

8250
'. ~" ~ .

DIGITAL LOGIC LABORATORY

WORKBOOK

Barbera W. Stephenson

Research Engineer

DIGITAL EQUIPMENT CORPORATION• MAYNARD, MASSACHUSETTS

Copyright © 1965 by Digital Equipment Corporation

II

PREFACE

This workbook presents a series of laboratory experiments to accompany a lecture
course in logic design, switching circuits or digital computer fundamentals. The aim
of the workbook is to complement the lecture material by graphically demonstrating
the principles of digital logic and by teaching some of the practical considerations
not normally covered in a theoretical course.

Actually, one might consider this as an instructor's aid rather than a workbook.
Each experiment has more projects and questions than could be completed in a
3 hour laboratory, so that the instructor can select those parts most appropriate
in level a·nd emphasis.

There are seven core experiments which introduce the fundamentals and build up
in level. The other eight experiments, which are interspersed with the core experi
ments, are on a parallel level with their neighbors but cover separate topics so that
they may be moved around to follow the textbook. It is hoped that the eight non-core
experiments will provide enough flexibility that those experiments demonstrating
basic principles can follow the corresponding lecture material and those experiments
dealing with practical considerations can follow the lectures on subjects which do not
lend themselves to laboratory work. Appendix E gives further notes on the experiments
and relates them to leading texts.

On the other hand, to provide continuity and make a maximum contribution to the
students' learning, there are areas in which the workbook is not so flexible. The
core experiments build on each other and become increasingly sophisticated as the
students' facility with the Logic Laboratory increases. Consequently it is suggested
that these be retained in order.

Within the experiments, there are frequently a series of projects which build on a
common circuit. This is done to (a) demonstrate the relationship between circuits
and (b) minimize the time spent in rote wiring and thereby maximize the amount
that can be learned in an experiment. These series are easily recognized and it is
suggested that they be retained in order while the other questions are used to
provide the desired emphasis.

The equipment used in the experiments is the Digital Equipment Corporation's
Logic Laboratory, as described in Appendix E. However, some of the logic conventions
used by Digital have been modified here for the benefit of the beginning students.
For those who are familiar with Digital's other equipment, Appendix D outlines these·
modifications.

In planning this workbook, I talked with many instructors about the material that
they felt should be included in the workbook and how this material could best be
presented. I would particularly like to thank Charles M. Thomson, Robert Coughlin,
and John Hinds of Wentworth Institute, Boston, Mass., Professor Mitchell L. Cotton
of the U. S. Naval Post Graduate School, Monterey, California, and Dr. Gerard J.
Stephenson, Jr., of the California Institute of Technology, Pasadena, California, for
their kind assistance.

Also, many individuals at Digital Equipment Corporation offered suggestions and
assistance at various stages in the writing. It is impossible to list them all here;
but particular thanks go to Richard L. Best and Russell Doane for their careful reading
of the drafts, and to C. Stuart Grover and Trudie Karr for their editorial assistance.

Barbera W. Stephenson

August, 1965

111

IV

CONTENTS

Experiment Page

II

Ill

IV

v

VI

VII

VII I

IX

x

XI

BINARY NUMBERS . 1

Introduction, A Binary Counter, Use of The Clock,
Negative Numbers

BINARY CODED DECIMAL

Codes, An 8421 Code Counter, Excess 3 Code Counter,
A Weighted, Self-Complementing Code

BASIC DIGITAL CIRCUITS- GATES

The Positive NOR Gate, Symbols, The Negative
NOR-Positive NANO, Gate Usage, Loading Considerations,
Grounding

FLIP-FLOPS AND DCD GATES

The Flip-Flop, Diode-Capacitor-Diode Gates, Counters

FROM BOOLEAN EQUATIONS TO GATING NETWORKS

Reduction Techniques

BOOLEAN EQUATIONS AND FLIP-FLOPS

Duality, Timing Considerations, Input Equations, Pulse Inputs

ADDITION .. .

Techniques of Addition, Serial Adders, A Serial Binary
Subtracter

PARALLEL ADDITION AND SUBTRACTION

The Two-Step Parallel Adder, Positive and Negative
Numbers - Two's Complement, Positive and Negative
Numbers - One's Complement, Subtraction, The Single-Step
Parallel Adder

BINARY CODED DECIMAL ARITHMETIC

Code Review, Arithmetic Operations with the 8421 or
Excess 3 Code, Counting, Addition, Positive and Negative
Numbers, Addition and Subtraction

CODE CONVERSION

Code Features, Decimal Codes, Error Detecting Codes,
Reflective Codes

CONTROL

The Use of Control Circuitry, Generating The
Pattern, The Pulse Amp I ifier, The Delay (One-Shot),
The Pulse Distributor Made With Delays

10

15

22

29

35

45

50

56

67

75

Experiment

XII

XIII

XIV

xv

TIMING

Simultaneous Signals, Random Signals, The
Synchronizer, Use of the Synchronizer

INTRODUCTION TO ANALOG-DIGITAL CONVERSION

Converter Uses, Digital-to-Analog Conversion,
Analog-to-Digital Conversion, The Continuous Converter

ADVANCED STUDIES IN ANALOG-DIGITAL CONVERSION

The Successive Approximation Counter,
Comparison of Analog-to-Digital Converters,
Accuracy

COMPUTER DESIGN
Computer Elements, General versus Special Purpose
Computers, The Algorithm, Hardware

Page

85

98

105

114

APPENDIX A LOADING RULES . 125

APPENDIX B ADDING WAVEFORMS . 127

APPENDIX C SYMBOLS . 129

APPENDIX D FLIP CHIP MODULES IN THE LOGIC
LABORATORY _....................... 130

APPENDIX E NOTES TO THE INSTRUCTOR 133

v

The Digital Logic Laboratory

EXPERIMENT I
BINARY NUMBERS

PART 1 INTRODUCTION

A digital computer is an assemblage of extremely simple circuits. Consider the
familiar elements in the logic laboratory- the toggle switches and push buttons.
Examine these elements in detail. Compare them.

Each has only two states. The switch may be up or down. The button may be
depressed or released. Digital circuits also have two states, a negative voltage level
and a positive level. In the logic laboratory the negative level is -3 volts; the more
positive level is ground.

Note the differences. The button makes contact only when depressed. When released,
it always returns to its original position. The switch, by contrast, always remains
where last positioned. It remembers. In this same sense, digital circuits are divided
into two classes, those which remember and those which follow.

Employing only two state devices, with and without memory, one can construct a
complex computer system, which is able to control the motion of a missile, schedule
production in a diversified factory, or compose symphonic music.

To design a computer from these basic concepts is similar to proving a complex
mathematical theorem from a simple set of axioms. From bare axioms, one proves a
modest theorem; from this, a more intricate theorem; and finally, a sophisticated
system of theorems.

In designing computer logic to solve a specific problem, just as in developing a
mathematical proof, many approaches may be taken. Some may be superior because
they are more efficient; others may be easier to use. But, frequently, many different
techniques are equally acceptable. The logic laboratory provides a means, not only
to try accepted techniques, but also to try your own designs.

PART 2 A BINARY COUNTER

How can two state devices represent the immense quantities required to calculate
the orbit of a satellite? To balance the books of a multimillion dollar bank? Or to
tabulate votes and predict an election outcome?

The binary number system, as described in your text, is a preferred solution because
it is efficient, each number has a unique representation, and simple rules define
the arithmetic operations.

In this experiment, you will study the binary number system by constructing a
counter, using the Flip-Flop Type R201. The flip-flop is the circuit equivalent of the
toggle switch. It remembers.

The flip-flop circuit is shown symbolically in Figure 1. The two outputs are always
in opposite states. That is, if one output is at -3 volts, the other is at ground and
vice versa. To see this, connect the two flip-flop outputs to indicator lights. One will
be on while the other is off.

1

2

GATED
INPUTS

DIRECT -----.
INPUT

OUTPUTS FF

DIRECT INPUT __ __.

GATED
INPUTS

Figure 1 Symbolic Representation of a Flip-Flop

To change the state of the flip-flop, connect a push-button pulser to each of the
direct inputs as shown in Figure 2. Notice that the flip-flop always remembers
which button was depressed last.

FF

PULSER

T

PULSER

T

NOTE on Pulser Connection: When con
necting a pulser output to a flip-flop or
other module, the ground pin next to the
pulser output should be connected to the
ground on the module being driven.

Figure 2 Changing the State of a Flip-Flop

Since the upper and lower halves of the flip-flop module are indistinguishable
(except for one extra gate on the lower side), it is convenient to name them. Because
a counter works with numbers, the labels ONE and ZERO seem appropriate. If the
upper half is labeled ONE, the upper output, direct input, and gated inputs may all
be designated as ONE terminals. Similarly, all inputs and outputs on the lower half
will be designated as ZERO terminals. This is shown in Figure 3 and may be marked
in the corner of the symbol for convenience.

Because of the complementary nature of the flip-flop outputs, the two indicator
lights are redundant. If the indicator is removed from the ZERO output terminal, the
state of both outputs is still specified by the ONE indicator. When the ONE indicator
is lit (and the ONE output is at ground), the flip-flop will be said to be in the ONE
state. When. the light is off (and the ONE output is at -3 volts), the state of the
flip-flop is ZERO.

To construct a counter of 0 to 63, label six flip-flops with ZEROs and ONEs as shown
in Figure 3. Remove all previous connections and tie each ONE output terminal to
an indicator.

GATED
SET

DIRECT
SET

ONE
OUTPUT

ZERO
OUTPUT

DIRECT
CLEAR

GATED
CLEAR

FF

0

Figure 3 Designations

Since the flip-flop comes up in a random state when the power is turned on, some
indicators will be lit, while others will not. To provide a clear signal, jumper all the
direct ZERO input terminals to the push-button pulser. The connections should
appear as in Figure 4. When the push button is activated, all the lights should go
off. If this does not happen, check your wiring.

To distinguish among the flip-flops, label them from right to left according to the
weights used in the binary number system and the labels in Figure 4.

3

4

Jumper the gates of the right-hand flip-flop to the dial through a pulser as shown
in Figure 5. Use the dial terminals marked "out to pulser."

The two gate terminals with arrowheads connect to the dial pulser. The two without
arrowheads are grounded. Test the wiring by dialing 1. This should change the state
of flip-flop 1.

Connect the next flip-flop as shown in Figure 6.

FF FF FF FF FF FF

0 0 0 0 0 0

PULSER

T
Figure 4 Clearing the Counter

32 16 8 4 2

FF FF FF FF FF FF

0 0 0 0 0 0

PULSER PULSER

!CLEAR DIAL

Figure 5 Connecting Dial to Flip-Flop 1

.

~·
t r

t
L
f r
" r

If .. •·
f
f
f

I

32 16 8 4 2

FF FF FF FF FF FF

0 0 0 0 0 ~----10

PULSER

TcLEAR

Figure 6 Connecting Stage 2 of the Counter

Test your wiring by clearing the counter, which should turn off all the indicators,
then dialing 2, which should light the second indicator lamp only. As you turn the
dial, the first indicator light will blink, showing that you passed through the number 1
in going to the number 2.

Figure 7 shows the complete counter circuit. Wire in stage number 4 and test it
by clearing and dialing 4. Continue this procedure with stages 8, 16, and 32. Test
them by dialing 8, by dialing 8 twice, and by dialing 8 four times. When the wiring
is correct, the counter is complete.

The counter accepts inputs from the dial, and the indicators display the accumulated
total. Since the dial is coded in decimal while the counter and indicators are in
binary, the cfrcuit also performs decimal to binary conversion.

PULSER

DIAL

5

0

0

0

0

0

0

·Figure 7 Binary Counter

6

0:::
w
(/)
....I
::J
a.

0:::
w
(/)
....I
::J
a.

t-z1
::J <(
o(.) e

0:::
<(
w

~

;.,·

1. What are the binary equivalents of the following numbers?

Decimal Binary Decimal Binary

5 23
10 37
12 42
17 59
19 61

2. What happens when you dial 64? 65? 66? What causes this?

PART 3 USE OF THE CLOCK

By replacing the dial input with a high frequency pulse source, you can observe the
continuous behavior of the counter. The pulse source is the clock circuit, located
near the push buttons. Remove the dial pulser from the counter input and replace
it w.ith the clock. Run a wire from the clock ground to the flip-flop ground as you
did with the pulser.

3. Observe the clock output on the oscilloscope and sketch the waveform.

NOTE: On oscilloscope settings. Since the circuits are extremely
fast, a low capacitance xlO probe should be used. All standard
logic kit signals are between ground and -3 volts, hence the gain
setting with the xlO probe should be 0.1 to 0.25 volts/inch or
0.05 to 0.1 volts/cm. The frequency of the clock will be between
200 kc and 2 me. To see several periods, the horizontal sweep
setting should be 50 kc to 500 kc, or 0.5 to 5 µsec/ inch or 0.25
µsec/cm. For good resolution of a single p-ulse, the horizontal
sweep should be approximately 5 me or 50 µsec/inch or 25 µsec/cm.
The synchronization selector may be set on + INTERNAL.

4. Adjust the clock pulses to a frequency of 2 me, then observe the ONE output of
flip-flop 1. Sketch the waveform. What is the frequency? Why is the waveform
symmetrical?

5. Observe the ONE outputs of flip-flops 2, 4, 8, 16, and 32. What is the frequency
of each?

6. If an additional stage were added to the counter, what would the frequency of
its output be?

7. A counter is often called a scaler. Explain why this name is applicable.

PART 4 NEGATIVE NUMBERS

Move the indicator connections from the ONE sides of the flip-flops to the ZERO
sides so that the clear button lights all the indicators. In unsigned binary, this number
is 63. In l's complement, it is interpreted as -0. In 2's complement, it is
interpreted as -1.

Dial 5. The lights read 111010. In unsigned binary, this is 58. In l's complement,
it reads -5. In 2's complement, it translates as --6. Simply by moving the indicator
wires, the counter has been changed into a down counter.

7

8

8. Dial the following numbers and record the outputs. What is the decimal equiva
lent of the results as interpreted in each of the three conventions?

Equivalent Decimal if the convention is:
Number

Output Dialed Unsigned l's 2's
Binary Complement Complement

Clear 111111 64 -0 -1
1
4
7
8

10
14
32

PART 5 SPECIAL PROBLEMS

9. What do the indicators, the toggle switches, the push buttons, and the computer
elements all have in common?

10. What is the difference between the push button and the toggle switch? Which
does the flip-flop resemble?

11. The binary number system is not the only method of coding 2-state devices to
represent decimal numbers. A single 2-state element, such as an indicator, can be
coded in two ways to represent the numbers 0 and 1, that is:

State of Indicator Codes

off 0 1
on 1 0

(a) With two indicators, there are four possible states. How many different
ways can these be coded to represent the numbers 0, 1, 2, and 3? Complete
the table below:

States Codes

off off
off on
on off
on on

0 0 0 0 0 0 1 1 1 1
1 1 2 2 3 3 0 0 2
2 3 1 3 1 2 2 3
3 2 3 1 2 1 3

There are 24 ways in which these two devices can be coded. In' statistics
this is expressed by saying that the combinations and permutations of four
things, taken four at a time, is 4! = 24. You can visualize this as follows:
The off-off state can correspond to any of the four numbers. For each of these
four, there are three remaining numbers which can be assigned to the off-on
state. This gives 4 x 3 = 12 possibilities. For each of the twelve possibilities,
there are two remaining numbers which can be assigned to the on-off state.
This yields 12 x 2 = 24 possibilities. For each of the 24 possibilities, there
is one remaining number which can be assigned to the on-on state. The
total number of codes is, then, 4 x 3 x 2 x 1 = 24.

For three indicators, there would be eight states. The total number of
possible codes would be 8! = 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1.

(b) How many states are there for four indicators? How many possible codes?

(c) With this many choices, it would not be practical to try all. It is best
to select a code convention where the representation for each number is
determined by a fixed set of rules. List the code conventions you have studied
so far.

(d) List the rules for determining the code for a particular number in the
binary system.

(e) What are the advantages of the binary number system?

12. Two state devices occur frequently. Consider the problem of tossing a coin.
It can come up either heads or tails. If the coin is tossed twice, what is the
probability that one toss will come up heads and one will come up tails? Bear in
mind that the four possible outcomes are:

tails-ta i Is
tails-heads
heads-tails
heads-heads.

(a) If the coin is tossed three times, how often will the sequence "heads
heads-tails" occur in that order?

(b) How many times will heads come up twice and tails come up once?

13. Computers are frequently used for sorting and alphabetizing. A manual card
sorter can be constructed with index cards, a hole-punch, scissors and a pencil.
Number the cards, and punch a row of holes near one edge. Then design a system
for coding the cards with the scissors. Without looking at the numbers written on
the cards, how could you use the pencil or a toothpick, to select card number 7?

(a) Card number 5?

(b) All even cards?

(c) Could you develop a similar coding system for letters of the alphabet?

(d) What practical uses might such a system have?

9

10

EXPERIMENT II

BINARY CODED DECIMAL

PART 1 CODES

In a binary coded decimal system, every decimal digit is coded separately. For
example, the number 514 is represented by a code for 5, followed by a code for 1,
followed by a code for 4. Because this type of coding system is particularly easy to
convert to decimal, it is used in computers which must frequently read and write
decimal numbers.

Figure 1 shows two examples of binary coded decimal (BCD) which will be studied
in this experiment.

Decimal 8 4 2 1 Excess 3

0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 0 0
6 0 1 1 0 1 0 0 1
7 0 1 1 1 1 0 1 0
8 1 0 0 0 1 0 1 1
9 1 0 0 1 1 1 0 0

Figure 1 8421 and Excess 3 Codes

The 8 4 2 1 code uses the same representations as the binary number system. The
name of the code is derived from the weights (or positional values) of the bits. That
is, the decimal equivalent of a number can be determined by adding the weighfa
of those positions in which a ONE occurs. The operations of counting, adding, and
multiplying are similar to binary except that the states representing the numbers 10
through 15 are not used. Subtraction, however, is more difficult.

In the Excess 3 (XS3) code, a decimal number D is represented by the binary
equivalent of the number D plus 3. The Excess 3 code is not weighted; but, since it
follows the same number sequence as binary, it is useful in arithmetic operations.
It is more useful for subtraction than the 8421 code since the 9's complement of
any digit can be obtained simply by complementing each bit.

PART 2 AN 8421 CODE COUNTER

The complete diagram for the 8421 code counter is shown in Figure 1. Label four
flip-flops according to the weights, 8421. Jumper the ONE output terminal of each
flip-flop to an indicator light. To provide a clear signal, connect the push-button
pulser to all the ZERO input terminals. Connect a ground wire. Check that the push
button clears all of the flip-flops.

Complete all of the wiring, then test it according to the test table below:

Test Table

Number Dialed Indicators

clear 0 0 0 0
1 0 0 0 1
2 0 0 1 0
4 0 1 0 0
8 1 0 0 0

1. What is the 8421 code representation for the number 5? For 7? For 9?

2. What happens when you dial 10, 11, 12, 13, 14, or 15?

3. Is the state 1111 ever used?

4. Replace the dial input with a clock signal. Referring to the notes on "use of the
clock" in Experiment I, adjust the clock pulses to a frequency of 2 me. Observe the
ONE output of flip-flop 1 and sketch the waveform. What is the frequency? Why is
the waveform symmetrical?

8 4

FF

PULSER

lcLEAR

FF FF

Figure 2 8421 Counter

FF

PULSER

COUNT
(DIAL)

5. Observe and sketch the ONE output of flip-flop 8. What is the frequency? Why
is the waveform not symmetrical?

6. What result would you anticipate if you moved all the indicator connections from
the ONE to the ZERO side of the flip-flop as in Experiment I? Could the result be
interpreted as a down-counter in 8421 code? Why or why not?

7. After answering question 6, try moving the indicator connections. Use the dial
as the input and record the results.

=

11

12

PART 3 EXCESS 3 CODE COUNTER

Figure 3 shows an up counter using the Excess 3 code. Construct the circuit and
testthe wiring using the following conditions:

Test Table

Dial Indicators

clear 0 0 1 1
1 0 1 0 0
2 0 1 0 1
3 0 1 1 0
5 1 0 0 0

=

FF FF FF FF

0 0

=

PULSER PULSER

TcLEAR

Figure 3 Excess 3 Code Counter

8. Why does the clear signal light two of the indicators?

9. How are the numbers 0 through 9 represented in this code? Check the codes
by clearing, then dialing the selected number.

10. Dial 9, then dial 1. Explain the action of the circuit when this tenth pulse is
sent into the counter.

(a) What happens when you dial a series of numbers where the sum is greater
than ten?

COUNT
(DIAL) =

i
1
! .,
I
1

PULSER

Tc LEAR

11. If you moved the indicator wires from the ONE terminal of the flip-flops to the
0 terminal, what would happen? Test the circuit and find out.

PART 4 A WEIGHTED, SELF-COMPLEMENTING CODE

Figure 4 shows an up counter for another common code. Construct the counter and
test it according to the test table below:

Test Table

Dial Indicators

clear 0 0 0 0
1 0 0 0 1
2 0 0 1 0
4 0 1 0 0
6 1 1 0 0

12. What are the code representations of the ten decimal digits? Does this code
group follow the same sequence as the binary number system?

13. It is possible to assign weights to each of the binary bits. What are these weights?

FF FF FF FF

0 1---iQ t----lQ

Figure 4 Counter for a Weighted Self-Complementing Code

PULSER

COUNT
(DIAL)

13

14

14. If you change the indicator wires from the ONE terminal to the ZERO terminal
on the flip-flops, will you obtain a down counter which operates on the same code
group? Why or why not?

15. Test your answer to question 14 and record the results.

16. How many different codes are possible when four binary bits are used to
represent the ten decimal digits? Hint- There are 16 possible states which can be
used to represent the first digit. For each of these 16, there are 15 states which can
be used to represent the second digit.

17. Make a code where the binary weights are 5311. How many different code
groups can you make this way?

EXPERIMENT Ill

BASIC DIGITAL CIRCUITS-GATES

PART 1 THE POSITIVE NOR GATE

This basic circuit element in the Logic Laboratory is the simple diode gate shown
in Figure 1. Most of the other circuits in the Logic Laboratory can be constructed
with minor variations on this circuit.

Logically, the diode gate is equivalent to the push button. It follows. However, the
diode gate follows in such a manner that it performs many useful functions. It
combines, amplifies, inverts, and standardizes the signals which represent various
logical functions.

INPUT

-15 VOLTS

-3 VOLTS

-15 VOLTS

CLAMP
DIODE

NODE TRANSISTOR
BIAS
RESISTOR

+10 VOLTS

Figure 1 Single-Input Diode Gate

From the schematic of Figure 1, you can learn the operation of the diode gate.
When the input is negative, the node is also negative and current flows from the
transistor emitter through the biasing diodes and the input bias resistor to -15
volts. As a result, the PNP transistor is turned on forming a short circuit between
the collector and the emitter. Thus, when the input is negative, the output is at
ground. Since the output is from a saturated transistor, it has a low output impedance
and good driving power.

When the input is at ground, the biasing diodes and the transistor bias resistor hold
the transistor base more positive than the emitter, and the transistor is turned off.
The transistor then acts as an open circuit and the output voltage is determined by
the load resistor and clamp diode. These serve as a voltage source, holding the output
at -3 volts.

The single-input diode gate therefore serves three functions. It inverts the input
signal. It standardizes the output voltage to ground or -3 volts. Since the output
current available from the transistor is much greater than the required input current,
the diode gate also amplifies.

A fourth function, gating, is obtained by adding more diode inputs to the node as
shown in Figure 2.

15

16

-15 VOLTS

-3 VOLTS

-15 VOLTS

INPUTS{ :
+10 VOLTS

NODE

Figure 2 Multiple-Input Diode Gate

The node will be at approximately the same voltage as the most positive input.
Thus, when any input terminal is grounded, the node is also at ground and the circuit
output is at -3 volts. If all of the inputs are negative, the node terminal will be
negative and the circuit output will be at ground.

This circuit is frequently called a positive NOR, which stands for positive-input,
negated OR. The name derives from the fact that, if A OR B OR C is positive, the out
put will be at the opposite voltage level, i.e., -3 volts. In the same manner, this
circuit is also called a negative NAND, for negative-input, negated AND. If A AND B
AND C are all negative, the output will be at ground.

PART 2 SYMBOLS

Although the basic diode gate can be used to construct very complex logical func
tions, a diagram that showed all the circuit components would be tedious to draw
and difficult to read. For this reason, the drawings employ a shorthand notation
which represents one or more components as a single functional unit. Referring to
Figure 3, the gating is shown as a semicircle with a single diode inside. The circle
at the output represents the inversion function.

{~
NVERSION

INPUT P OUTPUT
TERMINALS TERMINAL

GATE

Figure 3 Positive NOR Symbol

PART 3 THE NEGATIVE NOR- POSITIVE NANO

It is also useful to have a circuit which performs the same function on the opposite
voltage levels; that is, a negative NOR, positive NAND. In this circuit, if input A
OR B OR C is negative, the output will be at ground; if A AND BAND C are positive,
the output wi 11 be at -3 volts.

The Logic Laboratory circuit, which performs this function, is quite complex; how
ever, one can picture this gate by considering the circuit of Figure 2 with the input
diodes reversed and the input bias resistor returned to a positive, instead of a nega
tive, voltage. From this simple picture comes the logic symbol for the negative NOR.
It is the same as for the positive NOR, but the input diode is reversed. This symbol
is shown in Figure 4.

INPUT {
TER~NALS

OUTPUT
TERMINAL

*UNUSED INPUT TERMINALS
SHOULD BE GROUNDED

Figure 4 Negative NOR Symbol

PART 4 GATE USAGE

1. To study the operation of the diode gate, form a square wave signal from a clock
and a flip-flop and drive a diode gate as shown in Figure 5. Sketch the waveforms at
the diode gate input and output.

OUTPUT

FF

Figure 5 Diode Gate Driven by Square Wave

2. To make pulses to appear at the output only when a control switch is closed,
connect a toggle switch as shown in Figure 6. What happens when the toggle switch
is up? When it is down?

=

OUTPUT

FF

=
Figure 6 Gated Square Wave

17

18

3. Frequently it is necessary to send signals to more than one place. Wire in a
second gate as shown in Figure 7. What toggle switch settings will produce square

waves on the following lines? (Closed= 1)

Switches Outputs

Swl Sw2 L1 L2

0 0
0 I
I 0
I I

LINE 2

FF

LINE I

Figure 7 Pulse Distributor

The circuit of Figure 8 forms a decimal to binary converter. If the switches are
labelled 1-7, and only one switch is selected, then the output will correspond to the
binary representation of that number. For example, if switch 1, 3, 5, or 7 is closed,
the output of gate A (a positive NOR) will be a negative voltage. This is applied to a
negative NANO gate along with the square wave. When the square wave is,negative,
both inputs will be negative, and the output will go to ground. When the square wave
is at ground, the AND condition is no longer met, and the output will go negative.
Thus the output will be a square wave which is 180 degrees out of phase with the
flip-flop.

7 6 5 4 3 2 =

GATE A

LINE I

LINE 4

POSITIVE NORS NEGATIVE NANDS

FF

=

Figure 8 Decimal to Binary Converter

4. What are the conditions for generating an output on Line 2? On line 4?

5. Construct the circuit and observe the operation of the circuit as a decimal to
binary converter and as a general decoding network. On which lines would the out
put appear if the following combinations of switches are closed?

Switches Outputs

1 and 5
1 and 6
2 and 4
5 and 6
4, 5, and 6
3 and 7

(a) Extend this circuit to include conversion of the number 8.

19

20

6. Design and test a circuit which will gate through the square wave only if both
switches 1 and 2 are closed. (Hint: use a positive NANO and a negative NANO.)

7. Design and test a circuit that will gate through a square wave according to the
following:

(a) Line 1, if Swl or Sw2 is closed.
Line 2, if Sw2 is closed.

(b) Line 1, if any odd numbered switch is closed.
Line 2, if Sw2 or Sw7 is closed.
Line 3, if Sw2 and Sw7 are both closed.

(c) Line 1, if push button is depressed and either Swl or Sw2 is closed.

PART 5 LOADING CONSIDERATIONS

The output of the diode gate circuit is either held at ground by the saturated transistor
or is held at -3 volts by the clamp diode and load resistor. However, if too much
current is drawn from the output, either the transistor or the clamp diode will come
out of saturation and the voltage levels will deteriorate. In this case, the signals will
no longer be proper for driving other units. Thus, it is important that the circuits
never be overloaded.

The input current required for correct circuit operation is called the "load" presented
by that circuit. The current which an output can supply is called the driving ability of
the circuit. When two output terminals are connected, one output may also present
a load to the other. A table of the loads and load driving abilities of some of the
modules is shown below.

Terminal Load
Driving
Ability

Inputs
Diode Gate 1 ma
Indicator 1 ma
Special Load (above pulser) 10 ma

Outputs
Diode Gate 2 ma 18 ma
Pulser 2 ma 18 ma
Flip-Flop (upper side) 7 ma 13 ma
Flip-Flop (lower side) 9 ma 11 ma
Clock 3 ma 70 ma

The load driving ability listed in the table always refers to external loads. For example,
the clock module is capable of driving 70 ma of external load in addition to its own
internal load of 3 ma.

At any given time, the actual load driving ability of the majority of circuits will greatly
exceed the rating. However, the engineer should always design his circuits to be
within the rated loading for the following reasons:

1. Circuits should be interchangeable in the design. The loading restrictions
provide a minimum standard which all circuits meet. If the designer ex
ceeded this minimum, he would have to test his circuits to select the best

8.

ones-a rather tedious process. Similarly, if a circuit were damaged, the
service personnel would have to perform special tests.

2. Driving ability will change with time and with the conditions under which
the circuit is used; therefore, a margin of tolerance must be allowed. Age,
amount of use, amount of power dissipated, temperature, humidity, and
changes in the power supply voltages will all change the circuit charac
teristics.

Calculate the loading in each of the following cases:

(a) On the flip-flop in Figure 5.

(b) On switch 1 in Figure 7.

(c) On the flip-flop in Figure 7.

(d) On switch 1 in Figure 8.

(e) On switch 7 in Figure 8.

(f) On the flip-flop in Figure 8.

PART 6 GROUNDING

Like loading considerations, grounding is not a part of the logical operation of a
circuit, but it is an important consideration in the actual construction of a circuit.
In the Logic Laboratory all circuits are grounded through the power supply. However,
for signals requiring a sharp transition this is a long path. A separate ground return
should be run between the two modules if the distance is long. The rule is:

Use a separate ground return with a

pulser output

clock output, or

if the wire must travel

inputs with a -7 symbol

between two mounting panels or

across a mounting panel.

21

22

EXPERIMENT ~V

FliP .. flOPS AND DCD GATES

PART 1 THE FLIP-FLOP

The flip-flop is the logic circuit which stores information. It can be constructed very
simply by cross coupling two diode gates, as shown in Figure 1. If one of the outputs
is at ground, it holds the other output negative. This in turn holds the first output
at ground.

DIRECT
SET
ONE

OUTPUT

ZERO
OUTPUT
DIRECT
CLEAR

Figure 1 The Flip-Flop

Thus, the flip-flop holds itself in one of two stable states, depending on which out
put is at ground.

The state of a flip-flop may be changed by grounding one of the output terminals as
shown in Figure 2. It may also be changed by grounding one of the other diode gate
inputs, called direct inputs. This is shown in Figure 3.

1. Construct a flip-flop as shown in Figure 4. Connect a push button to the direct
clear terminal and the dial to the direct set terminal. What happens when the button
is pushed? When the dial is turned?

PULSER

T

Figure 2
Clearing a Flip-Flop
Through the Output

PULSER

T

Figure 3
Clearing a Flip-Flop

Through Direct Inputs

PULSER

DIAL

PULSER

T
Figure 4 A Flip-Flop with Set and Clear Inputs

Information can also be gated into a flip-flop as shown in Figure 5. Here the flip-flop
is set to the ONE state only if the switch is closed when the button is depressed. The
toggle switch tells if an action is to take place, and the button tells when the action
is to take place. There would be no point in connecting the switch to the flip-flop
without the button, as the flip-flop would always go to the ONE state whenever the
switch was in the ONE state.

These two elements,

IF a readin is to take place

AND

WHEN the action is to take place
must always be present. In the first example, both elements were present in the
same signal. IF the dial was turned, the flip-flop was set IMMEDIATELY. In Figure 5,
the switch provided the condition and the button provided the timing.

PULSER

T

POSITIVE
NAND
GATE REINVERT

Figure 5 Gating Information into a Flip-Flop

23

24

PART 2 DIODE-CAPACITOR-DIODE GATES

In the Logic Laboratory, flip-flop readins normally use a diode-capacitor-diode (DCD)
gate. This gate is shown schematically and symbolically in Figure 6. If the level
input is held at ground and the pulse input is held at -3 volts, the capacitor will
become charged after the setup time has passed. If the pulse input then suddenly
goes to ground, a positive going pulse will appear at the output.

The DCD gate forms a 2-input, positive AND gate. A pulse output appears only when
the level input AND the pulse input have received the correct signals. Thus, it may
be used to gate information into the flip-flop as illustrated in Figures 7 and 8.

PULSE
INPUT

LEVEL
INPUT OUTPUT

-15 VOLTS

PULSE
INPUT =t»-
LEVEL OUTPUT
INPUT

Figure 6 DCD Gate

PULSER
PULSER

FF
FF FF

Figure 7 Reading a Toggle Into a FF Figure 8 Reading a FF Into a FF

The DCD gate has two other special features which are not a part of a normal AND
gate. Because the level input drives an RC circuit with a long time constant, a change
in the level input will not begin to affect the circuit until about 100 nsec after the
change occurred. Thus, the input has a short delay. A change in the pulse input, on
the other hand, produces immediately a short pulse of about 50nsec duration.

~.
·l

Thus, a DCD gate produces an output pulse

WHEN a positive going level change occurs at the pulse input

AND

IF the level input was previously at ground.

These features are useful in swapping information between two (or more) flip-flops,
as illustrated in Figure 9. If flip-flop A initially contains a ZERO and flip-flop B ini
tially contains a ONE, a pulse input will interchange the contents of the two flip-flops.
The delay and differentiation features of the DCD gates assure that the interchange
will occur reliably.

PULSE
INPUT--.---+------~

FFA

0

FFB

0

Figure 9 Swapping Information Between Two Flip-Flops

These techniques may be extended to many flip-flops. The result is called a ring
counter, because the information will circulate among the entire set. Figure 10 shows
the complete circuit for a 6-bit ring counter. The preset line puts the flip-flops in the
initial 100000 state. Each shift pulse will then shift the contents of the flip-flops
by one position.

2. Make a table showing how the contents of the flip-flops will change with each
shift pulse. Construct the circuit and record the results. Do they agree with your
theory?

3. The circuit in Figure 10 is called a ring counter because of the way the flip-flops
are connected in a loop. A variation, called the switched tail ring counter, reverses
the connection from flip-flop F to flip-flop A. That is, the level gate input of the
ZERO side of flip-flop A is driven from the ONE output of flip-flop F, and the level
gate input on the ONE side of flip-flop A is driven from the ZERO output of flip-flop F.
If the switched tail ring counter is initially preset to 100000, what sequence of num
bers would you expect at the output? Test your predictions by changing the ring
counter to a switched tail ring counter and recording the results.

25

IJ...

lJ.J

0

u

<{

26

0

0

0

0

0

0

0::
lJ.J
Cf)
_J
::::>
CL

0::
lJ.J
Cf)
_J

::::>
CL

11

....
Q) ...,
c
:J
0
u
tl.O
c

a:::
."'::::'.
O'.l
<.b
c:(

0
,...;

Q)
:J
tl.O

Li:

I-
lJ.J
Cf)

lJ.J
0::
CL

~

PART 3 COUNTERS

Sometimes it is desirable to have the state of a flip-flop alternate each time the
input is pulsed. This can be done by connecting the flip-flop output terminals to the
level inputs, as shown in Figure 11.

FF

Figure 11 Complement Connection

Thus, if the flip-flop is in the ZERO state, only the ONE input gate is enabled and the
first input pulse will change the state of the flip-flop to ONE. This will enable the
ZERO input and the next pulse will change the flip-flop back to its original state.

Logically equivalent connections are built into the DCD gates in the Logic Labora
tory flip-flops. These use a third gate input as shown in Figure 12. For simplicity,
the feedback is not shown on the panel diagram, but it should be remembered be
cause it is a very powerful element of the flip-flop.

4. Understanding now how the flip-flop works, explain in your own words the
operation of the counter in Experiment I.

5. Design, build, and test a counter circuit which would operate if the internal feed
back. to the DCD gates was not built into the flip-flops.

PULSE
INPUT

LEVEL
INPUT OUTPUT

-15 VOLTS

Figure 12 DCD Gate with Feedback Input

27

28

PART 4 SPECIAL PROBLEMS

6. What is the function of a flip-flop?

7. What are the two types of information which must be present in order to change
the state of a flip-flop?

8. What are the three functions of a DCD gate?

9. Loading is important with flip-flops and DCD gates. Read the Loading Rules Sum
mary in the Appendix and calculate the load for the following:

(a) The ZERO output of flip-flop B in Figure 10.

(b) The ONE output of flip-flop B in Figure 10.

(c) The ZERO output of flip-flop 2 in Figure 7 of Experiment I.

10. Design a 2-bit counter that follows the sequence

00
01
10

then returns to 00. Hint: Use the level inputs on the DCD gates to route every third
input pulse so that the counter goes automatically from 10 to 00 instead of 11.

11. Using the same techniques as in problem 10, design, build, and test a circuit
that has only five states.

·.;

> ~ ..

EXPERIMENT V

FROM BOOLEAN EQUATIONS TO GAT~NG

NETWORKS

PART 1 REDUCTION TECHNIQUES

In your text you have studied Boolean equations and techniques for m1n1m1z1ng
Boolean expressions. In this experiment, you will apply these techniques to build
gating networks with a minimum number .of circuits.

You will begin with Boolean equations, or a truth table, and reduce this to a minimum
Boolean equation. You will then implement the equation with NANO and NOR cir
cuits and reduce the total number of circuits by using the interchangeable polarity
convention, DeMorgan's Law, and wired gates.

Going back to the circuit schematic for the Type Rl21 Diode Gate, you can easily
see how DeMorgan's Law works. Figure 1 shows a simple 2-input diode gate. If
either A OR B is held at ground, the node point will also go to ground and the ouput
will go negative. On the other hand, only if both A AND B are held negative will the
node point go negative and the output go to ground. Thus, the diode gate forms a
NOR circuit if the convention is that a ground signar·represents a ONE. But, the
same circuit forms a NAND gate if the convention is that negative signals represent

a ONE.

-15VOLTS

-3 VOLTS

-15 VOLTS

INPUT A

INPUT 8

NODE
+ 10 VOLTS

Figure 1 Diode Gate Schematic

In the workbook we will use both conventions. We will indicate which convention we
are using by means of diamonds. A hollow diamond ---<>means that ground volt
age represents a ONE, while a solid diamond----+will be used to indicate that a
negative voltage represents a ONE. For example, ~means that the voltage will
be at ground when A is a ONE, while ~ means that the voltage will be at
ground when A' is a ONE.

In this way, the convention may be changed at any point in the logic diagram. Thus,
the same diode gate may be used to form an AND or an OR circuit as well as a
NAND or a NOR circuit. Figure 2 shows how this cpnvention works.

29

30

The logical functions are also shown 1n tne corner OT me ::;y111uu1. 1111:> 1:> 11u• ""'"'"'"

sary, since the logic function can be derived from the hardware symbol and the dia
monds, but it will be used here to make the drawings easier to read.

~ ~
C= (A+B) 1 C=A+B

~
C= (AB) 1 C=AB

Figure 2 Logic Convention for R121

These same techniques can be applied to a Type R122 Diode Gate. It also can
form an AND gate, an OR gate, a NANO gate, or a NOR gate. Figure 3 shows the
logic convention.

~ ~ ~ ~
C=(A 8) 1 C= AB C=(A+B)' C=A+B

Figure 3 Logic Convention for R122

In some cases, the diode gates are not necessary at all. The logical function may be
performed simply by the tying together of the appropriate wires. If the input signals
already come from diode gates or pulsers, the additional diodes may frequently be
eliminated.

~
C=A+B

~
~~

C=(A+B)'

~
C=AB

Figure 4 Wired Gates

~
C=(AB)'

Figure 4 shows how such a wired gate would operate. Lines A and 8 come from diode
gate outputs. If either line is held at ground by a saturated transistor, the entire line
will be grounded. Only if neither A nor 8 is grounded will the line be allowed to go
negative. ,

Tying the lines together means that the signals A and 8 are no longer independent,
only the combined signal A + 8 or AB is available. Therefore, this technique cannot
be used if either A or B is required for some other activity. (As for example, if you
wish to light one indicator on the condition A + 8 and another on the condition A
only.) This technique also cannot be used with flip-flops since the action of the other
signals could force the state of the flip-flop.

To understand how the interchangeable polarity convention, DeMorgan's Law, and

wired gates simplify the implementations of a logical expression, consider the
expression

AB'+ A'B

This is a commonly used function, called the exclusive O~ and written as:

A EB B

Using only the convention that a positive voltage equals a ONE and the most straight
forward logic, the exclusive OR function requires eight gates. This circuit is shown in
Figure 5.

However, if the lines are labeled as shown in Figure 6, it becomes clear that many
of the gates which perform only inversion are not required. We may simply eliminate
gate 8. Also, gates 5 and 6 may be removed if we replace the positive OR gate (7)
with a negative OR gate. This produces the circuit of Figure 7, which requires only
five gates instead of eight.

A

B' AB'
A@B

B
A'B

A'

A B

Figure 5 A EB B, Single Polarity Convention

Figure 6 A EB B, with Interchangeable Polarity Convention

31

32

A

B' B' AB'

B A'B

A'

A'

A B

Figure 7 A EB B Simplified

Consider gates 1 and 2 which perform only inversions. To see if any of these can be
eliminated let us apply DeMorgan's Law to the original expression:

thus:

A EB B
(A EB B)'

AB'+ A'B
(A' + B)(A + 8')
A'A + A'S' + BA + BB'
A'S' +AB

A EB B = (A'S' + AB)'

and since our inputs are ground for a ONE and negative for a ZERO, the term AB can
be formed with a positive AND and the term A'B' can be formed with a negative AND.
This is shown in Figure 8.

A'

B'

B
AB

A

A B

Figure 8 A'B'; AB

These are of opposite polarities, so one must still be inverted before they can be
ORed together. However, one less gate is required for inversion than was used pre
viously. The total circuit is shown in Figure 9.

Now consider the possibility of using a wired gate. A physical gate must be used to
form the function AB since line A drives two inputs and must therefore be inde
pendent of line B. The same is true of the gate that forms A'B'. However, the lines
AB and A'B' do not need to be independent. A wired gate can be used to OR these
signals together, yielding the form of Figure 10. This is the simplest form, requiring
only three gates instead of the original eight.

A'
A' B'

B'
AB

B

A

A B

Figure 9 A EB B

Simplified with Interchangeable Polarity Convention and DeMorgan's Law

A'
A'B'

B'
AB

B

A

A B

Figure 10 A EB 8, Simplest Form

When more than one expression is to be implemented, the circuitry can be minimized
by forming common terms only once. For example, the following two expressions:

A EBB
(A EB B)C'

require only four gates. This is illustrated in Figure 11.

A'
A'B'

@B A®B

AB

A<ZlB A@B)C'

c'
A B c

Figure 11 Two Equations with a Common Term

33

34

PART 2 PROBLEMS

1. Draw a truth table for the circuit of Figure 12. Simplify the circuit and test it to
be sure that the same truth table is obtained. Record both truth tables.

OUTPUT

A B c

=

Figure 12 Gating Network

2. Implement the following equations. Reduce them to a minimum number of cir
cuits. Test them and record the truth table.

(a) C(AB' + A'B) + AB
(b) A EB (B EB C)
(c) A + A'BC
(d) C(AB' + A'B) + AB; A'B' + AB
(e) A EB B; (A EB B) + C

3. Implement the following truth table. Reduce it to a minimum number of circuits.
Write down your original and final expression and test your circuit.

A B c Function

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

4. Implement one of the gating networks which you designed for a homework prob
lem. Reduce it to a minimum number of circuits. Build it. Test it and record your
results.

EXPER~MENT V~

BOOLEAN EQUAT~ONS AND FL~P=FLOPS

PART 1 DUALITY

Just by changing definitions, a NOR gate can become a NANO, OR, or AND gate.
These same definition changes can be applied to any digital circuit element. YOU
define the state of the element in the manner most convenient to you-in the way
that minimizes the circuitry.

Consider the problem of lighting an indicator when either of two switches is in the
ONE state. Figure 1 shows how simple this circuit can be if we define the open
position as the ONE state. If we make the opposite definition, the circuit will require
an extra gate to light the indicator on the OR condition and still keep lines A and B
independent. Try it.

Figure 1 Lighting an Indicator

Clearly, changes in definition should not be made arbitrarily as they will only confuse
the person who must use your equipment. Thus, you would not want one switch to
be open for a ONE while another is closed for a ONE. And when such changes are
made, they should always be labeled in such a way that anyone who is reading your
drawing can tell what you are doing. In drawing the switches, we have shown each
switch in the position that corresponds to a logical ONE.

Definition changes are frequently used for flip-flops. So far we have considered the
flip-flop as a device with two outputs. Truly, there are only two outputs, but logically
we may consider them in four ways. These are

the output which is ground when the flip-flop holds a ONE,
the output which is negative when the flip-flop holds a ONE,
the output which is ground when the flip-flop holds a ZERO,
and
the output which is negative when the flip-flop holds a ZERO.

Figure 2 illustrates how these terminals are shown on a drawing.

35

36

A'

A

A
A'

<.>---r---l 0

A

Figure 2 Four Flip-Flop Outputs

These four logical outputs can make gating circuits much simpler. Consider the
exclusive OR circuit. When the input comes from switches, as in Figure 3, three
gates are required. Figure 4 shows the same circuit with the inputs being driven
by flip-flops. In this case the "negative" outputs are used and only two gates are
required.

8

A

A 8

Figure 3 Exclusive OR with Switch Inputs

A

0

8

0

Figure 4 Exclusive OR with Flip-Flop Inputs

1. In Experiment V you implemented Boolean expressions using switches for inputs.
Now, using flip-flops to provide the inputs, redesign the circuitry. With the four out
put notation, try to minimize the number of gates. Compare your new results with
those of Experiment V.

(a) C(AB' + A'B) + AB
(b) A EB (8 EB C)
(c) A + A' BC
(d) C(AB' + A'B) + AB; A'B' + AB
(e) A EB B; (A EB B) + C

2. Construct and test the circuits which you designed for problem 1. In order to test
the circuits, it is necessary to provide an input to the flip-flops. If you connect the
flip-flops in a counter configuration, with a pulser as the input, you can step through
each of the states quite easily. Figure 5 shows how the exclusive OR circuit would
be set up for a test.

3. Using the techniques described in questions 1 and 2, design, construct, and test
a binary-to-octal decoder. Use three flip-flops to hold the binary number and eight
lights to indicate the output. Make use of the four output terminal notation to keep
the number of gates to a minimum.

PART 2 TIMING CONSIDERATIONS

Because DCD gates have delay and flip-flops have memory, the state of a flip-flop
at any given time will depend on the state of the inputs at some previous time.
The time will be represented here as a function of t and will alwavs be enclosed in
parentheses, for example: (t + 1), (t), (tO), (tl), etc. The time may be written after
each variable as: A(tO) EB B(tO) or, after an entire function as A EB BI .

(tO)

PULSER

A

T

Test Table

8

A B A © B
0 1----..j

0 0
0 1
1 0
1 1

Figure 5 Exclusive OR Test Set Up

37

38

The need for a time representation may be seen from the simple ring counter circuit
shown in Figure 6. If the flip-flops are in any arbitrary state, specified as A(t), B(t),
C(t), D(t), E(t), and F(t), and if a pulse arrives one unit of time later, the flip-flop
states will be changed as specified in the following equations:

A(t+ 1) = F(t)
B(t + 1) = A(t)
C(t + 1) = B(t)

D(t + 1) = C(t)
E(t+ 1) = D(t)
F(t + 1) = E(t)

PART 3 INPUT EQUATIONS

The R201 flip-flop has five gates, two on the set side and three on the clear side.
Since these gates are preconditioned by the flip-flop itself, the final flip-flop state
depends on the previous state of the flip-flop itself, as well as the states of the inputs.

To write an equation for the state of a flip-flop, we must ask what conditions will
result in the flip-flop holding a ONE and what conditions will result in the flip-flop
holding a ZERO. There are two possibilities which will result in a ONE: if the flip
flop was in the ZERO state and it received a set input; or if it was a ONE and it did
not receive a clear signal. If neither of these conditions is true, the flip-flop will go
to, or remain in, the ZERO state. These conditions are expressed in the table below.

A(t) Set Rec. Clear Rec. A(t+ll

0 yes - 1
1 - no 1
0 no - 0
1 - yes 0

If the inputs are labeled as in Figure 7, we can write an equation for the state of
the flip-flop at time t + 1 as a function of the variables A, B, C, D, E, and F, at time t.
That is:

A(t + 1) =A' (B + D) + A(C + E + F) 'I
(t)

which will simplify to:

A(t + 1) = A'B + A'D + AC'E'F'I
(t)

From this equation, we may consid'er the special cases. For example, if only two
gates are used, as in Figure Sa, then

D=E=F=O
D'=E'=F'= 1

and the equation reduces to

A(t+ 1) =A'B +AC'/
(t)

f

'{:
~f

~·],

~l

f1.·•
" ~·~:~--

r):
,

r
' I'

0

w
0

0

0

u
0

CD
0

<[

0

Figure 6 A 6-Bit Ring Counter

O'.
w
U1
_J
::>
0...

O'.
w
U1
_J

::>
0...

f-~
lJ._ _J
- <[:r
UJ9

f
w
U1
w
a::

~

39

40

PULSES
AT UNIT
INTERVALS

0

FF
A

A(t +1l =A'(B+D)+A(C+E+Fl'l(t)

A(t +1l =A' B + A'D + AC'E'F'j (t}

Figure 7 Flip-Flop State

Ir, the case of a jam transfer input, as in Figure 8b, C = B' and

A(t + 1) = A'B + ABI = B(t)
(t)

Thus, flip-flop A is jammed to the value of B, independent of its own previous
contents.

In the case of a conditional complement input, Figure 8e, C = B and the equation
reduces to

A(t + 1) = A'B -+- AB'I = A(t) EB B(t),
(t)

the exclusive OR function. Figures 8a-8f show these and other special cases and the
equations to which they reduce.

The most commonly used input configurations are the jam transfer, the complement,
and a two-step process-an unconditional clear followed by a conditional set. How
ever, in some cases the input configuration is quite complex. It is in these cases that
the Boolean expressions are most valuable.

··~

.f..

·,
'

·~

PULSES
AT UNIT-....---t>r-

INTERVALS

A

0

A(t +I)= A(t) C'(t) + A'(t)B(t)

Figure 8a Set and Clear Gated Separately

PULSES AT _ __.,._
UNIT INTERVALS B

A

0

A(t +0= A(t) +A'(t)B(t)
=A(t)+B(t)

Figure 8c Set Input Only

PULSES AT
UNIT INTERVALS -..-----c>r-...

B

A

0

A (t +1l= A(t) 8 1(t) +A'(t)B (t)

= A(tl® B(t)

Figure Be Conditional Complement

PULSES
AT UNIT ------r,_

INTERVALS

A

0

A(t+1)= B(t)

Figure 8b Jam Transfer

A

0

PULSES AT ----u.~
UNIT INTERVALS C

A(t +1l=A(t)C 1(t)

Figure 8d Clear Input Only

PULSES AT
UNIT INTERVALS -~---1:i.-

A

0

=
A(t+tl=A'(t)

Figure Bf Complement

41

42

Figure 9 shows a typical cirnuit where most inputs are the simple jam transfer type,
but the input to the one flip-flop is a complex function.

This circuit is a maximal length, pseudo random number generator. In other words,
it uses 15 of the 16 possible states, but its output is gibberish when interpreted in
the binary number system. Such circuits are frequently used in studying random
events. Although the output looks random, the circuitry can be reproduced at any
time and the exact same sequence of "pseudo random" events will be repeated.

The equations for this circuit are:

A(t + 1) = C(t) EB D(t) + A'(t)B'(t)C'(t)D'(t)
B(t + 1) = A(t)
C(t + 1) = B(t)
D(t + 1) = C(t)

4. Construct the maximal length, pseudo random number generator and test it. No
matter what state the flip-flops are in, this circuit will generate a repetitive pattern
of 15 states.

(a) From the equations, determine what this pattern is.
(b) Test the circuit to determine the pattern.

5. Construct and test circuits which operate according to the following equations.
Try to minimize the amount of circuitry involved.

(a) A(t + 1) = B EB C EB D + AB'CD'\
(t)

B(t+ 1) =Al
(t)

C(t+ 1) =Bl
(t)

D(t+ 1) =Cl
(t)

(b) A(t+ 1) = D'\
(t)

B(t+ 1) =A+ B'C'DI
(t)

C(t+ 1) =Bl
(t)

D(t+ 1) =Cl
(t)

PART 4 PULSE INPUTS

In some cases, information is also carried in the pulses. These signals may be treated
just as level gate inputs, except that the pulse often carries more information. If the
pulse input comes from a flip-flop output, for example, it tells the state of the flip
flop output at time t and at time t + 1.

A typical example of this is the counter circuit shown in Figure 10. The input to flip
flop F is from the pulser, so the equation may be written simply as

F(t + 1) = F'(t).

A positive going transition at the ZERO output of flip-flop F tells that F'(t+ l)F(t) = 1.
When this drives the two inputs to flip-flop E, the equation for flip-flop E is

E(t + 1) = E(t) EB [F'(t + 1) F(t)].

6. Write the equations of flip-flops A, B, C, and D in the counter.

7. Using these techniques and those described in Parts 3 and 4 of Experiment IV,
design and build a counter which has nine states.


~~~~i¥ffe:~"~~;~~4li~~~~,~~~~~(~11$lllt+~;~~Mitt:~~~ 

_.,. 
w 

PULSER 

T 

A 

0 

8 c 

0 0 

A(t+1) = C(t)E)D(t)+A'(t)B'(t)C'(t)D'(t) 

B(t+1)=A(t) 

C(t+1)=B(t) 

D(t+1) = C(t) 

D 

0 

Figure 9 Maximal Length, Pseudo Random Number Generator 

(C©Dl' 

C@D+ 
s'c'o' 



-I'> 
-I'> 

32 

= 

PULSER 

TcLEAR 

0 

FF 
A 

16 

i----~o 

FF 
B 

8 

t--------1 0 

FF 
c 

4 

t-------! 0 

= 

Figure 10 Binary Counter 

~'*1li@;wtM&nfMm#:fu1~&ak¥Mri&j;l.~4:41.1M.;..4iffe'M&Wum;:z.:.¥fitAW?~Rh ... 54+.¢a:.w¥I!Wmif.5'$%cih.Gffi§4¥?·4*'fli !ff %ac%WiiJ$U!*lP"z:m's.,~a :en-.. * 

FF 
D 

2 

t-------10 

FF 
E 

t------iO 

= 

= 

FF 
F 

PULSER 

COUNT 
(DIAL) 



EXPERIMENT VU 

ADDITiON 

PART 1 TECHNIQUES OF ADDITION 

Using simple 2-state elements and manipulating them with Boolean algebra, we 
may perform sophisticated operations such as addition. How? By representing the 
numbers in the binary system and adding them in a manner similar to that used 
with decimal numbers. That is: 

0 plus 0 = 0 
0 plus 1 1 
1 plus 0 = 1 

and since there is no binary symbol for 2, 

1 plus 1 = 0 with 1 to carry. 

Because there may be a carry of 1 from any bit to the next, the addition rules must 
also provide for a carry input. 

1 plus 0 plus 0 = 1 
1 plus 0 plus 1 = 0 with 1 to carry 
1 plus 1 plus 0 = 0 with 1 to carry 
1 plus 1 plus 1 = 1 with 1 to carry. 

Since the sum of two binary bits plus a carry never produces a carry greater than 1, 
we have considered all the cases. A truth table, as below, expresses all the conditions 
very concisely. 

Inputs Outputs 

Carry A B Sum Carry 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

I 

From this truth table we can write the following equations: 

S = C'A'B + C'AB' + CA'B' +CAB 
C(out) = C'AB + CA'B + CAB' + CAB 

representing the addition process for a single pair of binary bits. 

45 



46 

Since complete numbers contain many binary bits, the addition equations must be 
applied to each pair. This may be done by loading the augend and addend into two 
registers and shifting the numbers serially through the adder logic. Or, the adder 
logic may be repeated for each pair of binary bits, so that the complete numbers 
are added in parallel. The choice of whether to build a serial adder or a parallel 
adder depends on the required speed, the available equipment (or funds), and the 
format of the inputs and outputs. Serial addition is the less expensive technique, 
since only one adder circuit is required. Parallel addition normally is faster. However, 
if the numbers arrive or are sent out in a serial fashion, serial addition can be per
formed equally fast. 

PART 2 SERIAL ADDERS 

Serial addition requires two shift registers (to hold the augend and addend) and an 
adder circuit, as illustrated in Figure 1. It is not necessary to have a separate register 
for the sum. As each pair of bits are added together, they may be discarded and one 
of the flip-flops may be used to store the resultant sum bit. Since the carry must be 
stored between shift pulses, one extra flip-flop is added for that purpose. 

AUGEND (A)+ SUM (S) 

ADDER 

ADDEND (B) 

Figure 1 Block Diagram of a Serial Adder 

CARRY 
(C) 

Figure 2 shows the sequence of events which takes place in a 4-bit serial adder. 
A is the augend, B is the addend, C is the carry, and S is the sum. A3, B3, and S3 are 
the least significant bits of the augend, addend, and sum respectively. C3 is a carry 
that is generated by adding A3 and B3. 

2 3 4 

ADDER 

9 
6 7 8 

Time Action 
Flip-Flops 

1 2 3 4 5 6 7 8 9 

0 CLEAR 0 0 0 0 0 0 0 0 0 
1 READ AO Al A2 A3 BO Bl 82 B3 0 
2 SHIFT S3 AO Al A2 - BO Bl 82 C3 
3 SHIFT S2 S3 AO Al - - BO Bl C2 
4 SHIFT Sl S2 S3 AO - - - BO Cl 
5 SHIFT so Sl S2 S3 - - - - co 

Figure 2 Contents of Flip-Flops 



•,'· 

\c 

~ '·. 

,, 
, I; 

~·. 

Figure 3 shows the logic of the adder and carry circuits. The sum is generated exactly 
as shown in the equation of Part 1. The carry logic is simplified somewhat to take 
advantage of the fact that the carry flip-flop always remains the same except when 
A AND B are both ZERO, or when A AND B are both ONE. 

PULSES c' 
A 

A' 
B 

B 

c' 

A 

B' 

CARRY c 

0 
A' 

B' 

B' c 
A 

A' 
B 

Figure 3 Adder Logic 

Figure 4 shows a complete adder with inputs from the toggle switches, and three 
push buttons which "clear" the adder, "read" in the numbers from the toggle 
switches, and "shift" and add. The modules are separated with dotted lines, and 
the location is shown with an alphanumeric symbol. A indicates the top logic rack; 
B, the next lower rack. The individual positions are numbered 0-9 from the left. 

1. How many shift pulses are required to complete an addition? 

2. What is the sequence of operations which must be performed for a complete 
addition? 

3. If register A contains the number 0101 and register B contains the number 01).1, 
what numbers will register A and the carry flip-flop contain at the end of each step 
in the addition? 

4. If the number A is 0010 and the number B is 1010, what will register A and the 
carry flip-flo~s contain at the completion of each step? 

5. Construct the counter as illustrated in Figure 4. To make wiring easier, cross off 
each wire on the diagram as you put it in. From your answers to questions 3 and 4, 
construct a test table and check the wiring. 

47 



.p. 
OJ 

PULSE Fl" 

REAill 

o-J 
SHIFT! 

Al 

FF 
I 

REGISTER A 

FF 
4 

T-----,~-

1 I 

I I 
I 

I 

I 
I 

1-~ 

-1- - -1- - - - t- - - - -t - - - - -+-
Bl 82 83 84 I ~-r---

1 86 

I 
I 
I 

A 

B 

I 
I 
I 

FF 
9 

---,-
1 

. I ~ 
A' 

B 

l_L__ ____ _J 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I L::f}J I L::f}J I L::f}J I I ~ I ~ I 
'-------T"-----.--' L __ _l ____ I ____ L ____ L ____ _J _____ J 

CLEAR! 

REGISTER B 

-~~~~~~l~l~!rt~~~-~~&'°CW~Mmr..m!'-"'~".,_~-- ... ~.---~--~---~·----



~:.·-

y-

6. What are the sums of the following numbers? 

(a) 3 plus 3 
(b) 9 plus 5 

(c) 7 plus 2 
(d) 9 plus 8 

7. Add the following numbers and draw a diagram showing the contents of register A 
and the carry flip-flop at each step during the addition process. 

(a) 7 plus 3 
(b) 7 plus 12 

PART 3 A SERIAL BINARY SUBTRACTOR 

Binary su.btraction may be performed in a manner quite similar to binary addition. 
The possible cases are: 

0-0=0 
0 - 1 = 1 with 1 to borrow 
1-0=1 
1- 1=0 

and with a borrow input (-1): 

-1+0-0=1 with 1 to borrow 
-1+0-1=0 with 1 to borrow 
-1+1-0=0 
-1+1-l=l with 1 to borrow 

Since the borrow out never exceeds 1, these equations cover all the conditions for 
the subtraction of one bit from another. 

8. From the subtraction equations, construct a truth table showing the borrow in, 
minuend, subtrahend, difference, and borrow out. Use the same format as in the 
adder truth table and note the similarity between the sum and the difference. 

9. Write equations for the difference and the borrow out. 

1 O. Modify the adder circuit to form a binary subtractor. Store the minuend in 
register A and the subtrahend in register B. Use the carry flip-flop to store the borrow. 

11. Prepare a table, similar to that of Figure 2, showing the contents of the indi
vidual flip-flops at each step. 

12. Prepare a test table by calculating the sequence of events for the subtractions 
below. Then test your design by performing the subtractions and recording the results. 

(a) 9 minus 5 
(b) 8 minus 2 

49 



50 

EXPER~MENT vu~ 

PARALLEL ADD~T~ON AND SUBTRACT~ON 

PART 1 THE TWO-STEP PARALLEL ADDER 

Parallel logic allows high speed addition of long binary numbers. The parallel addi
tion process requires only a small number of steps regardless of the size of the 
augend and addend. 

However, the basic logic is repeated so many times in a parallel adder that it is 
extremely important to minimize the circuitry used in each individual adder. For 
this reason, a compromise technique is frequently used-the addition is performed 
in two steps. The first step, half add, forms the exclusive OR of the augend and 
addend, while the second step produces and adds in all of the carries. 

Figure 1 shows a diagram of a single pair of bits in a 2-step adder. The augend bit 
is in flip-flop A and the addend bit is in the toggle switch. The addition equations 
below the diagram have been rewritten to show how this logic operates. 

A(tO) s A 

A(tl)" A(tO)@ BzA@B 
A(t2),. A(tl )@C sA@ B@ C 

B' 
A©B 

B(tO)" B 
B(t I) aB 
B(t2) EB 

A 

----~--H_A_LF ADD (t I) 

C(ouf) (tO)" NOT DEFINED 
C(out) (ti)• [<A@B)' B'+!A@BlC]' 
C(out) (t2)11 NOT DEFINED 

Figure 1 A Two-Step Adder Stage 



Figure 2 shows a complete 4-bit adder using the toggle switches as an input. The 
steps involved in adding X plus Y are the following: 

1. Clear the flip-flop register 
2. Set X into switches 
3. Half add 
4. Set Y into switches 
5. Half add 
6. Carry 

The first three steps set the flip-flop register to the number X. The next three steps 
add the number Y to the register. 

The flip-flop register may also accumulate the sum of many numbers by repeating 
steps 4, 5, and 6 as often as necessary. For this reason, the flip-flop register is 
often termed an accumulator. 

1. Construct the adder of Figure 2. 

2. The table below outlines tests which can be performed on your adder to check 
the wiring. Calculate the anticipated results and fill in the table. Then check your 
adder according to the table. 

3. What is the sum of the following numbers? 

(a) 7 plus 3 
(b) 7 plus 5 

(c) 5 plus 9 
(d) 8 plus 4 

4. What happens if the sum is larger than 15? 

Test 1 Test 2 Test 3 Test 4 

Register holds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Set switches to 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 

Register holds 0 1 1 1 0 1 1 1 

Set switches to 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 

Ha If add '!!!!!!!!!!!jjjj!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!jjjj!j~ ~jjfiljjji!l!l!!~llll!l~!!~~i!!!~~ ll~~1!l!l!~~!J1!~~f~lllllllll!!\" !!!!!!!!!!liiliillil~l!I 
Register holds 1 1 1 1 0 0 1 1 l 
Carry . _ j~~!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!l!l!l! i!l!i!l!l!l!l!l!l!l!l!l!l!i!l!!!i!i!jjjjjj i!i!i!l!l!l!l!l!i!i!i!i!i!l!l!l!i!!!!!l!!!!!: !!!!lllllllllllllllll!lllllll!l!lllllllli![ 

Register holds 1 1 1 1 1 0 1 1 

51 



U1 
rv 

I 

I 
I 

I 
I 
I 

------, ----

1 

I 

AO 

I I 0 

I 
I 
1~11 I 
L_~ ___ l_ ____ _l ___ _ 

80 BI 

----Ti----T- - - - -

ldl: 

I I 
I I 
I L ___ _ 

82 

Figure 2 Two-Step Parallel Binary Adder 

A3 

83 

lcARRY 

lCL£AR 

tHALF 
ADD 



5. Notice that the carry signal originates at the least significant bit and propagates 
through a series of gates down to the most significant bit. If the delay through a 
gate is 50 nsec, what is the maximum time required for a carry to propagate through 
the 4-bit adder? 

6. A signal must be present at the level input of a DCD gate for at least 400 nsec 
before the pulse arrives. After the gate is pulsed, it requires 80 nsec for the flip-flop 
output to change. What is the minimum time which can be allowed between a half 
add pulse and a carry pulse? 

PART 2 POSITIVE AND NEGATIVE NUMBERS 
TWO'S COMPLEMENT 

The adder circuits in Parts 1 and 2 can be used to handle positive and negative 
numbers if the negative numbers are represented in 2's complement form. When the 
sum is positive, the output will be in the standard binary format. When the sum is 
negative, the output will be in 2's complement. 

7. Perform the following additions by inputting the negative numbers in 2's com
plement form. 

(a) 3 plus (-4) 
(b) -5 plus 7 

(c) -2 plus (-5) 
(d) -6 plus 5 

PART 3 POSITIVE AND NEGATIVE NUMBERS
ONE'S COMPLEMENTS 

Since it is easier to obtain the. l's complement of a number than the 2's comple
ment, this form is frequently preferred. However, because there are two zeros in the 
l's complement representation, it is sometimes necessary to correct the results. This 
correction is implemented by building an end around carry gate from the most sig
nificant bit to drive the input of the least significant bit. The end around carry logic 
is the same as any carry logic except that it connects the two ends of the register. 

8. Design an end around carry circuit for your adder and wire it in. Include a toggle 
switch so that you can enable or disable the end around carry. 

9. Perform the following additions, representing the negative numbers in l's com
plement form: 

(a) 7 plus (-5) 
(b) -6 plus 3 

PART 4 

(c) -3 plus 3 
(d) -5 plus (-2) 

SUBTRACTION 

Since X plus (-Y) is the same as X-Y, subtraction may be performed simply by 
forming the complement of the subtrahend, then adding. This technique is frequently 
used in parallel arithmetic elements because of the large amount of circuitry that 
would be required to build in a separate subtractor. 

53 



54 

1 O. Perform the following subtractions using 2's complement: 

(a) 5 
(b) 5 

2 
(-2) 

(c) -7 
(d) -4 

(-3) 
2 

11. Perform the following subtractions using l's complement: 

(a) 7 
(b) 7 

3 
(-3) 

(c) -7 
(d) -5 

(-3) 

2 

12. If you had only a subtractor ci.rcuit, how could you perform addition? 

PART 5 THE SINGLE-STEP PARALLEL ADDER 

Figure 3 shows the diagram for one bit of a parallel adder which operates in a single 
step. This circuit is faster than the 2-step adder but requires more gate modules. 

A 

C (IN) 

A 

C(outl sec 

BC = 

A (10) •A 
A (II)• A$B$ C C (out) • A ( B $ C) + BC 

Figure 3 Single-Step Parallel Adder Stage 

13. Draw a diagram for a complete 4-bit adder using the logic illustrated in Figure 3. 

14. Construct an adder from your answer to problem 13. 

15. Construct a test table similar to that in question 2 and check the wiring. 



~: 

16. Starting with the adder equations in Experiment VI, derive the form of the 
equations used in the 1-step parallel adder. 

17. Add the following numbers: 

(a) 5 plus 3 
(b) 7 plus 3 

(c) 4 plus 9 
(d) 9 plus 6 

18. Using the information given in questions 5 and 6, calculate the maximum rate 
at which add pulses may be applied to the adder circuit. 

19. Set the toggle switches to 0011 and use the clock circuit to provide add pulses. 
Sketch the waveforms seen at the ONE output terminal of each of the four flip-flops. 
Be sure to include a time scale in your sketches. 

20. With the toggle switches set to 0010 and the clock source driving the adder 
input, sketch the waveforms at the ONE output terminal of each of the flip-flops. 
Explain the difference between the waveforms found here and those found in prob
lem 19. 

55 



56 

EXPER~MENT ~X 

s;NARY CODED DECIMAL ARITHMET~C 

PART 1 CODE REVIEW 

The digital computer, because it is an assemblage of 2-state devices, is most adept 
at handling the ones and zeros of the binary number system. People, on the other 
hand, are more accustomed to decimal numbers, and for this reason it is often 
desirable to build a computing system which can be operated in decimal. 

To build a decimal computer with 2-state devices, it is necessary to encode each 
decimal digit with binary bits. Four binary bits are needed. Although only 10 of the 
16 permutations possible with the 4-bit decade will be used, all are available. 
The number of codes that can be generated is calculated as follows: 

16' 16 X 15 X 14 X 13 X 12 X 11 X 10 X 9 X 8 X 7 = -· '""2.9 X lQlO 
6! 

The choice of a code is obviously important. Desirable features of the code are: ease 
in performing arithmetic operation, economy of storage space, economy of gating 
operations, error detection and correction, and simplicity. 

The 8421 code is commonly referred to simply as binary-coded decimal because 
the weights q.f the positions are the same as in the binary number system. Arithmetic 
operations are easily performed using the same basic method as in binary since 
the number sequence is the same. 

In the Excess 3 code, a decimal number D is represented by the binary equivalent 
of the number D plus 3. The Excess 3 code is not a weighted code, but since it 
follows the same number sequence as binary, it is useful in arithmetic operations. 
Addition is facilitated since the need for a correction factor is easily detected and 
easily implemented. Because it is self-complementing, the Excess 3 code is also use
ful in subtraction. 

The 2421 is a self-complementing weighted code which is commonly employed in 
counting systems. Other examples of 4-bit weighted codes include the 5421, the 
5311, and the 74-2-1 code., All of these codes are shown in Figure 1. 

Decimal 8421 Excess 3 2421 Decimal 5421 5311 7 4-2-1 

0 0000 0011 0000 0 0000 0000 0000 
1 0001 0100 0001 1 0001 0001 0111 
2 0010 0101 0010 2 0010 0011 0110 
3 0011 0110 0011 3 0011 0100 0101 
4 0100 0111 0100 4 0100 0101 0100 
5 0101 1000 1011 5 1000 1000 1010 
6 0110 1001 1100 6 1001 1001 1001 
7 0111 1010 1101 7 1010 1011 1000 
8 1000 1011 1110 8 1011 1100 1111 
9 1001 1100 1111 9 1100 1101 1110 

-

Figure 1 Four-Bit Decimal Codes 



PART 2 ARITHMETIC OPERATIONS WITH THE 8421 
OR EXCESS 3 CODE 

Because the 8421 and the Excess 3 codes follow the same number sequence as the 
binary number system, standard binary methods may be used. However, in binary 
notation 16 states are represented with 4 bits. In binary-coded decimal only ten of 
these states are used; therefore, special correction terms must be added to account 
for the six unused states. 

PART 3 COUNTING 

In a binary-coded decimal (BCD) counter, the corrective action is very simple. The 
counter is divided into 4-bit decades, and special gating is added to each decade. 
This gating detects the number 9 and reroutes the next count pulse so that it will 
reset the decade to 0 and generate a carry to the next decade. 

In a down counter, the same approach is used. Starting with a standard binary down 
counter, the number 0 is detected, and the next count input resets the counter to 
the appropriate 9 designation and produces a borrow. 

PART 4 ADDITION 

A common method of performing BCD addition is to add two numbers in the binary 
adder and, if necessary, add or subtract an appropriate correction term (see Figure 2). 
When addition is to be performed in a decade by decade fashion (serial addition 
with parallel decades), either 8421 or Excess 3 code is useful. If addition is per
formed in parallel, however, the Excess 3 code is superior to the 8421 code. 

In 8421 code the sum will be correct if it does not exceed 9. If the decimal sum is 
between 10 and 15, it is necessary to add 6 to the binary sum and generate a carry 
to the next decade. If the decimal sum exceeds 15, a carry signal is generated by 
the initial addition, but the correction factor 6 must still be added to the binary sum. 

Addition of 8421 coded numbers has the disadvantage that a carry signal can be 
generated during the correction process. For this reason, each decade in the adder 
has to be corrected individually. Therefore it is not a desirable code in a parallel 
adder (see Figure 2). 

When two Excess 3 numbers are added, the sum will contain an excess 6. If the 
decimal sum is 9 or less, it is necessary to subtract 3 in order to return to Excess 3 
notation. If the decimal sum is greater than 9, the excess 6 contained in the sum 
cancels the effect of the six unused binary states, but it is necessary to add 3 to 
return to the Excess 3 notation. 

57 



58 

No correction necessary Initial sum in incorrect notation 
(16 ~ sum ~ 18) 

1001 = 9 dee. 

1000 = 8 dee. 

(Sum ~9) 

0100 = 4 dee. 

0011 = 3 dee. 

0111 = 7 dee. 
h-0001=1 plus carry 

Initial sum in forbidden state 

(10~ sum ~ 15) 

1000 = 8 dee. 

0100 = 4 dee. 

1100 = forbidden state 

0110 =correction factor of 6 

l~ 0010 = 2 dee. plus carry 

0110 = correction factor of 6 

0111 = 7 dee. (plus carry from first 
addition) 

Multiple decade addition 

0101 0101 1000 = 558 dee. 

0010 0100 0011 = 243 dee. 

0111 1001 1011 

0110 

1~0001 ~ 
1010 I 
0110 

l~oooo 

1000 

= 801 dee. 

Figure 2 Addition with the 8421 Code 

Whether the correction factor is 3 or -3 is determined by whether or not a carry 
signal appears during the initial addition. An initial carry requires a positive correc
tion; no carry, a negative correction. The correction process will never yield an addi
tional carry; thus simultaneous correction of all decades is possible. 

The steps in performing Excess 3 addition are: 

1. Add the two BCD numbers in binary fashion 

2. Check each decade for a carry signal 

3. Subtract 3 from each decade in which a carry has not occurred, while 
simultaneously adding 3 to each decade in which the carry signal has 
occurred. 

The plus 3 correction is made by adding 0011 to the appropriate decade. Subtracting 
3 from a decade is done by adding 1101 and suppressing the carry from the most 
significant bit of the decade. This is the method of 2's compleme·nt subtractions, 
described in Experiment VIII. 

Figure 3 shows how the addition is performed. 



.--------------------~-···-·------------~ 

0111 = 4 dee. 

0110 = 3 dee. 

Sum,=::: 9 

1101 = uncorrected sum 

1101 = correction factor of -3 

1010 = 7 dee. 

1011 = 8 dee. 

0111 c= 4 dee. 

Sum~ 10 

1~0010 ==uncorrected sum 

0011 = correction factor of 3 

0101 = 2 dee., plus carry from 
initial addition 

Multiple Decade Addition 

1000 

0101 

1110 

1101 

1011 

1000 

0111 

------ 0000 

0011 

0011 

1011 = 

0110 = 

0001 

0011 

0100 = 

Figure 3 Addition with the Excess 3 Code 

558 dee. 

243 dee. 

801 dee. 

Figure 4 shows how the 2-step binary adder from Exp,eriment VI 11 can be converted 
to form a single deca.de of an Excess 3 code adder. An extra flip-flop is added to store 
the carry from the most significant bit of the decade. This is then used to determine 
whether the plus 3 or minus 3 correction factor is needed. The carry flip-flop gating 
is similar to the other stages except for a carry suppression gate which operates 
whenever the input from the switches is 1101, the code for the -3 correction step. 
Since the number 1101 is not one of the valid Excess 3 codes, this carry suppression 
gate will never operate during the normal addition of the two Excess 3 numbers, only 
during the correction process. 

The steps for adding X plus Y are as follows: 

1. Clear 
2. Set switches to X 
3. Half add 
4. Set switches to Y 
5. Half add 
6. Carry 
7. If C = 1, set switches to 0011 
8. If C = 0, set switches to 1101 
9. Half add 

10. Carry 

Steps 1-3 set the flip-flop register to the number X. Steps 4-6 add the number Y. 
Steps 7-10 perform the corrections so that the result is in proper Exc,ess 3 notation. 

1. Figure 5 shows a complete drawing of the 1-decade Excess 3 code adder with 
the carry flip-flop. Construct the circuit. 

2. The table below shows a test procedure for checking the circuit wiring using the 
steps outlined above. The table shows the switch settings for adding 1 plus 1 and 
for adding 5 plus 7. Perform these steps and check that the contents of the flip
flops are correct as shown. 

59 



HALF ADD 

CARRY 

PULSER 

JHALF ADD 

PULSER 

CARRY 
FOUR-BIT BINARY ADDER 

0 

TcARRY 
CLEAR 

PULSER 

ENABLE 

TcLEAR 

Figure 4 Excess 3 Code Adder 

Tu~l Tu~2 

Step Sw. c FFs Sw. c FFs 

0 0000 

2 

3 

4 

5 
6 

7 

8 

9 0 0001 

10 0 0101 

60 



(]'\ 
I-' 

-,·~·tY!.·~~~~,.\.~~r: .. ,··T;;7, """·II'.:~;"':?•' 

------------------------REGISTER-A----------------

,- - -- --,-- - -- --, - -,- 1- -- - - - -,----- - ---
' I ' I 

I 
I 

CARRY 

0 

L_ ___ _L___ 

::-

I 
I 
I 
I 
I 

'- I 

"~ 
_____ _L _J_ 

- - - - - - -,-- - - - - -r1- - - - - - ---------r- - - - - -r-

1. 
I 
I 
I 
I 
I 

---, 
I 
I 
I 

_L ______ IL ____ __i_ ______ I __l_ ____ _L __ 

--------1 

TcARRY 

~ 
~ 

TcLEAR 

THALF 
ADD 

I 
I 
I 

---------------------SWITCHES-8---------------------------

Figure 5 Excess 3 Code Adder 



62 

3. Add the following numbers and record tbe state of all the flip-flops at the end 
of steps 1, 3, 5, 61 9, and 10. When the sum is greater than 10, only the least 
significant decimal digit will remain in the adder. 

(a) 3 plus 2 
(b) 5 plus 8 

(c) 7 plus 6 
(d) 4 plus 1 

4. Connect your adder with one of your neighbors and form a 2-decimal digit adder. 
Add the following numbers: 

(a) 15 plus 17 
(b) 25 plus 43 

(c) 47 plus 18 
(d) 12 plus 29 

PART 5 POSITIVE AND NEGATIVE NUMBERS 

In Experiment VIII, you saw how negative binary numbers could be expressed in 
either l's or 2's complement form. The decimal equivalent of this is the 9's or lO's 
complement form. The 9's complement is produced by subtracting each individual 
decimal digit from 9. The lO's complement is obtained by first forming the 9's 
complement then adding 1 to the entire number. 

It is particularly easy to form a complement in Excess 3 code since the 9's com
plement is made simply by interchanging ones and zeros. 

Figure 6 shows examples of the 9's and lO's complement. Notice that in forming 
the lO's complement from the 9's complement, one count is added to the entire 
number in Excess 3 fashion, not in binary fashion, and not to each decade. 

Decimal Excess 3 9's Comp, Dec. 9's Comp., XS 3 lO's Comp, Dec.J 1o's Comp., XS 3 

+58 0 1000 1011 -41 1 0111 0100 -42 1 0111 0101 

+59 0 1000 1100 -40 1 0111 0011 -41 1 0111 0100 

+60 0 1001 0011 -39 1 0110 1100 -40 1 0111 0011 

+61 0 1001 0100 -38 1 0110 1011 -39 1 0110 1100 

Figure 6 Examples of 9's and lO's Complement 

Your adder may be used to form 9's and lO's complements if a sign bit is added as 
shown in Figure 7. The steps involved in forming the 9's complement of the number 
X are the following: 

1. Clear 
2. Set switches to X 
3. Half add 
4. Set switches to 1 1111 
5. Half add 

The first three steps load the number into your flip-flop register. Steps 4 and 5 com
plement each bit of the number. This leaves the 9's complement in the register. 



CJ> 
w 

SIGN 

= 

CARRY 

= 

HALF ADD 

CARRY 

B 

A®B 

(A®Bl' 

c 

CLEAR 

ENABLE 

FOUR-BIT BINARY ADDER 

= = = = 

Figure 7 Excess 3 Code Adder 

PULSER 

--rHALF ADD 

PULSER 

lcARRY 

PULSER 

TcLEAR 



64 

To then form the !O's complement, do the following additional steps: 

6. Set switches to 0 0100 
7. Half add 
8. Carry 
9. If C = 1, set switches to 0 0011 

10. If C = 0, set switches to 0 1101 
11. Half add 
12. Carry. 

Steps 6-8 are used to add 1, Excess 3 fashion, to the number, while steps 9-12 
correct the addition. The final result is the 9's complement plus 1, or the !O's com
plement of the number X. 

5. Add a sign bit to your counter. 

6. Form the 9's and lO's complements of the following numbers: 

(a) 5 (c) 9 
(b) 7 (d) 0 

7. What would be the 9's and lO's complements of the following numbers in 8421 
code? 

(a) 5 (c) 9 
(b) 7 (d) 0 

PART 6 ADDITION AND SUBTRACTION 

As you may have realized, the decimal adder can also be used as an adder-subtractor, 
handling both positive and negative numbers. If the !O's complement representation 
is used, no additional circuitry is required. If the 9's complement representation is 
used for negative numbers, the end around carry gate must be attached from the 
sign bit to the least significant bit. 

In this experiment you will use the lO's complement form. Figure 8 shows an illus
tration of this. 

0 1000 0100 51 dee. +51 dee. 

1 1001 1001 (complement of 34 dee.) -34 dee. 
- --
0 <I( 0001 1101 

0011 1101 correction factor 

0 0100 1010 17 dee. +17 dee. 

0 0110 0111 34 dee. +34 dee. 

1 0111 1100 (complement of 51 dee.) -51 dee. 

1 1110 0011 

1101 0011 correction factor 

1 1011 0110 -17 dee. -17 dee. 

Figure 8 Subtraction with the Excess 3 Code, lO's Complement Notation 



f. 

' 

,. 
(."-

'· 

8. Perform the following additions and subtractions. Record your results as they are 
shown on the indicators and convert the results to decimal. 

(a) 7 plus 2 (e) 8 minus 5 
(b) 9 plus (-2) (f) 5 minus (-3) 
(c) -7plus5 (g) -5 minus 3 
(d) -7plus(-2) (h) -8 minus (-4) 

9. Perform the following additions and subtractions using the steps outlined in 
Part 5. Record the contents of the flip-flops at the end of steps 3, 6, and 10. 

(a) 5 plus 3 (e) 9 minus 5 
(b) 5 plus (-3) (f) 6 minus (-3) 
(c) -7 plus 4 (g) -5 minus 4 
(d) -6 plus (-2) (h) -9 minus (-2) 

1 O. Connect your adder-subtractor with one of your neighbors to form a 2-decimal 
digit arithmetic element. Be sure to remove the sign flip-flop from the least sig
nificant digit. Make the following lO's complement conversions: 

(a) 38 (e) 42 
(b) 39 (f) 13 
(c) 40 (g) 98 
(d) 41 (h) 0 

(a) Perform the following additions and subtractions: 

(a) 38 plus 37 (e) 
(b) 48 plus (-40) (f) 
(c) -41 plus 17 (g) 
(d) 50 plus 0 (h) 

40 minus 40 
40 minus (-39) 

-40 minus 39 
-40 minus 0 

(b) Perform the following additions and subtractions recording the contents of the 
flip-flops at the end of steps 3, 6, and 10. 

(a) 35 plus 17 (e) 
(b) 40 plus (-0) (f) 
(c) -45 plus 0 (g) 
(d) -70 plus (-17) (h) 

20 minus 20 
20 minus (-19) 
30 minus 37 

-30 minus 0 

PART 7 SPECIAL PROBLEMS 

11. Design and construct a circuit which will perform decimal additions in 8421 
code. Do not include a sign bit. Prepare a test table and check that your adder 
operates correctly. 

(a) Prepare a write-up for your adder, including the test procedure, so that a 
classmate not familiar with your circuit would be able to understand its 
operation and check the wiring. 

12. Write a report showing how addition and subtraction could be performed in 2421 
code. 

65 



66 

(a) Design a 1-digit adder-subtractor circuit (without a sign bit) which would 
handle 2421 code. Prepare a test table. Construct and check your circuit. 

(b) In your report on the theory of 2421 code addition and subtraction, also 
include your circuit, your test table, and enough information that a classmate 
would be able to understand and test your circuit. 



EXPERiMENT X 

CODE CONVERS!ON 

PART 1 CODE FEATURES 

The choice of a good code may greatly simplify the logic circuitry. A self-comple
menting code allows the handling of addition and subtraction with only a few circuits. 
Binary coded decimal forms are particularly useful on systems which have a high rate 
of decimal input and output. In systems where reliability is extremely important, or 
where there is too large a probability of an error in transmission, error detecting and 
correcting codes are used. Parity bits are most common on tape units, while quite 
elaborate redundant codes are employed where information is to be transmitted 
through a noisy channel. 

Decimal Binary 
Reflected 

Binary Decimal 
Reflected 
Decimal 

0 00000 00000 
1 00001 00001 
2 00010 00011 
3 00011 00010 

0 0 
1 1 
2 2 
3 3 . . 

4 00100 00110 . . 
5 00101 00111 . . 
6 00110 00101 
7 00111 00100 
8 01000 01100 
9 01001 01101 

10 01010 01111 
11 01011 01110 

8 8 
9 9 

10 19 
11 18 
12 17 . . 

12 01100 01010 . . 
13 01101 01011 . . 
14 01110 01001 
15 01111 01000 
16 10000 11000 
17 10001 11001 
18 10010 11011 

18 11 
19 10 
20 20 
21 21 . . 

19 10011 11010 . . 
20 10100 11110 . . 

99 90 
100 190 

Figure 1 Reflected Binary Figure 2 Reflected Decimal 

A special set of problems arises in systems where readout must take place on the 
fly. An example of this would be reading the position of a shaft angle digitizer when 
the shaft is in motion. Confusion could arise, for example, at the transition from the 
binary number 7 to the binary number 8. If the most significant bit changed slightly 
before the three least significant bits, the output would briefly indicate 15, a highly 
erroneous number. To eliminate such catastrophic errors, it is necessary to have a 
type of code where no more than one bit changes in going between two successive 
numbers. Figures 1 and 2 show reflective codes which eliminate this type of error, 
since only one bit (or digit) changes at a time. 

In going from one piece of equipment to another, it is frequently necessary to change 
the code. Code changes may be done either in a parallel fashion or a serial fashion. 
The choice depends on whether speed or cost is more important and also on the 
form that the input or output data must take. 

67 



68 

PART 2 DECIMAL CODES 

The techniques of BCD conversion depend on the relation between the two codes 
involved. In going from 8421 to Excess 3, for example, it is only necessary to add 3. 
This can be done either in serial or parallel fashion. 

Many times, however, the relation between the codes is not so straightforward, and 
it is necessary to examine the entire code group to determine what the new group 
should be. In this case, the code conversion of each digit is generally done in parallel. 
Figure 3 illustrates such a converter taking 8421 into 2421 code. The steps involved 
are simply: 

1. Clear the converter. 
2. Read in the 8421 number. 
3. Pulse the convert line. 

To understand how this converter operdtes, write out the code groups for the 8421 
and 2421 codes and make a notation for each change. From Figure 4, we see that the 
only changes occur in the representations of the numbers 5 through 9. We also see 
there are only three separate types of changes that need to be made. One type of 
change occurs at state 5, where A replaces A', B' replaces B, and C replaces C'. At 
state 6 or 7, A replaces A' and C' replaces C. At state 8 or 9, B replaces B', and C 
replaces C'. 

Decimal 
8421 2421 

Changes --
ABCD ABCD 

0 0000 0000 
1 0001 0001 
2 0010 0010 
3 0011 0011 
4 0100 0100 
5 0101 1011 A=>A', B'=>B, C >C' 
6 0110 1100 A=>A' C'=>C 
7 0111 1101 A=>A' C'=>C 
8 1000 1110 B =>B' c =>C' 
9 1001 1111 B =>B' C =>C' 

Figure 4 8421 - 2421 Codes 

The next step in designing a converter is to determine the minimum identification 
for each state, or group of states, for which specific change must be made. In 
Figure 5 we see that minimum identification for the state 5 is BC'D = 1. States 6 
and 7 exist only when BC= 1. States 8 and 9 exist only when A= 1. 

State Identification 

5 BC'D 
6 or 7 BC 
8 or 9 A 

Figure 5 Identification of States Where Changes Occur 



m 
<.D 

PU ~SER 

CONVERT I 
(t I) 

PULSER 

CLEARl 

PULSER 

REA()"""! 

(10) 

~! 

BC 

-= 

BC'D 

0 

A B 

-= 

A(t1) =A+A'BC+ A' BC'Dl(t0) 
B(t1) = B(BC'D)'+ B'Aj(tO) 
C(t1)= C(BC)'+C'A + C'BC'Dl(t0) 
D(t1) = Dj(tOl 

BC 

c 

A 

-= 

Figure 3 Code Converter 8421 to 2421 

c 

B 

0 !--------. 

D 

D 

c' 

-= 



70 

Returning to Figure 3, we can now better understand how the code converter operates. 
The two groups of states that are identified by more than one variable are detected 
by diode gates. The outputs from these diode gates and the ONE output from flip
flop A enable the gates which perform the functions outlined in Figure 4. 

Notice here that the definitions of the ZERO and ONE terminals on the flip-flop have 
been reversed so that we can make use of all three gates on the lower side of the 
flip-flops. The wiring remains the same. Only the names have been changed. 

The equations below Figure 3 show what is taking place in the code converter. 

1. Referring to the code table in Experiment IX, design, construct, and test the 
following code converters: 

(a) 8421 to Excess 3 
(b) 2421 to 8421 
(c) 2421 to Excess 3 
(d) Excess 3 to 8421 
(e) Excess 3 to 2421 

2. Calculate the maximum load applied to any of your flip-flops in your code con
verter from question 1. Compare this with the rated driving ability. 

PART 3 ERROR DETECTING CODES 

In systems where a single error might be expected to occur, a parity bit is often used. 
This is an extra bit added to the word so that the total number of ONEs will be always 
odd or always even. 

Figure 6 shows a circuit which will generate even parity. If there are an even number 
of ONEs in the four information bits, the parity bit will be ZERO. But, if there are an 
odd number of ONEs in the four information bits, the parity bit will also be ONE so 
that the total will be even. 

The circuit of Figure 6 operates in parallel using exclusive OR circuits. Each pair of 
bits is exclusively ORed, then the outputs of the exclusive OR circuits are further 
exclusively ORed, etc. 

Parity may also be generated quite easily for serial information. A special parity 
flip-flop is complemented each time a ONE is received. When the entire word is 
circulated, the parity flip-flop will contain the parity bit, either odd or even, depending 
upon whether it was initially cleared or set. 

3. Construct and test the circuit of Figure 6. Without adding any more gates, change 
the circuit from even parity to odd parity. 



'1 ..... 

9 
READI 

PULSER 

CLEAR! 

A 

0 

tor ... ,,. -~~d?'&f.:i..et-<fW.'1.*..:.¥ftmt1f1f¥@+~1¥1#P·:&ni:yi$§5j;ffJ-k~f®~~¥;frit;~~ .. ~tttn.i'rii:Wt%iiia'ct± .. "'~i't·w&-t· 1' -
.. , ..... ,.-~·:--··!i.Js·· ~;J:lHlf ... •(JJ'.~~+s~'itr~~)-;J 'f&dtiro~inj-..tff11•••ltwW.tW1~~ 

PARITY 

-= -= -= 

B c D 

0 0 

A©B@C@D 

(A@B)' 

PARITY BIT• A@B(DC@D 

Figure 6 Parity Generator 



72 

4. Extend the circuit of Figure 6 to handle six information bits, generating odd parity. 
Construct and test the circuit. 

5. Construct a serial parity generator for odd parity. 

6. The 2 out of 5 code is a binary-coded decimal form which also allows the detec
tion of a single error. This code is shown in Figure 7. Design a serial circuit which 
detects a single error in this code. 

Decimal 2 out of 5 

0 00011 
1 00101 
2 00110 
3 01001 
4 01010 
5 01100 
6 10001 
7 10010 
8 10100 
9 11000 

Figure 7 2 out of 5 Code 

PART 4 REFLECTIVE CODES 

Reflective codes avoid errors wlien reading a changing number, such as the output of 
the shaft angle digitizer described in Part 1. Because these codes are difficult to use 
in arithmetic operations, they are normally converted to standard binary. The reflected 
binary code, illustrated in Figure 2, is most commonly used. The rules for converting 
from this code to binary are: 

1. The most significant digit is identical in reflected and standard binary. 

2. If a digit is a ONE after being converted to standard binary the following 
(or less significant) digit is complemented. 

Figure 8 shows a reflected-to-standard binary code converter that operates in parallel. 
This circuit is similar to a counter in that information must propagate down a chain 
of bits. In this case, propagation starts at the most significant bit and propagates to 
the least significant bit, providing a complement signal whenever the exclusive OR 
of all bits thus far is a ONE. 

7. Construct and test the reflected-to-standard binary code converter of Figure 8. 
Using the information from Experiment VI 11 questions 5 and 6, calculate the minimum 
time which must be allowed between a read signal and a convert signal. 

8. Reflected binary-to-standard binary code conversion lends itself very well to .a 
serial technique because the state of each bit depends only on the more significant 
bits. Design, construct, and test a serial reflected-to-standard binary code converter. 

9. To understand why reflected binary is not normally used in arithmetic operations, 
design a 3-bit counter which operates in reflected binary. 

(a) Try to minimize the cost of your reflected binary counter. Assume that a 
flip-flop costs twice as much as a diode gate and a diode gate costs twice as 
much as a DCD gate. 



'1 
w 

READ I 

CONVERT I 

--·-"-:;: 

A 

PULSER 

CLEAR I 

•'>>:;: 

l 

0 

A(tl) • A(tO) 

8 (ti)• 8(1 O) E!) A(tl) • B(tO)(!) A(tO) 
C(t1) •C(t0)E!)B(t1) • C(tO)(!)B(tO)Ei)A(tO) 

0(11) • D (tO)E!)C (ti)• DltO)(i') C It O) El Bl!Ol E!J A( 10) 

Figure 8 Gray Reflected Binary to Binary Code Converter 



74 

PART 5 SPECIAL PROBLEM 

10. Design a reflective BCD system. Design a circuit whkh will convert this code to 
Excess 3 notation. Construct and test your circuit. Prepare a report including a 
description of the code, the conversion circuit, the operation of the conversion circuit, 
and a test procedure. 



EXPER~MENT X~ 

CONTROL 

PART 1 THE USE OF CONTROL CIRCUITRY 

In the experiments so far whenever a series of different operations were to be 
performed, you controlled the operation by depressing push-buttons in a fixed se
quence. For example, with the two-step parallel adder, you depressed buttons which 
performed the functions clear, half-add X, half-add Y and carry. In a computer or 
other high-speed digital systems, the same sequence of events must take place, but 
at a much higher rate. Thus, the computer must contain a control section which 
generates a series of pulses in the right sequence, and at the right times, just as you 
did with the buttons. 

The heart of the computer control system is a pattern generator which produces a 
fixed pattern of pulses on a series of lines. Each line corresponds to an operation, 
such as the clear, half-add and carry operations. 

Associated with the pattern generator is gating circuitry which enables the pulses 
whenever the desired operation is being performed, or inhibits them when the 
operation is not desired. For example, a computer instruction to add would enable 
one set of pulses while a computer instruction to multiply would enable a different set. 

PART 2 GENERATING THE PATTERN 

Pattern Generators can be made in a variety of different ways. Many of these you 
have already studied. The ring counter, of Experiment IV, Part 2, will produce a 
series of N discrete states, then automatically restart itself and produce the same 
series of N states again. The ring counter requires a separate flip-flop for each state 
it generates, which for a complex pattern, can mean that many flip-flops are used. 
However, it is quite simple to interpret the output of a ring counter. To determine 
if a given state is present, it is only necessary to see whether or not the corresponding 
flip-flop holds a ONE. This is shown in Figure la. 

The switched tail ring counter, of Experiment IV, Part 2, may be used to generate 
any pattern which has an even number of states. It is more economical than the 
ring counter because it requires only half as many flip-flops. But in order to 
determine whether or not a given state is present, it is necessary to look at two 
flip-flops as shown in Figure lb. 

Counter circuits (Experiment I) are also used as pattern generators. The counter 
configuration has the advantage only N flip-flops are required to generate 2N states. 
However, to determine if a given state is present, it is necessary to check the state 
of all flip-flops, which requires a large amount of decoding circuitry (see Figure le). 

75 



76 

(a) (b) (c) 

4-Bit Ring Counter 4-Bit Switched Tail 4-Bit Counter 

States Identification 
ABCD 

1000 A 

Ring Counter 

States 
Identification ABCD 

States Identification 
ABCD 

0000 A'B'C'D' 
0100 B 0000 D'A' 0001 A'B'C'D 
0010 c 1000 AB' 0010 A'B'C D' 
0001 D 1100 BC' 0011 A'B'C D 

1110 CD' 0100 A'B C'D' 
1111 DA 0101 A'B C'D 
0111 A'B 0110 A'B CD' 
0011 B'C 0111 A'BC D 
0001 C'D 1000 A B'C'D' 

1001 A B'C'D 
1010 AB'C D' 
1011 AB'C D 
1100 AB C'D' 
1101 ABC'D 
1110 ABCD' 
1111 ABCD 

Figure 1 Pattern Generators 

The standard counter has one main disadvantage. The number of states must be an 
integral power of two. For this reason, special counters are often used. These 
operate in the standard binary fashion but automatically reset themselves after a 
fixed number of states has been generated. For example, Figure 2 illustrates a 
count-of-5 circuit. 

A 

0 

PULSER 

TcLEAR 

8 

~--10 i-------10 

Figure 2 Count-of-5 Circuit 

c 

PULSER 

COUNT 
(DIAL) 



To see the operation of the count-of-5 circuit assume that the counter starts in the 
state O. As input pulses come in, the circuit operates as a binary counter counting 
from Oto 1 to 2 to 3 to 4. (The ZERO input connection on flip-flop A and the inhibit 
connection on flip-flop C will have no effect until after flip-flop A has gone to the 
ONE state.) When the count of 4 is reached, flip-flop A is now in the ONE state, 
enabling the ZERO input of flip-flop A and inhibiting the inputs to flip-flop C. The 
next pulse will return the counter to the number ZERO, starting the cycle over again. 

This same counter, with an additional flip-flop added, was used in Experiment II to 
make a binary coded decimal counter in the 8421 code. Moreover, this circuit may 
be extended to generate any pattern of 2M(2N+l + 1) states by adding flip-flops either 
at the beginning or at the center of the circuit as shown in Figure 3. 

FF 

0 

0 

PULSER 

TcLEAR 

r- ---1 
I I 
I I 
I N-BIT I 

BINARY 
I COUNTER I 

FF 

r- - - --, 
I I 
I I 
I I 

M-BIT I 
I BINARY 
I COUNTER I 

0 

I I 

I l<r- PULSES TO 
I I BE COUNTED 

L ____ _J - - _ _J 

Figure 3 Count-of-2M (2(N + ll + 1) 

A B 

1---+--! 0 1-----< 0 

B' 
A' 

Figure 4 Count-of-7 

c 

A'+ 8 1 

PULSER 

COUNT 
(DIAL) 

77 



78 

Although not all special counts are as easy to obtain as the count-of-5, count-of-10 
family, any number may be obtained if extra gates are added to detect the final state 
and produce all the necessary enable and inhibit signals. For example, Figure 4 
shows a count-of-7 circuit. The operation can be seen by assuming the circuit starts 
at 0. It will count in standard binary fashion until the number 110 is reached. This 
will be detected by the diode gate which will inhibit flip-flop C. At the same time, 
the output of flip-flop A and the internal conditioning on flip-flop B will enable the 
lower clear input on B. Thus, the next pulse will return the counter to the number 000. 

1. Construct the count-of-5 circuit shown in Figure 2. Driving the input from the 
dial, test that your circuit operates correctly. 

(a) What would happen if your counter came to state 5 when the power was 
first turned on and if the count input was operated without first clearing the 
counter? Predict the result then test it by connecting the clear input so that 
it resets the counter to 5. 
(b) Repeat (a) for state 6. 
(c) Repeat (a) for state 7. 
(d) Drive the input from a clock and observe and sketch the waveforms at 
the ONE output terminals of flip-flops A, B and C. Can you tell that each of 
these patterns is repetitive and is made up of five segments? Why or why not? 

PART 3 THE PULSE AMPLIFIER 

Once the pattern is generated, the pulses must be gated out onto the appropriate 
lines to perform the various functions. A special circuit, called a· pulse amplifier or 
PA, is used to do this gating. 

Figure 5 shows the diagram for the type R602 pulse amplifier used in the Logic 
Laboratory. The inputs to this circuit are very similar to those on the flip-flop. 
There are two diode-capacitor-diode gates, each of which have a pulse and a level 
input. There is also a direct input which can receive a pulse from a clock, from 
another pulse amplifier, from the push-button pulsers or from a gate. Whenever the 
input conditions are met (that is, there is a pulse at the direct input or there are both 
a pulse and a ground level on a DCD gate) the pulse amplifier circuit will produce a 
standard pulse at its output. The output pulse will go from a base of -3 volts to 
ground, remain at ground for 100 nanoseconds and then return to -3 volts. 

GATED 
INPUTS 

DIRECT 
INPUT 

Figure 5 Pulse Amplifier Diagram 

2. To see the operation of the pulse amplifier, connect its direct input to a clock, 
and observe the output on the oscilloscope. 

Although the pulse amplifier is used for gating, it has several unique advantages that 
distinguish it from the simpler diode gate. It standardizes pulses in duration as well 
as amplitude. Any input signal between 40 and 100 nanoseconds will be stretched to 
100 nanoseconds and any input signal of more than 100 nanoseconds will be reduced 
to 100 nanoseconds. 



The output of the pulse amplifier (see appendix A) is capable of driving up to 70 MA 
of external load. Thus the circuit is particularly useful in large computers where the 
registers contain many flip-flops and the load that must be driven is quite heavy. 

Because the inputs to the pulse amplifier circuits are DCD gates which have a 
delayed input and a differentiating input, similar to those used on flip-flops, the 
pulse amplifier is frequently used to expand the number of inputs to a flip-flop. A 
PA may drive a flip-flop either through its output terminal (as in Figure 6) or through 

its input. 

EXTRA 
SET 
INPUTS 

NORMAL 
SET 
INPUTS 

NORMAL 
CLEAR 
INPUTS 

EXTRA 
CLEAR 
INPUTS 

FF 

O'------

F!gure 6 Pulse Amplifier Driving a Flip-Flop Through Its Outputs 

79 



80 

The diode-capacitor-diode gates on the pulse amplifier have two inputs. The output 
occurs only when the conditions of both inputs are met. If the level input is driven 
from a complex gate network, there will be a large number of conditions which are 
required for a pulse output. All of these conditions are represented in the pulse output. 
Thus the pulse amplifier can be used to generate a powerful signal which carries a 
considerable amount of information to a variety of places. 

The output circuit of the R602 is a transistor with a clamped load resistor similar 
to the output circuit of a gate. If two or more PA outputs are wired together, this 
will form a pulse OR gate as shown in Figure 7. Unlike wired OR gates for logic 
levels, however, this cannot be reversed to form a wired AND, since "no pulse AND 
no pulse" will not initiate any action. 

p 1 

P2 

Figure 7 ORing the Outputs of Pulse Amplifiers 

Figure 8 illustrates the use of the pulse amplifier in a pulse distributor circuit with 
two output lines. Line 1 produces outputs at times 0, 1 and 3, while Line 2 produces 
pulses at times 2 and 4. The toggle switches allow you to select whether or not the 
corresponding outputs pulses are to occur. 

3. Add the pulse amplifier and gating circuitry to your count-of-5 circuit as shown 
in the Figure 8. Driving the counter input from the clock circuit, observe the output 
of each of the pulse amplifiers on the oscilloscope and sketch the waveforms. When 
all the switches are closed, can you tell from looking at each pulse amplifier output 
that it is part of a repetitive pattern which contains 5 states? 

PART 4 THE DELAY (ONE-SHOT) 

The delay one-shot is similar to a flip-flop circuit, but it has only one stable state. 
It always tries to remain in this state. If you change the state of the one-shot, it will 
return automatically to its original state after a short period of time. 

Figure 9 shows how a delay one-shot is constructed. Notice that it is identical to a 
flip-flop except that one of the feedback lines is AC coupled, so that the signal will 
decay after a short time. The normal, or stable, state of the circuit is with points A 
and B at -3 volts and point C is at ground. If A is suddenly grounded, the other 
side of the capacitor (B) will also go to ground and the output of that gate (C) will 
go to -3 volts. This will hold point A at ground. However, as current starts to flow 
through the capacitor, point B will begin to approach -3 volts. When it becomes 
sufficiently negative to switch the lower gate, all the terminals will change and the 
one-shot wi II go back to its norm a I state. 



00 
1--' 

LINE 2 /1 

3 

~ ~' 

c' = 

~ c 

fill J> I Uo 8 I 
A' 

~~ c 
'--"""' 

I -
A 

Figure 8 5-State Pulse Distributor 

= 

Uoc 

~CLOCK PULSER 

= 

TcLEAR 



82 

VOLTAGE 

STATE\POINT A B c 
NORMAL -3 -3 0 
ACTIVE 0 0 -3 

-3 

Figure 9 Delay (One-Shot) 

The time required for the delay unit to return to its normal state depends upon the 
values of the capacitor and the resistor in the feedback network. By changing these 
values, the charging or delay time, can be adjusted to any desired value. 

Figure 10 shows the symbol for the delay one-shot, Type R302, which is included 
in the Logic Laboratory. This circuit has a capacitor of 220 pf (picofarads, sometimes 
called micromicrofarads) and an internal resistor of 1000 ohms. The resistor and 
the capacitor are not connected. To complete the circuit, they should be jumpered 
together using either an internal potentiometer (as shown with the dotted line) or 
using one of the potentiometers from the indicator switch panel (as shown in 
Figure lOb). In this way, the potentiometer may be used to change the duration of 
the delay. For more extreme changes in the delay, external capacitors may be attached 
in parallel with the internal capacitor. 

POTENTIOMETER 
FROM INDICATOR 
SWITCH PANEL * 

DCD { 
GATE INPUT 

CAPACITOR,Ai'--"
T ER Ml NA LS~--,->--+--+ 

JUMPER FOR INTERNAL4_1 
POTENTIOMETER <l 

~: 
EXTERNAL---: ~ 
POTENTIOMETER 

OUTPUT 

OS 

* THIS POTENTIOMETER IS LOGRITHMETIC. 
OS 

ONE-SHOT 

FOR SMOOTHEST OPERATION, THE CENTER 
TAP SHOULD BE TIED TO LOWER TERMINAL 

Figure 10 Using the Delay One-Shot 

i I 



I. 
I 

·" 

. _, 

The output of the R302 will be at ground when the delay is in its normal state and 
at -3 volts when the delay is active. The input gate is a DCD circuit similar to 
those on the flip-flop. 

4. To see the operation of the delay, connect it as shown in Figure lOb and drive 
the input from the clock. What are the minimum and maximum values of the delay 
which you get by changing the potentiometer? 

PART 5 A PULSE DISTRIBUTOR MADE WITH DELAYS 

Delay one-shots are used to make pulse distributors by connecting them in a circle 
as shown in Figure 11. When the power is first turned on, all of the delays will be in 
their normal states. If a push-button is used to turn on 01, its output will go negative 
for the duration of the delay. Then it will go positive, automatically triggering 02; 
which will go negative for the duration of its delay, then automatically trigger 01 as 
it returns to ground. This continues around the chain with each delay driving the next 
indefinitely. One of the advantages of the delay system is that the delays can be set 
for an arbitrary duration. Thus, the pulses sent out by the pulse distributor can be 
at any time, not just at multiples of a fixed frequency . 

OS(D2) 

OS(D1) 

= 

PULSER 

lsTART 

Figure 11 Pulse Distributor 

5. Construct a simple distributor circuit as illustrated in Figure 11. Set 01 for one 
microsecond. Observe and sketch the output waveforms at 01 and 02 with 02 set at 

(a) its minimum. 
(b) i~s maximum. 

6. By attaching external capacitors, the delay range may be increased. Add a 220 pf 
external capacitor on to the terminals of 02. What are the new minimum and 
maximum values of the delay range? 

83 



84 

PART 6 SPECIAL PROBLEMS 

7. Using the techniques described in Figure 3 design, construct and test a count-of-9 
circuit. 

(a) Drive the counter from a clock and observe and sketch the waveform at 
the ONE output term i na I for each of the flip-flops. 
(b) Add two pulse amplifiers so that you gate pulses out of PAI at times 0, 
I, 3 and 7, and out of PA2 at times 4 and 8. From the pulse amplifier output 
waveforms can you tell that this is a 9-state repetitive pattern? 

8. Design, construct and test a count-of-I I circuit. 

(a) Try to minimize the cost of your circuit assuming that each gate circuit 
sells for D dollars while the flip-flop circuit, including all five of its DCD 
gates, sells for 3D dollars. What is the cost of flip-flop and gate circuits in 
your counter? 
(b) Drive the input of the counter from the clock. Observe and sketch the 
output waveforms from each of the flip-flops. Can you tell that each waveform 
is generated by an I I-state pattern generator? 

(c) Add two pulse amplifiers to your circuit. Distribute pulses from one pulse 
amplifier when the counter is in state 0, 3, 7, 9 or I 1. Distribute pulses from 
the other PA when the circuit is in state 2 or 6. 
(d) Using two pulse amplifiers to distribute pulses, gate the outputs on 
PAI for all even numbered counts; on PA2 for all odd numbered counts. 

9. Design a count-of-I3 circuit. Sketch how the waveform should appear at each 
flip-flop ONE terminal. Instead of connecting a push-button to your counter input, 
connect the clock circuit and test your counter by directly observing the flip-flop 
output waveforms on the oscilloscope. 

10. The delay time of the one-shot is proportional to the total capacitance multiplied 
by the total resistance in the RC network. Try adding external capacitors (between 
220 and 22,000 pf) and external resistors (between 0 and 20,000 ohms) and 
measure the delay times. Plot the delay times versus RC and determine the constant 
of proportionality. (Remember that C is equal to your external value plus the internal 
value of 220 pf, and that R is equal to your external value plus the internal value of 
1000 ohms.) 

11. In Experiment VIII you constructed a two-step parallel adder using the logic 
shown in Figure 2 of that experiment. In order to operate the counter there were 6 
steps involved. These were: 

1. Clear the flip-flop register 
2. Set X into the switches 
3. Half-add 
4. Set Y into the switches 
5. Half-add 
6. Carry 

Modify the adder logic so that it receives the number X from four of the toggle 
switch.es and the number Y from the other four toggle switches or your Logic Lab 
panel. Using delay one-shots, design and construct a pulse distributor to perform 
the entire operation automatically after you set both numbers into the switch regis
ters and depress one pushbutton. Construct and test your adder circuit; then write 
a short report (one or two pages) describing how your circuit operates and how you 
tested it. 



EXPER~MENT xn 
T~M~NG 

PART 1 SIMULTANEOUS SIGNALS 

Timing considerations are extremely important in designing digital logic. Although 
the digital circuits are very fast, each operation still requires a finite amount of time 
to be completed, and once completed, the capacitors and inductors in the circuit 
must be restored to their original voltage or current before another action can safely 
be initiated. 

If a digital circuit receives an input asking it to perform a new action before the 
previous action has been completed, or if the capacitors and inductors have not had 
time to restore their proper levels, then the results will be unpredictable. The action 
may or may not take place depending on the amplitude of the input signal, the 
tolerances of the components in the circuit, the quality of the AC voltage supply, the 
temperature, the humidity, the age of the circuit and so forth. 

Timing is particularly important when the signal in question goes to many digital 
circuits. Some circuits may respond while others may not. Imagine, for example, that 
the number 0111 is to be changed to 1000 and that all of the flip-flops respond 
correctly except the one which contains the most significant bit. The computer will 
then end up holding the number 0000. 

To avoid timing problems, the logic designer must know when each of his signals 
will occur, and if he finds two or more that will occur simultaneously, then he must 
make provisions to avoid catastrophic errors. He may do this by delaying the offend
ing signal, by inhibiting it or by overriding it. He must do this clearly and without 
an ambiguity. If the suppression of the offending signal is not handled cleanly, the 
result could be a split or partial pulse which would be sufficient to trigger some 
circuits but not others. This would be equally catastrophic. 

Timing problems are possible even in the simplest circuits. Figure 1 shows a 3-bit 
counter with a clear input. Assume that the counter is in the state 001 when a clear 
signal is given. As flip-flop C goes from the ONE to the ZERO state, its ZERO output 
terminal will go to ground, generating a carry to flip-flop B. Since flip-flop B is already 
in the ZERO state, the carry will attempt to set it at the same time as the clear pulse 
is attempting to clear it. Thus flip-flop B may go. either to the ONE or the ZERO state. 

A B c 
0 0 0 

~---+---r-~----T---T-~----1-- CLEAR PULSES 

Figure 1 Simultaneous Signals 

85 



86 

In the counter circuits that you constructed thus far, these difficulties have been 
avoided by using a push-button generated clear signal that is of long enough duration 
to override the carries. The push-button, even when activated as rapidly as possible, 
produces a signal of several mi Iii-seconds. Since the signal comes into a direct input 
terminal on the flip-flop, it will continue trying to clear the flip-flop as long as it is 
present. Because the time required to generate a carry is only about 70 nanoseconds, 
the clear pulse will be present long after all the carries in the chain have died away, 
and hence will override the carries. 

1. To see what would happen if a clear signal were not long enough to override all 
carries, connect the circuit as shown in the Figure 2. In this circuit, the clear and 
count signals are still generated by pulsers; however, they both go to DCD gates 
which differentiate the leading (positive-going) edge of the signal to produce a pulse 
of about 70 nanoseconds duration. The clear signal goes through a pulse amplifier 
which assures that it is full amplitude, and also stretches it slightly to 100 nano
seconds. Try setting the counter to different numbers between 1 and 7, then clearing 
it. Note what happens when you attempt to clear out each of these numbers. 

PULSER 

A B c 
COUNT 

0 0 0 

PULSER 

T 
CLEAR 

Figure 2 Timing Problem 

2. To see how the override signal eliminates this problem, remove the pulse amplifier 
from the circuit as in Figure 3. Test the clearing action on each of the 7 states. 

i 
j 

J
l 

. 
. ' 



PULSER 

A B c 
COUNT 

0 0 0 

PULSER 

= = 

T 
CLEAR 

Figure 3 Override with a Push-Button 

If the counter is operating at high frequencies, a clear signal of several milliseconds, 
such as that generated by the push-button, would take far too much time. However, 
a signal of about 400 nanoseconds duration will be sufficient to override all carries 
and still be short enough for fast operation. The delay one-shot and similar circuits 
are used to generate such a signal. Figure 4 shows how this can be done. The circuit 
also includes an inverter, since the output of the one-shot is negative for the duration 
of the delay and must be inverted to provide the correct polarity for driving the 
clear input. 

PULSER 

A 8 c 
COUNT 

0 0 

T 
CLEAR 

Figure 4 Override with a Delay One-Shot 

= 

87 



88 

3. Construct the circuit of Figure 4 and test it by clearing out each of the 7 
possible numbers. 

Correct clearing every time can also be guaranteed by inhibiting the carry gates 
during the clear signal, as illustrated in Figure 5. The level inputs of all the DCD 
gates are brought to a common line which is connected to a toggle switch. When the 
toggle switch is closed the level inputs are grounded (enabled). Before a clear pulse 
is given, the switch may be opened, thus disconnecting the level inputs from ground 
and inhibiting all carry gate signals. The gate is then reclosed before counts enter. 

A B c 

0 t-----t 0 1-----t 0 

Figure 5 Inhibit 

CARRY 
ENABLE 

PULSER 

COUNT 

PULSER 

T 
CLEAR 

4. Modify your ci'rcuit as shown in Figure 5, then try clearing out each of the 7 
possibie numbers. 

PART 2 RANDOM SIGNALS 

If two signals are coming into the same circuit at random times with respect to each 
other, then a simple inhibit or override is not sufficient to guarantee correct operation. 
Suppose, for example, that you have pulses from two sources, Pl and P2. Even if Pl 
is a much longer pulse than P2, so that it would normally override P2, occasionally 
a P2 pulse could enter the circuit just at the end of the Pl override. In these cases 
the override might be sufficient in some circuits and insufficient in others, depending 
on the sensitivity of each circuit. 

To guarantee correct operation of the logic circuit at all times, random input signals 
should be synchronized: that is, they should be forced to occur only at fixed times. 



One signal should be designated as the primary signal. This may be the highest 
frequency input or it may be simply an arbitrary clock circuit that is used to generate 
high fre'quency standard pulses. All inputs are synchronized to the primary signal, so 
that they occur only at the same time as the primary pulses. Once the signals are 
synchronized, the time of their occurrence is known, so override and inhibit techniques 
can be used reliably. Or the synchronized inputs can be sent through delays of 
different durations so that they arrive at the main circuit at convenient times. 

PART 3 THE SYNCHRONIZER 

Basically, the synchror:iizer is made by ANDing together the random input signal and 
the primary pulses. The results of this AND gate are used to set a single flip-flop. If 
the random signal arrives at the same time as the primary pulse, then the single 
synchronizer flip-flop decides to accept or reject the input. 

Figure 6 shows a command level synchronizer which synchronizes a randomly 
changing logic level to a train of primary clock pulses. It generates output pulses on 
one of two lines depending on the state of the input logic level. If the logic level is 
in the process of changing at the time a clock pulse occurs, the output may occur 
either at A or at B. However, it will never occur at both points; nor will it ever be split, 
with half of the pulse appearing at A and half appearing at B. 

CLOCK>---!),------, 

CLOCK 

LEVEL 

FLIP- FLOP 1 -----~ 
TERMINAL 

OUTPUT 8 

FF 

0 

Figure 6 Level Synchronizer 

OUTPUT A 

OUTPUT 8 

89 



90 

Figure 7 shows a start-stop synchronizer. In this circuit, start and stop pulses are 
converted into a randomly changing level by flip-flop A. This level is then converted 
into a synchronously changing level by flip-flop B. Finally, the output pulse amplifier 
gates out pulses only when flip-flop B is in the ONE state. 

START 

A B 

0 0 

STOP 

CLOCK 

START 

STOP 

FF A 
1 TERMINAL 

FF B 
1 TERMINAL 

OUTPUT 

Figure 7 Start-Stop Synchronizer 

Figure 8 shows a method for converting a single asynchronous trigger pulse into a 
single synchronous trigger pulse. The random trigger is converted to a random level 
by flip-flop A. This is converted to a synchronously changing level by flip-flop B. The 
next clock pulse will generate an output which resets both flip-flops. The output pulses 
are delayed by at least one clock period with respect to the trigger pulse. Since the 
output also clears flip-flop A, the clock frequency must be more than twice the trigger 
pulse frequency. 

PART 4 USE OF THE SYNCHRONIZER 

As an example of a circuit with two random inputs, consider a ring counter (Figure 9) 
where a single ONE is being circulated among a ring of flip-flops by a high frequency 
clock. To start the operation of the ring counter, a reset signal must put one flip-flop 
in the ONE state and all others in the ZERO state. But since the clock is continuously 
producing shift pulses, if the reset occurs at the same time as the shift, an error 
may result. 



CLOCK 

TRIGGER 

FF A 1 
TERMINAL 

FF 8 1 
TERMINAL 

OUTPUT 

T 

A 8 

0 0 

Figure 8 Pulse Synchronizer 

A B c D 

0 0 

Figure 9 Ring Counter with Random Inputs 

91 



92 

Notice the difference between the ring counter circuit of Figure 9 and counter circuit 
of Figure 1. In the counter circuit, there was no problem with count inputs and clear 
signals overlapping since they were generated separately by push-buttons. The signals 
which caused difficulties were extraneous carries formed by the clear. However, being 
generated by the clear, these signals always occurred at the same time as the clear 
and could be completely eliminated with an override or an inhibit. 

In the ring counter, the reset does not generate any extraneous signals. However, 
the shift pulses, produced independently by the clock, may appear at the same time 
as the reset. It is in this situation, when both just happen to appear at the same 
time, that the difficulty arises. An override is not sufficient, an error might still result 
if the end of the override should happen to coincide with the shift pulse. 

The odds that a given reset pulse will cause an error depends on the timing charac
teristics of the circuitry and the frequency of the shift pulses. The Logic Laboratory 
circuits operate at 2 megacycles. If a minimum of 500 nanoseconds is allowed 
between pulses, the circuits will operate correctly even under worst case conditions.* 

Of course, the equipment is not usually operated under worst case conditions; 
however, in designing or testing the circuit, you should always assume that it will at 
some time be operated under these conditions. 

If the shift frequency is greater than 1 megacycle, then it will be impossible to allow 
500 nanoseconds for the shift action plus 500 nanoseconds for the reset action 
between any two shift pulses. Every reset action would be expected to fail. 

At a shift frequency of 500 kilocycles, there will be 2 microseconds between shifts. 
A failure would be possible if the beginning of the reset pulse occurred within 500 
nanoseconds after the beginning of the shift pulse or within 500 nanoseconds before 
the beginning of the shift pulse. In either case, there would not be a full 500 nanosec
onds between pulses. Thus, for every shift pulse, there is 1 microsecond during which 
the reset must not occur. The chances of having a failure are calculated by dividing 
the illegal time (1 microsecond) by the total time (2 microseconds). Thus at 500 kc 
the chances of failure are 112. 

For an arbitrary shift frequency, f, the period between pulses will be p = 1/f. The 
illegal time will still be 1 microsecond, so the chances of a failure will be lµ sec/pµ sec. 
At 100 kilocycles, p equals 10 microseconds and the odds are 1/10. At 10 kilocycles 
the odds are 1/ 100, etc. 

When random inputs are at high frequencies and errors are likely to occur, the ne(')d 
for a synchronizer is obvious. When the error may occur only one time in a thousand, or 
one time in ten thousand, or perhaps one time in a hundred thousand, the question 
arises as to whether or not a synchronizer is really necessary. The answer is most 
emphatically, yes. 

Consider a computer which is operating at a frequency of 1 megacycle and where 
the average problem being run on this computer will require 112 hour. There are one 
million operations performed per second, sixty million per minute and 1,800 million 
operations during the course of a single problem. If an error occurred only once in 
every million operations, then almost none of the problems would be run correctly. 

""This interval is normally measured from leading edge to leading edge. When a pulse of greater 
than 500 nanoseconds is used on a direct input terminal then the only requirement is that the 
following pulse does not begin before the longer duration pulse is ended. 

~I 

·, 

,.1 

' 



An error that occurs this infrequently is not easy to detect. One's hand would certainly 
get tired long before he had pushed a button that many times. Detecting such an error 
on the oscilloscope would be even more difficult. For this reason, a test system must 
be cleverly devised so that the circuit will trap itself when it makes an error. 

If the equipment is part of, or attached to, a general purpose computer, then the test 
is normally a program written so that the computer performs the same operation 
repeatedly, tests itself for the correct results, and types out an error message if the 
resu It is not correct. 

If the equipment is part of a special purpose computer, then a stock of spare modules 
is usually kept for test purposes. The equipment is set to repeatedly perform its 
standard function and the outputs (or other points in the circuit) are monitored with 
a comparator, a parity checker, or some similar type of logic network constructed for 
this purpose. 

5. Construct the circuit of Figure 9 and observe the output of one of the flip-flops on 
: the scope. 

(a) At a clock frequency of 500 kc, count the number of times that you have to 
reset the circuit until you have caused a failure 5 times. From your count, 
calculate your average chance of failure. 
(b) Repeat part (a) with a clock frequency of 200 kilocycles. 
(c) The chances of failure that you calculated from your observations are 
probably less than those calculated from theoretical considerations. Why? 
(d) Add a reset synchronizer to your circuit as shown in Figure 10. Can you 
now run the clock at 2 megacycles without observing any failures on the reset? 

PART 5 SPECIAL PROBLEM 

6. Figure 11 shows a circuft which scales an input frequency by an arbitrary number 
as set in the toggle switches. 

The counter starts at 0001. With· each successive pulse input, it counts up until it 
reaches the number set in the toggle switches. This is detected by the diode AND 
gate which inhibits the carry gates and enables the pulse amplifier. The next input 
pulse will be gated through the pulse amplifier to generate the output signal and to 
reset the counter to the number 0001. 

(a) Construct the circuit in Figure 11 and test it by operating it from the 
push-button. Then connect the clock input and simultaneously observe the 
clock and output waveforms with the switch register set to various numbers. 
Sketch the waveform when the switches are set to 1010. (Use a dual-trace 
oscilloscope or add the waveforms as outlined in Appendix 8.) 
(b) Disconnect the carry enable line from the diode gate and permanently 
ground it. With the switches set to 1010 observe and sketch the clock and 
output waveform. If the circuit does not divide by ten as it should, observe 
the various flip-flop outputs and see if you can explain what is happening in 
the circuit. 
(c) Disconnect the carry enable line from the gate and permanently ground 
it. Modify the circuit using the delay one-shot to generate the reset signal so 
that the counter will operate correctly with any arbitrary number in the switch 
register. 

7. If the chances of a failure are very low, such as 1 chance in 1000 or 1 chance in 
10,000, then many thousands or millions of tests must be performed to detect the 
error. A semiautomatic test set-up for the ring counter can be constructed as shown 
in Figure 12. Diode gates are used to detect the states A'B'C'D' or BO or CD. When 
any of these states occur, an error flip-flop is set. This lights an indicator and also 
halts the shift register at the end of the next shift pulse. With this test set-up, the reset 
input can be activated at a very high frequency and the error will still be detected. 

93 



(.!) 

-!» 

~'-""""~}"'•;,,>:. 

PULSER 

~ESET 

SYNC 
A 

SYNC 
B 

A 8 

0 0 

Figure 10 Ring Counter with Inputs Synchronized 

- ~Wdiff.~4i#E§$.'4\'1$ilb1!@t,zj;..,uigµ?£4¥f;;@e wwwAi;uA~:·': >M2tcc 

c D 

0 0 



0 

0 © ....., 
c 
::J 
0 

~ 
,_ 
<1) 

ro 
u 

(/) 

>--u 
c 

0 
<1) 
::J 

N 0 0-
<1) 

U: 
,--; 
,--; 

;,i: 
::J 
b.O 

LL. 

(lJ 

0 

00 0 

95 



\.0 
O'l 

T 
SHIFT 

T 
RESET 

A 

-;_.:..;::.v·\'·' 

A' 

B' 

c' 
o' 

ERROR 

0 

D 

B 

REST AR~ 

Figure 12 Ring Counter with Tester 



To truly measure the odds, the reset signal should be completely random. Since such 
a signal is hard to come by in a laboratory, a fixed frequency may be used, provided its 
period is not a multiple of the shift period. This means that the reset signal should 
be generated separately, and neither frequency should be a harmonic of 60 cps. 

Figure 13 shows how the reset can be produced from an external signal generator 
(either square wave or sine wave). The generator will produce a bipolar signal. This is 
converted into a Logic Laboratory standard signal with a Schmitt trigger circuit. 
(These circuits normally form the pulsers for the push-buttons.One of them should be 
removed and plugged into the mounting panel for use here.) 

(a) Wire the circuit of Figure 12, and test it, using push-buttons for both the 
shiH and reset inputs. 
(b) Remove the pulsers from the reset input and wire the circuit of Figure 13. 
Set the signal generator for 3 to 10 volts peak (6 to 20 volts peak-to-peak) and 
check that a square wave is produced at the pulser output. 
(c) Remove the push-button connections from the shift and reset inputs of 
your ring count. Connect the clock to the shift input and the external signal (as 
shown in Figure 13) to the reset input. Set the clock for 50 kc and the signal 
generator to 70 cycles. Using a watch with a second hand, measure the 
average time to failure on five trials. 
(d) Calculate the average chances of failure from your observations. Remem
ber that there are 70 resets per second. 
(e) Repeat (c) and (d) at a clock frequency of 5 kc. 
(f) Repeat (c) and (d) at a clock frequency of 500 cycles. 
(g) From the theoretical considerations in Part 4 calculate the expected 
chances of failure for shift frequencies of 50 kc, 5 kc and 500 cycles. Are 
these much higher than your observations? Why? 
(h) Show that the gating network A'B'C'D' + BD + CD will detect all possible 
errors. 

SIGNAL 

GENERATOR 

ST 

Figure 13 External Reset Logic 

97 



98 

EXPERIMENT XU~ 

~NTRODUCT~ON TO 
ANALQG .. D~GrrAL CONVERSION 

PART 1 CONVERTER USES 

Analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) are basic 
to many computer input-output channels. ADCs measure signals from thermometers, 
pressure gauges, flowmeters, resistance bridges, photocells, microphones, etc. Through 
DACs, a computer can drive meters, motors, and loud speakers; it can control ovens, 
draw graphs on an oscilloscope, and perform many other useful functions auto
matically. 

Converters take many forms. For example, the deflection of a speedometer needle in 
an automobile represents an analog value which you convert to digital when you read 
the number corresponding to its position. This section discusses the types of con
verters most commonly used with a computer - those which convert between an 
electrical analog signal and a binary number. 

PART 2 DIGITAL-TO-ANALOG CONVERSION 

The basis of a digital-to-analog converter is a simple resistor network such as the 
circuit illustrated in Figure 1. Each switch represents a binary bit. If switch D is 
closed, while all the others are open, the current at I will be V /8R. If switch C is closed, 
while all the others are open, the current at I will be V/4R, or twice as much as the 
current due to closing switch D. Similarly, if only Bis closed, the current will be V/2R, 
or twice the current due to switch C, and four times the current due to switch D. Each 
switch produces double the current of the previous one, just as each binary bit has 
double the weight of the previous one. If more than one switch is closed, the indi
vidual currents will add together. In this way, the total current will always be pro
portional to the binary number contained in the switches. 

v 

R 2R 4R 8R 

A B c D 

~I 
= 

Figure 1 Binary Weighted Summing Network 



The Logic Laboratory A-D panel contains a resistor-switch network, similar to that 
of Figure 1. The switches are semiconductor, rather than mechanical elements. They 
are closed when a ground signal is applied, and are open when there is a negative 
input or no connection. 

The DAC is followed by an amplifier which increases the signal range and also 
converts it from a current signal into a voltage signal. The output of the amplifier 
is at ground when all the DAC inputs are off (open circuit 01 negative voltage). If 
one or more of the switches are on (grounded), the amplifier output is then a negative 
voltage which is proportional to the binary weights of the inputs. The rheostat con
trols the feedback of the amplifier, allowing the gain (or output voltage range) to be 
adjusted. 

1. Connect the DAC inputs to toggle switches and the output to a meter as illustrated 
in Figure 2. Adjust the gain so that the output is -4 volts when the input is 1000. 

DAC 

Figure 2 DAG Connections 

(a) What is the output voltage corresponding to each of the possible input 
numbers? 
(b) What is the weight of each? 
(c) What is the voltage increment between successive binary numbers? 

PART 3 ANALOG-TO-DIGITAL CONVERSION 

The comparator is the basic circuit used in analog-to-digital conversion. This circuit 
compares two voltages and produces a binary output indicating which of the two 
signals is more negative. 

Figure 3 shows the logic diagram and a simplified circuit schematic for the compara
tor in the Logic Laboratory A-D panel. From the schematic you can see the operation 
of the circuit. It is a two-stage differential amplifier. If the normal input is more 
positive than the inverting input, then the majority of the current from the 1 ma 
current source will be routed through transistor Q3. This will bring the base of Q4 
more positive than the base of Q2 and current will flow through R2, Q4, and R4, 
bringing the base of transistor Q5 more negative than its emitter. This causes 
transistor Q5 to conduct and its output will go to ground. 

If, on the other hand, t.1e inverting input is more positive than the non-inverting 
input, then most of the current will pass through Ql. Very little current will go 
through Q3, so that the base of Q4 will be more negative than the base of Q2, and 
Q4 will conduct little or no current. The resistor R4 will hold the base of transistor 
Q5 more positive than its emitter and the transistor will act as an open circuit. In 
this case the output voltage will be determined by R5 and Dl, and will be approxi
mately -3 volts. 

99 



100 

NORMAL 
INPUT 

RI 

-15V 

R2 R3 

Q3 

1ma 

CIRCUIT 

SYMBOL 

Figure 3 Comparator 

-3V -15V 

+10W 

R4 

INVERTING 
INPUT 

The comparator circuit, then, gives a binary decision as to which of two voltages is 
larger. The digital equivalent of an analog voltage can be found by applying the 
unknown signal to one input of the comparator and using a digital-to-analog con
verter to try different voltages at the other input of the comparator until the correct 
voltage is found. 

2. To see the operation of the comparator, wire the circuit of Figure 4. The poten
tiometer connected between the negative voltage and ground will serve as an analog 
input signal which can be monitored by the nearby meter. When this is connected 
to the inverting input of the comparator and the DAC is connected to the non
inverting input, the comparator output indicator will show which of the two voltages 
is greater. When the light is on, the analog signal is more negative than the DAC 
voltage. When the light is off, the analog signal is more positive than the DAC input. 
With the DAC again adjusted so that the binary number 1000 equals -4 volts, find 
the smallest number that turns the indicator off for each of the following voltages: 

(a) -3.3 volts 
(b) - 7.2 volts 

(c) -4.7 volts 
(d) -6.3 volts 



DAC 

NEG 

Figure 4 Observing the Comparator Operation 

If the DAC is driven by a counter as illustrated in Figure 5, then the different binary 
numbers may be tried in sequence. To convert an analog voltage to its digital 
equivalent, reset the counter, then push the count button repeatedly until the 
comparator indicator goes off. The number contained in the counter will then be the 
binary equivalent of the input analog voltage. 

DAC 

NEG 

A B c D 

0 0 0 0 

PULSER PULSER 

Figure 5 Trying Binary Numbers in Sequence 

101 



102 

3. Construct the counter circuit of Figure 5, and convert the following voltages: 
(a) -1.3 volts (c) -4.7 volts 
(b) -3.7 volts (d) -6.3 volts 

To further automate the conversion, the comparator output can be applied to the 
input gates on the counter so that count pulses are inhibited as soon as the DAC 
voltage exceeds the input voltage. The count pulses can then be generated by two 
delay one-shots connected in a loop as shown in Fig. 6. 

DAC 

NEG 

FF FF FF 

0 0 0 

OS 

OS 

PULSER 

~ESET 
Figure 6 Counter Converter 



The action is both initiated and stopped by the push-button. When the button is 
depressed, it resets the counter. When it is released, it starts a pulse circulating 
around the delay line loop. The next time it is depressed, it will inhibit the delay 
line loop as well as resetting the counter. 

4. Connect the comparator feedback and delay one-shots to your converter as shown 
in Fig. 6. Set the delays for 1 microsecond each. Convert the following voltages: 

(a) -1.3 volts (c) -4.7 volts 
(b) -5.7 volts (d) -6.3 volts 

This, then, forms a complete converter. A single signal from the push-button starts 
the converter. The rest of the process is automatic. This type of converter is 
commonly called a counter converter. 

PART 4 THE CONTINUOUS CONVERTER 
The continuous converter is a variation of the counter converter, made by adding 
gates for down counting as well as up counting. The comparator controls both the 
up and down count gates, routing pulses into the up gates when the DAC voltage 
is too low, into the down gates when the DAC voltage is too high. 

DAC 

------~ 

Figure 7 Continuous Converter 

103 



104 

When the start signal is given, the count pulses are routed in this manner until the 
converter output goes to the same voltage as the input signal. Once it is locked on, 
the continuous converter will follow any changes in the input voltage, producing 
at all times an instantaneous reading of the corresponding analog value. 

5. Figure 7 shows a continuous converter, similar to a counter converter but with 
down count gates added. A synchronizer flip-flop has also been added to assure 
that the count enable signals do not change during the counting process. (Such 
changes could be caused either by noise on the input signal line or by fast feedback 
from the least significant counter bit, through the DAC, and through the comparator 
before a counting process has been completed.) Construct this converter and watch 
how it follows the input voltage as it is increased and decreased. 

(a) When the analog input is left at a constant value, the digital reading will 
tend to oscillate. Explain what causes this. 
(b) If the analog input exceeds the maximum range of the digital-to-analog 
converter, the counter will overflow to zero. Design and construct a circuit 
which eliminates this. 



••1' 
:i 

EXPERIMENT x~v 

ADVANCED STUDIES IN ANALOG=DiG~TAl 

CONVERS~ON 

PART 1 THE SUCCESSIVE APPROXIMATION CONVERTER 

In a typical monitoring and control system, the computer is required to measure and 
analyze analog inputs from a number of different sources. A separate analog-to-digital 
converter for each input would be quite costly. It is far less expensive to multiplex 
all of the signals into one ADC as illustrated in Figure 1. Each input signal is con
nected to the converter through a switch, either a relay or its semiconductor equiv
alent. The switches are closed one at a time, while the value of the corresponding 
input signal is measured by the ADC and the information is sent into the computer. 
Then the next switch is closed and corresponding value measured, etc. 

MULTIPLE 
ANALOG 
INPUTS 

I 
I 

{====:±::: 
~-----< 
~----' I 

I 
CONTROL 
LINES 

SINGLE 
ANALOG 
INPUT 

Figure 1 ADC with Multiplexed Inputs 

ADC 

In a multiplexed analog-to-digital conversion system, the ADC must measure each 
new voltage very quickly in order that all inputs can be sampled often enough to 
avoid losing information. If the converter were too slow, then any high frequency 
changes in the input signals would not be received by the computer. To find the value 
of each new signal as fast as possible, a successive approximation converter is used. 
This converter is similar to the ADCs in Experiment XIII but slightly more sophisti
cated. Figure 2 shows a simplified diagram of the basic elements - a DAC, a com
parator, a flip-flop register to drive the DAC and control circuitry with a pattern 
generator. The converter operates by repeatedly dividing the possible input voltage 
range in half ... each time determining one binary bit in the output. Each division, 
or each bit, requires a separate step. At the beginning of the process, the converter 
must be reset. Thus a 4-bit conversion requires four decision steps, plus one reset 
step, for a total of five steps, as described below. 

ANALOG 
SIGNAL 

DAC 

DAC BUFFER 

PATTERN 
GENERATOR 

Figure 2 Successive Approximation Converter 

105 



106 

Reset. The buffer is initially set to the number 1000 in order to test the most 
significant bit. This produces -4 volts at the DAC output. If the analog input is more 
negative than -4 volts, then the most significant bit must be a ONE. The comparator 
output will signify this by going to ground. If, on the other hand, the input is more 
positive than -4 volts, the most significant bit should be a ZERO. This is indicated 
by a negative comparator output. 

Step 1. The most significant bit is corrected by clearing the corresponding flip
flop if the comparator is negative, or by doing nothing if the comparator is at ground. 
The second bit is tested by setting it to a ONE, which produces either -2 or -6 volts, 
depending on the most significant bit. In either case the logic is the same as in the 
previous step. For example, assume that the most significant bit is a ZERO. The DAC 
output will be -2 volts. If the analog input is more positive than -2, then the second 
bit should be a ZERO and the comparator output will be negative. If the input is be
tween -2 and -4, the second bit should be a ONE, indicated by a comparator 
output at ground level. 

Step 2. The second bit is cleared or not, depending on the comparator. The third 
bit is tested by setting it to a ONE. 

Step 3. The third bit is cleared or not and the last bit is set to a ONE. 

Step 4. The last bit is cleared or not. 

The way in which the converter arrives at' different numbers is illustrated in Figure 3. 
This logic can, of course, be extended on to any number of bits . 

._.w 0000 <0001 ~ooot <ooto ooto 
oott <oot t 

OtOO 0100 <0101 <0101 
011 0 011 0 

0111 <0111 
1000 t 000 < 1001<1001 <1010 1010 

1011<1011 
1100 11 00 < 1101<::!:1101 

1t10 1110 
1111< 

111 1 

Figure 3 Operation of Successive Approximation Converter 

Figure 4 shows the detailed logic for the DAC, the DAC buffer, and the comparator. 
Notice the separate pulse inputs and how the inputs are gated to make the decisions 
described above. 



DAC 

NEG 

A B c D 

0 0 0 0 

STEP 3 

Figure 4 DAC, Buffer, and Comparator for the Successive Approximation Converter 

RESET 
SHIFT 

E 

RESET 

SHIFT 

PULSER PULSER 

~ESET 

0 

1-----1'> STEP 1 STEP 3 

~------+-------1--__,.,,STEP 4 

F G 

0 0 

Figure 5 Control for the Successive Approximation Converter 

107 



108 

Figure 5 shows the control and the three flip-flop pattern generator which produce 
the reset and step pulse5. The flip-flops are connected as a switched tail ring counter 
which can generate six states: 

000 
100 
110 
111 
011 
001 

Only the first five of these are used. At reset time the flip-flops are forced to 000. 
The first shift pulse will set flip-flop E, generating the step 1 pulse. The second shift 
will set flip-flop F, generating the step 2 pulse, etc. 

1. Construct and test the successive approximation converter as illustrated in 
Figures 4 and 5. Adjust the amplifier gain as in Experiment XI 11. 

(a) Converting to -3.2 volts, record the readings from the comparator and 
all of the flip-flops at the end of each step. 
(b) Repeat (a), converting to -3.8 volts. 
(c) Figure 6 shows how the control pulses can be generated automatically. 
The reset pulse, which should be a long pulse to override any extraneous step 
pulses, comes from a delay one-shot. Replace the push buttons with this 
automatic control. Set the clock for 500 kc and the delay one-shot for 1 micro
second. Observe the movement of the DAC output on an oscilloscope. With 
the input at -3.2 volts, observe and sketch the DAC waveform. 
(d) With the input at -3.8 volts, observe and sketch the DAC waveform. 

SHIFT 

E' F 

Figure 6 Automatic Generation of Control Pulses 

PART 2 COMPARISON OF ANALOG-TO-DIGITAL 
CONVERTERS 

For digital-to-analog conversion, you have studied only one technique. It is fast and 
straight forward .. It completes its conversion in one step, does not require any 
elaborate control circuitry, and is suitable for most applications. 



~ 

I 

7 

6 

4 

VOLTAGE 
(-VOLTS) 

I 

J 

/ 

v 

,,,... r-.. 

" v 

'kl 

' DAC 

J I I I 
I'-. _,..READ OUT 

'" '""' f\ 

\ --
/ ' 

\ v '-
" v i-.-....-

OUTPUT 
,..._ 

~ 

2 

0 

7 

6 

4 

I 

~STEP 

VOLTAGE 
(-VOLTS) 

I 

I 

,I 

/ 

-~ 
DAC 

IJ OUTPUT-.e> 

--~r--

' " 

(a) Counter Converter 

'-
\ ,,,. -i--. 

/ANALOG 
<Ji INPUT 

/ ~ 

' / ......, 

" / "r- _.,,,. 
\READ OUT 

--.~c.... 

2 I 

0 

7 

6 

5 

4 

3 

2 

0 

vi STEP 

VOLTAGE 
(-VOLTS) 

I 

I 

I 

/ 

I 

,,..- ,.....~ 

/ 

-DAC 
OUTPUT 
I I I I 

\ II I I 
READ OUT 

(b) Continuous Converter 

!'... 

" \ 
,ANALOG 

I'. ............. - I~ INPUT 
v "' ' v 

' / .... ,_. 
....... _ 

i--" 

(c) Successive Approximation Converter 

./' 

./ 

,,,.,.. 

Figure 7 Converter Response to a Transient Signal 

v 

l!J --
, ANALOG 

INPUT 

'r-.. 

TIME 
(STEPS) 

"'"-

' 

r--

~ 

TIME 
(STEPS) 

~ 

TIME 
(STEPS) 

109 



110 

Analog-to-digital converters, on the other hand, are awkward, requiring a large number 
of steps and special control. This awkwardness has led to the design of many types 
of converters, each with its own advantages and disadvantages. 

The counter converter requires the least circuitry. Hence it is the most economical, 
and it is used whenever speed is not critical, as in digital voltmeters. It is alsci used 
in peak reading meters. If the input analog signal dips and rises, the number in the 
counter will increase whenever the input voltage exceeds the DAC signal. Thus the 
counter will automatically go to the peak input voltage. The disadvantage of the 
counter type is, of course, its slowness. It may take up to 2N steps (2N-l counting 
steps and 1 reset) to convert an N-bit number. For a 4-bit converter, this means only 
16 steps, but for a 10-bit converter, it means 1,024. 

The continuous converter, once it locks onto the input signal, is the fastest type of 
ADC, completing a new conversion at every step. Thus it is very good for recording 
all the details of the analog signal. However, if the input changes faster than the 
converter can follow, the converter will fall behind until after the input signal has 
slowed down. The maximum rate of change that the converter can follow is: 

where 

and 

volts per microsecond 

V =voltage range of the converter (in volts) 
N = number of bits 

6. t =time between count pulses (in microseconds) 

The successive approximation converter, a I though it is the most expensive of the 
three, is the most widely used because it performs well over a wide range of appli
cations. It is considerably faster than the counter converter, performing a complete 
N-bit conversion in N + 1 steps (including the reset). Its advantage over the con
tinuous converter is that each conversion is independent of the previous one. Thus, 
it cannot fall behind a fast signal. For these reasons, the successive approximation 
converter can measure a new voltage, such as one just switched in by a multiplexer, 
and find the correct result quicker than either of the other two types of converters. 

2. Figure 7 (a, b, c) shows a transient signal and how each type of converter would 
respond if such a transient were applied at its input. This figure also shows how the 
DAC outputs would appear and dots indicate when readouts would be available. 
Continue the DAC curves to the end of the transient, then connect the readout dots 
to show how the input signal would be reconstructed from the digitized values. 

(a) Which converter produces the best description of the high frequency por
tion of the transient? 
(b) Of the low frequency portion? 

PART 3 ACCURACY 

Since the end result of conversion is to represent a given value in different terms, 
it is important to know how accurate the representation is. There are three types of 
errors which can occur in a A-D conversion: quantization error, noise, and DC or 
switching-point error. 



Quantization error occurs in analog-to-digital converters only. It is simply a part of 
the conversion process. In fact, whenever any continuous signal is quantized, there 
is a quantization error which is equal in magnitude to the smallest quantum. For 
example, if a yardstick, with marks every eighth inch, is used to measure a table, 
there will be a possible error of 1/s inch. Similarly, in a binary coded analog-to-digital 
converter, the least-significant bit is the smallest increment of measure and the 
largest possible increment of error. In most systems the error is centered so that it 
is between + l/2 a bit and _112 a bit. (Written as ±112 LSB.) 

A digital-to-analog converter accepts only as many bits as it can convert. For this 
reason, the accuracy measurements are made only on that set of discrete points 
which are used in the converter. Thus, in a DAC there is no quantization error. 
Figure 8 shows output versus input plots for both ADCs and DACs. Notice how the 
ADC plot forms a staircase while the DAC plot is a set of discrete points lying along 
a straight line. 

OUTPUT 
111 t 

1000 

0000-+-""r-...-r-T-.--.-........,;,.-,.-.-"T'"""~--......-.1NPUT 

OV 4V 7.5V 

(a) ADC 

OUTPUT 

-7.5V -----------'j' 

-4 v ------~ 
Ii) I 

I 
I 
I 
I 
I 

e I 
I 
I 
I 
I 

ov-+-~ ........ --..~...-.......i.--.--.-~ ........ --....-.l-6l> INPUT 
0000 1000 1111 

(b) DAC 

Figure 8 Output vs. Input 

111 



112 

Noise in a converter is due to incomplete filtering of the 60 cycle power or pickup 
from external high frequency signals. In a digital-to-analog converter, noise appears 
as a variation in the output signal. In an analog-to-digital converter, it affects the 
switching point (the point at which the converter stops producing one output and 
starts producing the next higher or next lower number). It causes the switching 
point to vary slightly so that the same input voltage will not always produce the 
same output number. 

3. To study the effects of noise, construct the circuit of Figure 9. Set the input to 
1111. For DAC measurements, monitor the output of the amplifier with an oscillo
scope. For ADC measurements, watch the output of the comparator indicator. (It is 
not necessary to construct the entire ADC converter since only the DAC and the 
comparator affect the accuracy. The final results for any type of converter can be 
predicted by watching the comparator output.) 

(a) Observe the DAC output and measure the noise on the oscilloscope. 
(The noise will be predominantly 60 cycles and approximately 10 millivolts 
in amplitude.) 
(b) To see the effect of the noise on an analog-to-digital converter, adjust 
the input to -7.5 volts then vary the voltage slowly. There will be a narr.ow 
region over which the indicator appears to be only dimly lit. This is when the 
comparator is switching back and forth because of the noise. If you were 
running the comparator output into a flip-flop buffer, the results would some
times read 1111 and sometimes 1110. 
(c) To study the effects of pick-up, set the clock to its maximum frequency. 
Then take a long lead from the clock output and wrap it seven or eight times 
around the lead between the DAC output and the comparator input. Again 
measure the noise from the DAC output as in part (a). This time the frequency 
of the noise will be near 2 megacycles. 
(d) With the clock lead still wrapped around the DAC output lead, vary the 
analog voltage as in part (b) and notice the flickering of the indicator. If 
possible, measure the input voltage range through which the flickering occurs. 

DAC 

NEG 

Figure 9 DAC-ADC Test Set-up 

DC or switching point errors are due to (1) resistors in the divider network not being 
quite the correct value, (2) the impedance of the transistor switches which drive the 
divider network not being exactly zero when closed or exactly infinite when open, 
and (3) variations in µof the transistors. These factors are constant over a relatively 
short period of time, although they vary with time, temperature changes, humidity, 
power fluctuations, etc. They cause slight errors in the average DAC output, and they 
cause the switching point of an ADC to occur at a slightly incorrect voltage. 



4. The DC error of the converter can be measured using the circuit of Figure 9. 
Since the noise will be considerably smaller than the DC error, it may be neglected. 

(a) Adjust the gain on the DAC amplifier so that 1000 produces -4 volts. 
(b) Measure the DAC output voltage for each of the 16 possible input num
bers. Compare these with the theoretical voltage and determine which is the 
largest error and where it occurs. 
(c) To measure the switching point accuracy of the ADCs, set the toggle 
switches to 0000. Then, starting at 0 volts, increase the analog input until 
the indicator goes off (or is blinking). This is the point where the ADC would 
stop converting to the number 0000 and begin converting to 0001. Now set 
the toggle switches to 0001 and look for the switching point between 0001 
and 0010. Continue this procedure to 1111. Prepare an output versus input 
plot. Draw the ideal curve (a straight line from the origin to- 7.5 volts, 1111), 
then draw an ideal curve which takes quantization error into account (a stair
case with the switching points at the odd quarter volts). What is the maximum 
ADC error with respect to the ideal curve? What is the maximum ADC error 
with respect to the ideal staircase? 
(d) The accuracy of DAC is usually quoted as a percentage of the full scale. 
Considering full scale as 8 volts, what is the accuracy of your DAC? 
(e) The accuracy of an ADC is usua I ly quoted as a percentage of the fu 11 

scale ±1/2 LSB. With full scale again 8 volts, what is the accuracy of your ADC? 

113 



114 

EXPER~MENT XV 

COMPUTER DES~GN 

PART 1 COMPUTER ELEMENTS 

A digital computer has four main elements. You have studied each of them separately: 
the arithmetic element, the memory, the control logic, and the input-output. Now you 
will have a chance to put them together and make a complete digital computer. 

CONTROL 

MEMORY 

ARITHMETIC 
ELEMENT 

Figure 1 Basic Elements of a Computer 

INPUT
OUTPUT 

The arithmetic element is the heart of the computer where calculations are per
formed. It consists primarily of flip-flops and gates, although pulse amplifiers and 
other circuits are sometimes used to provide high driving power. 

The memory element stores data not being operated upon by the arithmetic 
element and it may also store instructions. In a typical computer system, the 
memory consists of magnetic core stacks, often augmented by mass storage devices 
such as magnetic tape systems, drums, or discs. In the Logic Laboratory, the 
memory consists entirely of flip-flops. Although the unit cost of flip-flops is much 
higher than bits in a core memory or mass storage device, the overall cost of a small 
flip-flop memory such as we will construct is considerably less, and can be readily 
made of standard digital modules. 

The need for the input-output section is fairly obvious. A computer would be useless 
unless it could receive the raw data and make known the results of its computation. 
The computer may communicate with a human operator by means of a typewriter, 
cathode ray tube, plotter, microphone and loudspeaker, meters, console lights, 
switches and buttons, or special contrivances which simulate other devices (such 
as a simulated airplane cockpit). 'A computer can exchange information with other 
computers via magnetic tape and punched paper tape. Through analog-digital con
verters, the computer can receive information from external instruments such as 
flow meters, pressure meters, or thermometers, and send out control signals to 
motors, valves, relays, displays, etc. 

The control element is usually the most sophisticated. It must generate a series ot 
pulses, at the correct times and in the right sequence, to control all of the com-



puter's operations. It also initiates the operation when the console start button is 
depressed and halts the computer when the calculation is complete. 

PART 2 GENERAL VERSUS SPECIAL- PURPOSE COMPUTERS 

Computers are usually divided into two classes. The general-purpose computer, 
which can be programmed without hardware modifications to perform a nearly un
limited number of different tasks, and the special-purpose computer, which can per
form at most a few variations on one task. 

In the earliest general-purpose computers, programming flexibility was made pos
sible by bringing the control points out to terminals on patchboard, similar to those 
in the Logi.c Laboratory. The user would then patch various timing and control ele
ments together to generate the proper sequence of operations for the calculation. 
Today, however, general purpose computers are almost universally of the stored 
program type. Each possible operation (such as add, shift, check for zero) is repre
sented by a binary code. To prepare a program, the appropriate codes are stored in 
sequential locations in memory. When the computer is in operation, these instruc
tions are brought one by one from the memory element into the control element. 
Here the binary number is decoded and pulses are sent out to perform the desired 
operation. In order to handle these instructions, the general-purpose computer must 
have a large memory and a fairly complex control. 

In the special-purpose computer, on the other hand, the sequence of operations is 
always the same. This sequence can be governed by a fixed pattern generator in the 
control circuitry, thus making the control much smaller than that of a general-purpose 
computer. The memory, which is used only for data storage, may also be small. If 
only a little data is required, the large scale memory may be eliminated entirely 
and the remaining requirements filled with a combined memory-arithmetic element. 

The advantage of the general-purpose computer is its flexibility. Almost all of the 
largest computers are general-purpose, so that they can be shared by many users 
working on different problems. Even if there is only one calculation to be done, the 
general-purpose computer runs less chance of becoming obsolete, since the pro
gram can always be changed to solve a different problem. 

The special-purpose computer is faster than the general-purpose computer since it 
does not need to bring instructions from memory and interpret them. But, its primary 
advantage is in systems requiring little or no data storage. Here the large scale 
memory element can be replaced with a combined memory-arithmetic element for 
a considerable cost saving. Thus, special-purpose computers tend to be used for 
smaller tasks, such as simple process control, automatic testing of manufactured 
articles, and converting information from instruments into engineering units. 

The computer which you will build in this experiment is a special-purpose computer 
designed to calculate square roots. This is the type used in instrumentation systems 
to convert to engineering units. The one difference between your computer and in
strumentation computers is that your input will be manual, whereas the instrumen
tation system usually receives the input directly from the measuring device. 

PART 3 THE ALGORITHM 

The methods used to do a calculation by hand are not necessarily the most efficient 

115 



116 

techniques to use on a computer. The usual method of finding a square root is to 
try a number, see if it is too large or small, then try another number, and so forth. 
The square root computer however, will use as its basis an old theorem from num
ber theory; namely, that the sum of the first N odd integers (1+3 + 5 + ... + [2N- l]) 
is N2. For example: 

1 
3 
5 
7 

---·--

16 = 42 

or in binary: 1 
11 

101 
111 

10000 = 10010 

To find the square root, this process is simply reversed. Start with the number for 
which the root is to be found and subtract successive odd integers until the result 
goes to zero. Counting the number of subtractions gives the square root. 

For example: 16 10000 
-1 first subtraction -1 
15 1ITI 
-3 second subtraction -11 
T2 lTilo 
-5 third subtraction -101 
7 -lTI 
-7 fourth subtraction -111 
0 the square root is 4 --0 

(or 100) 

Since some input numbers will not be perfect squares (that is, they will not go 
exactly to zero), it is easiest to continue subtraction for all numbers until the result 
is negative (or overflows). In this case, the root is one less than the total number of 
subtractions performed. For example (arrows mean overflow): 

13 1101 16 10000 17 10001 
-1 -1 -1 -1 -1 -1 
12 1100 f5 lITT 16 10000 

-3 -11 -3 -11 -3 -11 
9 1001 12 1100 TI lTIIT 

-5 -101 -5 -101 -5 -101 
4 100 7 -m 8 1000 

-7 -111 -7 -111 -7 -111 
-3 ~11100 0 --0 1 --1 

-9 -1001 -9 -1001 
----

-9 ~110110 -8 ~110111 

root 3 11 4 100 4 100 

PART 4 HARDWARE 

The hardware for finding a square root by the odd integer method is quite easy to 
construct. There must be a square register to hold the input number and perform the 
subtractions. The odd integers may be generated with a counter where the count 
pulses enter the second bit instead of the least significant bit. 



'I 

J 

The control circuitry must initially set the odd integer register to 1 and read the 
input number into the square register. It then generates pulses to subtract, check 
for overflow, and, if no overflow is generated, advance to the next odd integer and 
repeat the cycle. When the overflow is detected, the computer halts. 

Since the more significant bits of the odd integer register are receiving one pulse 
per subtraction, these flip-flops will also keep track of the number of subtractions 
and generate the root. This is done simply by reading the contents of all odd integer 
register flip-flops except the least significant bit. 

Figure 2 shows a block diagram of the computer hardware. The square register re
ceives the input number and also functions as the subtractor. The odd integer register 
generates both the odd integers and the roots. It consists of two parts. The most 
significant bits are a counter. The least significant bit is always a ONE, since it is 
only used for generating odd integers and all odd integers end in a ONE. 

INPUT SWITCHES ~READ 

- SQUARE REGISTER 
_SUBTRACT 

, r- I~ -
- RESET 
-

COUNT 

u ~ 
ODD INTEGER REGISTER 

COUNTER 
ONE 

OUTPUT INDICATORS 

Figure 2 Block Diagram 

OVER FLOW 
) (HALT 

I I t 

CONTROL 

t START 

PULSER 

LJ 
T 

How does this block diagram relate to the general block diagram of a computer shown 
in Figure 1? The square register and odd integer register form a combined arithmetic
memory element. They receive raw data from the toggle switches and make known 
the result via the indicator lights. The control element is the same· here as in Figure 1. 

How large should the arithmetic element be? The square register must be long 
enough to contain the largest input number. The counting section of the odd integer 
register must be as long as the largest possible square root, which is half as long 
as the square. 

Sketching this out, as in Figure 3, shows some simplifications that can be made. 
The least significant bit of the odd integer register can be eliminated. Since it. is 
always a ONE, it can be replaced with a permanently wired signal. The more signifi
cant bits of the square register do not receive inputs from the odd integer counter, 
so all they need is borrow propagate logic. This is really the same as a down counter 
- so the more significant bits of the subtractor are merely a down counter. The logic 
is thus reduced to that of Figure 4. 

117 



118 

INPUT SWITCHES READ 
~ 

-
.._ SQUARE REGISTER 

SUBTRACT 

,... ' ~ 

j ~ 

RESET 
-

COUNT 

I • • ODD INTEGER REGISTER 
COUNTER 

ONE 

OUTPUT INDICATORS 

Figure 3 Simplified Block Diagram 

INPUT SWITCHES _READ 
-

SQUARE REGISTER -
DOWN COUNTER I SUBTRACTOR _SUBTRACT 

-, I'> 
' a ' - RESET 

-
COUNT 

I. q ' , 
ODD INTEGER REGISTER 

COUNTER (ONE) 

OUTPUT INDICATORS 

Figure 4 Final Simplified Block Diagram 

OVER FLOW 
) (HALT 

I ' 

CONTROL 

i START 

PULSER 

LJ 
T 

OVER FLOW 
) (HALT 

I ' 

CONTROL 

t START 

PULSER 

L J 
T 

The subtractor can be implemented with a two-step process similar to that used in 
the two-step adder of Experiment VI II. The first step is a half-subtract, the second 
step is a borrow which will ripple down through the more significant bits. 

Figure 5 shows the logic diagram for the arithmetic-memory element. The up-counter 
and down-counter are quite familiar. Notice the similarity between subtractor logic 
and the adder logic of Figure 2 in Experiment VIII. 

1. The borrow equation in the subtractor is: 

where 
Borrow out= (B + (S E9 C) ) (C + (S EB C)') 

B =Borrow in 

S =Square register bit (minuend) 

C =Counter bit (subtrahend) 



,__. 
,__. 
l.O 

OVERFLOW 

., ..... ;., :~:.,,:.;.:=--oc.:~'' '"·""'".{;;,.,, .. _._; •.••• ,,.,4,_,, · .. :. ·::,.,.;,,, ..... ~:: .. ,,,"'"·""~c.,;:.. :: ... :: .. ,~: •• •,;:;,,,:;,;«.:2::;;;,,"',.,.,;;~3,,;;,;,.,, .• ,..,;~c.ici::-;,;:.,'4;~;~~-'~"''~''-i&i"1i.t\ .. tfi~;i@~~~:~,i~l-'<i\¥;l~i,;~4f~4;1i!i;,1ii\~t~--

HALF SUBTRACT 

BORROW 

8 0UT BouT 
SI 

0 

BOUT : (8 +(S(f)C))(C+(S@C)') 
co Cl C2 

COUNT 

Figure 5 Arithmetic-Memory Element 



120 

Draw a subtractor truth table and, from this, derive an equation for the borrow out. 
Prove the equation above is the same as the one you derived. 

Figure 6 shows the arithmetic and memory logic with the 1-0 added. The lights on the 
subtractor register and the read-in gates on the odd integer counter are for test 
purposes only. The lights on the odd integer counter show the output. 

The read-in to the subtractor presents something of a problem. Normally, the read-in 
is performed by clearing and then conditionally reading ONEs from the toggle 
switches. In this case, however, reading a ONE would generate a borrow in the 
down counter circuitry. 

In the up counter of Experiment XII, a similar problem occurred. Clearing a flip-flop 
to ZERO generated a carry. This was overcome by using a long clear pulse, then 
conditionally reading the ONEs, which did not generate carries. 

To avoid errors due to unwanted borrows, the down counter must use the opposite 
procedure. All flip-flops are set to the ONE state with a long pulse that overrides the 
borrows. Then, the read-in conditionally clears the flip-flops to ZERO. Thus, a closed 
switch corresponds to a binary ZERO. 

Figure 7 shows the control element. When the pushbutton is depressed, a ground 
signal is generated which resets the counter and square register. When the reset 
signal goes negative, it reads ZEROs into the subtractor and enters a pulse into the 
delay loop. This pulse generates the half-subtract and borrow, then checks for over
flow. If the overflow has not arrived, it sends a pulse to the odd integer counter and 
again circulates around the loop. There is a pulse amplifier on the half-subtract line 
and an extra diode gate on the read line because of the large load that these pulses 
must drive. 

2. Calculate the load which must be driven by: 
(a) The pulser 
(b) The gate which drives the read square line 
(c) The gate which drives the read counter line 
(d) The output of Dl 
(e) The pulse amplifier 
(f) The output of D2 
(g) The output of D4 

3. The setting for each delay unit must allow all the necessary action to be com
pleted before the next pulse occurs. For example, D3 must be set for a long enough 
time that the borrow signal can propagate through all the stages of the down counter, 
set the overflow flip-flop, and disable the DCD gate on 04. This requires three flip
flop transition times plus one DCD gate setup time for a total of 640 nanoseconds. 

Maximum Delay Through Any Circuit 
Diode Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 nanoseconds 
Flip-Flop and DCD Gate ...................................... 80 nanoseconds 
Pulse Amplifier and DCD Gate ................................. 50 nanoseconds 
DCD Gate Set-up Time ....................................... 400 nanoseconds 

Minimum Delay Through All Circuits ls Zero 

Table 1 Circuit Delay Table 



....... 
N 
....... 

I 

St 

0 

~u 

~~~~~~~~~~~~~~~~-+-~~~~~~~~~~~~~~~~~~~~~~~~---J~~~~~~~~~~-+~~~~~~~~--=-SU=-=BTRACT 

BORROW
.---~-+~1--~~~~~~~~~~~~~~-t--~-t--~~-,,-~-+--1~~~~~~~~~~~~~~~-+~-+~~~~~--1r-+---t--~~~~~1--~~~-

8ouT

I

co

0

8ouT

0

I I

54

RESET

READ
SQUARE

~~

~~~~~~~~~~~~~~~~~~~+-~~~~-,~~~~~~~~~~~~~~~~~~~-+~~~~~~~~---41--C~O~UNTER 

Ct C2 

0 
~NT 

RESET 

Figure 6 Arithmetic-Memory Element with 10 Logic 



,...... 
N 
N 

~-----------t>RESET 

READ SQUARE 

READ COUNTER 

PULSER 

= 
T 
START 

= 

= 

D1 

= 

HALF SUBTRACT 

COUNT 

02 D3 04 

= 
CONTINUE 

ov 

0 

RESET---~ 

Figure 7 Control 



Using the information from Table 1, calculate the minimum settings for: 
(a) 01 
(b) 02 
(c) 04 

4. Construct and test the square root computer. Since there are over 100 wires 
involved, connections should be made carefully and the system should be checked 
at each step of the way. If such a procedure is not followed, you may discovE?r that 
the complete system does not work and wonder which of the 100 wires is connected 
wrong. 

(a) Wire the odd integer counter. Use the temporary manual control 
logic shown in Figure 8 to test the counter for correct operation . 

.------1> RESET .-----1>HALF SUBTRACT .--------1> COUNT 

PULSER 

T 

READ SQUARE BORROW 

READ COUNTER 

PULSER PULSER 

T T 

Figure 8 Temporary Manual Control 

(b) Connect the five square register flip-flops to the indicators. Then 
wire the reset and read lines. Using the temporary manual control signals, 
as illustrated in Figure 8, check that the square flip-flops read in correctly. 
(c) Complete all of the square register logic, and wire in the remaining 
signals from the temporary manual control logic. Reset. This should set 
the square register to 11111; the odd integer counter to 000, and the 
effective odd integer to 0001. Test that the borrow logic operates correctly 
by repeatedly subtracting 1. Then read test numbers into the odd integer 
register and test that the complete subtract logic operates correctly. 
(d) Remove the manual control circuitry and wire the automatic control 
circuitry. Do not connect the overflow line. Start the delay loop into opera
tion with the pushbutton and test with the oscilloscope that it is operating 
correctly. Set each delay for one microsecond. 
(e) Connect the overflow line and your computer is complete. Test its 
operation. (If you find a difficulty that was not previously encountered, dis
connect the delay units, then wire them in one at a time, starting with 01. 
111 this way you can check each step of the operation.) 

5. What is the square root of the following numbers? 
(a) 10000 (c) 01101 
(b) 11010 (d) 11111 

123 



124 

PART 5 SPECIAL PROBLEMS 

6. Combine your kit with one of your neighbor's. Using the circuits available in two 
laboratories, design and construct an expanded square root computer which will 
handle input numbers up to 10 bits. Be sure to calculate the loads presented to each 
of the control pulses and include pulse amplifiers wherever they are necessary. 
Calculate the minimum allowable time for the delay settings as described in ques
tion 3 and set your delay units for these minimum values. 

7. Remembering that forming a square is the inverse of forming a square root arTd 
that subtraction is the inverse of addition, modify the square root computer logic so 
that it will calculate squares. Change only the 1-0 connections and the control circuitry. 



APPEND~X A 

LOADU\llG RULES 

When interconnecting basic circuits to perform logical operations, it is important to 
keep the load on each circuit within its driving ability. The R series loading rules are 
simple because all inputs draw current from the same direction and because most 
circuits are built around diode and DCD gates. 

The diode gate input draws 1 ma (milliampere) and the output drives 20 ma less 
2 ma for the load resistor. Indicator inputs and pulser outputs are the same as 
diode gates. 

The DCD gates draw 2 ma at the level inputs and 3 ma at the pulse inputs. When 
two DCD gates are driving both sides of the same flip-flop, the load on both pulse 
inputs totals only 4 ma. When the level inputs are tied together as in a complement 
configuration, the total input load is only 3 ma, as shown in the figures below. 

3ma 4ma 3ma 6ma 

4ma 

FF FF FF FF FF 

A flip-flop is two diode gates cross-connected. The direct set and clear terminals 
draw 1 ma. The output wi II drive 20 ma less 2 ma for the load resistor permanently 
connected in the flip-flop and less 1 ma for driving the opposite side of the flip-flop, 
less the load of internal DCD gate connections. 

The outputs of the delay one-shot, pulser and comparator are also similar to the 
diode gate. Each output can drive 20 ma less 2 ma for the load resistor. The 
outputs of the clock and pulse amplifier are more powerful. Each output can drive 
73 ma less an internal load of 3 ma. The tables below summarize the loading. 

Inputs Load 

Diode (including all 1 
direct inputs) 

DAC 1 

DCD Level 2 

DCD Pulse 3 

Special Load (above 10 
pulser) 

125 



Outputs Load Driving Ability 

Diode Gate 2 18 

Pulser 2 18 

Delay One-Shot 2 18 

Comparator 2 18 

Flip-Flop (upper) 7 13 

Flip-Flop (lower) 9 11 

Clock 3 70 

Pulse Amplifier 3 70 

126 



APPENDLX B 

ADD~NG WAVEFORMS 

To observe what is happening at one circuit point relative to another, the two 
waveforms may be added together by connecting each point to the oscilloscope 
probe through a 10 kohm resistor (see Figure 1). 

0 
OSCILLOSCOPE 

Figure 1 

Th'e individual waveforms should be observed separately, as the combined waveform 
may otherwise be difficult to interpret. Figure 2 shows some examples. In Figure 2(a) 
two flip-flops are operating at the same frequency but flip-flop B is slightly delayed 
with respect to A. Figure 2(b) shows the same situation except that the flip-flop out
puts are out of phase. Figure 2(c) shows two flip-flops in a counter. Flip-flop A is the 
lesser significant bit. Since flip-flop A drives flip-flop B, there is a slight delay between 
the switching of the two circuits, resulting in small patterns similar to those seen 
in 2(a) and 2(b). 

FFA 

FFB 

FFA PLUS 
FFB 

FFA 

FFB 

FFA PLUS 
FFB 

Figure 2(al 

Figure 2 (bl 

127 



128 

FFA 

"' \._____ __ / 
FFA PLUS 

FFB 

Figure 2\c) 



APPENDIX C 
SYMBOLS 

Gate Gate with Inputs Gate with Inputs 
and Outputs 

D 
Diode-Capacitor-Diode 

Gate 
(DCD) 

=D 
NAN D for -3v Assertion 
NOR for Ground Assertion 

~ _INDICATOR 
--tV'C-1NVERSION 

Wired AND for -3v Assertion 
Wired OR for Ground Assertion 

Gate with Inputs and Outputs 
When Output Has Inversion 

NOR for -3v Assertion 
NANO for Ground Assertion 

(If ground is defined as the "true" or asserted level, this symbol means 
"wired OR." If -3v is the asserted level, the symbol means "wired AND.") 

Level Transition or Pulse, 
Ground-Going for Assertion 

----<C> 

Level, -3v for Assertion 

$ 

Level, Ground for Assertion 

0 

Clamped 
~ Load 

Resistor 

1 Ground 

FF Flip-Flop 

0 

c;;J Pulser 
with 

Pushbutton 

I 

PULSER 

Pulser 

- I - - I with 

' Dial 

-== 

129 



130 

APPEND~X D 

Fl~P CH~P MODULES ~N THE lOG~C 

LABORATORY 
The Logic Laboratory may be expanded with Digital's full line of FLIP CHIP modules 
as described in the Digital FLIP CHIP Module Catalog. Because the workbook is a 
teaching aid while the module catalog is a designer's tool, there are some differences 
in the descriptions which should be noted. 

The flip-flop, as used in the workbook, has all terminals ground for assertion. In the 
catalog, flip-flop outputs are negative for assertion. Thus, there are pin connection 
differences as shown in Figure 1. 

c o---j11 

E 

GATED SET 
F 

H 

DIRECT SET K 

ONE OUTPUT L 

FF 

ZERO OUTPUT M 0 

DIRECT CLEAR N 

p 

R 

s 
GATED T 
CLEAR 

u 

v 

co--j11 

Workbook Symbol 

DIRECT CLEAR 

PULSE E 
INPUT 

LEVEL 
INPUT F 

GATED 
CLEAR 

H 

0 M 
OUTPUT 

0 

FF 

L 1 
OUTPUT 

K o---DL-~--~-'Gl---0 N DIRECT SET 

R 

T 

v 

Catalog Symbol 

GATED 
SET 

Figure 1 R201 Flip-Flop 

The gate circuits, Rl21 and R122, used in the workbook have internal connections 
to 2-ma clamped load resistors. 

Figure 2 shows the symbol for the R121 in workbook notation and catalog notation. 
The R122 is designed for teaching applications and does not have a catalog equivalent. 



D 
E 

c o--j11 F 

;~ H 
J 

:~ 
K 

~~ 
L 

M 

-= 
N 

;~ 
p 

R 
s 

-= 
o---j11 T 

u 

v 

Workbook Symbol Catalog Symbol 

Figure 2 R121 Diode Gate 

The pulser and clock circuits in the 7000 Power Supply Input Panel utilize FLIP 
CHIP modules Type W501 and R401 respectively. Connections, as shown in Figure 3, 
are made on the panel. These modules may be removed and used separately as 
described in the module catalog. 

ENABLE 
GATE 
INPUT 

s 
CLOCK 

T 
r--

u 
-15~--, 

S T :~ 
INTEGRATING:-~--~ ~---~ 

hMA LOMA 
1 
I 
I 
I 

r--~ 
POTENTIOMETER : <' 

L-t~; 
I 
I 
I 

R 

: OUTPUT 
F CIRCUIT! R _ 

L_ - SCHMITT j_v TRIGGER 

LOWER LEVEL 
THRESHOLD 

CONTROL 

-2.25V 

L -~ UPPER LEVEL 
I THRESHOLD 

K 1_J CONTROL 

-0.75V 

7000 Panel Connections Shown with Dotted Lines 

Figure 3 7000 Panel Connections 

131 



132 

For additional information: 

Logic Laboratory Workbook 

General 

FLIP CHIP Modules Catalog 

General 

R Series 
W Series 
B Series 

A Series 
Hardware 

Pages 

1-12 
19-44 

1-18, 
186-190 
1-18 
64-66 
84-91, 
99-106 
126-127 
136-140 



APPEND~X E 

NOTES TO THE INSTRUCTOR 

WORKBOOK OUTLINE 

Because the aim of this workbook is to complement a lecture course in digital logic, 
the material is presented here in as nearly as possible the same format and sequence 
as in the leading textbooks. However, since these textbooks vary considerably in 
their approach, particularly during the later sections, the instructor will probably 
wish to reorder the experiments to match more closely his chosen textbook. 

As outlined in the preface, the workbook contains a set of seven core experiments. 
These consist of Experiments I, 111, IV, V, VII I, XI, and XV together with the reading 
material from Parts 1 of VI and VII. Altogether, these cover number systems, 
circuits, Boolean algebra, addition, subtraction, control and practical considerations, 
the last experiment being a summary. For a shorter course, a good breaking point is 
just before the last two core experiments (XI and XV) which go into the more 
practica I matters. 

The remaining experiments are fairly flexible. Experiments XII I and XIV covering 
analog-digital conversion should be performed in that order. Experiments IX and X 
require a knowledge of BCD, either from the text or from Experiment II. The others 
are independent. With these restrictions, the eight non-core experiments can easily 
be moved around each other and to any later position among the core experiments. 

The following notes and the Textbook-Workbook Cross Reference Table may be of 
assistance to the instructor in matching the experiments to his present course outline: 

EXPERIMENTS I and II can accompany the introductory sections of the textbook 
where the details of circuitry have not yet been discussed. The student wires the 
circuits by rote and studies the properties of number systems. He also learns the 
advantages of the binary system and that a single circuit can be used for many 
functions. Parts 1 through 4 of Experiment I introduce the logic kit and the notation 
that will be used later on. Part 5 of Experiment I and all of Experiment II may be 
omitted or moved to a later section in the course if circuitry has been introduced in 
time to advance directly to Experiment Ill. 

EXPERIMENTS Ill through VI introduce the circuits and the logic conventions that 
will be used later on. In Experiment 111 (gates) questions 4 through 7 may be omitted 
to shorten the experiment. Part 5 may be omitted if the student is not to do any 
design work. Part 6 (grounding) should definitely be included. 

In Experiment IV, any of questions 5 through 11 may be omitted. 

Experiment V introduces the dual polarity logic notation and the concept of wired 
gates, both of which are used throughout the later parts of the book. The questions 
at the end of this experiment give the student his first chance to truly design 
circuits to match Boolean expressions. 

This is continued on into Part 1 of Experiment VI which applies the dual polarity 
logic convention to toggle switches and flip-flop outputs. The remaining parts of 
Experiment VI go into more details of Boolean equations and explain the notations 
that will be used later on. In the later chapters Boolean equations are given, but not 

133 



134 

WORKBOOK~EXTBOOK CROSS REFERENCE TABLE 
Text Books 

-·---- -- -·- -- - - --··--T-- ----- -- --··---· ·- --·-
Bartee, Thomas C. Chu, Yaohan, Digital Ledley, Robert S. Phister, Montgomery Jr. Smith, Charles V. L., 

Workbook 
Experiments 

Numbers 

Circuits 

II 
Ill 

IV 

v 
Boolean Algebra 

VI 

VII 

Digital Computer Computer Design Funda· Digital Computer Logical Design of Digital Electronic Digital 
Fundamentals, mentals, McGraw·Hill and Control Engi- Computers, John Wiley & Computers, McGraw-

McGraw-Hill Book Book Company, Inc., neering, McGraw- Sons, Inc., pages - Hill Book Company, 
Company, Inc., 1960, pages- Hill Book Company, Inc., 1959, pages-
196g,_pag~ - -·----- ___ ln~:.o_.!_!l_6_Q.Jl~~--=- -------··-=--c..=-= .. cc..· 1-===-=:-=--~·-o=--

29-47 --1-15-- 1-69 16-29 1-29 
- 46-51 5-3-:=57-- ·90:::-92 242-246~-~-~1·-_~29~-< 

54-59 
61-63 
65-69 
73-81 

81-104 

113-138 

147-162 
169-172 

--160-=163 
168-179 
194-196 
200-202 
i94-i96 __ _ 

645-676 

_________ ____, 

21-25 85-101 

185-194 
368-378 

676-679 25-27 107-125 

182-183 320-360 
30-60 148-178 

--- -~--·-

122-132 
378-383 112-142 179-217 

242..:.257 
363-371 485-506 276-278 218-226 

VIII, 162-169 18-24 --+--258-266 _ _,_ ____ __, 

172-180 383-391 519- 523 278-285 226- 233 
1x -rno-1·-8~7--+----53--:-5-9 ___ -505-_5_1_0-·· 266-27~6---I----·-··-·---

Adders 

___ ------- ·---1-- ---- -
I Code . X 257-287 

Conversion 
----:xT 

Control 99-106 

stressed, so the instructor may ask questions along these lines, or not, as he wishes. 
If he does not wish to stress Boolean equations, it would be sufficient for the student 
to simply read Part 1 of Experiment VI. 

EXPERIMENTS VII, VIII and iX cover addition and subtraction. Part 1 of Experiment 
VI I introduces the addition equations. Fol lowing the approach of most textbooks, 
serial addition and subtraction are introduced next. However, if time is limited, it 
is suggested that students skip directly from Part 1 of Experiment VI I into Experi
ment VI 11 which describes parallel adders and subtractors. The two-step parallel 
adder is the basic circuit described here, and it is used extensively in subsequent 
chapters. The later parts of Experiment VI 11 go into positive and negative numbers 
and may be covered or not as time allows. 

Experiment IX covers BCD addition and subtraction following the techniques learned 
from the two-step parallel binary adder. For this experiment, the student should 
have some background in BCD codes either from Experiment 11 or from the text. 
The final two questions are quite elaborate, and could be done either in place of 
the experiment or as an end-of-term, special project. 

EXPERIMENT X (code conversion) stands somewhat by itself. It requires a knowledge 
of the dual polarity logic convention and Part 2 requires a knowledge of BCD codes. 
This experiment could be used either to study the implementation of Boolean 
expressions or to accompany a lecture series on input-output. The last problem is 
extensive enough to be done in place of the experiment or as a special project at the 
end of the term. 



EXPERIMENT XI (control circuitry) introduces two new circuits, the pulse amplifier 
and the delay one-shot. Thus, it provides background material for the remaining 
four experiments as .well as a description of control circuitry. Question 11,- which 
requires a knowledge of the two-step parallel adder, would be suitable for an end-of
term project. The rest of the experiment requires only knowledge of the dual polarity 
logic convention and so may be moved to any position after Experiment VI. 

EXPERIMENT XII is devoted primarily to practical considerations- the problems 
of simultaneous signals and synchronization of random signals. It must be preceded 
by Experiment VI Part 1 and Experiment XI. Although some references turn up in 
subsequent sections, this can be omitted with a few comments from the instructor. 
The last problem is suitable for a special project. 

Experiments XI I, XI 11 and XIV go into more detail than most of the textbooks, hence 
they might be used during the lecture series on large scale memory elements or any 
other topic that is not treated in the workbook. 

EXPERIMENTS Xiii and XIV cover the techniques of digital-to-analog and analog-to
digital conversion. These require Experiment XI as background. They are not referred 
to in the last chapter so they may be omitted. If the section is to be shortened, it is 
recommended that Parts 1, 2 and 3 of Experiment XIII and Part 1 of Experiment XIV 
be retained. 

EXPERIMENT XV is a summary of the material learned in the core experiments 
(binary numbers, circuits, gating, 2-step parallel addition, and control). In this ex
periment the student combines his knowledge to actually construct a special-purpose 
computer. It is, of course, a small computer so the introductory sections of this chap
ter explain how this computer fits in with the overall picture of computers today. This 
is designed as an end-of-term project with the questions preceding the actual experi
ment, so that the student can, if desited, hand in his final report at the time he comes 
in to do the experiment. For the student who wishes to tackle independent design 
work, this could be replaced by any of the special project questions from the earlier 
experiments, or by either of the last two problems in this experiment. 

THE LOGIC LABORATORY IN A PROGRAMMING OR 
SURVEY COURSE 

The Logic Laboratory may also be used in courses where only a few laboratory 
periods are devoted to computer hardware. In this case the student may construct 
counters and adders to learn the binary number system and gain a feeling for the 
operation of computer circuits. The following sections are recommended: 

Session I 
Session II 
Session 111 

Experiment I 
Experiment 11 
Read Experiment VI I, Part 1 and perform Experiment VI 11, 
Parts 1-4 with help from the instructor on question 8. 

NOTATION 

The logic symbols used here are designed for simplicity in drawing and emphasis 
on the practical considerations involved in using real physical circuits. Thus, the 
logical (or one bit time) delay necessary for the correct operation of parallel logic is 
indicated on the symbols with an X. The gate functions and flip-flops states are unde
fined on the panel symbols so that the student will learn their various functions by 
writing in the definitions from the workbook. 

135 



136 

For simplicity the symbols use a single polarity logic system, with ground as the 
assertion level and ground-going pulses. (Users of Digital's Flip-Chip Modules will 
notice that this differs from the standard Digital dual polarity convention, as de
tailed in the Appendix D.) Where inversion (or inhibit) is required by the circuitry, 
the symbol adopted by the American Standards Association is employed - a small 
circle. Beginning with Chapter V, the student learns to define his own polarity con
vention with solid and hollow diamonds, thereby applying De Morgan's law at each 
step of the logic. 

EXPERIMENTAL EQUIPMENT 

THE LOGIC LABORATORY. The experiments in this workbook use the Logic Labora
tory manufactured by Digital Equipment Corporation, Maynard, Massachusetts. There 
are three general equipment configurations and innumerable variations in between 
these. The quantity, model number and type of equipm.ent included in the general 
configurations is: 

STANDARD LOGIC LABORATORY 

(Suitable for Experiments 1-X except for some optional questions.* Provides 30 hours 
of laboratory study. Covers the basic principles of digital logic.) 

1 H901 Module Mounting Panel 

1 H902 Indicator- Switch Panel 

1 W052 Indicator Driver 

6 R201 Flip-Flops 

3 Rl21 Quadruple NOR Gates 

1 Rl22 Quadruple NANO Gate 

4 911-2" Box of 2" Patch Cords 

5 911-4" Box of 4" Patch Cords 

2 911-8" Box of 8" Patch Cords 

1 911-16" Box of 16" Patch Cords 

1 7000 Power Supply and Signal Generator Panel (with Modules) 

1 4913 Mounting Rack 

ADVANCED LOGIC LABORATORY 

(Suitable for Experiments I-XI I and XV. Provides 39 or more hours of laboratory study. 
Covers the basic principles of digital logic and practical considerations.) 

1 

1 H901 

3 R201 

1 Rl21 

Standard Logic Laboratory 

Module Mounting Panel 

Flip-Flops 

Quadruple NOR Gate 

*Specifically, these are Exp. VI 11, Q5; Exp. IX, Qll and Ql2; and Exp. X, Q4, all of 
which require an extra Rl21 gate module. Also the serial adder of Experiment VI I 
should be reduced to a two-bit version with the standard Logic Laboratory. 



2 R302 Dual Delay One-Shots 

1 R602 Dual Pulse Amplifier 

1 911-4" Box of 4" Patch Cords 

1 911-8" Box of 8" Patch Cords 

1 911-16" Box of 16" Patch Cords 

1 911-32" Box of 32" Patch Cords 

ADVANCED LOGIC LABORATORY WITH A-D 

(Suitable for all experiments. Provides 45 or more hours of laboratory study. 
Covers same material as Advanced Logic Laboratory plus analog-digital conversion 
techniques.) 

1 Advanced Logic Laboratory 

1 H903 Analog-Digital Conversion Panel (with modules) 

OSCILLOSCOPE. The logical operation of the circuits is studied by using the push
button or dial as an input and observing the outputs on the indicator lights. This 
provides simultaneous monitoring of all the important points in the circuitry at the 
end of each logical step. 

To study the electrical operation of the circuits, the clock is used to provide high 
frequency input signals and the output is monitored on an oscilloscope. An oscillo
scope with a single trace, AC coupled input and a bandwith of 5 megacycles is suit
able for observing the various timing relationships and actions that are performed 
by the circuits. However, a higher frequency oscilloscope is recommended if avail
able, since it will give minimum distortion to the actual shape of the waveforms 
and allow more precise measurement of the delay times. 

Since there are many component parts in a digital circuit, it is frequently necessary 
to display more than one waveform. Here a dual trace plug-in is useful, if avail
able. If not, the waveforms may be observed simultaneously by simply adding them 
through two lOK resistors as described in Appendix B. 

COMPONENTS. Four potentiometers are included on the indicator-switch panel 
to provide variable resistances. In a few questions the student is asked to connect 
an external capacitor or resistor to the circuit. In this case the component lead can 
be bent over in a V-shape and inserted in the stacking input of the miniature 
banana jack. 

137 






