimal places, E stands
for "times 10 to the power of", and n represents the exponential
value. For example:

-3.47021E+08 is equal to -347,021,000
7.26000E-04 is equal to .000726

Floating point format is used when storing and calculating most
numbers.

However, if the number entered is an integer, it
integer unless the operation being performed

2-1

is handled as an
requires that it be

changed to floating point. Multiply and divide operations require
this transformation but addition and subtraction of integer quantities
less than 215 in magnitude is done with the corresponding single
machine instruction. Thus, maintaining numbers in (or converting
numbers to) integer form may significantly increase the speed of
arithmetic expression evaluation.

NOTE

Because core size limitations prohibit the storage
of infinite binary numbers, some numbers cannot be
expressed exactly in BASIC/RT. Accuracy is
approximately 5-1/2 digits, and errors in the 6th
digit can occur. For example, .999998 as a result
of some functions may be equal to 1.
Discrepancies of this type are magnified when such
a number is used in mathematical operations.

2. 2 VARIABLES

A variable in BASIC is an algebraic symbol representing a number, and
is formed by a single letter or a letter optionally followed by a
single digit. For example:

Acceptable Variables

I

B3

X

Unacceptable Variables

2C - a digit cannot begin a variable.

AB - two or more letters cannot form a
variable.

11 - numbers alone
variable.

cannot form a

Subscripted and string variables are described in later sections. The
user may assign values to variables either by indicating the values in
a LET statement, or by inputting the values as data in an INPUT
statement or by a READ statement; these operations are discussed in
Chapter 5.

The value assigned to a variable does not change until the next time a
statement is encountered that contains a new value for that variable.
All variables are set equal to zero (0) before program execution. It
is only necessary to assign a value to a variable when an initial
value other than zero is required. However, good programming practice
would be to set variables equal to O wherever necessary. This ensures
that later changes or additions will not misinterpret values.

2.3 SUBSCRIPTED VARIABLES

In addition to the simple variables described in section 2.2, BASIC
allows the use of subscripted variables. Subscripted variables
provide additional computing capabilities for dealing with lists,
tables, matrices, or any set of related variables. In BASIC,
variables are allowed one or two subscripts.

October, 1974 2-2

)

)

The name of a subscripted variable is any acceptable BASIC variable
name followed by one or two integer expressions (within the range
0-32767) in parentheses. For example, a list might be described as
A(I) where I goes from Oto 5 as shown below:

A(O) ,A(l) ,A(2) ,A(3) ,A(4) ,A(S)

This allows reference to each of the six elements in the list, and can
be considered a one-dimensional algebraic matrix as follows:

A(O)

A(l)

A(2)

A(3)

A(4)

A(S)

• A two-dimensional matrix B(I,J) can be defined in a similar manner:

B(O,O) ,B(0,1) ,B(0,2) , ••• ,B(O,J) , ••• ,B(I,J)

and graphically illustrated as follows:

B(O,O) B(O,l) B(0,2) B(0 , 3) f
B(l:O) B(l,1) B(l,2) B(l,3) \
B(2,0) B (2,l) B(2,2) B(2,3)

B(3,0) B(3,l) B(3,2) B(3,3)
(

B(I,O) B(I,l) B(I,2) B(I,3))

Subscripts used with subscripted variables throughout
explicitly stated or be any legal expression. If
expression is non-integer, the value is truncated so
subscript is an integer.

B (0 ,J)

B(l,J)

B(2,J)

B(3,J)

) B(I,J)

a program can be
the value of the
that only the

It is possible to use the same variable name as both a subscripted and
unsubscripted variable. Both A and A (I) are valid variables and can
be used in the same program. The variable A has no relationship to
any. element of the matrix A (I) • However, BASIC will not accept the
same variable name as both a singly and a doubly subscripted variable
name in the same program.

Use of subscripted variables requires a dimension (DIM) statement to
define the maximum number of elements in a matrix. ("Matrix" is the
general term used in this manual to describe all elements of a

2-3

subscripted variable.) The DIM statement is discussed in paragraph
5.4.

If a subscripted variable is used without appearing in a DIM
statement, it is assumed to be dimensioned to length 10 in each
dimension (that is, having eleven elements in each dimension, 0
through 10). However, all matrices should be correctly dimensioned in
a program.

2. 4 EXPRESSIONS

An expression is a group of symbols which can be evaluated by BASIC.
Expressions are composed of numbers, variables, functions, or a
combination of the preceding separated by arithmetic or relational
operators.

The f-ollowing are examples of expressions acceptable to BASIC:

Arithmetic Expressions

4
A7*(Bt2+1)

Not all kinds of expressions can be used in all statements, as is
explained in the sections describing the individual statements.

2.5 ARITHMETIC OPERATIONS

BASIC performs addition, subtraction, multiplication, division and
exponentiation. Formulas to be evaluated are represented in a format
similar to standard mathmetical notation. The five operators used in
writing most formulas are:

Symbol
Operator

+

*
I
t

Example

A + B
A - B
A * B
A/ B
A t B

Meaning

Add B to A
Subtract B from A
Multiply A by B
Divide A by B
Exponentiation (Raise A to the Bth
power)

Unary plus and minus are also allowed, e.g., the - in the -A+B or the
+ in +X-Y. Unary plus is ignored. Unary minus is treated as
explained below.

2.5.1 Priority of Arithmetic Operations

When more than one operation is to be performed in a single formula,
as is most often the case, rules are observed as to the precedence of
the operators.

2-4

)

)

._)

\.._.,)'

In any given mathematical formula, BASIC performs the arithmetic
operations in the following order of evaluation:

1. Parentheses receive
parentheses is
expression.

top priority. Any
evaluated before

expression within
an unparenthesized

2. In the absence of parentheses, the order of priority is:

a. Unary minus

b. Exponentiation (proceeds from left to right).

c. Multiplication and Division (of equal priority).

d. Addition and Subtraction (of equal priority).

3. If either 1 or 2 above does not clearly designate the order
of priority, then the evaluation of expressions proceeds from
left to right.

The expression AtBt C is evaluated from left to right as follows:

1. AtB = step 1

2. (result of step l)tC = answer

The expression A/B*C is also evaluated from left to right since
multiplication and division are of equal priority:

1. A/B = step 1

2. (result of step 1) *C = answer

The expression A+B*CtD is evaluated as:

1. ctn = step 1

2. (result of step l)*B = step 2

3. (result of step 2)+A = answer

Parentheses may be nested, or enclosed by a second set (or more) of
pare~theses. In this case, the expression within the innermost
pare~theses is evaluated first, and then the next innermost, and so
on, -:mtil all have been evaluated.

In t I1e following example:

A=7* ((Bt 2+4) /X)

The order of priority is:

1. Bt 2 = step 1

2. (result of step 1) +4 = step 2

3. (result of step 2)/X = step 3

4. (result of step 3) *7 = A

2-5

Parent~eses also prevent
expression is evaluated.

A*Bt2/7+B/C*Dt2

any confusion
For example:

((A*Bt2} /7)+ ((B/C} *Dt2)

or doubt as to how the

Both of these formulas are executed in the same way, but the second is
easier to understand.

Spaces may be used in a similar manner.
ignores spaces (except when enclosed
statements:

10 LET B = Dt2 + 1
10LETB=Dt2+1

Since the BASIC interpreter
in quotation marks}, the two

are identical, but spaces in the first statement provide ease in
reading. When the statement is subsequently listed, extra spaces are
ignored.

2.5.2 Relational Operators

Relational operators allow comparison of two values and are used to
compare arithmetic expressions or strings in an IF ••• THEN statement.
The relational operators are:

Mathematical BASIC
Symbol Symbol Example Meaning

= = A=B A is equal to B.

< < A<B A is less than B.

~ <= or =< A<=B A is less than or equal to B.

> > A>B A is greater than B.

~ >= or=> A>=B A is greater than or equal to
B.

r < > or> < A><B A is not equal to B.

The symbols =<; =>, >< are accepted by BASIC but are converted to <=,
>= and <> and are shown in that form in a listing.

2-6

)

)

3.1 STRINGS

CHAPTER 3

RT-11 BASIC STRINGS

The previous chapters describe the manipulation of numerical
information only; however, BASIC also processes information in the
form of character strings. A string, in this context, is a sequence
of characters treated as a unit. A string can be composed of
alphabetic, numeric, or special characters. (A character string may
contain letters, numbers, spaces, or any combination of characters.) A
character string can be 255 characters long. However, the LINE FEED
key cannot be used to type a string on two or more terminal lines.

3.2 STRING VARIABLES

Any variable name followed by a dollar sign ($) character indicates a
string variable. For example:

A$
C7$

are simple string variables and can be used, for example, as follows:

LET A$= II HELLO"
PRINT A$

Note that the string variable A$ is separate and distinct from the
variable A.

3.2.1 Subscripted String Variables

Any list or matrix variable name followed by the$ character denotes
the string form of that variable. For example:

V$(n)
C$(m,n)

M2$(n)
Gl$(m,n)

where m and n indicate the position of the matrix element within the
whole.

The same name can be used as a numeric variable and as a string
variable in the same program with the restriction that a
one-dimensional and a two-dimensional matrix cannot have the same name
in the same program. For example:

A
A$

A(n)
A$ (rn,n)

can all be used in the same program, but

3-1

I

A (n) cjJld A (m,n)
or

A$ (n) 1 and A$ (rn,n)

canno-=..

String lists and matrices are defined with the DIM
(paragraph 5.4), as are numerical lists and matrices.

In BASIC without strings, string variables are illegal.

3.3 STRING OPERATIONS

3.3.l Concatenation

statement

Concatenation puts one string after another without any intervening
characters. It is specified by an ampersand (&) and works only with
strings. The maxim.urn length of a concatenated string is 255
characters.

For example:

10 READ A$, B$, C$
2 0 DAT A "11 11

,
11 3 3 11

, "2 2 11

30 PRINT A$&C$&B$
40 END
RUNNH :
11223[3

I

3.3.2 Relational Operations

When applied to1 string operands, the relational operators indicate
alphabetic sequence. The comparison is done, character by character,
left to right, on the ASCII value. For example:

I

55 IF A$<B$ THEN 100

When line 55 is executed, the first characters of each string (A$ and
B$) are cornpar~d; if they are the same, then the second characters of
each string are' compared and so on until the characters differ. If
the character I in A$ is less than the character in B$ then execution
continues at line 100. Otherwise, execution continues at the next
statement in :sequence. Essentially the strings are com.pared for
alphabetic orde;r. Table 3-1 contains a list of the relational
operators and ~eir string interpretations.

In any string domparison, trailing blanks are ignored (i.e., "ABC" is
equivalent to 11:ABc ") •

3-2

)
J

)

_)

Operator

=

<

>

<=or=

>=or=>

<>or><

Table 3-1

Relational Operators Used With
String Variables

Example

A$= B$

A$< B$

A$>B$

A$<= B$

A$ > = B$

A$<> B$

Meaning

The strings A$ and B$ are alphabetically
equal.

The string A$ alphabetically precedes
B$.

The string A$ alphabetically follows B$.

The string A$ is equivalent to or
precedes B$ in alphabetical sequence.

The string A$ is equivalent to or
follows B$ in alphabetical sequence.

The strings A$ and
alphabetically equal.

3-3

B$ are not

CHAPTER 4

IMMEDIATE MODE OPERATIONS

4.1 USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION

It is not necessary to write a complete program to use BASIC. Most of
the statements discussed in this manual can be included in a program
for later execution or given on-line as commands, which are
immediately executed by the BASIC processor. This latter facility
makes BASIC an extremely powerful calculator.

BASIC distinguishes between lines entered for later execution and
those entered for immediate execution solely on the presence (or
absence) of a line number. Statements which begin with line numbers
are stored; statements without line numbers are executed immediately
upon being entered to the system. Thus the line:

10 PRINT "THIS IS A PDP-11"

produces no action at the console upon entry, while the statement:

PRINT "THIS IS A PDP-11"

causes the immediate output:

THIS IS A PDP-11

4.2 PROGRAM DEBUGGING

Immediate mode operation is especially useful in two areas: program
debugging and the performance of simple calculations in situations
which do not occur with sufficient frequency or with sufficient
complications to justify writing a program.

In order to facilitate debugging a program, STOP statements can be
liberally placed throughout the program. Each STOP statement causes
the program to halt, at which time the various data values can be
examined and perhaps changed in immediate mode. The

GO TO xxxxx

command is used to continue program execution (where
number of the next program line to be executed). The
to variables when the RUN command was executed remain
Scratch, Clear, or another RUN Command is executed.

xxxxx is the
values assigned

intact until a

When using immediate mode, nearly all the standard statements can be
used to generate or print results. If the STOP occurs in the middle
of a FOR loop; modifications cannot be made to the section of the
program which precedes the FOR.

If CTRL/C is used to halt program execution, the GO TO command can be
used to continue execution but since CTRL/C does not print the number
of the line where execution stopped, it is difficult to know where to
resume the program.

4-1

4. 3 f.llJLTIPLE STATEMENTS PER LINE

Multiple statements can be used on a single line in immediate mode.
For example:

A=l \PRINT A
1

On a LT33 or LT35 terminal, type a SHIFT/L to produce the backslash
character.

Program loops are allowed in immediate mode; thus a table of square
roots can be produced as follows:

FOR I=l TO
1
2
3
4
5
6
7
8
9
10

10\PRINT I,SQR(I)\NEXT I
1
1.41421
1.73205
2
2.23607
2.44949
2.64575
2.82843
3
3.16228

4.4 RESTRICTIONS ON IMMEDIATE MODE

Certain commands, while not illegal, make no logical sense when used
in immediate mode. Commands in this category are DEF, DIM, DATA and
RANDOMIZE.

I The INPUT statement is illegal in immediate mode and its
in the ?ILN error message.

use results

Also, since user functions are not defined until the program is
executed, function references in immediate mode cause an error unless
the program containing the definition was previously executed.

Thus ~he following dialogue might result if a function was defined in
a user program and then referenced in immediate mode.

10 DEF FNA(X) = Xt2 + 2*X\REM SAVED STATEMENT
PRINT FNA (1) \ REM IMMEDIATE MODE

?UFN

READY

but if the sequence of statements is:

RUNNH
READY

4-2

)

PRINT FNA (l)
3

the immediate mode statement is executed.

If output files are opened in immediate mode, a CLOSE command must be
issued or the last block of data may not be written.

Note that virtual files can be edited by selectively modifying values
in immediate mode. For example,

OPEN "FILE" AS FILE VFl (1000)
VF1(137)=12.6
PRINT VFl (212)
13.l
CLOSE

4-3

CHAPTER 5

RT-11 BASIC STATEMENTS

A user program is composed of lines of statements containing
instructions to BASIC. Each line of the program begins with a line
number that identifies that line as a statement and indicates the
order of statement execution. Each statement starts with an English
word specifying the type of operation to be performed. Statement
lines are terminated with the RETURN key which is non-printing.

5.1 STATEMENT NUMBERS

A 1-5 digit statement number is placed at the beginning of each line
in a BASIC program. BASIC executes the statements in a program in
numerically consecutive order regardless of the order in which they
were typed. Statement numbers must be within the range 1 to 65532.
When first writing a program, it is advisable to number lines in
increments of five or ten to allow insertion of forgotten or
additional lines when debugging the program. If there are no
available lines for insertion of statements, the user program can be
resequenced. (Refer to Chapter 10, program #4 for a resequence
example.)

All BASIC statements and computations must be written on a single
line; they cannot be continued onto a following line. However, more
than one statement may be written on a single line when each statement
after the first is preceded by a backslash. For example:

10 INPUT A,B ,C

is a single statement line, whereas

20 LET X=ll \PRINT X,Y,Z\ IF X=A THEN 10

is a multiple statement line containing three statements: LET, PRINT,
and IF. Most statements may be used anywhere in a multiple statement
line; exceptions are noted in the discussion of each statement. Only
the first statement on a line can (and must) have a line number. It
should be remembered that program control cannot be transferred to a
statement within a line, but only to the first statement of a line.

Typing a statement number with no statement after it causes the
previous statement with the same number to be deleted.

5.2 REMARK STATEMENT

It is often desirable to insert notes and messages within a user
program. Such data as the name and purpose of the program, how to use
it, now certain parts of the program work, and expected results at
various points are useful things to have present in the program for
ready reference by anyone using that program.

5-1

The REHARK or REM statement is used to insert remarks or comments into
a program without these comments affecting execution. Remarks do,
however, use core area which may be needed by an exceptionally long
program.

I
The REMARK statement must be preceded by a line number except when the
REMARK statement is used in a multiple statement line, where it can
only be the last statement. The message itself can contain any print
ing character on the keyboard. BASIC completely ignores anything on a
line following the letters REM. (The line number of a REM statement
can be used in a GO TO or GOSUB statement, see sections 5.7.1 and
5.7.4, as the destination of a jump in the program execution.) Typical
REM statements are shown below:

10 REM- THIS PROGRAM COMPUTES THE
11 REM- ROOTS OF A QUADRATIC EQUATION

5.3 THE ASSIGNMENT STATEMENT - LET

The LET statement assigns the value of the expression to the specified
variable. The general format of the LET statement is:

. LET variable= expression

h ~ '! . ab 1 . ' ' ' ab 1 d . were va~i e is a numeric or string vari e an expression
arithmetic or string expression. All items in the statement
either string or numeric; they cannot be mixed. The word
optional.

is an
must be
LET is

The LET statement does not indicate algebrai'c equality, but performs
calculations within the expression (if any) and assigns the value to
the variable.

The meaning of the equal (=) sign should be clarified. In algebraic
notation, the formula X=X+l is meani ngless. However, in BASIC (and
most computer languages), the equal sign designates replacement rather
than equality. Thus, this formula is actually translated: "add one
to the current value of X and store the new result back in the same
variable X". Whatever value has previously been assigned to X will be
combined with the value 1. An expression such as A=B+C instructs the
computer to add the values of Band C and store the result in a third
variable A. The variable A is not being evaluated in terms of any
previously assigned value, but only in terms of Band c. Therefore,
if A has been assigned any value prior to its use in this statement,
the old value is lost; it is instead replaced by the value B+C.

The LET statement can also be used to set a value in a virtual memory
file element as follows:

LET VFn(i)=expression

Examples:

LET X=2

LET X=X+l+Y

Assigns the value 2 to the variable X.

Adds 1 to the current value of X then adds
the value of Y to that result and assigns
that value to x.

5-2

)

)
. _/

·-

'-,....,-

LET B$="STRING"
Assigns the characters "STRING" to the string
variable B$.

5. 4 THE DIMENSION STATEMENT - DIM

The DIMension statement reserves space for lists and tables used by
the program. The DIM statement is of the form:

DIM variable(n), variable(n,m), variable$(n), variable$(n,m)

where variables specified are indicated with their maximum subscript
value (n) or values (n ,m).

For example:

10 DIM X(5), Y(4,2), A(l0,10)
12 DIM 14(100), A$(25)

Only integer constants (such as 5 or 5070) can be used in DIM
statements to define the size of a matrix. Variables cannot be used
to specify the bounds of arrays. Any number of matrices can be
defined in a single DIM statement as long as their representations are
separated by commas.

The first e ·lement of every matrix is automatically assumed to have a
subscript of zero. Dimensioning A(6,10) sets up room for a matrix
with 7 rows and 11 columns. This zero element is illustrated in the
following program:

10 REM - MATRIX CHECK PROGRAM
2 0 DIM A (6, 10)
30 FOR I=0 TO 6
40 LET A(I,0) = I
50 FOR J=0 TO 10
60 LET A(0,J) = J
70 PRINT A (I ,J) ;
80 NEXT J \ PRINT\NEXT I
90 END

RUNNH
0 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0

READY

8 9
0 0
0 0
0 0
0 0
0 0
0 0

Notice that a variable has a value of
another value.

Whenever an array is dimensioned (m,n) ,

10
0
0
0
0
0
0

zero until it is assigned

the matrix is allocated m+l by
n+l elements. Core space can be conserved by using the 0th element of
the matrix.

5-3

For example, DIM A(5,9) dimensions a 6 x 10 matrix which would then be
referenced beginning with the A(0,0) element.

The size and number of matrices which can be defined depend upon the
amount of storage space available.

A DIM statement can be placed anywhere in a multiple statement line
and can appear anywhere in the program. A matrix can only be
dimensioned once. DIM statements need not appear prior to the first
reference to an array, although DIM statements are generally among the
first statements of a program to allow them to be easily found if any
alterations are later required.

All arrays specified in DIH statements are allocated space when the
RUN command is executed.

5. 5 INPUT /OUTPUT STATEMENTS

Input/Output (I/O) statements, such as PRINT, INPUT, and READ, bring
data into and output results or data from a program during execution.

5.5.1 PRINT Statement

The PRINT statement is used to output data to the terminal.
general format of the PRINT statement is:

The

PRINT list

The list is optional and can contain
both. Elements of the list must
deliniters (space, comma, semicolon).

expressions, text
be separated by

When used without the list, the PRINT statement:

25 PRINT

strings, or
appropriate

causes a blank line to be output on the terminal (a carriage
return/line feed operation is performed).

5.5.1.1 Printing Variables

PRINT statements can be . used to perform calculations and print
results. Any expression within the list is evaluated before a value
is printed. For example,

10 LET A=l\ LET B=2\ LET C=3+A
20 PRINT
30 PRINT A+B+C
RUNNH

7

5-4

)

)

All numbers are printed with a preceding sign (minus for negative and
space for positive) and a following blank space.

The PRINT statement can be used anywhere in a multiple statement line.
For example:

10 A=l \ PRINT A\ A=A+S\ PRINT\ PRINT A

prints the following on the terminal when executed:

1

6

READY

Notice that the terminal performs a carriage return/line feed at the
end of each PRINT statement. Thus the first PRINT statement outputs a
land a carriage return/line feed; the second PRINT statement, the
blank line; and the third PRINT statement, a 6 and another carriage
return/line feed.

s.s.1.2 Printing Strings

The PRINT statement can be used to print a message or string of
characters, either alone or together with the evaluation and printing
of numeric values. Characters are indicated for printing by enclosing
them in single or double quotation marks (therefore each type of
quotation mark can only be printed if surrounded by the other type of
quotation mark). For example:

10 PRINT "TIME'S UP"
20 PRINT '"NEVERMORE"'
RUNNH
TIME'S UP
"NEVERMORE"

READY

As another example, consider the following line:

40 PRINT "AVERAGE GRADE IS"; X

which prints the following (where Xis equal to 83.4):

AVERAGE GRADE IS 83.4

When a character string is printed, only the characters
quotes appear; no leading or trailing spaces are added.
trailing spaces can be added within the quotation marks
keyboard space bar; spaces appear in the printout exactly
typed within the quotation marks.

5-5

between the
Leading and

using the
as they are

Wher. a corrana separates a text string from another PRINT list item, the
item is printed at the beginning of the next available print zone
(refer to paragraph 5.5.1.3). Semicolons separating text strings from
other items are ignored. Thus, the previous example could be
expressed as:

40 PRINT "AVERAGE GRADE IS" X

and the same printout would result.
the last item of a PRINT list
return/line feed operation.

A corrana or semicolon appearing as
always suppresses the carriage

BASIC does an automatic carriage return/line feed if a string is
printing past column 72.

Although string variables are illegal in the BASIC without strings,
literal~trings may be used in a PRINT statement.

/

1 ~
5.5.1.3 use of Comma and Semicolon (","and";")

BASIC considers the terminal printer to be divided into five zones of
fourteen columns each. When an item in a PRINT statement is followed
by a comma, the next value to be printed appears in the next available
print zone. For example:

10 LET A=3\ LET B=2
20 PRINT A,B,A+B,A*B,A-B,B-A

When the preceding lines are executed, the following is printed:

3
-1

2 5

Notice that the sixth element in the PRINT
first entry on a new line, since the
72-character line were already used.

list
five

6 1

is printed as the
print zones of the

Two corranas together in a PRINT statement cause a print zone to be
skipped. For example:

10 LET A=l\ LET B=2
20 PRINT A,B,,A+B
RUNNH

1 2

READY

3

If the last item in a PRINT statement is followed by a corrnna, no
carriage return/line feed is output, and the next value to be printed
(by a later PRINT statement) appears in the next available print zone.
For example:

10 A=l\B=2\C=3
20 PRINT A,\PRINT B\ PRINT C
RUNNH

1 2
3

5-6

)

.J

READY

If a tighter packing of printed values is desired, the semicolon
character can be used in place of the comma. A semicolon causes no
further spaces to be output. A comma causes the print head to move at
least one space to the next print zone or possibly perform a carriage
return/line feed. The following example shows the effects of the
semicolon and comma.

10 LET A=l\ 8=2\ C=3
20 PRINT A;s;c;
30 PRINT A+ 1; B+ 1; C+ 1
40 PRINT A,B,C
99 END
RUNNH

1 2 3 2 3 4
1 2 3

READY

The following example demonstrates the use of
characters , and; with text strings:

11 0 LET X=ll90 50 \ G=87\A= 85.44\N=26
120 PRI NT "NO." X,"GRADE =" GJ"AVi::. ="A;
130 PRINT "NO. I N CLASS ="N
900 END
RUNNH

the formatting

NO • 1190 50 GRADE= 87 AVE . = 8 5.44 NO. IN CLASS= 26

READY

S.S.1.4 Selecting Output Device

The PRINT statement can also be used to select a particular output
file. The form of the statement is:

PRINT #expression:expression list

where expression has the value Oto 7. If the value of the expression
is 0, output is to the terminal; otherwise, the output is to the
sequential file which was opened as logical unit (expression). (See
section 5.9.1, OPEN statement.) Output is formatted exactly as if
done by the PRINT statement. The colon (:) is required when variables
follow the expression.

If a file written by the PRINT statement is to be later read by the
INPUT statement then the necessary separating commas must be
specified (within quotation marks) in a PRINT statement with more
than one item in the PRINT list.

Exa-nples:

10 OPEN "LP:" FOR OUTPUT AS FILE #2
20 OPEN "DT0: DATA" FOR OUTPUT AS FILE #7
30 PRINT #0: "OUTPUT TO TERMINAL"
40 PRINT #2: "OUTPUT TO LINE PRINTER"
50 PRINT #7: 10,",",20,",",30

llQll

If the line printer is not on line when a
BASIC program is attempting to output to it,
BASIC will wait for the line printer to be
put on line and will then start or continue
its output.

5-7

I

5.5.1.5 PRINT Statement - TAB Function

The TAB function is used in a
specified column on the output
devices are numbered Oto 71.

PRINT statement to space to the
device. The columns on the output

The form of the command is:

PRINT TAB (x);

where (x) is the column number in the range 0-255. If x exceeds 71,
however, consecutive subtractions of 72 are done until the number of
spaces to be output is less than or equal to 71. If the column number
specified is greater than 255 or negative, the error message ?ARG is
printed. If (x) is non-integer, only the integer portion of the
number is used.

If the column number (x) specified is less than or equal to the
current column number, printing starts at the current position.

The PRINT TAB(x) statement can be used with any output device which
can be specified in a PRINT statement (refer to paragraph 5.5.l.4).

Examples:

PRINT #0: TAB(S);

PRINT #2: TAB(80);

5.5.2 INPUT Statement

Spaces to column 5 of the terminal paper
and prints next output beginning at
columns. If; is missing, the output
of the next PRINT statement executed
begins at the left margin of the next
line.

Outputs 8 spaces on the line printer
assuming #2 previously opened.

The INPUT statement is used when data is to be input from the terminal
keyboard or a file during program execution. The form of the
statement is:

INPUT list

where list is a list of variable names separated by commas. Refer to
paragraph 5.5.2.l for data input from files.

When an INPUT statement is executed, BASIC prints a question mark (?)
on the terminal and waits for data to be input.

BASIC inputs the next number from the input stream, saves the value as
a numeric value. Numbers input on the same line must be .separated by
cormias. If the data is alphabetic, BASIC inputs all characters up to
a carriage return.

For example:

10 INPUT A,B,C

5-8

)

)

causes BASIC to pause during execution, print a question mark, and
wait for input of three numeric values separated by commas. The
values are input to the computer by typing the RETURN key.

If too few values are entered, BASIC prints another? to indicate that
more data is needed and waits for the additional data to be entered.
If too many values are typed, the excess data on that line is ignored.
The strings entered in response to the INPUT statement cannot be
continued on another line since string input is terminated by the
RETURN key.

When there are several values to be entered via the INPUT statement,
it is helpful to print a message explaining the data needed.

For example:

10 PRINT "YOUR AGE IS" ;
20 INPUT A
30 PRINT "SOC. SEC. #";
40 INPUT B

S.S.2.1 Selecting Input Devices

The INPUT statement also allows the sele ction of a particular input
device. The form of the statement is:

INPUT #expression:list

where expression has the value Oto 7. If the value is equal to 0,
the terminal is the input device. If the value is not 0, input is
read from the sequential file with the logical unit number expression
(assigned by the OPEN statement). If the value is not within the
range 0 - 7 or was not specified in an OPEN statement, the error
message ?DCE (Device Channel Error) results. A question mark is not
output when this form of the INPUT statement is used.

Excess data on an input line is ignored. If the data is insufficient
to fill the list, BASIC looks for more data on the next line.

The colon (:) is required when variables follow the expression.

Examples:

OPEN "PR:" FOR INPUT AS FILE #1
INPUT #1 : A, B
t

This statement will cause BASIC/ RTll to print the symbol 11 +11
• After

any character on the keyboard is pressed (it will not be printed) the
program will input data from the high speed paper tape reader and
store in variables A and B.

INPUT #0: X,Y,Z

Input data from the terminal and store i n variables X, Y, and z.
Logical unit 0 defaults to the terminal .

5-9

5.5.3 DATA Statement

The DATA statement is used in conjunction with the READ statement to
enter data into an executing program. One statement is never used
without the other. The form of the statement is:

DATA data list

where the data list contains the numbers or strings to be assigned to
the variables listed in a READ statement. Individual items in the
data list are separated by commas; strings must be enclosed in
quotation marks.

For example,

150 DATA 4,7.2,3
170 DATA 1. 34E-3, 3 .17311, 11 ABC"

The location of DATA
the correct order;
statements near the
checking a program.

statements is arbitrary as long as they appear in
however, it is good practice to collect all DATA

end of the program for fast reference when

When the RUN command is executed, BASIC searches for the first DATA
statement and saves a pointer to its location. Each time a READ
statement is encountered in the program, the next value in the data
statement is assigned to a variable. If there are no more values in
that DATA statement, BASIC looks for the next DATA statement. If
control is transferred to a DATA statement, the statement is ignored.

5.5.4 READ Statement

A READ statement assigns the next available element in a DATA
statement to the first variable in its list. Then it assigns the
next available element in a DATA statement to the next variable
in its list until all variables have been satisfied. The elements
in the DATA statement must be in the correct order by type; if a
string element is found where a number element is expected, or
vice versa, the error message ?NSM is output. The READ statement
is of the form:

READ variable list

The items in the variable list may be simple variable names or string
variable names or subscripted variables and are separated by commas.
For example,

READ Al,A2,B$,Bl,C(3,5) ,D$(1)

Since data must be read before it can be used in a program,
statements generally occur near the beginning of the program.
statement can be placed anywhere in a multiple statement line.

READ
A READ

If an element in a data list is neither a number nor a string
enclosed in quotes, the message ?BDR is printed. All subsequent
READ's cause the ?OOD message. If there is no data available in
the data table for the READ to store, the message ?OOD is printed.

5-10

)

,._ - ,..

Items in the data list in excess of those needed by the program's READ
statements are ignored.

5.5.5 RESTORE Statement

The RESTORE statement resets the DATA list or specified sequential
file (previously opened for input) to the beginning. RESTORE is of
the form:

where n

Examples:

RESTORE in

is a digit in the range 1 to 7. If #n is omitted, the
DATA list is reset to its start. When a digit is
specified, the appropriate input sequential file is
repositioned to its start. (Refer to Section 5.9 for
types of files.)

30 RESTORE

causes the next READ statement following line 30 to begin reading data
from the first DATA statement in the program, regardless of where the
last value was found.

100 RESTORE #2

repositions the input sequential file associated with logical unit #2
to the beginning.

A further example of the use of RESTORE follows:

15 READ B,C,D

55 RESTORE
60 READ E,F,G .
80 DATA 6,3,4,7,9,2

.
100 END

The READ statements in lines 15 and 60 both read the first three data
values provided in line 80. (If the RESTORE statement had not been
inserted before line 60, then the second READ would pick up data in
line 80 starting with the fourth value.)

Since the values are being read as though for the first time, the same
variable names may be used the second time through the data, if
desired. To skip unwanted values, replacement, or dummy, variables
may be inserted. For example:

5-11

1 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
20 READ N
25 PRINT "VALUES OF X ARE:"
30 FOR I=l TON
40 READ X
50 PRINT X,
60 NEXT I
70 RESTORE
185 PRINT
190 PRINT "SECOND LIST OF X VALUES"
200 PRINT "FOLLOWING RESTORE STATEMENT:"
210 FOR I=l TON
220 READ X
230 PRINT X,
240 NEXT I
250 DATA 4,1,2
251 DATA 3,4
300 END

RUNNH
VALUES OF X ARE :

1 2 3
SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:

4 1 2
READY

4

3

The second time the data values are read, the first X picks up the
value originally assigned to N in line 20, and as a result, BASIC
prints:

4 1 2 3

To circumvent this, a dummy variable could be inserted to pick up and
store the first value • . This variable would not be represented in the
PRINT statement, so the output would be the same each time through the
list.

5. 6 RANDOMIZE Stat,ement

The RANDOMIZE statement causes the random number generator to
calculate different random numbers every time the program is run.
When executed, RANDOMIZE causes the RND function (explained in Chapter
6) to choose a random starting value to produce random results. The
RANDOMIZE statement is written as

RANDOMIZE

RANC~MIZE may be placed anywhere in the program. It is good
to completely debug a program before inserting the
statement.

practice
RANDOMIZE

The following program demonstrates the use of the RANDOMIZE statement.

10 REM - RANDOM NUMBERS USING RANDOMIZE.
15 RANDOMIZE

5-12

)

25 PRINT "RANDOMIZED NUMBERS:"
30 FOR I= l TO 4
40 PRINT RND(0),
50 NEXT I
60 END

RUNNH
RANDOMIZED NUMBERS:

.7785034E-l .1632385 . • 2787781
READY
RUNNH
RANDOMIZED NUMBERS:

.8417053 .1678467E-2 .4347229
READY
RUNNH
RANDOMIZED NUMBERS:

.6651917 .2846375 .7210999
READY

.2035217

.5932312

.7648621

Removing the RANDOMIZE statement and changing line 25:

15
25 PRINT "REPRODUCIBLE RANDOM NUMBER SET. "

program output is as follows.

RUNNH
REPRODUCIBLE RANDOM NUMBER SET •

• 0407319 .528293 .803172 .0643915
READY

RUNNH
REPRODUCIBLE RANDOM NUMBER SET.

.0407319 .528293 .803172 .0643915
READY

RUNNH
REPRODUCIBLE RANDOM NUMBER SET •

• 0407319 .528293 .803172 .0643915
READY

5.7 PROGRAM CONTROL

The statements described in the following paragraphs cause the
execution of a program to jump to a different line either
unconditionally or depending upon some condition within the program.

5.7.1 GO TO Statement

The GO TO statement is used when it is desired to unconditionally
transfer to some line other than the next sequential line in the
program. In other words, a GO TO statement causes an irranediate jump
to a specified line, out of the normal consecutive line number order
of execution. The general format of the statement is as follows:

5-13

GO TO line number

The line number to which the program jumps can be either greater or
less than the current line number. It is thus possible to jump
forward or backward within a program.

For example,

10 LET A=2
20 GO TO 50
30 LET A=SQR{A+14)
50 PRINT A,A*A

causes the following to be printed:

2 4

When the program encounters line 20, control transfers to line 50;
line 50 is executed, control then continues to the line following line
SO. Line 30 is never executed. Any number of lines can be skipped in
either direction.

When written as part of a multiple statement line, GO TO should always
be the last statement on the line (except for REM statements), since
any statement following the GO TO on the same line is never executed.
For example:

110 LET A=ATN(B2)\ PRINT A\ GO TO 50

5.7.2 IF THEN, IF GO TO and IF END Statements

The IF THEN statement is used to transfer conditionally from the
normal consecutive order of statement numbers, depending upon the
truth of some mathematical relation or relations. The basic format of
the IF statement is as follows:

IF expression rel. op. expression {THEN) line number
GO TO .

where expression

rel.op.

line number

is an arithmetic or string expression.
Expressions cannot be mixed; both must be
string or both must be numeric. Numeric
comparisons are handled as described in
Section 2.5.2. String comparisons are
performed on the ASCII values of the strings
as described in Section 3.3.2.

is one of the relational operators described
in section 2.5.2.

is the line of the program to which control
is conditionally passed.

If the relation is true, control passes to the line number specified.
If the relation is false, control passes to the next statement in
sequence.

5-14

)

J

Exarr.ples :

10 IF A=B THEN 20\ PRINT "A<>B"
15 STOP
20 PRINT A+B

10 IF A<>l0 GO TO 20\PRINT A
15 STOP
20 D=A+B*C

10 IF A$<B$ THEN 20\STOP
20 PRINT A$

BASIC/RTll provides a special form of the IF statement used to detect
an end of file condition on a sequential file. The form of the
statement is:

IF END #.f™EN) line number
'\GO TO

where #n represents the logical file number.

If the next input statement executed for the sequential file (#n)
would detect an end of file (and an OUT OF DATA error message) then
the branch to the line number is taken. The following example
illustrates the use of the IF END statement:

10 OPEN "TEST" AS FILE #1
20 IF END #1 THEN 100
30 INPUT #1: A$
40 PRINT A$
50 GO TO 20
100 PRINT "END OF FILE"
110 STOP

The program prints out the contents of the ASCII file "TEST.DAT",
followed by the message

END OF FILE

5.7.3 FOR-NEXT Statements

FOR and NEXT statements define the beginning and end of a
loop. (A loop is a set of instructions which are repeated
over again, each time being modified in some way until a
concition is reached.) The FOR statement is of the form:

program
over and
terminal

FOR variable= expressionl TO expression2 STEP expression3

where

variable

expression

must be a nonsubscripted numeric variable.

is an arithmetic
noninteger.

5-15

expression which may be

~he variable is the index; expressionl is the initial value of the
index; expression2, the index terminal value (the value which the
index reaches before execution of the loop halts) and expression3, the
increment value.

For positive STEP values, the loop
variable is greater than its final
the loop continues until the control
value.

For example:

15 FOR K=2 TO 20 STEP 2

is executed until the control
value. For negative STEP values,
variable is less than its final

causes program execution of the designated loop as long as K is less
than or equal to 20. Each time throug h the loop, K is incremented by
2, so the loop is executed a total of 1 0 times. When K=20, program
control passes to the line following t h e associated NEXT statement.

The NEXT statement signals t he end of the loop which began with the
FOR statement. The NEXT statement is of the form:

NEXT variable

vhe~e the variable is the same variable specified in the FOR
sta~ement. There must be only one NEXT statement for each FOR
sta~ement. Together the FOR and NEXT statements define the boundaries
of the program loop. When execution encounters the NEXT statement,
~he computer adds the STEP expression value to the variable and checks
~o see if the variable is still less than or equal to the terminal
expression value. When the variable exceeds the terminal expression
val~e, control falls through the loop to the statement following the
NEXT statement.

If the STEP expression and the word STEP are omitted from the FOR
3tatement, +l is the assumed value. Since +l is a common STEP value,
that portion of the statement is frequently omitted.

The expressions
initial entry
:nade prior to
initially, the

within the FOR state ment are evaluated once upon
to the loop. The test for completion of the loop is

each e xecution of the loop. (If the test fails
loop is never executed.)

The index variable can be modified within the loop. When control
falls through the loop, the index variable retains t h e last value used
within the loop.

The following is a demonstration of a simple FOR-NEXT loop. The loop
is executed 10 times; the value of I is 10 when control leaves the
locp; and +l is the assumed STEP value:

10 FOR I=l TO 10
20 PRINT I
30 NEXT I
40 PRINT I

The loop itself is lines 10 through 30. The numbers 1 through 10 are
printed when the loop is executed. After I=l0, control passes to line
40 which causes 10 to be printed again. If line 10 had been:

5-16

)

_)

-,
10 FOR I= 10 TO 1 STEP -1

the value printed by line 40 would be 1.

10 FOR I = 2 TO 44 STEP 2
20 LET I = 44
30 NEXT I

The above loop is only executed once since the value of I=44 has been
reached and the termination condition is satisfied.

If, however, the initial value of the variable is
terminal value, the loop is not executed at all.
the statement:

greater than the
The loop set up by

10 FOR I= 20 TO 2 STEP 2

will not be executed, although a statement like the following will
initialize execution of a loop properly:

10 FOR I=20 TO 2 STEP -2

not overlapped. The depth of nesting
of user storage space av ailable (in other
user program and the amount of core

programming technique in which one or more
another loop. The field of one loop (the
FOR statement to the corresponding NEXT

FOR loops can be nested but
depends upon the amount
words, upon the size of the
available). Nesting is a
loops are completely within
numbered lines from the
statement, inclusive) must not cross the field of another loop.

ACCEPTABLE ~ESTING
TECHNIQUES

Two Level Nesting

~ FOR Il = 1
TO

C FOR 12 = 1 TO
NEXT I2

[FOR I3 = 1 TO
NEXT I3
NEXT Il

Three Level Nesting

FOR Il = 1 TO

rOR I2 = 1 TO
[FOR I3 = 1 TO

NEXT I3
[FOR I4 = 1 TO

NEXT 14
NEXT I2
NEXT Il

10
10

10

10
10
10

10

UNACCEPTABLE NESTING
TECHNIQUES

~

FOR Il =
FOR 12 =
NEXT Il
NEXT I2

FOR Il =
FOR I2 =

[FOR I3 =
NEXT I3

[FOR I4 =
NEXT I4
NEXT Il
NEXT I2

1 TO 10
1 TO 10

1 TO 10
1 TO 10
1 TO 10

1 TO 10

An example of nested FOR-NEXT loops is shown below:

5 DIM X{S,10)
10 FOR A=l TO 5
20 FOR B=2 TO 10 STEP 2
30 LET X{A,B)= A+B

5-17

40 NEXT B
50 NEXT A
55 PRINT X(S,10)

When the above statements are executed, BASIC prints 15 when line 55
is processed.

It is possible to exit from a FOR-NEXT loop without the control
variable reaching the termination value. A conditional or
unconditional transfer can be used to leave a ' loop. Control can only
transfer into a loop which had been left earlier without being
completed, ensuring that termination and STEP values are assigned.

Both FOR and NEXT statements can appear anywhere in a multiple
statement line. For example:

10 FOR I=l TO 10 STEP 5\ NEXT I\ PRINT "I=";I

causes:

I= 6

to be printed when executed.

5.7.4 GOSUB and RETURN Statements

The GOSUB statement causes execution of a block of statements called a
subroutine. The RETURN statement causes program control to return to
the statement following the GOSUB.

A subroutine is a section of code performing some operation required
at more than one point in the program. Sometimes a complicated I/O
operation for a volume of data, a mathematical evaluation which is too
complex for a user-defined function, or any number of other processes
may be best performed in a subroutine.

More than one subroutine can be used in a single program, in which
case they can be placed one after another at the end of the program
(in line number sequence). A useful practice is to assign distinctive
line numbers to subroutines; for example, if the main program uses
line number 0 up to 199, use 200 and 300 as the first numbers of two
subroutines.

Subroutines are usually placed physically at the end of a program
before DATA statements, if any, and always before the END statement.
The program begins execution and continues until it encounters a GOSUB
statement of the form:

GOSUB line number

where the line number following the word GOSUB is that of the first
line of the subroutine. Control then transfers to that line of the
subroutine. For example:

50 GOSUB 200

5-18

)
j

Control is transferred to line 200 in the user program. The first
line in the subroutine can be a remark or any executable statement.

Having reached the line containing a GOSUB statement, control
transfers to the line indicated after GOSUB; the subroutine is
processed until BASIC encounters a RETURN statement of the form:

RETURN

which causes control to return to the statement following the
GOSUB statement. A subroutine is always exited via a
statement.

calling
RETURN

Before transferring to the subroutine, BASIC internally records the
next sequential statement to be processed after the GOSUB statement;
the RETURN statement is a signal to transfer control to this
statement. In this way, no matter how many subroutines there are or
how many times they are called, BASIC always knows where to transfer
control next. The following program demonstrates the use of GOSUB and
RETURN.

l REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
10 DEF FNA(X)= ABS(INT(X))
20 INPUT A,B,C
30 GOSUB 100
40 LET A=FNA (A)
50 LET B=FNA (B)
60 LET C=FNA(C)
70 PRINT
80 GOSUB 100
90 STOP
100 REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
110 REM - OF THE EQUATION: AXt2 +BX+ C = 0
120 PRINT "THE EQUATION IS "A "*Xt2 +" B"*X +" C
130 LET D=B*B - 4*A*C
140 IF o<>0 THEN 170
150 PRINT "ONLY ONE SOLUTION ••• X="; -B/(2*A)
160 RETURN
170 IF D<0 THEN 200
180 PRINT "TWO SOLUTIONS ••• X =(";
185 PRINT (-B+SQR(D))/(2*A);") AND (";(-B-SQR(D))/(2*A;")"
190 RETURN
200 PRINT "IMAGINARY SOLUTION ••• X=(";
205 PRINT -B/(2*A) ;"+"; SQR(-D)/(2*A) ;"I) AND (";
207 PRINT -B/(2*A) ;"-"; SQR(-D)/(2*A) ;"*I)"
210 RETURN
900 END

Subroutines can be nested; that is, one subroutine can call another
subr•outine. If the execution of a subroutine encounters a RETURN
statement, it returns control to the line following the GOSUB which
called that subroutine. Therefore, a subroutine can call another
subroutine, even itself. Subroutines can be entered at any point and
can have more than one RETURN statement. It is possible to transfer
to the beginning or any part of a subroutine; multiple entry points
and RETURNS make a subroutine more versatile. Up to 20 levels of
GOSUB nesting are allowed.

5-19

5.8 PROGRAM TERMINATION

The STOP and END statements are used to terminate program execution.

The CHAIN statement also causes execution to cease but in addition,
loads and executes a previously stored program.

5.8.1 END Statement

The END statement is the last statement in a BASIC program and is of
the form:

END

The l ine number of the END statement must be the largest line number
in the program, since any lines having line numbers greater than that
of the END statement are not executed (although they are sav ed with
the SAVE command. The END statement is optional. When an END
statement is executed, program execution stops; all open files are
automatically closed. If the program does not have an END or STOP
statement, the open files are not closed.

5.8.2 STOP Statement

The STOP statement causes termination of program execution and can
occur several times throughout a single program with conditional jumps
determining the actual end of the program. The STOP statement is of
the form:

STOP

and causes the message:

STOP AT LINE nnn

where nnn is the statement number of the STOP statement.

Execution of a STOP statement causes the message:

READY

to be printed on the terminal and all open files are automatically
closed. This signals that the execution of a program has been
terminated or completed, and BASIC is able to accept further input.

5.8.3 CHAIN Statement

The CHAIN statement terminates execution of the program currently in
core then loads and executes the specified program. The execution of
this previously stored program begins at the lowest line number unless
another line number is specified. Th is allows a large program to be
broken into segments and then linked together for execution with
CHAIN.

5-20

_)

J

.__,,,·

The form of the command is

CHAIN "dev:filnam.ext" LINE number

The file descriptor (dev: filnam.ext) may be a literal
non-subscripted string variable name.

string or a

CHAIN closes all files which are open then opens and
program file containing the program to be executed.
exte~sion is .BAS.

closes the
The default

All variables used in the current program are erased when the CHAIN
statement is executed. If variables are to be passed to the next
program, they must be stored in a file which is then read by the new
program.

Examples:

CHAIN "DT1:PART2" LINE 10

Halts execution of current program then loads program, PART2.BAS, from
DECtape unit 1 and begins execution at line 10.

5.9 FILE CONTROL

Any RT-11 file may be used or created by a BASIC program, including
EDIT and MACRO files. A file may be used in one of two ways: first as
an ASCII "sequential" file, as if it were typed at the terminal. Here
are examples of statements which access sequential files:

INPUT #1: A$, B, C
PRINT #2: "ANSWERS:" X;Y

Alternatively, a file may be used as a random-access binary "virtual
memory" file, as if each item were an element of a large array. The
following are examples of statements which access virtual memory
files.

LET A=(VFl(I)+VFl(J))/2
LET VF2(K)=A*3*SIN{X)

A virtual memory file may consist of string or numeric data, as
explained below.

A sequential data file is limited in its applications and depends upon
a strictly sequential treatment of I/O. With virtual data storage,
reference can be made to any element within the file regardless of
where that element resides.

The file control statements, OPEN and CLOSE, provide access to
sequential and virtual memory files.

The OVERLAY statement overlays the program currently in memory with
the specified file and continues execution.

NOTE

If a disk or DECtape is the device in an
OPEN, CLOSE, OVERLAY, or CHAIN statement
or OLD, SAVE, or REPLACE command (see
Chapter 7) and the device is not on line
a ?M-DIR I/O ERR? will be printed and
control will return to the RT-11 monitor
which will give an ?ILL CMD? message to
the first command input. BASIC may then
be reloaded by the RUN command but the
stored program will be lost. This also
occurs when a device is WRITE locked and
the BASIC program attempts to output to it .

5-21

5.9.1 OPEN Statement

The OPEN statement opens files
program and has two forms,
virtual.

for input or output by the BASIC
one for sequential files and one for

For sequential files, the format is:

(
INPU:J

OPEN "dev:filnam.ext" FOR AS FILE #digit DOUBLE BUF

where "dev: filnam.ext"

digit

OUTP .

may be a literal string or a scalar
string variable name.

is a logical unit number in
1-7. The max imum number of
may be opened at one time
sequential and 7 virtual).

the range
files which
is 14 (7

If FOR OUTPUT or FOR INPUT is not included in the
file is open for input. If the file name is
pro~ram name is used. Thus, if the program name
statement to open file #1 will open the file
extension is omitted, .DAT (data) is assumed.

specification, the
omitted, the current
is TEST, then the
DK:TEST.DAT. If the

This form of the statement opens the specified file (or a non-file
structured device) as a sequential ASCII file with logical unit number
<expression>. The file is either for input or output as specified.
Once opened, an input file may be read by the INPUT # statement, and
an output file may be written by the PRINT# statement.

The OPEN statement can be used to specify the number of blocks to be
assigned to an output file on disk or DECtape in the form:

••• OUTPUT(blocks) •••

Each block holds 512 ASCII characters including carriage return and
line feed. If the program then attempts to write past the end of the
file created, the message ?FTS (File Too Short) results. If the
number of blocks is not specified, one half of the largest available
group of blocks is used.

There 1s a 256-word input/output buffer associated with every file.
Output to a file actually occurs only after the buffer is filled or
the file is closed. For example, execution of a PRINT# statement
where the device is the line printer will produce no v isible output
unti l the buffer is filled or the file is closed. DOUBLE BUF is op
tional and if specified a second 256-word I/0 buffer is allotted to
the file. Using DOUBLE BUF improves the execution speed of programs
with extensive I/0 but requires more memory.

Examples:

OPEN "ABC" FOR OUTPUT(5) AS FILE il
Creates ABC.DAT on disk as logical
file 1 and allocates 5 blocks.

LET A$=XYZ
OPEN A$ AS FILE #2 DOUBLE BUF

Opens disk file XYZ.DAT as
file 2 and allocates two
I/0 buffers for input.

5-22

logical
256-word

)

)

.I

OPEN "ALTO.MAC" FOR INPUT AS FILE #3
Opens disk file ALTO.MAC as logical
file 3 for input.

OPEN "LP:" FOR OUTPUT AS FILE #1
Opens the specified device "LP:"
for output as file #1. If FOR
OUTPUT were not specified, input
would be assumed and an error
message would result since the line
printer is a write-only device.

The virtual memory file OPEN statement has the form:

OPEN "dev: filnam.ext" FOR(~ AS FILE VFnx (dimension) =string length

where

dev: filnam.ext may be a literal string or a scalar
string variable.

n is a number in the range 1-7
representing the virtual file logical
unit number. The maximum number of
files which may be opened at one time is
14 (7 sequential and 7 virtual).

x is the type of virtual file as follows:

type

blank
or

null

%

$

(dimension)

=string length

File data type

The file consists of 2-word
floating-point numbers.

The file consists of 1-word
integers.

signed

The file C-Qnsists of strings of a given
length. This length is 32 characters,
unless othery,ise specified.

is maximum subscript to be used in
referencing the virtual file.

may be included for string virtual files
to indicate the length of the strings in
the file. The values which can be
specified are 1,2,4,8,16,32,64 and 128.
The default value is 32.

This form of the statement opens the specified
file VFn. This special file is distinct
<digit>.

file as the virtual
from a sequential file

If FOR OUTPUT is specified, the system allocates blocks to accommodate
the maximum dimension specified. Any previous file with the same name
will be deleted. FOR OUTPUT should only be specified to create a new
file. To allow output to an existing virtual file neither FOR INPUT
nor FOR OUTPUT should be specified. If the device cannot accommodate

October, 1974 5-23

the blocks specified, the message ?NER (Not Enough Room) results. As
with sequential files, the number of blocks to be assigned to an
output file can be specified after the phrase FOR OUTPUT. The number
of blocks so specified overrides the maximum subscript specified if
any. If neither is specified, the largest block number written
becomes the length of the file.

The following table can be used to calculate the number of blocks
needed for a file.

file type # bytes per element # elements per block

blan:< (floating point) 4 128
% (integer) 2 256

$ 32 16
$=1 1 512
$=2 2 256
$=4 4 128
$=8 8 64
$=16 16 32
$=32 32 16
$=64 64 8
$=128 128 4

If the phrase FOR INPUT is included, then the file is write-protected;
it may only be read by the program. If the phrase FOR OUTPUT is
specified, a new file is created and can be used for input or output.
If FJR INPUT or FOR OUTPUT is not specified an existing file is opened
for input and/or output.

Once a virtual file has been opened, its elements may be used as any
other variables in the BASIC program. A virtual file element may only
be set by an assignment statement.

Examples:

OPEN "TEST" AS FILE VF1$(2000)=8
Opens the file TEST.DAT on disk as
virtual memory file 1 containing 2000
string elements; each one 8 bytes long.
This file is now available for input and
output operations. A program reference
to file element 2001 causes an error.

OPEN "TEST" FOR OUTPUT AS FILE VF2$(500)
Creates a file TEST.DAT on disk for
output as virtual memory file 2 with 500
string elements, each 32 bytes long.

OPEN "TEST" FOR INPUT AS FILE VF3

LET A$="TEST"

Opens the file TEST.DAT for input only
operations as virtual memory file 3, it
consists of floating point numbers.

OPEN A$ FOR OUTPUT (10) AS FILE VF4%(50)
Creates the file TEST.DAT and opens it
for input or output as virtual memory
file 4 with 10 blocks. The number of
blocks overrides the number of elements
(5 0) •

October, 1974 5-24

J

These files can then be used in BASIC operations as follows:

LET A= B + VF3(I)/2
Uses the value of virtual file element
VF3(I) in computing an expression.

PRINT "VARIABLE", N, VF4(N)
Uses the value of integer virtual memory
file element VF4(N) in a print list.

LET VF3(2*N+l) = (A+ B)/2

LET VFl(l0) = "ABCD"

Sets the value of virtual memory file
element VF3(2*N+l) to the value of the
expression (A+B)/2.

Sets the value of string virtual memory
file element VFl(l0) to "ABCD". The
string will be truncated or lengthened
and filled with blanks to the
appropriate length, as specified in the
OPEN statement.

5.9.2 CLOSE Statement

The CLOSE statement closes the logical file specified and has the form

CLOSE file identification

where file identification contains the file numbers of the form:

#n for sequential files

VFn for virtual memory files

where n is a digit in the range 1 to 7.

If no file identification is specified, all open files are closed.

If a file is referenced after a CLOSE, the message ?FNO (File Not
Open) is printed.

Examples:

NOTE

In addition to CLOSE, the SCRATCH, NEW, OLD
and CLEAR commands, the END , STOP and CHAIN
statements and the ?FIO error routine close
all open file when executed .

CLOSE #1 Closes t he sequential file associated
with logical unit 1.

CLOSE VF3 Closes the virtual memory
associated with logical unit 3.

file

5-25

5.9.3 OVERLAY Statement

The OVERLAY statement causes the program currently in core to be
"overlaid" or merged with the specified file, which also contains a
BASIC program.

The form of the OVERLAY statement is:

OVERLAY "file descriptor"

All variables and arrays defined keep their current values. All data
files remain open. If a program line in the new program has a line
number identical to one in the current program, the current program
line is replaced by the new program line. After the overlaid program
has been merged with the current program, execution continues at the
first program line which now follows the statement number of the
OVEPLAY statement. Thus, progra~s can be segmented into separate
files as with the CHAIN statement, and data can be communicated among
segments in the arrays, and a very long program can be divided up into
several smaller overlay segments.

The new program must not contain DIM, RANDOMIZE, or DEF statements.
If a DEF statement in the current program is overlaid, the function
will no longer be defined.

As an example:

Main Program

10 DIM A (100)
20 FOR I= 0 TO 100
30 LET A (I) = SQR (I)
40 NEXT I
50 DEF FNS(I) = SQR (A (I))
60 OPEN "LP:" FOR OUTPUT AS FILE #1

100 FOR I= 0 TO 100
110 PRINT #1: A (I) ,
120 NEXT I
900 OVERLAY "OVl"
910 GO TO 100

Overlay Section, file OVl.BAS

100 PRINT #1:
110 FOR J = 0
120 PRINT #1:
130 NEXT J
140 STOP

"FIRST OVERLAY"
TO 100

FNS(J),

Execution of the main program sets the elements of A to the square
root of I; the function FNS(I) is set to the square root of A(I), or
the fourth root of I. The main program then prints out the elements
of A on the line printer.

The execution of the OVERLAY statement causes the file

"DK:OVl.BAS"

to be edited into the program.

5-26

)

\,___ _,/

The program in memory is now:

10 DIM A(l00)
20 FOR I= 0 TO 100
30 LET A(I) = SQR(I)
40 NEXT I
50 DEF FNS(I) = SQR (A(I))
60 OPEN "LP:" AS FILE fl

100 PRINT #1: "FIRST OVERLAY"
110 FOR J = 1 TO 100
120 PRINT #1: FNS (J),
130 NEXT J
140 STOP
900 OVERLAY "OVl"
910 GO TO 100

Control now passes to statement 910, which is the first statement
following statement 900 in the merged program.

Execution at statement 100 causes

"FIRST OVERLAY"

to be printed, followed by the fourth roots of the numbers from 0 to
100.

Finally, "STOP AT LINE 140" is output at the terminal.

An overlay statement executed in the immediate mode (without a line
nu,"'tlber) will act like an OLD command, except that the program
currently in core is not scratched. , Instead, the program lines in the
specified file will be edited into the program, just as if they were
typed in via the console.

A very useful application of this feature is when the BASIC programmer
has a "library" of GOSUB subroutines to edit into his program. The
procedure is as follows.

Type in the BASIC program as if there were subroutines at specific
(high) statement numbers such as 1000,2000,etc. Then SAVE the
program. The next step is to resequence the required library routines
using the BASIC program RESEQ (see Chapter 10) so that they begin at
the correct statement numbers. Then read in the saved program again
with the OLD command. Finally, edit in the subroutines with immediate
mode OVERLAY statements such as

OVERLAY "SUBl"
OVERLAY "SUB2"

Finally, a REPLACE command will update the saved program.

NOTE

Execution of the OVERLAY statement may cause the data pointer
to change. Any program employing both the OVERLAY and DATA
statements should have a RESTORE statement executed after the
OVERLAY statement. This will cause the data pointer to be at
the start of the first DATA statement in the merged program.

October, 1974 5-27

I
'-......-/

CHAPTER 6

BASIC/RT-11 FUNCTIONS

6.1 ARITHMETIC FUNCTIONS

BASIC provides eleven functions to perform certain standard
mathematical operations such as square roots, logarithms, etc.

These functions have
parenthesized argument.
in a program.

Call Name

ABS (x)

ATN(x)

BIN(x$)

COS(x)

EXP (x)

INT (x)

LOG(x)

OCT (x$)

RND (x)

SGN (x)

SIN (x)

SQR (x)

TAB (x)

three-letter call names followed by a
They are pre-defined and may be used anywhere

Function

Returns the absolute value of x.

Returns the arctangent of x as an angle in
radians in range+ or - pi/2.

Computes the integer value
of blanks (ignored), zeroes,
integer).

from a string
and ones (binary

Returns the cosine of x radians.

Returns the value of etx where e=2.71828 •••

Returns the greatest integer less than or
equal to x, (INT(-.5)=-l).

Returns the natural logarithm of x.

Computes an i nteger value from
blanks (ignored) and digits
(octal integer) .

a string of
from Oto 7

Returns a random number greater than or equal
to 0 and less than 1.

Returns a value indicating the sign of x.

Returns the sine of x radians.

Returns the square root of x.

Causes the terminal type head to tab to
column number x. Valid in PRINT statement
only (refer to paragraph s.s.1.5).

The argument x to the functions can be a constant, a variable, an
expression, or another function. A square bracket cannot be used as
the first enclosing character for the argument x , e.g., SIN[x] is
illegal.

Function calls, consisting of the function name followed by a
parenthesized argument, can be used as e xpressions or as elements of
expressions anywhere that expressions are legal.

6-1

Values produced by the functions SIN(x), COS(x), ATN(x), SQR(x),
EXP(x), and LOG(x) have six significant digits.

6.1.1 Sine and Cosine Functions, SIN(x) and COS(x)

The sine and cosine functions require an argument angle expressed in
radian measure. If the angle is stated in degrees , conversion to
radians may be done using the identity:

< radians> = < degrees> (pi/180)

In the following example program, 3.14159265 is used as a nominal
value for pi. Pis set equal to this value at line 20. At line 40
the above relationship is used (in the expression within the LET
statement) to convert the input value into radians.

10 REM - CONVERT ANGLE (X) TO RADIANS, AND
11 REM - FIND SIN AND COS
20 LET P = 3.14159265
25 PRINT "DEGREES", "RADIANS", "SINE", "COSINE"
30 INPUT X
40 LET Y = X*P/180
60 PRINT X, Y, SIN (Y) , COS (Y)
70 GO TO 30
RUNNH
DEGREES
?O

0
?10

10
?20

20
?30

30
?360

360
?45

45
?tC
.REENTER
READY

RADIANS

0

.174533

.349066

.523598

6.28319

• 78539 8

6.1.2 Arctangent Function, ATN(x)

SINE

0

.173648

.34202

.5

-3.7457E-07

.707107

COSINE

1

.984808

.939693

.866025

1

.707107

The arctangent function returns a value in radian measure, in the
range +pi/2 to -pi/2 corresponding to the value of a tangent supplied
as the argument (X).

In the following program, input is an angle in degrees. Degrees are
then converted to radians at line 40. At line 50 the radian value (Y)
is used with the SIN and COS functions to derive the tangent of the
input angle according to the identity:

SIN (X)
TAN(X) =

COS(X)

6-2

)

)

At line 70 the tangent value, z, is supplied as argument to the ATN
function to derive the value found in column 4 of the printout under
the label ATN(X). Also in line 70 the radian value of the arctangent
function is converted back to degrees and printed in the fifth column
of the printout as a check against the input value shown in the first
column.

10 LET P = 3.14159265
20 PRINT nsUPPLY AN ANGLE IN DEGREES"
25 PRINT "ANGLE"," ANGLE", "TAN (X) 11

, "ATAN (X) 11
,

11 ATAN (X) 11

26 PRINT 11 (DEGS) ", 11 (RADS) 11
,,,

11 (DEGS) 11

30 INPUT X
40 LET Y = X*P/180
45 IF ABS(COS(Y))<.01 THEN 100
50 LET Z = SIN(Y)/COS(Y)
70 PRINT X,Y,Z,ATN(Z) ,ATN(Z)*l80/P
85 PRINT
90 GO TO 30
100 PRINT "ANGLE
110 GO TO 30
RUNNH
SUPPLY
ANGLE
(DEGS)
?O

0

?45

AN ANGLE
ANGLE
(RADS)

0

45 .785398

?10
10 .174533

?tC
.REENTER
READY

ERROR"

IN DEGREES
TAN (X)

0

.999999

.176327

ATAN (X) ATAN (X)
(DEGS)

0 0

.785398 45

.174533 10

Note that the tangent of an odd multiple of pi/2 radians is not
defined. Since the cosine of such an angle is O, the statement on
line 50 would be dividing by O and the statement on line 45 checks for
an angle close to the odd multiple of pi/2 radians to circumvent this
problem.

6.1.3 Square Root Function, SQR(x)

This function derives the square root of any positive value as shown
below.

10 INPUT X
20 LET X = SQR(X)
30 PRINT X
40 GO TO 10
RUNNH
?16

6-3

4
?100

10
?1000

31.6228
?123456789
11111.1

?17
4.12311

?25E2
50

?1970
44.3847

?tC
.REENTER
READY

6.1.4 Exponential Function, EXP(x)

The exponential function raises the number e to the power x.
the inverse of the LOG function. The relationship is

LOG(EXP(X)) = X

EXP is

The following program prints the exponential equivalent of an input
value. Note that the output values derived below are used as input to
the LOG function in Section 6.1.5.

10 INPUT X
20 PRINT EXPCX)
40 GO TO 10
99 END
RUNNH
?4

54-5981
7 1 0 •

2202605
?9•421006

12345
?4-60517

100
?25

7•20049E+l0
? t C

•REENTER

READY

6.1.5 Logarithm Function, LOG(x)

The LOG function derives the logarithm to the base e of a given value.
In the following program at line 20, the LOG function is used to
convert an input value to its logarithmic equivalent. \

10 INPUT X
20 PRINT LOG(X)

6-4

)

)

_)

30 GO TO 10

RUNNH
?54.59815

4
?22026.47

10
?12345

9.42101
?100

4.60517
?.720049Ell

25
?tC
.REENTER
READY

Logarithms to the base e may easily be converted to any other base
using the- following formula:

log N=
a

log N
e

log a
e

where a represents the desired base.
illustrates conversion to the base 10.

The

1 REM - CONVERT BASE E LOG TO BASE 10
5 PRINT "VALUE", "BASE E LOG", "BASE 10

15 INPUT X
17 PRINT x,
20 PRINT LOG (X) ,
40 PRINT LOG(X)/LOG(l0)
50 GO TO 15
60 END
RUNNH
VALUE BASE E LOG BASE 10 LOG
?4

4 1.38629 .60206
?250

250 5.52146 2 .39794
?5

5 1.60944 .69897
?60

60 4.09434 1. 77815
?100

100 4.60517 2
?+c
.REENTER
READY

following program

LOG.
LOG"

An attempt to do a LOG(0) or logarithm of a negative number causes the
?ARG error message.

6-5

6.1.6 Absolute Function, ABS(x)

The ABS function returns an absolute value for any input value.
Absolute value is always positive. In the following program, various
input values are converted to their absolute values and printed.

10 INPUT X
20 LET X = ABS (X)
30 PRINT X
40 GO TO 10
RUNNH
?-35.7

35.7
?2

2
?25El0
2.50000E+ll

?105555567
l.05556E+08

?10 .12345
10.1234

?-44.555566668899
44.5556

?tC
.REENTER
READY

6. 1 .7 Integer Function, INT(x)

The integer function returns the value of the greatest integer not
greater than x. For example:

PRINT INT(34.67)
34

PRINT INT (-5 .1)
-6 ·

The INT of a negative number is a negative number with the same or
larger absolute value, i.e., the same or smaller algebraic value. For
example:

PRINT INT(-23.45)
-24

PRINT INT(-14.39)
-15

PRINT INT (-11)
-11

The INT function can be used to round numbers to the nearest integer,
using INT(X+.5). For example:

PRINT INT(34.67+.5)
35

PRINT INT(-5.1+.5)
-5

6-6

~

~· " '~

INT(X) can also be used
integral power of 10,
argument:

to
by

round to any given decimal place or
using the following expression as an

(X*l0to+.5)/l0tD

where Dis an integer supplied by the user.

10 REM - INT FUNCTION EXAMPLE.
15 PRINT
20 PRINT "NUMBER TO BE ROUNDED: II
25 INPUT A
40 PRINT "NO. OF DECIMAL PLACES:"
45 INPUT D
60 LET B = INT(A*l0tD +
70 PRINT "A ROUNDED =
80 GO TO 15
90 END

RUNNH

NUMBER TO BE ROUNDED:
?55.65842
NO. OF DECIMAL PLACES:
?2
A ROUNDED= 55.66

NUMBER TO BE ROUNDED:
?78.375
NO. OF DECIMAL PLACES:
?-2
A ROUNDED = 100

NUMBER TO BE ROUNDED:
?67.38
NO. OF DECIMAL PLACES:
?-1
A ROUNDED = 70

NUMBER TO BE ROUNDED:
?tc
.REENTER
READY

II

.5)/l0t D
B

l

6.1.8 Random Number Function, RND(x)

--.
/ ,,

.r

:) ,,-, '-1 ._,
t /

I -

)

' The random number function produces a random number, or random number
set, between 0 and 1. If the RANDOMIZE statement is not present in
the program: the numbers are reproducible in the saJ!\e order for later
checking of a program. The argument (x) is not used and can be any
number (but cannot be a string expression): it serves only to
standardize all BASIC function representations. The form RND is also
legal. For example:

6-7

(

10 REM - RANDOM NUMBER EXAMPLE.
25 PRINT "RANDOM NUMBERS:"
30 FOR I= 1 TO 15
40 PRINT rum (0) ,
50 NEXT I
60 END
RUNNH
RANDOM NUMBERS:

.1002502 .9648132

.3061218 .285553

.9854126E-l .5221863

READY

• 8866272
.9582214
.2462463

.6364441

.1793518

.7778015

To obtain random digits from Oto 9, change line 40 to read:

40 PRINT INT(l0*RND(0)),

• 8390198
.4521179
.450592

and run the program again. This time the results will be printed as
follows.

RUNNH
RANDOM

1
3
0

READY

NUMBERS:
9
2
5

8
9
2

6
1
7

8
4
4

It is possible to generate random numbers over a given range. If the
ope., range (A,B) is desired, use the expression:

(B-A) *RND (0) +A

to produce a random number in the range A<n<B.

The following program produces a random number set in the open range
4,6 (the extremes, 4 and 6, are never reached).

10 REM - RANDOM NUMBER SET IN OPEN RANGE 4,6.
20 FOR B = 1 TO 15
30 LET A= (6-4) * RND(0) +4
40 PRINT A,
50 NEXT B
60 END

RUNNH
4.2005
4.61224
4.19708

READY

5.92962
4.57110
5.04437

6.1.9 Sign Function, SGN(x)

5.77325
5. 91644
4.49249

5.27288
4.35870
5.55560

5.67804
4.90423
4.90118

The sign function returns the value 1 if xis a positive value, 0 if x
is O, and -1 if xis negative. For e x ample:

6-8

_)

.)

-J

'-..,/

PRINT SGN(3.42)
l

PRINT SGN(-42)
-1

PRINT SGN(23-23)
0

The following example program illustrates the use of the SGN function.

10 REM- SGN FUNCTION EXAMPLE.
20 READ A,B,C
25 PRINT "A = "A, "B = "B, "C = "C
30 PRINT "SGN (A) ="SGN (A) , "SGN (B) ="SGN (B),
40 PRINT "SGN(C) ="SGN(C)
50 DATA -7.32, .44, 0
60 END
RUNNH
A = -7.32
SGN(A) =-1

READY

B = .44
SGN(B) = l

6.1.10 Binary Function, BIN(x$)

C = 0
SGN(C) = 0

The BIN function computes the integer value of a string of l's and
O's. Spaces are ignored (allowing input in convenient bit groupings),
and the parentheses around the argument are not required.

For example,

PRINT BIN '100101001'
297

The binary number is treated as a signed 2's complement integer and itsl
absolute value may not be larger than 215-1. I

For example,

PRINT BIN 'l 111 111 111 111 111'
-1

6.1.11 Octal Function, OCT(x$)

value from a string of blanks
Spaces are ignored (allowing input

parentheses around the argument are

The OCT function computes an integer
(ignored) and digits from Oto 7.
in convenient spacing), and the
not required.

For example,

PRINT OCT '177777'
-1

The number is treated as a signed 2's complement and its absolute valuel
may not be larger than 215-1.

6-9

6.2 USER DEFINED FUNCTIONS

In some programs it may be necessary to execute the same sequence of
statements or mathematical formulas in several different places.
BASIC allows definition of unique operations or expressions and the
calli ng of these functions in the same way as the square root or trig
functions.

These user-defined functions consist of a function name: the first two
letters of which are FN followed by a third letter. For example:

legal

FNA

illegal

FNAl
FN2

Each function is defined once and the definition may appear anywhere
in the program. The defining or DEF statement is formed as follows:

DEF FNa (variable list) = expression

where a is an alphabetic character which becomes part
of the function name. The expression,
however, need not contain all the arguments.

variable list

expression

may consist of one to five dummy variables.

(to the right of the equal sign) may contain
the variables named in the variable list.

For example:

10 DEF FNA(S) = St2

causes a later statement:

20 LET R=FNA (4) + 1

to be evaluated as R=l7. As another e x ample:

SO DEF FNB(A,B) = A+Xt 2
60 LET Y=FNB(l4.4,R3)

causes the function to be evaluated using the current value of the
variable x squared +14.4. In this case the dummy argument B (which
becones the actual argument R3 in the function call) is unused.

The two following programs

Program #1:

10 DEF FNS(A) = AtA
20 FOR I=l TO S
30 PRINT I, FNS(I)
40 NEXT I
SO END

6-10

)

)

Program #2:

10 DEF FNS(X) = x+x
20 FOR I=l TO 5
30 PRINT I, FNS(I)
40 NEXT I
50 END

cause the same output:

RUNNH
1
2
3
4
5

READY '

1
4
27
256
3125

The arguments in the DEF statement can be seen to have no
significance; they are strictly dummy variables. (A DEF statement
with no arguments is illegal.) The function itself can be defined in
the DEF statement in terms of numbers, variables, other functions, or
mathematical expressions. For example:

10 DEF FNA(X) = X+2+3*X+4
20 DEF FNB(X) = FNA(X)/2 + FNA(X)
30 DEF FNC(X) = SQR(X+4)+1

The statement in which the user-defined function appears can have that
function combined with numbers, variables, other functions, or
mathematical expressions. For example:

40 LET R = FNA(X+Y+Z)*N/(Y+2+D)

A user-defined function can be a function of one to five variables, as
shown below:

25 DEF FNL(X,Y,Z) = SQR(x+2 + yt2 + z+2)

A later statement in a program containing the above user-defined
function might look like the following:

55 LET B = FNL(D,L,R)

where D, L, and R have some values in the program.

The number of arguments with which a user-defined function is called
must agree with the number of arguments with which it was defined.
For example:

10 DEF FNA (X) = X*2 + X/2
20 PRINT FNA(3,2)

causes the error message:

?ARG AT LINE 20

Wher. calling a user-defined function, the parenthesized arguments can
be any legal expressions. The value of each expression is substituted
for the corresponding function variable. For example:

6-11

10 DEF FNZ{X)=Xt 2
20 LET A=2
30 PRINT FNZ {2+A)

line 30 causes 16 to be printed.

If the same function name is defined more than once, an error message
is printed.

10 DEF FNX{X)=Xt2
20 DEF FNX{X)=X+X
%IDF AT LINE 20

and the program cannot be executed until corrected.

The function variable need not appear in the function expression as
shown below:

10 DEF FNA (X) = 4 +2
20 LET R = FNA(l0)+l
30 PRINT R
40 END
RUNNH

7

The program in Figure 6-1 contains examples of a multi-variable DEF
statement in lines 10, 25, and 40.

6-12

..)

1 REM MODULUS ARITHMETIC PROGRAM
5 REM FIND X MOD M
10 DEF FNM<X,M)=X-M*INT<XIM>
15 REM
20 REM FIND A+B MOD M
25 DEF FNACA,B,M)=FNM(A+B,M)
30 REM
35 REM FIND A*B MOD M
40 DEF FNBCA,B,M)=FNM<A*B,~>
41 REM
45 PRINT
50 PRINT "ADDITION AND MULTIPLICATION TABLES MOD M"
55 PRINT "GIVE ME AN M"J\INPUT M
60 PRINT \PRINT "ADDITION TABLES MOD "M
65 GOSUB 800
70 FOR 1=0 TO M-1
75 PRINT U" "J
80 FOR J=0 TO M-1
85 PRINT FNA<I,J,M)J
90 NEXT J\PRINT \NEXT I
100 PRINT \PRINT\
110 PRINT "MULTIPLICATION TABLES MOD "M
120 GOSUB 800
130 FOR 1=0 TO M-1
140 PRINT 1;" ";
150 FOR J=0 TO M-1
160 PRINT FNBCI,J,M);
170 NEXT J\PRINT \NEXT I
180 STOP
800 REM SUBROUTINE FOLLOWS:
810 PRINT \PRINT TABC5)J0J
820 FOR I=l TO M-1
830 PRINT Ii\NEXT I\PRINT
840 FOR I=l TO 3*M+4
850 PRINT "-"J\NEXT !\PRINT
860 RETURN
870 END

Figure 6-1 Modulus Arithmetic

6-13

RUNNH --)
)

ADDITION AND MULTIPLICATION TABLES MOD M
GIVE ME AN M?7

ADDITION TABLES MOD 7

0 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 I 2 3
5 5 6 0 I 2 3 4
6 6 0 I 2 3 4 5

MULTI PL I CATION TAB.LES MOD 7

)
0 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

STOP AT LINE 180)
READY

Figure 6-1 (Cont.) Modulus Arithmetic

_)

6-14

........... •

6.3 STRING FUNCTIONS

Like the intrinsic mathematical functions (e.g., SIN, LOG), BASIC
contains various functions for use with character strings. These
functions allow the program to concatenate two strings, access part of
a string, determine the number of characters in a string, generate a
character string corresponding to a given number or vice versa, search
for a substring within a larger string, and perform other useful
operations. The various functions available are summarized in Table
6-1.

Function Code

ASC(x$)

CHR$ (x)

DAT$

LEN (x$)

POS(x$,y$,z)

SEG$(x$,y,z)

October, 1974

Table 6-1

String Functions

Meaning

Returns the seven-bit internal code for the
one-character string (x$) as a decimal
number. If the argument is a null string or
contains more than one character, the ?ARG
error message is output.

Generates a one-character string having the
ASCII value of x where xis a number greater
than or equal to O and less than or equal to
255. Refer to Appendix B. For example:
CHR$(65) is equivalent to "A". Arguments
greater than 127 are treated modulo 128.
Only one character can be generated.

Returns the current date, as set by the RT-11
Monitor, in the form 07-MAY-73 •

Returns the number of characters in the
string x$ (including trailing blanks). For
example:

PRINT LEN {A$)
26

Searches for and returns the position of the
first occurrence of y$ in x$ starting with
the zth position. If the stringy$ is not
found in the string x$, then O is returned.
If x$ is a null string, 0 is returned. If y$
is a null string, the character position of
z is returned.

Returns the string of characters in positions
y through z in x$.

If y =<O, 1 is assumed.
If z =< O, a null string is returned. If
z > the length of (x$), the string to end of
x$ is returned.
If z < y, a null string is returned.
If y > LEN(x$), a null string is returned.

6-15

Function Code

STR$(x)

Table 6-1 (Cont.)

String Funct i ons

Returns the string

Meaning

which represents
numeric value of x as it would be printed
a PRINT statement but without a leading
trailing blank.

the
by
or

TRM$ (X$) Returns X$ with trailing blanks removed
(trimmed).

VAL (x$) Returns the number represented by the string
x$. If x$ does not represent a number, the
;ARG error message is output.

In the above examples,
expressions and x, y,
expressions.

x$ and
and z

6.3.l User-Defined String Functions

y$ represent
represent any

any legal string
legal arithmetic

Character string functions can be written in the same way as numeric
functions. (See Section 6. 2.)

User-defined string functions return character string values, although
both numeric and string values can be used as arguments to the
function.

10 DEF FNL(A$,X)=A$&STR$(X)

The following function combines two strings into one string:

10 DEF FNC(X$,Y$)=X$&Y$

Numbers cannot be used as arguments in a function where strings are
expected or vice versa. Line 80 is unacceptable:

10 DEF FNA(A$) = CHR$(LEN(A$) +1)
80 LET Z=FNA (4)

The message:

? NSM AT LINE 80

is printed.

6-16

CHAPTER 7

EDITING COMMANDS

BASIC provides key commands which can be used to halt program
execution, erase characters or delete lines. Table 7-1 provides an
explanation of each of the key commands.

Key

CTRL/C

CTRL/O

(Shift 0)
or
RUBOUT

ALTMODE
or ·
CTRL/U

Table 7-1

Key Commands

Explanation

Interrupts execution of a command or program and
returns control to the RT-11 monitor BASIC can be
restarted without loss of the current program by
using the monitor RE command.

A control command is typed by holding down the
CTRL key while typing the letter key.

Stops output on the terminal but does not halt
execution until an input statement is encountered
or the program terminates. If CTRL/O is typed
again, type out resumes. If desired, immediate
mode statements can be used to print the results
of the pr~grarn af t er a CTRL/O suppresses output.

Deletes the last ch aracter typed and echoes as a
backarrow on the terminal. For example,

RT-11 BASC IC

RUBOUT typed here.

Spaces as well as characters may be erased. On a
VTOS or an LA30, the underscore key (-) is used
instead of RUBOUT to delete characters.

Deletes the entire current line (provided the
RETURN key has not been typed). BASIC displays

DELETED

at the end of the line. For example:

OS BASIC DELETED
t
ALTMODE typed here.

On some terminals, the ESCAPE key must be used.

If the RETURN key has already been typed, a program line can be
corrected by typing the appropriate line number and retyping the line
correctly.

7-1

The line can be deleted by typing the RETURN key immediately after the
line number; removing both the line number and line from the program.

If the line number of a line not needing correction is accidentally
typed, the RUBOUT key (also SHIFT/O, ALTMODE, ESC or CTRL/U) may be
used to delete the number(s); then the correct number can be typed.
Assume the line:

10 IF A>S GO TO 230

is correct. A line 15 is to be inserted, but

10 LET

is typed by mistake. The correction is .made as follows:

10 LET+++++S LET X=X-3

Line 10 r ·emains unchanged, and line 15 is entered.

Following an attempt to run a program, err or messages may be output on
the terminal indicating illegal characters or formats, or other user
errors in the program. Most errors can be corrected by typing the
line number(s) and the correction(s) and then rerunning the program.
As many changes or corrections as desired may be made before . each
program run.

The following editing commands are
terninated by the RETURN key.
program in core, assign a program
program.

7.1 SCRATCH COMMAND

entered in immediate mode and
These commands are used to erase a

name and list, punch or run a

The SCRATCH (or SCR) command clears the storage area set up by BASIC
(re=er to Appendix G). This deletes any commands, programs arrays,
strings or symbols currently stored by BASIC.

SCRATCH should be used before entering a new program from the terminal
keyboard to be sure no old program lines will be mixed into the new
program and to clear out the symbol table area.

Example:

SCR

READY
10 READ A

clears the storage area and inserts the program being input at the
keyboard.

7-2

)

.J

7.2 OLD COMMAND

The OLD command (OLD) erases the contents of the storage area (SCRATCH
and CLEAR) and inputs the program via the specified device.

The form of the command is:

OLD "dev: filnarn. ext"

If the file descriptor (dev:filnarn.ext) is not specified as part of
the OLD command, BASIC prints:

OLD FILE NAME--

ar-d waits for the file description and the return key. Type the name
of the file containing the BASIC program (do not enclose the filename
ir- quotation marks). If a filename is not entered, BASIC assumes the
name NONAME except when the file description is "PR:" in which case ·l
BASIC assumes the name PR:.

In the examples of OLD commands that follow, the computer printout is
underlined

OLD
OLD FILE NAME--TEST 1

clears user area and inputs program TESTl.BAS from Disk (DK).

OLD "DTl:PROGl"

clears user area and inputs program PROGL.BAS from DECtape unit 1.

OLD "PR:RESEQ"
t

clears user area and inputs RESEQ from the high speed Paper tape Reader
after any character is typed in response to the prompt "t".

7.3 LIST/LISTNH COMMANDS

The LIST command prints
currently in memory on
BA3IC version number are
listed. The form of the

the specified lines of the user program
the terminal. The program name, date and the
output as a header line for the lines being
LIST command is:

LIST statement no.-statement no.

There are several variations of the LIST command which can be used:

LIST statement no. Lists only the specified line.

LIST-statement no.
Lists from the beginning of the program
to and including the specified line.

LIST statement no.
LIST statement no.-END

Lists from the specified line to the end
of the program.

7-3

LIST statement no.-statement no.
Lists the specified section of
program.

the

If no statement number is specified, the entire program is listed. If
the statement number specified does not exist, the first line of the
program is listed.

Typing LIST followed by the statement number causes the header line
and the line specified to be listed. The LISTNH command also prints
the lines currently in core but suppresses the header line.

Type CTRL/O (depress the CTRL key and type the Okey) to suppress an
undesired listing. BASIC returns to the READY message when command
execution is complete.

The lines listed may differ slightly from those entered because:

1. Certain characters while acceptable to BASIC are stored in a
standard manner when they appear outside of quotation marks.

Character Character
typed stored

])
[(

=< <=
=> >=
>< <>

2. Literals are stored to 24 bits of accuracy. Those with more
than · 24 bits are truncated to 24 bits.

3. Although literal storage is 24 bits, output is truncated to 6
decimal digits.

4. Literals are output in standard BASIC format, regardless of
how they were input, for example,

10 LET X=3.0+l.0000001
20 PRINT X-1E7
LIST
10 LET X=3+1
20 PRINT X-l.00000E+07

5. Spaces in the input program are ignored, except within
strings and REM statements. The LIST command prints the
program with spaces inserted to separate keywords and line
numbers from numeric information. The listed program is
therefore easier to read. In the case of an IF ••• GO TO
statement, no space is typed before the GO TO keyword.

Exa'llples:

LISTNH 100 lists line 100.

7-4

)

LIST-10 lists the header line and the program lines
up to line 10.

LIST 10-20 lists the header line and lines 10 to 20 of
the program in memory.

7.4 SAVE COMMAND

The SAVE command creates an ASCII file and saves
currently in memory as specified in the file
program can be retrieved with the OLD command or
statement. The form of the command is:

SAVE "dev: filnam.ext"

the BASIC
descriptor.

CHAIN or

program
A SAVEd
OVERLAY

If no file descriptor is specified, it is assumed to be DK: name.BAS
where name is the current program name.

The SAVE command can be used to list the program currently in memory
on the line printer.

If the file specified already exists, then the error message

?RPL or USE REPLACE

is typed on the console.

Examples:

SAVE "DTl: PROGl"

SAVE

SAVE "LP:"

7. 5 REPLACE COMMAND

outputs program in core to DECtape unit l as
PROGl.BAS.

outputs program to the system device with
current program name, and extension BAS.

lists the program on the line printer.

The REPLACE
replaces,
destinction
user from
saved.

command is just like the SAVE command, except that it
or updates a file previously created by SAVE. The
between creation and replacement of files prevents the
inadvertently destroying programs which he has previously

The form of the command is

REPLACE "dev. filnam.ext"

If no file descriptor is specified, it is assumed to be DK:filnam.bas
where filnam is the current program name.

7-5

7.6 RUN/RUNNH COMMANDS

After the user program is entered into memory, it can be executed by
typing the command

RUN

and the RETURN key. The RUN command causes a header line (program
name, date and BASIC version number) to be printed before the program
is executed.

When BASIC is first loaded or when a SCR command is executed, the user
program name is set to NONAME until a RENAME command is executed.

The program is scanned; arrays are created in core and then the
program is executed. Any appropriate error messages are printed and
when the END or STOP statement is encountered, execution halts and a
message is printed. Execution of a program can be halted before
executing an END or STOP statement by using the CTRL/C, RE combination
to return BASIC to a READY message.

After execution, the variables used in a program remain accessible for
use in immediate mode until a SCRATCH, CLEAR or another RUN command is
exe::uted.

The RUNNH command also executes the program in core but suppresses the
hea::ler line.

Exa-nple:

RUN
PROGl 03-JUN-73
10

RUNNH
10

7.7 CLEAR COMMAND

BASIC V0l-05

The CLEAR command clears the contents of the user
buffers. This command is generally used when
executed and then edited. Before it is rerun, the
buffers are set to zeros and nulls by the CLEAR
more memory.

array and string
a program has been
array and string
command to provide

These buffers will be filled again when the RUN command is executed.

Example:

10 A=l0
20 PRINT A
CLEAR

READY

RUNNH
10

READY

7-6

\

I
_j

" -- _ .. ·

7.8 RENAME COMMAND

The RENAME command assigns the specified name to the program currently
in memory. The form of the command is:

RENAME "filnam"

followed by the RETURN key. The filnam is optional and if not
specified BASIC responds with

FILE NAME--

Tyfe the 1 to 6 character program name (don't enclose the name in
quctation marks) followed by a carriage return. If a device or
extension are specified with the file name they are ignored. The
characters in the program name may consist of A-Z or 1-9.

If more than 6 characters are entered, the excess characters are
ignored. Blanks are also ignored. If no name is specified in answer
to the FILE NAME message, the default name, NONAME, is used. The
program itself does not change.

7. 9 NEW COMMAND

The NEW command clears the storage area set up by BASIC (same as
SCRATCH) and assigns the specified name to the program currently in
memory (same as RENAME) •

The form of the command is:

NEW "filnam"

If the file name is not specified as part of the NEW command, BASIC
prints:

NEW FILE NAME--

and waits for the file name and RETURN key to be typed. Type the file
name, (do not enclose in quotation marks) and the RETURN key. If
spe:::ified, device or extension are i gnored.

7-7

CHAPTER 8

USING ASSEMBLY LANGUAGE
ROUTINES WITH BASIC

RT-11 BASIC has a facility which allows experienced PDP-11 assembly
language programmers to interface their own assembly language routines
to 3ASIC. This facility permits the user to add functions to BASIC
which can operate directly on special purpose peripheral devices.
This chapter describes in some detail the internal characteristics of
BASIC during the execution of a BASIC program, and is intended to
serve as a prograrraning guide for the creation of such user-coded
assembly language functions. This material assumes the user is
familiar with PDP-11 assembly language. For additional information on
this subject, refer to the RT-11 System Reference Manual
DEC-11-0RUGA-A-D.

The CALL statement is used to reference these assembly language
routines from the BASIC program.

8.1 CALL STATEMENT

The CALL statement can be inserted anywhere in the BASIC program and
has the form:

CALL string expression (argument list)

Where string expression

argument list

specifies the name (up to 4 characters)
assigned to the assembly language
routine to be called. This name is
assigned via the System Function Table,
as described in Section 8.2. The
routine named must be linked with the
BASIC system with the Linker.

is the optional list of arguments to the
assembly language routine, separated by
commas. There may be any number of
arguments to a routine, as long as the
CALL statement fits on one line. The
elements of the argument list are
expressions, variable names, and array
elements. These may include values
passed to the user routine, and
variables set by it.

In BASIC without strings, string variables are not allowed but a
literal string, enclosed in quotes, may be used in the CALL statement.

Exanples:

CALL "AND" (A,B,C) Calls the routine assigned the name AND
in the System Function Table which sets
the variable C to the value of A ANDed
with the value of B.

8-1

CALL "OR" (A,B ,C)

LET F$="REV"
CALL (F$) (A$ I B$)

8.2 SYSTEM FUNCTION TABLE

Calls the routine named OR,
the values of A and B,
result inc.

which OR' s
storing the

Calls the routine named REV which sets
the string B$ equal to the string A$
with the characters in reverse order.

For a routine to be accessible from the CALL statement, it must be
defined in the special System Function Table. The first word of the
BASICR CSECT contains the address of this table. The table consists
of a series of 3-word entries, followed by a O byte indicating the end
of t~e table. Each entry defines one user routine. The first two
words of .the entry contain the ASCII characters of the routine name to
be used in the CALL statement. Those names with less than four
characters are followed with O bytes to fill the remainder of the two
words. The third word of the entry contains the address of the
function.

The following source program generates a system functon table based on
the sample CALL statements in section 8.1:

; FUKCTION TABLE
.GLOBL
.CSECT
.WORD
.CSECT

FUNTAB:
.ASCII
.BYTE
.WORD
.ASCII
.BYTE
.WORD
.ASCII
.BYTE
.WORD

.BYTE

.END

DEFINITION
ANDFN, ORFN, REVFN
BASICR
FUNTAB
FUNl

'AND'
0
ANDFN
'OR'
0,0
ORFN
'REV'
0
REVFN

0

;ASCII NAME OF FUNCTION
; (4 BYTES)
;ADDRESS OF FUNCTION ROUTINE

;INSERT NEW ENTRIES HERE
;END-TABLE FLAG

To produce a BASIC system with the functions defined in the example,
link the following modules with LINK.

BASICR
BASICE
BASICX

FPMP

FUNl

FUN2

Basic object modules, starting at location 400

Object module (floating point math package)

Object module, produced from the above source.

Object module produced from the source in section
8.3.1.

8-2

)

GETARG Object module, produced from the source shown in
Appendix H.

BASICH BASIC High object module.

Use the LINK command string:

*BASIC=BASICR,FPMP,BASICE,BASICX/B:400/C

*FUNl ,FUN2 ,GETARG ,BASICH

8.2.1 System Function Table When Using LPS or GT Support

When either the Laboratory Peripheral System (LPS)
support is also being linked with BASIC, the user
language routines must be defined in FTBL.MAC, a
supplied in source form.

or GT graphic
written assembly

function table

The following instructions to the RT-11 EDIT program will produce a
function table that includes the AND, OR, and REV routines in the
previous section and the LPS and/or GT support routines when assembled
with PERPAR.MAC as described in the appropriate appendix:

.R EDIT
*EBFTBL .MA~
*FFTBL:~
*I

.GLOBL

.ASCII

.BYTE

.WORD
,ASCII
.BYTE
.WORD
,ASCII
.BYTE
.WORD

ANDFN,ORFN,REVFN
'AND'
0
ANDFN
'OR'
0,0
ORFN
'REV'
0
REVFN

© represents the ALTMODE key.

The FTBL object module should be linked with the FUN2 module described
in section 8.3.l, GETARG (when needed), PERVEC RTINT, the appropriate
LPS and GT object modules and the BASIC object modules.

8.3 WRITING ASSEMBLY LANGUAGE ROUTINES

The user's assembly language routine must interface with the BASIC
system to pass its arguments to and from the calling BASIC program.

If the user's routine does not accept a variable number of arguments,
then the general subroutines GETARG,STORE, and SSTORE, which are
listed in Appendix H, may be used to interface the user routines with
BASIC. The routine GETARG checks the syntax of the CALL statement,
and the , argument types. It accesses the routine arguments as
specified in the CALL statement, and stores references to them in a
table, addressed by RO.

8-3

Argument . Type Stored in table at (RO)

1 - Input numeric expression two words,
value

the expression

2 - Output numeric target variable three words, used by STORE
subroutine

3 - Input string expression zero words are stored
table, string pointer
returned on the stack

in
is

4 - Output string target variable three words, used by SSTORE
subroutine

To store target variables (argument types 2 and 4), the user routine
addresses the corresponding three-word entry in the table set up by
GETARG and calls the subroutine STORE for numeric target variables,
and SSTORE for string target variables. The examples in section 8.3.l
show how these routines are used.

once the user routine has called GETARG to reference its arguments, it
may use any registers except RS for calculations . The routine must
return via an "RTS PC" instruction, with the stack unchanged.

The GETARG, STORE, and SSTORE subroutines assume that all arguments to
the user routines will be in the CALL statement. In the case of a
user routine which handles optional arguments, it may use the system
subroutines described below in section 8.4 to pass the arguments to
and from BASIC. Each of the routines named is a .GLOBL s ymbol.

When the CALL statement is executed, the user's assembly language
routine is called by the instruction:

JSR PC, routine address

When the user routine is entered, these registers contain information
about the calling sequence:

Rl is a pointer to the translated code of the CALL
statement. (See section 8.7 for the format of the
translated code.)

If the routine has an argument list, Rl points to
the 1-byte token (refer to section 8.7.2 for an
explanation of tok ens) which represents the left
parenthesis in the calling sequence. This token
has the value .LPAR.

CALL "AND"

Rl
+
(A,B,C)

The 1-byte values of code bytes (tokens)
.COMMA and .RPAR (right parenthesis) are
symbols. These are not the same as the
representation of these characters.

8- 4

.LPAR,
global

ASCII

\

R4

RS

Contains the low limit of the stack. If the stack
is used heavily, the function must check that it
never goes below this limit. (If it does,
transfer control to ERRPDL, a global location in
BASIC.)

Contains the address of
must be preserved
subroutines.

the
for

"user area",
all calls to

which
BASIC

Cnce the argument references are no longer required by the function RO
through RS may be used in any way. RO, R2, and R3 need not be
~reserved in any case.

The function may use the stack, but must return via an

RTS PC

instruction with the stack unchanged.

The user routine can not use the TRAP instruction, as it is reserved
for use by the BASIC system program.

A user routine which does not use the GETARG subroutine should verify
the syntax of the invoking CALL statement by checking that the left
parenthesis, comma and right parenthesis tokens are contained in the
code where e~ected. (.LPAR, .COMMA and .RPAR are the global values
of these 1-byte tokens, respectively.)

In general, arguments which are expression values are passed
user by the subroutine EVAL, as described in section 8.4. The
can then obtain the value of the expression from the
accumulator or FAC (FACl(RS) and FAC2(RS)).

8-4a

to the
program

floating

THIS PAGE PURPOSELY LEFT BLANK

8-4b

/
,,..

\

'---

Arguments are passed from the user routine back to BASIC by first
calling GE'I'VAR to address the target variable and then calling STOVAR
for numeric results and STOSVAR for string results to store the new
value in the BASIC variable. These routines are also described in
section 8. 4.

The example in section 8.3.l contains the code for both of these types
of argument transfer.

8.3.1 Sample User Functions

The following source program shows how the routines AND, OR and REV in
the example above would interface with the BASIC system to pass their
arguments to the calling program. Each of the system subroutines used
in the example is described in section 8.4.

; FUN2 -

R0=%0
Rl=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7
FAC1=40
FAC2=42

;
; "AND"
ANDFN:

. "OR" I

ORFN:

SAMPLE
.TITLE
.GLOBL
.GLOBL

(A,B ,C)
MOV
JSR
.BYTE
.EVEN
MOV
ADD
MOV
COM
MOV
BIC
MOV
COM
MOV
BIC
MOV
JSR

RTS
(A,B ,C)

MOV
JSR
.BYTE
.EVEN
MOV

USER FUNCTIONS
FUN2
ANDFN, ORFN, REVFN
GETARG, STORE, SSTORE

#TABLE,RO
PC,GETARG
1,1,2,0

#FAC1,R3
RS ,R3
Al,R2
R2
Bl, (R3)
R2, (R3) +
A2,R2
R2
B2, (R3)
R2, (R3)
#C,RO
PC,STORE

PC

#TABLE,RO
PC,GETARG
1,1,2,0

#FACl ,R3

;ADDRESS VARIABLE STORAGE AREA
;CHECK SYNTAX AND SET ARGS
; (ARG TYPES)

;ADDRESS FACl(RS) IN R3

;FACl(RS) IS Al (AND) Bl

;FAC2(RS) IS A2 (AND) B2
;ADDRESS C
;STORE FAC1,FAC2 INC

;ADDRESS ARGUMENT TABLE
;CHECK SYNTAX AND GET ARGS
; (ARG TYPES)

;ADDRESS FACl(RS) IN R3

8-5

ADD RS ,R3
MOV Al, (R3)
BIS Bl, (R3) +
MOV A2, (R3)
BIS B2, (R3)
MOV #C,RO
JSR PC,STORE
RTS PC

; "REV" (A$,B$)
REVFN: MOV #TABLE,RO

JSR PC,GETARG
.BYTE 3,4,0

.EVEN
CMP (SP) , #-1

BEQ REVX
CLR R2
MOV (SP) , R3
BISB (R3) + ,R2
CMPB (R3) + , (R3) +

REVl: DEC R2
MOV R3 ,RO
ADD R2 ,RO
CMP RO ,R3
BLOS REVX
MOVB (RO) ,Rl
MOVB (R3) , (RO)
MOVB Rl, (R3) +
DEC R2

I
BR REVl

REVX: MOV #B$,RO

JSR PC,SSTORE

RTS PC

ARGUMENT AREA
TABLE:
Al: .WORD 0
A2: .WORD 0
Bl: .WORD 0
B2: .WORD 0
C: .WORD o,o,o

i
.=TABLE

BS: .WORD o,o,o

.END

; FACl (RS) IS Al (OR) Bl

; FAC2 (RS) IS A2 (OR) B2
;ADDRESS C
;STORE FAC1,FAC2 IN C

;ADDRESS ARG AREA
;CHECK SYNTAX AND GET ARGS
; (ARG TYPES)

;CHECK NULL STRING

;R2 IS STRING LENGTH
; R3 ADDRESSES CHARS
;ADDRESS NEXT PAIR OF BYTES
;TO SWITCH

;CHECK DONE--REACHED MIDDLE

;EXCHANGE ANOTHER PAIR
;OF BYTES

;ADDRESS B$

; STORE STRING ON STACK

;VALUE OF A (2 WORDS)

;VALUE OF B (2 WORDS)

;ADDRESS OF C (3 WORDS)

;POINTER TO A$ IS ON STACK
;ADDRESS OF B$ (3 WORDS)

8-6

--\

)

_)

,,

\
.J

8.4 SYSTEM ROUTINES IN BASIC

The routines described below are all global symbols and are available
to the user functions:

Rou-::ine Name
(Global)

BOMB

ERP.POL

ERRSYN

ERRARG

EVAL

October, 1974

Call

TRAP 0
.ASCII 'MESSAGE'
.EVEN

JMP ERRPDL

JMP ERRSYN

JMP ERRARG

JSR PC,EVAL

Description

This routine stops execution of
the BASIC program and types the
message:

?MESSAGE AT LINE****

If the $LONGER option is specified,
the '?' character is omitted.
BASIC then types the READY message.

Called when the stack pointer (SP)
goes below the value in R4. Causes
execution to halt and types out
?ETC AT LINE xxxxx. There are 20
extra "buffer" words on the stack.
If the user routine will definitely
not use more than this many words
on the stack, the routine need not
check for a stack overflow.

Syntax error. Stops execution and
prints out ?SYN AT LINE xxxxx.

Argument error. Stops execution
and prints out ?ARG AT LINE xxxxx.

Evaluate expression. Rl points to
the start of the expression in the
code. EVAL sets the carry bit as
follows:

carry= 0: The expression is
numeric.

The value of the expression is
contained in the floating
accumulator (FACl and FAC2).

carry= 1: A string expression.

If the string is non-null, the top
of the stack is an indirect pointer
to the string. (See section 8.6
for the format of string
variables.)

If the string is null, the top of
the stack is the value 177777.

In both cases, Rl is moved to point
to the byte following the
expression in the code. If it
detects an error in the expression,
EVAL branches to the appropriate
error routine.

8-7

Routine Name
(Global)

GETVAR

MSG

NUMSGN

STOVAR

STOSVAR

October, 1974

Call

JSR PC,GETVAR

JSR Rl,MSG
.ASCII 'MESSAGE'
.BYTE 0
.EVEN

JSR PC,NUMSGN
.WORD ROUTINE

JSR PC,STOVAR

JSR PC,STOSVAR

Description

Address variable or array element.
R2 contains the address of the
symbol table entry for the
variable. GETVAR looks up and
saves the address of the variable
reference, so that a subsequent
STOVAR or STOSVAR will store a
value in the addressed variable.
GETVAR destroys the FAC when
addressing an array element; Rl is
left unchanged. To address the
symbol table entry, precede the
GETVAR call with the code:

MOVB (Rl) +,R2 ;FIRST BYTE OF
;OFFSET

BMI ESYN ; IF NEGATIVE, ERROR
SWAB R2
BISB (Rl) +,R2 ;GET 2ND HALF OF

;OFFSET
ADD (RS) ,R2 ;ADD BASE OF SYMBOL

;TABLE

Print message on console. Prints
the ASCII characters specified
after the JSR instruction up to the
0-byte. MSG prints only those
characters specified in the calling
sequence plus padding characters
specific to the terminal in use.
The calling program must insert a
carriage return where required.
MSG clears the CTRL/O condition.

This subroutine converts the number
contained in the FAC to ASCII, and ·
saves it via the specified ROUTINE.
The ROUTINE is called by a nJSR pen
instruction and preserves all
register contents.

Store numeric variable. Stores the
FAC in the variable or array
element last referenced by GETVAR.
If it was a string variable, STOVAR
stops execution of the program and
produces the ?NSM error message.

Store string variable. Stores the
top of the stack in the variable or
array element last referenced by
GETVAR, and pops one word from the
stack. If it was a numeric
variable, STOSVAR stops execution
of the program and produces the
?NSM error message.

8-8

)

)

"--"'i

Roi.:tine Name
(Global)

INT

Call

JSR PC,INT

Description

Integerize the FAC. Sets the value
of the FAC to the greatest integer
contained in the previous contents
of the FAC. The number is
expressed in the BASIC integer
format if possible.

MAKEST JSR PC,MAKEST Make non-null string variable. The
top of the stack contains the
length of the string to be created.
R2 contains an indirect pointer to
(the start of the ASCII characters
to fill the string) -3. MAKEST
returns an indirect pointer to the
string on the top of the stack.
(Called MAKESTR in sources.)

I n addition, the user program may call the following FPMP-11 routines,
which are documented in the FPMP-11 User's Manual (DEC-11-NFPMA-A-D).

$POLSH

$IR

$MLR

$DVR

$ADR

$SBR

SIN

cos

SQRT

ALOG

ATAN

EXP

Enter "Polish Mode"

Integer-to-Real Conversion

Multiply Real

Divide Real

Add Real

Subtract Real

Sine Function

Cosine Function

Square Root Function

Logarithm Function (Base e)

Arctangent Function

Exponentiation Function

The following list contains all the .GLOBL symbols available to the
user's assembly language routines. Other .GLOBL's may not exist in
future releases of BASIC.

GLOBL Symbol Description

BOMB Error routine, called by TRAP 0

ERRARG Argument error

ERRPDL Stack overflow error

ERRSYN Syntax error

EVAL Evaluate expression

8-9

GLOBL Symbol

GETVAR

INT

MAKEST

MSG

NUMSGN

STOSVAR

STOVAR

.COMMA

.DQUOT

.EOL

.LPAR

.RPAR

• SQUOT

Description

Address variable

Integerize floating accumulator

Create a string

Print a message on the terminal

Convert from numeric to ASCII

Store string variable

Store numeric variable

comma token

double quote token

end-line token

left-parenthesis token

right-parenthesis token

single quote token

"

\

The offset of system variables in the "user area", which starts at the
address contained in RS, will not change from release to release; if
new ones are added, they will be inserted at the end of the users
area. Therefore, these values may be set by MACRO equate statements
in the user's source program (e.g. FACl = 40). The most
convnonly-used user area offsets are described below.

User area offset

SYMBOLS =

CODE =

LINE =

VARSAVE =

SSlSAVE =

SS2SAVE =

LINENO =

FACl =

FAC2 =

0

16

20

22

24

26

30

40

42

PROGNM = 142

Description

Address of symbol table

Address of stored program

Address of input line buffer

Saved symbol table entry address

Saved first array subscript

Saved second array subscript

Line number being executed

Floating accumulator, upper word

Floating accumulator, lower word

Program name, 6 ASCII bytes

8-10

)

)

_)

8.5 REPRESENTATION OF NUMBERS IN BASIC

The value stored in the floating accumulator (FACl(RS)
by EVAL is always two words long: FACl(RS) contains
and FAC2(R5), the low-order portion. If FACl(RS) is
the number is stored as a two-word floating-point
format:

and FAC2 (RS))
the high-order,
non-zero, then
number, in this

Word

FACl(R5)

FAC2(R5)

Bit (s)

15

14-7

6-0

15-0

Description

Sign bit, set if the number is
negative.

Exponent, with a bias of 200 octal.

The second through eighth
significant bits of mantissa. The
first significant bit is always an
assumed 1.

The 9th through 24th significant
bits of mantissa.

If FACl(RS) is zero then FAC2(R5) contains the integer value of the
number in 2' s· compleIT1ent form. Note that the integers from -32, 768 to
+32,768 do not have a unique representation: they may be stored in the
floating-point or integer form. For example, the number represented
by .

FACl:
FAC2:

40640
0

has the same value as

FACl:
FAC2:

0
5

;Floating-point "5"

;Integer "5"

The subroutine INT, described in sections 6.1.7 and 8.4, converts a
nurrber from the floating point representation to an integer.

8.6 REPRESENTATION OF STRINGS IN BASIC

Non-null strings are represented as follows:

Byte (s)

0

1 and 2

3 to O (2+N)

3+N

Contents

The length of the string, N

An internal "back-pointer" used by BASIC. Do
not change this value.

The ASCII characters of the string

The length of the string, N

8-11

A null string is not stored in BASIC; rather, the indirect pointer to
the string has the value 177777.

8.7 FORMAT OF TRANSLATED BASIC PROGRAM

When the user inputs a BASIC program, the BASIC system does not store
the program exactly as it is typed or read from the input file.
Instead, it translates the program to an intermediate form which can
be used in two different ways. The intermediate code can be
"un-translated" by the LIST or SAVE commands to produce an ASCII
program which looks very similar to the input program, or the
translated code can be very quickly interpreted by the RUN command to
prcvide swift execution of a program under BASIC/RT-11.

8.7.1 Symbol Table Format

As the BASIC program is input, the system builds a symbol table in
core at the indirect address O(RS). There are four different types of
symbol table entries, as shown in Table 8-1.

Symbol Table
Definition

Line Number

Numeric Scalar

Nu.."lleric Array

Table 8-1

Symbol Table Entries

Description

This entry is two words long, with this format:

Word 1:

Word 2:

Line number as an
integer.

unsigned 16-bit

The highest number allowed is 177774
octal or 65,532 decimal.

The address of the specified line in the
stored translated program.

This is five words long, with this format:

Word 1:
Word 2:
Word 3:
Word 4:
Word 5:

Constant 177775
High-order Scalar Value
Low-order Scalar Value
Constant 0
ASCII scalar name, the second byte is 0
if the name is only one character.

This entry is five words long, with this format:

Word 1:
Word 2:
Word 3:

Word 4:

Constant 177776
Address of array
Maximum value of first subscript (SSlMAX
below)
Maximum value of second subscript or -1
if the array is singly-dimensioned

(Continued on next page)
8-12

)

Symbol Table
Definition

String

Table 8-1 (Cont.)

Symbol Table Entries

Description

Word 5: ASCII name

The scalar with the same name as an array is
stored internally as the first element of the
array. The address of the array is actually the
address of this element. The arrays are stored
with the first subscript varying the fastest; each
element of the array takes up two words.

The address of the (M,N) element in the array is
the array address plus the quantity:

4*(N*SS1MAX+M+l)

This entry is five words long, with this format:

Word 1:
Word 2:

Word 3:

Word 4:

Word 5:

Constant 177777
Array Address,
Word 3=-1

or string pointer, if

Maximum value of first subscript (SSlMAX
below), or -1 if not a string array
Maximum value of second subscript, or -1
if the array is singly-dimensioned or
scalar
ASCII string name,
character omitted

with the I$ I

Strings and string arrays are stored as 1-word
pointers to the strings, or the flag 177777 for a
null string. If a string is dimensioned or used
as a string array, the scalar string with the same
name is stored as the first entry in an array.
Otherwise, the pointer to the scalar string is
stored directly in the symbol table entry, as
indicated above. The address of the pointer to
the (M,N) element in the array is then the array
address plus the quantity:

2* (N*SSlMAX+M+l)

8.7.2 Translated Code

After the line is input, the TRAN subroutine is called to translate it
to the internal format. TRAN scans the input line from left to right,
and translates it as described below.

All references to line numbers or variable names are stored as the
two-byte offset into the symbol table of the entry for that variable
name. The symbol table entries for all numeric variables are
initially scalars, and are changed to dimensioned arrays when the RUN
statement is executed. This two-byte offset is, of course, not
negative; therefore, it may be distinguished from the "keyword tokens"
described below. It is not necessarily aligned to a word boundary.

8-13

All sequences of characters
language are defined as
keywords:

used as a
"Keywords" •

single unit by the BASIC
The following are examples of

LET
INPUT
STEP
+
(
)
SIN(
GO TO
RANDOMIZE

TR.l\N scans the characters in the program line for the occurrence of
any of the keywords, disregarding blanks. When one is found, the
corresponding 1-byte system "token" is stored in the saved program.
Thus, only one byte in the stored program is required to store such
keywords as GOSUB and RANDOMIZE. All of the tokens have the
high-order bit set.

At the end of every line in the code, there is a special ".EOL" token.
At the end of the program there is an ".EOF" token.

The values of the tokens may be found in a listing of BASIC. Since
they are only used internally, some of the values may be different for
different versions of BASIC.

When an integer literal is encountered in the program
GOSUB, GO TO, THEN, LIST, or LISTNH keyword, or as the
on a line, it is stored as a symbol table reference to a
entry.

following a
first element
line number

When TRAN finds any other literal numeric value in the input program
line, it stores it in the translated program in one of the following
fo:rms:

1-Byte Literal

1-word Literal

2-word literal

An integer constant in the range 0-255 is stored
as two bytes in the translated program:

Byte 1: constant 375
Byte 2: 1-byte value

An integer constant with an absolute value less
than 32,768 which is not in the range 0-255 is
stored as three bytes in the translated program:

Byte 1: Constant 376
Bytes 2-3: 2-byte value

Any other numeric constant is stored as five bytes
in the translated program:

Byte 1: constant 374
Bytes 2-5: 4-byte floating point value of

the literal, as described in
section 8.5.

8-14

)

•.

)

Certain Keywords translate into tokens which are followed by special
"extra bytes" when they are translated, as described below.

Keyword

torn

FN

NEXT

REM

Translated code

When the first quote character is encountered, TRAN
the corresponding token, followed by a .TEXT token,
value 377. Next follow all of the ASCII characters
program line up to the closing quote character.
TRAN outputs a O byte and a matching close-quote
the translated program.

outputs
with the

in the
Finally,

token to

A special byte is placed in the translated code after the FN
token. It contains a function number to represent the
function name, as follows:

Function Number
(octal) Function Name

0 FNA
2 FNB
4 FNC
6 FND . .
62 FNZ

Ten extra bytes are output to the translated code following
the NEXT statement: these are required at execution time for
the proper nesting of FOR-NEXT loops.

The REM token in the code is followed by a .TEXT token, and
then the remaining char acters on the line.

Any sequence of characters which cannot be translated into a token,
and is not a symbol table reference or literal, is translated as the
.TEXT token, followed by the remaining characters on the line. The
BAS I C language does not allow a progr am to have two variable names
together without a character in between. If this occurs, the
remainder of the line will be translated as described above. When any
such translated program line is executed, it will produce a syntax
error.

8. 8 BACKGROUND ASSEMBLY LANGUAGE ROUTINE

BASIC/RTll provides for the execution of a "background" assembly
language subroutine during its idle-time, that is, when it is waiting
for terminal input. An example of such a background routine is one
that displays data from an array on a CRT. This array could be filled
with data by CALL statements, and displayed by the background
subroutine. The background subroutine is called by a JSR PC
instruction. It must preserve all register contents, and exit with
the stack intact. This subroutine should be of limited duration, such
as one loop through the display buffer. In the case of a long
idle-time, the subroutine will be evoked many times. The routine may
use the same GLOBL symbols as one called by the CALL statement, but
there are no arguments passed to or from BASIC.

8-15

To use a background subroutine, it must be linked with BASIC, and the
acdress of the subroutine must be specified in the word following the
f~nction table address (FNTBL) in the CSECT BASICR. If no background
routine is specified, the contents of this word should not be changed.
Tee following source code generates the information necessary to
include a background subroutine, BKG:

BKG:

.CSECT

.=.+2

.WORD

.CSECT

BASICR

BKG

BKGMOD

RTS PC

.END

; SKIP OVER FNTBL

;ADDRESS OF BACKGROUND ROUTINE

;START OF BACKGROUND RTN

To create a version of BASIC with this module included, assemble it as
tee object module BKGMOD. It may then be linked by the LINK command
string:

*BASIC.BKG=BASICR,FPMP,BASICE,BASICX/B:400/C
*BKGMOD,BASICH

8.8.1 Background Routine with LPS or GT Support

When either the Laboratory Peripheral System (LPS) or GT graphic
support is also being linked with BASIC a user written background
routine must be defined in RTINT.MAC. The LPS display module LPS4 is
a background routine itself and only one background routine may be
linked with BASIC.

The following instructions to the RT-11 EDIT program will define the
background routine in RTINT:

© represents the ALTMODE key •
• R EDIT
*EERTI NT .MA0'.1)~
*F.WORD FTBIJl®

• GLOBL Bi<G
• WORD Bl<G

8-16

)

............ , . ..,,,.

The module defining the background routine should now be of the form

.C SECT BKGMOD

.GLOBL BKG
BKG: 1START OF BACKGROUND ROUTINE

RTS PC
.END

The BKGMOD object module should be linked with FTBL, PERVEC, RTINT,
the appropriate LPS and GT object modules, and the BASIC object
modules •

8-17

'-..../

CHAPTER 9

ERROR MESSAGES

When BASIC encounters an error, execution of the command or statement
in error halts. An error message and then the READY message are
printed.

The BASIC error messages are printed in one of the following formats:

message
or

message AT LINE xxxxx

where xxxxx is the line number of the statement containing the error.
Error messages in immediate mode do not include AT LINE xxxxx. Table
9-1 lists the error messages produced by BASIC. Normally the
abbreviated message is printed unless long messages are specified at
assembly. (Refer to Appendix F.)

Table 9-1

BASIC Error Messages

Abbrevia
tion Message Explanation

?ARG

?ATL

?BDR

?BRT

?BSO

?DCE

?DNR

ARGUMENT ERROR AT LINE xxxxx
Arguments in a function call do
match, in number or in type,
arguments defined for the function.

not
the

ARRAYS TOO LARGE AT LINE xxxxx
There is not enough
available for the
the DIM statements.

room in the core
arrays specified in

BAD DATA READ AT LINE xxxxx
Item input from DATA statement list by
READ statement is bad.

BAD DATA-RETYPE FROM ERROR
Item entered to input statement is bad.

BUFFER STORAGE OVERFLOW
Not enough room available
buffers.

in file

DEVICE CHANNEL ERROR AT LINE xxxxx

DEVICE NOT READY

The device channel number specified for
a sequential or virtual memory file is
out of range (1-7) or has been opened,
or OPEN statement tried to open a virtual
memory file on a non-file structured
device.

An I/0 device referenced by an OLD,
SAVE, or PRINT command is not on-line or
the file does not contain any legal
BASIC program lines.

(Continued on next page)

9-1

Table 9-1 (Cont.)

BASIC Error Messages

Abbrevia
tion Message Explanation

?DVO

?ETC

?FDE

?FIO

?FNF

?FNO

?FWN

?GND

?IDF

?IDM

?ILN

?ILR

?LTL

DIVISION BY OAT LINE xxxxx

EXPRESSION TOO

FILE DATA ERROR

FILE I/O ERROR

FILE NOT FOUND

FILE NOT OPEN

FILE TOO SHORT

Program attempted
quantity by o.

to divide some

COMPLEX AT
The
the
the

LINE xxxxx
expression
stack to

parentheses

being evaluated caused
overflow usually because
are nested too deeply.

The degree of complexity that produces
this error varies, according to the
amount of space available in the stack
at the time. Breaking the statement up
into several simpler ones eliminates the
error.

Tried to write an element on an integer
virtual memory file outside the range
(x)<32,768.

An I/O error occurred.
automatically closed.

All files are

The file requested was not found on the
speci~ied device.

The sequential or virtual memory file
referenced is not open.

The sequential file space allocated to
an output file is inadequate.

FOR WITHOUT NEXT AT LINE xxxxx
The program contains a FOR statement
without a corresponding NEXT statement
to terminate the loop.

GOSUBS NESTED TOO DEEPLY AT LINE xxxxx
Program GOSUB nested to more than 20
levels.

ILLEGAL DEF AT LINE xxxxx
The define function statement contains
an error.

ILLEGAL DIM AT LINE xxxxx

ILLEGAL NOW

ILLEGAL READ

LINE TOO LONG

Syntax error in a dimension statement.

Execution of INPUT statement was
attempted in immediate mode.

Tried to read on a sequential file open
for output.

The line being typed is longer than 120
characters; the line buffer overflows.

(Continued on next page)

9-2

)

Table 9-1 (Cont.)

BASIC Error Messages

Abbrevia
tion Message Explanation

?NBF

?NER

?NPR

?NSM

?OOD

?OVF

?PTB

?PWF

?R3G

?SOB

?SSO

?STL

?SYN

NEXT BEFORE FOR AT LINE xxxxx

NOT ENOUGH ROOM

NO PROGRAM

NUMBERS AND STRINGS

The NEXT statement
FOR statement
statement.

corresponding to a
precedes the FOR

There is not enough room on the selected
device for the specified number of
output blocks.

The RUN command has been specified, but
no program has been typed in.

MIXED AT LINE xxxxx
String and numeric
appear in the same
they be set = to
example, A$=2.

variables may not
expression, nor may

each other; for

OUT OF DATA AT LI.NE xxxxx

OVERFLOW AT LINE xxxxx

The data list was exhausted and a READ
requested additional data.

The result of a computation is too large
for the computer to handle.

PROGRAM TOO BIG The line just entered caused the program
to exceed the Uder code area.

POWER FAIL AT LINE xxxxx
A power fail interrupt occurred while
the specified program line was
executing. All files are closed.

RETURN BEFORE GOSUB AT LINE xxxxx
A RETURN was encountered
execution of a GOSUB statement.

before

SUBSCRIPT OUT OF BOUNDS AT LINE xxxxx
The subscript computed is greater than
32,767 or is outside the bounds defined
in the DIM statement.

STRING STORAGE OVERFLOW AT LINE xxxxx
There is not enough core
store all the strings
program.

STRING TOO LONG AT LINE xxxxx

available to
used in the

The maximum length of a string in a
BASIC statement is 255 characters.

SYNTAX ERROR AT LINE xxxxx
The program has encountered an
unrecognizable statement. Common
examples of syntax errors are misspelled
commands and unmatched parentheses, and
other typographical errors.

9-3 (Continued on next page)

Abbrevia
tior: Message

Table 9-1 (Cont.)

BASIC Error Messages

Explanation

?TLT LINE TOO LONG TO TRANSLATE
Lines are translated as entered and the
line just entered exceeds the area
available for translation.

?UFN UNDEFINED FUNCTION AT LINE xxxxx
The function called was not
the program or was not
BASIC.

defined by
loaded with

?ULN UNDEFINED LINE NUMBER AT LINE xxxxx

?WLO WRITE LOCKOUT

The line number specified in an IF, GO
TO or GOSUB statement does not exist
anywhere in the program.

Tried to write on a sequential
virtual file opened for input only.

or

I ?tER t ERROR AT LINE xxxxx
The program tried to compute the value
AtB, where A is less than O and Bis not
an integer. This produces a complex
number which is not represented in
BASIC.

When the message ?DNR AT LINE xxxxx is printed because the device
referenced is not on-line, turn the device on and issue a GO TO xxxxx
statement. Execution of the program resumes at the line (xxxxx)
specified. This message may also indicate that a program file does
not contain any legal BASIC program lines.

When the message ?OOD AT LINE xxxxx is printed because the file
referenced by an INPUT#l statement is not ready, prepare the file and
issue a GO TO statement to resume execution.

Function Errors

The following errors can occur when a function is called improperly.

?ARG

?SYN

The argument used is the wrong type. For
example, the argument was numeric and the
function expected a string expression.

The wrong number of arguments was used in a
function, or the wrong character was used to
separate them. For example, PRINT SIN(X,Y)
will produce a syntax error.

In addition, the functions give the errors listed below.

FNa(•••)

RND or RND (X)

SIN (X)

?UFN The function a has not been defined (function
cannot be defined by an immediate mode
statement).

No errors

No errors

9-4

--- COS (X) No errors

SQR(X) ?ARG Xis negative

ATN (X) No errors

EXP (X) ?tER X is greater than 87

LOG (X) ?ARG X is negative or 0

ABS (X) No errors

INT (X) No errors

SGN (X) No errors

TAB(X) ?ARG Xis not in the range 0<x<256

LEN (A$) No errors

ASC (A$) ?ARG A$ is not a string of length 1

CHR$ (X) ?ARG Xis not in the range 0< X< 256

POS(A$,B$,N) No errors

SEG$ (A$,Nl ,N2) No errors

VAL(A$) ?ARG A$ is not a valid numeric expression

STR$ (X) No errors

TRM$ (A$) No errors

BIN (X$) ?ARG Character other than blank, 0 or 1 in string

OCT (X$) ?ARG Character other than blank or 0 through 7

9-5

CHAPTER 10

DEMONSTRATION PROGRAMS

PROGRAM U:

50 REM PROGRAM TO CALCULATE EBY AN INFINITE SERIES
100 LET E=l
ll0 LET I=I+l
120 LET D=l
130 FOR J=l TO I
140 LET D=D*J
150 NEXT J
160 LET E=E+l/D
170 PRINT E
180 GO TO ll0
999 END

RUNNH

PROGRAM #2:

2
2.5
2.66666
2.70833
2. 71666
2. 71805
2. 71825
2. 71827
2.71828
2. 71828
2.71828
2. 71828

50 REM PROGRAM TO ROUND OFF DECIMAL NUMBERS
100 PRINT "WHAT NUMBER DO YOU WISH TO ROUND OFF";
ll0 INPUT N
120 PRINT "TO HOW MANY PLACES";
130 INPUT Y
140 PRINT
150 LET A=INT(N*l0tY+0.5)/(l0tY)
160 PRINT N "=" A "TO" Y "DECIMAL PLACES."
170 PRINT
180 GO TO 100
190 END

RUNNH
WHAT NUMBER DO YOU WISH TO ROUND OFF?56.0237
TO HOW MANY PLACES?2

56.0237 = 56.02 TO 2 DECIMAL PLACES.

WHAT NUMBER DO YOU WISH TO ROUND OFF?8.449
TO HOW MANY PLACES?l

10-1

8.449 = 8.4 TO l DECIMAL PLACES.

WHAT NUMBER DO YOU WISH TO ROUND OFF?3.685
TO HOW MANY PLACES?2

3.685 = 3.69 TO 2 DECIMAL PLACES.

WHAT NUMBER DO YOU WISH TO ROUND OFF?3.674 49
TO HOW MANY PLACES?2

3.67499 = 3.67 TO 2 DECIMAL PLACES.

PROGRAM #3:

5 REM PROGRAM TO PLOT SINE WAVE
10 FOR X=O TO 19 STEP .25
20 LET Q=30+30*SIN(X)
30 FOR B=l TO Q
40 PRINT" ";
50 NEXT B
60 PRINT "X"
70 NEXT X
80 END

PROGRAM #4:

The following BASIC program uses another BASIC program file as data,
and resequences its line numbers.

q0 REM• PROGR•M TO RESEQUENCE BASIC PROGRAMS
100 DIM L(500),M(500),KSC2)
110 READ 0
1i0 DATA 500
130 REAO KS(0),KS(1),KS (2)
1a0 CATA "GO TO ","TMEN ","GOSUB "
150 PRINT "RESEQUENCE"
1,0 PRINT "OLD FILE"J
110 INPUT PS
180 PRINT "N!~ FILE",\REM • MAY HAVE SAME NAME
1q0 INPUT QS
200 PRINT "START INPUT LINE, START OUTPUT LINE, INTERVAL S!ZE"J
210 INPUT L0,L1,I1
220 IF QSc>"" THEN 230 \LET QS•PS
230 LET PS•PS&",BAS"
240 LET QS•QS&",BAS"
2&0 IF L1c>0 THEN 210 \LET L1•10
270 IF I1c>0 THEN 280 \LET I1 •1 0
180 OPEN PS AS FIL! *1
2q0 LET C••l
300 IF END #1 TH!N 410
310 INPUT *llLS
320 LET L2•L2•1
330 LET T•POS(LS," ",ll
340 LET SS•SEGS(LS,1,T•ll
350 LET SaVALCSSl

10-2

)

)

3&0 IF ScL0 THEN 300
370 LET C•C•1
380 IF C•O THEN 2000
H0 LET LCC)•S
400 GO TO 300
410 LET S1INT(Ll)
4i0 FOR 1'0 TO C
430 I.ET MCI)wS
440 IF S>&5530 TH!N 2010
450 LET s ■ S ♦ Il
4U NEXT I
470 RESTORE #1
480 OPEN QS FOR OUTPUT AS FILE *2
4q0 OPEN "LPI" FOR OUT~UT AS FILE #3
500 FOR I1.1 TO L2
510 INPUT #1 ILS
5i0 LET C2 ■ POS(LS," ",1)•1
530 LET C1 ■ 1
540 GOSUB 1000
550 FOR J10 TO 2
SU LET C1•1
570 LET C1 ■ POS(LS,1<$(J),C1)
580 IF C1 ■ 0 TH!N 700
590 LET c1,c1+LENCKS(J))
&00 LET C2•POS(LS," ",C1)•1
•10 LET E ■ POS(LS,~\",C1)
&i0 IF Ec•0 THEN &30 \LET !•25&
&30 LET Ql•POS(LS,"'",C1)
&40 LET Q2 ■ POSCLS,'"',C1)
&50 IF C2c>0 THEN &&0 \LET C2 ■ E•1
&&0 IF (E•Q1)•Q1>0 THEN 570
&70 IF CE•Q2l•Q2>0 THEN 570
&80 GOSUB 1000
••0 GO TO 570
'7H NEXT J
110 PRINT #21LS
'720 PRINT #311,.S
130 NEXT l
140 PRINT "OON!"\STOP

· 1000 LET SS1SEGS(LS,C1,C2)
1010 LET S ■ VAL(as)
1020 I~ S>•L0 THEN 1030 \RETURN
1030 FOR 1<•0 TO C
1040 IF L(l<)t$ THlN 1070
1050 NEXT I<
10U R!TURN
1070 LET LlS1S!GS(LS,1,C1•1)
1080 LET L31,SEGSCL5,C2+1,25&)
10q0 LET LZS•STRSCM(K))
1100 LET ~5•L1S&L2S&L3S
1110 RETURN
2000 PRINT "TOO MANY L.INES"\STOP
2010 PRINT "LINE NO, TOO BIG"\STO~
2020 ENO

10-3

PROGRAM #5:

100 PRINT "OCTAL DUMP"\REM THIS PROGRAM PRINTS AN OCTAL
110 PRINT "FILE NAME";\REM DUMP OF THE SPECIFIED FILE
120 INPUT F$
130 PRINT "START 8LOCK,#8LOCKS"
140 INPUT 81,82
190 OPEN F$ FOR INPUT AS FILE VFli
200 OPEN "LP:" FOR OUTPUT AS FILE #l
210 PRINT #l:"OCTAL DUMP OF FILE ";F$
220 FO~ 8=81 TO 81+82-1
230 PRINT #I
240 PRINT #l:"BLOCK";B
250 FOR L=0 TO OCT'37'
260 LET V=L*l6
270 GOSUB 1000
280 PRINT #l:SEG$(V$,4,6);"/";
290 FOR 5=0 TO 7
300 ~ET V=VFl<B*256+L*8+S)
310 GOSUB 1000
320 NEXT S
340 PRINT # 1
350 NEXT L
360 PRINT #I
370 NEXT 8
380 STOP
1000 LET Vl=V\REM
1005 REM
1010 LET V$='"'\REM
1020 LET VlS='0'\REM
1030 IF V>=0 THEN 1060 \REM
1040 LET Vl=Vl+2tl5\REM
1050 LET VlS='l'
1060 FOR I=l TO 5
1070 LET V3=INTCV1/8)
1080 LET V2$=STRS(Vl-V3*8)
1090 LET VS=V2$&V$
1100 LET V 1 =V3
11 10 NEXT I
1120 LET VS=VlS&VS
1130 RETURN
9000 END

10-4

THIS SUBROUTINE CONVERTS
INTEGER V
TO ASCII STRING VS,WHICH
IS THE OCTAL VALUE OF V
USES Vl,V2,V3,Vl$,V2$
VIS PRESERVED

)

_)

APPENDIX A

BOOTSTRAPPING THE RT-11 SYSTEM

Complete bootstrapping instructions may be found in section 2.1 of the
RT-11 SYSTEM REFERENCE MANUAL (DEC-11-ORUGA-A-D). For the user's con
venience the instructions for systems with the BM792-YB hardware boot
strap follow:

1. Write-enable unit~ of the system device.

2. Press the HALT switch.

3. Load 1731~~ in the Switch Register.

4. Press the ADDR switch.

5. Load 1774~6 in Switch Register (177344 for DECtape)
and press START.

The system responds with

Enter the DATE command, for example

.DA ll-SEP-73

and then

.R BASIC

If the RT-11 system is already in core , just type:

.R BASIC

A-1

-~-----

APPENDIX B

ASCII CHARACTER SET

ASCII
7-BIT
OCTAL
CODE CHAR.

000 NUL
001 SOH
002 STX
003 ETX
004 EQT
005 ENQ
006 ACK
007 BEL
010 BS
011 HT
012 LF
013 VT
014 FF
015 CR
016 so
017 SI
020 DLE
021 DCl
022 DC2
023 DC3
024 DC4
025 NAK
026 SYN
027 ETB
030 CAN
031 EM
032 SUB
033 ESC
034 FS
035 GS
036 RS
037 us
040 32-- SP
041
042 II

043 #
044 $
045 %
046 &

047
050 (
051)
052 * __ __..o 5 3) --~ :::) +
054 ,

.---- 055 4)
056 .
057 I

B-1

ASCII
7-BIT
OCTAL
CODE

060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

!
. I- •

-

1.Q_Q_ ___ ;d: __ ----..
101
102 ~ .,

103 ," ;

CHAR.

0
1
2
3
4
5
6
7
8
!L _

✓-:

1
<

=
>
?
@ -~--A '---
B -
C + 104 .. / D ,.

105 -, - E
106 F
107 G
ll0 H
lll I
ll2 J
113 K
ll4 L
115 M
ll6 N
117 0
120 p
121 Q
122 R
123 s
124 T
125 u
126 V
127 w
130 X
131 y
132 z
133 [
134
135]
136 t
137 +-

140
..

141 a
142 b
143 C

144 d
145 e
146 f
147 g
150 h
151 i
152 j

B-2

' J

10

·s 'i

ASCII
7-BIT
OCTAL
CODE CHAR.

153 k
154 1
155 m
156 n
157 0

160 p
161 q
162 r
163 s
164 t
165 u
166 V

167 w
170 X
171 y
172 z
173 {
174 ! 175
176
177 DEL

B-3

APPENDIX C

STATEMENTS, COMMANDS, FUNCTIONS

C.l RT-11 BASIC STATEMENTS

The following summary of BASIC statements defines the general format
for the statement and gives a brief explanation of its use.

CALL "function name" (argument list)

CHAIN "dev:filnam.ext" LINE

DATA data list

Used to call assembly language user
functions from a BASIC program.

number
Terminates execution of user program,
loads and executes the specified program
starting at the line number if included.

Closes the logical file specified. If
no file is specified, closes all files
which are open.

Used in conjunction with READ to input
data into an executing program.

DEF FNfunction (argument)=expression
Defines a user function to be used in
the program.

DIM variable(n), variable(n,m) ,variable$(n) ,variable$(n,m)

END

Reserves space for lists and tables
according to subscripts specified after
variable· name.

Placed at the physical end of the
program to terminate program execution.

FOR variable= expressionl TO expression2 STEP expression3

GOSUB line number

GO TO line number

Sets up a loop to be executed the
specified number of times.

Used to transfer control to the first
line of a subroutine.

Used to unconditionally transfer control
to other than the next sequential line
in the program.

IF expression rel.op. expressionhHEN l. line number
_c;o Toj

IF END #n [THEN\. line number
_Go Toj

Used to conditionally
to the specified line

transfer control
of the program.

Used to test for end file on sequential
input file #n.

C-1

INPUT list

INPUT #expression: list

[LET] variable= expression

[LET] VFn(i)=expression

NEXT variable

Used to input data from the terminal
keyboard or papertape reader.

Inputs from a particular device.

Used to assign a value to the specified
variable (s).

Used to set the value of a virtual
memory file element.

Placed at the end of a FOR loop to
return control to the FOR statement.

[(b)] AS FILE #digit [DOUBLE BUF]

Opens a sequential file for input or out
put as specified. File may be of the form
"dev:filnam.ext" or may be a scalar string
variable. The number of blocks can be spec
ified by b.

OPEN file [FOR c~~;~iiT)] [(b)] AS FILE VFdigitx (dimension) = string length

Opens a virtual memorv file for input or
output. x represents the type of file:
floating point (blank), integer (%), or
character strings ($). File may be of

OVERLAY "file descriptor"

PRINT list

PRINT "text"

the form "dev: fil. ext" or may be a scalar
string variable. The number of blocks
can be specified by b.

Used to overlay or merge program
currently in core with specified file
and continue execution.

Used to output data to the terminal.
The list can contain expressions or text
strings.

Used to print a message or a string of
characters.

PRINT #expression: expression list

PRINT TAB (x) ;

RANDOMIZE

READ variable list

Outputs to a particular output device,
as specified in an OPEN statement.

Used to space to the specified column.

Causes the random number generator to
calculate different random numbers every
time the program is run.

Used to assign the values listed in a
DATA statement to the specified
variables.

C-2

)

\
)

REM comment

RESTORE

RESTORE #n

RETURN

STOP

c.2 Commands

Used to insert explanatory comments into
a BASIC program.

Used to reset data block pointer so the
same data can be used again.

Rewinds the input sequential file #n to
the beginning.

Used to return prograJTt
statement following
statement.

control
the last

to the
GOSUB

Used at the logical end of the program
to terminate execution.

The following key commands halt program execution, erase characters or
delete lines.

Key

ALTMODE

CTRL/C

CTRL/0

CTRL/U

+

RUBOUT

Explanation

Deletes the entire current line. Echoes DELETED
message (same as CTRL/U). On some terminals the
ESC key must be used.

Interrupts execution of a command or program and
returns control to the RT-11 monitor. BASIC can
be restarted without loss of the current program
by using the monitor RE command.

Stops output to terminal and returns BASIC to
READY message when program or command execution is
completed.

Deletes the entire current line.
message (same as ALTMODE).

Echoes DELETED

(SHIFT/0) Deletes the last character
echoes a backarrow (same as RUBOUT).
LA30 use the underscore (-) key.

typed and
On VTOS or

Deletes the last character typed and echoes a
backarrow (same as+).

The following commands list, punch, erase, execute and save the
program currently in core.

Command

CLEAR

LIST

LIST
LIST
LIST

Explanation

Sets the array and string buffers to nulls
and zeroes.

Prints the user program currently in core on
the terminal.

line number
-line number
line nurnber-[END]

C-3

Command

LIST

Explanation

line number-line number

Types out the specified program line(s) on
the terminal.

LISTNH
LISTNH
LISTNH
LISTNH

line number
-line number
line nurnber-[END]
line number-line number

NEW "filnam"

OLD"file" ·

RENAME "f i lnam"

Lists the lines associated with the specified
numbers but does not print a header line.

Does a SCRatch and sets the current program
name to the one specified.

Does a SCRatch and inputs the program from
the specified file.

Changes the current program name to the one
specified.

REPLACE "dev:filnarn.ext"

RUN

RUNNH

Replaces the specified file with the current
program.

Executes the program in core.

Executes the program in core area but does
not print a header line.

SAVE "dev:filnam.ext"

SCRatch

c.J Functions

Outputs the program in core as the specified
file.

Erases the entire storage area.

The following functions perform standard mathematical operations in
BASIC.

Name

ABS (x)

ATN(x)

BIN(x$)

COS(x)

EXP (x)

INT(x)

Explanation

Returns the absolute value of x.

Returns the arctangent of x as an angle in radians
in the range+ or - pi/2.

Computes the integer value from a string of blanks,
l's and O's.

Returns the cosine of x radians.

Returns the value of etx where e=2.71828.

Returns the greatest integer less than or equal to
x.

C-4

)

_)

~

.... __ .

'--"

Name

LOG(x)

OCT(x$)

rum(x)

SGN (x)

SIN (x)

SQR(x)

TAB(x)

Explanation

Returns the natural logarithm of x.

Computes an integer value from a string of blanks I
and digits from Oto 7.

Returns a random number between 0 and 1.

Returns a value indicating the sign of x.

Returns the sine of x radians.

Returns the square root of x.

Causes the terminal type head to tab to column
number x.

The string functions are:

ASC (x$)

CHR$ (x)

DAT$

LEN(x$)

POS(x$,y$,z)

SEG$(x$,y,z)

STR$ (x)

TRM$ (x$)

VAL (x$)

Returns as a decimal number the seven-bit internal
code for the one-character string (x$).

Generates a one-character string having the ASCII
value of x.

Returns the current date in the format 07-MAY-73.

Returns the number of characters in the string
(x$) •

Searches for and returns the position of the first
occurrence of y$ in x$ starting with the zth
position.

Returns the string of characters in positions y
through z in x$.

Returns the string which represents the numeric
value of x.

Returns x$ without trailing blanks.

Returns the number represented by the string (x$).

C-5

APPENDIX D

Appendix Dis reserved for future use.

D-1

APPENDIX E

BASIC ERROR MESSAGES

Abbrevia
tion Message Explanation

?ARG

?ATL

?BDR

?BRT

?BSO

?DCE

?DNR

?DV0

?ETC

?FDE

.?FIO

ARGUMENT ERROR AT LINE xxxxx
Arguments in a function call do not
match, in number or in type, the
arguments defined for the function.

ARRAYS TOO LARGE AT LINE xxxxx
There is not enough
available for the
the DIM statements.

room in the core
arrays specified in

BAD DATA READ AT LINE xxxxx
Item input 'from DATA statement list by
READ statement is bad.

BAD DATA-RETYPE FROM ERROR
Item entered to input statement is bad.

BUFFER STORAGE OVERFLOW at line xxxxx
Not enough room available
buffers.

in file

DEVICE CHANNEL ERROR AT LINE xxxxx
The device channel number specified for
a sequential or virtual memory file is
out of range (1-7), or tried to open a
virtual memory file on a non-file
structured device.

DEVICE NOT READY An OLD command read a file which did not
have any BASIC statements.

DIVISION BY OAT LINE xxxxx

EXPRESSION TOO

Program attempted
quantity by o.

to divide some

COMPLEX AT
The
the
the

LINE xxxxx
expression being evaluated caused

stack to overflow usually because
parentheses are nested too deeply.

The degree of complexity that produces
this error varies according to the
amount of space available in the stack
at the time. Breaking the statement up
into several simpler ones eliminates the
error.

FILE DATA ERROR AT LINE xxxxx
Tried to write an element on an integer
virtual memory file outside the range
(x)<32,768.

FILE I/O ERROR AT LINE xxxxx
An I/O error occurred. All files are
automatically closed.

E-1

Abbrevia
tion Message Explanation

?FNF

?FNO

?FTS

?FWN

?GND

?IDF

?IDM

?ILN

?ILR

?LTL

?NBF

?NER

?NPR

?NSM

FILE NOT FOUND AT LINE xxxxx
The file requested was not found on the
specified device.

FILE NOT OPEN AT LINE xxxxx
The sequential or virtual memory file
referenced is not open.

FILE TOO SHORT AT LINE xxxxx
The sequential file space allocated to
an output file is inadequate.

FOR WITHOUT NEXT AT LINE xxxxx
The program contains a FOR statement
without a corresponding NEXT statement
to terminate the loop.

GOSUBS NESTED TOO DEEPLY AT LINE xxxxx
Program GOSUBS nested to more than 20
levels.

ILLEGAL DEF AT LINE xxxxx
The DEF statement contains an error.

ILLEGAL DIM AT LINE xxxxx

ILLEGAL NOW

Syntax error in a dimension statement.

AN ATTEMPT WAS MADE TO EXECUTE AN INPUT
statement in immediate mode.

ILLEGAL READ AT LINE xxxxx
Tried to open a write-only device for
input or tried to read on a sequential
file open for output.

LINE TOO LONG The line being typed is longer than 120
characters; the line buffer overflows.

NEXT BEFORE FOR AT LINE xxxxx
The NEXT statement
FOR statement
statement.

corresponding to a
precedes the FOR

NOT ENOUGH ROOM AT LINE xxxxx

NO PROGRAM

There is not enough room on the selected
device for the specified number of
output blocks.

The RUN command has been specified, but
no program has been typed in.

NUMBERS AND STRINGS MIXED AT LINE xxxxx
String and numeric variables may not
appear in the same expression, nor may
they be set equal to each other as in
A$=2.

E-2

Abbrevia
tion Message Explanation

?OOD

?OVF

?PTB

?PWF

?RBG

?SOB

?SSO

?STL

?SYN

?TLT

?UFN

?ULN

?WLO

OUT OF DATA AT LINE xxxxx

OVERFLOW AT LINE xxxxx

PROGRAM TOO BIG

The data list was exhausted and a READ
requested additional data.

The result of a computation is too large
for the computer to handle.

The line just entered caused the program
to exceed the user code area.

POWER FAIL AT LINE xxxxx
A power fail occurred while
specified line was being executed.

the

RETURN BEFORE GOSUB AT LINE xxxxx
A RETURN was encountered
execution of a GOSUB statement.

before

SUBSCRIPT OUT OF BOUNDS AT LINE xxxxx
The subscript computed is
32,767 or is outside the
in the DIM statement.

greater than
bounds defined

STRING STORAGE OVERFLOW AT LINE xxxxx
There isn't enough core
store all the strings
program.

available to
used in the

STRING TOO LONG AT LINE xxxxx
The maximum length of a string in a
BASIC statement is 255 characters.

SYNTAX ERROR AT LINE xxxxx
The program has encountered an
unrecognizable statement. Common
examples of syntax errors are misspelled
commands and unmatched parentheses, and
other typographical errors.

LINE TOO LONG TO TRANSLATE
Lines are translated as entered and the
line just entered exceeds the area
available for translation.

UNDEFINED FUNCTION AT LINE xxxxx
The function called was not
the program or was not
BASIC.

defined by
loaded with

UNDEFINED LINE NUMBER AT LINE xxxxx

WRITE LOCKOUT AT LINE

The line number specified in an IF, GO
TO or GOSUB statement does not exist
anywhere in the program.

xxxx
Tried to open a read-only device
output, or tried to write on
sequential or virtual file opened
input only.

E-3

for
a

for

Abbrevia
tion Message Explanation

?tER +ERROR AT LINE xxxxx

Function Errors

The program tried to compute the value
AtB, where A is less than 0 and Bis not
an integer. This produces a complex
number which is not represented in
BASIC.

The following errors can occur when a function is called improperly.

?ARG

?SYN

The argument used is the wrong type. For
example, the argument was numeric and the
function e xpected a string expression.

The wrong number of arguments was used in a
function, or the wrong character was used to
separate them. For example, PRINT SIN(X,Y)
produces a syntax error.

In addition, the functions give the errors listed below.

FNa (•••)

RND or RND (X)

SIN (X)

COS (X)

SQR(X)

ATN (X)

EXP (X)

LOG (X)

ABS (X)

INT (X)

SGN (X)

TAB(X)

LEN (A$)

ASC (A$)

CHR$ (X)

?UFN

?ARG

?tER

?ARG

?ARG

?ARG

?ARG

The function a has not been defined (function
cannot be defined by an immediate mode
statement).

No errors

No errors

No errors

Xis negative

No errors

Xis greater than 87

Xis negative or 0

No errors

No errors

No errors

Xis not in the range 0~x<256

No errors

A$ is not a string of length 1

Xis not in the range osx<256

E-4

)

-,,
DAT$ No errors

POS(A$,B$,N) No errors

SEG$(A$,Nl,N2) No errors

TRM$ (A$) No errors

VAL (A$) ?ARG A$ is not a valid numeric expression

STR$ (X) No errors

BIN (x$) ?ARG Character other than blank, 0 or 1 in string

OCT (x$) ?ARG Character other than blank or 0 through 7 in
string

E-5

F.l

APPENDIX F

ASSEMBLING AND LINKING BASIC

ASSEMBLING BASIC/RTll

The source program of BASIC/RTll consists of three source files:
A 16K system is required to assemble BASIC.

BASICL.MAC
BASICH.MAC
FPMP.MAC

It is necessary to create the files BASICR, BASICE, and BASICX which
consist of only one line of code each. They specify the conditionals
necessary to assemble BASICL into the three object modules BASICR.OBJ,
BASICE.OBJ and BASICX.OBJ.

They are created using the EDIT program, as follows:

@ Represents the Altmode key
.R EDIT
*EWBASICR.MAC @@
*IBASICR=l

@EX@)@)

.R EDIT
*EWBASICE .MAC @@)
*IBASICE=l

@EX@)@

.R EDIT
*EWBASICX.MAC @@
*IBASICX=l

@EX@®

If any other options are desired, include the conditionals for them
in these files. For example:

$NOSTR=l
$LONGER=l
$NOVF=l
$NOPOW=l
$STKSZ=n

;NO STRINGS
;LONG ERROR MESSAGES
;NO VIRTUAL MEMORY FILES
;NO POWER-FAIL OPTION
;PROGRAM STACK SIZE
;IN BYTES (DEFAULT IS
;200 (OCTAL) BYTES

If BASIC is to run on an SK system, the $NOSTR conditional must be
specified.

For example, to create a BASIC with no strings, no virtual memory files,
and a stack size of 300 (octal) the BASICR, BASICE, and BASICX files
should be created using the EDIT program, as follows

.R EDIT
*EWBASICR.MAC @@
*IBASICR=l
$NOSTR=l
$NOVF=l .
$STKSZ=300
@EX@@

F-1

.R EDIT
*EWBASICE.MAC @@
*IBASICE=l
$NOSTR=l
$NOVF=l
$STKSZ=300

@EX@@

. R EDIT
*EWBASICX.MAC @@
*IBASICX=l
$NO STR=l
$NOVF=l
$STKSZ=300
@EX@@

@ represents the Altmode key.

To assemble Basic, type the following as input to the MACRO Assembler:

*BASICR=BASICR,BASICL
*BASICE=BASICE,BASICL
BASIC=BASICX,BASICL
*BASICH=BASICH
*FPMP=FPMP

This produces the five object modules

BASICR

BASICE

BASICX

FPMP

BASICH

BASIC Root section

·BASIC Edit overlay

BASIC Execution overlay

Floating E_oint ~ath fackage

BASIC .!!igh section, with once-only
code and optional functions

F.1.1 Floating Point Math Package

Assembly of the FPMP source file produces a "standard" FPMP for BASIC,
which runs on any PDP-11, but will not make use of special arithmetic
hardware. All of the routines needed for the full complement of
BASIC arithmetic functions are included. A non-standard FPMP may be
specified, as outlined in the table below:

Parameter

MIN

FPMP Assembly Parameters

Default Value

undefined

F-2

Description

Define to eliminate code for
BASIC functions SIN, COS, SQR.
and ATN. When linked, the
functions are listed as "undefined
references". However, when
executed by a BASIC program, they
produce a ?UFN (UNDEFINED FUNCTION)
error.

)

Parameter

FPO

EAE

MULDIV

Default Value

undefined

undefined

undefined

Description

Define to assemble a version for
the PDP-11/45 FPO hardware.

Defined to assemble for the EAE
hardware.

Define to assemble for the
PDP-11/ 40 extende d instruction
set (EIS) or the 11/45 processor.

If MIN is defined, then the following parameters may be specified
to include the SIN, COS, ATN, and SQR functions, selectively

CND$37

CND$39

CND$41

1

1

1

Define (only if MIN is specified)
to include the code for the SIN
and COS functions.

Define (only if MIN is specified)
to include the code for the ATN
function.

Define (only if MIN is specified)
to include the code for the SQR
function.

To assemble the Floating Point Match Package with conditionals it is
necessary to use the EDIT program to either insert the conditionals
in the beginning of the FPMP.MAC file or create a new file, FPMPC.MAC
which will be assembled with FPMP.MAC. For example, to create the
FPMP with the ATN function excluded, with the SIN, COS, and SQR function
included, and to run with the EAE hardware, the file FPMPC.MAC is
created by the EDIT program , as follows:

.R EDIT
*EWFPMPC.MAC @@
*IMIN=l
EAE=l
CND$37=1
CND$41=1
@EX@@

The MACRO assembly instructions would then be:

*BASICR=BASICR,BASICL
*BASICE=BASICE,BASICL
*BASICX=BASICX,BASICL
*FPMP=FPMPC,FPMP

F.2 LINKING BASIC/RTll

The five object modules (BASICR, BASICE, BASICX, FPMP, BASICH) may be
linked with or without an overlay structure. The overlay option has
the advantage that sections of BASIC which are not required at the
same time occupy the same core space alternately when they are used;
the disadvantage is that BASIC will run somewhat slower, and there
will be I/0 time spent when switching overlay segments in and out of
core. When BASIC is linked to run in an 8K system, it must use the
overlay option.

F-3

To link BASIC without overlays, type the following command string to
the Linker (LINK):

~BASIC,BASIC=BASICR,FPMP,BASICE,BASICX,BASICH/B:400

To link BASIC with overlays, use this LINK command sequence:

.!BASIC,BASIC=BASICR,FPMP/T/ B:4~~/C
TRANSFER ADDRESS=
GO
*BASICE/0:l/C
*BASICX/0:l/C
:BASICH/0:2

F.2.1 Linking BASIC/RTll with User Functions

The System Function Table address used by the CALL statement to link
the user's assembly language routines must be set in the first word of
the BASICR control section.

The source code for the System Function Table and the actual function
routines must be broken into two separate source files. The source
file FUNl consists of the System Function Table definition, with this
general outline:

FUNTAB:

.GLOBL

.CSECT

.WORD

Function entry points

FNl, FN2
BASICR
FUNTAB

.CSECT FUN!
(function table entries for FN1,FN2, •••)

The source and file FUN2 consists of the code for the function
routines, with this general outline:

FNl:

FN2:

• GLOBL
.CSECT

FN1,FN2, •••
FUN2

(The user function routines)

F-4

)

)

To link BASIC with the user functions in a non-overlay system, type
this command string to the Linker:

~BASIC=BASICR,FPMP,BASICE,BASICX/B:4~~/C

*FUN1,FUN2 [,GETARG] ,BASICH

GETARG is the general argument interface module listed in Appendix H.
In an overlay system, here are two possible ways in which to link
BASIC with the user functions.

If the user function routines contain no data which must be preserved
from one function call to the next, that is, if the code for the
routines may be refreshed at the beginning of each function cal l , then
the routines may be incorporated into the execution overlay by using
this LINK corranand string:

*BASIC,BASIC=BASICR,FPMP,FUN1/T/B:40ef/C
TRANSFER ADDRESS=
GO
*BASICE/0:l/C
*BASICX,FUN2[,GETARG]/O:l/C
TBASICH/0:2

In this case, the function routines (in the module FUN2) occupy space
in the first overlay segment which is normally unused, since the Edit
overlay segment (BASICE) is about 250 words longer in the 8K no-string
system than the Execution overlay segment (BASICX). These first 250
words of storage are "free" in this case .

In the case where FUN2 may not be read in anew whenever it is used,
type this command string to the Linker:

~BASIC=BJ\SICR,FPMP,FUN1,FUN2 / T/B:4¢¢/C
TRANSFER ADDRESS=
GO
*BASICE/0 : 1/C
*BASICX[,GETARG]/0:1/C
*BASICH/0:2

There are three
FPMP.EIS) which
hardware.

additional object modules (FPMP.FPU, FPMP.EAE,
allow BASIC/RTll to be linked for special arithmetic

Processor

EAE hardware

PEP-11/ro extended
processor or PDP-11/45
processor

PDP-11/45 FPU
hardware

F-5

Replace FPMP.OBJ With

FPMP.EAE

FPMP.EIS

FPMP.FPU

APPENDIX G

BASIC CORE MAP

BASIC stores a user program in core in the following format:

The symbol
entered.
and arrays
execution.

Arrays

Strings

Symbol Table

User Code

table and user code area are created when the program is
When the RUN command is given the user program is scanned
are set up. The string buffer is created during program

The SCRatch command (refer to paragraph 7.1) clears all the user code,
symbol table, strings and arrays from core. The CLEAR command clears
the arrays and strings but does not affect the user coae or symbol
table.

The total amount of core storage required to store a· BASIC program
depends upon the following parameters:

Parameter

L

K

R

s

Il

I2

F

Definition Examples

Number of lines in the BASIC program

Number of keywords per line

Number of syrnbol references per line.
There are 3 symbol references in the line:

LET A=B*C+l

Total number of symbols used in the program.

Total number of integer literals in the
range Ox 255

Total number of integer literals
in the range -32,768~x~0 or 256~x~32,767

Number of non-integer literals and
integer literals not in the above ranges

G-1

FOR I=l Tb N

LET X=S0000

LET Y=X*2.5

Parameter

T

C

Definition

Total number of literal strings in the
program

Total number of characters inside
quotation marks (literal strings)

Examples

LET A$="ABC"

(C=3 IN THE
ABOVE LINE)

The number of bytes required to store the program is then:

L*(K + 2*R + 7) + lO*S + 2*Il + 3*I2 + S*F + 2*T + C+ 1

When the BASIC program is running, the following additional array and
string storage is required. For each numeric array, the number of
bytes allocated is

4* (SS1MAX+2)

for a singly-dimensioned array.

or

4*[(SS1MAX+l)*(SS2MAX+l)+l]

for a doubly-dimensioned array.

Where SSlMAX and SS2MAX are the maximum values of the first and second
array subscripts, respectively. For each string array, the number of
bytes allocated is

2* (SS1MAX+2)

for a singly-dimensioned array or

2*[(SS1MAX+l)*(SS2MAX+l)+l]

for a doubly-dimensioned array.

Where SSlMAX and SS2MAX are the maximum values of the first and second
array subscripts, respectively.

For each non-null string scalar or array ele~ent of length N currently
defined in the BASIC program, N+4 bytes of string storage are
required.

G-2

r' .

,_ ,

APPENDIX I

LABORATORY PERIPHERAL SYSTEM SUPPORT

I.l INTRODUCTION

LPS support for BASIC/RTll allows a user to completely utilize the LPS
(Laboratory Peripheral System) hardware. LPS support enables the user
to sample and display in real-time a variety of data from analog to
digital converters, digital input/output, and external events.
Sampling is controlled by crystal clocks and/or Schmitt triggers in
which the user may specify such parameters as sampling rate and
response time thus allowing maximum flexibility.

Since BASIC is a higher level language, even the novice programmer can
solve complex data acquistion problems with a minimum amount of
effort. All LPS coJTlITlands are issued by the BASIC CALL statement
allowing experienced PDP-11 assembly language programmers to easily
include or modify the commands to meet particular (or special)
requirements.

I.2 DESCRIPTION OF COMMANDS

BASIC contains 19 commands to control the following options on the LPS
hardware:

LPSAD-12

LPSAD-NP

LPSAM
LPSSH

LPSKW

LPSVC

LPSDR

12-bit ADC, sample and hold, 8-channel
multiplexer, and LED (Light Emitting Diodes)
6-digit programmable decimal readout display.
Direct memory access (DMA) option for the LPSAD-12
ADC.
8-channel expansion multiplexer.
Second sample and hold for a dual sample and hold
configuration.
Programmable real-time clock and two
triggers.

Schmitt

Display control including two 12-bit DACS.
controller is capable of handling Digital's
and VR20 scopes. Also, Tektronix's RM503,
604, 611, and 613 scopes.

This
VR14
602,

16-bit buffered digital I/O with drive
capabilities and two programmable n.o. (normally
open) relays.

The 19 commands are divided into 5 categories depending on their
function. Each category is supplied as a separate module allowing the
user to include only the modules necessary for his experiment.

The following list is a summary of the commands available for
controlling LPS hardware and a brief description of each:

I-1

MODULE O (This module is always required.)

USE Define array(s) to be used for storage of
data.

ACC Allow access to an entire array.
RDB Return the next data point from a specified

buffer.

MODULE 1 (ANALOG TO DIGITAL CONVERSION)

ADC Initiate an A/D conversion on a specified
channel and return the result to the user.

RTS Perform real-time buffered/clocked sampling
of the A/D.

LED Display a numeric value on the Light Emitting
Diodes.

MODULE 2 (REAL-TIME CLOCK)

SETR

SETC

HIST

WAIT

Set clock running at a designated rate and
mode.
Set clock running at a designated rate and
initiate some action after a specified number
of seconds have elapsed.
Perform histogram sampling using a timed
Schmitt trigger.
Wait for a specified event to occur.

MODULE 3 (DIGITAL I/O)

DIR
DOR
DRS

REL

Read Digital Input register.
Write Digital Output register.
Perform sampling of the Digital
register.
Close or open one of two relays.

Input

MODULE 4 (DISPLAY)

CLRD Define display buffer and optionally clear or
scale the data in it.

PUTD Put data into data buffer.
DIS Display data with constant x and variable y

whenever BASIC is waiting for I/O.
FSH Display a complete sweep of data with

constant x and variable y.
DXY Display data with variable X and y values

whenever BASIC is waiting for I/O.

Module O is the main module and contains not only the USE, ACC, and
RDB commands but also all necessary support routines for the other
modules. Therefore, it must be included while the other modules are
optional.

Data buffers used by the LPS commands differ slightly from the normal
arrays in BASIC in that they use only one word of storage per data
element rather than two. This is because all LPS data is no larger
than 2**16-1 and can be stored as unsigned 16-bit data. All data
buffers must first be defined by a USE command before use as a data
buffer; however, the USE command allows the user to partition and
equivalence arrays for ease in displaying and manipulating common
data. All data buffers defined in the USE command are circular with

I-2

_)

\

, ,- .

internal pointers keeping track of where data is to be placed next
and/or retrieved.

Section I.8 describes how the user builds a load module containing
only the modules necessary for his application.

Section I.9 contains a complete list of all LPS commands and their
structures.

Section I.lo describes the options necessary to utilize each command.

Section I.12 contains several example BASIC programs utilizing the LPS
commands.

I.3 MODULE O (REQUIRED MODULE)

I.3.1 "USE" (A,B,C •••)

Define buffer areas for use with the ACC, RDB, RTS, HIST, DPS, CLRD,
PUTD, DIS, FSH, and DXY commands. This command sets up internal
pointers allowing circular buffering and data overrun and/or
nonexistent data checking. A maximum of five buffers may be
specified, all of which must be given in a single USE statement.
Currently the maximum is set at five; however, through reassembly of
module O, the user can easily change this maximum. All areas defined
in the USE must have been previously dimensioned in a DIM statement.

The USE statement allows the user to define buffer areas required for
storage of data. These areas may be a partitioned array which can be
equivalenced to one large array. The following examples illustrate
all aspects of USE. Note that the size of an area defined in a DIM
statement is one half that desired. This results because BASIC uses
two words to store data whereas the LPS data is stored in one word.

Example:

Define areas A, B, and C to have 100, 200, and 300 data points
respectively.

10 DIM A(50) ,B (100) ,C (150)
20 CALL "USE" (A,B,C)

Define area
points and
area having
element).

A to consist of three parts, the first having 10 data
the second and third having 20 each. Then define a final

access to all of the array A (including the zero subscript

NOTE

Read the USE state~ent from left to
right establishing the separate areas
based on previously defined members of
the same array. Only when the starting
address of the next array is less than
the previous one will entire access to
the array be allowed by the following
array.

I-3

The subscripts in the declaration are used to define pseudo partition
names which can be used in other LPS statements which require arrays.

10 DIM A(25)
20 CALL "USE"(A(l) ,A(ll) ,A(31),A)

In the preceding example, each declaration of the array A has a unique
description. A, which is equivalent to A(O), is different than A(l),
A(ll), and A(31). The following figure illustrates the partitioning
of the array A due to the second example.

A(I}{

.,,,{----;
A(O) OR A

.,,,{____~

In the example, the partitioning occurs as follows: A(l) defines a
buffer array starting at position A(l) in the array A and ending at
the last position in the array. Since A(ll) is declared immediately
following it, the end of the array for A(l) is redefined to be one
less than the A(ll) position. At this point, A(l) goes from the 1st
position in the array to the 10th, and A(ll) goes from the 11th
position in the array to the 50th. When A(31) is declared immediately
following the A(ll), A(ll) is redefined to go from the 11th position
in the array to the 30th and A(31) goes from position A(31) to the
50th position. Now the partitioned array consists of three parts.
The first part is called A(l) and is 10 locations in size. The second
part is called A(ll) and is 20 locations in size. The third part is
called A(31) and is also 20 locations in size. The final declaration
in the example is A or A(O) (both are equivalent), which allows access
to the entire array A. This happens because the position in the array
A of A(O) is less than the last declaration in the USE, i.e., A(31),
and a new partitioning is started. This new partitioning begins at
A(O) and proceeds until the end of the array A. The rules to continue
from this point are the same as previously discussed and further
partitioning could be defined if necessary. Note that every
declaration in the USE statement must be unique, i.e., a statement of
the form "USE"(A,A(O)) results in the first array A having an area of
zero length. Since the second array is not unique in name, any
reference to it later by other LPS stateMents actually refers to the
array A and not A(O). Since A(O) has zero length, the buffer
declaration is useless.

I-4

/

I.3.2 "ACC"(BUF)

Access entire buffer BUF. This command resets all buffer pointers of
the array BUF to allow full access to it by the RDB and PUTD commands.
The PUTD pointer is placed at the end of the array and the RDB pointer
is placed at the beginning.

Example:

Allow full access to the array Hand the array A(ll).

10 DIM A(25) ,H(20)
20 CALL "USE" (A(l) ,A(ll) ,A(31) ,A,H)
30
40

100 CALL "ACC" (H)
110 CALL "ACC"(A(ll))
120
130

I.3.3 "RDB"(BUF,var)

Return the nex t data point from the specified buffer. Returns values
of 65535>=var>=0 for good data. Bad data (defined as overrun) is
returned as a minus one. If no data e xists yet, a minus 2 will be
returned.

When the referenced buffer refers to analog sampling (RTS function),
the values returned are in the range 4095>=var>=0.

When the referenced buffer refers to a clocked histogram sampling
(HIST function), the values returned are in the range 65535>=var>=0.
These values are either the number of ticks accumulated or the number
remaining depending on the clock mode.

When the referenced buffer refers to a Digital I/O operation (DRS
function) , a value between 655 35,>=var>=0 is returned from the next
position in the specified buffer.

Example:

Assume that the array X has 100 data values previously entered by an
RTS corrunand. Print out the data making sure that data overrun did not
occur and that 100 data points were indeed taken.

100 FOR I=l TO 100
110 CALL "RDB"(X,Z)
120 IF Z >= 0 GO TO 160
130 IF Z =-2 GO TO 180
140 PRINT "BAD DATA AT EVENT";I
150 GO TO 190
160 PRINT Z

I-5

170 GO TO 190
180 PRINT "NO DATA AT EVENT";I
190 NEXT I

I.4 MODULE 1 (A/D CONVERSION AJ.~D NUMERIC READOUTS)

I.4.1 "ADC"(chan,var)

Initiate an A/D conversion from the specified channel (0 =chan =15),
wait for it to complete, and return the conversion as a floating point
result in "var" (0 =var =4095). The A/D cannot be currently involved
in a Real-Time Sampling (RTS) operation.

Example:

Sample the A/D from channels 4 and 5 and save the results in the
arrays A4 and AS respectively. Assume 100 samples are to be taken.

10 DIM A4(100),A5(100)
20 FOR I=l TO 100
30 CALL "ADC" (4 ,A4 (I))
40 CALL "ADC"(5,A5(I))
50 NEXT I

I.4.2 "RTS"(BUF,sc,nsc,npts,mode)

Perform real time buffered/clocked sampling of the A/D. The A/D can
be enabled in a variety of options depending on the mode specified.
The normal mode of operation (mode=O) causes the A/D to sample
whenever Schmitt trigger 1 fires. A mode of 2 causes the A/D to
sample whenever the clock overflows. To enable other options, merely
add their code number to the mode. The following list describes
options available (all options are normally disabled):

Code Option

+l Enable burst mode (used only with DMA)
+2 Enable clock, disable Schmitt trigger 1
+4 Enable dual sample and hold
+8 Enable DMA

The A/D will be started by a clock overflow or the firing of Schmitt
trigger 1. Pointers are used to determine if good data exists in the
buffer arrays or if data wraparound occurs. Since data is stored in
circular buffers (excluding DMA operations), pointers are used to
ensure that the incoming data rate does not exceed the removal rate.
Data returned as minus 2 (-2) indicates that data overrun occurred.
The buffer pointers are reset initially before the sampling operation
begins.

A/D channels are sampled on every clock overflow or firing of
trigger 1 with the result stored in consecutive data cells.
stored in a format identical to that read from the A/D. When a

I-6

Schmitt
Data is

clock

overflow or Schmitt trigger firing occurs, the A/D samples the first
channel specified by "sc" and then samples the next "nsc"-1
consecutive channels. Samplir.g then continues until "npts" clock
overflows or Schmitt triggers have been received. If "npts" is
specified as zero, any previous RTS sampling• will be disabled.

In dual sample and hold mode, the "nsc" parameter is the number of
pairs of channels to read per event.

DMA operations may or may not use dual sample and hold. DMA allows
direct hardware storage of A/D results into a specified buffer array.
A maximum of 4096 samples may be taken at any one time with removal of
data allowed only when the buffer is completely filled. The "nsc"
parameter is ignored and is considered to be 1.

RTS operations do not interfere with other sampling operations (i.e.,
DRS and HIST) and all may be in progress simultaneously.

Example:

Set up the A/D to read data from channels O through 3 and store the
results in the array A. Schmitt triggers are to be used to fire the
A/D. Note that a dimension of 100 allows 200 data points. Since 4
channels are to be sampled, 50 Schmitt triggers will be required to
complete the request.

10 DIM A(lOO)
20 CALL "USE" (A)
3 0 CALL " RTS " (A , 0 , 4 , 10 0 * 2 / 4 , 0)

I.4.3 "LED"(var)

LED will display the floating point value of the variable "var". Up
to six positive or five negative digits can be displayed in the LEDs.
An optional decimal point may also be included. Numbers which cannot
be accurately displayed (i.e., E numbers or 6-digit negative numbers)
are shown as all minus signs.

Example:

Display the value 5.632 on the LEDs.

10 A= 5.632
20 CALL "LED" (A)

or

10 CALL "LED"(5.632)

I-7

I. 5 MODULE 2 (REAL-TIME CLOCK)

I.5.1 "SETR" (rate,mode,preset)

Set clock Rate will set the clock running in the specified mode and at
the designated rate. The preset value is the clock counter value.
The interrupt enable is always set.

Values of Rate

0 No rate selected
1 1 MHz
2 100 kHz
3 10 kHz
4 1 kHz
5 100 Hz
6 Schmitt trigger 1 (meaningful only for HIST operations)
7 Line frequency (SO Hz or 60 Hz)

Values of Mode

0 Single interval mode. Counter counts from preset value to
overflow and stops.

1

2

3

Repeated interval mode. Counter counts from preset value to
overflow, transfers buffer/preset register to the counter,
and begins again.

External event timing mode. The counter is free
and a pulse from Schmitt trigger 2 will transfer
from the counter to the buffer/preset register
continue counting.

running,
contents

and then

Event timing from zero base mode
except when the transfer of the
register is done, the counter
begins from zero.

is the same as mode 2
counter to the buffer/preset
is cleared and the count

mode+4 To start clock only after Schmitt trigger 1 fires.

Example: _)

Set the clock running to interrupt once every second.
frequency will be used and the clock mode is 1.

A l00Hz

CALL "SETR" (5, 1,100)

I. 5. 2 "SETC" (rate, time)

Set Clock to that specified by "rate" and time. The clock status
register is set to rate and will run for time seconds. A clock
interrupt will then occur which may be used to initiate any of the
clock controlled functions. The time argument is evaluated as ticks=
time in seconds times the clock rate specified in rate, e.g., if the
clock rate was l0kHz, then ticks= time in seconds times l0kHz. The
ticks are entered into the clock preset/buffer register. The clock
always runs in mode 0.

I-8

Legal values of rate are: 4, 5, and 7 (see SETR for explanation of
rates).

Example:

Set the clock to interrupt in 10 seconds using a l00Hz frequency.

CALL "SETC"(S,10)

I.5.3 "HIST"(BUF,npts)

Histogram - Timed Schmitt trigger. The HIST command inputs "npts"
values from the clock preset/buffer register and stores them into the
specified buffer, BUF, whenever Schmitt trigger 2 fires. The clock
must be in mode 2 or 3 to be meaningful. The RDB function is used to
retrieve the data. The buffer is always circular with the data
pointers initially reset before the sampling operation begins.

If "npts" is given as zero, the HIST sampling will be disabled.

HIST operations do not interfere with other sampling operations (i.e.,
RTS and DRS) and all may be in progress simultaneously.

Example:

Collect a timed histogram between external events (Schmitt trigger 2)
and store the results in array T. The clock will run at lkHz and 100
intervals are required.

10 DIM T(S0)
20 CALL "USE" (T)
30 CALL "HIST" (T ,10°0)
40 CALL "SETR" (4,3,1)

I.5.4 "WAIT" (n)

Disable further program execution and wait until the specified event
"n" occurs. "n" is defined as follows:

n=0
n=l
n=2
n<>0,1,2

Example:

Wait for clock overflow.
Wait for Schmitt trigger 1 to fire.
Wait for clock overflow or Schmitt trigger 1 to fire.
Returns iMinediately.

Wait for clock overflow.

10 CALL "SETR" (S,1,100)
20 CALL "WAIT" (0)

October, 1974 I-9

I.6 MODULE 3 (DIGITAL I/O)

I.6.1 "DIR"(n,var,NEWCSR)

Read .Digital Input Register. If n=0, input is four BCD digits
converted to a floating point number. If n<>0, then the binary result
read from the register is directly converted to a floating point
number. The Digital Input Register is read via an internal load
request and does not respond to interrupts. The result is placed in
"var", where 0<=var<=65535.

The new CSR register setting is returned in NEWCSR.

Example:

Read Digital Input Register as a binary number, convert to a floating
point number, and put result into Y.

40 CALL "DIR"(l,Y,N)

I.6.2 "DOR"(m,n,NEWDOR)

Write Digital Output Register. Selected bits in the register may be
set or cleared. If m=0, set bits in register, otherwise clear bits in
register. "n" is the bit pattern used to set or clear the Output
register. The new result in the Output register is returned as a
floating point number in NEWDOR.

Example:

Turn on (set) bits 1 and 2 of the Digital Output Register.

40 CALL "DOR"(0,BIN"ll0",N)

Clear Digital Output Register.

40 CALL "DOR"(l,OCT"l77 777",N)

or

40 CALL "DOR" (1,-1,N)

I. 6. 3 "DRS" (BUF ,mode ,npts, M,NEWCSR)

Digital Readout Sampling. Samples the Digital Input Register in a
similar fashion as the RTS function. When M=0, each time the clock
fires (or Schmitt trigger, which can trigger the clock), the Digital
Input Register is read, possibly converted from BCD to binary
(depending on the mode), and stored in the circular buffer BUF. The
circular buffer pointers are initially reset before the sampling
operation begins.

If the DRS is not clock driven, M<>0 , it may be driven by digital
inputs, i.e. whenever a new value is received by the input register,
the value is immediately read in and stored in the buffer BUF. If the

October, 1974 I-10

.•

' ..)

mode=0, then read BCD, otherwise read binary directly. If "npts" is
given as zero, the DRS sampling will be disabled.

The new setting of the digital control status register is returned in
NEWCSR.

Example:

Read the Digital Input Register once every one tenth of a second for
100 readings and store the results in array A.

10 DIM A {SO)
20 CALL "USE" {A)
30 CALL "DRS" {A,0,100,0,N)
40 CALL "SETR"{S,1,10)

I.6.4 "REL" {s,dir)

Close or open relay "s". This command opens relay "s" (s = 1 or 2) if
"dir" is equal to zero, otherwise it closes it.

Example:

Open relay 1 and close relay 2.

100 CALL "REL" (1,0)
110 CALL "REL" { 2 , 1)

I.7 MODULE 4 (DISPLAY)

I.7.1 "CLRD"{BUF,size,scale)

Define display buffer having fixed delta x values. BUF is the name of
the buffer to be displayed, and contains single word values. Values
in the range 4095>=value>=0 are displayed while values outside this
are not. The size of the buffer is the number of Y points to display
and must be <= the number of points defined in the DIM and USE
commands. The delta x is calculated as 4096/size and may be
fractional.

If scale equals 0, CLRD will set all buffer values to -1
(non-displayable values). If scale does not equal 0, CLRD bypasses
the clearing of the array and the original data is multiplied by
scale. In either case, the PUTD pointers are reset to point to the
beginning of the array. Data is entered into the array through the
PUTD function: however, a CLRD must be issued before data is initially
transferred to the array.

A CLRD must be issued at least once before issuing the DIS, FSH, or
DXY functions.

Example:

Set up the array C to be used as a display buffer having 256 points.

I-11

10 DIM C(l28)
2 0 CALL "USE " (C)
30 CALL "CLRD"(C,256,0)

I.7.2 "PUTD"(BUF,Y)

Put data point Y into BUF in sequential order, where 65535 =Y =0.
This function does not initiate a display, but rather just enters data
into the specified array.

Example:

Remove 100 data points from the specified digital sampling buffer D,
and transfer them to the display buffer z.

80 DIM D(50) ,Z(50)
90 CALL "USE"(D,Z)
100 FOR I=l TO 100
110 CALL "RDB"(D,X)
120 CALL "PUTD"(Z,X)
130 NEXT I

Example:

Input 100 BCD data points from the digital input register and display
them from the same array.

100 DIM D(50)
110 CALL "USE" (D)
120 CALL "CLRD" (D,100,0)
130 CALL "DIS" (D,1,1)
140 CALL "DRS"(D,0,100,1,N)
150 STOP

I.7.3 "DIS"(BUF,n,i)

Display data from BUF whenever BASIC is idle. The points displayed
start with the nth point in the buffer and proceed in increments of i.
If i=l, consecutive points starting with the nth one are displayed.
If i=2, every other point is displayed, etc.

Example:

Display data from buffer E beginning at the 12th data point and
displaying every 3rd point.

10 CALL "DIS"(E,12,3)

I.7.4 "FSH"(BUF,n,i)

The FSH command is identical to DIS except that the data points in BUF
are completely displayed only once. The next BASIC statement is then
executed.

October, 1974 I-12

Example:

Using the previous example, display 100 cycles of the array E.

100 FOR I=l TO 100
110 CALL "FSH" (E ,12 ,3)
120 NEXT I

I.7.5 "DXY"(BUF1,BUF2,n,i)

Display data from BUFl and BUF2. BUFl and BUF2 have the x and y
values respectively. No delta xis used from the CLRD, otherwise, DXY
is identical to DIS and FSH. A CLRD, however, must be issued for
BUF2. A CLRD to BUFl is optional but convenient since it can
initialize all values in the array to non-displayable.

Example:

Generate fiducial marks on the display screen of a 256-point display
every 16 points. Marks will be 10 points in height. Data will be
generated into the arrays X and Y.

100 DIM X(l28) ,Y(128)
110 CALL "USE"(X,Y)
120 CALL "CLRD"(X,256,0)
130 CALL "CLRD"(Y,256,0)
140 FOR I=l6 TO 256 STEP 16
150 FOR J=l TO 16
160 IF J > 10 GO TO 200
170 CALL "PUTD"(X,I)
180 CALL "PUTD"(Y,J)
190 NEXT J
200 NEXT I
210 CALL "DXY"(X,Y,1,1)
220 STOP

I.8 BUILDING A LOAD MODULE

The Laboratory Peripheral System (LPS) suppor~ for BASIC is supplied
in six binary relocatable files (on DECpack disk, DECtape, paper tape,
or cassette).

LPS0.OBJ

LPSl.OBJ

LPS2.OBJ
LPS2C.OBJ

LPS3.OBJ

LPS4.OBJ

LPS kernel module

Analog to digital conversion

Real-time clock (60hz line frequency~
Real-time clock (50hz line frequencyj

Digital input/output

Display

I-13

Required

Optional

One is
optional

Optional

Optional

There are also the following files which are provided in source form
in all kits:

FTBL.MAC
PERVEC.MAC
BASINT.MAC
RTINT.MAC
PTSINT.MAC
PERPAR.MAC

Function Table Module
Vector Definition Module
Interface Module
Interface Module for BASIC/RTll V0l
Interface Module for BASIC/PTS V0l
Parameter file

Software for BASIC/RTll with LPS support provided on o~~pack disk,
DECtape, and cassette also contains a running version of BASIC with
LPS support:

BASLPS.SAV

BASLPS.SAV is a non-overlaying version of BASIC/RTll that includes all
four optional LPS modules. It may be run by the following RT-11
Monitor Command:

.R BASLPS

At this point the standard BASIC initial dialogue will occur. See
Chapter 1 of the BASIC/RTll Language Reference Manual for a
description of the initial dialogue. As part of the initial dialogue
BASIC will print:

USER FNS LOADED

This message will occur whenever BASIC has been linked with LPS
support.

NOTE

BASIC wi~~ LPS support requires a PDP-11
with 16K or more of core.

To build a load module BASLPS.SAV (BASIC with LPS support) first
transfer all LPS and BASIC files to the system device with PIP or
PIPC. The parameter file PERPAR.MAC is then edited and assembled with
FTBL.MAC, PERVEC.MAC and the appropriate interface module. The three
object modules produced are then linked with the LPS and BASIC object
modules to produce a load module. The specific instructions that are
given to the system programs (EDIT, MACRO, and LINK) are given in the
examples that follow the general description of load module building.

NOTE

All of the procedures in this section
assume that an unaltered PERPAR.MAC is
being edited. It is recommended that a
copy of the original PERPAR.MAC be made
and saved for future use.

The BASINT.MAC interface module should be used with all versions of
BASIC except BASIC/RTll V0l which should have RTINT.MAC used in the
place of BASINT. If the display module is not included in the LPS
support to be linked, another background routine may be linked with

I-13a

.,

)

BASIC but it must be defined in this module. See Section 8.8.l of the
BASIC/RTll Language Reference Manual for instructions to define the
background routine.

For the LPS routines to be accessible from the BASIC CALL statement,
the routine must be defined in a System Function Table as described in
Section 8.2 of the BASIC/RTll Language Reference Manual. FTBL.MAC is
a function table in source form. If any user written assembly
language routines are also linked with BASIC the routines must be
defined in this function table. See Section 8.2.l of the BASIC/RTll
Language Reference Manual for instructions to add the assembly
language routine definitions to the Function Table.

PERVEC.MAC is the vector definition module. It defines the hardware
addresses of the status registers and the interrupt vectors. The
standard hardware address for the LPS interrupt vector is 340 (octal).
In PDP-llElO machines with LPS support, however, the interrupt vector
is location 300 (octal). To assemble PERVEC with the interrupt vector
at 300 (octal) it is necessary to delete the semicolon before the $V=O
definition in PERPAR.MAC. If the interrupt locations are at another
location in core then correct the interrupt addresses by using the
system editor to define $Vin PERPAR equal to the interrupt address
minus 300 (octal). For example. if the LPS interrupt vectors start at
320 (octal) define $V=20 (octal). A listing of PERVEC.MAC is printed
at the end of section I.8.1.

PERPAR.MAC is a parameter file, a listing follows:

.TITLE PERPAR -- PERIPHERAL SUPPORT PACKAGE PARAMETER MODULE.
;

; DEC-11-LBPAA-A-LA BASIC KERNEL V02-01 . ,
; COPY RIGHT CC) 1974 . ,
; DIGITAL EQUIPMENT CORPORATION
; MAYNARD, MASSACHUSETTS 01754
;

; THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO
; CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED
; AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.
; DEC ASSUMES NO RESPONSIBILITY FOR ANY ERRORS THAT
; MAY APPEAR IN THIS DOCUMENT.
;

; THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A
; LICENSE FOR USE ON A SINGLE COMPUTER SYSTEM AND
; CAN BE COPIED <WITH INCLUSION OF DEC'S COPYRIGHT
; NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT AS MAY
; OTHERWISE BE PROVIDED IN WRITING BY DEC • . ,

I-13b

; DEC ASSUMES NO RESPONSIBILITY FOR THE USE
; OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT
; WHICH IS NOT SUPPLIED BY DEC.

; THE CONDITIONALS CONTAINED IN THIS MODULE AFFECT THE ASSEMBLY
; OF THE FUNCTION TABLE MODULE "FTBL .MAC"•
; TO OBTAIN THE DESIRED CONDITIONAL DEFINITIONCS>,
; REMOVE (USING AN EDITOR) THE
; SEMI-COLON APPEARING BEFORE THE CONDITIONAL.
J$DISK=0 JDEFINE FOR RT-11

• I FNDF $DI SK
$STRNG=0 JDO NOT DEFINE FOR PTS BASIC WITHOUT

;STRINGS,- DEFINED FOR PTS V01 WITH STRINGS
.ENDC

; $LPS=0

; $V=0
• IFDF $LPS

. ,
; . , . , . ,

$ADC=0
$CLK=0
$DI0=0
$DIS=0

. , . ,

. ,
;

.ENDC

• IFDF
$CLOCK=0

.ENDC

• EOT

; $LPS

$VT! 1

. ,

; DEF! NE FOR LP S

JDEFINE FOR LPS WITH VECTORS STARTING
; AT 300. DEFAULT SETTING IS VECTORS AT
; 340• SET $V = ANY OTHER DISPLACEMENT IF
; VECTORS START AT DISPLACEMENTS
; OTHER THAN 0 OR 40 FROM
; VECTOR 300

JINCLUDE AID ROUTINES.
JINCLUDE CLOCK ROUTINES.
JINCLUDE DIGITAL IO ROUTINES
JINCLUDE DISPLAY ROUTINES.

JFOR GT40 CGT44)

JFOR SYSTEM CLOCK CKvll lL)

I-13c

To link the LPS module with BASIC it is necessary to delete the
semicolons (;) before the $DISK (for RT-ll) and the $LPS=0 statements.
If any of the four optional modules are not to be included, a
semicolon (;) must be inserted before the appropriate conditional.

Parameter Insert . before parameter if ,

$ADC=0 module LPSl is not to be included.

$CLK=0 module LPS2 (LPS2C) is not to be included.

$DIO=0 module LPS3 is not to be included.

$DIS=0 module LPS4 is not to be included.

Using the system assembler, the sources are assembled in the following
combinations to produce the needed LPS object modules:

Object File

FTBL

PERVEC

BASINT or

RTINT

Source Files

PERPAR,FTBL

PERPAR, PERVEC

PERPAR, BASINT

PERPAR, RTINT

After these modules have been reassembled, the LPS support may be
linked with the BASIC object modules with only the desired optional
LPS modules included in the LINK command strings.

For extremely long programs that do not use string variables,
support may be linked with the no string object modules:
BASNSX, and BASNSE . This no string version of BASIC with LPS
will have more core free for program and array storage.

the LPS
BASNSR,
support

After BASLPS has been linked it may be loaded by the following monitor
command:

.R BASLPS

At this point the standard BASIC initial dialogue will occur.
Chapter 1 of the BASIC/RTll Language Reference Manual
description of the initial dialogue.

Example Load Buildings

See
for a

When editing PERPAR.MAC $DISK=0 should always be enabled for
BASIC/RTll, $LPS=O should be enabled for BASIC with any LPS support,
and $ADC=0, $CLK=0, $D10=0, and $DIS=0 should be disabled whenever the
appropriate optional LPS module is not to be included. In addition
$V=0 should be enabled for any PDP-11 with LPS hardware interrupt
located at 300 (octal) instead of 340 (octal). Most PDP-llEl0 with LPS
require the defining of the $V=0 assembly parameter. For hardware
addresses other than 300 or 340 define $Vas described in paragraph
about PERVEC.MAC.

I-13d

The procedures for building the following load modules:

BASIC/RTll with complete LPS support

BASIC/RTll with complete LPS support
and LPS interrupt vectors at
location 300 (octal)

BASIC/RTll with only the ADC and DIS
optional display modules.

are described in this section. Linking instructions for both
overlaying and non-overlaying versions are given for each.
Instructions for linking both LPS and GT support with BASIC are given
in Appendix J. Since all editing instructions asswne an original
PERPAR, PERPAR.BAK, the edit back-up file, is renamed PERPAR.MAC to
allow any future load modules to be built from an un-edited
PERPAR.MAC.

©represents the ALTMODE Key.

Complete Configuration

To build a load module BASLPS.SAV under RT-11 including LPS support
and all four optional modules, enter the following command strings:

.R EDIT
*EBPERPAR.MAC@R~
*FJ$DISK=0:])0AD~
*FJ $LPS=0:])0AD@®
*EX~

.R MACRO
*FTBL=PERPAR,FTEL
ERRORS DETECTED: 0
FREE CORE: 15397. WORDS

*PERVEC=PERPAR,PERVEC
ERRORS DETECTED: 0
FREE CORE: 15411. WORDS

*RTINT=PERPAR,RTINT
ERRORS DETECTED: 0
FREE CORE: 15480• WORDS

.R PIP
*PERPAR.MAC=PERPAR.BAK/R
*'C

I-13e

)

)
.__./

__,/

.R LINK
*BASLPS,BASLPS=BASICR,FPMP,FTBL,PERVEC,RTINT/B:400/T/C
TRANSFER ADDRESS=
GO
*LPS0,LPS1,LPS2,LPS3,LPS4/C
*BASICE/O: 1/C
*BASI CX/O: 1/C
*BASICH/O:2

These instructions will create a BASLPS.SAV with overlaying which has
the maximum usable core area. To link a non-overlaying BASLPS.SAV
which will have increased execution speed the following commands
should be given to Link:

.R LINK
*BASLPS,BASLPS=BASICR,FPMP,BASICE,BASICX/B:400/C
*FTBL,PERVEC,RTINT/C
*LPS0,LPS1,LPS2,LPS3,LPS4,BASICH

I-13f

Complete Configuration-
Interrupt vectors at location 300 (octal)

These instructions are the same as the preceding instructions except
that a $V=0 parameter definition in PERPAR.MAC will be enabled •

• R EDIT
*EBPERPAR.MA~
*F;SDISK=~A~
*F; $LPS=0®i!A~
*F;$V=0~A~
*EX($©

.R MACRO
*FTBL=PERPAR1FTBL
ERRORS DETECTED: 0
FREE CORE: 15119• WORDS

*PERVEC=PERPAR1PERVEC
ERRORS DETECTED: 0
FREE CORE: 15137. WORDS

*RTINT=PERPAR1RTINT
ERRORS DETECTED: 0
FREE CORE: 15202. WORDS

.R PIP
*PERPAR.MAC=PERPAR.BAK/R
*'C

.R LINK
*BASLPS,BASLPS=BASICR1FPMP1FTEL1PERVEC1RTINT/B:400/T/C
TRANSFER ADDRESS=
GO
*LPS01LPSl1LPS21LPS31LPS4/C
*BASICE/0: 1/C
*BASICX/0: 1/C
*BASICH/0:2

This procedure will create the overlaying version. To create the
non-overlaying version the following link commands should be given:

.R LINK
*BASLPS1BASLPS=BASICR1FPMP1BASICE1BAS1CX/B:400/C
*FTBL1PERVEC1RTINT/C
*LPS0,LPS1,LPS2,LPS3,LPS41BASICH

I-13g

_)

_J

Partial Configuration

To build a load module BASLPS.SAV under RT-11 FOR BASIC/RTll V0l which
includes only the ADC and display routines, enter the following
command strings:

.R EDIT
*EBPERPAR.MAC~~
*F;sDISK=~AD@~
*FJ $LPS=0®3AI)@~
*F$CLK=0~AI ;~
*F$DI O=f:®0AI ;~
*E,~

.R MACRO
*FTBL=PERPAR,FTBL
ERRORS DETECTED: 0
FREE CORE: 15437. WORDS

*PERVEC=PERPAR,PERVEC
ERRORS DETECTED: 0
FREE CORE: 15419• WORDS

•RTINT=PERPAR,RTINT
ERRORS DETECTED: 0
FREE CORE: 15488. WORDS

.R PIP
*PERPAR.MAC=PERPAR.BAK/R
*'C

.R LINK
*BASLPS., BASLPS=BASI CR., FPMP., FTBL., PERVEC., RTI NT /B: 400/T /C
TRANSFER ADDRESS=
GO
•LPS0,LPS1,LPS4/C
*BASICE/0: 1/C
*BASICX/0:1/C
*BASICH/0:2

This procedure will create an overlaying version of BASLPS.SAV. Or
the following command strings may be used to link a non-overlaid
version of BASIC with equivalent LPS support:

I-13h

.R LINK
*BASLPS,BASLPS=BASICR,FPMP,BASICE,BASICX/E:400/C
*FTBL,PERVEC,RTINT/C
*LPS0,LPS1,LPS4,BASICH

j I. 8. l LPS in Source Form

The Laboratory Peripheral System support may also be purchased
source form. The following eleven source files are provided.

in

LPS0.MAC
LPSl.MAC
LPS2.MAC
LPS3.MAC
LPS4.MAC
FTBL.MAC
PERVEC.MAC
BASINT.MAC
RTINT.MAC
PERPAR.MAC

The following chart lists the assembly parameters for each module.

Source File

LPS0.MAC

LPSl.MAC

LPS2.MAC

LPS3.MAC

LPS4.MAC

FTBL.MAC

PERVEC.MAC

Conditionals

None

None

CYCS0

None

None

$ADC
$CLK
$DIO
$DIS

$LPS

$VT11
$DISK

$LPS
$V

$VTll

BASINT.MAC or $LPS
RTINT.MAC $DIS

I-13i

Define for Systems with:

50 Hz line frequency (60 Hz is
default)

LPSl
LPS2
LPS3
LPS4

LPS0 (all systems with LPS
support)
GT40 or GT44 support
RT-11

LPS0
LPS interrupts not at location

340 (octal)
GT40 or GT44 support

LPS0
LPS4

\

)

.. J

I ,

..--.....

.,,,.--

To assemble the LPS from the sources all the LPS files should be
transferred to the system device using PIP or PIPC, and then the
following command should be given to the RT-11 MACRO assembler:

.R MACRO
*LPS0=LPS0
ERRORS DETECTED: 0
FREE CORE: 15080. WORDS

*LPSl=LPSl
ERRORS DETECTED: 0
FREE CORE: 14997. WORDS

*LPS2=LPS2
ERRORS DETECTED: 0
FREE CORE: 15105. WORDS

*LPS3=LPS3
ERRORS DETECTED: 0
FREE CORE: 15100. WORDS

*LPS4=LPS4
ERRORS DETECTED: 0
~REE CORE: 14928• WORDS

or if the line current is 50Hz the following commands should be used
.R EDIT
*EWPARAM. MAC~
*ICYC50=e@:S)
*~

.R MACRO
*LPS0=LPS0
ERRORS DETECTED: 0
FREE CORE: 15080. WORDS

*LPS 1 =LPS 1.
ERRORS DETECTED: 0
FREE CORE: 14997. WORDS

*LPS2C=PARAM,LPS2
ERRORS DETECTED: 0
FREE CORE: 1510 5 • WORDS

*LPS3=LPS3
ERRORS DETECTED: 0
FREE CORE: l 5100 • WORDS

*LPS4=LPS4
ERRORS DETECTED: 0
FREE CORE: 14928• WORDS

Either of these procedures will produce five object
modules: LPS0.OBJ, LPSl.OBJ, LPS2.OBJ (or LPS2C.OBJ), LPS3.OBJ,
LPS4.OBJ. The instructions to assemble the other LPS files and the
instructions to link the LPS object modules with the BASIC object
modules are given in the preceding section. Following is a listing of
PERVEC.MAC which contains the interrupt vector location for the LPS
and GT40(44) hardware:

I-13j

.TITLE PERVEC VECTOR DEFINITION MODULE FOR BASIC SUPPORT PACKAGES,
;
; DEC-11-LBPVA-A-LA BASIC KERNEL V02-01
;
; COPYRIGHT CC> 1974
;
; DIGITAL EQUIPMENT CORPORATION
i MAYNARD, MASSACHUSETTS 01754

; THE INFORMATION IN THIS DOCUMENT I S SUBJECT TO
; CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED
; AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.
; DEC ASSUMES NO RESPONSIBILITY FOR ANY ERRORS THAT
; MAY APPEAR IN THIS DOCUMENT.
;
; THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A
; LICENSE FOR USE ON A SINGLE COMPUTER SYSTEM AND
; CAN BE COPIED CWITH INCLUSION OF DEC'S COPYRIGHT
; NOTICE> ONLY FOR USE IN SUCH SYSTEM, EXCEPT AS MAY
; OTHERWISE BE PROVIDED IN WRITING BY DEC.

; DEC ASSUMES NO RESPONSIBILITY FOR THE USE
; OR . RELIAB I LITY OF ITS SOFTWARE ON EQUIPMENT
; WHICH IS NOT SUPPLIED BY DEC.

; THIS MODULE DEFINES THE HARDWARE ADRESSES USED BY
; SUCH HARDWARE AS THE "LPS", THE " VTll"CGT40) AND THE
; IF THE VECTORS FOR THESE DEVICES SHOULD CHANGE
; THIS MODULE MUST BE EDITED TO REFLECT THE CHANGE.

• IFDF $LPS
.IFNDF $V
$V=40
oENDC
.GLOBL LPSAD,LPSADB,LPSDR,LPSDMA
.GLOBL LPSCKS,LPSPB,LPSDRS,LPSDIB
.GLOBL L.PSDOR
.GLOBL LPDISS,LPDISX,LPDISY
.GLOBL CKLIVA,CKLIP,DRSIVA,DRSIP,LPSIVA,LPSIP

; DEVICE EQUATES:

LPSAD = 170400 JLPS A/D STATUS REG.
LPSADB = 170402 JLPS A/D BUFFER LED REG.
LPSCKS = 170404 JLPS CLOCK STATUS REG.
LPSPB = 170406 JLPS CLOCK BUFFER PRESET REG.
LPSDR = 170410 JLPS DIGITAL I/0 STATUS REG.
LPSDRS = LPSDR
LPSDIB = 170412 JLPS DI GIT AL INPUT REG.
LPSDOR = 170414 JLPS DIGITAL OUTPUT REG.
LPDISS = 170416 JLPS DISPLAY STATUS REG.
LPDISX = 170420 JLPS DISPLAY REG. X
LPDISY = 170422 iLPS DI SPLAY REG• y

LPSDMA = 170436 ; LPS DMA REGG.

; INTERRUPT VECTOR PAIRS:

I-13k

"L V l l" •

_)

>

. __ j

-'

CKLIVA = 304+SV ; ADR. OF CLOCK INTERRUPT VECTOR
CKLIP = 306+$V ; ADR. OF CLOCK INT. PRIORITY

DRSIVA = 310+$V ; ADR. OF DRS INT. VECTOR
DRSIP = 312+$V ; ADR. OF DRS INT. PRIORITY.

LPSI VA = 300+$V ; ADR. OF THE AID INT. VECTOR.
LPSIP = 302+$V ; ADR. OF THE INT.PRIORITY.

.ENDC J $LPS
• I FDF SVT 11 ; GT40
• GLOBL DPC1DSR1DISX1DISY1GTVECT

DPC = 172000 ; VT 11 DI SPLAY PC
DSR = DPC+2 ; VT 11 DI SPLAY STATUS REG
DISX = DSR+2 ; VT 11 X STATUS REG
DISY = DISX+2 ; VT 11 y STATUS REG
GTVECT = 320 ; ADR. OF VT 11 CGT40 CGT44)J INTERRUPT

; VECTOR LI ST. REDEFINING GTVECT
JREDEFINES THE ENTIRE SET
JOF DISPLAY PROCESSOR INT.

JGTVECT: ; DI SPLAY STOP VECTOR
; GTVECT+4: JLIGHT PEN HIT VECTOR
; GTVECT+ 10: ; DI SPLAY TIME OUT VECTOR

oENDC ; $VT 11

.END

I.9 SUMMARY OF LPS COMMANDS

CALL "USE"(A,B,C •••)
CALL "ACC"(BUF)
CALL "RDB" (BUF ,var)

CALL "ADC" (chan, var)
CALL "RTS"(BUF,sc,nsc,npts,mode)
CALL "LED" (var)

CALL "SETR"(rate,mode,preset)
CALL "SETC"(rate,time)
CALL "HIST" (BUF ,npts)
CALL "WAIT" (n)

CALL "DIR" (n ,var ,NEWCSR)
CALL "DOR" (rn,n ,NEWDOR)
CALL "DRS" (BUF ,mode ,npts, M,NEWCSR)
CALL "REL" (s ,dir)

CALL "CLRD"(BUF,size,scale)
CALL "PUTD"(BUF,Y)
CALL "DIS"(BUF,n,i)
CALL "FSH"(BUF,n,i)
CALL "DXY" (BUF1,BUF2 ,n ,i)

I-14

VECTORS.

f.10 HARDWARE REQUIRED FOR LPS COMMANDS

The following summary describes the necessary options required in
order to fully utilize the LPS system.

COMMAND

USE
ACC
RDB
ADC
RTS

LED
SETR
SETC
HIST
WAIT
DIR
DOR
DRS
REL
CLRD
PUTD
DIS
FSH
DXY

HARDWARE REQUIRED

None
None
None
LPSAD-12, LPSAM (for additional 8 channels)
LPSAD-12, LPSAD-NP (for DMA operations),
LPSAM (for additional 8 channels),
LPSSH (for dual sample and hold),
LPSKW (for real-tiMe clocking and Schmitt
triggers).

LPSAD-12
LPSKW
LPSKW
LPSKW
LPSKW
LPSDR
LPSDR
LPSDR
LPSDR
None
None
LPSVC
LPSVC
LPSVC

I. 11 LPS ERROR MESSAGES

In addition to the normal BASIC error messages, the following messages
concerning LPS commands may also occur:

?NOR

?BUF

?ADC

Number out of range.

Buffer name given in LPS command has not been
previously defined in a USE statement.

Cannot issue ADC command while an RTS operation is
underway.

I-15,16

)

)

__)

I.12 EXAMPLE PROGRAMS

Example Program #1

01 REM - EXAMPLE #1 - "LED"
05 REM - PROGRAM TO INPUT NUMBERS FROM THE
10 REM - KEYBOARD AND DISPLAY THEM ON THE
15 REM - LED'S.
20 REM
25 INPUT X
30 CALL "LED" (X)
35 GO TO 25
40 END

Example Program #2

01 REM - EXAMPLE #2 - "ADC AND LED"
05 REM - PROGRAM TO REQUEST A/D CHANNEL NUMBER
10 REM - FROM KEYBOARD AND THEN USE IT TO GET
15 REM - A CONVERSON FROM THE ADC. RESULT IS
20 REM - DISPLAYED ON THE LED'S.
25 REM
30 PRINT "CHAN ";
35 INPUT C
40 CALL "ADC" (C,X)
45 CALL "LED" (X)
50 GO TO 30
55 END

Example Program #3

l REM - EXAMPLE # 3 - 11 ADC AND LED"
5 REM - PROGRAM TO INPUT CHANNEL NUMBER FROM KEYBOARD
10 REM - AND CONTINUOUSLY DISPLAY THE VALUE OF THE
15 REM - SPECIFIED ADC IN THE LEDS.
20 REM
25 PRINT "CHAN";
30 INPUT C
35 CALL "ADC"(C,X)
40 CALL "LED" (X)
45 GO TO 35
50 END

Example Program #4

l REM - EXAMPLE #4 - "SETC AND WAIT"
5 REM - PROGRAM TO DELAY FOR 5 SECONDS, 10 SECONDS
10 REM - AND 15 SECONDS FOR CLOCK RATES 4, 5, AND 7.
20 REM
25 FOR R=4 TO 7
30 IF R<>6GO TO 40
35 R=7
40 PRINT "RATE ";R
45 FOR I=5 TO 15 STEP 5
50 CALL "SETC" (R,I)
55 CALL "WAIT"(0)
6 0 PRINT "DELAYED " ; I; " SECONDS 11

I-17

65 NEXT I
70 PRINT
75 NEXT R
80 END

Output for Example Program

RATE 4
DELAYED 5 SECONDS
DELAYED 10 SECONDS
DELAYED 15 SECONDS

RATE 5
DELAYED 5 SECONDS
DELAYED 10 SECONDS
DELAYED 15 SECONDS

RATE 7
DELAYED 5 SECONDS
DELAYED 10 SECONDS
DELAYED 15 SECONDS

Example Program #5

#4

l REM - EXAMPLE #5 - "USE, RTS AND RDB"
5 REM - READ ADC FOR EACH OF 5 OCCURRENCES OF
10 REM - SCHMITT TRIGGER 1. CHANNELS 0 THRU 3 ARE TO BE
15 REM - SAMPLED WITH RESULTS PRINTED OUT ON THE
20 REM - LINE PRINTER.
25 OPEN "LP:" FOR OUTPUT AS FILE #2
30 DIM A(l00)
35 CALL "USE" (A)
40 CALL "RTS" (A,0,4,10*2/4,0)
45 FOR I=l TO 5
5 0 CALL "RDB" (A, Z)
55 IF Z<0GO TO 50
60 Al(I)=Z
65 CALL "RDB" (A,Z)
70 A2(I)=Z
7 5 CALL II RDB 11

(A , Z)
80 A3(I)=Z
85 CALL "RDB 11 (A, Z)
90 A4(I)=Z
95 NEXT I
100 FOR I=l TO 5
105 PRINT t 2:Al(I) rA2(I) rA3(I) rA4(I)
110 NEXT I
115 END

October, 1974 I-18

)
)

)

,,,---.-..

\ -✓ -

Output for Example Program #5

1962 354 532 1962
2793 354 532 1963
2795 354 532 1962
2794 353 532 1962
2794 353 532 1962

Example Program #6

01 REM - EXAMPLE #6 - "USE, RDB, PUTD AND ACC"
05 REM - PROGRAM TO ILLUSTRATE PARTITIONING AND
10 REM - EQUIVALENCES.
15 OPEN "LP:" FOR OUTPUT AS FILE #2
20 DIM A(l0)
25 CALL "USE" (A(l) ,A(6) ,A(ll) ,A(16) ,A)
30 FOR I=l TO 5
35 CALL "PUTD" (A(l) ,I)
40 CALL "PUTD" (A(6) ,I*l0)
45 CALL "PUTD"(A(ll),I*l00)
50 CALL "PUTD" (A(l6) ,I*l000)
55 NEXT I
60 FOR I=l TO 6
65 CALL "RDB" (A (1) ,Al)
70 CALL "RDB" (A(6) ,A2)
75 CALL "RDB" (A(ll) ,A3)
80 CALL "RDB" (A(16) ,A4)
85 PRINT #2: Al;A2;A3;A4
90 NEXT I
95 CALL "ACC" (A)
100 FOR I=l TO 5
105 FOR J=l TO 5
110 CALL "RDB" (A,X)
115 PRINT # 2 : X;
120 NEXT J
125 PRINT #2:
130 NEXT I
135 CALL "USE" (A(l) ,A(6) ,A(ll) ,A(16) ,A)
140 FOR I=l TO 20
145 CALL "PUTD" (A,20-I+l)
150 NEXT I
155 CALL "ACC" (A(1))
160 CALL "ACC" (A(6))
165 CALL "ACC" (A (11))
170 CALL "ACC"(A(16))
175 FOR I=l TO 5
180 CALL "RDB" (A(l) ,Al)
18 5 CALL "RDB" (A (6) , A2)
190 CALL "RDB" (A(ll) ,A3)
195 CALL "RDB" (A(16) ,A4)
200 PRINT #2: Al;A2;A3;A4
205 NEXT I
210 END

I-19

Output for Example Program #6

1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 so 500 5000

-2 -2 -2 -2
0 l 2 3 4
5 10 20 30 40
so 100 200 300 400
500 1000 2000 3000 4000
5000 -2 -2 -2 -2
19 14 9 4
18 13 8 3
17 12 7 2
16 11 6 l
15 10 5 5000

Example Program #7

l REM - EXAMPLE #7 - "USE, PUTD, CLRD AND FSH"
5 REM - PROGRAM TO DISPLAY A PIRAMID ON THE
10 REM - SCOPE AND ALTER ITS SCALE VALUE
15 REM - AFTER EACH 25 SWEEPS ON THE SCREEN.
20 REM
25 DIM A(l00)
30 CALL "USE" (A)
35 FOR I=l TO 100
40 CALL "PUTD"(A,I)
45 NEXT I
50 FOR I=l00 TO 200
55 CALL "PUTD" (A, 200-I)
60 NEXT I
65 FOR S=l TO 7
70 CALL "CLRD" (A,200,SQR(S))
75 FOR I=l TO 25
80 CALL "FSH"(A,1,1)
85 NEXT I
90 NEXT S
95 FOR S=l TO 5
100 CALL "CLRD"(A,200,l/S)
105 FOR I=l TO 25
110 CALL "FSH" (A,1,1)
115 NEXT I
120 NEXT S
125 GO TO 65
130 END

Example Program #8

1 REM - EXAMPLE #8 - "USE, HIST, SETR AND RDB"
5 REM - COLLECT A TIMED HISTOGRAM BETWEEN
10 REM - EXTERNAL EVENTS (SCHMITT TRIGGER 2) AND STORE
15 REM - THE RESULTS IN ARRAY T. WHENEVER
20 REM - DATA IS READY IN ARRAY T, REMOVE IT
25 REM - IMMEDIATELY AND TRAJ.'1SFER IT TO ANOTHER
30 REM - ARRAY NAMED z. LIST RESULTS ON THE
35 REM - LINE PRINTER WHEN ALL POINTS HAVE BEEN

I-20

"

(
\

\

\

40 REM - PROCESSED.
45 OPEN "LP:" FOR OUTPUT AS FILE #2
50 DIM T(5)
55 CALL "USE" (T)
60 CALL "HIST"(T,10)
65 CALL "SETR"(4,2,1)
70 FOR I=l TO 10
75 CALL "RDB"(T,X)
76 IF X<0GO TO 75
80 Z(I)=X
85 NEXT I
90 FOR I=l TO 10
9 5 PRINT # 2 : Z (I)
100 NEXT I
105 END

Output for Example Program #8

4371
5149
5150
5893
6559
6560
7211
7933
866 4
10648

Example Program #9

1 REM - EXAMPLE #9 - "USE, CLRD, PUTD AND DXY"
5 REM - PROGRAM TO DISPLAY A CIRCLE
10 REM
15 DIM X(16) ,Y(l6)
20 CALL . "USE" (X,Y)
25 CALL "CLRD"(X,16,0)
30 CALL "CLRD"(Y,16,0)
35 RESTORE
40 FOR I=l TO 16
45 READ Xl, Yl
50 CALL "PUTD"(X,Xl)
55 CALL "PUTD"(Y,Yl)
60 NEXT I
65 CALL "DXY"(X,Y,1,1)
70 END
75 DATA 890,2048
80 DATA 1000,2560
85 DATA 1240,2950
90 DATA 1630,3175
95 DATA 2093,3276
100 DATA 2560,3175
105 DATA 2900,2950
110 DATA 3125,2560
115 DATA 3225,2048
120 DATA 3125,1630
125 DATA 2900,1220
130 DATA 2560,920

October, 1974 I- 21

135 DATA 2093,820
140 DATA 1630,920
145 DATA 1220,1220
150 DATA 1000,1630
155 END

Example Program #10

1 REM - EXAMPLE #10 - "USE, RDB, DIR, DOR AND DRS"
5 REM - PROGRAM TO ILLUSTRATE THE DIGITAL I/O.
10 REM - DIGITAL I/O CABLE CONNECTING INPUTS AND
15 REM - OUTPUTS MUST BE INSTALLED FOR PROPER PROGRAM
20 REM - OPERATION.
25 OPEN "LP:" FOR OUTPUT AS FILE #2
30 DIM X(30)
35 CALL "USE" (X)
40 CALL "DOR"(l,65535,N)
45 CALL "DIR" (1, Y ,Nl)
50 PRINT #2 :Y
55 PRINT #2:
56 O=l
60 FOR I=l TO 16
65 CALL "DOR"(0,O,N)
70 CALL "DIR" (1,Y,Nl)
75 PRINT #2:N;Y
80 0=0*2
85 NEXT I
90 PRINT #2:
95 CALL "DOR"(l,65535,N)
100 CALL "DIR"(l,Y,Nl)
105 PRINT #2:N;Y
ll0 PRINT #2:
ll5 O=0
120 FOR I=l TO 10
125 CALL "OOR"(l,65535,N)
130 CALL "DOR"(0,O,N)
135 CALL "DIR"(0,Y,Nl)
140 PRINT #2:N;Y
145 0=0+4096+256+16+1
150 NEXT I
155 PRINT #2:
160 CALL "DOR" (1,65535,N)
165 CALL "DRS"(X,1,30,0,N)
170 CALL "SETR"(5,l,100)
175 M=0
180 O=0
185 FOR I=l TO 30
190 CALL "DOR" (l,65535,N)
195 CALL "DOR" (M,O ,N)
200 0=0+4096+256+16+1
205 CALL "WAIT" (0)
210 NEXT I
215 GOSUB 300
220 CALL "DRS"(X,0,0,0,N)
225 CALL "OOR"(l,65535,N)
230 CALL "DRS" (X,0,10,1,N)
235 O=l
240 FOR I=l TO 10
245 CALL "DOR" (0, 0 ,N)
250 0=0*2
255 NEXT I

I-22

/

, /

/-·
(

\
' · .-

(/ ""' .
\,

\._

•

\........,,·

260 GOSUB 300
265 END
300 FOR J=l TO 30
305 CALL "RDB"(X,Y)
310 PRINT #2:J,Y
315 NEXT J
320 RETURN
325 END

Output for Example Program #10

0
1 1
3 3
7 7
15 15
31 31
63 63
127 127
255 255
511 5ll
1023 1023
2047 2047
4095 4095
8191 8191
16383 16383
32767 32767
65536 65535
0 0
0 0
4369 llll
8738 2222
13107 3333
17476 4444
21845 5555
26214 6666
30583 7777
34952 8888
39321 9999
1 0
2 4369
3 8738
4 13107
5 17476
6 21845
7 26214
8 30583
9 34952
10 39321
ll 43690
12 48059
13 52428
14 56797
15 61166
16 65535
17 65535
18 65535
19 65535
20 65535
21 65535
22 65535

I-23

23 65535
24 65535
25 65535
26 65535
27 65535
28 65535
29 65535
30 65535
1 1
2 3
3 7
4 15
5 25
6 45
7 85
8 165
9 265
10 465
11 -2
12 -2
13 -2
14 -2
15 -2
16 -2
17 -2
18 -2
19 -2
20 -2
21 -2
22 -2
23 -2
24 -2
25 -2
26 -2
27 -2
28 -2
29 -2
30 -2

Example Program #11

1 REM - EXAMPLE #11 - "USE, CLRD, PUTD AND DXY"
5 REM - PROGRAM TO GENERATE AND DISPLAY A CIRCLE
10 REM - OF A GIVEN RADIUS WITH ITS CENTER IN THE
15 REM - MIDDLE OF THE SCOPE
20 REM
25 DIM X(l28) ,Y(128)
30 CALL "USE" (X, Y)
32 PRINT "RADIUS";
34 INPUT R
35 CALL "CLRD"(X,256,1)
40 CALL "CLRD"(Y , 256,1)
45 CALL "DXY"(X,Y,1,1)
60 T=O
65 D = 2*3.14159/256.
70 FOR I=l TO 256
75 CALL "PUTD" (X,2048+R*COS (T))
80 CALL "PUTD"(Y,2048+R*SIN(T))
85 T=T+D
90 NEXT I
95 GO TO 32
100 END

October, 1974 I-2 4

-,

\

APPENDIX J

GT GRAPHICS SUPPORT

J.l INTRODUCTION

81\SIC is provided with GT Graphics support for the GT44 and GT40
Display Processors. The support consists of a collection of routines
accessible by the CALL statement. These routines allow BASIC programs
to have complete control of the dispiay processor.

Points, vectors, text, and graph data may all be combined through
simple CALL statements. The screen may easily be scaled to any
coordinates. Portions of the display may be controlled independently
through use of the subpicture feature. Special graphic routines allow
the display of an entire array of data by one call statement. The
area of core that is allocated to the display buffer may be
dynamically controlled.

When operating in the RT-11 environment, any display may be saved as a
file on a mass storage device with the exception of graph arrays.
This file may later be restored which will cause the original display
to appear on the screen without the BASIC program originally needed to
create it.

Support is provided for a real-time clock. The graphics support
package will link with and support the Laboratory Peripheral System
support that is also provided with BASIC.

The hardware required for use of the BASIC GT Graphics support is a
GT40 or GT44 . processor, a VTll display screen, 16K or more of core
memory, and a user's terminal. In addition to the peripheral
input/output device needed to support the BASIC system (disk, DECtape,
cassette, or paper tape), the calls to TIME and TIMR require a
real-time clock. The core required for the Graphics support itself is
approximately 2.SK in a core resident form and 2.lK in an overlay
form.

The documentation for BASIC with Graphics support is provided in two
parts the BASIC Manual (BASIC/RTll Language Reference Manual)and this
appendix. All information concerning BASIC arithmetic, strings,
operations, functions, statements, and commands may be found in the
BASIC Manual. This appendix describes the use of the BASIC calls to
the GT Graphic routines. A general description of the CALL statement
may be found in section 8.1 of the BASIC/RTll Language Reference
Manual.

The GT Support is supplied in the BASIC kit in the following files:

GTB.OBJ

GTC. OBJ

PERVEC.MAC

Main GT object module

GT object module that may be linked in an overlay
(otherwise it is linked in core)

Vector definition source file

J-1

FTBL.MAC

BASINT.MAC

RTINT.MAC

PTSINT.MAC

PERPAR.MAC

GTNLPS.OBJ

Function table

Interface Module

Interface Module for BASIC/RTll V0l

Interface Module for BASIC/PTS V0l

Parameter file

Module linked with GT when LPS support is not also
linked

For instructions to build a load module of BASIC with GT support see
Section J.3. Software for BASIC/RTll with GT support that is provided
on DECtape, cassette and DECpack disk also contain two running
versions of BASIC:

BASGT.SAV
BGTLPS.SAV

BASIC with GT support
BASIC with GT and LPS support

BASGT . SAV is an non-overlaying version of BASIC with GT support.
BGTLPS.SAV is a non-overlaying version of BASIC with GT and LPS
suppor t. BASGT.SAV is loaded by the following RT-11 monitor command:

.R BASGT

Or to load a version of BASIC with GT and LPS support the following
command should be given:

.R BGTLPS

At thi s point the standard BASIC initial dialogue will occur. See
Chapter 1 of the BASIC/RTll Language Reference Manual for a
description of the initial dialogue. As part of the initial dialogue
BASIC will print:

USER FNS LOADED

This message will be printed whenever BASIC has had GT support linked
with it. BASIC will terminate the initial dialogue by printing:

READY

NOTE

BASIC with GT support should not be run
by the RT-11 monitor after GTON, a
program supplied with RT-11, has been
run . GTON causes RT-11 to print all
information on the graphic display
screen and any attempt by BASIC with GT
supp~rt to use the display screen causes
the computer to halt. If this happens,
the monitor must be rebooted. To avoid
this, when GTON has been run, do not run
BASIC until the monitor has been
rebooted by either a hardware bootstrap
or the PIP reboot command. See

J-2

Section 4.13 of the
Reference Manual for a
the PIP command.

RT-11 System
description of

J.1.1 Documentation Conventions

The following chart describes the documentation conventions used in
the description of the GT calls in this Appendix.

CONVENTION

Square Brackets {

Lower case letter or
lower case letter
followed by a digit
(a,b,x0 ,yl)

Lower case letter
followed by a dollar
sign, (a$,x$)

Upper case letter
(A,B,X, Y)

Y axis

X axis

MEANING

Optional arguments are enclosed.

Value to be supplied by user -- may be
any valid arithmetic expression.

String to be supplied by user may be
string constant (enclosed in quotes) or
variable (A$).

Numeric variable whose value
will be determined by
call or an array name.

The vertical axis

The horizontal axis

J.2 DISPLAY PROCESSOR CONTROL ROUTINES - CALL SUMMARY

BASIC programs can control the GT44 display processor by the use of
the twenty-nine routines that are supplied with GT support for BASIC.
A complete description of the BASIC call statement may be found in
section 8.1 of the BASIC/RTll Language Reference Manual.

The format of the CALL statement is:

CALL "name" (argument list)
or

LET A$="name"
CALL (A$) (argument list)

The following chart summarizes the names, argument lists, and effects
of the graphic calls supplied with the GT graphic support.

Call

AGET

Argument List

(A(i), Z)

J-3

Effect

Unscaled element i of the graphic
array A and stores in z.

Call

APNT

APUT

DCNT

DFIX (n)

DON (t)

DSAV

DSTP

ERAS

ESUB

FIGR

Argument List

(x,y (,1,i,f,t])

(A (i), b)

Effect

Positions beam at point
represented by (x,y) after
scaling. Optional changing of
l,i,f, and t parameters. 1 is
light pen sensitivity, i is
intensity, f is flash, and tis
line type.

Assigns element i of the graphic
array A the scaled value of b.
Dynamically changes display of
array A.

Restores to the screen display
stopped by call to DSTP.

Eliminates old display buffer if
it exists and creates a display
buffer of n words. Closes all
open BASIC files.

Turns on subpicture with tag t
that had been turned off with a
call to OFF.

[(" [dev:]filname(.ext]")] Compacts the display file by
eliminating references to erased
subpictures and graphics arrays
and if a file is specified
creates a copy of the graphic
display on a file on DECtape or
disk. Display may then be
restored to the screen at any
time by a call to RSTR. DK: is
the default device. DPY is the
default extension.

((t)]

(A[,l,i,f,t])

J-4

Stops display of the entire
display buffer. Display may be
restored by a call to DCNT.

Erases subpicture with the tag.
If t is not specified this call
erases the tracking object
created by a call to TRAK.

Terminates subpicture created by
a call to SUBP (with one
argument).

Creates vectors from array A to
form figure. See section J.2.8
concerning the cautions required
when using graphic array calls.
Optional changing of l,i,f, and t
parameters.

Call Argument List

FPUT (A(i) 1 b)

FREE

INIT

(
\ LPEN (H,T[,X,Y])

NOSC

OFF(t)

RDOT (x,y, [,l,i,f,t])

RSTR (" [dev] filnam[.ext] ")

SCAL {x0, yo, xl, y 1 [, x, Y])

STAT (s [,p])

SUBP (a [,b])

/ TEXT (list)

Effect

J-5

Assigns element i of graphic
array A the scaled value of band
compensates the i + 2 element of
A to leave following points of
figure at same absolute location.
Dynamically changes display of
array A.

Eliminates display buffer, clears
screen, and closes all open BASIC
files.

Initializes display buffer and
clears screen.

Records a light pen hit (in H),
the tag of a subpicture in which
the hit occurred {in T), and,
optionally the X and Y
coordinates of the hit.

Eliminates scaling factor
subsequent graphics.

for

Turns off the subpicture with the
tag t.

Positions a beam originally at
{x0,y0) scaled to (x0+x, y0+y)
scaled. Optional changing of
l,i,f, and t parameters.

Restores the display of the file
created by a call to DSAV. The
default extension is DK: and the
default extension is DPY.

Scales the x axis to vary from x0
to xl and they axis to vary fron
y0 to yl and optionally returns
the x and y scaling factors.

Enables or disables the italic
mode and optionally enables or
disables visual intensification
of light pen hit.

When there is only one argument -
begins definition of a subpicture
with a tag a.

When there are two arguments
copies subpicture with tag bas a
new subpicture with tag a.

Outputs
contains
"carriage

text to screen. List
text to be printed
return" information,

Call

TIME (z)

TIMR(E)

TRA.K

VECT

XGRA

YGRA

Argument List

(X, Y)

(x,y[,1,i,f,t])

(y,A[l,i,f,t])

(x,A[l,i,f,t])

Effect

and information to convert text
to the GT40 (44) special
shift-out character set.

Sets timer based on real-time
clock to a value of z ticks where
each tick represents 1/60 second
(for 60 Hz line current).

Returns the current value of the
timer in variable E.

Puts a tracking object on the
screen at the location (X,Y), the
initial values of the variables,
and centers the object on any
light pen hit within its area and
updates value of X and Y to the
new location.

Draws a line segment from the
current beam position (x0,y0) to
'the point (x0+x, y0+y). Optional
changing of l,i,f, and t
parameters.

Plots array A as series of points
with the X position determined by
the value of the element of the
array and the Y position starting
at the current beam location and
being incremented by y for each
point. See section J.2.8
concerning the caution required
when using graphic array calls.
Optionally changes l,i,f, and t
parameters.

Plots array A as a series of
points with the Y position
determined by the value of the
element of the array and the X
position starting at the current
beam location and being
incremented by x for each point.
See section J.2.8 concerning the
caution required when using
graphic array calls. Optionally
changes l,i,f, and t parameters.

NOTE

To be compatible with previous versions.
DFIX, DSTP, DCNT, DON, and DSAV may also
be called as FIX, STOP, CONT, ON, and
SAVE respectively.

J-6

---.._

. "'

,.

/

•

J.2.1 Display Buffer Control (DFIX FREE, INIT, DSTP, and DCNT)

The display processor is similar to the central processor in that it
executes instructions from memory. Normally, it is not necessary to
allocate the amount of core to be used by the display processor. In
this case, the first call to a graphics routine will automatically
cause one-half of the available space to be allocated for the display
buffer and a message telling the buffer length will be printed on the
console terminal. In a machine with 16K core, about 3000 words will
be allocated with no user program or arrays laid out. This space
would allow the display to draw about 1500 vectors. However, it is
possible to specifically request a certain number of words for the
size of the display buffer by the following call:

CALL "DFIX" (n)

For example, to use only 1000 words the following call should be made:

CALL "DFIX" (1000)

If the number of words asked for is greater than the space available,
a message is printed indicating that there is not enough room for the
display buffer. If the number of words requested is less than or
equal to zero, an error messag5 results. This routine may be called
at any time to change the size of the display buffer, but any picture
on the screen at the time of the call is lost.

The display buffer may be allocated either in a program (explicitly or
implicitly) or in immediate mode. Once allocated, the buffer need not
be changed even between or during the execution of several programs.
It may only be changed by calls to DFIX. Once the buffer has been
created any call to a graphics routine will cause display processor
instructions to be put into the display buffer. If the buffer becomes
filled a ?DFO (Display File overflow) error message is printed and
BASIC returns to the READY message.

After an explicit or implicit call to DFIX one of the following
messages may be printed

Messages Meaning

xxxx WORDS FOR DISPLAY FILE
xxxx words have been allocated for
display buffer. Printed after an
implicit call to DFIX.

?NER - FOR DISPLAY BUFFER
The number of words requested
explicit call to DFIX exceeded
amount of available core.

NOTE

A call to either DFIX or FREE will
automatically close all open files,

J-7

in
the

since both routines must internally
rearrange a large part of BASIC.

If the user desires to run a program that does not use the display and
does need all the available space for arrays (etc.), any space
currently allocated for the display buffer may be relinquished by:

CALL "FREE"

This routine may be called at any time and the screen will be cleared.
To guarantee that all dimensioned arrays will have the best chance to
fit into core, it would be reasonable to call "FREE" in immediate
mode. The first graphics call following such a call will result in an
implicit c a ll to "DFIX".

It is possible to "erase" and initialize the screen at any time by the
following call:

CALL "INIT"

This routine clears the screen and initializes the display buffer. If
a call to "FIX" has not been made previous to a call to "INIT", an
implicit call to "FIX" is made.

Normally, the first graphics call following a call to "FIX" will
implicitly call "INIT".

There are two further control routines which allow the screen to be
turned "on" and "off". They are:

CALL "DCNT"

CALL "DSTP"

A call to DSTP will clear the screen and a call to
to the screen the display that existed before the
display is stopped, then a call to "DSTP" will not
Likewise, if the display is running, a call to
effect.

J.2.2 Scaling Instructions (SCAL and NOSC)

DCNT will restore
call to DSTP. If a

have any effect.
"DCNT" will have no

Unless a call to SCAL specifies otherwise, the screen has a coordinate
system with the lower left hand corner of (0,0) and the upper right
corner of (1023,1023). (Those screens set up in rectangular format
allow a maximum visible y-value of 768). Often it is desirable to work
in another coordinate system. To set the lower left hand corner of
the screen at (x0,y0) and the upper right hand corner at (x l,yl), then
the following call should be made:

CALL "SCAL"(x0,y0,xl,yl[X,Y])

J-8

i
·'

· _ /

/

Every graphics call after a call to "SCAL" will autom~tically assume
that the lengths and coordinates specified are in terms of the
"window" given in the call to "SCAL". It is possible to obtain the X
ahd Y direction scale factors by providing an extra one or two
parameters in the call to the scale routine. If a fifth parameter is
given, the X scale factor will be returned as the value of that
parameter (in the above example,X). If a sixth parameter is given, the
Y scale factor will also be returned.

At any time, another call to the scale routine will change the scale
to reflect the new request. The new scale factors will only effect
graphics calls following the scale request.

Consider the following call:

CALL "SCAL"(0,0,200,200)

If a vector of length 200 in the X and 200 in the Y directions is
drawn from the point x=0,y=0, it will go completely across the screen.
Although the software does not allow the drawing of a single vector
longer than the length of the screen, several vectors may be drawn
consecutively to move the "beam" off the screen. If in the call to
SCAL x0=xl or y0=yl the ?DV0 (Division by 0) error message will be
printed and BASIC will return to the READY message.

NOTE

In the call to scale, there is no
requirement that x0 be less than xl or
y0 be less than yl; hence, pictures may
be drawn upside down, backwards, etc.
although text always will appear left to
right.

The scale factoring may be eliminated once it is set by

CALL 11 NOSC"

This turns the scaling routine off and the default coordinate systeM
will apply. If there has been no previous call to "SCAL" a call to
"NOSC" will have no effect. Equivalently, one may establish a unit
scale by

CALL "SCAL"(0,0,1023,1023)

but this is much less efficient since it invokes a scale with the X
and Y factors equal to one at every graphics call.

EXAMPLE

Start a progran by initializing the display file, scaling the screen
and much later changing the scale and restarting the program.

J-9

100 A=100
110 CALL "I NIT"
I 20 CALL "SCAL" C-A, -2*A, A, 2*A,X, Y)
130 PRINT "X SCALE FACTOR I S"X
140 PRINT "Y SCALE FACTOR IS"Y
150 REM CREATE GRAPHICS IN FOLLOWING STATEMENTS
300 REM RESCALE HERE AND RESTART
310 PRINT "ENTER NEW RELATIVE SCALE";
320 INPUT Z '
330 IF Z<=0 THEN 310
340 A=A/Z
350 GO TO 110
500 END
RUNNH
X SCALE FACTOR IS 5.12
Y SCALE FACTOR IS 2.56
ENTER NEW RELATIVE SCALE?5
X SCALE FACTOR IS 25.6
Y SCALE FACTOR IS 12.8
ENTER NEW RELATIVE SCALE?tC

.REE

READY

J.2.3 Positioning the Beam (APNT and RDOT)

To position the beam at a point (X,Y) on the screen, the following
CALL should be made:

CALL "APNT" (x , y [, 1 [, i [, f [, t]]]])

This will set the beam at the position specified . by (x,y). The
optional parameters 1, i, f, and t are parameters whose values
determine properties of the current and following graphics functions.
Since the call may include 1, 2, 3, or all 4 of these parameters, all
following specifications will show these parameters as

••. [1, i, f, t] •••

If this call has been preceded by a call to SCAL, the X and Y values
will be scaled to their proper place on the screen. At no time can
the scaled X or Y position the beam at a negative value or a value
exceeding 1023, that is x and y must be within the range of x and y
defined in the call SCAL.

The following chart describes the effects of the parameters.

Parameter Effect

l Light pen interaction. If 1 is given and is positive,
then current and subsequent graphic output will be
light pen sensitive (causing a light pen interrupt when
pointed to on the screen). If 1 is zero or not given,
there is no change in the parameter from its previous
setting. If l is negative, the light pen will not
cause an interrupt.

i Intensitr• Points, vectors and text may be put on the
screen in one of 8 (eight) intensities. If i is given
and is positive (between 1 and 8), the intensity will

J-10

Parameter Effect

be set to that value (8 being the brightest on the
screen). If i is zero or not given then no change is
made from the previous setting. If i has a value
between -8 and -i, the current graphics output (except
text) is invisible and the intensity is changed to the
absolute value of i for the next graphics call only.

f Flash. If f is given and is positive, then the blink
mode will be enabled starting with the current graphic
output. If f is zero or not given, no change is made
in the blink mode. A negative value for f will disable
the blink mode.

t Type of Line. If t equals 1, 2, 3, or 4 the line type
will be enabled to solid, long-dashed, short-dashed, or
dot-dashed line , respectively. If tis given and is
either greater than 4 or non-positive , no change in the
line type will be made. If tis not given, then no
change is made from the current setting.

These parameters may also be changed in calls to RDOT and VECT. The
parameters may be changed at any time without effect on the display by
a call to RDOT with the x and y arguments equal to zero and a negative
intensity or by a call to VECT with the x and y arguments equal to
zero (see Section J.2.4}.

NOTE

Any change in the parameters will not
effect any graphics previously drawn.

At the start of the display file, the default conditions are:

No scaling
Beam at lower left hand corner
Light pen interaction is disabled
Intensity is set to 5
Flash is turne d off
The solid line type is enabled

Dots on the screen relative to the current beam position may be
inserted via

CALL "RDOT"(x ,y [,l,i,f,t])

This will set a
(x0+x,y0+y). As in
done automatically.

beam
the

originally at (x0,y0) to the position
case of "APNT", any current scaling will be

J-11

J.2.4 Drawing Vectors (VECT)

Vectors may be drawn by using the absolute value of

CALL "VECT"(x,y [,l,i,f,t])

This routine will cause a line segment to be drawn from the current
beam position, (xO,yO), to the point (XO+x,YO+y). The absolute values
of x and y must be less than 1024 after scaling. If x and y both have
the value O then no output will be visible on the screen (regardless
of the value of i).

EXAMPLE
10 REM
20 CALL "INIT"
30 CALL "APNT" C 400., 200)
35 REM CREATES A VISIBLE POINT
36 REM
40 CALL "RDOT"C100.1200)
45 REM POSITIONS BEAM RELATIVELY
46 REM CREATES A VISIBLE POINT
47 REM
50 CALL "VECT"C0.,300)
55 REM CREATES A VERTICAL SOLID LINE
56 REM FROM POINT CREATED BY 40
57 REM
60 CALL "VECT"C200,-500,0,0,0,2)
65 REM CREATES A LONG-DASHED LINE
66 REM
70 CALL "VECT"C-200,-250,0,0,0,3)
75 Ru~ CREATES A SHORT-DASHED LINE
76 REM THAT CROSSES BOTTOM EDGE OF SCREEN
77 REM
80 CALL "SCAL"C0,0,100,100>
85 REM RESCALES SCREEN
86 REM
90 CALL "VECT"C-20,30>
92 REM CREATES A 2ND SHORT-DASHED LINE
93 REM UNDER SCALING OF 80
94 REM
95 CALL "NOSC"
97 REM UNSCALES SCREEN
98 REM
100 FOR X=0 TO 100 STEP 5
110 LET Y=SQRC10000-Xt2)
120 CALL "APNT"Cl00+X,400+Y)
130 CALL "APNT"Cl00+X,400-Y)
140 CALL "APNT"C100-X,400+Y)
150 CALL "APNT"C100-X,400-Y)
160 NEXT X
165 REM LOOP CREATES POINTS IN CIRCLE
166 REM
200 CALL "SCAL"C0.,0, 100,134)
210 CALL "APNT" C 0, 0, 0, - 5., 0., 1 >
220 CALL "VECT" C 100, 0 >
230 CALL "VECT"(0.,J00)
240 CALL "VECT"C-100,0>
250 CALL "VECT"C0,-1 0 0)
255 REM CREATES BOX AROUND GRAPHICS
256 REM NOTE RECTANGULAR SCREEN USED FOR PICTURE
500 END

J-12

The previous program creates this output:

Example

Scale the screen for a window -50 to +50 in both directions, draw a
diamond centered on the window and finally put a visible dot in the
center of the diamond.

40 CALL "!NIT"
100 CALL "SCAL"C-50.,-50.,50 .. 50)
105 Ru~ SCALES SCREEN
106 REM
110 CALL "APNT" (0., 25, -1, -5., -1)
115 REM POSITIONS BEAM
11 6 REM DISABLES LIGHT PEN INTEREACTION

_ 11 7 REM POINT CREATED IS INV! SIBLE
118 REM DISABLES FLASH
119 REM
120 CALL "VECT"C-25,-25,0,0.,0, 1)
125 REM CREATES SOLID LINE
126 REM
130 CALL "VECT" (25, -25)
140 C.O.LL "VECT"C25.1 25)
150 CALL "VECT"C-25, 25)
155 REM COMPLETES DIAMOND
156 REM
160 CALL "RDOT"C0,-25)
165 REM CREATES VISIBLE POINT IN CENTER
166 REM COULD ALSO HAVE BEEN
167 REM 160 CALL "APNT"C0,0)
500 END

J-13

J.2.5 Text Instruction (TEXT and STAT)

Textual and carriage control information may be put on the screen in
an extremely easy manner. The form of the text call is

CALL "TEXT" (list)

where the list may contain

element:

string variables or constants

[+] m

0

-m

effect:

text to be printed on screen

Carriage Return and m Line Feeds

Carriage Return and no Line Feed

Converts following text to shift
out characters.

A carriage return causes the next line of text to be output starting
at the left hand edge of the screen.

Normal text may be any printable character with an ASCII value greater
than or equal to 40(octal). Shift-out characters are the special
character set, consisting of 31 symbols and Greek letters, within the
display processor. The following characters will be converted to
shift-out characters when included in a string following -m:

@ABCDEFMHIJKLMNOPQRSTUVWXYZ[,Jt_

See the following example for a list of the shift-out characters.
Note that the user should not include any character other than those
listed above within the shift-out text. The letter O within shift-out
text will be converted to a blank space on the display screen.

The location of the text printed may be controlled by positioning the
beam with an invisible dot before the call to text. The lower left
corner of the first character printed will start at this point.

NOTE

The TEXT call will only print strings.
To print a number that has been computed
by the program, it must first be
converted to a string by the STR$
function. See section 6.3 of the
BASIC/RTll Language Reference Manual for
information on the STR$ function.

10 CALL "INIT"
15 X=300\Xl=50
20 Kl=64\K2=74
25 Y=600\A=40
26 REM INITIALIZES VARIABLES FOR FIRST RUN THROUGH LOOP

27 REM
30 CALL "APNT"Cl00.,Y.,0.,-5)
40 CALL "TEXT"< "ASCII< 10 > ")
42 CALL "APNT" C 100.1 Y-A., 0.1 -5 >
44 CALL "TEXT"< "NORMAL">
46 CALL "APNT"C 100.,Y-2*A, 0, -5)

J-14

-✓

48 CALL "TEXT"<"SHIFT-OUT")
49 REM PRODUCES LABELS AT LEFT
55 FOR K=Kl TO K2\RE."1 BEGINS LOOP
60 CALL "APNT"<X,Y,0,-5)
70 CALL "TEXT"< STR$ <K))

75 REM PRINTS DECIMAL ANSI! VALUE
80 CALL "APNT"<X,Y-A,0,-5)
90 CALL "TEXT"<CHR$(K))
9 5 REM PRINTS "NORMAL" TEXT
100 CALL "APNT"<X,Y-2*A,0,-5)
110 CALL "TEXT" <-1, CHR$ CK»
115 REM PRINTS "SHIFT-OUT" TEXT
120 X=X+Xl
130 NEXT K\REM ENDS LOOP
140 IF Kl=86 THEN 250
145 REM TESTS IF FINISHED
150 IF Kl=75 THEN 200
155 REM TESTS IF PROGRAM HAS BEEN THROUGH LOOP TWICE
160 Kl=75\K2=85\Y=400\X=300
170 GO TO 30
175 REM INITIALIZES VALUES FOR SECOND RUN
176 REM THROUGH LOOP AND JUMPS TO START OF LOOP
200 Kl=86\K2=95\Y=200\X=300
210 GO TO 30
215 REM INITIALIZES VALUES FOR THIRD RUN
216 REM THROUGH LOOP AND JUMPS TO START OF LOOP
250 END
RUNNH

READY

will produce the following output on the screen.

J-15

NOTE

To change any of 1, i, f, or t for textual output,
the call to "TEXT" must be preceded by

CALL "RDOT"(0, 0 1 1, -i, f, t)

Also, text material is always visible; that is,
one can not write "invisible words" on the screen.

Italics may be enabled by a call to the "STAT" routine which allows
the user to disable or enable the italics mode, and disable or enable
the intensification that occurs at a light pen hit. The CALL is of
the form:

CALL "STAT" (s [, p])

where:

s Font. Ifs is given and is positive, then the italics font
is disabled. Ifs is zero, then there is no change from the
previous setting. Ifs is negative, the italics mode is
enabled.

p Intensification of Light Pen Hit. If p is positive, then
the point of a light pen hit will be raised to intensity
level 8. If pis zero, there is no change from the previous
setting. If p is negative, the point of a light pen hit
will not change in intensity. The intensification will only
occur if the line hit is light pen sensitive.

The default conditions at the start of the display file
disabled and light pen intensification enabled. Do
intensification of a light pen hit with interaction of a

(see the section J.2.7).

J-16

are italics
not confuse
light pen

\

Subpictures (SUBP, ESUB, DON, OFF, and ERAS)

A series of graphics calls may be defined as a unit by use of the
subpicture calls (SUBP and ESUB). This allows the series of graphics
calls to be copied, turned off and on, erased, and tested for light
pen hits by referencing the subpicture's tag. A series of graphics
calls is defined as a subpicture by inserting a call to SUBP with one
argument, called the "tag" before the graphics calls and a call to
ESUB with no arguments after the graphics calls. No graphics will be
displayed after the call to SUBP _until the call to ESUB is executed.
The form of the calls to SUBP and ESUB are:

CALL "SUBP" (a)

CALL "ESUB"

Each subpicture has associated with it a unique "tag". The parameter
"a", a tag, is a positive integer (less than 32768). Alternatively, a
subpicture may be a copy of a previous subpicture. Any subpicture to
be copied should not contain any calls to "APNT" but only relative
graphic data or else the subpicture will not be completely "movable".
To copy a subpicture at any point on the screen, position the beam at
the desired point and then make a call to SUBP with two arguments.
The form of the call is:

CALL "SUBP" (a,b)

where bis the tag of the subpicture being copied and a is the tag of
the new subpicture being created. This call creates a jump in the
display buffer back to the display buffer code for the original
subpicture. A call to SUBP with two argume.nts should not have a
corresponding call to ESUB. For every call to SUBP with one argument
there should be a corresponding call to ESUB after it. If there is a
call to SUBP with one argument without a corresponding call to ESUB
the graphics will not appear on the screen until a call to ESUB is
made.

EXAMPLE

Define a subpicture that draws a horizontal resistor and then makes
two copies of it.

80 CALL "INIT"
90 CALL "APNT"<500,.100,0,-5)
95 REM CREATES AN INVISIBLE POINT
96 REM
100 CALL "SUBP" < 1)
105 REM SUBPICTURE STARTS
106 REM
110 CALL "VECT" C 20, 0, 0, 5, 0, 1)
120 CALL "VECT" C 5, 10)
125 REM CREATES FIRST PART OF RESISTOR
126 REM
130 FOR I=l TO 2
140 CALL "VECT" C 10, - 20 >
150 CALL "VECT"C10,20)
160 NEXT I
165 REM CREATES MIDDLE OF RESISTOR
166 REM
170 CALL "VECT"(10,-20>
180 CALL "VECT"C5,10)
190 CALL 0VECT"(20,0)
195 REM CREATES END OF RESISTOR
196 REM

J-17

200 CALL "ESUB"
205 REM ENDS SUBPICTURE, DISPLAY BECOMES VISIBLE
206 REM
210 CALL "APNT"(200,400,0,-5)
215 REM CREATES AN INVISIBLE POINT
216 REM
220 CALL "SUBP" < 2, I)
225 REM COPIES FIRST SUBPICTURE
226 ·REM
230 CALL "SUBP" < 3, I)
235 REM COPIES FIRST SUBPlCTURE
236 REM NEXT TO COPY CREATED BY 220
237 REM
240 END

Note that subpictures may contain calls to other subpictures. The
subpicture call depth limit is l0(decimal). A nested subpicture is
created by a call to SUBP with one argument followed by a second call
to SUBP before any calls to ESUB. Including the first call to SUBP
there can be up to ten calls to SUBP before a call to ESUB. The first
call to ESUB encountered will end the last subpicture created and no
graphics within the nested subpicture will appear on the display
screen until one call to ESUB has been executed for every call to SUBP
(with only one tag). Nested subpictures would be useful for
applications where there are several component graphics that will be
frequently copied or tested for light pen hits as a group and
individually. If there are more than 10 subpictures nested, and ?INS
(Illegally Nested. Subpictures) error message will be printed. The
legal depth of subpicture nesting can be changed by assembling the
BASIC GT support from the sources, which are available separately.

Subpictures may be turned on and off individually by the use of the
following calls

CALL "DON" (t)

CALL "OFF" (t)

where tis the tag of the subpicture. When a subpicture is turned
off there will be two effects on the display:

1. The graphics calls included in the subpicture will not appear
.on the screen and

2. any relative graphics call after the subpicture will appear
relative to the beam position before the subpicture instead
of after the subpicture.

Consequently any subpicture to be turned off should be followed by a
call to APNT unless it is desirable to have the graphics calls moved.
The code for the graphics remains in the display buffer and a
subpicture may be copied while it is turned off. Once a subpicture
has been turned off it may be turned on by making a call to DON.
Turning on a subpicture that is already on or turning off a subpicture
that is off has no effect.

J-18

When a subpicture is no longer needed, it may be erased by

CALL "ERAS" (t)

where tis the tag of the subpicture. The difference between erasing
a subpicture and turning it off is that erasing turns off the
subpicture and further, eliminates the code in the display buffer
freeing up the corresponding tags for use. Erasing a subpicture does
not recapture that portion of the display buffer that was used for the
subpicture; however once subpictures have been erased the display
buffer may be condensed by a call to SAVE. See Section J.2.10.

J.2.7 Light Pen Interaction (LPEN and TRAK)

If any graphics on the screen has been made light pen sensitive, it is
possible to test for a light pen hit on light pen sensitive graphics,
determine the x and y coordinates of the light pen hit, and determine
which if any subpicture the hit appeared in. The form of the call is:

CALL "LPEN"(H,T[,X,Y])

where His a flag that is equal to zero if no hit has occurred and
equal to one after a hit has occurred. If H equals one, then the
value of Tis the tag of the subpicture in which the hit occurred. If
the hit occurred other than in a subpicture, Twill be set to zero.
If X and Y are specified, the scaled X and Y coordinate values of the
hit will be stored in these variables.

Example

100 CALL "I NIT"
110 CALL "APNT"(200.,200.,l.,-5)
115 REM CREATES AN INVISIBLE POINT
116 REM ENABLES LIGHT PEN SENSITIVITY
117 REM
120 CALL "SUBP"(l0)
130 FOR I=l TO 10
140 CALL "VECT"C50.,0)
150 CALL "RDOT"(-50.,5.,0.,-5)
160 NEXT I
170 CALL "ESUB''
175 REM CREATES 10 VERTICAL LINES IN SUBPICTURE 10
176 REM
190 CALL "APNT"C200.,400.,0.,-5)
200 FOR I=l TO 10
210 CALL "VECT"(0., 50)
220 CALL "RDOT"CS.,-50.,0,-5>
230 NEXT I
235 REM CREATES 10 HORIZONTAL LINE., NOT IN SUBPICTURE
236 REM
240 CALL "APNT"<300.,300,0,-5>
250 CALL "SUBP"<l>
260 CALL "TEXT"("WRONG BOX-TRY AGAIN">
270 CALL "ESUB"
272 REM CREATES SUBPICTURE WITH TEXT
275 CALL "OFF"<l>

J-19

276 REM TURNS OFF "WRONG BOX-TRY AGAIN"
277 REM
280 CALL "APNT"C300.,300.,0.,-5., 1)
285 CALL "SUBP"C2>
290 CALL "TEXT"("HIT ON SUBPICTURE 101">
292 REM CREATES SUBPICTURE WITH FLASHING TEXT
295 CALL "ESUB"\CALL "0FF"C2>
296 REM TURNS OFF "HIT ON SUBPICTURE 10!"
300 CALL "LPEN"(H.,T.,X.,Y>
310 IF H=0 THEN 300
315 REM TESTS FOR LIGHT PEN HIT
320 IF T=10 THEN 400
325 REM TESTS FOR LIGHT PEN HIT ON SUBPICTURE 10
330 CALL "DON"<l>
340 CALL "TIME"C2*60)
350 CALL "TIMR"CT>
360 IF T>0 THEN 350
370 CALL "OFF" C 1 >
380 GO TO 300
385 REM PUTS MESSAGE ON SCREEN FOR 2 SECONDS
400 CALL "DON" C 2)
410 CALL "TIME"C2*60)
420 CALL "TIMR" CT)
430 IF T>0 THEN 420
440 CALL "0FF"C2>
450 GO TO 300
455 REM PUTS MESSAGE ON SCREEN FOR 2 SECONDS
500 END

In order to fully utilize the light pen capability of the display
processor, BASIC with GT support has provision for optical tracking
with the light pen. If X and Y are variables (not constants), then

CALL "TRAK"(X,Y)

puts an object on the screen at scaled (X,Y) that will react to light
pen hits in such a way as to always center itself on the last light
pen hit on the object. The tracking object will only respond to hits
within its area. The diamond shape tracking object is shown in the
example at the end of this section. The initial position of the
tracking object should be determined by a LET statement before the
call to TRAK. At each light pen hit, X and Y are updated to the new
center of the tracking object for program use. The object can not be
"snapped" off the screen by a fast motion of the light pen, upon
reaching the edge, it will reposition itself near the center of the
screen.

J-20

NOTE

On a rectangular screen, the initial
values of X and Y (scaled to between O
and 1023) may put the tracking object
off the •top• of the screen.

A call to "ERAS" with no tag specified will remove the tracking object
from the screen:

EXAMPLE
LISTNH
100 X=100,Y=l00
110 CALL "INIT"
120 CALL "TRAK" ex., Y)
121 PRINT "THIS PROGRAM DRAWS LINES WITH THE LIGHT PEN''
122 PRINT "LIGHT PEN MOVES TRACKING OBJECT"
123 PRINT ,PRINT "INPUT EFFECT 11,PRINT "VALUE",PRINT
124 PRINT "-1 EXITS OUT OF PROGRAM"
125 PRINT "0 SAME AS PREVIOUS LINE TYPE"
126 PRINT "1 SOLID LINE"
127 PRINT "2 LONG-DASHED LINE"
128 PRINT "3 SHORT-DASHED LINE"
129 PRINT "4 DOT-DASHED LINE"
130 INPUT Z
135 IF Z=-1 THEN 500
140 IF Z=0 THEN 200
150 IF Z=l THEN 200
160 IF Z=2 THEN 200
170 IF Z=3 THEN 200
180 IF Z=4 THEN 200
190 GO TO 130
200 REM DRAW LINE HERE
210 IF N=0 THEN 240
220 CALL "VECT"CX-Xl.,Y-Yl.,0.,0.,0.,Z>
230 Xl=X,Yl=Y
235 GO TO 130
240 N=l,REM FIRST TIME ONLY
250 CALL "APNT"(X.,Y>
260 Xl=X,Yl=Y
270 GO TO 130
500 END

READY

RUNNH
THIS PROGRAM DRAWS LINES WITH THE LIGHT PEN
LIGHT PEN MOVES TRACKING OBJECT

INPUT
VALUE

EFFECT

-1 EXITS OUT OF PROGRAM
0 SAME AS PREVIOUS LINE TYPE
1 SOLID LINE
2 LONG-DASHED LINE
3 SHORT-DASHED LINE
4 DOT-DASHED LINE
?0
?0
?3

J-21

14
11
73
12
11
1-1

READY

J.2.8 Graphic Arrays: Graphs and Figures
(YGRA,XGRA,AGET,APUT,FIGR,FPUT)

BASIC with GT support has three graphic array calls (YGRA, XGRA, and
FIGR) that allow the display of an entire array through one graphics
call. Graphics created by these calls may be changed while they are
being displayed by calls to APUT, AGET, and FPUT. Because the
graphics created may be dynamically changed, extreme care must be
taken in their use. Once a graphic array call (YGRA, XGRA, or FIGR)
has been made a call to INIT must be made before the user array is
zeroed by the BASIC system. The following BASIC statements and
commands zero the user arrays: RUN, RUNNH, SCRATCH, CLEAR, NEW, OLD,
and CHAIN. If the user's arrays are zeroed while a graphics array is
being displayed the display processor will not be accessible by any
program. Any attempt to execute any graphics call will cause the
processor to enter a closed loop. If this situation occurs, two
CTRL/C's will return control to the monitor and BASIC with GT support
may be run by the following command:

.R BASGT

J-22

(
\.

This will cause a hardware reset of the display processor and complete
initialization of the BASIC system. The stored program will be lost.
It is usually possible to re-enter BASIC by the RE monitor command
before this is done and the BASIC program can then be saved by the
BASIC SAVE or REPLACE cormnand. There may be errors in the saving of
the BASIC program and it will still be necessary to return to the
monitor and run BASIC.

It is possible to plot a graph of points by a series of "APNT" calls.
Most often, in the case of Y-graph data, the X coordinates are evenly
spaced across the screen. When this is the case, one may place the
Y-coordinate data in an array and display directly from the array via

CALL "YGRA"(x,A [l, i, f, t])

where xis the increment in the X direction and A is the name of a
1-dimensional array. The X position will be incremented by x starting
at the current beam position. Note that the Y-array data must be
stored as absolute coordinates. If an array is dimensioned SO, then
51 points are displayed, A(0) thru A(S0).

Similarly, one may display a graph of X-data by

CALL "XGRA"(y,B [,1, i, f, t])

where y is the increment in the Y direction and Bis the name of a
1-dimensional array.

NOTE

After execution of XGRA, YGRA, or FIGR
always make a call to INIT before
zeroing the user array by a RUN, RUNNH,
SCRATCH, CLEAR, OLD, or NEW command or
CHAIN statement. If this is not done
the processor will enter a closed loop.

EXAMPLE

Draw a sine wave across the entire screen using 51 points.

LISTNH
90 X=l28
100 CALL "!NIT"
110 DIM AC50)
120 FOR 1=0 TO 50
130 AC1)=256*Cl+SIN(3.l4159*I/25))+X
150 NEXT I
155 REM FILLS ARRAY A WITH VALUES OF SINE FUNCTION
156 REM
160 CALL "APNT"C0,0.10,-5)
170 CALL ''YGRA"C20,A>
175 R~~ CREATES GRAPHIC DISPLAY
176 REM
180 PRINT "INPUT 0 TO END";
190 INPUT Z
200 IF Z=0 THEN 300
210 GO TO 180
300 CALL "INIT"

J-23

305 REM
306 REM
307 REM
310 END

READY

RUNNH

NOTE
CAN NOT RE-RUN PROGRAM UNLESS
CALL IS MADE TO "!NIT" FIRST

INPUT 0 TO END?0

READY

Since the data in the c;rray is scaled and the display processor
"executes" the data in the array, every attempt has been made to
"lock" the array to prevent the display processor from running wild.
Hence, if array A is used as graph data, every entry in the array
(except A(O)) is "locked" and an "SOB" (Subscript Out of Bounds)
error will result if these entries are accessed through normal
subscripting. If the first element of the array {A{O}) is assigned a
new value by a LET statement after the call to YGRA or XGRA, the first
point will be altered in an unpredictable way.

J-24

............

\

However, graph data may be accessed via

CALL "AGET"{A{i),Z)

CALL "APUT" {A(i) ,b)

where A is the name of a graph data array, i is a valid subscript, and
Z is a scalar variable {not a scalar whose name is also a graph data
array). "AGET" unscales the A{i) and returns a value in z. "APUT"
scales the value of b and stores the correct value in A(i). The
display will be immediately updated.

Note that LPS arrays may be displayed directly using the above
routines only if the array, say A, has been named in the "USE" routine
as A or A(0). Otherwise, the arrays will not be correctly displayed.
The valid subscripts for an LPS array are twice that of the value in
the dimension statement. Such subscripts are valid arguments to
"AGET" and "APUT". The LPS routines can not access arrays that have
been displayed by a call to XGRA or YGRA. The arrays can only be
accessed by AGET and APUT.

For further
objects, a
(A(0) ,A(l))
etc.

graphics capability, particularly in regards to motion of
figure nay be drawn from an array A of pairs of vectors.

is the first X,Y-pair, (A(2),A(3)) is the second X,Y-pair,

The figure is "drawn" from the current beam position. The form of the
call is:

CALL "FIGR"'(A[,l,i,f,t])

NOTE

After execution of XGRA, YGRA, or FIGR
always make a call to INIT before
zeroing the user array by a RUN, RUNNH,
SCRATCH, CLEAR, OLD, or NEW command or
CHAIN statement. If this is not done
the processor will enter a closed loop.

Figure arrays are "locked" just as the other graphic arrays. These
arrays may be accessed by the "AGET" and "APUT" routines as described
above. A call to APUT will change the appropriate vector and will
cause all following vectors to be displaced.

J-25

EXAMPLE

The following example uses an "invisible" figure to move a graphics
display.

LISTNH
90 DIM AC 1)
100 CALL "I NIT"
110 CALL "FIGR"CA,0,-5)
115 REM NOTE-INVISIBLE FIGURE
116 REM INITIAL X ANO Y VALUES ARE ZERO
11 7 REM
120 CALL "VECT"(100,0)\CALL "VECT"<0,100>
130 CALL "VECT" <- 100, 0) \CALL "VECT" < 0, - 100)
135 REM BOX CREATED IS DISPLAYED RELATIVE TO THE FIGURE
136 REM
140 CALL "APNT"<0,0,0,-5)
205 FOR I=0 TO 500
210 CALL "APUT"(A(0)., I)
250 NEXT I
255 REM LOOP MOVES BOX TO RIGHT
256 REM
260 FOR J=0 TO 500
270 CALL "APUT"<A< I).,J)
300 NEXT J
305 REM LOOP MOVES BOX UP
306 REM
310 FOR 1=500 TO 0 STEP -1
320 CALL "APUT"CA(0),I)
350 NEXT I
355 REM LOOP MOVES BOX TO LEFT
356 REM
360 FOR J=500 TO 0 STEP -1
370 CALL "APUT" CAC 1)., J)
400 NEXT J
405 REM LOOP MOVES BOX DOWN
406 REM
410 GO TO 205
415 REM COMPLETE LOOP MOVES BOX IN A SQUARE PATH
416 REM PROGRAM CAN BE EXITED BY CTRL/C
520 ENO

READY

RUNNH
tC
tC

.REE

READY
NOTE

Because of the algorithm used for
evaluating string expressions (such as
the name of the subroutine in a CALL
statement), the time that elapses
between execution of CALL statements may
vary. Specifically, when free storage
fills with strings, storage is recovered
by the deletion of strings that will not
be needed. When a display contains a
moving object, the object will stop
moving briefly during this operation.

J-26

\
\ ,.,. _ __,

Alternatively it may be desirable to alter only one point in a
displayed figure, a call to FPUT should be made. The form of the call
is:

CALL "FPUT" (A(i),b)

This call will change the i element in array A to the value of b
scaled and will then compensate A (i+2) to keep the following points
in the figure in the same location. The call

CALL "FPUT" (A(3),100)

is equivalent in its effect to the following series of AGET and APUT
calls

CALL "AGET" (A (3), Y)
CALL "AGET" (A(S),Z)
CALL "APUT" (A(3),100)
CALL "APUT" (A(S),(Z+Y-100))

If there is no A(i+2) a call to FPUT (a(i),b) is equivalent to a call
to APUT (a(i),b).

Example

This example demonstrates the FIGR, APUT, and FPUT instructions.
LISTNH
100 DIM A<7),BC7),CC7),D(7)
110 CALL "I NIT"
120 AC0)=100\A(l)=0
130 A(2)=0\A(3>=100
140 A(4)=-100\A(5)=0
150 AC6)=0\A(7>=-100
160 REM THIS HAS FILLED ARRAY A(7)
165 REM
170 FOR I=0 TO 7
180 B(I)=ACI)\C(I)=ACI)\DCI>=ACI)
190 NEXT I\REM THIS HAS FILLED C(7),D(7),AND BC7>
195 REM
200 CALL "APNT"c100.,500 .. 0.,-5)
210 CALL "FIGR"CA>
215 CALL "APNT"<l00,450.,0.,-5)
216 CALL "TEXT" C "ARRAY A">
217 REM CREATES DISPLAY OF ARRAY A
218 REM ARRAY A IS LEFT UNCHANGED
219 REM
220 CALL "APNT"C400.,500.,0.,-5)
230 CALL "FIGR"
235 CALL "APNT"(400.1450.,0,-5)
236 CALL "TEXT"("ARRAY B">
237 REM CREATES DISPLAY OF ARRAY B
238 REM
240 CALL "APNT"<l00,200,0,-5>
250 CALL "FIGR"CC)
255 CALL "APNT"Cl00,150.,0,-5)
256 CALL "TEXT"C"ARRAY C">
257 REM CREATES DISPLAY OF ARRAY C
258 REM
260 CALL "APNT"C400,200.,0,-5>
270 CALL "FI GR" CD)
275 CALL "APNT"C400, 150.,0,-5)
276 CALL "TEXT" C "ARRAY D">

J-27

277 REM CREATES DISPLAY OF ARRAY D
278 REM
300 CALL "APUT"CBC0), 200)
305 REM SINGLE APUT ON ARRAY B
306 REM
310 CALL "APUT"CCC0),200>
320 CALL "APUT"CCC2>,-100)
325 REM TWO APUT'S ON ARRAY C
326 REM
330 CALL "FPUT"CDC0>,200)
335 REM SINGLE FPUT ON ARRAY D
340 REM C AND D CLEFT BOTTOM AND RIGHT BOTTOM) SHOULD BE SAME
400 PRINT "INPUT ANY NUMBER TO EXIT FROM PROGRAM";
410 INPUT X
420 CALL "I NIT"
430 END

READY

RUNNH
INPUT ANY NUMBER TO EXIT FROM PROGRAM?l0

READY

Note that figure arrays only use an
starting at a subscript of zeroi
will be odd (as in the above example)

DIM A(7)

even number of array elements
hence the dimension of the array

All scaling is done automatically and in the above example

CALL "FPUT"(A(6),B)

CALL "FPUT"(A(7),B)

will act exactly like the corresponding "APUT" calls since there are
no further points (X,Y-pairs) in the array.

J-28

r

J.2.9 Timing Routines (TIME,TIMR)

Many graphic routines require the use of the real time clock
especially when pictures must be on the screen for a certain number of
seconds and then moved or erased.

The user may set a count-down timer to a value of z ticks by

CALL "TIME" (z)

error message will be
(cycles per second), there

set the clock to count down

If z is negative or equal to zero an ?ARG
printed. If the line current is 60Hz.
will be 60 ticks per second. Therefore to
for one minute the CALL to TIME would be

CALL "TIME"(60*60)

The timer will operate independently of, as well as compatibly with,
any other routine which uses the real time clock.

NOTE

Once the timer has been set it will
continue to count down until it reaches
zero. It will continue to count down
even if BASIC is exited and another
program is being used. When the timer
reaches zero it will output an interrupt
to BASIC with GT support. This may
cause the computer to halt if BASIC with
GT support is no longer in core. To
avoid this possibility, if the timer has
been set and may still be running make
the following CALL while still in BASIC:

CALL "TIME" (1)

The timer will count down to zero and then remain zero. Its value at
any time may be obtained by

CALL "TIMR"(E)

and the current value will be returned in the variable E.

If the
real-time
o.

NOTE

hardware does not include a
clock TIMR will always return

J-29

EXAMPLE

Put a subpicture (with tag 2) on the screen and then erase it 15
seconds later.

5 CALL "I~IT"
10 CALL "SUBP"C2)
11 REM - DEFINE SUBP 2 HERE
12 REM •
13 REM •
14 REM •
120 CALL "ESUB"
121 REM - ESUB PUTS SUBPlCTURE 2 ON THE SCREEN
130 CALL "TIME"Cl5*60)
131 REM - 15*60 TICKS@ 60 TICKS/SEC = 15 SECONDS
140 CALL "TIMR" < E)
150 IF E<>0 THEN 140
160 CALL "ERAS"C2)
170 END

J.2.10 Display Buffer Condensing, Storage, and Retrieval (DSAV,RSTR)

After the execution of a portion of a graphics program the display
buffer may become filled with subpictures that are no longer needed
(i.e., they have been erased) or it may become desirable to unlock a
graphic display array to allow new values to be input without using
the APUT or FPUT calls. A call to DSAV will compact the display
buffer by eliminating the code for erased subpictures and the
references to graphic arrays. The data in the graphic arrays will be
lost and should be saved (if desired) before the call the DSAV. The
form of the call is

CALL "DSAV"[(file)]

where file may be:

a string variable

a literal string in the form
"[dev:] filnam [.ext]"

If no file is specified, then the display buffer is condensed and the
graphic arrays are unlocked and the program continues. The device can
only be DECtape or disk. The default device is "DK:", the system
device. The default extension is ".DPY". If the file is specified in
the correct format then one of the following messages is printed on
the user terminal.

Message

SAVE COMPLETED

FILE ALREADY EXISTS

October, 1974

Meaning

File has been stored.

File with Sal!le name already exists on device
specified. Original file is left unchanged,
no storage of new file.

J-30

./

... __ ...,,

\._.,,

Message

?DEV ERR - C

NER - C

Meaning

The device specified is illegal or read-only
(only disk or DECtape are legal devices), an
error has been detected while writing the
file, or no RT-11 device handler exists for
the device.

There is not enough free space in memory to
load the device handler.

After one of these messages is printed the execution of the program
continues.

Saved files may be called in from the disk or DECtape by a call to
RSTR. A file may be restored into either an empty buffer, a non-empty
buffer, or at the start of the program before a buffer has been
allocated. If there is no buffer, one will be created by an implicit
call to DFIX. Otherwise the restored file will be placed at the first
free location in the display buffer. The form of the call is

CALL "RSTR" (file)

After the call to RSTR one of the following error messages may be
printed.

Message Meaning

SAVE FILE NOT FOUND No file of specified name exists on specified
device.

NOT ENOUGH DISPLAY BUFFER FOR RESTORE
Restored code will not fit into free area of
display buffer. Buffer returned to state
before the call to RSTR.

If no error message is printed, the restore has been successful.
After the printing of an error message or after the restore is
completed, execution of the program continues. To correct a program
that has insufficient free buffer area, the call to RSTR may be
preceded by a call to DSAV to condense the present buffer or a call to
DFIX at the beginning of the program to expand the area of core used
by the display buffer.

This feature allows several programs to create pictures and another
program to use them without the overhead of the code required to
create them. An application of this feature is the creation of a
picture library. Subpictures are created (and turned off) and then
saved. When the file is restored, those subpictures may be either
turned on or copied with the two parameter subpicture calls. In this
way, for example, a library of electronic components could be built
and called in and used when needed without having to actually redraw
them.

NOTE

The file version of the "DSAV" routine
as well as the "RSTR" routine are only
supported in BASIC/RTll.

When the display file contains data and a file is restored at the end
of the current data, the tags that are in the original buffer may
duplicate those in the restored file. This means that any reference

October, 1974 J-31

to a given tag will always apply to the first instance of that tag!
This situation should be avoided by the careful numbering of
subpictures. However, if two subpictures do have the same tag, the
original subpicture can be copied wi th a new tag (in the same location
if desired) and then erased. Then the restored subpicture will be
accessible by its tag and the original subpicture will be accessible
by its new tag.

The display processor treats the restored file as if the code required
to create it had been entered at that point. Specifically, after the
call to RSTR all display parameters (1, i, f, t, s and p) have the
values they were assigned in the program that created the restored
file.

EXAMPLE

70 R~~ THIS PROGRAM RESTORES A DISPLAY FILE
75 REM AND COPIES SUBPICTURES AT LIGHT PEN HITS
80 X=200\Y=200
90 CALL "!NIT"
95 PRINT "WHAT FILE DO YOU WANT RESTORED";
100 INPUT A$
105 PRI NT "WHAT IS THE HIGHEST NUMBERED SUBPICTURE";
106 I NPUT N
107 Z=N+ 1
110 CALL "RSTR"(A$)
120 CALL "TRAK" CX, Y)
121 PRINT "POINT THE LIGHT PEN WHERE A SUBPICTURE ";
122 PRINT "SHOULD BE COPIED. "
123 PRINT "INPUT THE TAG OF SUBPICTURE TO BE COPIED•"
124 PRINT "MOVE THE TRACKING OBJECT AND INPUT THE NEXT TAG."
125 PRINT "IF TRAK HAS NOT MOVED SUBPICTURE ialILL BE"
126 PRINT "CREATED I MMEDIATELY AFTER PREVIOUS ONE."
127 PRINT "INPUT -1 TO ERAS TRAK AND EXIT."
130 INPUT A
140 IF A=-lGO TO 500
150 IF A<lGO TO 130
160 IF A>NGO TO 130
16~ IF X<>Xl THEN 200
170 IF Y<>Yl THEN 200
171 Z=Z+l
180 GO TO 210
200 CALL "APNT"<X,Y)
210 CALL "SUBP"<Z,A)
220 Z=Z+l\Xl=X\Yl=Y
230 GO TO 130
500 CALL "ERAS"
510 END

J.3 BUILDING A LOAD MODULE

GT support is provided on 3 object files and 6 MACRO files:

GTNLPS.OBJ

GTB.OBJ
GTC.OBJ

Object module linked when LPS is not also
linked

Main Kernel Module
Overlay Module

J-32

(
\

(

C

PERVEC.MAC
FTBL.MAC
BASINT.MAC
RTINT.MAC
PTSINT.MAC
PERPAR.MAC

Vector Definition Module
Function table
BASIC interface module
Interface module for BASIC/RTll V0l
Interface Module for BASIC/ PTS V0l
Parameter file

Two running versions are also included in the software provided on
DECtape, cassette or disk.

BASGT.SAV
BGTLPS.SAV

Non-overlaid version of BASIC with GT support
Non-overlaying version of BASIC with GT and
LPS support.

See section J.l for a description of the load modules provided.

To build a load module BASGT.SAV (BASIC with GT support) first
transfer all GT and BASIC files to the system device with PIP or PIPC.
The parameter file PERPAR.MAC is then edited and assembled with
FTBL.MAC, PERVEC.MAC, and the interface module. The three object
modules produced are linked with GTE.OBJ, GTC.OBJ (and GTNLPS if t he
LPS is not also linked) and the BASIC object modules to produce a load
module.

NOTE

All the procedure s for editing
PERPAR.MAC in this section assume that
an unaltered PERPAR.MAC is being used.
It is recommended that a copy of the
original PERPAR.MAC be made and saved
for future use.

The BASINT.MAC interface module should be used with all versions of
BASIC except BASIC/RTll V0l which should have RTINT.MAC used in the
place of BASINT.MAC. If a background routine is also linked with
BASIC, it must be defined in the interface module. See section 8.8.l
of the BASIC/RTll Language Reference Manual for instructions to link a
background routine and GT Support with BASIC.

For the GT routines to be accessible by a BASIC "CALL" statement the
routines must be defined in a System Function Table as described in
Section 8.2 of the BASIC/RTll Language Reference Manual. FTBL.MAC
is a function table in source form. If any user written assembly
language routines (or LPS support) are also linked with BASIC the
routines must be defined in this function table. See section 8.2.1 of
the BASIC/RTll Language Reference Manual for instructions to add
assembly language routine definitions to this function table.

J-33

A listing of PERPAR.MAC follows

.TITLE PERPAR -- PERIPHERAL SUPPORT PACKAGE PARAMETER MODULE.

; DEC-11-LBPAA-A-LA
;
; COPYRIGHT CC> 1974
;

BASIC KERNEL V02-01

J DIGITAL EQUIPMENT CORPORATION
; MAYNARD, MASSACHUSETTS 01754 . ,
J THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO
; CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED
; AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.
J DEC ASSUMES NO RESPONSIBILITY FOR ANY ERRORS THAT
; MAY APPEAR IN THIS DOCUMENT.
;
; THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A
; LICENSE FOR USE ON A SINGLE COMPUTER SYSTEM AND
; CAN BE COPIED (WITH INCLUSION OF DEC'S COPYRIGHT
; NOTICE> ONLY FOR USE IN SUCH SYSTEM, EXCEPT AS MAY
; OTHERWISE BE PROVIDED IN WRITING BY DEC • . ,
; DEC ASSUMES NO RESPONSIBILITY FOR THE USE
J OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT
; WHICH IS NOT SUPPLIED BY DEC.

; THE CONDITIONALS CONTAINED IN THIS MODULE AFFECT THE ASSEMBLY
; OF THE FUNCTION TABLE MODULE "FTBL.MAC"•
; TO OBTAIN THE DESIRED CONDITIONAL DEFINITIONCS),
; REMOVE (USING AN EDITOR> THE
; SEMI-COLON APPEARING BEFORE THE CONDITIONAL.
J$DISK=0 JDEFINE FOR RT-11

• IFNDF $DI SK
$STRNG=0 JOO NOT DEFINE FOR PTS BASIC WITHOUT

;STRINGS,- DEFINED FOR PTS V01 WITH STRINGS
.ENDC

; $LPS=0

; $V=0
• IFDF $LPS

. , .
>

; . , . ,

$ADC=0
$CLK=0
$DI0=0
$DIS=0

. , . ,
; $VT 1 1 =0 . ,
;

.ENDC

• IFDF
$CLOCK=0

•ENDC

.EQT

; $LPS

$VT 11

. ,

; DEFINE FOR LP S

JDEFINE FOR LPS WITH VECTORS STARTING
; AT 300• DEFAULT SETTING IS VECTORS AT
; 340• SET $V = ANY OTHER DISPLACEMENT IF
; VECTORS START AT DISPLACEMENTS
; OTHER THAN 0 OR 40 FROM
; VECTOR 300

JINCLUDE AID ROUTINES.
JINCLUDE CLOCK ROUTINES.
; INCLUDE DIGITAL IO ROUTINES
JINCLUDE DISPLAY ROUTINES.

JFOR GT40 CGT44)

; FOR SYSTEM CLOCK CKWl lL)

J-34

(
\

BASIC with GT support and no LPS support

The instructions for
linking BASIC with
follow:

editing
GT and

PERPAR.MAC and then assembling and
no LPS support in the RT-11 environment

® represents the ALTMODE key

.R EDIT
*EBPERPAR.MAC@R@:ID
*F; $D1 SK=0@0AD @_s)
*F; $VT 1 1 =0@0AD@'$)
*EX$$

.R MACRO
*FTBL=PERPAR,FTBL
ERRORS DETECTED: 0
FREE CORE: 15373. WORDS

*PERVEC=PERPAR,PERVEC
ERRORS DETECTED: 0
FREE CORE: 15480• WORDS

*RTINT=PERPAR,RTINT
ERRORS DETECTED: 0
FREE CORE: 15496. WORDS

.R PIP
*PERPAR.MAC=PERPAR.BAK/R
*'c
.R LINK
*BASGT,BASGT=BASICR,FPMP,FTBL,PERVEC,RTINT/B:4~0/T/C
TRANSFER ADDRESS =
GO
*GTNLPS,GTB/C
*BASICE/O:1/C
*BASICX/O: 1/C
*GTC/O: 1/C
*BASICH/O:2

Or a core resident version may be linked to increase the execution
speed. In that case, the following sequence is suggested:

.R LINK
*BASGT,BASGT=BASICR,FPMP,BASICE,BASlCX/8:400/C
*FTBL,PERVEC,RTlNT/C
*GTNLPS,GTC,GTB,BASICH

The core resident version will execute more quickly than the overlaid
version and is recommended for DECtape systems.

J-35

BASIC with GT and LPS support

To build a load module including both GT and LPS support (with all the
optional modules) the following instructions should be given to the
RT-11 editor, assembler, and linker •

• R EDIT
*EBPERPAR.MAC~R~
*Fl$DISK=~0AD@.ID
*FS $LPS=~0AD(S@
*F;$VT11=@0A~
*EX~

.R MACRO
*FTBL=PERPAR,FTBL
ERRORS DETECTED: 0
FREE CORE: 15273• WORDS

*PERVEC=PERPAR,PERVEC
ERRORS DETECTED: 0
FREE COREi 15383. WORDS

*RTINT=PERPAR,RTINT
ERRORS DETECTED: 0
FREE CORE: 15472. WORDS

.R PIP
*PERPAR.MAC=PERPAR.BAK/R
*tC
.R LINK
*BGTLPS,BGTLPS=BASICR,FPMP,FTBL,PERVEC,RTINT/B:400/T/C
TRANSFER ADDRESS=
GO
*LPS0,LPS!,LPS2,LPS3,LPS4/C
*GTB/C
*BASICE/0: 1/C
*BASICX/0: 1/C
*GTC/0: 1/C
*BASICH/0:2

or for a nonoverlaying version

.R LINK
*BGTLPS,BGTLPS=BASICR,FPMP,BASICE,BASICX/B:400/C
*FTBL,PERVEC,RTINT/C
*LPS0,LPSl,LPS2,LPS3,LPS4/C
*GTC,GTB,BASICH

J-36

(

(

J.3.1 Assembling GT Sources

BASIC GT support may also be purchased in source form. The following
files are provided in the source kit:

GTB.MAC
GTC.MAC
PERVEC.MAC
FTBL.MAC
BASINT.MAC
RTINT.MAC
PTSINT.MAC
PERPAR.MAC
GTNLPS.MAC

FTBL.MAC is the function table for the GT support functions. It will
always be provided in source form and may be extended by the careful
addition of the user's own functions as described in section 8.1.1 of
the BASIC/RTll Language Reference Manual.

GTB.MAC is the main module containing the majority of code of the GT
support functions.

GTC.MAC is a
co-existent
non-overlaid
data space.

module that is normally linked into BASIC as an overlay
with BASICE and BASICX. However it may be linked in a
version at the expense of core for the user's program and

PERVEC.MAC is the vector definition module. If the hardware
configuration is non-standard the address of the graphic vector should
be changed in the source. PERVEC.MAC is listed at the end of section
I.8.1.

BASINT.MAC is the interface module that should be used with all
versions of BASIC except BASIC/RTll V0l and BASIC/PTS V0l. The
interface module for these versions should be RTINT.MAC and PTSINT.MAC
respectively.

PERPAR.MAC is a parameter file that must be edited for assembling with
all the remaining files. The user must edit the parameter file,
PERPAR.MAC, that is used to conditionally assemble the remaining files
according to the user's special requirements. Some of the parameters
that may be defined are:

$VT11

$DISK

$LONGER

$CRASH

$CLOCK

Always define

Define to assemble the RT-11 version.

Define to give longer GT error messages.

Define to cause a halt with an ?AOR error message
rather than change data that is too large for the
display instructions to use. Otherwise data will
be transformed into the nearest legitimate value.

Always define even when hardware does not include
a real-time clock.

$LPS Always define when assembling GTB and GTC.

$DEPTH Define to change the default depth of nesting of
subpictures. If not defined here, the default is
10 (decimal).

J-37

PERPAR.MAC is listed
EDIT program. To
sources to duplicate
Monitor instructions

in the preceding section and is edited by the
assemble the GTB.MAC, GTC.MAC, and GTNLPS.MAC
the object modules provided, the following RT-11
should be typed:

@ represents the ALTMODE key

.R EDIT
*EBPERPAR.MAC$R(,$1$)
*F1$DISK=0!$l0A~
*r1 $LPS=0~AI1.$©
*r1$VT11=~0A~
*~

.R MACRO
*GTB=PERPARjGTB
ERRORS DETECTED: 0
FREE CORE: 13646. WORDS

*GTC=PERPARj GTC
ERRORS DETECTED: 0
FREE CORE: 13965. WORDS

*GTNLPS=GTNLPS
ERRORS DETECTED: 0
FREE CORE: 15227• WORDS

.R PIP
*PERPAR.MAC=PERPAR.BAK/R
*tC

Building a load module may now be accomplished by following the
instructions given in the preceding section.

GTB.MAC and GTC.MAC may have the optional $LONGER,$CRASH, and $DEPTH
parameters defined in PERPAR.MAC. For example to create a BASIC with
GT support for RT-11 with longer GT error messages, halting after
error messages, and a Depth of nesting of 17(0ctal) (decimal=lS)
allowed, the following instructions should be given to the RT-11
monitor •

• R EDIT
*EBPERPAR.MA~~
*I$LONGER=0
$CRASH=0
$DEPTH=!?
(S$)
*F1$DISK=~0A~
*r1 $LPS=0~AIX§$)
*F;$VTll=~AI$
*EX~

.R M.ACRO
*GTB=PERP.AR.,GTB
ERRORS DETECTED: 0
FREE CORE: 13534. WORDS

J-38

*GTC=PERPAR.,GTC
ERRORS DETECTED: 0
FREE CORE: 13953. WORDS

*GTNLPS=GTNLPS
ERRORS DETECTED: 0
FREE CORE: 15227 • WORDS

.R PIP
*PERPAR.MAC=PERPAR.BAK/R
*'C

These GTB and GTC object modules may be linked with FTBL, PERVEC,
RTINT, BASIC, and LPS object modules as described in the previous
section. The PERPAR.MAC editing instructions should also enable the
appropriate LPS parameters when they will be linked and the PERPAR.MAC
produced may also be used to assemble FTBL, PERVEC, and RTINT.

J.3.2 Technical Description of Display File Management

The following technical information should be read before any
user-written assembly language routines alter the graphic files or
before the sources of GT are altered.

1. Overall Structure

a. Root portion

i) Tracking object subpicture (with tag -1)
ii) Default conditionsi i.e., beam at (O.O) etc.

iii) A display jump to the user space

b. User space

i)
ii)

iii)

iv)

User data starts at address in global ACTST
Data continues through address in global ACTEND
A display jump and address of root code is stored in
the two words ending at ACTEND
The top of the display buffer is the address in
global DCRASH

2. Subpictures

a. Call consists of 5 words:

i)
ii)

iii)
iv)
v)

A display stop (code:173400)
Address of the rest of the file
Address of the subpicture
The tag of the subpicture
The pointer to the next tag or zero if the last
subpicture.

b. Header of the subpicture consists of one spare word used
in the SAVE routine. The address in 2a-ii points to the
next word.

c. The end of a subpicture is given by 2 words:

i) A display stop
ii) A zero word

d. Subpictures are turned off and on by interchanging the
display stop of 2a-i by a display jump respectively.

e. When subpictures are erased:

i) The display stop of 2a-i is replaced by a display
jump.

ii) The tag of the subpicture and the tags of any
sub-pictures contained in it are deleted fra:n the
linked list.

f. The first subpicture tag pointer is located at address
global TAG1+2.

3. Display stop handler

Assume DPU interrupts with the address X in the display PC.

a. Call to subpicture if the contents of Xis greater than
X+2. In this case X+2 is stored in a runtime stack (the
subpicture tag is at X+4). The address in X (see 2a-iii
above) is moved to the DPC to start the display.

b. Addition to display file if the contents
than X+2. This condition arises when the
ACTEND-2 is replaced by a display stop.
inserted and :the display is started at
the root code.

of X is less
display jump at
The words are

its beginning in

c. End of a subpicture if contents of Xis zero. The top
entry in the runtime stack is popped off into RO and the
display is started at the address contained in R0-2.

4. Light Pen Handler

a. Checks the runtime stack to see if the hit occurred in a
subpicture.

b. If a hit occurred in the tracking object, move the
object's center to new coordinates weighted by 3 times
the old X (Y) plus the new X (respectively Y) divided by
4. If the tracking object is on the edge, move it to the
center. Continue at 4d.

c. If a hit occurred in a subpicture, store its tag,
otherwise store zero unless a previous hit has not been
queried, in which case, go to 4e.

d. Unscale to user coordinates and if the hit was in the
tracking objecta update the variables passed in the call
to the TRAX routine.

e. Resume the display and exit.

J-40

,.,.. · ·

S. Display Time-out

a. Reset the runtime stack and restart the display.

6. Calls to XGRA, YGRA, FIGR.

a. The following code is generated for XGRA and YGRA:

i) Set graphic mode to XGRA or YGRA
ii) Load Status Register B with the graphplot

increment.
iii) A display jump
iv) Address of the first word of A(O) where the

screen-scaled array data starts.
v) The actual first subscript of the array. Stored as

negative if an LPS array.

b. The display jump at the "end" of the array points to the
word following 6a-v.

c. For FIGR. 6a-i and 6a-ii are replaced by a single word
to set the graphic mode to long vector.

7. File structure as a "Saved File"

a. The saved file has no references to "GRAPH" arrays since
restoring the file into a program without such arrays is
meaningless.

b. The file has a total of n+2 words where the first word is
"n" and the second word is a relative offset from the
next word to the first subpicture tag if there is one;
else it is zero.

c. The file is stored entirely in relocatable form relative
to the third word of the file. Any restoration by the
user with his own routines may result in the storage of
meaningless information unless care is taken to locate all
the addresses properly.

J-41

(

(

-...__,,

Arithmetic,
Functions, 6-1
Operations, 2-4

ASC Function, 6-15
Assembly,

Instructions, F-1
Language routines, 8-1, 8-3

Assignment Statement, 5-2
ATN Function, 6-2

Background Subroutine, 8-15
BIN Function, 6-9
BOMB system routine, ·8-7
Buffers,

I/O, 5-22

CALL Statement, 8-1
CHAIN Statement, 5-20
CHR Function, 6-15
CLEAR command, 7-6
CLOSE Statement, 5-25
Comma usage, 5-6
Command summary, C-3
Commands, Key, 7-1
Concatenation, 3-2
Conditional Transfer, 5-14
Core map, G-1
COS Function, 6-2
CTRL/C Command, 1-2

DAT Function, 6-15
DATA Statement, 5-10
Debugging, Program, 4-1
Demonstration programs,

10-1
Dialogue, 1-1
Dimension Statement, 5-3

END Statement, 5-20
ERRARG system routine, 8-7
Error message summary, E-1
Error messages, 9-1
ERRPDL system routine, 8-7
ERRSYN system routine, 8-7
EVAL system routine, 8-7
EXP Function, 6-4
Exponential format, 2-1
Expressions, 2-4

File control, 5-21
Files,

sequential, 5-21
Virtual memory, 5-21

Floating point format, 2-1
FOR loops, nested, 5-17
FOR Statement, 5-15
FPMP routines, 8-9
Function arguments, 6-1
Function selection, 1-1
Function summary, C-4

October, 1974

INDEX

X-1

Functions
ABS, 6-6
ASC, 6-15
ATN, 6-2
BIN, 6-9
CHR, 6-15
cos, 6-2
DAT, 6-15
EXP, 6-4
INT, 6-6
LEN, 6-15
LOG, 6-4
OCT, 6-9
POS, 6-15
RND, 6-7
SEG, 6-15
SGN, 6-1
SIN, 6-2
SQR, 6-3
STR, 6-16
TAB, 6-1
TRM, 6-16
VAL, 6-16

Functions,
Arithmetic, 6-1
Optional, 1-2
String, 6-15
User defined, 6-10
User defined string, 6-16

Functions system routines,
Sample user, 8-3

GETVAR system routine, 8-8
GO TO Statement, 5-13
GOSUB nesting, 5-19
GOSUB Statement, 5-18

I/O Buffers, 5-22
IF END Statement, 5-14
IF GO TO Statement, 5-14
IF THEN Statement, 5-14
Inunediate mode restrictions,

4-2
Immediate statement

execution, 4-1
Input device selection, 5-9
INPUT Statement, 5-8
Input/Output Statements,

5-4
INT Function, 6-6
INT system routine, 8-9
Integer Numbers, 2-1

Key Commands, 7-1

Leading and Trailing Zeroes,
2-1

LEN Function, 6-15
LET Statement, 5-2
Linking instructions, F-3

LIST command, 7-3
LISTNH command, 7-3
Load procedure, A-1
Loading BASIC, 1-1
LOG Function, 6-4
Loop, Program, 5-15
LPS support, I-1

MAKEST system routine, 8-9
Monitor,

Return to the, 1-2
MSG system routine, 8-8
Multiple statements,

immediate mode, 4-2

Nested FOR loops, 5-17
NEW command, 7-7
NEXT Statement, 5-15
Numbers, 8-11

Integer, 2-1
Real, 2-1

NUMSGN system routine, 8-8

OCT Function, 6-9
OLD command, 7-3
OPEN Statement, 5-22
Optional Functions, 1-2
Output device selection,

5-7
OVERLAY Statement, 5-26

POS Function, 6-15
Power off, 1-3
PRINT Statement, 5-4
Printing Strings, 5-5
Printing Variables, 5-4
Program,

Control, 5-13
Debugging, 4-1 .
Loop, 5-15
Termination, 5-20

RANDOMIZE Statement, 5-12
READ Statement, 5-10
Real Numbers, 2-1
Relational operations,

strings, 3-2
Relational operators, 2-6
REMARK Statement, 5-1
RENAME corranand, 7-7
REPLACE command, 7-5
RESTORE, 5-11
Restrictions,

Immediate mode, 4-2
RETURN Statement, 5-18
Return to the Monitor, 1-2
RND Function, 6-7
RUN command, 7-6
RUNNH command, 7-6

X-2

Sample user functions
system routines; 8-3

SAVE command, 7-4
SCRATCH commands, 7-2
SEG Function, 6-15
Semicolon (;) usage, 5-6
Sequential Files, 5-21
SGN Function, 6-1
SIN Function, 6-2
SQR Function, 6-3
Statement, 5-11

Assignment, 5-2
CALL, 8-1
CHAIN, 5-20
CLOSE, 5-25
DATA, 5-10
Dimension, 5-3
END, 5-20
FOR, 5-15
GO TO, 5-13
GOSUB, 5-18
IF END, 5-14
IF GO TO, 5-14
IF THEN, 5-14
Immediate execution, 4-1
INPUT, 5-8
LET, 5-2
NEXT, 5-15
OPEN, 5-22
OVERLAY, 5-26
PRINT, 5-4
RANDOMIZE, 5-12
READ, 5-10
REMARK, 5-1
RETURN , 5-18
STOP, 5-20
Summary, c-1

Statements,
Input/Output, 5-4

STEP values, 5-16
STOP Statement, 5-20
STOSVAR system routine, 8-8
STOVAR system routine, 8-8
STR Function, 6-16
String functions, 6-15

User defined, 6-16
String operations, 3-2
String Variables,

Subscripted, 3-1
Strings, 3-1, 8-11

Printing, 5-5
Subroutine,

Background, 8-15
Subroutine execution, 5-18
Subscripted String

Variables, 3-1
Subscripted Variables, 2-2
Symbol table format, 8-12
System function table, 8-2
System routines,

Sample user functions, 8-3

(

TAB Function, 6-1

Termination,
Program, 5-20

Trailing Zeroes,
Leading and, 2-1

Transfer,
Conditional, 5-14
Unconditional, 5-13

Translated code, 8-13
TRM Function, 6-16

Unconditional Transfer,
5-13

User defined functions,
6-10

User defined string
functions, 6-16

VAL Function, 6-16
Variables, 2-2

Printing, 5-4
Subscripted, 2-2
Subscripted String, 3-1

Virtual memory Files, 5-21

Zeroes,
Leading and Trailing, 2-1

X-3

<.:

READER'S COMMENTS

BASIC/RTll Language
Reference Manual
DEC-11-LBACA-D-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

0 Higher-level language programmer

O Occasional programmer (experienced)

0 User with little programming experience

0 Student programmer

O Non-programmer interested in computer concepts and capabilities

Name _____________________ Date ____________ _

Organization _______________________________ _

Street ___________________________________ _

City ______________ state _______ Zip Code _______ _

or
Country

If you require a written reply, please check here. O

---·---·----------Fold Here---

•--· Do Not Tear • Fold Here and Staple ------------·---------------·--------------

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. o. Box F
Maynard, Massachusetts 01754

IRST CLASS

RMIT NO. 33

(NARD, MASS.

------------------- · ------------------
---'

	Cover
	Contents
	Introduction
	RT-11 BASIC Arithmetic
	RT-11 BASIC Strings
	Intermediate Mode Operations
	RT-11 BASIC Statements
	BASIC/RT-11 Functions
	Editing Commands
	Using Assembly Language Routines with BASIC
	Error Messages
	Demonstration Programs
	Bootstrapping the RT-11 System
	ASCII Character Set
	Statements,Commands, Functions
	Reserved for Future Use
	BASIC Error Messages
	Assembling and Linking BASIC
	BASIC Core Map
	Laboratory Peripheral System Support
	GT Graphics Support
	Index
	Reader's Comments

