
7/10/69

A FORM.AL DEFINITION OF nm SCAN ALGORITHM OF THE TRAC T-64 LANGUAGE

G. E. Whitney, Western Electric
C. N. Mooers, Rockford Research

~ Princeton, .N. J.
Institute Inc. 1 Cambridge, Mass.

1. INTRODUCTION

This paper presents a formal definition of the scan algorithm of the TRACt

language. The definition does not extend co a complete for the

language since the definition of an evaluator for is not given.

This paper provides a from which a complete pro-

cessor could be constructed.

1.1 Background of the

TRAC language was deve for interactive text or string processing. · Its

basic structure is tha.t :it can be lemented on sma11 as well as large ·

The report for the Additional explan-

a.tory information is found in [2]. TR,<\,C has certain features not

found in many other because of .a relationship between the

. scanning of text of a and tion of an expression once

it has been successfully parsed. The essence of this relationship is given

in figure. 1.

---~

c~ ~
{ f'--_~ '""

provides a parse for · provides execution
the innerrnos t for a· p:re-,parsed
expression. expression.

Fig. 1. Simplified state cf a TRAC language processor.

The scanner proceeds from left to t. Prior to evaluation only a suffi-

cient portion of the source text is processed to complete the parsing of

the innermost l.on. At this t control :i.s to the eval-

and service mark of the Rockford Research titute

is called a rather a p since
source progr:un and data nre lntenn.lxed on the

uator. When evaluation is complete, side !C~ffects if any will have been re-

corded, the source text will have been altered, and control is transferred

back to the scanner. From this point the process repeats. Inherent within

this processor is the ability to execute functions recursively. The des-

cription of the scan algorithm must a means of indicating a branch

to the evaluator and subsequent return to the scanner. The scanner itself

must provide ,the ability not to parse the source text but also

late the text as necessary in for expression evaluation. 'l'h;is

outer syntax as defined in [3].

1.2 An example of the TRAC language processor.

Figure 2 shows the relationship between two major·strings which provide

the environme.nt for the TRAC processor. The neutral/active string is regarded

the tapes is indicated by the scan pointer.

neutral ___ ;>- O active
~c;.o(---string s <'(f----stiing-

scan
pointer

Fig. 2. The schema for the instantaneous description utilized
by the TR.4..C language processor.

The following example is intended to make the body of the paper more read-

able for those not familiar with [1]. In its initial configuration, the

neutral/active string of the TRAC processor contains -10/f(ps,/l(rs)) I-. n a

In this configuration, -l is the left end marker for the neutral string;
n

a marks the boundary between the neutral and active string; 1 is the 'a"

right end marker for the active s 0 is called the scan

~ primitive functions will be enclosed by II(and) •

3

The ion of the processor is as follows:

(1) Rcad·-str

The innermost tive exprcssio~ of the initial is found by

movement of the scan '· . which is the read-

st or read~in function. This exp~ession is then evaluated and causes

an st to be read from the ter or other device.

Let the. str 1 the apostrophe '

:i.s led the metacharacte ies th12 te.rmi.nation of the input

s As a result of evaluac {f is ced by the

input st omitted.

) Add:

In its evaluation, it is replaced

by i value 5 and 7.

Now the innermost) where ps stands for the print-

the value

12. Since there are no f~1.nct.i.or:.s trJ te» the processor reloads

itself with the initial

1.3 Goals in the def init:fon of "'

The goal of definition o:t ts. to

mathematical :i.a tlv~: eta enents which describe the language.

Its main value is in ma.n to n:;a.n com1nunl..cation about the. and semantics

of a language. This comrrmnica t :ton th .for and users

of the Since i.t is d to achieve the desired with

natural } ether spec 1 are defined and used as vehicles

for definition. This was done for [4]. Because of the nature of

grammart~ has been

Garf; has been.

t this presentation to show the between the pre-

4

sent definition and that in [l]. The present definition is intended

to be precise, compact, complete and t of the space and speed ·

performance of specific imph~mentations of the algorithm.

t A type-T grammar is an Uon of a grammar. This adaptation allows
a type-T rule when invoked to preserve a terminal string during the evalu-
ation of the rule even when thi.s terminal is in the rule
by means of a contcxt-f ree ca are defined in full in
section 3. below.

The following conventions about , .structure languages will be assumed
throughout. For a as its any set of strings, then:

}* = {a u {c} where £ is the emp stringj and where
' {r.}+ "" ,..i i+1 ... = .u '" where ""t~ and a

J.=1

* Let string be an element :in the u terrrdnal} • A type-0
grammar has rules of the form string-211 • For a type-1 grammar
the length of string-2 must not be le.ss than the length of string-1. In
type-2 (i.e. gra.mr:iar rules,1 is restricted to a cat-
egory.

If string-2 -> st
:instantaneous

result "string-I string-I~ s
s and is denoted by:

s string-2 s

the application of this rule to
s string-~' produces the

This operation is called a generation

string-4 string-3 ,

where =:> is a transitive relation between a pair of instantaneous descrip
tions. A generation sequence of n-1 steps between n instantaneous descrip
(ID' s) is denoted by ID-1 ~ ID-n where~ indicates the intervening seq-
uence of steps. A grammar a as the set of all terminal
strings which can be produced applying its rules when the initial con-
figuration for each generation sequence is the sent~ symbol.

A model based on a type-0 grammar was used in (5,6] to define a variety
of context-free parsers. A form of type-0 grammar was used in [7} to par
tially define the TRAC scan algorithm. Complete definitions of the 0,1
and 2 grammar types can be found :tn [8] on page 15. A type-·O grammar
model is equivalent to the of Floyd as reported in [9]
section II.B, Introduction and subsection 5.

1.4 Methodology of formal definition.

A definition consists of a statementi or sequence of statements, written

in a meta-language about some ect defined. A non-trivial meta-

language must be capable·of defining an infinite class of objects. The

meta-language must include the elements of the ect language as a proper

subs~t of its elements and must ether at the meta level which

, otherwise definition

would not be possible. A definition 1112,y t a recursive reference to

5

an object , but this recursion must be within a level of defin-

ition and not across levels of defini~ion. In the process of definition, there

arises natural a of. levels, with the higher level standing

'in a meta below it. The highest meta-

must be natural This paper will utilize three levels.

The first or top.level is ~1ich is used to define the second level

gra:mrnars. These

rules between successive con-

of the t:iV(~ The set of these rules con-

titute scan level of definition.

1.5 rocedural rithn::.s$

The term will be u:sed to denotEc 2 con.dit:iona1 statement and an associated

action which is to be wht':n the; condition is satisfied.. Such a set

of rules is usual tested for satisfaction of the conditions in a fixed se-

quence. This case appears in 3 under the title 11 Sequentia1 Evaluation".

Departures from this fixed sequence could be provided fer by the use of a goto

cause a branch to a rule which is not the next one in the However a

a set of rule.s tv11ie,h can be evaluated in

any sequence. Conceptual such a set of rules evaluated in parallel

t.o see if the tions more one rule are satis This case appears

in figure 3 under the title If more than one rule can

be satisfied for any of the sys then the set of rules is .!12!!.-

determ:i.nistic. On the other hand~ if there is at most one rule which can be

satisfied for every tion then the sec of rules is

If an thm of n rules is both istic and non-procedural,

then the can be ordered in n! di sequences all of which are logic-

when for satisfaction in a sequence.

Parallel Evaluation

action1

~ a~~=~~~:=J ~

I • ..
"

..
" •

J
action

n

11 action

Notation for a rule.

Sequential Evaluation-
~ -- ·--
~;actionl~

.,
"

I
i

I
l

r ~ 1
~action2 H
. !_, - -----' I

!
..
..
..

"' I · A
'1./ I

/~. L ,_ -- --· J
~ac~onn __ ._y_

v
error halt

Fig. 3. Alternative methods of rule evaluation for non-procedural algorithms.
a.

7

1.6 Relationship between a non-proce4ural ·algorithm and a grammar.

In order to explain the relationship between a non-procedural algorithm and

a grammar it is necessary to introduce the concept of an abst.ract ma~hine

having a finite control and a f.ixed number of auxiliary storage tapes. This

abstract machine has a set of rules which define its operation and comprise

its finite control. If the machine has oply one state, each rule when eval-

uated returns control back to the one controlling state. From the discussion

given in 1.5 above, it should be evident that a .Q!lg_-state machine is equiva-

· lent to a non-procedural algorithm.

A conventional grammar is equivalent to a one-state machine which defines a

mapping from a fixed initial configuration into a set of terminal strings.

This fixed initial configuration consists of a distinguished category called

the sentence symbol. An extended _grammar will be defined as a .grammar for

which the initial configuration is not fixe~ but is allowed to range over a

a set of strings composed of a scan pointer and terminals. Processing will be

understood to halt when no rule can be applied. An extended grammar then de-

fines a mapping from one set of terminal strings into another. Depending on

the grarmnar, this mapping may be either a partial or a total function.

If the rules of a non-procedural algorithm define a mapping from one set of

strings to another, then for every such algorithm there exists a directly equ-

ivalent extended grammar. For the remainder of the paper, the term grammar

is to be understood in the more specific sense of extended grammar.

1.7 Definition problems peculiar to the TRAC class of languages •

. Since by definition TRAC language accepts all strings as legal input:r a

grammar defining merely le.gal strings is trivial. A more complex grammar

could define a parse of the entire input script without considering the effects

which interactive execution has in altering the script. However, such a

' parse would actually be erroneous for many non-trivial cases. These factors

8

indicate that a context-free grammar of TRAC language scripts would not be a

meaningful definitional Also, direct extensions of context-free nota'-

tion such as table grammars [10] are excluded and for the same reasons. The

stages of redefinition of the TRAC language to be carried out in this paper

aregiven in figure 3. l'he ocntext-free are defined first. These

categories are then utilized to provide a n<?n-procedural restatement of the

original algorithm (Section 2.). This is sub(';equently restated as

a type-T grammar ion 4.)~ and as a decision table and its flow chart

(Section 6.).

1.8 The form of context-free rules.

Each of these categories is defin.ed by a .££._mposite rule of the form:

category ::= expression-1

::= expression-n •

A composite rule which has n. rightside expressions is said to be composed of

n Rrimitive rules each of the form:

category ::= expression-i •

Each £.XEression-i is a string consisting either of the symbol e or of an arb-
~

itrary number of either categories or terminals. The symbol £ stands for

the string of length zero , also the emp~ string. Each category ap-

pearing within a rule has the form:

< A.)

where ~ stands for any string composed of letters and blanks •

...
1.9 Terminals and undefined

With no loss of , the ca ~ <letter>, <format character>

and deli.miter> will remain undefined. They are to be understood

AL GORI
11IE PROCEDURAL RULES)

(B

IN DECI~3IO~i ~I',ABI~E

Fig. 4. Outline cf the scan

(

1
l
j

.1

I

' ,,,._,_,-,;;__, .. <.I><-"-'--"':-~·--- ,;.i:__~J,.,;,,,,_ ,;,-_,;•'""''"''~"'"';.,,"-'.,~--....-,...~-,,-·~--·--~~-···•'"';•fo«'_:...._{,,-;,"~'--... .;-• ..,-,.,,.. .. :-f.-.!,..,.~~""·~"-'"""""'·--"--~~'"''""•--"'~-~i'"'~"'"""'~~'W~ .. ,~w,.,,r,~.""'-"""'>;;'----"","""-'<'...__, __ ,,. ... __ ._~_~---

. '

as disjoint each· which has as its range a set of terminals.

The category the ten numeri.c

egory <letter)

case· or both) as terndnals~ The

stood to include rl a.nu.

as terminals. The cat-

(either upper case or lower

:i.s t<.) be under-

and other ·characters 9

10

but (and) and ll. There are ·two additional

terminals but which are necessary for

complete in terminals are -·I and 1- which n a

are the }E;ft

for the active s called metacharacter

is nnt a context-free since it :ls "' term:ln.ator of :an input string

and e.s such does not appear ::h1 of the scan algorithm.

1.10 Rules which define the context-free categories.

(idling procedure) : : :.: II $fl)

(text character> : : = ti

: := ~

: :=

: : =

: : ;g: deliml.t-er>

(balanced string) : := €

: ~~ (

··-.. ~ (balanced string)

: :=

>: :=

(unbalanced string) : := (

(unbalanced part) .. ""' .. (

::=
"' t} ""'"

~ "" -- part)

<sc

active s-t

1 .
The

Such a

The

(1) A ca

{

\
!

2. A context-fres

alters the contents

.r;:ppears :l.n

11

1t

neutral s and the

tI1ar.kers is

both

of n

away from

12

(2) When the rightside of a tive :rule is a term:lnal~ then the terminal

appears in the away from it.

(3) When a primitive rule cons:lsts lif of a category on the leftside

and a category on the sidej then the rule is :represented by a single

directed arc two

· · . (4) When the t.ive rule .is a s of more than one symbol

then the arc will to a h:~;rh,ontal bra<::e which spans the rep-

:resentation of that ide

stand for themselves but ca

leading out the the actaa.1

· (5) If a category is defined

as a b:token line.

l:n this representat1.cm terminals

are aced a circle with an arc

is defined.

this ls given

I

Case

(1)

t is an

5.

' >
' '

the

13

C:at
to parse the suffix of the

t1eutral. st:r

\
;

utilized
to parse the prefix of the

active string

' \

14

\

(
,,_~ \
Q() 1
\ '\. I
,.::J.I -:::r

15

2.0 A

In [l.st rules.

The

thm 5.s

is

'!'?: of u different actions

2s the first char-

16

2.5 If the three char6cters to then a:re

6.1 If the of a is & and if the character to the right

af the # is neither #

2.6.2 If the two

2.7

2.8 If the character

neutral s

is to

l If the leftwnrd

with the returned and

either a

it succeeds er fails.

to the of

pare.rt to the t
,.,,
U i.s

2., 9 If the charac:te:r on lh""' 0

moved to the t af this <text cha

[j is to the of if.

character to

ii •

the

th\S: f o three alternatives

then the

for the ac.tive

stri.ng) D)

tions 0 to left of this <value).

r to (or -~ then the inter
n

for function

D) with·

on whether

succeeds~ positioned

t val

to Z or (!:he close

character.>~ then 0 is

17

t This rule conforms to 1 processors

to

l or t then the ac a:re ted~ and

tioned on its lef
+ ·t Sin.ce, th_e

trnor-de.red

statement. The rules

t:tons for the f ul

conditions for the success

s:Lnce

in the envi:roruuent

tr~is

In all of these pas-

sfblr~.

sta.tistiedl

characteristics of the

thirteen

the notation to De emp

that the

IS 7G Schema for

is as in

Notation:

T the set of terminals.

c

v

is the.set of context-free

given in 3.2

ic.atio:n that the

which

""T u Ci.

appear in

:ls

The precise

figure. 7. This

:f.s in {

18

ed as a set of

The purpose of this section is to define and

i:n the gramrnar rules of 4. These

w:i th the verbal

l to 2.

Unless stated otherwise

.for has lified.

'I"he

is defined for a rule as the set of

rule~ Thus 1 requires

be restricted to those categories

the same

rule :ls not in

0 stand alone.

For a

ll(}t

be

of a wh,ich is

In

by usual method

purpose~ the

The

f ·~
I., .1

{ list } Js

19

l win

so that the restriction does not

j,.c.a.tion

tem •.

a

to carry out the

cf a

For this

20

The set of terminals th.t! undefined

terminal J .. 11 1 ii 9 ~z:nd the end

E "' { :it) <user delimiter>

< I) !

Tree Format: 0 ()

·(2) Strati.fied Format~ for

0

Fig. 8. Example of the par:.1e the lef ts::Lde a type-T ..

3.3 The computation s

A context-free is SC that its sequence will ter-

min.ate. A gram.mar as here does not define a

but :rather te se-

quence. As in ttve is denoted

and a sequence of s

l.f -> is a :rule then is a l s which results

frorn the

is a

an.

,;;.ppea:rs on both

' a'
< J

* 9@ P1~ese:rvatio11 of a tf2'.t'''IrLinal

the of three

The :i.ts th.r~~e stibs

22

Main

This subs carries out the rule in accordance

with the restriction that 0 the terminal a category is pre-

subs ;.:::; '-~'{>- ~

u

d

the tracks of the. next :rule.

though

of seve:ra1 letters, it

the

A is required in the case

where a category spans more than a terminal character. A.-i example of

this case is given in figure (on the first category track

marks the beginning of the span" and that > on the third category marks

the end of the span. The once for each term-

in string it to hand-

ling parsing trees a SU!lli~ary of track

utilization. In this each ir;f th<'1' terminals within span of the

category (z) is marked s under each z are

preserved

Ca.

3.6 Case of the empty string.

In the context-free grammar given in 1.10 above, cases occur where for

* some category <x>, <x> => £. In this case there would be no place on the

tape to write <x> over £, since £ does not occupy a character position.

~ithout giving a formal prooft it is claimed that this case can be handled

without altering the definitional power of the system.

3.7 Notation for transfer to the evaluator.

The symbol -e-> will be used in place of -> to indicate that the execution

24

of a rule so designated will require a transfer of control temporarily to the

evaluator before the scan-algorithm can resume its processing. The categories

(value>, <success value> and (default value) will be allowed on the rightside

of a rule marked with -e->. These three categories will represent strings of

terminal symbols but the exact specification of what these strings contain lies

outside the scope of this paper. This 'information is dependent upon the for-

mal definition of the evaluator itself. However <success value) and

(default value> are mutually exclusi~e in the sense that one or the other

~equal £. With.this restriction in mind then the following holds:

(value) ~ (success value) (default value) •

t To see that this is true, note that <x> can appear only a finite number
of times on the rightside of the various context-free rules. The rule

.. · (x) : :== e can be deleted and its effect can be retained by adding a set
of parallel rules to the grammar. These new rules are added by using the
formula <x>=E and performing a uniform substitution throughout the right
sides of the other rule~ in the original grammar. This expanded grammar
will define the same language and the category <x> will no longer generate
e. The naming significance of <x> will be unaltered except with respect
to £. This same expansive substitution must also be performed with respect
to the tules of the type-T grammar.

.,

4.

4,1

4. "

4,,

~t.

<~"'

,t'>)

-~ f')

;;'I

F\JR THE SCAf~

r.1 l. ---->

)

i>:»>g~;;:;.-

n f1r:n:mat.
~ -·>

D i1 0<1!'~'1.->

,f
""'"'"'> \,

.f~

t~

a rw
L' . '"""'~~-'

n (t«~Xt 1,,,,J !:,ttr~- r; ac ,.,,,_-,;>,

and
l'.l!H;; inu.s

Se~~ !:note 2.s 3

OE' !'HE TRAC

a 11 f fl)

:n rJ #J
,,
rr)

tJ

i p \ u
"" t D ,,

Ii 0 {

t
••'/, ~r ~ni:~

m1 al ti-:!rn<:tJ:e

n d

a

Jd~

D,

;i
~,J

tatim1.

Ce,1nim:;;i:n ts

Re·~ird'..

t

J)el:t~t:e !;:~~'lr(~t:~~i~

.f~

the Ber1.se that

rcnn a

c.l.0$1.;; pareralt

f~:vr.1nat: ~!ha~tRt.c~te:r ~

t:i·ve ftn.t<~ti-t"fn

:1 rt~~~~;~, cr;1 f ~"::<.tkt~ t:it)l1. ~

i)!l ~

i);

ter@

N
Vt

26

5. EXAMPLE OF SCRIPT PROCESSING

In table I a sequence of eight instantaneous descriptions (ID's) are given

which illustrate configurations during the processing of a script in wh~ch both

input and output occur. The following'additional conventions are adopted:

}1 and 8:- are end markers for the input string.

is the metacharacter for the "read string11 function.

pi and rp- are the end markers for the printer string.

Table II gives a detailed explanation of the processing which occurs between

* each pair of instantaneous descriptions. E represents any string.

ID }'ieutrallactive string

* 1 ;it a~
2 :jOll(ps,ll(rs)) r; n a

3 -~f(ps;(rsD> > f:: n a

4 n1Cps:ouncrs)) > r;-_ ...
5 ::1 (ps, (rs 0))) r:-n a

6 ;tcps:>, CD>> ra
7 ;tm ra-
8 ;tat-a

Table I.Typical sequence of

Processing
Step

·sequence oft

ID1-=-:>ID2

ID2~ID3

IDFID1t

ID4~ID5

ID5->ID6

IDG""">ID7

ID1"*1Da

· type-0 rules

1

4,9,9,7,4,9,9

8.1

5,9,9

8.2

8.1

8.3

Input string Printer string

rf 11/(rs)) '), (' ~ pllp
no change no change

" n

rf>.<'lt "
no change "

rtrr
n

no change pt>,<tp
fl no change

instantaneo¥s descriptions (ID's).

Comments

Reinitialize.

Scan for close paren.

Execute active "read string" function.

Scan for close paren.

;Execute neutral "read string" function.

Execute active "print string" function.

Delete excess close paren entered into IDr+
._,by the activ~ "read string" function.
The next step is rule 4.1.

t The initial 4. has been deleted from each of the rule numbers
in this column.

Table II. Details of the processing steps utilized in the example of table I.

27

6. BOUNDED CAONTEXT ANALYSIS OF THE 'TYPE-T RULES

decision tahJ in

IV. This decision table ta

known as a bound •~cl
See [9] sections II.

re a scan over string of unbounded

Howeve.r such unbounded scans

the set wi.11 and hence

this

to :right

as Bn extended

actions appear in Table

o:ne possible flow ~-:ha.rt in

t for the rules 1n the decision table

and in t::ht::; notat:ton Knuth is
definitions.

Conditions
Rl R2 R3

:cl-
a

=(

=<fc)

=IJ =(

=fl =II =(

=II '/(

=IJ :/II
=fl r/(

=
'

=)

=<tc>
(fc)= (format character).
<tc)= (text character).

. Actions
'

1

2

3

4

5

6

6

6

7

8

9

Rl, R2 and R3 stand for the first, second and third
characters to the right of the scan pointer.

Table III. Extended entry decision table for bounded context rules
in horizontal format.

~ Definition Rule

1 Re-initialize to the idling procedure. 4.1

2 Remove the protecting parens from a (balanced string) and
place the scan pointer immediately to the right of that
(balanced string>; if the parse discovers (unbalanced string)
execute re-initialization. · 4.2

3

4

5

6

7

8

9

Delete unprotected (format character).

Mark the open paren of an active function and step past it
while deleting the #.

Mark the open paren of a neptra.1 function and step past it
while deleting the nu.
Step past a fr which is not followed by (or by #(.

Mark a comma as an argument separator and step past it.

Execute a leftward scan which will determine which of the
following actions is to be taken:

(a) Evaluate an active function.
(b) Evaluate a neutral function.
(c) Delete an excess close paren.

Step past a <text character).

Table IV. Details of actions referred to in Table III.

4.3

4.4

4.5

4.6

4.7

4.8.1
4.8.2
4.8.3

4.9

(f c) stands for

Bounded context

0
Flowe.hart

character)

"" [] R1 R2 R3

cnnte~:t decis-ion logic tu

29

30.

A P P E N D I X I

Relationship Between The Original Algorithm And The New Non-procedural Algorithm.

Let Rn (for n=l, ••• ,16) stand for the rules of [1]. Rl5 can be eliminated

by adding to the end of rules R3, R4, R7, R9, Rll 3 Rl2 and R13 the action

specified by Rl5. In [1] immediately following Rl5 is the following statement:

"Extra close pa.rens are ignored and are deleted
at the end of a proceduree 11

For the purpose of this let this statement be ref erred to as Rl6.

In [l] there is informally implied the presence, of an auxiliary pushdown

used to record and to retrieve to the neutral string. Note in par-

ticular the statements in R4~ R5~ and R8 about a pointer to the "current

location'8 and the statement in about a to the "current function"t.

This :tmplied auxiliary pushdown has been replaced by adding to the tape alph-

abet the marked characters (and ~ and ' . These marked characters can be

retriev~tl by a leftward scan. The relationship between the two algorithms

is summarized in Table V.

t It was not the intent of [l] to specify the details of implementation for
a TRAC language processor.

~Rule.:

2 .. 1

2 .. 2

2.3

2 .. 4

2.5

2.6

2.7

2.8

2.8.l

2.8.2

2.8.3

2 .. 9

Context

re-initialize

D<
O<format character)

0#(

0/JD(

Qll [not R5,R6]

o,
D>

c ... m
(••• 0)

-1 ••• m n
othe.:rwise

Old~ Relationt

Rl,R14 D

R.2 I.1

R3 D

R5 D

R6 D

R7 D

R4 D

R8,R10,Rl3 I.3

lUl D

R12 I.3

R16 I .. 2

R9 D

t D = there exists an obvious direct relation between
the ru h~s in two systems.

I.x = see this appendix at Section I.x for comments on this case.

Table V,. Relationsh1.p between new and rules.

31

I. l Balanced strings.

In R2 no provision was made for the case whe:re the expected close paren

isomitted. Rule 2:2.2 makes explicit provision for this situation.

1.2 Close paren.

In rule 2.8 a leftward scan for (or ~ or -I replaces the uretrieve pointer"
n

operation of R8. In the algorithm~ the case of -I .is hand
n

led by 2. 3 while in [1] it is defined by See also footnote to 2.8.3,

in this paper.

I.3 Neutral evaluation.

The. rule 2. 8. 2 is so stated as to take into account a special case which

occurs when a neutral function returns a (default value). This case

is covered in [1] by the non-procedural statement:

nThe overflow value (in this paper called (default value)) is
always treated as if it were produced by an active function."

This is found in [l] on page 218 under "Arithmetic Functions". The

new rule 2.8.2 provides for this case directly ..

· ACKNOWLEDGMENT· -· ····

The au~thdis' wish to thank Mr. P. Hess of Western Electric Co., Princeton for

his co_nstructive comments and in particular for pointing out an error in the

proces_.sing of II .in an earlier formulation of _the scan algorithm.

REFERENCES

[l] Mooers, C. N. TRAC, a procedure-describing language for the

reactive typewriter. Comm. ACM 9 (Mar. 1966),215-219.

(2] Bow some fundamental problems are treated in the design of

the TRAC language. Symbol Manipulation Languages and Techniques, ·

Bobrow (Ed.). North-Holland Pub. Co., Amsterdam, 1968, pp. 178-190.

[3] Wilkes, M. V.The outer and inner syntax of a programming language.

The Computer Journal 11 (Nov. 1968), 260-263.

[4] Bandat$ On the formal definition of PL/I. Proa. AFIPS 1968 SJCC, Vol 52,

pp~. 363.;..373.

[5] Griffiths, T. V. and Petrick, S. R. On the relative efficiencies of

[6]

context-free grammar recognizers. Corron. ACM 8 (May 1965), 289-300.

----. Top-down versus bottom-up analysis. Proa. IFIP Congress ,

Edinburgh, 1968, pp. B80-B85, in Software I.

[7] Williams, R. A concise notation for the TRAC scanning algorithm. SIGPLAN

Notices, ACM (July-Aug. 1968), 31-32.

[8] Hopcroft, J. E., and Ullman, J. D. Formal Languages and their Relation to

Automata. Addison-Wesley, Reading, Mass., 1969.

[9] Feldman, J., and Gries,. D. Translator writing systems. Corrm. ACM 1l

(Feb. 1968), 77~113.

[10] Whitney, G. E. An extended BNF for specifying the syntax of declarations.

Proo. AFIPS 1968 Vol 34.

