This document is intended for use by the system manager or system-level programmer responsible for generating and installing RT-11 at the user site. This manual, used with the RT-11 System Release Notes, provides all the information necessary to customize, generate, and exercise the RT-11 monitors and system programs.

RT-11
 System Generation Manual

Order No. AA-5283B-TC

SUPERSESSION/UPDATE INFORMATION: This manual supersedes DEC-11-ORGMB-A-D. OPERATING SYSTEM AND VERSION: RT-11 V03B

To order additional copies of this document contact the Software Distribution Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (C) 1977, 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

```
DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
```

DECsystem-10
DECtape
DIBOL
EDUSYSTEM PHA
FLIP CHIP RSTS
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8

MASSBUS OMNIBUS
OS/8

RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10

			Page
	2.4.2.3	Installing Hardware Magtape Support	2-30
	2.4.2.4	Setting Magtape Parity and Density	2-31
	2.4 .3	Specifying the Number of RFll Platters	2-31
	2.4 .4	Changing RJS03 Support to RJS04 Support	2-32
	2.4 .5	Changing RP02 Support to RP03 Support	2-32
	2.4 .6	Specifying a 50-Cycle Clock Rate	2-33
	2.4 .7	Changing the Location of VTll/VS60	
		Floating Vectors	2-34
	2.4 .8	Customizing the Editor	2-34
	2.4.8.1	Reducing the Size of the Text Window	2-34
	2.4.8.2	Using EDIT on Terminals with Non-standard ESCAPE Code	2-35
	2.4 .9	Setting an Upper Limit on File Size	2-36
	2.4.10	Running RT-11 in Less Memory Than Is Available	2-36
	2.4.11	Modifying the Listing Page Length in MACRO and CREF	2-37
	2.4 .12	Changing the Default Output Device from Line Printer to Terminal	2-38
	2.4 .13	Modifying LINK to Change the Default SYSLIB Device	2-38
	2.4 .14	Extending Directory Size	2-39
	2.4 .15	Building a System for Use With Introduction to RT-11	2-41
	2.4.16	Accessing Nonsystem Disks on Single Disk Systems	2-43
	2.4 .17	Changing the CSR Addresses Used by the FORMAT Utility	2-44
	2.4 .18	Using CAPS-11 to Load Files	2-45
	2.4 .19	BATCH Patches	2-46
	2.5	SIMPLE DEMONSTRATION PACKAGE	2-47
	2.5.1	Running the RT-11 Single-Job Monitor	2-48
	2.5.2	Running the RT-ll Foreground/Background	
		Monitor	2-52
CHAPTER	3	SYSGEN	3-1
	3.1	INTRODUCTION TO SYSGEN	3-1
	3.2	CATEGORIES OF CHOICE	3-1
	3.2 .1	Monitor Services	3-2
	3.2.2	Peripheral Support	3-2
	3.2 .3	Configuration Information	3-3
	3.3	FLOW OF THE SYSGEN PROCESS	3-3
	3.3.1	Planning	3-3
	3.3.2	Execution of the SYSGEN Program	3-3
	3.3 . 3	Assembly and Linking of System	3-4
	3.3 .4	Summary of SYSGEN Process	3-4
	3.4	THE SYSGEN DIALOGUE	3-5
	3.4.1	Question Types and Defaults	3-5
	3.4.2	SYSGEN Dialogue Explanation	3-6
	3.5	SYSGEN ERROR MESSAGES	3-25
	3.6	BUILDING THE SYSTEM	3-26
	3.6 .1	Customizing the SYCND File	3-27
	3.6.1.1	Multi-Terminal Support for United Kingdom	3-27
	3.6.1.2	Non-Standard CSR and Vector Support	3-27
	3.6 .2	Requirements for Building a System	3-27
	3.6.2.1	Necessary Components	3-27

			Page
	3.6.2.2	Size Requirements on Binary Disk	3-28
	3.6 .3	Building the Monitors	3-29
	3.6 .4	Errors When Building the Monitor and	
		Handlers	3-29
	3.6 .5	Building the Handlers	3-30
	3.6 .6	Keeping System Components	3-31
CHAPTER	4	ASSEMBLY AND LINK INSTRUCTIONS FOR SYSTEM	
		PROGRAMS	4-1
	4.1	GENERAL INSTRUCTIONS	4-1
	4.2	BUILDING THE SYSTEM MACRO LIBRARY	4-1
	4.3	BUILDING BATCH	4-2
	4.4	BUILDING PIP	4-2
	4.5	BUILDING DUP	4-2
	4.6	BUILDING DIR	4-3
	4.7	BUILDING EDIT	4-3
	4.8	BUILDING HELP	4-3
	4.9	BUILDING ERRUTL	4-4
	4.10	BUILDING MACRO	4-4
	4.11	BUILDING CREF	4-7
	4.12	BUILDING LINK	4-7
	4.13	BUILDING LIBR	4-8
	4.14	BUILDING FILEX	4-8
	4.15	BUILDING SRCCOM	4-8
	4.16	BUILDING DUMP	4-8
	4.17	BUILDING THE SYSTEM LIBRARY (SYSF4.OBJ)	4-9
	4.18	BUILDING SYE AND PSE	4-10
	4.19	BUILDING SYSGEN	4-11
	4.20	BUILDING PATCH AND PAT	4-11
	4.21	BUILDING ODT	4-11
	4.22	BUILDING THE VTll LIBRARY AND PLOT55	4-11
	4.23	BUILDING FORMAT	4-12
	4.24	BUILDING RESORC	4-12
	4.25	BUILDING SWAP	4-12
	4.26	BUILDING TECO	4-12
APPENDIX	A	EXAMPLE SYSGEN'S	A-1
	A. 1	BASE-LINE RXO1 DISKETTE SJ GENERATION	A-1
	A. 2	RL01, SJ, FB, and XM GENERATION	A-5
	A. 3	DISKETTE SYSGEN PROCEDURE	A-16
APPENDIX	B	SYSGEN SCRIPT LANGUAGE DESCRIPTION	B-1
	B. 1	INTRODUCTION	B-1
	B. 2	COMMAND SYNTAX	B-2
	B. 2.1	Script Variables	B-2
	B. 3	COMMANDS	B-3
	B. 3.1	FILE	B-3
	B. 3.2	NAME	B-3
	B. 3.3	IF, IFN, IFGT	B-3
	B. 3.4	IFT, IFF, IFTF	B-4
	B. 3.5	ENDC	B-5
	B. 3.6	ASK	B-5
	B. 3.7	SET	B-6
	B. 3.8	PRINT	B-7

			Page
	B. 3.9	SUBS	B-7
	B. 3.10	ENDS	B-8
	B. 3.11	EXIT	B-8
	B. 3.12	CALL	B-8
	B. 3.13	DECR	B-8
	B. 4	SCRIPT FILE ERROR MESSAGES	B-9
APPENDIX	C	INSTRUCTIONS FOR LOADING SOFTWARE BOOTSTRAPS	$\mathrm{C}-1$
	C. 1	RKll (RK05) DECPACK BOOTSTRAP LOADER	C-1
	C. 2	TCll DECTAPE BOOTSTRAP LOADER	C-2
	C. 3	RXIl/RXO1 DISKETTE BOOTSTRAP LOADER	C-4
	C. 4	MAGTAPE BOOTSTRAP LOADERS	C-8
	C. 5	RK06 DECPACK BOOTSTRAP LOADER	C-12
APPENDIX	D	RT-11 CONDITIONALS	D-1
INDEX			-1

FIGURES

FIGURE	$3-1$	System Generation Process	$3-4$
	$3-2$	Files Required for System Generation Process	$3-5$
	$B-1$	SYSGEN Program Information Flow	B-1

TABLES

TABLE	1-1	Summary of Monitor Differences	1-4
	1-2	Options Available In Distributed Monitors	1-5
	2-1	RT-ll Software Components	2-3
	2-2	Values for Memory Sizes	2-37
	C-1	RKll Bootstrap Loader	C-2
	C-2	TCll Bootstrap Loader	C-3
	C-3	RXll Bootstrap Loader	C-5
	C-4	TJUl6 Bootstrap Loader	C-8
	C-5	TMll Bootstrap Loader	C-10
	C-6	RK06 Bootstrap Loader	C-13

PREFACE

HOW TO USE THIS MANUAL

This document introduces the RT-ll V03B software kit to users receiving it for the first time. You use this document to create backup copies of your distribution medium, to build a working system if your distribution medium is not the system device, and, if necessary, to use SYSGEN to generate a customized RT-ll monitor.

Chapter 1 explains the contents of the kits. Chapter 2 contains step-by-step instructions for starting the system, creating a working system, and creating a backup copy of the system. Chapter 3 contains instructions on using SYSGEN to generate a customized RT-ll monitor. Chapter 4 describes how to assemble and link system programs.

Before performing any of the procedures described in this manual, read the RT-ll System Release Notes. That document explains all the new features of RT-ll and contains the detailed information that you need before you create a working system. Familiarity with the RT-ll system, as described in the RT-ll System User's Guide, is very helpful.

Once you understand the system, you can build your RT-ll system according to the instructions in Chapter 2. If you have special hardware considerations, or you are building a nonstandard RT-ll system, you should read Chapters 2 and 3 carefully before beginning the build.

If you are a FORTRAN user, you build your FORTRAN system after building the RT-ll system. See the RT-ll FORTRAN IV Installation Guide for instructions. If you are a BASIC-ll user, you build your $\overline{B A S I C}-11$ system after building the RT-ll system. See the BASIC-ll/RT-ll Installation Guide for instructions.

DOCUMENTATION CONVENTIONS

This section describes the symbolic conventions used throughout this manual. Familiarize yourself with these conventions before you continue reading the manual.

1. Examples consist of actual computer output wherever possible. In these examples, user input is underlined where necessary to differentiate it from computer output.
2. Unless the manual indicates otherwise, terminate all commands or command strings with a carriage return. Where necessary, this manual uses the symbol RET to represent a carriage return, Lf to represent a line feed, Gsp for a space, fesc for an ESCAPE or ALTMODE, and tab to represent a tab.
3. To produce several characters in system commands, you must type a combination of keys concurrently. For example, hold down the CTRL key and type C at the same time to produce the CTRL/C character. Key combinations such as this one are documented as © ©TRL/ , (TTRL/O , etc.
4. In descriptions of command syntax, capital letters represent the command name, which you must type. Lower case letters represent a variable for which you must supply a value.
5. The sample terminal dialogue provided in this document contains version numbers where they would normally appear. The version numbers given include xx's in those fields that can vary from installation to installation. The exact contents of these fields are not of interest in the examples in this manual, as long as appropriate digits appear in the area indicated. The same is true for the FREE BLOCKS messages included in device directories.

If you submit an SPR to DIGITAL, you must include the complete version number.

RELATED DOCUMENTS

See the RT-ll Documentation Directory for information concerning related documents in the RT-11 library.

CHAPTER 1

OVERVIEW OF THE SOFTWARE KIT

1.1 RT-ll SOFTWARE KIT

The RT-ll binary software kit is available on the following media: RK05 disk, RL0l disk, RX0l and RX02 flexible diskettes, DECtape, 9-track magtape, and RK06 cartridge disk. Each kit contains an RT-ll system, user documentation, and all the materials necessary to build a customized RT-ll system for any valid target system. The components of an RT-ll software kit are inventoried on the checklist attached to the outside of the kit. You should verify the contents of the package against the checklist and report any discrepancies to DIGITAL's Software Distribution Center.

The RT-ll disk and DECtape kits contain "ready-to-run" RT-ll systems; you can mount copies of the masters and bootstrap them directly without modification.

The magtape kit contains an RT-ll magtape that you use to build an RT-ll system on the target system disk; you use a special program (MDUP) to initialize the system disk, copy the requisite files over to the system disk, and start the new system.

For instructions on building a working system from the distribution media see Chapter 2.

In addition to the "ready-to-run" RT-ll system distributed in the software kit, RT-ll software kits also contain all the components necessary to generate a customized RT-ll monitor. Although most users find the ready-to-run systems sufficient to meet their needs, users who want to do so and who have the requisite hardware can generate a custom RT-ll system using RT-ll SYSGEN.

See Chapter 3 for instructions on generating a custom system via SYSGEN.

1.2 DELIVERED MONITORS

Three variations of monitors are distributed in the binary kits. Although all three are not present for all system devices, the common versions are present and you can generate all supported variations for all system devices via SYSGEN. The three distributed RT-ll monitor types are the base-line single-job monitor (BL), the single-job monitor (SJ), and the foreground/background monitor (FB). Table 1-1 summarizes the differences among the RT-ll monitors. The extended memory monitor (XM) and its associated device handlers are not distributed in assembled form. You must perform a SYSGEN to create these files if you require extended memory support.

The monitor swap blocks are located in an external file called SWAP.SYS. This file serves as temporary storage for part of a program currently in memory when KMON, or the USR, or both must swap over the program. When KMON or the USR are no longer needed, the system reads the external swap file, which contains part of the executing program, back into main memory. In previous versions of RT-ll, each monitor file reserved 24 blocks for swapping.

SWAP.SYS file is a necessary part of every RT-ll monitor; it must reside on your system volume along with the RT-ll monitor you choose to use. The external swap file is used in common by all the monitors. Thus, if you store more than one monitor on a particular volume, you need to keep only one copy of SWAP.SYS. Since SWAP.SYS is 24 blocks long, this represents a considerable saving in space on your system volume if you store more than one monitor file there.

1.2.1 The Base-Line Single Job Monitor

The base-line monitor (BL) is a specially generated version of the single-job monitor that has all optional monitor and device functions disabled. It has the minimum residency requirement of any possible RT-ll monitor and is intended for use in very small hardware configurations (8 K words of memory), or in larger configurations where the application requires minimal executive support. The differences between the base-line monitor and the standard single-job monitor are as follows.

Base-line SJ
Device support limited to RK, DX, DT, NL, LP, TT, and PC

No graphic display support

System halts on power failure or system device I/O error

No BATCH support
Minimal memory and system device requirements for monitor

Standard SJ

General device support, with
almost all normal
installed

Supports graphic display

(VTll/VS60) terminal
terminal as ASCII

System prints error message on power failure or system device I/O error

Supports BATCH

Slightly larger memory and system device requirements for monitor

In a very limited hardware configuration or application, the base-line monitor is capable of performing all the system commands and can run most of the utilities. For 12 K or larger systems, however, or for highly interactive applications, you should use the standard single job monitor. The more complete error processing and device support available in the standard single job monitor provide an easier to use and more flexible base. Note that installations that must run MAC8K in an 8 K machine are required to use the base-line monitor for that purpose; MAC8K cannot run under the standard single-job monitor on less than a 12 K machine.

1.2.2 The Single-Job Monitor

The single-job monitor (SJ) is the smallest standard RT-ll executive. It supports all hardware devices (with the exception of multi-terminal support and extended memory support) and runs all system utilities. It runs in any supported configuration with at least 8 K words of memory but cannot make use of more than 28 K words of memory.

The single-job monitor is the best choice for many RT-ll users. It has the fastest response times (at interrupt and keyboard level) and the minimum memory requirements of all the standard RT-ll monitors. If your application involves interactive program development, maximum-throughput real-time data acquisition, or continuous execution of a single end-user application program, the single-job monitor is the best choice.

1.2.3 The Foreground/Background Monitor

The foreground/background monitor (FB) is the smallest RT-ll monitor that supports multiprogramming. It allows you to execute a completely independent foreground job at a higher software priority level than the background while you use the remaining system facilities to support the background. The RT-ll foreground job is not intended for interactive program development, nor is it intended to make RT-ll into a two-user time sharing system. Rather, it best supports a stable, event-driven real-time or I/O application that can execute with a minimum of user interaction while the bulk of the system's business is conducted in the background.

The background in the foreground/background environment appears just like the single-job monitor; all the facilities available to you as an SJ user are available to you as an $F B$ user in the background.

The F m monitor provides you with enhanced facilities above those offered in the SJ monitor. These include:

- The ability to run a foreground job.
- Enhanced terminal service.
- Optional multi-terminal support.
- Extended executive facilities for real-time applications.

The FB monitor requires at least 16 K words of memory and a clock, and cannot use more than 28 K words of memory.

If your application includes the need for a software priority, real-time application to run concurrently with normal system development and data-processing applications, then the FB monitor is the suitable choice. If you do not require concurrent real-time execution, you can conserve system resources by using the $S J$ monitor.

1.2.4 The Extended Memory Monitor

The extended memory monitor (XM) is the largest and most powerful of the RT-ll executives. It has all the facilities of the $F B$ monitor; in addition, it can support up to 128 K words of memory. The extended memory monitor provides a set of directives that allow advanced applications to make use of additional memory above 28 K .

OVERVIEW OF THE SOFTWARE KIT

The XM monitor is significantly larger than the FB monitor, and its requirements that device handlers be resident and that the USR not swap add even more to the monitor memory overhead. If you do not have more than 32 K words of memory, you should use the FB or SJ monitor. Even if you do have more than 32 K words of memory, if your application involves program development or execution of an end-user application that does not make use of extended memory facilities, you should opt for the more frugal $F B$ and $S J$ monitors.

The XM monitor requires 32 K words of memory, a memory management unit (KT1l), and the extended instruction set (EIS) to operate. The XM monitor is not distributed on the RT-ll kit. You must perform a SYSGEN to create this monitor and its device handlers.

Table l-l
Summary of Monitor Differences

	BL	SJ	FB	XM
Approximate Resident Size for RK System	1.8K	2K	4K	```7K (includes resident USR)```
Memory Support	8-28K	8-28K	16-28K	32-128K
Support FG Job	no	no	yes	yes
Enhanced Terminal Service	no	no	yes	yes
Multi-Terminal Support	no	no	optional	optional
```Timer Facilities (.MRKT, .CMKT - including midnight date/time rollover)```	no	optional	yes	yes
BATCH Support	no	optional	optional	optional
VTll/VS60 Support	no	optional	optional	optional
Error Messages On Fatal System Errors	no	optional	yes	yes
Devices Supported	$\begin{aligned} & \text { RK, DX, DT, } \\ & \text { NL, LP, TT, } \\ & \text { PC } \end{aligned}$	all	all	all
Approximate System Disk Requirements (Monitor and SWAP.SYS)	83 blocks	86 blocks	97 blocks	107 blocks

### 1.3 OPTIONS INCLUDED IN DISTRIBUTED MONITORS

The monitors distributed in the RT-ll binary kit were generated to include the most common options for the most common applications. The following information describes in detail which options are enabled and which are disabled in the distributed systems.

All the $B L$ monitors on the distribution kit are identically configured; the only difference among them is the system device on which the monitor runs. The same is true for the $S J$ and $F B$ monitors in the kit.

Most installations should be able to use these distributed monitors as is, thus eliminating the need for a SYSGEN. If minor customization is necessary (for example, RJS04 instead of RJS03, RP03 instead of RPR02 or 50 Hz clock instead of 60 Hz clock), see Chapter 2 for instructions on making these customizations via patches rather than SYSGEN. You should undertake the SYSGEN process only if you require support that is not immediately available or is not available with a customization patch in the distributed system. You must perform a SYSGEN for extended memory support.

Table l-2 lists the options available in the distributed monitors. The table uses the following abbreviations:

STD $=$ Standard in monitor $N / A=$ Not available in monitor no = Disabled; if needed, must be enabled by generating a new system with SYSGEN. Attempted use produces an error.
yes = Available in monitor.

* $=$ Support is present but must be installed with INSTALL command.

Table 1-2
Options Available In Distributed Monitors

Option	BL	SJ	FB
Timer Support   (.MRKT and .CMKT-   including midnight   date/time rollover)	no	no	STD
Error Messages on   System I/O Errors	N/A	yes	STD
Idle Loop Light   Pattern	N/A	N/A	no
Multi-Terminal   Clock Frequency	N/A	N/A	no
Line Clock versus   Programmable Clock	N/A	60Hz	60Hz
Startup Command   File In Bootstrap	yes	Line	Line
Parity Memory	N/A	no	yes

(continued on next page)

Table l-2 (Cont.)
Optional Available In Distributed Monitors

Option	BL	SJ	FB
Error Message on Power Fail	N/A	yes	yes
BATCH	N/A	yes	yes
Escape Sequence Processing in Terminal Service	N/A	no	no
Error Logging	N/A	no	no
RKll/RK05	yes	yes	yes
RLOl	N/A	$\begin{aligned} & \text { yes-2 } \\ & \text { drives } \end{aligned}$	$\begin{aligned} & \text { yes-2 } \\ & \text { drives } \end{aligned}$
RJS03/RJS04	N/A	RJS03	RJS03
RK06/07	N/A	yes	yes
RFll	N/A	$\begin{aligned} & \text { yes-2 } \\ & \text { platters } \end{aligned}$	$\begin{aligned} & \text { yes }-2 \\ & \text { platters } \end{aligned}$
RP11/RPR02/RP03	N/A	RPR0 2	RPR0 2
RX01	yes	yes	yes
RX02	N/A	yes	yes
DECtape	yes	yes	yes
File-Structured Magtape TM11/TUl0/TS03			
TM11/TU10/TS03	N/A	yes-2	yes-2
TJUl6	N/A	yes-2	yes-2   units
Hardware Magtape   TMll/TUl0/TS03   TJUl6	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	$\begin{aligned} & \text { yes* } \\ & \text { yes* } \end{aligned}$	$\begin{aligned} & \text { yes* } \\ & \text { yes* } \end{aligned}$
TAll Cassette Support	N/A	yes*	yes*
VTll/VS60 Graphics as ASCII terminals	N/A	yes-VTll	yes-VTll
Line Printer	yes	yes	yes
High-speed Reader/Punch	yes*	yes*	yes*
CRll Card Reader	N/A	yes*	yes*
Null Handler	yes*	yes*	yes*
Extra Device Slots	0	0	0

## CHAPTER 2

GETTING STARTED WITH RT-ll

### 2.1 CONTENTS OF DISTRIBUTION KITS

All RT-ll binary software kits contain the same system components. For RK05, RLOl, and RK06 cartridge disk kits, all the system files are included on one volume. In the other kits (9-track magtape, DECtape, and diskette) the same files are included, but they are spread across several volumes.

The files in the software kit can be logically grouped into several classes. Those files with the .SYS and. BL file types are the monitor and device handler files. Those with the .SAV file types are the system programs, while the .MAC files are source programs. The remaining miscellaneous files are subcomponents of one of the major utilities or special-purpose files required for system generation or operation. See Table $2-1$ for a description of the functions of all the files in the distribution kit.

## 2.1.l Monitor and Handler Naming Conventions

The monitor and handler files in the RT-ll system follow a rigid naming convention. This convention is important to the system at bootstrap time; the system bootstrap uses a file name search to determine which monitor file to boot and which handler files (and hence which devices) are present on the system.

RT-ll monitor file names are always of the following format:
xxMNYY.SYS
The first two characters (xx) correspond to the two-character device mnemonic for this monitor's system device. Thus the first two characters are DX for an RXll/RXVll RX0l monitor, RK for an RKll/RKV1l RK05 monitor, DY for an RX2ll/RXV2l RX02 monitor, DL for an RLll RL0l monitor, DM for an RK6ll RK06/07 monitor, DT for a TCll TU56 DECtape monitor, or DP for an RPll RP02 monitor. The last two characters (yy) are SJ, FB, or XM depending on whether this monitor is a single job, foreground/background, or extended memory version of the monitor. The middle two characters of any monitor file name are always MN, and the file type of any active monitor is always. SYS.

Thus, RKMNSJ.SYS is an RKll RKO5 single-job monitor; DMMNFB.SYS is an RK06/07 foreground/background monitor; and, DPMNXM.SYS is an RPll RPRO2 extended memory monitor.

Note that nothing prevents you from naming monitor files any name you desire for storage purposes, but only those files conforming to the above conventions are recognized at bootstrap time.

Three files in the RT-ll kit are named xxMNSJ.BL. These files are the base-line single job monitors. Because they are not active in the distribution kits and must be distinguished from the standard single-job monitors, they have a . BL file type. To use a base-line monitor, simply rename the existing xxMNSJ.SYS to another name, rename the base-line monitor file to xxMNSJ.SYS, install the bootstrap with a COPY/BOOT command, and reboot the system.

The RT-ll bootstrap is constructed in such a way that when the volume is booted, the bootstrap always looks for a monitor file that conforms to the system naming conventions. The name of the file that the bootstrap seeks has nothing to do with the current name of the file from which the bootstrap was written with the COPY/BOOT command. Rather, the file name to be sought is built into the file and always conforms to the naming conventions. Thus, if you have an RK05 foreground/background monitor named MYMON.ABC and you use the COPY/BOOT command to install the bootstrap from it (COPY/BOOT MYMON.ABC RK:), the system looks for the file RKMNFB.SYS at bootstrap time. If no such file is present, an error message appears; if another file named RKMNFB.SYS is present, the system bootstraps it instead of MYMON.ABC. For these reasons, DIGITAL recommends that you adopt the following procedures:

1. Use file types (such as . BL, .OLD, .NEW, etc.), rather than file names, to distinguish among various monitors on your disk. Always use file names that conform to the system naming conventions.
2. When switching monitors, perform the operations in the following order:
a. Rename the monitor currently in use to another name (if you want to preserve it).
b. Rename the monitor desired to xxMNYy.SYS (if necessary).
c. Install the bootstrap with the COPY/BOOT command (if you desire permanent change of the bootstrap).
d. Boot the new monitor.

By renaming the monitor file before installing the bootstrap, you avoid confusion as to which monitor file will be booted.

For example, to switch from the standard diskette single-job monitor to the base-line diskette single-job monitor, use the following series of commands.

```
WENAME/SYSTEM MXMNSJ.SYS RXMNSJ.STM RET
-FENAME/GYSTEM MXMNSJ. BL WXMNSJ.GYS RET
.COFY/EOOT OXMNS.l.SYS nX:*** RET
- BOOT IX: RET
```

RT-ll handler files are named according to the following convention:

```
YY.SYS and yyX.SYS
```

where $y y$ is the two-character device mnemonic corresponding to the device for which the file serves as a handler. The SJ and FB monitors use the yy.SYS form of handler; the XM monitor uses the yyX.SYS form. Thus, RK.SYS is an RKll handler for the $S J$ and $F B$ monitors and LPX.SYS is a line printer handler for the $X M$ monitor. The XM handlers are not distributed with RT-ll. You must perform a system generation to select extended memory support.

Note that all three monitors (SJ, FB, XM) and both sets of handers can reside on the same volume without conflict.

In the distribution kits, the file-structured magtape handlers are properly named as described above. The hardware handlers are provided with names of the form:
yyHD.SYS
If you need the hardware handlers rather than the file-structured handlers, you must rename and install them before use (see Section 2.4.2).

### 2.1.2 Software Components

The Table 2-1 identifies each file in the RT-ll binary kit.

Table 2-1
RT-ll Software Components

Name	Description
-SWAP.SYS	External monitor swap blocks
RKMNSJ.SYS	RK05 single-job monitor
RKMNFB.SYS	RK05 foreground/background monitor
RKMNSJ.BL	RK05 base-line single-job monitor
- DLMNSJ.SYS	RL0l single-job monitor
- DLMNFB.SYS	RL0l foreground/background monitor
DMMNSJ.SYS	RK06/07 single-job monitor
DMMNFB.SYS	RK06/07 foreground/background monitor
DXMNSJ.SYS	RX01 single-job monitor
DXMNFB.SYS	RX01 foreground/background monitor
DXMNSJ.BL	RX0l base-line single-job monitor
DYMNSJ.SYS	RX02 single-job monitor
DYMNFB.SYS	RX02 foreground/background monitor
DTMNSJ.SYS	DECtape single-job monitor
DTMNFB.SYS	DECtape foreground/background monitor
DTMNSJ.BL	DECtape base-line single-job monitor
DSMNSJ.SYS	RJS03/4 single-job monitor
DSMNFB.SYS	RJS03/4 foreground/background monitor
DPMNSJ.SYS	RPll single-job monitor
DPMNFB.SYS	RPll foreground/background monitor
RFMNSJ.SYS	RFll single-job monitor
RFMNFB.SYS	RFll foreground/background monitor
- TT.SYS	Terminal handler for SJ monitors
DT.SYS	SJ, FB DECtape handler
DP.SYS	SJ, FB RPll/RPR02/RP03 handler
-DX.SYS	SJ, FB RXll/RXOl diskette handler
DY.SYS	SJ, FB RX2ll/RX02 diskette handler
RF.SYS	SJ, FB RFll handler
RK.SYS	SJ, FB RKll/RK05 handler
- DL.SYS	SJ, FB RLll/RL0l handler
DM.SYS	SJ, FB RK6ll/RK06/07 handler
DS.SYS	SJ, FB RJS03/4 handler
- LP.SYS	SJ, FB line printer handler
CR.SYS	SJ, FB card reader handler
MT.SYS	SJ, FB file-structured TMll handler

## GETTING STARTED WITH RT-ll

Table 2-1 (Cont.)
RT-ll Software Components

Name	Description
MTHD.SYS	SJ, FB hardware TMll handler
MM.SYS	SJ, FB file-structured TJUl6 handler
MMHD.SYS	SJ, FB hardware TJUl6 handler
NL.SYS	SJ, FB null handler
PC.SYS	SJ, FB high-speed paper tape handler
CT.SYS	SJ, FB TAll cassette handler
BA.SYS	SJ, FB BATCH handler
PIP.SAV	File transfer utility
DUP.SAV	Disk maintenance utility
FORMAT.SAV	Disk formatting utility
RESORC.SAV	System resource display utility
DIR.SAV	Directory utility
SYSMAC.SML	System macro library
EDIT.SAV	Text editor
MACRO.SAV	MACRO assembler
MAC8K.SAV	Overlayed MACRO assembler for small configurations
CREF.SAV	Cross-reference utility
LINK.SAV	Linker
LIBR.SAV	Librarian
FILEX.SAV	Foreign file exchange utility
SRCCOM.SAV	Source compare utility
DUMP.SAV	File dump utility
PATCH.SAV	Patching utility for program memory images
PAT.SAV	Patching utility for program object modules
HELP.SAV	Help utility
HELP.TEC	Help utility command file
HELP.TXT	Help utility text file
BATCH.SAV	BATCH compiler
ERRUTL.SAV	Error logging utility
SYE.SAV	Error log reporting utility
PSE.SAV	Error log formatting utility
- SYSGEN.SAV	System generation dialogue utility
-SYSGEN.CND	SYSGEN input file
- SYSTBL.CND	SYSGEN input file
- ODT.OBJ	Debugging utility
VTMAC. MAC	Display handler macro file
VTHDLR.OBJ	VTll/VS60 display handler
PLOT 55.OBJ	VT55 graphics terminal software
TEST55.FOR	Demonstration program for VT55
SYSF $4.0 B J$	System subroutines
GETSTR.FOR	FORTRAN subroutine source
PUTSTR.FOR	FORTRAN subroutine source
SYSMAC.MAC	System macro library source
MDUP.SAV	Magtape utility
MDUP.MT	Magtape bootstrap utility for TMll
MDUP. MM	Magtape bootstrap utility for TJUl6
MBOOT. BOT	Magtape primary bootstrap
MSBOOT.BOT	Magtape secondary bootstrap
DEMOBG.MAC	Demonstration source
DEMOFG.MAC	Demonstration source
DEMOSP.MAC	Demonstration source
DEMOXI.MAC	Demonstration source

(continued on next page)

Table 2-1 (Cont.)
RT-ll Software Components

Name	Description
DEMOFI.FOR	Demonstration source
DEMOED.TXT	Demonstration source
STARTS.COM	SJ startup command file
STARTF.COM	FB startup command file
V3USER.TXT	Distribution kit message text file
SJ.MAC	SJ conditional source file for SYSGEN
FB.MAC	FB conditional source file for SYSGEN
XM.MAC	XM conditional source file for SYSGEN
SYSDEV.MAC	System device conditional source file for SYSGEN
KMON. MAC	Keyboard monitor source file for SYSGEN
USR.MAC	USR source file for SYSGEN
RMONSJ.MAC	SJ resident monitor source file for SYSGEN
RMONFB.MAC	FB/XM resident monitor source file for SYSGEN
KMOVLY.MAC	Keyboard monitor overlay source file for SYSGEN
EDTGBL.MAC	Monitor edit log and global definition file for SYSGEN
BSTRAP.MAC	Bootstrap source file for SYSGEN
MTTEMT.MAC	Multi-terminal EMT source file for SYSGEN
MTTINT.MAC	Multi-terminal interrupt service source file for SYSGEN
TT.MAC	TT.SYS source file for SYSGEN
EL.MAC	Error logger source file for SYSGEN
BA.MAC	BATCH handler source file for SYSGEN
LP.MAC	Line printer handler source file for SYSGEN
DL.MAC	RLOl handler source file for SYSGEN
RK.MAC	RK05 handler source file for SYSGEN
DT.MAC	DECtape handler source file for SYSGEN
DS.MAC	RJS03/4 handler source file for SYSGEN
PC.MAC	High-speed paper tape handler source file for SYSGEN
RF.MAC	RFll handler source file for SYSGEN
DM.MAC	RK06/07 handler source file for SYSGEN
DX.MAC	RXOl handler source file for SYSGEN
DY.MAC	RX02 handler source file for SYSGEN
CR.MAC	Card reader handler source file for SYSGEN
DP.MAC	RPll handler source file for SYSGEN
CT. MAC	Cassette handler source file for SYSGEN
TM. MAC	TMll handler source file for SYSGEN
TJ.MAC	TJUl6 handler source file for SYSGEN
NL.MAC	Null handler source file for SYSGEN
FSM.MAC	Magtape file support source file for SYSGEN
BATCH.MAC	BATCH compiler source file (for maintenance purposes)

### 2.1.3 Unsupported Software

The RT-ll distribution kits include eight other files in addition to those listed in Table 2-l. This software is not supported by DIGITAL, but is available from the DECUS program library. These files are included in the distribution kit for your convenience. The files are as follows:

README.TXT	Information file for TECO macros
TECO.SAV	Text editor
LOCAL.TEC	TECO macro
SORT.TEC	TECO macro
INSERT.TEC	TECO macro
EDIT.TEC	TECO macro
VT52.TEC	TECO macro
VEG.TEC	TECO macro

The file README.TXT contains information about the other software. To read the file, use one of the following commands:

```
,TYFE FEAMME.TXT RET
, FETNT FEAMm,TXT RET (if a line printer is available)
```


### 2.2 STARTING THE SYSTEM

The remaining discussion in this chapter deals with the specifics of bootstrapping the distribution media, building a working system from the distribution kits, and making minor customizations to the system without doing a SYSGEN. Finally, it contains instructions for an exercise to demonstrate that the system is functioning.

The procedures that follow contain RT-ll keyboard commands. To understand completely the processes that are being carried out, you must read and understand the RT-ll System User's Guide before continuing with this manual.

NOTE
You should be able to execute most of the procedures that follow without error. If an error not explained in this manual occurs, refer to the RT-ll System Message Manual.

If the processor halts, a serious error has occurred and you must repeat the entire process from the beginning. If a user error occurs within a section, repeat from the beginning of that particular section.

You can correct typing errors at any time using the standard RT-ll input editing techniques (DELETE and CTRL/U).

Installing RT-ll on a particular configuration involves the following logical steps:

1. Bootstrapping the distribution medium.
2. Preserving the distribution medium by making a copy.
3. If the system device is the same as the distribution device, building a working system volume by deleting unwanted components from the copy and customizing the system for the particular installation.
4. If the system device is not the same as the distribution device, building a working system volume by transferring the relevant components to the system volume and customizing them for the particular installation.
5. Preserving the working system on a backup volume so that you need not repeat this procedure every time you reinitialize the system.

The discussion generally describes the logical operation that you are performing, followed by specific commands that perform that operation. If you wish to follow this material in a step-by-step format, you can enter the commands literally for the desired result. An understanding of what operations you are performing, and why, is important, however, because such an understanding better prepares you for dealing with error conditions and requirements specific to your installation. If you understand how the system works, you can substitute any command that has the desired result for any of the commands given below. The essential aspect is to complete all the logical steps discussed.

The commands and options used are given in their full form; you can abbreviate them. Default devices and file types are used explicitly; you can eliminate them.

### 2.2.1 Bootstrapping the Distribution Medium

If the distribution medium is disk, diskette, or DECtape, you can bootstrap the system directly and use it to copy the distribution volume. (In the following sections, the term "disk" is used to mean both cartridge disks and flexible diskettes.) Stop the processor to halt any previous program that is running, mount the distribution volume (the first volume, if you have a set of diskettes) in Unit 0, WRITE PROTECTED if possible, and proceed to Section 2.2.1.2.

If the distribution medium is magtape, you must build a minimal system on the system disk before you can copy the distribution tape. Proceed to the next section.
2.2.l.l Booting the Distribution Magtape - Mount the RT-ll system magtape \#l on unit 0, ensuring that no write ring is inserted in the back of the tape reel. Ensure that the magtape is positioned at the load point; if it is not, manually position it.

If the system has a hardware bootstrap capable of bootstrapping the magtape, boot the tape and proceed. If not, use the bootstrap in Appendix C.

The magtape moves as the primary bootstrap loads the secondary bootstrap file MSBOOT.BOT.

MSBOOT responds by printing on the terminal.
Response: MSEOOT vol - -\%
*
Type the name of the magtape build program that is to be used to build the system disk. If you are using a TMll, type MDUP. MT RET ; if you are using a TJUl6, type MDUP.MM RET .

Type: MOUF.MT RET
or
MIUF •MM RET
The magtape should move as the specified MDUP program is loaded.
Response: *
The next step is to initialize the system disk and scan it for bad blocks before you can copy the system files over to it. If the system disk is RFll, you must specify the number of platters. If the system disk is RJS04 instead of RJS03, you must flag the extra capacity. You specify these operations to MDUP by entering the device name followed by combinations of the following options:

```
/Z to initialize the disk
/B to scan it for bad blocks
/T:2 to specify RJS04 instead of RJS03
/T:n to specify n RFll platters
```

Make sure a formatted disk is mounted, WRITE-ENABLED, and ready.
If the system disk is other than RJSO4 or RFll,
Type: wn \%/7/B RET
where $x x n$ is the device name and unit.
If the system disk is RJS04,
Type: $\quad$ חलn:/Z/B/T:2 RET
If the system disk is RFll,
Type: N
where $n$ is the number of disk platters present on the RFll subsystem.
In all cases, there can be a significant delay as the disk is scanned for bad blocks and the directory is created.

Response: *
Issue the following command to build a minimal system on the target disk.

א×M:AMMO: RET if the magtape is TJUl6
where $x \times n$ is the name and unit of the system device.

The tape moves as a single－job monitor，swap file，terminal handler， line printer handler，the magtape handlers，and the utilities PIP，DUP and DIR are copied to the system volume．When all the files are copied，MDUP boots the minimal system from the disk．

Response：FTM－11SJ Vo3B－w
？KMON F－Command file mot foumd
＋
You are now running from the system volume and have enough file maintainence commands at your disposal to complete the building process．

NOTE
MDUP does not support automatic replacement of bad blocks for RK06， RK07，or RL0l disks．If your disk is an RK06，RK07，or RL0l and you want automatic bad block replacement，you must initialize a second disk and copy your files to it at a later time．

Copy four additional files（MBOOT．BOT，FORMAT．SAV，STARTS．COM， V3USER．TXT）needed for the rest of this process from the distribution magtape．

Type：

where $x x$ is MT if a TMll is being used，MM if TJUl6．
Response：Files cowied：
w O：MBOOT．BOT to WK゙：MBOOT．BOT
SOAFORMAT，SAV DO OK：FOFMAT．SAU
※0：STAFTS．COM to OK今STAFTS．COM
क0：VZUSER．TXT to DKFVZUSEF．TXT

2．2．l．2 Formatting New Media－Some kinds of media，such as RK05 disks，are not formatted for use on RT－ll systems when you purchase them．Flexible diskettes are generally available in single density but not double density format．While the RX02 diskette drive can read and write single density diskettes，you must reformat the diskettes as double density in order to obtain optimum performance．Use the FORMAT program to format your new volumes，if they are either RK05 disks or RX02 diskettes．

If your system has more than one disk drive，mount a new RK05 disk or diskette in device unit l．Boot the distribution volume．

Response：ET－․1．J Vo3E…
.065015
－TYFF リスUSEF．TXT
$.1156=0$
Invoke the FORMAT program．

```
Type: -F FORMMT RET
Response: *
If your system has more than one disk drive, specify unit l as the
volume to format.
Type: D||: ReT
where dd represents the physical device name, either RK or DY.
Response: d&|:/FOFMAT...Are you sure?
Type: Y RET
Formatting begins immediately.
Response: TFORMAT...T.-..ormettims comwlete
 *
If you have more new volumes to format, repeat this process for each
volume.
Type: CTRL/C
Response: .
If your system has only one disk drive, you must switch the system
volume with the volume you need to format. First, specify unit 0 as
the volume to format, and include the /W option.
Type: dido:/W RET
where dd represents the physical device name, either RK or DY.
Response: ddO;/FORMAT--Are sou sure?
Type: Y RET
Response: Irsert volume you wish to format, CONTTNUE (Y/N)?
Now remove the distribution volume from device unit 0 and insert the
new volume you need to format.
Type: Y RET
Formatting takes place immediately.
Response: Fewlece orisimal volume CONTTNUE (Y)?
Now remove the newly formatted volume from device unit 0 and replace
the distribution volume.
Type: }\quadY\mathrm{ RET
Response: TFOFMAT-- I-..Formattins comwlete
 *
If you have more new volumes to format, repeat this process for each
volume.
Type: (TRL/C
Response: .
```

2.2.l.3 Preserving the Distribution Medium - The first operation that you must perform with the running RT-ll system is to copy the distribution volume. If machine failure or human error were to destroy the distribution volume, you would need the backup to continue.

If there is only one drive for the distribution medium, you cannot make a copy. Keep the distribution volume WRITE PROTECTED, and proceed to Section 2.3.

If there is a second drive for the distribution medium, mount a blank, formatted volume on the second drive (Unit l) WRITE ENABLED. Wait for the drive to come to the READY state; if the distribution medium is magtape, position the tape at the beginning-of-tape mark.

If you have a hardware bootstrap capable of bootstrapping the system (distribution) disk, boot the disk and proceed; if not, see Appendix C for bootstrapping instructions.

Even if you just completed the previous section on booting from magtape and the system is already running from disk, reboot the disk. You must execute the startup command file to ensure proper operation of the rest of the procedure on all systems.

NOTE
When bootstrapped, the distributed system responds by printing the identifying message, then executes a startup command file that is distributed with the system. This startup file sets the terminal service so that the system works with all serial baud rates, prints a file containing a message for previous RT-ll system users, then resets the terminal service for normal use. When execution of the startup file is complete, the monitor prompts with a dot.

If you have an LA36 DECwriter II, a VT52 DECscope terminal, or other terminals that do not require fill characters, you will notice unusual delays after each Ret Lf sequence in the startup file dialogue. This is because the first DEPOSIT command in the command file sets the RT-ll terminal service to output 10 null characters after each carriage return, which is necessary on certain older terminals. This delay is removed by the second DEPOSIT command.

```
If you are using a serial LA30, VT05, or
other terminal that requires fill
characters, you should deposit the
correct fill character and count in
location 56 each time that you reboot
the system during the installation
process. Use a DEPOSIT command.
Section 2.4.l describes the appropriate
values for specific terminals.
```


## GETTING STARTED WITH RT-11

```
Response: FT-w18.1 vo3%-w%
 +056%01:5
 TYFE VZUSEF:TXT
 Welcome to kT-\cdotsll Versiom 3E
 . }156=
```

Set the date with the monitor DATE command.

Response: .
Prepare to copy the distribution volume by initializing the backup
volume on Unit 1 .
If you are copying onto a disk, you must initialize the directory and
scan the volume for bad blocks.
If your disk is an RK06, RK07, or RL01, you can select automatic
replacement for bad blocks.
Type: TNTTALIZE/FEFACE WWI: RET
If your disk is not an RK06, RK07, or RL01, you must cover the bad
blocks.
Type: TNTTAATZE/BADBLOCNS WN: RET
where $x x$ is the name of the distribution device.
If you are copying onto a DECtape, the bad block scan is unnecessary.
Type: INTTAAIZE RTI: Ret
If you are copying onto a magtape, you must initialize the tape and
write the primary bootstrap.
Type: $\quad$ INTTALTZE/FTLE\&MBOOT, BOT wA: RET
where $x x$ is $M T$ or MM.
In all cases, the system responds with an "are you sure?" query
because initializing a volume destroys any previous information on
that volume.
Response: wh:/Tnit are wou sure?
where $x x$ is the name of the device you are initializing.
Type: $\quad Y \subset$ RET
There can be a significant delay as the output device is scanned for
bad blocks and the new directory is created.
Response:
Next, copy all the files from Unit 0 to Unit 1.
If you are copying onto a disk or DECtape,
Type: COFY/SYSTEM wo:*,* wol:*, * Ret
where $x x$ is the device name.

If you are copying onto a magtape, use the POSITION option to rewind and then to avoid rewinding between each file as the tape is copied.

where $x x$ is $M T$ or MM.
In both cases, the system logs each of the files copied on the terminal as they are transferred and prompts with a dot when the operation is complete.

Response: Files cowied



If you are copying a disk or DECtape, complete the operation by installing a bootstrap on the backup volume. In the case of magtape, this step is not necessary because the bootstrap was installed with the INIT command.

If you are copying onto a disk or DECtape,

where $x x$ is the device name.
Response: .
In all cases, you should now be able to bootstrap the backup copy of the distribution volume.

If the copy is a disk,
Type: BOOT $2 \times 1 \%$ RET
where $x x$ is the device name. The system responds by printing the identifier and the message for previous users. If it does, dismount the copy from unit $l$ and mount it on unit 0 .

If the copy is a DECtape, change the unit number of the copy from Unit l to Unit 0. Using the hardware bootstrap, boot the copy from Unit 0 ; the system should respond by printing the system identifier and the message for previous users.

If the copy is a magtape, rewind the tape and mount it on Unit 0 . Using the hardware bootstrap, boot the copy from Unit 0 ; the system responds with the MSBOOT identifier as in Section 2.2.1.l.

In all cases, if the copy does not bootstrap properly, repeat this section.

Store the distribution master in a safe place along with the other distribution volumes.

### 2.2.2 Summary

To boot a distribution magtape:

1. Boot the tape on Unit 0 .
2. Specify to MSBOOT the name of the MDUP file to be used.
3. Initialize the target system disk with MDUP using the /Z, /B and /T:n options.
4. Create a minimal system on the target system disk by typing $\mathrm{xx} 0: \mathrm{A}=\mathrm{Mx} 0$ : RET to MDUP. The minimal system boots automatically.
5. Copy the files MBOOT.BOT, FORMAT.SAV, STARTS.COM, and V3USER.TXT to the minimal system.

To copy the distribution volume:

1. Boot the distribution disk or DECtape on Unit 0 , WRITE PROTECTED, or in the case of magtape, boot the minimal system created above.
2. Mount a blank volume on Unit 1 .
3. Enter the date.
4. Initialize the blank volume using /REPLACE on RK06, RK07, or RLOl, /BADBLOCKS on all other disks, and /FILE:MBOOT.BOT on magtape.
5. Copy all files using the /SYSTEM option for all media and the /POSITION option on magtape to avoid rewinds.
6. If copying a disk or DECtape, install the bootstrap on the backup volume with COPY/BOOT.

### 2.3 BUILDING A WORKING SYSTEM DISK

By now you have built a minimal system from the distribution magtape (if the distribution medium was magtape) and, if your configuration allows, you have copied the distribution medium. The remainder of this section deals with building your working system by deleting unnecessary components from the copy or creating a system on a device other than the distribution device. Finally, it describes creating a backup for the working system.

### 2.3.1 Preparing the Disk

If the system device is to be a disk other than the distribution device, mount the copy of the distribution volume (or the original if no copy is available) in unit 0 , WRITE PROTECTED if possible.

If the system device is to be the same as the distribution device, mount the copy of the distribution volume in unit 0 , WRITE ENABLED.

Bootstrap the copy of the distribution disk (or the original if you have no copy) from unit 0 , or in the case of magtape distribution, bootstrap the minimal system from the system volume. The system should respond by printing its identifying message and executing the startup command file. When the message is completely printed, the system prompts with the dot and waits.

Response: VT-115.1 V03E…\%

```
.0565015
.TYFE VBUSEF.TXT
Welcome to ET-1! Version SB
.1. 56%0
```

If you have not already read it, see the NOTE in Section 2.2.1.3 concerning the startup command file.

Enter the date:

Response:
The essential steps during this phase are:

1. Initialize the target system disk if it is not the distribution medium.
2. Select the components to be included in the working system.
3. Transfer the desired components to the target system disk, or delete undesired components from the existing system disk.
4. Install the bootstrap on the target system.
5. Optimize the target system and compress any free space.
6. Preserve the working system.

The first step is to initialize the target system volume and scan it for bad blocks. If you are already running off the target system volume, or if you are building a system from magtape, DO NOT perform this step; proceed to Section 2.3.2. If you are about to build a system on a volume other than the one from which you are running, you must scan the disk for bad blocks.

If the disk is an RK06, RK07, or RL01, you can select automatic replacement for bad blocks.

Type: TNTTALTZF/FEFACEE WG: RET
where $x$ xn is the device and unit number on which the system volume is to be built.

If the disk is not an RK06, RK07, or RLOl, you must cover the bad blocks.

where $x \times n$ is the device and unit number on which the system volume is to be built.

Response: xwn:/fint are sou sure?

Type: $\quad Y$ RET
There can be a significant delay as the output device is scanned for bad blocks and the new directory is created.

Response: .

### 2.3.2 Determining Disk Capacity

Obtain a directory of the system volume to determine how much free space is available for system files. If you are already running from the target system volume, the directory tells you how many blocks are occupied by the components currently residing on the disk and how much free space is available for additional components. If the target system volume is a disk other than the distribution volume, the directory shows an empty volume and reflects the total capacity of the target disk.

Type: MTFECTOFY wam: RET
where xxn: is the device and unit number on which the system volume is to be built.

Response: do..mimmoss
finem,tsw odmmmen (if any files are on volume)
n Filesy mon Elocks prf Free blocks

The number of free blocks, fff, represents the total number of blocks additional system components can occupy. If you wish to use part of your system volume for data storage as well, you should subtract the space desired for data storage to determine the number of blocks available for system components.

The next step is to determine which system components are to be included in the working system. If the distribution medium is RK05, RLOl, or RKO6 disk, you can use the list of kit components in Table 2-1 to decide which files to include; if not, obtain directories of the distribution volumes to determine which components are on which volume and how much space they occupy. Mount each volume in the distribution kit (on a drive other than that being used for the system volume) and use the DIRECTORY command to list the directory for each volume before proceeding.

### 2.3.3 Choosing System Components

In general, you need only one monitor on a particular working system. If you desire to use more than one monitor in a particular application, all the monitors can be present on the same volume, but this practice consumes disk space that may be more useful for data storage. You only need one copy of SWAP.SYS on a system volume regardless of how many monitor files you store on the volume.

You do not need any system programs you do not intend to use; but remember that you do need some system programs to use the keyboard monitor commands. Appendix $B$ of the RT-ll System User's Guide summarizes the keyboard monitor commands and lists the system utility program that each command requires.

You do not need any source files (except the demonstration sources) until you do a SYSGEN. You need the demonstration sources to perform the exercises in Section 2.5 of this manual or in the Introduction to RT-ll. Once you perform these exercises, the demonstration source files are no longer useful.

You do not need VTMAC.MAC and VTHDLR.OBJ unless you have a VTll/VS60.
You do not need a startup command file unless you want one.
You do not need the MDUP and . BOT files unless you have magtape.
You do not need the handler files for any devices you do not have.
You must have TT.SYS on your system volume if you plan to use the BL or SJ monitor.

You do not need TECO.SAV or the .TEC files unless you plan to use the TECO text editor.

### 2.3.4 Creating the Working Disk

Having chosen the system components, you can create the working disk in one of two ways:

1. You can delete files from a copy of the distribution disk, resulting in a smaller working system.
2. You can copy the desired system components from the distribution volumes to another legal system device, creating a working system for the new device.

If the working disk is to consist of all the files on the distribution volume and you are already running from the distribution copy, you have your working disk. Proceed to Section 2.3.5.

If the working disk is being built on a disk other than the distribution volume, proceed to Section 2.3.4.2.
2.3.4.1 Creating a System on the Distribution Device - If the working disk is to consist of a subset of the files on the current system disk (that is, you are running off the copy of the distribution disk and you will be deleting unwanted components):

Type: MELETE/SYSTEM *: * RET
The system responds by listing each file name on the distribution volume followed by a question mark. If you want the listed file included in the working system type RET or $N$ RET to prevent file deletion. If you do not want the listed file to be included in the working system, type $Y$ RET to delete the file.

Response: Files deleted:

Type: $\quad \gamma$ RET to exclude file from or
$N$ RET to include file in working system

Continue until all the files on the disk have been listed. When all files are listed:

Response: ?FTFWWenoot
。
At this point, the working disk contains the files selected for the working system. Proceed to Section 2.3.4.3.
2.3.4.2 Creating a System on Another Device - If the working disk is being built on a disk other than the distribution volume, or if it is to include files from other distribution volumes, successively mount each volume in the distribution kit.

If the distribution medium is magtape, use the POSITION option to first rewind, then to avoid rewinding between each file.

Type: COFY/SYSTEM/QUFEY KO:***/FOSTTTON:O :sm:*** RET
where $x x$ is $M T$ or $M M$ and yyn: is the target working system device.
Otherwise,

where $x x n:$ is the distribution volume and yyn: is the target working system device.

The system responds by listing each file name on the distribution volume followed by a question mark. If you want the listed file included in the working system, type $Y$ RET to include the file. If you do not want the file included, type $N$ RET to prevent the file from being copied.

Response: Files comied:

Type: $\quad \gamma$ RET $\quad$ to include file or
$N$ RET to exclude file from working system
Continue until all the files on the distribution volume have been listed. When all the files are listed, the system prompts with a dot.

Repeat this step for each volume in the distribution kit (if there is more than one), until all the files desired in the working system have been copied.

At this point, the working disk contains all the files needed for the working system. Proceed to the next section.
2.3.4.3 Booting the Working Disk - If you wish to use the base-line monitor instead of the standard SJ monitor, rename the standard SJ monitor (if you want to save it), then rename the base-line monitor on the working disk to $x x M N S J . S Y S$.

where $x x$ is the system device and $n$ is the unit number for the working system.

Response: TFTFWMEDoot (If the working system is the current running system.)

Install the bootstrap in the working system.
Type: COFY/BOOT xami*xMN:y.SYS xm: Ret
where $x x n:$ is the working system device and unit number and xxMNyy is the file name of the monitor to be started each time the working system is bootstrapped.

Finally, bootstrap the working system:
Type: BOOT won: RET
where $x x n:$ is the working system device and unit number.
The system responds with its identifying message and executes any startup command file present. If a startup file is not present, KMON prints an error message. To avoid printing the error message each time you bootstrap the system, simply create a null startup file.

### 2.3.5 Compressing the System Disk

Once you have created the system disk, you should compress it to consolidate all the free space and minimize fragmentation caused during the creation process. If you are running from an RJSO4 disk or multiple platter RFll disk, make the disk size customizations described in Sections 2.4.3 and 2.4.4 before proceeding.

Type: $\quad$ SQUFEZE wn: RET
where $x \times n$ : is the working system device.
Response: wn\%/Squeexe ore sou wure?
Type:
$Y$ RET
The system automatically reboots after the compression of the system disk is complete.

Response: FT-115.J VO3E...
-
-

The system is now ready for customization and preservation.

### 2.3.6 Building SYSLIB

The RT-ll linker always searches the default system library (SYSLIB.OBJ) to resolve any undefined globals at the end of a link operation. For most installations, SYSLIB contains the system subroutines found in SYSF4.OBJ, the FORTRAN OTS routines, and installation specific libraries of application subroutines.

To add subroutines to SYSLIB, you simply append them to the current system library by using the librarian. This example creates the initial SYSLIB from the system subroutines in SYSF4.OBJ.

To create the original SYSLIB,
Type: LTBFARY/CREATE SYSLTB.OBJ SYSFA.OBJ RET
Response:
To add new modules to SYSLIB from the file xxxxxx.OBJ,

where $x x x x x x$ is the name of the file containing the object modules that you are inserting into the library.

### 2.3.7 Adding FORTRAN Subroutines to SYSLIB

The GETSTR and PUTSTR routines in SYSF4 are compiled as threaded code. If you generate your FORTRAN system for in-line code only, you must use in-line library subroutines as well. If you attempt to link FORTRAN in-line code object modules with the threaded code subroutines GETSTR and PUTSTR contained in SYSF4, undefined globals result. To create in-line code versions of GETSTR and PUTSTR, follow the following procedure.

First, compile the files GETSTR.FOR and PUTSTR.FOR that are on the distribution kit:

where $x x x$ represents the type of object code to be generated. The default is selected at FORTRAN installation time. The valid values are:

```
EAE (Selects EAE hardware)
EIS (Selects EIS hardware)
FIS (Selects EIS and FIS hardware)
```

Replace the threaded code modules in the library with the in-line code modules you created above:

### 2.3.8 Building Working Systems For Small System Devices

For most RT-ll systems with larger mass storage devices (RK05, RL01, RK06/07, RPll, RJS04), the system volume is large enough to store all the system components and still have sufficient space for data storage.

Systems with smaller system devices, however (RX01, RX02, DECtape, RFll, RJS03) are more constrained. The following are several techniques for effectively using the system when system volume capacity is limited.
l. Limit the system volume to only those necessary, frequently used system components. Place only one monitor file on the system volume, and limit the handler files to those that are actually available on the configuration. For example, a typical RX0l dual diskette system need have only:

SWAP.SYS DXMNSJ.SYS
TT.SYS
LP.SYS - only if the system includes a line printer
as the system files. Note that the RXOl diskette hander (DX.SYS) is not necessary because it is already resident as part of DXMNSJ.SYS. If you use the FB monitor, TT.SYS is not necessary because it is resident in the monitor.
2. Limit the system programs to those that you use frequently. PIP, DUP and DIR are necessary for most of the keyboard commands to function. EDIT, LINK, and perhaps HELP are also programs you use frequently. The other utilities (BATCH, FILEX, PATCH, LIBR, PAT, ODT, FORMAT, SRCCOM, DUMP, and RESORC) you use less frequently and you can run them off a second utilities disk mounted in unit $l$ when you need them. Thus, a typical diskette system might have:

System Disk	SWAP.SYS
	DXMNSJ.SYS
	TT.SYS
	LP.SYS
	BA.SYS
	PIP.SAV
	DUP.SAV
	DIR.SAV
	EDIT.SAV
	LINK.SAV
	HELP.SAV - required for the HELP command
	HELP.TEC - required for the HELP command
	HELP.TXT - required for the HELP command
	BATCH.SAV
	LIBR.SAV
	FILEX.SAV
	PATCH.SAV
	SRCCOM.SAV
	DUMP.SAV
	RESORC.SAV
	PAT.SAV
	ODT.OBJ
	FORMAT.SAV

The system disk contains all the components necessary to execute the majority of keyboard commands and perform common program preparation functions. Mount the utilities disk in unit 1 instead of the data disk when you need one of the utilities; then either temporarily copy the utility off the utilities disk to the system disk, or run it directly from the utilities disk.
3. When running from a small system disk, assign the default device DK: to the data device (unit l or another peripheral). This causes most temporary files, data files, etc., to default to the second unit, and minimizes demand for system device capacity.
4. Create several system disks, each devoted to a particular function, and change the system disk as normal job flow changes the functions you need. Wait for a logical stopping point in the job flow to change disks; do not arbitrarily remove the system disk in the middle of an operation. For example, in addition to the system and utilities disks mentioned above, you can create a MACRO disk for use when doing assemblies and a FORTRAN disk for use when using FORTRAN. Note that SYSMAC.SML is frequently required for assembling, and SYSLIB.OBJ is frequently required for linking.

A typical MACRO disk has:
SWAP.SYS
DXMNSJ.SYS
TT.SYS
LP.SYS
PIP.SAV
DUP.SAV
DIR.SAV
EDIT.SAV or TECO.SAV
LINK.SAV
MACRO.SAV
CREF.SAV
SYSMAC.SML
ODT.OBJ
A typical FORTRAN disk has:
SWAP.SYS
DXMNSJ.SYS
TT.SYS
LP.SYS
PIP.SAV
DUP.SAV
DIR.SAV
EDIT.SAV or TECO.SAV
FORTRA.SAV
FORTRA.HLP - useful for the novice user
A typical LINK disk for use when linking FORTRAN programs has:

SWAP.SYS
DXMNSJ.SYS
TT.SYS
LP.SYS
PIP.SAV
DUP.SAV
DIR.SAV
LINK.SAV
SYSLIB. OBJ - includes FORTRAN library functions

The typical job flow for use of such multiple disks is as follows:
a. With the system disk in unit 0 and a data disk in unit 1 , set the default device DK: to unit 1 and edit the source program onto DK:.
b. Change the system disk to the MACRO disk, reboot, and assemble and link the program using DK for the. OBJ and .SAV files.
c. Change unit 0 back to the system disk, reboot, and debug the program.

### 2.3.9 Positioning the System Files for Optimal Performance

RT-ll operates correctly regardless of the position of the system components on the system device. The system accesses certain components more frequently than others. By positioning the files so
that the most frequently accessed files are on the lowest disk tracks, you can minimize head motion and seek times and thus improve system performance. The effect of positioning the files is significant on DECtape and noticeable on diskette.

If you desire minimal system response times to keyboard commands, copy the system components onto the working system in the following order:

```
SWAP.SYS
Monitor files
Handler files
Commonly used utilities (PIP, DUP, DIR, EDIT, LINK)
Commonly used libraries (SYSMAC.SML, SYSLIB.OBJ)
Commonly used language processors (MACRO, FORTRAN, BASIC)
Less frequently used utilities
```

Within each category, order the files from most frequently used to least frequently used. Thus, you should make the most frequently used handler the first file in the handler section.

Once you establish the proper file order, you should use the keyboard monitor SQUEEZE command on the system disk to force all the system components toward the front of the disk. This serves to minimize the seek time, minimize the fragmentation, and avoid further motion of system files during future SQUEEZE operations, eliminating the need to reboot.

### 2.3.10 Preserving the Working System

Once you have factored in all the above considerations and built a satisfactory working system, you must preserve the working system on a backup medium. This backup protects you from having to rebuild the working system should machine failure or human error destroy the copy of the system in use.

If your system requires minor customization ( 50 HZ clock, hardware magtape support, etc.), perform the customizations described in Section 2.4 and return to this section to preserve your customized system. If the system has minimal memory available, and you desire to use the smaller, slower MAC8K instead of MACRO, you should rename MACRO.SAV to another name, then rename MAC8K.SAV to MACRO.SAV to ensure proper operation of the MACRO command.

If patches are to be installed in the system, install them at this point.

If the backup medium is disk and no further customizations are necessary, you are ready to preserve the working system. Proceed to Section 2.3.10.2.
2.3.10.l Preserving the System on Magtape - If you are preserving the system on magtape, the following files, if present at all, must be copied to the magtape in the following order:

SWAP.SYS
monitor
TT.SYS
LP.SYS
MT.SYS or MM.SYS
PIP.SAV
DUP.SAV
DIR.SAV

There can be additional files between them, but the above order is important to proper operation of MDUP.

If no customizations are necessary, you are ready to preserve the working system. Mount a blank magtape on the backup drive, WRITE ENABLED.

Type: TNTTAATZE/FHEEMBOOT.BOT wa: RET
where $x x$ is $M T$ or $M M$ and $n$ is the unit number.
Response: xm*Tnit ere vou sure?
Type: $\quad \gamma$ Ret
Response: .
You must also copy the secondary boot and the MDUP program onto the tape to allow you to rebuild the system from the backup tape.

Type: COFY mSEOOT. BOT wn msBOOT: BOT RET
where $x x$ is $M T$ or $M M$ and $n$ is the unit number.
Response: .

where $x x$ is $M T$ or $M M$ and $n$ is the unit number.
Response: "
Copy all the remaining files to the magtape. Use a separate command line for each file to be copied. Include the /POSITION:-l option to prevent the tape from rewinding after each file is copied. Be sure to copy the files to the magtape in the order specified at the beginning of this section. Use commands of the following form:

Type: $\quad$ COFY/SYSTEM Finmem.tew wni***/FOSTTON: 1 RET
where filnam.typ represents the file name and file type of the file to be copied; $x x$ is $M M$ or $M T$, and $n$ is the unit number.

The files transferred are logged on the terminal as they are copied, and the system prompts with a dot when done.

Response: File cowied:


If the working system needs restoration, you can bootstrap the backup copy and use it to rebuild the working system using the procedures previously described in this section.
2.3.10.2 Preserving the System on Disk - If the backup medium is disk, mount a blank volume on the backup medium drive, WRITE ENABLED.

If the disk is an RK06, RK07, or RL01, you can specify automatic replacement for bad blocks.

where $x x n$ is the device name and unit number.

If the disk is not an RK06, RK07, or RLOl, you must cover the bad blocks.

where $x x n$ is the device name and unit number.
Response: אxi夫tanit ere wou wure?
Type: $\quad Y$ RET
Response: * (After delay for initialization)
Type: שOFY/
where $x x$ is the device name and $n$ is the unit.
The files transferred are logged on the terminal as they are copied, and the system prompts with a dot when done.

Response: Filee wowiag



If the backup is disk, you must install the bootstrap.

where $x x n$ is the backup device and unit number and xxMNyy.SYS is the monitor file name.

If the working system needs restoration, you can bootstrap the backup copy and use it to rebuild the working system using the procedures previously described in this section.
2.3.10.3 Summary - To build a working system from the distribution kits:

1. Initialize the target system volume, scanning for bad blocks.
2. Obtain a directory of the system volume to determine the space available for system components.
3. Obtain directories of the distribution volumes to determine which files are on which volumes and how much space each file requires.
4. Choose which components must go into the working system.
5. If the working system is on the same medium as the copy of the distribution kit, make the working system by deleting unwanted components from the copy of the distribution volume.
6. If the working system is on a medium other than the distribution medium, make the working system by transferring the desired components to the working system volume.
7. If the base-line $S J$ monitor is to be used instead of the standard $S J$ monitor, rename the standard $S J$ monitor and then rename the base-line monitor to $x x M N S J . S Y S$.
8. Install the bootstrap on the working system volume.
9. Boot the working system volume.
10. Reorder the system files (if necessary or desired) for optimal performance.
11. Build the system library SYSLIB.
12. SQUEEZE the working system volume to minimize fragmentation.
13. Perform any minor customizations or install any patches that are necessary.
14. Preserve the working system on a backup volume by:
a. INITIALIZing a bootable volume.
b. COPYing the working system.
c. INSTALLing the bootstrap (disk only)

### 2.3.11 Switching Monitors

The COPY/BOOT command installs the bootstrap for the specified monitor file as the permanent bootstrap for the particular volume. Every time you bootstrap the device, the permanent monitor is loaded.

You can alter the bootstrap to permanently boot another monitor file with the COPY/BOOT command. Each time you use this command, it permanently installs the named monitor file as the monitor to be booted from this volume.

If you have more than one monitor on a given volume (for example, SJ and FB) and you need to temporarily switch from one to another, use the monitor BOOT command. When you specify a file name rather than a device name to the BOOT command, the specified file is booted. The monitor bootstrapped in this fashion remains active until you issue another BOOT command or you physically reboot the volume.

If you have an $F B$ monitor on your working disk and you need to switch from the running monitor to the $F B$ monitor,

Type: EOOT xNMFE.SYS RET
where $x x$ is the working system device name.
Response: $\mathrm{ET}+1 \mathrm{FB} \quad \mathrm{VOBF} \mathrm{x}$
(followed by any commands executed from the startup command file)

Return to the single-job monitor by rebooting the device.
Type: BOOT wn: RET
where $x x n:$ is the working system device.
Response: FT- 11.1 V03B…
(followed by any commands executed from the startup command file)

### 2.3.12 Installing The Bootstrap

Whenever you create a new system device, you must not only copy the system files to the new volume, but you must also install the bootstrap so that the new volume can be booted.

You install the bootstrap on block-replaceable devices (disk or DECtape) via the COPY/BOOT command. You install the bootstrap on magtape by using the /FILE:MBOOT.BOT option to the INITIALIZE command.

To create a bootable disk,

1. Copy the monitor file to the new disk.
2. Install the bootstrap from the new monitor with the COPY/BOOT command.

For example:

- OOFY/SYSTEM FKMNSJ.SYS FKI \#FKMNS.1.SYS RET

To create a bootable magtape:

1. Initialize the magtape, specifying the primary bootstrap file (MBOOT.BOT) as an argument to the INITIALIZE command.
2. Write the secondary bootstrap program (MSBOOT.BOT) as the first file on the tape.

For example:

- TNTTTAL TzEFFTNE:MBOOT. bot MTI: REt
- COFY MSBOOT. EOT MTI \& MSBOOT. BOT RET


### 2.4 CUSTOMIZING THE SYSTEM WITHOUT DOING A SYSGEN

The RTll system components are suitable for most applications and configurations as distributed. In addition, the most common alterations can be made by patching the distributed monitors, eliminating the need for most installations to do a SYSGEN. Only if your installation requires customization not described in this section (such as extended memory or multi-terminal support) should you undertake a SYSGEN.

Many of the patches given below are made to symbolic locations rather than absolute addresses. For the actual values to be used when making the patches, see Table $4-2$ of the RT-ll System Release Notes. When making a patch that contains a symbolic value, simply look up the symbol in the table and substitute the absolute value for the symbolic name in the patch.

### 2.4.1 Establishing Fill Characters

The serial LA30 (LA30S) DECwriter requires that filler characters follow each carriage return; the 600 , 1200 , and 2400 baud VT05 terminals require that filler characters follow each line feed. RT-ll has established a mechanism by which any number of fills may follow any character. The byte at location 56 (octal) contains the character to be followed by fillers and the byte at location 57 (octal) contains the number of null fills to be used. These locations are initially set to zero, which results in no fillers being generated (normal operation for LT33, LA $30, \mathrm{LA} 36, \mathrm{VT} 50, \mathrm{VT} 52, \mathrm{VT} 55$, and VT61).

Depending on the terminal, modify the locations as follows:

Terminal	Loc 56	Loc 57	Resulting	Word (octal)
LA30S 110 baud	015 (8)	002 (8)	1015	
LA30S 150 baud	015 (8)	004 (8)	2015	
LA30S 300 baud	015 (8)	012 (8)	5015	
VT05 600 baud	012 (8)	001 (8)	412	
VT05 1200 baud	012(8)	002 (8)	1012	
VT05 2400 baud	012(8)	004 (8)	2012	

You can change the proper octal word permanently in the monitor by using PATCH to modify locations 56 and 57 in the monitor file. For example, the following patch causes a fill of four nulls after each carriage return.

```
 . F%MTCH RET
```

                                    FTIE NAME:
                                    *以MN.S.SYS/A RET
    | *W6\0 | 1 13 |  |
| :---: | :---: | :---: |
| 5>0 | 4 | RET |

束: :
Once you make this change, recopy the bootstrap with the COPY/BOOT command and reboot the monitor with the BOOT command, all programs that use the monitor for console $I / O$ will operate correctly.

### 2.4.2 Installing Other Devices

RT-ll is distributed with hardware TMll handler, hardware TJUl6 handler, high-speed paper tape reader/punch handler, cassette handler, card reader handler and null handler support all available but not installed in the running monitors. Installation of support for these devices involves use of the monitor SET, SHOW, INSTALL, and REMOVE commands, the startup command file capability, and an occasional patch.

The distributed monitors (with the exception of the base-line SJ monitor) are distributed with RK05, RL01, RJS03, RK06/07, RPll, RX01, RX02, DECtape, RFll, TMll file-structured magtape, line printer, and TJUl6 file-structured magtape support all preinstalled. The configuration that requires support for all the aforementioned, preinstalled devices is extremely rare. The procedure for installing one of the noninstalled handlers or a user-written handler is:

1. Use the monitor SHOW command to determine which devices are active in the current monitor.
2. Add commands to the startup command file that REMOVE an unwanted device and INSTALL the desired device. If more than one version of the monitor is on the system device (SJ and FB, for example), add the same commands to all startup files.

In the rare case where there are not sufficient device slots to support all the devices in the configuration, you can SYSGEN a monitor to include extra device slots. If use of the startup command file is an unacceptable method for installing the handler, you can permanently install the handlers at SYSGEN time.

For example, to remove the RK06/07 handler (DM.SYS) and install the null handler (NL.SYS), edit the startup command file as follows:

Type: FITT ETAFTX.COM RET
where x is $\mathrm{S}, \mathrm{F}$ or X
Response: *
Type: $\quad \mathrm{F} / \mathrm{l}$ ESSC ESC
Response: *
Type: TEEMOUF: UM RET
INSTAILI. NI. RET


Response: *
Whenever you reboot the monitor, the system automatically removes the undesired RK06/07 handler and installs the null handler.
2.4.2.1 Installing Card Reader Support - Make certain CR.SYS is present on the system device, then use the SHOW command to determine if a free slot is available. If not, add a REMOVE command to the startup command file that removes an unwanted device, then add an INSTALL command to add CR. For example, to add the necessary commands to an already existing startup file:

Type:
EITT START天.COM RET
where $x$ is $S, F$ or $X$.
Response: *
Type: $\mathrm{F} \% 1 \times \mathrm{ESC}$ ESC
Response: *
Type: TFEMOUE : $\quad$ RET
TNSTALII CR RET
ESC EESC (ESC
where $x x$ is an unwanted device name.
Response:
Whenever you reboot the monitor, the system will automatically install the $C R$ handler.
2.4.2.2 Installing High-Speed Paper Tape Support - If the configuration includes a high-speed reader/punch, the desired handler is PC.SYS. If it includes only a high-speed reader, you also use PC.SYS.

Make certain the paper tape handler is present on the system device, then use the SHOW command to determine if a free slot is available. If not, add a REMOVE command to the startup command file to remove an unnecessary device, then add an INSTALL command to install the paper tape support. For example, to add the necessary commands to an already existing startup file:

Type: EITT ©TAET\& COM Ret
where x is $\mathrm{S}, \mathrm{F}$ or X
Response: *
Type: $\mathrm{F} / \mathrm{I}$ ESC ESC
Response: *
Type: TREMTVE \% RET

where $x x$ is an unnecessary device
Response: "
Each time you reboot the monitor with the new startup command file, the system will automatically install paper tape support.
2.4.2.3 Installing Hardware Magtape Support - The system is distributed with file-structured TMll and TJUl6 support enabled as the magtape support. If you desire hardware support, you can switch from file-structured to hardware handler. Rename the file-structured handler if you wish to save it, then rename the hardware handler to MT.SYS or MM.SYS and reboot the system. If the file-structured handler was already installed, no re-installation is necessary; if not, you must also install the device.

To install TMll hardware support in place of TMll file-structured support, make certain that MTHD.SYS is present on the system volume.

Type: FWNAMF/SYSTEM MTHM.SYS MT.SYS RET
Response: "FTF- WFeboot

Reboot the system.
Because the TMll file-structured handler and hardware handler are for the same device and MT support is already installed, you can switch between the two by simply renaming the handler and rebooting the system. INSTALL and REMOVE are not necessary but can be used to switch between hardware and file-structured handlers if you need to switch without rebooting the system.

To install TJUl6 hardware support in place of TJUl6 file-structured support, make certain that MMHD.SYS is present on the system volume.

TYpe: GENAME/SYSTEM MMHO.SYS MM.SYS RET
Response: ?FTF-W-Weboot

Reboot the system or make the handler active with INSTALL and REMOVE, as with TMll hardware support.
2.4.2.4 Setting Magtape Parity and Density - RT-ll includes magtape support for both 7- and 9-track drives at 800 BPI and odd parity. If you need to operate at different parity or density settings, you can use the monitor SET command as described in Section 4.4 of the RT-ll System User's Guide.

### 2.4.3 Specifying the Number of RFll Platters

RT-ll is distributed with RFll fixed-head disk support initialized for one platter. To allow RT-ll to make use of more than one platter, you must modify the device size table in the various monitor files and the device size entry in the RF handler as follows:

Number of Platters

> New Value of Table

1	2000
2	4000
3	6000
4	10000

Use the following patch to modify an RF monitor for multiple RF/RSll platters.

```
.R FATCH RET
FTIE NAME -...
*FFMN以%.SYS/A RET (where xx is SJ, FB or XM)
*SYOUSz/2000 צ%s:S REI (where YYYY is value from table
above)
*E:
```

NOTE

```
See the RT-ll System Release Notes,
Table 4-2, for the address of SYDVSZ in
each of the RF monitors.
```

Use the following patch to modify the RF handler for multiple RF/RSll platters.

```
-F FATCH RET
FTLE NAME:-...
*FF.SYS RET
*54/2000 *ssy RET (where yYYy is value from above table)
*F
```

Once you modify the monitor and install the handler, you can use the INITIALIZE command to automatically initialize the RFll directory to proper capacity, or you can use the SQUEEZE command on an RFll disk already in use to update the directory to the proper capacity.

### 2.4.4 Changing RJS03 Support to RJS04 Support

RT-ll is distributed with RJS03/4 disk support initialized for RJS03. To allow complete use of all the space available on an RJSO4 disk, modify the device size table in the various monitor files and the device size entry in the DS handler as follows:


Use the following patch to modify the DS handler to support RJS04 disks.

```
.FIFATCH RET
FTIIE:N NAME:-....
*1S.SYG RET
*54/20(0) 4000 RET
*E:
```

Once you modify the monitor and handler, you can use the INITIALIZE command to automatically initialize the RJS04 directory to proper capacity or the SQUEEZE command to update' the capacity of a disk already in use.

### 2.4.5 Changing RP02 Support to RP03 Support

The RPll support provided in the distribution kit is initialized for RP02 only. The RT-ll file structure can accommodate a maximum of 65536(10) blocks. The $40000(10)$ block RP02 cartridge, therefore, can be accommodated as a single logical unit, while an RP03 cannot.

You can alter the RT-ll RP02 support to accommodate RP03 as follows:

1. Consider each RP03 drive as two logical units of 40000 blocks each; in essence, a single RP03 drive looks like two RP02
drives to the system. Access the cartridge on physical unit $n$ as logical DPn and DPn+4; thus, you reference drive 0 as DP0: and DP4:, drive l is DPl: and DP5:, etc. Note that although an RP03 is physically one device, it is two separate devices te. the system. Each logical unit has its own complete directory and data space.
2. Patch the DP monitors and the DP handlers as described below. Use the following patch to modify a DP monitor for RP03 drives:
```
* FATCH RET
```

FTIE NAME
*OFMNかん. SYS/A RET (where $x x$ is SJ or FB) $* \mathrm{FF} 23 / 404$ REI 1.404 R

* ${ }^{*}$ F

NOTE
See RT-ll System Release Notes, Table 4-2, for the actual location of RP23 in each monitor and in the handlers.

Use the following patch to modify the DP handler for RP03 drives.

```
NFATCH RET
```

FTLE NAMF:-
WWF.SYS RET (or DPX.SYS for extended memory handler) *FF23/404 1404 RET

* $E$

Note that the system can support a maximum of four RP03s. You can mix RPO2s and RP03s as long as the total number of units (physical drives) on the system does not exceed four. If the system contains only RP02s, you must not make the above changes and the system can support as many as eight units.

Once you make these patches, you can access the second half of the RP03 disks as units DPn+4.

### 2.4.6 Specifying a 50-Cycle Clock Rate

In the distributed version of RT-ll, the keyboard TIME command calculations are based on a 60-cycle clock rate. To cause the TIME command to base calculations on a 50 -cycle clock rate, modify the monitor so that bit 5 is set in the monitor configuration word.

Use the following patch to modify the monitor for a 50 -cycle clock rate:

```
,FIFATCH RET
```

FTIE NAME: -

*CONFTG/min mat40 RET
*E

```
and Yy is SJ or FB)
and yy is SJ or FB)
(The value of CONFIG varies
from configuration to
configuration; add 40(8) to it
and type new value.)
```

NOTE
See the $\frac{\text { RT-ll }}{}$ System Release Notes,
Table $4-2$ for the exact address of
CONFIG in each monitor.

### 2.4.7 Changing the Location of VTll/VS60 Floating Vectors

The floating vector region on the PDP-ll is situated in locations 300 to 476; VTll/VS60 display processor vectors are normally located at 320 to 332. However, the VTll/VS60 display vectors can be forced to float by the addition of other devices. For example, VTll/VS60 device vectors may be changed if a DLll device (a communications device) is added.

The RLOl disk has its vector at 330. If the VTll/VS60 is left at its normal location, 320 , it uses 330 as its shift-out vector. If your system has both an RLOl disk and a VTll or VS60 display processor, you must move the VTll/VS60 vector.

The following patch modifies the monitor for a different VTll/VS60 vector address.

F FATCH RET		
TTE NAME -		
*世ヶMNO, ©YS		(where $x x$ is the system device and yy is SJ or FB ).
	$4 \%$ RET	(where yyy is the new vector address)
*1:		

NOTE
See the RT-ll System Release Notes, Table 4-2, for the exact address of GTVECT in each monitor.

This patch enables the text scroller (GT ON), the display file handler, EDIT, BASIC graphic extensions, and FORTRAN graphic extensions to function properly on the system without further patching.

### 2.4.8 Customizing the Editor

2.4.8.l Reducing the Size of the Text Window - The editor is constructed in such a way that if a VTll/VS60 is in use, the window into the buffer and the scrolled command lines are separate "pictures." On rare occasions, if the text window around the cursor contains long lines and several line feeds (or form feed characters), the window can overflow onto the scrolled editing commands, making that portion of the screen difficult to read.

In most applications, this problem does not occur; when it does, you can see the obscure lines by advancing the cursor several lines to bring them into clear view.

If the problem is troublesome for your particular application, you can remove it by reducing the size of the window displayed with the following patch:
. F FATCH RET
FTIFE NAME......
*EITT.SAV RET
*MSAFG/12 $\quad$ RET
*F:
where n is the number of lines to be displayed above and below the cursor; $n$ should be smaller than the value currently in DSARG to eliminate the problem.

NOTE
See the $\frac{\text { RT-ll }}{}$ System Release Notes,
Table $4-2$, for the exact address of
DSARG.
2.4.8.2 Using EDIT on Terminals with Non-standard ESCAPE Code Certain older terminals generate 175 (octal) or 176 (octal) when you type the ESCAPE (or ALTMODE) key, rather than the standard 33 (octal). Because codes 175 (octal) and 176 (octal) represent legitimate characters on more modern terminals, EDIT does not recognize ESCAPE as the command terminator in these older terminals.

You can patch the editor as follows to allow it to operate correctly with a non-standard ESCAPE code.

- FEATCH RET

FTIE NAME
*EMTT.SAV Ret
*ALIMLEX 33 RET
*
In the patch shown above, $n$ represents the octal code that is generated when you type ESCAPE on your terminal.

NOTE
See the RT-ll System Release Notes, Table 4-2, for the actual address of ALTMDE.

Once you alter EDIT in the preceding manner, you can use ESCAPE as documented in the EDIT chapter of the RT-ll System User's Guide.

### 2.4.9 Setting an Upper Limit on File Size

RT-ll is distributed in such a way that the maximum size of a file allocated in a general. ENTER request is half the largest space, or the entire second largest space available, whichever is larger. This is satisfactory for most applications and should be left unchanged. It is possible that certain applications require that an upper limit be set on the size of a file; for these applications (and these only), make the following patch.

```
*FFATCH RET
```

FTIE NAME:

* KMN:S.SYS/A RET (where $x x$ is system device
name and yy is $\mathrm{SJ}, \mathrm{FB}$ or XM )

(where nnnn is the octal
number of blocks defining
the maximum file size for a
general .ENTER)
*E

NOTE
See the RT-ll System Release Notes, Table 4-2, for the actual value of MAXBLK for each monitor.

### 2.4.10 Running RT-11 in Less Memory Than Is Available

The SJ and FB monitors have bootstraps that allow the system to run in less memory than is available on the system (for example, RT-ll can be bootstrapped to run in the lower 12 K or 8 K of a 16 K machine). Most applications require that RT-ll make use of all memory available, and the system is distributed so that it automatically does so.

If (and only if) an application requires that RT-ll run in less memory than is available and a hardware switch register is present, make the following patch.
-FE FATCH RET
FTLE NAME -
*以NMN:SYSS/A RET (where $x x$ is the system device name *BHALIT/ 407 0 RET

* $E$ and Yy is SJ or FB )


## NOTE

Obtain the value of BHALT from Table 4-2 of the RT-ll System Release Notes.

Once you make the patch and write a new system bootstrap on the device (with the COPY/BOOT command), a halt occurs whenever the system is booted.

At this point, set the switch register to one of the values from $T$ able $2-2$ and press CONTINUE; the bootstrap operation completes for the specified memory size.

If your application requires that $R T-l l$ run in less memory than is available and a hardware switch register is not present, use the following patch.

- F FATCH RET

FTIE NAME:
*WNMN:SY.SYS/A RET
*BHALT/407 415 RET (where nnnnnn is a value *BHALTH34 G712 12702 Lf from Table 2-2)
*BHALTH36/771 minnamin RET

> (where $x x$ is the system device name and Yy is SJ or FB)
*E

Table 2-2
Values for Memory Sizes

Value	Size in Words
40000	8 K
44000	9 K
50000	10 K
54000	11 K
60000	12 K
64000	13 K
70000	14 K
74000	15 K
100000	16 K
104000	17 K
110000	18 K
114000	19 K
120000	20 K
124000	21 K
130000	22 K
134000	23 K
140000	24 K
144000	25 K
150000	26 K
154000	27 K
160000	28 K
$>160000$	Use all available memory.

## 2.4.ll Modifying the Listing Page Length in MACRO and CREF

RT-ll MACRO and CREF set the number of lines printed per listing page at 60. This line count is satisfactory for applications with line printers that use paper 10.5 inches long. If you use paper of a different size (for example, 8.5 inches long) or if you do not have a line printer, patch MACRO and CREF as follows.

For MACRO:

- F FATCH REI

FTLE NAME …
*MACRO. SAV RET
*ITNFFG/74 $\quad, \quad$ RET (where $n$ is the new line count in octal)
*F:

For CREF:

- F FATCH RET

FTLE NAME:
*CREF-SAV Ret
*IINFFG/74 $\quad \mathrm{H}$ RET
*E
(where $n$ is the new line count in octal)

NOTE
See the $\mathrm{RT}-11$ System Release Notes,
Table $4-2 \frac{\text { for the actual address of }}{\text { LINPPG in MACRO and CREF. }}$

### 2.4.12 Changing the Default Output Device from Line Printer to Terminal

Several monitor commands default the output device to LP (for example, DUMP and PRINT). If your configuration does not have a printer, you can cause these commands to default to the terminal by adding an ASSIGN TT LP command to the startup command file. This causes all system references to the device LP: to use the terminal.

For example, to default all output to the terminal, add the ASSIGN TT LP command to an existing startup file as follows.

Type: EITT STAFTK.COM RET
where x is $\mathrm{S}, \mathrm{F}$ or X .
Response: *
Type: $\mathrm{Fi} / \mathrm{J}$ ESC
Response: *
Type: $\quad \begin{aligned} & \text { TASSTGN Tr LIF } \\ & \quad \text { RES } \\ & \text { ESCO }\end{aligned}$
Response: .
Each time you bootstrap the system, the reassignment of the default device takes place.

### 2.4.13 Modifying LINK to Change the Default SYSLIB Device

The linker normally looks on the system device (SY:) when attempting to locate the default system library (SYSLIB.OBJ).

To change the device on which SYSLIB.OBJ resides, make the following PATCH to LINK.SAV.

- Fi FATCH RET

FTIE NAME:
*LTNK. SAV/O RET
*I: SYSLTB/7\%50 F(dev) RET (where dev is the name of the desired SYSLIB device)

* $k$ E

NOTE

> See the $\frac{R T-l l}{}$ System Release Notes, Table $4-2 \frac{\text { for the actual }}{\text { talues of }}$ SYSLIB in the released system.

### 2.4.14 Extending Directory Size

When you initialize a device, you can specify additional directory segments by use of the INITIALIZE command /SEGMENTS option. Once you have written files on the device, however, you cannot change the directory size without using the INITIALIZE command again, thus destroying existing directory information.

Although DIGITAL recommends that, whenever possible, you use the INITIALIZE command to determine directory size, you can use the following program to change the size of a directory on line without reinitializing the disk. You should use the program only as a last resort and only on a disk that has been thoroughly backed up. Enter it as instructed in the comments. Instructions for its use are also in the comments.

```
8+
:DIREXT - PROGRAM TO ADD SEGMENTS TO AN RT-11 DIRECTOKY
!
:TO USE:
: THE FIRST ENTRY IN THE DIRECTURY MUST BE <UNUSED>, AND ITS LENGTH MUST
BBE TWICE AS MANY BLOCKS AS THE NUMBER OF SEGMENTS THAT ARE TO BE ADOED.
ITHE FIRST ENIRY MAY BE MADE <UNUSEDD SIMPLY BY CALLING PIP TO MOVE THE FIRST
IFILE ON THE UEVICE. ONCE THE UNUSED AREA HAS BEEN CREATED, DIREXT IS
;RUN BY TYPING:
!
ITHE OIREXT
|THE RESPONSE: *
;
IA COMMAND LINE IS ENTERED OF THE FORM 'DEV:/N:M' WHERE DEV IS THE DEVICE
IWHÖSE DIRECTORY IS TO BE EXPANDED ANO 'M' IS THE NUMBER OF SEGMENTS
&(NOT BLOCKS) TO ADD TO THE DIRECTORY.
I
;FOR EXAMPLE:
: *RK:/N:14 WILL ADD 12 (UECIMAL) SEGMENTS TO THE
: OIRECTORY ON RKE:, FOK WHICH THE FIRST
% FILE MUST BE AN <UNUSED> AREA OF AT
8 LEAST 24 BLOCKS
THERE ARE TWO POSSIBLE ERROR MESSAGES:
?DIREXT-F-Hara I/O error WILL OCCUR IF THE DIRECTORY FOR THE DEVICE
 CANNOT BE REAU OR NRITTEN KITHOUT A
 HARDWARE ERROK.
 ?DIREXY=F=Illegal command
 WILL OCCUR ON ANY OF THE FOLLOWING CONDITIONS:
 1) INAPPROPRIATE COMMAND STRING
 2) FIRST ENTRY IN DIRECTORY NOT <UNUSED>
 3) REQUESTED NUMBER OF SEGMENTS NOULD CAUSE
 THE TOITAL TO EXCEED THE ALLOWABLE 3I(1E)
 4) SIZE OF <UNUSED> AREA TOO SMALL TO
 ACCUMODATE REQUESTED DIRECTORY INCREASE
IIF THE PDIREXT-F-Illegal command MESSAGE OCCURS, THE DIRECTORY IS UN-
:MODIFIED AND THE PROGRAM IS YESTARTED.
&
IIF THE ?DIREXT-F-HAPG I/O ErPOR MESSAGE OCCUKS, THE DIRECTORY HAS PROBABLY
;BEEN DESTROYED.
8
ITO CREATE DIREXT, TYPE THIS TEXT INTO THE FILE ODIREXT.MAC' NITH THE EDITOR.
8
ITO ASSEMBLE, .MACRO DIREXT
%
ITO LINK, .LINK DIREXT
8-
8*
 - TITLE DIREXT - UIRECTORY EXTENOER
ILLCMD:
 .MCALL OCSIGEN,.READW,.WRITW,.EXIT,.PRINT
ILLCMD: PRINT #MSGI TYPE ?ILLEGAL COMMAND*
START: -CSIGEN #DSPACE,#DEXT,#D ;GET COMMAND STRING
 DEC (SP)+ ,ANY OPTIONS?
 BNE ILLCMU ;NO-BAL COMMAND
 CMP (SP)+,#181516 :/N:MMGIVEN ON FIRST INPUT FILE?
 BNE ILLCMD INO-BAD COMMAND
 MOV (SP)+ORI :NUMBER OF SEGMENTS TO ADD INTO RI
 MOV GOR2 ; GLOCK FOR CUHRENI SEGMENT IN RZ
 MOV #DIRBUF,R3 :R3 POINTS INTO DIRECTORY BUFFER
 .REAON #AREA,#3,R3,#256.,R2 GHEAD FIRST DIRECTORY SEGMENT
 BCS HERR :READ ERROR
 CMP I2(R3),#1U0| IFIRST ENTRY <UNUSED>?
 BNE ILLCMO NNO-BAD CUMMAND
 MOV (R3),R4 INUMBER OF SEGMENTS NOW INDIR INTO RA
 ADD RIOR4 TOTAL SEGMENTS FGR NEW DIR IN RL
 MOV RUORS RREMEMBER NEW SEGMENT TOTAL
 CMP RA,E31. IIS NEW TUTAL TOO LARGE?
 BHI ILLCMD IYES=BAD COMMAND
```


### 2.4.15 Building a System for Use With Introduction to RT-11

The Introduction to $R T-11$ contains exercises that you execute on a running RT-ll system. The following lists the minimum components that the system volume must contain so that you can successfully execute the exercises.

The files needed for the Introduction to RT-ll exercises are:

File Name	Approximate Block Size
SWAP.SYS	24
XXMNSJ.SYS	62
XxMNFB.SYS	74
TT.SYS	2
LP.SYS (if appropriate)	2
other handlers (if appropriate)	2 each
DIR.SAV	17
PIP.SAV	16
DUP.SAV	21
LINK.SAV	29
EDIT.SAV	19
SRCCOM.SAV	11
LIBR.SAV	10
MACRO.SAV	45
CREF.SAV	6
SYSMAC.SML	37
ODT.OBJ	9
DEMOED.TXT	1
DEMOXI.MAC	4
DEMOSP.MAC	10
Approximately	484 Subtotal for MACRO only exercises


FORTRA.SAV	205	
SYSLIB.OBJ	199	
DEMOFI.FOR	2	
Approximately	406	Additional if FORTRAN exercises
BASIC.SAV Approximately	85	Additional if BASIC exercises
Approximately	892	Total for all exercises.

If your system volume is 1000 blocks or larger, it is to your advantage to have all these files on the same system volume.

If, however, your system volume cannot accommodate all files at once, you must build two or more disks for use with the Introduction to RT-11.

If your system volume is an RX0l diskette, build the following four disks.

The system volume:

The FORTRAN language volume:

The LINK volume:

```
SWAP.SYS
DXMNSJ.SYS
DXMNFB.SYS
TT.SYS
LP.SYS (if appropriate)
PIP.SAV
DUP.SAV
DIR.SAV
LINK.SAV
EDIT.SAV
SRCCOM.SAV
LIBR.SAV
ODT.OBJ
MACRO.SAV
SYSMAC.SML
CREF.SAV
DEMOED.TXT
DEMOFI.FOR
DEMOXI.MAC
DEMOSP.MAC
SWAP.SYS
DXMNSJ.SYS
TT.SYS
LP.SYS (if appropriate)
PIP.SAV
DUP.SAV
DIR.SAV
EDIT.SAV
FORTRA.SAV
DEMOFl.FOR
SWAP.SYS
xxMNSJ.SYS
LP.SYS (if appropriate)
TT.SYS
PIP.SAV
DUP.SAV
DIR.SAV
LINK.SAV
SYSLIB.OBJ
```


4. Mount the source disk, WRITE PROTECTED, in place of the system disk.
5. Transfer the desired files to the backup device (such as magtape or cassette) using CSI level commands.
6. Remount the system disk.
7. Type (CTRL/C to return to the monitor.

With the USR resident and the handler loaded, you do not need the system disk mounted if you do not reference any other devices and if you do not use any monitor level commands.

For example, to transfer RT-ll sources from the source disk to magtape on a single-disk system:
l. Boot system and enter the date.
2. Type: SET USFi NOSWAF RET

Response:
Type: LOATMMT RET
Response:
Type: TNTTTALTZE MTO: Ret
Response: MTO:/Tint are sou sure?
Type: $\quad Y$ RET
Response:
-
Type: FifF RET
Response: *
3. Dismount system disk, mount source disk.
4. Type: MTO:*,*/M:……*。* ReT
5. When done, remount system disk and use ©TRL/C to return to the monitor.

### 2.4.17 Changing the CSR Addresses Used by the FORMAT Utility

The FORMAT utility program uses the standard CSR addresses to access devices on the system. If any devices that FORMAT supports are installed at non-standard addresses, you must patch the FORMAT utility to change these addresses. Use the following patch:

```
-F FATCH RET
FTIE NAME....
*FORMMAT, SAV REt
*CSFMdG/ wow%%% nmmmm, RET
**:
```

where:

y	must be 1 to indicate the first or only controller;   must be 2 to indicate the second controller.
dd	is the two-letter device mnemonic.
nnnnnn	is the correct cSR address for the controller and   device specified.

NOTE
See the RT-ll System Release Notes, Table 4-2, for the exact locations to patch.

### 2.4.18 Using CAPS-11 to Load Files

CAPS-ll cassette file headers differ from RT-ll cassette file headers. When you are transferring files to cassette that are to be loaded through the CAPS-ll CABLDR or through CTLOAD bootstrap, CABLDR and CTLOAD interpret the level byte in the file header as a header continuation byte. If the byte in the cassette header is non-zero, CAPS-ll ignores at least the first data record of the file since it assumes that the record is an auxiliary header record. Make the following patch to cause all header records to contain a level byte of 0 when transferring from an RT-ll device to cassette.

1. Patch to CT.SYS:

- F FATCH REI

FTLE NAME:-…
*CT.SYS RET
*4461 10 RET
*E
2. If you intend to build your own system via SYSGEN, edit CT.MAC as follows:

- EITT CT. MAC RET
*F: ESC FLEUEL. EESC ESC
$* G I$ ESC $=\mathrm{CO}$ ESC EESC
*EX ESC ESC
Install the preceding patch only if you will use CAPS-ll to load RT-ll files.


### 2.4.19 BATCH Patches

If you do not have a large amount of disk space on your system device, you will be interested in the following patches to BATCH. These patches allow you to store certain system programs on DK: rather than on SY: and to have BATCH access them there. These patches modify BATCH so that it invokes the corresponding system programs with the keyboard monitor RUN command (which assumes DK: as the default device) rather than with the $R$ command (which always uses SY:).

You can make any or all of the patches. To use these patches, simply make the patches to BATCH for the system programs that you wish to remove from your system device. Copy the programs for which you installed patches to the device on which you want them to reside, then delete them from your system device (SY:). Finally, use the ASSIGN command to assign the logical name DK: to the device to which you copied the system programs. You can then run BATCH as usual. The .CTL file that BATCH generates will also reside on DK: and will contain RU commands instead of $R$ commands for the desired system programs.

For example, to make FORTRA.SAV reside on DXI: in a dual diskette system, use the following commands:

```
. F FATCH RET.
*BATCH.gAU RET
*26F54%1FR RET
*1.1066\ 40 12% RET
*F:
```

- COFY SY:FOFTFA.SAU RIXI:** RET
- DFIETE SY:FORTRA, SAV RET

Files deleted:
SY:FOKTRA.SAVPY RET
-ASSTGN MXI OKK RET
Keep in mind that, once you assign DK: to a device other than $\mathrm{SY}:$, the new device becomes the default input and output storage device for most system programs. You may also have to modify your BATCH jobs to explicitly reference certain files on SY: since that is no longer the same device as DK:. You may choose to keep your . BAT and .CTL files on SY: by invoking BATCH as follows:

- F EATCH RET
*SY:MYJOBESY:MYJOR RET
Make the following patches to BATCH to change the default storage volume for system programs.

1. FORTRAN
```
.Fi FATCH RET
*BATCH:GAV RET
*26"%Ay|F゙ RET
*1.1066> 40 10% RET
*:
```


## 2. MACRO

- Fi FATCH REt	
* BATCH.SAV Ret	
*2655401F RET	
*1.1055 40	125 RET
*E	

3. BASIC

4. Linker

- Fi FATCH RET
*BATCH.GAU RET
*26554今1F RET
*IVIIOF 40 125 RET
*E

5. PIP

-FiPATCH RET		
*BATCH.SAV REt		
*265E4*IFR RET		
*1.1120	40	125 REI
*F:		

6. DIR

- FFATCH RET	
*BATCH. SAV RET	
*265世4 ¢ lF Ret	
*I.4\%0\ 40	12 O RET
*	

### 2.5 SIMPLE DEMONSTRATION PACKAGE

Once you have built, customized, and preserved the working system as described in the previous sections, you can execute the following demonstration exercise. The demonstration exercise does not serve as a comprehensive system exercise, but by utilizing several major system components, it does serve as a minimal integrity check.

To execute this demonstration, the working system must include at least the following components:

SWAP.SYS
monitor
TT.SYS
EDIT.SAV
MACRO.SAV
SYSMAC.SML
LINK.SAV
PIP.SAV
DUP.SAV
DIR.SAV
DEMOBG.MAC
DEMOFG.MAC

## GETTING STARTED WITH RT-ll

### 2.5.1 Running the RT-11 Single-Job Monitor

For purposes of this demonstration, you edit, assemble, link, and execute a small program (DEMOBG.MAC). When you execute it, DEMOBG displays a message on the terminal.

1. If the system is not running, bootstrap the system. Ensure that the system device is WRITE ENABLED.

Response: System identifier, followed by any startup file commands.

Type: TATE CO‥mmmery RET
where dd-mmm-yy is the current date in the form 12-MAY-78.
Response:
If the system configuration does not include a VTll or VS60 display processor and scope or does not have more than 8 K words of memory, go to Step 2. Otherwise, verify that the scope is on by turning the BRIGHTNESS knob to an adequate level.

Type: $\quad$ OT ON RET
The system output will shift to the display scope. You still enter commands at the keyboard, but the echo is on the screen.

Response: . (on screen)
2. If the system volume is diskette, go to Step 3. If the system device is RFll, RL0l, RK06/07, RKll, RP02, or RJS03/4 disk, go to Step 4.

If the system volume is DECtape, mount a blank tape on Unit l, WRITE ENABLED.

Type: ASSTGN TTI OK RET
Response:
Type:
TNTTMAKE MT: RET
Response: WTI:/mit are wou sure?
Type:
$Y$ Ret
Response:
Go to Step 4.
3. If the system volume is RX0l or RX02 diskette, mount a blank diskette on Unit l, WRITE ENABLED. In the example below, $x x$ represents the physical device name: DX for RXOl diskettes, DY for RX02.

Type: $\quad \operatorname{ASSIGN} \times \mathrm{Al}$ RK Ret
Response:
Type: INTTALIZF w : RET

## GETTING STARTED WITH RT-ll


5. Use the text editor to modify the demonstration program, DEMOBG.MAC.

Type: EITT SY: OFMOBG. MAC RET
Response: *
Type: $\quad \mathrm{F} \%$ tab $\cdot \mathrm{ASCTI} \mathrm{ESC} \mathrm{ESC}$
Response: *
Type: OADI ESC ESC
Response: *
Type: $\quad E \times$ ESC
Response:
6. If a line printer is available, assure that it is on line and ready.

## GETTING STARTED WITH RT-11

Type: $\quad$ ASGIGN 1 FF L. ST RET
Response:
If a line printer is not available, type:
ASSTGN TT IST RET
Response:
7. Assemble DEMOBG.MAC and obtain a listing.

If running on a system with 12 K or more words of memory
Type: MACFOATST:LST: SY: DFMORO RET
Proceed to step 7a for the response.
If running on an 8 K system
Type: MACEO SY:CEMORG RET
Response: EFFORS METECTET: O

If the response is a monitor error, the most common cause is failure to rename MAC8K into MACRO.SAV when building the working system.

Type: MACRO/ITST:MFMOBG/NOOBJECTSY:MEMOBG RET
Response: EFFOFS METECTEO: O

Type: COFY nIFMOEG. 1 ST LST: RET
7a. Response: (see following)




TYPE: $\quad$ FENAME SY: DEMOBG.BAK SY: MEMOBG.MAC RET
Response:
Then go to Step 5.
Otherwise, if the system will be running the foreground/background monitor, proceed to Section 2.5.2.

### 2.5.2 Running the RT-1l Foreground/Background Monitor

For the purposes of this demonstration, you assemble a second program (DEMOFG.MAC), link it for the foreground, and execute it in conjunction with DEMOBG. This portion of the demonstration requires 16K words of memory and a clock to run. DEMOFG is a small foreground program that sends a message every two seconds to DEMOBG, running in the background, telling it to ring the terminal bell. Besides printing the terminal message used in Section 2.5.l, DEMOBG recognizes these messages and rings the bell once for each message sent.

Although DEMOFG is always active, sending messages to the backbround every two seconds, this demonstration will execute other programs in the background besides DEMOBG. Only when DEMOBG is active, however, is the circuit complete and messages successfully received and honored. During those periods when DEMOBG is not running, DEMOFG will enter the messages in the monitor message queue. Once you restart DEMOBG in the background, the system immediately dequeues all the messages queued since the last forced exit, resulting in many successive bell rings. When the queue is empty, the normal send/receive cycle resumes and the bell rings every two seconds, as each current message is sent and honored.

1. To the running RT-ll single-job monitor:

Type: EOOT ※MNFB.SYS RET
where $x x$ is the system device name.
Response: FTTHIFB VOBE.W\%
(followed by any commands executed from the startup command file).

The FB monitor is now running.
If the system configuration does not include a VTll or VS60 display processor and scope, go to Step 2. Otherwise, verify that the scope is on by turning the BRIGHTNESS knob to an adequate level.

Type: GT ON RET
The system output will shift to the display scope. You still enter commands at the keyboard, but the echo will be on the screen.

Response: $\quad$ (on screen)

```
2. If the system volume is diskette, go to Step 3. If the
 system volume is RK06/07, RFll, RKll, RL0l, RJS03/4, or RP02,
 go to Step 4.
 If the system volume is DECtape, mount a blank, formatted
 DECtape on Unit l, WRITE ENABLED.
 Type: ASSTGN IITI 位 RET
 Response: *
 Type: TNTTTALTZEE nTI: RET
 Response: Int:/Tinit, are sou sure?
 Type: Y RET
 Response:
 Go to Step 4.
3. If the system volume is RX0l or RX02 diskette, mount a blank
 diskette on Unit l, WRITE ENABLED. In the example below, xx
 represents the physical device name: DX for RX0l diskette,
 DY for RX02.
 Type: ASSTGN w%l RKK RET
 Response:
 Type: TNTTTALIZE:N%: RET
 Response: wol:/mit are wou sure?
 Type: Y RET
 Response:
4. Enter the time of day.
```



```
 where hh:mm:ss is the current hour, minutes, and seconds in
 the form 13:12:00 (1:12 p.m.).
 Response:
 Assemble the foreground demonstration program, DEMOFG.MAC.
 Type: MACRO SY:DEMOFG RET
 Response: EFFORS NETECTEX: O
 Link DEMOFG for the foreground.
 Type: ITNK/FOREGROUNA NEMOFG RET
 Response: *
 Start DEMOFG as the foreground job.
 Type:
 Response:
 Fs
```



## GETTING STARTED WITH RT-ll

$\cap$


This concludes the demonstration exercise.


## SYSGEN

### 3.1 INTRODUCTION TO SYSGEN

Most RT-ll users can use the system components as distributed and do not need to generate a unique monitor. For those of you with unique requirements, however, RT-ll has a system generation facility that allows you to set the parameters for the system to be generated, then assemble and link a monitor and device drivers using those parameters.

RT-ll system generation requires significant mass storage and execution time. If one of the distributed monitors meets your needs, DIGITAL recommends that you do not undertake a SYSGEN. You should weigh the economies of creating a new monitor unique to the installation against the costs of doing so.

If you are unfamiliar with RT-ll you should not undertake a system generation. You must be comfortable with RT-ll commands and operating characteristics to understand the system generation process and to successfully deal with error conditions that can arise.

Although a knowledgeable user can accomplish a system generation with a smaller configuration, supported use of SYSGEN requires at least l6K words of memory and 2000 blocks of disk storage. The minimum recommended configuration for SYSGEN is a machine with at least two disk drives, 24 K words of memory and an $11 / 34$ or larger processor.

Appendix A describes a procedure for undertaking a SYSGEN on a smaller system with two RX0l drives and no other disks.

### 3.2 CATEGORIES OF CHOICE

The RT-ll system generation procedure allows you to customize the monitor and device handlers. Note that system generation does not impact the utility programs or any other non-executive system components.

When selecting the options available in the generated system, you have choices in two categories: (l) which services to include in the monitor and (2) which peripherals to support in the resulting system. The dialogue also allows you to specify peculiarities of the hardware configuration on which the resulting system runs.

```
3.2.1 Monitor Services
The following options concerning monitor services are available
through SYSGEN.
 l. Which monitors to generate
 2. Which system device (all monitors)
 3. Inclusion of timer support (SJ)
 4. Inclusion of device time-out support
 5. Error messages on system I/O errors (SJ)
 6. Inclusion of the idle loop light pattern (FB and XM)
 7. Inclusion of multiple terminal support (FB and XM)
 8. 50-cycle or 60-cycie clock rate (all monitors)
 9. Inclusion of startup indirect file support (all monitors)
 10. Error messages on power failure (all monitors)
 ll. Inclusion of BATCH support (all monitors)
 12. Escape sequence processing in the terminal service (all
 monitors)
 13. Inclusion of error logging (all monitors)
```


### 3.2.2 Peripheral Support

The following options concerning peripheral support are available through SYSGEN.

1. Which devices are to be supported
2. For RFll disks, the number of disk platters
3. For diskettes, a second controller for units 2 and 3
4. For RX02 diskettes, double-density only support
5. For RLOl disks, the number of units
6. For magtape support, file-structured or hardware support
7. The number of empty device slots
8. For $F B$ or $X M$ multi-terminal support, the number of interfaces of each type, and the number of local and remote lines
9. For $F B$ or $X M$ multi-terminal support, the size of ring buffers, inclusion of asynchronous terminal status and multi-terminal time-out support

### 3.2.3 Configuration Information

During SYSGEN, you also supply the following hardware configuration information.

1. Which clock to use for the system clock
2. Nonstandard interrupt vector addresses for LPll, VTll/VS60, or second RXll or RX2ll support
3. For $F B$ or $X M$ multi-terminal support, the interrupt vector and CSR (device Control/Status Register) addresses for each interface

### 3.3 FLOW OF THE SYSGEN PROCESS

The system generation process consists of three basic steps: the planning necessary to determine the desired configuration, execution of the SYSGEN program to generate conditional and command files, and actual assembling and linking of the system using the SYSGEN program output.

### 3.3.1 Planning

You should not sit down at a system generation session without first doing the planning and information gathering necessary to enable you to intelligently respond to the SYSGEN dialogue.

The items of information you need about the target configuration include:

- A list of the peripheral devices on the target machine
- The CSR and vector addresses for any nonstandard peripheral interfaces, especially extra terminals and graphics devices
- A list of the monitor services required for the target application

You should also have read and understood the entire SYSGEN dialogue described in Section 3.4. Understanding this dialogue and the implications of the various responses is important to making intelligent choices.

### 3.3.2 Execution of the SYSGEN Program

[^0]assembles and links the monitor (s) and also produces link maps. DEVBLD.COM assembles and links the device handlers, and SYSBLD.COM simply invokes the other two.

The SYSGEN program requires two script files as input: SYSGEN.CND and SYSTBL.CND. Both files must be present on DK: when you execute SYSGEN.

SYSGEN also requires sufficient space on DK: for the conditional and command files that it creates.

### 3.3.3 Assembly and Linking of System

Once you generate the conditional and command files with SYSGEN, the final phase of the process is to use these files to assemble and link the new monitors and handlers.

The system sources (without comments) necessary to this step are all distributed on the binary kit. You can assemble these sources using the standard command files output by SYSGEN, or, if space does not permit, you can substitute equivalent commands by hand.

See Section 3.6 for the details of the assembly and link process.

### 3.3.4 Summary of SYSGEN Process

The flow chart in Figure $3-1$ summarizes the steps necessary in the SYSGEN process. Figure 3-2 illustrates the files that SYSGEN requires.


Figure 3-1 System Generation Process


Figure 3-2 Files Required for System Generation Process

### 3.4 THE SYSGEN DIALOGUE

This section describes the SYSGEN dialogue in detail. It describes all text, questions and responses displayed during the dialogue. However, during any single run of the SYSGEN dialogue, many of these questions and comments do not appear since they depend on the answers to previous questions. Appendix A contains a console output listing of complete, actual SYSGEN runs.

The SYSGEN dialogue has two forms. The long form precedes each question with an explanatory text paragraph; the short form limits the dialogue to the questions themselves, providing no explanatory information. If you have run SYSGEN many times and understand each question, you will find the short form saves time. If you are still unfamiliar with the dialogue, the long form is helpful. Which form to use is the subject of the first question in the dialogue, and the response to this question governs the remainder of the session.

### 3.4.1 Question Types and Defaults

Each question that the SYSGEN dialogue presents has an associated default response. After the program asks each question, you can respond by typing the desired response or by typing RET to select the default. You can edit inputs using the standard RT-ll editing techniques (DELETE and CTRL/U).

There are three types of questions in the SYSGEN dialogue.
Questions that require a choice are in the following form:
Question $[\mathrm{Y} / \mathrm{N}]$ (default)?

You can respond by typing $Y$ REI for YES, $N$ RET for NO, or just Ret to select the default value, which is shown in parentheses.

Questions that require a numeric response are marked with [0] to signal that the response is an octal number or [D] for a decimal number, followed by the default value indicated in parentheses.

Question [O] (nnnnn)?
[D]
Respond by typing the desired value or by typing RET to select the default.

Questions that require an alphanumeric device name as a response are marked [DD] (where only the name is required) or [DDU] (where name and unit are required), followed by the default name indicated in parentheses.

Question [DD] (xxn)?
[DDU]
You can respond by typing the desired device name (and unit if called for) followed by RET or by typing just RET to select the default device.

The program checks the responses you type for validity during this phase of the SYSGEN process. If you type an incorrect response (such as a numeric response that exceeds the highest or lowest acceptable response), SYSGEN prints an appropriate error message and repeats the question. You should then provide the correct response.

### 3.4.2 SYSGEN Dialogue Explanation

The following is the actual SYSGEN dialogue interspersed with explanatory text. Note that when you run SYSGEN, you do not see all the dialogue shown in this section; this section contains all the possible questions.

If you are about to run SYSGEN for the first time, you should use the information in this section to guide your responses.

To invoke the SYSGEN program, respond to the monitor's prompt (.) by typing:

R SYSGEN RET
RT-11 SYSTEM GENERATION FROGRAM VO2. 11
Ho you want the expanded form of dialosue [Y/N] (Y)?
The expanded form precedes each question with explanatory information. If you are thoroughly familiar with SYSGEN, answering NO saves time; if you are not familiar with SYSGEN, or are in doubt, use the expanded form.

All answers reauirins a choice are indicated by [Y/N]
and require you to type either 'Y' for yes or ' $N$ '
for rio followed by a carriase return. Ariswers requirins numeric infut are indicated by [fl] for decimal infut and [0] for octal infut. Answers reauirins a device name resfonse are indicated bu [nilj; answers reauirins a device name followed by a unit number are indicated bs [DIUU]. If you enter no resforise (just a CARRIAGE RETURN), your answer will default to the response indicated in Farentheses before the auestion mark (e.s. [MM] (RK)?). Your responses are checked for validity wherever fossible.

The outfuts of this SYSGEN Frosram are two conditional files (SYCNI.MAC and SYSTEL.MAC) and three indirect command files (SYSELII.COM, MONELII.COM and IIEUBLII.COM) which are used to assemble and lirk the monitor(s) and device handers for the tarset system. The assembly and linkins erocess reauires a machine with at least $16 k$ words of memory and mass storase witi at least 500 free blocks on the output device and 128 free blocks on the system device.

The followins dialosue asks questions about the confisuration for which the sustem is beins senerated, and about monitor and device suffort oftions you may desire. You should have read the FT-11 Ssstem Generation Manual before proceedins. You can terminate SYSGEN at aris time by tyfiris CTFL/C.

The Fit-11 sustem includes a variety of monitors, allowins you to select the monitor best suited to your afflication. The monitors are customized to sour confisuration by this SYSGEN frocess, and, while you may build ans rumber of moritors, you should realize that SYSGEN elaces a larse demario on time and data storase.

If you elect to build the baseline
sinsle--job (SJ) monitor, no other monitors
mas be built durins the same SYSGEN fass.
The baseline single--job (SJ) monitor is the minimal monitor necessary to ewecute standard system functions. It is intended for systems with orily $8 k$ words of memors, or for larser sustems that reauire the lowest possible monitor overhead. llevice suffort is limited, and some features of the S.J monitor usable in larser confisurations are omitted, such as EATCH and UTil supfort.

Ho sou want the baseline sinsle-job monitor $[Y / N](N)$ ?

If you want to generate a base-line $S J$ monitor, as opposed to a standard SJ monitor, or an $F B$ or $X M$ monitor, respond YES; if not, respond NO. Respond YES only if you are building DECtape, RXOl flexible diskette or RK05 based monitor. RT-ll does not support base-line monitors for other system devices. If you do select the base-line monitor, the conditional and command files output by this SYSGEN run can build only the base-line monitor. Creating additional monitors requires additional SYSGEN runs. The default is NO.

## SYSGEN

```
The sinsle-job (SJ) monitor frovides an environmerit suitable
for the develofment of simple afelications in FORTRAN or
BASIC. It provides a sibset of the foresround/backsround
(FB) features and offers maximum ability for minimum size.
Some additional features mas be added durins SYSGEN, but at
the cost of increased monitor size.
no you want the sinsle-job (SJ) monitor \([Y / N]\) (Y)?
```

Respond YES if you want to build a standard single-job monitor, NO if you do not. A response of YES here does not preclude also creating an FB and an $X M$ monitor on the same run. The default is YES.

The foresround/backsround (FE) monitor offers an extended
set of facilities which are helpful for apelications
involvins real-time or data acauisition. These
include timer suffort, serialized assnchronous $I / 0$, and
supfort for a foresround job.
Ho sou want the foresround/backsround (FB) monitor [Y/N] (Y)?
If you want an FB monitor answer YES; if not, answer NO. Neither response affects the ability to build an $S J$ or an $X M$ monitor on this run. The default is YES.

The extended memory (XM) monitor is a version of the FB monitor which sufforts uf to 128 K words of memory. It is useful for advanced afflications that require an extended addressins space. The $X M$ monitor is larser than FB and reatires a resident USF and drivers.

Ilo you want the extended memory (XM) monitor [Y/N] (N)?

If you want to build an XM monitor, respond YES; if not, answer NO. The response to this question does not affect the building of $S J$ or $F B$ monitors. The default is NO.

Note that you must respond YES to at least one of the preceding four questions; that is, each SYSGEN run must build at least one monitor. Because the system must build the monitor and handlers according to the same parameters, you cannot rebuild device support without rebuilding the corresponding monitors. If you respond No to all four monitor selections, SYSGEN prints an error message and terminates the session. If this happens, you must restart SYSGEN from the beginning.

There are a mumer of monitor oftions you may select:
The followins oftions apfly only to the $\mathrm{S} J$ monitor.
The S.J monitor normally does not have timer support, You mas oftionalls include the .MFKT and . CMKT requests.
[Io sou want timer sumport in the $S J$ monitor $[Y / N]$ ( $N$ )?
The single-job monitor does not normally support the .MRKT and .CMKT programmed requests. If you want to include support for these requests in the $S J$ monitor, respond YES. The default is NO.

Including timer support in the $S J$ monitor adds approximately 200 words to the resident monitor, and the additional interrupt-level overhead reduces performance slightly. Timer support is only necessary if your application requires it; the RT-ll system itself does not. This option applies only to the SJ monitor.

```
The device time-out option permits device drives to issue
mark time reauests. This feature is currently not used
by any RT-11 drivers, but is necessary for DECNET suffort.
Select this option if you are plannins to use DECNET
with your monitor.
no you want device time-out support [Y/N] (N)?
```

If you want device time-out support, answer YES; if not, respond with NO. Device time-out support is required for DECNET applications. The default is NO.

> The SJ monitor will normally halt at the "system halt" if there is a fatal system I/0 error. This halt can be replaced with a system error messase at the cost of about 30 words additional code in the resident monitor. This oftion is hishly recommended if the system is soins to be used by anyone other than the expert.
> no you want an error messase on sustem I/O errors $[Y / N](Y) ?$

If you want an error message instead of a system halt when the SJ monitor detects a fatal I/O error, respond YES. The default is YES. This option is highly recommended for all but the most space-conscious applications; the confusion it saves is well worth the small incremental memory requirement. This option applies only to the SJ monitor.

```
The followins oftions apply only to the \(F B\) and XM monitors.
The FE and XM monitors' scheduler idle loop will display a movins lisht fattern in the displas resister of ans FILF-11/45, 11/50, \(11 / 55\) or \(11 / 70\) frocessor.
```

Ho you want idle loof lisht pattern $[Y / N](N)$ ?
The FB and XM idle loop display is useful as an indicator of how "busy" the central processor is. If you want this display, answer YES. The default is NO. Selecting the display adds approximately 25 words to the resident monitor. This option applies only to the $F B$ and XM monitors.

> FT-11 rormally supports a sinsle terminal interfaced throush the console KL11 or ILLII, which is shared by both backsround and foresround jobs. You may oftionally select multi-
> terminal supfort of uf to 16 terminals interfaced throush
> a choice of ILLII and LIZ11 interfaces.

No sou want suffort of more than one terminal $[Y / N](N)$ ?

Respond YES if you want monitor support of more than one terminal. The default is NO. Respond NO if the application itself provides the support for the additional terminals (such as MU BASIC V0l) and you require only console support in the monitor. Multi-terminal support adds considerably to the space requirements of the resident monitor: a minimum of 750 words for the first additional terminal, and approximately 100 words for each additional terminal thereafter. These numbers are highly variable, depending on interfaces, configuration and other options elected (such as escape sequence support). This option applies only to the $F B$ and $X M$ monitors.

## SYSGEN

The followins oftions apply to all monitors.
RT-11 assumes a 60 Hz fower line freauency, but can oftionally suffort a 50 Hz freauency.

Do you want the optional 50 Hz clock support [Y/N] (N)?

If the line frequency is 50 Hz , respond YES. The default is NO $(60 \mathrm{~Hz})$. Note that this response and all succeeding responses apply to all monitors being generated.

```
RT-11 normally uses a line clock for the system clock.
You may substitute the KW11-F frosrammable clock if you wish,
in which case the KW11-F is not available for prosram use.
```

Do you want to use the KWII-F clock as the system clock [Y/N] (N)?
Respond YES if you want to use the KWll-P programmable clock instead of the line clock as the system clock. The default is NO (the system clock is the line clock). The system clock is used for time-of-day calculations, timer requests, and scheduling purposes in the $F B$ and $X M$ monitor. Note that if the monitor is using the programmable clock, an application cannot access the clock directly or change its rate without affecting monitor function. If a line clock is available, DIGITAL recommends that you use it as the system clock.

## The bootstraf oftionally executes an indirect file when startins the system.

no you want the startur indirect file $[Y / N]$ (Y)?
If you want the monitor bootstraps to execute the startup indirect file STARTx.COM every time that you boot the system, respond YES. The default is YES. This option requires no additional resident monitor space. If you elect it, the monitor prints an error message each time that you bootstrap it and no command file is present.

```
RT-11 supforts farity memory and frocesses memory
parity errors. If error lossins is fresent, farity errors
are also lossed.
```

Do you want memors farity supsort [Y/N] (N)?
If you want parity memory support, respond YES. The default is NO. If you elect memory parity support, the system detects, logs and reports memory and cache parity errors. Selection of memory parity support adds about six words of memory to the resident monitor if you do not also select error logging, and about 25 words if you do select error logging.

> The monitor normally halts on fower recovery startur after a fower failure. You may elect to have the monitor print a messase explairins that fower failure caused the halt.
[o you want fower failure messases [Y/N] (Y)?
The RT-ll monitors normally halt after a power failure. If you prefer an error message on startup to report the cause of the halt, respond YES. The default is YES. Election of this option adds about 25 words of memory to the resident monitors. This option is highly recommended for all but the most core-conscious of applications, because transient power failures that are too brief to detect visually are a frequent cause of spurious system crashes. This message helps to identify the
problem quickly. The target configuration must have core memory or battery back-up for this option to function correctly; do not select this option if you have volatile semiconductor memory.

```
RT-11 sufforts EATCH as an oftion. Indirect command
file suffort is sefarately available ir all monitors,
and BATCH supfort need not be selected to obtain
indirect command file suffort.
no you warit BATCH supfort [Y/N] (N)?
```

RT-ll BATCH support is distinct from indirect file support; if you want to run RT-ll BATCH streams in addition to indirect files, respond YES. The default is NO. BATCH offers several advantages over indirect files (file-based logs, job-stream programmability, operator interaction), and electing it adds 20 words to the resident monitor. If you do not specifically need the features of RT-ll BATCH (that is, if indirect files will serve the purpose), DIGITAL does not recommend selecting this option.

> The RT-11 terminal service is cafable of recosnizins ANSI or DEC standard escafe seauences and processins those sequences accordins to arflication instructions. This suffort is not necessary for normal system oferation; if your afrlication does not make special use of escape sequences. do not select this suFfort.

Ho you want escape sequence processins [Y/N] (N)?
no you want ANSI standard escafe sequences $[Y / N](N)$ ?
IIEC standard escafe sequences assumed.
RT-1l terminal service normally treats ESCAPE the same as all other characters. It is buffered, transmitted, and echoed (as a dollar sign) according to normal system rules. If your terminal uses ESCAPE sequences to perform command or other asynchronous functions, and your application uses these features, the monitor optionally recognizes the sequence and processes it according to various flags set by the application.

If your terminal does not generate escape sequences, or your terminal uses them but your application does not, respond NO to the first question.

If your terminal generates escape sequences and your application will use them, respond YES to the first question. NO is the default.

The second question allows you to specify whether you want ANSI or DEC standard sequences. Very few terminals conform to the ANSI standard; if yours does, respond YES. NO is the default.

Electing escape sequence support adds approximately $2 l 0$ words to the resident monitor; it is not necessary for operation of any of the RT-ll system programs.

Selection of error lossins creates the error lossins driver EL and incorforates error lossins into the device handlers. When EL is loaded and initialized, lossins of disk, DECtafe and memory parity errors will occur.

Do you want error lossing [Y/N] (N)?

If you want to use the error logger on the target configuration, respond YES. The default is NO. Selecting error log support adds approximately 1000 words to the resident monitor when EL is loaded (depending on the options you select) and approximately 50 words to each of the device handlers in the target system. Error log support is not required for your RT-ll system, but it is useful in monitoring system reliability.

```
The error losser can cafture either initial errors
or the most recent errors that have occured. For most
types of problems, information concernins initial
errors is most useful.
```

Should the error losser cafture the most recent errors [Y/N] (N)?
The error logger can use its error buffer to capture as many errors as occur until the buffer is full, or it can treat the error buffer as a ring buffer and retain only as many of the most recent errors as possible. Initial errors are usually most useful, but a particular problem can warrant collecting the most recent errors. Respond YES if you want only the most recent errors retained. The default is NO. This option has no impact on the size of the resident monitor.

```
Normal error lossins usase requires the utilits ERRUTL
to be run occasionally from the console
to write the error information out to the error los file. If
an afflication is to be run continuously for a lons feriod
of time, however, the error losser has a facility that
allows the afflication frosram to dumf the error los buffer
to the error file at resular intervals. Uriless your
apflication sfecifically uses this feature, you do not need
this suffort.
```

Ho you want a frosram other than ERFUTL
to write the error los buffer $[Y / N]$ (N)?

Respond YES if your application has a facility that automatically dumps the error log buffer. Respond NO if your use of error log support will be limited to the facilities distributed with the system. The default is NO. Selecting this option adds approximately 180 words to the error logger. If you select this option, ERRUTL continues to operate as an alternate means of dumping the error log buffer.

> The error losser reauires a resident buffer to collect errors. The buffer size may be iricreased to accomodate an unusual error load.

How many 256 word memory blocks should be set aside for the error buffer [D] (1)?

Respond by specifying the number of blocks to be set aside for the error buffer. The default is l. The range for valid responses is from 1 through 4. Each buffer consumes 256 words of resident memory, so you should limit the buffer size to the minimum number of blocks necessary to store the important error information.

> The error losser can handle uf to 35 individual device units. Space can be conserved by reducins the number of units the losser can handle to the specific number of units present on the tarset confisuration. Orils disk and NECtafe units need be included.

How many disk and LECtare device units can be lossed [D] (10)?

Respond by specifying the total number of disk (including diskettes) units and DECtape transports on the target system. The default is lo. If the system has three RK05 drives, a dual DECtape drive (two transports) and a dual diskette drive, the response is seven (one for each unit). Each unit adds seven words to the error logger. The range for valid responses is from l through 35.

The followins questions ask about the
peripheral devices that are to be supported by the
senerated system. By selectins suffort for a specific
device, sou make the device known to the monitor's
device tables, and you cause a device handler
to be senerated for the device. If you do not select
a specific device, you will have to create the
device handler separately and use the monitor
INSTALL command when device access is desired.
RT-11 Version 3B sufforts the followins devices as system devices:

FK	RK05 Cartridse Ilisk.
IT	DECtape
IXX	Flexible Iiskette
FK	RK0S Cartridse Ifisk
IIL	RLo1 Cartridse Ilisk
RF	RF11 Fixed-head Ilisk.
[1	nectape
IIX	FXO1 Flexible fiskette
DY	RXO2 Iouble Inensits Iiskette
IS	FiJS03/4 Massbus Fixed-head lisk
[iF	RFi1 Hisk. Fizek.
LIM	RK06/FK07 Cartridse Ilisk.

You must select one as your sustem device; use the two character device riame as indicated above.

What is the name of the sustem device [DD] (FK)?

This query establishes the system device for the monitor being generated. Enter the two-character RT-ll physical device name for the system device, followed by a RET . The default is RK. Use only legal RT-ll physical device mnemonics as illustrated in the expanded comments, and do not include a unit number. The system device indicated corresponds to all the monitors built as a result of this dialogue.

For the following questions, you need only select support for the devices that appear in the target system. You must select the support option that corresponds to the system device.

Do you want RJJO3 or RJJSO4 disk support [Y/N] (N)?
Respond YES if the target system has an RJSO3 or RJS04 disk subsystem. The default is NO.

Do you want RJSO3 suffort (as ofposed to RJSO4 support) [Y/N] (Y)?
RJSO4 support assumed.
Respond YES if the target system has an RJS03 disk subsystem. The default is YES. If you have already named DS as the system device, you should elect this option if the disk is RJS03 (to distinguish it from RJS04).

Do you want RF11 fixed-head disk support [Y/N] (N)?

Respond YES if the target configuration has an RFll/RSll disk subsystem. The default is NO. If you have already named RF as the system device, this question is not asked.

How many disk flatters are installed on the RF11 controller [n] (1)?
Respond with the number of RSll platters present on the RFll subsystem, followed by RET ; 1 is the default. The range for valid responses is from 1 through 8.

Do sou want RF11/FiPRO2 or RF11/RFO3 disk support [Y/N] (N)?
Respond YES if the target configuration has an RPll/RP02 or RPll/RP03 subsystem. The default is NO. If you have already named DP as the system device, this question is not asked.
[lo you want RFRO2 supfort (as opfosed to RFRO2/RFO3) [Y/N] (Y)?
RFFRO2 and FFOU supfort assumed.
Respond YES if the target configuration has an RPll/RP02 subsystem. The default is YES.

Do you want RX01/RX11 flexible diskette supfort [Y/N] (N)?
Respond YES if the target system has an RXll/RXOl flexible diskette subsystem. The default is NO. If you have already named DX as the system device, this question is not asked.

The RX11 flexible diskette subsystem supforts only two orives for each controller. If your system contains four diskette orives, there is a second controller fresent supportins the third and fourth units.
no you warit suffort for a second RX11 controller [Y/N] (N)?
If the target system has four RX0l flexible diskette drives, respond YES. If it has only two drives, respond NO. The default is NO.

```
What is the CSR address for the
 first KX11 controller [0] (177170)
```

Respond by typing the address of the control register for the first RXll controller, followed by Ret. The default is 177170. The range for valid responses is from 160000 through 177570.

What is the vector address for the first RX11 controller [0] (264)?
Respond by typing the vector address of the first RXll, followed by RET - The default is 264. The range for valid responses is from l00 through 770.

What is the CSF address for the second FX11 controller [0] (177150)?

Respond by typing the address of the control register for the second RXIl controller, followed by RET. The default is l77l50. The range for valid responses is from 160000 through 177570.

What is the vector address for the second FX 11 controller [0] (270)?

Respond by typing the vector address of the second RXll, followed by RET . The default is 270. The range for valid responses is from 100 through 770.
no you warit FXO 02 diskette supfort $[Y / N](N)$ ?
Respond YES if the target configuration has an RX2ll/RX02 diskette subsystem. The default is NO. If you have already named DY as the system device, this question is not asked.

The FXO 2 diskette subsystem supports only two drives for each controller. If your system contains four drives, there is a second controller present suffortins the third and fourth units.

Dlo you want suffort for a second RXO2 controller [Y/N] (N)?

If the target system has four RX02 flexible diskette drives, respond YES. If it has only two drives, respond NO. The default is NO.

The FXO diskette sufforts both sinsle arid double densities by default. You can obtain a slisht performance enhancement and a reduction in the size of the device hander by specifyins double density suffort only.
Do you want FXO double density suffort only [Y/N] (N)?
Respond YES if you plan to use only double density diskettes. The default is NO.

What is the CSR address for the
first RXO2 controller [0] (177170)?
Respond by typing the address of the control register for the first RX2ll controller, followed by RET. The default is l77l70. The range for valid responses is from 160000 through 177570.

What is the vector address for the first RXO2 controller [0] (264)?
Respond by typing the vector address of the first RX2ll, followed by RET . The default is 264. The range for valid responses is from 100 through 770.

What is the CSF address for the second RXO controller [0] (177150)?

Respond by typing the address of the control register for the second RX2ll controller, followed by REI. The default is l77150. The range for valid responses is from 160000 through 177570.

What is the vector address for the second RX02 controller [0] (270)?
Respond by typing the vector address of the second RX2ll, followed by RET . The default is 270. The range for valid responses is from 160000 through 177570 .

Ho sou want filoi disk suffort [Y/N] (N)?
Respond YES if the target configuration has an RLIl/RL0l disk subsystem. If you have already named DL as the system device, this question is not asked. The default is NO.

How many RLO1 units are to be supforted [D] (2)?

Respond by typing the number of RL0l units on the target system. The default is 2. The range for valid responses is from 1 through 4. Each additional unit adds 20 words for table space, increasing the size of the handler.

Do you want RKOS/RKOSF disk supfort [Y/N] (N)?
Respond YES if the target system has an RKll/RK05/RK05F disk subsystem. The default is NO. If you have already named RK as the system device, this question is not asked.
no you want TCil neCtape supfort [Y/N] (N)?
Respond YES if the target system has an TCll/TU56 DECtape subsystem. The default is NO. If you have already named DT as the system device, this question is not asked.
[lo you want RKO6/RKO7 disk support [Y/N] (N)?
Respond YES if the target system has an RK6ll/RK06/07 disk subsystem. The default is NO. If you have already named DM as the system device, this question is not asked.
[lo sou want masnetic tafe suffort [Y/N] (N)?
If the target system has an industry-compatible TMll or TJUl6 magtape subsystem, respond YES. The default is NO.

RT-11 mastafe supfort is available in two forms. The standard form is file-structured mastafe, which supforts a subset of ANSI file format. The file-structured handler mas be used to store and retrieve data in a file format usable with most RT-11 sustem prosrams. The second form of mastafe supfort omits file structurins and reads and writes data directly in variable lensth records. This type of support is called the "hardware hander", and while this harider is sisnificantly smaller than the file-structured hander, it can not be used with any
system prosrams. The file-structured handler is also capable of performins direct hardware functions.

Do you want the file-structured mastafe hander [Y/N] (Y)?
Respond YES if you want the standard RT-ll magtape support. If you intend to use magtape with any of the system programs or commands, or from a FORTRAN or BASIC program, you should select the file-structured handler. The default is YES.

The file-structured hander reauires table sface for
each mastafe unit. You can minimize the size of
the mastafe hander by limitins the number of units it can simultaneously handle to the number actually present on the
tarset machine.
How many mastafe units are to be supforted [D] (2)?

Respond by typing the number of drives present on the magtape subsystem followed by a RET . The default is 2. The range for valid responses is from 1 through 8.

Do you want TM11 (UNIBUS) mastape sumfort [Y/N] (Y)?
Respond YES if the magtape controller is a TMll family controller. The default is YES. Only if the target magtape is a MASSBUS tape (TJUl6 family) should you respond NO.
no you want TJU16 (MASSBUS) mastape supfort [Y/N] (Y)?

Respond YES if the magtape controller is a TJUl6. If you responded NO to the previous question and you do not have a TJUl6 compatible drive, an error message appears and the system generation terminates; you must restart the SYSGEN process. The default is YES.

Do you want TA11 cassette support [Y/N] (N)?
Respond YES if the target system has a TAll/TU60 cassette subsystem. The default is NO.

Do you want UT11 or US60 sraphics support [Y/N] (N)?
Respond YES if the target system includes a VTll or VS60 graphics subsystem. The default is NO.
no you want US60 supfort [Y/N] (N)?
Respond YES if the graphics subsystem is a VS60. Respond NO otherwise. The default is NO (VTll support is assumed).

UT11 hardware is assumed.
The UT11/US60 is normally installed at vector 320 with
its CSR address at 172000, but these addresses may float.
What is the CSR address for the UT11/US60 [0] (172000)?
Enter the address of the VTll or VS60 control register, followed by a RET . The default is 172000 . The range for valid responses is from 160000 through 177570.

What is the vector address for the UT11/US60 [0] (320)?
Enter the vector address of the VTll or VS60, followed by a RET . The default is 320 . The range for valid responses is from 300 through 770.

Do sou want line frinter support [Y/N] (Y)?
Respond YES if the target system has a line printer; respond NO if it does not. The default is YES.

The line printer vector address is rommally 200
and the CSR address is normally 177514. If your printer
is installed at another vector or CSR address, you
must specify the correct values.
Does your frinter have a non-standard vector or CSR address [Y/N] (N)?
Respond YES if the printer control register address is NOT 177514 or the vector is NOT 200. This usually occurs only if the printer is an LAl80S. The default is NO.

What is the CSR address for the printer [0] (177514)?
Enter the address of the printer control register followed by a RET . The default is l77514. The range for valid responses is from 160000 through 177570 .

What is the vector address for the printer [0] (200)?

Enter the vector address of the printer followed by RET . The default is 200. The range for valid responses is from 100 through 770 .

The PCil is a hish speed paper tape reader/punch unit.
The FR11 is a similar unit with a hish sfeed reader but no punch.
Ho you want PC11 hish-speed pafer tafe reader/punch support [Y/N] (N)?
Respond YES if the target system has a high-speed paper tape reader and punch. If the system has a high-speed reader only, respond NO. The default is NO.

Do you want fR11 hish-speed faper tape reader support [Y/N] (N)?
Respond YES if the target system has a high-speed reader. The default is NO.
no you want card reader support $[Y / N]$ (N)?
Respond YES if the target system has a CRll or CMll card reader. The default is NO.

The null hander is a mechanism that allows losical input and output to take flace without actual physical data transfers. It is most useful in debussins afflications.

Do sou want the null handler $[Y / N](Y)$ ?
Respond YES if you want the NULL handler, NL.SYS, to be available on the target system. The default is YES.

This completes the device query. Space in the monitor is allocated only for the devices specified, but you may allocate additional
sface by requestins empty device slots. Allocate
one emfty slot for each device you intend to add to
the system after it is built.
How many extra device slots do you want [D] (0)?
Enter the number of additional devices you plan to add to the system, followed by RET . Include any device for which a handler is to be INSTALLed in the monitor. If the device will be supported only by a particular application and not by a system handler, you need not set aside a device slot for it. The default is 0 . The range for valid responses is from 0 through 10 .

The indirect command files senerated by the SYSGEN prosram contair commands that will delete the object modules from which the system is built when they are no lonser needed. This measure serves to conserve disk. sface while the system is beiris built. It is often useful, however, to keep the object modules for later use in patchins the sustem. If your output device has sufficient free sface,you can elect to retain all system object modules for future use.

Do you want to retain the system OBJ's [Y/N] (N)?

If the system volume on which the system will be built has abundant mass storage (approximately 500 blocks per monitor being built) and you want to retain the system. OBJ files for later patching purposes, respond YES. The default is NO. If in doubt, respond NO. Monitor patches distributed by DIGITAL will be made available in source form.

The followins questions ask about the terminal interfaces installed in your system. RT-11 supports a combination of serial asynchronous interfaces which include the KL11, ILUV11, DLU11-E, ILU11-F, DLU11-J, and the ILL11 series. It also supforts DLII-E and DLU11-E interfaces with moden carabilities, and the DZII and DZU11 series of assnchronous line multiplexors.

The dialosue asks first for the number of local DLil
lines, then the number of remote DLil lines. The total number of lines is the sum of local and remote
lines. Fhysical unit numbers of the ILL11 lines are assisned first to local lines and then to remote lines. This assisnment is fermanent and its order cannot be chansed.

After the dialosue has established the number of lines of each type, the CSF and vector addresses for each line must be established. The first auestion correspoinds to the first local line (the console), the second to the second local line, etc, unitil all local lines are accounted for. At that point, the next response afplies to the first remote line, the second to the second remote line, etc. until all remote 1 ines are accounted for.

How many local ILLI's, includins the console [D] (1)?
Enter the number of LOCAL DLll terminals in the target configuration. This number will never be less than 1 (the console is always a local DLll), and cannot be greater than 8. Do not include remote DLll lines in this number. The default is l. The range for valid responses is from 1 through 8.

How many remote [LI1 lines [il] (0)?
Enter the number of REMOTE DLll terminals in the target configuration. Do not count the local lines that you specified in the previous answer. This response can never be greater than 7, and the sum of this response and the previous response must be less than or equal to 8. The default is 0 .

What is the CSF address for the first (console) ILL1 [0] (177560)?

Respond by entering the keyboard control register address for the console terminal. The default is l77560. The range for valid responses is from 160000 through 177570.

What is the vector address for the first (console) DL11 [0] (60)?
Respond by entering the keyboard vector address for the console terminal. The default is 60. The range for valid responses is from 60 through 770 .

What is the CSF address for the next (local) [LI1 [0] (176500)?
Respond by entering the keyboard control register address of the next local DLll interface. The default is l76500. The range for valid responses is from 160000 through 177570.

What is the vector address for the next (local) IIL 11 [0] (300)?
Respond by entering the keyboard vector address for the DLll whose keyboard control register address was specified in the preceding response. The default is 300 . The range for valid responses is from 60 through 770.

For each of the succeeding questions, enter the control register and vector addresses for each succeeding DLll interface. Enter all the local interfaces first (if any), then all the remote interfaces (if any), until you have entered all interface addresses.

For example, assume 5 DLll lines, 3 local and 2 remote. The dialogue would look like:

WHAT IS THE CSR ADDRESS FOR THE FIRST (CONSOLE) DLIl [O] (177560) ? RET

WHAT IS THE VECTOR ADDRESS FOR THE FIRST (CONSOLE) DLll [O] (60)? RET

WHAT IS THE CSR ADDRESS FOR THE NEXT (LOCAL) DLll [O] (176500)? 2ND LOCAL ADDR RET

WHAT IS THE VECTOR ADDRESS FOR THE NEXT (LOCAL) DLll [O] (300)? 2ND LOCAL VECTOR RET

WHAT IS THE CSR ADDRESS FOR THE NEXT (LOCAL) DLll [O] (l76510)? 3RD LOCAL ADDR RET

WHAT IS THE VECTOR ADDRESS FOR THE NEXT (LOCAL) DLll [O] (310)? 3RD LOCAL VECTOR RET

WHAT IS THE CSR ADDRESS FOR THE NEXT (REMOTE) DLll [O] (175630)? 1ST REMOTE ADDR RET

WHAT IS THE VECTOR ADDRESS FOR THE NEXT (REMOTE) DLll [O] (320)? 1ST REMOTE VECTOR RET

WHAT IS THE CSR ADDRESS FOR THE NEXT (REMOTE) DLll [O] (175640)? 2ND REMOTE ADDR RET

WHAT IS THE VECTOR ADDRESS FOR THE NEXT (REMOTE) DLll [O] (330) ? 2ND REMOTE VECTOR RET

The defaults are as shown in parentheses at the end of each question.

What is the CSR address for the next (remote) DLil [0] (175610)? What is the vector address for the next (remote) DLII [0] (300)? What is the CSF address for the next (local) DLil [0] (176510)? What is the vector address for the next (local) DLil [0] (310)? What is the CSR address for the next (remote) DL11 [0] (175620)? What is the vector address for the next (remote) DL11 [0] (310)? What is the CSF adoress for the next (local) ILLII [0] (176520)? What is the vector address for the next (local) ILII [0] (320)? What is the CSR address for the next (remote) DLil [0] (175630)? What is the vector address for the next (remote) [ILI1 [0] (320)? What is the CSR address for the next (local) DLil [0] (176530)? What is the vector address for the next (local) ILII [0] (330)? What is the CSR address for the next (remote) ILI1 [0] (175640)? What is the vector address for the next (remote) DL11 [0] (330)? What is the CSF address for the next (local) ILL11 [0] (176540)? What is the vector address for the rext (local) DLil [O] (340)? What is the CSR address for the next (remote) ILI1 [0] (175650)? What is the vector address for the next (remote) [ilil [0] (340)? What is the CSR address for the next (local) [LLII [0] (176550)? What is the vector address for the next (local) [ilil [0] (350)? What is the CSF address for the next (remote) Illit [0] (175660)? What is the vector address for the next (remote) ILL11 [0] (350)? What is the CSR address for the next (local) [ilil [0] (176560)? What is the vector address for the next (local) ILLil [0] (360)? What is the CSF address for the next (remote) [LII [0] (175670)? What is the vector address for the next (remote) DLil [0] (360)?

```
FT-11 sufforts one [IZ11-A or -B eisht line multiplexor
with an additional nZ11-C or -D eisht line multiflexor
for a maximum of 16 lines,or one nZV11 four line
multiflexor. Modem suffort is available on
remote lines, but is limited to Bell 103 tupe modems or
equivalent with the "common clear to send and carrier"
option installed to operate the modem in an auto-answer mode.
```

Do you want [IZ11 or IZZU11 multiflewor support [Y/N] (N)?

Respond YES if the target system has a DZll or DZVll multiplexor. The default is NO.

Do sou warit [IZ11 multiplewor supfort [Y/N] (Y)?
Respond YES if the target system has a DZll multiplexor, NO if it does not. The default is YES. If you respond NO, one DZVll is assumed.

Ho you want suffort for two dZZ1's [Y/N] (N)?
One nzU11 four line multiplexor assumed.
Respond YES if the target system has more than eight DZll lines. The default is NO. Note that the system will have at least lo terminals in this case (console, plus eight on first DZll and $n(\geq 1)$ on the second DZll).

The lines must be initialized to a specific baud rate. The choices are 300,150 , and 110 baud.
no you want the lines initialized to 300 baud [Y/N] (Y)?
All DZll or DZVll lines must be initialized to the same baud rate. Respond YES if the rate is to be 300 baud. The default is YES.

Ho you want the lines initialized to 150 baud $[Y / N](Y)$ ?
Respond YES if the DZll or DZVll lines are to operate at 150 baud. The default is YES. If you respond NO, llo baud is asscimed.

110 baud is assumed.
The vectors and CSF addresses are assisned to the floatins device resion and will vary with each installation.

What is the CSR address for the DZV11 [0] (160010)?

Respond by entering the keyboard control register address for the first DZVll. The default is 160010 . The range for valid responses is from 160000 through 177570 .

What is the vector address for the nZV11 [0] (300)?
Respond by entering the keyboard vector address for the first DZVll. The default is 300. The range for valid responses is from 60 through 770 。

What is the CSR address for the first DZ11 [0] (160010)?
Respond by entering the keyboard control register address for the first DZll. The default is 160010. The range for valid responses is from 160000 through 177570.

What is the vector address for the first $1 \mathrm{ZZ11}$ [0] (300)?
Respond by entering the keyboard vector address for the first DZll. The default is 300. The range for valid responses is from 60 through 770.

What is the CSR address for the second DZ11 [0] (160020)?

Respond by entering the keyboard control register address for the second DZll. The default is 160020. The range for valid responses is from 160000 through 177570 .

What is the vector address of the second DZ11 [0] (310)?
Respond by entering the keyboard vector address for the second DZll. The default is 310 . The range for valid responses is from 60 through 770 .

The followins dialosue will ask for the number of local nZ11 or IZZU11 lines, then the number of remote lines. The total number of lines is the sum of local and remote lines. Fhusical unit numbers of the DZ11 or DZVII lines are assisned first to local lines and then to remote lines. This assisnment is permanent and its order cannot be charised.

How many nizit lines are local terminals [D] (O)?
Respond by entering the number of DZll lines that are local terminals. The default is 0. The range for valid responses is from 0 through 16 .

How many remote [iZ11 lines [D] (0)?
Enter the number of DZll lines that are connected to remote terminals. This response should equal the total number of DZll terminals less the number of local lines. The default is 0 .

How many DZU11 lines are local terminals [D] (O)?
Respond by entering the number of DZVll lines that are local terminals. The default is 0 . The range for valid responses is from 0 through 4.

How many remote nZV 11 lines [0] (0)?
Enter the number of DZVll lines that are connected to remote terminals. This response should equal the total number of DZV1l terminals less the number of local lines. The default is 0 .

The terminal service reauires a set of input and outfut rins buffers for each terminal supported. The output rins buffer default size is 40 characters. The infut rins size depends on terminal width and amount of type-ahead expected. The default size is 82 characters.

Size of the output buffers in characters [D] (40)?

Enter the number of characters that are to be buffered in the output ring buffers. Each character adds $n$ bytes to the resident monitor size, where $n$ is the total number of terminal lines. The default is 40 characters. The range for valid responses is from 10 to 132.

Size of the infut buffers in characters [D] (82)?
Enter the number of characters that are to be buffered in the input ring buffers. Each character adds $n$ bytes to the resident monitor, where $n$ is the number of terminals on the system. Make the input ring buffers large enough to hold at least one line of input. If the largest line accepted by an application is greater than 74 characters, you can adjust the size of the input buffers appropriately. The minimum acceptable input buffer size is 74 characters. Specifying less causes an error during monitor assembly. The monitor requires

82-character buffers for most efficient command operation. Buffers larger than 82 characters are rarely useful unless you anticipate a great deal of type-ahead. The default is 82 characters. The range for valid responses is from 74 through 132.

```
Terminal status mas be obtained by doins an .MTGET request
but some afflications require asunchronous notification of
chanses in terminal status. RT-11 smpforts asunchronous
terminal status as an option to the .MTATCH
reauest and provides information on buffer and modem
status as well as double CTRL/C.
[lo you want asynchronous terminal status [Y/N] (Y)?
```

Respond YES if your application requires asynchronous notification of changes in terminal status. The default is YES. If in doubt, respond YES. This option adds approximately 50 words to the resident monitor.

```
Time-out suffort will cause the monitor to reset at resular
intervals any terminal that mas have sone off-line. This
helfs to minimize the imfact of static (and similar)
Froblems, and is recommended if maximum availability
is important to the afflication.
no sou warit multi-terminal time-out support [Y/N] (Y)?
```

Respond YES if maximum terminal availability is important to your application. Respond NO only in the most space-constrained of situations. The default is YES. This option adds approximately 60 words to the resident monitor.

```
The SYSGEN assemblins and linkins frocess requires a
source input and a binary output device, as well as an
outrut device for monitor link mafs. You must specify
the physical name and unit number for each (for example,
RK1, DP4, etc.). For more explanation, see
Section 3.6.1 of the RT-11 System Generation Manual.
```

What is the PHYSICAL name and unit of the
source infut device [DDU] (RK1)?

The SYSGEN command files use the logical device SRC: for source input and begin by assigning $S R C$ to the appropriate physical device. Enter the physical device and unit number for the device on which the system sources will reside during system generation. The default is RKl.

## What is the FHYSICAL name and unit of the binary output device [IDUU (RKO)?

The SYSGEN command files use the logical device BIN: for binary and system output and begin by assigning BIN to the appropriate physical device. Enter the physical device and unit name for the device that will receive the .OBJ and system files output during SYSGEN. This device can be the same as the source input device, it can be an independent output device, or it can be a system device if there is sufficient space. The default is RKO.

What is the FHYSICAL name and unit of the maf outriut device [IDDU] (TT)?

The SYSGEN command files use the logical device MAP: for listing the link maps that result when you assemble and link the system components. If you submit an SPR to DIGITAL for a system that you created through the SYSGEN process, you must also send the link maps
for that system. The default device is the console terminal, TT. You can specify LP for the line printer, if your system has one. If you want to build a file for the map listings, specify the physical name of a block-replaceable device. Usually, the binary output device is suitable for the map files as well.

```
To build an entire system, mount the source and
binary disks, cory the files SYCND.MAC and SYSTBL.MAC
to the source disk, and type "eSYSBLD". To build just the monitors,
type "eMONBLD". To build just the device handlers" tupe
"@DEUBLI|". For more information, read Section 3.6 of the
RT-11 Sustem Generation Manual.
END OF SYSGEN PROGRAM--IOn't forset to cOFY DK:SYCND.MAC and
 DK:SYSTBL.MAC to the source disk before executins the
 command file(s). Remember that SWAF.SYS must
 be on all bootable volumes.
```

At this point the two conditional files (SYCND.MAC and SYSTBL.MAC) and the three command files (MONBLD.COM, DEVBLD.COM and SYSBLD.COM) reside on device DK: and are ready to use to build the system. Don't forget to copy SWAP.SYS onto your final system volume along with the monitor file.

### 3.5 SYSGEN ERROR MESSAGES

SYSGEN is a FORTRAN program and as such reports some error conditions in FORTRAN format.

The error messages likely to be output by SYSGEN are listed below. For other errors, see the RT-ll System Message Manual.
Message
?ERR 28 Open failed for file in
routine "MAIN" line l7
?ERR 28 Open failed for file in
routine "MAIN" line l9
?ERR 62 FORTRAN start fail
?SYSGEN-F-Answer value too large
?SYSGEN-F-Answer value too small
?SYSGEN-F-Inappropriate answer
?SYSGEN-F-Illegal system device
for base-line monitor

SYSGEN.CND not present on DK:.

SYSTBL.CND not present on DK:.
Insufficient memory to run SYSGEN.
The response exceeded the highest acceptable response. Refer to the specific question in Section 3.4.2 for the range of valid responses.

The response was less than the lowest acceptable response. Refer to the specific question in Section 3.4.2 for the range of valid responses.

The response was not of the type (alphabetic or numeric) required.

Caused by selecting an illegal device for the base-line SJ monitor. The valid devices are: RK:, DT:, and DX:.

## SYSGEN

?SYSGEN-F-Input error
?SYSGEN-F-Insert error
?SYSGEN-F-MAGtape specification
error
?SYSGEN-F-No monitor requested

Error reading the file SYSGEN.CND.
Error reading the file SYSTBL.CND.
Failure to select either of the magtape controller options after specifying that magtape support was desired.

Failure to select one of the four monitors.

Insufficient space on DK: to store the command and conditional files, or a hard $I / O$ error in those files.

### 3.6 BUILDING THE SYSTEM

This section describes the use of the conditional and command files to assemble and link the new system.

The command files output by SYSGEN are customized to assemble and link the monitor and handlers. These command files consist of assembly, link and, if you did not choose to retain the . OBJ files, file deletion commands. You can execute the command files as is after the system has been suitably prepared, or you can alter them as long as the final commands perform equivalent functions to those generated by SYSGEN. Examples of alterations you might want to make include:
l. Adding listing output files to the assembly strings. The default output device is TT:. You can change the output device to create a file instead of a listing. You can suppress the link maps by sending the output to the null device, NL:. Note that you must include a link map and SYCND listing with any SPR you submit to DIGITAL for a monitor created by SYSGEN.
2. Changing the devices on which individual source or binary files are to reside to optimize mass storage usage.

You need not execute the command files as command files. You can, of course, type the commands individually. This can be necessary if there is insufficient mass storage to execute the entire file or to repeat a particular step that generated an error without repeating the whole command file.

The conditional files (SYCND.MAC and SYSTBL.MAC), once developed with SYSGEN, can of course be used over and over without rerunning the SYSGEN program. To regenerate a system including source patches, simply edit the source file and rebuild the system using the existing SYCND.MAC and SYSTBL.MAC files. You need only rerun SYSGEN if you want to change the configuration; it is not necessary to rerun SYSGEN to rebuild an existing configuration.

If you make an error in the SYSGEN dialogue (for example, if you type an alphanumeric response where a numeric response is necessary), the program prints an error message and repeats the question so you can enter the correct response. To make other changes to your responses after the dialogue is complete, you should rerun SYSGEN. It is possible to avoid rerunning the SYSGEN program by editing the conditional file itself to correct any problem. This requires great care, however, and only the knowledgeable user should manipulate these files. If in doubt, rerun SYSGEN.

### 3.6.1 Customizing the SYCND File

The SYCND.MAC file created by the SYSGEN dialogue contains conditionals that reflect your target system. Before you execute the command files, you can edit SYCND to make minor changes.
3.6.1.1 Multi-Terminal Support for United Kingdom - RT-ll does not disconnect remote lines immediately when the carrier is lost. It waits for a period of time to avoid dropping a line due to noise. United Kingdom applications require RT-ll to disconnect a line immediately when the line hangs up. The DLll-E interface with modem support has a conditional that you can add to SYCND to include support for immediate disconnect. Insert the following line in SYCND.MAC:

$$
\text { U.K゙ + = }=1
$$

3.6.1.2 Non-Standard CSR and Vector Support - You can customize support for devices that are located at non-standard addresses by changing the conditionals in SYCND that define those addresses. Insert a line in SYCND.MAC for each non-standard CSR and vector address. The format of the conditional is as follows:
dd\$xxx = nnnnnn
where
dd is the two-letter device mnemonic
xxx must be replaced by one of the following:
VEC for first controller's vector
CSR for first controller's CSR address
VC2 for second controller's vector
CS2 for second controller's CSR address
nnnnnn is the six-digit octal address

### 3.6.2 Requirements for Building a System

Executing the SYSGEN command files requires sufficient free space on the binary output device to accommodate the .OBJ and .SYG output files, the monitor link map files, and the proper source components (as distributed with the system) on the source input device.
3.6.2.l Necessary Components - The SYSGEN command files require a running RT-ll system on the system device that includes a monitor, SWAP.SYS, necessary handlers for the source and binary devices, MACRO, LINK, PIP and SYSMAC.SML. Most working disks have these components. DIGITAL recommends that you use the SJ monitor in order to leave as much memory as possible available for MACRO's symbol tables. If disk space is a serious constraint, you can build a special SYSGEN system disk limited to these components (and perhaps DUP and DIR). The system disk should have at least 128 free blocks to accommodate the work file needed by MACRO during system assembly.

The source disk must contain the following source files (all of which are in the distribution kits). The source disk can be the same as the system disk and/or binary disk if sufficient space is available.

SYCND.MAC	(output by SYSGEN)
SYSTBL.MAC	(output by SYSGEN)
SJ.MAC	(if SJ or BL monitor being built)
FB.MAC	(if FB monitor being built)
XM.MAC	(if XM monitor being built)
SYSDEV.MAC	
KMON.MAC	
USR.MAC	
RMONSJ.MAC	(if SJ or BL monitor being built)
RMONFB.MAC	(if FB or XM monitor being built)
KMOVLY.MAC	
BSTRAP.MAC	
MTTEMT.MAC	(if multi-terminal support needed)
MTTINT.MAC	(if multi-terminal support needed)
TT.MAC	(if SJ or BL monitor being built)
EL.MAC	(if error logging included)
BA.MAC	(if BATCH support included)
LP.MAC	(if line printer support included)
RK.MAC	(if RK05 support included)
DL.MAC	(if RL0l support included)
DY.MAC	(if RX02 support included)
DT.MAC	(if DECtape support included)
DS.MAC	(if RJS03/4 support included)
PC.MAC	(if high-speed paper tape support included)
RF.MAC	(if RFll support included)
DM.MAC	(if RK06/07 support included)
DX.MAC	(if RX0l support included)
CR.MAC	(if card reader support included)
DP.MAC	(if DPll support included)
CT.MAC	(if TAll support included)
NL.MAC	(if null handler support included)
FSM.MAC	(if file-structured magtape support included)
TM.MAC	(if TMll magtape support included)
TJ.MAC	(if TJUl6 magtape support included)

3.6.2.2 Size Requirements on Binary Disk - The binary disk must have sufficient free space to store the object modules and system files output by the system build process. If you do not retain the object modules, the space required is reduced to that necessary to store the largest set of concurrent. OBJ files needed and the system files. DIGITAL recommends that you assign a separate device other than the binary device for the temporary work files. Use the ASSIGN command to do this:
. ASSTGN device WF RET
An approximate guide for the free storage necessary is:
300 blocks for each monitor produced
10 blocks for each SJ, FB handler produced
10 blocks for each XM handler produced
200 blocks for each set of monitor object modules retained
8 blocks for each set of handler object modules retained

Hence, if you are building only one monitor with a typical complement of handlers, approximately 500 blocks of free storage is sufficient. If you are building all monitors with support for all devices and are retaining the object modules (the worst case), the storage needs can approach 2000 blocks.

Make the free storage on the binary device contiguous prior to starting a system build (to do this, SQUEEZE the binary device before starting).

The SYSGEN command files create the new system files with a .SYG file type (or . BLG for sysgened BL monitors). This allows you to use the system device as the binary device, and enables you to tell the new system files from the running (.SYS) files. When installing the new system, rename the .SYG or . BLG files to .SYS.

The recommended procedure is to use separate source, binary, and system devices if possible; this speeds up the build process. If only two devices are available, combine the source and binary disks if possible.

### 3.6.3 Building the Monitors

If there is sufficient free space on the binary output device, building the monitor consists of the following simple steps:

1. Mount the source disk; transfer SYCND.MAC and SYSTBL.MAC to the source disk (if not there already).
2. Mount the binary disk (if not the source disk) and SQUEEZE it to consolidate free space.
3. Type: EMONBIM RET

The monitor logs the commands on the terminal as they are executed.

If you do not have sufficient free space on the binary output device, or if the source files do not fit all on one volume, enter the keyboard monitor commands that appear in MONBLD.COM by hand, shuffling files and volumes as necessary. (See Appendix A for an example SYSGEN run.)

### 3.6.4 Errors When Building the Monitor and Handlers

The most common errors that occur during system building are

- Assembly errors
- FILE NOT FOUND errors
- OUTPUT FILE FULL errors
- Hard I/O errors

Assembly errors are most often caused by incorrect or conflicting responses during the SYSGEN dialogue. If you get an assembly error:

1. Carefully re-examine your responses to SYSGEN. You can often spot the problem by reading the conditional files (SYCND.MAC and SYSTBL.MAC).
2. If all is correct, make certain that you have the proper versions of the source files on the source disk and, if you have edited them, that you have not introduced an error. Compare the files on the source disk to the originals on the distribution disk to check for differences.

FILE NOT FOUND errors are most commonly caused by failure to copy the SYCND.MAC or SYSTBL.MAC files to the source disk or by failure to include all necessary source modules on the disk.

OUTPUT FILE FULL errors are caused when there is not sufficient space on the binary output device to accommodate all output files. This condition can also cause the "?MACRO-F-Input-output error on workfile" message to appear. This usually means you did not assign the work file, or it needs more space. If you did not SQUEEZE the binary device before starting, try again after SQUEEZEing. If you elected to retain the . OBJ files, rerun SYSGEN and obtain command files that delete the .OBJ files. If you have other unnecessary files on the binary device, delete them. If all this fails to correct the problem, you must enter the system build commands by hand, shuffling volumes as you go.

Hard I/O errors are caused by bad volumes or write-locked drives. If the drive is write-locked, enable it. If the volume is bad, try another.

If you encounter an error which you cannot explain or correct, send a listing of the conditional files SYCND.MAC and SYSTBL.MAC along with the console output in a SPR to DIGITAL. Be sure to include the conditional file listings and all relevant console output.

When you boot a monitor that you created with SYSGEN, it prints an identifying message like the following:

$$
\text { RT- }-11 \% \text { ( } 9 \text { ) VOBB }-\infty
$$

The (S) indicates that the monitor was created by SYSGEN.

### 3.6.5 Building the Handlers

The instructions for generating the handlers are identical to those for generating the monitor except that you substitute the handler command file DEVBLD.COM for the monitor file MONBLD.COM.

If you desire to build both the handlers and monitors in the same operation, use the command file SYSBLD.COM, which simply invokes the other two.

In certain situations it is desirable to build a monitor with only a few device slots, build many device handlers to go along with that monitor, then use the INSTALL and REMOVE commands to activate and deactivate device handlers as needed. Each device selected as part of the SYSGEN dialogue is allocated a slot, and commands for building it are output in DEVBLD. Devices not selected are not given a slot in the device tables, nor are commands for handler generation included in DEVBLD. The procedure for building handlers for devices not included in the monitor tables is as follows:

1. Execute SYSGEN, selecting monitor options desired and selecting support for those devices for which slots are to be allocated. The resulting conditional and command files are used to build the basic system.
2. Re-run SYSGEN, specifying IDENTICAL monitor options, but this time selecting only the additional devices for which handlers are to be generated. You can then use the resulting SYCND.MAC and DEVBLD file to build the additional handlers. Do not use the MONBLD and SYSTBL files output by this second run; discard them to minimize confusion.

### 3.6.6 Keeping System Components

Once you have built the system, keep the conditional, command, and output files from the generation process if possible. You must retain at least the conditional and command files. All SPR's on RT-ll Version 3 B must be accompanied by a listing of these files as well as link maps if a monitor created by SYSGEN is being used.

If you retain the . OBJ files, you can reassemble a particular component and relink by hand (should that be necessary), saving the need to rebuild the entire system each time you make a minor patch.

The . SYG files output by the generation become the equivalent of the distribution masters for the customized system and should be preserved and stored accordingly.

$$
\checkmark
$$

$$
\mho
$$

$$
\checkmark
$$



CHAPTER 4
ASSEMBLY AND LINK INSTRUCTIONS FOR SYSTEM PROGRAMS

### 4.1 GENERAL INSTRUCTIONS

You should assemble the RT-ll monitors and device handlers in at least l6K words of memory; less memory makes the assembly times prohibitive. Use RT-ll MACRO as the assembler and RT-ll LINK as the linker in all cases. Ensure that all assemblies (except ODT) and links (except where otherwise noted) are error free.

Throughout this chapter, the following conventions are used:

1. Default file types are not explicitly specified. For all the source files, the file types are .MAC. The assembler output is . OBJ and linker output is .SAV.
2. The system macro library, SYSMAC.SML, must be on the system device during all assemblies given below.
3. In the example command strings, the sources are kept on logical device SRC:, binary output is to device BIN:, and listing and map files are output to LST:. In actual practice, you can use any appropriate device.
4. For the purposes of these commands, SYSLIB refers to a system library containing only the FORTRAN OTS routines.

The instructions are presented as BATCH streams that you can use to generate the various system components. You can substitute equivalent indirect files or direct keyboard monitor commands if BATCH is not appropriate.

All RT-ll system assembling and linking operations are normal operations. You can alter the command strings in the descriptions below to take full advantage of all RT-ll MACRO and LINK commands. Most of the commands shown are CSI level commands; you can, of course, substitute equivalent monitor commands.

Assembly and link instructions for the monitor and handlers are output in command files as part of the SYSGEN process. Examine MONBLD.COM and DEVBLD.COM after an appropriate SYSGEN run for monitor assembly and link instructions.

### 4.2 BUILDING THE SYSTEM MACRO LIBRARY

\$JOE/RTA1/TIME ! SYSMAC. BAT
rurio
\$MES MAKE: SYSMAC. SML.

- F LIER
*EIN:SYSMAC. SML. $=$ SKL: SYSMAC. MAC/M


### 4.3 BUILDING BATCH

```
#JOE/RTII/TIME !BATCH.BAT
 TTYIO
 $MES MAKE BATCH
 -F MACFiO
 *BIN:EA,L.ST:BA=SRC:SYCNH,BA/C
 *RIN:BAX,LST:BAX=:=SFC:XM,SYCNI,BA/C
 *BIN:BATCH,LST:BATCH=SFC:BATCH/C
 *Fi LINK
 *BIN:BA.SYS,LST:BA=EIN:BA
 *BIN!BAX.SYG,LST:EAX=EIN:BAX
 *BTN:BATCH,LST:BATCH=BIN:BATCH
 $EOJ
```


### 4.4 BUILDING PIP

\$JOB/RTII/TIME !FIF.BAT TTYIO
\$MES MAKE FIF

- F MACRO
*BIN:FIF:LST:FIF=SFC:FIF/C
-F LINK
*EIN:FIF,LST:FIF=BIN:FIF/B:700
\$EOJ
4.5 BUILDING DUP
\$JOE/RTII/TIME ! IUFF.EAT
rTYIO
SMES MAKE IUUF
- F MACFO
*EIN: DUFROT, LST:DUFFOT/C=:SFC: IUFFOT
*EIN: IUFIMA,LST: DUFIMA/C=:SRC: IUUFIMA
*BIN: IUFEXT, LST: DUFEXT/C=:SFC: LUFEXT
*BIN: IUFSCN,LST:DUFSCN/C=: SFC: DUFSCN
*EIN: IUFSQU,LST: DUF'SQU/C=:SFC: DUFSQU
*BIN: IUFZZO,LST: IUFZZO/C=:SFC: DUFZFO
*BIN: DUFCRE, GT : DUFCFE/C:= SFC: IUFCFE
*BTN: IUFBOT,LST: DUFEOT/C=SFC: DUFBOT
*EIN: MLUFRO, LST:MIUFRO/C= SFC: MRUF, LIUFFOT
*EIN:MIUFZZF,LST:MLUFZZ:C=SRC: MLIUF, IUFFZFO
*EIN:MDUFBO,LST:MLUFBO/C=SFC:MLUF, DUFFBOT
*BIN:MIUFSQ,LST:MDUFSQ/C=SRC:MLUF, IUJFGQU
*BIN:MBOOT,LST:MBOOT=SFC:MBOOT/C
*EIN:MSBOOT,LST:MSEOOT=SFC:MSBOOT/C
-F LINK
*BIN: IUUF, LST: IUFF: $=\mathrm{BIN}$ : DUFROT/W//
*EIN: IUFZFO/O:1
*EIN: DUFSCN, DUFEXT, DUFCRE, DUFBOT, DUFIMA/0:1
*BIN: DUFSSU/O:1//
*EIN:MIUF, LIST:MIUF-EIN:MDUFRO,MLUFZR,MLUFSQ,MDUFBO/W
*BIN:MBOOT, BOT, LST:MBOOT:-BTN:MBOOT
*BIN:MSBOOT. BOT, LST:MSBOOT=BIN:MSBOOT
\$EOJ

4.6 BUILDING DIR

```
$JOE/FT11/TIME !IIFECT.BAT
 TTYIO
$MES MAKE IIIF
-F MACFO
*BIN:IIF1ST,LST:MIF1ST/C=SFC:ITF1ST
*EIN:IIFILAAT,LST # IIFILAT/C=SFC:MIFFFFE,ITFIIAT
*EIN:IIFMMAN,LST:LIFMAN/C==SFC:IIFFFFE,IIFNMAN
*EIN;IIFT11,LST:IIFT11/C=SFC:IITFFFE,IIIFT11
*BIN:IIFSWT,LST:IIFESWT/C=SFIC:IIFFFFE,IIIFSWT
*ETN:IIFIMAT,LST & IIFMAT/C=SFC: IIFFFFE, IIIFMAT
*EIN:IIFKLK゙,LST:IIFSLK/C=SFC: LIFFFFE,IIIFLMK
*EIN:IIFNT,LST % IIFMT/C=SFC: IIFFFRE,IIFMT
*EIN:IIFCT,LST:IIFCT/C=SFC: IITFFFEE,IIFCT
*EIN:IIFRSUF,LST:IIF'SUF/C=SFC:IIFFFFE,IIIFSSUF
```



```
*ETN:IIFOUUT,LST:IIFOUT/C=SFC:IIFFFE,IIFOUT
*EIN:IIFEFFF,LST:ITFEFFF/C=SFC:IIFFFRE,IIIFEFF
*EIN:IIFFMT,LST:MIFFMT/C:=SFC:IIFMAC/M,IIFFFE,IIFFFMT
.FILINK
*EIN:HIFi,LST:IIFR/W=EIN:IIFF1ST,IIFFLIAT,IIIFMAN,IIIFT11/U:100//
*EIN:LIFSSWT, LIFMMAT, LIFINK, IITFMT, LIIFET, IIFFSUF'
*EIN:IIFSFT, IIFOUT,UIFEFFR,IIFFFMT
*//
*F'ATCH
$EO.J
```

4.7 BUILDING EDIT
\$JOE/FT11/TIME IEIIT.EAT
TTYIO
\$MES MAKE EIIT
- FI MACFO
*EIN: UTCEEI, LST:UTCEM1=SFR:EHITMF, UTCAL1/C


*BTN:EHIT, LST:EIIT=SFC:UTMAC, EITT/C
- F LINK゙

\$EOJ
4.8 BUILDING HELP

```
$JOE/RT11/TIME !HELF.BAT
 TTYIO
 $MES MAKE HELF
 .R MACFO
 *BIN:HELF,LST:HELF=SRC:HELF,TIO/C
 *F LINK
 *BIN:HELF,LST:HELF==BIN:HELF,SFC:TECO/E:2000/W
 $EOJ
```


## ASSEMBLY AND LINK INSTRUCTIONS FOR SYSTEM PROGRAMS

### 4.9 BUILDING ERRUTL

\$JOE/FTIJ/TIME !ELOG.EAT<br>TTYIO<br>कMES MAKE EFFOF LOG UTILITY<br>- F MACFO<br><br>- FI LINK<br>*BTN:EFFUTL * LST:EFFUTL=ETN:EFFKUTL<br>\$EOJ

4.10 BUILDING MACRO

SJOR/FT11
! MACFO , BAT
TTYIO
कMES MAKE MACRO
. TIM
Fi MACFO
*BIN:MMAIN,LST:MMAIN=SFC:MFAFZ,MMAIN,MENIIC
*BIN:MNEWCL, LST:MNEWCL = $=$ SFC : MF'AFT3/F: 1 , MNEWCL, MENLIC *EIN:MCFFIO, LST:MCFFIO:=SFC:MFAFZ/F: 1 , MCFFIO, MENII/C


 *ETN:MASGMT, LST:MASGMT=SFC:MFAFB/F: 1 , MASGMT, MENI/C *BTN:MENLFS y ST : MENLFS=SFC:MFAFZ/F: 1 , MENLFS, MENLI/C *BIN:MENLILN Y LST : MENTILN=SFC:MFAFZ/F:1, MENHLN, MENLI/C *ETN:MSETLN, LST:MSETLN=SFC:MFAFZ/F:1,MSETLN,MENLIC *BIN:MTNOFL, LST:MINOFL=SFC:MF'AFZ/F:1,MINOFL, MENL/C *EIN:MSETUF, L.ST:MSETUF=SFC:MFAFB/F:1,MSETUF/C *EIN:MINIUM,IST:MTNIUM=SFC:MFAFB/F: $=1$,MACFLM/F:1,MINIUM,MENI/C *BIN:MINTFL, LST:MINIFL=SFC:MFAFZ/F:1,MINIFL, MENIIC *BIN:MASSEM,LST:MASSEM=SFC:MFAFZ/F:1,MASSEM,MENI/C *BIN: MNLFCT, LST:MNLFCT = SFCC:MFAFZ3/F:1, MNLFCT, MENLI/C * ATN : MFFOFC, LST:MFFOFC=SFC:MFAFB/F:1, MFFOFC, MENI/C *EIN: MACFL, LST:MACFL=SFC: MF:AFZ/F: 1 , MACFIL, MENX/C *BIN:MNMLIS,LST:MNMLIS=SFC:MFAFB/F:1,MNMLIS,MENI/C *BIN:MNCNLIL. I ST:MNCNIIL=SFC: MF:AFB/F:1, MNCNIIL, MENLIC *BIN:MFLOAT, LST:MFLOAT=SFC:MFAFZ3/F:1,MFLOAT, MENH/C
 *EIN:MLISTC, LST:MLISTC=SFC:MFAFB/F:1, MLISTC,MENI/C *ETN:MENEMS,LST:MENEMS=SFC:MFAFZ/F: 1 , MENEIIS, MENI/C *ETN:MNSECF, LST:MNSECF=SFC:MFAFZ/F: 1 ,MNSECF, MENH/C *EIN:MSETMX, LST:MSETMX=SFC:MFAFZ/F: 1 , MSETMX, MENH/C




 *BTN:MOUFST, LST:MOUFGT:=SFC:MFAFZ/F:1,MOUFST,MENI/C *EIN:MNEXFS,LST:MNEXFS: SF:C:MF•AFB $3 / F: 1$, MNEXFS, MEND/C *EIN:MNEWCI,LST:MNEWCI=SFC:MF'AF:3/F:1,MNEWCI,MENI/C *BIN:MACOF, LST:MACOF: =SFiC:MF:AFB/F:1, MACOF, MENH/C *EIN:MSCNLE,LST:MSCNL B=SFC:MFAFi3/F:1,MSCNLE,MENLIC
 * A IN:MGETLN,LST:MGETLN=SFC:MFAFi3/F:I,MGETLN,MENLI/C *EIN:MSETIMッIST:MSETIM=SFC:MFAFZ/F:1,MSETIM,MENL/C
 *EIN:MGMAFG, LST:MGMAFG=SFC:MFAFZ/F:1,MGMAFG,MENLI/C *EIN:MFOLFT, LST:MFOLFFT=SFC:MFAFZ/F:1, MFOLFT, MENII/C *RIN:MNL.STG,LST:MNLSTG:=SFC:MFAFT/F: 1 , MNLSTG, MENH/C
 *EIN:MSYMEL,LST:MSYMEL = SFFC:MFAFZ/F: : 1 , MSYMEL, MENIIC



```
*EIN:MFSUNF,M8K,,LST:MK゙SUNF,LS8=SFC:MF'AF2/F:1,MFSUNF,MENH/C
*EIN:MSYMEL,M8K,LST:MSYMBL,LS8=SFC:MF'AR2/F:1,MSYMBL,MENII/C
*BIN:MUMOUF,M8K,LST:MUMOUR.LS8=SFC:MFAF2/F:1,MACFLM/F:1,MUMOUF,MENII/C
*ETN:MFUSH,M8K,LST:MFUSH,LS8==SFC:MF:AF2/F:1,MFUSH,MENII/C
*EIN:MSF'ACE,M8K,LST:MSF'ACE,LS8=SFC:MF'AFT2/F:1,MSFACE,MENII/C
*EIN:MFLIWF, MBK,LST:MFILWF,LSS=SFC:MF:AF2/F:1,MFIIWF,MENII/C
*F LINK
*ETN:MAC8K,LST:MAC8K=FIN:MMAIN.M8K,MNEWCL.M8K/T/W/E:730//
*EIN:MCFFIO.M8K,MNUMES.M8K
*BIN:MLABEL., M8K,MNEWST, M8K, MASGMT . M8K/O:1
*BTN:MENLFS.M8K/O:1
*BIN:MENILN.M8K゙/0:1
*BTN:MSETLN.M8K/0:1
*BIN:MINOFI.. M8K/0:1
*BIN:MSETUF,M8K,MINIUM,M8K,MINTFL.M8K,MASSEM.M8K,MNLRCT.M8K/0:1
*EIN:MFFOFC.M8K/O:2
*EIN:MACRII.M8K,MNMLIS.M8K/O:2
*BIN:MNCNILL.M8K/O:2
*BIN:MFLOAT.M8K/O:2
*BIN:MSCLF.M8K/0:2
*BIN:MLLSTC.MBK,MENBLS.M8K,MNSECF,M8K,MSETMX.M8K/O:2
*EIN:MLAATLF, M8K, MOFTEF . M8K,MWOFLLE, MBK/O:2
*BTN:MNMACS.M8K,MFEFT.M8K/O:3
*BIN:MOUFST.M8K/0:3
*ETN:MNEXFS.M8K/0:4
*BIN:MNEWCD.M8K/0:4
*BIN:MACOF.M8K, MSCNL.B.M8K,MACFC.M8K/O:4
*BIN:MGETLN.M8K/0:5
*BTN:MSETIM.M8K,MSETDK.M8K,MGMAFG.M8K/O:5
*BIN:MROLFTT.M8K/O:5
*BIN:MNLSTG.M8K,MFEUNF.M8K/O:S
*EIN:MSYMEL.M8K/0:6
*BIN:MUMOUR,MBK,MFUSH,M8K,MSFACE,M8K/O:6
*BIN:MFIDWF,M8K/0:6//
*START
$EOJ
- F MACFO
*EIN:MMAIN,OFT=SRC:MFAFI,MMAIN,MENLI
*BIN:MINIUM.OFT=SFC:MFAR1/F:1,MACFLM/F:1,MINIUM,MENL
*BIN:MFOLFT,OFT=SRC:MF'AR1/FF:1,MROLFT,MENI
*F LINK
*BIN:MACFST,LST:MACFST=EIN:MMAIN.OFT/T/W//
*EIN:MSF'ACE,MSETMX,MFUSH,MNMACS,MCRFIO
*EIN:MRSUNF,MNUMRS,MACOF,MACFC
*EIN:MSCNLE,MENILLN,MFROFC
*EIN:MNEWCL,MNCNIIL,MSCDIR
*EIN:MFEFT,MWORLIB,MNSECF,MDATLIF
*EIN:MOUFST,MNEWCI,MNEXFS,MGETLN
*RIN:MSETIM,MSETLIR,MGMAFG
*BIN:MFOLFT.OFT,MSYMEL,MUMOUR
*EIN:MINIFL,MSETUF,MINOFL/O:1
*EIN:MASSEM,MSETIN/O:1
*EIN:MINIUM.OFT,MENLIFS/O:1
*BIN:MACFII,MLAEEL,MASGMT,MNEWST,MNLRCT/O:1
*EIN:MFLOAT/O:2
*BIN:MRDWF,MOFTEF/0:2
*BIN:MNMLIS/0:3
*EIN:MNLSTG,MENELIS,MLISTC/O:3//
*START
$EOJ
```

```
4.ll BUILDING CREF
 $JOB/FT11/TIME !CFEF.EAT
 TTYIO
 $MES MAKE CFEF
 -F MACFO
 *BIN:CFEF,LST:CFEF=SFC:CFEF/C
 *F L.INK
 *BIN:CFEF,LST:CREF=EIN:CREF
 $EOJ
4.12 BUILDING LINK
 $.JOB/RT11/TIME !LINK.BAT
 TTYIO
 $MES MAKE LITNK
 .F MACRO
 *EIN:LINKO,LST:LINKO=SEC:LINKO/C
 *EIN:LNKOU1,LST:LNKOU1=SFIC:LNKKOU1/C
 *EIN:LNKGSIILST:LNKGGSI=SFC:LNKGSI/C
 *BTN:LNKHDF,LST:LNKHLF=SFC:LNKHHIF/C
 *BIN:LNKMAF'LST:LNKMAF=:SFC:LNKMAF/C
 *BIN:LNKSAU,LST:LNKGAU:=SFC:LNKSAU/C
 *BIN:LNKEM,LST:LNKEM=SFC:LNKEM/C
 *F LINK
 *EIN:LINK,LST:LINK=BTN:LTNKO/E:700/W//
 *EIN:LNKOU1/0:1
 *GIN:LNKGSI1O:1
 *GIN:LNKHDF/O:1
 *ETN:LNKMAF/O:1
 *EIN:LNKSAU/0:1
 *BTN:LNKEM/O:1//
 $EO.J
```


### 4.13 BUILDING LIBR

```
$JOB/RT11/TIME !LIEF.BAT
 TTYIO
$MES MAKE LIEF
.Fi MACFO
*BIN:LIBRO,LST:LIBRO==SFC:LIERO/C
*EIN:LIEF1,LST:LIBF1=SFC:LIBR1/C
*BIN:LIER2,LST:LIBR2=SFC:LIEF2/C
*EIN:LIBR3,LST:LIBR3=SFC:LIBF3/C
*EIN:LIBFA,LST:LIBF4=SFC:LIBF4/C
*EIN:LIEFE,LST:LTBF5=SFC:LIEFFS/C
*EIN:LBFEM,LST:LBFEM=SFC:LBFEM/C
.F'LINK
*BIN:LIBR,LST:LTBF=EIN:LTBFO/W//
*BIN:LIBR1/0:1
*BIN:LIBF2/0:1
*BIN:LIBF3/0:1
*BIN:LIER4/0:1
*BIN:LIBRG/0:1
*BTN:LEREM/O!1//
$EO.J
```


### 4.14 BUILDING FILEX

```
$.JOB/RTIJ/TMME !FILEXX.BAT
 TTYIO
 $MES MAKE FILEX
 -F MACRO
*BIN:FTLEEXyL.LT:FTLEX=SFC:FTLEX/C
.FE LINK
*BTN:FILEX,LGT:FTLEX=BIN:FTLEX
&FOJ
```


### 4.15 BUILDING SRCCOM

```
$JOB/RTIN/TTME !SRCCOM.EAT
 TrYio
$MES MAKEE SFCCOM
-F MACRO
*BIN:SRCCOM,LST:SRCCOM=SFC:SRCCOM/C
*F LINK
*BTN:SFCCOMyLST:SFCCOM=RIN:SRCCOM
$EO.J
```

4.16 BUILDING DUMP

कJOB/FTAL/TME ! DUMF•BAT rryio
SMES MAKE RIUMF

- Fi MACFO

-R LINK
*BTN: DUMFy $\operatorname{ST}$ : DUMF: BIN: DUMF कहOJ


### 4.17 BUILDING THE SYSTEM LIBRARY (SYSF4.OBJ)

```
$JOE/FTT11 !SYSF4.EAT
TTYIO
$MES MAKE SYSF4
- F MACFO
*EIN:CHAJN.SEJ,LST:CHAIN/N:SYM=SRC:CHAIN
*BIN:CLOSEC.SBJ,LST:CLOSEC/N:SYM=SFC:CLOSEC
*HIN:CMFLTT.SEJ,LST:CMFLLT=SFC:CMFLT/C
*EIN:CONCAT.SEJ,LST:CONCAT/N:SYM=SFC:CONCAT
*EIN:CUTTIM.SEJ,LST:CUTTIM/N:SYM=SFC:CUTTIM
*ETN:DEUICE.SEJ,LST:IIEUICE/N:SYM=SFC:DEUICE
*BIN:IIU60.SEJ,LST:IIUVO/N:SYM=SRC:HIU6O
*BIN:GTIM.SBJ,LST:GTIM/N:SYM=SRC:GTIM
*EIN:GTJE,SBJ,LST:GTJB/N:SYM=SRC:GTJE
*EIN:GTLIN.SEJ,LST:GTLIN/N:SYM=SFC:GTLIN
*BIN:IAMDF.SEJ,L.ST:TALIIF/N:SYM=SRC:IAIMR
*EIN:IASIGN.SEJ,LST:IASIGN=SFC:IASIGN/C
*EIN:ICDFN.SBJ,LST:ICDFN/N:SYM=SFC:ICDFN
*EIN:ICHCFY.SEJ,LST:ICHCFY/N:SYM=SRC:ICHCFY
*EIN:ICMKT.SEJ,LST:ICMKT/N:SYM=SRC:ICMKT
*EIN:ICSI.SEJ,LST:ICSI/N:SYM=SFIC:ICSI
*EIN:ICSTAT.SEJ,LST:ICSTAT/N:SYM=SFC:ICSTAT
*EIN:IDELET.SEJ,LST:IMELET/N:SYM=SFC:IDELET
*EIN:IIISTAT.SBJ,LST:IIISTAT/N:SYM=SFC:IIISTAT
*EIN:IENTER.SBJ,LST:IENTEF/N:SYM=SFC:IENTEF
*BIN:IFETCH.SBJ,LST:IFETCH/N:SYM=SFC:IFETCH
*EIN:IFREEC.SBJ,LST:IFREEC/N:SYM=SRC:IFFEEC
*BIN:IGETC.SBJ,LST:IGETC/N:SYM=SRC:IGETC
*EIN:IGETSF.SEJ,LST:IGETSF/N:SYM=SFIC:IGETSF
*BIN:IJCUT.SEJ,LST:IJCUT/N:SYM=SRC:IJCUT
*BIN:II..UN.SBJ,LST:ILUN/N:SYM=SFC:ILUN
*EIN:INIEXX.SBJ,LLST:INIEX/N:SYM=SRC:INIIEX
*ETN:TNSEFT.SEJ,LST:INSEFT/N:SYM=SFC:INSEFT
*EIN:INTSET.SEJ,LST:INTSET=SFC:INTSET/C
*BIN:IFEEK,SBJ,LST:IFEEK゙/N:SYM=SFC:IFEEK
*EIN:IFEEKE.SEJ,LST:IFEEKB/N:SYM=SFC:IFEEKK
*BIN:IQSET.SEJ,LST:IQSET/N:SYM=SRC:IQSET
*EIN:IFALISO.SEJ,LST:IFAILO/N:SYM=SFIC:IFAIISO
*EIN:IFCUII.SEJ,LST:IFCULIN:SYM=SFC:IFCUI
*EIN:IFCUIIF,SBJ,LST:IFCULIF/N:SYM=SFIC:IFCUNF
*BIN:IREAII.SBJ,LST:TREALI/N:SYM=SRC:IREAL
*BIN:IFEADF.SEJ,LST:IREALF/N:SYM=SRC:IFEALIF
*GIN:IRENAM,SEJ,LST:IRENAM/N:SYM=SRC:IFENAM
*GIN:IFEOFN.SEJ,LST:IREOFN/N:SYM=SRC:IREOFN
*RIN:ISAVES.SEJ,LST!ISAUES/N:SYM=SFC:ISAUES
*BIN:ISCHEI.SEJ,LST:ISCHEIIN:SYM=SFC:ISCHEI
*BTN:ISIAT,SBJ,LST:ISIAAT/N:SYM=SRC:ISIIAT
*BIN:ISLATF.SBJ,LST:ISIATF/N:SYM=SFC:ISLIATF
*GIN:ISLEEF.SEJ,LST:ISLEEF/N:SYM==SFC:ISLEEF
*EIN:ISFFN,SBJ,LST:ISFFN/N:SYM=SRC:ISFFN
*EIN:ISFFNF.SBJ,LST:ISFFNF/N:SYM=SFC:ISFFNF
*BTN:ISFY.SEJ,LST:ISFY/N:SYM=SRC:ISFY
*EIN:ITLOCK.SEJ,LST:ITLOCK゙/N:SYM=SRC:ITLOCK
*BIN:ITTINF.SBJ,LGT:ITTINF/N:SYM=SFC:ITTINF
*BIN:ITTOUR.SEJ,LST:ITTOUF/N:SYM=SRC:ITTOUR
*EIN:ITWAIT.SEJ,LST:ITWAIT/N:SYM=SRC:ITWAIT
*EIN:IUNTIL.SEJ,LST:TUNTIL/N:SYM=SFC:IUNTIL
*EIN:IWAIT.SEJ,LST:TWAIT/N:SYM=SRC:IWAIT
*ETN:IWFITE.SBJ,LST:IWFITE/N:SYM=SFC:IWFITE
*FIN:IWFITF.SEJ,LST:IWFITF/N:SYM=SRC:IWFITF
*EIN:JAMII,SBJ,LST:JAMI/N:SYM=SFC:JAMII
*EIN:JCMF.SEJ,LST:JCMF/N:SYM=SRC:JCMF
*BTN:JLIU.SEJ,LST:JHTV/N:SYM=SRC:JHIU
*EIN:JFIX.SEJ,LST:JFIX/N:SYM=SRC:JFIX
*GIN:JFLT.SEJ,L.ST:JFLT/N:SYM=:SRC:JFLT
*BIN:JICUT.SBJ,LST:JICUT/N:SYM=SRC:JICUT
*BIN:JJCUT.SBJ,LST:JJCUT/N:SYM=SFC:JJCUT
```


## ASSEMBLY AND LINK INSTRUCTIONS FOR SYSTEM PROGRAMS

```
*RIN:JMOU.SEJ,LST:JMOU/N:SYM=SFC:JMOU
*BIN:JMUL.SBJyLST:JMUL/N:SYM=SRC:JMUL
*EIN:JSUE,SBJ,LST:JSUB/N:SYM=SFC:JSUB
*BIN:JTIME,SEJ,LST:JTIME/N:SYM=SFC:JTIME
*BIN:LEN.SEJ,LST:LEN/N:SYM=SRC:LEN
*EIN:LOCK.SBJ,LST:LOCK/N:SYM=SFC:LOCK
*ETN:LOOKUF,SEJ,LST:LOOKUF/N:SYM=SFC:LOOKUF
*EIN:MFKTT.SEJ,LST:MRKT/N:SYM=SRC:MKKT
*RIN:MTSET.SEJ,LST:MTSET/N:SYM=SRC:MTSET
*BIN:MWAIT.SBJ,LST:MWAIT/N:SYM=SFC:MWAIT
*EIN:FRINT.SBJ,LST:FFINT/N:SYM=SFC:FRINT
*EIN:FUFGE.SBJ,LST:FURGE/N:SYM=SFC:FUFGE
*BIN:FSOASC.SEJ,LST:F5OASC/N:SYM=SFC:F5OASC
*RIN:FCHAIN.SEJ,LST:FCHAIN/N:SYM=SFC:FCHAIN
*EIN:FCTRLO.SEJ,LST:FCTFLO/N:SYM=SFC:FCTFLO
*EIN:FEFEAT.SEJ,LST:REFEAT/N:SYM=SFC:REFEAT
*EIN:RESUME.SEJ,LST:RESUME/N:SYM=SFC:RESUME
*EIN:SCCA.SBJ,LST:SCCA/N:SYM=SFC:SCCA
*EIN:SCOMF'SBJ,LST:SCOMF/N:SYM=SFC:SCOMF
*BIN:SCOFY.SEJ,LST:SCOFY/N:SYM=SEC:SCOFY
*EIN:SECNIIS.SEJ,IST:SECNIS/N:SYM=SFC:SECNIIS
*EIN:SETCMII.SEJ,LST:SETCMI/N:SYM=SFC:SETCMII
*RIN:STRFAII.SBJ,LST:STFFALI/N:SYM=SFC:STFFALI
*EIN:SUBSTF.SEJ,LST:SUBSTR/N:SYM=SFC:SUBSTR
*EIN:SUSFNIISBJ,LST:SUSFNLIN:SYM=SFC:SUSFNII
*EIN:SYSLRU.SEJ,LST:SYSLEU/N:SYM=SFC:SYSLEU
*EIN:TIMASC.SEJ,LST:TIMASC/N:SYM=SRC:TIMASC
*EIN:TIME.SEJ,LST:TIME/N:SYM=SRC:TIME
*EIN:TIME1.SEJ,LST:TIME1/N:SYM=SRC:TIME1
*BIN:TIMSUB.SEJ,LST:TIMSUB/N:SYM=SFC:TIMSUB
*EIN:TFANSL.SEJ,LST:TRANSL/N:SYM=SFIC:TFANSL
*EIN:TRIM.SBJ,LST:TRIM/N:SYM=SFC:TFIM
*EIN:UNLOCK,SEJ,LST:UNLOCK/N:SYM=SRC:UNLOCK
*RIN:UEFIFY,SBJ,LST:VERIFY/N:SYM=SFC:VEFIFY
* F FORTRIA
*EIN:FUTSTR.SEJ,LST:FUTSTR=SRC:FUTSTR/I:THR/S
*EIN:GETSTR.SEJ,LST:GETSTF=SRC:GETSTF/I:THF/S
.F F'JF
BIN:SYSF4.OBJ=BIN:.SBJ/B/U
$EO.J
```


### 4.18 BUILDING SYE AND PSE

\$JOB/FTII/TIME !SYE, BAT
Tryio
कMES MAKE SYE,FFSE

- F FORTRA
*RTN:SYMAN2,LST:SYMAN2=SRC:SYMAN2
*BIN:SYINFT, ST:SYINFT:=SFC:SYTNFT
*BIN:SYCOML, LST:SYCOML-ESRC:SYCOML
*EIN:SYLINI, ST:SYLJNA:- SRC:SYLINI
*BIN:SYREGN,LGT:SYFEGN *BTN:SYSERH,LST:SYSEQH:=SRC:SYSERH
*BIN:SYDEU, LST:SYMEU: SRC:SYDEU
*BIN:SYFAR, LST:SYFAR:- SRC:SYFAR
*EIN:SYSUM,LST:SYSUM=SRC:SYSUM
. R MACRO
*BIN:SYGRAB, LST:SYGRAB=SRC:SYGRAB/C
*BTN:FSE, IST:FSE: SRC:FSE/C
- F LTNK
*BIN:SYE, LST:SYE=ETN:SYMAN2,SYREGN,SYITNI,SYGRAB/W//
*BTN:SYDEU/0:1.
*BTN:SYFAR/0:1.
*EIN:SYTNFT, SYCOML/O:1
*BIN:SYSERTH/O:1
*BTN:SYSUM/O:1//
*ETN:FSE, LST:FSE:-ETN:FGE
\$EO.J


### 4.19 BUILDING SYSGEN

\$JOE/FRT11/TIME !SYSGEN.EAT
TTYIO
\$MES BUILI SYSGEN

- F FORTRA
*BIN:SYSGEN,LST:SYSGEN=SRC:SYSGEN/I:THR/E/E/W/N:4/U/O/S
-F LINK
*EIN:SYSGEN,LST:SYSGEN=BIN:SYSGEN/W
\$EOJ
4.20 BUILDING PATCH AND PAT
©JOE/FT11/TIME !F'ATCH.EAT
TTYIO
\$MES MAKE F'ATCH \& F'AT
- Fi MACRO
*BIN:FATCH,LST:F'ATCH=SRC:FATCH/C
*EIN:FAT,LST:F'AT=SFC:FAT/C
-F LINK
*EIN:FATCH,LST:FATCH=EIN:FATCH
*RIN:FAT,LST:FAT=BIN:FAT
\$EOJ
4.21 BUILDING ODT
\$JOB/RT11/TIME !OLIT. BAT
TTYIO
\$MES MAKE OLTT
- F MACFO
*BIN:OLIT, LST:OLTT=SRC:OIIT/C
\$EOJ
4.22 BUILDING THE VT11 LIBRARY AND PLOT55
\$JOE/RT11/TIME !UTLIE.BAT
TTYIO
\$MES MAKE UTLIE \& FLOTSS
- Fi mactio
*BIN:UTCAL $1, \operatorname{LST}: U T C A L 1=S F C: U T C A L 1 / C$
*BIN:UTCAL.2,LST:UTCAL2=SRC:UTCAL2/C
*RIN:UTCAL3,LST:UTCAL $3=$ SFC:UTCAL3/C
*BIN:UTCAL 4, LST:UTCAL $4=$ SFC:UTCAL $4 / \mathrm{C}$
*EIN:UTBASE, LIST:UTEASE=SRC:UTEASE/C
*BIN:FILOTS5,LST:FLLOTSS=SFC:FLOTS5/C
- F FIF
*EIN:UTHILR.OEJ=BIN:UTCAL $1 . O B J, U T C A L 2 . O B J, U T C A L 3 . O B J, U T C A L 4 . O E J, U T E A S E . O B J / B / U$
\$E:O.J
4.23 BUILDING FORMAT

WJOR/RTL1/TIME !FORMAT.BAT
TTYIO
\$MES
MAKE FOFMAT

- F MACRO
*BIN:FORMAT, LST:FOFMAT=SFC:FOFMAT/C
*EIN:FMTLY,LST:FMTLY=SFC:FMTLIY/C
*BIN:FMTFK, LST:FMTFK=SFC:FMTFK/C
- F LINK
*EIN:FORMAT, ILST:FORMAT=SEC:FORMAT,FMTLY,FMTEK/W कЕOJ


### 4.24 BUILDING RESORC

\$JOB/RT11/TIME ! RESORC.BAT TTYIO
\$MES MAKE FESORC

- F MACFO
*BIN:FESORC,LST:FESORC/C=SRC:RESORC
*ETN:FESFC1,LST:FESRC1/C=SRC:IIFMAC/M,RESFC1
- F LINK
*GTN:FESORC,LST:FESORC=BIN:RESORC,RESRC1/U:100
*FATCH
$\$$ EOS
4.25 BUILDING SWAP
\$JOE/FTII/TIME !SWAF.BAT TTYIO
\$MES BUILII SWAF.SYS
- F MACRO
*BIN:SWAF=SRC:MENI
- R LINK
*BIN:SWAF.SYS=RIN:SWAF/E:30000
\$EOJ
4.26 BUILDING TECO
\$JOB/RTII/TIME !TECO. BAT
TTYIO
\$mes MAKE TECO
- F MACRO
*BIN:TIO,LST:TIO=SFC:TIO/C
-F LINK
*BIN:TECO,LST:TECO=BIN:TIO,SFC:TECO/W
\$EOJ


## APPENDIX A

EXAMPLE SYSGEN'S

This appendix contains the actual console terminal output generated during three RT-ll system generations. The first uses the expanded form of dialogue to generate a base-line SJ monitor for RXOl diskette, the second uses the short form to build SJ, FB, and XM monitors for RLOl with almost all functionality included. The third example shows the complete procedure for undertaking a SYSGEN on a system with two RXOl diskette drives.

## A. 1 BASE-LINE RXO1 DISKETTE SJ GENERATION

This example shows the actual SYSGEN dialogue and the resulting SYCND file.
-Fi SYSGEN RET

RT-1. SYSTEM GENEFATION FFOGFAM VO2. 11
[lo sous want the expanded form of dialosue [Y/N] (Y)? RET

All answers reauirins a choice are indicated by [Y/N] and reauire you to tyfe either ' $Y$ ' for ses or ' $N$ ' for no followed bs a carriase return. Answers reauirins mumeric infut are indicated by [n] for decimal infut and [0] for octal infut. Answers reauirins a device riame resfonse are indicated bs [mim answers requirins a Sevice name followed bs a unit rumber are indicated bs [nIUl]. If you enter no response (just a CAFFIAGE RETUFiN), your answer will default to the resforise indicated in Farentheses before the asestion mark (e.s. [nn] (FK)? ). Your responses are checked for validity wherever possible.

The outfints of this SYSGEN frosram are two conditional files (SYCNII.MAC and SYSTEL.MAC) and three indirect command files (SYSBLII.COM, MONELI.COM and DEUBLI.COM) which are used to assemble and link the moritor(s) and device handers for the tarset system. The assembly and linkins process reauires a machine with at least $16 k$ words of memors and mass storase with at least 500 free blocks on the outfut device and 128 free blocks on the system device.

The followiris dialosue asks questions about the confisuration for which the system is beins senerated, and about monitor and device suffort oftions you mas desire. You should have read the FiT-11 System Generation Manual before froceedins. You can terminate SYSGEN at ans time by tyfins CTFL/C.

The FT-11 system includes a variets of monitors, allowins you to select the moritor best suited to sour afolication. The monitors are customized to your confisuration bs this SYSGEN frocess, and, while you mas build ans number of monitors, you should realize that SYSGEN flaces a larse demand on time and data storase.

If sou elect to build the base-lime
sinsle-job (SJ) monitor, mo other moriitors
mas be built durins the same GYGGEN fass.
The base-line sinsle-job (SJ) monitor is the minimal monitor necessars to execute standard system functions. It is intended for sustems with only $8 k$ words of memoryy or for larser systems that require the lowest fossible monitor overhead. flevice sumfort is limited, and some features of the SJ monitor usable in larser confisurations are omitted, such as BATCH arid UT11 suffort.
[lo sou want the base-line sinsle-job monitor [Y/N] (N)? Y RET

The followins oftions afely to all monitors.
RT-11 assumes a 60 Hz fower line frequencs, but can optionally suffort a 50 Hz frequency.
[lo you want the oftional 50 Hz clock suFfort $[Y / N]$ (N)? RET

The bootstraf oftionally executes an indirect file when startiris the sustem.

Lo sou warit the startaf indirect file [Y/N] (Y)? RET

```
The followiris questions ask about the
Ferifheral devices that are to be sufforted by the
serierated system. Ey selectins supfort for a sFecific
device, sou make the device known to the moritor's
Sevice tables, and you cause a device handler
to be senerated for the device. Jf you do rot select
a specific device, you will have to create the
device handler separatels and use the monitor
INSTALL command wher, device access is desired.
FT-11 sufforts the followins devices as sustem devices:
 FK゙ FK゙OS Cartriose Hisk
 LIT nECtafe
 ux Flexible fiskette
```

You must select one as your system device; use the two character device riame as indicated above.

```
What is the name of the system device [MII] (FiN)? [IX RET
The FiX11 flexible diskette subsystem sugqorts orily two
Jrives for each coritroller. If sour sustem coritairis four
diskette drivesy there is a secorid coritroller fresent
suFFortiris the third arid fourtin uriits.
[lo צou warit suffort for a secorid FiX11 coritroller [Y/N] (N)? RET
What is the CSF address for the
 first FiX11 coritroller [0] (177170)? RET
What is the vector address for the first Fix11 coritroller [0] (264)? RET)
No You warit FiK゚OS/FiNOSF disk. S!FFort [Y/N] (N)? RET
Ilo sou warit TC11 IIECtaFe suFFort [Y/N] (N)? RET
Mo צou warit line Friniter suFFort [Y/N] (Y)? RET
The line frinter vector adoress is normalls 200
arid the CSF address is roormally 177514. If צour frimter
is irustalled at aroother vector or CSF address, you
must sfecify the correct values.
[loes צour friniter have a mori-stamoard vector or CSFi address [.Y/N] (N)? RET)
The FCil is a hish sweed Fafer tafe reaner/funch uriit.
The FFil1 is a simil.ar urict with a hissh sfeed reader bust roo furich.
```



```
llo צou warit FFil1 hish-sfeed Fafer tafe reader suFFort [.Y/N] (N)? RET)
The mull hanoler is a mecharismm that allows losical
irifut anod outFut to take Flace without actual Fhusical
gata trarisfers. It is most useful irn debussirıs afwlicatioms.
lio sou warit the rulll haridler [Y/N] (Y)? RET
This comfletes the device amery. Space in the moriftor is allocaterd
oris for the devices specified, but sou mas allocate additional
sFace by requestiris emfty device slots. Allocate
orie emfty slot for each device sou iriterid to add to
the sustem after it is built.
```

How mans extra device slots do you want [il] (0)? ReI

The indirect command files senerated bs the SYSGEN frosram contain commands that will delete the object modules from which the system is built when thes are no lonser needed. This measise serves to conserve disk. sface while the sustem is beiris built. It is often useful, howevery to keef the object modules for later use in Fatchins the system. If sour output device has sufficient free sfacegsou can elect to retain all sustem object modules for future use.
[lo you want to retairi the ssstem OBJ's [Y/N] (N)? RET

The SYSGEN assemblins and linkins frocess reauires a source infut and a binary outfut device, as well as an outfut device for monitor link mafs. You must specify the fhssical name and unit number for each (for ewample,下Ki, IIF4, etc.). For more explanation, see Section 3.6.1 of the RT-11 Sustem Generation Manual.

What is the FHYSICAL name and urit of the source irifut device [mmul (KK1)? riX1 RET

What is the FHYSICAL riame and unit of the binary outfut device [miU] (FiKO)? rixO RET

What is the FHYSICAL name and urit of the maf output device [miu] (TT)? RET

To build an entire system, mount the source and binary disks, cows the files SYCNI.MAC and SYSTBL. MAC to the source disk, and tsee "@SYSELI". To build just the momitors, tyfe "@MONBLI". To build just the device handlers, tufe "@LEUELI". For more information, read Section 3.6 of the FT-11 Sustem Generation Mamual.

ENII OF SYSGEN FFOGFAM---Hon't forset to COFS HK:SYCNI, MAC and LIK:SYSTBL. MAC to the source disk before executiris the command file(s). Femember that SWAF. SYS must be on all bootable volumes.

```
.SETTL SYSTEM CONIITIONAL FILE
 ; SYCNI.MAC--SYSTEM CONIITIONAL FILE
 COFYFIGHT (C)
 1978
 ; IIGITAL EQUIFMENT CORFORATION, MAYNAFI% MASS.
SYSG$N = 1 FINHICATE SYSGENEI MONITOR
 ; BASE-LINE SJ MONITOR
TIME$F = 0 FNO TIMER SUFFORT
MFT$Y = O FNO MEMOFYY FAFITY SUFFORT
BATC$H = 0 {NO BATCH SUFFORT
EFL$G = 0 FNO EFFORF LOG SUFFORT
ESC$F = 0 FNO ESCAFE SEQUENCE SUFFORT
FHF$L = 0 FNO MESSAGE ON SYS I/O ERFORS (S.J)
CLOCK = 60. FFOWEF LINE FFEQUENCY (SJ,FE,XM)
STAF$T = 1 ;STARTUF COMMANI FILE (SJ,FB,XM)
$IXSYS = 1 ;SYSTEM DEUICE
HX$CSF = 177170 %CSF OF FIFST FXX11
IIX$UEC = 264 ;VECTOF OF FIFST RXXII
```

A. 2 RLO1, SJ, FB, AND XM GENERATION

This example shows the actual SYSGEN dialogue and the resulting files: SYCND, SYSBLD, MONBLD, and DEVBLD.

- R SYSGEN RET

FT-11 SYSTEM GENEFATION FROGFAM VOZ. 11
Ilo you want the expanded form of dialosue [Y/N] (Y)? YES RET

All ariswers reauirins a choice are iridicated by [Y/N] and reauire you to tyfe either ' $Y$ ' for yes or ' $N$ ' for no followed bs a carriase return. Ariswers reauirilis mumeric infut are indicated bu [il] for decimal infut and [0] for octal infut. Answers reauirins a device name resfonse are indicated by [mily answers reauirins a device name followed bs a urit number are indicated by [nmul. If you enter no resporise (just a CAFFIAGE FETUFN), sour answer will default to the response indicated in Farentheses before the question mark (e.g. [M] (FK)?). Your resfonses are checked for validity wherever fossible.

The outfuts of this SYSGEN frosram are two conditional files (SYCNI.MAC and SYSTEL.MAC) and three indirect command files (SYSELII.COM, MONELI.COM and DEUBLI.COM) which are used to assemble and link. the monitor(s) and device harders for the tarset system. The assembly arid linkiris process reauires a machirie with at least $16 k$ words of memors and mass storase with at least 500 free blocks on the outfut device and 128 free blocks on the system device.

The followins dialosue asks questions about the confisuration for which the sustem is beiris senerated, and about monitor and device supfort oftions you mas desire. Yous should have read the KT-11 Sustem Generation Manual before froceedins. You can terminate SYSGEN at ans time by tymins CTFiL/C.

The FT-11 system includes a variets of monitors, allowins you to select the monitor best suited to your afflication. The monitors are customized to sour confisuration bs this SYSGEN frocess, and, while you mas build ans number of monitors, you should realize that SYSGEN flaces a larse demarid on time and data storase.

If sou elect to build the base-line
sinsle-job (SJ) monitor, no other momitors mas be built durins the same SYSGEN fass.

The base-line sinsle-job (SJ) monitor is the minimal monitor necessary to execute standard system functions. It is intended for systems with only $8 k$ words of memory, or for larser sustems that reauire the lowest fossible monitor overhead. flevice suffort is limitedy and some features of the SJ monitor usable in larser confisurations are omited, such as BATCH and UTII suffort.

Ilo you warit the base-line sinsle-job moritor [Y/N] (N)? NO RET

The sinsle-job (SJ) monitor frovides an environment suitable for the develoment of simple afmlications in FOFTFAN or BASIC. It frovides a subset of the foresround/backsround (FB) features and offers maximum ability for mirimum size. Some additional features may be added durins SYSGEN, but at the cost of increased monitor size.
[lo צou warit the sirislewiob (SJ) moritor [Y/N] (Y)? YES RET

The foresroumidhacksround (FB) monitor offers an extended set of facilities which are helfful for afflicatioris involvins real-time or data acouisition. These iriclude timer sufforty serialized asyrichrorious I/Oy arid suffort for a foresroırid job.
no you want the foresrourid/backsround (FE) monitor [Y/N] (Y)? YES RET


#### Abstract

The exterided memory (XM) monitor is a version of the FB moritor which sumports uF to $128 k$ words of memors. It is山sefisl for advariced afflications that require an exterided addressins sface. The XM moritor is larser than FB arid reauires a resident USF amd drivers.


[lo צou warit the exterided memory (XM) moritor [Y/N] (N)? YES RET

There are a rumber of moritor oftions you mas select:

The followins oftions afyly onls to the Su momitor.
The SJ momitor mormally does not have timer shafort. You mas oftionally iriclude the MFK゙T arid. CMKT rentests.

LIo צou warit timer sufgort in the SJ moritor $[Y / N]$ (N)? YES RET

The device time-out oftion fermits device drives to issue mark time requests. This feature is curreritis riot used bs aris $F T-11$ drivers, but is riecessars for luECNET suFfort. Select this oftion if sou are flarinins to use IECNET with sour monitor.
no צou warit gevice time-out suFFort [Y/N] (N)? NO RET

The SJ moritor will mormally halt at the "system halt" if there is a fatal system $1 / 0$ error. This halt can be rewlaced with a ssstem error messase at the cost of about 30 words additional code in the resident monitor. This oftion is hishly recommended if the system is soins to be used by arisorie other than the expert.

Mo צou want an error messase on sustem $1 / 0$ errors [Y/N] (Y)? YES RET

The followiris oftions affly only to the FE arid XM monitors.

The FB arid XM moritors' scheduler idle loof will disflas a movins lisht mattern in the disflay resister of ary F-LF-11/45, 11/50, 11/55 or $11 / 70$ frocessor.
fo you warit idle loor lisht fattern $[Y / N]$ (N)? NO RET

Fit-il normally sufforts a sinsle terminal interfaced throush the console KLil or ILLII, which is shared bs both backsrourd and foresround jobs. You mas oftionally select multiterminal supfort of $u f$ to 16 terminals interfaced throush a choice of ILLII and NZ11 interfaces.
[lo sou want suffort of more than one terminal [Y/N] (N)? YES RET

The followins oftions affly to all monitors.
RT-11 assumes a 60 Hz fower line freauency but cari oftionally suffort a 50 Hz freauencs.
[io you warit the oftional 50 Hz clock support [Y/N] (N)? NO RET

FT-11 normally uses a line clock for the sustem clock. You mas substitute the kW11-F Frosrammale clock if you wishy in which case the kW11-F is not available for frosram use.
fo sou want to use the KWil-F clock as the system clock [Y/N] (N)? NO RET

The nootstraf oftionally executes an indirect file when starting the sustem.
[lo you want the startuF indirect file [Y/N] (Y)? YES RET

FT-11 sufforts parity memory arid processes memory Farits errors. If error lossiris is fresent, farity errors are also lossed.
[lo sou want memory parity sufport [Y/N] (N)? NO RET

The moritor normally halts on fower recovers startuf after a fower failure. You mas elect to have the monitor fririt a messase explainins that fower failure caused the halt.
fio you warit fower failure messases [Y/N] (Y)? YES RET

FT-11 sufforts EATCH as an oftion. Indirect command file suffort is sefarately available iri all monitors, and BATCH supfort need not be selected to obtain indirect command file suffort.
no you warit EATCH shffort [Y/N] (N)? YES RET

```
The FT-11 terminal service is cafable of recosnizins
ANSI or nEC standard escape sequences and frocessing
those sequences accordins to afflication instructions.
This suffort is not necessary for normal system operation;
if your afplication does not make special use of escafe
sequences, do not select this sumfort.
[lo you want escafe sequence processing [Y/N] (N)? NO RET
Selection of error lossins creates the error lossins
driver EL and incorforates error losgins into the device
handlers. When EL is loaded and initialized, lossins of
disk, liECtafe arug memory farits errors will occur.
flo you warit error lossiris [Y/N] (N)? NO RET
```

The followins questions ask about the
Ferifheral devices that are to be sufforted bs the
senerated system. Ess selectins suffort for a specific
device, you make the device known to the monitor's
device tables, and sou cause a device handler
to be senerated for the device. If you do rot select
a sfecific device, you will have to create the
device handler separately and use the monitor
INSTALL command when device access is desired.
FT-11 sufforts the followins devices as system devices:
FK FKOS Cartridse Iisk.
[IL FLOI Cartridse Iisk.
FF FFil Fixed-head IIisk.
IIT nECtafe
IIX FXO1 Flexible fiskette
IIY FXO2 Iouble ferisity fiskette
IIS FiJSO3/4 Massbus Fixed-head Disk.
DF RFII Disk. Fiack.
IM FKOG/RK゙O7 Cartridse lisk.

You must select one as your system device; use the two character device riame. as indicated above.

What is the name of the system device [MI] (FK゙)? [IL RET
[IO you warit fiJSO3 or FJJSO4 disk smFfort [Y/N] (N)? NO RET

Ho you want fif11 fixed-head disk suffort [Y/N] (N)? NO RET
no sou warit FFF11/FFFiO2 or FFil/FFO3 disk suFfort [Y/N] (N)? NO RET
no you want FXXO1/FX11 flexible diskette suFfort [Y/N] (N)? YES RET

The RX11 flexible diskette subsustem sufforts onls two drives for each controller. If sour system contains four diskette drives, there is a second controller fresent suffortiris the third and fourth units.

## EXAMPLE SYSGEN'S

[lo you warit support for a second RXII controller [Y/N] (N)? YES RET

What is the CSF address for the
first Fix11 coritroller [0] (177170)? 1.77170 RET

What is the vector address for the first $\mathrm{FX} \times 11$ controller [0] (264)? 264 RET

What is the CSF address for the second FX11 coritroller [0] (177150)? 176200 RET

What is the vector address for the second FX11 controller [0] (270)? 320 RET
[lo sou warit fixO2 diskette suFfort $[Y / N]$ ( $N$ )? NO RET

How maris floi units are to be sufforted [il] (2)? 2 RET

Do you want FKKOS/RKOSF disk suFfort [Y/N] (N)? NO RET
[Io you warit TCil neCtafe sifffort $[Y / N]$ (N)? NO RET
[lo you want FKOO/FKOZ disk suFfort [Y/N] (N)? NO RET
no you warit masnetic tafe suffort [Y/N] (N)? YES RET

RT-11 mastafe suffort is available iri two forms. The standard form is file-strisctured mastafe, which sufforts a subset of ANSI file format. The file-structured hander mas be used to store and retrieve data in a file format usable with most FT-11 system frosrams. The second form of mastafe supfort omits file structurins and reads and writes data directily in variable lensth records. This type of supfort is called the "hardware harider", and while this hander is sisnificantly smaller than the file-structured handler, it can not be used with aris sustem frosrams. The file-structured haridler is also cafable of performins direct hardware functions.

How many extra device slots do you warit [il] (0)? 1 RET

The indirect command files senerated by the SYSGEN frosram contain commands that will delete the object modules from which the system is built when they are no lonser needed. This measure serves to conserve disk. space while the system is beins built. It is often useful., however, to keef the onject modules for later use in Fatchiris the sustem. If your outfut device has sufficient free sfaceysou can elect to retain all sustem object modules for future use.

No you warit the file-structured mastafe handler [Y/N] (Y)? YES RET

```
The file-structured handler recuires table sface for
each mastafe unit. You can minimize the size of
the mastafe handler bu limitins the rumber of uritss it can
simultaneously hanole to the mumber actually fresent on the
tarset machine.
How maris mastafe urits are to be sufforted [ri] (2)? 2 RET
Ho sou want TM11 (UNIBUS) mastafe suFfort [Y/N] (Y)? YES RET
Ho you want TA11 cassette suFFort [Y/N] (N)? NO RET
fio you want UT11 or USGO srafhics suFfort [Y/N] (N)? NO RET
no sou warit line pririter supfort [Y/N] (Y)? YES RET
The line frinter vector address is normally 200 and the CSF address is normally 177514. If sour frinter is iristalled at another vector or CSF addressy you must sfecify the correct values.
```

Lloes sour fririter have a mon-standard vector or CSF address [Y/N] (N)? NO RET

The FCll is a hish speed fafer tafe reader/purich uriit. The FFil is a similar unit with a hish sfeed reader but no furich.
flo you want FC11 hish-speed fafer tafe reader/murich suffort [Y/N] (N)? NO RET
flo you want fifil hish-sfeed fafer tafe reader suffort [Y/N] (N)? NO RET
flo you want card reader suffort [Y/N] (N)? NO RET

The null handler is a mechanism that allows losical irifut and output to take flace without actual fhusical data transfers. It is most useful irı debussins affications.

No you want the rull handler [Y/N] (Y)? YES RET

This completes the device auery. Space in the monitor is allocated only for the devices specified, but you mas allocate additional sface by reauestins empts device slots. Allocate one emfty slot for each device you intend to add to the sustem after it is built.
[lo you want to retain the sustem OBJ's [Y/N] (N)? YES RET

The followins auestions ask about the terminal interfaces installed in sour system. FT-11 supforts a combination of serial asynchronous interfaces which include the KLil, ILLU11, ILLU11-E, ILLU11-F, ILLU11-J, and the filis series. It also supforts ILL1-E and liLU11-E interfaces with modem cafabilities, and the nZ11 and rizull series of asynchronous line multiflexors.

The dialosue asks first for the rumber of local rimi lines, then the number of remote nlill lines. The total mumber of lines is the sum of local aros remote lines. Fhysical unit numbers of the mill lines are assisned first to local lines and then to remote lines. This assisnment is fermanent and its order cannot be chansed.

After the dialosue has established the number of lines of each tyfe, the CSF and vector addresses for each line must be established. The first auestion corresponds to the first local line (the console), the second to the second local line, etc, until all local lines are accounted for. At that Foint, the next response afflies to the first remote line, the second to the second remote line, etc, until all remote lines are accourited for.

How many local InLi's, includins the console [il] (1)? 1 RET

How maris remote plit lines [in] (0)? 0 RET

What is the CSF address for the
first (console) DLI1 [0] (177560)? 177560 RET

What is the vector address for the first (console) ILL11 [0] (60)? 60 RET

FT-11 sufforts one IUZ11-A or - B eisht line multiflexor with an additional nZ11-C or - In eisht line multiflexor for a maximum of 16 lines, or one nZU11 four line multiflexor. Modem suffort is available on remote lines, but is limited to Bell 103 type modems or eauivalent with the "common clear to send and carrier" oftion installed to oferate the modem in an auto-answer mode.
fo you warit [izil or IRZV11 multiplewor sumfort [Y/N] (N)? YES RET

Ho you want [HZ11 multiflexor suffort [.Y/N] (Y)? YES RET
rlo you want suffort for two [IZ11's [Y/N] (N)? NO RET

The lines must be initialized to a specific baud rate. The choices are 300,150 , and 110 batd.

The vectors and CSF addresses are assisned to the floatins device resion and will vary with each installation.

What is the CSF address for the first [IZ11 [0.] (160010)? 160100 RET

What is the vector address for the first [IZ11 [0] (300)? 300 RET

The followins dialosue will ask for the rumber of local uZ11 or nZV11 lines, then the mumer of remote lines. The total number of lines is the sum of local arid remote lines. Phusical urit rumbers of the nzil or fuZU11 lines are assisned first to local lines and then to remote lines. This assisnment is fermanent and its order cannot be chansed.

How many lizit lines are local terminals [D] (0)? 4 RET

How mans remote nZ11 lines [n] (0)? 2 RET

The terminal service reauires a set of irifut and outfut rins buffers for each terminal supforted. The output rins buffer default size is 40 characters. The infut rins size depends on terminal width and amount of ture-ahead expected. The default size is 82 characters.

Size of the outfut buffers in characters [n] (40)? 40 RET

Size of the irifut buffers in characters [i] (82)? 82 RET

Terminal status mas be obtained by doins an . MTGET reauest but some afflications reauire asynchronous notification of chanses in terminal status. FT-11 sufforts assmichronous terminal status as an oftion to the . MTATCH request and frovides information on buffer and modem status as well as double CTFL. $C$.
no you want asynichronous terminal status [Y/N] (Y)? YES RET

Time-out suffort will cause the moritor to reset at resular intervals ans terminal that mas have sone off-line. This helfs to minimize the imfact of static (and similar) froblems, and is recommended if maximum availabilits is important to the afflication.
no sou want multi-terminal time-out sumport [Y/N] (Y)? YES RET

The SYSGEN assemblins and linkins frocess requires a source infut and a binary output device, as well as an output device for monitor link. mafs. You must specify the fhusical name and unit rumber for each (for example,下Ki, IIF4, etc.). For more explanation, see Section 3.6.1 of the RT-11 System Generation Manual.

What is the FHYSICAL name and unit of the source irifut device [nIIJ] (FKil)? IILO RET

What is the FHYSICAL name and unit of the binary outfut device [HIU] (FKO)? ILLO RET

What is the FHYSICAL name and unit of the maf outrut device [MIU] (TT)? LF RET

To build an entire sustem, mount the source and binary disksy cofy the files SYCNI.MAC and SYSTBL.MAC to the source disk, and type "esYSELn". To build just the moritors" tsfe "eMONBLIM". To build just the device handlersy tyfe "emevelin". For more information, read Section 3.6 of the FT-11 Ssstem Generation Manual.

ENI OF SYSGEN FROGFAM--MON't forset to coFs IKK:SYCNII.MAC and IIK:SYSTBL. MAC to the source disk before executins the commarid file(s). Femember that SWAF.SYS must be on all bootable volumes.


```
LIZ11$L = 4.
MZ11$M = 2.
TIM$IT = 1
TTYOUT =40.
TTYIN = 82.
MAT$S = 1
MTI$M = 1
```

```
;* OF LOCAL IIZ11 LINES (MULTI-TERM SUFFORT)
;# OF FEMOTE IZZ11 LINES (MULTI-TEFM SUPFORT)
;GENEFAL IIEUICE TIME OUT (MULTI-TEFM SUFFORT)
GSIZE OF OUTFUT FING EUFFERS(MULTI-TERM SUFFORT)
#SIZE OF INFUT RING BUFFERS (MULTI-TERM SUFFORT)
;ASYNCHFONOUS TEFMINAL STATUS (MULTI-TERM SUFFORT)
;TEFMINAL TIME OUT (MULTI-TEFMM SUFFORT)
```

$!$
MONELII.COM
ASS INLO SFC
ASS ILLO BIN
ASS LF MAF
MACFO/ORJ:EIN:KMSJ SRC: (S.J+SYCNH+EITGEL+KMON+KMOULY)
MACRO/OBJ:BIN:FMSJ SFC: (S.J+SYCNIIEEITGBL+USFIFKMONSJ)
MACRO/OEJ:BIN:SYSJ SRC: (SJ+SYCNLI+SYSLIEU +ILL)
MACFO/OEJ:EIN:TESJ SFC: (SJ+SYCNL+SYSTEL)
MACFO/OEJ:EIN:ETSJ SFC: (SJ+SYCNLI+ESTFAF)
LINK/EXE:BIN:ILMNSJ.SYG/BOU: $1000 / \mathrm{MAF}: M A F:$ ILLMNSJ
EIN: (ET,RM,KM,TE,SY)SJ
OULYO
MACFO/OBJ:BIN:KMFE SFC: (FB+SYCNL+EITGBL+KMON+K゙MOULY)
MACFO/OBJ:BIN:FMFB SFC: (FB+SYCNIIEDTGEL+USFIFRMONFE)
MACRO/OBJ:EIN:SYFE SFC: (FB+SYCNIISYSIEU+IIL)
MACFO/OBJ:BIN:TBFE SFC: (FB+SYCNLI+SYSTEL)
MACRO/OBJ:EIN:BTFE SFC: (FB+SYCND+BSTFAF)
MACFO/OBJ:BIN:MEFE SFC: (FB+SYCNIITMTTEMT)
MACFO/OEJ:BIN:MIFE SRC: (FB+SYCNIITMTTINT)
LINK/EXE:BIN:ILLMNFB.SYG/BOU:1000/FFOMFT/MAF:MAF: ILMNFB EIN:BTFB
EIN: FMFE,KMFE,MEFE,MIFE,TBFE,SYFB//
OULYO
MACFO/OBJ:BIN:KMXM SFC: (XM+SYCND+EITGEL+KMON+KMOULY)
MACFO/OBJ:EIN:FMXM SFC: (XM+SYCNI+EITGEL +USFIFKMONFE)
MACFO/OBJ:BIN:SYXM SFC: (XM+SYCNIISYSIEU+DL )
MACRO/OEJ:EIN:TEXM SFC: (XM+SYCNIISYSTBL)
MACFO/OBJ:BIN:ETXM SFC: (XM+SYCNLIHSTFAF)
MACRO/OBJ:BIN:MEXM SFC: (XM+SYCNLIMTTEMT)
MACFOOLOBJ:BIN:MIXM SFC: (XM+SYCNIIMTTINT)
LINK/EXE:BIN:ILLMNXM.SYG/EOU:1000/F'ROMFT/MAF:MAF:HLMNXM EIN:BTXM
EIN:FKMX, KMXM, MEXM,MIXM,TEXM,SYXM//
OULYO
$!$ LIEUBLII.COM
!
ASS ILLO SFC
ASS DLO BIN
MACFO/OBJ:ETN:TT SFC: (SYCNLI+TT)
LINK/EXE:EIN:TT.SYG BIN:TT
MACRO/OBJ:EIN:BA SFC: (SYCND+BA)
LINK/EXE:BIN: EA.SYG BIN:BA
MACFO/OBJ:BIN:BAX SFC: (XM+SYCNII+BA)
LINK/EXE:BIN:BAX.SYG BIN:BAX
MACRO/OBJ:EIN:LFF SFC: (SYCNII+LFF)
LINK/EXE:EIN:LF.SYG BIN:LF-
MACRO/OBJ:BIN:LFX SRC: (XM+SYCNII+LF)
LINK/EXE:BIN:LFX.SYG EIN:LFX
MACRO/OBJ:EIN:DL SRC: (SYCNII HL )
LINK/EXE:BIN:ILL.SYG BIN:IIL
MACRO/OBJ:EIN: DLX SRC: (XM+SYCNII IIL )
LINK/EXE:BIN:ILLX SYG BIN:ILX
MACFO/OBJ:BIN: IXX SRC: (SYCNLI+HX)
LINK/EXE:EIN:IIX.SYG BIN:IIX
MACRO/OBJ:BIN: IXX SFC: (XM+SYCNN+IIX)

```
LINK/EXE:BIN:IIXX.SYG BIN:IIXX
MACFO/OBJ:EIN:NL SFC:(SYCNITNL)
LINK/EXE:BIN:NL.SYG BIN:NL
MACRO/OBJ:EIN:NLX SFC:(XM+SYCNDINL)
IINK/EXE:BIN:NLX.SYG BIN:NLX
MACRO/OEJ:BIN:MT SFC:(SYCNIITTM)
MACFO/ORJ:BIN:FSM SFOC:(SYCNIIFSM)
LINK/EXE:BIN:MT,SYG BIN:(MT,FSM)
MACRO/ORJ:BIN:MTX SFC:(XM+SYCNI+TM)
MACRO/ORJ:BIN:FSMX SFC:(XM+SYCNIIFFSM)
LINK/EXE:BIN:MTX,SYG EIN:(MTX,FSMX)
```


## A. 3 DISKETTE SYSGEN PROCEDURE

If you find that none of the distributed RT-ll monitors meets the needs of your application and no customization patches are suitable either, you must perform a system generation to create the appropriate monitor and device handlers. If your system has two RXOl diskette drives and no disk device of larger capacity, you can still perform a system generation. However, the process is not completely straightforward, and you should read and study this entire section before attempting to generate your system.

Because of the severe space constraints of the dual diskette system, it is possible to generate only one monitor and its associated handlers at a time. You should answer the SYSGEN dialogue questions appropriately for all the monitors you need to create. However, you can assemble only one monitor at a time. DIGITAL recommends that you use the base-line single-job monitor when you perform the system generation. You can use the single-job monitor, but the base-line monitor makes more free space available on your system diskette.

The following procedure is an example of one method you can use to organize files on three diskettes and successfully assemble an RT-ll system.

First, create a working system diskette from the files on the distribution kit, following the procedures outlined in Chapter 2. Your system disk must include the following files:

```
monitor
SWAP.SYS
TT.SYS
LP.SYS - if a line printer available
SYSGEN.SAV
SYSGEN.CND
SYSTBL.CND
DIR.SAV
PIP.SAV
DUP.SAV
```

Remember to copy the bootstrap onto this system disk by using the COPY/BOOT command. Bootstrap the system and run from this system diskette.

Following the directions in Chapter 3, invoke the SYSGEN dialogue program. Read each question carefully and type the appropriate response for your application. When the dialogue program completes, the following new files should appear in the directory of your system diskette:

SYCND.MAC
SYSTBL.MAC
SYSBLD.COM
MONBLD.COM
DEVBLD.COM
Delete SYSBLD.COM from the system diskette.
Type: REIETE SYSBLO.COM/NOQUEFY RET
Copy the files MONBLD.COM and DEVBLD.COM to the terminal, or to the line printer if your system has one.

Type: TYFF MONEIM.COMy DIFVEIM.COM RET (if no line printer) FFTNT MONBIM.COM, DFVBIM.COM RET (if line printer available)

Study these two files. They contain the names of all the files you need in order to perform the assemblies, as well as the keyboard monitor commands to invoke the assemblies and the link. Because the required files do not all fit on two diskettes at once, you must arrange the files so that you can copy them to your system disk a few at a time and perform the component assemblies separately.

The following sample dialogue creates an RX0l foreground/background monitor with multi-terminal support.
-R: SYSGEN RET

FT-11 GYSTEM GENEFATION FROGFAM VO2.11.
Ho sou warit the expanded form of dialosue $[Y / N]$ (Y)? $N$ RET

Lo you want the base-line sinsle-job monitor $[Y / N]$ (N)? $N$ RET
[lo you warit the sinsle--job (SJ) monitor [Y/N] (Y)? N RET

Lio you warit the foresrourid/backsround (FB) monitor [Y/N] (Y)? Y RET

```
llo you want the extended memors (XM) monitor [Y/N] (N)? N RET
Lo you want idle loof lisht fattern [Y/N] (N)? N RET
Ho sou want suffort of more than one terminal [Y/N] (N)? Y REI
No sou warit the oftional 50 Hz clock suffort [Y/N] (N)? N RET
No sou want to use the kW11-F clock as the sustem clock [Y/N] (N)?N NET
no sou want the startuf indirect file [Y/N] (Y)? Y RET
No you warit memory farity supfort [Y/N] (N)? N RET
[lo sou warit fower failure messases [Y/N] (Y)? Y RET
Lo sou warit BATCH suFFort [Y/N] (N)? N RET
Ho sou want escafe sequence frocessinis [Y/N] (N)? N RET
Ho you want error lossinis [Y/N] (N)? N RET
What is the name of the sustem device [nm] (FK)? nXX RET
no sou want fuJSO3 or FJJSO4 disk smFFort [Y/N] (N)? N RET
INo צou want FF11 fixed-head disk suFfort [Y/N] (N)? N RET
[lo צou want FFI11/FFFOZ or FFI1/FFO3 disk suFfort [Y/N] (N)? N RET
Ho you want suffort for a second FXXI controller [Y/N] (N)? N RET
What is the CSF address for the
 first FiX11 coritroller [0] (177170)? 177170 RET
```




## EXAMPLE SYSGEN＇S

CLOCK	60.	\％FOWEF LINE FFEEQUENCY（SJ，FBy XM）
STAF\＄T	$=1$	；STAFTUF COMMANI FILE（SJ，FE，XM）
FWF ${ }^{\text {W }}$ L	$=1$	YFOWEF FATL（SJ，FB，XM）
ESC\＄F＇	0	¢NO ESCAFE SECUENCES（SJ，FE，XM）
\＄LIXSYS	1.	¢SYSTEM REUICE
HX\＄CSF	$=177170$	\％CSF OF FIFST FXII
IIX UEC $^{\text {c }}$	$=264$	QUECTOF OF FIFST FX11
ILI 11 \＄L	2.	\＃OF LOCAL IILII INTEFFACES（MULTI－TEFM SUFFOFT）
叫11\＄M	0.	；OF FEMOTE IUL11．－WE LINES（MULTI．－TEFM SUFFOFT）
LuL11\＄N	$=2+0$.	；TOTAL＊OF ILL 11 LINES（MULTI．．．TEFM SUFFOFT）
ILICS（）	$=177560$	9CSF OF $15 T$（CONSOLE）IUL 11 （MULTI．－TEFM SUFFOFT）
CILU ¢ $^{\text {O }}$	$=60$	，VECTOR OF 15 T （CONSOLE）HL 11 （MULTI－TEFM SUFFOFT）
吅くあ1	176500	；CSF OF 2NI（LOCAL．ILL．1（MLILTI－－TEFM SUFFORT）
riLU\＄1	$=300$	；UECTOF OF 2NI（LOCAL）ILL 1.
LZ11\＄N	$=0$	；NO IZZ11 OF LIZU11 SUFFOFT（MULTT－TEFM SUFFOFT）
TTYOUT	$=40$ ．	乡SIZE OF OUTFUT FING EUFFEFS（MULTI－TEFM SUFFOFET）
TTYIN	$=82$.	今SIZE OF INFUT FING BUFFEFS（MULTI T－TEFM SUFFOFT）
MAT\＄S	$=1$	§ASYNCHFONOUS TEFMINAL STATUS（MULTI．－TEFMM SUFFOFT）
MTI\＄M	$=1$	¢TEFMINAL TIME OUT（MULTI－TEFM SUFFOFT）
TIM\＄IT	$=1$	；GENEFAL LEUICE TIME OUT（MULTI－TEFM SUFFOFT）

The MONBLD．COM and DEVBLD．COM files produced by the sample dialogue are as follows：

```
! MONBLII.COM
!
ASS LIXO SFEC
ASS RXI BIN
ASS L.F' MAF'
MACFO/OBJ:BIN:KMFE SFE:(FB+SYCNII+EIITGEL+KMON+KMOULY)
MACRO/OBJ:EIN:KMFB SRC:(FB+SYCNIIEIITGEL+USFIFIMONFE)
MACRO/OBJ:EIN:SYFE SRC:(FB+SYCNIISYSIEU+HIX)
MACRO/OBJ:EIN:TEFE SFC:(FB+GYCNN+SYSTEL)
MACRO/OBJ:BIN:BTFE SFC:(FB+SYCNII+ESTFAF)
MACRO/OEJ:EIN:MEFE SFC:(FB+SYCNII+MTTEMT)
MACFO/OBJ:EIN:MIFE SRC: (FB+SYCNIIMTTTNT)
LINK/EXE:EIN:DXMNFE,SYG/BOU:1000/FFOMFT/MAF:MAF:DXMNFB EIN:ETFB
EIN:FMFE,KMFE,MEFE,MTFE,TEFE,SYFE//
OULYO
MELETE/NOQ EIN:(BT,FM,ME,MI,TB,SY)FB,OBJ
LIELETE/NOQ BIN:KMFFB.OBJ
! LEVELLI.COM
!
ASS INXO SFC
ASS HXI BIN
MACRO/OBJ:BIN:LF: SFC:(SYCNI+LF)
LINK/EXE;BIN:LF.SYG BIN:L.F.
HELETE/NOQ BIN:LFFOBJ
MACRO/OBJ:BIN:IIX SFC:(SYCNLI+[IX)
LINK/EXE:BIN:DXX,GYG EIN:DX
IELETE/NOQ EIN:IIX.OBJ
MACRO/OBJ:BIN:NL SFC:(SYCNN+NL.)
LINK/EXE:BIN:NL.SYG EIN:NL.
IELEETE/NOQ BIN:NL.OBJ
```

To assemble and store the system components, you need three diskettes. The first diskette will serve as your system volume during the assembly procedure. It must contain the following files (and only these files):

```
DXMNSJ.SYS (This is the base-line SJ monitor)
SWAP.SYS
TT.SYS
MACRO.SAV
SYCND.MAC
PIP.SAV
SYSMAC.SML
xx.MAC
(xx represents the monitor you are building, SJ, FB,
or XM)
```

EDTGBL.MAC
KMON.MAC
KMOVLY.MAC
The second diskette will serve as work file space during the assembly procedure. It will also store the . OBJ files that are produced as a result of the assemblies, and will become the bootable system diskette when the SYSGEN procedure is completed. This diskette must have the following files on it:

```
SWAP.SYS
 DIR.SAV
 PIP.SAV
 DUP.SAV
 TT.SYS (If you are creating an SJ monitor)
 LP.SYS (If you want link maps to print on a line printer)
```

The third diskette will store the . MAC source files for the assemblies until they are needed on the system diskette. It must contain the following files:

```
RMONxx.MAC (xx is SJ, FB, or XM)
USR.MAC
 SYSDEV.MAC
 DX.MAC
 SYSTBL.MAC
 BSTRAP.MAC
 MTTINT.MAC (Only if multi-terminal support is required)
 MTTEMT.MAC (Only if multi-terminal support is required)
 dd.MAC
 (dd represents the device name for any device
 support you requested in addition to the system
 device; LP, NL, etc.)
 LINK.SAV
```

    DUP.SAV
    The files listed above are located either on your system disk as a result of the SYSGEN dialogue, or on the distribution diskettes.

Initialize the three diskettes:
Type: TNTTAATZE/BAMEIOCKS/SEGMENTS:I UXI: RET
Response: mXI:/Trit are sou sure?
Type: $\quad Y$ RET
Now copy the files described above to the appropriate diskettes. When the files are all stored on the correct diskettes, use the SQUEEZE command on each volume to make sure it is not fragmented.

Type: $\quad$ QQUEEZE MXI: RET
Response: nXI:/SQueexe are wou wure?
Type: $\quad \gamma$ RET
Now place the new system diskette in drive 0 and boot the system.
Response: $\mathrm{Er}-115.1$ Vo3B-...
?KMON F....Comman fille not fouma
Enter the date and time:

TTME hon \%mim:s: RET
Assign the logical name $W F$ to DXl:.
Type: ASSIGN lix! WF' Ret
Response: .
Mount the second diskette, the one that is to store the . OBJ files, in drive 1 .

Now you are ready to perform the first assembly. Refer to MONBLD.COM for the component to be assembled first. Type the following commands:

Type: F MACFO RET
Response: *

where $x x$ is $S J, F B$, or $X M$.
Response: EFFORG METECTEI: O
*
Type: © ©
The first assembly is quite lengthy and can take a considerable amount of time. The more memory there is on your system, the faster the assembly runs.

The demonstration listing is as follows:

- F MACFO
*IXI: KKMFB=FFB,SYCNI, ELTTGBL, KMMON, KMOULY
EFFRORS DETECTEI: 0
$*^{\prime \prime} \mathrm{C}$
When the assembly completes, you can delete two source files from your system diskette.

Type: MEIETEE MXO: (KMON, KMOULY) •MAC RET
Respond by typing $Y$ followed by a carriage return to delete each file when the system gueries you.

Now remove the . OBJ diskette and mount the third diskette, the one that contains the .MAC source files, in drive l. Copy the next two source files onto your system disk.

Type: COFY nXI: (USF,FMON

## EXAMPLE SYSGEN'S

```
where xx is SJ, FB, or XM.
Remove the .MAC diskette and mount the .OBJ diskette in drive l.
Invoke MACRO to assemble the next system component.
Type: Fi MACFO RET
Response: *
```



```
where xx is SJ, FB, or XM.
Response: EFFOFS DETECTEM: O
 *
Type: ©TRL/C
The demonstration listing is as follows:
 .F MACRO
*LIX1:FMFE=FE,SYCNL,EEITGRL, USF, FMONFB
EFFORFS DETECTEI: O
*
Next, delete the two source files from your system diskette:
Type: MFILETE IIXO:(USF,FMON%%),MAC RET)
where xx is SJ, FB, or XM.
Respond by typing Y followed by a carriage return to delete each file
when the system queries you.
Remove the .OBJ diskette and mount the .MAC diskette in drive l. Copy
the next three source files onto your system diskette.
Type: COFY MXI:(SYSTEVyWXYSYSTEI...MAC MXO: RET
Remove the .MAC diskette and mount the .OBJ diskette in drive l.
Invoke MACRO to assemble the next two system components.
Type: Fi MACFO RET
Response: *
Type: nXI%SY&%=%%,SYCNWySYSMEU,MX RET
where xx is SJ, FB, or XM.
Response: EFFOFS NETECTEN: O
 *
```



```
where xx is SJ, FB, or XM.
Response: EFFORS RETECTEH: O
 *
Type: (TTRL/C
```

```
The demonstration listing is as follows:
 - F MACFO
 *IIX1:SYFE=FBG,SYCNII,SYSLIEV,IIX
 ERFORS DETECTEI: O
 *IIX1:TBFE=:FB,SYCNII,SYSTEL.
 EFFORS IETECTEII: O
 *"C
Now delete two of those three source files from your system diskette,
leaving the DX.MAC file there.
Type: IUELETE IIXO:(SYSNEV,SYSTBLI).MAC RET
Respond by typing Y followed by a carriage return to delete each file
when the system queries you.
Remove the.OBJ diskette and mount the .MAC diskette in drive l and
copy the next group of source files onto your system diskette.
Type: COFY IIXI:(BSTFAF,MTTEMT,MTTINT,ZZ).MAC MXO: RET
where zz represents the name of any extra devices you requested in the
SYSGEN dialogue; LP, NL, etc. MTTEMT and MTTINT are required only
for multi-terminal systems.
Copy LINK, DUP, and any remaining handler files to the system
diskette.
Type: COFY [IXI:(INTNK,DUF), SAV,NXII:(Zz) ,MAC MXO: RET
where zz represents the name of any other extra devices.
Now remove the .MAC diskette from drive l and mount the .OBJ diskette.
Invoke MACRO to perform the next group of assemblies.
Type: Fi MACFO RET
Response: *
Type: INXI: BTW%=%N,SYCNN,BSTRAF' RET
where xx is SJ, FB, or XM.
Response: EFFORS DETECTEN: O
 *
The next assembly is required only for multi-terminal systems.
Type: MXI:MEN%:#以%SYCNNMMTTEMT RET
where xx is SJ, FB, or XM.
Response: EFFOFS METECTEN:O
 *
The following assembly is required only for multi-terminal systems.
Type: MXI:MIN%=%%ySYCNIMMTTTNT RET
where xx is SJ, FB, or XM.
Response: EFFOFS DETECTEI: O
 *
The demonstration listing is as follows:
```

```
-F MACRO
*IIX1:ETFB==FB,SYCNII,ESTFAF
ERFORSS DETECTEI: O
*IIX1:MEFB=FB,SYCNII,MTTEMT
EFRORS IIETECTEII: O
*IIX1:MIFB=FB,SYCNII,MTTINT
EFFRORS IIETECTEII: O
*
```

The following command lines to MACRO were derived from the file DEVBLD.COM. Study the listing of DEVBLD.COM before proceeding.

The first command assembles the system device handler.
Type: $\quad$ MXI: MXX SYCNMy MXX RET
Response: EFFORS RETECTEL: O
*
Next, assemble any other handlers for those devices you requested in the SYSGEN dialogue.

Type: $\quad$ IXI: $2 \%=\mathrm{SYCNO} \times \%$ RET
where $x$ represents the name of a device for which you requested support.

The demonstration listing assembles DX, NL, and LP:

```
-F MACRO
*IIX1:MX=SYCNI, IIX
ERRORS DETECTEN: O
*[IX1:NL=GYCNI,NL
EFRORS DETECTEI: O
*LIX1:LFF=SYCNI,LEF
ERFORS DETECTEN: O
*"C
```

Now you are ready to link the . OBJ files. If you want the link maps to print on the line printer, copy the LP handler from the . OBJ diskette onto the system diskette.

Type: OOFY MX1:1FF.SYS/SYSTEM MXO: RET
The system prints the ?PIP-W-Reboot message. You should now reboot the system diskette, and enter the date and time.

You can now link the . OBJ files to create the RX0l monitor and its associated device handlers. Be careful to save the link map that results from linking the monitor. If you ever need to submit an SPR to DIGITAL for a monitor created by the system generation process, you must include the monitor link map with the SPR.

Type: Fil..TNK RET
Response: *

where map represents the destination device or file for the link map. Use TT: for the terminal, LP: for the line printer, and DXI: filnam.typ to store the map in a file.

Response: *
Type: $\quad$ MXI 1 TB\%\%, SY\% RET

Response: Eoumasry sectiom?
Type: OULYO RET
Response: *

Response: *

where $x x$ represents the name of any other handlers you requested in the SYSGEN dialogue.

Response: *
When you have linked all the extra handlers, exit from LINK.
Type: CTRL/C
The demonstration listing is as follows:

- Fi LITNK

* IIXI:TEFE, SYFE

Boumidary section? OULYO

*IIXI ! LFF $\operatorname{SYS}=:$ IIX1:LF

*"C
Compress the files on the . OBJ diskette.

- SQUEEZE IIX1: RET
nX1:/Saueeze are sou sure?Y'RET
Copy the bootstrap onto the . OBJ diskette.
Type: COFY/EOOY IXII:HXMN以 IXX: RET
where $x x$ is $S J, F B$, or $X M$.
Use the BOOT command to boot the . OBJ diskette, which is now the new system diskette.
- BOOT IXX1:

FT-11FE (S)VO3E-O2
?KMON-F-Commarid file riot fourid

The (S) in the boot message means that the monitor was created through the system generation process.

Move the . OBJ diskette to drive 0 and perform a hardware bootstrap.
RT-11FB (S) VOZB-02
?KMMON-F-Commarid file rot foumd
Enter the date and time, and copy the . OBJ files from the new system diskette to another diskette for safe keeping. You can then delete them from the system diskette. Keeping the. OBJ files will help you later if it becomes necessary to add a patch to the system. patches are distributed in source form. If, for example, only one component
of the system, such as KMON, needs a patch, you can assemble just that one component. Then you can link the new. OBJ file with the old . OBJ files from your original SYSGEN. This saves your having to do a complete SYSGEN in order to install a patch.

Your system diskette should now be ready to store more files and to function appropriately in your application environment.

## APPENDIX B

## SYSGEN SCRIPT LANGUAGE DESCRIPTION

## B. 1 INTRODUCTION

SYSGEN is a FORTRAN program that uses a script file to drive the terminal dialogue and output information to command and conditional files. This appendix describes the script language, allowing you to understand the system script file and use SYSGEN for application generations of your own. Note, however, that DIGITAL only supports SYSGEN for use with the script files distributed with the system; this description is for your convenience only. For the discussion that follows, the script file distributed with the system serves as a good example; you should have a listing at your disposal while reading this appendix.

The SYSGEN script file, which must be named SYSGEN.CND and reside on device DK:, is an ASCII input file consisting of SYSGEN command lines interspersed with the actual text lines that are to be output to the output files.

Directed by commands in the script file, the SYSGEN program interacts with a user at the terminal. It manipulates internal variables called "script" variables, processes text lines included in the script, and outputs these text lines to the specified output file. Normally, the text lines processed in a script file are either assembly language statements for a conditional assembly file, or command lines for an indirect command file. However, they can be any kind of text line for any purpose. Figure $B-1$ illustrates the flow of information through the SYSGEN program.


Figure B-l SYSGEN Program Information Flow

## B. 2 COMMAND SYNTAX

Each line in a SYSGEN script file must be less than or equal to 80 characters and falls into one of the three following categories:

1. If the line begins with a semicolon (;) character, SYSGEN ignores it. Use lines beginning with semicolon (;) to comment the script file.
2. If the command line begins with
tab \#
SYSGEN interprets the remaining portion of the line as a command line.
3. In all other cases, SYSGEN outputs the entire text line to the current open output file after it has made any substitutions in effect (see SUBS command in Section B.3.9). If you need to output a line that begins with a semicolon (;) to the output file, precede the semicolon (;) with a space or tab to differentiate it from a script comment.

Example:
ЯTHTS TS A SCFTFT EXAMFIEE
tab :\#COMMANOI TAB ARGI.
TAB $\boldsymbol{\text { G CONOTTTONAL FTLE COMMENT }}$
(tab \#COMMANDO tab ARG:
CONMI: $1 \quad \hat{y}$ CONXTTIONAL.
CONO2=2 $\quad$ CONGTTONAI
The example shown above results in the current output file containing the following lines after COMMANDl and COMMAND2 execute:
TAB $\hat{y}$ CONMTTONAL FTLE COMMENT
CONGL=1.
CONDO $2=2$

Each command must begin with a fab followed by a \# character. You must terminate the command name by a second tab or RET Lf if no argument is present). If the first character is not a tab or the second is not $a$ \#, SYSGEN treats the line as a text line. If the first character is a tab and the second a \# character and the command does not match a legal command name, SYSGEN reports an error and treats the line as a text line.

## B.2.1 Script Variables

The script commands manipulate script variables. Script variables have names of from one to six alphanumeric characters. Script variables are initially undefined; you establish their values either by a SET command (see Section B.3) or by using the variable of interest in an \#ASK command (see Section B.3.6). Each script variable has two values associated with it: a "character value" equal to the actual characters used in a \#SET or \#ASK command, and a numeric value" equal to the numeric value of the characters to which the variable was associated during an \#ASK command. \#IF, \#IFN, and \#SUB commands use the character value. \#IFGT and \#DECR commands use the numeric value. \#ASK commands set both the character and numeric values of a variable, while \#SET alters only the character value. The number of different variables for each execution of the SYSGEN program
is limited to l00. Once you define script variables, you can redefine them with subsequent SET or ASK commands, but redefinition within a SUBStitute block (see Section B.3.9) does not take effect until the next SUBS statement.

## B. 3 COMMANDS

Following are the legal commands in the SYSGEN script language.

## B.3.1 FILE

TAB \#FILE TAB filnam.typ
The \#FILE command opens the file you name as the current output file. SYSGEN writes all text lines in the output stream to this file until you issue another \#FILE command. There is no default file type; you must explicitly enter the file type. SYSGEN closes all open output files before it opens the file you specify.

Example:
\#FTIE SYCNITMAC
WFTLE SYI.COM

## B. 3. 2 NAME

## TAB \#NAME TAB segnam

The \#NAME command identifies a particular segment of the script file. The segment name prints as part of the error message when SYSGEN encounters an error condition. This is helpful in logically dividing the script file into discrete sections. The segment name consists of one to six alphanumeric characters.

Example:
\#NAME SYCNT.
:\#NAME: FAFTI

## B. 3. 3 IF,IFN,IFGT



The \#IFx commands test the character value or the numeric value of a script variable. If the condition is satisfied, SYSGEN includes the commands between the \#IFx command and the matching \#ENDC command in the script file processing. If the condition is not met, SYSGEN ignores lines between this command and the \#ENDC command.
\#IF tests the character value of a script variable for "YES"; \#IFN tests for "NO". \#IFGT tests the numeric value of a script variable. If the numeric value is greater than 0 , the condition is true. If the value is less than or equal to 0 , the condition is false. You can use \#IFGT with \#DECR to repeat a question $n$ times, where $n$ is the value of a response to a dialogue question. (See \#DECR, Section B.3.13.)

You can nest \#IF, \#IFN, and \#IFGT commands up to 10 levels, but you must pair each \#IF, \#IFN, or \#IFGT command with a corresponding \#ENDC command.

Example:
\#SET A $=Y$
\#SET B:N
HTF A
A TS YES
\#FNOC
\#TFN A
A TS NO
:HENDC
\#TF B
$B$ TSYES
\#ENNOC
\#TFN B
$8 \operatorname{IS} N$
: FENAC

The preceding script writes the following lines in the output file.
A TS YES
B TS NO

## B.3.4 IFT, IFF, IFTF



You use the \#IFT, \#IFF and \#IFTF commands within an existing \#IF, \#IFN, or \#IFGT conditional block to:

1. Include an alternate body of text and command lines when the condition of the block tests false
2. Include a non-contiguous body of text and command lines within the block when the condition of the block tests true
3. Include a body of text and command lines unconditionally within a conditional block
\#IFT, \#IFF and \#IFTF do not require a matching \#ENDC; they are part of the \#IF, \#IFN, or \#IFGT block to which they belong.
\#IFT includes the subsequent lines if the conditional that heads the current conditional block is true.
\#IFF includes the subsequent lines if the conditional that heads the current conditional block is false.
\#IFTF includes the subsequent lines in either case.
```
Thus, a revision of the previous example is as follows:
 |ET A=Y
 #SET B=N
 |TFA
 A TS YES
 #TFF
 A TS NO
 #FNOC
 #TFN B
 #T:FF
 B TS YFS
 #TFT
 & TS NO
 #FNOC
B.3.5 ENDC
 Tab #ENDC Tab [variable name]
The #ENDC command terminates the current #IF, #IFN, or #IFGT
conditional block. The number of #ENDC commands must match the number
of #IF, #IFN, and #IFGT commands.
You can optionally follow the #ENDC command with a script variable
name. SYSGEN does not use the variable, but it helps to mark which
block is being terminated in nesting situations.
Example:
 #TF CONW!
 *
 #FNMC CONOI
 #THN CONW2
 *
 *
 CF CONOS
 *
```



```
 |TFF
 *
 *
 |T|T
 *
 #ENACC CONMB
 #ENHC CONH2
```

B. 3. 6 ASK
тав \#ASK [tab $[-]$ question?variable $/\left\{\begin{array}{l}A \\ D \\ 0 \\ Y\end{array}\right\}=$ default[,lowlimit][,highlimit]]

## SYSGEN SCRIPT LANGUAGE DESCRIPTION

You use the \#ASK command to print dialogue on the terminal and to obtain an acceptable user response. The \#ASK command then sets the specified script variable's character value and numeric value according to the user's response.

The \#ASK command prints the text (question) indicated between the tab and the ? character on the terminal and waits for the user to respond.

The question, question mark (?), variable name, slash character (/), type letter (A, D, O, or Y), equal sign ( $=$ ), and default value are all required. The low and high limit values, which are optional and apply only to numeric responses, establish a valid range for acceptable responses. The type letter codes (A, D, O, and Y) establish validity checking for the following data types:

/A	The answer must be an alphanumeric device mnemonic of
the form XX RET or XXd RET, where $X$ is a letter and $d$	
is a digit in the range $0-7$.	

The optional hyphen (-) is a continuation character. When it is the first character following тав \#ASK тав , SYSGEN assumes the question portion of the command to be the second line of a two line question. Use \#PRINT to display the first line of the question.

If the response to the question is RET SYSGEN uses the default response. (Note that SYSGEN does not check the default answer for validity.) SYSGEN equates the variable's character value to the characters in the user response and sets the variable's numeric value equal to the value of the numeric response, if any. It then proceeds to the next command.

SYSGEN checks all terminal responses for validity according to the type letter code (A, D, O, or Y) specified in the \#ASK command. In addition, it checks numeric responses against the low and high limits, if present. SYSGEN prints an error message if the response is not valid, and it then repeats the question.

Examples:

\#FFTNT THTS TS THE FTEST I INE
\#ASK … OF A TWO LTNE QUESTTON? ANS/Y=N
The PRINT/ASK combination prints in the dialogue as follows:
THTS TS THE FRET 1 TNE
OF A TWO I TNE OUESTTOM?

## B. 3.7 SET

tab \#SET tab variable name=answer
The \#SET command equates the character value of the specified variable to the characters in the specified answer.

Examples:
\|SET Aw.
\#GET CONMI..N
\#SET COND2"Y
B. 3. 8 PRINT
(tab \#PRINT TAB text
The \#PRINT command prints the specified text on the terminal preceded by a lf and followed by a RET.

NOTE

> To \#PRINT a blank line, you must include the succeeding TAB in the command.

Examples:
\#FFTNT MESSAGEI
\#FFTNT TAB
\#FFTNT MESSAGE?
This example prints the following lines on the terminal:
MESAGE1
MESAGE2

## B. 3.9 SUBS

TAB \#SUBS TAB <delimiter>pattern<delimiter>variable name
The \#SUBS command substitutes the character value of the specified script variable for each occurrence of the pattern in all script lines occurring between the \#SUBS command and the next \#ENDS commands.

The delimiter can be any character that does not appear in the pattern.

You can use the \#SUBS command to modify the command lines as well as text lines in the script file.

Examples:
ET CONOM: $=\mathrm{x}$


CONXI $=$
\#FNWS
This example prints the following line on the terminal:
THE VALUF OF CONOM TS 3
The following line goes to the output file:
CONOI. 3

Note that SYSGEN prepares the text substitution at the time it interprets the SUBS statement. Therefore, the value of the variable within a SUBS block does not change until SYSGEN encounters the next SUBS statement that uses that variable.

## B.3.10 ENDS

TAB \#ENDS
The \#ENDS command terminates the substitution activities of all active \#SUBS commands. Only one is needed, regardless of the number of SUBS statements that are active.

## B.3.11 EXIT

## TAB \#EXIT

The \#EXIT command terminates the SYSGEN run without closing the active output file.

## B.3.12 CALL

tab \#CALL tab filnam.typ
The \#CALL command causes SYSGEN to temporarily use the file specified by filnam.typ as the source for script input. When the system encounters the end-of-file for this temporary input file, it resumes input from the previous file (SYSGEN.CND) where it left off.

You cannot nest \#CALL commands; only one CALL command can be active at a time.

There is no default file type; you must explicitly enter the file type.

Example:
\#CALI. SYSTBL -CNA

## B.3.13 DECR

TAB \#DECR TAB variable name
The \#DECR command decrements the numeric value associated with the specified variable. SYSGEN sets the numeric value of the variable equal to the numeric value of the user response to a dialogue question when you use the variable in a SET or ASK command. \#DECR alters only the numeric value; it does not alter the answer.

You can use \#DECR with \#IFGT to repeat a command or a group of commands $n$ times, where $n$ is the value of a response to a dialogue question. For example, this combination is used in SYSGEN.CND to ask for $n$ DLll vectors, where $n$ is the number of DLll's specified as a response to the dialogue question.

```
B.4 SCRIPT FILE ERROR MESSAGES
SYSGEN detects errors in the script file where possible. Following
are the errors that SYSGEN detects.
SYSGEN script file errors print in the form:
 error message in segment name
 script line
where segment name is the name assigned by the most recent \#NAME command, and script line is an image of the script input line in which the error was detected.
```

Message
?SYSGEN-W-Bad \#ASK in
?SYSGEN-W-Bad \#SET in
?SYSGEN-W-Bad substitute pattern in ?SYSGEN-W-Missing variable in
?SYSGEN-W-Missing file name in
?SYSGEN-W-Nested \#CALL in
?SYSGEN-W-Too few \#ENDC's in
?SYSGEN-W-Too many variables in
?SYSGEN-W-Too many \#ENDC's in
?SYSGEN-W-Too many nested \#IFs or \#SUBs in
?SYSGEN-W-Undefined command in
?SYSGEN-W-Undefined variable in

Meaning

An \#ASK command is missing the ? delimiter.

A \#SET command is missing the = delimeter.

The delimiters do not match in a \#SUBS command.

You issued an \#IF, \#IFN, or \#IFGT command without a script variable.

You issued a \#FILE command without a file name.

You issued a \#CALL command from a script file other than the original.

The number of \#IF, \#IFN, and \#IFGT statements exceeds the number of \#ENDC commands.

You defined more than 100 script variables.

The number of \#ENDC commands exceeds the number of \#IF, \#IFN, and \#IFGT commands.
The number of nested \#IF, \#IFN
and \#IFGT commands exceeds lo;
the number of active \#SUB
commands exceeds five.
The printed script line began
with TAB \#, but it is an
undefined command.
The variable name you used in
an \#IF, \#IFN, \#IFGT, or \#SUBS
command is undefined.


## APPENDIX C <br> INSTRUCTIONS FOR LOADING SOFTWARE BOOTSTRAPS

## C.l RKll (RK05) DECPACK BOOTSTRAP LOADER

1. Deposit the basic RKll disk bootstrap loader into memory as follows:
a. Set the ENABLE/HALT switch to HALT, then set the first address, 00l000, in the Switch Register. (Set switch 9 to the up (l) position and all others to the down (0) position.)
b. Press the LOAD ADDR switch.
c. Set the proper contents for Table $C-1$ in the Switch Register and lift the DEP Switch.
d. Repeat Step $c$ until all the instructions have been deposited.
2. Verify that the bootstrap program has been deposited properly as follows:
a. Set the starting address in the Switch Register as in Step la above.
b. Press the LOAD ADDR switch.
c. Display the contents of that address in the Data Register by pressing the EXAM switch.
d. Compare the number in the Data Register with the value in Table C-l.
e. If they are the same, repeat Step 2 c until all words have been examined.
f. If not the same, repeat Step 1.
3. Set the starting address, 001000 , in the Switch Register as in Step la above, then press the LOAD ADDR switch.
4. Set the ENABLE/HALT switch to ENABLE, then press the START switch.

Table C-1
RKll Bootstrap Loader

Location	Contents	Like This
001000	012700	Set switches $12,10,8,7$, and 6 to the up   (l) position. Set all others to the down   (0) position.
001002	177406	Set switches 15 through 8, 2, and 1 to the up (l) position. Set all others to the down (0) position.
001004	012710	Set switches $12,10,8$, through 6, and 3 to the up (l) position. Set all others to the down (0) position.
001006	177400	Set switches 15 through 8 to the up (l) position. Set all others to the down (0) position.
001010	012740	Set switches 12,10 , and 8 through 5 to the up (l) position. Set all others to the down (0) position.
001012	000005	Set switches 2 and 0 to the up (1) position. Set all others to the down (0) position.
001014	105710	Set switches 15 , ll, 9 through 6, and 3 to the up (l) position. Set all others to the down (0) position.
001016	100376	Set switches 15 and 7 through 1 to the up   (l) position. Set all others to the down   (0) position.
001020	005007	Set switches ll, 9, and 2 through 0 to the up (l) position. Set all others to the down (0) position.

## C. 2 TCll DECTAPE BOOTSTRAP LOADER

1. Deposit the basic DECtape bootstrap loader into memory as follows:
a. Set the ENABLE/HALT switch to HALT, then set the first address, 00l000, in the Switch Register. (Set switch 9 to the up (1) position and all others to the down (0) position.
b. Press the LOAD ADDR switch.
c. Set the proper contents from Table $\mathrm{C}-2$ in the Switch Register and lift the DEP switch.
d. Repeat Step $c$ until all the instructions have been deposited.

Table C-2
TCll Bootstrap Loader

Location	Contents	Like This
001000	012700	Set switches $12,10,8,7$, and 6 to the up (l) position. Set all others to the down   (0) position.
001002	177344	Set switches 15 through 9, 7, 6, 5, and 2 to the up (l) position. Set all others to the down (0) position.
001004	012710	Set switches $12,10,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
001006	177400	Set switches 15 through 8 to the up (1) position. Set all others to the down (0) position.
001010	012740	Set switches $12,10,8,7,6$, and 5 to the up (l) position. Set all others to the down (0) position.
001012	004002	Set switches 11 and $l$ to the up (l) position. Set all others to the down (0) position.
001014	005710	Set switches $11,9,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
001016	100376	Set switches 15 , and 7 through 1 to the up (l) position. Set all others to the down (0) position.
001020	012710	Set switches $12,10,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
001022	000003	Set switches 1 and 0 to the up (l) position. Set all others to the down (0) position.
001024	105710	Set switches $15,11,9,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
001026	100376	Set switches 15 , and 7 through 1 to the up (l) position. Set all others to the down   (0) position.
001030	012710	Set switches $12,10,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
001032	000005	Set switches 2 and 0 to the up (1) position. Set all others to the down (0) position.

(continued on next page)

Table C-2 (Cont.)
TCll Bootstrap Loader

Location	Contents	Like This
001034	105710	Set switches l5, ll, 9, 8, 7, 6, and 3 to to   the up (1) position. Set all others to   the down (0) position.
001040	005007	Set switches l5 and 7 through l to the up   (1) position. Set all others to the down   (0) position.   Set switches ll, 9, 2, l, and 0 to the up   (l) position. Set all others to the down   (0) position.

2. Verify that the bootstrap program has been deposited properly as follows:
a. Set the starting address in the Switch Register as in Step la above.
b. Press the LOAD ADDR switch.
c. Display the contents of that address in the Data Register by pressing the EXAM switch.
d. Compare the number in the Data Register with the value in Table C-2.
e. If they are the same, repeat Step 2 c until all words have been examined.
f. If not the same, repeat Step l.
3. Set the starting address 001000 in the Switch Register as in Step la above, then press the LOAD ADDR switch.
4. Set the ENABLE/HALT switch to ENABLE, then press the START switch.

## C. 3 RXIl/RXOl DISKETTE BOOTSTRAP LOADER

1. If the computer is a PDP-llV/03, perform the following; if the computer is a PDP-11/03 or LSI-11, see the LSI-11, $\frac{\text { PDP-ll/03 User's Manual }}{\text { Step } 2 .}$ (EK-LSIll-TM-002); otherwise, go to
a. Put all three switches in the up position.
b. Move the DC ON/OFF switch down and up.
c. Response: \$ Type: DX Ret

The bootstrapping procedure is complete.
2. Deposit the basic diskette bootstrap loader into memory as follows:
a. Set the ENABLE/HALT switch to HALT, then set the first address, 00l000, in the Switch Register. (Set switch 9 to the up (l) position and all others to the down (0) position.)
b. Press the LOAD ADDR switch.
c. Set the proper contents from Table $\mathrm{C}-3$ in the Switch Register and lift the DEP switch.
d. Repeat Step 2c until all the instructions have been deposited.

Table C-3
RXll Bootstrap Loader

Location	Contents	Like This
001000	012702	Set switches $12,10,8,7,6$, and 1 to the up (l) position. Set all others to the down (0) position.
001002	$\begin{aligned} & 1002 \mathrm{n} 7 \\ & (\mathrm{n}=4 \text { for } \\ & \text { unit } 0 \text { and } \\ & \mathrm{n}=6 \text { for } \\ & \text { unit } 1 \text { ) } \end{aligned}$	Set switches $15,7,2,1$, and 0 to the up (l) position and all others to the down (0) position. For unit 0 , set switch 5 to the up (l) position; for unit 1 , set switches 5 and 4 to the up (l) position.
001004	012701	Set switches $12,10,8,7,6$, and 0 to the up (l) position. Set all others to the down (0) position.
001006	177170	Set switches 15 through 9, and 6 through 3 to the up (l) position. Set all others to the down (0) position.
001010	130211	Set switches $15,13,12,7,3$, and 0 to the up (l) position. Set all others to the down (0) position.
001012	001776	Set switches 9 through 1 to the up (l) position. Set all others to the down (0) position.
001014	112703	Set switches $15,12,10,8,7,6,1$, and 0 to the up (l) position. Set all others to the down (0) position.
001016	000007	Set switches 2, 1 , and 0 to the up (l) position. Set all others to the down (0) position.
001020	010100	Set switches 12 and 6 to the up (l) position. Set all others to the down (0) position.

Table C-3 (Cont.)
RXll Bootstrap Loader

Location	Contents	Like This
001022	010220	Set switches 12,7 , and 4 to the up (1) position. Set all others to the down (0) position.
001024	000402	Set switches 8 and 1 to the up (l) position. Set all others to the down (0) position.
001026	012710	Set switches $12,10,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
001030	000001	Set switch 0 to the up (l) position. Set all others to the down (0) position.
001032	006203	Set switches ll, $10,7,1$, and 0 to the up (l) position. Set all others to the down (0) position.
001034	103402	Set switches $15,10,9,8$, and 1 to the up (l) position. Set all others to the down (0) position.
001036	112711	Set switches $15,12,10,8,7,6,3$, and 0 to the up (l) position. Set all others to the down (0) position.
001040	111023	Set switches $15,12,9,4,1$, and 0 to the up (l) position. Set all others to the down (0) position.
001042	030211	Set switches $13,12,7,3$, and 0 to the up (l) position. Set all others to the down (0) position.
001044	001776	Set switches 9 through 1 to the up (l) position. Set all others to the down (0) position.
001046	100756	Set switches $15,8,7,6,5$, and 3,2 , and 1 to the up (l) position. Set all others to the down (0) position.
001050	103766	Set switches 15, 10 through 4, 2, and 1 to the up (l) position. Set all others to the down (0) position.
001052	105711	Set switches 15, ll, 9 through 6, 3, and 0 to the up position. Set all others to the down (0) position.
001054	100771	Set switches 15, 8 through 3, and 0 to the up (l) position. Set all others to the down (0) position.

(continued on next page)

Table C-3 (Cont.)
RXll Bootstrap Loader

Location	Contents	Like This
001056	005000	Set switches 11 and 9 to the up (l) position. Set all others to the down (0) position.
001060	022710	Set switches $13,10,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
001062	000240	Set switches 7 and 5 to the up (1) position. Set all others to the down   (0) position.
001064	001347	Set switches $9,7,6,5,2,1$, and 0 to the up (l) position. Set all others to the down (0) position.
001066	122702	Set switches $15,13,10,8,7,6$, and 1 to the up (l) position. Set all others to the down (0) position.
001070	000247	Set switches 7, 5, 2, 1, and 0 to the up (1) position. Set all others to the down (0) position.
001072	005500	Set switches $11,9,8$, and 6 to the up (l) position. Set all others to the down (0) position.
001074	005007	Set switches $11,9,2,1$, and 0 to the up (l) position. Set all others to the down (0) position.

3. Verify that the bootstrap program has been deposited properly as follows:
a. Set the starting address in the Switch Register as in Step 2a above.
b. Press the LOAD ADDR switch.
c. Display the contents of that address in the Data Register by pressing the EXAM switch.
d. Compare the number in the Data Register with the value in Table C-3.
e. If they are the same, repeat $S t e p$ 3c until all words have been examined.
f. If not the same, repeat Step 2 .
4. Set the starting address 001000 in the Switch Register as in Step 2a above, then press the LOAD ADDR switch.
5. Set the ENABLE/HALT switch to ENABLE, then press the START switch.

## C. 4 MAGTAPE BOOTSTRAP LOADERS

1. Deposit the basic magtape bootstrap into memory as follows:
a. Set the ENABLE/HALT switch to HALT, then set the first address, 0l0000, in the Switch Register. (Set switch 12 to the up (l) position and all others to the down (0) position.)
b. Press the LOAD ADDR switch.
c. Set the proper contents for TJUl6 magtape (Table C-4) or for TMll magtape (Table C-5) in the Switch Register and lift the DEP switch.
d. Repeat Step $c$ until all the instructions have been deposited.

Table C-4
TJUl6 Bootstrap Loader

Location	Contents	Like This
010000	012700	Set switches $12,10,8,7$, and 6 to the up   (l) position. Set all others to the down   (0) position.
010002	172440	Set switches 15 through $12,10,8$, and 5 to the up (l) position. Set all others to the down (0) position.
010004	012710	Set switches $12,10,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
010006	000021	Set switches 4 and 0 to the up (1) position. Set all others to the down (0) position.
010010	012760	Set switches 12,10 , and 8 through 4 to the up (l) position. Set all others to the down (0) position.
010012	001300	Set switches 9, 7, and 6 to the up (1) position. Set all others to the down (0) position.
010014	000032	Set switches 4, 3, and 1 to the up (1) position. Set all others to the down (0) position.
010016	012760	Set switches 12,10 , and 8 through 4 to the up (l) position. Set all others to the down (0) position.
010020	177777	Set all switches to the up (l) position.

(continued on next page)

Table C-4 (Cont.)
TJUl6 Bootstrap Loader

Location	Contents	Like This
010022	000006	Set switches 2 and 1 to the up (l) position. Set all others to the down (0) position.
010024	012720	Set switches $12,10,8,7,6$, and 4 to the up (l) position. Set all others to the down (0) position.
010026	000031	Set switches 4, 3, and 0 to the up (1) position. Set all others to the down (0) position.
010030	105760	Set switches 15, 11, and 9 through 4 to the up (l) position. Set all others to the down (0) position.
010032	000010	Set switch 3 to the up (l) position. Set all others to the down (0) position.
010034	100375	Set switches 15,7 through 2, and 0 to the up (l) position. Set all others to the down (0) position.
010036	012710	Set switches $12,10,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
010040	177000	Set switches 15 through 9 to the up (1) position. Set all others to the down (0) position.
010042	012740	Set switches 12,10 , and 8 through 5 to the up (l) position. Set all others to the down (0) position.
010044	000071	Set switches 5, 4, 3, and 0 to the up (1) position. Set all others to the down (0) position.
010046	032710	Set switches $13,12,10,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
010050	100200	Set switches 15 and 7 to the up (1) position. Set all others to the down (0) position.
010052	001775	Set switches 9 through 2 and 0 to the up (l) position. Set all others to the down (0) position.
010054	100007	Set switches $15,2,1$, and 0 to the up (1) position. Set all others to the down (0) position.

(continued on next page)

Table C-4 (Cont.)
TJUl6 Bootstrap Loader

Locn	Contents	Like This
010056	022760	Set switches 13,10 , and 8 through 4 to the up (l) position. Set all others to the down (0) position.
010060	001000	Set switch 9 to the up (l) position. Set all others to the down (0) position.
010062	000014	Set switches 3 and 2 to the up (1) position. Set all others to the down (0) position.
010064	001403	Set switches 9, 8, 1, and 0 to the up (1) position. Set all others to the down (0) position.
010066	000005	Set switches 2 and 0 to the up (1) position. Set all others to the down (0) position.
010070	000167	Set switches $6,5,4,2,1$, and 0 to the up (l) position. Set all others to the down (0) position.
010072	177704	Set switches 15 through 6 and 2 to the up   (l) position. Set all others to the down   (0) position.
010074	005007	Set switches $11,9,2,1$, and 0 to the up   (l) position. Set all others to the down   (0) position.

Table C-5
TMll Bootstrap Loader

Location	Contents	Like This
010000	012700	Set switches $12,10,8,7$, and 6 to the up   (l) position. Set all others to the down   (0) position.
010002	172524	Set switches 15 through $12,10,8,6,4$, and 2 to the up (1) position. Set all others to the down (0) position.
010004	005310	Set switches $11,9,7,6$, and 3 to the up   (l) position. Set all others to the down   (0) position.
010006	012740	Set switches 12, 10, and 8 through 5 to the up (l) position. Set all others to the down (0) position.

(continued on next page)

Table C-5 (Cont.)
TMll Bootstrap Loader

Location	Contents	Like This
010010	060011	Set switches $14,13,3$, and 0 to the up   (l) position. Set all others to the down   (0) position.
010012	105710	Set switches $15,11,9,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
010014	100376	Set switches 15 and 7 through 1 to the up (l) position. Set all others to the down   (0) position.
010016	005710	Set switches $11,9,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
010020	100767	Set switches 15, 8 through 4, 2, 1, and 0 to the up (l) position. Set all others to the down (0) position.
010022	012710	Set switches $12,10,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
010024	060003	Set switches $14,13,1$, and 0 to the up   (l) position. Set all others to the down   (0) position.
010026	105710	Set switches $15,11,9,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
010030	100376	Set switches 15 and 7 through 1 to the up   (l) position. Set all others to the down   (0) position.
010032	005710	Set switches $11,9,8,7,6$, and 3 to the up (l) position. Set all others to the down (0) position.
010034	100777	Set switches 15 and 8 through 0 to the up (l) position. Set all others to the down (0) position.
010036	005007	Set switches $11,9,2,1$, and 0 to the up   (l) position. Set all others to the down   (0) position.

2. Verify that the bootstrap program has been deposited properly as follows:
a. Set the starting address, 0l0000, in the Switch Register as in Step la above.
b. Press the LOAD ADDR switch.
c. Display the contents of that address in the Data Register by pressing the EXAM switch.

$$
C-11
$$

d. Compare the number in the Data Register with the value in the appropriate table ( $\mathrm{C}-4$ or $\mathrm{C}-5$ ).
e. If they are the same, repeat Step 2c until all words have been examined.
f. If not the same, repeat Step l.
3. If TMll magtape is being used, ensure that the magtape is positioned at the load point; if it is not, manually rewind the magtape.
4. Set the starting address, 010000 , in the Switch Register as in Step la above, then press the LOAD ADDR switch.
5. Set the ENABLE/HALT switch to ENABLE, then press the START switch.

## C. 5 RK06 DECPACK BOOTSTRAP LOADER

1. Deposit the RK06 disk bootstrap loader into memory as follows:
a. Set the ENABLE/HALT switch to HALT, then set the first address, 00l000, in the Switch Register. (Set switch 9 to the up (l) position and all others to the down (0) position.)
b. Press the LOAD ADDR switch.
c. Set the proper contents for Table $C-6$ in the Switch Register and lift the DEP switch.
d. Repeat Step $c$ until all the instructions have been deposited.
2. Verify that the bootstrap program has been deposited properly as follows:
a. Set the starting address in the Switch Register as in Step la above.
b. Press the LOAD ADDR switch.
c. Display the contents of that address in the Data Register by pressing the EXAM switch.
d. Compare the number in the Data Register with the value in Table C-6.
e. If they are the same, repeat Step 2c until all words have been examined.
f. If not the same, repeat Step 1.
3. Set the starting address, 001000, in the Switch Register as in Step la above, then press the LOAD ADDR switch.
4. Set the ENABLE/HALT switch to ENABLE, then press the START switch.

Table C-6
RK06 Bootstrap Loader

Location	Contents	Like This
001000	012701	Set switches $12,10,8$ through 6 , and 0 to the up (l) position. Set all others to the down (0) position.
001002	177440	Set switches 15 through 8 and 5 to the up (l) position. Set all others to the down (0) position.
001004	012711	Set switches $12,10,8$ through 6, 3, and 0 to the up (l) position. Set all others to the down (0) position. 001006 000003 Set switches 1 and 0 to the up (l) position. Set all others to the down (0) position.
001010	032711	Set switches $13,12,10,8$ through 6, 3, and 0 to the up (l) position. Set all others to the down (0) position.
001012	100200	Set switches 15 and 7 to the up (1) position. Set all others to the down (0) position.
001014	001775	Set switches 9 through 2, and 0 to the up (l) position. Set all others to the down (0) position.
001016	012761	Set switches $12,10,8$ through 4 , and 0 to the up (l) position. Set all others to the down (0) position.
001020	177400	Set switches 15 through 8 to the up (1) position. Set all others to the down (0) position.
001022	000002	Set switch l to the up (l) position. Set all others to the down (0) position.
001024	012711	Set switches $12,10,8$ through 6, 3, and 0 to the up (l) position. Set all others to the down (0) position.
001026	000021	Set switches 4 and 0 to the up (1) position. Set all others to the down (0) position.
001030	032711	Set switches $13,12,10,8$ through 6, 3 , and 0 to the up (l) position. Set all others to the down (0) position.

(continued on next page)

Table C-6 (Cont.) RK06 Bootstrap Loader		
Location	Contents	Like This
001032	100200	Set switches 15 and 7 to the up (1) position. Set all others to the down (0) position.
001034	001775	Set switches 9 through 2, and 0 to the up (l) position. Set all others to the down (0) position.
001036	005007	Set switches ll, 9, and 2 through 0 to the up (l) position. Set all others to the down (0) position.

## APPENDIX D

RT-11 CONDITIONALS

The following listing contains all the conditionals used in the RT-ll system, including a brief explanation of each of the symbols.

```
BATC$H
BF
CLOCK
CONTSN
CRSCSR
CRSVEC
CSIBFL
CTSCSR
CTSVEC
:BAICH SupdORt
;FB MONitor
;5k/b| mertz clock support
:Continuation file instead of monitor dot
;CSR for CRIl card reader
; vector for CRIl caro reader
;CSI line buffer size
:CSi for the TAll cassette nander
ivector for the lall cassette hander
DCLS$;
OCLSS ;
DLCSe :CSR of first OLIl
OLCDI :CSk of second OLII
OLC$2
DLC$3
OLCS4
OLC$5
DLC$0
DLC$7
OLVSx
DLVS!
DLV$2
DLVS3
OLV$4
DLVS5
OLV$G
DLV$7
DLSCSk
DLSVEC
DLI1SL
DLIISM
DLIISN
DMSCSN
DMSVEC
DPSCSK
DPSVEC
DRIVEN
DSSCSR
DSSVic
DTSVEC
DTSCSR
DXSCSR
```

Dxscs	: CSR of second RXEl controller
DXSVEC	ivector for the fxpl
Dxsucz	: Vector of secono kxal controller
DYTSE	s Secono controller support for the rxil
DYSCSR	: CSR for 2 XiJz
DYSCS2	iCSR of secona RXiza controller
DYSDE	; Rxac Double density supdort only
DYSDS	; Rxaz handler attemots single density read first
DYSVCZ	; vector of secona $\mathrm{fx} \mathrm{e} \boldsymbol{z}$ controller
DYSVEC	; Vector for kxyz
DZIISN	:\% of UZ11's
D2119L	; ${ }_{\text {c }}$ of local 0211 lines
DZ115M	; of remote ozll lines
DZSTAP	:0211 stoc unit
DZSP30	: Haud rate for DZII
DzvCse	; vector of first DZil
DZVC5 1	; vector of secono DLII
DZCSs	; CSr of tirst DLII
DLCS 1	:CSri of secona DZ11
ERLSA	: Error log nanaler can write buffers on call
ERL\$t	: Numoer of blocks in error log butter
ERL\$G	; Error logging supicort
ERL\$U	; Aumber of units to be logged
ERLSV	; vumioer of status tables in error log hander
ERLSn	; keec newest errors in error log mandler
ESCSP	: Escape sequence suoport
Files	imagtape flles supdopt
FPUS11	; Floating point exception handilna support
GTSNM	igetname routine resides in the USR Or RMON
KW11\$	; Programmable clock support
LIGH\$	; Light poutine support
LNK\$IF	: Llisk overlay counters files
LPSCSN	; CSk for the line orinter
LPSVEC	: vector for the line printer
MATSS	: xultiterminal asynchronous status sudoort
MMGST	; memory management supdort
MMSVEC	: Vector for the tJult mastape handler
MMSCSH	: CSi for the TJulb magtape hander
MPTSY	; memory parity supdort
MTT\$Y	;rulti-terminal suodort
MTISN	; Multioterminal time out support
MTSVEC	; vector for TMll magtape handler
MTSCSK	: CSR for tmil magtace mander
MVECST	: Nulti-vector support for handers
MXNSS I	icfault to file nesting depth
NLKMVLY	:LIST/NOLIST KMOVLY.MAC
NLKMCN	;LIST/NOLIST KMON.MAC
NLRMCN	;LIST/NOLIST RMON SJ(FB).MAC
NLUSN	;LIST/NOLIST USR.MAC


PANISC	;pante dump support in SJ
PATCSH	: Size of Patch space in FMON
PPSSSK	icSk for daper tape funch
PPSVEC	ivector for paper tape duncn
PRSCSH	; CSn for dacer tape reader
PRSVEC	; vector for oaper tape reader
PR11\$ ${ }^{\text {P }}$	; feader only ootion in the PC hander
PwFSL	;powertail supdort
RDF 51	; Detault tile nesting depth
RFSVEC	ivector for the fFill
RFSCSH	:CSR for the RFII
RJSOU3	:RJS aisk is an kJSel 3 OK RJStu
RKSCSK	; CSR for RKES aisk
RKSVEC	; Vector for Rkes aisk
RKGSE	; Bac olock sucport for Rkobl7
RK6SS	ispectal function for Rkhb/7
RLISUN	f Number of units supported in the RLil hander
RPQ\$ 3	: Specities RPbL or RPD3
RXTSC	:Second controller supdort for the kxol
SCC\$A	; C interceot support (.SCCA)
STACSK	; $\mathrm{pm}_{\text {ma }}$ Stack size
Stargt	i Start up commana file
SYSGP. 5	;SYSGENED MONitor
TIMESK	; Timer suodort in sJ
TIMSIT	couvice time out support
TkS	; Console inout CSk
TKB	: Console inout data buffer
TPS	: Console outout CSR
TPG	; Console outout data butter
ttrin	isize of terminal inout ring bufter
TTYOLI	isize of terminal output ring butfer
U.K.	; united kingdom remote line support darameter
V.tKe	; Console inout vector
V.TPS	; Console outout vector
vsbes	: VSGE Support
VT.CSK	; CSR for VTll/vSoy
VT,VEC	ivector for vill/vsod
VT11\$	IVTll Supdort
VT50HM	iset IT HOLD suodert
SOMSYS	fikndol7 is the system device
SOLSYS	;RLAl is the sustem device
\$DPSYS	;RPuz/RPIIC is the system device
SDSSYS	; RJSuldu is the system device
SDTSYS	;TAll is the system device
SDXSYS	;RXil is the syster device
SUYSYS	; Rxit is the syster device
SRFNUM	: 4 of olatters for RFIl
\$RFSYS	;RFII/RSII is the system device
SRKSYS	;RMbs is the system device



## INDEX

Accessing non-system disks on single-disk systems, 2-43
Adding FORTRAN subroutines to SYSLIB, 2-20
Additional device support, 3-18
ASK SYSGEN command, B-5
Assembling and linking system programs, 4-1
Assembling and linking the system, 3-4
Asynchronous terminal status, 3-24

Bad block replacement, 2-9
Base-line monitor (BL), l-l, l-2, 2-2
Base-line system example SYSGEN, A-1
BATCH patches, 2-46
BATCH support, 3-11
BATCH, building, 4-2
Binary software kit, l-1
.BL file type, 2-1
BL monitor,
see Base-line monitor
Bootstrap, 2-2
DECtape, $\mathrm{C}-2$
installing the, 2-2, 2-26
magtape, $\mathrm{C}-8$
RK05 disk, C-1
RKO6 disk, C-l2
RX01 diskette, C-4
Bootstrapping the distribution magtape, 2-7
Bootstrapping the distribution medium, 2-7
Bootstrapping the working disk, 2-18
Bootstraps,
loading software, C-l
Buffer size, 3-23
Building a system for Introduction to RT-11, 2-41
Building a system with SYSGEN, 3-26
Building a working system disk, 2-14
Building a working system from the distribution kit, summary, 2-25
Building BATCH, 4-2
Building CREF, 4-7
Building DIR, 4-3
Building DUMP, 4-8

Building DUP, 4-2
Building EDIT, 4-3
Building ERRUTL, 4-4
Building FILEX, 4-8
Building FORMAT, 4-12
Building handlers, 3-30
Building HELP, 4-3
Building LIBR, 4-8
Building LINK, 4-7
Building MACRO, 4-4
Building monitors, 3-29
Building ODT, 4-11
Building PAT, 4-11
Building PATCH, 4-ll
Building PIP, 4-2
Building PLOT55, 4-11
Building PSE, 4-10
Building RESORC, 4-12
Building SRCCOM, 4-8
Building SWAP, 4-12
Building SYE, 4-10
Building SYSGEN, 4-11
Building SYSLIB, 2-19
Building TECO, 4-12
Building the system library (SYSF4.OBJ), 4-9
Building the system macro library, 4-1
Building the VTll library, 4-11
Building working system for small system devices, 2-20
Building working systems for diskettes, 2-20

CALL SYSGEN command, B-8
CAPS-11,
using to load files, 2-45
Card reader support, installing, 2-29
Changing RJS03 support to RJS04 support, 2-32
Changing RP02 support to RP03 support, 2-32
Changing the CSR addresses used by FORMAT, 2-44
Changing the default output device, 2-37
Changing the location of VTll/VS60 floating vectors, 2-34
Choosing a monitor, 3-7
Choosing system components, 2-16
Clock rate,
setting, 3-10
specifying 50-cycle, 2-33

Clock,
programmable, 3-10
Command syntax,
SYSGEN script, B-2
Commands,
SYSGEN script, B-3
Compressing the working disk, 2-19
Conditional files, 3-26
Conditional variables, D-l
Conditionals,
RT-11, D-1
Configuration information, 3-3
Contents of distribution kits, 2-1
Correcting typing errors, 2-6
Creating a bootable disk, 2-27
Creating a bootable magtape, 2-27
Creating a system on another device, 2-18
Creating a system on the distribution device, 2-17
Creating the working disk, 2-17
CREF,
building, 4-7
modifying listing page length, 2-36
Customizing SYCND, 3-27
Customizing the editor, 2-34
Customizing the system without doing a SYSGEN, 2-27

DECR SYSGEN command, B-8
DECtape bootstrap, C-2
Default device,
SYSLIB, 2-38
Default output device, changing, 2-37
Defaults, SYSGEN, 3-5
Delivered monitors, l-1
Demonstration package, RT-11, 2-47
Determining disk capacity, 2-16
Device handler naming conventions, 2-1
Device handler, file-structure, 2-3 hardware, 2-3
Device handlers, building the, 3-30
Device support, 3-13 additional, 3-18
Device time-out support, 3-9
Dialogue, SYSGEN, 3-5

DIR,
building, 4-3
DIRECTORY command, 2-16
Directory size, extending, 2-39
Disk,
creating a bootable, 2-27
Diskette contents,
typical, 2-22
Diskette job flow, 2-22
Diskette SYSGEN procedure, A-16
Diskettes,
building working systems for, 2-20
using with Introduction to RT-11, 2-42
Distribution kit, l-1 files on, 2-3
Distribution kits, contents of, 2-1
Distribution media, 1-1
Distribution medium, bootstrapping, 2-7 preserving, 2-11
Documentation, TECO, 2-6
DUMP, building, 4-8
DUP, building, 4-2

EDIT, building, 4-3
Editor, customizing, 2-34
EIS,
see Extended instruction set
ENDC SYSGEN command, B-5
ENDS SYSGEN command, B-8
Error logging, 3-12
Error messages, 2-6 SYSGEN script, B-9 SYSGEN, 3-25
Errors, correcting typing, 2-6
ERRUTL, building, 4-4
Escape code, non-standard, 2-35
Escape sequences, 3-11
Establishing fill characters,

$$
2-28
$$

Establishing the system device, 3-13
Example SYSGEN, base-line system, A-1
Example SYSGENs, A-1

Executing the SYSGEN program, 3-3
EXIT SYSGEN command, B-8
Expanded SYSGEN dialogue, 3-6
Extended instruction set (EIS), 1-4
Extended memory monitor (XM), 1-1, 1-3, 3-8
Extending directory size, 2-39

FB monitor, see Foreground/background monitor
File size, setting an upper limit on, 2-35
FILE SYSGEN command, B-3
File-structure handler, 2-3
Files on the distribution kit, 2-3
FILEX,
building, 4-8
Fill characters, 2-11 establishing, 2-28
Flow of SYSGEN process, 3-3
Foreground/background monitor (FB), 1-1, 1-3, 3-8 running, 2-52
FORMAT,
building, 4-12
changing the CSR addresses used by, 2-44
FORMAT. SAV, 2-9, 2-10
Formatting new media, 2-9
FORTRAN OTS routines, 2-19

Halt, power fail, 3-10
Hardware handler, 2-3
Hardware, memory management, l-4
HELP, building, 4-3

Idle loop display, 3-9
IF SYSGEN command, B-3
IFF SYSGEN command, B-4
IFGT SYSGEN command, B-3
IFN SYSGEN command, B-3
IFT SYSGEN command, B-4
IFTF SYSGEN command, B-4
Installing card reader support, 2-29
Installing hardware magtape support, 2-30
Installing other devices, 2-28

```
Installing paper tape support,
 2-30
Installing patches, 2-23
Installing RT-11, 2-7
Installing the bootstrap, 2-2,
 2-26
Introduction to RT-11,
 building a system for, 2-41
Invoking SYSGEN, 3-6
```

Job flow,
diskette, 2-22
Kit,
binary software, l-l
distribution, l-1
KMON swapping, l-2
KTll hardware,
see Memory management hardware
KWll-P programmable clock, 3-10
LA $30,2-11,2-28$
LIBR,
building, 4-8
Line printer as default output
device, 2-37
LINK,
building, 4-7
modifying to change the default
SYSLIB device, 2-38
Loading software bootstraps, C-1
.MAC file type, 2-1
MACRO,
building, 4-4
modifying listing page length,
2-36
Macros,
TECO, 2-6
Magtape bootstrap, C-8
Magtape parity and density,
setting, 2-31
Magtape support,
installing hardware, 2-30
Magtape,
creating a bootable, 2-27
MDUP, 2-8, 2-16
Media,
distribution, l-1
Memory management hardware, 1-4
Memory parity support, 3-10

```
INDEX (Cont.)
```

Memory,
running $\mathrm{RT}-11$ in less than
is available, 2-35
Minor customization, 2-23
Modifying LINK to change the default SYSLIB device, 2-38
Modifying listing page length
in MACRO and CREF, 2-36
Monitor commands, 2-6, 2-16 DIRECTORY, 2-16 SQUEEZE, 2-19, 2-23
Monitor differences, 1-4
Monitor files, renaming, 2-2
Monitor naming conventions, 2-1
Monitor options, 1-5
Monitor services, 3-2
Monitor,
base-line (BL), l-1, 1-2, 2-2
choosing, 3-7
extended memory (XM), 1-1, 1-3, 3-8
foreground/background (FB),
1-1, 1-3, 3-8
single-job (SJ), 1-1, 1-3, 3-8
Monitors, delivered, 1-1 switching, 2-2, 2-25
MSBOOT, 2-8, 2-9
Multi-terminal support for
United Kingdom, 3-27
Multi-terminal support, 3-9, 3-19

NAME SYSGEN command, B-3
Null handler, 3-18

OBJ files, saving, 3-18
ODT,
building, 4-11

Paper tape support, installing, 2-30
Parity memory, 3-10
PAT,
building, 4-11
PATCH, building, 4-ll
Performing SYSGEN on diskettebased systems, A-16
Peripheral support, 3-2
PIP, building, 4-2
Planning for SYSGEN, 3-1, 3-3

PLOT55,
building, 4-11
Positioning the system files for optimal performance, 2-22
Power fail halt, 3-10
Preserving the distribution medium, 2-11
Preserving the system on disk, 2-24
Preserving the system on magtape, 2-23
Preserving the working system, 2-23
PRINT SYSGEN command, B-7
PSE,
building, 4-l0

Questions,
SYSGEN, 3-5

Reducing the size of the text
window, 2-34
Renaming monitor files, 2-2
RESORC,
building, 4-12
RFll platters, specifying the number of, 2-31
Ring buffers, 3-23
RJS03 support,
changing to RJS04 support, 2-32
RK05 bootstrap, C-1
RK06 bootstrap, C-12
RKll bootstrap, C-1
RP02 support,
changing to RP03, 2-32
RT-ll conditionals, D-1
RT-11 demonstration package, 2-47
Running RT-ll in less memory than is available, 2-35
Running the foreground/background monitor, 2-52
Running the single-job monitor, 2-48
RX0l bootstrap, C-4
RXOl diskette systems, how to SYSGEN on, A-16

```
.SAV file type, 2-1
Saving system components, 3-31
Saving the OBJ files, 3-18
SET SYSGEN command, B-6
Setting an upper limit on file
 size, 2-35
Setting clock rate, 3-10
```

Setting magtape parity and density, 2-31
Single-disk systems, 2-43
Single-job monitor (SJ), 1-l, 1-3, 3-8
running, 2-48
SJ,
see Single-job monitor
Small system devices,
building working systems for, 2-20
Small systems,
how to SYSGEN on, A-16
Software components, 2-3
Software kit,
binary, l-1
Software,
unsupported, 2-6
Specifying a 50-cycle clock rate, 2-33
Specifying the number of RFll platters, 2-31
SQUEEZE command, 2-19, 2-23

## SRCCOM,

building, 4-8
Starting the system, 2-6
STARTS.COM, 2-9
Startup indirect files, 2-17, 3-10
SUBS SYSGEN command, B-7
Summary of the SYSGEN process, 3-4
Summary,
building a working system from the distribution kit, 2-25
Swap blocks, l-2

## SWAP,

building, 4-12
SWAP.SYS, 1-2, 2-16
Switching monitors, 2-2, 2-25

## SYCND,

customizing, 3-27

## SYE,

building, 4-10
.SYS file type, 2-1
SYSF4.OBJ,
building, 4-9
SYSGEN defaults, 3-5
SYSGEN dialogue explanation, 3-6
SYSGEN dialogue, 3-5
SYSGEN error messages, 3-25
SYSGEN errors, 3-29
SYSGEN examples, A-l
SYSGEN planning, 3-3
SYSGEN process summary, 3-4
SYSGEN program information flow, B-1
SYSGEN questions, 3-5
SYSGEN requirements, 3-27
SYSGEN script command syntax, B-2

SYSGEN script commands, B-3
ASK, B-5
CALL, B-8
DECR, B-8
ENDC, B-5
ENDS, B-8
EXIT, B-8
FILE, B-3
IF, B-3
IFF, B-4
IFGT, $\mathrm{B}-3$
IFN, B-3
IFT, B-4
IFTF, B-4
NAME, B-3
PRINT, B-7
SET, B-6
SUBS, B-7
SYSGEN script error messages, B-9
SYSGEN script language, $B-1$
SYSGEN script variables, B-2
SYSGEN size requirements, 3-27
SYSGEN,
building the system, 3-26
building, 4-1l
example of base-line diskette system, A-1
example of RLOl system, A-5
executing, 3-3
planning for, 3-1
procedure for RX0l diskette, A-16
SYSLIB,
adding FORTRAN subroutines to, 2-20
building, 2-19
SYSLIB. OBJ, 2-19
System device,
establishing the, 3-13
System generation, 3-1
System halts, 3-9
System macro library,
building, 4-1
System programs,
assembling and linking, 4-1
System subroutine library, 2-19

TECO documentation, 2-6
TECO files, 2-17
TECO macros, 2-6
TECO text editor, 2-6
TECO,
building, 4-12
Terminal as default output device, 2-37
Text editor,
TECO, 2-6
Text window,
reducing the size of, 2-34

```
INDEX (Cont.)
```

Timer support, 3-8
TJUl6 magtape, 2-9
TMll magtape, 2-9
Typical diskette contents, 2-22

Unsupported software, 2-6
Using CAPS-11 to load files, 2-45
Using diskettes with Introduction to RT-11, 2-42
Using EDIT on terminals with non-standard escape code, 2-35
USR swapping, l-2

V3USER.TXT, 2-9
VS60 floating vectors, changing, 2-34
VS60, 2-11
VT05, 2-11, 2-28
VTll floating vectors, changing, 2-34
VTll library, building, 4-11
VTll, 2-17
VT52, 2-11
VTMAC.MAC, 2-17

XM monitor,
see Extended memory monitor

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the company's discretion. Problems with software should be reported on a Software Performance Report (SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit your comments on an SPR form.

Did you find errors in this manual? If so, specify by page.
$\qquad$

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this manual? If not, what material is missing and where should it be placed?
$\qquad$
Please indicate the type of user/reader that you most nearly represent.
$\square$ Assembly language programmer
$\square$ Higher-level language programmer
$\square$ Occasional programmer (experienced)
$\square$ User with little programming experience
$\square$ Student programmer
$\square$ Non-programmer interested in computer concepts and capabilities

Name $\qquad$ Date $\qquad$
Organization $\qquad$
Street
City $\qquad$ State $\qquad$ Zip Code

Postage will be paid by:



[^0]:    Once you complete the planning, you then execute the system generation dialogue provided through the SYSGEN program. SYSGEN asks you a series of questions and uses your responses to direct further questions and eventually to construct five output files.

    The first two of these output files are SYCND.MAC and SYSTBL.MAC. These files are the conditional files that are assembled with the standard monitor components to generate the customized system.

    The last three output files are MONBLD.COM, DEVBLD.COM and SYSBLD.COM. These are indirect command files that can be used to assemble and link the desired system without further user intervention. MONBLD.COM

