

NOTICE

The information in this document is subject to change without notice. AT&T assumes no
responsibility for any errors that may appear in this document.

Copyright© 1985 AT&T
All Rights Reserved

Printed in U.S.A

Replace this

page with the

LINE PRINTER SPOOLING

tab separator.

AT&T

AT&T 382 Computer
UNIX™ System V Release 2.0
Line Printer Spooling
Utilities Guide

CONTENTS

Chapter L INTRODUCTION

Chapter 2. USER COMMANDS

Chapter 3. ADMINISTRATIVE COMMANDS

Chapter 4. ADMINISTRATION

Appendix: ERROR MESSAGES

Chapter 1

INTRODUCTION

PAGE

GENERAL . 1-1

GUIDE ORGANIZATION . 1-2

SUPPORTING DOCUMENTATION . 1-3

DEFINITION OF TERMS . 1-4

Chapter 1

INTRODUCTION

GENERAL
This document describes the Line Printer (LP) Spooling Utilities. The LP
Spooling Utilities is a set of commands that allows you to "spool" a file
that you want to print. Spooling is the name given to the technique of
temporarily storing data until another aspect of processing is ready for the
data. For the Line Printer Spooling, a file (or several files) to be printed is
stored in a queue until a printer becomes available. When the printer
becomes available, the file in the queue is printed.

LP Spooling frees up your terminal so you do not have to wait until the file
is printed before you can start using your terminal again. LP Spooling also
allows one printer, or several printers, to be shared among many users.
The flow of printing through the system is regulated by the LP Spooling
Utilities.

The LP Spooling Utilities allows:

• Customizing the system so that it will spool to a pool of line printers.
These printers may be all the same type or various types of printers.

LP 1-1

INTRODUCTION

• Grouping printers into logical classes to maximize the throughput of
the printers. For example, grouping all letter-quality printers into
one class and all high-speed dot matrix printers into another class .

• Queuing print requests, thus allowing a print request (job) to get
printed on the next available printer in that class.

• Canceling print requests so one job that is no longer needed will not
be printed .

• Starting and stopping LP from processing requests .

• Changing the configuration of printers .

• Finding the status of LP scheduler .

• Restarting any printing that was not completed if the system was
powered down.

GUIDE ORGANIZATION
This guide is structured so you can easily find information without having
to read the entire text. The remainder of this guide is organized as
follows:

• Chapter 2, "USER COMMANDS," describes the format and use of
the LP Spooling Utilities commands that are used by a general
UNIX* System user.

• Chapter 3, "ADMINISTRATIVE COMMANDS," describes the format
and use of the LP Spooling Utilities commands that are used to
administer the LP system.

* Trademark of AT&T

LP 1-2

INTRODUCTION

.. Chapter 4, "ADMINISTRATION," provides additional information on
administering the LP system .

• Appendix, "ERROR MESSAGES," is a listing of the error messages
associated with the LP commands. An explanation of the error
message is provided, as well as the corrective action to take.

SUPPORTING DOCUMENTATION
Before reading this document you should be familiar with the AT&T 382
Computer Owner /Operator Manual that describes how to operate the
computer and the UNIX System V User Guide. Other documents that you
may need to use with the LP Spooling Utilities Guide are:

.. AT&T 382 Computer User Environment Utilities Guide - explains
how to set up a user environment. This utilities is required to use
the LP Spooling Utilities .

.. AT&T 382 Computer Dot Matrix Printer Manual - explains how to
turn the DQP-10 printer on, load paper and ribbons, and how to set
it up .

• AT&T 382 Computer Letter Quality Printer Manual - explains how to
turn the LQP-40 printer on, load paper and ribbons, and how to set
it up.

• AT&T 382 Computer Expanded Input/Output Capability Manual -
explains how to add additional ports to the computer so you can
connect additional printers.

LP 1-3

INTRODUCTION

DEFINITION OF TERMS
There are terms in this document that have a singular meaning within the
context of the document. Knowing the meaning of these terms is critical
to your understanding of the LP system. These terms are defined below:

device Depending on its usage, the word device can refer to
either an apparatus for obtaining a printout or a special
UNIX System file found in the / dev directory. These
special UNIX System files are called "device" files. The
UNIX System uses these device files to access
peripherals such as printers, terminals, tape drives, etc.
Some typical device file names for accessing printers
are ttyll, ttyl2, tty13, and ttyl4.

printer This is a logical name that represents a physical device.
In this guide the printer names "dqplO" and "lqp40"
are used extensively. The name "dqplO" is the logical
name assigned to the dot matrix printer; "lqp40" is the
logical name assigned to the letter quality printer.

class Class is the name given to an ordered list of printers.
Although a class is normally thought of as a group of
printers, a class could contain only one printer. A
printer does not have to be assigned to a class; but on
the other hand, you can assign a printer to more than
one class.

destination This is the location where an LP Spooling output
request is sent to be printed or to await printing. A
destination may be a specific printer or a class of
printers. An output request directed to a specific
printer will only be printed by that printer; an output
directed to a class will be printed by the first available
printer in that class.

LP 1-4

Chapter 2

USER COMMANDS

PAGE

GENERAL • . 2-1

COMMAND SUMMARY . • 2-2

HOW COMMANDS ARE DESCRIBED. • • 2-3

COMMAND DESCRIPTIONS . 2-5

cancel - Stop a Request from Printing . . . • . 2-5

disable - Stop Printing Requests on Printers . • 2-7

enable - Enable Printing Requests on Printers • 2-9

Ip - Make an Output Request . • 2-11

lpstat - Get LP Status . 2-15

Chapter 2

USER COMMANDS

GENERAL
The Line Printer (LP) Spooling Utilities provides eleven UNIX System
commands. These commands are divided into two categories. The
commands in one category are for general use of the LP system; the
commands in the other category are for administering the LP system.
This chapter describes the general user commands. The commands for
administering the LP system are covered in Chapter 3.

LP 2-1

USER COMMANDS

COMMAND SUMMARY

Figure 2-1 provides a summary of the general user commands.

COMMAND DESCRIPTION

cancel Cancels output requests.

disable Prevents a printer from printing jobs that are
in the queue.

enable Allows a printer to print jobs that are in the
queue.

Ip Routes jobs to a destination and places them
in a queue. The destination may be a printer
or a class of printers.

lpstat Provides the status of anything that has to do
with the LP Spooling system.

Figure 2-L LP Spooling Utilities-User Command Summary

LP 2-2

USER COMMANDS

HOW COMMANDS ARE DESCRIBED
A common format is used to describe each of the commands. This format
is as follows:

.. General: The purpose of the command is defined. Any uncommon
or special information about the command is also provided .

• Command Format: The basic command line format (syntax) is
defined and the various arguments and options are discussed .

.. Sample Command Use: Example command line entries and system
responses are provided to show you how to use the command.

In the command format discussions, the following symbology and
conventions are used to define the command syntax:

• The basic command is shown in bold type. For example: command
is in bold type .

• Arguments that you must supply to the command are shown in a
special type. For example: command argument

• Command options and arguments that do not have to be supplied
are enclosed in brackets ([]). For example:
command [optional arguments]

., The pipe symbol (:) is used to separate arguments when one of
several forms of an argument can be used for a given argument
field. The pipe symbol can be thought of as an exclusive OR
function in this context. For example:
command [argumentl: argument2]

Refer to the AT&T 382 Computer User Reference Manual and the AT&T
382 Computer System Administration Reference Manual for the UNIX
System V manual pages supporting the commands described in this guide.
In the sample command discussions, and in most other instances, screen
displays are used to show user inputs and system responses.

LP 2-3

USER COMMANDS

The following conventions are used within the screen displays:

This style of type is used to show system generated
responses displayed on your screen.

This style of bold type is used to show inputs
entered from your keyboard that are displayed on your
screen.

These bracket symbols, < > identify inputs from the
keyboard that are not displayed on your screen, such
as: <CR> carriage return, <CTRL d> control d, <ESC g>
escape g, passwords, and tabs.

This style qf italic type is 1),Sed for notes tha,t
provide you with a,dditional information.

Other conventions used in the sample command discussions that need to
be mentioned are prompt symbols and printer names. Two different
prompt symbols are used: a "$"and a "# ". The "$" is used as the
prompt for commands that can be entered by a general user; the "#" is
the prompt for commands that can only be entered by "root" or a super
user.

The printer names that are used in many of the sample commands are the
default printer names that the installation script assigns. Examples of
default names are dqplO_l, dqpl0_2, and lqp40_1. If default printer
names are not used, then lpl, lp2, lp3, etc., are used as printer names.

LP 2-4

USER COMMANDS

COMMAND DESCRIPTIONS

cancel - Stop a Request from Printing

General

The cancel command is used to remove a job from the queue. This
command can be invoked before a job starts printing or after a job has
started printing. Only one job can be canceled at a time.

Any user is able to cancel another user's job. The reason that LP allows
anyone to use the cancel command is to cover problems that may occur
on an unattended printer. Some typical problems might be a printer
spewing out unintelligent information or a printer with a paper jam that
keeps printing the same line over and over. If cancel could only be
invoked by the original requester, or someone who can log in as "Ip" or
"root," it might take a long time to find a person who can stop the job.

If you cancel another user's request, mail is sent to that user. Once a job
is canceled, it has to be requested again using the Ip command.

Command Format

The general format of the cancel command is as follows:

cancel [printer-name : request identification-number]

Two kinds of arguments may be given to the command - request
identification numbers and printer names. A cancel request identification
number cancels one job request. A cancel printer-name cancels only the
job that is currently printing. No other requests in the queue for the
named printer will be canceled. Both types of arguments may be
intermixed. With no arguments, the cancel command cancels the job
currently printing.

LP 2-5

USER COMMANDS

Sample Command Use

The following is an example of canceling a request that is now printing on
printer dqplO_l:

$ cancel dqplO l-51<CR:>
request" dqplO_l-::-51" canceled
$

LP 2-6

USER COMMANDS

disable - Stop Printing Requests on Printers

General

The disable command prevents the printer from printing any jobs that are
in the queue. You might want to disable a printer for things like
malfunctioning hardware, paper jams, running out of paper, or end-of-day
shutdowns. If a printer is busy at the time it is disabled, then the request
that was printing will be reprinted in its entirety when the printer is
enabled.

Job requests can be routed to a printer that is disabled. The jobs go into a
queue, but they will not be printed until the printer is enabled.

Command Format

The general format of the disable command is as follows:

disable [-c] [-r[reason]] printers

The -c option causes the currently printing request on a printer to be
canceled in addition to disabling the printer. This is useful if you have
some strange output causing a printer to behave abnormally.

The -r option enables you to let other users know why the printer was
disabled. Reason is a brief explanation of the purpose for disabling the
printer. If the reason consists of several words separated by spaces, then
enclose the reason statement in double quotes ("). This reason is
reported to other users who may try to use the disabled printer.

LP 2-7

USER COMMANDS

Sample Command Use

Example l

This is an example of how you would disable printer dqplO_l if the paper is
jammed:

$ disable -r" paper jam" dqplO l<CR>
printer" dqplO_l" now disabled -
$

Example 2

This example shows the response you get if you use the lpstat command
to determine the status of printer dqplO_l:

$ lpstat -pdqplO l<CR>
printer pdqlO_l disabled since July 18 10:15 -

paper jam
$

LP 2-8

USER COMMANDS

enable - Enable Printing Requests on Printers

General

The enable command allows the printer to print jobs that are in the queue.
A job in the process of printing, that is stopped by the disable command,
will start printing again from the beginning after the enable command is
invoked.

Command Format

The general format of the enable command is as follows:

enable printers

Sample Command Use

$ enable dqplO 2<CR>
printer" dqpl0_2'' now enabled
$

LP 2-9

USER COMMANDS

Ip - Make an Output Request

General

The ~p command routes a job request to a destination where it is placed in
a queue to await printing. The destination may be a printer or a class of
printers. If no destination is specified, the request is routed to the default
destination.

Every time an Ip request is made, a "request ID" is assigned to the job,
and a record of the request is returned to you. The request ID is of the
form:

dest-seqno

where dest is the destination to which the request was routed and seqno is
a sequence number that is uncommon to the LP system. The request ID
provides a means for keeping track of the status of individual job requests.
It also provides a means for canceling job requests.

Command Format

The command format is as follows:

Ip [options] file(s)

The following options are available with the Ip command:

-c

-ddest

This option will immediately create a copy of the file(s)
to be printed. Using this option ensures that no
changes will be made to the file even if some time
elapses before the file is actually printed.

This is the printer where you want the file(s) to be
printed.

LP 2-11

USER COMMANDS

-m When you select this option, mail is sent to you after
the file(s) has been printed.

-nnumber If no number is specified, one copy is printed. By
specifying a number, multiple copies can be printed.

-ooption The option referred to is the optional modes of printing
some printers have, for example, compressed print or
expanded print

-s This option suppresses messages such as "request ID is

-ttitle This will "banner" a title on the printout so you can
distinguish your job from other jobs.

-w The -w option will write a message on your terminal
after the file(s) has been printed. If you log off before
your file(s) is printed, then mail will be sent to you.

Sample Command Uses

There are several different ways to request a printout with the Ip
command. The first example shows four different ways to obtain a
printout of the /etc/passwd file. Since no destination is specified in the
command line, the request will go to the system default destination.

LP 2-12

Example 1

$ lp /etc/passwd<CR>
request id is dqplO_l-53 (1 file)

$ lp < /etc/passwd<CR>
request id is dqplO_l-54 (standard input)

$cat /etc/passwd I lp<CR>
request id is dqplO_l-55 (standard input)

$ lp -c /etc/passwd<CR>
request id is dqplO_l-56 (1 file)
$

USER COMMANDS

The LP system does not handle all the requests shown in the example in
the same manner. All the command lines, except the first one, "freeze" a
copy of the /etc/passwd file as soon as the Ip command is issued. This
copy is held until a printer is ready. If the file is modified between the time
the request is made and the time it is actually printed, the changes are not
included in the output.

The first command line does not freeze a copy of the file. Any changes
made to the /etc/passwd file between the time the Ip request is made
and the time the file is actually printed are included in the printout.

When you use LP spooling, it is a good idea to know whether the method
you use will freeze a copy of the file or if the printout will reflect changes
that are made after the Ip request was made.

LP 2-13

USER COMMANDS

Example 2

This example shows the command line that you would use to print file
"xyz" on printer dqplO_l and have a message sent back to you after it
prints:

$ lp -ddqplO l -w xyz<CR>
request id is dqplO_l-65 (1 file)
$

Example 3

Here is an example showing how to print two copies of file xyz on printer
dqplO_l and title the output myfile:

$ pr xyz I lp -ddqplO_l -n2 -t" myfile" <CR>
request id is dqplO_l-1 (standard input)
$

Note: The title qfthefile is bannered
on the ou,tput.

LP 2-14

USER COMMANDS

lpstat - Get LP Status

General

The lpstat command gives you a report on such things as:

• Jobs in the queue

• A job that is printing

• Printers that are busy or idle

• LP scheduler status

• The system default destination.

In short, it provides a status report of anything that has to do with the LP
Spooling system.

Command Format

The general format of the lpstat command is as follows:

lpstat [options]

Where options may be:

-a[list]

-c[list]

-d

Report whether printers are accepting requests. List is
a list of printer names and class names.

Report all class names and their members. List is a list
of class members.

Report the system default destination printer.

LP 2-15

USER COMMANDS

-o[list]

-p[list]

-r

-s

-t

-u[list]

-v[list]

Report the status of requests. List is a list of printer
names, class names, or request identification numbers.

Report the status of printers. List is a list of printer
names.

This option is used to determine if the LP scheduler is
on or off.

Print a status summary including the system default
destination, a list of class names and their members,
and a list of printers and their associated devices.

Report all status information. Prints all the information
that is given with a -s plus prints the acceptance and
idle/busy status of all printers.

Report the status of requests for users. List is a list of
login names.

Identifies the associated device for each LP printer.
List is a list of printer names.

Sample Command Uses

Example 1

Invoke the lpstat command without any options. The status information
that you receive includes:

., The request identification number

., The user's logname

.. The total amount of characters to be printed

LP 2-16

• The date and time the request was made.

$ lpstat<CR:>
dqplO_l-25
dqplO_l-26
dqplO_l-27
$

Example 2

pr2cms
pr2cms
pr2cms

1942
3893
942

July 19 13:09
July 19 13:15

July 19 14:09

USER COMMANDS

Request the status of printers, dqplO_l and lqp40_1. Note that only a
comma separates the name of the two printers. It is important that no
spaces or tabs are between them.

$ lpstat -pdqplO l,lqp40 l<CR:>
printer dqplO_l is idle. enabled since July 19 08:40
printer lqp40_1 is idle. enabled since July 19 09:16

LP 2-17

USER COMMANDS

Example 3

Execute the lpstat command with the -t option to print all the status
information.

$ lpstat -t<CR>
scheduler is running
system default destination: dqplO_l
device for dqplO_l: /dev/ttyll
device for lqp40_1: /dev/ttyl2
dqplO_l accepting requests since July 19 13:44
lqp40_1 accepting requests since July 19 11:30
printer dqplO_l disabled since July 18 15:07

bad print wheel
printer lqp40_1 is idle. enabled since July 19 11 :30
dqplO_l-19 pr2cms 1616 July 19 17:13
$

LP 2-18

Chapter 3

ADMINISTRATIVE COMMANDS

PAGE

GENERAL . 3-1

COMMAND SUMMARY • . 3-2

COMMAND DESCRIPTIONS . 3-3

accept - Allows Print Requests . 3-3

reject - Prevent lP Requests. 3-5

!padmin - Configure Printers . 3-7

lpmove - Move a Request to Another Printer . 3-11

lpsched - Start the LP Scheduler . 3-13

lpshut - Stop the LP Scheduler...................................... 3-15

Chapter 3

ADMINISTRATIVE COMMANDS

GENERAL
This chapter describes the commands that are used to administer the LP
system. The administrative commands are described using the same
format that was used to describe the general user commands in Chapter
2. To execute the administrative commands, you must be logged in as
"root" or "Ip." Administrative commands should only be used by
experienced users.

LP 3-1

ADMINISTRATIVE COMMANDS

COMMAND SUMMARY

Figure 3-1 provides a summary of the administrative commands.

COMMAND DESCRIPTION

accept Permits job requests to be queued for a
particular destination.

reject Prevents jobs from being queued at a
particular destination.

lpadmin Used to set up or change the LP
configuration.

Ip move Moves output requests from one destination
to another.

lpsched Starts the LP scheduler.

lpshut Stops the LP scheduler.

Figure 3-L LP Spooling Utilities - Administrative Command Summary

LP 3-2

ADMINISTRATIVE COMMANDS

COMMAND DESCRIPTIONS

accept - Allows Print Requests

General

The accept command allows job requests to be placed in a queue at the
named destination(s); destination being the name of a printer or class of
printers.

Command Format

The general format of the accept command is as follows:

/usr /lib/accept destination(s)

Sample Command Use

The sample command line allows printer dqplO_l to start receiving
requests:

/us~/lib/accept dqplO l<CR>
destination" dqplO_l" now accepting requests

LP 3-3

ADMINISTRATIVE COMMANDS

reject - Prevent LP Requests

General

Sometimes it is necessary to stop Ip from routing requests to a
destination. For example, if a printer has been removed for repairs, or if
too many requests are building at a destination, you may want to prevent
new jobs from being queued at this destination. The reject command
performs this function.

If requests are in the queue at the time the reject command is invoked,
those requests will be printed as long as the printer is enabled. After the
condition that led to denying requests has been corrected, use the accept
command to allow requests to be received again.

Command Format

The general format of the reject command is as follows:

/usr /lib/reject [-r[reason]] destinations

The -r option enables you to let users know why requests are being
rejected by the specified destination. Reason is a brief explanation of the
purpose for rejecting requests. If the reason consists of several words
separated by spaces, then enclose the reason in double quotes (").

The destinations are the printers that are not to accept requests any
longer.

LP 3-5

ADMINISTRATIVE COMMANDS

Sample Command Use

The example given here is for a printer, lqp40_1, that had to be taken in
for repair. While the printer is gone, you want to prevent Ip from routing
requests to lqp40_1:

/usr/lib/reject -r"printer lqp40 1 needs repair" lqp40_l<CR>
destination" lqp40_1" is no longer accepting requests

Any users that try to route a job to lqp40_1 will receive the following
message:

$ lp -dlqp40 l filename<CR>
Ip: can't acceptrequests for destination" lqp40_1"

printer lqp40_1 needs repair
$

LP 3-6

ADMINISTRATIVE COMMANDS

lpadmin - Configure Printers

General

The lpadmin command is used to reconfigure the LP system as needed.
Except for a few exceptions, the lpadmin command will not alter the LP
configuration when the LP scheduler is running.

Command Format

Unlike most other UNIX System commands, the lpadmin command
requires an option. Of the following three options one must always be
included on the command line to execute lpadmin:

-d[dest]

-xdest

-pprinter

The -d[dest] option is used to define a system default destination. The
destination (dest) must already exist. This option can be invoked when
the LP scheduler is running.

To remove a destination (dest), the -xdest option is used with lpadmin.
This option can NOT be invoked when the scheduler is running.

No other options are allowed with the -d and -x options. However, there
are many options that are used with the -pprinter option. These options
are as follows:

-cc/ass This option assigns the printer specified in the -p option
to the specified class.

-eprinter This option allows you to use an existing interface
program for a new printer that you are adding to the LP

LP 3-7

ADMINISTRATIVE COMMANDS

system. When you select this option, the interface
program for the printer specified in this option is copied
to the new printer.

-h When adding a new printer, this option shows that the
printer is hardwired to the 382 Computer.

-iinterface Use this option if you are creating a new interface
program for the printer specified in the -p option.
Interface is the path name of the new program.

-I When adding a new printer, this option shows that the
device associated with the printer is a login terminal.

-mmodel Several "model" interface programs are supplied with
the LP Spooling Utilities. These model interface
programs support some of the common printers that
may be used with the 382 Computer. Use this option
to select the model interface program that you want to
use with the printer you are adding to the LP system.

-re/ass Use this option to remove a printer from a class.

-vdevice This option must be used when you add a new printer
to the LP system. It associates the printer with the
UNIX System file specified by device. The complete
path name must be given for the file.

LP 3-8

ADMINISTRATIVE COMMANDS

Sample Command Uses

Example 1

Make printer dqplO_l the system default destination:

-ddqplO_l<CR>

Example 2

Add a new printer called dqpl0_2 and associate it with device /dev/ttyll.
Use the dqplO model interface program:

/usr/lib/lpadmin -pdqp10_2 -v/dev/ttyll -mdqplO<CR>

Note: When you add a new printer, it is left in a disabled state and
does not accept requests.

LP 3-9

ADMINISTRATIVE COMMANDS

Example 3

Create a hardwired printer called Ip 1 on device / dev /tty 13. Add Ip 1 to a
new class called cl 1 and use the same interface program that is used with
printer lqp40_1:

/usr/lib/lpadmin -plpl -v/dev/tty13 -elqp40_1 -ccll<CR>

More examples of using the lpadmin command can be found in Chapter 4.

LP 3-10

ADMINISTRATIVE COMMANDS

lpmove - Move a Request to Another Printer

General

Occasionally, you may find it necessary to move output requests from one
destination to another. For example, if you have a printer that was
removed for repairs, you will want to move all the pending job requests to
a destination with a working printer. This is done using the lpmove
command. Be aware that job requests routed to a destination without a
printer are automatically rejected.

Another use of the lpmove command is to move specific requests from
one destination to another destination. However, a word of caution,
lpmove refuses to move requests while the LP scheduler is running.

Command Format

The general format of the lpmove command is as follows:

/usr /lib/lpmove requests dest

Requests are the request identification numbers (request ID's) of jobs
waiting to be printed, and dest is the destination to where the requests are
to be moved. The destination can be a printer or a class of printers.

LP 3-11

ADMINISTRATIVE COMMANDS

Sample Command Uses

Example 1

Move all the requests for printer Ip 1 to printer lp2. Moving the requests
will rename the request ID's from lpl-nnn to lp2-nnn. After the requests
are moved, destination Ip l will no longer be accepting requests:

Example 2

Move requests lpl-54 and lp2-55 to printer dqplO_l:

/usr/lib/lpmove lpl-54 lp2-55 dqplO_l<CR>
total of 2 requests moved to dqplO_l

Note: The two requests a,re now renamed
dqplO_l-54. and dqplO_l-55.

LP 3-12

ADMINISTRATIVE COMMANDS

lpsched - Start the LP Scheduler

General

The lpsched command starts the LP scheduler. The LP scheduler takes the
top job request off the queue and "hands" it to the appropriate interface
program to be printed on a printer. The LP scheduler keeps track of the
job progress and as soon as the job is completed it takes the next job
request off the queue and repeats the same process. As long as the LP
scheduler is running, jobs requested by Ip will be printed. If the scheduler
is not running, jobs will not be printed.

The LP scheduler is started automatically each time the system is turned
on. This is done by an executable file called Ip in the /etc/rc.d directory.
The Ip file is created when the LP Spooling Utilities is installed.

Every time the scheduler is started, lpsched creates a file called
SCHEDLOCK in the /usr /spool/Ip directory. As long as the SCHEDLOCK
file is present, the system will not allow another scheduler to run. When
the scheduler is stopped under normal conditions, the SCHEDLOCK file is
removed. However, if the system is taken down abnormally, there is a
possibility that the SCHEDLOCK file did not get removed. To ensure that
the SCHEDLOCK file does not exist, the Ip file contains a command line to
first remove SCHEDLOCK before it attempts to start the scheduler.

Command Format

The general format of the lpsched command is as follows:

/usr /lib/lpsched

LP 3-13

ADMINISTRATIVE COMMANDS

Sample Command Use

Start the LP scheduler:

Notice that there is no response to let you know that the scheduler is
running. To verify that the scheduler is running, use the lpstat command
with the -r option:

lpstat -r<CR>
scheduler is running

Note: If there are a large amount o.f.iob

requests in the Q1J,eiw, it may take

LP 3-14

a while before the lpstat command
reports that the scheduler is running.

ADMINISTRATIVE COMMANDS

lpshut - Stop the LP Scheduler

General

Occasionally, it is necessary to reconfigure the LP system using the
lpadmin command. Many of the lpadmin command options cannot be
executed unless the LP scheduler is stopped. The lpshut command stops
the LP scheduler and ends all printing activity. All requests that were in
the middle of printing will be reprinted in their entirety when the scheduler
is restarted.

Command Format

The general format of the lpshut command is as follows:

/usr/lib/lpshut

Sample Command Use

Enter the lpshut command to stop the LP scheduler:

/usr/lib/lpshut<CR>
scheduler stopped

LP 3-15

Chapter 4

ADMINISTRATION

PAGE

GENERAL . 4-1

ADDING AN LP PRINTER. 4-1

TYPICAL ADMINISTRATIVE TASKS . 4-8

Change Existing Destinations . 4-8

Assign LP System Default Destination . 4-13

Removing Destinations . 4-14

PRINTER INTERFACE PROGRAMS. 4·15

Model Interface Programs . 4·15

Writing Interface Programs . 4-15

FILES AND DIRECTORIES . 4-19

/usr /spool/Ip/FIFO . 4-19

/usr /spool/Ip/default. 4-19

/usr /spool/Ip/log. 4-19

/usr /spool/lp/oldlog . 4·20

/usr /spool/lp/outputq . 4-20

/usr /spool/lp/pstatus. 4-20

/usr /spool/lp/qstatus. 4·21

/usr /spool/ip/seqfile . • 4·21

/usr /spool/Ip/class . 4·21

/usr /spool/Ip/interface . 4·21

/usr /spool/Ip/member. 4-21

/usr /spool/Ip/model . • 4-22

/usr /spool/Ip/request . 4·22

Lock Files. 4-23

CLEANING OUT LOG FILES . 4-24

Chapter 4

ADMINISTRATION

GENERAL
This chapter contains information to help you administer the LP system.
Included is a procedure for adding a printer to the LP system and
examples of using the !paclmin command to change existing destinations,
assign a default destination, and remove destinations. Also included is
information on printer interface programs and a description of the files and
directories that make up the LP system.

ADDING AN LP PRINTER
When you install the LP Spooling Utilities, a printer can be easily added to
the LP system by following the interactive installation script. If you need
to add a printer at a later time, you have to add it manually. This section
leads you through the steps required to manually add an LP printer.

Note: It is assumed that an Expanded Input/Output Capability
feature card, with available ports, is installed in the 382 Computer.

LP 4-1

ADMINISTRATION

1. Ensure that "Ip" can write to device file

To avoid unwanted output from non-LP processes and to ensure that
Ip can write to the device, log in as root and enter the following
commands:

chown Ip /dev/ttyxx
ch mod 600 / dev /tty xx

Note: xx/fl is the port number that the LP printer will be
connected to.

2. Change Port Entry in /etc/inittab File

When adding an LP printer to the Input/Output (1/0) expansion ports,
you may have to make changes to the port entry in the /etc/inittab
file. These changes can be made using Simple Administration
subcommands. Enter the command sysadm to display the System
Administration menu:

LP 4-2

ADMINISTRATION

#sysadm<CR>

SYSTEM ADMINISTRATION

1 diagnostics system diagnostics menu
2 diskmgmt disk management menu
3 filemgmt file management menu
4 machinemgmt machine management menu
5 packagemgmt package management
6 softwaremgmt software management menu
7 syssetup system setup menu
8 ttymgmt tty management menu
9 usermgmt user management menu

Enter a number, a name, the initial part of a name, or
? or <number>? for HELP, q to QUIT:

Enter an 8 to select the tty management menu. The response is:

baud
2 disable
3 enable

TTY MANAGEMENT

change the baud rate on a tty line
turn off a tty line
turn on a tty line

Enter a number, a name, the initial part of a name, or
? or <number>? for HELP, A to GO BACK, q to QUIT:

LP 4-3

ADMINISTRATION

Enter a 2 to turn off the getty process on a tty line. The response is:

The following is a list of the changeable tty

NAME STATUS BAUD
con tty respawn 9600
ttyl 1 re spawn 9600
ttyl2 off 1200
ttyl3 off 1200
ttyl4 off 4800

Enter tty line (11-14, 21-24, 31-34, 41-44, contty):

Note: If a tty line cannot be changed, it will not appear
on this list. For example, a tty line be1:ng used
for basic networking un:ll not nppear.

lines:

Enter the name of the tty line (port) that you are connecting to the
printer. The response is:

LP 4-4

ADMINISTRATION

This is the tty line before the change.
xx:2:respawn:/etc/getty ttyxx 9600

This is the tty line after the change.
xx:2:off:/etc/getty ttyxx 9600

Do you want to see the table again? [y, n]

Note: The variable xx is the port number
that the LP printer is being connected.

Enter n. The response is:

Do you want to do more? [y, n]

Enter n. The response is:

Press the RETURN key to see the ttymgmt menu[?,-, q]:

You are now finished changing the tty line; so enter a q to quit. The
response is the shell prompt (#). The port line in the /etc/inittab file
should now look something like this:

12:2:off:/etc/getty ttyl2 9600

3. Turn off LP scheduler

To execute the lpadmin command, the LP scheduler cannot be
running; so enter the command:

!pstat -r

to find out if the scheduler is running. If the scheduler is running,
enter the following command to stop it.

/usr /lib/lpshut

LP 4-5

ADMINISTRATION

4. Introduce printer to LP system

The lpadmin command is used to add a new printer to the LP system.
The format of the lpadmin command is as follows:

lpadmin ·pprinter -vdevice [-eprinted-iinterfacel-mmodel]

When adding a printer, you need to furnish a printer name, a device
file, and an interface program. The printer name must conform to the
following rules:

• No longer than 14 characters.

• Consists solely of alphanumeric characters and underscores.

• The name must be uncm,1mon and cannot be the name of an
existing LP destination (printer or class).

Device is the path name of the special UNIX System device file that
the printer is associated with, for example, /dev /ttyl L

The interface program is chosen from the following:

• One model interface program supplied with the LP Spooling
Utilities (-mmodef).

• An interface program that is being used by an existing printer (
eprinter).

• An interface program that you have created (-iinterface).

The following is an example command line for adding printer dqpl0_3
to the LP system. The interface program used in the sample
command line is the dqplO model interface program and the 1/0 port
is ttyl2.

/usr/lib/lpadmin -pdqp10_3 -v/dev/ttyl2 -mdqplO

LP 4-6

ADMINISTRATION

Other options that you can include when creating a new printer are
the -h, -1, and -c options. The -h option shows that the device for the
printer is hardwired, or the device is the name of a file (default). The
-I option is used if the device is the path name of a login terminal.
Using the -I option in the command line tells the LP scheduler to
automatically disable the printer each time the scheduler starts
running. The -c option adds the printer to an existing class or to a new
class. Class names must conform to the same rules that apply to
printer names.

5. Start LP scheduler

Enter the command

/usr/lib/lpsched

to restart the LP scheduler.

6. Allow printer to accept job requests

A printer that is added to the LP system when the LP Spooling Utilities
is installed is enabled and accepting requests. However, when a
printer is added to the LP system using the lpadmin command, it is
disabled and does not accept requests routed to it. When you are
ready for the printer to accept requests, enter the following command:

/usr /lib/ accept printer-name

7. Enable printer

When you are ready to start printing, be sure that the printer is ready
to receive output. For several printers, this means that the top of
form has been adjusted and that the printer is on-line. Enter the
command:

enable printer-name

to enable printing to occur on the printer.

LP 4-7

ADMINISTRATION

TYPICAL ADMINISTRATIVE TASKS

This section covers some of the administrative type tasks that you may
have to do on the LP Spooling system: for example, establishing a default
destination, change existing destinations, and removing destinations.

Change Existing Destinations

Changes to existing destinations are done using the lpadmin command.
Changes must always be made with respect to a printer name (-pprinter).
The changes may be one or more of the following:

1. The device for a printer may be changed using the -v option (
vdevice). If this is the only change being made, then this may be
done while the LP scheduler is running. This ability to change
devices while the scheduler is running helps changing devices for
login terminals.

2. A printer interface program may be changed using the -m, -e, -i
options (-mmode/, -e.printer, -iinterface).

3. A printer may be specified as a hardwired printer (·h) or as a login
terminal (-1).

4. A printer may be added to a new or existing class using the -c option
(-cc!ass).

5. A printer may be removed from an existing class with the -r option
(-re/ass).

LP 4-8

ADMINISTRATION

The next examples shows the use of the lpadmin options:

Example 1

This example shows how to change the device for printer dqplO_l to
/dev/tty13. Since the device is the only change being made, it can be
done while the LP scheduler is running:

/usr/lib/lpadmin -pdqplO_l -v/dev/ttyl3<CR>

Example 2

Change the interface program for printer lpl to model interface program
dqplO. The LP scheduler has to be stopped before the lpadmin command
can be executed:

#/usr/lib/lpsbut<CR>
scheduler stopped
usr/lib/lpadmin -plpl -mdqplO<CR>

Example 3

Define printer dqplO_l as a hardwired printer:

LP 4-9

ADMINISTRATION

LP 4-10

Example 4

Add printer dqp 10_2 to class cl 1:

/usr/lib/lpadmin -pdqpl0_2 -ccll<CR>

ADMINISTRATION

Printers that are added to a class are ordered according to the sequence
that they are added. For example, assume that class cl 1, in the example
above, already had printers lpl and lp2 as members. After adding printer
dqpl0_2, the printers would be lpl, lp2, and dqpl0_2. If all three printers
are available and a request is routed to class ell, the request will be
serviced by lpl. If all three printers are busy, the request will be serviced
by the first available printer.

Example 5

Remove printers Ip 1 and lp2 from class cl 1:

/usr/lib/lpadmin -plpl -rcll<CR>
/usr/lib/lpadmin -plp2 -rcll<CR>

LP 4-11

ADMINISTRATION

Example 6

The previous examples showed only one configuration change per
command line. However, several configuration changes can be made in
the same command line:

/usr/lib/lpadmin -plpl -mlqp40 -v/dev/ttyl4 -ccl2<CR>

The sample command line makes the following changes to printer lpl:

• Changes the interface program to the model interface program
lqp40 .

., Changes the device to /dev/tty14 .

.. Adds the printer to a class called cl2.

LP 4-12

ADMINISTRATION

Assign LP System Default Destination

The Ip command determines the destination of a request by checking for a
-ddest option on the command line. If no -d option is present, it checks to
see if tre environment variable LPDEST is set. If LPDEST is not set, then
the request is routed to the system default destination.

The system default destination for the LP system can be a printer or
printer class. There are two ways you can assign a default destination:
during the installation of the LP Spooling Utilities or using the lpadmin
command with the -d option. To assign a default destination, the
destination must already exist.

The following example shows the command line that is used to assign
printer dqpl0_2 as the destination printer. The -d option is a lpadmin
option that can be invoked when the LP scheduler is running:

r: I"" /lib/ lp•dmio -ddqpl0 _2 <CR>

Setting the environment variable LPDEST allows a user to have a default
destination other than the system default destination. The example below
shows how to set LPDEST:

r: eov LPOEST~lqP40_1<CR>

The default destination for this user is lqp40_1.

LP 4-13

ADMINISTRATION

Removing Destinations

No destination (class or printer) may be removed if it has pending
requests. The pending requests must either be canceled using the cancel
command or moved to other destinations using the lpmove command
before the destination can be removed.

Removing the last remaining member of a class causes the class to be
deleted. If the destination removed is the system default destination, then
the system will no longer have a default destination.

When the last remaining member of a class is removed, then the class is
also removed. However, the removal of a class does not imply the
removal of printers that were assigned to that class.

Example

Remove destination lp3 from the LP system:

r: /u"/llb/lpodmln -xlp3<CIO

LP 4-14

ADMINISTRATION

PRINTER INTERFACE PROGRAMS
Printers that are used as LP spooling printers must have a printer interface
program. Every print request made with the Ip command is routed
through the appropriate printer interface program before the request is
printed on a line printer. The printer interface program to use is defined
by the lpadmin command.

Model Interface Programs

Each type of printer requires an uncommon interface program. Several
interface programs, referred to as "model" interface programs, are
furnished with the LP Spooling Utilities. The furnished interface programs
support the DQP-10 printer, the LQP-40 printer, and several other popular
printers. The model interface programs are written as shell procedures,
but they can be written as C programs or any other executable program.
These programs are located in the /usr /spool/Ip /model directory.

Writing Interface Programs

If you have a printer that is not supported by a model interface program,
you will have to write your own program. The shell script for a "dumb"
printer interface program is provided in Figure 4-1. Use this interface
program as a model and change it to meet your particular needs. The
information that follows should provide some help in creating your
interface program.

When the LP scheduler routes an output request to a printer, the interface
program for the printer is invoked in the directory /usr /spool/Ip as
follows:

interface/P id user title copies options file ... <CR>

Arguments for the interface program are:

P printer name

LP 4-15

ADMINISTRATION

id request ID returned by Ip

user logname of user who made the request

title optional title specified by the user

copies amount of copies requested by user

options blank-separated list of class or printer-dependent options
specified by user

file full path name of a file to be printed.

When the interface program is invoked, its standard input comes from
/ dev /null and both the standard output and standard error output are
directed to the printing device. Interface programs format their output
based on the command line arguments. You want to ensure that the
interface program has the proper stty modes (terminal characteristics
such as baud rate, output options, etc). You may do this by adding stty
command lines of the form:

st t y mode options <&l <CR>

This command line takes the standard input for the stty command from
the device. An example of an stty command line that sets the baud rate at
1200 and sets some of the option modes is shown below:

stty -parenb -parodd 1200 cs8 cread clocal ixon 0<&1

Since different printers have different numbers of columns, make sure that
header and trailer for your interface program correspond to your printer.

When printing is complete, it is the responsibility of the interface program
to exit with a code that shows the status of the print job.

LP 4-16

ADMINISTRATION

Exit codes are interpreted by lpsched as follows:

CODE

0

1 to 127

greater than 127

MEANING TO lPSCHED

The print job has completed successfully.

A problem was encountered in printing this
particular request (for example, too many
nonprintable characters). This problem will not
affect future print jobs. The lpsched command
notifies users by mail that there was an error in
printing the request.

These codes are reserved for internal use by
lpsched. Interface programs must not exit with
codes in this range.

When problems occur that are likely to affect future print jobs (for
example, a device filter program is missing) you should have your interface
program disable printers so that print requests are not lost. When a busy
printer is disabled, the interface program will be ended with signal 15.

LP 4-17

ADMINISTRATION

Ip interface tor dumb line printer

secs @(#)dumb 1.1

x="XX
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
echo" \014\c"
echo " $x\n$x\n$x\n$x\n"
banner" $2"
echo" \n"
user='grep" ·$2:" /etc/passwd I line I cut -d: -f5'
if [-n " $user"] .
then

echo " User: $user\n"
else

echo" \n"
fi
echo" Request ID; $1 Printer: 'basename $0'\n"
date
echo" \n"
if [-n" $3"
then

banner $3
fi
copies=$4
echo" \014\c"
shift; shift; shift; shift; shift
files=$x"
i=l
while [$i -le $copies]
do

tor file in $files
do

done

cat" $file" 2>&1
echo" \014\c"

i='expr $i + 1'
done
echo"$x\n$x\n$x\n$x\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
echo" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n$x\n$x\n$x\n$x\n$x"
echo" $x\n$x\n$x\n$x\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"
echo" \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\" n
echo " $x\n$x\n$x\n$x\n$x\n$x\n$x\n$x\n"
exit 0

Figure 4-L Dumb Line Printer Interface Program

LP 4-18

ADMINISTRATION

FILES AND DIRECTORIES
This section describes the files and directories in the LP Spooling
structure.

/usr /spool/Ip/FIFO

FIFO is a special file that all the commands use to send messages to
lpsched. Any of the LP commands may write to FIFO, but only lpsched
may read it

/usr /spooljlp/default

This file contains the name of the system default destination. If this file
does not exist or if it is empty, the LP system has no default destination.

/usr /spool/Ip/log
The purpose of the log file is to keep a record of all the printing activity
that has taken place since the LP scheduler was last started. This file
contains:

.. logname of the user who made the request

.. request ID

.. name of the printer that the request was printed on

.. date

.. time that the printing started.

LP 4-19

ADMINISTRATION

Any lpsched error messages that occur are also recorded. The first line of
the log file shows the time that the LP scheduler was started.

/usr /spool/lp/oldlog
The oldlog file contains a record of what was in the log file. When the
scheduler is stopped, the log file is closed. When the scheduler is
restarted, all the information that had accumulated in the log file is copied
to the oldlog file and a new log file is started. Any information that had
been in the oldlog file is overwritten. The first line of the tile identifies the
time that the scheduler was turned on, and the last line shows the time
the scheduler was turned off.

/usr /spool/lp/outputq
When an output request is made by the Ip command, an entry is made in
this binary file. The LP scheduler takes the job request and hands it to the
appropriate interface program to be printed. After the job is completed,
the job request is removed, and the scheduler takes the next job request
from this file and has it printed. Only those requests that have been made
since the last time the LP scheduler was started are contained in the file.

Entries in outputq may be modified by the lpmove, disable, and lpsched
command. The cancel, disable, and lpsched commands can mark entries
in this file "deleted." If a job request is deleted before the job is
completed, the entry will remain in the file.

/usr /spool/lp/pstatus
The binary file pstatus contains status information for each printer. Entries
are added and removed from this file by the lpadmin command and are
modified by the cancel, enable, disable, and lpsched commands. When
the lpstat command is invoked with the -p option, printer status
information is obtained from this file.

LP 4-20

ADMINISTRATION

/usr /spool/lp/qstatus
This binary file keeps track of whether a destination is accepting or
rejecting requests. Entries are added or removed from this file by the
lpadmin command and modified by the accept, reject, and lpmove
commands. When the lpstat command is invoked with the -o option, the
request status is obtained from this file.

/usr /spool/lp/seqfile
The seqfile file contains the sequence number of the last request ID that
was assigned by the Ip command. The sequence number is incremented
by Ip for each request. When the number 9999 is reached, the sequence
number is reset to 1.

/usr /spool/Ip/class
This is a directory that contains one file for each LP class that has been
identified. (The name of the file is the same as the name of the class.) The
file identifies each member, here an LP printer, that is assigned to the
class. Class files are created, modified, and deleted by the lpadmin
command. Every class file must always have at least one member.

/usr /spool/Ip/interface
The interface directory contains one executable interface program for each
printer that is in the LP system. The file name of the interface program is
the same as the printer name. The interface program is invoked with its
standard error output directed to the printer. Interface programs may be
shell procedures or compiled C programs.

/usr /spool/Ip/member
The member directory contains one file for each LP printer. The file name
is the same as the printer name.

LP 4-21

ADMINISTRATION

/usr /spool/Ip/model
This is a directory that contains the printer interface programs that are
distributed with the LP Spooling Utilities.

/usr /spool/Ip/request

This directory contains one subdirectory for each destination in the LP
system. The name of the subdirectory is the same as the name of the
destination. When an Ip request is made, a request file (or "r" file) and,
usually, a data file (or "d" file) are created in the subdirectory of the
destination to where the request is going. The data file stores the file to
be printed until the scheduler is ready to print it. A data file is not created
if the file to be printed cannot be linked to the request subdirectory.

The name of the request file is derived from the request identification
number and is of the form r-seqno. The name of the data file is of the
form dn-seqno, where n is a non-negative integer.

The request and data files are deleted by the cancel, disable, and lpsched
commands and may be moved from one subdirectory to another by the
lpmove command.

LP 4-22

ADMINISTRATION

Lock Files

To guarantee LP commands exclusive access to data files, several "lock"
files are maintained in the LP system. They are binary files that contain
the process ID of the locking process. The lock files and their associated
data files are:

Lock File

OUTQLOCK
PSTATLOCK
QSTATLOCK
SEQ LOCK

Data File

outputq
pstatus
qstatus
seqfile

Lock files "expire" after a given interval and may be unlinked by any LP
process. Thus, commands that lock a data file for longer than this interval
must update the modification time on the lock file. The creation, updating,
and unlinking of lock files is handled automatically by the LP low level file
access routines.

Another lock file, SCHEDLOCK, is present while the LP scheduler is running
to ensure that only one invocation of lpsched is active. Unlike other lock
files, SCHEDLOCK has no expiration time.

LP 4-23

ADMINISTRATION

CLEANING OUT LOG FILES
A history of LP printing activities is kept in the /usr /spool/Ip/log file. The
information is stored in the log file until a shutdown and a restart of the LP
scheduler occurs. When this happens, the log file is copied to
/usr /spool/lp/oldlog, and a new log file is started.

If the scheduler is not stopped for long periods of time and if you have a
large amount of LP requests, the log file could grow to be a large file. You
can manually remove the contents of this file, or you can let the system do
it for you on a scheduled basis.

To have the system clean out the log file, create an entry in the files in the
/usr/spool/cron/crontabs directory. One way to do this is to log in as
"root" and use the crontab command. The other way is to edit the
crontabs directory files.

The example below shows some typical crnntab command lines. Crontab
adds these command lines to the root file in the
/usr /spool/cron/crontabs directory. Every Friday at 11:00 PM cron
executes these commands. First, the contents of the log file are copied to
the oldlog file, and then the log file is cleaned out:

crontab<CR:>
0 23 * * 5 /bin/su Ip -c" cp /usr /spool/Ip/log /usr /spool/lp/oldlog"
1 23 * * 5 /bin/su lp-c">/usr/spool/lp/log"
<CTRL d>

The crontab command is covered in the AT&T 382 Computer User
Environment Utilities Guide and the AT&T 382 Computer System
Administration Utilities Guide.

LP 4-24

Appendix

ERROR MESSAGES

This appendix provides a description of the error messages that are
associated with LP commands. The following variables are used in the
error messages:

file(s) Shows the file or files that are to be printed.

dest Shows the name of the destination printer.

printer-id Shows the request identification of the printout
For example, dqpl0_2-46 is the printer name
followed by the request identification number.

printer-name Shows the name of the printer.

program-name Shows the program name that was executed.

user Shows the user who requested the printout

Refer to the AT&T 382 Computer User Reference Manual for UN IX System
V manual pages supporting the commands described in this appendix.

LP A-1

ERROR MESSAGES

The messages are shown in bold type, and the variables are shown in
italics. For example,

destination dest non-existent

Following each message is an explanation of the probable cause of the
error and the corrective action to take. If you are not able to correct all
the error conditions you encounter, call your service representative for
help.

Some lengthy error messages, that appear all on one line on the display,
are too long to be shown as one line in the documentation. When more
than one line is required in the documentation to show a one line error
message, a "\" is used to split the message.

''dest'' is an illegal destination name

The dest you used is not a valid destination name. Use the lpstat ·P
command to list valid destination names.

"file" is a directory

The file name you typed is a directory and cannot be printed.

"xx" is not a request ID or a printer

The argument you used with the cancel command is not a valid request
identification number or a printer name. Use the lpstat ·t command to
give you all the printers and requests waiting to get printed.

"xx" is not a request ID

The request identification number you used with the lpmove command is
not a valid request identification number. To find out what requests are
valid, use the lpstat ·U command.

LP A-2

ERROR MESSAGES

"xx" not a request ID or a destination

You used an invalid request identification number or destination with the
lpstat command. To find out what is valid, use the lpstat -t command.

dest not accepting requests since date

Requests to the printer that you are trying to use have been stopped by
the reject command.

Can't access FIFO

The named pipe file /usr /spool/Ip/FIFO is incorrect. The mode should be
600.

LP Administrator not in password file

You must have an entry in the /etc/passwd file for "Ip," and you must
belong to the group "bin."

acceptance status of destination "printer-name" unknown

Use the accept command to enable the printer so that it will accept
requests.

can't access file "xx"

The mode could be wrong on your directory or the file that you are trying
to access.

can't create class "xx" -it is an existing printer name

The class name you are trying to use has already been given to a printer.
You will have to use another name or remove the printer to use the class
name.

LP A-3

ERROR MESSAGES

can't create new acceptance status file

The mode may be wrong oh the /usr /spool/Ip directory. It should be 755
with the owner "Ip" and the group "bin."

can't create new class file

The mode may be wrong on the /usr /spool/Ip directory. It should be 755
with the owner "Ip" and the group "bin."

can't create new interface program

The mode may be wrong on the /usr /spool/Ip/interface directory. It
should be 755 with the owner "Ip" and the group "bin."

can't create new member file

The mode may be wrong on the /usr /spool/Ip/member directory. It
should be 755 with the owner "Ip" and the group "bin."

can't create new printer status file

The mode may be wrong on the /usr /spool/lp/pstatus. It should be 644
with the owner "Ip" and the group "bin."

can't create new request directory

The mode may be wrong on the /usr /spool/Ip/request directory. It
should be 755 with the owner "Ip" and the group "bin."

can't create printer "printer-name" - it is an existing class name

The printer-name you are trying to use has already been used as a class
name. You will have to assign another name for the printer.

LP A-4

ERROR MESSAGES

can't create new output queue

The mode on the file /usr /spool/lp/seqfile is incorrect. It should be 644,
and the mode on the directory should be 755. The owner should be "Ip,"
and the group should be "bin." This may be corrected by typing the
command at a later time.

can't create new sequence number file

The mode on the file /usr /spool/lp/seqfile is incorrect. The mode of the
file should be 644, and the mode of the directory should be 755. The
owner should be "Ip," and the group should be "bin." This may be
corrected by typing the command at a later time.

can't create request file xx

The mode on the file /usr /spool/Ip/request/ printer-name fr-id is
incorrect. Printer-name is the name of the printer such as dqplO, and
r-id is the request identification number. The mode of the file should be
444, and the mode of the directory should be 755. The owner should be
"Ip," and the group should be "bin." This may be corrected by typing the
command at a later time.

can't fork

You either have several processes running and are not allowed to run
anymore, or the system has all the processes running that it can handle.
You will have to rerun this command later.

can't lock acceptance status

This is a temporary file in /usr /spool/Ip that prevents more than one "Ip"
request from being taken at any given instant. You will have to rerun this
command later.

LP A-5

ERROR MESSAGES

can't lock output queue

The file /usr /spool/Ip /QSTATLOCK prevents more than one "Ip" request
from being printed on a printer at a time. You will have to rerun this
command later.

can't lock printer status

The temporary file /usr /spool/lp/PSTATLOCK prevents more than one
"Ip" request from being printed on a printer at a time. You will have to
rerun this command later.

can't lock sequence number file

The file /usr /spool/Ip /SEQLOCK prevents more than one "Ip" request
from getting the next printer-id (request identification) number at a time.
You will have to rerun this command later.

can't move request printer-id

Printer-id is the request identification number that cannot be moved. You
will probably have to change the modes on the files and directories in
/usr /spool/Ip/request. Also, you will have to manually move the request
from the disabled printer directory to the new destination after you shut
down the LP scheduler.

can't open class file

The Ip program is trying to access the list of classes for printers. One
reason it may not be able to open the class file is that the system could
have the maximum amount of files open that are allowed at any time. This
can be corrected by typing the command at a later time.

LP A-6

ERROR MESSAGES

can't open member file

The Ip program is trying to access the list of members in the directory
/usr /spool/Ip/member. The system could have the maximum amount of
files open that are allowed at any time. This can be corrected by typing
the command at a later time.

can't open xx file in MEMBER directory

There are a couple of reasons why file xx in the /usr /spool/Ip/member
directory cannot be opened. The mode on the file could be incorrect. It
should be 644. Another possibility is that the system could have the
maximum amount of files open that are allowed at any time. This can be
corrected by typing the command at a later time.

can't open xx file in class directory

One possibility why file xx cannot be opened is that the mode on the file or
directory is incorrect. The file mode should be 644, and the directory
mode should be 755. Another possibility is that the system has the
maximum amount of files open that are allowed at any time. This problem
can be corrected by typing the command at a later time.

can't open xx

You cannot print on printer xx because the mode is incorrect on / dev /tty.
The mode should be 622.

can't open FIFO

The mode on the named pipe file /usr /spool/Ip/FIFO may be incorrect.
It should be 600. Or, the system could have the maximum amount of files
open that are allowed at any time. This problem can be corrected by
typing the command at a later time.

LP A-7

ERROR MESSAGES

can't open MEMBER directory

The mode on the directory /usr /spool/Ip/member could be incorrect It
should be 755. Another possibility is that the system could have the
maximum amount of files open that are allowed at any time. If the
maximum amount of files are open, try typing the command at a later
time.

can't open acceptance status file

The mode on the file /usr /spool/lp/qstatus may not be correct. It
should be 644. Another possibility is that the system could have the
maximum amount of files open that are allowed at any time. This problem
can be corrected by typing the command at a later time.

can't open default destination file

Check the mode on the file /usr /spool/Ip/default. The mode should be
644. If the mode is okay, it could be that the system has the maximum
amount of files open that are allowed at any one time. This can be
corrected by trying the command at a later time.

can't open file filename

The filename was incorrectly typed or you don't have the correct modes
set. The mode should be at least 400 if you are the owner.

can't open output queue file

Check the mode on the file /usr /spool/lp/outputq. It should be 644.
This error message could also be generated if the system has the
maximum amount of files open that are allowed at any one time. Try
entering the command at a later time.

LP A-8

ERROR MESSAGES

can't open printer status file

The mode on the file /usr /spool/lp/pstatus is incorrect. The mode
should be 644. It could also be that the system has the maximum amount
of files open that are allowed at any one time. This can be corrected by
trying the command at a later time.

can't open request directory directory name

The mode on the directory /usr /spool/Ip/request is incorrect. The mode
should be 655. It could also be that the system has the maximum amount
of files open that are allowed at any one time. This can be corrected by
trying the command at a later time.

can't open request file xx

The mode on the file /usr /spool/Ip/member /request/ xx is incorrect.
The mode should be 644. It could also be that the system has the
maximum amount of files open that are allowed at any one time. This can
be corrected by trying the lpmove command at a later time.

can't open system default destination file

The mode on the file /usr /spool/Ip/default is incorrect. The mode
should be 644. It could also be that the system has the maximum amount
of files open that are allowed at any one time. This can be corrected by
trying the command again at a later time.

can't open temporary output queue

The mode on the file /usr /spool/lp/outputq is incorrect. The mode
should be 644. It could also be that the system has the maximum amount
of files open that are allowed at any one time. This can be corrected by
trying the command at a later time.

LP A-9

ERROR MESSAGES

can't proceed ~ scheduler running

Many of the lpadmin command options cannot be executed while the
scheduler is running. Stop the scheduler using the lpshut command and
then try invoking the command again.

can't read current directory

The Ip and lpadmin commands cannot read the directory containing the
file to be printed. The directory name may be incorrect or you do not
have read permission on that directory.

can't remove class file

The mode may be wrong on the /usr /spool/Ip/class. It should be 755.
The owner should be "Ip," and the group should be "bin." Another
possibility is the file in that directory may have the wrong mode. It should
be 644.

can't remove printer

The mode may be wrong on the /usr /spool/Ip/member directory. It
should be 755, and the files in that directory should be 644. Both the
directory and the files should be owned by "Ip," and the group should be
"bin."

can't remove request directory

The mode may be wrong on the /usr /spool/Ip/request directory. It
should be 755 and should be owned by "Ip," and the group should be
"bin." The directory may still have pending requests to be printed. These
requests will have to be removed before the directory can be removed.

LP A-10

ERROR MESSAGES

can't set user id to LP Administrator's user id

The lpsched and lpadmin commands can only be used when you are
logged in as "Ip" or "root."

can't unlink old output queue

The lpsched program cannot remove the old output queue. You will have
to remove it manually by using the command rm /usr /spool/lp/outputq.

can't write to xx

The ipadmin command cannot write to device xx. The mode is probably
wrong on the /dev /ttyxx file. It should be 622 and owned by "Ip."

cannot create temp file filename

The system may be out of free space on the /usr file system. Use the
command df /usr to determine the number of free blocks. Several
hundred blocks are required to insure that the system will function
correctly.

class "xx" has disappeared!

Class xx was probably removed since the scheduler was started. The
system may be out of free space on the /usr file system. Use the
command df /usr to find out. Use the lpshut command to stop the
scheduler and restore the class from a backup.

class "xx" non-existent

The class xx may have been removed because the system is out of free
space on the /usr file system. Use the command df /usr to find out how
much free space is available. The class will probably have to be restored
from a backup.

LP A-11

ERROR MESSAGES

class directory has disappeared!

The /usr /spool/Ip/class directory has been removed. The system may be
out of free space on /usr; use the df /usr command to find out. The class
directory contains all the data for each printer class. To restore this
directory, get these files and directory from a backup.

corrupted member file

The /usr /spool/Ip/member directory has a corrupted file in it. You
should restore the directory from backup.

default destination. "dest" Ill.On-existent

Either the default destination is not assigned or the printer dest has been
removed. Use the lpadmin to set up a default destination or set lPDEST
to the value of the destination.

destination "dest" has disappeared!

A destination printer, dest has been removed since lpsched was started.
Use the lpadmin command to remove the printer.

destination "printer-name" is no longer acceptiltl.g requests

The printer has been disabled using the reject command. The printer can
be re-enabled using the accept command.

destination dest non-existent

The destination printer you specified as an argument to the accept or
lpadmin command is not a valid destination name, or it has been removed
since the scheduler was started.

LP A-12

ERROR MESSAGES

destination "printer-name" was already accepting requests

The destination printer was previously "enabled." Once a printer is
accepting requests, issuing any more accept commands to it are ignored.

destination "printer-name" was already not accepting requests

A reject command was already sent to the printer. Use the accept
command to allow the printer to start accepting requests again.

destination printer-name is not accepting requests
move in progress ...

The printer has been disabled by the reject command, and requests are
being moved from the disabled printer to another printer. The printer can
be enabled again by the accept command.

destinations are identical

When using the lpmove command, you need to specify a printer to move
the print requests from and a different printer to move the requests to.

disabled by scheduler: login terminal

The login terminal has been disabled by the LP scheduler. The printer can
be re-enabled by using the enable command.

error in printer request printer-id

Printer-id is the request identification number. The error was most likely
caused by an error in the printer. Check the printer, and reset it if
needed.

LP A-13

ERROR MESSAGES

illegal keyletter "xx"

An invalid option, xx, was used.

key letters "-" and "-yy" are contradictory

This combination of options to the lpadmin program cannot be used
together.

keyletter "xx" requires a valu.e

The option xx requires an argument. For example, in the command line

lpadmin -mmodel

the argument to the -m option is the name of a model interface program.

keyletters -e, -i, and -m are mutually exclusive

These options to the lpadmin command cannot be used together.

lp: xx

In this message the variable xx could be one of several arguments.
Typically, it is a message telling you the default destination is not assigned.

member directory has disappeared!

The /usr /spool/Ip /member directory has been removed. The system is
probably out of free disk space in the /usr file system. You need to clean
up the /usr file system, and then install the LP commands or retrieve
them from a backup.

LP A-14

ERROR MESSAGES

model "xx" non-existent

The name that you are using for a model interface program is not a valid
one. A list of valid models is in the /usr /spool/Ip/model directory.

new printers require -v and either -e, -i, or -m

A printer must have an interface program, and this is specified by -e, -i, or
-m options. The -v option specifies the device file for the printer. For
more information on these options, refer to the I pad min in the AT&T 382
Computer User Reference Manual.

no destinations specified

There are no destination printers specified. Use the lpadmin command to
set one up.

no printers specified

There are no printers specified. Use the lpadmin command to set one up.

non-existent printer xx in PSTATUS

A printer with the name xx is in the /usr /spool/lp/pstatus file, but no
longer exists. The printer should be removed using the lpadmin command.

non-existent printer printer-name in class xx

The printer that you are trying to address in class xx has been removed
from that class.

out of memory

The message implies that there is not enough memory to contain the text
to be printed.

LP A-15

ERROR MESSAGES

printer "printer-name'" already in class "xx"

The printer you are trying to move to class xx is already in that class. You
cannot move a printer to a class that it is already in.

printer "printer-name" has disappeared!
or printer "printer-name" has disappeared

The printer has been removed, and the enable command cannot find it.
The printer was most likely removed since the machine was rebooted or
since the scheduler was started.

printer "printer-name" non-existent

Printer-name is the name of a printer that has been removed since the
scheduler has been started. You must use the lpadmin -xprinter-name.

printer status entry for "printer-name" has disappeared

The /usr /spool/lp/pstatus file must have been corrupted. You will have
to resubmit the printer request.

printer "printer-name" was not busy

The printer is not printing a request at this time. Either the request you
wanted to cancel is finished printing, or you have specified the wrong
printer.

request "printer-id" non-existent

You are attempting to cancel a request that does not exist. You may have
given the wrong printer name or wrong request identification number or
the request may have finished printing.

LP A-16

ERROR MESSAGES

request not accepted

The request was not accepted by Ip. The scheduler may not be running.
Use the lpstat -t command to find out more information.

requests still queued for "printer-name" - use lpmove

Printer-name is the printer that still has requests waiting to get printed.
You need to use the lpmove command to get those requests moved to
another printer.

scheduler is still running - can't proceed

You cannot do this command while the scheduler is running. You will have
to use the lpshut command first.

spool directory non-existent

The directory /usr /spool has been removed. You will have to use the
mkdir command to restore the directory. This has probably removed
some of the necessary LP files. You may have to reinstall the LP
commands.

standard input is empty

You specified an invalid file name either by incorrectly typing a name or by
specifying a nonexistent file. Nothing will be printed on the printers from
this request.

this command for use only by LP Administrators

This command is restricted to someone logged in as "root" or "Ip." Refer
to Chapter 2 for the commands that can be used by general users, and
refer to Chapter 3 for the commands that are used by "root" or "Ip" to
administer the LP System.

LP A-17

ERROR MESSAGES

too many options for interface program

The Ip command called the appropriate interface program with too many
arguments. For more information on the options and arguments that can
be used with the Ip command, refer to the AT&T 382 Computer User
Reference Manual.

unknown keyletter "xx" or unknown keyletter '"-xx"

An invalid option was supplied to the Ip or !padmin commands.

unknown option "xx"

This message is displayed in response to an invalid option supplied to the
disable, lpstat, or reject commands.

usage: disable [-c] [-r[reason]] printer

The syntax for the disable command is not correct. The valid options are:
-c to cancel the currently printing request, and -r followed by the reason
that you are disabling the printer.

usage: reject [-r[reason]] dest

The syntax for the reject command is not correct. The proper format is to
specify the reason the printer is not taking any more print requests and to
identify the destination printer.

usage: accept dest ,,,

The syntax for the accept command is to specify a destination printer.
You are setting up a printer to accept requests, and you did not specify
what printer should accept requests.

LP A-18

ERROR MESSAGES

usage: enable printer ...

The syntax for the enable program is to specify a destination printer.

usage: cancel id printer ...

The syntax for the cancel command is not correct. The proper format is
to specify the request identification number or the printer name.

usages: lpadmin -pprinter [-vdevice] [-cclass] [-rclass]
[-eprinter : - iinterface : -mmodel] [-h : -1]

-or-
lpadmin -d[destination]

-or-
lpadmin -xdestination

The correct syntax for the lpadmin command is to specify at least one
option mentioned above.

your printer request printer-id was canceled by user

The printer request did not finish printing because another user canceled
it. Typically, you will get this message in your mail. One reason a person
may cancel a request other than their own is because the request is not
printing correctly.

LP A-19

Replace this

page with the

PERFORMANCE MEASUREMENTS

tab separator.

AT&T

AT&T 382 Computer
UNIX™ System V Release 2"0
Performance Measurements
Utilities Guide

Chapter L

Chapter 2.

Chapter 3.

Chapter 4.

CONTENTS

INTRODUCTION

REQUIREMENTS

COMMAND DESCRIPTIONS

TUNING AND CONFIGURATION

Chapter l

INTRODUCTION

PAGE

GENERAL . 1-1

SYSTEM ACTIVITY . 1-2

KERNEL PROFILING. 1-3

GUIDE ORGANIZATION . 1·4

Chapter 1

INTRODUCTION

GENERAL
This guide describes command formats (syntax) and use of Performance
Measurement Utilities available for your AT&T 382 Computer.

The Performance Measurement Utilities are for use by the person
responsible for administrating the system or software developers. To use
any command beginning with prf, you must be logged in on the system as
root. All other commands are available to all users.

The Performance Measurement Utilities address two areas: (1) system
activity and (2) kernel profiling. The utilities provide information that can
be used in load balancing, performance analysis, and system tuning. This
guide describes the changes required to support and use these utilities on
the 382 Computer. UNIX* System setup and command usages are also
explained.

* Trademark of AT&T

PM 1-1

INTRODUCTION

SYSTEM ACTIVITY
In the area of system activity, the utilities support the collection of
system-wide data and provide tools to generate several different types of
reports. The data is collected internally by the UNIX System.

Areas to be measured include:

• CPU utilization

• Buffer and file access activity

• Terminal device activity

• Disk I/ 0 activity

• System calls

• Process switching

• Swapping activity

• Queue activity

• Inter-Process Communications (IPC) activity.

The utilities consist of sar, sadc, sag, sadp, timex, and two shell scripts,
sal and sa2, for generating daily reports automatically.

Refer to the AT&T 382 Computer User Reference Manual for UN IX System
V manual pages supporting the commands described in this guide.

PM 1-2

INTRODUCTION

KERNEL PROFILING
Kernel profiling is a mechanism by which it is possible to sample where the
operating system is spending time during operation. It consists of a
pseudo-device, /dev /prf, the associated device driver, and user level
commands to control the profiling process and to generate reports. The
profiling mechanism samples the program counter on every clock interrupt
and increments the counter corresponding to the function shown by that
value of the program counter.

The profiling utilities consist of prfld, prfstat, prfdc, prfsnap, and prfpr.
The manual pages for these utilities are included in the AT&T 382
Computer User Reference Manual.

PM 1-3

INTRODUCTION

GUIDE ORGANIZATION

Chapter 2, "REQUIREMENTS," describes the changes that the
system administrator must make to certain files. The
requirements also include other utilities that must be installed
for the Performance Measurement Utilities commands to
function properly.

Chapter 3, "COMMAND DESCRIPTIONS," describes the
command formats (syntax) for each command in the
Performance Measurement Utilities. The descriptions include
the purpose of the command, a discussion of the command
syntax and options, and examples of using each command.

Chapter 4, "TUNING AND CONFIGURATION," describes the
major areas of the 382 Computer System that affect system
performance. It contains information for tuning the UNIX
System for minimum overhead and tuning the disk subsystem
for maximum throughput. Also, included are workload analysis,
performance tools, and housekeeping techniques for reducing
peak load and estimating capacity.

PM 1-4

Chapter 2

REQUIREMENTS

PAGE

GENERAL . 2-1

REQUIREMENTS . 2-2

How to Restart Activity Counters From Zero . 2-2

How to Produce Records and Important Activities . 2-2

Timex Requirements . 2-3

How to Operate the System Profiler . 2-5

Sag Requirements . 2-7

Chapter 2

REQUIREMENTS

GENERAL
After the Performance Measurement Utilities floppy disk has been installed,
the person responsible for administrating the system, logged in as root,
must execute initialization commands and change/add UNIX System files.
Performance Measurement Utilities that rely on specific Software Utilities
are also identified.

This chapter describes the necessary UNIX System changes that are
required for the Performance Measurement Utilities to work properly.
Setup procedures are discussed, explained, and elaborated on.

The sadc, sadp, prfld, and prfpr utilities, described in this Utilities Guide,
require access to the symbol table of the UNIX System kernel. So, root is
the only login ID able to use all the features.

PM 2-1

REQUIREMENTS

REQUIREMENTS

How to Restart Activity Counters From Zero

The UNIX System kernel contains many counters that are incremented as
various system activities occur. To mark the time at which the counters
restart from zero, the person administrating the system must create a
file sa under the directory /etc/rc.d/ Then, add to file sa the following:

/usr/lib/sa/sadc /usr/adm/sa/sa'date +%d'

Each time the system is booted, this sa file will be executed. A file named
saXX, where XX specifies the day of creation, will be created. The saXX file
contains a special binary record containing system activity information.

How to Produce Records and Important Activities

Most users set up a cron file to run system activity data collection
programs at specific intervals of time. If you are not familiar with the way
cron interprets a crontab file, refer to the AT&T 382 Computer System
Administration Utilities Guide before continuing.

PM 2-2

REQUIREMENTS

To produce records (every 20 minutes during working hours and every
hour, otherwise) and to report important activities (hourly, during the
working day), the person administrating the system must add the
following to the /usr /spool/cron/crontabs/root file:

0 • * • 0,6 /usr/lib/sa/sal
0 8-17 • • 1-5 /usr/lib/sa/sal 1200 3
0 18-7 • • 1-5 /usr/lib/sa/sal
5 i8 * • 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 -A

The first line enters a single record every hour, Monday through Saturday,
into /usr /adm/sa/saXX (where XX is the current day). The second line
enters a record every 20 minutes between 8:00 AM arid 5:00 PM Monday
through Friday. The third line enters a single record every hour between
6:00 PM and 7:00 AM, Monday through Friday. The last line will write a
report at 6:05 PM, Monday through Friday; this report will be put in
/usr /adm/sa/sarXX (where XX is the current date). The sa2 will use the
data collected by sal between the hours of 8:00 AM through 6:01 PM to
produce a report with hourly statuses of all activities.

Timex Requirements

The timex command offers three options -p, -o and -s. If the Accounting
Utilities are not present and enabled, the -p and -o options will return the
following error message:

• Information from -p and -o options not available because process
accounting is not operational.

The -o option reports on blocks read or written and the total characters
transferred by the command being timed.

The -p option lists the process accounting records associated with the
command being timed.

PM 2-3

REQUIREMENTS

The -o and -p options are valuable for performance tuning during software
development. If you do not have the Accounting Utilities you may wish to
get it, even if it is only for tuning reasons.

Now, there is no Accounting Utilities available for the 382 Computer. If
there is a large enough demand for accounting capabilities, this utilities will
be available in the future. If you have a UNIX System source license for the
385 Computer, you could port the accounting utilities to the 382
Computer for your own use.

PM 2-4

REQUIREMENTS

How to Operate the System Profiler

The system profiler (prf) is used to initialize the recording mechanism. It
will generate a table containing the starting address of each system
subroutine as extracted from the UNIX System kernel. The requirements
for operating the system profiler (prf) are defined as follows:

• First - The person administrating the system should be in $HOME
directory,
enter: cd<CR>

• Second - The profiler must be initialized or loaded,
enter: /etc/prfld<CR>

• Third - The sampling mechanism must be turned on,
enter: /etc/prfstat on<CR>

.. Fourth - The data must be collected and entered into a file, to be
analyzed, every so many minutes and turned off at a specified time,
enter: /etc/prfdc file ? ? ? ?<CR>

Note: The file can be any file name. The first set of ? ? is the number
of minutes to run. The second set of ? ? is the turn off hour (0 - 24).
A snapshot of the data can also be taken by entering: /etc/prfsnap
file< CR>

• Fifth - To print the contents of the data, collected by prfdc or
prfsnap,
enter: /etc/prfpr file<CR>

• Sixth - To turn the sampling mechanism off,
enter: /etc/prfstat off<CR>

.. Seventh - At any time, to see what the status of the sampling
mechanism is,
enter: /etc/prfstat<CR>.

PM 2-5

REQUIREMENTS

These commands must be executed after every boot. Profiling must be set
to off when the machine is shutdown; otherwise, the profiler will be
working during the shutdown operation. If this happens, the system will
hang just after it prints System is down on the maintenance console and
the 382 Computer will remain powered up.

If you want the profiler to begin automatically when you boot the system,
you can create a file in /etc/rc.d/ called prf. The contents of this file
should be as follows:

#Load the profiler and enable operation.
/etc/prfld
/etc/prfstat on

This will load the profiler during the initialization procedures that occur
when you power up your 382 Computer. The following will be printed on
the console during boot up:

profiling enabled

XXX kernel text addresses

Note: Where XXX states how many kernel text addresses
are in the present UNIX System kernel.

PM 2-6

REQU I REM Ef\ITS

If you automatically start the profiler, make sure you add a file called prf in
the /etc/shutdown.d directory to turn the profiler off before shutting
down the 382 Computer. The contents of prf should be as follows:

#Make sure the profiler is off before shutdown.
/etc/prfstat off

Note: Tl11:s makes sure the prqfiler is tu,rned q[f, a1Joiding
the possibility qf hanging the system during the shutdown process.

Sag Requirements

The sag command is dependent on the Graphics Utilities for display of
system data. The sag command also requires the following type of known
graphic equipment:

., 300 DASI 300

.. 300S DASI 300s

• 450 DASI 450

.. 5620 DMD 5620

.. 4014 Tektronix'~ 4014

• ver Versatect D l 200A.

For detailed information of graphic equipment, see tplot in the AT&T 382
Computer Graphics Utilities Guide.

t

Registered Trademark of Tektronix, Inc.

Registered Trademark of Tektronix, Inc.

PM 2-7

Chapter 3

COMMAND DESCRIPTIONS

PAGE

COMMAND SUMMARY . • 3-1

HOW COMMANDS ARE DESCRIBED. • 3-4

COMMAND DESCRIPTIONS . • 3-7

prfdc - Profiler Data Collector . 3-7

prfld - Profiler loader. 3-9

prfpr - Profiler Formatter . 3-11

prfsnap - Profiler Snapshot Data Collector . 3-13

prfstat - Profiler Status. 3-15

sadc - System Activity Data Collector. 3-17

sadp - Disk Access Profiler . 3-19

sag - System Activity Graph . 3-21

sar - System Activity Reporter . 3-25

sal - System Activity Report Package. 3-35

sa2 - System Activity Report Package. • 3-37

timex - Time a Command; Report Process Data and System

Activity . 3-39

Chapter 3

COMMAND
DESCRIPTIONS

COMMAND SUMMARY
The Performance Measurement Utilities provide twelve UNIX System
commands. A summary of these commands are provided in Figure 3-L

COMMAND DESCRIPTION

prfdc This command performs the data collection
function of the profiler by copying the current
value of all the text address counters to a file
where the data can be analyzed.

prfld This command is used to initialize the
recording mechanism in the system.

Figure 3-L Performance Measurement Utilities - Command Summary
(Sheet 1 of 3)

PM 3-1

COMMAND DESCRIPTIONS

COMMAND DESCRIPTION

prfpr This command formats the data collected by
prfdc or prfsnap.

prfsnap This command collects data (like prfdc) at
the time of invocation only.

prfstat This command is used to enable, disable, or
check the status of the sampling mechanism.

sadc This command is used to sample, save, and
process the system activity data.

sadp This command reports disk access location
and seek distance in tabular or histogram
form.

Note: Prfdc, prfld, prfpr, prfsnap, and prfstat form a system of programs
to facilitate an activity study of the UNIX System.

Figure 3-1. Performance Measurement Utilities - Command Summary
(Sheet 2 of 3)

PM 3-2

COMMAND DESCRIPTIONS

COMMAND DESCRIPTION

sag This command graphically displays the
system activity data stored in a binary data
file by a previous sar command.

sar This command samples cumulative activity
counters in the operating system at specified
intervals of time, and will save the samples in
binary format.

sal This shell script, a variant of sadc, is used to
collect and store data in binary file
/urs/adm/sa/sad.d_ where d.d_ is the
current day.

sa2 This shell script, a variant of sar, writes a
daily report in file /usr /adm/sa/sard.d_.

timex When timex and a command are executed;
the elapsed time, user time, and system time
spent in execution of command, are reported
in seconds.

Figure 3-L Performance Measurement Utilities - Command Summary
(Sheet 3 of 3)

PM 3-3

COMMAND DESCRIPTIONS

HOW COMMANDS ARE DESCRIBED
A common format is used to describe each of the commands. This format
is as follows:

.. General: The purpose of the command is defined. Any uncommon
or special information about the command is also provided .

.. Command format: The basic command line format (syntax) is
defined and the various arguments and options discussed.

"' Sample Command Use: Example command line entries and system
responses are provided to show you how to use the command.

In the command format discussions, the following symbology and
conventions are used to define the command syntax .

.. The basic command is shown in bold type. For example: command
is in bold type .

.. Arguments that you must supply to the command are shown in a
special type. For example: command argument

.. Command options and arguments that do not have to be supplied
are enclosed in brackets ([]). For example:
command [optional arguments]

.. The pipe symbol is used to separate arguments when one of several
forms of an argument can be used for a given argument field. The
pipe symbol can be thought of as an exclusive OR function in this
context. For example: command [argumentl : argument2]

In the sample command discussions, the lines that you input are ended
with a carriage return. This is shown by using <CR> at the end of the
lines.

PM 3-4

COMMAND DESCRIPTIONS

Refer to the AT&T 382 Computer User Reference Manual for UN IX System
V manual pages supporting the commands described in this guide.

PM 3-5

COMMAND DESCRIPTIONS

COMMAND DESCRIPTIONS

prfdc - Profiler Data Collector

General

The command prfdc performs the data collection function of the profiler
by copying the current value of all the text address counters to a file
where the data can be analyzed.

Command Format

The general format for the prfdc command is as follows:

/etc/prfdc file [period [off hour]]

Prfdc will store the counters into a file every period minutes and will turn
off at off hour. Valid values for off hour are 0-24.

Sample Command Use

To copy the current value of all the text address counters into a file called
temp every five minutes; and to turn off at four o'clock in the afternoon,
enter the following:

5 16<CR>

PM 3-7

COMMAND DESCRIPTIONS

prfld - Profiler Loader

General

The command prfld is used to initialize, or load, the recording mechanism
in the system.

Command Format

The general format for the prfld command is as follows:

/etc/ prfld [namelist]

Prfld generates a table, in memory, containing the starting address of each
subroutine as extracted from namelist. The default of namelist is /unix.

Sample Command Use

To generate the table containing the starting addresses of each subroutine,
enter the following:

PM 3-9

COMMAND DESCRIPTIONS

prfpr - Profiler Formatter

General

The command prfpr formats the data that was collected by prfdc or
prfsnap. Each text address is converted to the nearest text symbol
(function) and the percentage of time used by that function is printed if
the activity percentage is greater than the cutoff number specified by the
user.

Command Format

The general format for the prfpr command is as follows:

/etc/prfpr file [cutoff [namelist]}

Prfpr will format the contents of file (created by prfdc or prfsnap). Each
text address is converted and printed if the percent activity for that range
is greater than that specified by cutoff. The range of cutoff would be 0% to
99%, where 0% would print all contents. The default of cutoff is 1 %. The
default of namelist is /unix.

PM 3-11

COMMAND DESCRIPTIONS

Sample Command Use

To print the data collected by prfdc or prfsnap, enter the following:

#/etc/prfpr temp O<CR>

07/19/85 07:06
07/19/85 07: 17

idle 92.3
fbzero 0.2
fbcopy 0.9
copyout 0.5
fubyte 0. 1
subyte 0. 1

0.2
readi 0. 1
bmap 0.2
systrap 0. 1
exece 0.2
rdwr 0. 1
getblk 0. 1
bdflush 0. 1
getc 0. 1
putc 0. 1
intOB 0. 1
idsetup 0. 1
user 2. 1

Note: These are the.function codes in the kernel.
For detailed information on function codes refer to
the AT&T 382 Computer Programmer Reference Manual.
See sections on Subroutines, System Ca.lls, and/or Library.

PM 3-12

COMMAND DESCRIPTIONS

prfsnap - Profiler Snapshot Data Collector

General

The command prfsnap performs the data collection function of the profiler
by copying the current value of all the text address counters to a file
where the data can be analyzed.

Command Format

The general format for the prfsnap command is as follows:

/etc/prfsnap file

Prfdc will store the counters into a file every specified number of minutes
and will turn off at a specified hour. Prfsnap takes a "snapshot" of the
system, collecting data at the time it is called, and appends the counter
values to the file.

Sample Command Use

To copy the current value of all the text address counters into a file called
temp, at the time the command is entered, enter the following:

PM 3-13

COMMAND DESCRIPTIONS

prfstat - Profiler Status

General

The command prfstat is used to enable or disable the sampling mechanism
initialized by prfld. Profiler overhead is less than 1 % as calculated for 500
text addresses.

Command Format

The general format for the prfstat commands are as follows:

/etc/ prfstat on
/etc/prfstat off

Sample Command Use

To find out the status of the profiler, enter the following:

#/etc/prfstat<CR>
profiling (enabled or disabled)

To enable or turn on the recording mechanism, enter the following:

#/etc/prfstat on<CR>
profiling enabled

PM 3-15

COMMAND DESCRIPTIONS

Sample Command Use (Continue)

To disable or turn off the recording mechanism, enter:

#/etc/prfstat off<CR>
profiling disabled

PM 3-16

COMMAND DESCRIPTIONS

sadc - System Activity Data Collector

General

System activity data can be accessed (automatically and on a routine
basis) at the special request of the user, assuming the person responsible
for administrating the system has created the file shown on the next page
under Sample Command Use. The operating system contains a number of
counters that are incremented as various system actions occur. These
counters are:

• CPU use

• Buffer usage

• Disk 1/0 activity

• Terminal device activity

• Switching and system-call

• File-access

• Queue activity

• Counters for inter-process communications.

Sade is used to sample, save, and process data from the above activities.

Command Format

The general format for the sadc command is as follows:

/usr/lib/sa/sadc [t n} [ofile]

PM 3-17

COMMAND DESCRIPTIONS

Sade is the data collector, it samples the system data every t seconds for
so many n times and writes in binary format to an ofi/e or to the standard
output. If tor n are omitted, a single record is written.

Sade is used at system boot time to mark the time at which the counters
restart from zero.

Sample Command Use

To write the special record to the daily data file, the person administrating
the system must first create a new file sa under directory /etc/rc.d.
Second, this person must add the following to the sa file:

/usr/lib/sa/sadc /usr/adm/sa/sa'date +')bd'

Note: The person a,dm,inistmti:ng the system, must ha,ve root login.

PM 3-18

COMMAND DESCRIPTIONS

sadp - Disk Access Profiler

General

Sadp reports disk access location and seek distance in tabular or
histogram form. It will sample the disk activity every second for so many
seconds and is repeated as many times as specified by the user. Cylinder
usage and seek distance are recorded in units of eight cylinders.

Command Format

The general format for the sadp command is as follows:

sadp [-th] [-d device[-drive]] s [n]

The -t flag causes the data to be reported in tabular form. The -h flag
causes the data to be produced in histogram form on a printer. If -tor -h is
not specified, the report will be in tabular form. The -d option may be
omitted, since only one or two devices are present.

Sadp samples disk activity once every second during an interval of s
seconds. This is done repeatedly if n (a number) is specified, or once if not
specified.

Sample Command Use

To generate a tabular report, describing cylinder usage and seek distance
of disk drive during a five minute interval, enter the following.

PM 3-19

COMMAND DESCRIPTIONS

#sadp 300<CR>

Fri July 19 12:45:28 1985
unix unix 2.0.3 2 3B2

CYLINDER ACCESS PROFILE
hdsk-0:
Cylinders Transfers

64 71 4
120 127 1
136 199 2
208 215 4
224 231
232 239 2
272 279 3
344 351 5
424 431
432 439
440 479 4
624 631 2
664 671 1
672 679 5

Sampled I/O 36, Actual
Percentage of I/O sampled

SEEK DISTANCE PROFILE
hdsk-0:
Seek Distance Seeks

0 2
8 2

25 32 1
57 64

137 144 2
153 160
201 208
217 224
241 248
273 280
281 288
425 432
609 616
Total Seeks 16

PM 3-20

I/O = 683
= 5.27

COMMAND DESCRIPTIONS

sag - System Activity Graph

General

The command sag, graphically displays the system activity data stored in a
binary data file created by a previous sar run. Any of the sar data items
may be plotted singly, or in combination; as cross plots, or versus time.
The sag command is dependent on the Graphics Utilities for display of
system data, and one of the following graphic devices:

• 300 DASI 300

• 300S DASI 300s

• 450 DASI 450

• 5620 DMD 5620

• 4014 Tektronix 4014

• ver Versatec D l 200A.

For detailed information, see tplot in the AT&T 382 Computer Graphics
Utilities Guide.

PM 3-21

COMMAND DESCRIPTIONS

Command Format

The format for the sag command is as follows:

sag [options }

The options for sag are:

-s time

-e time

-i sec

-f file

-T term

-x spec

-y spec

Select data later than -s time in the form of hh[:mm]. The
default of time is 08:00.

Select data up to a -e time. Default is 18:00.

Select data at intervals as close as possible to -i sec
seconds.

Use -f file as the data source for sar. Default is the current
daily data file (/usr /adm/sa/sadd).

Produce output suitable for terminal term. See tplot for
known terminals. The default for term is $TERM.

The x axis specification spec is in the form: name [op
name] ... [lo hi].

The y axis specification spec is in the form: name [op
name] ... [lo hi].

Name is either a string that will match a column header in the sar report,
or a number value.

PM 3-22

Sample Command Use

To see todays CPU activity, enter the following:

$sag -iO<CR>

+100
-100
=100

0
0

+ 0

$

08:00
+ %USR
- %USR + %SYS
= %USR + SYS + %WIO
VS TIME

Figure 3-2. Example of sag Output

Note: Must have proper type of terminal

COMMAND DESCRIPTIONS

+

18:00

PM 3-23

COMMAND DESCRIPTIONS

To see activity of all users, over a 15 minute period, enter the following
commands:

$TS= 'date +%ff:%M' <CR> (TS= start time.for test)
$sar -o tempfile 60 15<CR>

unix unix 2.0.3 2 3B2 07/19/85
13:52:27 %usr %sys %wio %idle
13:53:27
13:54:27
13:56:27

14:06:27
14:07:27
Average
$

(Now enter this)

1 0
1

2 3

(All data NOT shown)

4
2
2

1
0
2

0

98
98
93

95
97
97

$TE='date +%JJ:%M'<CR>
$sag -f tempfile -s $TS

(TE = end time of test)

$

-e $TE -iO -y "%usr" <CR>

(A Graphic Display with the above
statistics will a,ppea,r here)

Note: First, temp.file was placed in your directory containing
th1:s data. Second, the screen will show one time~frame e?Jery
minute for 15 mirw.tes. ThJrd, the %u.sr will be displayed,
,graphically, on your term.inal. You mu.st ha.1Je the proper terminal.

PM 3-24

COMMAND DESCRIPTIONS

sar - System Activity Reporter

General

The sar command samples cumulative activity counters in the operating
system. The reports can be stored in a file or files. The reports can be
taken at a specified time, for a specified number of intervals, and for a
specified number of seconds.

Command Format

There are two general formats for the sar command:

sar [-ubdycwaqvmA] [-o file] t [n]
sar [-ubdycwaqvmA] [-s time] [-e time] [-i sec] [-f file]

With the first format, sar samples cumulative activity counters, in the
operating system at a specified number of t seconds for a specified
number of n intervals. If the -o option is specified, it saves the samples in a
file in binary format.
The options ([-ubdycwaqvmAf) specify what counters to sample.

With the second format, without specifying a sample interval, sar will
extract data from a file (either the one specified by the -f option or the
standard system activity daily data file). The starting and ending times of
the report can be specified by the -sand/or -e time arguments. The -i
option selects records at sec second intervals.

PM 3-25

COMMAND DESCRIPTIONS

Other options of sar, to specify what counters to be sampled, are:

-u Report CPU use:

%usr = Portion of time running in user mode

%sys = Portion of time running in system mode

%wio =Waiting for block 1/0

%idle = System idle.

-b Report buffer activity:

PM 3-26

bread/s = Number of blocks read from disk per second

lread/s = Number of user reads

%rcache = Read % of cache hit ratios

bwrit/s = Number of blocks written to disk per second

lwrit/s = Number of user writes

% wcache = Write % of cache hit ratios

pread/s = Read transfers via raw (physical) device
mechanism

pwrit/s = Write transfers via raw (physical) device
mechanism.

COMMAND DESCRIPTIONS

-d Report activity for each block device, such as, hard disk drive:

device = Which device is being reported

%busy = Portion of time device was busy serving a
transfer request

avque = Average number of requests outstanding during
time device was busy

r+w/s = Number of data transfers from or to device

blks/s = Number of bytes transferred in 512-byte units
(blocks)

avwait = Average time in milliseconds that transfer
requests wait on queue

avserv = Average time to be serviced.

-y Report terminal device activity:

rawch/s = Input character rate -- rate at which characters
arrive

canch/s = Input character rate processed by canon

outch/s = Output character rate

rcvin/s = Receive interrupt rate -- as a result of character
arrivals

xmtin/s =Transmit interrupt rate

mdmin/s = Modem interrupt rate.

PM 3-27

COMMAND DESCRIPTIONS

-c Report system calls:

scall/s = System calls of all types

sread/s = Read system calls

swrit/s = Write system calls

fork/s = Fork system calls

exec/s = Execute system calls

rchar /s = Characters transferred by read system calls

wchar /s = Characters transferred by write system calls.

-w Report system swapping and switching activity:

PM 3-28

swpin/s = Number of programs moved from auxiliary
storage into main memory

bswin/s = Number of 512-byte blocks swapped in

swpot/s = Number of programs moved from main
memory into auxiliary storage

bswof/s = Number of 512-byte blocks swapped out

pswch/s = Number of process switches.

COMMAND DESCRIPTIONS

-a Reports on the use of file access system routines:

igetjs = lnode gets per second

namei/s = lnode names returned

dirbk/s = lnode conversions.

-m Report message and semaphore activities:

msg/s = Messages per second

sema/s = Semaphores per second.

-v Report status of text, process, i-node, and file tables:

text-sz =Text size for each table, evaluated once at
sampling point

av= Overflows occurring between sampling points

proc-sz = Process size for each table, evaluated once at
sampling point

ov = Overflows occurring between sampling points

inod-sz = I node size for each table, evaluated once at
sampling point

av= Overflows occurring between sampling points

file-sz = File size for each table, evaluated once at sampling
point

ov = Overflows occurring between sampling points

PM 3-29

COMMAND DESCRIPTIONS

lock-sz = Lock size for each table, evaluated once at
sampling point

fhdr-sz = File Header size for each table, evaluated once at
sampling point.

-q Report average queue length while occupied, and % of time
occupied:

runq-sz = Run queue of processes in memory and runnable

%runocc = The percent of time run queue occupied

swpq-sz = Swap queue of processes swapped out, but
ready to run

%swpocc = The percent of time swap queue occupied.

-A Report all data. Equivalent to -udqbwcayvm.

PM 3-30

COMMAND DESCRIPTIONS

Sample Command Use

The following example shows how to see todays CPU activity up to the
present time:

$sar<CR>

unix unjx 2.0.3 2 3B2 07/19/85

00:00:03 %usr %sys %wio
01:00:04 0 1 1
02:00:02 1
03:00:02 0
04:00:02 0 1
05:00:01 2
06:00:01 1 4 0
07:00:02 2 3 2
08:00:01 2 7
Average 2

Note: This will only show on the sta.nda,rd ou.tpu.t.
$

%idle
98
98
98
98
97
95
93
90
96

PM 3-31

COMMAND DESCRIPTIONS

To sample the CPU every 60 seconds; for 10 intervals, and to put the
report in a file called tempfile, enter the following:

$sar -o tempfile 60 lO<CR>

unix unix 2.0.3 2 3B2 07 I 18/85

17:26:47 %usr %sys %wio %idle
17:27:47 1 0 0 99
17:28:47 0 0 99
17:29:47 2 11 3 84
17:30:47 2 0 97
17:31:47 2 0 97
17:32:47 2 0 97
17:33:47 3 9 0 88
17:34:47 17 63 0 20
17:35:47 20 80 0 0
17:36:47 20 79 0 0

Average 7 25 0 68
$

Note: This w1:ll show on the standard 011.lp1d; plu.s, a,f1:le
tem:pfile will be placed in your directory contnini:ng this data,.

PM 3-32

COMMAND DESCRIPTIONS

The next example shows how to create a file, for later review, of the disk
activity.

$sar -d -o tmp<CR>

unix unix 2.0.3 2 3B2 07/19/85
00:00:03 device %busy avque r+w/s blks/s avwait avserv

01:00:04 hdsk-0

02:00:02 hdsk-0

03:00:02 hdsk-0

04:00:02 hdsk-0

05:00:01 hdsk-0

06:00:01 hdsk-0

07:00:02 hdsk-0

08:00:01 hdsk-0

08:20:01 hdsk-0

08:40:01 hdsk-0

09:00:02 hdsk-0

Average hdsk-0
$

3

2

2

3

2

2.0 0

1. 7 0

1. 7 0

1. 9 0

1. 7 0

1. 6 0

2.0

1. 6 0

1. 7

2.7

1. 6 0

1. 9 0

Note: This will show on the standard output; plus, a.file
tmp will be created, saving the data in birwry format.

32.7 32.7

24.4 33.0

22.0 32.l

30.4 32.4

22.5 30.3

19.5 33.0

2 35.9 34.6

26.0 40.3

22.8 31. 8

2 54.5 32.7

20.2 32.l

29.8 33.6

PM 3-33

COMMAND DESCRIPTIONS

sal - System Activity Report Package

General

System activity data can be accessed, automatically and on a routine
basis, at the special request of the user, assuming the person
administrating the system has added to the file shown (see next page)
under the first Sample Command Use.

The operating system contains a number of counters that are incremented
as various system actions occur. These counters are:

• CPU use

• Buffer usage

• Disk 1/0 activity

• Terminal device activity

• Switching and system-call

• File-access

• Queue activity

• Counters for inter-process communications.

Sal, like sa2, is used to sample, save, and process this data. Sal writes to
file /usr /adm/sa/sadd, where sa2 writes to file /usr /adm/sa/sardd.

Note: Sadd file is for the minute, sardd file is for the hour.

PM 3-35

COMMAND DESCRIPTIONS

Command Format

The general format for the sal command is as follows:

/usr /lib/sa/sal [t n]

The shell script sal, is like that of sadc, it is used to collect and store data
in binary file /usr /adm/sa/sadd. The dd in sadd is the current day. The
arguments t and n cause records to be written n times at an interval of t
seconds, or once if omitted.

Sample Command Use

To produce records, every 20 minutes during working hours and every
hour otherwise, the person administrating the system must add the
following to the file root in directory /usr /spool/cron/crontabs/

0 * * * 0,6 /usr/lib/sa/sal
0 8-17 * * 1-5 /usr/lib/sa/sal 1200 3
0 18-7 • • 1-5 /usr/lib/sa/sal

Note: The person adminJstmting the system m1J,St be logged in as root.

To produce a record, in binary file /usr /adm/sa/sad_d_, every five
minutes for three times, enter the following:

$/usr/lib/sa/sal 300 3<Cf?:>
$

Note: To see the reS1J,ltS of this com,m,and, on stamdard 01J,tp11,f,
see the sar command.

PM 3-36

COMMAND DESCRIPTIONS

sa2 - System Activity Report Package

General

System activity data can be accessed, automatically and on a routine
basis, at the special request of the user, assuming the person
administrating the system has added to the file shown (see next page)
under the first Sample Command Use.

The operating system contains a number of counters that are incremented
as various system actions occur. These counters are:

• CPU use

• Buffer usage

.. Disk I/ 0 activity

.. Terminal device activity

.. Switching and system-call

.. File-access

.. Queue activity

• Counters for inter-process communications.

Sa2, like sal, is used to sample, save, and process this data. Sa2 writes to
file /usr /adm/sa/sardd, where sal writes to file /usr /adm/sa/sadd.

Note: Sardd file is for the hour, sadd file is for the minute.

PM 3-37

COMMAND DESCRIPTIONS

Command Format

The general format for the sa2 command is as follows:

/usr /lib/sa/sa2 [-ubdycwaqvmA] [-s time] [-e time] [-i sec]

Sa2 will write a report using options [-ubdycwaqvmA] (explained in sar)
starting at -s time, ending at -e time, and as close to -i seconds as possible,
to the daily report file /usr /adm/sa/sardj:j_.

Sample Command Use

To report important activities hourly, during the working day, the person
administrating the system must add the following to the file root in
directory /usr /spool/cron/crontabsj:

5 18 • • 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 -A

Note: The person administrating the system. mu.st be lo.qged in as root.

To write a report showing terminal device activity, from 1:00 PM to 4:00
PM on the hour, enter the following:

$/usr/lib/sa/sa2 -y -s13:00 -el6:00 -i3600<CR:>
$

Note: Nothing will be output on the screen, bu.t
the report will be added to the daily report file.

PM 3-38

COMMAND DESCRIPTIONS

timex - Time a Command; Report Process Data and System
Activity

General

Process accounting data for a given command (such as: spell, pwd, Is -1,
sort, sar,) and all its children, can be listed or summarized by using timex.
The total system activity, during the execution interval of a command, can
also be reported by using timex.

The given command is executed; the elapsed (real) time, user time, and
system time spent in execution are reported in seconds.

The output of timex is written on standard output.

Command Format

The general format for the timex command is as follows:

timex [-p -o -s] command

The options of timex are:

-p

-0

Lists process accounting records for command and all of
its children. Suboptions f, h, k, m, r, and t, change the
data items reported. The suboptions are explained under
acctcom of the UNIX System Users Manual. The number
of blocks read or written and the number of characters
transferred are always reported with the -p option.

Reports the total number of blocks read or written and
total characters transferred by command and all its
children.

PM 3-39

COMMAND DESCRIPTIONS

Note: Options -o and -p will only work if System Accounting is operational
on the system. Now, System Accounting is not available for the 382
Computer.

-s Reports total system activity, not just what was called for
in command, but, everything that occurred during the
execution interval of command. All the data items listed in
sar are reported.

Sample Command Use

To find out how many seconds it takes to display a long list of the contents
of your current directory, enter the following:

$ timex ls
total 160
-rw-r- -r- -
-rw-r- -r- -
-rw-r- -r- -
-rw-r- -r- -
-rw-r- -r- -

real
user
sys
$

PM 3-40

-1 <CR>

1
1
1
1
1

mar km PR3B
mar km PR3B
mar km PR3B
mar km PR3B
mar km PR3B

0.80
0.25
0.20

3754 July 19 13:56 chapter I
8037 July 19 14:00 chapter2

33941 July 19 14: 17 chapter3
36891 July 19 14:35 chapter4

830 July 13 14: 16 trademarks

COMMAND DESCRIPTIONS

To list the process accounting record of sorting a file tmp, and redirecting
the output to a file tmpl, first create a file tmp and add words or numbers
in a list. Then, enter the following:

$ timex sort tmp > tmpl<CR>
real 0.52
user 0.04
sys 0.15
$

Note: Only the time of execu,tion will be listed, nnd nfile
tmpl will be creaied containing the sorted do.ta.from tmp.

PM 3-41

Chapter 4

TUNING AND CONFIGURATION

PAGE

TUNING A 382 COMPUTER SYSTEM. • 4-1

SETTING KERNEL CONFIGURATION PARAMETERS • 4-2

IMPROVING DISK USEAGE . • 4-3

Selecting Tunable Parameters. • 4-3

Setting Text-bit (Sticky-bits) . 4-4

File System Organization . 4-5

PERFORMANCE TOOLS . 4-7

Introduction . 4-7

Internal Activity. 4-7

LOAD MANIPULATION AND HOUSEKEEPING • 4-30

'ntroduction . • 4-30

ps.. 4-30

User $PATH Variables . 4-31

Chapter 4

TUNING AND
CONFIGURATION

TUNING A 382 COMPUTER SYSTEM
This section describes the major areas of the AT&T 382 Computer System
that affect system performance. It contains information for tuning the
kernel for minimum overhead and tuning the disk subsystem for maximum
throughput. Also included are workload analysis, performance tools, and
housekeeping techniques for reducing peak load and estimating capacity. A
description of the tunable parameters may be found in the AT&T 382
Computer System Administration Utilities Guide.

PM 4-1

TUNING AND CONFIGURATION

SETTING KERNEL CONFIGURATION PARAMETERS

Most kernel parameters have minimum values that are required for normal
kernel operation. Increasing the values of heavily loaded parameters can
increase system performance significantly.

With the tools provided in this Utilities Guide, you can measure system
load and determine what parameters to increase and what to lower.
Lowering the values of parameters can save valuable main storage space
(smaller kernel size), providing a larger area for user programs and
reduced swapping activity.

The command /etc/sysdef will output the configuration of your system,
including the values set for the tunable parameters. Refer to the AT&T
382 Computer System Administration Utilities Guide to locate the file(s)
that contain the values for the tunable parameters and for information on
how to change values and rebuild your UNIX System.

PM 4-2

TUNING AND CONFIGURATION

IMPROVING DISK USEAGE
Disk input/ output may cause a bottleneck in system performance. There
are three steps in tuning the disk subsystem for better usage .

• Select the proper tunable parameters.

• Setting Text-bit (Sticky-bits).

• Organizing the file systems to minimize disk activity.

Selecting Tunable Parameters

The 382 Computer System Administration Utilities Guide has a table for
recommended beginning values for tunable parameters located in the
System Reconfiguration section. You should use the values given in the
table as a starter. When you become familiar with the tools provided in this
utilities, you may want to change parameters that will increase system
performance for your specific application.

PM 4-3

TUNING AND CONFIGURATION

Setting Text-bit (Sticky-bits)

Setting the text-bit makes the 1/0 of a select group of commands more
efficient. When the text-bit is set on a command, a copy of the text
segment of the command will be loaded into a contiguous area on the
swap device. Whenever the program is executed, the text segment is
swapped in with one 1/0 operation. This reduces disk and CPU load,
resulting in faster command start-up and yielding improved response time.
(When the text-bit is not set, the program is copied into memory from the
file system one block at a time).

System resources (one i-node and text table entry plus swap space) for
each text-bit program residing on the swap device are used. It may not be
necessary to set the text-bit on programs that are being run most of the
time (sh, getty ... etc.) since these programs would already have their text
segments in memory.

After setting text-bits, observe the number of text and i-node entries with
sar -v. If the tables are nearly full, it may be necessary to reconfigure the
system with more i-node and text table slots.

The commands on which the text-bit is set must be pure executable (text
segment shared and write protected). Use the file command to determine
if the text-bit can be set on a command.

The text-bit should only be used for commands that are used heavily.
Usually, there are only 4 to 6 commands with the text-bit set. This makes
sure that swap space is not taken up solely by text-bit commands; too
many programs with the text-bit set could cause the system to spend all
its time swapping (thrashing) programs in and out. The crash command
(smap) is useful for displaying the number of free segments on the swap
device. See the AT&T 382 Computer Crash Analysis Guide for more
information on crash abilities.

PM 4-4

TUNING AND CONFIGURATION

File System Organization

This section describes several actions that can be taken to reduce the
overhead of file access. As file systems are used, they tend to become
disorganized and 1/0 becomes less efficient. This disorganization yields
poor ordering of blocks with files and poor directory structure.

Organization of File System Free list

The 382 Computer file systems are set up to allocate free blocks in a way
that allows the files to be read or written with efficiency. A free list array
is created when a file system is created with /etc/mkfs. The free list is
set up with the optimal rotational gap of 7, as specified by mkfs options.
The difference between successive block numbers ih the free list is the
rotational gap. For example, a file created on a system with a rotational
gap of 7 may consist of blocks 500, 507, and 514. When the file is read,
1/0 requests are sent to the disk drive to read blocks 500, 507, and 514.
As soon as the drive finishes reading block 500 and has started to process
the second request, block 507 will be moving over the read/write head
just as the drive is ready to read that request. This makes for an efficient
1/0 operation.

However, as you start changing files (changing size or removing), the
efficiency starts to decrease. When several files are being created at once,
they will be contending for blocks from the free list. Some of the blocks
allocated to the files will be out of sequence. As you can see, the free list
becomes disorganized.

PM 4-5

TUNING AND CONFIGURATION

Directory Organization

Free space in directories can decrease I/ 0 performance. When a file is
removed from a directory, the i-node number is nulled out. This leaves an
unused slot of 8-bytes. Directories retain the largest size they have ever
achieved This may result in many empty file slots. If you have a directory
with 100 files in it and you remove the first 99 files, an Is done on this
directory will require four 1/0 operations [three for the empty directory
blocks (32 file slots = one directory block) and one for the block with the
file entry].

Restoring Good File System Organization

There is no "automatic" way to solve these problems; however, you can
use manual intervention by reconfiguring the system. Running fsck -s will
reorganize the free list.

Directories larger than 320 files (5120 bytes) are inefficient because of file
system indirection. Use the following command to find directories with
more than 320 entries.

Enter:

r $find /-typo d .,;,. +10 -p,lnkCIO

If you find directories of this size, consider breaking them up into smaller
directories.

PM 4-6

TUNING AND CONFIGURATION

PERFORMANCE TOOLS

Introduction

The categories of performance tools for the UNIX System internal activities
described in this section are:

sar

sag

sadp

timex

Samples cumulative activity counters internal to the UNIX
System and provides reports on various system-wide
activities.

Graphically displays the information collected by sar.

Produces profiles of disk access location and seek
distance.

Reports both system-wide and per-process activity during
the execution of a command or program.

Examples for these tools are provided in the following sections. These
examples are from a system with I-megabyte of main memory and a 30-
megabyte integral hard disk. Command outputs are typical values received
while benchmarking a specific function of the UNIX System. Values you
receive may be different from values in the examples, depending on your
application or benchmark. While tuning your systems, it is recommended
to use a benchmark or have the system under normal load for your
application. This will allow you to tune directly toward your specific
application.

Internal Activity

Internal activity is measured by many counters contained in the UNIX
System kernel. Each time an operation is performed, the counter
monitoring its function is incremented. The functions monitored by sar are
discussed in the following paragraphs.

PM 4-7

TUNING AND CONFIGURATION

sar

In this chapter, sar options are described with an analysis of sample
outputs of the options. Sar can be used as an active process or be used to
extract system activity data from the data collected by sal and sa2.
These data files are created by the entries made in the crontab files.
Refer to Chapter 2, REQUIREMENTS for an explanation of these entries.
Refer to Chapter 3 for a detailed command description of sar.

The following examples are listed in alphabetical order according to the
available options of the sar command.

PM 4-8

TUNING AND CONFIGURATION

sar -a

The sar -a option reports the use of file access operations. The UNIX
System routines reported are as follows:

iget/s

namei/s

dirbk/s

Number of files located by its i-node entry per second.

Number of file system path searches per second. Namei
calls iget, so iget is always larger than namei.

Number of directory block reads issued per second.

An example of sar -a output follows:

unix unix 2.0.3 2 3B2 07/19/85

12:41:40 iget/s namei/s dirbk/s
12:42:10 4 1 3
12:42:43 2 1
12: 43: 14 5 2 3

Average 4 3

The larger the values reported, the more time the UNIX System kernel is
spending in accessing user files. If these numbers raise above 10, you may
want to clean the file system. This can be done, but is time consuming
when there is only one hard disk and limited free space available. You can
use cpio to copy a directory structure to a temporary location, then
remove the original structure, then copy the temporary structure back to
the original location. By doing this, you remove the unused but allocated i
node entries. Refer to the section on Directory Organization for an
explanation. This will remove all the nulled out entries from the directory
structure.

PM 4-9

TUNING AND CONFIGURATION

sar-b

The -b option reports the following buffer activity.

bread/s Average number of physical blocks read between the
system buffers and the disk drive (or other block devices)
per second.

!read/s Average number of logical blocks read from system buffers
per second.

%rcache Fraction of logical reads found in buffer cache.

%wcache Fraction of logical writes found in buffer cache.

bwrit/s Average number of physical blocks written between the
system buffers and the disk drive (or other block devices)
per second.

lwrit/s Average number of logical blocks written to system buffers
per second.

pread/s Average number of physical read requests per second.

pwrit/s Average number of physical write requests per second.

The entries that you should be most interested in are %rcache and
%wcache (cache hit ratios). If %rcache falls below 90, or %wcache falls
below 65, it may be possible to improve performance by increasing the
number of buffers.

The ratio of physical (block) 1/0 to logical (character) 1/0 is a common
measure of the effectiveness of the system buffering.

PM 4-10

TUNING AND CONFIGURATION

An example of sar -b output follows:

unix unix 2.0.3 2 3B2 07/19/85

16:32:57 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
16:33:07 16 241 93 1 16 91 0
16:33: 17 18 206 91 2 16 87 0
16:33:27 28 102 76 3 7 64 0

Average 21 182 90 2 13 84 0

This example shows that the buffers are not causing any bottlenecks,
because all data is within acceptable limits.

PM 4-11

0
0
0

0

TUNING AND CONFIGURATION

sar-c

The -c option reports system calls in the following categories:

sca!l/s

sread/s

swrit/s

fork/s

exec/s

rchar/s

wchar/s

All types ot system calls per second, generally about 80
per second on a busy 2 to 6 user system.

Read system calls per second.

Write system calls per second.

Fork system calls per second, about 1 per second on a 2
to 6 user system. This number will increase if running shell
scripts.

Exec system calls per second (If (exec/s) / (fork/s) is
greater than 3, inefficient $PATHs are being used.)

Characters transferred by read system calls per second.

Characters transferred by write system calls per second.

Typically, reads plus writes account for about half of the total system calls;
although this varies greatly with the activities that are being performed by
the system.

PM 4-12

TUNING AND CONFIGURATION

An example of sar -c output follows:

unix Unix 2.0.3 2 3B2 07/19/85

18:33:04 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
18:33:35 81 12 61 0.03 0.03 33506 31052
18:34:05 77 9 58 0.07 0.07 29704 28919
18:34:35 82 14 40 0. 17 0. 17 24095 19632

Average 80 12 53 0.09 0.09 29146 26604

This example shows that operating system call activity varies with each
type of program(s) running.

PM 4-13

TUNING AND CONFIGURATION

sar-d

The sar -d option reports the activity of block devices.

device

%busy

avque

r+w/s

blks/s

avwait

avserv

PM 4-14

Name of the physical entity that sar is monitoring.

Percent of time the device was servicing a transfer
request.

The average number of requests outstanding during the
period of time.

Number of read and write transfers to the device per
second.

Number of 512 byte blocks transferred to the device per
second.

Average time in milli-seconds that transfer requests wait in
the queue.

Average time in milli-seconds for a transfer request to be
completed by the device (for disks this includes seek,
rotational latency and data transfer times).

TUNING AND CONFIGURATION

An example of sar -d is as follows:

unix unix 2.0.3 2 3B2 07/19/85

13:46:28 device %busy avque r+w/s blks/s avwait avserv

13:46:58 hdsk-0 6 1. 6 3 5 13.8 23.7
fdsk-0 93 2. 1 2 4 467.8 444.0

13:47:28 hdsk-0 13 1. 3 4 8 10.8 32.3
fdsk-0 100 3.1 2 5 857.4 404.l

13:47:58 hdsk-0 17 .7 2 41 .6 48.l
fdsk-0 100 4.4 2 6 1451. 9 406.5

Average hdsk-0 12 1. 2 3 18 8.4 34.7
fdsk-0 98 3.2 2 5 925.7 418.2

The above example was taken while transferring data from hard disk
(hdsk-0) to floppy disk (fdsk-0). Looking at the results tells us why hard
disk technology has improved the performance of supermicros.

PM 4-15

TUNING AND CONFIGURATION

sar-m

The sar -m option reports on inter-process communication activities. Now,
only message and semaphore calls are reported. Shared memory will be a
future enhancement. Reported values are defined as follows:

msg/s

sem/s

Number of message operations (sends and receives) per
second.

Number of semaphore operations per second.

An example of sar -m output follows:

unix unlx 2.0.3 2 3B2 07/19/85

15: 16:58 msg/s sema/s
15:17:32 156.38 129.47
15: 18:02 202.59 139.58
15: 18:32 193.66 145.86

Average 182.76 137.86

This was recorded during an inter-process communication benchmark.
You will probably never see values at this level. Unless you are running
application messages, these figures will always be zero (0.00). You can
refer to the AT&T 382 Computer Inter-Process Communication Utilities
Guide for more information.

PM 4-16

TUNING AND CONFIGURATION

sar-q

The sar -q option reports the average queue length while the queue is
occupied and percent of time occupied.

runq-sz

%nmocc

swpq-sz

%swpocc

Run queue of processes in memory, typically, this should
be less than 2.

The percentage of processes in memory that are runnable,
the larger this value is the better.

Swap queue of processes swapped out, the smaller this
number is the better.

The percentage of swapped out processes that are ready
to run, the smaller this value is the better.

An example of sar -q follows:

unix unix 2.0.3 2 3B2 07/19/85

11:00:56 runq-sz %runocc swpq-sz %swpocc
11:01:07 1. 7 98 l. 5 36
11:01:17 l. 0 63 1. 0 31
11:01:27 l. 0 58 l. 0 49

Average l. 3 74 1. 2 39

In this example, the processor (%runoc:c) varies between 63 and 98
percent, while the fraction of time the swap queue is not empty (%swpocc)
is 31 to 49 percent. This means that memory is not causing a major
bottleneck in the system throughput, but more memory would help reduce
the swapping. You will not normally see output like this, a disk intensive
benchmark was running when this was recorded.

PM 4-17

TUNING AND CONFIGURATION

If %runocc is greater than 90 and runq-sz is greater than 2, the CPU is
heavily loaded and response is degraded. If %swapocc is greater than 20,
more memory would help reduce swapping activity.

sar-u

The CPU usage is listed by sar -u (default). At any given moment the
processor will be either busy or idle. When busy, the processor will be in
either user or system mode. When idle, the processor will either be
waiting for input/ output completion or has no work to do. The -u option of
sar lists the percent of time that the processor is in system mode (%sys),
user mode (%user), waiting for input/output completion (%wio), and idle
time (%idle).

In typical timesharing use, %sys and %usr are about the same value. In
special applications, either of these may be larger than the other without
anything being abnormal. If you can keep %sys below 25 percent average,
you have obtained perfect operating system time sharing.

The following are clues to CPU usage, values are averages over a period of
time:

• %usr -- If greater than 50, users are getting excellent service.

• %sys -- If greater than 60, kernel needs to be tuned.

• %wio -- If greater than 30, disk bottleneck.

• %idle -- If greater than 10, system is not being fully used.

PM 4-18

TUNING AND CONFIGURATION

The -v option reports the status of text, process, i-node, file, shared
memory record, and shared memory file tables. From this report you know
when the system tables need to be modified.

text-sz

proc-sz

inod-sz

file-sz

ov

lock-sz

fhdr-sz

Number of text table entries now being-used/allocated in
the kernel.

Number of process table entries now being-used/allocated
in the kernel.

Number of i-node table entries now being-used/allocated
in the kernel.

Number of file table entries now being-used/allocated in
the kernel.

Number of entries over the allocated amount, from the
previous field.

The number of shared memory record table entries now
being-used/allocated in the kernel.

The number of shared memory file table headers now
being-used/ allocated in the kernel.

PM 4-19

TUNING AND CONFIGURATION

The values are given as level/table size. An example of sar -v follows:

unix unix 2.0.3 2 3B2 07/19/85

17:36:05 text-sz ov proc-sz ov inod-sz OV fi le-sz ov lock-sz fhdr-sz
17:36:35 9/ 80 0 17/ 40 0 39/ 80 0 29/ 80 0 0/ 50 0/ 5
17:37:05 11 / 80 0 19/ 40 0 46/ 80 0 35/ 80 0 0/ 50 0/ 5
17:37:35 10/ 80 0 18/ 40 0 43/ 80 0 34/ 80 0 0/ 50 0/ 5

This example shows that all tables are large enough to have no overflows,
sizes could be reduced to save main memory space if these are the
highest values ever recorded.

PM 4-20

TUNING AND CONFIGURATION

sar-w

The -w option reports swapping and switching activity. The following are
some target values and observations.

swpin/s

bswin/s

swpot/s

bswot/s

pswch/s

Number of transfers into memory per second.

Number of 512-block units (blocks) transferred for swap
ins (including initial loading of some programs) per second.

Number of transfers from memory to the disk swap area
per second. If greater than 1, memory may need to be
increased. Since swpin/s also include program loads,
swpot/s provides the better measure of the number of
swaps. At system start-up swpot/s may be larger than
swpin/s because of the loading of sticky-bit programs.

Number of blocks transferred for swap-outs per second.

Process switches per second. This should be 30 to 50 on a
busy 2 to 6 user system.

An example of sar -w output follows:

unix unix 2.0.3 2 3B2 07/19/85

19:53:44 swpin/s bswin/s swpot/s bswot/s pswch/s
19:53:58 3.41 56.0 1. 23 15.7 37
19: 54: 14 1. 59 23.9 0.89 17.8 39
19:54:24 1. 34 28.4 0.21 1. 6 39

Average 2. 17 36.3 0.84 13.0 38

This example shows swap activity at an acceptable level.

PM 4-21

TUNING AND CONFIGURATION

sar-y

The -y option monitors terminai device activities, it is useful if you have
many terminal I/Os. Activities recorded are defined as follows:

rawch/s

canc'1/s

outch/s

rcvin/s

xmtin/s

mdmin/s

Input characters (raw queue) per second.

Input characters process by canon (canonical queue) per
second.

Output characters (output queue) per second.

Receiver hardware interrupts per second.

Transmitter hardware interrupts per second.

Modem interrupts per second.

An example of sar -y output follows:

unix unix 2.0.3 2 3B2 07/19/85

16:50:11 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
16:50:41 112 15 653 103 102 0
16:51:11 107 7 654 104 105 0
16:51:41 99 5 641 99 105 0

Average 106 9 649 102 104 0

PM 4-22

TUNING AND CONFIGURATION

sar-A

The sar -A option is equivalent to sar -udqbwcayvm. All reportable kernel
operations will be reported, these are described in the previous sar
examples. This option is helpful for doing overall system performance,
single report options are recommended for tuning specific areas. After
tuning the kernel for individual functions, use the -A option to verify that
you did not lose performance in the areas where the system spends most
of its time.

An example of sar -A follows:

unix unix 2.0.3 2 3B2 07/19/85

18:42:47 %usr %sys %wio %idle
device %busy avque r+w/s blks/s avwait avserv

runq-sz %runocc swpq-sz %swpocc
bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
swpin/s bswin/s swpot/s bswot/s pswch/s
scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
iget/s namei/s dirbk/s

rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
text-sz ov proc-sz ov inod-sz ov file-sz OV lock-sz fhdr-sz

msg/s sema/s

18:43:11 56 34 10 0
hdsk-0 47 1. 8 22 68 17.9 21. 7

1. 5 87 1. 2 17
20 69 71 3 72 0 0

0.57 19.6 0.20 6.3 3.3
68 8 46 0. 10 0. 13 24513 23285
17 6 1.3

0 0 210 0 4 0
12/ 80 0 18/ 40 0 43/ 80 0 36/ 80 0 0/ 50 0/ 5

0.00 0.00

PM 4-23

TUNING AND CONFIGURATION

sag

The command sag graphically displays the system activity data stored in a
binary data file by sar. Any of the sar data items may be plotted
separately or in combination. Sag operates by invoking sar and string
matching the data column header. Running sar will show what data is
available. An example of sag output with default options are shown in the
following figure:

+100
-100
=100

0
0

+ 0

PM 4-24

' ·-

-______________ ...,.., _____ -"<------

+'v .. 1\ . ·v ~\\
+

- - + I
+

+

08:00
+ %USR
- %USR + %SYS
= %USR + SYS + %WIO
VS TIME

figure 4-1. Example of sag Output

+/

+

\ .
+

18:00

TUNING AND CONFIGURATION

In Figure 4-1, the processor is completely used over three intervals 9-10
AM, 1-2 PM, and 4:30-5:30 PM. Remember the fraction of time that the
processor is busy is the sum of user (%usr) mode time and system (%sys)
mode time. When this approaches 100 percent, the processor is running at
its maximum capacity as configured. The sum of %usr + %sys + %wio is
about the same as the sum of %usr + %sys (%wio is low). This means
that the disk subsystem is able to handle all requests that the processor
generates with little delay. From this example, the first place to look to
reduce any bottleneck is in reducing processor load.

Note: The sag command is only useful if you have a standard
output device that can read plotting instructions. Refer to the tplot
manual page in the AT&T 382 Computer User Reference Manual
for a list of known terminals with this capability.

timex

The timex command times a command and reports the system activities
that occurred during the time the command was executing. The options
that may be used with timex are described in Chapter 3. If no other
programs are running, then timex can give you a good idea of which
resources a specific command uses during its execution. System
consumption can be collected for each application program and used for
tuning the heavily loaded resources.

For our example, the date command is used. Enter the following:
$timex -s date<CR>

PM 4-25

TUNING AND CONFIGURATION

Fri July 19 20:46:33 EDT 1985

real
user
sys

0.20
0.01
0. 15

unix unix 2.0.3 2 3B2

20:46:33
20:46:34

%usr
10

07/19/85

%sys
90

%wio
0

%idle
0

20:46:33 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
20:46:34 0 151 100 0 13 100 0 0

20:46:33 device %busy avque r+w/s blks/s avwait avserv
20:46:3 dsk-0 22 1.2 3 15 10.l 18.4

20:46:33 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
20:46:34 0 0 44 0 3 0

20:46:33 scalls/s sreads/s swrit/s fork/s exec/s rchar/s wchar/s
20:46:34 176 18 6 4.41 5.88 23076 454

20:46:33 swpin/s bswin/s swpot/s bswot/s pswch/s
20:46:34 0.00 0.0 0.00 0.0 13

20:46:33 iget/s namei/s dirbk/s
20:46:34 43 15 29

20:46:33 runq-sz %runocc swpq-sz %swpocc
20:46:34 1.0 100

20:46:33 text-sz ov proc-sz ov inod-sz ov file-sz ov Jock-sz fhdr-sz
20:46:34 8/30 0 12/60 0 30/100 0 19/100 0 0/100 0/20

20:46:33 msg/s sema/s
20:46:34 0.00 0.00

$

This is not the best example for the following reason: the date command is
not a major user of system resources. Date was used for its simplicity.

PM 4-26

TUNING AND CONFIGURATION

Timex can be used in the following way:

$timex -s <application program><CR>

Your application program will operate normally, when you finish and exit,
the timex result will be printed on your screen. This can be extremely
interesting, you might see resources being used that your program never
reflected. Such as, disk usage, etc.

sadp

The sadp command (sadp [-th] [-d device[-drive]] s [n]) reports disk access
locations and seek distance in tabular (-t) or histogram (-h) form. Disk
activity is sampled once every second, during a specified interval,
repeatedly n times. Refer to Chapter 3 for details.

Using the sadp output along with the output of /etc/mount and the table
of disk sections, you can identify the file systems with a large amount of
1/0 activity. Try to move areas of high activity close together. This will
reduce the amount of seeks over large distances.

An example of getting a sadp output for hard disk drive 0 follows. The first
graph shows excellent disk cylinder locality of references. Most references
occur for files near cylinders 450 to 600, with a few for files around
cylinder 250. The second graph shows that most physical seeks are under
ten cylinders, all within the area of cylinders 450 to 600. This is an
excellent file system configuration.

Enter the following command:

$sadp -h -d hdsk-0 3600<CR>

PM 4-27

TUNING AND CONFIGURATION

CYLINDER ACCESS HISTOGRAM
disk-0:
Total transfers = 33291

12% -1

10%

8%

6%

4%

2%

,•
l* *
I**

. .

* * **

*** * * *
********* *

************ • *

0%-+- -

PM 4-28

081
6

Cylinder number,
8 1 2 2
0 4

4
0
8

7
2

granularity=8
3 4 4
3 0 6
6 0 4

5
2
8

SEEK DISTANCE HISTOGRAM
disk-0:
Total seeks = 30308

20%

16%

,•.
I**

12% - I**
:* *
:* *
I**
I**

8% '*. -·
I**
:* *
I>!:**
'
I***
I*** ..

4% -I*******
I*******
I*********
I************
:* * * * * * * * * * * * * *

TUNING AND CONFIGURATION

I******************** ... * *
0% -+- - -- - - - --------- ------------------------- ------ --- - - - -

=«
081

6

<
8
0 4

4

<
2
0
8

<
2
7
2

<
3
3
6

<
4
0
0

<
4
6
4

<
5
2
8

PM 4-29

TUNING AND CONFIGURATION

LOAD MANIPULATION AND HOUSEKEEPING

Introduction

After the kernel and the system activities are tuned, and the file systems
organized, the next step for improving system performance is to do some
housekeeping activities and to check whether prime time load can be
reduced. The person responsible for administrating the system should
check for:

.. Less important jobs interfering with more important jobs .

.. Unnecessary things being done .

.. Scheduling jobs for when the system is not so busy .

.. The efficiency of user-defined features such as .profile and $PATH.

ps
The ps command is used to obtain information about active processes.
Without any options, information is printed about the terminal processes
used to input the request The ps command gives a "snapshot" picture of
what is going on. This is useful when trying to identify what processes may
be loading the system. Things will probably change by the time the output
appears; however, the entries that you should be interested in are TIME
(minutes and seconds of CPU time used by processes) and STIME (time
when process started).

PM 4-30

TUNING AND CONFIGURATION

User $PATH Variables

$PATH is searched on each command execution. Before outputting "not
found" the system must search everything in $PATH. These searches
require both processor and disk time. If there is a disk or processor
bottleneck, changes here can help performance.

Some things that you should check for in user $PATH variables are:

Path Efficiency
$PATH is read left to right, so the most likely places to find the
command should be first in the path (/bin and /usr /bin). Make
sure that a directory is not searched more than once for a
command.

Convenience and Human Factors
Users may prefer to have the current directory listed first in the
path (:/bin).

Path Length
In general, $PATH should have the least amount of required entries
needed.

Large Directory Searches
Searches of large directories should be avoided if possible. Put any
large directory paths at the end of $PATH.

The person responsible for administrating the system should know if the
system is being misused.

PM 4-31

Replace this

page with the

SPELL

tab separator.

AT&T

AT&T 382 Computer
UNIX™ System V Release 2.0
Spell Utilities Guide

CONTENTS

Chapter 1. INTRODUCTION

Chapter 2. COMMAND DESCRIPTION

Chapter 3. SPELL UTILITIES ADMINISTRATION

Chapter 1

INTRODUCTION

PAGE

GENERAL . 1-1

GUIDE ORGANIZATION . 1-2

PREREQUISITES . • 1-2

Chapter 1

INTRODUCTION

GENERAL
This document describes the Spell Utilities command available with the
AT&T 382 Computer. The spell command helps you to correct the spelling
errors in your source files. When you run the spell program on a source
file, all words contained in the source file are checked against another file
that contains a dictionary. Output is printed on the terminal monitor or
can be directed to a printer for hard copy or to another file using a file
name of your own invention.

The spell program will neither correct the misspelled words of the source
file nor will it give you a list of the corrected misspelled words. Words
found by the spell program are simply those that it cannot find in its
dictionary. Once the misspelled words have been found, you may correct
the spelling by editing the source file.

SP 1-1

INTRODUCTION

GUIDE ORGANIZATION
This guide is structured so you can easily find desired information without
having to read the entire text. This document describes how to use the
spell command and also provides examples to aid you.

The information in this document is organized on a chapter basis as
follows:

• Chapter 2, "COMMAND DESCRIPTION," describes the format and
use of the command provided by the Spell Utilities.

• Chapter 3, "SPELL UTILITIES ADMINISTRATION," provides a
description of the files used to monitor and update the performance
of spell.

PREREQUISITES
Before continuing with this document, you should be familiar with the
AT&T 382 Computer Owner /Operator Manual that describes how to
operate the computer. You should also be familiar with the UNIX* System
V User Guide that explains how to use the UNIX System.

* TrademarkofAT&T

SP 1-2

Chapter 2

COMMAND DESCRIPTION

PAGE

HOW COMMANDS ARE DESCRIBED. 2-1

COMMAND FORMAT . 2-3

SAMPLE COMMAND LINES . 2-4

Using spell By Itself . 2-4

Using spel! On Text Files . 2-5

Using the -b Option . 2-7

Using the -i Option . 2-8

Using the -fOptio11 . 2-10

Using the -v Option . 2-12

Using the -x Option . 2-13

Using the +local_file Option . 2-14

Combining Options . 2-17

Chapter 2

COMMAND DESCRIPTION

This chapter provides the casual 382 Computer user with a tutorial of the
spell command. The command is described when used alone and when
used with options. The given examples show how to apply the spell
command.

HOW COMMANDS ARE DESCRIBED
The spell command is described on a function or task level. Within the
function there exists the following sections:

• Command format: The basic command line format (syntax) is
defined and the various arguments and options are discussed .

.. Sample Command(s): Example command line entries and system
responses are provided to show you how to use the command.
A $ represents the shell prompt.

SP 2-1

COMMAND DESCRIPTION

In the command format discussion, the following symbology and
conventions are used to define the command syntax:

• The basic command is shown in bold type. For example, command
is in bold type .

• Arguments that you must supply to the command are shown in a
special type. For example: command argument

In the sample command discussions, user inputs and 382 Computer
response examples are shown as follows:

This style of type is used to show system generated
responses displayed on your screen.

This style of bold type is used to show inputs
entered from your keyboard that are displayed on your
screen.

These bracket symbols, < > identity inputs from the
keyboard that are not displayed on your screen, such
as: <CR> carriage return, <CTRL cf> control d, <ESC g>
escape g, passwords, and tabs.

Thi:s style of itab:c type is used for notes tlwt
provide you with a,dditional information.

Refer to the AT&T 382 Computer User Reference Manual and the AT&T
382 Computer System Administration Reference Manual for UNIX System
V manual pages supporting the commands described in this guide.

Because of its simplicity, theed text editor is used for editing examples of
text.

SP 2-2

COMMAND DESCRIPTION

COMMAND FORMAT
The spell command can be used alone on a command line (to check
individual words) or with arguments (to check files). When used with
arguments, the general format for the spell command is:

spell [options] [+local_fi/e] filename

The filename argument is either the source file(s) or a path name to a
source file to be checked for spelling errors. The loca!_file is a user
generated file that enables the spell program to recognize special words
not in the spelling list.

The options are as follows:

-b

-i

-I

-v

-x

Checks the source file or words for British spelling.

Ignores all chains of files (pathnames) within a source
file.

Checks spelling throughout all chains of files (such as
".so" and ".nx" request lines) within a source file.

Identifies all inflected words (containing prefixes or
suffixes) and words not found in the spelling list.

Lists all words and roots of inflected words within a
source file. Also, shows the words not found in the
spelling list.

SP 2-3

COMMAND DESCRIPTION

SAMPLE COMMAND LINES
When using the spell command by itself or in the command format, the
results are displayed on the terminal monitor by default. The examples
show that you can redirect the results into a file for later viewing.

Using spell By Itself

The spell command can be used to check the spelling of one word or many
words once they are entered on the terminal. This saves you from having
to generate a new file, add words to the file, and check the file through
spell. The following shows the use of the spell command directly from the
terminal.

$ spell<CR>
mispell<CR>
hello< CR>
console< CR>
<CTRL cf>
mispell
$

The spell command is entered on the terminal keyboard followed by a
carriage return. Each word in question is entered, one per line. When you
finish entering the words, enter a <CTRL d> (control d) on the terminal
keyboard. The spell program will then check the spelling of each word
entered and print the misspelled words on the terminal.

SP 2-4

COMMAND DESCRIPTION

Using spell On Text Files

We can further analyze how the spell command works by looking at
example files before executing the command, then examining the results
after execution.

Note: To duplicate the following examples, you will need to create
similar "example" files on your computer.

First, cat the file "examplel" to examine its contents, and then do a
spelling check as follows:

$ cat examp!el<CR>
color
program
looked
have
prepared
mispell
$ spell examp!el<CR>
mispell
$

As you can see, the only word found misspelled by the spell program is
"mispell." Using theed text editor, delete the word "mispell" from the file
examplel, and run another spelling check.

SP 2-5

COMMAND DESCRIPTION

$ ed examplel<CR>
43
/mispelkCR>
mispell
d<CR>
W<CR>
35
q<CR>
$ spell examplel<CR>
$

The $ prompt is returned to the monitor indicating no misspelled words in
the list. The result would have been the same if you had used ed to
correct the misspelled word. Note that the spell program does not correct
the spelling for you. The spell program simply looks in its spelling list to
find a word that matches a word from the source file. If a matching word
is found, the spell program concludes the word is spelled correctly.
However, if no match is found, the spell program displays the word on the
terminal monitor.

Note: A word printed on the terminal monitor does not always
mean the word is misspelled. Some technical words, for example,
are not in the spelling list of the spell program.

If you would like to view spelling errors at a later time, you can redirect the
spell program output into another file. The following gives an example of
how you might redirect the spell output.

r: •p•ll b;gtllo > '"o"<CR>

The spell program is complete when you receive the system prompt. Any
spelling errors that may have been found are now located in the "errors"

SP 2-6

COMMAND DESCRIPTION

file. You can cat or edit the errors file at your convenience. Note that if
you redirect output to an existing file, the original contents of the file will
be erased.

Using the ~b Option

Let's look at another example.

$ cat example2<CR>
colour
programme
looked
have
prepared
$ spell exampie2<CR>
colour
programme
$

The words "colour" and "programme" are shown misspelled by the spell
program. Colour and programme are spelled correctly as far as the British
are concerned. The spell program, as run in the previous examples, uses
an American spelling list. Colour and programme in America are the words
color and program, respectively.

Once the use of British words has been determined, the -b option can be
used. With this option a British spelling list is used instead of the American
spelling list. Only British spelling is considered correct. Using the -b option
with the spell program will result in the following:

r: •poll -b OMmplo2<CR>

SP 2-7

COMMAND DESCRIPTION

With the -b option, the spell program finds no errors and the $ prompt is
returned to the monitor. The words colour and programme are now
considered correct spelling.

Using the -i Option

When creating text, you may have used the ".so" or ".nx" macros. These
macros specify a file to be read whenever the original file is executed.
When the spell command is executed on a file containing .so or .nx
macros, the contents of these macro-specified files are also considered
(there is one exception - see -I option). The -i option, however, will cause
spell to ignore any .so or .nx macros within the source file. The following
shows how the -i option can be used.

First examine the file "example3":

$ cat example3<CR>
.so /usr /bin/example4
mispell
$

Note the .so macro that specifies the file example4. Now, cat the file
example4 that is located in the /usr /bin directory:

$ cat /usr/bin/example4<CR>
core ct
$

SP 2-8

COMMAND DESCRIPTION

Without the -i option, execute spell on the file example3:

$ spell example3<CR>
corect
mispell
$

Note that the results include misspellings from both the example3 and
example4 files.

You may not want the spell program to include files specified by the .so or
.nx macros. For example, the macro-specified file could be a program that
contains some non-text information. If example4 was such a file, you
could use the -i option as follows:

$ spell -i example3<CR>
mispell
$

Here, the example4 file specified by the .so macro was ignored by the spell
program.

SP 2-9

COMMAND DESCRIPTION

Using the ~I Option

When the spell command without the -I (and -i) option is executed on a file
containing .so or .nx macros, all words within the original file and macro
specified file are checked. However, an exception to this rule does exist.
If these macros specify a file located in the /usr /lib directory, spell will
ignore this file. Here, only the words in the original file will be checked for
spelling.

With the -I option, spell can search all macro-specified files for misspellings,
including those located within the /usr /lib directory. The following
example will illustrate the use of the -I option.

Examine the file "example5":

$ cat example5<CR>
.so /usr /lib/example6
chpter
$

Note the macro-specified file "example6" located in the /usr /lib
directory. Now, cat the example6 file:

$ cat /usr /lib/exampie6<CR>
incorect
$

SP 2-10

Without the -I option, run spell on example5:

r $ •P'll "'m~o5<CR>
chpter
$

COMMAND DESCRIPTION

Notice that only "chpter" from the example5 file was found. Using the -I
option:

$ spell -1 example5<CR>
chpter
incorect
$

Both "chpter" from example5 and "incorect" from /usr /lib/example6
were found.

SP 2-11

COMMAND DESCRIPTION

Using the ~v Option

The -v option identifies the inflected words (words containing prefixes and
suffixes) of a source file. The file being spelled is checked against the
spelling list. Prefixes, suffixes, and other inflections of each inflected word
are output preceded by a plus(+) sign. All words not in the spelling list
are also output; however, they are not preceded by the plus sign. The
words without plus signs are words the spell program considers misspelled.
The following shows what happens when you use the -v option:

$ spell -v examplel <CR>
+ed looked
+ct prepared
$

In the above example, "ed" is the suffix of "looked." The word "prepared"
also contains a suffix.

SP 2-12

COMMAND DESCRIPTION

Using the ~x Option

The file being spelled is checked against the spelling list. All words of the
source file are output preceded by an equal sign (=). The root of any
inflected words (words containing prefixes or suffixes) found within the
source file are also displayed with an equal sign. The words not found in
the spelling list are also output; however, they are not preceded by the
equal sign. Look at the following example that utilizes the -x option:

$ spell -x example!< CR>
=color
=have
=looked
=looke
=look
=prepared
=pared
=prepare
=program
$

Note that "mispell" was deleted
ea,rlier in this chapter.

In the above example, the plausible roots of the word in question are
analyzed and printed on the terminal monitor. Using ed, reintroduce the
misspelled word "mispell" into the example! file.

$ ed examplel<CR>
35

mispelkCR>
.<CR>
W<CR>
43
q<CR>
$

SP 2-13

COMMAND DESCRIPTION

Now, when executing spell, the results are:

$ spell -x examplel<CR>
=color
=have
=looked
=looke
=look
=mispell
=pell
=prepared
=pared
=prepare
=program
mi spell
$

Note that the word "mispell" is displayed both with and without an equal
sign.

Using the +local_file Option

The text of technical subjects often contains words that are not common
English words. These words, which are not in the American or British
spelling list, will show up as being misspelled. A user-generated spelling list
(locaUile) which contains these technical words will help you to solve this
problem.

Acronyms, user-tailored macros, or any other user-defined text can be
used in this special spelling list The user simply stores the user-defined
words in the local_file. How to create such a file is shown below. When
using the locaUile with spell, it must be preceded by a plus sign(+).

SP 2-14

COMMAND DESCRIPTION

Note: When using the local_file option, you must be careful to put
all uppercase words in front of the file. If this is not done, the first
lowercase word seen by the spell program will inhibit the program
from recognizing any uppercase words. If these instructions are
not followed, the spell program may not run to completion.

When spell is run, both the American/British (depending on the option)
spelling list and the user-generated locaLfile are used to form an overall
spelling list. First examine and then check the file "example?" for spelling
errors.

$ cat example7<CR>
UART
computerese
mispell
$spell example7<CR>
UART
computerese
mispell
$

SP 2-15

COMMAND DESCRIPTION

The contents of the example? file are found to be incorrectly spelled. The
words "UART" and "computerese" are terms associated with computers
and are actually correctly spelled. By using ed, a local_file called "fixit"
can be generated in order that we can consider these words as correctly
spelled.

$ ed fixit< CR>
?fixit
a<CR>
UART<CR>
computerese< CR>
mispell<CR>
. <CR>
w<CR>
25
q<CR>
$

Note that the uppercase word UART
is placed at the front of the file .

Now, by running the spell program with the local_file fixit, you get:

r: •poll +f;,;1 mmplo7<CIG>

The fixit file finds the three words and considers them correctly spelled.
As you can see, even misspelled words (like "mispell") can be considered
correct if a user-generated spell list is used.

SP 2-16

COMMAND DESCRIPTION

Combining Options

The following examples are shown here to show the various combinations
of options.

Once again, spell is executed on the file example2, but with the -v option
included.

$ spell -v example2<CR>
colour
programme
+ed looked
+d prepared
$

With only the -v option specified, spell defaults to the American spelling
list. Options can be combined as in this example:

$ spell -b -v example2<CR>
+ed looked
+d prepared
$

SP 2-17

COMMAND DESCRIPTION

Further examples of how the options can be combined are shown below:

$ spell -x -v examplel <CR>
=color
=have
=looked
=looke
=look
=mi spell
=pell
=prepared
=pared
=prepare
=program
mi spell
+ed looked
+ct prepared
$

SP 2-18

$ spell -x -v -b examplel<CR>
=color
=have
=looked
=looke
=look
=mi spell
=pell
=prepared
=pared
=prepare
=program
color
mi spell
program
+ed looked
+ct prepared
$

COMMAND DESCRIPTION

SP 2-19

COMMAND DESCRIPTION

$ spell -x -v -b example2 <CR>
=colour
=have
=looked
=looke
=look
=prepared
=pared
=prepare
=programme
+ed looked
+ct prepared
$

SP 2-20

Chapter 3

SPELL UTILITIES ADMINISTRATION

PAGE

/usr /lib/spell/compress. 3-2

/usr /lib/spell/hashcheck . 3-2

/usr /lib/spell/hashmake . 3-2

/usr /lib/spell/spellhist. 3-2

/usr /lib/spell/spellin n. 3-3

/usr /lib/spell/h!ista . 3-3

/usr /lib/spell/h!istb . 3-3

/usr /lib/spell/hstop . 3-3

Chapter 3

SPELL UTILITIES
ADMINISTRATION

This chapter describes the Spell Utilities files that are used to monitor and
update the performance of spell. These files consist of hashed (encoded)
word lists and special programs. You can monitor the performance of
spell by reviewing a file containing a history of misspelled words. You can
also adjust the utilities if a misspelled word goes undetected or if there are
words you would like to add to the spelling list.

Note: The administrative files described here are intended to be
used by root or the system administrator. To change the Spell
Utilities files, requires some experience in working with the UNIX
System. If the casual user finds a problem with spell that could
possibly be remedied through these administrative files, the user
should notify the system administrator.

The following paragraphs provide an explanation of each administrative file.

SP 3-1

SPELL UTILITIES ADMINISTRATION

/usr /lib/spell/compress
Each time spell is executed, the misspelled words found are appended to a
file called spellhist. The spellhist file, therefore, contains a history of all
misspelled words found during all executions of spell. Identical entries are
made owing to the same word being misspelled during different executions
of spell. The spellhist file is useful since it can be checked for determining
the accuracy of the spell program. The "compress" file, when executed,
deletes redundant misspelled words, therefore reducing the size of the
spellhist file and making it much easier to analyze.

/usr /lib/spell/hashcheck
The "hashcheck" program recreates 9-digit hash codes for a compressed
spelling list. The compressed spelling list can be an existing spelling list
(hlista or hlistb) or a list created or modified by the "spellin" program. By
using hashcheck on a spelling list and hashmake on a file of selected
words, you can determine whether the words are present in the list.

/usr /lib/spell/hashmake
The "hashmake" program generates a unique hashcode for each word.
Each hashcode consists of a 9-digit octal number. This conversionis made
to speed up the execution of spell.

/usr /lib/spell/spellhist
Each time spell is executed, an entry is made of the misspelled words into
the spellhist file. Since all entries are appended, a history of all past
misspelled words is collected. Through examining the file, you may find
entries that are not misspelled. In this instance a new entry into the spell
dictionary would be needed. The spellhist file is useful in following the
performance of the spell program.

SP 3-2

SPELL UTILITIES ADMINISTRATION

/usr /lib/spell/spellin n
The "spellin" program reads 9-digit hashcodes created through hashmake
and compresses them into a spelling list. The n argument specifies the
number of hashcodes to be read. The spellin program is used to add
words to an existing spelling list or to create a new spelling list.

/usr /lib/spell/hlista
This file contains the American dictionary used by spell. Each word in the
dictionary is represented by its unique hashcode. Each hashcode consists
of a 9-digit octal number. When spell is executed on a file, the words in
the file are checked against the "hlista" American dictionary. Unless an
option specifies otherwise, spell will use the American dictionary by
default.

/usr /lib/spell/hlistb
This file contains the British dictionary used by spell. Each word in the
dictionary is represented by its unique hashcode. Each hashcode consists
of a 9-digit octal number. When spell with the -b option is executed on a
file, the words in the file are checked against the "hlistb" British
dictionary. The spell program will use the American dictionary by default.

/usr /lib/spell/hstop
The "hstop" file is used by spell to filter out misspelled words that would
normally go undetected. In combining the possible inflections with the
word, the spell program may wrongly conclude that a word is spelled
correctly. For example, spell can derive the misspelled word "thier" by
subtracting the "y" from "thy" and adding "ier." You can stop or prevent
this from occurring by making an entry into the hstop file or by using the
-v option.

SP 3-3

Replace th is

page with the

TERMINAL FILTERS

tab separator.

AT&T

AT&T 382 Computer
UNIX™ System V Release 2.0
Terminal Filters
Utilities Guide

CONTENTS

Chapter 1. INTRODUCTION

Chapter 2. COMMAND DESCRIPTIONS

Chapter 1

INTRODUCTION

PAGE

GENERAL . 1-1

GUIDE ORGANIZATION . 1-4

Chapter 1

INTRODUCTION

GENERAL
This manual describes the Terminal Filter Utilities available with the AT&T
382 Computer. These utilities allow a variety of terminals to do NROFF
and manual page (MAN) text formatting. NROFF is a text processor that
formats text for typewriter-like terminals. MAN is a text processor used to
format the UNIX* System command manual pages.

A terminal filter is exactly what the name implies. The filter takes the
incoming data and filters it through certain processes to check the
compatibility with the associated terminal. For example, NROFF uses
certain characters to identify operations within its format process.
Sometimes, these characters mean different operations to different
terminals. An "ESCAPE 9" on one terminal may be a "margin set." On
another terminal, it may be a "form feed" which advances your paper, or
screen, by one page length.

" Trademark of AT&T

TF 1-1

INTRODUCTION

If this difference is not resolved, the NROFF formatted version of the file
will be somewhat mixed up.

The terminal filters reinterpret the incoming data. These filters equate the
incoming characters to compatible characters for the associated terminal.
For example, a filter would read the "ESCAPE 9" mentioned earlier and
equate that to the character on the associated terminal that will do the
function that NROFF expects "ESCAPE 9" to perform.

Special characters are simulated by overstriking, if necessary and if
possible. This means that if a character is not a common character to the
terminal, but the character can be produced by a combination of two
characters, the terminal filter will force the printer or terminal to strike
one character, backspace, and strike another character. For example, a
bullet is a solid circle(•). Most printers and terminals are not able to
produce a solid circle. However, the letter "o" overlapped with a plus(+)
makes a character that looks similar to a bullet (ot-).

By using these terminal filters, NROFF and MAN are made compatible to all
terminals handled by the seven terminal filter utilities. These filters
produce a consistent output for the associated terminals. They are
required for terminals/printers that require special actions involving
backspaces, underlines, and balding. Most new terminals/printers use a
standard type of backspace that does not require a terminal filter.

NROFF was designed to operate on a TELETYPE':' Model 37 terminal. This
is known as the default terminal. NROFF also works on the TELETYPE
Model 5410. Any other terminal that uses NROFF may require a terminal
filter associated with the NROFF command line.

* Trademark of AT&T

TF 1-2

INTRODUCTION

The following is a list of the terminal filter utilities and some of their
associated terminals:

TERMINAL FILTERS ASSOCIATED TERMINALS

300 DASI 300, XEROX 820,
DIABLO'~ 620 & 630, BROTHER 620

300s DASI 300s

450 DASI 450, DIABLO 1620, TELERAYt,
XEROX 1700

4014 TEKTRONIX:j: 4014 and 4014 Emulator,
Retrofit-graphics equipped terminals

greek (Refer to the manual pages in the AT&T
382 Computer User Reference Manual)

hp HEWLETT-PACKARD 2640 and 2621-series

hpio HEWLETT-PACKARD 2645A

Registered Trademark of XEROX Corporation

t Trademark of Research Incorporated

t Registered Trademark of Tektronics

TF 1-3

INTRODUCTION

GUIDE ORGANIZATION
The remainder of this guide, Chapter 2 -- "COMMAND DESCRIPTIONS,"
describes the format and use of the commands provided by the Terminal
Filter Utilities.

TF 1-4

Chapter 2

COMMAND DESCRIPTIONS

PAGE

COMMAND SUMMARY . 2-1

HOW COMMANDS ARE DESCRIBED. 2-2

COMMANDS . 2-5

300,300s - Handle Special Functions of DASI 300 and DASI 300s

Terminals . 2-5

4014 - Paginator for the TEKTRONIX 4014 Terminal. 2-8

450 - Handles Special Functions of the DASH 450 Terminal 2-11

greek - Select Terminal Filter . 2-13

hp - Handles Special Functions for HEWLETT-PACKARD 2640- and 2621-

Series Terminals • . 2-15

hpio - HEWLETT-PACKARD 2645A Terminal Tape File Archiver............. 2-17

Chapter 2

COMMAND
DESCRIPTIONS

COMMAND SUMMARY
The Terminal Filter Utilities provide seven UNIX System commands. A
summary of these commands is provided in Figure 2-1.

TF 2-1

COMMAND DESCRIPTIONS

COMMAND DESCRIPTION

300, 300s Handle special functions of the DASI 300 and
DASI 300s terminal.

4014 Paginator for the TEKTRONIX 4014 terminal.

450 Handles special functions of the DASI 450
terminal.

greek Used in the command line to select the
correct terminal filter for your terminal.

hp Handles special functions of the HEWLETT-
PACKARD 2640- and 2621-series terminals.

hpio Tape file archiver for the HEWLETT-PACKARD
2645A terminal.

Figure 2-L Terminal Filter Utilities - Command Summary

HOW COMMANDS ARE DESCRIBED
Each terminal filter is either a command or an option to a command.
These filters are described in this chapter by the following format:

.. General: The purpose of the command is defined. Any special or
uncommon information about the command is also provided .

.. Command Format: The basic format (syntax) of the command line
is defined and the various fields and options are discussed.

TF 2-2

COMMAND DESCRIPTIONS

• Sample Command(s): Example command lines and system
responses are provided to show you how to use the command.

In the command format discussions the following symbology and
conventions are used to define the command syntax.

• The basic filter command is shown in bold type. For example, filter
is in bold type.

• Fields that you must supply to the command are shown in a special
type. For example: filter field.

• Command options and fields that do not have to be supplied are
enclosed in brackets []. For example: filter [optional fields].

In the sample command discussions, user inputs and 382 Computer
response examples are shown as follows:

This style of type is used to show system generated
responses displayed on your screen.

This style of bold type is used to show inputs
entered from your keyboard that are displayed on your
screen.

These bracket symbols, < > identify inputs from the
keyboard that are not displayed on your screen, such
as: <CR> carriage return, <CTRL cf> control d, <ESC g>
escape g, passwords, and tabs.

This style of italic type is used for notes i;ha.t
provide you with additi:onal information.

Also in the sample command discussion, the dollar sign ($) is used as the
system prompt. You will not enter the dollar sign. The pipe symbol (I) is
used to show that the NROFF command is piped (sent) through the
process following the pipe symbol.

TF 2-3

COMMAND DESCRIPTIONS

This is shown by the following example:

nroff (file) : process.

The sample commands shown in this chapter are designed to show the
terminal filter portions of an NROFF command. The formatted output will
be displayed on the screen and then disappear. To save the formatted
version of the file, you must direct the output into another file using the
greater than symbol(>). An example of this is:
nroff ·T300 chapl > CHAPl<CR>.
The formatted version of chapl will be saved in CHAPl.

Refer to the AT&T 382 Computer User Reference Manual for UN IX System
V manual pages supporting the commands described in this guide.

TF 2-4

COMMAND DESCRIPTIONS

COMMANDS

300,300s - Handle Special Functions of DASI 300 and DASI
300s Terminals

General

The 300 filter reinterprets special characters to use the DASI 300 (GSI 300
and DTC 300) terminal: 300s filter performs the same functions for the
DASI 300s (GSI 300s and OTC 300s) terminal.

These filters also attempt to draw Greek letters and other special
characters. They permit convenient use of 12-pitch text and reduce the
time needed for printing.

Caution: If your terminal has a PLOT switch, make sure it is
turned ON before 300/300s is used"

Command Format

The general format for the 300 and 300s filter commands is as follows:

300 [+ 12] [-n]
300s [+ 12] [-n]

The optional entries can be used in any combination, if at all.

+12 Permits the use of 12-pitch, 6 lines per inch text. To
obtain the 12-pitch, 6 lines per inch combination, you
should turn the PITCH switch to 12 and use the +12
option.

TF 2-5

COMMAND DESCRIPTIONS

-n Controls the size of half-line spacing. This allows for
individual taste in the placement and appearance of
subscripts and supersubscripts. Half-line is 4 vertical
increments by default.

Sample Commands

The 300 and 300s filters are used as options within an NROFF command
line. There are two ways to run NROFF through a terminal filter, and both
ways are shown in the following examples.

The following command lines show how to format a file named text for a
DASI 300 terminal:

$ nroff -T300 text<CR>

or

$nroff text 300<CR>

TF 2-6

COMMAND DESCRIPTIONS

The following command lines show how to format a file called book using
12-pitch, 6 lines per inch on a DASI 300s:

$ nroff -T300s-12 book<CR>

or

$ nroff book : 300s +12<CR>

The following command lines show how to format a file named doc using
quarter-lines instead of half-lines (half-lines equal 4 vertical increments by
default) on a DASI 300:

$ nroff -T300 -2 doc<CR>

or

$nroff doc 300 -2<CR>

TF 2-7

COMMAND DESCRIPTIONS

4014 - Paginator for the TEKTRONIX 4014 Terminal

General

The 4014 filter arranges for 66 lines to fit on the TEKTRONIX 4014
terminal screen. It also divides the screen into a specified amount of
columns and puts an eight-space margin on the left side of the page, if the
output is a single column.

At the end of each page, 4014 waits for a new-line signal from the
keyboard before going to the next page. In this wait state, commands can
be sent to the shell by using "f3! command."

Command Format

The general format for the 4014 filter is as follows:

4014 [-t] [-cN] [-pL] [file]

The optional entries are used to specify what type of format is to be used
on the screen.

-t Alters the output so that it does not wait for a new-line
signal between pages. This is useful when formatting into
another file.

-cN Divides the screen into the number of columns specified by
the number N.

-pL Sets the length of the page to L L can be expressed in
inches (1) or lines ({); no input means lines.

file Specifies the file that the filter is to reinterpret for display
on the screen.

TF 2-8

COMMAND DESCRIPTIONS

Sample Commands

The 4014 filter is used as an option within the NROFF command line, or as
an outside command to which the NROFF formatting process is piped.

The following command lines show how to format a file named text for a
TEKTRONIX 4014 terminal:

$ nroff -T4014 text<CR>

or

$nroff text 4014<CR>

TF 2-9

COMMAND DESCRIPTIONS

The following command lines show how to format a file named book
without waiting for a new-line between pages:

$ nroff -T4014 -t book<CR>

or

$nroff book 4014 -t<CR>

The following is a sample command line to show how to format a file
named group and make the output pages 30 lines long with two columns:

$ nroff -T4014 -c2 -p30 group<CR>

or

$nroff group 4014 -c2 -p30<CR>

TF 2-10

COMMAND DESCRIPTIONS

450 - Handles Special Functions of the DASI 450 Terminal

General

The 450 filter reinterprets NROFF output to use the DASI 450 terminal.
This filter attempts to draw Greek letters and other special symbols.

Caution: Make sure that the PLOT switch of your terminal is ON
before using 450. The SPACING switch should be put in the
desired (10- or 12-pitch) position.

Command Format

The general format for the 450 filter is:

450 [+12]

The + 12 option permits the use of 12-pitch text. To obtain the 12-pitch
text, the SPACING switch on your terminal should be set to 12 and the
+12 option used.

TF 2-11

COMMAND DESCRIPTIONS

Sample Commands

The 450 filter is used as an option within the NROFF command line, or as
an outside command to which the NROFF formatting process is piped.

The following command lines show how to format a file named text for a
DASI 450 terminal:

$ nroff -T450 text<CR>

or

$ nroff text 450<CR>

The following command lines show how to format a file named final using a
12-pitch format on a DASI 450:

$ nroff -T450-12 final<CR>

or

$nroff final 450 +12<CR>

TF 2-12

COMMAND DESCRIPTIONS

greek - Select Terminal Filter

General

Greek is a filter that reinterprets the character set used in NROFF for
various other terminals. Special characters are simulated by overstriking,
if necessary and if possible. If the terminal is not specified, greek attempts
to use the $TERM variable set in your environment

Command Format

The general format for a greek command is as follows:

greek [-Tterminan

The -Tterminal option is how you specify what type of terminal you have.
The -T followed by one of the following arguments specifies the terminal
filter required.

ARGUMENTS TERMINALS

300 DASI 300

300-12 DASI 300 (12-pitch)

300s DASI 300s

300s-12 DASI 300s (12-pitch)

450 DASI 450

450-12 DASI 450 (12-pitch)

4014 TEKTRONIX 4014

hp HEWLETT-PACKARD 2621, 2640, and 2645

TF 2-13

COMMAND DESCRIPTIONS

Sample Commands

The following command shows how to format the file named final for 12-
pitch text on a DASI 300s terminal:

r $ nrnff nn.t I gmk -T300o-1"CR>

TF 2-14

COMMAND DESCRIPTIONS

hp - Handles Special Functions for HEWLETT~PACKARD
2640~ and 2621-Series Terminals

General

The hp filter is designed to produce accurate representations of most
NROFF output for HEWLETT-PACKARD 2640- and 2621-series terminals.

Regardless of the hardware options on your terminal, hp tries to
accurately do underlines and reverse line-feeds.

Command Format

The basic command format for hp is as follows:

hp [-e] [-m]

The options available are used to enhance the output on the screen.

-e

-m

Assumes that your terminal has the "display
enhancements" feature. Overstruck characters are
presented in the underline mode. Superscripts are shown
in half-bright mode, and subscripts in half-bright, underline
mode. If this flag is omitted, hp assumes that your
terminal does not have the "display enhancement"
feature. Thus, all overstruck characters, subscripts, and
superscripts are displayed in inverse video, that is dark-on
light, rather than the usual light-on-dark.

Requests removal of new-lines in the output. Any amount
of successive blank lines is reduced to produce a single
blank line in the output.

TF 2-15

COMMAND DESCRIPTIONS

Sample Commands

The hp filter is used by piping (sending) the NROFF output through the
filter.

The following command line shows how to NROFF a file named doc for a
HEWLETT-PACKARD 2640 terminal:

r $ """" '"' : •e<CR>

The following command line shows how to NROFF a file named text for a
HEWLETT-PACKARD 2621A terminal. The command will minimize the
blank lines in the output:

r $ ornff '"" : ' ' -m,Cll>

TF 2-16

COMMAND DESCRIPTIONS

hpio - HEWLETT-PACKARD 2645A Terminal Tape File
Archiver

General

The hpio command was designed to take advantage of the tape drives on
HEWLETT-PACKARD 2645A terminals. Up to 255 UNIX System files can be
archived onto a tape cartridge, depending on the size of the files, for off
line storage or transfer to another UNIX System.

Hpio always leaves the tape at a position after the last file affected on the
tape. Tapes should always be rewound before the terminal is turned off.

Command Format

The general command format for hpio is as follows:

hpio -o[rc] file [file] [file] ...
hpio -i[rta] [-n count]

The hpio -o (copy out) copies the specified file(s), together with path name
and status information, to a tape drive on your terminal. The left tape
drive is used by default. Each file is written to a separate tape file and
ended with a tape mark.

The other options available are rand c. If r is entered after the -o, the
right tape drive is used. The c will include a checksum at the end of each
file. These options (rand c) can be used in any combination or not at all.

The hpio ·i (copy in) extracts a file, previously written by an hpio -o, from
a tape drive. The next file on the left tape drive will be extracted by
default.

TF 2-17

COMMAND DESCRIPTIONS

The r, t, and a options can be used after -i in any combination or not at all.
A description of each option is as follows:

r

t

a

Uses the right tape drive instead of the left.

Prints a table of contents only. No files are created.
Information in the table of contents includes file size, file
names, access modes, and whether a checksum has been
included.

Asks before creating a file. The file size and name are
printed, followed by a question mark(?). Any response
entered by you beginning with a y or Y will cause the file to
be copied in as usual. Any other response will cause the
file to be skipped.

The -n count option shows the number of input files to be extracted. For
example, -n 3 would extract 3 input files and stop. If this option is not
given, count defaults to 1. If all files on a tape are needed, you may
choose an arbitrarily large count.

TF 2-18

COMMAND DESCRIPTIONS

Sample Commands

The following command line shows how to copy a file named table to a
tape drive on your terminal:

The following command line shows how to copy a file named frame out to
the "right" tape drive of your terminal:

The following command line shows how to copy a file in from a tape drive
on your terminal. The file test is the next file on the tape.

$ hpio -i<CR>
2 bytes: test
test: read complete
$

TF 2-19

COMMAND DESCRIPTIONS

The following command line shows how to copy a file in from the "right"
tape drive and have the terminal ask if you want the file to be copied or
skipped. The next file on the tape is chapl.

r $ >pfo -irn<CR>
4 bytes: chap 1?

If you enter a y, the file will transfer as usual. Anything else will skip the
file chapl and go to the start of the next file.

The following command line shows how to copy in the next four files from
the "right" tape drive. The names of the next four files are:

chapl,chap3,chap4,appen

$ hpio -ir -n 4<CR>
3 bytes: chap2
chap2: read complete
7 bytes: chap3
chap3: read complete
4 bytes: chap4
chap4: read complete
1 byte: appen
appen: read complete
$

TF 2-20

Replace this

page with the

TERMINAL INFORMATION

tab separator.

ATs.T

AT&T 382 Computer
UNIX™ System V Release 2,0
Terminal Information
Utilities Guide

CONTENTS

Chapter L INTRODUCTION

Chapter 2" SCREEN MANIPULATION

Chapter 3" WINDOW MANIPULATION

Chapter 4" MULTIPLE TERMINALS

Chapter 5. PORTABILITY FUNCTIONS

Chapter 6" LOWER LEVEL FUNCTIONS

Chapter 7" TERMINFO DATABASE

Appendix: CURSES EXAMPLES

Chapter 1

INTRODUCTION

PAGE

FEATURE DESCRIPTION . 1-1

GUIDE ORGANIZATION . 1-2

SPECIAL NOTATIONS . 1-3

Functions. 1-3

Comments . 1-4

Chapter 1

INTRODUCTION

This guide describes the Terminal Information Utilities available with the
AT&T 382 Computer. These utilities use the terminfo database and the
curses library to improve the output of data to a video display terminal.

FEATURE DESCRIPTION
The terminfo database contains the descriptions of over 150 terminals.
The terminals are described by giving a set of terminal capabilities and by
describing how operations are performed. It is based on the termcap
database, but contains many improvements and extensions.

The curses library is a collection of routines with the major function of
"cursor optimization." Curses uses the terminfo database to obtain the
specific information about the characteristics of any terminal that may be
using the optimization function.

The capabilities described in this guide are intended for the sophisticated
user with C Language programming experience who must write a screen
oriented program using the curses routines.

Tl 1-1

INTRODUCTION

The curses programs are compiled as C Language programs. The general
command line to compile a curses program is as follows:

cc filename.c -lcurses -o FILENAME

The filename.c variable is the name of the C Language program. The
executable output of the compiled program is written to FILENAME.

GUIDE ORGANIZATION
This guide is structured so you may easily find the information that you are
looking for without having to read the entire text. The remainder of this
guide is organized as follows:

• Chapter 2, "SCREEN MANIPULATION," describes the screen
manipulation capabilities provided by this utilities using examples of
routines.

• Chapter 3, "WINDOW MANIPULATION," describes the window
manipulation functions of the Terminal Information Utilities.
Included in this chapter is a description of the pad manipulation
capabilities.

• Chapter 4, "MULTIPLE TERMINALS," describes the procedures for
accessing and using multiple terminals with the curses library
functions.

• Chapter 5, "PORTABILITY FUNCTIONS," provides a description of
the portability functions associated with curses.

• Chapter 6, "LOWER LEVEL FUNCTIONS," gives a brief explanation of
those functions that do not need the screen optimization capabilities
of curses. These functions are considered to be "lower level
functions."

Tl 1-2

INTRODUCTION

.. Chapter 7, "TERMINFO DATABASE," describes the format and
construction process of a terminfo entry .

.. Appendix, "CURSES EXAMPLES," contains some larger, more useful
examples of curses programs.

SPECIAL NOTATIONS
The following special notations and naming conventions are used
throughout this guide.

Functions

The function names are shown in bold type followed by parentheses. The
parentheses are used to designate the parameters to the function. The
variables found in the parentheses represent the information that dictates
where or how the function acts. The common variables used inside the
parentheses and a description of what they represent are as follows:

bf Represents a Boolean flag with a value of TRUE or FALSE to
show whether to enable or disable the function. Most functions
that use this variable are initially FALSE.

ch Represents a character entry.

win Represents the window appointed for the function. When this
variable appears, you must specify what window is to receive
the action.

y, x Represent the row and column, respectively, for the cursor
position.

str Represents a string of characters to be input.

Any other function variable that is encountered will be explained in the
associated discussion.

Tl 1-3

INTRODUCTION

Also, many function names include the main function with a prefix. The
prefix is used to show the form of the function used. For instance, printw
is a standard curses print routine. The wprintw function is a window print
routine. A prefix of mv shows a starting position to be given to the routine.
Thus, lnvprintw will begin printing at the appointed cursor position and
mvwprintw will begin printing at the appointed cursor position inside the
appointed window.

Comments

Example programs contained in this guide include comments to help
explain the procedures in the program. The comments are contained by
the characters "/ *" and "~' /." Comments are ignored by program
executions.

Tl 1-4

Chapter 2

SCREEN MANIPULATION

PAGE

STRUCTURE . 2-1

INITIALIZATION . 2-3

General • . 2-3

INPUT /OUTPUT FUNCTIONS . 2-4

General . 2-4

Output.. 2-6

Input . 2-15

Delays . 2-17

TERMINAL SETTINGS . 2-18

Terminal Mode Setting . 2-18

Option Setting . 2-21

Chapter 2

SCREEN MANIPULATION

Through curses, a terminal screen can be scrolled, cleared, or divided into
separate windows. The most basic function of a curses program is screen
manipulation. The structure of a curses program is always the same. The
simplicity or complexity of the program function has no influence on the
program structure.

STRUCTURE
All programs using curses should include the file curses.h. This file defines
several curses functions as macros and defines several global variables and
the datatype WINDOW. References to windows are always of the type
WINDOW *name-of-window. Curses also defines WINDOW *constants
stdscr and curscr. The stdscr (standard screen) constant is used as a
default value to routines expecting a window. The curscr (current screen)
constant is used only for certain low-level operations like clearing and
redrawing a garbaged screen. Integer constants, that dictate the size of
the screen, for LINES and COLS are defined. Constants TRUE and FALSE
are defined with values 1 and 0, respectively. Additional constants that are
values returned from most curses functions are ERR and OK. The OK
value is returned if the function could be properly completed, and ERR is

Tl 2-1

SCREEN MANIPULATION

returned if there was some error such as moving the cursor outside a
window.

The include file curses.h automatically includes stdio.hand an appropriate
tty driver interface file, currently either termio.h or sgtty.h.

Note: The driver interface sgtty.h is a tty driver interface used in
other versions of the UN!X* System.

Including stdio.h again is harmless but wasteful; including termio.h again
will usually result in a fatal error.

A program using curses should include the loader option -/curses in the
makefile. This is true for both the terminfo level and the curses level.

* Trademark of AT&T

Tl 2-2

SCREEN MANIPULATION

INITIALIZATION

General

The following functions are called when initializing a program.

initscr()
The first function called should always be initscr. This will determine
the terminal type and initialize curses data structures. The initscr
function also arranges that the first call to refresh will clear the
screen.

endwin()
A program should always call endwin before exiting. This function will
restore tty modes, move the cursor to the lower left corner of the
screen, reset the terminal into the proper nonvisual mode, and tear
down all appropriate data structures.

The following is a sample of the smallest possible curses program. The
only thing this program will do is clear (refresh) the screen.

#include <curses.h>

main()
{

initscr();

refresh() ;
endwin() ;

Tl 2-3

SCREEN MANIPULATION

INPUT /OUTPUT FUNCTIONS

General

printw(fmt, args)
wprintw(win, fmt, args)
mvprintw(y, x, fmt, args)
mvwprintw(win, y, x, fmt, args)

These functions correspond to printf. The characters that would be
output by printf are instead output using waddch on the given
window. Never use printf in a curses program because curses must
have total control of the terminal.

refresh()
wrefresh(win)

These functions must be called to get any output on the terminal,
since other routines merely manipulate data structures. The
wrefresh function copies the named window to the physical terminal
screen, taking into account what is already there to do optimization.
The refresh function is the same, using stdscr as a default screen.
Unless leaveok has been enabled, the physical cursor of the terminal
is left at the location of the cursor for that window. (Refer to the
"Option Setting" heading in the "TERMINAL SETTINGS" section of
this chapter for a description of leaveok.)

move(y, x)
wmove(win, y, x)

The cursor associated with the window is moved to the given
location. This does not move the physical cursor of the terminal until
refresh is called. The position specified is relative to the upper left
corner of the window. Thus, if you have a window that is not in the
upper left corner of the screen, you would have to specify the screen
coordinates as a distance from the upper left corner of the window.
The upper left corner of the window is position (0, 0).

The following sample program shows the use of the printw and move
functions. This program will print "Hello World" in the center of the

Tl 2-4

SCREEN MANIPULATION

screen. The center of the screen is determined as the half-screen point
both vertically (LINES / 2) and horizontally (COLS / 2).

#include <curses.h>

main()

{
ini tscr() ;

move(LINES/ 2, COLS/ 2);
printw("Hello World") ;
refresh () ;
endwin() ;

The output of this program will appear as follows:

$

erase()
werase(win)

Hello World

These functions copy blanks to every position in the window.

clear()
wclear(win)

These functions are like erase and werase, but they also call clearok,
arranging that the screen will be cleared on the next call to refresh
for that window.

Tl 2-5

SCREEN MANIPULATION

clrtobot()
wclrtobot(win)

All lines below the cursor in this window are erased. Also, the current
line to the right of the cursor is erased.

clrtoeol()
wclrtoeol(win)

The current line to the right of the cursor is erased.

The following sample program shows the use of the clrtobot function. This
program will print a full screen of lines, move the cursor to the fifth line
(cursor position 5, 0), and clear all lines below the cursor.

#include <curses.h>

main()

int i;

initscr();

for(iMO; i<LINES; i++)

printw("This is line %d of the standard screen. \n", i) ;

refresh();

sleep(5);

move (5, 0) ;

clrtobot();

refresh() ;
endwin() ;

Output

A program using curses always starts by calling initscr(). Other modes
can then be set as needed by the program. Possible modes include
cbreak() and idiok(stdscr, TRUE). These modes will be explained later in
this section. During the execution of the program, output to the screen is
done with routines such as addch(ch) and printw(fmt,args). (These
routines behave just like putchar and printf except that they go through

Tl 2-6

SCREEN MANIPULATION

curses.) The cursor can be moved with the call move(row,col). These
routines only output to a data structure called a window, not to the
screen. A window is a representation of a terminal screen containing such
things as an array of characters to be displayed on the screen, a cursor, a
current set of video attributes, and various modes and options. You don't
need to worry about windows unless you use more than one of them,
except to realize that a window is buffering your requests to output to the
screen.

To determine how to update the screen, curses must know what is always
on the screen. This requires curses to clear the screen in the first call to
refresh and to always know the cursor position and screen contents. To
send all accumulated output, it is necessary to call refresh(). (This can be
thought of as a flush.) Remember, before the program exits, it should call
endwin(), that restores all terminal settings and positions the cursor at the
bottom of the screen.

See the program scatter in the Appendix for an example program that uses
many of the output routines.

No output to the terminal actually happens until refresh is called. Instead,
routines such as move and addch draw on a window data structure called
stdscr (standard screen). Curses always keeps track of what is on the
physical screen as well as what is in stdscr.

When refresh is called, curses compares the two screen images and sends
a stream of characters to the terminal that will turn the current screen
into what is desired. Curses considers many different ways to do this,
taking into account the various capabilities of the terminal and the
similarities between what is on the screen and what is desired. Curses
usually outputs as few characters as is possible. This function is called
cursor optimization, and it is the source of the name of the curses utilities.

Note: Owing to the hardware scrolling of some terminals, writing
to the lower right-hand character position could be impossible.

Tl 2-7

SCREEN MANIPULATION

Bells and Flashing lights

utilities()
flash()

These functions are used to signal the programmer. The beep
function will sound the audible alarm on the terminal, if possible; and
if not possible, the beep function will flash the screen (visible bell), if
that is possible. The flash function will flash the screen; and if that is
not possible, the flash function will sound the audible signal. If
neither signal is possible, nothing will happen. Nearly all terminals
have an audible signal (bell or beep), but only some can flash the
screen. In the program scatter note the call to flash(), that flashes
the screen if possible, and otherwise rings the bell. Flashing the
screen is intended as a bell replacement, and flashing is particularly
useful if the bell bothers someone within hearing distance of the
user's terminal. The routine beep() can be called when a real beep is
desired. (If for some reason the terminal is unable to beep but able
to flash, a call to beep will flash the screen.)

Inserting and Deleting Text

insertln()
winsertln(win)

A blank line is inserted above the current line. The bottom line is
lost. This does not necessarily imply use of the hardware insert line
feature.

deleteln()
wdeleteln(win)

The line under the cursor in the window is deleted. All lines below the
current line are moved up one line. The bottom line of the window is
cleared. This does not necessarily imply use of the hardware delete
line feature.

Tl 2-8

Writing One Character

addch(ch)
waddch(win, ch)
mvaddch(y, x, ch)
mvwaddch(win, y, x, ch)

SCREEN MANIPULATION

The character ch is put in the window at the current cursor position
of the window. If ch is a tab, newline, or backspace the cursor will be
moved appropriately in the window. If ch is a different control
character, it will be drawn in the ·x notation. The position of the
window cursor is advanced. At the right margin, an automatic
newline is performed. At the bottom of the scrolling region, if
scrollok is enabled, the scrolling region will be scrolled up one line,
and wrefresh will be called. If scrollok isn't enabled, the cursor will
print the next characters on the last line of the window. (Refer to the
"Option Setting" heading in the "TERMINAL SETTINGS" section of
this chapter for the description of scrollok.)

The ch parameter is actually an integer, not a character. Video
attributes can be combined with a character by OR-ing them into the
parameter. This will result in these video attributes also being set, in
addition to any current attributes in the window. (The intent here is
that text including attributes can be copied from one place to another
with inch and addch.)

Writing a String

addstr(str)
waddstr(win,str)
mvaddstr(y ,x,str)
mvwaddstr(win,y,x,str)

These functions write all the characters of the null terminated
character string str on the given window. They are identical to a
series of calls to addch.

Tl 2-9

SCREEN MANIPULATION

The following sample shows the use of the mvaddstr function.

#include <curses.h>

main()
{

ini tscr() ;

mvaddstr(LINES / 2, (COLS / 2) - 11,
"Hello UNIX System User.");

refresh () ;

endwin() ;

The output for this program would appear as follows:

Hello UNIX System User.

$

delch()
wdelch(win)
mvdelch(y,x)
mvwdelch(win,y,x)

The character under the cursor in the window is deleted. All
characters to the right on the same line are moved to the left one
position. The rightmost character on the line is set to an
unhighlighted blank. This does not necessarily imply use of the
hardware delete character feature.

Tl 2-10

insch(c)
winsch(win, c)
mvi nsch(y ,x,c)
mvwinsch(win,y,x,c)

SCREEN MANIPULATION

The character c is inserted before the character under the cursor.
All characters to the right are moved one space to the right, possibly
losing the rightmost character on the line. This does not necessarily
imply use of the hardware insert character feature.

inch()
winch(win)
mvinch(y,x)
mvwinch(win,y,x)

The character at the current position in the named window is
returned. If any attributes are set for that position, their values will
be OR-ed in with the value returned. The predefined constants
A_ATTRIBUTES and A_CHARTEXT can be used with the "&" operator
to extract the character or attributes alone.

Video Attributes

The function addch always draws two things on a window. In addition to
the character itself, a set of attributes is associated with the character.
These attributes cover various forms of highlighting the character. For
example, the character can be put in reverse video, bold, or be underlined.
You can think of the attributes as the color of the ink used to draw the
character.

A window always has a set of current attributes associated with it. The
current attributes are associated with each character as it is written to the
window. Attributes are a property of the character and move with the
character through any scrolling and insert/ delete line/ character
operations. To the extent possible on the particular terminal, they will be
displayed as the graphic rendition of characters put on the screen. The
current attributes can be changed with a call to attrset(attrs). (Think of
this as dipping the pen for that window in a particular color ink.)

Tl 2-11

SCREEN MANIPULATION

The names of the attributes are:

A_STANDOUT
A_REVERSE
A_BLINK
A_PROTECT
A_DIM

A_UNDERLINE
A_BOLD
A_BLANK
A_AL TCHARSET

Not all terminals are capable of displaying all attributes. If a particular
terminal cannot display a requested attribute, curses will attempt to find a
substitute attribute. If none is possible, the attribute is ignored.

One particular attribute is called STANDOUT. This attribute is used to
make text attract the attention of the user. The particular hardware
attribute used for standout varies from terminal to terminal and is usually
the most visually pleasing attribute the terminal can produce. Standout is
typically implemented as reverse video or bold. Many programs do not
really need a specific attribute, such as bold or inverse video, but instead
just need to highlight some text. For such applications, the A_STANDOUT
attribute is recommended. Two convenient functions, standout() and
standend() turn on and off this attribute.

Attributes can be turned on in combination. Thus, to turn on blinking bold
text, use attrset(A_BLINKIA_BOlD). Individual attributes can be turned on
and off with attron and attroff without affecting other attributes.

For an example program using attributes, see the highlight program in the
Appendix. The highlight program comes about as close to being a filter as
is possible with curses. It is not a true filter because curses must "take
over" the terminal screen.

The following functions set the "current attributes" of the named window.
These constants are defined in curses.h and can be combined with the
CI (or) operator.

Tl 2-12

SCREEN MANIPULATION

attrset(at)
wattrset(win, attrs)

The attrset(at) function sets the current attributes of the given
window to at.

attroff(at)
wattroff(win, attrs)

The attroff(at) function turns off the named attributes without
affecting any other attributes.

attron(at)
wattron(win, attrs)

The attron(at) function turns on the named attributes without
affecting any others.

standout()
standend()
wstandout(win)
wstandend(win)

The standout function is the same as attron(A_STANDOUT). The
standend function turns off all attributes, the same as attrset (0).

Tl 2-13

SCREEN MANIPULATION

The following sample shows the use of video attributes. Note that this
program is expanded from the sample program shown in the "Writing a
String" section presented earlier in this chapter.

#include <curses. h>

main()

initscr();

attron(A_STANDOUT);

mvaddstr(LINES / 2, COLS / 2) - 11, "Hello ") ;

attron(A_BLINK);

refresh () ;

printw ("UNIX ") ;

refresh();

at troff(A_ STANDOUT I A BLINK) ;

attron(A_UNDERLINE);

printw ("System ") ;

refresh () ;

attroff(A_UNDERLINE);

printw ("Users") ;

refresh () ;

endwin() ;

If your terminal has all these attribute capabilities, the output will appear
as explained below:

• The word "Hello" will be displayed in inverse-video.

• The word "UNIX" will be displayed in inverse-video and will also
blink.

• The word "System" will return to the normal mode of display, but
will be underlined.

• The word "Users" will appear as normal text for your terminal.

Tl 2-14

SCREEN MANIPULATION

Input

Curses can do more than just draw on the screen. Functions are also
provided for input from the keyboard. The primary function is getch() that
waits for the user to type a character on the keyboard and then returns
that character. This function is like getchar except that it goes through
curses. Its use is recommended for programs using the cbreak() or
noecho() options since several terminal or system dependent options
become available that cannot be written portably with getchar.

Options available with getch include keypad that allows extra keys such as
arrow keys, function keys, and other special keys that transmit escape
sequences to be treated as just another key. The values for these keys
are over octal 400; so, they should be stored in a variable larger than a
char. (See the curses manual page in the AT&T 382 Computer Programer
Reference Manual for a list of function keys and their value.) The nodelay
mode causes the value -1 to be returned if there is no input waiting.
(Refer to the "Option Setting" heading in the "TERMINAL SETTINGS"
section of this chapter for the description of nodelay.) Normally, getch will
wait until a character is typed. Finally, the routine getstr(str) can be
called, allowing input of an entire line, up to a newline. This routine
handles echoing and the erase and kill characters of the user.

See the program show in the Appendix for an example use of getch.

getch()
wgetch(win)
mvgetch(y,x)
mvwgetch(win,y,x)

A character is read from the terminal associated with the window. In
nodelay mode, if there is no input waiting, the value -1 is returned.
In delay mode, the program will hang until the system passes text
through to the program. Depending on the setting of cbreak, this will
be after one character or after the first newline.

If keypad mode is enabled and a function key is pressed, the code for
that function key will be returned instead of the raw characters.
Possible function keys are defined with integers beginning with 0401

Tl 2-15

SCREEN MANIPULATION

whose names begin with KEY_ . (Refer to the curses manual page in
the AT&T 382 Computer Programer Reference Manual.) If a
character is received that could be the beginning of a function key
(such as escape), curses will set a I-second timer. If the remainder
of the sequence does not come in within 1 second, the character will
be passed through; otherwise, the function key value will be returned.
So, on many terminals there will be a one second delay after a user
presses the escape key. (Using the escape key for a single character
function is discouraged.)

getstr(str)
wgetstr(win,str),
mvgetstr(y,x,str)
mvwgetstr(win,y,x,str)

A series of calls to getch is made until a newline is received. The
resulting value is placed in the area appointed by the character
pointer str. The user's erase and kill characters are interpreted.

scanw(fmt, args)
wscanw(win, fmt, args)
mvscanw(y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)

This function corresponds to scanf. The wgetstr function is called on
the window, and the resulting line is used as input for the scan.

Tl 2-16

SCREEN MANIPULATION

Delays

These functions are not considered to be portable, but are often needed
by programs, especially real time response programs, that use curses.
Some of these functions require a particular operating system or a change
to the operating system to work. The routine will always compile and
return an error status if the requested action is not possible. It is
recommended that programmers avoid use of these functions if possible.

draino(O)
The program is suspended until the output queue has drained enough
to complete in 0 additional milliseconds. The purpose of this routine
is to keep the program (and thus the keyboard) from getting ahead of
the screen. If the operating system does not support the ioctls
needed to fulfill draino, the value ERR is returned; otherwise, OK is
returned.

napms(ms)
This function suspends the program for ms milliseconds. It is similar
to sleep except with higher resolution. The resolution actually
provided will vary with the facilities available in the operating system,
and often a change to the operating system will be necessary to
produce good results. The best resolution possible is about .1
seconds. If this resolution is not obtainable, the napms routine will
round to the next higher second, call sleep, and return ERR.
Otherwise, the value "OK" is returned.

Tl 2-17

SCREEN MANIPULATION

TERMINAL SETTINGS

Terminal Mode Setting

These functions are used to set modes in the tty driver. The initial mode
usually depends on the setting when the program was called:

longname()
This function returns a pointer to a static area containing a verbose
description of the current terminal. It is defined only after a call to
initscr, newterm, or setupterm.

The longname function does not need any arguments. It returns a
pointer to a static area containing the long name of the terminal.

echo()
noecho()

These functions control the way characters typed by the user are
echoed. Initially, characters typed are echoed by the tty driver.
Authors of many interactive programs prefer to do their own echoing
in a controlled area of the screen, or they prefer not to echo at all,
so they disable echoing.

nl()
non I()

These functions control whether newline is translated into carriage
return and linefeed on output, and whether return is translated into
newline on input. Initially, the translations do occur. By disabling
these translations, curses is able to make better use of the linefeed
capability, resulting in faster cursor motion. Unless you need to have
the RETURN key mapped into NEWLINE, it is recommended that you
set nonl(), in addition to cbreak() and noecho().

scroll(win)
The window is scrolled up one line. This involves moving the lines in
the window data structure. As an optimization, if the window is
stdscr and the scrolling region is the entire window, the physical
screen will be scrolled at the same time.

Tl 2-18

cbreak()
nocbreak()

SCREEN MANIPULATION

These two functions put the terminal into and out of cbreak mode. In
this mode, characters typed by the user are immediately available to
the program. When out of this mode, the tty driver will buffer
characters typed until newline is typed. Interrupt and flow control
characters are unaffected by this mode. Initially, the terminal is not
in cbreak mode. Most interactive programs using curses will set this
mode.

raw()
noraw()

The terminal is placed into or out of raw mode. Raw mode is similar
to cbreak mode in that characters typed are immediately passed
through to the user program. The differences are that in RAW mode
the interrupt and quit characters are passed through uninterpreted
instead of generating a signal. RAW mode also causes 8-bit input and
output. The behavior of the BREAK key and suspend signal may be
different on different systems.

Tl 2-19

SCREEN MANIPULATION

The following sample program combines the echo and noecho functions
with some of the Input/Output functions described earlier in this chapter.
The program will not echo (display) what is typed by the user. However,
the program will respond with a message according to the character
typed. If an "h" is entered, "Hello World" is displayed; a "q" will display
"Good Bye" and stop the program. Any other letter entered will display
the "Sorry only h ... " message.

Tl 2-20

#include <curses.h>

main ()

int g;

ini tscr() ;

cbreak() ;

noecho() ;

nonl();

refresh () ;

for (" " ''

if g = getch()

if(g == 'h')

! = 'q')

printw("Hello World. \n") ;

else

else

printw("Sorry only h will be accepted. \n") ;
refresh() ;

printw("Good Bye. \n") ;

refresh () ;

endwin () ;

exit(0);

SCREEN MANIPULATION

Option Setting

General

These functions set options within curses.

dearok(win,bf)
If set, the next call to wrefresh with this window will clear the screen
and redraw the entire screen. If win is c1.1rscr, the next call to
wrefresh with any window will cause the screen to be cleared. This is
useful when the contents of the screen are uncertain, or sometimes
for a more pleasing visual effect.

An example of the clearok function is shown in the following sample
program.

#include <curses.h>

main()
{

ini tscr() ;

move(LINES / 2, (COLS / 2) - 5);
printw("Hello World") ;
refresh() ;
sleep(1);
clearok(stdscr, l);
move((LINES / 2) + 5, COLS / 3);
printw("Hello Everybody") ;
wrefresh(stdscr);
endwin();

Tl 2-21

SCREEN MANIPULATION

The output from this program will appear in two separate displays. The
first display will appear as follows:

Hello World

The screen will then be cleared and redrawn with the additional message
"Hello Everybody." The resulting display will appear as follows:

Hello World

Hello Everybody

$

Tl 2-22

SCREEN MANIPULATION

idlok(win,bf)
If enabled, curses will consider using the hardware insert/ delete line
feature of terminals so equipped. If disabled, curses will never use
this feature. The insert/ delete character feature is always
considered. Enable this option only if your application needs the
insert/ delete line, for example, for a screen editor, or for scrolling.
The insert/ delete feature is disabled by default because the
insert/ delete line tends to be visually annoying when used in
applications where it isn't really needed. If the insert/ delete line
cannot be used, curses will redraw the changed portions of all lines
that do not match the desired line.

keypad(win,bf)
This option enables the keypad of the users terminal. If enabled, the
user can press a function key (such as an arrow key), and getch will
return a single value representing the function key. If disabled,
curses will not treat function keys specially. If the keypad in the
terminal can be turned on (made to transmit) and off (made to work
locally), turning on this option will turn on the terminal keypad.

scrollok(win,bf)
This option controls what happens when the cursor of a window is
moved off the edge of the window either from a newline on the
bottom line or typing the last character of the last line. If disabled,
the cursor is left on the bottom line. If enabled, wrefresh is called on
the window, and then the physical terminal and window are scrolled
up one line. Note that to get the physical scrolling effect on the
terminal, it is also necessary to call idlok.

Advanced

leaveok(win,bf)
Normally, the hardware cursor is left at the location of the window
cursor being refreshed. The leaveok option allows the cursor to be
left wherever the update happens to leave it. The leaveok option is
useful for applications where the cursor is not used, since it reduces
the need for cursor motions. If possible, the cursor is made invisible
when this option is enabled.

Tl 2-23

SCREEN MANIPULATION

nodelay(win,bf)
This option causes getch to be a nonblocking call. It no input is
ready, getch will return -1. If disabled, getch will hang until a key is
pressed.

unctri(ch)
The unctrl(ch) function is actually a macro that makes a printable
representation of the character ch. Control characters are displayed
in the "'X" notation and printing characters are displayed as is.

Expert

meta(win,bf)
If enabled, characters returned by getch are transmitted with all 8
bits instead of stripping the highest bit. The value OK is returned if
the request succeeded, the value ERR is returned if the terminal or
system is not capable of 8-bit input.

The meta mode is useful for extending the non-text command set in
applications where the terminal has a meta shift key. Curses takes
whatever measures are necessary to arrange for 8-bit input. On
some other versions of UNIX Systems, the raw mode will be used.
On the 382 Computer, the character size will be set to 8, parity
checking disabled, and stripping of the 8th bit turned off.

Note that 8-bit input is a fragile mode. Many programs and networks only
pass 7 bits. If any link in the chain from the terminal to the application
program strips the 8th bit, 8-bit input is impossible.

intrflush(win,bf)
If this option is enabled when an interrupt key is pressed on the
keyboard (interrupt, quit, suspend), all output in the tty driver queue
will be flushed, giving the effect of faster response to the interrupt
but causing curses to have the wrong idea of what is on the screen.
Disabling the option prevents the flush. The default is for the option
to be enabled. This option depends on support in the underlying tty
driver.

Tl 2-24

SCREEN MANIPULATION

typeahead(fd)
Sets the file descriptor for typeahead check. The fd variable should
be an integer returned from open or fileno. Setting typeahead to the
default value of -1 will disable typeahead check. By default, file
descriptor 0 (stdin) is used. The typeahead is checked independently
for each screen, and for multiple interactive terminals it should
probably be set to the appropriate input for each screen. A call to
typeahead always affects only the current screen.

setscrreg(t,b}
wsetscrreg(win,t,b)

These functions allow the user to set a software scrolling region in a
window win or stdscr. The t and b variables are the line numbers of
the top and bottom margin of the scrolling region. (Line 0 is the top
line of the window.) If this option and scrollok are enabled, an
attempt to move off the bottom margin line (addch a newline) will
cause all lines in the scrolling region to scroll up one line. Note that
this has nothing to do with use of a physical scrolling region capability
in the terminal. Only the text of the window is scrolled. If idlok is
enabled and the terminal has either a scrolling region or
insert/ delete line capability, they will probably be used by the output
routines.

Tl 2-25

SCREEN MANIPULATION

The following sample program shows the usage of some of the more
complicated "Option Setting" functions. This program is designed to
display several lines separated by a scrolling region. The program will then
display lines inside the scrolling region and show the scrolling action as
lines are added to the bottom of the region.

#include <curses.h>

main()

int i, t, b;

initscr();
t = LINES/3;
b = (LINES I 3) • 2;
scrollok(stdscr, TRUE) ;

idlok(stdscr, TRUE) ;

setscrreg(t. b) ;

mvaddstr(t -1' 0' "THIS IS LINE l OUTSIDE THE SCROLLING REGION"
mvaddstr(b+l, 0' "THIS IS LINE 2 OUTSIDE THE SCROLLING REGION"
mvaddstr(b+2, 0, "THIS IS LINE 3 OUTSIDE THE SCROLLING REGION"
mvaddstr(b+3, 0, "THIS IS LINE 4 OUTSIDE THE SCROLLING REGION"
mvaddstr(b+4, 0, "THIS IS LINE 5i OUTSIDE THE SCROLLING REGION"
mvaddstr(b+5, 0' "THIS IS LINE 6 OUTSIDE THE SCROLLING REGION"
mvaddstr(b+6, 0' "THIS IS LINE 7 OUTSIDE THE SCROLLING REGION"
mvaddstr(b+7' 0' "THIS IS LINE 8 OUTSIDE THE SCROLLING REGION"
r~fresh () ;
move(t' 0) ;

for(j_ = t; i < b+3; i++)

printw("This is line %d of the standard screen.\n", i);
sleep(2);
refresh();

end win () ;

Tl 2-26

) ;

) ;

) ;

) ;

) ;

) ;

) ;

) ;

Chapter 3

WINDOW MANIPULATION

PAGE

INITIAUZATION . 3-1

General . 3-1

Multiple Windows . 3-6

INPUT /OUTPUT FUNCTIONS . • 3-8

General . 3-8

Input . 3-11

PAD MANIPULATION . 3-12

Chapter 3

WINDOW MANIPULATION

INITIALIZATION

General

These functions are some of the more common window manipulation
routines. These functions are used to build, move, and delete curses
windows.

newwin(num_lines, num_cois, beg_row, beg_coi)
Create a new window with the given amount of lines and columns.
The upper left corner of the window is at line beg_row, column
beg_col. If either num_!ines or nnJm_co!s is zero, they will be
defaulted to UNES·beg_row and COlS·beg_col. A new full screen
window is created by calling newwin(0,0,0,0).

delwin(win)
Deletes the named window, freeing up all memory associated with it.
If there are overlapping windows, subwindows should be deleted
before the main window.

Tl 3-1

WINDOW MANIPULATION

touehwin(win)
Throw away all optimization information about what parts of the
window have been touched by pretending the entire window has been
drawn on. This is sometimes necessary when using overlapping
windows, since a change to one window will affect the other window;
but the records of what lines have been changed in the other window
will not reflect the change.

mvwin(win, br, be)
Move the window so that the upper left corner will be at position
(br, be). If the move would cause the window to be off the screen, it
is an error and the window is not moved.

subwin(orig, num_lines, num_cols, begy, begx)
Create a new window with the given amount of lines and columns.
The window is at position begy, begx on the screen. (It is relative to
the screen, not orig.) The window is made in the middle of the
window orig, so that changes made to one window will affect both
windows. When using this function, often it will be necessary to call
to1Uehwin before calling wrefresh.

overlay(winl, win2)
overwrite(winl, win2)

These functions overlay winl on top of win2; that is, all text in winl
is copied into win2. The difference is that overlay is nondestructive
(blanks are not copied). This means that the bottom window will
show through the blank spaces of the top window. The overwrite is
destructive; that is, the top window will completely cover the bottom
window.

Tl 3-2

WINDOW MANIPULATION

The following sample program shows how the overwrite function can be
used.

#include <curses.II>

main()
{

int j;

llJINDOli/

ini tscr() ;

"'winl, *win2;

winl = newwin(10, 8, 0, 0);
win2 = newwin(10, 8, 0, 0);

for(j=O; j<lO; j++)

wprintw(winl, "1111111\n") ;
for(j=O; j<lO; j++)

wprintw(win2, "2 2 2 2\n");
wrefresh(winl);
wgetch(winl);
overwrite(win2, winl);
wrefresh(winl);
endwin() ;

The output from this program will appear with two separate windows. The
first window will appear as follows:

1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111
1111111

Tl 3-3

WINDOW MANIPULATION

The second window will appear when a character is entered from the
keyboard. This window will appear as follows:

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

$

If this program had been written to show the overlay function, the second
window would appear as follows:

2121212
2121212
2121212
2121212
2121212
2121212
2121212
2121212
2121212
2121212

$

Note: Notice that the "l's" show through the blank spaces
between the "2's" in the output from the overlay function.

Tl 3-4

WINDOW MANIPULATION

box(win, vert, hor)
A box is drawn around the edge of the window. The vert and hor
variables are the characters the box is to be drawn with. If vert or
hor have the value of zero, curses will substitute reasonable
characters for the zero.

refresh()
wrefresh(win)

This function must be called to get any output on the terminal, as
other routines merely manipulate data structures. The wrefresh
function copies the named window to the physical terminal screen,
taking into account what is already there to do optimizations. The
refresh function is the same, using stdscr as a default screen. Unless
leaveok has been enabled, the physical cursor of the terminal is left
at the location of the window cursor.

doupdate()
wnoutrefresh(win)

These two functions allow multiple updates with more efficiency than
wrefresh. To use them, it is important to understand how curses
works. In addition to all the window structures, curses keeps two
data structures representing the terminal screen: a physical screen,
describing what is actually on the screen, and a virtual screen,
describing what the programmer wants to have on the screen. The
wrefresh function works by first copying the named window to the
virtual screen (wnoutrefresh) and then calling the routine to update
the screen (doupdate). If the programmer wishes to output several
windows at once, a series of calls to wrefresh will result in alternating
calls to wnoutrefresh and doupdate, causing several bursts of output
to the screen. By calling wnoutrefresh for each window, it is then
possible to call doupdate once, resulting in only one burst of output,
with probably fewer total characters transmitted.

Tl 3-5

WINDOW MANIPULATION

Multiple Windows

A window is a data structure representing all or part of the terminal
screen. It has room for a two dimensional array of characters, attributes
for each character (a total of 16 bits per character: 7 for text and 9 for
attributes), a cursor, a set of current attributes, and many flags. Curses
provides a full screen window, called stdscr, and a set of functions that use
stdscr. Another window is provided called curscr, representing the
physical screen.

It is important to understand that a window is only a data structure. Use
of more than one window neither implies use of more than one terminal
nor involves more than one process. A window is merely an object that
can be copied to all or part of the terminal screen.

The programmer can create additional windows with the
newwin(lines, cols, begin_row, begin_col)
function. This function will return a pointer to a newly created window.
The window will be lines long by cols wide, and the upper left corner of the
window will be at screen position (begin_row, begin_col). All operations
that affect stdscr have corresponding functions that affect an arbitrary
named window. Generally, these functions have names formed by putting
a "w" on the front of the stdscr function, and the window name is added
as the first parameter. Thus, waddch(mywin, c) would write the character
c to window mywin. The wrefresh(win) function is used to flush the
contents of a window to the screen.

The following sample program shows how to use several of the window
manipulation functions. This program will create four different windows on
the screen.

Tl 3-6

WINDOW MANIPULATION

#include <curses.h>

main()
{

WINDOW •winl, *win2, *win3, *win4;

ini tscr() ;
winl newwin(LINES/3,COLS,0,0);
win2 newwin(LINES/3,COLS,LINES/3,0);
win3 newwin(LINES/3,COLS,(LINES/3)*2);
win4 newwin(LINES/3,COLS/2,(LINES/3)*2);
box(winl, '1', '1');
box(win2, '2', '2');
box(win3, '3', '3');
box(win4,'4'~'4');

wrefresh(winl);
wrefresh(win2);
wrefresh(win3);
wrefresh(win4);
endwin();
exit(O);

Windows are useful for maintaining several different screen images, and
alternating the user among them. Also, it is possible to subdivide the
screen into several windows, refreshing each of them as desired. When
windows overlap, the contents of the screen will be the more recently
refreshed window. The program window in the Appendix is another
example of the use of multiple windows.

In all cases, the non-w version of the function calls thew version of the
function, using stdscr as the additional argument. Thus, a call to addch(c)
results in a call to waddch(stdscr, c).

For convenience, a set of "move" functions are also provided for most of
the common functions. These result in a call to move before the other
function. For example, mvaddch(row, col, c) is the same as
move(row, col); addch(c). Combinations like mvwaddch(row, col, win, c)
also exist.

Tl 3-7

WINDOW MANIPULATION

INPUT /OUTPUT FUNCTIONS

General

The Input/Output functions of "windows" is similar to the Input/Output
functions of "standard" screens (stdscr). The only real difference is that
you must also specify the window to receive the action.

wprintw(win, fmt, args)
mvwprintw(win, y, x, fmt, args)

These functions correspond to printf. The characters that would be
output by printf are instead output using waddch on the given
window.

wmove(win, y, x)
The cursor associated with the window is moved to the given
location. This does not move the physical cursor of the terminal until
refresh is called. The position specified is relative to the window.
Thus, if you have a window that is not in the upper left corner of the
screen, you would have to specify the coordinates as the distance
from the upper left corner of the window. The upper left corner of
the window is position (0, 0).

werase(win)
This function copies blanks to every position in the window.

wclear(win)
This function is like werase but it also calls clearok, arranging that the
screen will be cleared on the next call to refresh for that window.

wclrtobot(win)
All lines below the cursor in this window are erased. Also, the current
line to the right of the cursor is erased.

wclrtoeol(win)
The current line to the right of the cursor is erased.

Tl 3-8

WINDOW MANIPULATION

Inserting and Deleting Text

winsertln(win)
A blank line is inserted above the current line. The bottom line is
lost. This does not necessarily imply use of the hardware insert line
feature.

wde!eteln(win)
The line under the cursor in the window is deleted. All lines below the
current line are moved up one line. The bottom line of the window is
cleared. This does not necessarily imply use of the hardware delete
line feature.

Writing One Character

waddch(win, ch)
mvwaddch(win, y, x, ch)

The character ch is put in the window at the current cursor position
of the window. If ch is a tab, newline, or backspace, the cursor will
be moved appropriately in the window. If ch is a different control
character, it will be drawn in the 'x notation. The position of the
window cursor is advanced. At the right margin, an automatic
newline is performed. At the bottom of the scrolling region, if
scrollok is enabled, the scrolling region will be scrolled up one line.

The ch parameter is actually an integer, not a character. Video attributes
can be combined with a character by OR-ing them into the parameter.
This will result in these attributes also being set. (The intent here is that
text, including attributes, can be copied from one place to another with
inch and addch.)

Tl 3-9

WINDOW MANIPULATION

Writing a String

waddstr(win,str)
mvwaddstr(win ,y ,x,str)

These functions write all the characters of the null terminated
character string str on the given window. They are identical to a
series of calls to addch.

wdelch(win)
mvwdelch(win,y,x)

The character under the cursor in the window is deleted. All
characters to the right on the same line are moved to the left one
position. This does not imply use of the hardware delete character
feature.

winsch(win, c)
mvwinsch(win,y,x,c)

The character c is inserted before the character under the cursor.
All characters to the right are moved one space to the right, possibly
losing the rightmost character on the line. This does not imply use of
the hardware insert character feature.

winch(win)
mvwinch(win,y,x)

The character at the current position in the named window is
returned. If any attributes are set for that position, their values will
be OR-ed into the value returned. The predefined constants
A_ATTRIBUT!=:S and A_CHARTEXT can be used with the "&" operator
to extract the character or attributes alone.

Video Attributes

The video attributes operate inside windows the same as they operate
inside screens. The current attribute of the window applies to all
characters written into the window and stay with each character through
any movement of the character.

Tl 3-10

WINDOW MANIPULATION

wattrset(win, attrs)
The wattrset(win, at) function sets the current attributes of the given
window to at.

wattroff(win, attrs)
The wattroff(win, at) function turns off the named attributes (at)
without affecting any other attributes.

wattron(win, attrs)
The wattron(win, at) function turns on the named attributes without
affecting any others.

wstandout(win)
wstandend(win)

The wstandout function is the same as wattron(A_STANDOUT). The
wstandend function is the same as wattrset(O); that is, it turns off all
attributes.

Input

wgetch(win)
mvwgetch(win,y,x)

A character is read from the terminal associated with the window. In
nodelay mode, if there is no input waiting, the value -1 is returned.
In delay mode, the program will hang until the system passes text
through to the program. Depending on the setting of cbreak, this will
be after one character or after the first newline.

Function keys are handled the same in windows as they are in screens.
Again, the use of the escape key as a single character function is
discouraged.

Tl 3-11

WINDOW MANIPULATION

wgetstr(win,str)
mvwgetstr(win,y,x,str)

A series of calls to getch is made until a newline is received. The
resulting value is placed in the area pointed at by the character
pointer str. The user's erase and kill characters are interpreted.

wscanw(win, fmt, args)
mvwscanw(win, y, x, fmt, args)

This function corresponds to scant The wgetstr function is called on
the window, and the resulting line is used as input for the scan.

getyx(win,y,x)
The cursor position of the window is placed in the two integer
variables y and x. Since this is a macro, no "&" is necessary.

PAD MANIPULATION
A pad is like a window, except that it is not restricted by the screen size,
and a pad is not associated with a particular part of the screen. Pads can
be used when a large window is needed and only a part of the window will
be on the screen at one time.

newpad(num_lines, num_cols)
Creates a new pad data structure. Automatic refreshes of pads (for
example, scrolling or echoing of input) do not occur. It is not legal to
call refresh with a pad as an argument; the routines prefresh or
pnoutrefresh should be called instead.

Note that the following routines require additional parameters to
specify the part of the pad to be displayed and the location on the
screen to be used for display. The prefresh or pnoutrefresh function
should be called instead.

Tl 3-12

WINDOW MANIPULATION

prefresh(pad,pminrow,pmincol,sminrow,smincol,smaxrow,smaxcol)
pnoutrefresh(pad,pminrow,pmincol,sminrow,smincol,smaxrow,smaxcol)

These routines are analogous to wrefresh and wnoutrefresh except
that pads are involved instead of windows. The additional parameters
are needed to show what part of the pad and screen are involved.
The pminrow and pmincol variables specify the upper left corner in
the pad of the rectangle to be displayed. The sminrow, smincol,
smaxrow, and smaxcol variables specify the screen coordinates that
define the boundaries (edges) of the rectangle to be displayed. The
lower right corner in the pad of the rectangle to be displayed is
calculated from the screen coordinates, since the rectangles must be
the same size. Both rectangles must be entirely contained within
their respective structures.

The pad functions are similar to the window functions. The doupdate
function is used to update the screen like it is used with window structures.
The delwin function is used to delete a specific pad.

The following sample program shows how to use some of the "pad"
functions. This program will output a pad defined by the maximum and
minimum cursor positions given on the prefresh execution line.

#include <curses.h>

main()

{
int i;

WINDOW *pad;

ini tscr() ;

pad= newpad(100, 80);

for(i=O; i<99; i++)

wprintw(pad, "This is line %d of the pad\n", i) ;
prefresh(pad, 50, 0, 10, 20, 15, 35);

endwin();

Tl 3-13

WINDOW MANIPULATION

The output of this program would appear as follows:

This is line 50
This is 1 ine 51
This is 1 i ne 52
This is line 53
This is line 54
This is line 55

$

Note: This output may not be shown to scale. The output on your
terminal will begin 10 lines down and 20 lines from the left margin.

Tl 3-14

Chapter 4

MULTIPLE TERMINALS

PAGE

GENERAL PROGRAM FORMAT. 4-3

FUNCTIONS . 4-4

Chapter 4

MULTIPLE TERMINALS

Curses can produce output on more than one terminal at once. This is
useful for single process programs that access a common database such
as multi-player games. Output to multiple terminals is a difficult business,
and curses does not solve all the problems for the programmer. It is the
responsibility of the program to determine the file name of each terminal
line and what terminal is on each of those lines. The standard method,
checking $TERM in the environment, does not work since each process
can only examine its own environment.

Another problem that must be solved is that of multiple programs reading
from one line. This produces a race condition and should be avoided.
Nonetheless, a program wishing to take over another terminal cannot just
shut off whatever program is currently running on that line. (Usually,
security reasons would also make this inappropriate. However, for some
applications such as an inter-terminal communication program or a
program that takes over unused tty lines, shutting off other programs
would be appropriate.) A typical solution requires the user logged in on
each line to run a program notifying the master program that the user is
interested in joining the master program and telling it the notification
program process ID, the name of the tty line, and the type of terminal
being used. Then, the program goes to sleep until the master program

Tl 4-1

MULTIPLE TERMINALS

finishes. When done, the master program wakes up the notification
program, and all programs exit.

Curses handles multiple terminals by always having a "current terminal."
All function calls always affect the current terminal. The master program
should set up each terminal, saving a reference to the terminals in its own
variables. When the master program wishes to affect a terminal, it should
set the current terminal as desired, and then call ordinary curses routines.

References to terminals are of the type struct screen *. A new terminal is
initialized by calling newterm(type, outfd, infd). The newterm function
returns a screen reference to the terminal being set up. The type variable
represents a character string, naming the type of terminal being used. The
outfd and infd variables are stdio file descriptors to be used for input and
output to the terminal. (If only output is needed, the file can be opened
for output only.) This call replaces the normal call to initscr, that calls
newterm(getenv("TERM"), stdout, stdin).

To change the current terminal, call "set_term(sp)" where sp is the screen
reference to be made current. The set_term function returns a reference
to the previous terminal.

Tl 4-2

MULTIPLE TERMINALS

GENERAL PROGRAM FORMAT
It is important to realize that each terminal has its own set of windows and
options. Each terminal must be initialized separately with newterm.
Options such as cbreak and noecho must be set separately for each
terminal. The functions endwin and refresh must be called separately for
each terminal. The following sample program is a typical scenario to
output a message to each terminal.

for (i~O; i<nterm; i++) {

set_term(terms[i]);
mvaddstr(O, O, "Important message");

refresh () ;

See the sample program two in the Appendix for a full example. This
program pages through a file, showing one page to the first terminal and
the next page to the second terminal. Since no standard multiplexor is
available in current versions of the UNIX System, it is necessary to either
busy wait or call sleep(l); between each check for keyboard input. The
two program sleeps for a second between checks.

The two program is just a simple example of two terminal curses. It does
not handle notification, as described above, instead it requires the name
and type of the second terminal on the command line. As written, the
command sleep 100000 must be typed on the second terminal to put it to
sleep while the program runs, and the first user must have both read and
write permission on the second terminal.

Tl 4-3

MULTIPLE TERMINALS

FUNCTIONS

resetty()
savetty()

These functions save and restore the state of the tty modes. The
savetty function saves the current state in a buffer, resetty restores
the state to what it was at the last call to savetty.

newterm(type, fd)
A program that outputs to more than one terminal should use
newterm instead of initscr. The newterm function should be called
once for each terminal. It returns a variable of type SCREEN * that
should be saved as a reference to that terminal. The arguments are
the type of the terminal (a string) and a stdio file descriptor (FILE *)
for output to the terminal. The file descriptor should be open for
both reading and writing if input from the terminal is desired. The
program should also call endwin for each terminal being used (see
set_term below). If an error occurs, the value NULL is returned.

seCterm(new)
This function is used to switch to a different terminal. The screen
reference new becomes the new current terminal. The previous
terminal is returned by the function. All other calls affect only the
current terminal.

Tl 4-4

Chapter 5

PORTABILITY FUNCTIONS

PAGE

FUNCTIONS . • • • • 5-1

Chapter 5

PORTABILITY FUNCTIONS

These functions do not directly involve terminal dependent character
output but tend to be needed by programs that use curses. Unfortunately,
their implementation varies from one version of the UNIX System to
another.

FUNCTIONS
The following functions have been included here to enhance the portability
of programs using curses.

erasechar()
The erase character chosen by the user is returned to the program.
This is the character typed by the user to erase the character just
typed.

killchar()
The line kill character chosen by the user is returned to the program.
This is the character typed by the user to forget the entire line being
typed.

Tl 5-1

PORTABILITY FUNCTIONS

flushinp()
The flushinp() instruction throws away any typeahead that has been
typed by the user and has not yet been read by the program.

baud rate()

Tl 5-2

The baud rate() instruction returns the output speed of the terminal.
The number returned is the integer baud rate, for example, 9600
rather than a table index such as 89600. This function can also be
used to check the status of a terminal. If a "O" is returned, the
terminal being checked is "off-line." This may suggest a reset
(resetty) for that terminal if the terminal is supposed to be operating,
or it may mean the terminal has been turned OFF.

Chapter 6

LOWER LEVEL FUNCTIONS

PAGE

LOW LEVEL TERMINFO USAGE . 6-1

Cursor Motion . 6-4

Term info level . 6-4

Chapter 6

LOWER LEVEL FUNCTIONS

LOW LEVEL TERMINFO USAGE
Some programs need to use lower level primitives than those offered by
curses. For such programs, the terminfo level interface is offered. This
interface does not manage your terminal screen, but rather gives you
access to strings and capabilities that you can use yourself to manipulate
the terminal.

Programmers are discouraged from using this level. Whenever possible,
the higher level curses routines should be used. This will make your
program more portable to other UNIX Systems and to a wider class of
terminals. Curses takes care of all the glitches and misfeatures present in
physical terminals; but at the terminfo level, you must deal with them
yourself. Also, you cannot be guaranteed that this part of the interface will
not change or be upward compatible with previous releases.

There are two circumstances when it is proper to use terminfo. The first
circumstance; you are writing a special purpose tool that sends a special
purpose string to the terminal, such as programming a function key,
setting tab stops, sending output to a printer port, or dealing with the
status line. The second circumstance; you are writing a filter. A typical

Tl 6-1

LOWER LEVEL FUNCTIONS

filter does one transformation on the input stream without clearing the
screen or addressing the cursor. If this transformation is terminal
dependent and clearing the screen is inappropriate, use of terminfo is
indicated.

The following is a typical format for a program written at the terminfo
level.

#include <curses.h>
#include <term.h>

setupterm(O, 1, O);

putp(clear_screen);

reset_sheU_mode();
exit(O);

Initialization is done by calling setupterm. Passing the values 0, 1, and 0
invokes reasonable defaults. If setupterm cannot figure out what type of
terminal you are on, it will print an error message and exit. The program
should call reset_shell_mode before it exits.

Global variables with names like clear_screen and cursor_address are
defined by the call to setupterm. (See the terminfo manual page in the
AT&T 382 Computer Programer Reference Manual for a complete list of
capabilities.) They can be output using putp or tputs that allows the
programmer more control. These strings should not be directly output to
the terminal using printf since they contain paddinginformation. A
program that directly outputs strings will fail on terminals that require
padding or that use the xon /xoff flow control protocol.

Tl 6-2

LOWER LEVEL FUNCTIONS

In the terminfo level, the higher level routines described previously are not
available. It is up to the programmer to output whatever is needed.

The example program term111 in the Appendix shows a simple use of
terminfo. It is a version of highlight that uses terminfo instead of curses.
This version can be used as a filter. The strings to enter bold and
underline mode, and to turn off all attributes, are used.

The termhl program is more complex than it need be to illustrate some
properties of terminfo. The routine vidattr could have been used instead
of directly outputting entecllold_mode, entecunderline_mode, and
exit_attribute_mode. The program would be more robust if it used vidattr
since there are several ways to change video attribute modes. This
program was written to illustrate typical use of terminfo.

The function tputs(cap, affcnt,outc) applies padding information. Some
capabilities contain strings like $<20>, that means to pad for 20
milliseconds. The tputs command generates enough pad characters to
delay for the appropriate time. The first parameter is the string capability
to be output. The second is the number of lines affected by the capability.
(Some capabilities may require padding that depends on the number of
lines affected. For example, n111sert_li11e may have to copy all lines below
the current line and may require time proportional to the number of lines
copied. By convention, affcnt is the value 1 rather than 0 if no lines are
affected. The value 1 is used for safety reasons, since affcint is multiplied
by the amount of time per item, and anything multiplied by 0 is 0.) The
third parameter is a routine to be called with each character.

For many simple programs, affcnt is always 1 and outc always just calls
putchar. For these programs, the routine putp(cap) is a convenient
abbreviation. The termhl example could be simplified by using putp.

Note also the special check for the 1.mderline_char capability. Some
terminals, rather than having a code to start underlining and a code to
stop underlining, have a code to underline the current character. The
termhl program keeps track of the current mode; and if the current
character is supposed to be underlined, the program will output

Tl 6-3

LOWER LEVEL FUNCTIONS

underline_char if necessary. Low level details such as this are precisely
why the curses level is recommended over the terminfo level. Curses
takes care of terminals with different methods of underlining and other
terminal functions.

Cursor Motion

mvcur(oldrow, oldcoi, newrow, newcol)
This routine optimally moves the cursor from (oldrow, oldcol) to
(newrow, newcol). The user program is expected to keep track of the
current cursor position. Note that unless a full screen image is kept,
curses will have to make pessimistic assumptions, sometimes
resulting in less than optimal cursor motion. For example, moving
the cursor a few spaces to the right can be done by transmitting the
characters being moved over; but if curses does not have access to
the screen image, it doesn't know what these characters are.

Terminfo level

These routines are called by low level programs that need access to
specific capabilities of terminfo. A program working at this level should
include both curses.hand term.h, in that order. After a call to setupterm,
the capabilities will be available with macro names defined in term.h.

Boolean valued capabilities will have the value 1 if the capability is
present - the value 0 if it is not. Numeric capabilities have the value -1 if
the capability is missing and have a value of at least 0 if it is present.
String capabilities (both those with and without parameters) have the value
NULL if the capability is missing; otherwise, they have type char * and
point to a character string containing the capability. The special character
codes involving the\ and ' characters (such as \r for return, or 'A for
control A) are translated into the appropriate American Standard Code for
Information Interchange (ASCII) characters. Padding information (of the
form $<time>) and parameter information (beginning with %) are left
uninterpreted at this stage. The routine tputs interprets padding
information, and tparm interprets parameter information.

Tl 6-4

LOWER LEVEL FUNCTIONS

If the program only needs to handle one terminal, the definition -DSINGLE
can be passed to the C Language compiler resulting in static references to
capabilities instead of dynamic references. This can result in smaller
program code, but it prevents use of more than one terminal at a time.
Few programs use more than one terminal; so, almost all programs can
use this flag.

setupterm(term, filenum, enrret)
This routine is called to initialize a terminal. The term variable
represents the character string representing the name of the terminal
being used. The filenum variable is the UNIX System file descriptor
of the terminal being used for output. The errret variable is a pointer
to an integer that a success or failure indication is returned. The
values returned can be 1 (all is well), 0 (no such terminal), or --1
(some problem locating the terminfo database).

The value of term can be given as 0, that will cause the value of
TERM in the environment to be used. The errret pointer can also be
given as 0, meaning no error code is wanted. If errret is defaulted
and something goes wrong, setupterm will print an appropriate error
message and exit rather than returning. Thus, a simple program can
call setupterm(O, 1, 0) and not worry about initialization errors.

If the variable TERMINFO is set in the environment to a path name,
setupterm will check for a compiled termi111fo description of the
terminal under that path before checking /usr/!ib/terminfo/':'/':'.
Otherwise, only /usr /!ib/terminfo/'~ /"'is checked.

The setupterm function will check the tty driver mode bits, using filenum,
and change any that might prevent the correct operation of other low-level
routines. Currently, the mode that expands tabs into spaces is disabled
because the tab character is sometimes used for different functions by
different terminals. (Some terminals use it to move right one space.
Others use it to address the cursor to row or column 9.) If the system is
expanding tabs, setupterm will remove the definition of the tab and
backtab functions, making the assumption that since the user is not using

Tl 6-5

LOWER LEVEL FUNCTIONS

hardware tabs, they may not be properly set in the terminal. Other
system dependent changes, such as disabling a virtual terminal driver, may
be made here.

As a side effect, setupterm initializes the global variable ttytype, that is an
array of characters, to the value of the list of names for the terminal. This
list comes from the beginning of the terminfo description.

After the call to setupterm, the global variable cur_term is set to point to
the current structure of terminal capabilities. By calling setupterm for
each terminal and saving and restoring cur_term, it is possible for a
program to use two or more terminals at once.

The mode that turns newlines into Carriage Return Line Feed (CRLF) on
output is not disabled. Programs that use cursor_down or scroll_forward
should disable this mode if their value is linefeed. The setupterm function
calls reset_prog_mode after any changes it makes.

reset_prog_mode()
reset_shell_mode()
def_prog_mode()
def_shell_mode()

These routines can be used to change the tty modes between the
two states: shell (the mode they were in before the program was
started) and program (the mode needed by the program). The
def_prog_mode function saves the current terminal mode as program
mode. The setupterm function and initscr call def_shell_mode
automatically. The reset_prog_mode function puts the terminal into
program mode, and reset_shell_mode puts the terminal into normal
mode. These functions set the tty driver only, they do not transmit
anything to the terminal.

A typical calling sequence is for a program to call initscr (or setupterm if a
terminfo level program), then to set the desired program mode by calling
routines such as cbreak and noecho, then to call def_prog_mode to save
the current state. Before a shell escape or control-Z suspension, the
program should call reset_shell_mode to restore normal mode for the

Tl 6-6

LOWER LEVEL FUNCTIONS

shell. Then, when the program resumes, it should call reset_prog_mode.
Also, all programs must call reset_shell_mode before they exit. (The
higher level routine endwin automatically calls reset_shell_mode.)

Normal mode is stored in cur_term->0t1tyb, and program mode is stored in
cur_term->Nttyb. These structures are both of type SGTTYB (that varies
depending on the system). Currently, the possible types are struct sgttyb
(on some other systems) and strnct termio (on this version of the UNIX
System). The def_prog_mode function should be called to save the
current state in Nttyb.

vidputs(newmode, putc)
The newmode variable is any combination of attributes, defined in
curses.h. The putc variable is a "putchar-like" function. The proper
string to put the terminal in the given video mode is output. The
previous mode is remembered by this routine. The result characters
are passed through putc.

vidattr(newmode)
The proper string to put the terminal in the given video mode is
output to stdout.

tparm(instring, pl, p2, p3, p4, p5, p6, p7, p8, p9)
The tparm function is used to instantiate a parameterized string. The
character string returned has the given parameters applied and is
suitable for tputs. Up to 9 parameters can be passed in addition to
the parameterized string.

tputs(c:p, affcnt, outc)
A string capability, possibly containing padding information, is
processed. Enough padding characters to delay for the specified
time replace the padding specification, and the resulting string is
passed one character at a time to the routine outc that should
expect one character as a parameter. (This routine often just calls
putcharr.) The cp variable is the capability string. The affcnt variable
is the number of units affected by the capability, that varies with the
particular capability. (For example, the affcnt for insert_line is the
number of lines below the inserted line on the screen, that is, the

Tl 6-7

LOWER LEVEL FUNCTIONS

number of lines that will have to be moved by the terminal.) The
affcnt value is used by the padding information of some terminals as
a multiplication factor. If the capability does not have a factor, the
value 1 should be passed.

putp(str)
This is a convenient function to output a capability with no affcnt.
The string is output to putchar with an affcnt value of 1. It can be
used in simple applications that do not need to process the output of
tputs.

delay_output(ms)
A delay is inserted into the output stream for the given number of
milliseconds. The current implementation inserts enough pad
characters for the delay. This should not be used in place of a high
resolution sleep, but rather for delay effects in the output. Because
of buffering in the system, it is unlikely that this call will result in the
process actually sleeping. Since large numbers of pad characters can
be output, it is recommended that ms not exceed 500.

Tl 6-8

Chapter 7

TERMINFO DATABASE

PAGE

PREPARING DESCRIPTIONS . 7-1

Naming the Terminal . 7-2

Defining Capabilities . 7-4

Compiling the New Entry . 7-9

Testing an Entry . 7-10

TPUT COMMAND. 7-11

TERMCAP AND TERMINFO COMPATIBILITY . 7-13

Chapter 7

TERMINFO DATABASE

The terminfo database describes terminals by giving a set of capabilities
and by describing how the terminal performs certain operations. Each
terminal description contains the names that the terminal is known by and
a group of comma separated fields describing the actions and capabilities
of the terminal.

PREPARING DESCRIPTIONS
If there is no terminal description for your terminal, the entry must be built
from scratch. You may wish to use partial descriptions and test them as
you go along. These tests may expose deficiencies in the ability to
describe the terminal.

Tl 7-1

TERMINFO DATABASE

The general procedure for building this description is as follows:

1. Give the known names of the terminal.

2. List and define the known capabilities.

3. Compile the newly created description entry.

4. Test the entry for correct operation.

Naming the Terminal

The name of the terminal is the first information given in each description.
This string of names, assuming there is more than one name, is separated
by "pipe" symbols (I). The first name given should be the most common
abbreviation for the terminal. The last name given should be a long name
fully identifying the terminal. It is usually the manufacturer's formal name
for the terminal. All names between the first and last entries should be
known synonyms for the terminal name. All names but the formal name
should be typed in lowercase letters and contain no blanks. Naturally, the
formal name is entered as closely as possible to the manufacturer's name.

Terminal names should follow common naming conventions. These
conventions start with a root name; myterm, for example. The root name
should not contain odd characters, like hyphens, that may not be
recognized as a synonym for the terminal name. Possible hardware modes
or user preferences should be shown by adding a hyphen and the mode
indicator at the end of the name. For example, "wide mode" that is
shown by a -w would be given as "myterm-w."

Tl 7-2

TERMINFO DATABASE

The following suffixes should be used whenever possible:

Suffix Meaning Example

-w Wide mode (more than 80 columns) myterm-w

-am Automatic margins (usually default) myterm-am

-nam No automatic margins myterm-nam

-n Number of lines on the screen myterm-30
(This example defines 30 lines.)

-xm Number of columns myterm-x 132

-nxm Both number of lines and columns myterm-30x80

-na No arrow keys except in local mode myterm-na

-np Number of pages in memory myterm-4p
(This example defines 4 pages.)

-rv Sets reverse video myterm-rv

-s With optional status line enabled myterm-s

The following example is the name string from the description of the
TELETYPE* 5420 Buffered Display Terminal:

5420:tty5620:teletype 5420,

* Trademark of AT&T

Tl 7-3

TERMINFO DATABASE

Defining Capabilities

The capabilities for each terminal are described in a string of comma
separated fields. This string of fields may continue onto multiple lines as
long as white space (that is; tabs, spaces) begins each line except the first
line of each description. Comments can be included in the description by
entering a number symbol (#) at the beginning of the line.

A complete list of the terminfo capabilities is given in the terminfo manual
page found in the AT&T 382 Computer Programer Reference Manual. This
list contains the name of the capability, the abbreviated name used in the
database, the two-letter code that corresponds to the old termcap
database name, and a short description of the capability. The abbreviated
name that you will use in your database descriptions is shown in the
column titled Capname.

Each terminal description contains abbreviated names of capabilities.
Some capabilities also require a terminal-specific instruction that performs
the named capability. For example, be~ is the abbreviated name for the
beeping or ringing capability. On most terminals, a "control-g" (G) is the
instruction that produces a beeping sound. Therefore, the beeping
capability would be shown in the terminal description as "be!=AG,."

The terminal-specific instruction can be a keyed operation (like "'G"), a
numeric value, or a parameter string containing the sequence of
operations required to achieve the particular capability. There are certain
characters that are used after the capability name to shown what type of
instruction is required. These characters are explained as follows:

This shows a numeric value is to follow. This character follows a
capability that needs a number as the instruction. For example,
the number of columns is defined as "cols#80,."

Tl 7-4

This shows that the capability instruction is the character string
that follows. This string instructs the terminal how to act and
may actually be a sequence of commands. There are certain
characters used in the instruction strings that have special
meanings. These special characters are explained as follows:

TERMINFO DATABASE

This shows a control character is to be used. For
example, the beeping sound is produced by a
"control-G." This would be shown as "'G."

\E or \e
These characters followed by another character
shows an ESCAPE instruction. An entry of \EC would
transmit to the terminal as "ESCAPE-C."

\n These characters provide a "newline" instruction.

\I These characters provide a "linefeed" instruction.

\r These characters provide a "return" instruction.

\t These characters provide a "tab" instruction.

\b These characters provide a "backspace" instruction.

\f These characters provide a "formfeed" instruction.

\s These characters provide a "space" instruction.

$< > These symbols are used to show a delay in
milliseconds. The desired amount of delay is
enclosed inside the "less than/greater than" symbols
(< >). The amount of delay may be a whole number,
a numeric value to one decimal place (tenths), or
either form followed by an asterisk C'). The "~'"
shows that the delay will be proportional to the
amount of lines affected by the operation. For
example, a 20-millisecond delay would appear as
"$<20*>."

Sometimes, it may be necessary to comment out a capability so that the
terminal ignores this particular field. This is done by placing a period(.) in
front of the abbreviated name for the capability. For example, if you would
like to comment out the beeping capability, the description entry would
appear as ".bel= 'G,."

Tl 7-5

TERMINFO DATABASE

Basic Capabilities

To build a description from scratch, you would normally start listing the
capabilities immediately below the terminal names. The owner's manual
for your terminal should provide information on what capabilities are
available and what character string makes up the correct instruction to do
each capability. It may be beneficial to start with those capabilities that
are common to almost all terminals. Some of the common traits of all
terminals are bells, columns, lines on the screen, and overstriking of
characters if necessary.

For the following example of building a terminfo description, we will use a
fictitious terminal name. The name string for the terminal is shown as
follows:

mytermlmytm!mineifancylterminaliMy FANCY Terminal,

Suppose this fictitious terminal has the following capabilities. The terminfo
manual page of the AT&T 382 Computer Programer Reference Manual lists
these capabilities and gives the abbreviated name to use in the database.
The appropriate abbreviated name is shown in parentheses immediately
after the capability description.

• An automatic wrap around to the beginning of the next line
whenever the cursor reaches the right-hand margin. (am)

• The ability to produce a beeping sound. The instruction required to
produce the beeping sound is "AG." (bel)

• An 80-column wide screen. (cols)

• A 30-line long screen. (lines)

• An ability to retain the display below the screen. (db)

Tl 7-6

TERMINFO DATABASE

By combining the name string and the capability descriptions that we now
have, we can put together a general terminfo database entry. Remember
that each field must be separated by a comma. The entry would look like
this:

myterm:mytm:minelfancy:terminallMy
FANCY Terminal, am, bel=,G, cols#80, lines#30, db,

Keyboard Entered Capabilities

The keyboard entered capabilities are those actions that occur when a key
is struck on the keyboard. Although the capabilities may be common to
many terminals, the instructions to do the operation could be different.
These instructions are related specifically to the terminal that is being
described. For example, a carriage return may be shown by a "'M"
(control-M) on one terminal. The indication for a carriage return on
another terminal may be an "\EG" (ESCAPE-G).

The following characteristics help describe the before mentioned fictitious
terminal. Again, the abbreviated command associated with the given
capability is shown in parentheses .

• A carriage return is shown by a control-M. (er)

• A cursor up one line motion is shown by a control-K. (cuul)

• A cursor down one line motion is shown by a control-J. (cudl)

• Moving the cursor to the left one space is shown by a control-H.
(cubl)

• Moving the cursor to the right one space is shown by a control-L.
(cufl)

• Entering reverse video mode is shown by an ESCAPE-0. (smso)

Tl 7-7

TERMINFO DATABASE

• Exiting reverse video mode is given by an ESCAPE-Z. (rmso)

• A clear to the end of a line instruction is shown by an ESCAPE-K and
should have a 3-millisecond delay. (el)

These capabilities must be added to the general description entry of
myterm. To do this, simply continue the description in the same way with
the new information. The resulting database entry is shown as follows:

myterm:mytmlminelfancylterminal!My
FANCY Terminal, am, bel=·G, cols#80, lines#30,
db, cr=·M, cuul=·K, cudl=·J, cubl=·H, cufl=·L,
smso=\ED, rmso=\EZ, el=\EK$<3>,

Note: This is a short, simple terminfo database entry. It is shown
for illustration purposes only. DO NOT attempt to use this example
as a database entry for any terminal.

There are other capabilities that are described using parameter strings.
Some parameter string instructions may be the same for different
terminals. For example, terminals that conform to the American National
Standards Institute (ANSI) standards for computer terminals will all have
the same instruction for cursor address (cup) and setting attributes (sgr).
The use of parameter strings is highly complex.

The procedure for building a terminal description and the example shown
in this discussion should be enough to show you how a database entry is
constructed. Almost all capability descriptions will be defined in one form
shown in the example.

Tl 7-8

TERMINFO DATABASE

Compiling the New Entry

General

The terminfo database entries are compiled using the tic compiler. This
compiler translates terminfo database entries from the source format into
the compiled format.

The source file for the description must be in a file suffixed with .ti . For
example, the fictitious database entry being used for illustration purposes
would be in a source file named myterm.ti. The compiled version is placed
in /usr /lib/terminfo/'' where ':' is a directory named with the first letter
of each entry. For example, the compiled description of myterm (source
file myterm.ti) would be placed in /usr //ib/terminfo/m since the first
letter in the description entry is "m" (myterm).

Command Format

The general format for the tic compiler is as follows:

tic [-v] file file2 ...

The -v option causes the compiler to trace its actions and output
information about its progress.

The file fields are to show what file is to be compiled. Notice that more
than one file can be compiled at one time if the filenames are separated by
a space.

Tl 7-9

TERMINFO DATABASE

Sample Command

The following command line shows how to compile a teirmirilfo source file
named myterm.fr (The verbose option (-v) is included.)

$ tic -v myterm.ti<CR>
(The trace information will

appear when the compilation
is complete.)

$

Note: The <CR> symbol is used to show a carriage return.

Refer to the Uc manual page in the AT&T 382 Computer System
Administration Reference Manual for more information on the terrmirifo
compiler.

Testing an Entry

You can test a new terminal description entry by setting the environment
variable "TERMINFO" to the path name of the directory containing the
newly compiled description. If the "TERMINFO" variable is set to a
directory before the entry is compiled, the compiled entry will be placed in
the "TERMINFO" directory. All programs will look in the new "TERMINFO"
directory description file rather than in /usr /lib/terminfo. If the programs
run the same on the new terminal as they did on the older known
terminals, then the new description is functional.

A way to test for correct insert line padding is to edit (using 111) a large file
(over 100 lines) at 9600 baud (if possible), and delete about 15 lines from
the middle of the screen. Hit "u" (undo) several times quickly. If the
terminal messes up, then more padding is usually required. A similar test
can be used for inserting a character.

Tl 7-10

TERMINFO DATABASE

TPUT COMMAND

General

The tput command uses the terminfo database to output terminal-specific
capabilities and other information to the screen or shell. This command
outputs a string or an integer according to the type of capability being
described. If the capability is a Boolean expression, then tput sets the exit
code (0 for TRUE, 1 for FALSE) and produces no output

Command Format

The general format for the tput command is as follows:

tput [-Ttype] cap name

The type of terminal you are requesting information about is identified with
the -Ttype option. Usually, this option is not necessary because the
default terminal name is taken from the environment variable $TERM.

The capname field is used to show what capability to output from the
terminfo database.

Tl 7-11

TERMINFO DATABASE

Sample Command

The following command line shows how to output the clear-screen
instruction for the terminal being used:

$ tput clear<CR>

$

(The instruction for clear-screen
appears here.)

The following command line shows how to output the number of columns
for the terminal being used:

$ tput cols<CR>

$

(The number of columns used by
the terminal will appear here.)

The tput manual page found in the AT&T 382 Computer User Reference
Manual contains more information on the usage and possible messages
associated with this command.

Tl 7-12

TERMINFO DATABASE

TERMCAP AND TERMINFO COMPATIBILITY
The terminfo database is designed to take the place of the termcap
database. Because of the many programs and processes that have been
written with and for the termcap database, it will be impossible to except a
complete cutover at one time. There can be programs written to convert
the termcap description entries into terminfo description entries.
However, any conversion from termcap to terminfo requires much
knowledge about both databases. All entrances into the databases should
be handled with extreme caution. These files are important to the
operation of your computer.

If you have been using cursor optimization programs with the -!termcap
option in the "cc" command line, those programs will still be functional.
However, the -/termcap option must be replaced with the -!curses option.

Tl 7-13

Appendix

CURSES EXAMPLES

PAGE

EXAMPLE PROGRAM 'editor'. • A-2

EXAMPLE PROGRAM 'highlight' . A-10

EXAMPLE PROGRAM 'scatter' . A-12

EXAMPLE PROGRAM 'show' - A-14

EXAMPLE PROGRAM 'termhl' . • A-16

EXAMPLE PROGRAM 'two' . A-19

EXAMPLE PROGRAM 'window' . A-22

Appendix

CURSES EXAMPLES

This appendix contains some examples of curses programs. Although
these examples are functional programs, they are not complete enough to
be considered useful. These examples are intended for demonstration
purposes only. However, these examples may be used by a skillful
programmer as a base to create a useful curses program.

The examples contain comments that explain the intended function of a
particular step in the program. The comments are for clarity only and are
not a functional piece of the program.

Tl A-1

Appendix

EXAMPLE PROGRAM 'editor'

This program is a simple screen editor patterned after the vi editor. The
program illustrates how to use curses to write a screen editor. This editor
keeps the buffer in stdscr to keep the program simple - obviously, a real
screen editor would keep a separate data structure. Many simplifications
have been made here - no provision is made for files of any length other
than the size of the screen, for lines longer than the width of the screen,
or for control characters in the file.

Several points about this program are worth making. The routine to write
out the file illustrates the use of the mvinch function that returns the
character in a window at a given position. The data structure used here
does not have a provision for keeping track of the number of characters in
a line or the number of lines in the file; so, trailing blanks are eliminated
when the file is written out

The program uses built-in curses functions insch, delch, insertln, and
deleteln. These functions behave like similar functions on intelligent
terminals, inserting and deleting a character or line.

The command interpreter accepts not only ASCII characters but also
special keys. This is important - a good program will accept both.
(Some editors are "modeless," using nonprinting characters for
commands. This is largely a matter of taste - the point being made here
is that both arrow keys and ordinary ASCII characters should be handled.)
It is important to know how to handle special keys. Special keys make it
easier for someone else to learn to use your program if they can use the
arrow keys instead of having to memorize that "h" means left, "j" means
down, "k" means up, and "I" means right On the other hand, not all
terminals have arrow keys; so, your program will be usable on a larger
class of terminals if there is an ASCII character that is a synonym for each
special key. Also, experienced users dislike having to move their hands
from the "home row" position to use special keys, since they can work
faster with alphabetic keys.

Tl A-2

Appendix

Note the call to mvaddstr in the input routine" The addlstr function is
roughly like the C Language fputs function that writes out a string of
characters" Like fputs, addstr does not add a trailing newline" It is the
same as a series of calls to addch using the characters in the strinK
(Refer to the mvaddstr function description in the "INPUT /OUTPUT"
section of Chapter 2")

The control-L command illustrates a feature that most programs using
curses should add" Often, some program beyond the control of curses has
written something to the screen, or some line noise has messed up the
screen beyond the tracking capability of curses" Here, the user usually
types control-L, causing the screen to be cleared and redrawn" This is
done with the call to dearnk(curscr), that sets a flag causing the next
refresh to first clear the screen" Then refresh is called to force the
redraw"

Note also the call to flash(), that flashes the screen if possible, and
otherwise rings the belL Flashing the screen is intended as a bell
replacement and is particularly useful if the bell bothers someone within
earshot of the user" The routine beep() can be called when a real beep is
desired" (If for some reason the terminal is unable to beep, but able to
flash, a call to beep will flash the screen")

Another important point is that the input command is stopped by control
D, not escape" It is tempting to use escape as a command, since escape is
a special key that is available on every keyboard" (Return and break are
the only others") However, using escape as a separate key introduces an
ambiguity" Most terminals use sequences of characters beginning with
escape ("escape sequences") to control the terminal and have special
keys that send escape sequences to the computer" If the computer sees
an escape coming from the terminal, it cannot tell for sure whether the
user pushed the escape key or whether a special key was pressed" Curses
handles the ambiguity by waiting for up to one second" If another
character is received during this second, and if that character might be the
beginning of a special key, more input is read (waiting for up to one second
for each character) until either a full special key is read, one second
passes, or a character is received that could not have been generated by a
special key" While this strategy works most of the time, it is not foolproof

Tl A-3

Appendix

It is possible for the user to press escape and then to type another key
quickly, that causes curses to think a special key has been pressed. Also,
there is a one second pause until the escape can be passed to the user
program, resulting in slower response to the escape key. Many existing
programs use escape as a fundamental command that cannot be changed
without infuriating a large class of users. Such programs cannot make use
of special keys without dealing with this ambiguity, and at best these
programs must resort to a timeout solution. The moral is clear: when
designing your program, avoid the escape key.

The example program for the simple editor is shown on the following
pages.

Tl A-4

I*
* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr itself to simplify
* the program.

*I

#include <curses.h>

#define CTRL(c) ('c' & 037)

main(argc, argv)
char * * argv;
{

inti, n, I;
int c;
FILE '~fd;

if (argc != 2) {

}

fprintf(stderr, " Usage: edit file\n");
exit(l);

fd = fopen(argv[l], "r");
if (fd == NULL) {

perror(argv[1]);
exit(2);

initscr();
cbreak();
non I();
noecho();
idlok(stdscr, TRUE);
keypad(stdscr, TRUE);

Appendix

Tl A-5

Appendix

/ ~' Read in the file '~ /
while ((c = getc(fd)) != EOF)

addch(c);
fclose(fd);

move(O,O);
refresh();
edit();

/ * Write out the file ':' /
fd = fopen(argv[1], "w");
for (1=0; 1<23; I++) {

}

n = len(I);
for (i=O; i<n; i++)

putc(mvinch(I, i), fd);
putc('\n ', fd);

fclose(fd);

endwin();
exit(O);

len(lineno)
int lineno;
{

int linelen = COLS-1;

while (linelen >=0 && mvinch(lineno, linelen) == ' ')
linelen--;

return linelen + 1;

Tl A-6

/ ':' Global value of current cursor position '~ /
int row, col;

edit()
{

int c;

for(;;) {
move(row, col);
refresh();
c = getch();
switch (c) { r' Editor commands '~I

/ * hjkl and arrow keys: move cursor ':' /
/ * in direction indiated ':' /
case 'h':
case KEY _LEFT:

if (col> 0)
col--;

break;

case 'j':
casE! KEY_DOWN:

if (row< LINES-I)
row++;

break;

case 'k':
case KEY_UP:

if (row> 0)
row--;

break;

case 'I':
case KEY _RIGHT:

if (col < COLS-1)
col++;

break;

Appendix

Tl A-7

Appendix

Ti A-8

/ * i: enter input mode '~ /
case KEY _IC:
case 'i':

input();
break;

/ * x: delete current character * /
case KEY _DC:
case 'x':

delch();
break;

/ * o: open a new line and enter input mode * /
case KEY_IL:
case 'o':

move(++row, col=O);
insertln();
input();
break;

/* d: delete current line '~ /
case KEY _DL:
case 'd':

deleteln();
break;

/* 'L: redraw screen *I
case KEY _CLEAR:
case CTRL(L):

clearok(curscr);
refresh();
break;

/* w: write and quit * /
case 'w':

return;

}
}

/'~ q: quit without writing ':' /
case 'q':

endwin();
exit(l);

default:
flash();
break;

;·~

':' Insert mode: accept characters and insert them.
':' End with 'o or EiC
~,I

input()
{

int c;

standout();
mvaddstr(LINES-1, COLS-20, "INPUT MODE");
standend();
move(row, col);
refresh();
for(;;) {

}

c = getch();
if (c == CTRL(D) ;; c == KEY _EiC)

break;
insch(c);
move(row, ++col);
refresh();

move(LINES-1, COLS-20);
clrtoeol();
move(row, col);
refresh();

Appendix

Tl A-9

Appendix

EXAMPLE PROGRAM 'highlight'

This program takes a text file as input and allows embedded escape
sequences to control attributes. In this example program, \U turns on
underlining, \B turns on bold, and \N restores normal text. Note the initial
call to sci-ol!ok. This allows the terminal to scroll if the file is longer than
one screen. When an attempt is made to draw past the bottom of the
sc~een, c1..11rses will automatically scroll the terminal up a line and call
rnfresh.

;•:<
·~ highlight: a program to turn U, B, and
':' N sequences into highlighted
·~ output, allowing words to be
·~ displayed underlined or in bold.
·~I

#include <curses.h>

main(argc, argv)
char ':' ':' argv;

{
FILE '~td;

int c, c2;

if (argc != 2) {
fprintf(stderr, "Usage: highlight file\n");
exit(l);

fd = fopen(argv[l], "r");
if (fd == NULL) {

perror(argv[l]);
exit(2);

initscr();
scrollok(stdscr, TRUE);

Tl A-10

}

for(;;) {

}

c = getc(fd);
if (c == EOF)

break;
if (c == '\ \') {

else

c2 = getc(fd);
switch (c2) {
case 'B':

attrset(A_BO LD);
continue;

case 'U':
attrset(A_U N DERLI NE);
continue;

case 'N':
attrset(O);
continue;

}
addch(c);
addch(c2);

addch(c);

fclose(fd);
refresh();
endwin();
exit(O);

Appendix

Tl A-11

Appendix

EXAMPLE PROGRAM 'scatter'

This program reads a file, and displays the file in a random order on the
screen. Some programs assume all screens are 24 lines by 80 columns. It
is important to understand that many are not. The variables LINES and
COLS are defined by initscr with the current screen size. Programs should
use them instead of assuming a 24x80 screen.

*

,~I

SCATTER. This program takes the first
23 lines from the standard
input and displays them on the
VDU screen, in a random manner.

#include <curses.h>

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES][MAXCOLSJ;r' Screen Array * /

main()
{

register int row=O,col=O;
register char c;
int char _count=O;
long t;
char buf[BUFSIZ];

initscr();
for(row=O;row<MAXLINES;row++)

for(col=O;col<MAXCOLS;col++)
s[row][col]=' ';

Tl A-12

}

row= O;
/ ·~ Read screen in * /
while((c=getchar()) != EOF && row < LINES) {

}

if(c != \n') {
/ ·~ Place char in screen array ~· /
s[row][col++] = c;
if(c != ' ')

char _count++;
} else {

col=O;
row++;

}

time(&t); /* Seed the random number generator * /
srand((int)(t&Ol 77777L));

while(char _count) {
row=rand() % LINES;
col=(rand()>>2) % COLS;
if(s[row][col] != ' ')
{

}
}
endwin();
exit(O);

move(row, col);
addch(s[row][col]);
s[row][col]=EOF;
char _count--;
refresh();

Appendix

Tl A-13

Appendix

EXAMPLE PROGRAM 'show'

The show program pages through a file, showing one full screen each time
the user presses the space bar. By creating an input file for show made up
of 24-line pages, each segment varying slightly from the previous page,
nearly any exercise for curses can be created. Such input files are called
"show scripts."

In this program, cbreak is called so that the user can press the space bar
without having to hit return. The noecho function is called to prevent the
space from echoing in the middle of a refresh, messing up the screen. The
nonl function is called to enable more screen optimization. The idlok
function is called to allow insert and delete line, since many show scripts
are constructed to duplicate bugs caused by that feature. The clrtoeol
and clrtobot functions clear from the cursor to the end of the line and
screen, respectively.

#include <curses.h>
#include <signal.h>

main(argc, argv)
int argc;
char ·~argv[];
{

FILE '~fd;

char linebuf[BUFSIZ];
int line;
void done(), perror(), exit();

if(argc != 2)
{

}

fprintf(stderr," usage: %s file\n", argv[O]);
exit(l);

if((fd=fopen(argv[l]." r")) == NULL)
{

perror(argv[1]);
exit(2);

Tl A-14

}

}
signal(SIGINT, done);

initscr();
noecho();
cbreak();
non I();
idlok(stdscr, TRUE);

while(l)
{

move(O,O);
for(line=O; line<LINES; line++)
{

}

if(fgets(linebuf, sizeof linebuf, fd) == NULL)
{

}

clrtobot();
done();

move(line, O);
printw(" %s" , linebuf);

refresh();
if(getch() == 'q')

done();

void
done()
{

}

move(LINES-1, O);
clrtoeol();
refresh();
endwin();
exit(O);

Appendix

Tl A-15

Appendix

EXAMPLE PROGRAM 'termhl'

/*
* A terminfo level version of highlight.

*I
#include <curses.h>
#include <term.h>

int ulmode = O; / * Currently underlining * /

main(argc, argv)
char ~'*argv;
{

FILE '~fd;

int c, c2;
int outch();

if (argc > 2) {

}

fprintf(stderr," Usage: termhl [file]\n");
exit(l);

if (argc == 2) {
fd = fopen(argv[l], "r");
if (fd == NULL) {

perror(argv[1]);
exit(2);

}
} else {

fd = stdin;

setupterm(O, 1, O);

Tl A-16

}

for(;;) {

}

c = getc(fd);
if (c == EOF)

break;
if (c == '\\') {

}
else

c2 = getc(fd);
switch (c2) {
case 'B':

tputs(enter _bold_mode, 1, outch);
continue;

case 'U':
tputs(enter _underline_mode, 1, outch);
ulmode = l;
continue;

case 'N':

}

tputs(exit_attribute_mode, 1, outch);
ulmode = O;
continue;

putch(c);
putch(c2);

putch(c);

fclose(fd);
fflush(stdout);
resetterm();
exit(O);

Appendix

Tl A-17

Appendix

I~,

':'This function is like putchar, but it checks for underlining.
·~I

putch(c)
int c;
{

/'~

outch(c);
if (ulmode && underline_char) {

outch('\b');
tputs(underline_char, 1, outch);

}

·~ Outchar is a function version of putchar that can be passed to
~, tputs as a routine to call.
~,I

outch(c)
int c;
{

putchar(c);
}

Tl A-18

Appendix

EXAMPLE PROGRAM 'two'

This program pages through a file, showing one page to the first terminal
and the next page to the second terminal. It then waits for a space to be
typed on either terminal, and shows the next page to the terminal typing
the space. Each terminal has to be separately put into nodelay mode.
Since no standard multiplexor is available in current versions of the UNIX
System, it is necessary to either busy wait or call sleep(l); between each
check for keyboard input. This program sleeps for a second between
checks.

#include <curses.h>
#include <signal.h>

struct screen *me, ~'you;
struct screen ':'set_term();

FILE '~fd, ':'fdyou;
char linebuf[512];

main(argc, argv)
char '~ '~ argv;
{

int done();
int c;

if (argc != 4) {
fprintf(stderr, "Usage: two othertty otherttytype inputfile\n");
exit(l);

fd = fopen(argv[3], " r");
fdyou = fopen(argv[l], "w+");
signal(SIGINT, done); r' die gracefully "I

me= newterm(getenv(" TERM"), stdout);r' initialize my tty ':' /
you = newterm(argv[2], fdyou);/ ':' Initialize his terminal ':' /

Tl A-19

Appendix

}

set_term(me); /'~ Set modes for my terminal ·~ /
noecho(); / ·~ turn off tty echo ':' /
cbreak(); r' enter cbreak mode ·:, /
non I(); r Allow linefeed •!<I
nodelay(stdscr,TRUE); r No hang on input •!<I

set_term(you); / ·~ Set modes for other terminal ':' /
noecho();
cbreak();
non I();
nodelay(stdscr ,TRUE);

;·~ Dump first screen full on my terminal •:' /
dump_page(me);

/~' Dump second screen full on his terminal ·~ /
dump_page(you);

for(;;) { /':' for each screen full ~' /
set_term(me);
c = getch();
if (c == 'q') ;·~ wait for user to read it * /

done();
if (c == ' ')

dump_page(me);

set_term(you);
c = getch();
if (c == 'q') /~' wait for user to read it ':' /

done();
if (c == ' ')

dump_page(you);
sleep(l);

dump_page(term)
struct screen *term;

Tl A-20

int line;

set_term(term);
move(O, O);
for (line=O; line<LINES-1; line++) {

}

if (fgets(linebuf, sizeof linebuf, fd) == NULL) {
clrtobot();
done();

}
mvprintw(line, 0, " %s" , linebuf);

standout();
mvprintw(LINES-1, 0, "--More--");
standend();
refresh(); / * sync screen * /

/*
* Clean up and exit.
,~I

done()
{

}

/'~ Clean up first terminal * /
set_term(you);
move(LIN ES-1,0);
clrtoeol();
refresh();
endwin();

/ ·~ to lower left corner ·~ /
/ * clear bottom line * /
/ * flush out everything * /
/* curses cleanup * /

/ * Clean up second terminal * /
set_term(me);
move(LINES-1,0);
clrtoeol();
refresh();
endwin();

exit(O);

/ * to lower left corner ·~ /
I* clear bottom line * /
/ '~ flush out everything ·~ /
/ * curses cleanup * /

Appendix

Tl A-21

Appendix

EXAMPLE PROGRAM 'window'

The main display of this program is kept in stdscr. When the user
temporarily wants to put something else on the screen, a new window is
created covering part of the screen. A call to wrefresh on that window
causes the window to be written over stdscr on the screen. Calling refresh
on stdscr results in the original window being redrawn on the screen. Note
the calls to touchwin before writing out an overlapping window. These are
necessary to defeat an optimization in curses. If you have trouble
refreshing a new window that overlaps an old window, it may be necessary
to call touchwin on the new window to get it completely written out.

#include <curses.h>

WINDOW *cmdwin;

main()
{

inti, c;
char buf[l20];

initscr();
non!();
noecho();
cbreak();

cmdwin = newwin(3, COLS, 0, O); / * top 3 lines '' /
for (i=O; i<LINES; i++)

mvprintw(i, 0, "'This is line %d of stdscr" , i);

Tl A-22

for(;;) {
refresh();

}

c = getch();
switch (c) {
case 'c': r' Enter command from keyboard ~'I

werase(cmdwin);
wprintw(cmdwin, "Enter command:");
wmove(cmdwin, 2, O);
for (i=O; i<COLS; i++)

waddch(cmdwin, '-');
wmove(cmdwin, 1, O);
touchwin(cmdwin);
wrefresh(cm dwin);
wgetstr(cmdwin, but);
touchwin(stdscr);
/*
'~ The command is now in buf.
'~ It should be processed here.
~,I

break;
case 'q':

endwin();
exit(O);

Appendix

Tl A-23

Replace this

page with the

USER ENVIRONMENT

tab separator.

AT&T

AT&T 382 Computer
UNIX™ System V Release 2,0
User Environment
Utilities Guide

CONTENTS

Chapter 1. INTRODUCTION

Chapter 2. COMMAND DESCRIPTIONS

Chapter 1

INTRODUCTION

PAGE

GENERAL . 1-1

GUIDE ORGANIZATION . 1-2

Chapter 1

INTRODUCTION

GENERAL
This guide describes command syntax and use of the User Environment
Utilities available with your AT&T 382 Computer.

The 382 Computer user operates in a predefined executing environment.
This environment is defined when a user logs in. The login process
establishes environment variables, home directory, path, etc. A user may
optionally add or alter environment variables in a .profile in his home
directory.

Many User Environment Utilities commands allow users to control their
inherited environment. This allows the user to schedule commands to be
executed at a specific time, or access more than one shell from a single
terminal.

Four of the commands can be used to do arithmetic calculations. These
commands can be executed directly, or used inside a file.

UE 1-1

INTRODUCTION

GUIDE ORGANIZATION
The remainder of this guide, Chapter 2 -- "COMMAND DESCRIPTION,"
describes the command formats (syntax) for each command in the User
Environment Utilities. The descriptions include the purpose of the
command, a discussion of the command syntax and options, and examples
of using each command.

UE 1-2

Chapter 2

COMMAND DESCRIPTIONS

PAGE

GENERAL . 2·1

HOW COMMANDS ARE DESCRIBED. 2-4

COMMAND SUMMARY . 2-6

at - Execute Command at a Specified Time . 2-6

banner - Make Banners. 2-9

batch - Execute Commands at a later Time. 2-11

be - Calculator . 2·13

cal - Print Calendar. 2-27

calendar - Reminder Service.. 2-29

crontab - Clock Used to Schedule Commands • 2-31

de - Calculator . 2-35

env - Set Environment for Command Execution . 2-45

factor - Find Prime Factors of a Number . 2-47

logname - Print Login Name . 2-49

nice - Run a Command at Low Priority . 2-51

nohup - Run a Command Immune to Hangups or Quits 2-53

sh! - Layered Shell . 2-55

tabs - Set Tab Stops' on a Printer or Terminal . 2-59

tty - Print the Terminal Name . 2-61

u11its - Find Unit Conversion Factors . 2-63

xargs - Construct Argument list(s) and Execute Command. 2-67

Chapter 2

COMMAND
DESCRIPTIONS

GENERAL
The User Environment Utilities provide eighteen UNIX* System commands.
A summary of these commands is provided in Figure 2-1.

The User Environment commands are useful when:

.. Performing mathematical calculations

.. Writing shell programs

.. Checking or changing executing environment of commands

• Scheduling commands to be executed at a later time.

'' Trademark of AT&T

UE 2-1

COMMAND DESCRIPTIONS

COMMAND DESCRIPTION

at Used to execute commands at a specified time.

banner Creates a banner with large letters.

batch Used to execute commands when the system load
level permits.

be Used to do precise arithmetic calculations.

cal Prints a calendar for a specified month and/or year.

calendar Invokes a user's reminder service.

crontab Used to schedule command execution using cron.

de Used to do precise arithmetic calculations using a
stack to keep a record of the previous calculation.

env Executes a command with modified environment
variables.

factor Used to calculate the prime factors of any number.

Figure 2-1. User Environment Commands (Sheet 1 of 2)

UE 2-2

COMMAND DESCRIPTIONS

COMMAND DESCRIPTION

logname Displays the environment variable $LOGNAME
assigned to the user on login.

nice Runs a command at a lower priority level.

nohup Makes a-command immune to hangups and quits.

sh! Allows a user to interact with several shells from the
same terminal.

tabs Sets tab stops on a printer or terminal.

tty Prints the path name of the user's terminal.

units Used to find the conversion factor between two
different standard unit values.

xargs Used to execute a command or a shell program one
or more times by combining arguments to this
command with arguments read from the standard
input.

Figure 2-1. User Environment Commands (Sheet 2 of 2)

UE 2-3

COMMAND DESCRIPTIONS

HOW COMMANDS ARE DESCRIBED
A common format is used to describe each of the commands. The format
is as follows:

• General: The purpose of the command is defined. Any uncommon
or special information about the command is also provided .

• Command Format: The basic command format (syntax) is defined
and the various arguments and options discussed .

• Sample Command Use: Example command line entries and system
responses are provided to show you how to use the command.

In the command format discussions, the following symbology and
conventions are used to define the command syntax:

• The basic command is shown in bold type. For example: command
is in bold type .

• Arguments that you must supply to the command are shown in a
special type. For example: command argument

• Command options and arguments that do not have to be supplied
are enclosed in brackets ([]). For example: command
[optional arguments]

• The pipe symbol (I) is used to separate arguments when one of
several forms of an argument can be used for a given argument
field. The pipe symbol can be thought of as an exclusive OR
function in this context. For example:
command [argumentl l argument2]

UE 2-4

COMMAND DESCRIPTIONS

In the sample command discussions, the lines that you input are ended
with a carriage return. This is shown by using <CR> at the end of the
lines.

Refer to the AT&T 382 Computer User Reference Manual for UN IX System
V manual pages supporting the commands described in this guide.

The following conventions are used to show your terminal input and the
system output:

This style of type is used to show system generated
responses displayed on your screen.

This style of bold type is used to show inputs
entered from your keyboard that are displayed on your
screen.

These bracket symbols, < > identify inputs from the
keyboard that are not displayed on your screen, such
as: <CR> carriage return, <CTRL d> control d, <ESC g>
escape g, passwords, and tabs.

This style of italic type is used for notes tha,t
provide you w1:th additional information.

UE 2-5

COMMAND DESCRIPTIONS

COMMAND SUMMARY

at - Execute Command at a Specified Time

General

The at command is used to execute one or more commands at a specified
time and date. Output from the at command is mailed to the user unless
it is redirected to a file, printer, etc.

Command Format

The at command has the following format:

at time [date][+ increment]
at -r job .. .
at -/[job ...]

The time argument identifies the time of day you want the at-file run. A
24-hour clock is assumed unless the optional letters, A (AM), P (PM), N
(noon), or M (midnight) follow the four digit number.

The date argument can be a month followed by a space and then the day,
or just the name of the day of the week. You can also specify week that
means schedule for seven days from today's date.

The + increment argument allows you to schedule commands to be
executed according to a given interval. The increment is a number
followed by a following interval: minutes, hours, days, weeks, months, or
years.

The -/option lists all the jobs you have previously scheduled with the at or
batch command. at job numbers are ended with a .a and batch job
numbers with a .b.

UE 2-7

COMMAND DESCRIPTIONS

The -r option removes jobs previously scheduled by the at or batch
commands.

Sample Commands

The following examples show how to enter an at command to execute the
file "filename" at a specified time:

$ at 11:15 July 19<CR>
nroff -mm memo > memo. f<CR>
<CTRL d>
job 460653300.a at Fri July 19 11: 15:00 1985
$

$ at 1350 < filename > outputfile<CR>
job 460653300.a at Fri July 19 11: 15:00 1985
$

r: •< _, '''''''''·•<Clb

UE 2-8

COMMAND DESCRIPTIONS

banner - Make Banners

General

The banner command prints a banner of the arguments specified in the
command line. Each of the arguments can be up to 10 characters long.
Quotation marks can be used to force the output onto one line.

Command Format

The banner command has the following format:

banner arguments

Arguments cannot be more than 10 characters. There is no limit to the
amount of arguments that can be specified.

Sample Command

The following example shows how to enter the banner command and the
response that would follow:

$ banner "I 2 3" <CR>

$

UE 2-9

COMMAND DESCRIPTIONS

batch - Execute Commands at a Later Time

General

The batch command is used to execute commands at a later time when
the system load level permits. It is useful for running text processing
commands such as nroff or troff, or for compiling C programs that require
a large amount of processor time. The output from the batch command is
mailed to the user unless it is redirected to a file.

Command Format

The batch command accepts input directly or given in a file. The format of
the batch command, when data is entered directly, is as follows:

batch
command lines
<CTRL cl>

The command lines argument represents the commands you wish to
execute.

The format of the batch command, when data is given in a file is as
follows:

batch < file

The file argument identifies the file containing the commands you want to
execute.

To list the jobs you have previously scheduled, use the at ·I command. To
remove jobs, use the at ·r command.

UE 2-11

COMMAND DESCRIPTIONS

Sample Command

The following command line entry shows how to enter an nroff command
using the batch command and the response that would follow:

$ batch<CR>
nroff file! > file2<CR>
<CTRL d>
job 460657390.b at Fri July 19 12:35:01 1985
$

UE 2-12

COMMAND DESCRIPTIONS

be - Calculator

General

The be command is used to do basic arithmetic, number base conversions,
trigonometric functions, exponential calculations, natural logarithm
calculations, and Bessel functions. It reads input from file arguments given
and then reads standard input.

The be command is actually a preprocessor for the de command. The
output from the be command is piped to de unless the -e (compile only)
option is present.

The be command has special operators and functions that must be used
when performing any calculations. These operators and functions are
described in the following list:

+ adds two numbers and displays the result.

I

*
%

subtracts two numbers and displays the result.

divides the left argument by the right argument and displays
the result.

multiplies two numbers and displays the result.

displays the remainder from a division process.

raises the left argument to a power denoted by the right
argument.

a displays the arctangent of the right argument.

c displays the cosine of the right argument.

s displays the sine of the right "argument.

UE 2-13

COMMAND DESCRIPTIONS

e displays the exponential of the right argument.

displays the natural logarithm of the right argument.

ibase changes the input base.

obase changes the output base.

scale changes the amount of digits to the right of the decimal point.

quit exits the program.

Command Format

Input for the be command can be entered directly or given in a file. The
format of the be command, when data is entered directly, is as follows:

be
calculation

The calculation argument represents the mathematical calculation you
wish to execute.

The format of the be command, when data is given in a file, is as follows:

be [-cl [-n file

The -c (compile only) option causes the preprocessed output from be to be
written to standard output instead of piping it to de. No calculations are
performed.

The -I option passes the input through an arbitrary precision math library.
This library contains the sine, cosine, exponential, log, arctangent, and
Bessel functions. See examples in "Trigonometric and Exponential
Calculations.''

UE 2-14

COMMAND DESCRIPTIONS

The file argument identifies the file you want the be command to act on.
Information on variables, operators, and statements you can use in these
files are given in the manual pages.

Sample Calculations

The following examples show how to use the be command for most
commonly used calculations. To do these examples, first be sure you have
the system prompt ($).

Addition, Subtraction, Multiplication, and Division

In this example, you want to add 5 plus 5:

$ bc<CR>
5+5<CR>
10
quit<CR>
$

This format is also used for subtraction, multiplication, and division. The
only difference is you have to use the appropriate operator.

Calculations with Negative Numbers

To do calculations with negative numbers, you must precede the negative
number with a minus sign (-). In this example, you want to add a negative
6 to a positive 3 (a positive number will not have a + sign preceding it):

UE 2-15

COMMAND DESCRIPTIONS

$ bc<CR>
-6+3<CR>
-3
quit<CR>
$

Find the Remainder of a Division Calculation

The be command rounds off the remainder when performing division
calculations. To find the remainder, you need to use the remainder %
operator. In this example, you want to find the remainder of the problem
(17 divided by 5). Notice that only the remainder is displayed:

$ bc<CR>
17%5<CR>
2
quit<CR>
$

Raise a Number to a Power

In this example, you want to raise 2 to the 6 power:

$,bc<CR>
2 6<CR>
64
quit<CR>
$

UE 2-16

COMMAND DESCRIPTIONS

Find the Square Root

In this example, you want to find the square root of 49:

$ bc<CR>
sqrt (49) <CR>
7
quit<CR>
$

Combining Calculations

When combining several types of calculations into one problem, the be
command performs the calculations according to the following standard
rules of arithmetic:

1. All calculations enclosed in parenthesis are performed first. If any
calculations enclosed in parenthesis are located within another set
of parenthesis, the innermost calculations are always performed
first.

2. All calculations involving square root and exponentiation are
performed next. These calculations are performed from right to left.

3. After performing all calculations enclosed in parenthesis,
multiplication and division calculations are performed. These
calculations are performed from left to right,

4. Unenclosed addition and subtraction calculations are always
performed last. These calculations are performed from left to right.

UE 2-17

COMMAND DESCRIPTIONS

With be, you can do many calculations with one input. In this example,
you want to evaluate 5 times 4 plus 3 times (2 + 2) times 2 to the third
power and divide the entire calculation by 2:

$ bc<CR> ,
(5* 4+3* (2+2) *2 3) /2<CR>
58
quit<CR>
$

Continuous Calculations

You can keep doing calculations with be after each answer without having
to quit be. You can also change the type of calculation being performed
without quitting be. In this example, you have to do five problems: add 30
to 10, add 6 to 3, multiply 2 times 6, multiply 3 times 8, and add 3 to the
sum of 2 times 6. The following example shows how to do all five
calculations before quitting be:

$ bc<CR>
30+10<CR>
40
6+3<CR>
9
2*6<CR>
12
3*8<CR>
24
3+2*6<CR>
15
quit<CR>
$

UE 2-18

COMMAND DESCRIPTIONS

Changing the Accuracy of Calculations

You can change the accuracy of calculations by increasing the number of
digits after the decimal point. In be, this is known as changing the scale.
The scale in be is initially set to 0. After changing the scale, to get be back
to a scale of 0 you must change the scale to 0. In this example, you want
to divide 100 by 3 with an accuracy of 5 digits after the decimal point:

$ bc<CR>
scale=5<CR>
100/3<CR>
33.33333
scale=O<CR>
qui t<CR>
$

Changing the Input Base

The be command is normally set for a base of 10 (decimal). You can
change the input base from base 10 to base 8 (octal), or base 16
(hexadecimal). To return be to base 10, you must change the input base
to 10. You convert the input base to find the base 10 equivalent of a
number in base 8, or base 16. In the next example, you want to find the
base 10 equivalent of 1000 in base 16 and then convert back to base 10
using the command "ibase=A":

$ bc<CR>
ibase=l6<CR>
lOOO<CR>
4096
i base=A<CR>
lOOO<CR>
1000
qui t<CR>
$

UE 2-19

COMMAND DESCRIPTIONS

Changing the Output Base

The be command is normally set for base 10 (decimal). You can change
the output base from base 10 to base 8 (octal), or base 16 (hexadecimal).
To return be to base 10, you must change the output base to 10. You
convert the output base to find the base 8, or base 16 equivalent of a base
10 number.

In this example, you want to find the base 16 equivalent of 1000 in base
10 and then change back to base 10 using the command "obase=A":

$ bc<CR>
obase=16<CR>
lOOO<CR>
3E8
obase=A<CR>
lOOO<CR>
1000
quit<CR>
$

Using Registers in Calculations

You can do calculations using one or more of 26 registers named a
through z. Registers can be used in any of the following types of
calculations:

• Addition

• Subtraction

• Multiplication

• Division (positive and whole number results are required when you
use more than one register)

UE 2-20

COMMAND DESCRIPTIONS

• Raise a number (register) to a power

• Multiple calculations using a parenthetical expression.

You can do more than one calculation at a time using register(s). Once
you have done a calculation using a register, the result of the calculation
will be the content of the register.

You must be in the be command to use these registers. You enter
information into a register by typing the register name (a through z), an
equal sign(=), the information (or calculation), and a carriage return. To
see the information or result of a calculation, you enter the register name
followed by a carriage return. The system will display the content of the
register.

You can also do calculations with a register using the be -I command.
However, you can only use one register.

In the following sample calculations you want to enter 4 into the x register
and 2 into they register. Then check the contents of the register before
performing the sample calculations.

UE 2-21

COMMAND DESCRIPTIONS

Inputting 4 in the x register and 2 in the y register:

$ bc<CR>
x=4<CR>
y=2<CR>
x<CR>
4
y<CR>
2
z=x+y<CR>
z<CR>
6
z=y-x<CR>
z<CR>
-2
z=x*y<CR>
z<CR>
8
z=x/y<CR>
z<CR>
2
z=x y<CR>
z<CR>
16
z= (x+x) *y<CR>
z<CR>
32
quit<CR>
$

UE 2-22

COMMAND DESCRIPTIONS

Trigonometric and Exponential Calculations

The be command has an option (-1) that accesses the arbitrary precision
math library. This option can be used with the be command to:

• Find the sine of an angle

• Find the cosine of an angle

• Find the arctangent of a number

• Find the natural logarithm (In) of a number

• Raise a number to thee (2.718) power.

The be -I command performs all calculations involving angles in radians.
Therefore, if the angle you want to work with is in degrees, you must
change it to radians (360 degrees = 2 pi radians). To change degrees to
radians, multiply the amount of degrees by 0.01745.

Find the Sine of 45 Degrees:

$ be -l<CR>
45*. Ol 745<CR>
0.78525
s(.78525)<CR>
.707002
qui t<CR>
$

UE 2-23

COMMAND DESCRIPTIONS

Find the Cosine of 1.04700 Radians (60 Degrees):

$ be -l<CR>
e(l. 04700)<CR>
.500171
quit<CR>
$

Find the Natural Logarithm of the Number 20:

$ be -l<CR>
1(20)<CR>
2.995732
quit<CR>
$

Find the Exponential of the Number 2:

$ be -l<CR>
e(2)<CR>
7.389056
quit<CR>
$

UE 2-24

Find the Sine of 45 Degrees using a register:

$ be -l<CR>
x=45*0. 01745<CR>
s(x)<CR>
.707002
quit<CR>
$

COMMAND DESCRIPTIONS

UE 2-25

COMMAND DESCRIPTIONS

cal - Print Calendar

General

The cal command prints a calendar for the year specified. If an argument
for a month is also specified, a calendar for only that month will be
printed.

Command Format

The cal command has the following format:

cal [[month] year]

month must be a number ranging from 1 through 12

year must be a number ranging from 1 through 9999.

If no arguments are given, a calendar for the current month will be printed.

UE 2-27

COMMAND DESCRIPTIONS

Sample Command

The following example shows how to enter the cal command and the
response that would follow:

$ cal 7 1985<CR>
July 1985

s M Tu W Th F s
1 2 3 4 5 6

7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

$

UE 2-28

COMMAND DESCRIPTIONS

calendar - Reminder Service

General

The calendar command is used to access a file in .the current directory
named calendar and output the lines that contain today's or tomorrow's
date. The calendar command can be automatically executed on a daily
basis as a function of the cron command. When automatically executed,
the calendar command accesses every calendar file on the system and
reports any results to the appropriate user via mail. To receive reminders
automatically via mail, the calendar file should be created in your login
directory.

The lines in the calendar file must contain dates in some reasonable form.
The following is an example of a calendar file located in your login
directory:

$ cat calendar<CR>
Confirm travel reservations on 07 /23/85.
Bill's 10th anniversary on July 27, 1985.
Appointment with Dr. Miller on 7 /29 /85 at 9:00 a.m.
Nancy's birthday on Oct 29.
$

Each of the lines containing a date will be output via mail on that day and
the preceding day.

Command Format

The calendar command has the following format:

calendar [·]

UE 2-29

COMMAND DESCRIPTIONS

The - argument is an optional flag that causes the command to execute for
every user having a calendar file. This is the form of the command that is
executed by the cron command to check all calendar files on a daily basis.
Without the argument, the calendar command will only check your
calendar file and report its contents.

Sample Command

The following example shows how to enter the calendar command and the
output that would follow if the current date was July 19, 1985:

$ calendar<CR:>
Bill's 10th anniversary on July 27, 1985.
Appointment with Dr. Miller on 7 /29/85 at 9:00 a.m.
$

In order for this example to be correct, the calendar file must be located in
the current working directory.

To provide reminder service automatically, an entry must be made in the
crontab file for calendar. The following is a sample crontab entry for
calendar:

0 9 * * * /usr/lib/calendar -

With this entry, the calendar command would execute every morning at
9:00 a.m. (provided the system is up) and search all login directories for
calendar files. For a detailed description of the crontab file and how its
entries are structured, refer to the AT&T 382 Computer System
Administration Utilities Guide.

UE 2-30

COMMAND DESCRIPTIONS

crontab - Clock Used to Schedule Commands

General

The crontab command allows specified users to submit their jobs for
execution. Users are permitted to use crontab if their name is in the file
/usr /lib/cron/cron.allow. Users are denied permission if their name is in
the file /usr /lib/cron/cron.deny. If neither file exists, only root is allowed
to use the crontab command.

The crontab command accepts a command file or standard input. The
input file normally contains lines that are broken into six fields. Each field
is separated by a space. The first five fields are dedicated to:

minute (0-59)
hour (0-23)
day of the month (1-31)
month of the year (1-12)
day of the week (0-6 with Sunday=O)

The last field is the command you want to execute. If no file is specified,
the data is read from the standard input.

Commands in a crontab file are executed in a user's home directory. The
output from the command is mailed to the user unless redirected.
Therefore, you would normally want to redirect the output to a file.

The crontab command is especially useful for scheduling programs to run
periodically, such as accounting programs, weekly reports, or system
usage programs.

UE 2-31

COMMAND DESCRIPTIONS

Command Format

The crontab command uses the following formats:

crontab [-!} [-r} [file}

[file] contains the command lines a user wishes to have executed by cron.
If the file is not specified, command lines are read from standard input

The -/option lists the crontab files for the invoking user.

The -r option removes the users files from the crontab directory.

None of the options for the crontab command can be used together.

Sample Commands

The following is an example of the crontab command using a command file
as the input.

Create the command file (whoison) containing the following line:

0 8 ·~ ~' 1-5 who ;ps >> outputfile

This line instructs cron to execute a "who" command and a "ps"
command every Monday through Friday at 8 AM and place the output in a
file named "outputfile" in your home directory. To have cron execute the
command file you would enter the command:

UE 2-32

COMMAND DESCRIPTIONS

To have cron execute the same command using standard input, you would
enter the following commands:

$ crontab<CR>
0 8 • • 1-5 who ;ps >> outputfile<CR>
<CTRL d>
$

To list all the commands in your crontab file, you would use the I option.
For example:

$ crontab -l<CR>
0 8 * * 1-5 who ;ps >> outputfile
$

UE 2-33

COMMAND DESCRIPTIONS

de - Calculator

General

The de command does various arithmetic calculations on one or two
numbers that have been placed on a pushdown stack. The stack is like that
of a calculator using reverse Polish notation. The de command takes one
or two numbers from the top of the stack, performs the desired arithmetic
operation, and returns the number(s) to the stack.

de Operators and Functions

+ adds the top two numbers on the stack and stores the result in
their place.

I

%

subtracts the top two numbers on the stack and stores the
result in their place.

multiplies the top two numbers on the stack and stores the
result in their place.

divides the top two numbers on the stack and stores the result
in their place.

stores the remainder of a division operation in the top of the
stack.

raises the second number from the top of the stack to the
number in the top of the stack and stores the result in their
place.

Note: When using+,-,*,/,%, or , an exponent must
not have any digits after the decimal point.

UE 2-35

COMMAND DESCRIPTIONS

v restores the top number of the stack with the square root of
that number.

sx stores the number on the top of the stack in a register named
x (where x may be any character). If s is uppercase, xis
treated as a stack.

Ix stores the number in register x on the stack. If the I is
uppercase, register xis treated as a stack and its top value is
placed on the main stack.

Note: All registers start with an empty value that is
treated as a zero by the command I and as an error by
the command l.

c clears all the values in the stack.

d duplicates the top value on the stack.

p prints the top value on the stack.

f prints all values on the stack and in the registers.

x removes the top element from the stack. Treats it as a
character string and executes it as a string of de commands.

[...] puts the bracketed character string on the top of the stack.

q exits the program.

UE 2-36

COMMAND DESCRIPTIONS

Command Format

The de command accepts data entered directly or from file arguments.
The format of the de command when data is entered directly is as follows:

de
data on stack
operation symbol
p

The data argument represents any numbers you have input or numbers
existing in the stack.

The operation symbol argument represents the mathematical calculation
you wish to execute.

The p prints the character on top of the stack.

The format of the de command when data is given from a file is as follows:

de file

The file argument identifies the file that you want input to the de
command.

UE 2-37

COMMAND DESCRIPTIONS

Sample Calculations

The following examples show how to use the de command when the data
is entered directly.

Addition, Subtraction, Multiplication, and Division

In this example, you want to add 10 and 20:

$ dc<CR>
lO<CR>
20<CR>
+<CR>
p<CR>
30
q<CR>
$

This format is also used for subtraction, multiplication, and division. The
only difference is you have to use the appropriate operation symbol.

Calculations with Negative Numbers

To do calculations with negative numbers, you must precede the negative
number with a minus (·) sign. In this example, you are adding a negative 6
to a positive 3 (a positive number does not need a + preceding it):

$ dc<CR>
-6<CR>
3<CR>
+<CR>
p<CR>
-3
q<CR>
$

UE 2-38

COMMAND DESCRIPTIONS

Find the Remainder of a Division Calculation

When performing division calculations, the de command rounds off the
remainder. To find the remainder of a division calculation, you need to use
the remainder(%) calculation symbol instead of the division symbol. In
this example, you want to find the remainder of the problem (25 divided by
3):

$ dc<CR>
25<CR>
3<CR>
%<CR>
p<CR>
1
q<CR>
$

Raise a Number to a Power

In this example, you are raising the number 2 to the 6th power:

$ dc<CR>
2<CR>
f)<CR>
<CR>

p<CR>
64
q<CR>
$

UE 2-39

COMMAND DESCRIPTIONS

Find the Square Root of a Number

In this example, you want to find the square root of 49:

$ dc<CR>
49<CR>
v<CR>
p<CR>
7
q<CR>
$

Note: Square root answers are rounded off to the nearest whole
number.

Combining Calculations

In this example, you are executing a string of different types of calculations
without quitting between each one. Also, notice that the answer is not
displayed until it is requested by entering p:

$ dc<CR>
12<CR>
6<CR>
*<CR>
3<CR>
-<CR>
25<CR>
5<CR>
/<CR>
+<CR>
p<CR>
74
q<CR>
$

UE 2-40

COMMAND DESCRIPTIONS

Continuous Calculations

The de command allows you to do separate calculations continuously
without having to return to the UNIX System. You can also change the
type of calculation being performed. In this example, you are executing
two completely separate calculations without having to quit de:

$ dc<CR>
30<CR>
lO<CR>
+<CR>
p<CR>
40
c<CR>
5<CR>
6<CR>
*<CR>
p<CR>
30
q<CR>
$

UE 2-41

COMMAND DESCRIPTIONS

Converting Number Base

Normally, de is set for base 10 (decimal). You can set the input and
output bases in de to base 10 (decimal), base 8 (octal), or base 16
(hexadecimal). By changing the input base, you can do calculations in the
different bases. By changing the output base you can do calculations in
one base and print the result in the base you want. To change either base
back to base 10, just enter q followed by a carriage return.

Changing the Input Base The following example shows how to change the
in put base to base 16 and then add 13 to 16:

$ dc<CR>
U<CR>
i<CR>
13<CR>
16<CR>
+<CR>
p<CR>
65
q<CR>
$

Changing the Output Base The following example shows how to change
the output base to base 8 and add 12 to 12:

$ dc<CR>
B<CR>
o<CR>
12<CR>
12<CR>
+<CR>
p<CR>
30
q<CR>
$

UE 2-42

COMMAND DESCRIPTIONS

Changing the Accuracy of Calculations

You can increase the accuracy of calculations by increasing the amount of
digits after the decimal point. To do this in de, you change the scale (scale
is shown as k). The scale in de is normally set to 0. After you change the
scale from 0, to get de back to a scale of 0, enter q followed by a carriage
return.

In the following example, you want to change the scale to 5, then divide
100 by 3, and change the scale back to 0:

$ dc<CR>
5<CR>
k<CR>
lOO<CR>
3<CR>
/<CR>
p<CR>
33.33333
q<CR>
$

UE 2-43

COMMAND DESCRIPTIONS

env - Set Environment for Command Execution

General

The env command momentarily changes the user's environment variables
for execution of a command. A user's environment is automatically
initialized on login. The environment variables of the shell are unchanged.
For information on the variables and how they affect the executing
environment, refer to the section in the UNIX System User Guide where
shell programming variables are described.

Command Format

The env command has the following format:

env [-] [name=valuej ... [command [arguments]]

The - flag eliminates the current environment so that the environment
consists of the specified variables only.

Arguments of the form name=value are environment variable(s) that are to
be inherited into the current environment before executing command
arguments. More than one argument of the form name=va/ue can be
listed.

If there is no command specified, the env command will print the resulting
environment. This is useful for checking the environment before executing
a command.

UE 2-45

COMMAND DESCRIPTIONS

Sample Command

In a shell program, you may have a need to temporarily change the PATH
variable in the executing environment. You may have several versions of a
program, and each program and the files required for its execution are
located in its own directory. If the current PATH variable does not include
the path needed, you could use the env command to temporarily change
the path as follows:

$ env - PATH=/usr/rsc/dbase/labelsl.4 getlabels<CR>
$

where get labels is a shell program to be executed using the files located
in the labelsl. 4 directory. Therefore, all files required for execution
must reside in labelsl. 4.

UE 2-46

COMMAND DESCRIPTIONS

factor - Find Prime Factors of a Number

General

The factor command enables you to calculate the prime factors of any
whole number.

Command Format

There are two formats for the factor command. These formats are:

factor number

factor
number

The number argument is the number that you want to factor. The results
are the same regardless of what format you use.

Sample Calculations

The following examples show the two different ways to execute the factor
command. 12 is the number to be factored. 2,2,3 are the prime factors
of 12, with the prime factor of 1 not shown.

UE 2-47

COMMAND DESCRIPTIONS

Factor One Number

$ factor 12<CR>
12

$

2
2
3

Factor More Than One Number

When factoring more than one number, enter factor followed by a carriage
return. Then, enter the number you want to factor followed by a carriage
return. The answer will then be displayed. To factor another number,
simply enter the number followed by a carriage return. The answer will
then be displayed. You may continue to factor numbers as long as you
like. To quit the factor command and return to the UNIX System, enter q
followed by a carriage return:

$ factor<CR>
12<CR>

2
2
3

4<CR>
2
2

q<CR>
$

UE 2-48

COMMAND DESCRIPTIONS

logname - Print Login Name

General

The logname command displays the contents of the environment variable
$LOGNAME. The $LOGNAME variable is set for a user on login.

Command Format

The logname command has no arguments or options.

Sample Commands

The following example shows how to enter the logname command and the
output that would follow if you were logged in as root (#):

This example shows the output of the logname command if you were a
normal user logged in as user5:

UE 2-49

COMMAND DESCRIPTIONS

nice - Run a Command at Low Priority

General

The nice command executes a command at a lower central processing unit
(CPU) priority level.

Command Format

The nice command has the following format

nice [-increment] command [argum~nts]

The increment argument specifies the priority level to be lowered for the
execution of command. The increment specified must be between 1
through 19, where the larger the value the lower CPU priority. If no
argument is specified for increment, an increment of 10 is assumed.

Sample Command

Compiling C programs can consume a large amount of CPU time and
reduce the overall system response time. To prevent lose of response
time, compilation commands can be given a lower priority level. To use
the nice command with the cc command enter the following:

Note the (&) before the (<CR:>). This causes the compilation to be done
in the background. After the <CR:>, the process identification number
(3745) is echoed. You are then returned to the shell while the make
command runs as a background process with a low priority.

UE 2-51

COMMAND DESCRIPTIONS

nohup - Run a Command Immune to Hangups or Quits

General

The nohup command allows you to execute a command that is immune to
hangups and quits. The use of the ampersand (&) with nohup puts the
command in the background and allows you to log off the system without
terminating the process running under nohup. To interrupt a command
operating under nohup, depress the BREAK key. If the command
operating under nohup is being executed in the background, the UNIX
System command kill must be executed. The kill command is described
in the AT&T 382 Computer User Reference Manual.

Command Format

The nohup command has the following format:

nohup command [arguments]

If the output of the command is not redirected in the command line, it is
sent to a file called nohup.out. If the nohup.out file is not writable in the
current directory, the output is directed to $HOME/nohup.out.

Sample Commands

In the following example, a diff command is run under nohup and an
attempt is made to log off during the processing of the command:

$ nohup diff source source2<CR>
Sending output to nohup.out
exit<CR>
$
login:

UE 2-53

COMMAND DESCRIPTIONS

Note that the user was not logged off until the diff command was
completed. Since the output was not redirected to another file, the output
was sent to nohup.out.

In this example, the output of the diff command is sent to a file called
differ. The command is run in the background so that the user can log off
while the processing of the diff command continues:

$ nobup diff source source2 > differ&<CR>
4025
$ exi t<CR>
login:

Immediately after the nohup command is entered, the background process
number is displayed and the user is returned to the shell. The user can
then log off the system without terminating the background process or
enter another command.

UE 2-54

COMMAND DESCRIPTIONS

shl - Layered Shell

General

The shl command allows a user to interact with more than one shell from
a single terminal. This is done by alternating control of the terminal
between several shells that are known as layers. The layer that can accept
input from the keyboard is considered the "current layer."

The maximum amount of layers that you can invoke with shl is eight The
first layer, however, is used by shl to manipulate the other layers. Its
prompt is >>>. The other layers have a prompt corresponding to their
name. Layer names can have up to eight significant characters, but
cannot be the default names 1 through 1 or (1) through (7). Every layer
has a virtual tty device associated with it and the default name
corresponds with the number of this device.

Some examples of what you might want to do in layers would be:

layer 1 Edit a file.

Layer 2 Use as interactive shell.

layer 3 Execute a text processing command such as "nroff."

layer 4 Edit another file.

There are several commands that may be issued from the shl prompt
level. These commands allow you to create layers, delete layers, switch
between layers, and manipulate the output from each layer. The
commands can be abbreviated by any prefix of the command (for example:
c instead of create).

UE 2-55

COMMAND DESCRIPTIONS

The following list describes the use of each command:

create [name]
Create a layer called [name] and make it the current layer. If
no name is given, a default name is used.

block name [name ...]
For each [name], block the output of the corresponding layer
when it is not the current layer.

delete name [name ...]
For each [name], delete the corresponding layer.

help or?
Print the syntax of the shl commands.

layers [-I] [name ...]
For each [name] list the layer name and its process group ID. If
no name is given, information is given for all processes. The -I
option gives a more detailed listing.

resume [name]
Make the referenced layer the current layer.

toggle
Resume the layer that was previously current.

unblock name [name ...]

UE 2-56

For each [name], do not block the output of the corresponding
layer when it is not the current layer.

COMMAND DESCRIPTIONS

quit Exit shl.

name Make the layer referenced by name the current layer. If the
name is the same as any prefix of a shl command, the "resume
name" command must be used.

When you are in a layer and wish to return to the shl, enter a <CTRL Z>.

Command Format

The shl command has no arguments or options.

Sample Command

The following example shows how to enter the shl command, create two
more layers, execute some commands in the layers, and then return to
the UNIX System:

UE 2-57

COMMAND DESCRIPTIONS

$ shl<CR>
»> create<CR>
(1) pwd<CR>
/usr/abc
(1) ls<CR>
file.c
memol
(1) nroff -cm memol > formatmemo<CR>
<CTRL z> »> c Layer2<CR>
Layer2 pwd<CR>
/usr/abc
Layer2 ed file.c<CR>
36
l, $p<CR>
main()
{

}
printf(' 'hello wold/n'');

< CTRL z> » > layers -1 <CR>
(1) (3650) executing or awaiting input

UID PID PPID C STIME TTY TIME COMMAND
abc 3669 3650 0 14:24:52 sxtOOl 0:01 nroff -cm memol
abc 3650 3649 0 14:23:50 sxtOOl 0:00 /bin/sh -i

Layer2 (3700) executing or awaiting input
UID PID PPID C STIME TTY TIME COMMAND
abc 3705 3690 0 14:25:56 sxt002 0:01 ed file.c
abc 3690 3649 0 14:25:02 sxt002 0:00 /bin/sh -i

»> r<CR>
resuming Layer2
3s/wold/world/p<CR>

w<CR>
37
q<CR>

printf(' 'hello worldO');

Layer2 <CTRLz> »> layers -1 l<CR>
(1) (3650) executing or awaiting input

UID PID PPID C STIME TTY
abc 3650 3649 0 14:23:50 sxtOOl

»> q<CR>
$

TIME COMMAND
0:00 /bin/sh -i

Note: User knows nroff hos completed becou,se it is not listed.

UE 2-58

COMMAND DESCRIPTIONS

tabs - Set Tab Stops on a Printer or Terminal

General

The tabs command is used to set tabs on a printer or terminal. Note that
the printer must be enabled to set tabs. Also note that not all terminals
are compatible with the escape sequences output by the tabs command to
clear existing tabs and set new tabs. Executing the command without
arguments sets tabs every 8 spaces. Tab stops set every 8 spaces is the
standard default setting used by most programs (commands) for high
speed output. Arguments can be provided to the tabs command that
specify particular tab stops. Tabs specifications can also be saved in a file.

Command Format

The tabs command has the following format:

tabs [tab specification] [+mn} [-Ttype]

The [tab specification] argument specifies the placement of tabs.

The +mn argument specifies the position of the left margin, where n is the
amount of spaces to be indented. Omitting the n from the argument
causes a default indent of 10 spaces.

The -Ttype argument specifies the terminal type. Both the margin and
terminal type arguments can be omitted from a command line for most
applications.

Canned Tab Specifications

A variety of ready-made tab specifications can be called by the tabs
command by specifying the appropriate option code. Refer to the tabs
manual pages in the AT&T 382 Computer User Reference Manual.

UE 2-59

COMMAND DESCRIPTIONS

Sample Commands

The following examples show different types of tabs command
specifications. The following command line sets tab stops for use in writing
FORTRAN programs:

A repetitive tab specification sets tab stops every "n" spaces. The
following command sets tab stops every 6 spaces:

r i '"' -"CR>

Tabs can be set at selected points. The following command line sets tabs
at 5, 20, 23, and 40 spaces on a line:

A specification line that sets tabs at 20, 25, and 32 is as follows:

<:t20, 25, 32:>

UE 2-60

COMMAND DESCRIPTIONS

tty - Print the Terminal Name

General

The tty command prints the path name of the user's terminal.

Command Format

The tty command has the following format:

tty r-n [-s]

The -/option prints the synchronous line number of the user's terminal (if
connected to a synchronous line).

The -s option inhibits printing of the terminal path name, allowing the user
to test the exit code.

The exit codes for the tty command are different from those of other
commands. The exit codes for the tty command are as follows:

0 Standard input is a terminal

1 Standard input is from source other than terminal

2 Invalid option(s) were specified.

UE 2-61

COMMAND DESCRIPTIONS

Sample Commands

The following examples show how to enter the tty command and the
response that would follow:

The -s option is used to check the exit code as follows:

The question mark (?) is the special shell variable, representing the exit
code.

UE 2-62

COMMAND DESCRIPTIONS

units - Find Unit Conversion Factors

General

The units command enables you to find the conversion factors (divisor and
multiplier) for converting from one unit of measurement to another related
unit of measurement. The types of unit measurements that can be
converted include: length, weight, mass, electrical, money, liquid, etc.
The file /usr /lib/unittab contains a list of units you can convert using the
units command.

Command Format

The units command has the following format:

units
you have: argument
you want: argument

The you have: argument identifies the unit of measure that you are using
as a reference.

The you want: argument identifies the unit of measure you want to convert
to.

The response will be two different numbers. The first number will be a
multiplier that you use as a conversion factor. The second number will be
a divisor that can also be used as a conversion factor.

Sample Calculations

You must have a system prompt ($) to begin the use of the units
command. To execute a units command, simply enter units followed by a
carriage return. The system will respond with the display "you have:".
Enter the unit of measurement you have, followed by a carriage return.
The system will then display "you want:". Now, enter the unit of

UE 2-63

COMMAND DESCRIPTIONS

measurement that you want, followed by a carriage return. The system
will display two conversion factors: one will be a multiplier (shown with a *
symbol), the other will be a divisor (shown with a / symbol). The system
will also display "you have:", so you can continue using the units
command. To quit the units command, press the or <BREAK>
key. The system prompt ($) will then be displayed to show that you have
returned to the UNIX System.

In this example, inch is the unit of measurement you have, and mile is the
unit of measurement you want. The answer ':' 1.578283e-05 means to
multiply inch by 1.578283 times 10 raised to the -5 power
(0.00001578283) to get miles. The answer /6.336000e+04 means to
divide inch by 6.336000 times 10 raised to the +4 power (6336.00) to get
miles:

$ units<CR>
you have: inch<CR>
you want: mile<CR>

• l.578283e-05
6.336000e+04

you have: <BREAK>
$

If you enter an invalid unit after the system displays "you want:", the
system will respond with "cannot recognize". For example:

$ units<CR>
you have: inch<CR>
you want: frt <CR>
cannot recognize frt
you want: <BREAK>
$

UE 2-64

COMMAND DESCRIPTIONS

To correct this error, reenter the correct unit after "you want:" is
displayed again.

If you try to find the conversion factors for unrelated unit measurements,
the system will respond with the message "conformabi 1 i ty" and
conversion factors to convert the entered units to related units. This
message means the unit conversions you want cannot be done. For
example:

$ units<CR>
you have: inch<CR>
you want: lbs<CR>
conformability
2. 540000e-02m
4. 535924e-O 1 kg
you have: <BREAK>
$

The response 2.540000e-02m means multiplying an inch by 0.0254 will
give you meters (m). The response 4.535924e-Olkg means multiplying lbs
by 0.4535924 will give you kilograms (kg).

UE 2-65

COMMAND DESCRIPTIONS

xargs - Construct Argument list(s) and Execute Command

General

The xargs command is used to execute a command or a shell program one
or more times by combining arguments to the xargs command with
arguments read from the standard input. Every time a command or a shell
program is invoked through the xargs command, the amount of arguments
read and the way arguments are combined are determined by the flags
specified.

Command Format

The .xargs command has the following format:

xargs [flags] [command [initial-arguments]}

The flag values are as follows:

-I[number]
Command is executed after every [number} of lines is read in.
Fewer lines of arguments will be used when the last invocation of
command occurs and there are fewer than [number] before the
end of the file. A line ends with the first new-line character, unless
the last character of the line is a blank or a tab. Here, a line
continues onto the next line. If number is not specified, "1" is
assumed. Option -x is automatically used when you use this
option.

-i[replstr}
This is the insert mode. Command is executed for each line.
Each line is considered a single argument and substituted into
each occurrence of [replstr} in the initial arguments. No more
than five initial arguments may contain [replstr]. The [replstr} can
occur more than five times if it occurs more than once in a single
argument. Blanks and tabs at the beginning of each line are
thrown away. Constructed arguments may not grow larger than

UE 2-67

COMMAND DESCRIPTIONS

255 characters. Option -x is automatically used when you use this
option. {} is assumed for [replstrj if it is not specified.

-n[numberj
Command is executed once for every [number] of arguments read
in. Fewer arguments will be used for the invocation of a command
if their total size is greater than size characters (see -ssize option).
Fewer arguments will be used for the last command invocation if
there are fewer than number arguments before the end of the file.
If option -x is also used, each number arguments must not exceed
the size limitation or xargs will stop execution.

-t This is the trace mode. The command and each constructed
argument list are echoed to file descriptor 2 just before their
execution.

-p This is the prompt mode. You are asked if you want to execute
command before each invocation. The trace mode (-t) is
automatically turned on to print command to be invoked. A ? ...
prompt will follow command. A reply of y (optionally followed by
anything) will execute command. Any other response, including a
carriage return, will skip that particular invocation of command.

-x Causes the xargs command to end if any argument list would be
greater than size characters. This option is used automatically if
options -i or -I are used. The total length of all arguments must be
within the size limit if options -i, -1, or -n are not specified.

-sf size]

UE 2-68

The maximum size of each argument list is set to size characters.
Size must be a positive integer less than or equal to 470. If this
option is not specified, 470 is taken as the default. The character
count for size includes one extra character for each argument and
the count of characters in the command name.

COMMAND DESCRIPTIONS

-e[eofstr]
The eofstr is taken as the logical end-of-file string. Underbar (_) is
assumed for the logical end-of-file string if this option is not
specified. If you use this option with no eofstr, the logical end-of
file string capability is turned off (_ is taken literally). The xargs
command will read the standard input until the end of the file is
reached or the logical end-of-file string is encountered.

Command, that may be a shell program, is searched using your variable
PATH. If command is omitted, /bin/echo is used.

Arguments read from the standard input are defined to be continuous
strings of characters. These strings of charact.ers are delimited by one or
more blanks, tabs, or new-lines. Empty lines are always discarded. Blanks
and tabs may be embedded as part of an argument if escaped or quoted.
To escape the next character, precede that character with a backslash (\).
Characters enclosed in quotes (single or double) are taken as written
[including backslash (\)] and the delimiting quotes are removed.

Each argument list is constructed of initial-arguments followed by some
amount of arguments read from the standard input, except when the -i flag
is used. When the -i, -1, and -n flags are not specified, the initial-arguments
are followed by arguments read continuously from the standard input.
These arguments will continue to be read until an internal buffer is full.
After the buffer is full, command is executed with the accumulated
arguments. When there are conflicts between flags, such as using -I and -n
together, the last flag specified has precedence.

The xargs command will end if it receives a return code of -1. It will also
end if it cannot execute command. When command is a shell program, it
should exit explicitly with an appropriate value to avoid accidentally
returning with a return code of -1.

UE 2-69

COMMAND DESCRIPTIONS

Sample Commands

This example shows how the xargs command works when using the -I
option and designating 5 lines. Since no command argt.1ment is given, the
output is echoed onto the display:

$ xargs -15<CR>
11111<CR>
222<CR>
33<CR>
4444<CR>
5<CR>
11111 222 33 4444 5
AAAA<CR>
BB<CR>
<CTRL d>
AAAA BB
$

This example shows how the xargs command works when using the -i
option. The maximum amount of arguments (5) is used:

$ xargs -i echo {)a{} b{} c{}{) d{) {)e<CR>
x<CR>
xax bx cxx dx xe
z z<CR>
z zaz z bz z cz zz z dz z z ze
<CTRL d>
$

UE 2-70

COMMAND DESCRIPTIONS

This example shows how to use the xargs command to move files to
different directories. For each file in dirl, you are asked if you want to
move that file to dir2. If you respond with a y, the file is moved to dir2. If
you give any other response, the file is left in dirl:

$ ls dirl : xargs -i -p mv dirl/{} dir2/{)<CR>
mv dirl /filel dir2/filel ? ... y<CR>
mv dirl /file2 dir2/file2 ? ... y<CR>
mv dirl /file3 dir2/file3 ? ... n<CR>
mv dirl /file4 dir2/file4 ? ... y<CR>
$ ls dirl<CR>
file3
$ ls dir2<CR>
filel
file2
file4
$

UE 2-71

COMMAND DESCRIPTIONS

The filetest program illustrates a simple use of the xargs command. The
first argument ($1) is checked to see if it is a file or a directory. If $1 is a
file, the file contents are printed on your terminal screen. If $1 is a
directory, you are asked if you want to move the files in that directory,
one at a time, to the specified directory ($2). If $1 is neither a file nor a
directory, a message is printed indicating that $1 is neither a file nor a
directory:

$ cat filetest<CR>
usage: filetest testfile directory
if test -f "$1" # is $1 a file?
then
cat $1
el if test -d "$1" #else, is $1 a directory?
then
ls $1 : xargs -i -p mv $1/{} $2/{)

else

#move files from $1 to $2
if response is y

echo $1 is neither a file nor a directory
fi
$ ls<CR>
filel
file2
testl
test2
$ filetest testl test2<CR>
mv testl/cecl test2/cecl ? ... y<CR>
mv testl/cec2 test2/cec2 ? ... n<CR>
mv testl/cec3 test2/cec3 ? .. . n<CR>
mv testl/cec4 test2/cec4 ? . .. y<CR>
$ ls testl<CR>
cec2
cec3
$ ls test2<CR>
cecl
cec4
$

UE 2-72

Replace th is

page with the

INDEX

tab separatoL

Index

12-pitch . TF 2-5
TF 2-7

TF 2-11
TF 2-12

300 filter. TF 2-5
300s filter . TF 2-5
4014 filter ... TF 2-8
450 filter ... TF 2-11

A

abs .. GR 4-9
accept command . LP 3-3
ACCESSING POINTS BY NAME GR 5-9
Accessing the Graphics Editor . GR 5-2
ACCESSING THE GRAPHICS UTILITIES GR 2-5
active machine .. BN 1-3

BN 2-3
ACU; problems. BN 6-2
add a new printer. LP 3-9
add a printer to a class . LP 4-8

LP 4-11
add LP printer, manually . LP 4-1
Adding a Term . HP 7-6
ADDING AN LP PRINTER . LP 4-1
adding change comments . SC 3-7

Page 1

INDEX

Adding Command Information . HP 7-11
adding terminal . Tl 4-2

Tl 4-4
ADDITIONAL INFORMATION ABOUT get SC 3-9
ADJUSTING THE SCREEN in vi ED 4-46
admin command . SC 2-4

SC 4-3
ADMINISTRATION BN 3-1

LP 4-1
ADMINISTRATION UTILITIES HP 7-1
ADMlf\.llSTRATIVE COMMANDS . LP 3-1
administrative commands; summary. BN 7-3
Administrative Programs . BN 2-7
ADMINISTRATIVE TASKS BN 3-33
administrator, SCCS . SC 2-5
af. GR 4-11
allow print requests . LP 3-3
allow printer . LP 4-7
American spelling list . SP 3-3
Appending Text in edit and ex ED 2-13
Appending Text in vi. ED 4-20
ASCII characters . Tl 6-4
Assign LP System Default Destination . LP 4-13
associated terminals TF 1-3
ASSUMPTIONS .. BN 4-8
ail: command... UE 2-6
AT&T Automatic Dial Modem. BN 2-3
attributes. Tl 2-11

Tl 3-10
attributes, low level . Tl 6-7
attributes, OFF .. Tl 2-12

Tl 3-11
attributes, ON ... Tl 2-12

Tl 3-11
audible signal. Tl 2-8
Auditing . SC 2-8
automatic call unit (ACU). BN 2-2

Page 2

INDEX

B

-b option, using the SP 2-7
-b, spell option . SP 2-3
background process. UE 2-51
backspaces. TF 1-2
banner command . UE 2-9
bar ... GR 4-15
Basic Capabilities. Tl 7-6
BASIC CONCEPTS GR 2-6
Basic Movement Commands . ED 2-8
BASIC NETWORKING SOFTWARE........................... BN 2-4

BN 5-7
Basic Networking Utilities; operation . BN 2-9
BASIC NETWORKING; WHAT IS . BN 2-1
Basic Program . SC 2-11
batch command. UE 2-11
baud rate . Tl 5-2
be command . UE 2-13
begin pad ... Tl 3-12
begin window. Tl 3-1
beginning. Tl 2-3
bel ... GR 4-19
bell .. Tl 2-8
blocking message operation . IP 2-2
blocking semaphore operation . IP 2-5
bolding . TF 1-2
box, window . Tl 3-5
branch number SC 2-16
British spelling . SP 2-3

SP 3-3
bucket . GR 4-21
Building networks GR 3-8
Bypassing the Help Menu . HP 2-6

Page 3

INDEX

c

C. (work) file; contents . BN 3-3
C. (work) file; description . BN 3-3
cal command . UE 2-27
calculator, be... UE 2-13
calculator, de ... UE 2-35
calendar - print a UE 2-27
calendar file . UE 2-29
calendar command UE 2-29
CALLBACK option; Permissions file . BN 3-23
cancel job request . LP 2-5
cancel command . LP 2-5
Cartesian plane GR 2-11
cdc command . SC 4-47
ceil ... GR 4-23
ceiling flag . SC 2-4
change a tty line . LP 4-3
change device . LP 4-9
Change Existing Destination . LP 4-8
change interface program . LP 4-8
change printer device. LP 4-8
Change /etc/inittab file. LP 4-2
changing a file . SC 3-6
Changing a Term . HP 7-6
Changing Command Information HP 7-12
Changing Files in vi . ED 4-38
Changing Glossary Information . HP 7-6
Changing Starter Information HP 7-3
Changing Text in edit and ex . ED 2-14
Changing Text in vi. ED 4-23
CHANGING THE HELP DATABASE HP 7-3
Changing the Location of an Object. GR 5-16
Changing the Orientation of an Object GR 5-23
Changing the Shape of an Object GR 5-16
Changing the Size of an Object GR 5-18
Changing the Style and Width of Lines . GR 5-24
CHARACTER FUNCTIONS SUMMARY in vi ED 4-58
character representation. • Tl 2-24

Page 4

INDEX

character, deleting . • Tl 2-10
Tl 3-10

character, getting Tl 2-15
Tl 3-11

character, inserting. Tl 2-9
Tl 2-11

Tl 3-9
check status of LP scheduler . • LP 4-5
class, definition .. LP 1-4
class directory . LP 4-21
CLEANING OUT LOG FILES.................... LP 4-24
cleanup of cron log file . • BN 3-36
Cleanup of Public Area. • . BN 3-34
cleanup of spool directory BN 2-7
cleanup of sulog file . BN 3-36
Cleanup of Undeliverable Jobs. BN 3-34
clear partial screen . Tl 2-6
clear partial window . Tl 3-8
clear screen . Tl 2-5

Tl 2-21
clear, window . Tl 3-8
empress command . CT 2-5
comb command • . SC 4-53
combining spell options . SP 2-17
COMMAND ... GR 5-36
COMMAND DESCRIPTIONS . BN 7-1

CT 2-1
GR 4-1
IP 7-1

LP 2-5
LP 3-3

PM 3-7
SA 2-5
SP 2-1

command format. GR 2-5
LP 2-3

COMMAND FORMAT GR 5-3
SP 2-3

command line . Tl 1-2

Page 5

INDEX

Command Substitution . GR 3-9
COMMAND SUMMARY CT 2-1

LP 2-2
LP 3-2

PM 3-1
SA 2-1
UE 2-6

command syntax . TF 2-3
commands . TF 2-1
COMMANDS option; Permissions file. BN 3-24
commands; categories BN 7-1
COMMENT LINES in ex ED 3-14
Comments. Tl 1-4
Common Functionality. BN 4-3
COMMON PROBLEMS BN 6-1
communication link . BN 2-2
compacting log files. BN 3-35
compatibility, termcap and terminfo Tl 7-13
compiling terminal descriptions. Tl 7-9
Compiling the New Entry. Tl 7-9
compress program . SP 3-2
Concurrent Edits of Different SI Ds . SC 4-23
Concurrent Edits of Same SID . SC 4-27
configure printers. LP 3-7
Construct Commands . GR 5-36
CONSTRUCl II'JG GRAPHICAL OBJECTS GR 5-5
Continuous Text Input in vi ED 4-21
control character printing . Tl 2-24
CONTROLLING MESSAGE QUEUES......................... IP 3-21
CONTROLLING SEMAPHORES............................. IP 4-17
CONTROLLING SHARED MEMORY . IP 5-21
conventions. Tl 1-3
copy in (hpio) ... TF 2-17
copy out (hpio) . TF 2-17
copying another file into the buffer in ex . ED 3-8
copying another file into the buffer in vi . ED 4-36
Copying Objects in vi . ED 4-26
Copying Text in edit and ex . ED 2-19
COPYING TEXT in vi ED 4-25

Page 6

INDEX

copying UNIX System commands into the buffer in vi ED 4-37
cor. GR 4-25
corruption repair . SC 2-8
Creating a New File using edit . ED 2-3
Creating a New File using ex . ED 3-3
Creating a New File using vi . ED 4-5
CREATING secs FILES SC 3-3
Creating SCCS Files . SC 4-4
cron log file; cleanup of . BN 3-36
crontab entry for calendar. • UE 2-30
crontab entry; uudemon.admin . BN 3-37
crontab entry; 1.1udemo1111.cieanu . BN 3-37
crontab entry; uudemon.lhour. • BN 3-38
crontab entry; 1mdemo1111.poll . BN 3-38
crontab command . UE 2-31
cron; how used by UUCP . BN 3-36
crypt - encode/decode files SA 2-5
CTC RECOVERY PROCEDURE CT -6
ctccpio command . CT 2-9
ctcfmt command CT 2-15
ctcinfo command. CT 2-17
ct command; description. BN 7-7
ct command; format . BN 7-7
ct command; options. BN 7-7
ct command; sample BN 7-8
ct program; definition of . BN 2-6
ct program; operation of . BN 2-10
CURRENT LINE DEFINITION for edit . ED 2-2
CURRENT LINE DEFINITION for ex.......................... ED 3-2
current screen. Tl 2-1
current terminal . Tl 4-2
current terminal, change. Tl 4-2

Tl 4-4
curscr . Tl 2-1
curses description . Tl 1-1
CURSES EXAMPLES Tl A-1
curses structure . Tl 2-1
Cursor Movements. ED 4-11
cursor optimization . Tl 2-7

Page 7

INDEX

cursor position . Tl 2-4
Tl 2-23

Tl 3-8
cursor position, low level. Tl 6-4
cursor position, window Tl 3-12
cur _term . Tl 6-6

Tl 6-7
cusum .. GR 4-27
cu command; description . BN 7-11
cu command; format. BN 7-11
cu command; options . BN 7-12
cu command; sample BN 7-15
cu command; tilda C) string interpretations BN 7-12
cu program; definition of. BN 2-5
cu program; operation of. BN 2-10
cvrtopt . GR 4-29

D

D. (data) file; description................................. BN 3-3
Daemons . BN 2-7
data (D.) file ... BN 2-11
data (D.) file; description . BN 3-3
data file; how used by uux. BN 2-6
data files . BN 2-6

LP 4-22
de command . UE 2-35
deamons; definition of UUCP. BN 2-7
debugging; Uutry . BN 2-7
debugging; Uutry command . BN 6-2
default destination . LP 4-13
default destination, user defined . LP 4-13
default terminal. .. TF 1-2
default file . LP 4-19
define system default destination. LP 3-7
Defining Capabilities . Tl 7-4
Defining Your Terminal. ED 4-4
DEFINITION OF TERMS BN 1-3

Page 8

INDEX

LP 1-4
delay, low level . Tl 6-8
Delays . Tl 2-17
delete line . Tl 2-8

Tl 3-9
Deleting a Term . HP 7-7
Deleting Command Information........................... HP 7-12
Deleting Text in edit and ex ED 2-15
deleting text in vi . ED 4-22
delta. SC 3-2
delta command . SC 4-33
description characters. Tl 7-4
description of editors. ED 1-1
description symbols. Tl 7-4
description syntax . Tl 7-4
destination . LP 1-4
destination, change . LP 4-8
destination, remove . LP 4-14
destination, system default LP 4-13
device, definition . LP 1-4
devicemgmt subcommand; simple administration.............. 8N 4-5
Devices file entry for direct links . 8N 5-8
Devices file; definition of . 8N 2-8
Devices file; description . 8N 3-5
Devices file; field descriptions . 8N 3-6
Devices file; format . 8N 3-6
Devices file; simple administration . 8N 4-5
device. LP 4-6
diagnostics . SC 2-3
Dialcodes file; definition of. 8N 2-9
Dialcodes file; description . 8N 3-17
Dialcodes file; format. 8N 3-17
Dialers file; definition of. 8N 2-9
Dialers file; description 8N 3-10
direct link . 8N 2-2
Direct Link, How to Connect 382 to 382. 8N 5-5
Direct Link, How to Connect 382 to 3820. 8N 5-7
Direct Link, How to Connect 382 to 385. 8N 5-7
direct link; Systems file entry for. 8N 5-11

Page 9

INDEX

DIRECT LINKS ... BN 5-1
direct links; benefits . Bl\I 5-1
direct links; parts needed . BN 5-2
direct links; requirements . BN 5-2
direct links; Devices file entry . BN 5-8
direct links; nnittab entry for . BN 5-9
directories . BN 2-4
Directory Organization . PM 4-6
disable a tty line . LP 4-3
disable printer . LP 2-7
disaMe command . LP 2-7
display enhancements (hp) TF 2-15
displaying all characters in vi . ED 4-47
DISPLAYING LINES IN THE FILE ED 2-7

ED 3-7
displaying lines in vi . ED 4-47
dot(") command in vi . ED 4-34
DRAWING CURVES GR 5-13
DRAWING LINES GR 5-8
Drawings Built From Boxes GR 2-16
dtoc. GR 4-31

E

echo Tl 2-18
ed, edit, ex, vi - editors in which files can be

encrypted and decrypted. SA 2-11
Edit Commands GR 5-36
EDIT EDITOR . ED 2-1
Editing an Existing File using edit . ED 2-6
Editing an Existing File using ex . ED 3-6
Editing an Existing File using vi. ED 4-8
Editing More Than One Files in ex ED 3-10
Editing Multiple Files and Using Named Buffers in ex ED 3-10
Editing Multiple Files in vi . ED 4-39
Editing Objects .. GR 5-14
editor description (general) . ED 1-2
effective user . SC 2-2

Page 10

INDEX

enable printer.. LP 4-7
enable command . LP 2-9
Entering Glossary Screen l (Terms) . HP 4-2
Entering Glossary Screen 2 (Definitions) HP 4-4
Entering Locate Screen 1 . HP 5-2
Entering Locate Screen 2 . HP 5-3
Entering Starter Command Screen . HP 3-3
Entering Starter Documents Screen . HP 3-5
Entering Starter Education Screen . HP 3-6
Entering Starter Local Screen HP 3-7
Entering Starter Screen 1 . HP 3-2
Entering Starter Teach Screen . HP 3-8
Entering Text . ED 2-3
Entering Text in vi . ED 4-6
Entering Text with ex . ED 3-4
Entering the Help Menu.................................. HP 2-4
Entering the 'helpadm' Menu.............................. HP 7-1
Entering Usage Description Screen . HP 6-4
Entering Usage Example Screen . HP 6-5
Entering Usage List Screen . HP 6-3
Entering Usage Options Screen . HP 6-7
Entering Usage Screen 1 . HP 6-2
env command .. UE 2-45
erase . GR 4-33

Tl 2-5
erase character ... Tl 5-1
erase, window . Tl 3-8
Erasing Inserted Text in vi . ED 4-20
ERR .. Tl 2-1
ERROR MESSAGES . BN 6-3

CT A-1
HP 2-6
LP A-1

error messages; ASSERT . BN 6-3
error messages; Status . BN 6-7
error, fatal . SC 2-3
Errors and Interrupts in ex............................... ED 3-14
errors history . SP 3-2
escape characters; Devices file . BN 3-10

Page 11

INDEX

escape characters; Dialers file. BN 3-11
escape characters; Systems file . BN 3-16
etc/inittab file, change . LP 4-2
Ex Command Line Options. ED 3-15
EX EDITOR .. ED 3-1
Example for Changing Glossary Terms....................... HP 7-7
Example for Modifying Command Data . HP 7-13
Example of Changing Starter Data. HP 7-4
EXAMPLE OF CREATING MULTIDRAWINGS IN THE

SAME UNIVERSE GR 5-32
EXAMPLE OF EDITING A GPS IN THE GRAPHICS EDITOR GR 5-29
EXAMPLE PROGRAM 'editor' Tl A-2
EXAMPLE PROGRAM 'highlight' Tl A-10
EXAMPLE PROGRAM 'scatter' Tl A-12
EXAMPLE PROGRAM 'show' Tl A-14
EXAMPLE PROGRAM 'termhl' Tl A-16
EXAMPLE PROGRAM 'two' Tl A-19
EXAMPLE PROGRAM 'window' Tl A-22
Example Program, msgctl . IP 3-23
Example Program, msgget IP 3-16
Example Program, msgop . IP 3-35
Example Program, semctl IP 4-19
Example Program, semget IP 4-12
Example Program, semop . IP 4-32
Example Program, shmctl . IP 5-22
Example Program, shmget . IP 5-16
Example Program, shmop . IP 5-32
EXAMPLES ... GR 3-20
execute (X.) file . BN 2-6

BN 2-8
BN 2-13

execute (X.) file; contents . BN 3-4
execute (X.) files; description . BN 3-4
executing environment. UE 2-45
executing UNIX System commands while in edit and ex ED 2-23
exit codes . UE 2-61
exit codes, LP. LP 4-17
exiting . Tl 2-3
Exiting the Editor HP 7-3

Page 12

INDEX

exp .. GR 4-35

F

Facilities IP 1-1
facilities, types of . IP 1-1
factor command . UE 2-47
FEATURE DESCRIPTION HP 1-2

Tl 1-1
feature highlights. HP 1-2
FIFO file . LP 4-19
Figure 5-3

Accessing the Previous Point Set . GR 5-11
Figure 7-2

Administrative Commands . BN 7-3
Figure 3-4

Bar Chart Showing Execution Profile GR 3-25
Figure 3-1

Bucket A I hist I td . GR 3-18
Figure 5-2

Building a Triangle GR 5-9
Figure 2-3

Cartesian plane . GR 2-11
Figure 2-1

Command Summary-Cartridge Tape Utilities CT 2-3
Figure 4-1

Command Summary-Graphics Utilities GR 4-2
Figure 2-1

Command Summary-Line Printer Spooling Utilities LP 2-2
Figure 3-1

Command Summary-LP Spooling Utilities LP 3-2
Figure 3-1

Command Summary-Performance Measurement Utilities. PM 3-2
Figure 2-1

Command Summary-Security Administration Utilities SA 2-2
Figure 2-1

Command Summary-Terminal Filter Utilities TF 2-2

Page 13

INDEX

Figure 7-1
Command Summary-User Commands BN 7-3

Figure 2-1
Command Summary-User Environment......... UE 2-3

Figure 4-3
Control Commands (Semget Flags) . IP 4-10

Figure 5-5
Control Commands (Shmget Flags)....................... IP 5-14

Figure 3-3
Control Commands, msgget IP 3-12

Figure 5-11
Creating a Multidrawing in the Same Screen GR 5-35

Figure 4-1
Determination of New SID . SC 4-24

Figure 4-1
Dumb Line Printer Interface Program . LP 4-19

Figure A-1
Error Codes-Msgget . IP A-3

Figure A-2
Error Codes-Msgctl . IP A-5

Figure A-3
Error Codes-Msgsnd . IP A-6

Figure A-4
Error Codes-Msgrcv . IP A-8

Figure A-5
Error Codes-Semget . IP A-10

Figure A-6
Error Codes-Semctl IP A-12

Figure A-7
Error Codes-Semop IP A-13

Figure A-8
Error Codes-Shmget . IP A-18

Figure A-9
Error Codes-Shmctl . IP A-18

Figure A-10
Error Codes-Shmat......................... IP A-21

Figure A-11
Error Codes-Shmdt IP A-21

Figure 2-2
Evolution of an SCCS File . SC 2-15

Page 14

INDEX

Figure 5-8
Example of Edit -hlOOO GR 5-23

Figure 5-10
Example of Editing a GPS in the Graphics Editor GR 5-32

Figure 5-7
Example of Moving a Circle Using the Move p+ GR 5-22

Figure 3-2
Example of sag Output. PM 3-23

Figure 4-1
Example of sag Output. PM 4-24

Figure 5-2
Examples of Direct Links . BN 5-7

Figure 2-4
Extending the Branching Concept. SC 2-17

Figure 5-1
Generating Text Objects GR 5-8

Figure 5-5
Growing a Box GR 5-18

Figure 2-5
Histogram of 100 Random Numbers GR 2-16

Figure 5-13
Making Notes on a Plot GR 5-43

Figure 3-1
Message IPC Organization . IP 3-4

Figure 3-2
Operation Permissions Codes . IP 3-12

Figure 4-2
Operation Permissions Codes . IP 4-9

Figure 5-4
Operation Permissions Codes IP 5-13

Figure 2-6
Output of dtoc Command GR 2-18

Figure 2-7
Output of vtoc Command GR 2-20

Figure 5-14
Page Layout with Drawings and Text GR 5-44

Figure 5-1
Part Numbers for Hardware Used in Directs Links............ BN 5-3

Page 15

INDEX

Figure 4-2

Plot of bar C: td GR 4-17
Figure 4-7

Plot of gas: at -x·2- l plot -F--dg BI td. GR 4-90
Figure 4-3

Plot of graph Al tplot . GR 4-50
Figure 4-5

Plot of label -Flab,h,r90,y Randplot: td GR 4-68
Figure 4-6

Plot of pie -p piedata : td . GR 4-86
Figure 4-8

Plot of ptog B: td GR 4-102
Figure 4-4

Plot of qsort F : bucket I hist : td . GR 4-61
Figure 4-9

Plot of siline -n10,s2,il: plot :td GR 4-119
Figure 4-10

Plot of spline <Z I graph I ptog ~ td . GR 4-126
Figure 4-11

Plot of title -nower title-,u-upper title-
Randplot: td GR 4-136

Figure 4-12
Plot of ttoc txt : vtoc : td . GR 4-144

Figure 5-4
Referencing Points from Previous Point Set GR 5-12

Figure 3-5
Relationship Between Execution Time and
Number of Processes GR 3-28

Figure 5-9
Rotating Text GR 5-24

Figure 2-1
SCCS Interface Program. SC 2-11

Figure 5-6
Scaling Text .. GR 5-19

Figure 3-2
Scatter Plot . GR 3-19

Figure 4-1
Semaphore IPC Organization . IP 4-3

Figure 5-1
Shared Memory IPC Organization . IP 5-4

Page 16

INDEX

Figure 5-2
Shared Memory Segment Descriptor. IP 5-7

Figure 5-3
Shared Memory State Information . IP 5-7

Figure 2-4
Some Roots of the First Ten Integers GR 2-15

Figure 5-12
Text Centered Within a Circle GR 5-41

Figure 3-3
Transformed Scatter Plot GR 3-20

Figure 2-3
Tree Structure with Branch Deltas . SC 2-16

Figure 7-3
cu Command Strings . BN 7-14

Figure 7-4
uupick Options . BN 7-24

file arguments ... SC 2-1
FILE MANIPULATION in edit................... ED 2-21
FILE MANIPULATION in ex . ED 3-8
FILE MANIPULATION in vi ED 4-35
file parameters, Initialization and Modification SC 4-7
File System Organization . PM 4-5
filename, SCCS . SC 2-3
FILES AND DIRECTORIES LP 4-19
filetest program . UE 2-72
fine command .. CT 2-21
Find Command in vi . ED 4-18
flags . SC 2-2
flash . Tl 2-8
floor. GR 4-37
floppy diskette . BN 2-4
flush . Tl 5-2
flush tty driver. Tl 2-24
Format of SCCS files . SC 2-6
Forward and Backward Search Commands ED 2-9
free command . CT 2-25
function prefixes .. Tl 1-4
FUNCTIONALITY BN 4-2
FUNCTIONS .. Tl 4-4

Page 17

INDEX

gam111a . GR 4-39
gas ... GR 4-41
gd ... GR 4-43
ged .. GR 4-45
general options, ipcs.......................... IP 7-6
GENERAL PROGRAM FORMAT Tl 4-3
General Rules for All Types of Help Screens HP 7-19
GENERATll\.IG TEXT GR 5-6
Generator Node GR 3-10
get command. SC 3-4

SC 4-11
get. additional information . SC 3-9
GETTll\IG MESSAGE QUEUES. IP 3-10
GETTlf\IG SEMAPHORES . IP 4-7
GETTll\iG SHARED MEMORY SEGMEl\ITS IP 5-11
GETTlf\IG STARTED. ED 2-2
GETTING STARTED with ex ED 3-3
GETTING STARTED with vi ED 4-4
getty process, turn off LP 4-3
Global Searches in edit and ex............................ ED 2-10
Global Searches in vi ED 4-32
Global Substitutes in vi. ED 4-33
Global Substitutions in edit and ex ED 2-17
GLOSSARY MODULE HP 4-1
Glossary Screen 1 Options. HP 4-2
Glossary Screen 2 Options HP 4-4
GLOSSARY SCREEf\lS. HP 4-1
Go to Command in vi.......................... ED 4-18
graph ... GR 4-47
graphics .. GR 4-51
Graphics Editor .. GR 5-1
GRAPHICS EDITOR COMMAND DESCRIPTION GR 5-3
Graphics Editors Options GR 5-38
greel~ filter • . TF 2-13
gt op. GR 4-53
GUIDE BASELll\!E.. IN 1-4

Page 18

INDEX

GUIDE ORGANIZATION BN 1-2
CT 1-3
DF 1-2
DF 1-2
ED 1-6
GR 1-2
HP 1-4
IP 1-4

LP 1-2
PM 1-4
SA 1-1
SC 1-2
SP 1-2
TF 1-4
Tl 1-2

UE 1-2
Guidelines for Description Screens . HP 7-20
Guidelines for Examples Screens . HP 7-22
Guidelines for Glossary Screens HP 7-19
Guidelines for Options Screens HP 7-21

H

half-line spacing . TF 2-6
half-line spacing . TF 2-7
hardcopy .. GR 4-55
HARDWARE . BN 2-2
hardwired printer . LP 4-9
hashcheck program . SP 3-2
hashmake program . SP 3-2
help command . SC 4-43
help for error codes SC 3-12
HELP MENU... HP 2-1

HP 2-4
Help Menu, Options HP 2-5
help menu, screen 1 . HP 2-4
Help Screen 1 ... HP 2-1
HELP UTILITIES TREE . HP 2-2
help, secs . sc 2-3

Page 19

INDEX

helpadm Menu. HP 7-2
highlighting . Tl 2-11

Tl 3-10
hilo .. GR 4-57
hist .. GR 4-59
histogram ... GR 2-15
hlista file . SP 3-3
hlistb file ... SP 3-3
HOW COMMANDS ARE DESCRIBED BN 7-4

CT 2-3
GR 2-3
HP 1-2
LP 2-3

PM 3-4
SA 2-3
SP 2-1
TF 2-2
UE 2-4

HOW THE DIRECT LINK IS CONNECTED . BN 5-5
HOW TO INTERPRET COMMANDS . ED 1-5
How to Operate the System Profiler . PM 2-5
How to Produce Records and Important Activities PM 2-2
How to Restart Activity Counters From Zero PM 2-2
hpfilter .. TF2-15
hpd .. GR 4-63
hpio filter . TF 2-17
hstop file . SP 3-3

-i option, using the . SP 2-8
-i, spell option . SP 2-3
ID Keywords .. SC 4-13
illegal characters HP 2-6
IMPROVING DISK USEAGE . PM 4-3
INITIALIZATION ... Tl 2-3

Tl 3-1
Initialization and Modification of SCCS File Parameters. SC 4-7

Page 20

INDEX

initialization, terminal . Tl 4-2
Tl 4-4

initialization, terminfo level . Tl 6-2
Tl 6-5

inittab entry for direct links; . BN 5-9
inittab file . BN 3-39
inittab file; simple administration . BN 4-7
init program . BN 2-7
Input .. Tl 2-15

Tl 3-11
INPUT /OUTPUT FUNCTIONS Tl 2-4

Tl 3-8
input/output functions, window Tl 3-8
insert line . Tl 2-8

Tl 3-9
Inserting Commentary, initial delta . SC 4-6
Inserting Text in edit and ex ED 2-14
Inserting Text in vi . ED 4-20
INTER-PROCESS COMMUNICATION REMOVE IP 7-13
INTER-PROCESS COMMUNICATION STATUS IP 7-2
Interacting with a Data Base GR 3-13
Interacting with Files . GR 5-27
Interface Program . SC 2-10
interface program . SC 2-5
interface program, change . LP 4-9
interface program, printer LP 4-15
interface programs . LP 4-6
interface directory . LP 4-21
INTERFACING THE 5620 DMD TO THE 382 COMPUTER GR 2-2
Internal Activity . PM 4-7
Internal Programs . BN 2-7
introduce a new printer . • . LP 4-6
INTRODUCTION .. CT 1-1

OF 1-1
GR 1-1
HP 1-1
IN 1-1

PM 1-1
SA 1-1
SP 1-1

Page 21

INDEX

IPC ERROR CODES IP A-1
ipcrm................. IP 7-1
ipcs . IP 7-1
lpcs With Options . IP 7-5
lpcs Without Options..... IP 7-2
ISSUING UNIX SYSTEM COMMANDS ED 2-23

ED 3-11
ED 4-42

J

Joining Lines in vi...................................... ED 4-21

K

KERNEL PROFILING PM 1-3
Keyboard Entered Capabilities . Tl 7-7
keyletter arguments. SC 2-1
keyletter value . SC 2-1
Keyletters that Affect Output, get . SC 4-28
keypad. Tl 2-23
kill character ... Tl 5-1

l

-I option, using the SP 2-10
-1, spell option ... SP 2-3
label . GR 4-65
LCK. (lock) file; description . BN 3-2
LEAVING THE GRAPHICS EDITOR GR 5-35
Leaving the Input Mode in edit. ED 2-4
Leaving the Input Mode in ex . ED 3-4
leaving the input mode in vi . ED 4-6
Leaving the Text Insertion Mode of vi . ED 4-6
level number ... SC 2-15

Page 22

INDEX

limited distance modems. BN 2-2
Line Numbers in vi . ED 4-47
LINE REPRESENTATION IN THE DISPLAY in vi................ ED 4-47
link (name). SC 2-4
Linking and Use SC 2-13
list ... GR 4-69
List of Options for vi . ED 4-5 l
Listing All Characters in vi . ED 4-47
LOAD MANIPULATION AND HOUSEKEEPING................. PM 4-30
Local Area Network (LAl\I) . Bf\1 2-3
local machine ... 81\1 1-3
locaUile option . SP 2-3
+local_file option, using the SP 2-14
LOCATE EXAMPLE . HP 5-4
LOCATE MODULE . HP 5-1
Locate Screen 1 Options . HP 5-2
Locate Screen 2 Options . HP 5-3
LOCATE SCREEl\!S . HP 5-1
lock (LCK.) file; description . BN 3-2
lock files . LP 4-23
lock-file . SC 2-3
log ... GR 4-71
log files . BN 2-7
log files; compacting . Bl\I 3-35
log files; description. Bt-1 3-5
login; nuucp . BN 3-40
I ogi n; u lAIGp • B N 3-40
~ogname command . UE 2-49
fogfile .. LP4-19
longname ... Tl 2-18
low level usage ... Tl 6-1
LOWER LEVEL FUNCTIONS Tl 6-1
LOWER LEVEL MODULES................................. HP 2-7
LP exit codes . LP 4-17
LP scheduler status . LP 3-14
LP Spooling, description.. LP 1-1
LP status . LP 2-15
~padlmnn command . LP 3-7
ILIPOESlf, environment variable............................ LP 4-13

Page 23

INDEX

lpmove command . LP 3-11
lpsched command . LP 3-13
lpshut command . LP 3-15
lpstat command LP 2-15
Ip command . LP 2-11
I reg . GR 4-73

M

MACRO in vi . ED 4-48
macros, .so and .nx . SP 2-8
make output request . LP 2-11
makekey - generate encryption key . SA 2-9
MAKING CORRECTIONS TO THE FILE . ED 2-13

ED 3-7
MAKING SIMPLE CHANGES in vi ED 4-20
MAN definition ... TF 1-1
manually add an LP printer LP 4-1
MARKING LINES in vi ED 4-45
Maxuuscheds file; description . BN 3-32
Maxuuxqts file; description . BN 3-32
mean ... GR 4-75
member directory . LP 4-21
message data structure . IP 3-1
MESSAGE ERROR CODES . IP A-2
message queue . IP 3-1
message queue identifier . IP 3-1
MESSAGES . IP 2-2

IP 3-1
IP 6-2

mod .. GR 4-77
Mode Setting .. Tl 2-18
model directory . LP 4-15
model interface programs . LP 4-6
Model Interface Programs . LP 4-15
model directory . LP 4-22
modems; limited distance . BN 2-2
modems; problems . BN 6-2

Page 24

INDEX

modification, non-SCCS commands . SC 2-4
Modifying Command Information. HP 7-10
Module Contents . HP 2-7
Module Menus . HP 2-7
Monitoring the Use of Help . HP 7-17
move ... Tl 2-4
move request to another printer . LP 3-11
move, in window . Tl 3-8
movement commands in edit and ex . ED 2-8
MOVING AROUND IN THE FILE . ED 2-8

ED 3-7
ED 4-10

moving by sentences, paragraphs, and sections in vi. ED 4-14
Moving Text in edit and ex . ED 2-20
MOVING TEXT in vi ED 4-30
Moving Through a File in vi . ED 4-14
Moving to Different Lines in vi . ED 4-13
moving windows . Tl 3-2
Moving Within a Line in vi. ED 4-11
Msgctl, using.. IP 3-21
Msgget, using . IP 3-10
MSG MAP.. IP 6-2
MSG MAX.............. IP 6-2
MSGMNB.. IP 6-3
MSGMNI .. IP 6-3
Msgop, using . IP 3-31
MSGSEG . IP 6-4
MSGSSZ . IP 6-3
MSGTQL . IP 6-3
multi-line plot. • . GR 2-13
MULTIPLE COMMANDS PER LINE in ex . ED 3-14
MULTIPLE TERMINALS Tl 4-1
multiple terminals, format . Tl 4-3
Multiple Windows. Tl 3-6

Page 25

INDEX

N

naming a printer. LP 4-6
Naming the Terminal Tl 7-2
network . BN 1-3
newline . Tl 2-18
nice command. UE 2-51
node . BN 1-3

BN 2-3
NODE DESCRIPTIONS GR 3-2
nodes command-line format . GR 3-2
nohup command UE 2-53
nonblocking message operation . IP 2-2
nonblocking semaphore operation . IP 2-5
NO READ option; Permissions file. BN 3-23
NOWRITE option; Permissions file . BN 3-23
NROFF definition . TF 1-1
null-modem cable . BN 5-4
Numerical Manipulation and Plotting GR 2-12
nuucp login . BN 3-40

0

Obtaining Information About the Buffer in edit ED 2-22
Obtaining Information About the Buffer in ex. ED 3-9
Obtaining Information about the Buffer in vi ED 4-41
OK•............................... Tl 2-1
oldlog file . LP 4-20
Open Text to Insert New Line in vi.. ED 4-20
OPERATIONS FOR MESSAGES . IP 3-31
OPERATIONS FOR SHARED MEMORY....................... IP 5-30
OPERATIONS ON SEMAPHORES•.................... IP 4-30
OPTION DESCRIPTION for ex............................. ED 3-15
Option Setting . Tl 2-21
Organization of File System Free List . PM 4-5
Output . Tl 2-6
outputq file. LP 4-20
outputting capabilities, low level . Tl 6-8

Page 26

INDEX

overlay . Tl 3-2
overstriking .. TF 1-2
OVERVIEW OF BASIC NETWORKING BN 2-1
OVERVIEW OF GRAPHICS GR 2-1
OVERVIEW OF IPC FACILITIES IP 2-1
OVERVIEW OF SCCS SC 2-1
overwrite . Tl 3-2

p

p-file. SC 3-6
pad • . Tl 3-12
pad initialization Tl 3-12
PAD MANIPULATION Tl 3-12
pad, begin .. Tl 3-12
padding . Tl 6-3

Tl 6-4
Tl 6-7

Paging Through the File in vi . ED 4-11
pair . GR 4-79
parameter information, low level. Tl 6-4
Parameters . GR 3-6
parameters, system tunable IP 6-1
passive machine • . BN 1-3

BN 2-3
passwords; assigning . BN 3-40
pd . GR 4-81
PERFORMANCE TOOLS PM 4-7
permission data structure . IP 3-6
Permissions file entries; structure . BN 3-18
Permissions file entries; types. BN 3-18
Permissions file; CALLBACK option . BN 3-23
Permissions file; checked by uuxqt. BN 2-8
Permissions file; checking . BN 2-7
Permissions file; COMMANDS option....................... BN 3-24
Permissions file; Considerations . BN 3-19
Permissions file; definition of. BN 2-9
Permissions file; description . BN 3-18

Page 27

INDEX

Permissions file; NO READ option. BN 3-23
Permissions file; NOWRITE option . BN 3-23
Permissions file; READ option . BN 3-21
Permissions file; REQUEST option. BN 3-20
Permissions file; Sample . BN 3-29
Permissions file; SENDFILES option. BN 3-20
Permissions file; VALIDATE option. BN 3-25
Permissions file; WRITE option . BN 3-21
pie ... GR 4-83
pipe ... GR 3-8
pipe symbol (:) . TF 2-3
pipe symbol . Tl 7-2
pitch switch . TF 2-5
plot . GR 4-87
plot switch . TF 2-5

TF 2-11
point ... GR 4-91
poll a passive machine.................................. BN 2-12
polling . BN 2-3
pollmgmt subcommand; simple administration. BN 4-6
Poll file; contents of . BN 2-12
Poll file; description . BN 3-32
Poll file; simple administration. BN 4-6
portability functions. Tl 5-1
portmgmt subcommand; simple administration BN 4-7
power . GR 4-93
PREPARING DESCRIPTIONS Tl 7-1
preparing terminal descriptions. Tl 7-6
preprocessor . SC 2-11
PREREQUISITES. SP 1-2
prevent LP requests . LP 3-5
Previous Context Commands in vi . ED 4-18
prfdc - Profiler Data Collector . PM 3-7
prfld - Profiler Loader. PM 3-9
prfpr - Profiler Formatter . PM 3-11
prfsnap - Profiler Snapshot Data Collector PM 3-13
prfstat - Profiler Status. PM 3-15
prime . GR 4-95
print . Tl 2-4

Page 28

INDEX

print job status......... LP 2-16
print two copies of a file. LP 2-14
print, window. Tl 3-8
PRINTER INTERFACE PROGRAM LP 4-15
printer names. LP 4-6
printer, add manually . LP 4-1
printer, definition . LP 1-4
priority level . U E 2-51
PROBLEMS, COMMON BN 6-1
process ID . Tl 4-1
prod . GR 4-97
program structure. Tl 2-1
protection, flags . SC 2-4
protection, user list . SC 2-4
prs command. SC 4-39
ps ... PM 4-30
pstatus file . LP 4-20
ptog . GR 4-99

Q

qsort .. GR 4-103
qstatus file . LP 4-21
queued transfers; controlling. BN 2-6
quit ... GR 4-105
Quitting the edit Editor . ED 2-5
Quitting the ex Editor. ED 3-5
Quitting the vi Editor ED 4-7

R

rand ... GR 4-107
rank ... GR 4-109
READ option; Permissions file . BN 3-21
Read-Only Mode in ex . ED 3-9
Read-Only Mode in vi . ED 4-40
Reading an Existing File in vi . ED 4-9

Page 29

INDEX

Reading Another File Into the Buffer in edit ED 2-21
Reading Another File Into the Buffer in ex . ED 3-8
Reading Another File into the Buffer in vi. ED 4-36
Reading UNIX System Commands into the Buffer in vi ED 4-37
real user. SC 2-2
RECOMMENDATIONS FOR FORMATTING DATA HP 7-19
RECORDING CHANGES SC 3-7
Recovering from Hang-Ups and Crashes in ex ED 3-13
Recovering Lost Files in edit . ED 2-24
Recovering Lost Files in ex•......... ED 3-12
Recovering Lost Files in vi . ED 4-44
Recovering Lost Lines in vi. ED 4-43
RECOVERING LOST TEXT in edit ED 2-24
RECOVERING LOST TEXT in ex ED 3-12
RECOVERING LOST TEXT in vi . ED 4-43
redirecting output . SP 2-6
redraw pad . Tl 3-13
redraw screen . Tl 2-4
redraw window . Tl 3-5
refreshing the screen in vi . ED 4-46
region . GR 5-26
reject command. LP 3-5
Relations Between vi and ex Editors . ED 4-3
release floor flag . SC 2-4
release lock flag . SC 2-4
release number SC 2-15
rem com. GR 4-111
reminder service . UE 2-29
remote machine . BN 1-3
remote terminal; calling a . BN 2-6
remote.unknown; description . BN 3-33
removal by ID, ipcrm.................................... IP 7-13
removal by key, ipcrm. IP 7-14
remove destination . LP 3-7
Remove Destination . LP 4-14
remove job request from queue . LP 2-5
remove printer from a class . LP 4-8
remove printers from a class . LP 4-11
removing facilities, ipcrm . IP 7-13

Page 30

INDEX

Removing Text in edit and ex ED 2-15
Removing Text in vi . ED 4-22
removing windows. Tl 3-1
REPEATING COMMANDS in vi ED 4-34
Repeating Searches in edit and ex. ED 2-10
Repeating Searches in vi . ED 4-16
replacing text in vi . ED 4-23
request files . LP 4-22
request ID . LP 2-11
REQUEST option; Permissions file. BN 3-20
requests, enable printing . LP 2-9
request directory . LP 4-22
REQUIREMENTS . PM 2-1
restore tty modes . Tl 4-4
Restoring Good File System Organization . PM 4-6
RESTRICTIONS... ED 1-3
Retrieval of Different Versions SC 4-15
Retrieval with Intent to Make a Delta. SC 4-19
retrieve file from public area . BN 2-12
RETRIEVING A FILE SC 3-5
Retrofit-graphics terminals . TF 1-3
rmdel command. SC 4-45
root ... GR 4-113
root crontab file. BN 3-36
round .. GR 4-115

s

sa 1 - System Activity Report Package . PM 3-35
sa2 - System Activity Report Package . PM 3-37
sact command . SC 4-57
sadc - System Activity Data Collector . PM 3-17
sadp . PM 4-27
sadp - Disk Access Profiler PM 3-19
sag .. PM 4-24
Sag Requirements . PM 2-7
sag - System Activity Graph PM 3-21
SAMPLE COMMAND LINES SP 2-4

Page 31

INDEX

Sample Permissions Files . BN 3-29
sar.. PM 4-8
sar -a. PM 4-9
sar -A. PM 4-23
sar -b ... PM 4-10
sar -c... PM 4-12
sar -d. PM 4-14
sar -m . PM 4-16
sar-q ... PM4-17
sar -u ... PM 4-18
sar-v ... PM4-19
sar -w . PM 4-21
sar -y. PM 4-22
sar - System Activity Reporter . PM 3-25
save tty modes . Tl 4-4
saving changes to the buffer in vi . ED 4-6
scanning ... Tl 2-16

Tl 3-12
Scatter plot . GR 3-15
secs COMMAND DESCRIPTIONS SC 4-1
SCCS FILES ... SC 2-4
SCCS FOR BEGINNERS SC 3-1
sccsdiff command . SC 4-51
SCHEDLOCK file. LP 3-13

LP 4-23
scheduler status....................................... LP 2-16
screen displays, conventions . LP 2-4
SCREEN MANIPULATION Tl 2-1
scroll .. Tl 2-18
SCROLL variable . HP 2-3
Scrolling Through the File in vi. ED 4-11
searching for a pattern of characters in vi. ED 4-15
searching for text in edit and ex . ED 2-9
Selecting Tunable Parameters. PM 4-3
SEMAEM . IP 6-7
semaphore array operations . IP 2-5
semaphore data structure. IP 4-1
SEMAPHORE ERROR CODES............................... IP A-8
semaphore identifier . IP 4-1

Page 32

INDEX

semaphore set (array) . IP 4-1
semaphore undo structures • IP 2-6
SEMAPHORES.. IP 2-4

IP 4-1
IP 6-5

semaphores, decrementing. IP 2-4
semaphores, incrementing . IP 2-4
semaphores, testing for zero . IP 2-5
Semctl, using.. IP 4-17
Semget, using . IP 4-7
SEMMAP .. IP 6-5
SEMMNI . IP 6-6
SEMMNS . IP 6-6
SEMMNU.. IP 6-6
SEMMSL . IP 6-6
Semop, using . IP 4-30
SEMOPM .. IP 6-6
SEMUME . IP 6-7
SEMVMX . IP 6-7
SENDFILES option; Permissions file ...•......... \. BN 3-20
seqfile file ·.· LP 4-21
sequence number SC 2-16
sequence operator (semicoln) . GR 3-9
SETTING KERNEL CONFIGURATION PARAMETERS.. PM 4-2
setting options. Tl 2-21
Setting Options for vi and ex editors . ED 4-50
Setting Terminal Tl 2-18
Setting Text-bit (Sticky-bits) . PM 4-4
SETTING UP YOUR TERMINAL............................. HP 2-3
Setting Up Your Terminal Configuration. ED 4-4
SHARED MEMORY....................................... IP 2-7

IP 5-1
IP 6-9

shared memory attach . IP 2-7
shared memory data structure . IP 5-1
shared memory detach. IP 2-7
SHARED MEMORY ERROR CODES . IP A-16
shared memory identifier . IP 5-1
shared memory operations . IP 2-7

Page 33

INDEX

shared memory segment . IP 5-1
shl command ... UE 2-55
SHMALL . IP 6-10
Shmctl, using . IP 5-21
Shmget, using . IP 5-11
SHMMAX .. IP 6-9
SHMMIN .. IP 6-9
SH MM NI .. IP 6-9
Shmop, using . IP 5-30
SHMSEG•....................................... IP 6-10
SID, identification string. SC 3-2
siline . GR 4-117
Simple Administration . BN 2-4
simple administration; assumption . BN 4-8
simple administration; functionality . BN 4-2
simple administration; devicemgmt subcommand BN 4-5
simple administration; pollmgmt subcommand BN 4-6
simple administration; portmgmt subcommand BN 4-7
simple administration; systemmgmt subcommand BN 4-4
sin .. GR 4-121
Software Programs and Their Purpose . BN 2-5
spacing switch . TF 2-11
special characters . TF 1-2

Tl 6-4
SPECIAL NOTATIONS Tl 1-3
SPECIAL PURPOSE KEYS................................. ED 1-4
Special Search Characters in edit and ex ED 2-11
Special Search Characters in vi . ED 4-17
Special Substitute Characters in edit and ex • ED 2-17
Speeding up Things . GR 5-35
spell filename . SP 2-3
SPELL UTILITIES ADMINISTRATION SP 3-1
spellhist file . SP 3-2
spemn program . SP 3-3
spell options. SP 2-3
spell, by itself. SP 2-4
spell, on text files. SP 2-5
spline .. GR 4-123
spool a print request . LP 2-11

Page 34

INDEX

spool directory; reorganization . BN 3-34
spool file system; out of space . BN 6-1
spooling .. LP 1-1
standard screen • . Tl 2-1
start LP scheduler . LP 3-13
start LP scheduler . LP 4-7
STARTER MODULE . HP 3-1
STARTER SCREENS . HP 3-2
Stat .. GR 2-12

GR 3-1
status of LP system . LP 2-15
status report . LP 2-15
status, ipcs . IP 7-2
stdscr . Tl 2-1
stop currently printing request. LP 2-6
stop LP scheduler . LP 3-15

LP 4-5
stop printing requests . LP 2-7
stop request from printing . LP 2-5
string, getting ... Tl 2-16

Tl 3-12
string, inserting . Tl 2-9

Tl 3-10
STRUCTURE ... Tl 2-1
SUBCOMMANDS BN 4-4
subscripts . TF 2-6
subset ... GR 4-127
Substituting Text in edit and ex ED 2-16
substituting text in vi . ED 4-23
successor deltas . SC 2-15
sulog file; cleanup of . • BN 3-36
Summarizers Node GR 3-6
summary of vi character functions . ED 4-58
supersubscripts . TF 2-6
supporting data base . • BN 2-4
Supporting Data Base . BN 2-8
supporting data base; location. BN 3-5
SUPPORTING DOCUMENTATION LP 1-3
syntax . UE 2-4

Page 35

INDEX

sysadm command . LP 4-2
SYSTEM ACTIVITY . PM 1-2
System Administration menu . LP 4-2
system calls . IP 1-2
system calls, categories of . IP 1-2
system calls, naming of. IP 1-2
system default destination . LP 4-13

LP 4-19
system prompt . BN 7-5
SYSTEM TUNABLE PARAMETERS IP 6-1
systemmgmt subcommand; simple administration BN 4-4
Systems file entry for direct link BN 5-11
Systems file; definition of. BN 2-9
Systems file; description . BN 3-13
Systems file; field descriptions. BN 3-13
Systems file; format BN 3-13
Systems file; simple administration . BN 4-4
Systems file; updating . BN 6-2

T

tabs command . U E 2-59
tar command . CT 2-27
td ... GR 4-129
tee .. GR 3-8
tekset ... GR 4-131
telephone network. BN 2-2
temporary data files (TM.); description . BN 3-2
TERM . TF 2-13

Tl 4-1
Tl 4-2
Tl 6-5

TERM variable ... HP 2-3
termcap. Tl 7-4

Tl 7-13
TERMCAP Al\ID TERMINFO COMPATIBILITY Tl 7-13
terminal .. Tl 7-10
terminal configuration ED 4-4

Page 36

INDEX

terminal definition . ED 4-4
terminal descriptions, capabilities . Tl 7-4
terminal descriptions, compiling Tl 7-9
terminal descriptions, preparing . Tl 7-6
terminal filter definition TF 1-1
Terminal Mode Setting Tl 2-18
terminal name ... Tl 2-18
terminal naming .. Tl 7-2
terminal speed . Tl 5-2
terminal, initialization Tl 4-2

Tl 4-4
terminfo database Tl 7-13
TERMINFO DATABASE, description Tl 7-1
terminfo description Tl 1-1
terminfo level . Tl 6-1
Terminfo Level . Tl 6-4
terminfo level, begin . Tl 6-2

Tl 6-5
TERMINOLOGY ... SC 3-2
test call processing . BN 2-7
Testing an Entry Tl 7-10
testing terminal descriptions Tl 7-10
The Concept of Yank and Put in vi . ED 4-25
THE help COMMAND SC 3-12
tic - terminfo compiler Tl 7-9
timex . PM 4-25
Timex Requirements . PM 2-3
timex - Time a Command; Report Process Data

and System Activity . PM 3-39
title ... GR 4-133
TM. file; temporary data files.................. BN 3-2
total ... GR 4-137
tparm . Tl 6-4

Tl 6-7
tplot ... GR 4-139
TPUT COMMAND Tl 7-11
tputs . Tl 6-3

Tl 6-7
Transformer Node GR 3-3

Page 37

INDEX

Translators Node . GR 3-14
ttoc ... GR 4-141
tty management menu . LP 4-3
tty modes . Tl 4-4

Tl 6-6
tty command . UE 2-61
TUNING A 382 COMPUTER SYSTEM PM 4-1
turn off getty process. LP 4-3
turn off LP scheduler . LP 4-5
turn off tty line . LP 4-3
type options, ipcs . IP 7-5
TYPICAL ADMINISTRATIVE TASKS . LP 4-8
Typing Ahead. GR 5-35

u
underline (hp) ... TF 2-15
underlines ... TF 1-2
Undoing the Last Command in edit . ED 2-24
Undoing the Last Command in ex . ED 3-12
Undoing the Last Command in vi. ED 4-43
unget command. SC 4-31
units command . UE 2-63
universe ... GR 2-11
update pad . Tl 3-13
update screen . Tl 2-4
update window . Tl 3-5
updates, simultaneous . SC 2-3
Usage Description Screen Example . HP 6-11
Usage Description Screen Options. HP 6-5
Usage Example Screen Options . HP 6-6
Usage Examples Screen Example . HP 6-12
Usage List Screen Example . HP 6-10
Usage List Screen Options. HP 6-4
USAGE MODULE HP 6-1
USAGE MODULE EXAMPLES . HP 6-9
USAGE MODULE SCREENS . HP 6-2
Usage Options Screen Example........................... HP 6-13

Page 38

INDEX

Usage Options Screen Options . HP 6-8
Usage Screen 1 Example . HP 6-9
Usage Screen 1 Options . • HP 6-3
User $PATH Variables . PM 4-31
USER COMMANDS...................................... BN 7-7

LP 2-1
user commands; summary . BN 7-1
user defined default destination, lPDEST. LP 4-13
user list . SC 2-5

SC 2-11
User Programs . BN 2-5
Using Named Buffers in vi . ED 4-39
Utilities . IP 1-3

IP 7-1
utilities, naming of. IP 1-3
uucheck command; description . BN 7-41
uucheck command; format . BN 7-41
uucheck command; options . BN 7-41
uucheck command; sample BN 7-42
uucheck program; definition of . BN 2-7
uucico daemon; definition of. • BN 2-7
uucico daemon; used by uucp . BN 2-11
uucleanup command; description BN 7-37
uucleanup command; format . BN 7-37
uucleanup command; options . BN 7-37
uucleanup command; sample BN 7-38
uucleanup program; definition of BN 2-7
UUCP .. BN 1-3
uucppublic directory; used by 11.wto . • • . . . • . • . BN 2-6
11.mcp command; description . BN 7-17
uucp command; format. BN 7-17
uucp command; options . BN 7-18
uucp command; sample BN 7-19
uucp login . BN 3-40
uucp program; definition of . BN 2-6
uucp program; operation of . BN 2-11
uudemon.admin . BN 3-34
uudemon.admin; crontab entry . BN 3-37
uudemon.admin; description. BN 3-36

Page 39

INDEX

uudemon.c!eanu . BN 3-34
uudemon.deanu; crontab entry . BN 3-37
uudemon.c!eanu; description . BN 3-37
uudemon.hour BN 2-12
uudemon.hour; crontab entry. . • . BN 3-38
uudemon.hour; description . BN 3-37
uudemon.poll; crontab entry . BN 3-38
uudemon.poll; description. BN 3-38
uugetty program; definition of. BN 2-7
u1..llog command; description............................. BN 7-31
uulog command; format . BN 7-31
uulog command; options................................ BN 7-31
m.llog command; sample . BN 7-32
uulog program; definition of . BN 2-7
uuname command; description . BN 7-35
uuname command; format . BN 7-35
uuname command; sample . BN 7-35
uupick command; description . BN 7-23
uupick command; format . BN 7-23
uupick command; options. BN 7-23
uupick command; sample . BN 7-24
uupick program; definition of . BN 2-6
uusched daemon . BN 2-12
uusched daemon; definition of . BN 2-8
uustat command; description . BN 7-33
uustat command; format................................ BN 7-33
uustat command; options . BN 7-33
uustat command; sample . BN 7-34
uustat program; definition of. BN 2-6
uuto command; description BN 7-21
uuto command; format . BN 7-21
uuto command; options BN 7-22
uuto command; sample BN 7-22
uuto program; called by uucp , BN 2-12
uuto program; definition of . BN 2-6
m.Jto program; operation of.............................. BN 2-12
Uutry command; description. BN 7-39
Uutry command; format . • . BN 7-39
Uutry command; options. BN 7-39

Page 40

INDEX

Uutry command; sample................................ BN 7-40
Uutry program; definition of . BN 2-7
uuxqt daemon; definition of . BN 2-8
uux command; description . • BN 7-27
uux command; format BN 7-27
uux command; options . BN 7-27
uux command; sample . BN 7-29
uux program; definition of . • BN 2-6
uux program; operation of . BN 2-13

v
-v option, using the . SP 2-12
-v, spell option . SP 2-3
val command . SC 4-55
VALIDATE option; Permissions file. BN 3-25
var .. GR 4-145
variables . Tl 1-3
vc command . SC 4-59
Vector(s) ... GR 3-3
vectors ... GR 2-12

GR 3-10
video attributes . Tl 2-11

Tl 3-10
VIEW COMMANDS GR 5-25
View Commands . GR 5-37
VISUAL EDITOR (vi) . ED 4-1
vtoc . GR 4-147

w
what command . SC 4-49
whatis ... GR 4-149
window initialization. Tl 3-1
window, begin . Tl 3-1
window, delete . Tl 3-1
window, moving. • . Tl 3-2

Page 41

INDEX

WINDOWING ... GR 5-26
windows . Tl 3-1
WORD ABBREVIATIONS in vi . ED 4-46
work (C.) file ... BN 2-11
work (C.) file; contents . BN 3-3
work (C.) file; description . BN 3-3
work files . BN 2-6
WRITE option; Permissions file . BN 3-21
Writing Interface Programs. LP 4-15
Writing the Buffer into the File in edit . ED 2-4
Writing the Buffer into the File in ex . ED 3-5
Writing the Buffer into the File in vi . ED 4-6
Writing the Buffer to Another File in edit . ED 2-21
Writing the Buffer to Another File in ex . ED 3-8
Writing the Buffer to Another File in vi . ED 4-35

x

-x option, using the SP 2-13
-x, spell option . SP 2-3
x-file . SC 2-3
X. (execute) file ; description. BN 3-4
X. (execute) file; contents . BN 3-4
xargs command . UE 2-67

y

yoo ... GR 4-151

z
z-file . SC 2-3

Page 42

