
Developer’s Reference Guide
for the Apple Network Server

 Apple Computer, Inc.
This manual is copyrighted by Apple or by Apple’s suppliers,
with all rights reserved. Under the copyright laws, this
manual may not be copied, in whole or in part, without the
written consent of Apple Computer, Inc. This exception does
not allow copies to be made for others, whether or not sold,
but all of the material purchased may be sold, given, or lent to
another person. Under the law, copying includes translating
into another language.

The Apple logo is a registered trademark of Apple Computer,
Inc. Use of the “keyboard” Apple logo (Option-Shift-K) for
commercial purposes without the prior written consent of
Apple may constitute trademark infringement and unfair
competition in violation of federal and state laws.

© Apple Computer, Inc., 1996
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, AppleTalk, APDA, LaserWriter, and
Macintosh are trademarks of Apple Computer, Inc., registered
in the United States and other countries.

Finder and Mac are trademarks of Apple Computer, Inc.

Adobe and PostScript are trademarks of Adobe Systems,
Incorporated or its subsidiaries and may be registered in
certain jurisdictions.

AIX and AIXwindows are registered trademarks of
International Business Machines Corporation and are being
used under license.

InfoExplorer, MicroChannel, PowerPC and RISC
System/6000 are trademarks of International Business
Machines Corporation.

Metrowerks is a a registered trademark of Metrowerks, Inc.
Codewarrior is a trademark of Metrowerks, Inc.

Motif is a trademark of Open Software Foundation, Inc.

Open Firmware is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of Novell, Inc., in the United
States and other countries, licensed exclusively through
X/Open Company, Ltd.

X Window System is a trademark of Massachusetts Institute of
Technology.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes
only and constitues neither an endorsement nor a
recommendation. Apple assumes no responsibility with
regard to the performance of these products.

Contents

Preface

Who should use this guide x

Conventions used in this guide x
The Courier font x
Italics xi
Command notation xii

For more information 16
APDA 16

Part I Developing Client/Server Applications for the Network
Server

1 Overview of Client/Server Applications for the Network Server

Client/Server applications available on the Network Server 5

Components of client/server applications 5
The Network Server component 6
The Macintosh client component 6

How client/server applications work 7

Developing a client/server application for the Network Server 10

Using protocols 11

2 Developing the Macintosh Client Component

Macintosh development environment 14

Using the PPC Browser to create a network connection 14
Filtering Servers in the PPC Browser 17

iv Contents

Authenticating a network connection 19

Using Apple events 19

Maintaining a network connection 20

Debugging 22

3 Developing the Network Server Component

Network Server development environments 22

Header files and libraries 22

Creating and maintaining a network connection 23

Using Apple events 24

Writing the main program loop 26

Setting up and starting the PPC daemon 26

Working with security and authorization 29

Debugging and troubleshooting 30

4 A Sample Application

The Macintosh client component 32

The Network Server component 34

Part II Developing Device Drivers

5 Overview of Changes for the Network Server

Hardware differences 44

Software differences 45

6 The Open Firmware Device Tree

System startup and device discovery 48
About the device tree 48

Access to the device tree 52
The path of a device 52
The handle attribute 53

Contents v

Open Firmware routines 53

The Open Firmware command-line interface 54
Displaying the device tree 55
Displaying device properties 55

7 Device Configuration With the Network Server

The Network Server device hierarchy 58

The ODM databases 59
The device ID field in the Predefined Devices database 60
Building package names for child devices 62
The handle attribute in the Predefined Attribute database 63

Writing configuration methods 64

8 Device I/O on the Network Server

Address translation on the Network Server 72

I/O controller types on the Network Server 73

I/O space on the Network Server 74

Programmed I/O to PCI devices 75

Direct memory access 76

Allocating contiguous physical memory 77

9 The Network Server Interrupt Subsystem

Overview of the interrupt subsystem 80

Interrupt levels 81

10 Implementing Graphics Input and 2D Graphics Device Drivers

Graphics environment 86
The X server 86
Mouse support 86

Other input device issues 87

vi Contents

Part III AppleTalk Programming Interfaces

11 AppleTalk Programming Interfaces

Datagram Delivery Protocol (DDP) 92
DDP library functions 93

The ddp_open function 94
The ddp_close function 94
The atpproto_open function 94
The adspproto_open function 95
DDP Error Codes 95

Routing Table Maintenance Protocol (RTMP) 96
RTMP library functions 96

AppleTalk Transaction Protocol 97
ATP library functions 98

The atp_open function 100
The atp_close function 100
The atp_sendreq function 100
The atp_getreq function 102
The atp_sendrsp function 103
The atp_getresp function 103
The atp_look function 104
The atp_abort function 104

Name Binding Protocol 104
NBP library functions 106

The nbp_parse_entity function 108
The nbp_make_entity function 108
The nbp_confirm function 109
The nbp_lookup function 109
The nbp_register function 110
The nbp_remove function 110

Printer Access Protocol 110
PAP Client library functions 111

The pap_open function 111
The pap_read function 111
The pap_read_ignore function 111
The pap_status function 112
The pap_write function 112
The pap_close function 112

AppleTalk Data Stream Protocol 113
ADSP Socket-like Interface 113

The ADSPaccept function 114
The ADSPbind function 115

Contents vii

The ADSPclose function 115
The ADSPconnect function 116
The ADSPfwdreset function 116
The ADSPgetpeername function 116
The ADSPgetsocketname function 117
The ADSPgetsockopt function 118
The ADSPrecv function 118
The ADSPsend function 119
The ADSPsetsockopt function 119
The at_adspopt structure 120
The ADSPsocket function 121
The ASYNCread function and the ASYNCread_complete function

121

ADSP TLI Interface 123

AppleTalk Session Protocol 125
ASP library functions 125

The SPAttention function 126
The SPCloseSession function 127
The SPCmdReply function 127
The SPCommand function 128
The SPConfigure function 129
The SPEnableSelect function 130
The SPGetParms function 130
The SPGetRemEntity function 131
The SPGetReply function 131
The SPGetRequest function 132
The SPGetSession function 133
The SPGetStatus function 134
The SPInit function 134
The SPLook function 135
The SPNewStatus function 135
The SPOpenSession function 136
The SPRegister function 137
The SPRemove function 137
The SPSetPid function 138
The SPWrite function 138
The SPWrtContinue function 140
The SPWrtReply function 141

viii Contents

Part IV Manual Pages

Command Reference—Section 1

atlookup 145

atprint 148

at_cho_prn 151

atstatus 153

eject 154

System Administrator’s Reference—Section 1M

appleping 155

appletalk 156

cmdshld 158

discusd 159

javelind 160

mandeld 161

ppcd 162

ppcd.conf 164

Programmer’s Reference—Section 3

OF_child 166

OF_getprop 167

OF_hdl2path 168

OF_nextprop 169

OF_parent 170

OF_path2hdl 171

OF_peer 172

pci_cfgrw 173

resolve_gc_offset 175

resolve_intr_level 177

resolve_pci_config_space 179

resolve_pci_io_space 180

resolve_pci_mem_space 182

Contents ix

Appendix Keyboard Positions 185

The Network Server Keyboard 186
Generating the third symbol for a key 186
Creating diacritical marks 187

Differences for international keyboards 187
Italian Keyboard 187
United Kingdom English Keyboard 188
Finnish/Swedish Keyboard 189
Norwegian Keyboard 189
Danish Keyboard 190
Belgian-French, Dutch, and Flemish Keyboards 190
German Keyboard 190

Index 192

Figures and Tables

Listing 6-1 An Open Firmware device tree for the Network Server
51

Figure 7-1 The Network Server device hierarchy 60

Figure 8-1 Block address translation 74

Figure 8-2 Address mapping 76

Figure A-1 The key positions for the Network Server 186

Preface

This guide describes the changes that affect developers for AIX and
AppleTalk services on the Network Server. This guide is not intended to
replace the existing IBM AIX documentation; it simply supplements the IBM
documentation and highlights the differences you may encounter when
developing for AIX for the Network Server.

Who should use this guide

Programmers should read this guide who

■ need to create Mac OS client applications for the Network Server

■ need to write or modify device drivers for the Network Server

■ use the AppleTalk API

■ need to consult the reference pages for new commands

Conventions used in this guide

This guide follows specific conventions to convey information more clearly.
For example, words that require special emphasis appear in specific fonts or
font styles. The following sections describe the conventions used in this guide.

The Courier font

Throughout this manual, words that appear on the screen or that you must type
exactly as shown are in the Courier font. For example, suppose you see this
instruction:

ii Preface

Type date on the command line and press RETURN.

The word date is in the Courier font to indicate that you must type it.

Suppose you then read this explanation:

After you press RETURN, information such as this appears on the screen:

Tues Oct 17 17:04:00 PDT 1989

In this case, Courier is used to represent the text that appears on the screen.

Italics

When shown in text, commands often contain “placeholder” words or
characters that appear in italics. These placeholders represent parts of a
command for which you substitute different values when you actually enter
the command. For example, in the sample command

cat file

the word file is a placeholder for the name of a file you want to display. If you
wanted to display the contents of a file named Elvis, you would issue the
cat command, typing the word Elvis in place of filename. In other words,
you would enter

cat Elvis

Sometimes italic placeholders are used in other contexts—for example, to
represent text that appears on the screen or to represent the value of a field in a
file. Here is a sample prompt that might appear on your screen:

Apple Computer, Inc. (hostname)

login:

In this prompt, the word hostname is a placeholder for the name of the
computer to which you can log in.

Preface iii

Command notation

This guide uses special notation to present commands. This notation is
designed to reflect the syntax of the command—that is, to indicate how to
enter the command so that its structure is legal and its parts are interpreted
properly.

Here is a description of each element of the command notation.

Element Description

command The command name. This element appears in the Courier
font, as explained earlier.

option A character or group of characters that modifies the
command. Most options have the form -option, where
option is a letter representing an option. Most commands
have one or more options.

argument A value that modifies the behavior of a command,
typically the name of an object that the command acts
upon.

[] Brackets used to enclose an optional item—that is, an item
that is not essential for execution of the command.

... Ellipsis points are used to indicate that you can enter the
argument preceding the ellipsis points more than once.

A typical command line comprises the command name, followed by options
and arguments. For example, the wc command would look like this:

wc [-c] [-l] [-w] file...

In this example, wc is the command, -c, -l, and -w are options of which
you can specify zero or more; file indicates that an argument consisting of a
filename is required; and the ellipsis points (...) indicate that you can specify
more than one filename argument. Brackets and ellipses are not to be typed.
Also, note that each command element is separated from the next element by a
space.

iv Preface

To count the words in a file named Priscilla, you would use the -w option
and replace the placeholder file with that filename. The command you enter
would look like this:

wc -w Priscilla

Section 1 Developing Client/Server Applications for the
Network Server Using Apple Protocols

This section describes how to develop client/server applications for the
Network Server, which let users access AIX on Network Servers from
Macintosh computers. These client/server applications have two components:
a Network Server component that acts as a server and a Macintosh component
that acts as a client. You develop the two components separately and provide
for the exchange of information between them.

This section details how these client/server applications work, how to develop
both the Macintosh and Network Server components, and how to exchange
messages between the two components.

This section is intended for programmers and developers who want to create
applications with a Macintosh interface and a Network Server back end.

To get the most out of this section, you need to understand program
development in both the Macintosh and AIX environments, and you need to be
familiar with Apple events.

This section presents sample routines using Metrowerks CodeWarrior and the
Macintosh Programmer’s Workshop (MPW). The sample code listings are
shown in C and C++.

This section contains the following chapters:

■ Chapter 1, “Overview of Client/Server Applications for the Network
Server,” describes how the components of client/server applications work
and discusses the protocols they use.

■ Chapter 2, “Developing the Macintosh Component,” describes how to
establish communication with the Network Server, use Apple events, and
send “heartbeat” Apple events.

■ Chapter 3, “Developing the Network Server Component,” covers include
files and libraries; it also describes using Apple events, sending heartbeat
Apple events, and debugging the Network Server component.

■ Chapter 4, “A Sample Application,” describes the files used in both the
Macintosh and Network Server components of the Status Demo AppleTalk
Services application, which is provided with AIX for the Network Server.

2 Developing Client/Server Applications for the Network Server

For more information

The following technical books, documents, and resources provide additional
information about developing client/server applications, AppleTalk and Apple
events, and UNIX and Macintosh programming.

■ Macintosh Programmer’s Workshop (MPW)

The MPW development environment includes these books: Macintosh
Programmer’s Workshop Development Environment, Volume 1;Macintosh
Programmer’s Workshop Development Environment, Volume 2; MPW
Pascal; Macintosh Programmer’s Workshop C. These books are available
from APDA. (See the ordering information later in this Preface.)

■ MacApp development environment

To use the MacApp development environment, consult the Programmer’s
Section to MacApp (available from APDA).

■ AIX development environment

For information about the available compilers, debuggers, and development
tools, see the AIX documentation.

■ AppleTalk networks

For additional information about Macintosh networking and
communication, see Inside AppleTalk, second edition. This technical
reference describes the AppleTalk network system protocols in detail.
Another good reference is AppleTalk Network System Overview, a technical
description of the AppleTalk network system. Both books are written and
produced by Apple Computer and published by Addison-Wesley Publishing
Company. You can obtain these books at your local bookstore and from
APDA.

APDA

APDA is Apple’s worldwide source for over three hundred development tools,
technical resources, training products, and information for anyone interested in
developing applications on Apple platforms. Customers receive the quarterly
APDA Tools Catalog featuring all current versions of Apple development tools
and the most popular third-party development tools. Ordering is easy; there are
no membership fees, and application forms are not required for most APDA
products. APDA offers convenient payment and shipping options including
site licensing.

To order a product or to request a complimentary copy of the APDA Tools
Catalog, contact

Developing Client/Server Applications for the Network Server 3

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319
800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)
Fax: 716-871-6511

AppleLink: APDA
America Online: APDA
CompuServe: 76666,2405
Internet: APDA@applelink.apple.com

If you plan to develop Apple-compatible hardware or software products for
sale through retail channels, you can get valuable support from the Developer
Support Center by calling 408-974-4897 or using AppleLink
(DEVSUPPORT).

Developers outside the United States and Canada should contact their local
Apple office or distributor for information on local developer programs.

1 Overview of Client/Server Applications for the
Network Server

The Network Server allows you to develop applications that integrate the
power and services of AIX with the easy-to-use interface of the Macintosh
interface. The applications you develop consist of components for both the
AIX and Macintosh environments. They communicate over a network to form
a single service.

The server component of this model runs on a Network Server and the
Macintosh client component run on any Mac OS system. Macintosh clients
can contact the Network Server for information and can perform tasks, such as
file system management, on the server.

The two components of these client/server applications exchange messages
using AppleTalk protocols and Apple events. Apple events provide a flexible,
robust method for communication and relieve you of creating your own
communication protocol.

This chapter begins by describing some sample client/server applications
available for AIX. It then gives overviews of:

■ the components of client/server applications

■ the process by which client/server applications work

■ the process you use to develop a client/server applications

■ the protocols you use with a client/server application

6 Chapter 1 Developing Client/Server Applications for the Network Server

Client/Server applications available on the Network Server

The following client/server applications are provided with AIX for the
Network Server:

■ Status Demo AppleTalk Services, a sample application for developers (see
Chapter 4, “A Sample Application”)

■ Fractal Demo AppleTalk Services, a sample application for developers (see
Chapter 4, “A Sample Application”)

■ Disk Management Utility, a Logical Volume Manager application for AIX
for the Network Server

■ CommandShell, a multi-windowed VT100-compatible terminal emulator

You can develop applications to perform other services. Examples of
client/server applications for the Network Server that might be useful include

■ Macintosh clients for Network Server applications, such as relational
databases

■ Modules that plug into an OPI publishing prepress server (OPI is an
extensible pre-press interface that allows clients to request document
manipulation operations on the server)

■ remote print spooler management tools

■ Network Server system monitoring applications

■ InfoExplorer clients that allow Macintosh users to read the online
documentation for the Network Server

Components of client/server applications

When you develop a client/server application, you create two separate
programs that work together—a component for the server side that runs on the
Network Server and a component for the client side that runs under the Mac
OS. By developing each component separately, you can use the best tools for
each environment. AIX for the Network Server provides several features that
allow you to develop client/server applications.

Chapter 1 Overview of Client/Server Applications for the Network Server 7

The Network Server component

The server component of a client/server application consists of the program
you create and uses several server features available on AIX for the Network
Server. Here are the primary components involved in the server side of a
client/server application:

■ The Network Server component.

This is the program you create that runs on the Network Server. The server
component is a noninteractive UNIX daemon application.

■ An AIX library implementation of the Apple Event Manager.

This library is used by the Network Server component. This follows the
Macintosh Apple Event Manager interface with a couple of additional
routines.

■ The PPC daemon (ppcd).

The PPC daemon uses a configuration file (/etc/ppcd.conf) to get
information about the Macintosh services available on the Network Server
and advertise those services to clients. It also authenticates client requests
and starts the Network Server component.

The Network Server component starts when the Macintosh client component
of your client/server application contacts the PPC daemon on the Network
Server.

The Network Server component and the PPC daemon communicate with the
Macintosh client component using the AppleTalk Data Stream Protocol
(ADSP) services through the Network Server AppleTalk stack. The PPC
daemon also uses the NBP (Name Binding Protocol) as specified by the
Macintosh Program-to-Program Communications protocol.

The Macintosh client component

The client side of a client/server application involves these features:

■ The Macintosh client component—the program you create to provide the
interface for the client/server application and to create a network
connection. (The client uses Macintosh System 7 features to create the
network connection.)

8 Chapter 1 Developing Client/Server Applications for the Network Server

■ The Network Server Passwd Tool. You need to install this extension when
you install the Macintosh components from the Mac OS Utilities for the
Network Server With AIX installation disk. For information about the
installation process, see Using AIX, AppleTalk Services, and Mac OS
Utilities on the Network Server.

How client/server applications work

To use client/server applications for the Network Server , users must establish
communication between the Macintosh client and the Network Server.

To start a client/server application, the user simply double-clicks the
application icon in the Finder on the remote Macintosh. The PPC Browser
presents a dialog box to allow the user to select an AppleTalk zone, Network
Server, and client/server daemon on that server.

Note: In this dialog box, the Macintoshes list corresponds to the Network
Server and the Servers list corresponds to the particular AIX daemon.

Chapter 1 Overview of Client/Server Applications for the Network Server 9

When a user selects a zone in the PPC Browser dialog box, the PPC Browser
sends out a request to find all Network Servers in that zone. The PPC daemon
on each Network Server in the zone responds to this request. When the user
chooses a particular server, the PPC Browser requests a list of available
services from the PPC daemon on that server.

The PPC daemon returns a list of client/server application services and some
of their features—for example, information about the type of service and
availability of guest access. This list of services appears in the PPC Browser
dialog box.

A Macintosh client component can filter the list of available client/server
application services so that the PPC Browser dialog box shows only the
services related to the client component. For example, when it calls the PPC
Browser, the Macintosh client can specify which types of services on Network
Servers to display. The types are specified in the ppcd.conf file on the
Network Server and provided by the PPC daemon when the Macintosh client
queries the network for available servers.

After a user selects a service, the client displays the authentication dialog box
for the user’s name and password. The user must enter the name and password
of a valid AIX user account on the Network Server.

10 Chapter 1 Developing Client/Server Applications for the Network Server

The user name may be either a Network Server user name or the user’s full
name as it appears in the password file on the Network Server. The password
is encoded for transmission over the network.

Note: Some services allow guest access. This information is defined by the
Network Server component of the client/server application and is sent with the
list of services.

After the user has provided a name and password, the client sends the
information to the PPC daemon on the server. The server verifies the accuracy
of the user name and password. (For guest access, no password checking
occurs.)

Once the user name and password has been verified, the PPC daemon starts
the Network Server component of the client/server application and sets up a
network connection between the Macintosh component and the Network
Server component. Each connection from a Macintosh component gets a new
Network Server process.

Before the PPC daemon starts the Network Server component, the PPC
daemon uses the client’s user name to perform additional checks for security
and determine access privileges. To control the level of access clients have,
you can add a list of privileged users to an applications description in the
ppcd.conf file. If a user is not listed in this file as a privileged user, your
application’s server component could make a setuid system call to change
the ID of the process to the user’s normal level. (The server component
initially starts at root privileges.) Your application can also use the
ppcd.conf file to examine the privileged user list and display or disable
features of a client/server application based on the username and if it appears
in the list of privileged users.

The ppcd.conf file is located in the /etc directory. For complete
information about defining privileged users in the ppcd.conf file, see
“Working With Security and Authorization” in Chapter 3, “Developing the
Network Server Component.”

After the connection between the components of your application has been
established, the PPC daemon closes its connection to the Macintosh client, and
resumes listening for new requests. The client continues to use its same
connection to communicate with the Network Server component.

Chapter 1 Overview of Client/Server Applications for the Network Server 11

Once both the client and server components of your application are running,
they can exchange information through Apple events.

If one side of the application is not going to be communicating with the other
component, the component may send “heartbeat” Apple events to let the other
side know that the component is still active. The sample applications
(described in Chapter 4) use heartbeats to notify components when to quit.
Otherwise, processes for components could run indefinitely.

Developing a client/server application for the Network Server

The two halves of a client/server application are two separate programs. This
simplifies application development because you can use the best tools
available for each environment.

The Macintosh client component is a standard Macintosh application that uses
Apple events. It connects to the Network Server component just as it would
connect to another Macintosh computer.

The Network Server component does not need to worry about the network
connection. The PPC daemon on the Network Server receives the Macintosh
client request and starts the Network Server component. The Network Server
component simply needs to call a library routine to initialize the Apple event
communication.

Here is an overview of the steps involved in developing a client/server
application:

1 Determine the functionality for the Macintosh client component and the Network Server
component.

Decide which tasks each component performs.

2 Determine which Apple events are needed to exchange information and how the two
components must communicate.

Note: You may need to register new Apple events with Apple Computer.

3 Write the Macintosh client component.

12 Chapter 1 Developing Client/Server Applications for the Network Server

To create the Macintosh application, you need to be familiar with Apple
events and the Macintosh interface. You can use any Macintosh development
tools and debuggers as long as they allow access to the PPC Browser and
Apple events.

4 Write the Network Server component.

Your server component should use the Apple Event Manager library to
communicate with the client and use standard socket calls to detect input or
output on the ADSP socket. For information about socket calls, see the AIX
documentation.

5 Test both components of the application and their communication.

Because client/server applications use Apple events and the PPC daemon to
set up the connection, you don’t need to know any special network
programming techniques. Apple events are essentially used as a remote
procedure call (RPC) mechanism.

Note: If you prefer, you can use ADSP or the ADSP connection established by
the PPC daemon instead of Apple events.

The only special development tool you need to use is a Network Server
debugger that can attach to a running process, such as dbx. You need to use
this kind of debugger because you rely on the PPC daemon to start the server
component, and you cannot start the server component from the command
line.

Using protocols

AppleTalk is the underlying communication channel for client/server
applications. With AppleTalk, you can register an application name on the
network and make it visible to all other computers on the network. The
following AppleTalk protocols can be used with client/server applications for
the Network Server:

■ Apple Event Interprocess Messaging Protocol (AEIMP)

Chapter 1 Overview of Client/Server Applications for the Network Server 13

You must use AEIMP for client/server applications. You do not need to
know the specifics of the protocol; you simply need to use the routines
described in Inside Macintosh, Volume VI. Both the Macintosh and
Network Server components can use these routines without modifications.
AEIMP differentiates a high-level event from an Apple event, and the
Apple Event Manager handles the details. Generic (developer-defined)
high-level events are not currently supported.

■ ADSP (AppleTalk Data Stream Protocol)

To develop client/server applications, you do not need to be familiar with
ADSP, but you can use it instead of Apple events if you prefer.

ADSP is a connection-oriented, reliable, sequenced network protocol. (It is
similar to TCP, with some added features.) The kernel ADSP interface is
difficult to use: because there aren’t any direct high-level calls to access the
protocol, you must use the ioctl system call to fill out parameter blocks
and post them to the system where the call completes asynchronously
through a SIGIO signal handler. The response is always sent to the process
that created the ADSP connection, which is not necessarily the process that
posted the call.

For more information, see the AppleTalk API section of the Developer’s
Kit.

■ Macintosh PPC (Program-to-Program Communications)

This protocol lets the Macintosh client and the Network Server component
communicate over the network. It uses ADSP as its transport mechanism.
The PPC Toolbox is used by server applications to make their presence
known to the host system (and network) and by client applications to
browse for servers to connect with.

To develop a client/server application, you need to know enough about PPC
to connect the two halves of your application. Specifically, you need to be
familiar with the PPC Browser described in Inside Macintosh , Volume VI.

■ Name Binding Protocol (NBP)

The PPC daemon uses this protocol as specified by the Macintosh Program-
to-Program Communications protocol.

2 Developing the Macintosh Client Component

The Macintosh component is the client side of a client/server application for
the Network Server. It provides the interface for the client/server application.

This chapter introduces the information you need to develop the Macintosh
client component. It describes

■ Macintosh development environments

■ connecting to a Network Server through the PPC Browser

■ authenticating the connection

■ using Apple events

■ maintaining a network connection through “heartbeat” Apple events

■ debugging and troubleshooting

16 Chapter 2 Developing Client/Server Applications for the Network Server

Macintosh development environment

The Macintosh user interface is a unique environment. The Macintosh User
Interface Toolbox is a collection of graphics routines accessible to all software
in the system. You can use this Toolbox to incorporate the Macintosh interface
into the Macintosh client component of a client/server application.

You can use any Macintosh development environment, tools, and debuggers as
long as they give you access to the PPC Browser and Apple events.

The most commonly used development environments are MacApp and MPW
(Macintosh Programmer’s Workshop). For information on these development
environments, see the Programmer’s Guide to MacApp; Macintosh
Programmer’s Workshop Development Environment, Volume 1; Macintosh
Programmer’s Workshop Development Environment, Volume 2; MPW
Pascal; Macintosh Programmer’s Workshop C. These books are available
from APDA (see the Preface for ordering information).

The Macintosh client component of a client/server application also runs
properly on Sun and Hewlett-Packard systems that are running the Macintosh
Application Environment 2.0, which supports AppleTalk.

For complete information about developing Macintosh applications, see Inside
Macintosh. For information about human interface guidelines, see Macintosh
Human Interface Guidelines.

Using the PPC Browser to create a network connection

You use the PPC Browser to locate and connect to the Network Server
component of your client/server application. The client component of the
application needs to make a call to display the PPC Browser dialog box, which
allows the user to select the desired AppleTalk zone, Network Server, and
service. When the user selects a zone in the PPC Browser dialog box, the PPC
Browser sends out a request to find all Network Servers in that zone. The PPC
daemon on each Network Server in the zone responds to this request. When
the user chooses a particular server, the PPC Browser requests a list of
available services from the PPC daemon on that server.

Chapter 2 Developing the Macintosh Client Component 17

The PPC daemon returns a list of Network Server services and some of their
features—for example, information about the type of service and availability
of guest access. This list of services appears in the PPC Browser dialog box.

The following routine displays the PPC Browser dialog box and searches for
Network Server components.

err = PPCBrowser (prompt, applListLabel, defaultSpecified,

theLocation, thePortInfo, portFilter,

theLocNBPType);

If the PPCBrowser routine returns noErr after the user has selected a server
and service, the parameters theLocation and thePortInfo specify the
connection chosen by user. If the routine returns a userCanceledErr result
code, the user clicked the Cancel button and no port was selected.

The parameters to the routine have the following values:

■ prompt

The prompt parameter is a string of text that the PPCBrowser routine
displays as a prompt in the PPC Browser dialog box. If you specify NIL or
pass an empty string, the default prompt “Choose a program to link to” is
used.

■ applListLabel

The applListLabel parameter is a string that specifies the title of the list
of PPC ports in the dialog box. If you specify NIL or pass an empty string,
the default title “Programs” is used.

■ defaultSpecified

If you set this parameter to true, the PPCBrowser routine tries to
highlight the PPC port specified by the parameters theLocation and
thePortInfo when the PPC Browser dialog box first appears. If that port
cannot be found, the routine highlights the first PPC port in the list.

■ portFilter

The portFilter parameter determines which ports appear in the PPC
Browser dialog box. If you specify NIL, the names of all existing PPC
ports are displayed; otherwise, you must specify a pointer to a port filter
function. (For details, see the next section, “Filtering Servers in the PPC
Browser.”)

18 Chapter 2 Developing Client/Server Applications for the Network Server

■ theLocNBPType

This parameter specifies the NBP type passed to NBPLookup to generate
the list of servers. If you specify NIL or pass an empty string, the default
PPCToolBox is used. Note that the current computer is always included in
the list of servers.

The PPCBrowser routine fills in two data structures: a LocationNameRec
structure and a PortInfoRec structure, neither of which, by itself, is a valid
destination for an Apple event from the Macintosh component. Instead, you
must create a third data structure of type TargetID, and fill it with all of the
LocationNameRec information and part of the PortInfoRec information.
You configure the target address for Apple events from the Macintosh
component as an AEAddressDesc structure by setting its descriptorType
field to typeTargetID and its handle to the contents of the TargetID
structure as shown in this sample code.

AEAddressDesc targetAddr;

LocationNameRec theLocation;

PortInfoRec thePortInfo;

TargetID theTargetID;

osErr = PPC Browser("\pTitle", "\pPrograms", false, &theLocation,

&thePortInfo, MyPPC BrowserFilter, "");

theTargetID.location = theLocation;

theTargetID.name = thePortInfo.name;

targetAddr.descriptorType = typeTargetID;

PtrToHand((Ptr)&theTargetID, &(targetAddr.dataHandle),

sizeof(theTargetID));

The target address is required for all future communication with the Network
Server component.

For complete information about using the PPC Browser, see the PPC Toolbox
chapter in Inside Macintosh, Volume VI.

Chapter 2 Developing the Macintosh Client Component 19

Filtering Servers in the PPC Browser

A Macintosh client component can filter the list of Network Servers in the
PPC Browser dialog box to show only servers that provide services related to
the client component. When you call the PPC Browser, you can specify which
types of servers to display. The types are previously specified in the
ppcd.conf file on the Network Server side and provided by the PPC daemon
when the Macintosh client queries the network for available servers. (For
information about the ppcd.conf file and specifying application types, see
“Using the PPC Daemon Configuration File” in Chapter 3, “Developing the
Network Server Component.”)

For example, you can choose to display only servers for the Status Demo
AppleTalk Services application (of type 'JVLN' in the ppcd.conf file).

To filter servers in the PPC Browser, you need to define a filter function and
pass this function as a parameter to the PPCBrowser routine.

The following sample function illustrates how you use a filter. In this example,
the MyPPCBrowserFilter function returns true for ports with the port
type string 'JVLN'.

20 Chapter 2 Developing Client/Server Applications for the Network Server

static pascal Boolean MyPPCBrowserFilter(LocationNamePtr

/* theLocation */, PortInfoPtr thePortInfo)

{

OSType type;

if (thePortInfo->name.portKindSelector ==

ppcByString)

{

BlockMove(thePortInfo->name.u.portTypeStr + 1,

Ptr(&type), sizeof(type));

// The BlockMove is so that we don't get an

// address error on a 68000-based machine

// due to referencing a long at an odd-address.

if (type == JVLN)

return TRUE;

}

return FALSE;

}

The PPCBrowser routine calls your filter function once for each port on the
selected server. Your function should return TRUE for each port you want to
display in the PPC Browser dialog box and FALSE for each port that you do
not want to display. Do not modify the data in the filter function parameters
theLocation and thePortInfo.

Chapter 2 Developing the Macintosh Client Component 21

Authenticating a network connection

Before the Macintosh client component of your application can connect to a
server, you must run the AppleTalk Services installation program from the
floppy disk titled Mac OS Utilities for the Network Server. (This disk is
provided with AIX for the Network Server.) During the installation process,
place the Network Server Passwd Tool in the System Folder on the Macintosh
client. The Macintosh component uses this system extension to support
encoded password communication and it is required for all client/server
applications.

After a user has selected a Network Server component to connect to from the
PPCBrowser, the PPC daemon on the server sends the Mac OS client a request
to authenticate the user, and it displays the authentication dialog box for the
user’s name and password. You do not need to call a routine to provide the
user authentication dialog box.

Note: Some services allow guest access. Guest access is defined by the
/etc/ppcd.conf file and is sent to the client with the list of services. For
guest access, the server does not require a password.

Using Apple events

To write the Macintosh client component of your application, you need to be
familiar with Apple events. After your Macintosh component has established a
connection with the Network Server component and has obtained the Network
Server’s address from the PPC Browser, the components can exchange
information using Apple events.

IMPORTANT The Network Server component of a client/server application
does not start running until an Apple event is sent from the Macintosh
component.

Apple events from the Macintosh component may contain commands to be run
on the Network Server, such as ls, date, or format. Apple events from the
server component may contain the results of the commands.

22 Chapter 2 Developing Client/Server Applications for the Network Server

You can use any of the Apple event routines described in the Apple Event
Manager chapter of Inside Macintosh, Volume VI. For most clients, you only
need to use a few Apple Event Manager routines. You can use commands to
process, create, and send information. For some Apple events, you can also
specify that you want a reply from the server.

Follow these steps to send information to the server (the routines are fully
detailed in Inside Macintosh):

1 Create an Apple event with the AECreateAppleEvent routine.

2 Include the necessary information in the Apple event with the AEPutParamPtr routine.

3 Send the Apple event with the AESend routine. Send the event to the address received
from the PPC Browser.

When you receive an Apple event from the Network Server component, use
the AEGetParamPtr routine to extract information from it.

Maintaining a network connection

When the Macintosh client component is connected to the Network Server
component, it can periodically check to ensure that the server component is
still active. It does this with heartbeat Apple events. The server component
sends heartbeat Apple events to ensure that the network connection is working
and the client has not shut down. The client component can check to see if the
server component has sent heartbeats and inform the user if heartbeats have
not been received.

To use heartbeat Apple events, you need to keep track of when you received
the last Apple event. After the Macintosh component receives a heartbeat
Apple events or other Apple event, it returns its heartbeat counter to 0. If one
component has not received a heartbeat or an Apple event in a specified period
of time, the component shuts down.

This section provides sample code for checking heartbeats. (Complete sample
code is available in /usr/lpp/apple.remoteutils/src/client.)

Chapter 2 Developing the Macintosh Client Component 23

The following are variables used in determining when to send heartbeats and
whether to shut down. The variables keep track of when the last heartbeat was
received and when the component last checked for a heartbeat. Another
variable keeps track of how many times the component has checked for a
heartbeat without find finding one. When this value reaches a predetermined
number (3 in the sample code), the component assumes the other component
has quit and it shuts down. At first, these variables are set to 0.

long time_of_last_recv=0;

long time_of_last_check=0;

int missed_heartbeats=0;

Boolean TimeToQuit=false;

The following code checks to see if a heartbeat Apple event has been received
since the last check. If you reach the maximum number of checks for
heartbeats without a response from the server component, the Macintosh
component should quit.

void chk_heartbeat(void)

{

 time_of_last_check = TickCount();

 if ((time_of_last_check - time_of_last_recv) >

HEARTBEAT_CHECK) {

 missed_heartbeats++;

 if (missed_heartbeats >= MAX_MISSED_HEARTBEATS) {

 TimeToQuit=TRUE;

 }

 }

 else

 missed_heartbeats = 0;

}

24 Chapter 2 Developing Client/Server Applications for the Network Server

When the Macintosh client component quits, it must inform the Network
Server component that the connection is closing down so that the server
component can take appropriate action before quitting. If the Macintosh
component were to quit without informing the Network Server component, the
Network Server process for the application could run indefinitely.

Debugging

To debug a client/server application, you can any Macintosh debugging tool
that suits your application. Some of the available debuggers include:

■ SourceBug

■ MacsBug,

■ Jasiks debugger

3 Developing the Network Server Component

The Network Server component of a client/server application is a
noninteractive AIX daemon application, executing on the Network Server.
After the Macintosh client component makes a connection, the PPC daemon
starts the Network Server component. The Network Server component
executes commands for the Macintosh component, which is controlled by the
user.

Users cannot start the Network Server component from the command line or
initiate a connection with the Macintosh component from the Network Server.

This chapter details how to develop the Network Server component of a
client/server application. It discusses

■ the Network Server development environment

■ the header files and libraries provided with AIX for the Network Server

■ the network connection between the components

■ Apple events used by the Network Server component

■ creating the main program loop for the Network Server component

■ security issues

■ the configuration file for the PPC daemon

■ debugging issues

22 Chapter 3 Developing Client/Server Applications for the Network Server

Network Server development environments

To develop the Network Server component, you can use any UNIX C
compiler and development environment. You must use a debugger, such as
dbx, that can attach to a running process.

Header files and libraries

AIX for the Network Server provides several header files and libraries to help
you develop client/server applications for the Network Server.

The following header files are available in /usr/include/mac/*.h:

■ AppleEvents.h

This header file contains standard Apple event definitions.

■ AUXAESuite.h

This header file contains Apple event definitions specific to the applications
provided by Apple Computer.

■ Types.h

This header file contains type definitions.

The following shared libraries are available in /usr/lib:

■ libaem.a

This library holds all the Apple Event Manager routines.

■ libat.a

This library contains all the AppleTalk routines for the Network Server
component.

■ libadsp.a

This library contains all the ADSP Manager routines you need if you
choose to use ADSP instead of Apple events.

Chapter 3 Developing the Network Server Component 23

Creating and maintaining a network connection

The Network Server component cannot establish the network connection; the
Macintosh client component contacts the PPC daemon on the Network Server
and the PPC daemon authenticates the Macintosh request. When the PPC
daemon on the Network Server receives the Macintosh request and
authenticates it, the daemon starts the appropriate Network Server component
for the application. Once started, the Network Server component needs to call
a library routine to initialize the Apple event communication.

Note: The Network Server component is not started until the Mac OS client
sends an initial Apple event intended for the Network Server component.

To ensure that one component does not continue running after the other side
has shut down, the components of a client/server application can keep track of
each other. If Apple events are not exchanged regularly, the server component
can send a “heartbeat” Apple event to the client to ensure that the client is still
active and has not quit. This is important because if the Macintosh component
were to quit without notification, the Network Server process could run
indefinitely. Heartbeats ensure that components of client/server applications
do not run indefinitely after the other side of the application has quit. It is
possible to clean up components of client/server applications other ways after
the client side has unexpectedly quit, but we recommend using heartbeat
Apple events.

To use heartbeats, the server component sends a heartbeat Apple event to the
client. If the WaitNextAppleEvent routine returns a value of -1, the network
connection has been broken and the server component shuts down.

You need to keep track of when you sent the last Apple event. After the server
receives a heartbeat Apple event or other Apple event, it returns its heartbeat
counter to 0. If one component has not received a heartbeat or an Apple event
in a specified period of time, the component shuts down.

You can use the snd_heartbeat command (in misc.c) to send heartbeats to
the other side.

24 Chapter 3 Developing Client/Server Applications for the Network Server

This section provides sample code for working with heartbeat commands.
(Complete sample code is available in the
/usr/lpp/apple.remoteutils/src/server directory. See Chapter 4 for
complete details.)

The following are variables used in determining when to send heartbeats and
whether to shut down. The variables keep track of when the last heartbeat was
sent and when the values where last updated. At first, these variables are set to
0.

 time_t time_of_last_send = 0;

 time_t time_of_last_update = 0;

The next command sets the current time. You use the time for later
calculations.

(void)time(&time_now);

The next line of code determines whether it is time to send another heartbeat
command to the client. If the difference between the current time and the time
the last heartbeat was sent is greater that the HEARTBEAT_SEND value, the
snd_heartbeat command sends a heartbeat to the client.

if (difftime(time_now, time_of_last_send) >= HEARTBEAT_SEND

) snd_heartbeat();

Using Apple events

The Network Server component uses Apple events to register event handlers
and to respond to incoming events and provide replies as requested.

When the Network Server component starts, it needs to call one library routine
to initialize the Apple Event Manager:

AEInit ()

After you make this call, your application can exchange Apple events with the
Macintosh client component.

Chapter 3 Developing the Network Server Component 25

You can use any of the Apple event routines described in the Apple Event
Manager chapter of Inside Macintosh, Volume VI. Most client/server
applications need to use only a few Apple event routines. The routines most
likely to be useful are AEPutParamPtr, for placing information in an Apple
event, AEGetParamPtr, for extracting information from an Apple event, and
AESend, for sending the Apple event.

The only Apple event routine that behaves differently from its Macintosh
implementation is WaitNextAppleEvent which the Network Server
component uses to retrieve Apple events from the Macintosh component. This
routine is similar to the Macintosh Toolbox routine WaitNextEvent. The
main difference is that only events of type kHighLevelEvent will be
returned, so there is no need to check the event type before you send it to
AEProcessAppleEvent.

Additionally, the time-out value for the kHighLevelEvent routine is
different from that used in the Macintosh implementation. In the Network
Server implementation, a AIX timeval structure lets you specify a time in
seconds and microseconds. The time-out parameter can be used in three
different ways:

■ If you specify a filled-in structure that determines how long
WaitNextAppleEvent waits for an event, and if an event arrives before
the time-out interval expires, WaitNextAppleEvent returns and does not
wait for the rest of the interval.

■ If you specify 0 for the time-out value, WaitNextAppleEvent checks for
an event. If there is an event to process, the routine returns a value of true
and fills in the event record. If an event is not available, the routine returns
false.

■ If you pass NULL in place of a timeval structure, WaitNextAppleEvent
waits for an event and blocks the calling Network Server process.

All the other Apple Event Manager routines can be used as described in Inside
Macintosh, Volume VI, and all AIX libraries and system calls can be used as
they are described in the AIX documentation.

26 Chapter 3 Developing Client/Server Applications for the Network Server

Writing the main program loop

The main program of the server component may need to monitor input from
several processes at one time. You might need to switch control between
waiting for and processing Apple events and performing client tasks on the
server. To do, create a loop that follows this format:

Until instructed to quit:

Wait for Apple events;

If an Apple event contains a task for the server;

Process Apple event by matching it with a routine listed in the Apple
event handler table;

end

end

Use the select system call to wait for input from a process on the server and
to wait for Apple events at that same time.

The select system call lets you maintain your connection with the client
while you are performing tasks that require some time. For example, if the
client component instructs the server component to format a hard disk, the
command may take some time. While the command is executing, the server
side needs to wait for the outcome, but it still needs to listen to the client for
additional commands and heartbeats.

To use the select call, refer to the select manual page.

To see an example of a main program loop, see the
/usr/lpp/apple.remoteutils/src/server/javelin.c file. See
Chapter 4, “A Sample Application,” for more information about the sample
files.

Setting up and starting the PPC daemon

The PPC daemon supports client/server applications and manages the
exchange of AppleTalk communications between Macintosh client
components and the Network Server.

Chapter 3 Developing the Network Server Component 27

You can start, stop, and customize the PPC daemon through the Program-to-
Program Communication option in the SMIT AppleTalk Services menu. You
can also use this option to add new daemons to the server that you have
created for Macintosh clients. For complete information about using the PPC
daemon with SMIT, see Using AIX, AppleTalk Services, and Mac OS Utilities
on the Network Server.

To use client/server applications, you must start the PPC daemon. To start the
PPC daemon:

1 Click “Start the ‘ppcd’ daemon.”

This option appears in the Program-to-Program Communication menu
available from the AppleTalk Services menu.

A dialog box appears.

2 Specify when you want to start the daemon.

You can start the daemon now, at the next system restart, or both.

3 Provide a hostname for you computer.

4 Click OK.

The daemon starts.

In addition to starting the PPC daemon, the PPC daemon selection under the
AppleTalk Services item contains the following options:

■ Stop the ‘ppcd’ Daemon

■ List all ‘ppcd’ Services

This option displays all the daemons on the server used for client/server
applications such as the Disk Management Utility, the Status Demo
AppleTalk Services application, and CommandShell. If you have added any
additional daemons, they will also be displayed.

■ Add a ‘ppcd’ Service

This option lets you add a new daemon for a client/server application to
your system. When you choose this option, a dialog box appears that lets
you specify information for the daemon.

28 Chapter 3 Developing Client/Server Applications for the Network Server

To add a PPCD service, you need to specify:
■ Name of the service. Specify the name of the PPC component as you

want it to appear in the PPCBrowser dialog box for the Mac OS client.
Do not use spaces in the name.

■ User ID. Provide a user name or user ID. This value determines the
privileges the application has when it runs.

■ Group ID. Provide a group name or group ID. This value determines the
privileges the application has when it runs.

■ Path of the daemon executable. Provide the full path to the server
component (daemon).

■ Daemon signature. The signature is a unique four-letter code that
identifies the daemon. Mac OS clients use the signature to filter
client/server applications and search for specific types of applications.

■ Guest access. The guest field is optional. If you select guest access, any
client can connect to the application as the guest user (an actual account).
If you choose not to have guest access, the user must supply a valid
account (user name) and password to start the client/server application.

■ Privileged users. If you want specific users to be able the run an
application with extra privileges (such as root privileges), provide their
names in this field. If a user is listed in this field, the user ID and group
ID values are not used.

Chapter 3 Developing the Network Server Component 29

■ Change/Show Characteristics of a ‘ppcd’ Service

After you select this option, select a service (daemon) to examine. The
same options appear as those for the Add a ‘ppcd’ Service option. You can
change any of them or just examine them.

■ Remove a ‘ppcd’ Daemon

Deletes an entry for a daemon from the PPC daemon configuration file.

The PPC daemon uses the ppcd.conf file as the basis for the information it
advertises to clients. The ppcd.conf file can also be used to provide guest
access. The ppcd.conf file is located in the /etc directory.

Each client/server application needs an entry in the configuration file,
/etc/ppcd.conf, in order for the PPC daemon to be able to start the
Network Server component.

Note: When you add a new client/server application, you need to send the
PPC daemon process a “hangup” signal to have it reread its ppcd.conf file or
you should stop and restart the PPC daemon.

Working with security and authorization

When the PPC daemon starts the Network Server component, the component
runs with root privileges. You can use the setuid system call in your
application to change permissions and modify the way specific users can
access the information on the server and run commands.

Before the PPC daemon starts the Network Server component, it examines the
user’s name. The PPC daemon can use this name to determine the level of
client access before it starts the Network Server component. The PPC daemon
uses the last field of the ppcd.conf file to determine if the specified user has
special privileges. The PPC daemon can check the ppcd.conf file to see if
the specified user has special privileges. If the user name is in the ppcd.conf
file , the PPC daemon can let the user maintain full privileges. If the user name
is not in the ppcd.conf file , the PPC daemon can call the setuid system
call and change the permissions of the process to the user’s normal access
permissions.

30 Chapter 3 Developing Client/Server Applications for the Network Server

Debugging and troubleshooting

The only special development tool you must use is a UNIX debugger that can
attach to a running process, such as the dbx debugger. This is necessary
because the server component must be launched by the PPC daemon, which
does the connection setup.

If your Network Server component quits before you can attach to the running
process, or if you have problems with the startup of the Network Server
component, you can instruct the daemon to sleep for two minutes before doing
any initialization. The two minutes of inactivity will give you enough time to
attach to the process. Be sure to insert the sleep command before your
application performs any tasks.

To instruct the Network Server component to sleep, add the following code to
your application before the Network Server component initializes any values
and performs any tasks.

#ifdef SLEEP

 #ifdef DEBUG

 fprintf(debugfp,"STATUS DEMO APPLETALK SERVICES:

Sleeping 120 seconds to allow dbx to attach...\n");

 #endif

 sleep(120);

#endif

4 A Sample Application

This chapter discusses the files used by Status Demo AppleTalk Services, a
sample client/server application that obtains system information from a
Network Server and displays it on a remote Macintosh. The Status Demo
application is provided with AIX for the Network Server, and you can find its
complete source code in the /usr/lpp/apple.remoteutils/src
directory. In this directory are two subdirectories, /client and /server.
These directories separate the code for the Macintosh client component and
the Network Server component.

The code shows how Apple events are exchanged, how the network
connection is established, how the connection is kept active, and how the
Network Server component collects and sends system information.

For the client side, there are two examples of the code. They both work with
the server component. One is in the CodeWarrior developer environment and
uses Metrowerks (C). The other example is in the Macintosh Developer’s
Workshop (MPW) and uses the MacApp 3.0.1 framework.

32 Chapter 4 Developing Client/Server Applications for the Network Server

The Macintosh client component

You can use many different compilers and approaches for the Macintosh client
component of a client/server application. Two types of sample code are
provided for the Status Demo client component: procedural (C in Metrowerks
CodeWarrior) and object-oriented (C++ in MPW/MacApp).

To develop the Macintosh component, you need to include code to
communicate with the Network Server component, handle Apple events, and
provide the Macintosh interface.

The Metrowerks C version of the Status Demo client component uses the
following files:

■ javelin.c

This file contains the main program loop of the Status Demo application
and performs such tasks as displaying the PPC Browser, filtering available
services in the PPC Browser, and handling Apple events.

■ symbiont.c

The calls in this file can be used in any client/server application. They
perform such tasks as sending and checking heartbeat Apple events,
defining Apple event handlers, and exchanging version information. This
file also contains generic Macintosh routines for mouse and window
operations.

■ javelin.h

This file is the header file for information specific to the Status Demo
application.

■ JavelinEvents.h

This file defines Apple events for the Status Demo application.

■ symbionts.h

This file defines heartbeat values, such as the intervals at which to send and
check for heartbeat Apple events and the number of missed heartbeats your
component detects before shutting down. This file also defines other
constants for the application.

Chapter 4 A Sample Application 33

■ version.h

This file contains the version number of the application. The version
number is exchanged between an application’s server and client
components to ensure that they can exchange information properly.

The MPW/MacApp version of the Status Demo client component uses the
following files:

■ Javelin.MAMake

The make file for the application.

■ Javelin.r

This file contains the resources.

■ JavelinIcePick.rsrc

This file contains the view resources.

■ MJavelin.cp

This file contains main program.

■ UJavelin.cp

This file contains the application classes.

■ UClientCommands.cp and UClientCommands.h

These files manage received Apple events.

■ UCommandJavelin.cp and UCommandJavelin.h

These files call the PPC Browser.

■ UDocumentJavelin.cp and UDocumentJavelin.h

These files contain the document classes.

■ UJavelinAppleEvent.cp and UJavelinAppleEvent.h

These files contain the routines for Apple events.

■ UJavelinDialogs.cp and UJavelinDialogs.h

These files contain the dialog boxes and routines for error conditions.

■ UJavelinView.cp and UJavelinView.h

These files contain the view routines.

■ URemoteCommands.cp and URemoteCommands.h

34 Chapter 4 Developing Client/Server Applications for the Network Server

These files contain routines to send Apple events.

■ AUXSuite.h

This file contains descriptions of Apple events.

The Network Server component

This section describes the files used by the Network Server component of the
Status Demo application.

■ javelin.c

This is the primary file for the Status Demo application. This file initializes
the Network Server to use Apple events, sets up a select loop to listen for
input from various sockets, and maintains the connection with the client
component by sending heartbeat Apple events. The file also determines
how to respond to incoming Apple events.

■ handler.c

This file contains the Apple event handlers for the Status Demo Network
Server component.

■ misc.c

This file contains miscellaneous routines for the Status Demo program,
including those that check and send heartbeats and those that get and send
information in the form of Apple events.

■ javelin.h

This file is the header file for information specific to the Status Demo
application.

■ misc.h

This file defines heartbeat values, such as the interval at which to send and
check for heartbeat commands and the number of missed heartbeats your
component detects before shutting down. This file also defines other
constants for the application.

■ version.h

Chapter 4 A Sample Application 35

This file contains the version number of the application. The version
number is exchanged between an application’s server and client
components to ensure that they can exchange information properly.

■ AEregistry.h

This file contains C interfaces to Apple Event Registry.

■ AppleEvent.h

This file contains C interfaces to Macintosh libraries for handling Apple
events.

■ AUXSuite.h

This file defines Apple events for the Status Demo Network Server
component.

■ mac/types.h

This file contains data structures and type definitions for Apple events and
Macintosh routines.

■ UEPPC.h

This file contains C interfaces to the Macintosh libraries for the PPC
Browser and PPC Toolbox.

■ UPPCToolbox.h

This file contains C interfaces to the PPC Toolbox.

Section II Developing Device Drivers

This section supplements the AIX Version 4.1 book Writing a Device Driver.
You should be familiar with the material in that guide before you read this
one.

You should have a working knowledge of the C programming language, and
you should have some experience writing device drivers. You should also be
familiar with the AIX operating system. If you need to learn more about AIX,
see the section “For More Information” at the end of this introduction.

This guide provides information about the modifications made to AIX so that
it runs on the Network Server. The chapters are organized as shown here:

■ Chapter 5, “Overview of Changes With the Network Server,” describes
hardware and software differences that relate to all aspects of device driver
development.

■ Chapter 6, “The Open Firmware Device Tree,” describes the Network
Server system startup, device discovery, and the device tree that stores
values for devices.

■ Chapter 7, “Device Configuration on the Network Server,” details the new
device hierarchy, changes to the Object Database Manager (ODM), and
configuration methods.

■ Chapter 8, “Device I/O on the Network Server,” describes changes to the
I/O subsystem and Direct Memory Access (DMA).

■ Chapter 9, “The Network Server Interrupt Subsystem,” highlights
differences in interrupt levels and mapping.

■ Chapter 10, “Implementing Graphic Input and 2D Graphic Device Drivers,”
highlights the differences between IBM’s and Apple’s graphics libraries.

Also, refer to the following chapter for additional information.

■ Appendix, “Keyboard Positions,” contains information about the keyboard
for the Network Server and describes differences in key positions for
international keyboards..

38 Developing Device Drivers for the Network Server

How to use this guide

This guide is a supplement to the AIX 4.1 book Writing a Device Driver. Use
that book for an overview of device driver development, general information,
definition of terms, and general procedures. After you are familiar with the
general device driver development, refer to this guide to learn about the
specific changes to device drivers for AIX on the Network Server.

For more information

The following technical books, documents, and resources provide additional
information about developing device drivers.

Most important, you’ll want to keep this book on hand for reference:

■ AIX Version 4.1 Writing a Device Driver. Available from IBM, order
number SC23-2593.

Other documentation that you may find useful:

■ AIX Version 4.1 Commands Reference. Available from IBM, order number
SBOF-1851.

■ AIX Version 4.1 General Programming Concepts: Writing and Debugging
Programs. Available from IBM, order number SC23-2533.

■ AIX Version 4.1 Communications Programming Concepts. Available from
IBM, order number SC23-2610.

■ AIX Version 4.1 Kernel Extensions and Device Support Programming
Concepts. Available from IBM, order number SC23-2611.

■ AIX Version 4.1 Files Reference. Available from IBM, order number
SC23-2512.

■ AIX Version 4.1 Problem Solving Guide and Reference. Available from
IBM, order number SC23-2606.

■ AIX Version 4.1 Technical Reference, Volume 5: Kernel and Subsystems.
Available from IBM, order number SC23-2618.

■ AIX Version 4.1 Technical Reference, Volume 6: Kernel and Subsystems.
Available from IBM, order number SC23-2619.

■ UNIX System V Release 4, Programmer’s Guide: STREAMS. Englewood
Cliffs, N.J.: Prentice-Hall, 1990.

■ Angebranndt, Susan, Raymond Drewry, Philip Karlton, Todd Newman,
Keith Packard, and Robert W. Scheifler. Strategies for Porting the X v11
Sample Server. Massachusetts Institute of Technology,1991.

■ Fortune, Erik and Elias Israel. The X Window Server. Digital Press.

Developing Device Drivers for the Network Server 39

■ Gettys, James, Ron Newman, and Robert W. Scheifler. Xlib—C Language
X Interface: MIT X Consortium Standard, X Version 11, Release 5. MIT X
Consortium, Massachusetts Institute of Technology, 1991.

■ Patrick, Mark, and George Sachs. X11 Input Extension Library
Specification: MIT X Consortium Standard, X Version 11, Release 5.
Hewlett-Packard Company, Ardent Computer, and the Massachusetts
Institute of Technology, 1989, 1990, 1991.

■ Patrick, Mark, and George Sachs. X11 Input Extension Protocol
Specification: MIT X Consortium Standard, X Version 11, Release 5.
Hewlett-Packard Company, Ardent Computer, and the Massachusetts
Institute of Technology, 1989, 1990, 1991.

■ Sachs, George. X11 Input Extension Porting Document. MIT X Consortium
Standard. X Version 11, Release 5 . Hewlett-Packard Company and the
Massachusetts Institute of Technology. 1989, 1990, 1991.

■ Scheifler, Robert W. X Window System Protocol: MIT X Consortium
Standard, X Version 11, Release 5. MIT X Consortium, 1991.

APDA

APDA is Apple’s worldwide source for over three hundred development tools,
technical resources, training products, and information for anyone interested in
developing applications on Apple platforms. Customers receive the quarterly
APDA Tools Catalog featuring all current versions of Apple development tools
and the most popular third-party development tools. Ordering is easy; there are
no membership fees, and application forms are not required for most APDA
products. APDA offers convenient payment and shipping options including
site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319
800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)
Fax: 716-871-6511

AppleLink: APDA
America Online: APDA
CompuServe: 76666,2405
Internet: APDA@applelink.apple.com

40 Developing Device Drivers for the Network Server

If you plan to develop Apple-compatible hardware or software products for
sale through retail channels, you can get valuable support from the Developer
Support Center by calling 408-974-4897 or using AppleLink
(DEVSUPPORT).

Developers outside the United States and Canada should contact their local
Apple office or distributor for information on local developer programs.

5 Overview of Changes for the Network Server

This guide details the hardware and software differences you may
encounter when you develop a device driver for the AIX operating system
for the Network Server as opposed to AIX Version 4.1 for other platforms.
This guide does not replace IBM documentation for device drivers, rather,
it highlights modifications and supplements the IBM documentation.

The majority of changes to AIX for the Network Server are due to the
differences in firmware and hardware between the Network Server and the
IBM AIX platforms. Changes have been made in the AIX 4.1 subsystem to
reflect differences in hardware and to use the Network Server’s Open
Firmware functionality for device information. AIX for the Network Server
makes most of these differences invisible to the user and maintains the
same interfaces, routines, and structure.

This chapter introduces the differences in AIX for the Network Server for
developers of device drivers. The following chapters provide more detail
about the changes.

44 Chapter 5 Developing Device Drivers for the Network Server

Hardware differences

The operating system for the Network Server consists of the AIX 4.1
operating system ported to the Network Server hardware platform.
Although the operating system remains essentially the same, the underlying
hardware is different.

The hardware differences do not effect the user and seldom affect the
developer. Wherever possible, the same hardware interface has been
maintained.

The Network Server uses the PCI bus architecture (instead of another bus
architecture, such as MicroChannel). The Network Server also uses Open
Firmware to configure devices during startup. Chapter 6, “The Open
Firmware Device Tree,” describes the new startup process.

The Network Server device hierarchy is also different from other AIX
device hierarchies. Chapter 7, “Device Configuration,” outlines these
changes.

The Network Server’s interrupt hardware is considerably different from
that of the IBM RS/6000. The interrupt interfaces are the same, although
the AIX interrupt subsystem has been modified to account for the hardware
differences.

Despite these hardware differences, the AIX operating system is essentially
preserved on the Network Server. Several software differences result from
the hardware differences, but most of these are hidden from the user.

Chapter 5 Overview of Changes on the Network Server 45

Software differences

If you are a developer of device drivers and are already familiar with AIX
4.1, you need to be concerned with the following differences in the
software:

■ Open Firmware

The Open Firmware startup process changes the way devices are
configured and changes the way you access certain information, such as
addresses and interrupt levels.

■ device I/O

The Network Server has a different on-board I/O controller.

■ DMA

DMA (direct memory access) is different, and DMA support services are
not used. The IBM platform shared DMA through a DMA engine. With
the Network Server, each device has an individual DMA engine.

■ device configuration methods

With the new device hierarchy for the Network Server, device
configuration methods use Open Firmware. Open Firmware provides
new routines for accessing information created during the Open
Firmware startup process. The content of the ODM databases reflects the
Network Server hardware.

■ graphics device drivers

3D features are not supported

■ network device drivers use the m_nextpkt field

AIX for the Network Server uses the m_nextpkt field of the mbuf
structure to pass multiple packets to network drivers. Thus, the mbuf
chain passed to the output routine of your driver will be two-
dimensional: the m_next field from the first mbuf pointer links the
fragments of the first packet; the m_nextpkt field of the first mbuf
pointer will (if non-NULL) point to the second packet.

46 Chapter 5 Developing Device Drivers for the Network Server

Note: IMB’s mbuf structure allows for this; however, their protocol
stacks currently do not take advantage of this feature, and their network
drivers typically do not follow the m_nextpkt pointer. Currently, the
AIX DLPI component does not pass packet chains down to network
drivers, except for the specific case of the AppleTalk stack.

The following areas of device driver development have not been changed
from IBM’s AIX:

■ synchronization and serialization

■ block device drivers

■ writing a virtual file system

■ stream-based TTY interface

If you need information about these topics, see the IBM documentation.
(Note: The IBM documentation may refer to hardware that does not apply
to the Network Server.)

6 The Open Firmware Device Tree

The Network Server uses Open Firmware to configure the devices and start
the operating system.

When the Network Server starts up, Open Firmware searches for devices and
builds a data structure of nodes called a device tree, in which each device is
defined. When Open Firmware has discovered devices and built the device
tree, it starts the AIX operating system. AIX for the Network Server uses the
device tree to learn about available devices and build Object Database
Manager (ODM) device databases. To get device information from the
device tree, your configuration methods use Open Firmware routines.

The Open Firmware startup process conforms to IEEE Standard 1275 and
the PCI Bus Binding to IEEE 1275-1994 specification.

This chapter provides an overview of the startup and device configuration
process, including

■ system startup and device discovery

■ the Open Firmware device tree

■ obtaining device information from the device tree

■ how the device tree relates to the ODM databases

■ the Open Firmware routines and command-line interface

Chapter 7, “Device Configuration for the Network Server,” provides more
information about the device hierarchy and device configuration methods.

48 Chapter 6 Developing Device Drivers for the Network Server

System startup and device discovery

The Open Firmware startup process is driven by startup firmware (also
called boot firmware) in the Network Server ROM and in memory chips on
PCI cards (expansion ROM). During the Open Firmware startup process,
startup firmware in the Network Server’s ROM searches the PCI buses and
generates a data structure, the device tree, that lists available PCI devices.
The device tree also lists the support software, including drivers, provided
by each expansion card. The startup firmware then finds the operating
system on a device and loads it.

The Network Server firmware provides capabilities to query the hardware
about device characteristics and build a device tree that an operating system
can access to get information about the hardware. The operating system
uses Open Firmware routines to access the information in the device tree.

About the device tree

The Open Firmware device tree is a data structure that describes the set of
devices and services available to the system. The user and the operating
system can use the device tree to examine the system’s hardware
configuration.

Devices are attached to a Network Server on a set of interconnected buses.
Open Firmware represents the buses and the attached devices as nodes on
the device tree. Open Firmware constructs the initial device tree based on
built-in devices; the device tree grows as new devices are discovered during
startup.

For example, the device tree for the Network Server, which uses the PCI
bus, starts with a node for each PCI bridge. Open Firmware descends each
node to look for other devices attached to it. This process is recursive,
resulting in a hierarchical device tree.

Chapter 6 The Open Firmware Device Tree 49

Listing 6-1 shows a device tree for the Network Server. In this listing, child
devices are indented under their parent devices.

/PowerPC,604@0

/12-cache@0,0

/memory@0

/AAPL,ROM@FFC00000

/bandit@F20000000

/53c825@11

/53c825@12

/gc@10

/53c94@1000

/mace@11000

/escc@13000

/ch-a@13020

/ch-b@13000

/awacs@14000

/swim3@15000

/via-cuda@16000

/adb@0,0

/keyboard@0,0

/mouse@1,0

/54m30@F

/bandit@F40000000

/53c875@10

/hammerhead@F80000000

Listing 6-1 An Open Firmware device tree for the Network Server

50 Chapter 6 Developing Device Drivers for the Network Server

Open Firmware starts with the CPU, then examines the memory controller.
Then, Open Firmware examines the PCI devices (such as Apple Integrated
I/O controller—listed in the example as gc) and discovers the available
child devices, creating a node for each item it discovers.

Each node in the device tree consists of the following information:

■ Property list

This data structure is part of the node and describes the device.
Properties include the name of the device and other device
characteristics such as frame buffer size and pixel depth capabilities.
Properties are added to the device tree as devices are located.

■ Methods

Device methods are sets of routines used to access the device.

Device tree nodes can also have

■ children—other device nodes that are directly below the device in the
tree

■ a parent—the node that is directly above the device in the device tree.

The following example shows a device tree node and its associated
properties. The device is a Symbios Logic 53c875 SCSI adapter card
installed in the bottom PCI slot.

>dev /bandit@F4000000/53c875@10

>.properties

vendor-id 00001000

device-id 0000000F

revision-id 00000001

class-code 00010000

interrupts 00000001

min-grant 00000008

max-latency 00000040

devsel-speed 00000001

Chapter 6 The Open Firmware Device Tree 51

AAPL,interrupts 0000001D

AAPL,slot-name SLOT6_PCI1

name 53c875

model NCR,875

compatible pci1000,f

device_type scsi

reg 00018000 00000000 00000000 00000000 00000000

01018010 00000000 00000000 00000000 00000100

02018014 00000000 00000000 00000000 00000100

02018018 00000000 00000000 00000000 00001000

02018030 00000000 00000000 00000000 00008000

power-consumption 007270E0 007270E0

assigned-addresses

81018010 00000000 00000400 00000000 00000100

82018014 00000000 F5101000 00000000 00000100

82018018 00000000 F5100000 00000000 00001000

82018030 00000000 90000000 00000000 00008000

AIX device configuration methods can use the Open Firmware device tree
to build their ODM database entries and configure devices. Device methods
read the information from a node and pass it to their kernel extension to
configure devices. Chapter 7, “Device Configuration for the Network
Server,” discusses configuration and the ODM databases; for complete
information about the ODM databases, refer to the IBM AIX book Writing
a Device Driver.

The properties guaranteed to be in the device tree for a device are the name
property and the reg property. The name property identifies the device;
the name must be stored in the Predefined Devices (PdDv) database of the
ODM. The reg property contains the address of a device with respect to
their parent device. For more information about these properties, see
Chapter 7, “Device Configuration With the Network Server.”

52 Chapter 6 Developing Device Drivers for the Network Server

Access to the device tree

Your configuration method can access the device tree to discover the
properties of a device. By accessing the device tree, your configuration
method can find values for a device’s properties such as interrupt levels.
You need to access the device tree primarily when you configure a device
and use a configuration method.

Note: Devices features in the device tree are called properties; features of
devices in the ODM are called attributes.

To access information in the device tree, you use Open Firmware routines.
In order to reach a specific node, you need the complete path of the node
or a “handle” into the device tree. A handle is an index that matches the
path of the node in the device tree.

The Open Firmware routines allow you to convert a handle to a path and a
path to a handle. See the manual pages in Section IV for more information.

The path of a device

Every configurable hardware device has a path into the Open Firmware
device tree. The following example shows a device path:

/bandit@F4000000/53c875@10

The device path consists of node names separated by slashes (/). The initial
slash represents the root node. Each node name has the form

name@address:arguments

You replace the name with a text string representing the device and address
with a hexadecimal number.

When specifying a path, you can include either the name or the @address,
or both. If you include only the name or the address, the firmware selects
the device that best matches the information you specified.

Chapter 6 The Open Firmware Device Tree 53

The handle attribute

The handle attribute (OF_handle) is an index into the Open Firmware
device tree that matches the path of the node. The handle can then be used
to make further inquiries about properties associated with that node. Each
parent configure method sets the handle of its child devices. The handle is
a parameter in many of the Open Firmware routines documented in Section
4, Manual Pages.

If you know the device path, you can find the handle of a node by using
the path2hdl routine. For example, to find the handle of the SCSI device
with the following path, use this routine:

OF_path2hdl ("/bandit@F4000000/53c875@10")

For information about defining the handle attribute, see “The Handle
Attribute in the Predefined Attributes Database” in Chapter 7, “Device
Configuration for the Network Server.”

Open Firmware routines

Configuration methods can obtain device information from the Open
Firmware device tree by using the routines in this section.

Note: In most cases, the device-configuration support for the operating
system manages most of the interaction between the Open Firmware
routines and the device tree. Your device’s configuration methods should
communicate with the device configuration subsystem through the Open
Firmware routines.

You can use the following routines to traverse the Open Firmware device
tree and get information:

■ OF_peer

Returns the handle to a device’s sibling (another device with the same
parent node) in the device tree.

■ OF_child

Returns the handle to a device’s first child.

■ OF_parent

Returns the handle to a device’s parent.

54 Chapter 6 Developing Device Drivers for the Network Server

■ OF_hdl2path

Converts the Open Firmware handle to the path of the device in the
Open Firmware device tree.

■ OF_path2hdl

Converts the path of the device in the Open Firmware device tree to an
Open Firmware handle.

■ OF_getprop

Gets the value of an Open Firmware property in the Open Firmware
device tree.

■ OF_nextprop

Gets the name of the next Open Firmware property.

For complete information about using these routines to get and set
information in the Open Firmware device tree, see the manual pages
documented in Section 4, Manual Pages.

The Open Firmware command-line interface

In most cases, the routines just described are all you need to obtain device
information. However, Open Firmware also provides a command-line
interface (the Forth monitor) that gives you access to routines for testing
devices and examining the device tree. You can only access the Open
Firmware environment early in the boot process.

To enter the Open Firmware command-line environment:

1 Start or restart the system and press Command-Option-OF.

Continue to hold down the keys until the 0> prompt appears. The system
displays ok followed by the O> prompt.

If AIX is installed and a root password is set, the security prompt appears,
and you need to enter the root password.

2 If the Security prompt appears, type login and press Enter.

Once you are in the Open Firmware command-line interface, you can
display information in the device tree and test devices.

Chapter 6 The Open Firmware Device Tree 55

Displaying the device tree

To display the device tree to ensure that your device is listed, enter this
command:

> dev /

> ls

Your Network Server displays a listing similar to the one shown earlier in
this chapter in Listing 6-1.

Displaying device properties

To display the properties of a node in the device tree , enter this command:

> dev pathname

> .properties

Your Network Server displays a listing similar to the one shown earlier in
this chapter in the section “System Startup and Device Discovery.”

7 Device Configuration With the Network Server

The AIX operating system uses the Configuration Manager to define and
maintain system configuration information, such as details about peripheral
devices. For the Network Server, AIX first obtains this device information
from the Open Firmware device tree and stores it in Object Database
Manager (ODM) database files. At startup, AIX restores those databases
properly and launches the Configuration Manager to load and configure
device drivers as necessary. To do this, the Configuration Manager must
launch the set of device configuration methods that are associated with each
hardware device in the system.

This chapter discusses the configuration methods that you create for each
device and highlights the modifications for device configuration to account
for hardware and firmware differences between the Network Server and
other AIX systems.

The primary differences that configuration methods must take into account
are:

■ the Network Server uses a different device hierarchy

■ the ODM configuration databases have been modified to reflect the new
device hierarchy

■ the busresolve routine is unavailable (Open Firmware provides this
information)

58 Chapter 7 Developing Device Drivers for the Network Server

The Network Server device hierarchy

Devices are organized into a hierarchical tree of parent-child relationships.
Parent device methods detect their children. Once a child device is detected,
the AIX Configuration Manager executes the appropriate configuration
methods to introduce them to the operating system. These methods load
the appropriate device drivers and make the devices available for use. The
AIX Configuration Manager oversees the entire configuration process by
starting configuration methods, interpreting errors, and managing the
configuration of child devices.

The Configuration Manager adds the device information to the ODM
device databases by invoking device methods based on device information
in the Open Firmware device tree. Configuration is a hierarchical process,
starting from the top device node in the ODM databases and descending
through all levels of child nodes. Figure 7-1 shows the Network Server
device hierarchy.

System

Bus

SCSI adapters Integrated I/O Graphics adapter

CD-ROM Hard disk Tape SerialBusCudaBusFloppyEthernetSCSI

MouseKeyboard

Figure 7-1 The Network Server device hierarchy

Chapter 7 Device Configuration With the Network Server 59

Here are some of the changes to configuration routines for the Network
Server:

■ The cfgsys method queries Open Firmware for device tree information.

■ The cfgbus method for the Network Server supports PCI bus
architecture instead of IBM’s MicroChannel bus. It queries the Open
Firmware device tree to discover its children (such as PCI boards and
other buses).

■ The cfggc method configures the Network Server’s Integrated I/O
adapter and defines the devices it handles (floppy disk drive, keyboard,
mouse, the two serial ports, SCSI, and Ethernet). This replaces IBM’s
equivalent cfgsio subsystem. The cfggc methods queries Open
Firmware for information about its children.

The ODM databases

The Object Database Manager (ODM) contains system information for
AIX. All AIX device configuration information and most of the system
configuration information exist as objects (data structures) stored in ODM
databases.

Objects that describe devices consist of one or more methods that act upon
that object, one or more data fields, and zero or more links. For example,
the Predefined Devices (PdDv) object class contains seven methods,
eighteen data fields, and no links. The methods are Configure,
Change, Define, Start, Stop, Unconfigure, and Undefine. An
object in this class might contain general device information, such as the
device driver name and the LED state to display during configuration.

Links between instances of objects reflect dependencies and arrange the
objects into a tree structure that determines configuration order and
control. Each tree structure constitutes a node. For example, if the SCSI bus
adapter needed to be initialized before all the SCSI devices, the SCSI bus
object would be placed at the top of the node and thus configured first. All
the subsequent SCSI devices linked below it in the node would be
configured in turn before the next node was configured.

60 Chapter 7 Developing Device Drivers for the Network Server

The ODM provides eight object classes for device configuration. These
classes are divided into predefined and customized databases:

■ Each predefined database contains a general description of a class of
objects. The predefined databases include the Predefined Attributes
(PdAt) database, the Predefined Connections (PdCn) database, and the
Predefined Devices (PdDv) database.

■ Each customized database contains a precise description of an object
currently configured with the system (an instance of the predefined
description), such as scsi1 or hdisk0. The customized databases
include the Customized Devices (CuDv) database, the Customized
Dependencies (CuDep) database, the Customized Attributes (CuAt)
database, the Customized Device Drivers (CuDvDr) database, and the
Customized Vital Product Data (CuVPD) database.

In AIX for the Network Server, new entries reflecting Apple devices have
been added to the ODM databases and other changes have been made for
device drivers to support the Network Server platform. These changes are
described in the following subsections. (Likewise, many entries in the AIX
4.1 ODM device databases are specific to IBM hardware and these entries
do not appear in the ODM databases for the Network Server.)

The device ID field in the Predefined Devices database

AIX for the Network Server uses the device ID field (devid) in the
Predefined Devices (PdDv) database differently than AIX 4.1 for other
platforms.

Chapter 7 Device Configuration With the Network Server 61

In other versions of AIX 4.1, the value of the devid field often consisted
of a pair of POS register values. AIX 4.1 software matched the unique
number in the POS registers to the devid field in its PdDv database to
determine the type of device. Since this situation is specific to IBM
hardware, it does not occur on the Network Server. Instead, AIX for the
Network Server matches device information from the Open Firmware
device tree to the devid field to identify the device. (The methods that
perform this mapping are cfgbus, cfggc, and cfgsys. Each of these
methods reads the name and compatible properties from the Open
Firmware device tree and searches the ODM for a devid that matches.
Open Firmware guarantees a name property for devices in the Open
Firmware device tree. If the device does not provide a name during startup,
Open Firmware creates a name from the vendor ID and the device ID such
as pci1000,3 for the 825A SCSI adapter.)

Here is part of an entry in the PdDv database for the SCSI device used in
the examples in Chapter 6, “The Open Firmware Device Tree.”

type = "pscsi"

class = "adapter"

subclass = "pci"

prefix = "scsi"

devid = "pci1000,3"

base = 1

uniquetype = "adapter/pci/pscsi"

AIX restricts the devid field to 16 characters, including the null
terminator. If you wish to store a name in the devid field that is greater
than 15 characters plus the NULL terminator, leave the devid field in the
PdDv blank to avoid truncation. Instead, use a PdAt attribute=devid
and specify type=Z. Store the long name in the deflt field of a PdAt
entry. Here is an example definition:

62 Chapter 7 Developing Device Drivers for the Network Server

PdAt:

uniquetype =_______

attribute="devid"

deflt ="A_long_Open_Firmware_Name"

value =""

width =""

type ="Z"

generic=""

rep="s"

nls_index=""

You must fill in the uniquetype field with the appropriate
class/subclass/type identifier associated with your device node—for
example, adapter/pci/pscsi. The default value should be set to the
appropriate string that comes from the Open Firmware name and
compatible properties. It is represented as a string (rep="s") and
identified as a type Z (type ="Z") attribute.

When the parent configure methods use Open Firmware to discover their
children, they will detect the long name and attempt to use the PdAt
database to map the device.

Building package names for child devices

The cfgsys, cfgbus, and cfggc routines are responsible for building
package names for the devices they discover during the installation process.
The cfgbus routine (responsible for building packages for PCI devices)
creates package names with the format devices.pci.xxxx, where xxxx is the
Open Firmware name for the device.

Note: Package names cannot contain a comma (,). When building package
names, configuration routines replace commas with plus signs (+) so that
the installation works. For example, a package with a device ID of
pci1000,3 maps to a package name of devices.pci.1000+3.

Chapter 7 Device Configuration With the Network Server 63

The handle attribute in the Predefined Attribute database

The handle attribute (OF_handle) is an index into the Open Firmware
device tree that matches the path of the node. The handle can then be used
to make further inquiries about properties associated with that node. The
handle is a parameter in many of the Open Firmware routines documented
in Section 4, Manual Pages.

Here is a sample definition of the handle attribute in the PdAt database:

PdAt:

uniquetype =_______

attribute="OF_handle"

deflt ="-1"

value =""

width =""

type ="R"

generic="D"

rep="n"

nls_index=_______

You must fill in the uniquetype field with the appropriate
class/subclass/type identifier associated with your device node—for
example, adapter/pci/pscsi. You should set the default handle to -1.
The attribute is also a regular (type="R") attribute represented as a numeric
(rep="n"). You can set the default handle as a displayable attribute
(generic="D") and if so, the nls_index should be filled in with the
correct message number that maps to the attribute’s textual description.
For consistency, the textual description is “Open Firmware Device Tree
Handle” and must be inserted in your devices catalog source file.
(Reminder: The catalog filename and the set number associated with the
nls_index field are stored in the PdDv database.)

64 Chapter 7 Developing Device Drivers for the Network Server

The parent device is responsible for storing the Open Firmware handle as
an attribute of the child (OF_handle) in the ODM databases. This parent
sets the handle for the child so the child can access the device tree. The
parent device assumes a handle has been predefined in the Predefined
Attributes (PdAt) database before device configuration and attempts to set
its value in the Custom Attributes (CuAt) database during configuration.
For example, cfgbus is responsible for setting the OF_handle attribute for
its child adapters.

Writing configuration methods

The dynamically loadable and unloadable aspect of the AIX Version 4.1
kernel requires that all device drivers have configuration methods to
support the ability to load and unload them from the kernel. Configuration
methods are sets of executables including a Define method, a Configure
method, a Change method, an Unconfigure method, and an Undefine
method. A Configure method is part of a set of configuration methods.

You use Configure methods to find a device’s attributes, update the values
in the ODM, find child devices, and load a device’s driver.

When a device’s Configure method reaches the final task of dealing with
its children, it can detect them by traversing the Open Firmware device tree.
After the parent Configure method defines a child device or even just
updates its status in the CuDv, the parent must set the child’s OF_handle
attribute in the CuDv database if the child device will need to obtain
information from the Open Firmware device tree. This must be done each
time the system starts up because the OF_handle value is not guaranteed to
be the same from one startup to the next.

When the Configure method for the child device is run, it has access to its
own OF_handle attribute and can use the Open Firmware routines to
search the device tree for device information. (For more information about
these routines, see “Open Firmware Routines” in Chapter 6, “The Open
Firmware Device Tree,” or see the manual pages in the Section IV.)

Chapter 7 Device Configuration With the Network Server 65

AIX for the Network Server supports all but one of the device-
configuration library routines from other versions of AIX 4.1. The
busresolve routine is currently not supported; this routine resolves
contention of devices on shared system resources such as bus interrupts and
DMA channels. On the Network Server, the busresolve functionality is
replaced by the Open Firmware device tree. Device methods can query the
Open Firmware device tree to get device and dbDMA interrupt levels.
Open Firmware also provides all assigned device address spaces. AIX for
the Network Server provides the following new set of library routines to
obtain this information:

resolve_pci_cfg_space resolve_pci_mem_space

resolve_pci_io_space resolve_gc_offset

resolve_intr_lvl

The following sample code uses two of these routines and obtains
attributes. The values obtained by this code are used for the sample code at
the end of this section.

long nodeh; /*Open Firmware node handle for this device*

ulong mem_addr; /*Open Firmware physical device address*/

ulong mem_addr_size;/*Open Firmware device mapped address space*

ulong cfg_addr; /*Open Firmware configuration space address*

/*Read the bus attributes so we can set some of our attributes

 * based on the bus values. */

bat_list = (struct attr_list *) get_attr_list (CuDv_bus.name,

CuDv_bus.PdDvLn_Lvalue, &scratch, 2);

if (bat_list == (struct attr_list *) NULL)

{

DEBUG_1 ("bld_dds: get_attr_list for parent failed with

error %d\n",scratch)

return (scratch);

/*scratch contains the error from get_attr_list*/

66 Chapter 7 Developing Device Drivers for the Network Server

}

/* Use the getatt function to extract the proper

 * customized or predefined attribute values from the ODM

 * database. Use the bus attribute list to get the bus

 * base_addr */

if ((rc = getatt(bat_list, "base_addr", (void *) &dds.base_addr,

'i', &scratch)) !=0)

{

return (rc);

}

DEBUG_1 ("dds.base_addr=%x\n",dds.base_addr)

/* Use the bus attribute list to get the bus-range for the bus *

if ((rc = getatt (bat_list, "bus-range", (void *)

&dds.parent_pci_bus,

'i', &scratch)) !=0)

{

return (rc);

}

DEBUG_1 ("dds.base-range=%x\n",dds.base-range)

rc = get_OF_status(nodeh);

if (rc !=E_OK) {

return (rc);

}

rc = resolve_pci_mem_space (nodeh, &mem_addr, &mem_addr_size);

if (rc == E_OK) {

dds.mem_space_addr = mem_addr;

dds.mem_space_length = mem_addr_size;

} else {

Chapter 7 Device Configuration With the Network Server 67

return (rc);

}

rc = resolve_pci_cfg_space (nodeh, &cfg_addr);

if (rc == E_OK) {

dds.cfg_space_reg_val = cfg_addr;

return (rc);

}

The routines that obtain device information use a basic set of library
routines for querying the Open Firmware device tree including the
following:

OF_child OF_peer OF_parent

OF_hdl2path OF_path2hdl OF_getprop

OF_nextprop

The complete reference pages for these routines are in Section IV, Man
Pages.

The subclass field in the PdDv database should contain the string pci for
any new PCI device.

PCI device developers need to obtain certain attributes to use with kernel
services. When a device driver registers an interrupt handler, an interrupt
structure must be filled. Use these guidelines for struct intr from
intr.h.

Interrupt structure field Source of data

bid Parent bus bus_id attribute

bus_type Parent bus bus_type attribute

level Use resolve_intr_lvl() routine

(See man page in section 4.)

priority Device's PdAt intr_priority attribute

Your configuration method determines these values.

68 Chapter 7 Developing Device Drivers for the Network Server

When a device driver needs to use the pci_cfgrw() kernel routine, the
mdio structure must be filled. Use these guidelines for MACH_DD_IO
from mdio.h. The pci_cfgrw routine is documented in Section IV,
Manual Pages.

mdio Field Source of data

md_sla Use resolve_pci_cfg_space() routine to

pass in appropriate value. The value represents:

(bus# * 16) + (devnum * 8) + function)

md_length Specifies the bus-range attribute of the parent bus or
parent bridge (whichever applies). Retrieve this attribute
through the configure method bus-range attribute.

md_data Pointer to data buffer.

md_size Specifies the number of items of size specified by the
md_incr parameter. The maximum size is 256.

md_incr Specifies the access type. MV_WORD is the only
supported type for the Network Server.

md_addr This should be the base address of bus

device ORed with the configuration register address.

The base address portion should come from

the Parent bus base_addr attribute.

Typically, you obtain this data with the configuration method, initialize the
data with the device’s DDS structure, and pass the information to the driver.

Here is some sample code that manages PCI configuration register cycles.
(This code uses the sample code earlier in this chapter to obtain values.)

#include <sys/mdio.h> /*for config cycles*/

struct LSA_def *lsa; /*overall adapter instance struct */

struct mdio md; /*from mdio.h*/

ulong cfg_data;

Chapter 7 Device Configuration With the Network Server 69

/*

* This value is retrieved by the config method through

* the base_addr attribute;

* lsa->ddi.base_addr; pci bridge device base address

* This value is retrieved by the config method through the

* resolve_pci_cfg_space routine. (See the man page for details

* lsa->ddi.cfg_space_reg_val; bus/device/function combination

* This value is retrieved by the config method through the

* bus range attribute:

* lsa->ddi.parent_pci_bus; parent device PCI bus number

* Initialize the mdio struct used for pci_cfgrw()

*/

md.md_addr = lsa->ddi.base_addr;

/*pci bridge device base address*/

/* OR in the particular config register wanted,

 * such as its address */

md.md_addr |= 0x0;

/* go for config reg 0 for this case */

md.md_sla = lsa->ddi.cfg_space_reg_val;

md.md_data = &cfg_data; /* where pci_cfgrw puts the data */

md.md_size = 1; /* read 1 datum of size md_incr */

md.md_incr = MV_WORD;

/*config data size will be int (4 bytes) */

md.md_length = lsa->ddi.parent_pci_bus;

/*parent’s PCI bus number */

70 Chapter 7 Developing Device Drivers for the Network Server

/* read config register 0 */

rc = pci_cfgrw(0, &md, READ);

/*pci_cfgrw() is a kernel routine */

if ((cfg_data & 0xF0000) == 0xF0000 {

printf("SymLogic875 config reg 0:dev/id = %x\n",cfg_data);

lsa->chip_type = 0x875;

}

if (rc == 0) { /* if no previous error */

md.md_addr = lsa->ddi.base_addr;

/*bridge device base address*/

/*OR in the particular config register wanted */

md.md_addr |= 0x4;

/* go for config reg 4, Status/Command reg */

rc = pci_cfgrw(0, &md, READ);

printf("Config Reg 4: Status/Cmd; initially = %x\n",cfg_dat

}

if (rc == 0) { /*if no previous error */

/*now let’s write our desired values */

cfg_data = 0x16; /*BUS MASTER, MEM I/O Space, MEM WR & INV

rc = pci_cfgrw(0, &md, WRITE);

}

if (rc == 0) { /*if no previous error */

/* read it back to verify */

rc = pci_cfgrw(0, &md, READ);

printf("Config Reg 4: changed to %x\n",cfg_data);

}

8 Device I/O on the Network Server

Even though a driver can perform many tasks, you usually write a driver to
output data to a device or demand data from a device; in other words,
drivers usually perform device I/O. A driver may have to read from, or
write to, registers on a card that serves as an adapter between an I/O bus and
a device connected to the card, or the driver may have to set up the means
for data to be transferred in some other way.

The primary I/O differences between AIX for the Network Server and AIX
4.1 for other platforms are as follows:

■ the Network Server does not use the IOCC and MicroChannel Adapter
(MCA) architectures to control I/O.

■ the Network Server uses different memory mapping for I/O spaces.

■ some components of the Network Server use descriptor-based direct
memory access (dbDMA) and the Network Server does not implement
central DMA support and the DMA support services.

This chapter highlights the differences between AIX for the Network Server
and AIX 4.1 for IBM platforms and discusses the following device I/O topics:

■ how the Network Server translates effective addresses to real addresses

■ how the Network Server I/O controller maps I/O space

■ how programmed I/O works with PCI devices

■ how to use DMA with the Network Server

■ how to allocate contiguous physical memory for a device driver

72 Chapter 8 Developing Device Drivers for the Network Server

Most of the differences related to the PCI architecture are hidden in the
driver configuration methods and the iomem_att and iomem_det
primitives. These AIX functions allow the driver to map and unmap I/O
address space from the operating system.

Address translation on the Network Server

Device drivers need to map addresses from physical memory to the virtual
memory of the kernel and to the virtual memory of certain processes. To
do so, drivers must perform address translation.

When a device driver gains control of the system, it uses routines in the
kernel to get to PCI memory space in the physical memory. The
iomem_att and iomem_det routines perform mapping address translation
for the driver.

AIX for the Network Server implements block address translation and
segment address translation for device I/O access. Figure 8-1 shows how
block address translation maps effective addresses to real addresses.

Effective Address

Real Address

Block Address Translation

Figure 8-1 Block address translation

Chapter 8 Device I/O on the Network Server 73

Block address translation (BAT) is an alternative to page address
translation. AIX for the Network Server uses BAT registers to map I/O. A
BAT register can map up to 256 MB of information. The iomem_attach
and iomem_detach routines hide the details of this address space from the
device driver.

For more information on block address translation, see the book PowerPC
Architecture.

I/O controller types on the Network Server

The Network Server processor architecture expects an I/O controller to
provide an interface between the system bus (the one the processors use to
access RAM) and an I/O bus. A computer system may have more than one
I/O bus, but each bus has its own I/O controller.

The Network Server has the following processor type, I/O controllers, and
I/O bus protocol.

Processor Controller Bus protocol Address space for I/O

PowerPC PCI bridge PCI Real address
(memory-mapped

I/O)

The I/O space is part of real address space—in other words, a memory
controller translates real addresses so that certain address ranges access
system RAM, and other address ranges access other devices. In this sense,
I/O space is memory-mapped. For implementation details, see Setting Up
the Network Server.

When you use the iomem_att routine to establish access to memory
mapped I/O, you need to provide the routine the values for the I/O
controller and the I/O bus protocol.

74 Chapter 8 Developing Device Drivers for the Network Server

I/O space on the Network Server

Device drivers use the iomem_att routine to access physical memory. The
memory controller maps I/O space. You can access I/O space by generating
real addresses through address translation.

Here are the main address allocations.

Address Purpose

0x00000000–0x7FFFFFFF RAM (2 GB)
0x80000000–0xF8FFFFFF PCI memory
0xF0000000–0xF8FFFFFFF PCI bridges/system control
0xF9000000–0xFEFFFFFFF PCI memory
0xFF000000–0xFFFFFFFFF ROM

Figure 8-2 shows the address map. The first bar represents the first part of
an address; the second bar represents the second part.

Figure 8-2 Address mapping

Chapter 8 Device I/O on the Network Server 75

Programmed I/O to PCI devices

A routine performs programmed I/O whenever it issues a load or store
instruction with an address mapped to a bus or device. You distinguish
programmed I/O, where a system processor performs the data transfer, from
direct memory access (DMA), where data is transferred by some other
means.

The following code sample uses programmed I/O and the iomem_att and
iomem_det routines:

#include <sys/ioacc.h>

#include <sys/adspace.h>

int

read_reg(struct LSA_def * lsa,

/* lsa is overall driver struct */

uint offset)

{

uint ret_code = 0;

uint val;

uint* addr;

void* mac_io_addr; /*keep intact for io_det */

struct io_map iom = {IO_MEM_MAP, IOM_INHIBIT,

SEGSIZE/2, REALMEM_BID, O};

uchar* chip_addr;

iom.busaddr = (struct ipl_cb *) lsa->chip_base_raddr;

/*chip real addr */

mac_io_addr = iomem_att (&iom);

chip_addr = (uchar *) mac_io_addr;

76 Chapter 8 Developing Device Drivers for the Network Server

addr = (uint*) (chip_addr + offset);

val = *addr;

ret_code = word_revers(val);

/*byte swap needed for this driver */

iomem_det (mac_io_addr);

return (ret_code);

}

The argument to iomem_att is a pointer to an io_map structure as defined
in sys/ioacc.h. The calling routine provides the size of the address space
needed, a bus ID, which specifies the bus type of the region to be mapped.
Network Server drivers use REALMEM_BID as the bus ID.

A call to iomem_att returns a valid virtual address. This address is to be
passed to iomem_det after the I/O operation is complete.

Direct memory access

To transfer data to or from a device without having a system processor
issue load or store instructions, you can use direct memory access (DMA),
which relies on capabilities designed into the Network Server DMA
controller and the adapter communicating with the attached device.

AIX 4.1 for IBM platforms has a DMA subsystem that uses a central DMA
engine and relies on IOCC and MCA. AIX for the Network Server,
however, does not support central DMA services. Each device determines
how to use DMA services.

There are two types of DMA:

■ DMA master

When an adapter card arbitrates for the bus and is able to transfer data
directly by generating its own bus addresses and transfer lengths, then
the transfer is a DMA master operation, and the card is a DMA master
adapter.

■ DMA slave

Chapter 8 Device I/O on the Network Server 77

When an adapter card arbitrates for control for the bus but lacks the
ability to generate its own bus addresses to transfer data, a third party (a
DMA controller) must perform the data transfer. In this case, the transfer
is a DMA slave operation, and the card is a DMA slave adapter.

Because bus addresses are meaningless during DMA slave operations, DMA
slave adapters cannot use the addresses during the DMA transfer to indicate
the intended location for the data. However, the programmed I/O
commands that the device driver has previously issued to the adapter
typically enable the adapter to know where the data is to be put or where it
is to be retrieved.

Allocating contiguous physical memory

Some device drivers need to allocate contiguous physical memory space.
Because of this, AIX for the Network Server uses IBM's rheap kernel code
available on their RSPC class boxes. AIX for the Network Server lets the
user configure the size of the real heap. (With IBM, the heap is a fixed size
of 128 KB.)

The Network Server implementation of the real heap includes the following
features:

■ A real_heap_size attribute was added to sys0 in the PdAt database.

■ AIX for the Network Servers includes database entries in SMIT to let
you set the size attribute.

■ The mkboot command (invoked by bosboot) has a new function,
get_heapsize(), which uses getattr() to obtain the value of
real_heap_size.

■ The mkboot command saves the heap size into the o_resv2 field of the
xcoff header of the generated boot image.

■ The bootapple command uses the value in o_resv2 and allocates
contiguous physical memory right below the newly generated IPLCB.
The init_rheap_buc() routine finds or generates an entry in the Bus
Unit Controller table in the IPLCB which describes the allocated real
heap memory.

9 The Network Server Interrupt Subsystem

Because interrupt hardware for the Network Server is different from the
interrupt hardware of other platforms supporting AIX 4.1, the interrupt
subsystem has been modified. This chapter provides an overview of the
Network Server interrupt subsystem, highlighting the differences in
interrupt levels and mapping.

80 Chapter 9 The Network Server Interrupt Subsystem

Overview of the interrupt subsystem

Adapters on any bus can generate interrupts to the host processor. Each
interrupt is associated with a particular level, which the processor uses to
determine how to handle the interrupt. Interrupt levels for the Network
Server can be shared—that is, more than one device can generate interrupts
on the same level.

Device drivers provide an interrupt handler to which the system dispatcher
transfers control of an interrupt. An interrupt handler is a routine that is
called by the kernel whenever an interrupt occurs at a given level. The
interrupt handler must first determine whether the interrupt was caused by
the adapter the driver is managing. If it was not, the handler exits
immediately and returns and indication of failure. If it was, the interrupt
handler performs the processing that is needed to deal with the interrupt,
resets the interrupt in the adapter, and returns to the kernel.

When a device configures itself, it specifies the priority of interrupts from
its associated adapter. When an interrupt occurs, interrupts from other
devices at that priority level and below are disabled. Higher priority
interrupts can still occur. Interrupt handlers for low-priority devices (such
as printers) can be preempted if an interrupt occurs on a high-priority
device.

When Open Firmware queries a device for information during the start up
process, it obtains the interrupt level and includes it in the device tree. To
obtain this information from the device tree, you use the Open Firmware
routines. For information about these routines, see Chapter 6, “The Open
Firmware Device Tree” and the manual pages in section 4.

Chapter 9 The Network Server Interrupt Subsystem 81

Interrupt levels

To determine the source of an interrupt, the Network Server processor
depends on a software interrupt level—a value that corresponds to a distinct
hardware interrupt source on a device. When the processor receives an
interrupt, the processor determines the interrupt level and uses it to call the
appropriate interrupt handler.

You can obtain the interrupt value for a device from the Open Firmware
device tree by using the resolve_intr_lvl() routine. See the man page
in Section IV for complete information about this routine. The value of the
Apple interrupt property must be used as the level field in the intr
structure passed to i_init().

The following table summarizes the interrupt levels for different types of
buses.

Bus Interrupt Can interrupt Are interrupt levels Available interrupt
sensitivity levels be shared ? programmable? levels

MCA Level Yes, with same Yes 1–16

priority

PCI Level Yes Yes 15

ISA Edge No No 5, 7, 9, 11, 14, 15

Apple PCI Level Yes No Determined by
Open Firmware

The AIX 4.1 operating system uses the busresolve routine to find a bus
interrupt level. AIX for the Network Server, however, does not support the
busresolve routine; its functionality is provided by Open Firmware.
During the startup process, Open Firmware obtains a device’s interrupt
level and stores the value in the Open Firmware device tree. You can use the
routines described in Chapter 6, “The Open Firmware Device Tree,” to
access this value.

Note: The mapping of an interrupt’s source to a specific processor
interrupt level depends on the hardware architecture. Open Firmware
handles the mapping of interrupts so that you do not have to.

82 Chapter 9 The Network Server Interrupt Subsystem

10 Implementing Graphics Input and 2D Graphics
Device Drivers

The graphics system for the Network Server has only a few changes from
the AIX 4.1 system for other platforms. The primary differences are as
follows:

■ The device-dependent level of the X Server is different to support the
Network Server. This change does not affect device drivers.

■ The Network Server does not support 3D features.

The 3D features allow you to provide lighting and shading.
Unsupported 3D features include graPHIGS, PEX, 3D libraries, and GAI
3D Model libraries.

This chapter describes the X Server and changes to support for input and
display devices.

84 Chapter 10 Implementing Graphical Input and 2D Graphics Device Drivers

Graphics environment

To provide a graphics environment, AIX for the Network Server provides
only the 2D portions of AIX Windows. The 2D portions enable the user to
run system management applications or any other X Window SystemTM or
Motif applications. AIX for the Network Server does not provide the 3D
portions of AIX, such as PEX (the PHIGS extension to X Window System)
or Silicon Graphics’ OpenGL.

AIX Windows consists of the X Window System (X11R5 server, client
libraries and applications, fonts, include files, and so on), Motif 1.2.3
(libraries, include files, and applications), and the COSE Desktop.

The X server

The X server provides a device-dependent layer that isolates nearly all
hardware dependencies. AIX for the Network Server has changed much of
this layer to work with Apple’s video drivers.

■ The Network Server supports the video modes provided by the video
chip on the main logic board for 8-bit, 256 color displays. The Network
Server meets the SVGA standards.

■ The underlying video driver in the kernel has been changed to support
the video chip. It interacts with the chip just like other video adapters in
AIX.

■ To support color with the X server, AIX for the Network Server includes
the standard X Window System routines to calculate the clipping area.
(AIX 4.1 does not include these routines because the IBM hardware
provides this functionality.)

Mouse support

X applications typically expect a three-button mouse. Because the Network
Server supports the Apple one-button mouse, AIX for the Network Server
maps the arrow keys to the middle and right mouse buttons to overcome
the limitations of the one-button mouse. With three-button mouse devices,
the arrow keys perform normally.

Chapter 10 Implementing Graphical Input and 2D Graphics Device Drivers 85

Other input device issues

In addition, the X server’s key mappings have also been modified to
support Apple’s keyboards. The X Server has a keymap structure to
reflect the keys on a keyboard. AIX for the Network Server has a keymap
to reflect Apple keyboards.

The xinitrc startup script has been modified to reflect Apple ISO
keyboards for foreign languages.

Section III Using the AppleTalk API

This section describes the programming interfaces to the AppleTalk API.

88 Using the AppleTalk API

11 AppleTalk Programming Interfaces

This section describes the programming interfaces of the different
AppleTalk Stack modules. The access to the following modules (DDP,
ATP, NBP, RTMP, PAP, ASP) is provided through library function calls.

Datagram Delivery Protocol (DDP)

The Datagram Delivery Protocol (DDP)is a best-effort protocol, meaning
there is no guarantee of reliable datagram delivery.

DDP is a connectionless datagram protocol, providing for delivery of
datagrams not only from node to node but also from AppleTalk socket to
AppleTalk socket and from internet to internet. You establish an
application’s connection to DDP by calling ddp_open() routine using one
of the 254 AppleTalk sockets that the DDP layer provides on each node.

The ddp_open() routine takes an AppleTalk socket number as its
argument. If a number between 1 and 127 (inclusive) is supplied, DDP
returns a connection to that AppleTalk socket, known as a static AppleTalk
socket. If the number 0 is supplied, DDP return a connection to an
AppleTalk socket number in the range of 128 through 254, known as a
dynamic AppleTalk socket.

Dynamic AppleTalk sockets are the most commonly used socket type.
When you open a dynamic socket, you are guaranteed a unique socket ID,
but you do not specify the number of that socket.

For certain applications, only static sockets are appropriate. For example,
certain AppleTalk sockets are reserved for clients such as the AppleTalk
core protocols (for example, ATP, NBP, and RTMP) and for low-level
network services such as echoers. Others are reserved for unrestricted
experimental use. These experimental sockets are not recommended for
commercial products because there could be conflicting usage of the same
socket numbers by different developers.

A datagram consists of a DDP header followed by data. The header
contains:

■ the data length

■ source and destination

■ addresses (The AppleTalk addresses in the header contain the full
internet addresses of the AppleTalk sockets.)

■ protocol type that identifies the caller

■ a hop count field that keeps track of the number of routers visited to
avoid transmitting the datagram indefinitely

■ a checksum field

On an AppleTalk internet, the router determines the route the datagram
takes from source to destination. See Inside AppleTalk for more
information about datagrams.

DDP library functions

The DDP functions use this structure:

typedef struct {

u_short unused : 2,

 hopcount : 4,

 length : 10;

u_short checksum;

at_net dst_net;

at_net src_net;

at_node dst_node;

at_node src_node;

at_socket dst_socket;

at_socket src_socket;

u_char type;

u_char data[DDP_DATA_SIZE];

} at_ddp_t;

The checksum, dst_net, dst_node, dst_socket, and data members
must be set before you can write the datagram. The remaining members are
set by DDP. The length member specifies the DDP packet length. If the
checksum member is nonzero, DDP calculates a checksum for the data
member and stores it in checksum.

The following sections detail the DDP functions.

The ddp_open function
int ddp_open (socket)

at_socket *socket;

This function opens a static or dynamic AppleTalk socket for sending or
receiving DDP datagrams and returns a file descriptor that can be used to
read and write DDP datagrams. The socket parameter is a pointer to a DDP
socket number to open. If the socket number is 0 or if socket is NULL, a
DDP socket is assigned dynamically. Otherwise, the static socket (in the
range 1 to 127, inclusive) specified by socket is opened. Once opened, you
can send and receive datagrams by calling the UNIX read() and write()

system calls. You can send and receive asynchronously by calling the
UNIX select() system call and by calling fcntl() with the O_NDELAY
parameter. If you want to provide an implementation of ATP or ADSP
directly over Apple’s DDP layer, you must use atpproto_open () or
adspproto_open , respectively.

The ddp_close function
int ddp_close(fd)

int fd:

This function closes the DDP AppleTalk socket identified by fd.

The atpproto_open function
int atpproto_open (socket)

at_socket *socket;

This function must be used, in place of the ddp_open() function, by an
ATP layer running over DDP. It opens a static or dynamic DDP socket for
sending or receiving ATP packets and returns a file descriptor that can be
used to read and write DDP datagrams containing ATP protocol data units.
The socket parameter is a pointer to a DDP socket number to open. If the
socket number is 0 or if socket is NULL, a DDP socket is assigned
dynamically. Otherwise, the static socket (in the range 1 to 127, inclusive)
specified by socket is opened. Once opened, you can send and receive
datagrams by calling the UNIX read() and write() system calls. You can
send and receive asynchronously by calling the UNIX select() system call
and by calling fcntl() with the O_NDELAY parameter.

The adspproto_open function
int adspproto_open (socket)

at_socket *socket;

This function must be used, in place of the ddp_open() function, by an
ADSP layer running over DDP. It opens a static or dynamic DDP socket
for sending or receiving ADSP packets and returns a file descriptor that can
be used to read and write DDP datagrams containing ADSP protocol data
units. The socket parameter is a pointer to a DDP socket number to open. If
the socket number is 0 or if socket is NULL, a DDP socket is assigned
dynamically. Otherwise, the static socket (in the range 1 to 127, inclusive)
specified by socket is opened. Once opened, you can send and receive
datagrams by calling the UNIX read() and write() system calls. You can
send and receive asynchronously by calling the UNIX select() system call
and by calling fcntl() with the O_NDELAY parameter.

DDP Error Codes

All of the DDP functions return –1 to indicate an error with one of these
error codes in errno:

EACCES

A user who does not have permission attempted to open a static
AppleTalk socket.

EADDRINUSE

An attempt was made to open a specific static socket that is already in
use or an attempt was made to open a dynamic socket, all of which are in
use.

EINVAL

An attempt was made to open an invalid AppleTalk socket number.

EMSGSIZE

A datagram is too large or too small.

ENETDOWN

The network interface is down.

ENOBUFS

DDP is out of buffers.

Routing Table Maintenance Protocol (RTMP)

RTMP creates (only in Routers) and maintains the routing information
necessary to route packets to their destinations. In AIX on nonrouter nodes,
RTMP is used primarily for maintaining network addresses when routers
are present. When a router is present, it periodically transmits the current
network number and router number. This allows for proper routing of a
user’s request by means of the AppleTalk internet address.

RTMP library functions

The only RTMP library function is rtmp_netinfo(). Applications that use
rtmp_netinfo() should include the appletalk.h header file.

int rtmp_netinfo(fd, addr, bridge)

int fd;

at_inet_t *addr, *bridge;

This function obtains node and bridge addresses. The parameter fd
specifies an AppleTalk file descriptor for an AppleTalk socket. The addr
and bridge parameters point to at_inet_t structures, which are used to
store the 32-bit address of a NVE (Network Visible Entity).

To get the address of a node that is associated with an AppleTalk file
descriptor, set fd to the value of a valid AppleTalk file descriptor and set the
value of bridge to NULL. On return, the members of the at_inet_t
structure pointed to by addr contain these values:

net The network number.

node The node number.

socket The socket number.

A network number is between 1 and 65535. The network number is
supplied by a router node and is not built into the nodes on a network.
Therefore, if there are no router nodes on the network, the returned
number is 0 for LocalTalk networks. For Ethernet networks, the network
number is the network number the node had before the router disappeared,
or a value from the startup range. Node numbers are assigned dynamically
by the LAP layer when the network is established. A node number is
between 1 and 254.

To get the address of a bridge—a device that provides the signal
amplification necessary to extend a cable—set fd to –1. On return, the
members of the at_inet_t structure pointed to by addr contain values for
the local address and the members of the at_inet_tr structure pointed to
by bridge contain these values:

net For LocalTalk networks, 0; for EtherTalk networks, the network
number of the local router.

node The node number.

socket Because the socket member for a bridge has no meaning, this
member is 0.

The rtmp_netinfo() function returns –1 to indicate an error with this
error code in errno:

EINVAL Indicates that both addr and bridge are NULL.

For additional values of errno, see “Datagram Delivery Protocol (DDP),”
earlier in this section.

AppleTalk Transaction Protocol

The AppleTalk Transaction Protocol (ATP) provides reliable transport
between two AppleTalk nodes. At the ATP level, reliability is provided by
these methods:

■ noting lost packets and resending them

■ noticing duplicate packets and discarding them

■ detecting out-of-sequence packets and reassembling them in order

Reliability is achieved through the use of exactly-once (XO) transactions.
With at-least-once (ALO) transactions, some of this reliability can be lost
because ATP does not guarantee filtering of duplicate requests in all
situations (for example, if a router fails during a transaction). See Inside
AppleTalk for details.

In the current release, the ATP library functions provide both synchronous
and asynchronous operations with the interface. ATP library functions
allow for the preservation of packet boundaries. If your packets are of
variable size or mixed composition (headers in one, data in another), you
must preserve packet boundaries.

There are six functional areas of software support for ATP under AIX. One
function is provided for each of these services:

■ AppleTalk socket acquisition (atp_open())

■ AppleTalk socket disposal (atp_close())

■ request receipt (atp_getreq())

■ response sending (atp_sendrsp())

■ request sending (atp_sendreq())

■ response receipt (atp_getresp())

ATP library functions

The ATP functions use the following structures.

typedef struct at_retry {

short interval;

short retries;

u_char backoff;

} at_retry_t;

This structure specifies the retry interval and maximum number of retries
for an ATP transaction. The interval member specifies the number of
seconds to wait before retrying an ATP request. The retries member
specifies the maximum number of retries for an ATP request. The backup
member specifies the value by which the retry interval is to be multiplied, to
a maximum of 16 seconds, on each retry.

typedef struct at_resp {

uchar bitmap;

struct iovec resp[ATP_TRESP_MAX];

int userdata[ATP_TRESP_MAX];

} at_resp;

This structure specifies buffers to be used for response data. The bitmap
member specifies the buffers for which responses are expected. The resp
member is an iovec structure that describes the response buffers and their
lengths. The userdata buffer member is an array of 32-bit words that
holds the user bytes for each ATP response.

All of the ATP functions return –1 to indicate an error and one of the
following error codes in errno:

 EAGAIN

Indicates that the request failed due to a temporary resource limitation.

 EINVAL

Indicates that a dest, len, resp, or retry parameter is invalid.

 ENOENT

Indicates that the request was an attempt to send a response to a
nonexistent transaction.

ETIMEDOUT

Indicates that the request exceeded the maximum number of retries.

 EMSGSIZE

For atp_sendreq(), indicates that the response was larger than the
buffer or that more responses were received than expected. The response
is truncated to the available buffer space.

For atp_getreq(), indicates that the request buffer is too small for the
requested data. The requested data is truncated is the available buffer
space.

For atp_sendrsp(), indicates that the response is too large. The
maximum in bytes is ATP_DATA_SIZE.

The following sections detail the ATP functions.

The atp_open function
int atp_open(socket)

at_socket *socket;

This function opens an ATP AppleTalk socket. It returns a file descriptor
that you use when you call other ATP functions. The socket parameter is a
pointer to an ATP socket number to open. If the socket number is 0 or if
socket is NULL, an ATP socket is assigned dynamically. Otherwise, the
static socket (in the range 1 to 127, inclusive) specified by socket is
opened.

The atp_close function
int atp_close(fd)

int fd;

This function closes the AppleTalk socket specified by fd.

The atp_sendreq function
int atp_sendreq(fd, dest, buf, len, userdata, xo, xo_relt,

tid, resp, retry, nowait)

int fd;

at_inet_t *dest;

char *buf;

int len, userdata, xo, xo_relt;

u_short *tid;

at_resp_t *resp;

at_retry_t *retry;

int nowait;

This function sends an ATP request to another socket. If the flag nowait
is set to non-zero, this functions returns immediately without waiting for the
response (the response must later be received using the atp_getresp()
function); otherwise, it waits for the response. The parameter fd specifies
the file descriptor to use in sending the request, and dest specifies the
AppleTalk internet address of the AppleTalk socket to which the request is
to be sent. The parameter buf points to the data to be sent and len
specifies the number of bytes to send. The parameter userdata specifies the
user bytes for the ATP request header.

The parameter xo is TRUE if the request is to be sent exactly once or
FALSE if the request can be sent more than once. Setting xo to FALSE

causes the next parameter, xo_relt (which should be 0) to be ignored.
When xo is TRUE, xo_relt is used to set the release timer value on the
remote socket. The value of xo_relt can be 0 (or ATP_XO_DEF_REL_TIME)
for the default value, ATP_XO_30SEC, ATP_XO_1MIN, ATP_XO_2MIN,
ATP_XO_4MIN, or ATP_XO_8MIN.

On return, the parameter tid stores the transaction identifier for this
transaction. The parameter resp is a pointer to an at_resp_at structure
that, on return, stores the response for this transaction. The length of each
response buffer, specified by the iov_len member, is updated on return
from atp_sendreq(). When you use the atp_sendreq() function in the
no-wait mode, you do not need to specify the resp structure meaning the
resp parameter can be 0; the default bitmap will be 0xff. If a different
bitmap is desired, resp can be specified with only a bitmap value; the rest
of the parameters in the resp structure are not necessary and need only be
specified during the atp_getresp() function.

The parameter retry is a pointer to an at_retry_t structure, which
specifies the retry interval and the maximum number of retries for this ATP
transaction. If the value of retry is NULL, the retry interval is
ATP_DEF_INTERVAL (that is, 2 seconds), the maximum number of retries is
ATP_DEF_RETRIES (that is, 8) and the backoff value is 1. Setting the retries

member of retry to AT_INF_RETRY causes the transaction to be repeated
indefinitely.

The parameter nowait should be set to 0 to indicate synchronous operation
or to 1 to indicate no-wait operation.

The atp_getreq function
int atp_getreq(fd, src, buf, len, userdata, xo, tid,

bitmap, nowait)

int fd;

at_inet_t *src;

char *buf;

int *len, *userdata, *xo;

u_short *tid;

u_char bitmap;

int nowait;

This function receives an incoming ATP request sent from another
AppleTalk socket. The parameter fd specifies the file descriptor to use in
receiving the request, and src specifies the AppleTalk internet address of
the AppleTalk socket from which the request was sent. The parameter buf
points to a buffer where the incoming data will be stored, and len specifies
in bytes the length of buf.

On return, the parameter userdata contains the user bytes from the ATP
request header; the parameter xo is TRUE if the request is to be sent exactly
once or FALSE if the request can be sent more than once; the parameter tid
stores the transaction identifier for this transaction; and the parameter
bitmap contains the responses expected by the requester.

In no-wait operation, this function returns -1 immediately if there is
currently no ATP request from another AppleTalk socket.

The parameter no-wait should be set to 0 to indicate synchronous
operation or to 1 to indicate no-wait operation.

The atp_sendrsp function
int atp_sendrsp(fd, dest, xo, tid, resp)

int fd;

at_inet_t *dest;

int xo;

u_short tid;

at_resp_t *resp;

This function sends an ATP response packet to another AppleTalk server
socket. The parameter fd specifies the file descriptor to use in sending the
response, and dest specifies the AppleTalk internet address of the
AppleTalk socket to which the response should be sent. The value of tid is
the transaction identifier for this transaction. The parameter resp is a
pointer to an at_resp_t structure that contains two arrays for the response
data: resp, which is an eight-entry iovec array and userdata, which is an
eight-entry array. The iov_base member of each iovec member points to
a buffer containing the response data. The iov_len member specifies the
length of each response buffer. Each userdata member contains the user
data to be sent with its respective ATP response packet.

The atp_getresp function
int atp_getresp(fd, tid, resp);

int fd;

u_short tid;

at_resp_t *resp;

This function is used in the no-wait mode, (the atp_sendreq() function
was called without waiting for the response) to receive the incoming ATP
response sent from another AppleTalk socket. The parameter fd specifies
the file descriptor to use in receiving the response.

On return, the parameter tid stores the transaction identifier for the previous
transaction request for the matched response. The parameter resp is a
pointer to an at_resp_t structure that, on return, stores the response
information for the transaction.

The atp_look function
int atp_look(fd);

int fd;

This function looks at the current event on an ATP endpoint. It returns a 0
if the event is a transaction request coming from another ATP socket; it
returns a non-zero value if the event is a transaction response or completion
of a previous synchronous transaction request.

The atp_abort function
int atp_abort(fd, dest, tid);

int fd;

at_inet_t *dest;

u_short tid;

This function aborts a transaction request or transaction response in
progress. If the parameter dest is set to 0, it is a transaction request
abort. The value of tid is the transaction identifier of the transaction in
progress.

On success, this function returns 0; otherwise, it returns -1.

Name Binding Protocol

The Name Binding Protocol (NBP) translates the character name associated
with a network-visible entity (NVE) into an AppleTalk internet address for
use with the AppleTalk protocols. NBP allows the use of names rather than
the numeric identifiers required for communication over the AppleTalk
network. The address of a named entity must be obtained before that entity
can be used over AppleTalk. The process of obtaining the address is known
as name binding. NBP allows special characters to be substituted (wildcard
name look-ups) in place of strings.

The AppleTalk protocols refer to an NVE by its 32-bit address, which is
composed of these three fields, as illustrated in the following figure.

■ a 16-bit network address

■ an 8-bit node address

■ an 8-bit number representing the DDP socket number

15141312111098 7 65 4 32 1 0 7 65 4 32 1 0 7 65 4 32 1 0

254 per node (1 through 25

Dynamically assigned by the node (1 thro

Statically assigned by a bridge on an internet, 0x0000 on a local net

Network Number Node Number Socket Number

NBP associates an entity name (EN) with an NVE. An EN has three
components:

■ object, the name of the object

■ type, the type of the object

■ zone, the name of the zone in which the object resides

Each of these three components may be up to 32 characters long;
uppercase and lowercase are ignored when comparisons are made. All
characters are significant, including trailing spaces. The three components
are concatenated to form the entity name. The object and type fields are
separated by a colon (:), and the zone field is preceded by an “at” symbol
(@). Here is an example of a possible entity name for a LaserWriter called
writer4 in a zone named doc:

writer4:LaserWriter@doc

You can use an equal sign (=) as a wildcard to signify all possible values of
the object or type field. You can use an asterisk (*) in the zone field to
represent the current zone.

Five functional areas are involved in name binding. A function in the
library is provided for each of these functional areas:

■ Look up an EN’s internet address.

■ Confirm an EN’s internet address.

■ Register an EN’s internet address.

■ Deregister an EN’s internet address.

■ Decompose an EN into its components.

See Inside AppleTalk for more information.

NBP library functions

The NBP functions use the following structures.

typedef struct at_inet {

at_net net;

at_node node;

at_socket socket;

} at_inet_t;

The at_inet structure specifies the AppleTalk internet address of a DDP
socket end point.

typedef struct at_retry {

short interval;

short retries;

u_char backoff;

} at_retry_t;

The at_retry structure specifies the retry interval and maximum number
of retries for a transaction. The interval parameter specifies the number of
seconds to wait before retrying an NBP request. The retries parameter
specifies the maximum number of retries for an NBP request. NBP does
not use the backoff parameter.

typedef struct at_nevstr {

char len;

char str[NBP_NVE_STR_SIZE];

} at_nvestr_t;

The at_nevstr structure specifies an NBP entity string. The len parameter
specifies the length of the string in bytes, and the str parameter specifies the
character data for the string.

typedef struct at_entity {

at_nvestr_t object;

at_nvestr_t type;

at_nvestr_t zone;

} at_entity_t;

The at_entity structure specifies an entity name. The object parameter
specifies the name of the object; the type parameter specifies the type of the
object (for example, Macintosh IIsi); and the zone parameter specifies the
name of the zone. The strings in the members of this structure are not null-
terminated.

typedef struct at_nbptuple {

at_inet_t enu_addr;

union {

struct {

u_char enumerator;

at_entity_t entity;

} en_se;

struct {

u_char enumerator;

u_char name[NBP_TUPLE_SIZE];

} en_sn;

} en_u;

} at_nbptuple_t;

The at_nbptuple structure is used to store the name-address pairs that
result from querying the NBP name tables by calling nbp_lookup(). The
strings in the members of this structure are not null-terminated.

All of the NBP functions return –1 to indicate an error and one of the
following error codes in errno:

EINVAL

Indicates that an EN is invalid.

EADDRNOTAVAIL

Indicates that the requested address is not available.

ETIMEDOUT

Indicates that the request exceeded the maximum number of retries.

The following paragraphs describe the NBP functions.

The nbp_parse_entity function
int nbp_parse_entity(entity, str);

at_entity_t *entity;

char *str;

This function parses str, which is a null-terminated string of the form
object,object:type or of the form object:type@zone, and stores the elements
in the entity structure specified by entity.

The nbp_make_entity function
int nbp_make_entity(entity, object, type, zone)

at_entity_t *entity;

char *object, *type, *zone;

This function stores the value of object, type, and zone (all of which must
be null-terminated strings) in the entity structure specified by entity. This
function returns 0 to indicate success.

The nbp_confirm function
int nbp_confirm(entity, dest, retry)

at_entity_t *entity;

at_inet_t *dest;

at_retry_t *retry;

This function sends a confirmation request to the node specified by dest to
see if the EN specified by entity is still registered at the same address. The
object and type members of the entity structure cannot contain wildcards,
but the zone member can contain an asterisk (*) to represent the current
zone. If the EN is still registered, but at a different socket number, the
socket member of the at_inet_t structure is updated. The retry parameter
points to an at_retry_t structure that specifies the NBP request retry
interval in seconds and the maximum retry count. If the value of retry is
NULL, the retry interval is one second and the maximum retry count is
eight. This routine returns 1 to indicate success, 0 to indicate that the EN is
not confirmed, and –1 to indicate an error.

The nbp_lookup function
int nbp_lookup(entity, buf, max, retry)

at_entity_t *entity;

at_nbptuple_t *buf;

int max;

at_retry_t *retry;

This function queries the NBP name tables on nodes in the specified
AppleTalk zone (specified by the zone member of the entity structure
specified by entity) and returns a list of NVEs that match the EN specified
by entity. The value of the zone member of the entity structure can be an
asterisk (*) to indicate the current zone. The nbp_lookup() function
stores the list of name/address pairs at the location pointed to by buf, which
is an array of at_nbptuple structures. The parameter max specifies the
number of at_nbptuple structures that buf can hold. The parameter retry
is a pointer to an at_retry_t structure, which specifies the retry interval
and the maximum number of retries for this NBP transaction.

The nbp_register function
int nbp_register(entity, fd, retry)

at_entity_t *entity;

int fd;

at_retry_t *retry;

This function registers the EN specified by entity with the NBP names table
on the node. The nbp_register function ignores the specified zone name
and instead uses the name of the home zone. The value of fd is the file
descriptor to be registered with the EN, and retry is a pointer to an
at_retry_t structure, which specifies the retry interval and the maximum
number of retries for this NBP transaction. If the value of retry is NULL,
the retry interval is one second and the maximum number of retries is
eight.

If an NVE with the same object and type names has already been registered
in the current zone, nbp_register() rejects the registration by returning
–1 and setting errno to EADDRNOTAVAIL.

The nbp_remove function
int nbp_remove(entity, fd)

at_entity_t *entity;

int fd;

This function removes the EN specified by entity from the NBP name table.
None of the members of the entity structure can contain wildcards. The
zone member of the entity structure is ignored. The value of fd is the file
descriptor registered with the EN. Note that only the EN-to-NVE mapping
is removed, not the NVE resource itself, so you can still send information to
the AppleTalk internet address.

Printer Access Protocol

The Printer Access Protocol (PAP) is designed primarily to communicate
with printers. Details of how data is transferred reliably at the PAP level are
handled by the protocol itself.

PAP is constructed in a server-client relationship. The server is the printer
itself, and the client is the print requester. PAP allows multiple connections
and handles connection setup, maintenance, closure and data transfer.

PAP Client library functions

The following sections describe the functions that a PAP client calls.

The pap_open function
int pap_open(tuple)

at_nbtuple_t *tuple;

This function returns a PAP client file descriptor for a connection with the
server whose name and address are specified by tuple. You can call
nbp_lookup() to obtain a valid name and address of a particular PAP
server.

The pap_read function
int pap_read(fd, data, len)

int fd, len;

char *data;

When called by a PAP client, this function reads data from a client PAP file
descriptor that has been opened by calling pap_open(). The value of fd is a
PAP client file descriptor; the value of data is a pointer to a buffer into
which the data is to be stored; and the value of len, which can be no more
than 512, specifies the number of bytes to read. When successful,
pap_read() returns the number of bytes read. When pap_read()
encounters an end-of-file character, it returns 0.

The pap_read_ignore function
int pap_read_ignore(fd)

int fd;

This function issues a PAP read request and ignores any returned data. You
can use this call to allow printers to function when they want to return status
messages.

The pap_status function
char *pap_status(tuple)

at_nbtuple_t *tuple;

This function returns a pointer to a PAP server’s status string. The value of
tuple is a pointer to a structure containing the name and address of a PAP
server. You can call nbp_lookup() to obtain the value for the tuple
parameter.

The pap_write function
int pap_write(fd, data, len, eof, flush)

int fd, len;

int eof, flush;

char *data;

This function sends data to a PAP server. The value of fd is a PAP client file
descriptor. The value of data is a pointer to the data being written. The
value of len , which must be greater than 0, is the amount of data to send.
The value of eof is TRUE to indicate that no more data will be sent or
FALSE to indicate that more data will be sent. eof must be set on the last
data packet sent. The value of flush is TRUE to indicate that all data
waiting for PAP writes should be sent (that is, flushed) to the PAP server or
FALSE to indicate that a flush is not required. The flush parameter is
required because PAP runs on top of ATP, which means that PAP writes are
queued until a complete ATP response (4 K) is accumulated (that is, flush is
set to FALSE) or until ATP receives an end-of-message (that is, flush is set
to TRUE). Setting eof to TRUE implies that flush is also TRUE. You should
set flush to TRUE whenever a higher-level protocol, such as a handshake
with a LaserWriter, needs to do a write followed by a read.

This function returns a value that is less than 0 to indicate failure.

The pap_close function
int pap_close(fd)

int fd;

This function closes an open PAP client file descriptor. The value of fd is
the file descriptor to be closed. This routine returns 0 on success; if the file
descriptor is no longer open, this routine returns –1.

AppleTalk Data Stream Protocol

The AppleTalk Data Stream Protocol (ADSP) is a symmetric, connection-
oriented protocol that guarantees the ordered delivery of full-duplex
streams of bytes between two given sockets in an AppleTalk internet.
ADSP runs over the Datagram Delivery Protocol DDP and operates at the
same layer as AppleTalk Session Protocol (ASP).

Important Unlike the other AppleTalk protocols described previously, there
are two interfaces for ADSP: the first is the socket-like interface and the
second is the industry standard TLI interface. The following sections
describe both interfaces.

ADSP Socket-like Interface

The ADSP socket-like interface provides a programming interface very
similar to that of the popular socket interface. For programmers who are
familiar with the socket interface used for the Internet protocol suite
(TCP/IP), this ADSP interface looks very much the same, except for the
names of all ADSP function calls having the ADSP prefix.

Following is the list of the ADSP socket-like function calls.

ADSPaccept()

ADSPbind()

ADSPclose()

ADSPconnect()

ADSPfwdreset()

ADSPgetpeername()

ADSPgetsockname()

ADSPgetsockopt()

ADSPlisten()

ADSPrecv()

ADSPsend()

ADSPsetsockopt()

ADSPsocket()

ASYNCread()

ASYNCread_complete()

Some of these function calls require specifying an endpoint address. This
address is specified using the structure at_inet_t defined as follows:

typedef struct at_inet {

 u_char net[2]; /* Network address */

 u_char node; /* Node number */

 u_char socket; /* Socket number */

} at_inet_t;

The following sections provide a detailed description of each ADSP socket-
like function call.

The ADSPaccept function
int ADSPaccept(fd, name, namelen)

int fd;

at_inet_t *name;

int *namelen;

This function is used to accept a connection on an ADSP socket. The
argument fd is the socket descriptor of the listening ADSP socket that has
been created with the ADSPsocket() call. The ADSP socket must have
been bound to a listening address via the ADSPbind() call and set to listen
for connections via the ADSPlisten() call.

The argument name is the result parameter that is filled in with the address
of the remote endpoint used in communicating with the connected local
endpoint when the connection has been established.

The argument namelen is both the calling parameter and result parameter.
On calling, this argument must contain a value greater than or equal to the
size of the structure at_inet_t. On return, it will be filled in with the
length of the address of the local endpoint, which in ADSP case is the size
of the structure at_inet_t.

On success, this function returns the socket descriptor of the connection;
otherwise, it returns -1. Also, ADSP protocol can support up to 1024 server
connections using this function call.

The ADSPbind function
int ADSPbind(fd, name, namelen)

int fd;

at_inet_t *name;

int namelen;

This function is used to bind an ADSP address to a socket. The argument
fd is the socket descriptor of the ADSP socket that has been created with
the ADSPsocket() call. The ADSP socket must not have already been
bound to an ADSP address.

The argument name is the parameter that contains a specific socket
number which the application wishes the socket to be bound to. If the
argument name is 0 or the specified socket number (name->socket) is 0,
an unused socket number will be assigned by the ADSP protocol module.

The argument namelen is the parameter that indicates the length of the
address, which in ADSP case is the size of the structure at_inet_t.

On success, this function returns 0; otherwise, it returns -1.

The ADSPclose function
int ADSPclose(fd)

int fd;

This function is used to terminate communication on an ADSP socket. The
argument fd is the socket descriptor of the ADSP socket that has been
created with the ADSPsocket() call.

On success, this function returns 0; otherwise, it returns -1.

The ADSPconnect function
int ADSPconnect(fd, name, namelen)

int fd;

at_inet_t *name;

int namelen;

This function is used to establish a connection to a remote ADSP socket.
The argument fd is the socket descriptor of the ADSP socket that has been
created with the ADSPsocket() call. The ADSP socket must have been
bound to an ADSP address via the ADSPbind() call.

The argument name is the parameter that contains the address of the
remote endpoint to make connection. The address of the remote endpoint
could be obtained using the nbp_lookup() call which maps the service
name of the remote endpoint to an address suitable for use in the
ADSPconnect() call.

The argument namelen is the parameter that indicates the length of the
address, which in ADSP case is the size of the structure at_inet_t.

On success, this function returns 0; otherwise, it returns -1.

The ADSPfwdreset function
int ADSPfwdreset(fd)

int fd;

This function is used to abort the delivery of any outstanding data to the
remote endpoint's client. This also causes the two endpoints to be
resynchronized. The argument fd is the socket descriptor of the ADSP
socket that has been created with the ADSPsocket() call.

On success, this function returns 0; otherwise, it returns -1.

The ADSPgetpeername function
int ADSPgetpeername(fd, name, namelen)

int fd;

at_inet_t *name;

int *namelen;

This function is used to obtain the address of the connected remote
endpoint. The argument fd is the socket descriptor of the ADSP socket
that has been created with the ADSPsocket() call.

The argument name is the result parameter that is filled in with the address
of the remote endpoint.

The argument namelen is both the calling parameter and result parameter.
On calling, this argument must contain a value greater than or equal to the
size of the structure at_inet_t. On return, it will be filled in with the
length of the address of the remote endpoint, which in ADSP case is the
size of the structure at_inet_t.

On success, this function returns 0; otherwise, it returns -1.

The ADSPgetsocketname function
int ADSPgetsockname(fd, name, namelen)

int fd;

at_inet_t *name;

int *namelen;

This function is used to obtain the address of the local endpoint. The
argument fd is the socket descriptor of the ADSP socket that has been
created with the ADSPsocket() call.

The argument name is the result parameter that is filled in with the address
of the local endpoint.

The argument namelen is both the calling parameter and result parameter.
On calling, this argument must contain a value greater than or equal to the
size of the structure at_inet_t. On return, it will be filled in with the
length of the address of the remote endpoint, which in ADSP case is the
size of the structure at_inet_t.

On success, this function returns 0; otherwise, it returns -1.

The ADSPgetsockopt function
int ADSPgetsockopt(fd, level, optname, optval, optlen)

int fd;

int level;

int optname;

char *optval;

int *optlen;

This function is a placeholder that always returns -1 to indicate that the
operation is not supported. The errno variable is also set to EOPNOTSUPP.

int ADSPlisten(fd, backlog)

int fd;

int backlog;

This function is used to set the local endpoint to the state ready to listen for
connections from remote endpoints. The argument fd is the socket
descriptor of the ADSP socket that has been created with the ADSPsocket()
call.

The argument backlog specifies the maximum length of the queue of
pending connections. With the current implementation of the ADSP
protocol module, this queue length is always 1 so the backlog value has
no effect.

On success, this function returns 0; otherwise, it returns -1.

The ADSPrecv function
int ADSPrecv(fd, buf, len, flags)

int fd;

char *buf;

int len;

int flags;

This function is used to receive data from a socket. The argument fd is
the socket descriptor of the ADSP socket that has been created with the
ADSPsocket() call.

The argument buf is the parameter that contains the address of the buffer
to be filled in with the receive data.

The argument len is the parameter that specifies the maximum size of the
receive buffer.

The argument flags is the parameter that specifies either 0 to read the
normal data or 1 to read the expedited (attention) data.

On success, this function returns the number of bytes received; otherwise, it
returns -1.

The ADSPsend function
int ADSPsend(fd, buf, len, flags)

int fd;

char *buf;

int len;

int flags;

This function is used to send data from a socket to a remote endpoint. The
argument fd is the socket descriptor of the ADSP socket that has been
created with the ADSPsocket() call.

The argument buf is the parameter that contains the address of the buffer
containing the data to be sent.

The argument len is the parameter that specifies the amount of the data to
be sent.

The argument flags is the parameter that specifies either 0 to write the
normal data or 1 to write the expedited (attention) data.

On success, this function returns the number of bytes sent; otherwise, it
returns -1.

The ADSPsetsockopt function
int ADSPsetsockopt(fd, level, optname, optval, optlen)

int fd;

int level;

int optname;

char *optval;

int optlen;

This function is used to set options on a socket. The argument fd is the
socket descriptor of the ADSP socket that has been created with the
ADSPsocket() call.

The argument level should be set to SOL_SOCKET (0xffff). The
argument optname is not examined and should be set to 0, since at the
present time only one set of options can be set for ADSP. The optval is
the pointer to the structure containing the option values and the optlen
specifies the length of the structure.

To set the local send options, use the at_adspopt parameter block, set the
optval pointing to the address of the block and the optlen to the size
of the at_adspopt structure.

The at_adspopt structure
union at_adspopt {

 struct {

 u_short sendBlocking; /* quantum for data packets */

 u_char sendTimer; /* send timer in 10-tick

intervals */

 u_char rtmtTimer; /* for internal use only */

 u_char badSeqMax; /* threshold for sending

retransmit advice */

 u_char useCheckSum; /* use ddp packet checksum */

 u_short filler;

 int newPID; /* owner's process id */

 } c;

};

On success, this function returns 0; otherwise, it returns -1.

Note: If a forked process inherits a socket from its parent process, this
function should be used to signify it as the new owner of the socket by
setting newPID to its process ID.

The ADSPsocket function
int ADSPsocket(domain, type, protocol)

int fd;

int type;

int protocol;

This function is used to create an endpoint (socket) for communication.
The arguments domain, type and protocol are not examined since
this function implicitly knows to create an ADSP socket. However, for
future portability, the argument domain should be PF_APPLETALK, the
argument type should be SOCK_STREAM and the protocol parameter
should be 0.

On success, this function returns the socket descriptor of the created socket;
otherwise, it returns -1.

The ASYNCread function and the ASYNCread_complete function

The following two special asynchronous functions are provided to support
using the select() call to wait for incoming ADSP data on a socket. The
select() call must always be used with these two function calls.

int ASYNCread(fd, buf, len)

int fd;

char *buf;

int len;

This function is used in conjunction with the ASYNCread_complete()
function to asynchronously receive data from a socket. This function and
the ASYNCread_complete() function are designed to support using the
select() call for reading on a socket descriptor. The argument fd is the
socket descriptor of the ADSP socket that has been created with the
ADSPsocket() call.

The argument buf is the parameter that contains the address of the buffer
to be filled in with the receive data.

The argument len is the parameter that specifies the maximum size of the
receive buffer.

On success, this function returns the number of bytes received; otherwise, it
returns -1 to indicate failure or 0 to indicate that it has registered a read
request to the ADSP protocol module. If this function returns 0, the
application can subsequently use the select() call to wait for input data.

int ASYNCread_complete(fd, buf, len)

int fd;

char *buf;

int len;

This function is used in conjunction with the ASYNCread() function to
asynchronously receive data from a socket. This function and the
ASYNCread() function are designed to support using the select() call for
reading on a socket descriptor. The argument fd is the socket descriptor
of the ADSP socket that has been created with the ADSPsocket() call.

The argument buf is the parameter that contains the address of the buffer
to be filled in with the receive data.

The argument len is the parameter that specifies the maximum size of the
receive buffer.

On success, this function returns the number of bytes received; otherwise, it
returns -1 to indicate failure. This function must only be called if the
ASYNCread() function has previously been called and had a 0 return value.

The select() call is usually used between the ASYNCread() function and
the ASYNCread_complete function to wait for input data, for example:

 if ((retlen = ASYNCread(fd, buf, len)) == 0) {

 FD_ZERO(&readset);

 FD_SET(fd, &readset);

 if (select(fd+1, &readset, 0, 0, 0) == 1) {

 retlen = ASYNCread_complete(fd, buf, len);

 }

 }

Important ADSP incoming normal data can be handled with the UNIX
signal mechanism. Incoming normal data is signaled through SIGIO. The
user routine must register a handler for normal data using the signal()
call. The alternative to this approach is to use the select() call, in
conjunction with the ASYNCread() and ASYNCread_complete() functions
described above.

ADSP Attention data is handled with the UNIX signal mechanism.
Incoming attention data is signaled through SIGURG. Like the signal call
for SIGIO used for normal data, the user routine must register a handler for
attention data using the signal() call.

ADSP TLI Interface

The ADSP TLI interface provides the standard programming interface
using the Transport Layer Interface (TLI) standard. For programmers who
are familiar with the TLI interface used for the Internet protocol suite
(TCP/IP), this ADSP interface is easy to use. The following list shows the
TLI calls supported by the ADSP TLI interface:

t_accept()

t_alloc()

t_bind()

t_close()

t_connect()

t_error()

t_free()

t_getinfo()

t_getstate()

t_listen()

t_look()

t_optmgmt()

t_open()

t_rcv()

t_snd()

t_sync()

t_unbind()

When programming using this interface, refer to the AIX system manual
(or any UNIX application programming interface manual) for description
of the TLI interface in general. The only thing that is specific to the ADSP
protocol is the specification of an endpoint address for some of the above
TLI function calls. This address is specified using the structure at_inet_t
defined as follows:

typedef struct at_inet {

 u_char net[2]; /* Network address */

 u_char node; /* Node number */

 u_char socket; /* Socket number */

} at_inet_t;

Also, the device name to be specified in the t_open() call for ADSP should
be dev/adsp.

Important To abort the delivery of any outstanding data to the remote
endpoint’s client, use the ADSPfwdreset() call described in the ADSP
Socket-like Interface section.

Note: This interface is a bit slower than that of the ADSP socket-like
interface due to the specific implementation of the AIX TLI library and the
semantics of the TLI interface itself. The performance difference is most
noticeable when receiving data using the t_rcv() function as compared to
the ADSPrecv() function.

AppleTalk Session Protocol

AppleTalk Session Protocol (ASP) is designed primarily to support the
AppleTalk Filing Protocol (AFP). However, it can be used by any
application desiring a session-type of communication.

ASP is constructed in a server-client relationship. The server is the service
provider (such as an AFP server) and the client is the service user (such as
an AFP client). ASP allows multiple concurrent connections—one for each
session, and handles session set up, maintenance, closure, and data transfer.

In the following description of the ASP library functions, the ASP client
refers to either the server or workstation application that uses the ASP
library functions, the server client refers to the server application (such as
an AFP server module) and the workstation client refers to the workstation
application (such as an AFP client module).

ASP library functions

The AppleTalk API provides the following ASP function calls:

SPAttention()

SPCloseSession()

SPCmdReply()

SPCommand()

SPConfigure()

SPEnableSelect()

SPGetParms()

SPGetRemEntity()

SPGetReply()

SPGetRequest()

SPGetSession()

SPGetStatus()

SPInit()

SPLook()

SPNewStatus()

SPOpenSession()

SPRegister()

SPRemove()

SPSetPid()

SPWrite()

SPWrtContinue()

SPWrtReply()

Some of the above function calls require specifying an endpoint address.
This address is specified using the structure at_inet_t defined as follows:

typedef struct at_inet {

 u_char net[2]; /* Network address */

 u_char node; /* Node number */

 u_char socket; /* Socket number */

} at_inet_t;

The following sections contain detailed descriptions of each ASP function
call. OSErr is defined as type int.

The SPAttention function
int SPAttention(SessRefNum, AttentionCode, SPError,

NoWait)

int SessRefNum;

unsigned short AttentionCode;

OSErr *SPError;

int NoWait;

This function is used by the server client to send the attention code to the
workstation client and waits for an acknowledgment. The argument
SessRefNum is the socket descriptor of the ASP socket that has been
created with the SPGetSession() call.

The argument AttentionCode is the 2-byte attention code to be delivered
to the workstation client.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

The argument NoWait, if set to non-zero, indicates the desire not to wait for
the reply data after the attention is sent. The workstation client must later
receive the reply data using the SPGetReply() call. Moreover, the server
client can use the select() call to probe the availability of the reply data.

On success, this function returns 0; otherwise, it returns -1.

The SPCloseSession function
int SPCloseSession(SessRefNum, SPError)

int SessRefNum;

OSErr *SPError;

This function is used by the ASP client to close an ASP session. The
argument SessRefNum is the socket descriptor of the ASP socket that has
been created with the SPOpenSession() or SPGetSession() call.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; otherwise, it returns -1.

Note: When multiple processes share the same session socket, only the last
one that actually closes the session socket should call this function. If a
process is not the last one to close the session socket, it must call the regular
AIX close(SessRefNum) system call. For instance, when a server process
accepts a connection, spawns off a child process to handle the connection
and then is no longer interested in the connection socket, it must call the
close(SessRefNum) to remove reference to the socket descriptor.

The SPCmdReply function
int SPCmdReply(SessRefNum, ReqRefNum, CmdResult,

CmdReplyData, CmdReplyDataSize,SPError)

int SessRefNum;

unsigned short ReqRefNum;

int CmdResult;

char *CmdReplyData;

int CmdReplyDataSize;

OSErr *SPError;

This function is used by the server client to respond to the Command
request from the workstation client. The argument SessRefNum is the
socket descriptor of the ASP socket that has been created with the
SPGetSession() call.

The argument ReqRefNum is the same parameter as that returned by the
corresponding SPGetRequest() call.

The argument CmdResult is 4-byte command result to be sent back to the
workstation client.

The argument CmdReplyData is the pointer to the buffer containing the
reply data and the argument CmdReplyDataSize specifies the size of the
data.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; otherwise, it returns -1.

The SPCommand function
int SPCommand(SessRefNum, CmdBlock, CmdBlockSize,

ReplyBuffer, ReplyBufferSize, CmdResult,

ActRcvdReplyLen, SPError, NoWait)

int SessRefNum;

char *CmdBlock;

int CmdBlockSize;

char *ReplyBuffer;

int ReplyBufferSize;

int *CmdResult;

int *ActRcvdReplyLen;

OSErr *SPError;

int NoWait;

This function is used by the workstation client to send a command to the
server client, and supports only one command at a time in progress; for
example, if you use the NoWait feature to attempt to send multiple
commands at a time it will not work. The argument SessRefNum is the
socket descriptor of the ASP socket that has been created with the
SPOpenSession() call.

The argument CmdBlock is the pointer to the buffer containing the
command data and the argument CmdBlockSize specifies the size of the
data.

The argument ReplyBuffer is the pointer to the buffer to be filled in with
any reply data and the argument ReplyBufferSize specifies the size of
the buffer.

The argument CmdResult is the result parameter that is filled in with the
4-byte command result to be received from the server client.

The argument ActRcvdReplyLen is the result parameter that indicates the
actual length of the reply data stored in ReplyBuffer.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

The argument NoWait, if set to non-zero, indicates the desire not to wait for
the reply data after the command is sent. The workstation client must later
receive the reply data using the SPGetReply() call. Moreover, the
workstation client can use the select() call, only if SPEnableSelect()
has previously been called to enable the select option, to probe the
availability of the reply data.

On success, this function returns 0; otherwise, it returns -1.

The SPConfigure function
void SPConfigure(TickleInterval, SessionTimer, Retry)

int *TickleInterval;

int *SessionTimer;

at_retry_t *Retry;

This function is used to change the system default configuration for ASP.
The argument TickleInterval specifies in seconds the periodic interval
that tickles are sent between a server client and workstation client; the
argument SessionTimer specifies in seconds the session maintenance
timeout; and the argument Retry specifies the retries used by ASP client
for session opening and getting status information. The TickleInterval
default value is 30 seconds; the SessionTimer default value is 120
seconds; and the Retry default value is 10 retries of 1 second interval.

If a value of zero is specified for any of the arguments of this function call,
the corresponding default value is used.

The SPEnableSelect function
int SPEnableSelect(SessRefNum, SPError)

int SessRefNum;

OSErr *SPError;

This function must be used to enable using the select() call for no-wait
operations. Although this function is available for easy of programming
when an application must wait for multiple events on multiple descriptors, it
is highly recommended that it is not used at all possible if there is an
alternate mechanism since using this option will cause noticeable
degradation in performance.

The argument SessRefNum is the socket descriptor of the ASP socket that
has been created with the SPGetSession() or SPOpenSession() call.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; otherwise, it returns -1.

The SPGetParms function
void SPGetParms(MaxCmdSize, QuantumSize)

int *MaxCmdSize;

int *QuantumSize;

This function is used by the ASP client to retrieve the maximum value of
the command block size and the quantum size.

The argument MaxCmdSize is the result parameter that is filled in with the
value of the maximum size of a command block.

The argument QuantumeSize is the result parameter that is filled in with
the value of the maximum size for a command reply or a write.

The SPGetRemEntity function
int SPGetRemEntity(SessRefNum, SessRemEntityIdentifier,

SPError)

int SessRefNum;

at_inet_t *SessRemEntityIdentifier;

OSErr *SPError;

This function is used to obtain the address of the remote endpoint. The
argument SessRefNum is the socket descriptor of the ASP socket that has
been created with the SPGetSession() or SPOpenSession() call.

The argument SessRemEntityIdentifier is the result parameter that is
filled in with the address of the remote endpoint.

On success, this function returns 0; otherwise, it returns -1.

The SPGetReply function
int SPGetReply(SessRefNum, ReplyBuffer,

ReplyBufferSize, CmdResult, ActRcvdReplyLen, SPError)

int SessRefNum;

char *ReplyBuffer;

int ReplyBufferSize;

int *CmdResult;

int *ActRcvdReplyLen;

OSErr *SPError;

This function is used by the ASP client to receive the reply for a previous
request. The argument SessRefNum is the socket descriptor of the ASP
socket that has been created with the SPGetSession() or
SPOpenSession() call.

The argument ReplyBuffer is the pointer to the reply buffer that is filled
in with the reply data and the argument ReplyBufferSize specifies the
size of the reply buffer.

The argument CmdResult is the result parameter that is filled in with the
4-byte command result.

The argument ActRcvdReplyLen is the result parameter that indicates the
actual length of the reply data stored in ReplyBuffer.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; It returns -1 for an error condition.
However, if the message happens to be a request instead of a reply, this
function returns the request type and CmdResult is filled in with the
request identifier.

The SPGetRequest function
int SPGetRequest(SessRefNum, ReqBuffer,

ReqBufferSize, ReqRefNum, ReqType, ActRcvdReqLen,

SPError)

int SessRefNum;

char *ReqBuffer;

int ReqBufferSize;

int *ReqRefNum;

int *ReqType;

int *ActRcvdReqLen;

OSErr *SPError;

This function is used by the ASP client to receive a request or write-
continue. The argument SessRefNum is the socket descriptor of the ASP
socket that has been created with the SPGetSession() or
SPOpenSession() call.

The argument ReqBuffer is the pointer to the request buffer that is filled
in with the request data and the argument ReqBufferSize specifies the
size of the request buffer.

The argument ReqRefNum is the result parameter that is filled in with the
request identifier.

The argument ReqType is the result parameter that is filled in with the
ASP-level request type.

The argument ActRcvdReqLen is the result parameter that indicates the
actual length of the request data stored in ReqBuffer.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; It returns -1 for error condition.
However, if the message happens to be a reply, instead of a request, for
some previous asynchronous request, this function returns 1 and
ReqRefNum is filled in with the command result.

The SPGetSession function
int SPGetSession(SLSRefNum, SessRefNum,SPError)

int SLSRefNum;

int *SessRefNum;

OSErr *SPError;

This function is used to accept a connection on an ASP socket. The
argument SLSRefNum is the socket descriptor of the ASP socket that has
been created with the SPInit() call.

The argument SessRefNum is the result parameter that is filled in with the
socket descriptor used in communicating with the connected remote
endpoint when the connection has been established.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; otherwise, it returns -1. Also, ASP
protocol can support 2048 connections using this function call.

The SPGetStatus function
int SPGetStatus(SLSEntityIdentifier, StatusBuffer,

StatusBufferSize, ActRcvdStatusLen, SPError)

at_inet_t *SLSEntityIdentifier;

char *StatusBuffer;

int StatusBufferSize;

int *ActRcvdStatusLen;

OSErr *SPError;

This function is used by the workstation client to obtain the status
information block of an ASP service provider. The argument
SLSEntityIdentifier is the address of the service provider to be
queried.

The argument StatusBuffer is the pointer to the status buffer that is
filled in with the status data and the argument StatusBufferSize
specifies the size of the status buffer.

The argument ActRcvdStatusLen is the result parameter that indicates
the actual length of the status data stored in StatusBuffer.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; otherwise, it returns -1.

The SPInit function
int SPInit(SLSEntityIdentifier, ServiceStatusBlock,

ServiceStatusBlockSize, SLSRefNum, SPError)

at_inet_t *SLSEntityIdentifier;

char *ServiceStatusBlock;

int ServiceStatusBlockSize;

int *SLSRefNum;

OSErr *SPError;

This function is used by a Server service provider to pass its network-
dependent service identifier as well as its service status block to ASP. The
argument SLSEntityIdentifier is the address of the service provider
which can be obtained using the SPRegister() call.

The argument ServiceStatusBlock is the pointer to the status buffer
that contains the status data and the argument ServiceStatusBlockSize
specifies the size of the status buffer.

The argument SLSRefNum is the result parameter that is filled in with the
socket descriptor for the service.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; otherwise, it returns -1.

The SPLook function
int SPLook(SessRefNum, SPError)

int SessRefNum;

OSErr *SPError;

This function is used by the ASP client to determine whether the message
available at the local end-point is a request or a reply. The argument
SessRefNum is the socket descriptor of the ASP socket that has been
created with the SPGetSession() or SPOpenSession() call.

On success, this function returns 0 indicating a reply or 1 indicating a
request; otherwise, it returns -1 for error or no message.

The SPNewStatus function
int SPNewStatus(SLSRefNum, ServiceStatusBlock,

ServiceStatusBlockSize, SPError)

int SLSRefNum;

char *ServiceStatusBlock;

int ServiceStatusBlockSize;

OSErr *SPError;

This function is used by a Server service provider to update its service status
block. The argument SLSRefNum is the socket descriptor of the service
provider that has been created with the SPInit() call.

The argument ServiceStatusBlock is the pointer to the status buffer
that contains the status data and the argument ServiceStatusBlockSize
specifies the size of the status buffer.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; otherwise, it returns -1.

The SPOpenSession function
int SPOpenSession(SLSEntityIdentifier, AttentionCode,

SessRefNum,SPError)

at_inet_t *SLSEntityIdentifier;

void (*AttentionCode)();

int *SessRefNum;

OSErr *SPError;

This function is used to establish a connection to a Server service provider.
The argument SLSEntityIdentifier is the address of the service
provider.

The argument AttentionCode is the address of the routine to call when
an attention message is received. For AIX, this feature is not supported so
this argument is ignored.

The argument SessRefNum is the result parameter that is filled in with the
socket descriptor used in communicating with the connected remote
endpoint when the connection has been established.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; otherwise, it returns -1.

The SPRegister function
int SPRegister(SLSEntity, Retry, SLSEntityIdentifier,

SPError)

at_entity_t *SLSEntity;

at_retry_t *Retry;

at_inet_t *SLSEntityIdentifier;

OSErr *SPError;

This function is used to register a Server service provider specified by
SLSEntity with the NBP names table on the node. The Retry is a pointer to
an at_retry_t structure, which specifies the retry interval and the
maximum number of retries for this NBP transaction. If the value of Retry
is 0, the retry interval is one second and the maximum number of retries is
eight.

The argument SLSEntityIdentifier is the result parameter that is filled
in with the assigned address for the service provider.

The argument SPError is the result parameter that is filled in with the
error code if the function call fails.

On success, this function returns 0; otherwise, it returns -1.

The SPRemove function
int SPRemove(SLSEntity, SLSEntityIdentifier, SPError)

at_entity_t *SLSEntity;

at_inet_t *SLSEntityIdentifier;

OSErr *SPError;

This function is used to remove the Server service provider specified by
SLSEntity from the NBP names table. None of the members of the entity
structure can contain wildcards. The zone member of the entity structure is
ignored. The value of SLSEntityIdentifier is the address of the service
provider obtained from the SPRegister() call.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; otherwise, it returns -1.

The SPSetPid function
int SPSetPid(SessRefNum, SessPid, SPError)

int SessRefNum;

int SessPid;

OSErr *SPError;

This function should be used by a forked process to specify it as the owner
of the socket descriptor. The argument SessRefNum is the socket
descriptor of the ASP socket that has been created with the
SPGetSession() or SPOpenSession() call.

The argument SessPid is process id of the calling process.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; otherwise, it returns -1.

The SPWrite function
int SPWrite(SessRefNum, CmdBlock, CmdBlockSize, WriteData,

WriteDataSize, ReplyBuffer, ReplyBufferSize,

CmdResult,

ActLenWritten, ActRcvdReplyLen, SPError, NoWait)

int SessRefNum;

char *CmdBlock;

int CmdBlockSize;

char *WriteData;

int WriteDataSize;

char *ReplyBuffer;

int ReplyBufferSize;

int *CmdResult;

int *ActLenWritten;

int *ActRcvdReplyLen;

OSErr *SPError;

int NoWait;

This function is used by the workstation client to send a write request to the
server client. The argument SessRefNum is the socket descriptor of the
ASP socket that has been created with the SPOpenSession() call.

The argument CmdBlock is the pointer to the buffer containing the
command data and the argument CmdBlockSize specifies the size of the
data.

The argument WriteData is the pointer to the buffer containing the data
to be written to the server client and the argument WriteDataSize
specifies the size of the data.

The argument ReplyBuffer is the pointer to the buffer to be filled in
with any reply data and the argument ReplyBufferSize specifies the size
of the buffer.

The argument CmdResult is the result parameter that is filled in with the
4-byte command result to be received from the server client.

The argument ActLenWritten is the result parameter that indicates the
actual amount of the data written to the server client.

The argument ActRcvdReplyLen is the result parameter that indicates the
actual length of the reply data stored in ReplyBuffer.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

The argument NoWait, if set to non-zero, indicates the desire not to wait for
the write-continue request from the server client after the write request is
sent. The workstation client must later receive the write-continue request
using the SPGetRequest() call, send the write data using the
SPCmdReply() call and then receive the reply data using the SPGetReply()
call. Moreover, the workstation client can use the select() call, only if
SPEnableSelect() has previously been called to enable the select option,
to probe the availability of the write-continue request and the reply data
from the server client.

On success, this function returns 0; otherwise, it returns -1.

The SPWrtContinue function
int SPWrtContinue(SessRefNum, ReqRefNum, Buff, BuffSize,

ActLenRcvd, SPError, NoWait)

int SessRefNum;

int ReqRefNum;

char *Buff;

int BuffSize;

int *ActLenRcvd;

OSErr *SPError;

int NoWait;

This function is used by the server client, in response to the write request
from the workstation client, to notify the workstation client to continue with
writing the data. The argument SessRefNum is the socket descriptor of
the ASP socket that has been created with the SPGetSession() call.

The argument ReqRefNum is the same parameter as that returned by the
corresponding SPGetRequest() call.

The argument Buff is the pointer to the receive buffer that is filled in with
the write data and the argument BuffSize specifies the size of the receive
buffer.

The argument ActLenRcvd is the result parameter that indicates the actual
length of the write data stored in Buff.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

The argument NoWait, if set to non-zero, indicates the desire not to wait for
the write data from the workstation client after the write-continue request is
sent. The server client must later receive the write data using the
SPGetReply() call. Moreover, the server client can use the select() call,
only if SPEnableSelect() has previously been called to enable the select
option, to probe the availability of the write data from the workstation
client.

On success, this function returns 0; otherwise, it returns -1.

The SPWrtReply function
int SPWrtReply(SessRefNum, ReqRefNum, CmdResult,

CmdReplyData,

CmdReplyDataSize, SPError)

int SessRefNum;

int ReqRefNum;

int CmdResult;

char *CmdReplyData;

int CmdReplyDataSize;

OSErr *SPError;

This function is used by the server client to terminate, either successfully or
unsuccessfully, the write request from the workstation client. The argument
SessRefNum is the socket descriptor of the ASP socket that has been
created with the SPGetSession() call.

The argument ReqRefNum is the same parameter as that returned by the
corresponding SPGetRequest() call.

The argument CmdResult is 4-byte command result to be sent back to the
workstation client.

The argument CmdReplyData is the pointer to the buffer containing the
reply data and the argument CmdReplyDataSize specifies the size of the
data.

The argument SPError is the result parameter that is filled in with the
error code when the function call fails.

On success, this function returns 0; otherwise, it returns -1.

Section IV Manual Pages for the Network Server

This section contains the following man pages:

Command Reference—Section 1

atlookup

atprint

at_cho_prn

atstatus

eject

System Administrator’s Reference—Section 1M

appleping

atconfig

cmdshld

discusd

javelind

mandeld

ppcd

ppcd.conf

Programmer’s Reference—Section 3

OF_child

OF_getprop

OF_hdl2path

OF_nextprop

OF_parent

OF_path2hdl

OF_peer

pci_cfgrw

resolve_gc_offset

resolve_intr_level

142

resolve_pci_config_space

resolve_pci_io_space

resolve_pci_mem_space

atlookup(1) atlookup(1)

April 10, 1996 143

NAME
atlookup—looks up network-visible entities (NVEs) registered on the AppleTalk
network system

SYNOPSIS
 atlookup [-d] [-r nn] [-s ss] [-x] [object[:type[@zone]]]

 atlookup -z [-C]

ARGUMENTS
-C Prints zones in multiple columns.

-d Prints the network address in decimal numbers.

object

Specifies the name of the NVE to be looked up.

-r nn

Specifies the number of retries the system employs if the first lookup is unsuccessful.
The default number of retries is 8.

-s ss

Instructs atlookup to wait a certain number (ss) of seconds between consecutive
attempts to complete a lookup successfully. As a default, retries are spaced one
second apart.

type

Specifies the type of the NVE to be looked up.

-x Prints the 8-bit ASCII characters on output as hexadecimal numbers of the form XX
�(where X is a hexadecimal digit). This option is useful when you are using a terminal
other than the system console.

-z Lists all zones in the network.

zone

Specifies the zone in which the lookup is to be performed. You can use an asterisk
(*) instead of a zone name to indicate the current zone. If you don’t specify a zone
name, the current zone is the default.

The object and type arguments can contain wildcard characters. The equal sign (=)
indicates a wildcard lookup. For wildcard lookups to work correctly with all nodes, the
wildcard character must be the only character specified in the string. However, AppleTalk

atlookup(1) atlookup(1)

144 April 10, 1996

Phase 2 nodes also honor a single embedded wildcard character (=). Under this scheme,
one wildcard character can appear anywhere in the string and can match 0 or more
characters. Note, however, that although an embedded = is acceptable in object and type
arguments of atlookup, only the nodes implementing AppleTalk Phase 2 protocols
respond to such a query. For this reason, the resulting list of NVEs may be incomplete.

DESCRIPTION
atlookup uses the Name Binding Protocol (NBP) to look up names and addresses of the
specified NVEs.

The default is to look up all the entities (of all types) in the current zone. Specifying the
object, type, or zone on the command line changes the scope of the lookup.

Information about the NVEs is displayed in a table, one NVE per line. Each line gives the
name of the object, its type, and its zone and the numbers of the network, node, and
socket.

EXAMPLES
This command looks up all NVEs registered in the local AppleTalk zone:

atlookup

In response, the system displays output similar to this:

 Found 5 entries in zone My-Zone

 6b5b.c3.ea 3-Eyed Monster:LaserWriter

 6b5b.80.fd 3-Eyed Monster Spooler:LaserWriter

 6b14.84.ea Incognito:LaserWriter

 6b19.a3.fd Light of Day:AFPServer

 6b51.27.fd Nets-R-Us Spooler:LaserWriter

In an extended AppleTalk network, this command displays all NVEs (of any type) in the
current zone whose names start with L and end in y:

atlookup L=y:=

The output might be similar to this:

Found 1 entries in zone My-Zone

6b19.a3.fd Light of Day:AFPServer

FILES
/usr/bin/atlookup

atlookup(1) atlookup(1)

April 10, 1996 145

Executable file

SEE ALSO
at_cho_prn(1), atprint(1), atstatus(1)

Inside AppleTalk

atprint(1) atprint(1)

146 April 10, 1996

NAME
atprint—transfers data to a printer by using AppleTalk protocols

SYNOPSIS
atprint [printer-name[:printer-type[@zone]]]

ARGUMENTS
printer-name

Specifies the name of the printer you want to use.

printer-type

Specifies the type of printer, such as LaserWriter or ImageWriter. Use this
argument when you want to allow the network to select the printer, but only a printer
of a given type. If you omit this argument, LaserWriter is the printer type used by
default.

For example, when the printer name is specified with wildcards, the printer used is the
one chosen by the network. (See atlookup(1) for an explanation of wildcards.) By
supplying LaserWriter as the printer type in a case such as this, you can restrict the
network to choosing a printer that can handle PostScript instructions.

The full range of possible replacement values for printer-type depends on the
configuration of your network. Each different type of printer broadcasts its type and
name when it registers itself with the network. You can use atlookup to obtain a
report showing this information for all the AppleTalk devices on your network (see
atlookup(1)).

zone

Specifies the AppleTalk zone in which the printer resides. If you omit this argument
or specify it as an asterisk (*), the local zone is used.

DESCRIPTION
atprint uses a printing protocol to establish a connection to an AppleTalk printer, where
it sends data received on its standard input until it reaches an end-of-file character. When
it detects an end-of-file character, atprint closes the AppleTalk session with the printer,
allowing other users to gain access to the printer.

You can select the destination AppleTalk printer through the command-line arguments as
described earlier in this manual page. If you do not specify any of these arguments,
atprint uses the printer that was last selected with at_cho_prn (see at_cho_prn(1)).

Often the printer you access by way of an AppleTalk connection is a LaserWriter printer.
Many LaserWriter models are PostScript printers. If you are using such a LaserWriter, the

atprint(1) atprint(1)

April 10, 1996 147

data that you send it must already be translated into the PostScript page-description
language. For example, the psdit command translates the output from troff (invoked
with the -Tpsc option) into PostScript:

troff -Tpsc -mm file | psdit | atprint

The atprint command displays one or more messages indicating the AppleTalk printer
with which it is communicating and possibly many printer status messages (for example, a
message indicating that another print job is occupying the printer).

Note that atprint does not honor requests from a LaserWriter regarding the
downloading of fonts. Likewise, it does not add a PostScript header to the beginning of
the data stream in the same manner as the printer drivers in the Macintosh operating
system. However, the command line in the preceding example does provide a PostScript
header because psdit adds its own header as part of the PostScript conversion process.

In AppleTalk programming terms, the arguments make up a network-visible entity (NVE),
where

printer-name[:printer-type[@zone]]

corresponds to the AppleTalk object, type, and zone:

object:type@zone

EXAMPLES
This command line converts a plain text file into PostScript and then submits it to joe’s
printer:

enscript -p -file | atprint “joe’s printer”

The psdit command translates the output from troff (invoked with the -Tpsc option)
into PostScript:

troff -Tpsc -mm file | psdit | atprint

WARNINGS
The atprint command does not process the input files as does lpr. To print ASCII files
properly on a PostScript printer with atprint, you must preprocess the files with pstext
or enscript. Likewise, you must preprocess files produced by troff with psdit.

FILES
/usr/bin/atprint

Executable file

SEE ALSO

atprint(1) atprint(1)

148 April 10, 1996

at_cho_prn(1), atlookup(1), atstatus(1), enscript(1), lpr(1), psdit(1), pstext(1)

AppleTalk chapters in the Using AIX, AppleTalk Services, and Macintosh Utilities with the
Network Server

at_cho_prn(1) at_cho_prn(1)

April 10, 1996 149

NAME
 at_cho_prn—allows you to choose a default printer on the AppleTalk network

SYNOPSIS
 at_cho_prn [type[@zone]]

ARGUMENTS
 type[@zone]

Specifies the type of printer to be used, and the area (zone) in which it resides. If
you don’t use the type argument on the command line, at_cho_prn displays all
entities of the types LaserWriter and ImageWriter. The system prompts you to
select a printer by entering the appropriate number from the printer list. If you
don’t enter the @zone part of the argument on the command line, at_cho_prn lists
all the zones in the internet and prompts you to choose the zone in which you want
to select your default printer.

DESCRIPTION
at_cho_prn displays a list of printer selections and saves the name of at_cho_prn
command checks the network to determine which printers are registered on that network.

After you specify the zone, at_cho_prn lists the printers (of the specified type) available
in that zone.

EXAMPLES
The command

at_cho_prn 'LaserWriter@*'

produces output similar to this:

 ITEM NET-ADDR OBJECT : TYPE

 1: 56bf.af.fc AnnLW:LaserWriter

 2: 56bf.ac.cc TimLW:LaserWriter

 ITEM number (0 to make no selection)?

where NET-ADDR is the AppleTalk internet address (printed in hexadecimal numbers) of
the printer’s listener socket, and OBJECT:TYPE is the name of the registered printer and its
type.

FILES
/usr/bin/at_cho_prn

 Executable file

at_cho_prn(1) at_cho_prn(1)

150 April 10, 1996

SEE ALSO
atlookup(1), atprint(1), atstatus(1)

Inside AppleTalk

AppleTalk chapters in Using AIX, AppleTalk Services, and Mac OS Utilities on the
Network Server

atstatus(1) atstatus(1)

April 10, 1996 151

NAME
atstatus—displays status information from an AppleTalk device

SYNOPSIS
atstatus [object [:type [@zone]]]

ARGUMENTS
object

Specifies the name of the AppleTalk device. Wildcard characters are not permitted.
If you don’t specify the AppleTalk device, atstatus uses the system default. If the
name contains spaces, put quotation marks around the name, as in this example:

atstatus "Bill’s Print Shop"

type

Specifies the type of device. If you don’t specify the type argument, the default is
LaserWriter. You must supply a type argument if you supply a zone argument.

zone

Specifies the zone in which the AppleTalk device resides. If you don’t specify the
zone, the system defaults to *, your local zone.

DESCRIPTION
atstatus gets the status string from an AppleTalk device, such as a LaserWriter printer.

FILES
/usr/bin/atstatus

Executable file

SEE ALSO
at_cho_prn(1), atlookup(1), atprint(1)

Inside AppleTalk

eject(1) eject(1)

April 10, 1996 152

NAME
 eject—ejects a 3.5-inch floppy disk from the disk drive

SYNOPSIS
 eject [floppy-node]

ARGUMENTS
floppy-node

Specifies the type of floppy driver to eject the disk. If you do not specify the type of
floppy driver, the command determines the type for you and ejects the disk.

DESCRIPTION
eject causes a 3.5-inch disk drive (see fd(7)) to eject an inserted disk.

FILES
/bin/eject

Executable file

SEE ALSO
fd(7) in the AIX 4.1 manual pages.

appleping(1M) appleping(1M)

April 10, 1996 153

NAME
appleping—tests the AppleTalk network by sending packets to a named host to obtain a
response

SYNOPSIS
appleping net-node [packet-size [npackets]]

appleping name:type[@zone][packet-size [npackets]]

ARGUMENTS
 name:type[@zone]

Specifies the host computer by its name, type, and zone. If you do not specify a
value for zone, appleping uses the local zone.

net-node

Specifies the host by its network node number. To see the network node number for
a particular system, use the atlookup command.

npackets

Specifies how many packets to send before terminating.

packet-size

Specifies the size of each packet in bytes. The value of packet-size must be between
14 and 599. The default packet size is 64 bytes.

DESCRIPTION
appleping repeatedly sends AppleTalk Echo Protocol request packets to the specified
computer and reports whether a reply was received. The appleping command continues
to send packets and to display the result until the number of packets specified by npackets
is reached or until you issue the interrupt character (usually by pressing CONTROL-C).
Before exiting, appleping displays a summary of statistics.

FILES
/etc/appleping

Executable file

SEE ALSO
appletalk(1M)

atlookup(1)

atconfig(1M) atconfig(1M)

154 April 10, 1996

NAME
atconfig—allows you to configure and display AppleTalk network interfaces and status

SYNOPSIS
atconfig -s [interface] [boot|now|both]

atconfig -m [interface] [packets] [config-file] [route-table-entries] [zone-table-entries]
[boot|now|both]

atconfig [-u] [-q] [-p]

OPTIONS
-m [packets] [config-file] [route-table-entries] [zone-table-entries] [boot|now|both]

Starts AppleTalk in multi-port mode. The packets parameter specifies the maximum
number of packets per second that the AppleTalk stack can route through its network
interfaces. The config-file parameter specifies the pathname of the configuration file,
such as /etc/appletalk.cfg.

The route-table-entries parameter specifies the maximum number of route table
entries that the AppleTalk stack handles. The zone-table-entries parameter specifies
thntries that the AppleTalk stack handles. You must tune both of these entries to
accommodate the your network environment. If the number you select is too small,
AppleTalk will not be able to handle all the traffic; if the number is too large, system
memory will be used inefficiently and system performance could be degraded.

Optionally, you can specify when to start AppleTalk—at system restart, now, or both.

-p Displays the AppleTalk interface (EtherTalk), zone name, network number, and node
ID, as stored in PRAM.

-q Query the status of AppleTalk.

-s [interface] [boot|now|both]

Starts AppleTalk in single-port mode. The interface parameter identifies the
hardware interface that AppleTalk is to use, such as et0 or et1. The default
hardware interface is et0. Optionally, you can specify when to start AppleTalk—at
system restart, now, or both.

-u Stop AppleTalk.

DESCRIPTION
atconfig displays the status of an active AppleTalk interface, selects an AppleTalk
interface, and makes AppleTalk active or inactive. Any user can display statistics, but only
users logged in as root can select an AppleTalk interface or make it active or inactive.

EXAMPLES

atconfig(1M) atconfig(1M)

April 10, 1996 155

To start AppleTalk in single port mode with the built-in Ethernet interface, use this
command:

atconfig -s et0

To start AppleTalk in multi-port mode with a maximum number of routed packets of
3000, the configuration file /etc/appletalk.cfg, a maximum of 512 route entries and
a maximum of 256 zone entries, enter this command:

atconfig -m 3000 /etc/appletalk.cfg 512 256

FILES
/usr/bin/atconfig

Executable file

SEE ALSO
AppleTalk chapters in Using AIX, AppleTalk Services, and Macintosh Utilities for the
Network Server

cmdshld(1M) cmdshld(1M)

156 April 10, 1996

NAME
cmdshld—allows Mac OS clients to access a Network Server through windowed VT100-
compatible terminal emulators

SYNOPSIS
ppcd

DESCRIPTION
cmdshld runs the CommandShell daemon, which allows Mac OS clients to access a
Network Server through a multi-windowed VT100-compatible terminal emulator.

FILES
/etc/cmdshld

Executable file

SEE ALSO
Section 1, “Developing Mac OS Clients for the Network Server”

AppleTalk services chapters in Using AIX, AppleTalk Services, and Macintosh Utilities for
the Network Server

discusd(1M) discusd(1M)

April 10, 1996 157

NAME
discusd—the Network Server daemon for the Disk Management Utility

SYNOPSIS
discusd

DESCRIPTION
discusd runs the Disk Management Utility daemon (the Network Server component of
the Disk Management Utility). The Disk Management Utility application allows you to
manage logical volumes on an Network Server from a remote Mac OS computer.

FILES
/etc/discusd

Executable file

SEE ALSO
Section 1, “Developing Mac OS Clients for the Network Server”

AppleTalk services chapters in Using AIX, AppleTalk Services, and Macintosh Utilities for
the Network Server

javelind(1M) javelind(1M)

158 April 10, 1996

NAME
javelind—allows Mac OS clients to connect to a Network Server and obtain system
information

SYNOPSIS
javelind

DESCRIPTION
javelind runs the daemon for the Status Demo AppleTalk Services application (the
Network Server component of the Javelin Macintosh utility), which allows Macintosh
clients to obtain and display system information from a Network Server.

FILES
/etc/javelind

Executable file

SEE ALSO
Section 1, “Developing Mac OS Clients for the Network Server”

AppleTalk services chapters in Using AIX, AppleTalk Services, and Macintosh Utilities for
the Network Server

mandeld(1M) mandeld(1M)

April 10, 1996 159

NAME
mandeld—allows Mac OS clients to connect to a Network Server to create Mandel fractals

SYNOPSIS
mandeld

DESCRIPTION
mandeld runs the Mandel daemon, (the Network Server component of the Mandel
Macintosh utility), which allows Macintosh clients to use Network Servers to create Mandel
fractals.

FILES
/etc/mandeld

Executable file

SEE ALSO
Section 1, “Developing Mac OS Clients for the Network Server”

ppcd(1M) ppcd(1M)

160 April 10, 1996

NAME
ppcd—makes Macintosh utilities available on the server and establishes connections with
requesting clients

SYNOPSIS
ppcd

DESCRIPTION
ppcd runs the PPC daemon, which makes the Network Server component of Macintosh
utilities available to Mac OS clients and establishes connections with requesting clients.
The PPC daemon is always running on the Network Server.

The PPC daemon uses the ppcd.conf file as the basis for the information it advertises to
clients. The ppcd.conf file can also be used to provide guest access.

Each Macintosh utility needs an entry in the configuration file, /etc/ppcd.conf, so that
the PPC daemon can start the Network Server component of a Macintosh utility.

The file has the following format:

PPC-NAME PATHNAME SIGNATURE GUEST USERS

The fields in the ppcd.conf file must be separated by tabs.

The fields have the following values:

PPC-NAME

Contains the name of the AIX component as you want it to appear in the PPC
Browser for the Macintosh client. Do not use spaces in the name.

PATHNAME

Contains the full path to the UNIX executable file.

SIGNATURE

Contains an application type or signature. The Macintosh client component uses this
type to filter information in the PPC Browser. If you do not filter Network Server
components from the Macintosh side in the PPC Browser, use the signature 'UNIX' as
a default. The four-letter signature needs to be registered with Apple Computer, Inc.

GUEST

This field is optional. If the word guest appears in this field, any client can connect
to this daemon as the guest user (an actual account). If the field is blank or contains a
word other than guest, the user must supply a valid account (user name) and
password in order to start the Network Server component.

USERS

ppcd(1M) ppcd(1M)

April 10, 1996 161

This field is optional. This field contains a list of usernames for people with special
access privileges.

FILES
/etc/ppcd

Executable file

/etc/ppcd.conf

Configuration file

SEE ALSO
Chapter 3, “Developing the Network Server Component”

AppleTalk services chapters in Using AIX, AppleTalk Services, and Macintosh Utilities for
the Network Server

ppcd.conf(1M) ppcd.conf(1M)

162 April 10, 1996

NAME
ppcd.conf—the configuration file for the PPC daemon

SYNOPSIS
/etc/ppcd.conf

DESCRIPTION
The PPC daemon uses the ppcd.conf file as the basis for the information it advertises to
clients. The ppcd.conf file can also be used to provide guest access.

Each Macintosh utility needs an entry in the configuration file, /etc/ppcd.conf, so that
the PPC daemon can start the Network Server component of a Macintosh utility.

The file has the following format:

PPC-NAME PATHNAME SIGNATURE GUEST USERS

The fields in the ppcd.conf file must be separated by tabs.

The fields have the following values:

PPC-NAME

Contains the name of the AIX component as you want it to appear in the PPC
Browser for the Macintosh client. Do not use spaces in the name.

PATHNAME

Contains the full path to the UNIX executable file.

SIGNATURE

Contains an application type or signature. The Macintosh client component uses this
type to filter information in the PPC Browser. If you do not filter Network Server
components from the Macintosh side in the PPC Browser, use the signature 'UNIX' as
a default. The four-letter signature needs to be registered with Apple Computer, Inc.

GUEST

This field is optional. If the word guest appears in this field, any client can connect
to this daemon as the guest user (an actual account). If the field is blank or contains a
word other than guest, the user must supply a valid account (user name) and
password in order to start the Network Server component.

USERS

This field is optional. This field contains a list of usernames for people with special
access privileges.

FILES

ppcd.conf(1M) ppcd.conf(1M)

April 10, 1996 163

/etc/ppcd

Executable file

/etc/ppcd.conf

Configuration file

SEE ALSO
Chapter 3, “Developing the Network Server Component”

AppleTalk services chapters in Using AIX, AppleTalk Services, and Macintosh Utilities for
the Network Server

OF_child(3) OF_child(3)

164 April 10, 1996

NAME
OF_child—obtains the Open Firmware handle to the first child of a device in the Open
Firmware device tree

SYNOPSIS
long OF_child (handle);

long handle;

DESCRIPTION
The OF_child routine obtains information from the Open Firmware device tree. The
routine takes the Open Firmware handle (an index into the device tree) and returns the
Open Firmware handle of the first child of the device.

RETURN VALUES
On successful completion, the OF_child routine returns the handle of the node of the
child. If a child device does not exist, the routine returns 0. If an invalid handle value is
used or the routine fails, the routine returns –1.

FILES
/usr/lib/libcfg.a

Archive of device configuration subroutines

SEE ALSO
OF_parent(3), OF_peer(3), OF_hdl2path(3)

Chapter 6, “The Open Firmware Device Tree”

OF_getprop(3) OF_getprop(3)

April 10, 1996 165

NAME
OF_getprop—obtains the value of an Open Firmware property from the Open Firmware
device tree

SYNOPSIS
long OF_getprop (handle, prop, buf, size);

long handle;

char *prop;

char *buf;

long size;

DESCRIPTION
The OF_getprop routine obtains information from the Open Firmware device tree. The
routine uses the Open Firmware handle of the device (handle) and the name of a property
(prop) belonging to that handle, and copies the value of that property into the memory
pointed to by buf up to size bytes. If the memory needed to store the property value is
larger than the size provided, the value is truncated. To determine the memory needed to
store the property value, call this routine with size set to 0.

RETURN VALUES
On successful completion, the OF_getprop routine returns the actual size, in bytes, of the
property value. For string-encoded values, the null terminator is included in the returned
size. If an invalid handle value is used or the routine fails, the routine returns –1.

FILES
/usr/lib/libcfg.a

Archive of device configuration subroutines

SEE ALSO
OF_parent(3), OF_peer(3), OF_hdl2path(3)

Chapter 6, “The Open Firmware Device Tree”

OF_hdl2path(3) OF_hdl2path(3)

166 April 10, 1996

NAME
OF_hdl2path—converts an Open Firmware handle to an Open Firmware path

SYNOPSIS
long OF_hdl2path (handle, buf, size)

long handle;

char *buf;

long size;

DESCRIPTION
The OF_hdl2path routine obtains information from the Open Firmware device tree. The
routine uses the index into the device tree (handle) to get the corresponding fully
qualified Open Firmware path of the device. This routine copies up to size bytes into the
memory pointed to by buf. If the pathname is longer than the size provided, then the
pathname is not null-terminated in buf and may be truncated. To determine the memory
needed to store the path, call this routine with the size value set to 0.

RETURN VALUES
On successful completion, the OF_hdl2path routine returns the length, in bytes, of the
full path, not including the null terminator. If an invalid handle value is used or the
routine fails, the routine returns –1.

FILES
/usr/lib/libcfg.a

Archive of device configuration subroutines

SEE ALSO
OF_path2hdl(3)

Chapter 6, “The Open Firmware Device Tree”

OF_nextprop(3) OF_nextprop(3)

April 10, 1996 167

NAME
OF_nextprop—obtains the name of the next Open Firmware property in the Open
Firmware device tree

SYNOPSIS
long OF_nextprop (handle, prop, buf)

long handle;

char *prop;

char *buf;

DESCRIPTION
The OF_nextprop routine obtains information from the Open Firmware device tree. The
routine uses an index into the device tree (handle) and the name of a property (prop)
belonging to the node that the handle indicates, and returns the name of the next property
in the node’s property list. The function copies 0 to 31 bytes and a null character into
buf, which results in a null-terminated name string. To obtain the name of the first
property in a property list of a node, set prop to NULL. If the prop you specify doesn’t
exist or if there are no more properties to report, the routine returns a null byte in buf.
The buf value should be an array of at least 32 characters.

RETURN VALUES
On successful completion, the OF_nextprop routine returns 1. If the routine does not
find a property for the node, the routine returns 0. If an invalid handle value is used or
the routine fails, it returns –1.

FILES
/usr/lib/libcfg.a

Archive of device configuration subroutines

SEE ALSO
OF_getprop(3)

Chapter 6, “The Open Firmware Device Tree”

OF_parent(3) OF_parent(3)

April 10, 1996 168

NAME
OF_parent—obtains the Open Firmware handle to the parent of a device in the Open
Firmware device tree

SYNOPSIS
long OF_parent (handle);

long handle;

DESCRIPTION
The OF_parent routine obtains information from the Open Firmware device tree. The
routine uses the index into the device tree (handle) to return the Open Firmware handle of
the parent of the device.

RETURN VALUES
On successful completion, the OF_parent routine returns the handle of the parent in the
device tree. If a parent does not exist (that is, if the node indicated by handle is the root
node), the routine returns 0. If an invalid handle value is used or the routine fails, it
returns –1.

FILES
/usr/lib/libcfg.a

Archive of device configuration subroutines

SEE ALSO
OF_peer(3), OF_child(3), OF_hdl2path(3)

Chapter 6, “The Open Firmware Device Tree”

OF_path2hdl(3) OF_path2hdl(3)

April 10, 1996 169

NAME
OF_path2hdl—converts an Open Firmware path to an Open Firmware handle

SYNOPSIS
long OF_path2hdl (path)

char *path;

DESCRIPTION
The OF_path2hdl routine obtains information from the Open Firmware device tree. The
routine uses the path into the device tree to return the device’s corresponding Open
Firmware handle.

RETURN VALUES
On successful completion, the OF_path2hdl routine returns the handle corresponding to
the path in the device tree. If the path does not correspond to a node in the device tree, the
routine returns –1.

FILES
/usr/lib/libcfg.a

Archive of device configuration subroutines

SEE ALSO
OF_hdl2path(3)

Chapter 6, “The Open Firmware Device Tree”

OF_peer(3) OF_peer(3)

170 April 10, 1996

NAME
OF_peer—obtains the Open Firmware handle of the sibling of a device in the Open
Firmware device tree

SYNOPSIS
long OF_peer (handle)

long handle;

DESCRIPTION
The OF_peer routine obtains information from the Open Firmware device tree. The
routine uses the index into the device tree (handle) and returns the Open Firmware handle
of the device’s sibling, or peer.

If you specify 0 for handle, the routine returns the handle for the root node of the device
tree.

RETURN VALUES
On successful completion, the OF_peer routine returns the handle of the sibling in the
Open Firmware device tree. If a sibling does not exist, the routine returns 0. Otherwise, the
routine returns –1.

FILES
/usr/lib/libcfg.a

Archive of device configuration subroutines

SEE ALSO
OF_child(3), OF_parent(3)

Chapter 6, “The Open Firmware Device Tree”

pci_cfgrw(3) pci_cfgrw(3)

April 10, 1996 171

NAME
pci_cfgrw—reads and writes PCI bus slot configuration registers

SYNOPSIS
#include <sys/mdio.h>

int pci_cfgrw (bid, md, write_flag)

int bid;

struct mdio *md;

int write_flag;

DESCRIPTION
The pci_cfgrw routine provides serialized access to the configuration registers for a PCI
bus. To ensure data integrity in a multi-processor environment, a lock is required before
accessing the configuration registers. Depending on the value of the write_flag
parameter, a read or write to the configuration register is performed at offset md_addr for
the device identified by md_sla.

The pci_cfgrw kernel service provides the same services for kernel extensions as the
MIOPCFGET and MIOPCFPUT ioctls provide for applications. The pci_cfgrw kernel
service can be called from either the process or the interrupt environment.

The pci_cfgrw kernel service is part of the Base Operating System (BOS).

OPTIONS
bid Specifies the bus identifier.

Set to zero on the Network Server.

md Specifies the address of the mdio structure.

The mdio structure contains the following fields:

md_addr Specifies the full, real address of the configuration register to access (0
to 0xFF). The address is formed by adding the base address of the
device and the register offset in configuration space.

md_data Pointer to the data buffer.

md_size Specifies the number of items of size specified by the md_incr
parameter. The maximum size is 256.

md_incr The valid access type is MV_WORD.

pci_cfgrw(3) pci_cfgrw(3)

172 April 10, 1996

(MV_SHORT and MV_BYTE are not supported.)

md_sla The value returned by resolve_pci_cfg_space for the device.

md_length The bus range of the parent bus.

write_flag

Set to 1 for write and 0 for read.

RETURN VALUES
The pci_cfgrw routine returns a value of 0 when it completes successfully.

0 Indicates success

ENOMEM Indicates that no memory could be allocated.

EINVAL Indicates that the bus, device, function, or size is not valid.

SEE ALSO
“Machine Device Driver” in AIX Version 4.1 Technical Reference, Volume 6: Kernel and
Subsystems

resolve_gc_offset(3) resolve_gc_offset(3)

April 10, 1996 173

NAME
resolve_gc_offset—compute the base and dbDMA address for a child of the Grand
Central (Integrated I/O controller) device

SYNOPSIS
int resolve_gc_offset (cusobj, baddr, baddr_size, dbDMA_xe_addr
dbDMA_xe_size, dbDMA_re_addr, dbDMA_re_size)

struct CuDv * cusobj

ulong *baddr;

ulong *baddr_size;

ulong *dbDMA_xe_addr;

ulong *dbDMA_xe_size;

ulong *dbDMA_re_addr;

ulong *dbDMA_re_size;

DESCRIPTION
The resolve_gc_offset routine computes the base address and dbDMA addresses for a
device that is a child of the Grand Central node. The routine resolves the addresses by
adding the device offsets found in the Open Firmware device tree to the parent Grand
Central node’s base_addr attribute.

Using cusobj, this routine extracts the parent Grand Central node’s base_addr atrribute.
Also using cusobj, it extracts the device’s OF_handle attribute which is then used to query
the reg property in the Open Firmware device tree. For children of the Grand Central, as
many as three entries can be present in the reg property. The first entry is interpreted as
the device’s base offset and size. The second entry, if present, is as the device’s transmit
dbDMA offset and size, and the third entry, if present is always interpreted as the device’s
receive dbDMA offset and size.

The routine returns the base address of the child device in baddr. The routine returns the
size of the address space in baddr_size. If the reg property contains a transmit dbDMA
offset, then the actual transmit dbDMA address of this child device is returned in
dbDMA_xe_addr and the size of this address space is returned in dbDMA_xe_size. If the
reg property contains a receive dbDMA offset, then the actual receive dbDMA address of
this child device is returned in dbDMA_re_addr and the size of this address space is
returned in dbDMA_re_size. If the reg property does not provide a dbDMA offset, then

resolve_gc_offset(3) resolve_gc_offset(3)

174 April 10, 1996

the respective address and size parameters are both set to 0. Set any of these return fields
to NULL if you do not require the return data.

This routine should be used by a device method only if that device is a child of the Apple
Integrated I/O (for example, the Grand Central node) in the Open Firmware device tree.

RETURN VALUES
E_OK Indicates success

E_MALLOC Indicates that the allocation of necessary memory storage
failed.

E_NOATTR Could not get an attibute from the database.

Other errors indicates that the address could not be resolved given the information in the
OpenFirmware device tree.

E_APPLE_OFHANDLE The node-handle appears to be invalid.

E_APPLE_NOOFREG The reg property doesn’t exist in the
OpenFirmware device tree.

E_APPLE_OFSIZE The reg property is not of the expected size.

FILES
/usr/lib/libcfg.a

Archive of device configuration subroutines.

resolve_intr_lvl(3) resolve_intr_lvl(3)

April 10, 1996 175

NAME
resolve_intr_lvl—reads the device and dbDMA interrupt levels for a device

SYNOPSIS
int resolve_intr_lvl (cusobj, dev_intr_lvl, xe_intr_lvl re_intr_lvl)

 struct CuDv * cusobj

int * dev_intr_lvl;

int * xe_intr_lvl;

int * re_intr_lvl;

DESCRIPTION
The resolve_intr_lvl routine reads the integer values from the Open Firmware device
tree that identify a device’s interrupt source. This routine uses cusobj value to extract the
device’s OF_handle attribute and use it to query the “AAPL,interrupts” property in
the Open Firmware device tree. If the device does not have an “AAPL,interrupts”
property, then the routine traverses the device tree looking for a parent node from which
the device can inherit its interrupt source. (This situation is likely to happen for PCI
bridge devices.) Devices may have several possible interrupt sources. The first interrupt
value is always that of the device and is returned in dev_intr_lvl. The existance of any
following values represent the DMA interrupts. The DMA transmit interrupt level, if
present, is returned in xe_intr_lvl and the DMA receive interrupt level, if present, is
returned in re_intr_lvl.

 If the “AAPL,interrupts” property does not provide a DMA interrupt level, then
xe_intr_lvl and re_intr_lvl are both set to -1. Set any of these return fields to NULL if
you do not require the return data.

This routine can be used by any device method that expects its device to have an
"AAPL,interrupts" propety in the Open Firmware device tree, or wants to inherit the
"AAPL,interrupts" property from a parent node.

RETURN VALUES
E_OK Indicates success

E_NOATTR Could not get an attribute from the database.

Other errors indicates that the interrupts could not be interpreted given the
information in the OpenFirmware device tree.

E_APPLE_OFHANDLE The node-handle appears to be invalid.

E_APPLE_NOOFINTR The “AAPL,interrupts” property doesn’t exist
in the OpenFirmware device tree.

E_APPLE_OFSIZE The “AAPL,interrupts” property is not of the
expected size.

FILES

resolve_intr_lvl(3) resolve_intr_lvl(3)

176 April 10, 1996

/usr/lib/libcfg.a

Archive of device configuration subroutines.

resolve_pci_cfg_space(3) resolve_pci_cfg_space(3)

April 10, 1996 177

NAME
resolve_pci_cfg_space—obtains the configuration space address for a child of the
PCI device

SYNOPSIS
int resolve_pci_cfg_space (handle, cfg_addr)

long handle;

ulong *cfg_addr;

DESCRIPTION
The resolve_pci_cfg_space routine obtains information from the Open Firmware
device tree. The routine uses a device’s Open Firmware handle to find the configuration
space address that has been assigned to that device in cfg_addr. The routine searches the
first entry of the device’s reg property in the Open Firmware device tree for the
configuration space.

This routine should be used by a device method only if that device is a child of a PCI bus
or PCI bridge in the Open Firmware device tree.

RETURN VALUES
E_OK Indicates success

E_MALLOC Indicates that the allocation of necessary memory
storage failed.

Other errors indicates that the address could not be resolved given the information in the
OpenFirmware device tree.

E_APPLE_OFHANDLE The node-handle appears to be invalid.

E_APPLE_NOOFREG The reg property doesn’t exist in the
OpenFirmware device tree.

E_APPLE_OFSIZE The reg property or the assigned-addresses
property is not of the expected size.

FILES
/usr/lib/libcfg.a

Archive of device configuration subroutines.

resolve_pci_io_space(3) resolve_pci_io_space(3)

178 April 10, 1996

NAME
resolve_pci_io_space—obtains the physical, 32-bit I/O space address for a child of a
PCI device

SYNOPSIS
int resolve_pci_io_space (handle, io_addr, io_addr_size)

long handle;

ulong *io_addr;

ulong *io_addr_size;

DESCRIPTION
The resolve_pci_io_space routine obtains information from an Open Firmware
device tree. The routine uses a device’s Open Firmware handle to access the device
information in the device tree. The function returns the absolute, 32-bit I/O space address
in io_addr (within the PCI domain’s address space) that has been assigned to that device.
It also returns the size in bytes of that assigned space in io_addr_size. The routine uses
the OF_getprop() function to read up the "reg" and "assigned-addresses" properties
from the Open Firmware device tree. It searches for the first entry of the "reg" property
that indicates a 32-bit I/O space address. If that entry identifies a relocatable region, then
the region’s corresponding assigned physical address and size is searched for in the
"assigned-addresses" property.

This routine should be used by a device method only if that device is a child of a PCI bus
or PCI bridge in the Open Firmware device tree. This routine deals only with primary
access paths within the "reg" property; secondary access paths listed in the "alternate-
reg" property are not used.

RETURN VALUES
E_OK Indicates success

E_MALLOC Indicates that the allocation of necessary memory
storage failed.

Other errors indicates that the address could not be resolved given the information in the
OpenFirmware device tree.

E_APPLE_OFHANDLE The node-handle appears to be invalid.

E_APPLE_NOOFREG The reg property doesn't exist in the
OpenFirmware device tree.

resolve_pci_io_space(3) resolve_pci_io_space(3)

April 10, 1996 179

E_APPLE_OFSIZE The reg property or the assigned-addresses
property is not of the expected size.

 E_APPLE_PHYSADDR A relocatable address found in the reg property does
not have a corresponding assigned-address entry
giving the true physical address.

FILES
/usr/lib/libcfg.a

Archive of device configuration subroutines.

resolve_pci_mem_space(3) resolve_pci_mem_space(3)

180 April 10, 1996

NAME
resolve_pci_mem_space—obtains the physical, 32-bit memory space address for a
child of a PCI device

SYNOPSIS
int resolve_pci_mem_space (handle, mem_addr, mem_addr_size)

long handle;

ulong *mem_addr;

ulong *mem_addr_size;

DESCRIPTION
The resolve_pci_mem_space routine obtains information from the Open Firmware
device tree. This routine uses a device’s Open Firmware handle to returns the absolute,
32-bit memory space address (within the PCI domain’s address space) that has been
assigned to that device in mem_addr. The routine also returns the size in bytes of that
assigned space in mem_addr_size. The routine uses the OF_getprop() routine to read the
"reg" and "assigned-addresses" properties from the device tree. The
resolve_pci_mem_space routine searches the "reg" property for the first entry
indicating a 32-bit Memory Space address. If that entry identifies a relocatable region,
then the region’s corresponding assigned physical address and size will be searched for in
the “assigned-addresses” property.

This routine should be used by a device method only if that device is a child of a PCI bus
or PCI bridge in the Open Firmware device tree. This function deals only with primary
access paths within the "reg" property; secondary access paths listed in the "alternate-
reg" property are not used.

RETURN VALUES
E_OK Indicates success

E_MALLOC Indicates that the allocation of necessary memory
storage failed.

Other errors indicates that the address could not be resolved given the information in the
Open Firmware device tree.

E_APPLE_OFHANDLE The node-handle appears to be invalid.

E_APPLE_NOOFREG The reg property doesn’t exist in the
Open Firmware device tree.

E_APPLE_OFSIZE The reg property or the assigned-addresses
property is not of the expected size.

resolve_pci_mem_space(3) resolve_pci_mem_space(3)

April 10, 1996 181

 E_APPLE_PHYSADDR A relocatable address found in the reg property does
not have a corresponding assigned-address entry
giving the true physical address.

FILES
/usr/lib/libcfg.a

Archive of device configuration subroutines.

Appendix Keyboard Positions

This appendix describes differences between Apple and IBM keyboards
and describes the differences in key positions for foreign keyboards.

For information about AIX keyboards and detailed diagrams of the
keyboards, see the AIX Technical Reference. You can use this reference
through InfoExplorer.

184 Appendix Keyboard Positions

The Network Server Keyboard

The Network Server uses the 101-key keyboard, ISO 8859-1. The
following figure shows the keyboard and the numbered position codes for
each key.

121 122 123120117 118 119116113 114 115112110 124 125 126

75 80 8513121110987654321 (14) 15 90 95 100 105

91 96 101 106

92 97 102

93 98 103

(94) 99 104

107

108

(109)

76 81

83

84

86�

79 89�

28272625242322212019181716 (29)

43424140393837363534333231

5554 57(56)5352515049484746

60 61 62 64

45

30

44

58

Figure A-1 The key positions for the Network Server

The following sections detail differences in key positions for international
keyboards.

Generating the third symbol for a key

Most Apple keyboards only have two symbols printed on each key whereas
IBM keyboards provide three symbols per key. To generate the third
symbol on a key, hold down the Alternate Graphic (the Apple Command
key, position number 60 or 62) and press the key you want.

Appendix Keyboard Positions 185

Creating diacritical marks

Diacritical marks (or “dead keys”) are keys that do not print out when
you type them; they print when you type the next character. Diacritical
marks include accents, umlauts, and circumflexes. For example, to add
diacritical mark to a letter, type the dead key and then type the letter for the
accent. When you type the dead key, nothing appears. When you type the
next key, it appears with the accent above it. The tables in the following
sections list the key positions for many dead keys.

Differences for international keyboards

This section highlights the differences in key positions for international
keyboards. The international keyboards use the same 101-key keyboard
(ISO 8859-1), however, for many countries the some keys are in different
places.

For all international Apple keyboards, keys on the numeric keyboard have
the following mappings:

Key Position Character

95 =

100 /

105 *

106 -

107 +

For more information about keyboards and keyboard layouts, see the AIX
Technical Reference in InfoExplorer.

Italian Keyboard

The following table details the differences for the key positions between the
IBM Italian keyboard and the Apple Italian keyboard. See the keyboard
layout map at the beginning of this appendix to locate the key positions.

186 Appendix Keyboard Positions

Key Position Base Character Shift Character Alternate Graphic

1 @ #

2 & 1

3 " 2

4 ' 3

5 (4

6 ç 5

7 è 6

8) 7 {

9 £ 8 [

10 à 9]

11 é 0 }

12 - _

13 = +

17 q Q \

18 z Z

27 ì ˆ

28 $ * ~

40 m M

41 ù %

42 § ˚ ‘

46 w W

52 , ?

53 ; .

54 : /

55 ò !

United Kingdom English Keyboard

The following table details the differences for the key positions between the
IBM United Kingdom English keyboard layout and the Apple United
Kingdom keyboard. See the keyboard layout map at the beginning of this
appendix to locate the key positions.

Appendix Keyboard Positions 187

Key Position Base Character Shift Character Alternate Graphic

1 § ±
3 2 @ 2

7 6 ˆ

8 7 &

9 8 *

10 9 (

11 0) ˚

12 - _ #

13 = + ¬

27 [{

28] }
_

(overbar)

40 ; :

41 ' "

42 \ |

45 ‘ ~

Finnish/Swedish Keyboard

The following table details the differences for the key positions between the
IBM Finnish/Swedish keyboard and the Apple Finnish/Swedish keyboard.
See the keyboard layout map at the beginning of this appendix to locate
the key positions.

Key Position Base Character Shift Character Alternate Graphic

1 § ˚ 1/2

Norwegian Keyboard

The following table details the differences for the key positions between the
IBM Norwegian keyboard and the Apple keyboard. See the keyboard
layout map at the beginning of this appendix to locate the key positions.

188 Appendix Keyboard Positions

Key Position Base Character Shift Character Alternate Graphic

1 ' §

3 2 " |

5 4 $ Int. Currency
Symbol

13 ’ ‘ \

42 @ *

Danish Keyboard

The following table details the differences for the key positions between the
IBM Danish keyboard and the Apple Danish keyboard. See the keyboard
layout map at the beginning of this appendix to locate the key positions.

Key Position Base Character Shift Character Alternate Graphic

1 $ §

5 4 Int. Currency Symbol 1/2

Belgian-French, Dutch, and Flemish Keyboards

The following table details the differences for the key positions between the
IBM Belgian-French, Dutch, and Flemish keyboard and the Apple Belgian-
French, Dutch, and Flemish keyboards. See the keyboard layout map at the
beginning of this appendix to locate the key positions.

Key Position Base Character Shift Character Alternate Graphic

1 @ #

3 é 2 2

4 " 3 3

42 ‘ £ µ

Index

A
address allocations 76
address translation 74
ADSP TLI interface 123
AECreateAppleEvent routine 17
AEInit routine 24
AEPutParamPtr routine 17
AEregistry.h file

Network Server component 37
AESend routine 17
allocating contiguous memory 79
alternate graphic key 186
Apple Event Interprocess Messaging
Protocol (AEIMP) 9
Apple Event Manager 3
Apple events

initializing 23
Macintosh client component 16
Network Server components 24
registering 8

AppleEvent.h file
Network Server component 37

AppleEvents.h file 22
appleping command 155
AppleTalk services 27
AppleTalk Data Stream Protocol (ADSP)
9, 113
AppleTalk internet 93
AppleTalk Session Protocol (ASP) 125
AppleTalk Transaction Protocol (ATP) 97
application types 15
ASP function calls 125
atconfig command 156
atlookup command 146
ATP functions 98
atprint command 148
atstatus command 153
at_cho_prn command 151
authenticating a client 7
authentication dialog box 5
AUXAESuite.h file 22
AUXSuite.h file

Network Server component 37

B
Belgian keyboard 190
block address translation 74
boot firmware 50
busresolve routine 59, 66

C
C compiler 22
cfgbus method 61
cfgsio method 61
cfgsys method 61
cmdshld 158
client/server applications

components 3
developing 8
examples 2
overview 4
protocols 9

CommandShell application 2
CommandShell daemon 158
Configuration Manager 59, 60
configure methods 66

defining children 66
setting the handle attribute 66
updating Custom Device database 66

connecting the commponents 7
custom databases 62

D
Danish keyboard 190
datagram 92
Datagram Delivery Protocol (DDP) 92
dbDMA 78
DDP functions 93
dead keys 187
debugging, Network Server component 30
development environment

Macintosh 12
Network Server 22

device configuration
overview 59
with the device tree 53

device discovery 50
device hierarchy 60
device information, getting 67

190 Index

device path 54
device tree 49, 50

accessing nodes 53
children 52
creation 50
device configuration methods 53
displaying 56
handle 54
handle attribute 54
methods 52
name property 53
nodes 52
parents 52
path 54
properties 52, 57
reg property 53
routines 55

device type (DevId) 62
DevId field 62

size limitations 63
diacritical marks 187
direct memory access, see DMA 78
discusd 159
Disk Management Utility application 2
Disk Management Utility daemon 159
DMA 78

master 78
slave 78

Dutch keyboard 190

E
eject command 154
English keyboard 188
error codes, AppleTalk

RTMP 97

F
filter function 15
filtering servers 15
Finnish keyboard 189
Flemish keyboard 190
Forth monitor 56
French keyboard 190

G
German keyboard 190
guest access 6, 16

H
handle attribute 54

Predefined Attribute database 65
handler.c file

Network Server component 36
header files 22
heartbeat Apple events 7, 17

Network Server component 23
sample code 18

I
I/O controllers 75
I/O space 76
international keyboards 187-191
interrupt handlers 82
interrupt levels 83
interrupt priority 82
interrupt property 83
intr structure 83
iomem_attach routine 75
iomem_detach routine 75
Italian keyboard 187

J
javelin.c file

Macintosh client component 34
Network Server component 36

javelin.h file 34
Network Server component 36

javelind 160
JavelinEvents.h file 34

K
keyboards 185-191

alternate graphic key 186
diacritical marks 187
generating a third character 186
international differences 187-191

L
level field, intr structure 83
libadsp.a file 22
libaem.a file 22
libat.a file 22
libraries 22

M
Macintosh client component 4

authenticating a network
connection 16

files 34
Macintosh development environment 12
Mandel daemon 161
mandeld 161
mbuf structure 47
mdio structure 69
memory

allocating contiguous memory 79
misc.c file

Network Server component 36
misc.h file

Network Server component 36
m_nextpkt pointer 47

Index 191

N
Name Binding Protocol (NBP) 10, 104
name property, device tree 53
NBP functions 106
network connection, creating 8, 12
Network Server component

as a daemon application 21
debugging 30
starting 21

Norwegian keyboard 189

O
ODM (Object Data Manager) 61

custom databases 62
databases 61
for the Network Server 62
overview 61
predefined databases 62

OF_child routine 55, 166
OF_getprop routine 55, 167
OF_hdl2path routine 55, 168
OF_nextprop routine 56, 169
OF_parent routine 55, 170
OF_path2hdl routine 55, 171
OF_peer routine 55, 172
Open Firmware

device tree 49
interface 56

P
passwords 6
path2hdl routine 54
pci_cfgrw routine 69, 173
PCI configuration register cycles 67
PCI kernel services 69
permissions 29
PPC Browser

creating a network connection 12
dialog box 4
displaying 13
filtering servers 15
Network Server Passwd Tool 4

PPC daemon 3, 162
adding a service 28
listing 27
starting 27
stopping 27

ppcd 162
ppcd.conf file 5, 29, 30, 164

privileged users 29
Predefined Attribute database

handle attribute 65
predefined databases 62
Printer Access Protocol (PAP) 110
privileged users 7, 29

privileges 29
Program-to-Program (PPC) daemon 27
Program-to-Program Communications
(PPC) 10
programmed I/O 77
protocols 9

R
reg property, device tree 53
resolve_gc_offset routines 175
resolve_intr_lvl routine 177
resolve_pci_cfg_space routine 68,
179
resolve_pci_io_space routine 180
resolve_pci_mem_space routine 68,
182

S
security 7
segment address translation 74
setuid command 29
snd_heartbeat command 23
Status Demo AppleTalk Services
application 2, 33, 160

Macintosh client component 35
Network Server component 36

Swedish keyboard 189
symbiont.c file 34
symbionts.h file 34
system startup 50

T
Types.h file 22

U
UEPPC.h file

Network Server component 37
UPPCToolbox.h file

Network Server component 37
user access 29
user names 6

V, W
version number of components 35
version.h file 35

Network Server component 36
WaitNextAppleEvent routine 25

	Cover page
	Copyrights
	Table of Contents
	Preface
	Who should use this guide
	Conventions used in this guide
	The Courier font
	Italics
	Command notation

	Section I Developing Client/Server Applications for the Network Server Using Apple Protocols
	Overview of Client/Server Applications for the Network Server
	Client/Server applications available on the Network Server
	Components of client/server applications
	The Network Server component
	The Macintosh client component

	How client/server applications work
	Developing a client/server application for the Network Server
	Using protocols

	Developing the Macintosh Client Component
	Macintosh development environment
	Using the PPC Browser to create a network connection
	Filtering Servers in the PPC Browser
	Authenticating a network connection
	Using Apple events
	Maintaining a network connection
	Debugging

	Developing the Network Server Component
	Network Server development environments
	Header files and libraries
	Creating and maintaining a network connection
	Using Apple events
	Writing the main program loop
	Setting up and starting the PPC daemon
	Working with security and authorization
	Debugging and troubleshooting

	A Sample Application
	The Macintosh client component
	The Network Server component

	Section II Developing Device Drivers
	Overview of Changes for the Network Server
	Hardware differences
	Software differences

	The Open Firmware Device Tree
	System startup and device discovery
	About the device tree

	Access to the device tree
	The path of a device
	The handle attribute
	Open Firmware routines

	The Open Firmware command-line interface
	Displaying the device tree
	Displaying device properties

	Device Configuration With the Network Server
	The Network Server device hierarchy
	The ODM databases
	The device ID field in the Predefined Devices database
	Building package names for child devices
	The handle attribute in the Predefined Attribute database

	Writing configuration methods

	Device I/O on the Network Server
	Address translation on the Network Server
	I/O controller types on the Network Server
	I/O space on the Network Server
	Programmed I/O to PCI devices
	Direct memory access
	Allocating contiguous physical memory

	The Network Server Interrupt Subsystem
	Overview of the interrupt subsystem
	Interrupt levels

	Implementing Graphics Input and 2D Graphics Device Drivers
	Graphics environment
	The X server
	Mouse support

	Other input device issues

	Section III Using the AppleTalk API
	AppleTalk Programming Interfaces
	Datagram Delivery Protocol (DDP)
	DDP library functions
	The ddp_open function
	The ddp_close function
	The atpproto_open function
	The adspproto_open function
	DDP Error Codes

	Routing Table Maintenance Protocol (RTMP)
	RTMP library functions

	AppleTalk Transaction Protocol
	ATP library functions
	The atp_open function
	The atp_close function
	The atp_sendreq function
	The atp_getreq function
	The atp_sendrsp function
	The atp_getresp function
	The atp_look function
	The atp_abort function

	Name Binding Protocol
	NBP library functions
	The nbp_parse_entity function
	The nbp_make_entity function
	The nbp_confirm function
	The nbp_lookup function
	The nbp_register function
	The nbp_remove function

	Printer Access Protocol
	PAP Client library functions
	The pap_open function
	The pap_read function
	The pap_read_ignore function
	The pap_status function
	The pap_write function
	The pap_close function

	AppleTalk Data Stream Protocol
	ADSP Socket-like Interface
	The ADSPaccept function
	The ADSPbind function
	The ADSPclose function
	The ADSPconnect function
	The ADSPfwdreset function
	The ADSPgetpeername function
	The ADSPgetsocketname function
	The ADSPgetsockopt function
	The ADSPrecv function
	The ADSPsend function
	The ADSPsetsockopt function
	The at_adspopt structure
	The ADSPsocket function
	The ASYNCread function and the ASYNCread_complete function

	ADSP TLI Interface

	AppleTalk Session Protocol
	ASP library functions
	The SPAttention function
	The SPCloseSession function
	The SPCmdReply function
	The SPCommand function
	The SPConfigure function
	The SPEnableSelect function
	The SPGetParms function
	The SPGetRemEntity function
	The SPGetReply function
	The SPGetRequest function
	The SPGetSession function
	The SPGetStatus function
	The SPInit function
	The SPLook function
	The SPNewStatus function
	The SPOpenSession function
	The SPRegister function
	The SPRemove function
	The SPSetPid function
	The SPWrite function
	The SPWrtContinue function
	The SPWrtReply function

	Section IV Manual Pages for the Network Server
	Command Reference—Section 1
	atlookup
	atprint
	at_cho_prn
	atstatus
	eject

	System Administrator's Reference-Section 1M
	appleping
	appletalk
	cmdshld
	discusd
	javelind
	mandeld
	ppcd
	ppcd.conf

	Programers Reference-Section 3
	OF_child
	OF_getprop
	OF_hdl2path
	OF_nextprop
	OF_parent
	OF_path2hdl
	OF_peer
	pci_cfgrw
	resolve_gc_offset
	resolve_intr_lvl
	resolve_pci_cfg_space
	resolve_pci_io_space
	resolve_pci_mem_space

	Appendix Keyboard Positions
	The Network Server Keyboard
	Generating the third symbol for a key
	Creating diacritical marks

	Differences for international keyboards
	Italian Keyboard
	United Kingdom English Keyboard
	Finnish/Swedish Keyboard
	Norwegian Keyboard
	Danish Keyboard
	Belgian-French, Dutch, and Flemish Keyboards
	German Keyboard

	Index
	Figures and Tables
	Listing 6-1 shows a device tree for the Network Server.
	Figure 7-1 The Network Server device hierarchy
	Figure 8-1 Block address translation
	Figure 8-2 Address mapping
	Figure A-1 The key positions for the Network Server

