
Replace this

page with the

INTER-PROCESS COMMUNICATION

tab separator.

AT&T

AT&T 382 Computer
UNIX™ System V Release 2"0
Inter-Process Communication
Utilities Guide

CONTENTS

Chapter L INTRODUCTION

Chapter 2. OVERVIEW OF IPC FACILITIES

Chapter 3. MESSAGES

Chapter 4. SEMAPHORES

Chapter 5. SHARED MEMORY

Chapter 6. SYSTEM TUNABLE PARAMETERS

Chapter 7. COMMAND DESCRIPTIONS

Appendix: IPC ERROR CODES

Chapter 1

INTRODUCTION

PAGE

GENERAL . l·l

Facilities . 1-1

Utilities . 1-3

GU!DE ORGANIZATION . 1-4

Chapter 1

INTRODUCTION

GENERAL
This guide describes the Inter-Process Communication (IPC) Facilities and
Utilities available with the AT&T 382 Computer.

Facilities

Facilities are uniquely identifiable software mechanisms that processes
(executing programs) create, control, or operate on. These software
mechanisms "facilitate " or handle IPC.

There are three types of IPC facilities. These three types of IPC facilities
are the heart of IPC . Each type of IPC facility allows a particular method
of communication between or among cooperating processes. These
methods of communication are named as follows:

• Messages

"' Semaphores

IP 1-1

INTRODUCTION

• Shared memory.

Processes create, control, or operate on facilities by using system calls.
Each type of IPC facility has three categories of system calls associated
with it. These system calls are normally imbedded in C Language
programs to do the following functions:

• Getting the facility

• Controlling the facility

• Operating on the facility.

There are nine IPC UNIX'~ System manual pages associated with these
system calls, three manual pages for each of the three types of IPC:

msgget()
semget()
shmget()

msgctl()
semctl()
shmctl()

msgop()
semop()
sh mop()

The first three letters of the IPC UNIX System manual page names
represent the type of IPC: msg for message, sem for semaphore, and shm
for shared memory. The last three letters of the names represent the
action to do: get for getting the facility, ctl for controlling the facility, and
op for operating on the facility.

These names are the system call names with two exceptions. The msgop(}
and shmop() UNIX System manual page names are not used to invoke the
system calls. They both have two different system call names for their
operations.

* Trademark of AT&T

IP 1-2

INTRODUCTION

For msgop() they are:

• msgsnd(), message send

.. msgrcv(), message receive.

For shmop() they are:

• shmat(), shared memory attach

• shmdt(), shared memory detach.

The naming of the msgop() and shmop() UNIX System manual pages is for
consistency and ease of reference.

Utilities

There are two IPC utilities (commands) that run under the UNIX System.
These commands are used for the following:

• Checking the status of IPC facilities

• Removing IPC facilities.

The mnemonic names for these commands are as follows:

• ipcs

• npcrm.

The first three letters of these commands (ipc) represent "inter-process
communication." The remaining letters denote what the command is used
for: s stands for status, and rm stands for remove. These commands give
you a direct interface to the IPC facilities.

IP 1-3

INTRODUCTION

Refer to the AT&T 382 Computer User Reference Manual for UN IX System
V manual pages supporting the commands described in this guide.

GUIDE ORGANIZATION
This guide is structured so you can easily find desired information without
having to read the entire text. The remainder of this document is
organized as follows:

IP 1-4

• Chapter 2, "OVERVIEW OF IPC FACILITIES," gives an overview of
each type of IPC facility. This overview allows you to understand
how the types of IPC facilities work and what they can do for
you.

• Chapter 3, "MESSAGES," describes the message type of IPC.
The prerequisites (calling sequence) before invoking each system
call and the return values for each system call are explained. A
verified program listing to exercise each system call is explained.

• Chapter 4, "SEMAPHORES," describes the semaphore type of
IPC. The prerequisites (calling sequence) before invoking each
system call and the return values for each system call are
explained. A verified program listing to exercise each system call
is explained.

• Chapter 5, "SHARED MEMORY," describes the shared memory
type of IPC. The prerequisites (calling sequence) before invoking
each system call and the return values for each system call are
explained. A verified program listing to exercise each system call
is explained.

• Chapter 6, "SYSTEM TUNABLE PARAMETERS," describes the IPC
system tunable parameters. The maximum or default value
initially set for each tunable parameter is given. When one
tunable parameter affects another parameter, the
interrelationship is explained.

INTRODUCTION

.. Chapter 7, "COMMAND DESCRIPTIONS," contains tutorial
information for using the ipcs and ipcrm utilities. The system call
programs described in the MESSAGES, SEMAPHORES, and
SHARED MEMORY chapters were used to develop the facilities
shown in the examples .

• Appendix, "IPC ERROR CODES," explains the standard system
call error numbers as they apply to IPC. They are categorized by
the type of IPC and associated system calls.

IP 1-5

Chapter 2

OVERVIEW OF IPC FACILITIES

PAGE

MESSAGES. 2-2

SEMAPHORES . • 2-4

SHARED MEMORY . • 2-7

Chapter 2

OVERVIEW OF IPC
FACILITIES

The UNIX System V Release 2.0 Operating System supports three types of
Inter-Process Communication (IPC):

• Messages

• Semaphores

• Shared Memory.

This chapter contains a general discussion of each type of IPC. Following
chapters contain detailed discussions of the associated system calls for
each type of IPC. If you are unfamiliar with IPC facilities, the organization
of this guide should enable you to understand and use the facilities first
before using the ipcs and ipcrm utilities.

IP 2-1

OVERVIEW OF IPC FACILITIES

MESSAGES
The message type of IPC allows processes (executing programs) to
communicate through the exchange of data stored in buffers. This data is
transmitted between processes in discrete portions called messages.
Processes using this type of IPC can do two operations:

• Sending

• Receiving.

Before a message can be sent or received by a process, a process must
have the UNIX System generate the necessary software mechanisms to
handle these operations. A process does this by using the msgget()
system call. While doing this, the process becomes the owner/ creator of
the message facility and specifies the initial operation permissions for all
other processes, including itself. later, the owner /creator can relinquish
ownership or change the operation permissions using the msgctl() system
call. However, the creator always remains the creator as long as the
facility exists. Other processes with permission can use msgctl() to do
various other control functions.

Processes that have permission and are attempting to send or receive a
message can suspend execution if they are unsuccessful at performing
their operation. That is, simplistically, a process that is attempting to send
a message can wait until the process that is to receive the message is
ready and vice versa. A process that specifies that execution is to be
suspended is performing a "blocking message operation." A process that
does not allow its execution to be suspended is performing a "nonblocking
message operation."

IP 2-2

OVERVIEW OF IPC FACILITIES

A process performing a blocking message operation can be suspended until
one of three conditions occurs:

• It is successful

• It receives a signal

• The facility is removed.

System calls make these message capabilities available to processes. The
calling process passes arguments to a system call, and the system call
either successfully or unsuccessfully performs its function. If the system
call is successful, it performs its function and returns applicable
information. Otherwise, a known error code (-1) is returned to the
process, and an external error number variable errno is set accordingly.
Examples of message system calls are contained in Chapter 3,
"MESSAGES."

System tunable parameters that define the maximum UNIX System
resources that are initially set for this type of IPC are given in Chapter 6 of
this guide, "SYSTEM TUNABLE PARAMETERS." These parameters are also
pointed out where they affect the usage of a system call in the
"MESSAGES" chapter.

IP 2-3

OVERVIEW OF IPC FACILITIES

SEMAPHORES
The semaphore type of IPC allows processes (executing programs) to
communicate through the exchange of semaphore values. A semaphore is
a positive integer (0 through 32, 767). Since many applications require the
use of more than one semaphore, the UNIX System is able to create sets
or arrays of semaphores. A semaphore set can contain one or more
semaphores up to a system tunable parameter limit, SEMMSL=25.
Semaphore sets are created by using the semget() system call.

The process performing the semget() system call becomes the
owner /creator, determines how many semaphores are in the set, and sets
the operation permissions for the set, including itself. This process can
later relinquish ownership of the set or change the operation permissions
using the semctl(), semaphore control, system call. The creating process
always remains the creator as long as the facility exists. Other processes
with permission can use semctl() to do other control functions.

Provided a process has alter permission, it can manipulate the
semaphore(s). Each semaphore within a set can be manipulated in two
ways with the semop() system call:

• Incremented

• Decremented.

To increment a semaphore, an unsigned positive integer value of the
desired magnitude is passed to the semop() system call. To decrement a
semaphore, a minus(-) signed value of the desired magnitude is passed.

The UNIX System insures that only one process can manipulate a
semaphore set at any given time. Simultaneous requests are performed
sequentially in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain
value by attempting to decrement the semaphore by one more than that
value. If the process is successful, then the semaphore value is greater
than that certain value. Otherwise, the semaphore value is not. While
doing this, the process can have its execution suspended (IPC_NOWAIT flag

IP 2-4

OVERVIEW OF IPC FACILITIES

not set) until the semaphore value would permit the operation (other
processes increment the semaphore), or the semaphore facility is
removed.

The ability to suspend execution is called a "blocking semaphore
operation." This ability is also available for a process that is testing for a
semaphore to become zero or equal to zero; only read permission is
required for this test, and it is done by passing a value of zero to the
semop() system call.

On the other hand, if the process is not successful and the process does
not request to have its execution suspended, it is called a "nonblocking
semaphore operation." A known error code (-1) is returned to the process,
and the external errno variable is set accordingly.

The blocking semaphore operation, simplistically, allows processes to
communicate based on the values of semaphores at different points in
time. Remember also that IPC facilities remain in the UNIX System until
removed by a permitted process or until the system is reinitialized.

Operating on a semaphore set is done by using the semop(), semaphore
operation, system call.

Note: When a set of semaphores is created, the first semaphore in
the set is semaphore number zero. The last semaphore number in
the set is one less than the total in the set.

An array of these "blocking/nonblocking operations" can be performed on
a set containing more than one semaphore. When performing an array of
operations, the "blocking/nonblocking operations" can be applied to any
or all the semaphores in the set. Also, the operations can be applied in
any order of semaphore number. However, no operations are done until
they can all be done successfully. This requirement means that preceding
changes made to semaphore values in the set must be undone when a
"blocking semaphore operation" on a semaphore in the set cannot be
completed successfully; no changes are made until they can all be made.
For example, if a process has successfully completed three of six

IP 2-5

OVERVIEW OF IPC FACILITIES

operations on a set or ten semaphores but is "blocked" from performing
the fourth operation, no changes are made to the set until the fourth and
remaining operations are successfully performed. Additionally, any
operation preceding or succeeding the "blocked" operation, including the
blocked operation, can specify that at such time that all operations can be
performed successfully, that the operation be undone. Otherwise, the
operations are performed and the semaphores are changed or one
"nonblocking operation" is unsuccessful and none are changed. All this is
commonly referred to as being "atomically performed."

The ability to undo operations requires the UNIX System to maintain an
array of "undo structures" corresponding to the array of semaphore
operations to be performed. Each semaphore operation that is to be
undone has an associated adjust variable used for undoing the operation, if
necessary.

Remember, any unsuccessful "nonblocking operation" for a single
semaphore or a set of semaphores causes immediate return with no
operations performed at all. When this occurs, a known error code (-1) is
returned to the process, and the external variable errno is set accordingly.

System calls make these semaphore capabilities available to processes.
The calling process passes arguments to a system call, and the system call
either successfully or unsuccessfully performs its function. If the system
call is successful, it performs its function and returns the appropriate
information. Otherwise, a known error code (-1) is returned to the
process, and the external variable errno is set accordingly. The detailed
usage of these system calls is contained in Chapter 4, "SEMAPHORES."

System tunable parameters that define the maximum UNIX System
resources that are initially set for this type of IPC are given in Chapter 6 of
this guide, "SYSTEM TUNABLE PARAMETERS." They are also pointed out
where they affect the usage of a system call in the "SEMAPHORES"
chapter.

IP 2-6

OVERVIEW OF IPC FACILITIES

SHARED MEMORY
The shared memory type of IPC allows two or more processes (executing
programs) to share memory and consequently the data contained there.
This is done by allowing processes to set up access to a common virtual
memory address space. This sharing occurs on a segment basis that is
382 Computer memory management hardware dependent

This sharing of memory provides the fastest means of exchanging data
between processes.

A process initially creates a shared memory segment facility using the
shmget() system calL On creation, this process sets the overall operation
permissions for the shared memory segment facility, sets its size in bytes,
and can specify that the shared memory segment is for reference only
(read-only) on attachment. If the memory segment is not specified to be
for reference only, all other processes with appropriate operation
permissions can read from or write to the memory segment.

There are two operations that can be performed on a shared memory
segment:

• shmat() - shared memory attach

• shmdt() - shared memory detach.

Shared memory attach allows processes to associate themselves with the
shared memory segment, if they have permission. They can then read or
write as allowed.

Shared memory detach allows processes to disassociate themselves from
a shared memory segment. Therefore, they lose the ability to read from
or write to the shared memory segment.

The original owner /creator of a shared memory segment can relinquish
ownership to another process using the shmctl() system call. However,

IP 2-7

OVERVIEW OF IPC FACILITIES

the creating process remains the creator until the facility is removed or
the system is reinitialized. Other processes with permission can do other
functions on the shared memory segment using the shmctl() system call.

System calls make these shared memory capabilities available to
processes. The calling process passes arguments to a system call, and the
system call either successfully or unsuccessfully performs its function. If
the system call is successful, it performs its function and returns the
appropriate information. Otherwise, a known error code (-1) is returned to
the process, and the external variable errno is set accordingly. The
detailed usage of these system calls is contained in Chapter 5, "SHARED
MEMORY."

System tunable parameters that define the maximum UNIX System
resources that are initially set for this type of IPC are given in Chapter 6 of
this guide, "SYSTEM TUNABLE PARAMETERS." They are also pointed out
where they affect the usage of a system call in the "SHARED MEMORY"
chapter.

IP 2-8

Chapter 3

MESSAGES

PAGE

GENERAL . 3-1

GETTING MESSAGE QUEUES. 3-10

Using Msgget. 3-10

Example Program . 3-16

CONTROLLING MESSAGE QUEUES . 3-21

Using Msgctl . 3-21

Example Program . 3-23

OPERATIONS FOR MESSAGES. 3-31

Using Msgop . 3-31

Example Program . 3-35

Chapter 3

MESSAGES

The message type of Inter-Process Communication (IPC) allows processes
to communicate through the exchange of data. This data is exchanged in
discrete portions called messages. They are exchanged by sending or
receiving; see the" OPERATIONS FOR MESSAGES" section in this
chapter about sending or receiving messages.

GENERAL
Before a message can be sent or received, a uniquely identified message
queue and data structure must be created. The unique identifier created
is called the message queue identifier (msqid); it is used to identify or
reference the associated message queue and data structure. Figure 3-1
illustrates the relationships among the msqid, message queue, and data
structure.

IP 3-1

MESSAGES

The message queue is used to store (header) information about each
message that is being sent or received. This information includes the
following for each message:

.. Pointer to the next message on queue

.. Message type

.. Message text size

• Message text address.

IP 3-2

UNIQUE
MESSAGE

QUEUE
ID

I - - -- l'lESSAGEQUEUEl

I ' DATA STRUCTURE!

I OPERATION PERMISSIONS l----i-
STRUCTURE

I POINTER TO FIRST MESSAGE I
I ON THE QUEUE I

ll'lESSAGEQUEUE- - - - ,

: (HEADERS) i :
rt POINTER TO LAST MESSAGE I

ON THE QUEUE
I POINTER TO NEXT ~

MESSAGE ON QUEUE

I MESSAGE TYPE I
I MESSAGE TEXT I
I SIZE I

: r PO::~S:~G~~:TEE::XT J_
I TO MESSAGE ON QUEUE '---!-

MESSAGE , I
I UFFER MESSAGE TYPE I

I
MESSAGE TE x T I

SIZE

I MESSAGE TEXT I , r MAP AOORESS _ ,

I TO l I ~
MESSAGE ..

I BUFFER • I •
I : I :

I
: i:::=PO=IN=TE~:=TO==NE=XT::::i_:1

MESSAGE ON QUEUE ...,,

I l--~~~~'-'-1
MESSAGE TYPE

I MESSAGE TEXT I
I SIZE I

I .-----'---~-~_:_~-~-~-~-;-~ I
I TO I •
I MESSAGE I NULL

L BUFF~ - - - - - - _J

I CURRENT NUMBER OF I
I BYTES ON THE QUEUE I

NUMBER OF MESSAGES
I ON THE QUEUE I
I MAXIMUM NUMBER OF BYTES I

ON THE QUEUE

I PROCESS IO OF LAST I
I MESSAGE SENDER I

I
PROCESS IO OF LAST I

MESSAGE RECEIVER

I LAST MESSAGE I
SEND TIME

I LAST MESSAGE I
I RECEIVE TIME I
~-~ ~N~T~--_j
r:-------1
I
I
I
I
I
I
I

OWNER'S USER ID

OWNER 'S GROUP ID

CREATOR'S USER ID

CREATOR'S GROUP ID

ACCESS MODES

SLOT USAGE SEQUENCE
NUMBER

KEY

I

I
I
I
I
I
I

I OPERATION PERl'lISSIDNS I
LSTRUCTU~ - - - - _J

Figure 3-1. Message !PC Organization

MESSAGES

IP 3-3

MESSAGES

There is one associated data structure for the uniquely identified message
queue. This data structure contains the following information related to
the message queue.

• Operation permissions data (operation permission structure)

• Pointer to first message on the queue

• Pointer to last message on the queue

• Current number of bytes on the queue

• Amount of messages on the queue

• Maximum number of bytes on the queue

• Process Identification (PID) of last message sender

• PID of last message receiver

• Last message send time

• Last message receive time

• Last change time.

Note: All include files discussed in this guide are located in the
/usr /include or /usr /include/sys directories.

IP 3-4

MESSAGES

The C Programming Language data structure definition for the message
information contained in the message queue is as follows:

struct msg I
l

struct msg *msg next; ,. ptr to next message on q .,
-

long msg type; ,. message type .,
short msg ts; ,. message text size ., -
short msg spot; ,. message text map address */ -

J. , ,

It is located in the /usr /include/sys/msg.h header file.

Likewise, the structure definition for the associated data structure is as
follows:

struct msqid ds { -
struct ipc perm msg perm; ,. operation permission struct .,
struct msg *msg first; ,. ptr to first message on q ., -
struct msg *msg last; ,. ptr to last message on q .,

-
ushort msg cbytes; ,. current # bytes on q .,

-
ushort msg qnum; ,. # of messages on q ., -
ushort msg qbytes; ,. max # of bytes on q .,

-
ushort msg lspid; ,. pid of last msgsnd ., -
ushort msg lrpid; ,. pid of last msgrcv .,
time t msg stime; ,. last msgsnd time ., - -
time t msg irtime; ,. last msgrcv time ., -
time t msg ctime; ,. last change time ., - ,. Times measured in sec since ., ,. 00:00:00 GMT, ~lan. 1, 1970 .,

\. ,,

It is located in the #include <sys/msg.h> header file also. Note that the
msgperm member of this structure uses ipc_perm as a template. Thus,
the breakout is shown in Figure 3-1 for the operation permissions data
structure.

IP 3-5

MESSAGES

The definition of the ipc_perm data structure is as follows:

struct ipc perm -
ushort uid; ,. owner's user id */
ushort gid; ,. owner's group id .,
ushort cu id; ,. creator's user id .,
ushort cgid; ,. creator's group id .,
ushort ~ode; ,. access modes .,
ushort seq; ,. slot usage sequence number .,
key t key; ,. key ., -

\. ,,

It is located in the #include <sys/ipc.h> header file; it is common for all
IPC facilities.

IP 3-6

MESSAGES

The msgget() system call is used to perform two tasks when only the
IPC_CREAT flag is set in the msgflg argument that it receives:

• To get a new msqid and create an associated message queue and
data structure for it

• To return an existing msqid that already has an associated
message queue and data structure.

The task performed is determined by the value of the key argument
passed to the msgget() system call.

For the first task, if the key is not already in use for an existing msqid, a
new msqid is returned with an associated message queue and data
structure created for the key. This occurs provided no system tunable
parameters would be exceeded.

There is also a provision for specifying a key of value zero that is known as
the private key (IPC_PRIVATE = O); when specified, a new msqid is always
returned with an associated message queue and data structure created for
it unless a system tunable parameter would be exceeded. When the ipcs
command is performed, the KEY field for the msqid is all zeros.

For the second task, if a msqid exists for the key specified, the value of the
existing msqid is returned. If you do not desire to have an existing msqid
returned, a control command (IPC_EXCL) can be specified (set) in the
msgflg argument passed to the system call. The details of using this
system call are discussed in the" Using Msgget " section of this chapter.

IP 3-7

MESSAGES

When performing the first task, the process that calls msgget becomes the
owner /creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed but the creating process always
remains the creator; see the" CONTROLLING MESSAGE QUEUES "
section in this chapter. The creator of the message queue also determines
the initial operation permissions for it.

Once a uniquely identified message queue and data structure are created,
message operations [msgop()] and message control [msgctl()] can be
used.

Note: Msgop() is not a system call.

Message operations, as mentioned previously, consist of sending and
receiving messages. System calls are provided for each of these
operations; they are msgsnd() and msgrcv(). Refer to the" OPERATIONS
FOR MESSAGES " section in this chapter for details of these system calls.

IP 3-8

MESSAGES

Message control is done by using the msgctl() system call. It permits you
to control the message facility in the following ways:

• To determine the associated data structure status for a message
queue identifier (msqid)

• To change operation permissions for a message queue

• To change the size (msg_qbytes) of the message queue for a
particular msqid

• To remove a particular msqid from the UNIX System along with
its associated message queue and data structure.

Refer to the" CONTROLLING MESSAGE QUEUES " section in this chapter
for details of the msgctl() system call.

IP 3-9

MESSAGES

GETTING MESSAGE QUEUES
This section gives a detailed description of using the msgget() system call
along with an example program illustrating its use.

Using Msgget

The synopsis of the msgget() UNIX System manual page is as follows:

#include <sys/types.b>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;

int msgflg;

All these include files that are located in the /usr /include/sys directory of
the UNIX System.

The following line in the synopsis:

int msgget (key, msgflg)

informs you that msgget() is a function with two formal arguments that
returns an integer type value, on successful completion (msqid). The next
two lines:

key_t key;

int msgflg;

declare the types of the formal arguments. Key_t is declared by a typedef
in the types.h header file to be a long integer. Therefore, key and msgflg
are integers (int) which both occupy 32-bits each in the 3B2 Computer.

The integer returned from this function on successful completion is the
message queue identifier (msqid) that was discussed in the "GENERAL"
section of this chapter.

IP 3-10

MESSAGES

As declared, the process calling the msgget() system call must supply two
actual arguments to be passed to the formal key and msgflg arguments.

The value passed to key must be a unique integer type hexadecimal value
or zero (IPC_PRIVATE = 0) if a new msqid with an associated message
queue and data structure is desired; it must be an existing key to return its
msqid. This is true when only the IPC_CREAT flag is set in the msgflg
argument.

Unique keys can be determined in several ways. The STDIPC(), standard
interprocess communication package, subroutine is one method to
generate unique keys to avoid undesired interference between processes.
Another way could be to use the makekey() command. Picking a key at
random is also possible but less desirable. If the key is IPC_PRIVATE, only
the owner/ creator process usually uses the facility.

Note: Refer to the AT&T 382 Computer User Reference Manual
for UNIX System V manual pages supporting the commands
described in this guide.

The value passed to the msgflg argument must be an integer type octal
value and it will specify the following:

• Access permissions

• Execution modes

• Control fields (commands).

Access permissions determine the read/write attributes and execution
modes determine the user /group/other attributes of the msgflg
argument. They are collectively referred to as "operation permissions."
Figure 3-2 reflects the numeric values for the valid operation permissions
codes.

IP 3-11

MESSAGES

OPERATION PERMISSIONS NUMERIC VALUE

Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

Figure 3-2. Operation Permissions Codes

A specific numeric value is derived by adding the numeric values for the
operation permissions desired. That is, if read by user and read/write by
others is desired, the code value would be 00406 (00400 plus 00006).
These values are represented in octal. There are constants located in the
msg.h header file that can be used for the user (OWNER). They are as
follows:

MSG R
MSG W

0400

0200

Control commands are predefined constants (represented by all uppercase
letters). Figure 3-3 contains the names of the constants that apply to the
msgget() system call along with their values. They are also referred to as
flags and are defined in the ipc.h header file.

CONTROL COMMAND VALUE
IPC_CREAT 0001000
IPC_EXCL 0002000

Figure 3-3. Control Commands (Flags)

IP 3-12

MESSAGES

The value for msgflg is therefore a combination of operation permissions
and control commands. After determining the value for the operation
permissions as previously described, the desired flag(s) can be specified.
This is done by bitwise ORing (I) them with the operation permissions; the
bit positions and values for the control commands in relation to those of
the operation permissions make this possible. It is illustrated as follows:

IPC CREAT

Read by User

msgflg

OCTAL VALUE

0 l 0 0 0
0 0 4 0 0

0 1 4 0 0

BINARY VALUE

0 000 001 000 000 000

0 000 000 100 000 000

0 000 001 100 000 000

The msgflg value can be easily set by using the names of the flags with the
octal operation permissions value:

msqid = msgget (key, (IPC_CREAT I 0400));

msqid = msgget (key, (IPC_CREAT I IPC_EXCL I 0400));

As specified by the msgget() UNIX System manual page, success or failure
of this system call depends on the argument values for key and msgflg or
system tunable parameters. The system call will attempt to return a new
msqid if one of the following conditions is true:

• Key is equal to IPC_PRIVATE (0)

• Key does not already have a msqid associated with it, and
(msgflg & IPC_CREAT) is "true" (not zero).

IP 3-13

MESSAGES

The key argument can be set to IPC_PRIVATE in the following ways:

msqid = msgget (IPC_PRIVATE, msgflg);

OR

msqid = msgget (0 , msgflg);

This alone will cause the system call to be attempted because it satisfies
the first condition specified. Exceeding the MSGMNI system tunable
parameter causes a failure regardlessly. The MSGMNI system tunable
parameter determines the maximum amount of unique message queues
(msqid's) in the UNIX System.

The second condition is satisfied if the value for key is not already
associated with a msqid and the bitwise ANDing of msgflg and IPC_CREAT
is "true" (not zero). This means that the key is unique (not in use) within
the UNIX System for this facility type and that the IPC_CREAT flag is set
(msgflg I IPC_CREAT). The bitwise ANDing (&), which is the logical way of
testing if a flag is set, is illustrated as follows:

msgflg = x l x x x (x = don't care)
& IPC CREAT = 0 l 0 0 0

result = 0 1 0 0 0 (not zero)

Since the result is not zero, the flag is set or "true." MSGMNI applies here
also, just as for condition one.

IP 3-14

MESSAGES

IPC_EXCL is another control command used with IPC_CREAT to exclusively
have the system call fail if, and only if, a msqid exists for the specified key
provided. This is necessary to prevent the process from thinking that it
has received a new (unique) msqid when it has not. In other words, when
both IPC_CREAT and IPC_EXCL are specified, a new msqid is returned if
the system call is successful.

Refer to the msgget() UNIX System manual page for specific associated
data structure initialization for successful completion. The specific failure
conditions with error names are contained there also.

IP3-15

MESSAGES

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the msgget() system call to be exercised.
This program was compiled and run on the 382 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the C Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not for program efficiency. Usually, system
calls are embedded within a larger user-written program that makes use of
a particular function that they provide.

This program begins by including the required header files as specified by
the UNIX System manual page for msgget() (lines 4-8). Note that the
errno.h header file is included as opposed to declaring errno as an external
variable; either method will work.

IP 3-16

MESSAGES

Variable names have been chosen to be as close as possible to those in
the synopsis for the system call. Their declarations are self-explanatory.
These names make the program more readable, and it is perfectly legal
since they are local to the program. The variables declared for this
program and their purposes are as follows:

• key-used to pass the value for the desired key

• opperm-used to store the desired operation permissions

• flags-used to store the desired control commands (flags)

• opperm_flags-used to store the combination from the logical
ORing of the opperm and flags variables; it is then used in the
system call to pass the msgflg argument

• msqid-used for returning the message queue identification
number for a successful system call or the error code (-1) for an
unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal
operation permissions code, and finally for the control command
combinations (flags) which are selected from a menu (lines 15-32).

Note: All possible combinations are allowed even though they
might not be viable. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the opperm_flags
variable (lines 36-51).

The system call is made next, and the result is stored at the address of the
msqid variable (line 53).

IP 3-17

MESSAGES

Since the msqid variable now contains a valid message queue identifier or
the error code (-1), it is tested to see if an error occurred (line 55). If
msqid equals -1, a message indicates that an error resulted, and the
external errno variable is displayed (lines 57, 58).

If no error occurred, the returned message queue identifier is displayed
(line 62).

The example program for the msgget() system call follows. It is suggested
that the source program file be named "msgget.c" and that the
executable file be named "msgget."

Note: When compiling C programs that use floating point
operations, the -f option should be used on the cc command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 3-18

/*This is a program to illustrate

2 **the message get, msgget(),
3 **system call capabilities.*/

4

5

6

7

8

#include

#include

#include
#include

#include

<stdio.h>

<sys/types.h>

<sys/ipc.h>

<sys/msg.h>

<errno. h>

9 /*Start of main C language program*/

10 main()

11

12
13

H

15

16
17

key t key; /*declare as long integer*/

18

19

20
21

22

23

24

25

26
27

28
29

30

31

32

33

34
35

int opperm, flags;

int msqid, opperm_flags;

/~Enter the desired key*/

printf(''Enter the desired key in hex

scanf("%x", &key);

");

/*Enter the desired octal operation

permissions.*/

printf('' \nEnter the operation\n");

printf('' permissions in octal = ");

scanf (" %0" , &opperm);

/*Set the desired flags.*/

printf(" \nEnter corresponding number to\n");

printf(''set the desired flags:\n'');

printf("No flags

printf(" IPC_CREAT

printf(" IPC_EXCL

printf("IPC_CREAT and IPC EXCL

printf(" Flags
/*Get the flag(s) to be set.•/

scanf("%d", &flags);

/*Check the values.*/

printf ("\nkey =Ox%x, opperm
key, opperm, flags);

O\n");

l\n");

2\n");

3\n");

");

0%o, flags 0%o\n" ,

MESSAGES

IP 3-19

MESSAGES

IP 3-20

36
37
38

39
40

41
42

43

44
45
46

47
48

49

50

51
52
53

54

55
56
57

58
59
60
61
62
63
64

/*Incorporate the control fields (flags) with

the operation permissions*/
switch (flags)
r
l

case 0: /*No flags are to be set.*/

op perm_ flags = (opperm : 0);
break;

case 1: /*Set the IPC_CREAT flag.*/
op perm -
break;

case 2:

op perm -
break;

case 3:
opperm_

flags

/*Set
flags

/*Set
flags

= (opperm I IPC _ CREAT);

the IPC_EXCL flag.•/
= (opperm I IPC_EXCL);

the IPC CREAT and IPC_EXCL flags.•/
= (opperm I IPC_CREAT IPC_EXCL);

/*Call the msgget system call.*/
msqid = msgget (key, opperm_flags);

/*Perform the following if the call is unsuccessful.*/

if(msqid == -1)

)

printf ("\nThe msgget system call failed!\n");
printf ("The error number = %d\n" , errno);

/*Return the msqid on successful completion.*/
else

printf (" \nThe msqid = %d\n", msqid);
exit(O);

MESSAGES

CONTROLLING MESSAGE QUEUES
This section gives a detailed description of using the msgctl() system call
along with an example program that allows all its capabilities to be
exercised.

Using Msgctl

The synopsis of the msgctl() UNIX System manual page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd~ buf)
int msqid, cmd;
struct msqid_ds *buf;

The msgctl() system call requires three arguments to be passed to it, and
it returns an integer value.

On successful completion, a zero value is returned; and when unsuccessful,
it returns a -1.

The msqid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system
call.

IP 3-21

MESSAGES

The cmd argument can be replaced by one of the following control
commands (flags):

.. IPC_STAT -return the status information contained in the
associated data structure for the specified msqid, and place it in
the data structure pointed to by the '~but pointer in the user
memory area

• IPC_SET-for the specified msqid, set the effective user and
group identification, operation permissions, and the number of
bytes for the message queue

• IPC_RMID-remove the specified msqid along with its associated
message queue and data structure.

A process must have an effective user identification of OWNER/CREATOR
or super-user to perform an IPC_SET or IPC_RMID control command.
Read permission is required to perform the IPC_STAT control command.

The details of this system call are discussed in the example program for it.
If you have problems understanding the logic manipulations in this
program, read the "Using Msgget" section of this chapter; it goes into
more detail than what would be practical to do for every system call.

IP 3-22

MESSAGES

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the msgctl() system call to be exercised.
This program was compiled and run on the 382 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the C Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not for program efficiency. Usually, system
calls are embedded within a larger user-written program that makes use of
a particular function that they provide.

This program begins by including the required header files as specified by
the UNIX System manual page for msgctl() (lines 5-9). Note in this
program that errno is declared as an external variable, and therefore, the
errno.h header file does not have to be included.

IP 3-23

MESSAGES

Variable and structure names have been chosen to be as close as possible
to those in the synopsis for the system calL Their declarations are self
explanatory. These names make the program more readable, and it is
perfectly legal since they are local to the program. The variables declared
for this program and their purpose are as follows:

IP 3-24

.. uid-used to store the IPC_SET value for the effective user
identification

.. gid-used to store the IPC_SET value for the effective group
identification

.. mode-used to store the IPC_SET value for the operation
permissions

.. bytes-used to store the IPC_SET value for the number of bytes
in the message queue (msg_qbytes)

• rtm-used to store the return integer value from the system call

• msqid-used to store and pass the message queue identifier to
the system call

• command-used to store the code for the desired control
command so that further processing can be performed on it

.. choice-used to determine what member is to be changed for
the IPC_SET control command

• msqid_ds-used to receive the specified message queue
indentifier's data structure when an IPC_STAT control command
is performed

.. *buf-a pointer passed to the system call that locates the data
structure in the user memory area where the IPC_STAT control
command is to place its return values or where the IPC_SET
command gets the values to set.

MESSAGES

Note that the msqid_ds data structure in this program (line 16) uses the
data structure located in the msg.h header file of the same name as a
template for its declaration. This is a perfect example of the advantage of
local variables.

The next important thing to observe is that although the '~buf pointer is
declared to be a pointer to a data structure of the msqid_ds type, it must
also be initialized to contain the address of the user memory area data
structure (line 17).

Now that all the required declarations have been explained for this
program, this is how it works.

First, the program prompts for a valid message queue identifier that is
stored at the address of the msqid variable (lines 19, 20). This is required
for every msgctl() system call.

Then the code for the desired control command must be entered (lines
21-27), and it is stored at the address of the command variable. The code
is tested to determine the control command for further processing.

If the IPC_STAT control command is selected (code 1), the system call is
performed (lines 37, 38) and the status information returned is printed out
(lines 39-46); only the members that can be set are printed out in this
program. Note that if the system call is unsuccessful (line 106), the status
information of the last successful call is printed out regardlessly; also, an
error message is displayed and the errno variable is printed out (lines 108,
109). If the system call is successful, a message indicates this along with
the message queue identifier used (lines 111-114).

IP 3-25

MESSAGES

If the IPC_SET controi command is selected (code 2), the first thing done
is to get the current status information for the message queue identifier
specified (lines 50-52). This is necessary because this example program
provides for changing only one member at a time, and the system call
changes all of them. Also, if an invalid value happened to be stored in the
user memory area for one of these members, it would cause repetitive
failures for this control command until corrected. The next thing the
program does is to prompt for a code corresponding to the member to be
changed (lines 53-59). This code is stored at the address of the choice
variable (line 60). Now, depending on the member picked, the program
prompts for the new value (lines 66-95). The value is placed at the
address of the appropriate member in the user memory area data
structure, and the system call is made (lines 96-98). Depending on
success or failure, the program returns the same messages as for
IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 100-103), and the msqid along with its associated
message queue and data structure are removed from the UNIX System.
Note that the *buf pointer is not required as an argument to perform this
control command, and its value can be zero or NULL. Depending on the
success or failure, the program returns the same messages as for the
other control commands.

The example program for the msgctl() system call follows. It is suggested
that the source program file be named "msgctl.c" and that the executable
file be named "msgctl."

Note: When compiling C programs that use floating point
operations, the -f option should be used on the cc command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 3-26

1 /*This is a program to illustrate

2 **the message control, msgctl(),
3 **system call capabilities.
4 • ,

5

6

7

8

9

/•Include

#include

#include

#include

#include

necessary header

<stdio.h>

<sys/types. h>

<sys/ipc.h>

<sys /msg. h>

files.•/

10 /*Start of main C language program*/

U main()

12

13

14
15
16
17

18
19

20
21
22
23
24

25

26

27

28

29

30

extern int errno;
int uid, girl, mode, bytes;
int rtrn, msqid, command, choice;
struct msqid_ds msqid_ds, *buf;
buf = &msqid ds;

/*Get the msqid, and command.*/

printf(" Enter the msqid = ");

scanf("%d", &msqid);

printf(" \nEnter the number for\n");

printf(" the desired command:\n");

printf(" IPC_STAT l\n");

printf(" IPC_SET

printf(" IPC_RMID

printf(" Entry

scanf (" %d" , &command);

/*Check the values.•/

2\n");

3\n");

");

printf ("\nmsqid =%d, command
msqid, command);

%d\n",

MESSAGES

IP 3-27

MESSAGES

IP 3-28

31

32
33

34
35

36

37

38

39
40

41
42
43

44
45

46

47
48

49

switch (command)

I
case 1: /•Use msgctl() to duplicate

the data structure for

msqid in the msqid_ds area pointed

to by buf and then print it out.*/

rtrn = msgctl(msqid, IPC_STAT,

buf);

printf (" \nThe USER ID = %d\n" ,

buf->msg_perm.uid);

printf ("The GROUP ID = %d\n" ,

huf->msg_perm.gid);
printf (''The operation permissions

buf->msg_perm.mode);

printf ("The msg_ qbytes = %d\n" ,
buf->msg_qbytes);

0%o\n",

break;
case 2: /*Select and change the desired

member(s) of the data structure.*/

50
51

52

53

54
55

56

57

58

59
60

61
62

63
64

65

66

67
68

69

70

71

72

73

74

75

76

77

78

79

80

81
82

83

84

85

86

87

88

89

90
91
92
93
94

95

/*Get the original data for this msqid
data structure first.*/

rtrn = msgctl(msqid, IPC_STAT, buf);

printf(''\nEnter the number for the\~');

printf(''member to be changed:\n");
printf(" msg_perm.uid 1\n");

print f (" msg_perm. gid 2\n") ;

printf("rnsg perm.mode 3\n");

printf("msg_qbytes 4\n");

printf ("Entry ") ;

scanf("%d", &choice);

/*Only one choice is allowed per
pass as an illegal entry will

cause repetitive failures until

msqid_ds is updated with

IPC_STAT.•/

switch(choice)[

case 1:

printf("\nEnter USER ID=");

scanf (" %d" , &uid);

buf->msg_perm.uid = uid;
printf("\nUSER ID = %d\n",

buf->msg perm.uid);

break;
case 2:

printf(" \nEnter GROUP ID ");

scanf(" %d", &gid);

buf->msg_perm.gid = gid;

printf(" \nGROUP ID = %d\n",

buf->msg_perm.gid);
break;

case 3:
printf(" \nEnter MODE = ");

scanf (" %0" ~ &mode);

bnf->msg_perm.mode = mode;

printf(" \nMODE = 0%o\n",

buf->msg_perm.mode);

break;

case 4:
printf("\nEnter msq_bytes

scanf("%d", &bytes);

");

buf->msg_qbytes = bytes;
printf(" \nmsg_qbytes = %d\n",

buf->msg_qbytes);

break;

MESSAGES

IP 3-29

MESSAGES

IP 3-30

96

97

98

99

100
101

102

103

104

105

106
107

108
109
110

111
112

113

114

115

116

/*Do the change.•/

rtrn = msgctl(msqid, IPC_SET,

hnf);

break;

case 3: /*Remove the rnsqid along with its

associated message queue
and data structure.*/

rtrn = msgctl(msqid, IPC_RMID, NULL);

}
/*Perform the following if the caJl is unsuccessful.*/

if (rtrn == -1)

printf (11 \nThe msgctl system call failed!\d');

printf (''The error number = %d\~', errno);

}
/*Return the msqid on successful completion.*/

else

printf (''\nMsgctl was successful for msqid

msqid);

exit (O);

%d\n",

MESSAGES

OPERATIONS FOR MESSAGES
This section gives a detailed description of using the msgsnd() and
msgrcv() system calls, along with an example program that allows all their
capabilities to be exercised.

Using Msgop

The synopsis of the msgop() UNIX System manual page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long rnsgtyp;
int msgflg;

Sending a Message

The msgsnd() system call requires four arguments to be passed to it, and
msgsnd() returns an integer value.

On successful completion, a zero value is returned; and when unsuccessful,
msgsnd() returns a -1.

IP 3-31

MESSAGES

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system
call.

The msgp argument is a pointer to a structure in the user memory area
that contains the type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data
structure pointed to by the msgp argument. This is the length of the
message. The maximum size of this array is determined by the MSGMAX
system tunable parameter.

Note: The msg_qbytes data structure member can be lowered
from MSGMNB by using the msgctl() IPC_SET control command,
but only the super-user can raise it afterwards.

The msgflg argument allows the "blocking message operation" to be
performed if the IPC_NOWAIT flag is not set (msgflg & IPC_NOWAIT = O);
this would occur if the total amount of bytes allowed on the specified
message queue are in use (msg_qbytes or MSGMNB), or the total system
wide amount of messages on all queues is equal to the system imposed
limit (MSGTQL). If the IPC_NOWAIT flag is set, the system call will fail and
return a -1.

Further details of this system call are discussed in the example program
for it. If you have problems understanding the logic manipulations in this
program, read the "Using Msgget" section of this chapter; it goes into
more detail than what would be practical to do for every system call.

IP 3-32

MESSAGES

Receiving Messages

The msgrcv() system call requires five arguments to be passed to it, and it
returns an integer value.

On successful completion, a value equal to the number of bytes received is
returned and when unsuccessful it returns a -1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system
call.

The msgp argument is a pointer to a structure in the user memory area
that will receive the message type and the message text.

The msgsz argument specifies the length of the message to be received. If
its value is less than the message in the array, an error can be returned if
desired; see the msgflg argument.

The msgtyp argument is used to pick the first message on the message
queue of the particular type specified. If it is equal to zero, the first
message on the queue is received; if it is greater than zero, the first
message of the same type is received; if it is less than zero, the lowest
type that is less than or equal to its absolute value is received.

The msgflg argument allows the "blocking message operation" to be
performed if the IPC_NOWAIT flag is not set (msgflg & IPC_NOWAIT = O);
this would occur if there is not a message on the message queue of the
desired type (msgtyp) to be received. If the IPC_NOWAIT flag is set, the
system call will fail immediately when there is not a message of the desired
type on the queue. Msgflg can also specify that the system call fail if the
message is longer than the size to be received; this is done by not setting
the MSG_NOERROR flag in the msgflg argument (msgflg & MSG_NOERROR
= 0). If the MSG_NOERROR flag is set, the message is truncated to the
length specified by the msgsz argument of msgrcv().

IP 3-33

MESSAGES

Further details of this system call are discussed in the example program
for it. If you have problems understanding the logic manipulations in this
program, read the "Using Msgget" section of this chapter; it goes into
more detail than what would be practical to do for every system call.

IP 3-34

MESSAGES

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the msgsnd() and msgrcv() system calls
to be exercised. This program was compiled and run on the 382
Computer; its execution has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the C Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not for program efficiency. Usually, system
calls are embedded within a larger user-written program that makes use of
a particular function that they provide.

This program begins by including the required header files as specified by
the UNIX System manual page for msgop() (lines 5-9). Note that in this
program errno is declared as an external variable, and therefore, the
errno.h header file does not have to be included.

IP 3-35

MESSAGES

Variable and structure names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self-explanatory. These
names make the program more readable, and this is perfectly legal since
they are local to the program. The variables declared for this program and
their purposes are as follows:

IP 3-36

• sndbuf-used as a buffer to contain a message to be sent (line
13); it uses the msgbufl data structure as a template (lines 10-
13)

Note: The msgbufl structure (lines 10-13) is almost an
exact duplicate of the msgbut structure contained in the
msg.h header file. The only difference is that the
character array for msgbufl contains the maximum
message size (MSGMAX) for the 382 Computer where in
msgbuf it is set to one (1) to satisfy the compiler. For
this reason msgbuf cannot be used directly as a template
for the user-written program. It is there so you can
determine its members .

• rcvbuf-used as a buffer to receive a message (line 13); it uses
the msgbufl data structure as a template (lines 10-13)

• *msgp-used as a pointer (line 13) to both the sndbuf and
rcvbuf buffers

• i-used as a counter for inputing characters from the keyboard,
storing them in the array, and keeping track of the message
length for the msgsnd() system call; it is also used as a counter
to output the received message for the msgrcv() system call

• c-used to receive the inputed character from the "getchar()"
function (line 50)

• flag-used to store the code of IPC_NOWAIT for the msgsnd()
system call (line 61)

MESSAGES

• flags-used to store the code of the IPC_NOWAIT or
MSG_NOERROR flags for the msgrcv() system call (line 117)

• choice-used to store the code for sending or receiving (line 30)

• rtrn-used to store the return values from all system calls

• msqid-used to store and pass the desired message queue
identifier for both system calls

" msgsz-used to store and pass the size of the message to be
sent or received

.. msgflg-used to pass the value of flag for sending or the value of
flags for receiving

.. msgtyp-used for specifying the message type for sending, or
used to pick a message type for receiving.

Note that a msqid_ds data structure is set up in the program (line 21) with
a pointer that is initialized to point to it (line 22); this will allow the data
structure members that are affected by message operations to be
observed. They are observed by using the msgctl() (IPC_STAT) system call
to get them for the program to print them out (lines 80-92 and lines 161-
168).

The first thing the program prompts for is whether to send or receive a
message. A corresponding code must be entered for the desired
operation, and it is stored at the address of the choice variable (lines 23-
30). Depending on the code, the program proceeds as in the following
"Msgsnd or Msgrcv" sections.

IP 3-37

MESSAGES

Msgsnd

When the code is to send a message, the msgp pointer is initialized (line
33) to the address of the send data structure, sndbuf. Next, a message
type must be entered for the message; it is stored at the address of the
variable msgtyp (line 42), and then (line 43) it is put into the mtype
member of the data structure pointed to by msgp.

The program now prompts for a message to be entered from the keyboard
and enters a loop of getting and storing into the mtext array of the data
structure (lines 48-51). This will continue until an end of file is recognized,
which for the "getchar()" function, is a control-d (d) immediately
following a carriage return (<CR>). When this happens, the size of the
message is determined by adding one to the i counter (lines 52, 53) as it
stored the message beginning in the zero array element of mtext. Keep in
mind that the message also contains the terminating characters, and the
message will therefore appear to be three characters short of msgsz.

The message is immediately echoed from the mtext array of the sndbuf
data structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the
IPC_NOWAIT flag. The program does this by requesting that a code of a 1
be entered for yes or anything else for no (lines 57-65). It is stored at the
address of the flag variable. If a 1 is entered, IPC_NOWAIT is logically
ORed with msgflg; otherwise, msgflg is set to zero.

The msgsnd() system call is performed (line 69). If it is unsuccessful, a
failure message is displayed along with the error number (lines 70-72). If it
is successful, the returned value is printed and should be zero (lines 73-
76).

IP 3-38

MESSAGES

Every time a message is successfully sent, there are three members of the
associated data structure that are updated. They are described as follows:

• msg_qnum-represents the total amount of messages on the
message queue; it is incremented by one

• msg_lspid-contains the Process Identification (PID) number of
the last process sending a message; it is set accordingly

• msg_stime-contains the time in seconds since January 1, 1970,
Greenwich Mean Time (GMT) of the last message sent; it is set
accordingly.

For this reason, these members are displayed after every successful
message send operation (lines 79-92).

Msgrcv

If the code specifies that a message is to be received, the program
continues execution as in the following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to
receive the message is requested, and it is stored at the address of msqid
(lines 100-103).

The message type is requested, and it is stored at the address of msgtyp
(lines 104-107).

The code for the desired combination of control flags is requested next,
and it is stored at the address of flags (lines 108-117). Depending on the
selected combination, msgflg is set accordingly (lines 118-133).

IP 3-39

MESSAGES

Finally, the number of bytes to be received is requested, and it is stored at
the address of msgsz (lines 134-137).

IP 3-40

MESSAGES

The msgrcv() system call is performed (line 144). If it is unsuccessful, a
message and error number is displayed (lines 145-148). If successful, a
message indicates so, and the number of bytes returned is displayed
followed by the received message (lines 153-159).

When a message is successfully received, there are three members of the
associated data structure that are updated; they are described as follows:

• msg_qnum-contains the number of messages on the message
queue; it is decremented by one

• msg_lrpid-contains the Process Identification (PID) of the last
process receiving a message; it is set accordingly

• msg_rtime-contains the time in seconds since January 1, 1970,
Greenwich Mean Time (GMT) that the last process received a
message; it is set accordingly.

The example program for the msgop() system calls follows. It is suggested
that the program be put into a source file called "msgop.c" and then into
an executable file called "msgop."

Note: When compiling C programs that use floating point
operations, the -f option should be used on the cc command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 3-41

MESSAGES

IP 3-42

/*This is a program to illustrate

2 **the message operations, msgop(),
3 **system call capabilities.

4 *I

5

6

7

8

9

/*Include

#include
#include

#include

#include

necessary header

<stdio.h>

<sys/types.h>

<sys/ipc.h>

<sys/msg.h>

files.•/

10 struct msgbufl {
11 long mtype;

12 char mtext[8192];

13 sndbuf, rcvbuf, *msgp;

14 /*Start of main C language program*/

15 main()

16

17

18
19
20
21

22

23
24

25

26

27

28
29
30

31

32

33

34

35

36

37

extern int errno;
int i, c, flag, flags, choice;

int rtrn, msqid, msgsz, msgflg;

long mtype, msgtyp;
struct msqid ds msqid ds, *buf;

buf = &msqid_ds;

/*Select the desired operation.*/

printf(" Enter the corresponding\n");

printf(" code to send or\n");

printf(" receive

printf(" Send

printf ("Receive

printf(" Entry

a message:\n");

1 \11") ;
2\n");

");

scanf (" %d" , &choice);

if(choice == l) /*Send a message.*/

msgp = &sndbuf; /*Pojnt to user send structure.*/

printf(" \nEnter the msqid of\n");

printf(" the message queue to\n");

printf(" handle the message • ");

scanf("%d", &msqid);

38

39
40

41
42

43

44

45

46

47

48

49
50

51

52

53

54

55
56

57

58

59
60

61
62

63

64

65

66

67

/*Set the message type.•/

printf(''\nEnter a positive integer\n'');

pirintf ("message type (long) for tbe\n");

printf ("message = ") ;
scanf("%d", &msgtyp);

msgp->mtype = msgtyp;

/*Enter the message to send.*/

printf(" \nEnter a message: \n");

/*A control-d (,d) terminates as

EOF.*/

/*Get each character of the message

and put it in the mtext array.*/

for(i = O; ((c = getchar()) != EOF); i++)

sndhuf.mtext[i] = c;

/*Determine the message size.*/

msgsz = i + 1;

/*Echo the message to send.*/

for(i = O; i < msgsz; i++)
putchar(sndbuf.mtext[i]);

/*Set the IPC_NOWAIT flag if

desired."'/
printf("\nEnter a l if you want the\n");

printf ("the IPC _ NOWAIT flag set: ") ;

scanf("%d", &flag);

if(flag == l)

msgflg I= IPC_NOWAIT;

else

msgflg o·

/*Check the msgflg.*/

printf(" \nmsgflg = 0%o\n", msgflg);

MESSAGES

IP 3-43

MESSAGES

IP 3-44

68

69
70

71

72

73

74
75

76

77

78

79

80

81

82

83

84
85

86

87

88

89
90

91
92
93

94

95

96

97

98
99

100

101
102
103

/*Send the message.•/

rtrn = msgsnd(msqid, msgp, msgsz, msgflg);

if(rtrn == -1)

printf(" \nMsgsnd failed. Error = %d\n",

errno);

else {
/*Print the value of test which

should be zero for successful.*/

printf(" \nValue returned = %d\n", rtrn);

/*Print the size of the message

sent.*/
printf(" \nMsgsz = %d\n", msgsz);

/*Check the data structure update.*/

msgctl(msqid, IPC_STAT, huf);

/*Print out the affected members.*/

/*Print the incremented amount of
messages on the queue.*/

printf(" \nThe msg_qnum = %d\n",

buf ~>msg qnum);

/*Print the process id of the last sender.*/

printf(" The msg_lspid = %d\n",

buf->msg_lspid);

/*Print the last send time.*/

printf("The msg stime = %d\n",

buf~>msg stime);

if(choice == 2) /"Receive a message.•/

{
/*Initialize the message pointer

to the receive buffer.*/

msgp = &rcvbuf;

/*Specify the message queue that contains

the desired message.*/
printf(" \nEnter the msqid = ");

scanf("%d", &msqid);

104

105
106
107

108

109
HO
111

112

113

114

115

116

117

118

119

120
121
122
123
124
125
126
127
128

129
130

131
132
133

/*Specify the specific message on the queue

by using its type.*/

printf (" \nEnter the msgtyp = ");
scanf("%d", &msgtyp);

/•Configure the control flags for the

desired actions.*/

printf(" \nEnter the corresponding code\n");
printf(''to select the desired flags: \~');

printf(" No flags 0\n");

printf("MSG_NOERROR l\n");

printf(" IPC_NOWAIT 2\n");

print f ("MSG_ NOERROR and IPC NOWAIT 3\n") ;

printf(" Flags ");

scanf(" %d", &flags);

switch(flags) r
/*Set msgflg by ORing it with the appropriate

flags (constants).*/

case 0:

msgf lg

break;

case 1:

o·

msgflg I= MSG_NOERROR;

break;

case 2:
msgflg I= IPC_NOWAIT;

b:rreak;

case 3:

msgflg I= MSG NOERROR IPC_NOWAIT;

break;

MESSAGES

IP 3-45

MESSAGES

IP 3-46

134
135
136
137

138

139
HO
141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168
169

170

/*Specify the number of bytes to receive.*/

printf(''\n~nter the number of bytes\n'');

printf ("to receive (msgsz) = ") ;
scanf("%d", ~msgsz);

/*Check the values for the arguments.*/

printf("\nmsqid =%d\n", msqid);

printf(" \nmsgtyp = %d\n", msgtyp);

printf(" \nmsgsz = %d\n", msgsz);

printf(" \nmsgflg = 0%o\n" , msgflg):

/*Call msgrcv to receive the message.*/

rtrn = msgrcv(msqid, msgp. msgsz, msgtyp, msgflg);

if(rtrn == -1)

l
I

printf(" \nMsgrcv failed. ");

printf(" Error = %d\n", errno);

else {
printf (" \nMsgctl was successful\n");

printf("for msqid = %d\n",

msqid);

/*Print the number of bytes received,

it is equal to the return

value.*/
printf(" Bytes received = %d\n'', rtrn);

/*Print the received message.*/

for(i = O; i<=rtrn; i+t)

putchar(rcvbuf.mtext[i]);

/*Check the associated data structure.*/

msgctl(msqid, IPC_STAT, buf);

/*Print the decremented amount of messages.*/

printf(" \nThe msg qnum = %d\n". buf->msg_qnum);

/*Print the process id of the last receiver.*/

printf(" The msg_lrpid = %d\n", buf ->msg lrpid);

/*Print the last message receive time*/

printf(" The msg rtime = %d\n", buf->msg rtime);

Chapter 4

SEMAPHORES

PAGE

GENERAL . 4-1

GETTING SEMAPHORES . 4-7

Using Semget . 4-7

Example Program . 4-12

CONTROLLING SEMAPHORES. 4-17

Using Semctl . 4-17

Example Program . 4-19

OPERATIONS ON SEMAPHORES . 4-30

Using Semop . 4-30

Example Program . 4-32

Chapter 4

SEMAPHORES

The semaphore type of Inter-Process Communication (IPC) allows
processes (executing programs) to communicate through the exchange of
integer values. Semaphores are created in sets of one or more and are
used depending on the results of operations that are performed on them.
See the" OPERATIONS ON SEMAPHORES " section of this chapter about
the specific operations allowed.

Refer to the AT&T 382 Computer User Reference Manual for UN IX System
V manual pages supporting the commands described in this Chapter.

GENERAL
Before semaphores can be used (operated on or controlled) a uniquely
identified data structure and semaphore set (array) must be created. The
unique identifier is called the semaphore identifier (semid); it is used to
identify or reference a particular data structure and semaphore set. Figure
4-1 illustrates the relationships among the semid, data structure, and
semaphore set.

IP 4-1

SEMAPHORES

!SEMAPHORE - - - - -1
I SET
I (ARRAY)

TO
SEMAPHORE

VALUE
I SEMVAL)

IN MEMORY

TO SEMAPHORE
VALUE I SEMVAL)

SEMAPHORE
TEXT MAP
ADDRESS

PROCESS IO
OF LAST

OPERATION

NUMBER OF PROCESSES
AWAITING

SEMVAL > CVAL

NUMBER OF PROCESSES
AWAITING

SEMVAL " ~

SEMAPHORE
TEXT MAP
ADDRESS

PROCESS IO
OF LAST

OPERATION

NUMBER OF PROCESSES
AWAITING

SEMVAL > CVAL

NUMBER OF PROCESSES
AWAITING

SEMVAL " ~

L ~MEMOR:"_ - - - - - _J

SEMAPHORE- I
OAT A STRUCTURE I

~----"'--~~~

OPERATION PERMISSIONS 1-----1-.
STRUCTURE

POINTER TO FIRST
SEMAPHORE IN SET

NUMBER OF SEMAPHORES
IN SET

LAST SEMAPHORE
OPERATION TIME

I
I
I
I
I

I ~~~~ CHANGE I
L'.: _______ _J

,---------,
I OPERATION PERMISSIONSI
I STRUCTURE I
I I I OWNER 's USER IO

I
I
I

OWNER 'S GROUP IO

CREA TOR'S USER IO

CREA TOR'S GROUP IO

ACCESS MODES

I SLOT USAGE SEQUENCE

I NUMBER I
KEY L'.: _______ _J

Figure 4-1. Semaphore IPC Organization

IP 4-2

SEMAPHORES

The semaphore set contains a predefined amount of structures in an array,
one structure for each semaphore in the set. The amount of semaphores
(nsems) in a semaphore set is user selectable. The following members are
in each structure within a semaphore set:

.. Semaphore text map address

.. Process Identification (PIO) performing last operation

.. Amount of processes awaiting the semaphore value to become
greater than its current value

.. Amount of processes awaiting the semaphore value to equal zero.

There is one associated data structure for the uniquely identified
semaphore set. This data structure contains information related to the
semaphore set as follows:

.. Operation permissions data (operation permissions structure)

.. Pointer to first semaphore in the set (array)

.. Amount of semaphores in the set

• Last semaphore operation time

.. Last semaphore change time.

Note: All include files discussed in this guide are located in the
/usr /include or /usr /include/sys directories.

The C Programming Language data structure definition for the semaphore
set (array member) is as follows:

IP 4-3

SEMAPHORES

struct sem {
ushort semval; ,. semaphore text map address */
short sempid; ,. pid of last operation */
ushort semncnt; ,. # awaiting semval > cval .,
ushort semzcnt; ,. # awaiting semval = 0 .,

\.
J •

It is located in the #include <sys/sem.h> header file.

Likewise, the structure definition for the associated semaphore data
structure is as follows:

struct semid_ds f

1.
I'

struct ipc_perm sem_perrn; /* operation permission struct */
struct sem *sem_base; 1~ ptr to first semaphore in set */
ushort sem_nsems; /* # of semaphores in set */
time t sem_otime; /"' last sernop time */
time t sem_ctime; /* last change time */

It is also located in the #include <sys/sem.h> header file. Note that the
sem_perm member of this structure uses ipc_perm as a template. Thus,
the breakout is shown in Figure 4-1 for the operation permissions data
structure.

The ipc_perm data structure is the same for all IPC facilities, and it is
located in the #include <sys/ipc.h> header file. It is shown in the
"GENERAL " section of Chapter 3," MESSAGES."

The semget system call is used to do two tasks when only the IPC_CREAT
flag is set in the semflg argument that it receives:

IP 4-4

• To get a new semid and create an associated data structure and
semaphore set for it

• To return an existing semid that already has an associated data
structure and semaphore set.

SEMAPHORES

The task performed is determined by the value of the key argument
passed to the semget system call.

For the first task, if the key is not already in use for an existing semid, a
new semid is returned with an associated data structure and semaphore
set created for it provided no system tunable parameter would be
exceeded.

There is also a provision for specifying a key of value zero (0) that is known
as the private key (IPC_PRIVATE = O); when specified, a new semid is
always returned with an associated data structure and semaphore set
created for it unless a system tunable parameter would be exceeded.
When the ipcs command is performed, the KEY field for the semid is all
zeros.

When performing the first task, the process that calls semget becomes
the owner/ creator, and the associated data structure is initialized
accordingly. Remember, ownership can be changed, but the creating
process always remains the creator; see the "CONTROLLING
SEMAPHORES " section in this chapter. The creator of the semaphore set
also determines the initial operation permissions for the facility.

For the second task, if a semid exists for the key specified, the value of the
existing semid is returned. If it is not desired to have an existing semid
returned, a control command (IPC_EXCL) can be specified (set) in the
semflg argument passed to the system call. The system call will fail if it is
passed a value for the number of semaphores (nsems) that is greater than
the number actually in the set; if you do not know how many semaphores
are in the set, use 0 for nsems. The details of using this system call are
discussed in the " Using Semget " section of this chapter.

Once a uniquely identified semaphore set and data structure are created,
semaphore operations [semop] and semaphore control [semctl] can be
used.

IP 4-5

SEMAPHORES

Semaphore operations consist of incrementing, decrementing, and testing
for zero. A single system call is used to do these operations. It is called
semop. Refer to the" OPERATIONS ON SEMAPHORES " section in this
chapter for details of this system call.

Semaphore control is done by using the semctl system calL These control
operatiohs permit you to control the semaphore facility in the following
ways:

.. To return the value of a semaphore .

., To set the value of a semaphore .

.. To return the Process Identifier (PIO) of the last process
performing an operation on a semaphore set.

• To return the number of processes waiting for a semaphore value
to become greater than its current value.

• To return the number of processes waiting for a semaphore value
to equal zero.

• To get ail semaphore values in a set and place them in an array
in user memory.

• To set all semaphore values in a sei11aphore set from an array of
values in user memory.

• To place all data structure member Values, status, of a
semaphore set into user memory area.

• To change operation permissions for a semaphore set.

• To remove a particular semid from the UNIX System along with
its associated data structure and semaphore set

Refer to the" CONTROLLING SEMAPHORES " section in this chapter for
details of the semctl system call.

IP 4-6

SEMAPHORES

GETTING SEMAPHORES
This section contains a detailed description of using the semget system call
along with an example program illustrating its use.

Using Semget

The synopsis of the semget is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)

key_t key;
int nsems, semflg;

All these include fiies are located in the /usr /include/sys directory of the
UNIX System.

The following line in the synopsis:

int semget (key, nsems, semflg)

informs you that semget is a function with three formal arguments that
returns an integer type value, on successful completion (semid). The next
two lines:

key_t key;
int nsems, semflg;

declare the types of the formal arguments. Key_t is declared by a typedef
in the types.h header file to be a long integer. Therefore key, nsems, and
semflg are integers (int) that occupy 32 bits each in the 382 Computer.

The integer returned from this system call on successful completion is the
semaphore set identifier (semid) that was discussed in the" GENERAL "

IP 4-7

SEMAPHORES

section of this chapter.

As declared, the process calling the semget system call must supply three
actual arguments to be passed to the formal key, nsems, and semflg
arguments.

The value passed to key must be a unique integer type hexadecimal value
or zero (IPC_PRIVATE = 0) if a new semid with an associated data
structure and semaphore set is desired; it must be an existing key to
return its semid. This is true when only the IPC_CREAT flag is set in the
semflg argument.

Unique keys can be determined in several ways. The STDIPC, standard
inter-process communication package, subroutine is one method to
generate unique keys to avoid undesired interference between processes.
Another way could be to use the makekey command, see the manual
pages for the STDIPC and makekey commands. Picking a key at random
is also possible but less desirable. If the key is IPC_PRIVATE, only the
owner /creator process usually uses the facility.

The value passed to the semflg argument must be an integer type octal
value and will specify the following:

• Access permissions

.. Execution modes

., Control fields (commands).

Access permissions determine the read/ alter attributes and execution
modes determine the user/ group/ other attributes of the semflg
argument. They are collectively referred to as" operation permissions."
Figure 4-2 reflects the numeric values for the valid operation permissions
codes.

IP 4-8

SEMAPHORES

OPERATION PERMISSIONS NUMERIC VALUE

Read by User 00400
Alter by User 00200
Read by Group 00040
Alter by Group 00020
Read by Others 00004
Alter by Others 00002

Figure 4-2" Operation Permissions Codes

A specific numeric value is derived by adding the numeric values for the
operation permissions desired. That is, if read by user and read/alter by
others is desired, the code value would be 00406 (00400 plus 00006).
These values are represented in octal. There are constants located in the
sem.h header file that can be used for the user (OWNER). They are as
follows:

SEM R

SEM A

0400

0200

Control commands are predefined constants (represented by all uppercase
letters). Figure 4-3 contains the names of the constants that apply to the
semget system call along with their values. They are also referred to as
flags and are defined in the ipc.h header file.

IP 4-9

SEMAPHORES

CONTROL COMMAND VALUE

IPC_CREAT 0001000
IPC_EXCL 0002000

figure 4·3, Contro~ Commands (Flags)

The value for semflg is, therefore, a combination of operation permissions
and control commands. After determining the value for the operation
permissions as previously described, the desired flag(s) can be specified.
This specification is done by bitwise ORing (I) them with the operation
permissions; the bit positions and values for the control commands to
those of the operation permissions make this possible. It is illustrated as
follows:

!PC CREAT -
~ Read by User

semflg

OC"fAIL VALUE

0 l 0 0 0

0 0 4 0 0

0 l 4 0 0

BINARY VALUE

0 000 001 000 000 000

0 000 000 100 000 000

0 000 001 100 000 000

The semflg value can be easily set by using the names of the flags with the
octal operation permissions value:

semi<! semget (key, nsems, (IPC_CREA"f: 0400));

semid semget (key, nsems, (IPC_CREAT I IPC_EXCL I 0400));

As specified by the semget success or failure of this system call depends
on the actual argument values for key, nsems, semflg or system tunable
parameters. The system call will attempt to return a new semid if a
following condition is true:

.. Key is equal to IPC_PRIVATE (0)

IP 4-10

SEMAPHORES

• Key does not already have a semid associated with it, and
(semflg & IPC_CREAT) is" true" (not zero).

The key argument can be set to IPC_PRIVATE in the following ways:

semid = semget (IPC_PRIVATE, nsems, semflg);

OR

semid semget (0, nsems, semflg);

This alone will cause the system call to be attempted because it satisfies
the first condition specified.

Exceeding the SEMMNI, SEMMNS, or SEMMSL system tunable parameters
will cause a failure regardlessly. The SEMMNI system tunable parameter
determines the maximum amount of unique semaphore sets (semid's) in
the UNIX System. The SEMMNS system tunable parameter determines
the maximum amount of semaphores in all semaphore sets system wide.
The SEMMSL system tunable parameter determines the maximum amount
of semaphores in each semaphore set

The second condition is satisfied if the value for key is not already
associated with a semid, and the bitwise ANDing of semflg and IPC_CREAT
is" true" (not zero). This means that the key is unique (not in use) within
the UNIX System for this facility type and that the IPC_CREAT flag is set
(semflg I IPC_CREAT). The bitwise ANDing (&), which is the logical way of
testing if a flag is set, is illustrated as follows:

semflg = x 1 x x x (x don't care)
& IPC CREAT 0 1 0 0 0

result 0 1 0 0 0 (not zero)

Since the result is not zero, the flag is set or" true." SEMMNI, SEMMNS,
and SEMMSL apply here also, just as for condition one.

IP 4-11

SEMAPHORES

IPC_EXCL is another control command used with IPC_CREAT to exclusively
have the system call fail if, and only if, a semid exists for the specified key
provided. This is necessary to prevent the process from thinking that it
has received a new (unique) semid when it has not. In other words, when
both IPC_CREAT and IPC_EXCL are specified, a new semid is returned if
the system call is successful. Any value for semflg returns a new semid if
the key equals zero (IPC_PRIVATE) and no system tunable parameters are
exceeded.

Refer to the semget manual page for specific associated data structure
initialization for successful completion. The specific failure conditions with
error names are contained in the manual page.

Example Program

P The example program in this section is a menu driven program that
allows all possible combinations of using the semget system call to be
exercised. This program was compiled and run on the 382 Computer; its
execution has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the C Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not program efficiency. Usually, system calls
are embedded within a larger user-written program that makes use of a
particular function that they provide.

This program begins by including the required header files as specified by
the manual page for semget (lines 4-8). Note that the errno.h header file
is included as opposed to declaring errno as an external variable; either
method will work.

IP 4-12

SEMAPHORES

Variable names have been chosen to be as close as possible to those in
the synopsis. Their declarations are self-explanatory. These names make
the program more readable, and this is perfectly legal since they are local
to the program. The variables declared for this program and their purpose
are as follows:

• key-used to pass the value for the desired key

• opperm-used to store the desired operation permissions

• flags-used to store the desired control commands (flags)

• opperm_flags-used to store the combination from the logical
ORing of the opperm and flags variables; it is then used in the
system call to pass the semflg argument

• semid-used for returning the semaphore set identification
number for a successful system call or the error code (-1) for an
unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal
operation permissions code, and the control command combinations
(flags) that are selected from a menu (lines 15-32).

Note: All possible combinations are allowed even though they
might not be viable. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the opperm_flags
variable (lines 36-52).

Then, the number of semaphores for the set is requested (lines 53-57),
and its value is stored at the address of nsems.

IP 4-13

SEMAPHORES

The system call is made next, and the result is stored at the address of the
semid variable (lines 60, 61).

Since the semid variable now contains a valid semaphore set identifier or
the error code (-1), it is tested to see if an error occurred (line 63). If
semid equals -1, a message shows that an error resulted and the external
errno variable is displayed (lines 65, 66). Remember that the external
errno variable is only set when a system call fails; it should only be tested
immediately following system calls.

If no error occurred, the returned semaphore set identifier is displayed
(line 70).

The example program for the semget system call follows. It is suggested
that the source program file be named "semget.c " and that the
executable file be named " semget."

Note: When compiling C programs that use floating point
operations, the -f option should be used on the cc command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 4-14

/*This is a program to illustrate

2 **the semaphore get, semget(),
3 **system call capabilities.*/

4

5

6

7

8

#include

#include
#include
#include
#include

<stdio.h>
<sys/types.h>

<sys/ipc.h>
<sys/sem.h>
<errno.h>

9 /*Start of main C language program*/

10 main()

Jl {

12

13

14

key_t key; /*declare as long integer*/

15

16
17

18
19
20

21
22

23

24

25
26

27
28

29
30

31

32

33

34

35

int opperm, flags, nsems;
int semid, opperm_fJags;

/*Enter the desired key*/
printf(''\nEnter the desired key in hex

scanf (" %"" , &key);

/*Enter the desired octal operation

permissions.*/
printf("\nEnter the operation\n");
printf(" permissions in octal = ");
scanf("%o", &opperm);

/"Set the desired flags.•/

");

printf(''\nEnter corresponding number to\~');
printf(''set the desired flags:\n'');

printf("No flags
printf("IPC_CREAT

printf(" IPC_EXCL

printf("IPC_CREAT and IPC EXCL

printf(" Flags

/*Get the flags to be set.•/

scanf (" %d" , &flags);

/*Error checking (debugging)*/

printf ("\nkey •0J<%X, opperm 0%o,

flags = 0%o\n" ,
key, opperm~ flags);

0\n");

l\n");
2\n");

3\n");
");

SEMAPHORES

IP 4-15

SEMAPHORES

IP 4-16

36 /*Incorporate the control fields (flags) with
37 the operation permissions.*/

38 switch (flags)

39 {
40 case 0: /*No flags are to he set.*/

41 opperm_flags = (opperm: 0);

42 break;
case 1: /*Set the IPC_CREAT flag.•/

44 opperm_flags = (opperm: IPC_CREAT);

45 break;

46 case 2: /•Set the IPC_EXCL flag.*/

47 opperm_flags = (opperm: IPC_EXCL);
48 break;

49 case 3: /*Set the IPC_CREAT and IPC EXCL
50 flags.•/

51 opperm_flags = (opperm : IPC CREAT
IPC_EXCL);

52

53

54
55

56
57
58

59

60

61

62

63
64

65
66
67

68

/*Get the number of semaphores for this set.*/

printf(" \nEnter the number of\n");

printf(" desired semaphores for\n");

printf(" this set (25 max) = 11
);

scanf("%d11
, &nsems);

/•Check tbe entry.•/

printf(" \nNsems = %d\n", nsems);
/*Call the semget system call.*/
semid = semget(key, nsems, opperm flags);
/*Perform the following if the call is

unsuccessful.*/
if (semid == -1)

{

l
j

printf("The semget system call failed!\n");
printf(" The error number = %d\n", errno);

/*Return the semid on successful completion.*/
69 else

70 printf(" \nThe semid = %d\n", semid);

71 exit(O);
72

SEMAPHORES

CONTROLLING SEMAPHORES
This section contains a detailed description of using the semctl system call
along with an example program that allows all its capabilities to be
exercised.

Using Semctl

The synopsis of the semctl is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int sernctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

arg;

int val;
struct sernid ds *buf;
ushort array[];

The semctl system call requires four arguments to be passed to it, and it
returns an integer value.

The semid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the semget system call.

The semnum argument is used to select a semaphore by its number. This
relates to array (atomically performed) operations on the set.

Note: When a set of semaphores is created, the first semaphore is
number 0, and the last semaphore has the number of one less than
the total in the set.

The cmd argument can be replaced by a following control command
(flags):

IP 4-17

SEMAPHORES

.. GETVAL-return the value of a single semaphore within a
semaphore set.

.. SETVAL-set the value of a single semaphore within a
semaphore set .

.. GETPID-return the Process Identifier (PID) of the process that
performed the last operation on the semaphore within a
semaphore set .

.. GETNCNT -return the number of processes waiting for the value
of a particular semaphore to become greater than its current
value.

" GETZCf\IT -return the number of processes waiting for the value
of a particular semaphore to be equal to zero .

.. GETALL-return the values for all semaphores in a semaphore
set .

.. SETALL-set all semaphore values in a semaphore set .

.. IPC __ STAT -return the status information contained in the
associated data structure for the specified semid, and place it in
the data structure pointed to by the '~buf pointer in the user
memory area; arg.buf is the union member that contains the
value of buf .

.., IPC_SET-for the specified semaphore set (semid), set the
effective user/ group identification and operation permissions .

.. IPC_RMID-remove the specified (semid) semaphore set along
with its associated data structure.

A process must have an effective user identification of OWNER/CREATOR
or super-user to do an IPC_SET or IPC_RMID control command.
Read/alter permission is required as applicable for the other control
commands.

IP 4-18

SEMAPHORES

The arg argument is used to pass the system call the appropriate union
member for the control command to be performed:

., arg.val

.. arg.buf

• arg.array

The details of this system call are discussed in the example program for it
If you have problems understanding the logic manipulations in this
program, read the" Using Semget " section of this chapter; it goes into
more detail than what would be practical to do for every system call.

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the semctl system call to be exercised.
This program was compiled and run on the 382 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the C Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not program efficiency. Usually, system calls
are embedded within a larger user-written program that makes use of a
particular function that they provide.

This program begins by including the required header files as specified by
the manual page for semctl (lines 5-9). Note that in this program errno is
declared as an external variable, and therefore the errno.h header file does
not have to be included.

IP 4-19

SEMAPHORES

Variable, structure, and union names have been chosen to be as close as
possible to those in the synopsis. Their declarations are self-explanatory.
These names make the program more readable, and this is perfectly legal
since they are local to the program. Those declared for this program and
their purpose are as follows:

IP 4-20

• semid_ds-used to receive the specified semaphore set
identifier's data structure when an IPC_STAT control command is
performed

" c-used to receive the inputed values from the" scanf " function
(line 117) when performing a SETALL control command

• i-used as a counter to increment through the union arg.array
when displaying the semaphore values for a GETALL (lines 97-99)
control command, and when initializing the arg.array when
performing a SETALL (lines 115-119) control command

• length-used as a variable to test for the number of semaphores
in a set against the i counter variable (lines 97, 115)

• uid-used to store the !PC_SET value for the effective user
identification

• gid-used to store the IPC_SET value for the effective group
identification

.. mode-used to store the IPC_SET value for the operation
permissions

• rtrn-used to store the return integer from the system call that
depends on the control command or a -1 when unsuccessful

.. semid-used to store and pass the semaphore set identifier to
the system call

• semnum-used to store and pass the semaphore number to the
system call

SEMAPHORES

.. cmd-used to store the code for the desired control command
so that further processing can be performed on it

.. choice-used to determine what member (uid, gid, mode) for
the IPC_SET control command that is to be changed

• arg.val-used to pass the system call a value to set (SETVAL) or
to store (GETVAL) a value returned from the system call for a
single semaphore (union member)

.. arg.buf-a pointer passed to the system call that locates the
data structure in the user memory area where the IPC_STAT
control command is to place its return values, or where the
IPC_SET command gets the values to set (union member)

• arg.array-used to store the set of semaphore values when
getting (GETALL) or initializing (SETALL) (union member).

Note that the semid_ds data structure in this program (line 14) uses the
data structure located in the sem.h header file of the same name as a
template for its declaration. This is a perfect example of the advantage of
local variables.

The arg union (lines 18-22) serves three purposes in one. The compiler
allocates enough storage to hold its largest member. The program can
then use the union as any member by referencing them as if they were
regular structure members. Note that the array is declared to have 25
elements (0 through 24). This number corresponds to the maximum
amount of semaphores allowed per set (SEMMSL), a system tunable
parameter.

The next important program aspect to observe is that although the '~buf
pointer member (arg.buf) of the union is declared to be a pointer to a data
structure of the semid_ds type, it must also be initialized to contain the
address of the user memory area data structure (line 24). Because of the
way this program is written, the pointer does not need to be reinitialized
later. If it was used to increment through the array, it would need to be
reinitialized just before calling the system call.

IP 4-21

SEMAPHORES

Now that all the required declarations have been presented for this
program, this is how it works.

First, the program prompts for a valid semaphore set identifier that is
stored at the address of the semid variable (lines 25-27). This is required
for all semctl system calls.

Then, the code for the desired control command must be entered (lines
28-42), and the code is stored at the address of the cmd variable. The
code is tested to determine the control command for further processing.

If the GETVAL control command is selected (code 1), a message prompting
for a semaphore number is displayed (lines 49, 50). When it is entered, it
is stored at the address of the semnum variable (line 51). Then, the
system call is performed, and the semaphore value is displayed (lines 52-
55). If the system call is successful, a message shows this along with the
semaphore set identifier used (lines 195, 196); if the system call is
unsuccessful, an error message is displayed along with the value of the
external ~rrno variable (lines 191-193).

If the SETVAL control command is selected (code 2), a message prompting
for a semaphore number is displayed (lines 56, 57). When it is entered, it
is stored at the address of the semnum variable (line 58). Next, a message
prompts for the value to what the semaphore is to be set, and it is stored
as the arg.val member of the union (lines 59, 60). Then, the system call is
performed (lines 61, 63). Depending on success or failure, the program
returns the same messages as for GETVAL above.

If the GETPID control command is selected (code 3), the system call is
made immediately since all required arguments are known (lines 64-67),
and the PIO of the process performing the last operation is displayed.
Depending on success or failure, the program returns the same messages
as for GETVAL above.

If the GETNCNT control command is s~lected (code 4), a message
prompting for a semaphore number is displayed (lines 68-72). When

IP 4-22

SEMAPHORES

entered, it is stored at the address of the semnum variable (line 73). Then,
the system call is performed, and the number of processes waiting for the
semaphore to become greater than its current value is displayed (lines 7 4-
77). Depending on success or failure, the program returns the same
messages as for GETVAL above.

If the GETZCNT control command is selected (code 5), a message
prompting for a semaphore number is displayed (lines 78-81). When it is
entered, it is stored at the address of the semnum variable (line 82). Then
the system call is performed, and the number of processes waiting for the
semaphore value to become equal to zero is displayed (lines 83, 86).
Depending on success or failure, the program returns the same messages
as for GETVAL above.

If the GETALL control command is selected (code 6), the program first
performs an IPC_STAT control command to determine the number of
semaphores in the set (lines 88-93). The length variable is set to the
number of semaphores in the set (line 91). Next, the system call is made
and, on success, the arg.array union member contains the values of the
semaphore set (line 96). Now, a loop is entered that displays each
element of the arg.array from zero to one less than the value of length
(lines 97-103). The semaphores in the set are displayed on a single line,
separated by a space. Depending on success or failure, the program
returns the same messages as for GETVAL above.

If the SETALL control command is selected (code 7), the program first
performs an IPC_STAT control command to determine the number of
semaphores in the set (lines 106-108). The length variable is set to the
number of semaphores in the set (line 109). Next. the program prompts
for the values to be set and enters a loop that takes values from the
keyboard and initializes the arg.array union member to contain the desired
values of the semaphore set (lines 113-119). The loop puts the first entry
into the array position for semaphore number zero and ends when the
semaphore number that is filled in the array equals one less than the value
of length. The system call is then made (lines 120-122). Depending on
success or failure, the program returns the same messages as for GETVAL
above.

IP 4-23

SEMAPHORES

If the IPC_STAT control command is selected (code 8), the system call is
performed (line 127), and the status information returned is printed out
(lines 128-139); only the members that can be set are printed out in this
program. Note that if the system call is unsuccessful, the status
information of the last successful one is printed out regardlessly; also an
error message is displayed, and the errno variable is printed out (lines 191,
192).

If the IPC_SET control command is selected (code 8), the program gets
the current status information for the semaphore set identifier specified
(lines 143-146). This is necessary because this example program provides
for changing only one member at a time, and the semctl system call
changes all of them. Also, if an invalid value happened to be stored in the
user memory area for one of these members, it would cause repetitive
failures for this control command until corrected. The next thing the
program does is to prompt for a code corresponding to the member to be
changed (lines 147-153). This code is stored at the address of the choice
variable (line 154). Now, depending on the member picked, the program
prompts for the new value (lines 155-178). The value is placed at the
address of the appropriate member in the user memory area data
structure, and the system call is made (line 181). Depending on success
or failure, the program returns the same messages as for GETVAL above.

If the IPC_RMID control command (code 10) is selected, the system call is
performed (lines 183-185). The semid along with its associated data
structure and semaphore set is removed from the UNIX System.
Depending on success or failure, the program returns the same messages
as for the other control commands.

The example program for the semctl system call follows. It is suggested
that the source program file be named "semctLc " and that the
executable file be named " semctL"

Note: When compiling C programs that use floating point
operations, the -f option should be used on the cc command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 4-24

/*This is a program to illustrate
2 **the semaphore control, semctl(),

3 ~*system call capabilities.

4 •I

5 /*Include necessary header files.*/

6 #include <stdio.h>

7 #include <sys/types.h>

8 #include <sys/ipc.h>

9 #include <sys/sem.h>

10 /*Start of main C language program•/

11 main()

12 {
13

14

15
16
17
18

19
20
21
22

23
24

25

26

27

28

29
30

31

32
33
34
35

36

37

38
39
40

41
42

extern int errno;

struct semid ds semid ds;

int c, i, length;
int uid, gid, mode;

int retrn, semid, semnum, crnd, choice;
union semun {

int val;
struct semid ds *buf;

ushort array[25];

arg;

/*Initialize the data structure pointer.*/

arg.buf = &semid_ds;

/*Enter the semaphore ID."/

printf(" Enter the semid = ");

scanf(" %d", &semid);

/*Choose the desired command.*/

printf(''\nEnter the

printf(''the desired

printf(" GETVAL

printf("SETVAL

printf(" GETPID

printf(" GETNCNT

printf(" GETZCNT

printf(" GETALL

printf(" SETA.LL

printf(" IPC_STAT

printf(" IPC_SET

printf(" IPC_RMID

printf(" Ent.ry
scanf("%d", &cmd);

number for\n") ;

cmd:\n");

l\n");

2\n");

3\n");

4\n");

5\n");

6\n");

7\n");

8\n");

9\n");

10\n");

");

SEMAPHORES

IP 4-25

SEMAPHORES

IP 4-26

43
44
45

46

47
48

49

50
51

52
53

54
55
56

57

58

59
60

61
62

/*Check entries.*/

printf (''\nsemid =%d, crud
semid, cmd);

%d\n\n",

/*Set the command and do the call,•/

switch (cruel)
r
I

case l; /*Get a specified value.*/

printf(" \nEnter the semnum = ");
scanf(''%d", &semnum);

/*Do the system call.*/

retrn = semctl(semid, semnum, GETVAL, O);

printf(" \nThe semval = %d\n", retrn);

break;

case 2: /*Set a specified value.~/

printf(" \nEnter the semrnum = ");

scanf (" %d" , &semnum);

printf(" \nEnter the value = ");

scanf("%d", &arg.val);

/"Do the system call, 0
/

retrn = semctl(semid, semnum, SETVAL,
arg,val);

63 break;

64 case 3: /*Get the process JD. 0 /

65 retrrn = semctl(semid, 0, GE'fPXD. O);
66 printf(" \n'fhe sempid = %d\n", rret1rn);
67 break;

68 case 4: /*Get the number of processes

69 waiting for the semaphore to
70 become greater than its current
71 value.~/

72 printf(" \nEnter the semnurn = ");
73 scanf("%d" ~ &semnum);
74 /*Do the system call.•/

75 retrn = semctl(semid, semnum, GETf\1CN'I, O);

76 printf(" \n'fhe scmncnt = %d", iretirrn);

77 break;

78 case 5: /*Get the number of processes

79 waiting for the semaphore

80 value to become zero.*/
81 printf(" \nEnter the semnum = ");

82

83
84
85

86

scanf (" %d" , &semnum);

/*Do the system call.*/

retrn = semctl(semid, semnum, GETZCl\lT? 0):
printf(" \nThe semzcnt = %d" ~ retro);

break;

87 case 6: /*Get all the semaphores.*/

88
89
90

91

92
93

94

95

96
97

98

/*Get the number of semaphores in
the semaphore set.*/

retrn = semctl(semid, O, IPC_STAT, arg.buf);
length = arg.buf->sem_nsems;
if(retrn == -1)

goto ERROR;
/*Get and print all semaphores in the

specified set.*/

retrn = semctl(semid, 0, GETALL, arg.array);

for (i = O; i < length; i++)

99 printf("%d", arg.array[i]);

100 /*Separate each

101 semaphore.• I
102 printf("%c", ' ');

103 }
104 break;
105 case 7: /*Set all semaphores in the set.*/

106

107
108
109

llO

111

112

113

114

115

116

117

118

119

120
121

122

l
J

/*Get the number of semaphores in
the set.*/

retrn = semctl(semid, 0, IPC_STAT, arg.buf);
length = arg.buf->sem_nsems;
printf(" Length = %d\n", length);

if(retrn == -1)

goto ERROR;
/*Set the semaphore set values.*/

printf(" \nEnter each value :\n");

for(i = O; i < length ; i++)

scanf("%d", &c);

arg.array[i] = c;

/*Do the system call.*/

retrn = semctl(semid, 0, SETALL, arg.array);
break;

SEMAPHORES

IP 4-27

SEMAPHORES

IP 4-28

123

124

125

126

127
128
129

130

131
132

133

134
135
136

137
138
139

140

141

142

143

144
145

146

147

148
149

150

151
152

153
154

155
156
157

158
159

160
161
162

case 8: /*Get the status for the semaphore
set.•/

/*Get the current status values and

print them out.*/
retrn = semctl(semid, 0, IPC_STAT, arg.buf);

printf (" \nThe USER Ill = %d\n" ,

arg.buf->sem_perm.uid);
printf ("The GROUP Ill = %d\n",

arg.buf->sem_perm.gid);
printf (''The operation permissions

arg.buf->sem_perm.mode);

0%o\n" ,

printf ("The number of semaphores in set = %d\n" ,

arg.buf->sem_nsems);
printf ("The last semop time = %d\n",

arg.buf->sem_otime);
printf ("The last change time = %d\n",

arg. buf->sem _ ctime);

break;
case 9: /*Select and change the desired

member of the data structure.*/

/*Get the current status values.*/
retrn = semctl(semid, 0, IPC_STAT, arg.buf);

if(retrn == -1)
goto ERROR;

/*Select the member to change.*/
printf("\nEnter the number for the\n");

printf(1'member to be changed:\~');
printf(" sem_perm.uid l\n");

printf(" sem_perm. gid 2\n");

printf(11 sem_perm.mode 3\n");
printf(" Entry ");

scanf("%d", &choice);

switch(choice){
case 1: /*Change the user ID,*/

printf("\nEnter USER ID=");

scanf (" %d", &uid);
arg.buf->sem_perm.uid = uid;
printf(" \nUSER ID = %d\n",

arg.buf->sem_perm.uid);

break;

SEMAPHORES

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181
182
183

184

185

186

187
188

189

case 2: /*Change the group ID.*/

printf(" \nEnter GROUP ID = ");
scanf (" %d" , &gid);

arg.buf->sem_perm.gid = gid;

printf("\nGROUP ID= %d\n",

arg.buf->sem_perm.gid);
break;

case 3: /*Change the mode portion of
the operation

}

permissions.*/
printf(" \nEnter MODE = ");

scanf("%o", &mode);

arg.buf->sem_perm.mode = mode;

printf (" \nMODE = 0%o\n" ,

arg.buf->sem_perm.mode);
break;

/*Do the change.•/

retrn = semctl(semid, 0, IPC_SET, arg.buf);
break;

case 10: /*Remove the semid along wi~h its
data structure.*/

retrn semctl(semid, 0, IPC_RMID, O);

}
/*Perform the following if the call is unsuccessful.*/
if(retrn == -1)

190 ERROR:

191 printf (" \n\nThe semctl system call

failed! \n") ;

192

193

194

195
196

197

198

printf (''The error number

exit(O);
%d\n" , errno) ;

printf (" \n\nThe semctl system call was successful\n");

printf C' for semid = %d\n", semid);
exit (0);

IP 4-29

SEMAPHORES

OPERATIONS ON SEMAPHORES
This section contains a detailed description of using the semop system call
along with an example program that allows all its capabilities to be
exercised.

Using Semop

The synopsis of the semop is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf **sops;

unsigned nsops;

The semop system call requires three arguments to be passed to it, and it
returns an integer value.

On successful completion, a zero value is returned and when unsuccessful
it returns a -1.

The semid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the semget system call.

The sops argument is a pointer to an array of structures in the user
memory area that contains the following for each semaphore to be
changed:

• The semaphore number

• The operation to be performed

• The control command (flags).

IP 4-30

SEMAPHORES

The ~,*sops declaration means that a pointer can be initialized to the
address of the array, or the array name can be used since it is the address
of the first element of the array. Sembuf is the tag name of the data
structure used as the template for the structure members in the array; it
is located in the #include <sys/sem.h> header file.

The nsops argument specifies the length of the array (the number of
structures in the array). The maximum size of this array is determined by
the SEMOPM system tunable parameter. Therefore, a maximum of
SEMOPM operations can be performed for each semop system call.

The semaphore number determines the particular semaphore within the
set on what operation is to be performed.

The operation to be performed is determined by the following:

• A positive integer value means to increment the semaphore value
by its value .

• A negative integer value means to decrement the semaphore
value by its value.

• A value of zero means to test if the semaphore is equal to zero.

The following operation commands (flags) can be used:

• IPC_NOWAIT-this operation command can be set for any
operations in the array. The system call will return
unsuccessfully without changing any semaphore values at all if
any operation for what IPC_NOWAIT is set cannot be performed
successfully. The system call will be unsuccessful when trying to
decrement a semaphore more than its current value, or when
testing for a semaphore to be equal to zero when it is not See
"blocking/nonblocking semaphore operations " in Chapter 2.

IP 4-31

SEMAPHORES

• SEM_UNDO-this operation command allows any operations in
the array to be undone when any operation in the array is
unsuccessful and does not have the IPC_NOWAIT flag set. That
is, the blocked operation waits until it can do its operation; and
when it and all succeeding operations are successful, all
operations with the SEM_UNDO flag set are undone. Remember,
no operations are performed on any semaphores in a set until all
operations are successful. Undoing is done by using an array of
adjust values for the operations that are to be undone when the
blocked operation and all further operations are successful.

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the semop system call to be exercised.
This program was compiled and run on the 382 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the C Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not for program efficiency. Usually, system
calls are embedded within a larger user-written program that makes use of
a particular function that the system calls provide.

This program begins by including the required header files as specified by
the manual page for msgop (lines 5-9). Note that in this program errno is
declared as an external variable, and therefore, the errno.h header file
does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self-explanatory. These
names make the program more readable, and this is perfectly legal since
the declarations are local to the program. The variables declared for this

IP 4-32

SEMAPHORES

program and their purpose are as follows:

• sembuf[lO]-used as an array buffer (line 14) to contain a
maximum of ten sembuf type structures; ten equals SEMOPM,
the maximum amount of operations on a semaphore set for each
semop system call

• *sops-used as a pointer (line 14) to sembuf[lO] for the system
call and for accessing the structure members within the array

• rtrn-used to store the return values from the system call

• flags-used to store the code of the IPC_NOWAIT or SEM_UNDO
flags for the semop system call (line 60)

• i-used as a counter (line 32) for initializing the structure
members in the array, and used to print out each structure in the
array (line 79)

• nsops-used to specify the number of semaphore operations for
the system call-must be less than or equal to SEMOPM

• semid-used to store the desired semaphore set identifier for
the system call.

First, the program prompts for a semaphore set identifier that the system
call is to do operations on (lines 19-22). Semid is stored at the address of
the semid variable (line 23).

A message is displayed requesting the number of operations to be
performed on this set (lines 25-27). The number of operations is stored at
the address of the nsops variable (line 28).

Next, a loop is entered to initialize the array of structures (lines 30-77).
The semaphore number, operation, and operation command (flags) are
entered for each structure in the array. The number of structures equals
the number of semaphore operations (nsops) to be performed for the

IP 4-33

SEMAPHORES

system call, so nsops is tested against the i counter for loop control. Note
that sops is used as a pointer to each element (structure) in the array, and
sops is incremented just like i. Sops is then used to point to each member
in the structure for setting them.

After the array is initialized, all its elements are printed out for feedback
(lines 78-85).

The sops pointer is set to the address of the array (lines 86, 87). Sembuf
could be used directly, if desired, instead of sops in the system call.

The system call is made (line 89), and depending on success or failure, a
corresponding message is displayed. The results of the operation(s) can
be viewed by using the semctl GETALL control command.

The example program for the semop system call follows. It is suggested
that the source program file be named "semop.c " and that the
executable file be named" semop."

Note: When compiling C programs that use floating point
operations, the -f option should be used on the cc command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 4-34

/*This is a program to illustrate

2 **the semaphore operations, semop(),
3 **system cal] capabilities.

4 • /

5 /*Include necessary header files.*/

6 #include <stdio.h>

7 #include <sys/types.h>

#include
#include

<sys/ipc.h>

<sys/sem.h>
10 /*Start of main C language program*/

H main()

u:
;3

H
Hi

Hl

17

18

rn
2~

2Jl

25
26

27
28

3~

:n
32

33

extern int errno;
struct sembuf sembuf[lO], *sops;
cha•· string [];

int retrn, flags, sem_num, i~ semid;

unsigned nsops;

sops = sernbuf; /*Pointer to array sembuf.*/

/*Enter the semaphore ID.*/

printf(" \nEnter the semid of\n");

printf(" tlb.e semaphore set to\n'');

printf(" be operated on = ");

scanf(" %d" , &semid);

printf(" \nsemid = %d", semid);

/*Enter the number of operations.*/

printf(" \nEnter the number of semaphore\n");

printf(" operations for this set = ");
scanf (" %d" , &nsops);

print-f("\nn.osops = %d", nsops);

/*Initialize the array for the

number of operations to be performed.*/

for(i = O; i < nsops; i++, sops++)

/*This determines the semaphore in
the semaphore set.*/

printf(" \nEnteir the semaphore\n");

printf(" number (sem_num) ~ ");

scanf('%d", &sem_num);

sops->sem_num = sem_num;

printf(" \n.The sem num = %d" sops->sem_num);

SEMAPHORES

IP 4-35

SEMAPHORES

IP 4-36

41

42
43

44
45

46

47
48

49

50

51

52
53

54
55

56

57

58

59

60

61
62
63

64
65
66
67

68

69

70

71

72

73

74
75

76

/*Enter a (-)number to decrement,

an unsigned number (no+) to increment,
or zero to test for zero. These values

are entered into a string and converted
to integer values.*/

printf("\nEnter the operation for\n");

printf(" the semaphore (sem_op) = ");
scanf (" %s" , string);

sops->sem_op = atoi(string);

printf(" \nsem_op = %d\n", sops->sem_op);

/*Specify the desired flags.•/

printf('' \nEnter the corresponding\n");

printf(" number for the desired\n");

print f (" flags: \n") ;

printf("No flags

printf(" IPC_NOWAIT

printf (" SEM _UNDO

printf (" IPC _NOWAIT and SEM UNDO

printf(" Flags

scanf(" %d" , &flags);

switch(flags)
I
l

case 0:

sops->sem _ flg 0;

break;

case 1:

sops->sem - flg IPC_NOWAIT;

break;

case 2:

sops->sem_ flg SEM_UNIJO;

break;
case 3:

0\n");

l\n");
2\n");

3\n");
");

sops->sem - flg IPC NOWAIT SEM_UNDO;

break;

printf(" \nFlags 0%o\n" , sops->sem _flg);

78 /*Print out each structure in the array.*/

79 for(i = O; i < nsops; i++)
80 {
81

82

83

84

85

86

87

88

89
90

91

92
93

94

95
96

97
98

99

printf(" \nsem_num = %d\n",

sembuf[i].sem_num);

printf(" sem_op = %d\n", sembuf[i] .sem_op);

printf(" sem_flg = %0\n", sembuf[i] .sem_flg);

printf("%c", ' ');

sops sembuf; /*Reset the pointer to

sembuf[O]. •/

/*Do the semop system call.*/

retrn = semop(semid, sops, nsops);
if(retrn == -1)

' I

printf(" \nSemop failed. ");

printf("Error %d\n", errno);

else {

printf (" \nSemop was successful\n");

printf(11 for semid = %d\n", semid);

printf(" Value returned = %d\rn.", retrn);

SEMAPHORES

IP 4-37

Chapter 5

SHARED MEMORY

PAGE

GENERAL • . 5-1

GETTING SHARED MEMORY SEGMENTS . 5-11

Using Shmget . 5-11

Example Program • . 5-16

CONTROLLING SHARED MEMORY . 5-21

Using Shmctl • • . 5-21

Example Program • . 5-22

OPERATIONS FOR SHARED MEMORY . 5-30

Using Sh mop . • . 5-30

Example Program . 5-32

Chapter 5

SHARED MEMORY

The shared memory type of Inter-Process Communication (IPC) allows
processes (executing programs) to communicate by explicitly setting up
access to a common virtual address space. The sharing of memory
between processes occurs on a virtual segment basis. There is one and
only one instance of an individual shared memory segment existing in the
UNIX System at any point in time.

Refer to the AT&T 382 Computer User Reference Manual for UN IX System
V manual pages supporting the commands described in this Chapter.

GENERAL
Before sharing of memory can be realized, a uniquely identified shared
memory segment and data structure must be created. The unique
identifier created is called the shared memory identifier (shmid); it is used
to identify or reference the associated data structure. Figure 5-1
illustrates the relationships among the shmid, segment descriptor, and
data structure.

IP 5-1

SHARED MEMORY

The data structure includes the following for each shared memory
segment:

" Operation permissions

"' Segment size

" Segment descriptor

" Process identification performing last operation

"' Process identification of creator

(I> Current amount of processes attached

" In memory the amount of processes attached

"' Last attach time

"' Last detach time

"' Last change time.

IP 5-2

I
I
I
I
I
L

r
I
I
I
I
I
I
I

-------,
~ I

I WORD 1 I I
-I WORD 2 I I

SEGMENT DESCRIPTOR I I SEE FIGURE 5-2. I
._ ______ _J

,17

PHYSICAL
I INCORE I

MEMORY
OR

DISK BLOCK
ON SWAP
DEVICE

- ~E;;ROCES;-;.-ABLE - I
LI-BLOCK I

STACK I
STACK I
STACK I

SHARED MEMORY -r
SHARED MEMORY

SHARED MEMORY I
SHARED MEMORY I

L _______ _J

SHARED MEMORY

UNIQUE
SHARED
MEMORY

ID ,--- - SHARED MEMDRYl

I 1
DATA STRUCTURE I

I OPERA TIDNS PERMISSIONS -+-STRUCTURE

I SEGMENT SIZE I
I - SEGMENT DESCRIPTOR I
I PROCESS IDENTIFICATION I

PERFORMING LAST OPERATION

I PROCESS IDENTIFICATION I
I OF CREATOR I
I CURRENT NUMBER OF I PROCESSES A TT ACHED

I IN MEMORY NUMBER OF I
I PROCESSES ATTACHED I
I LAST ATTACH TIME I 1shmat 1

I LAST DETACH TIME I
I 1shmdt1 I

LAST CHANGE TIME

I 1shmctl 1 I L _______ _J

,-------,
I

OWNER'S USER IO

~ OWNER'S GROUP IO

I CRE~TOR'S USER IO I
I CREATOR'S GROUP IO I
I ACCESS MODES I
I

SLOT USAGE SEQUENCE
NUMBER I

I KEY I
I OPERATION PERMISSIONS I
L STRUCTURE _J

Figure 5-L Shared Memory IPC Organization

IP 5-3

SHARED MEMORY

The C Programming Language data structure definition for the shared
memory segment data structure is as follows:

j•

•/

There is a shared mem ID data structure for

each segment in the system.

struct shmid_ds {

1.
I'

struct ipc_perrn shm_perm;
int shm _ segsz;

sde t shm_seg;

ushort shm_lpid;
ushort shm_cpid;

ushort shm_nattch;
ushort shm_cnattch;
time t shm_atime;

time t shm_dtime;
time t shm_ctime;

j•

/*
/*
/*
1·
/*
/*
j•

j•

j•

op er permission struct

segment size */
segment descriptor */
pid of last shmop •/
pid of creator */
current # attached •/
in memory # attached •/
last shmat time •/
last shmdt time •/
last change time •/

•/

Note that the shm_perm member of this structure uses ipc_perm as a
template. Thus, the breakout is shown in Figure 5-1 for the operation
permissions data structure.

The ipc_perm data structure is the same for all IPC facilities, and it is
located in the #include <sys/ipc.h> header file. It is shown in the
"GENERAL" section of Chapter 3, "MESSAGES."

The shm_seg member of this data structure is defined by a typedef in the
/usr /include/sys/types.h file. The definition is as follows:

IP 5-4

SHARED MEMORY

typedef struct _SOE [

/'
/* segment descriptor */

'/
/* +--------+-------------+--+--------+ +--------------------------------+ */
/* : access : maxoff : : flags : : address •/
/* +--------+-------------+--+--------+ +--------------------------------+ */
/* 8 14 8 32 */

/'
/'
/'
/'
/'

unsigned

unsigned

int

int

(VO);

8;

maxoff 14;

•/
+--------------------------+-+-+-+ */

:N lW :s I "'/

+--------------------------+-+-+-+ */
29 I 1 1 */

'/
/*Access rights */
/*Segment's max offset */

unsigned int

unsigned int flags

2;

8;

I* Reserved *I
/ * Descriptor flags * /

union :

wd2;

sde t·

unsigned jnt address;

struct :

unsigned int

unsigned int lock

unsigned int shmswap

unsigned int al loc

VO;

/* o]d name: SOE

29;

1;

1;

l;

'/

/* "N" bit *I
/* "w" bit *I

I* "s " bit *I

Figure 5-2 represents the shared memory segment descriptor pictorially.

IP 5-5

SHARED MEMORY

WORD 1

31 24 23 10 9 8 7 6 5 4 3 2 0

Ace Max Off Res I v R T $ c M p

WORD 2

31 3 2 0

Address (high order 29 bits) Soft

SWAP ALLOC

Figure 5-2. Shared Memory Segment Descriptor

IP 5-6

SHARED MEMORY

Figure 5-3 is a table that shows the shared memory state information.

SHARED MEMORY STATES

LOCK BIT SWAP BIT ALLOCATED BIT IMPLIED STATE

0 0 0 Unallocated Segment

0 0 1 lncore

0 1 0 Unused

0 1 1 On Disk

1 0 1 Locked lncore

1 1 0 Unused

1 0 0 Unused

1 1 1 Unused

Figure 5-3. Shared Memory State Information

The implied states of Figure 5-3 are as follows:

• Unallocated Segment-the segment associated with this
segment descriptor has not been allocated for use.

• lncore-the shared segment associated with this descriptor has
been allocated for use. Therefore, the segment does exist and is
currently resident in memory.

• On Disk-the shared segment associated with this segment
descriptor is currently resident on the swap device.

• locked lncore-the shared segment associated with this
segment descriptor is currently locked in memory and will not be

IP 5-7

SHARED MEMORY

a candidate for swapping until the segment is unlocked. Only the
super-user may lock and unlock a shared segment .

.. Unused-this state is currently unused and should never be
encountered by the normal user in shared memory handling.

The shmget system call is used to do two tasks when only the IPC_CREAT
flag is set in the shmflg argument that it receives:

• To get a new shmid and create an associated shared memory
segment data structure for it

• To return an existing shmid that already has an associated
shared memory segment data structure.

The task performed is determined by the value of the key argument
passed to the shmget system call.

For the first tcisk, if the key is not already in use for an existing shmid, a
new shmid is returned with an associated shared memory segment data
structure created for it provided no system tunable parameters would be
exceeded.

There is also a provision for specifying a key of value zero that is known as
the private key (IPC_PRIVATE = O); when specified, a new shmid is always
returned with an associated shared memory segment data structure
created for it unless a system tunable parameter would be exceeded.
When the ipcs command is performed, the KEY field for the shmid is all
zeros.

For the second task, if a shmid exists for the key specified, the value of the
existing shmid is returned. If it is not desired to have an existing shmid
returned, a control command (IPC_EXCL) can be specified (set) in the
shmflg argument passed to the system call. The details of using this
system call are discussed in the "Using Shmget" section of this chapter.

IP 5-8

SHARED MEMORY

When performing the first task, the process that calls shmget becomes the
owner/ creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always
remains the creator; see the "CONTROLLING SHARED MEMORY" section
in this chapter. The creator of the shared memory segment also
determines the initial operation permissions for it.

Once an uniquely identified shared memory segment data structure is
created, shared memory segment operations [shmop] and control
[shmctl] can be used.

Note: Shmop is not a system call.

Shared memory segment operations consist of attaching and detaching
shared memory segments. System calls are provided for each of these
operations; they are shmat and shmdt. Refer to the "OPERATIONS FOR
SHARED MEMORY" section in this chapter for details of these system
calls.

Shared memory segment control is done by using the shmctl system call.
It permits you to control the shared memory facility in the following ways:

• To determine the associated data structure status for a shared
memory segment (shmid)

• To change operation permissions for a shared memory segment

• To remove a particular shmid from the UNIX System along with
its associated shared memory segment data structure

• To lock a shared memory segment in memory

• To unlock a shared memory segment.

IP 5-9

SHARED MEMORY

Refer to the "CONTROLLING SHARED MEMORY" section in this chapter
for details of the shmctl system call.

IP 5-10

SHARED MEMORY

GETT~NG SHARED MEMORY SEGMENTS
This section gives a detailed description of using the shmget system call
along with an example program illustrating its use.

ng Shmget

The synopsis of the shmget is as follows:

#include <sys/typcs.h>

#include <sys/lpc.h>
#include <sys/shm.h>

int shmget (key. size, shmflg)
key_t key;

int size, shmf]g;

All these include files are located in the /usir /iiiiidude/sys directory of the
UNIX System.

The following line in the synopsis:

irnt shmgct (key~ si;;::e, shmflg)

informs you that shmget is a function with three formal arguments that
returns an integer type value, on successful completion (shmid). The next
two lines:

key_t key:

int, si.7.:e. slhmflg;

declare the types of the formal arguments. 1-\ey~t is declared by a typedef
in the types.h header file to be a long integer. Therefore, key, size, and
shmflg are integers (int) that occupy 32 bits each in the 382 Computer.

The integer returned from this function on successful completion is the
shared memory identifier (shmid) that was discussed in the "GENERAL"
section of this chapter.

IP 5-11

SHARED MEMORY

As declared, the process calling the shmget system call must supply three
actual arguments to be passed to the formal key, size, and shmflg
arguments.

The value passed to key must be a unique integer type hexadecimal value
or zero (IPC_PRIVATE = 0) if a new shmid with an associated shared
memory segment data structure is desired; it must be an existing key to
return its shmid. This is true when only the IPC_CREAT flag is set in the
shmflg argument.

Unique keys can be determined in several ways. The STDIPC, standard
inter-process communication package, subroutine is one method to
generate unique keys to avoid undesired interference between processes.
Another way could be to use the makekey command, see the STDIPC and
makekey manual pages. Picking a key at random is also possible but less
desirable. If the key is IPC_PRIVATE, only the owner/ creator process
usually uses the facility.

The value passed to the shmflg argument must be an integer type octal
value and will specify the following:

• Access permissions

• Execution modes

• Control fields (commands).

Access permissions determine the read/write attributes and execution
modes determine the user /group/other attributes of the shmflg
argument. They are collectively referred to as "operation permissions."
Figure 5-4 reflects the numeric values for the valid operation permissions
codes.

IP 5-12

SHARED MEMORY

OPERATION PERMISSIONS NUMERIC VALUE

Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

Figure 5·4. Operation Permissions Codes

A specific numeric value is derived by adding the numeric values for the
operation permissions desired. That is, if read by user and read/write by
others is desired, the code value would be 00406 (00400 plus 00006).
These values are represented in octal. There are constants located in the
shm.h header file that can be used for the user (OWNER). They are as
follows:

SHM R

SHM Ill

0400

0200

Control commands are predefined constants (represented by all uppercase
letters). Figure 5-5 contains the names of the constants that apply to the
shmget system call along with their values. They are also referred to as
flags and are defined in the ipc.h header file.

CONTROL COMMAND VALUE

IPC_CREAT 0001000
IPC_EXCL 0002000

Figure 5·5. Control Commands (Flags)

IP 5-13

SHARED MEMORY

The value for shmflg is, therefore, a combination of operation permissions
and control commands. After determining the value for the operation
permissions as previously described, the desired flag(s) can be specified.
This is done by bitwise ORing (:) them with the operation permissions; the
bit positions and values for the control commands to those of the
operation permissions make this possible. It is illustrated as follows:

IPC CREAT -
Read by User

shmflg

OCTAL VALUE

0 1 0 0 0
0 0 4 0 0

0 l 4 0 0

BINARY VALUE

O 000 ODI 000 000 000

0 000 000 100 000 000

0 000 001 100 000 000

The shmflg value can be easily set by using the names of the flags with the
octal operation permissions value:

shmid shmget (key, size, (IPC_CREAT: 0400));

shmid shmget (key, size, (IPC_CREAT I IPC_EXCL I 0400));

As specified by the shmget manual page, success or failure of this system
call depends on the argument values for key, size, and shmflg or system
tunable parameters. The system call will attempt to return a new shmid if
a following condition is true:

• Key is equal to IPC_PRIVATE (0)

• Key does not already have a shmid associated with it, and
(shmflg & IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE in the following ways:

shmid • shmget (IPC_PRIVATE, size, shmflg);

OR

shmid • shmget (0 , size, shmflg);

IP 5-14

SHARED MEMORY

This alone will cause the system call to be attempted because it satisfies
the first condition specified. Exceeding the SHMMNI system tunable
parameter causes a failure regardlessly. The SHMMNI system tunable
parameter determines the maximum amount of unique shared memory
segments (shmid's) in the UNIX System.

The second condition is satisfied if the value for key is not already
associated with a shmid and the bitwise ANDing of shmflg and IPC_CREAT
is "true" (not zero). This means that the key is unique (not in use) within
the UNIX System for this facility type and that the IPC_CREAT flag is set
(shmflg: IPC_CREAT). The bitwise ANDing (&), which is the logical way of
testing if a flag is set, is illustrated as follows:

shmflg = x 1 x x x (x = don't care)
& IPC CREAT = O l O O 0

result = O l O O 0 (not zero)

Since the result is not zero, the flag is set or "true." SHMMNI applies here
also, just as for condition one.

IPC_EXCL is another control command used with IPC_CREAT to exclusively
have the system call fail if, and only if, a shmid exists for the specified key
provided. This is necessary to prevent the process from thinking that it
has received a new (unique) shmid when it has not. In other words, when
both IPC_CREAT and IPC_EXCL are specified, a new shmid is returned if
the system call is successful. Any value for shmflg returns a new shmid if
the key equals zero (IPC_PRIVATE).

The system call will fail if the value for the size argument is less than
SHMMIN or greater than SHMMAX. These tunable parameters specify the
minimum and maximum shared memory segment sizes.

Refer to the shmget manual page for specific associated data structure
initialization for successful completion. The specific failure conditions with
error names are contained there also.

IP 5-15

SHARED MEMORY

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the shmget system call to be exercised.
This program was compiled and run on the 382 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the C Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not program efficiency. Usually, system calls
are embedded within a larger user-written program that makes use of a
particular function that they provide.

This program begins by including the required header files as specified by
the manual page for shmget (lines 4-7). Note that the errno.h header file
is included as opposed to declaring errno as an external variable; either
method will work.

Variable names have been chosen to be as close as possible to those in
the synopsis for the system call. Their declarations are self-explanatory.
These names make the program more readable, and this is perfectly legal
since they are local to the program. The variables declared for this
program and their purposes are as follows:

IP 5-16

.. key-used to pass the value for the desired key

.. opperm-used to store the desired operation permissions

• flags-used to store the desired control commands (flags)

• opperm_flags-used to store the combination from the logical
ORing of the opperm and flags variables; it is then used in the
system call to pass the shmflg argument

SHARED MEMORY

• shmid-used for returning the message queue identification
number for a successful system call or the error code (-1) for an
unsuccessful one

• size-used to specify the shared memory segment size.

The program begins by prompting for a hexadecimal key, an octal
operation permissions code, and finally for the control command
combinations (flags) that are selected from a menu (lines 14-31).

Note: All possible combinations are allowed even though they
might not be viable. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the opperm_flags
variable (lines 35-50).

A display then prompts for the size of the shared memory segment, and it
is stored at the address of the size variable (lines 51-54).

The system call is made next, and the result is stored at the address of the
shmid variable (line 56).

Since the shmid variable now contains a valid message queue identifier or
the error code (-1), it is tested to see if an error occurred (line 58). If
shmid equals -1, a message shows that an error resulted and the external
errno variable is displayed (lines 60, 61).

If no error occurred, the returned shared memory segment identifier is
displayed (line 65).

IP 5-17

SHARED MEMORY

The example program for the shmget system call follows. It is suggested
that the source program file be named "shmget.c" and that the
executable file be named "shmget."

Note: When compiling C programs that use floating point
operations, the -f option should be used on the cc command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 5-18

1 /*This is a program to illustrate
2 **the shared memory get, shmget(),
3 **system call capabilities.*/

4

5

6

7

#include
#include
#include
#include

<sys/types.h>
<sys/ipc.h>
<sys/shm. h>
<errno.h>

8 /*Start of main C language program*/

9 main()

10

SHARED MEMORY

11

12

13

14

15
16

key t key; /*declare as long integer*/

int opperm, flags;
int shmid, size, opperrn_flags;
/*Enter the desired key•/
printf(''Enter the desired key in hex
scanf(" %x", &key);

17 /*Enter the desired octal operation
18 permissions.*/

19 printf("\nEnter the operation\n");
20 printf(''perrnissions in octal = '');

21 scanf("%o", &opperm);

22 /*Set the desired flags.•/

");

23 printf(''\nEnter corresponding number to\~');

24 printf(" set the desired flags :\n");

25

26

27

28

29
30

31

32

33

34

printf(''No flags
printf(" IPC_CREAT

printf(" IPC_EXCL
printf("IPC_CREAT and IPC EXCL

printf(" Flags
/*Get the flag(s) to be set.•/

scanf("%d", &flags);

/*Check the values.*/

printf (" \nkey ~Ox%x, opperm
key, opperm, flags);

O\n");
l\n");

2\n");

3\n");
");

0%o, flags 0%o\n",

IP 5-19

SHARED MEMORY

IP 5-20

35

36
37

38

39
40

41

42

43

44

45

46

47
48

49

50

51

52

53

54

55
56

57

58
59

/*Incorporate the control fields (flags) with
the operation permissions*/

switch (flags)

case 0: /*No flags are to be set.*/

opperm _flags = (opperm : O);
break;

case 1:

opperm_
break;

case 2:
op perm -
break;

case 3:

opperm_

/*Set the IPC_CREAT flag.•/
flags

/•set
flags

/*Set
flags

= (op perm I IPC _ CREAT);

the IPC_EXCL flag.*/
= (opperm I IPC _EXCL);

the IPC CREAT and IPC_EXCL flags.*/
= (opperm I IPC CREAT IPC _EXCL);

/*Get the size of the segment in bytes.*/

printf (" \nEnter the segment");

printf (" \nsize in bytes = ");
scanf (" %d" , &size);

/*Call the shmget system call.*/
shmid = shmget (key, size, opperm_flags);

/*Perform the following if the call is unsuccessful.*/
if(shmid == -1)

60 printf (" \nThe shmget system call failed !\n");
61 printf ("The error number = %d\n" , errno);

62 }

63 /*Return the shmid on successful completion.*/

64 else
65 printf (" \nThe shmid = %d\n", shmid);
66 exit(O);
67

SHARED MEMORY

CONTROLLING SHARED MEMORY
This section gives a detailed description of using the shmctl system call
along with an example program that allows all its capabilities to be
exercised.

Using Shmctl

The synopsis of the shmctl is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)

int shmid, cmd;
struct shmid ds *buf;

The shmctl system call requires three arguments to be passed to it, and
shmctl returns an integer value.

On successful completion, a zero value is returned; and when unsuccessful,
shmctl returns a -L

The shmid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget system call.

The cmd argument can be replaced by one of following control commands
(flags):

• IPC_STAT-return the status information contained in the
associated data structure for the specified shmid and place it in
the data structure pointed to by the '~buf pointer in the user
memory area

• IPC_SET -for the specified shmid, set the effective user and
group identification, and operation permissions

IP 5-21

SHARED MEMORY

• IPC_RMID-remove the specified shmid along with its associated
shared memory segment data structure

.. SHM_LOCK-lock the specified shared memory segment in
memory, must be super-user

.. SHM_UNLOCK-unlock the shared memory segment from
memory, must be super-user.

A process must have an effective user identification of OWNER/CREATOR
or super-user to do an !PC_SET or IPC_RM!D control command. Only the
super-user can do a SHM_LOCK or SHM_UNLOCK control command. A
process must have read permission to do the IPC_STAT control command.

The details of this system call are discussed in the example program for it.
If you have problems understanding the logic manipulations in this
program, read the "Using Shmget" section of this chapter; it goes into
more detail than what would be practical to do for every system call.

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the shmctl system call to be exercised.
This program was compiled and run on the 382 Computer; its execution
has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the C Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not program efficiency. Usually, system calls
are embedded within a larger user-written program that makes use of a
particular function that they provide.

IP 5-22

SHARED MEMORY

This program begins by including the required header files as specified by
the manual page for shmctl (lines 5-9). Note in this program that errno is
declared as an external variable, and therefore, the errno.h header file
does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis for the system call. Their declarations are self
explanatory. These names make the program more readable, and it is
perfectly legal since they are local to the program. The variables declared
for this program and their purposes are as follows:

• uid-used to store the IPC_SET value for the effective user
identification

• gid-used to store the IPC_SET value for the effective group
identification

• mode-used to store the IPC_SET value for the operation
permissions

• rtrn-used to store the return integer value from the system call

• shmid-used to store and pass the shared memory segment
identifier to the system call

• command-used to store the code for the desired control
command so that further processing can be performed on it

• choice-used to determine what member for the IPC_SET
control command that is to be changed

• shmid_ds-used to receive the specified shared memory
segment indentifier's data structure when an IPC_STAT control
command is performed

• *buf-a pointer passed to the system call that locates the data
structure in the user memory area where the IPC_STAT control
command is to place its return values or where the IPC_SET

IP 5-23

SHARED MEMORY

command gets the values to set.

Note that the shmid_ds data structure in this program (line 16) uses the
data structure located in the shm.h header file of the same name as a
template for its declaration. This is a perfect example of the advantage of
local variables.

The next important thing to observe is that although the ':'but pointer is
declared to be a pointer to a data structure of the shmid_ds type, it must
also be initialized to contain the address of the user memory area data
structure (line 17).

Now that all the required declarations have been explained for this
program, this is how it works.

First, the program prompts for a valid shared memory segment identifier
that is stored at the address of the shmid variable (lines 18-20). This is
required for every shmctl system call.

Then, the code for the desired control command must be entered (lines
21-29), and it is stored at the address of the command variable. The code
is tested to determine the control command for further processing.

If the I PC_STAT control command is selected (code 1), the system call is
performed (lines 39, 40) and the status information returned is printed out
(lines 41-86). Note that if the system call is unsuccessful (line 146), the
status information of the last successful call is printed out regardlessly;
also an error message is displayed and the errno variable is printed out
(lines 148, 149). If the system call is successful, a message shows this
along with the shared memory segment identifier used (lines 151-154).

If the IPC_SET control command is selected (code 2), the first thing done
is to get the current status information for the message queue identifier
specified (lines 90-92). This is necessary because this example program
provides for changing only one member at a time, and the system call
changes all of them. Also, if an invalid value happened to be stored in the

IP 5-24

SHARED MEMORY

user memory area for one of these members, it would cause repetitive
failures for this control command until corrected. The next thing the
program does is to prompt for a code corresponding to the member to be
changed (lines 93-98). This code is stored at the address of the choice
variable (line 99). Now, depending on the member picked, the program
prompts for the new value (lines 105-127). The value is placed at the
address of the appropriate member in the user memory area data
structure, and the system call is made (lines 128-130). Depending on
success or failure, the program returns the same messages as for
IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 132-135), and the shmid along with its associated
message queue and data structure are removed from the UNIX System.
Note that the ':'buf pointer is not required as an argument to do this
control command and its value can be zero or NULL. Depending on the
success or failure, the program returns the same messages as for the
other control commands.

If the SHM_LOCK control command (code 4) is selected, the system call is
performed (lines 137,138). Depending on the success or failure, the
program returns the same messages as for the other control commands.

If the SHM_UNLOCK control command (code 5) is selected, the system
call is performed (lines 140-142). Depending on the success or failure, the
program returns the same messages as for the other control commands.

The example program for the shmctl system call follows. It is suggested
that the source program file be named "shmctl.c" and that the executable
file be named "shmctl."

Note: When compiling C programs that use floating point
operations, the -f option should be used on the cc command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 5-25

SHARED MEMORY

IP 5-26

1 /*This is a program to illustrate
2 **the shared memory control, shmctl(),
3 **system call capabilities.
4 • ,

5 /*Include necessary header files,•/

6 #include <stdio.h>
7 #include <sys/types.b>
8 #include <sys/ipc.h>
9 #include <sys/shm.h>

10 /*Start of main C language program*/
11 main()
12
13 extern int errno;
14 int uid, gid, mode;
15
16

17

18
19
20
21
22

23
24

25

26

27

28
29

30

31

32
33

34

int rtrn, shmid, command, choice;
struct shmid_ds shmid_ds, *buf;
buf = &shmid_ds;

/*Get the shmid, and command.*/

printf ("Enter the shmid = ") ;
scanf (" %d" , &shmid);
printf(''\nEnter the number for\~');
printf (''the desired
printf(" IPC_STAT
printf(" IPC_SET
printf(" IPC_RMID
printf (" SHM _LOCK
printf (" SHM _UNLOCK
printf(" Entry

command:\n");

l\n");
2\n");

3\n");

4\n");

5\n");
");

scanf (" %d" , &command);

/*Check the values.*/

printf ("\nshmid =%d, command
shmid, command);

switch (command)

%d\n",

35

36
37

38

39

40

41

42
43

44
45

46
47
48
49

50

51

52

53

54
55

56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71
72

73

74
75

76

SHARED MEMORY

case 1: /*Use shmctl() to duplicate

the data structure for
shmid in the shmid_ds area pointed
to by buf and then print it out.*/

rtrn • shmctl(shmid, IPC_STAT,

buf);
printf (" \n'fhe USER Ill • %d\n",

buf->shm_perm.uid);
printf ("The GROUP Ill • %d\n",

buf->shm_perm.gid);
printf ("The creator's ID= %d\n",

buf->shm_perm.cuid);
printf ("The creator's group ID= %d\n",

buf->shm_perm.cgid);
printf (''The operation permissions = 0%o\n'',

buf->shm_perm.mode);
printf ("The slot usage sequence\n");

printf ("number • 0%x\n",
buf->shm_perm.seq);

printf ("The key• 0%x\n",
buf->shm_perm.key);

printf ("The segment size = %d\n",

buf->shm_segsz);
printf (''Segment Descriptor:\~');
printf ("access = %0\n",

buf->shm_seg.access);
printf ("maximum offset = 0%x\n",

buf->shm_seg.rnaxoff);

printf ("flags = %0\n",
buf->shm_seg.flags);

printf (''address = 0%x\n'' ~

buf->shm_seg.address);
printf ("lock = %0\n",

buf->shm_seg.wd2.VO.lock);
printf (" slhmswap = %0\n",

buf->shm_seg.wd2.VO.shmswap);

printf (" alloc • %0\n",
buf->shm_seg.wd2.VO.alloc);

printf ("The pid of last shmop = %d\n"

buf ->shm _ lpid);
printf ("The pid of creator = %d\n",

buf->shm cpid);

IP 5-27

SHARED MEMORY

printf ("The current # attached = %d\n",

buf->shm_nattch);
printf ("The in memory # attached = %d\n",

buf->shm_cnattch);
printf (''The last shmat time= %d\~',

buf->shm_atime);
printf ("The last shmdt time• %d\n",

buf->shm_dtime);
printf (''The last change time= %d\n",

buf->shm_ctime);
break;

77

78

79
80

81
82
83
84

85

86
87
88

89

case 2: /*Select and change the desired
member(s) of the data structure.*/

IP 5-28

90

91
92

93
94
95

96

97

98

99
100

101
102

103
104

105

106
107

108
109

110

111

112

113

114

115

116
117

118

119

/*Get the original data for this shmid

data structure first.*/

rtrn ° shmctl(shmid, IPC_STAT, huf);

printf(''\nEnter the number for the\~');
printf("member to be changed:\n");

printf(" shm_perm.uid 1\n");

printf(" shm_perm.gid 2\n");

printf(11 shm_perm.mode 3\n");
printf(" Entry ");

scanf("%d", &choice);
/*Only one choice is allowed per

pass as an illegal entry will
cause repetitive failures until

shmid_ds is updated with

IPC_STAT.*/

switch(choice){
case 1:

printf("\nEnter USER ID"");
scanf (" %d", &uid);
buf->shm_perm.uid = uid;
print f (" \nUSER ID " %d\n"

buf->shm_perm.uid);

break;
case 2:

printf("\nEnter GROUP ID
scanf (" %d" , &gid);

buf->shm_perm.gid = gid;
printf(" \nGROUP ID 0 %d\n"

buf->shm_perrn.gid);
break;

");

120
121
122

123

124

125
126
127

128
129
130
131

132
133

134

135
136
137
138
139

140

141

142

143

144

145
146

147

148
149

150

151
152
153

154
155

156

SHARED MEMORY

case 3:

}

printf(" \nEnter MODE = ");

scanf (" %0" , &mode);

buf->shm_perm.mode = mode;

printf(" \nMODE = 0%o\n",

buf->shm_perm.mode);
break;

/*Do the change.•/

rtrn = shmctl(shmid, IPC_SET,

huf);

break;
case 3: /*Remove the shmid along with its

associated
data structure.*/

rtrn = shmctl(shmid, IPC_RMID, NULL);

break;

case 4: /*Lock the shared memory segment*/
rtrn = shmctl(shmid, SHM_LOCIK, NULL);

break;

case 5: /*Unlock the shared memory
segment.*/

rtrn = shmctl(shmid, SHM_UNLOCIK, NULL);

break;

/*Perform the following if the call is unsuccessful.*/

if(rtrn == -1)

1
j

printf ("\nThe shmctl system call failed!\n");

printf ("The error number == %d\n", errno);

/*Return the shmid on successful completion.*/
else

printf' (" \nShmctl was successful for shmid = %d\n",
shmid);

exit (0);

IP 5-29

SHARED MEMORY

OPERATIONS FOR SHARED MEMORY
This section gives a detailed description of using the shmat and shmdt
system calls, along with an example program that allows all their
capabilities to be exercised.

Using Shmop

The synopsis of the shmop is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char •sbmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr
int shmflg;

int shmdt (shmaddr)
char *shmaddr

Attaching a Shared Memory Segment

The shmat system call requires three arguments to be passed to it, and it
returns a character pointer value.

The system call can be cast to return an integer value. On successful
completion, this value will be the address in core memory where the
process is attached to the shared memory segment and when
unsuccessful it will be a -1.

The shmid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget system call.

The shmaddr argument can be zero or user supplied when passed to the
shmat system call. If it is zero, the UNIX System picks the address of
where the shared memory segment will be attached. If it is user supplied,
the address must be a valid address that the UNIX System would pick.

IP 5-30

SHARED MEMORY

The following illustrates some of the typical address ranges for the 382
Computer:

OxcOOcOOOO
OxcOOeOOOO
Oxc0100000
Oxc0120000

Note that these addresses are in chunks of 20,000 hexadecimal. It would
be wise to let the operating system pick addresses to improve portability.

The shmflg argument is used to pass the SHM_RND and SHM_RDONLY
flags to the shmat system call.

Further details are discussed in the example program for shmop. If you
have problems understanding the logic manipulations in this program, read
the "Using Shmget" section of this chapter; it goes into more detail than
what would be practical to do for every system call.

Detaching Shared Memory Segments

The shmdt system call requires one argument to be passed to it, and
shmdt returns an integer value.

On successful completion, zero is returned; and when unsuccessful, shmdt
returns a -1.

Further details of this system call are discussed in the example program.
If you have problems understanding the logic manipulations in this
program, read the "Using Shmget" section of this chapter; it goes into
more detail than what would be practical to do for every system call.

IP 5-31

SHARED MEMORY

Example Program

The example program in this section is a menu driven program that allows
all possible combinations of using the shmat and shmdt system calls to be
exercised. This program was compiled and run on the 382 Computer; its
execution has been verified.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

Since there are many ways in the C Programming Language to accomplish
the same task or requirement, keep in mind that this example program
was written for clarity and not program efficiency. Usually, system calls
are embedded within a larger user-written program that makes use of a
particular function that they provide.

This program begins by including the required header files as specified by
the manual page for shmop (lines 5-9). Note that in this program that
errno is declared as an external variable, and therefore, the errno.h header
file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self-explanatory. These
names make the program more readable, and this is perfectly legal since
they are local to the program. The variables declared for this program and
their purposes are as follows:

IP 5-32

• flags-used to store the codes of SHM_RND or SHM_RDONLY
for the shmat system call

• addr-used to store the address of the shared memory segment
for the shmat and shmdt system calls

• i-used as a loop counter for attaching and detaching

SHARED MEMORY

• attach-used to store the desired amount of attach operations

• shmid-used to store and pass the desired shared memory
segment identifier

• shmflg-used to pass the value of flags to the shmat system call

• retrn-used to store the return values from both system calls

• detach-used to store the desired amount of detach operations.

This example program combines both the shmat and shmdt system calls.
The program prompts for the number of attachments and enters a loop
until they are done for the specified shared memory identifiers. Then, the
program prompts for the number of detachments to be performed and
enters a loop until they are done for the specified shared memory segment
addresses.

Sh mat

The program prompts for the number of attachments to be performed,
and the value is stored at the address of the attach variable (lines 17-21).

A loop is entered using the attach variable and the i counter (lines 23-70)
to do the specified amount of attachments.

In this loop, the program prompts for a shared memory segment identifier
(lines 24-27) and it is stored at the address of the shmid variable (line 29).
Next, the program prompts for the address where the segment is to be
attached (lines 30-34), and it is stored at the address of the addr variable
(line 35). Then, the program prompts for the desired flags to be used for
the attachment (lines 37-44), and the code representing the flags is stored
at the address of the flags variable (line 45). The flags variable is tested to
determine the code to be stored for the shmflg variable used to pass them
to the shmat system call (lines 46-57). The system call is made (line 60).
If successful, a mess~e stating so is displayed along with the attach
address (lines 66-68). If unsuccessful, a message stating so is displayed

IP 5-33

SHARED MEMORY

and the error code is displayed (lines 62, 63). The loop then continues
until it finishes.

Shmdt

After the attach loop completes, the program prompts for the number of
detach operations to be performed (lines 71-75), and the value is stored at
the address of the detach variable (line 76).

A loop is entered using the detach variable and the i counter (lines 78-95)
to do the specified amount of detachments.

In this loop, the program prompts for the address of the shared memory
segment to be detached (lines 79-83), and it is stored at the address of
the addr variable (line 84). Then, the shmdt system call is performed (line
87). If successful, a message stating so is displayed along with the address
that the segment was detached from (lines 92,93). If unsuccessful, the
error number is displayed (line 89). The loop continues until it finishes.

The example program for the shmop system calls follows. It is suggested
that the program be put into a source file called "shmop.c" and then into
an executable file called "shmop."

Note: When compiling C programs that use floating point
operations, the -f option should be used on the cc command line.
If this option is not used, the program will compile successfully, but
when the program is executed it will fail.

IP 5-34

/*This is a program to illustrate

2 **the shared memory operations, shmop(),

3 **system call capabilities.
4 • ,

5 /*Include necessary header files.*/

6 #include <sEdio.h>

7 #include <sys/types.h>

8 #include <sys/ipc.h>

9 #include <sys/shm.h>

10 /*Start of main C language program*/

H main()

12

13

14

15

16

17
18

19
20

21

22

23

24

25

26

27

28
29

extern int errno;
int flags, addr, i, attach;

int shmid, shmflg, retro, detach;

/*Loop for attachments by this process.*/

printf ("Enter the number of\n") ;

printf(''attachments for this\n'');

pirintf(" process (1-4) .\n");

printf(" Attachments = ");

scanf("%d", &attach);

printf(''Number of attaches %d\n", attach);

for(i = 1; i <= attach; i++)

/*Enter the shared memory ID.*/
printf(" \nEnter the shmid of\n");

printf(" the shared memory segment to\n");

printf(11 be operated on = ");
scanf(" %d", &shmid);

printf(" \nshmid o %d\n", shmid);

/*Enter the value for shmaddr.*/

printf(''\nEnter the value for\n'');

printf(" the shared memory address\n");

printf('' in hexadecimal:\n'');

printf(" Shma<ldr ");

scanf("%x", &addr);

SHARED MEMORY

30

31

32
33

34
35

36 printf(" The desired address Ox%x\n", addr);

IP 5-35

SHARED MEMORY

IP 5-36

37
38
39
40

41

42

43

44

45

46

47
48

49

50

51
52
1>3
54
55
56
57

58

59
60
61
62
63
64
65
66
67

68

69
70

71

72

73
74

75

76

77
78

/•Specify the desired flags.•/
printf(" \nEnter the corresponding\n");
printf(''number for the desired\~');

printf(" flags :\n");
printf(" SHM_RND 1\n");
printf(" SHM_RDONLY
printf("SHM_RND and SHM RDONLY
printf(" Flags
scanf (" %d" , &flags);

switch(flags)

{
case 1:

shmf lg
break;

case 2:
shmf lg
break;

case 3:

}

shmflg
break;

SHM_RND;

SHM_RDONLY;

SHM RND SHM_RDONLY;

2\n");

3\n");
");

printf(" \nFlags = 0%o\n", shmflg);

/•Do the shmat system call.•/
retrn = (int)shmat(shmid, addr, shmflg);
if(retrn == -1)

printf(" \nShmat failed. ");
printf(11 Error %d\n" , errno) ;

}
else {

printf ("\nShmat was successful\~');

printf(" for shmid = %d\n", shmid);
printf ("The address = Ox%x\n", retro);

/*Loop for detachments by this process.*/
printf(" Enter the number of\n");
printf(''detachments for this\~');

printf(" process (1-4). \n");
printf(" Detachments = '');

scanf(" %d", &detach);
printf("Number of attaches %d\n", detach);

for(i = l; i <= detach; i-1+)

79

80
81
82
83

84

85

86

87

88
89
90
91

92
93

94

95

96

/*Enter the value for shmaddr.*/
printf(" \nEnter the value for\n");

printf(" the shared memory address\n");

printf(" in hexadecimal :\n");

printf (" Shmaddr ") ;

scanf(" %x", &addr);

SHARED MEMORY

printf(" The desired address = Ox%x\n", addr);

/*Do the shmdt system call.*/
retrn = (int)shmdt(addr);

if(retrn == -1) {

1
I

printf(" Error = %d\n", errno);

else (
printf (''\nShmdt was successful\n'');

printf(" for address = 0%x\n", addr);

IP 5-37

Chapter 6

SYSTEM TUNABLE PARAMETERS

PAGE

GENERAL . 6-1

MESSAGES. 6-2

MSGMAP.. 6-2

MSG MAX.. 6-2

MSGMNB.. 6-3

MSGMNI . 6-3

MSGSSZ... 6-3

MSGTQL . 6-3

MSGSEG . 6-4

SEMAPHORES . 6-5

SEMMAP . 6-5

SEMMNI . 6-6

SEMMNS.. 6-6

SEMMNU.. 6-6

SEMMSL . 6-6

SEMOPM.. 6-6

SEMUME.. 6-7

SEMVMX . 6-7

SEMAEM . 6-1

SHARED MEMORY . 6-9

SHMMAX.. 6-9

SHMMIN 6-9

SHMMNI . 6-9

SHMSEG . 6-10

SHMAll . 6-10

Chapter 6

SYSTEM TUNABLE
PARAMETERS

To effectively allocate the UNIX System resources to the AT&T 382
Computer Inter-Process Communications (IPC) facilities, system tunable
parameters are used. System tunable parameters, as their name implies,
can be tuned or changed to provide the most efficient UNIX System
environment. However, these tunable parameters cannot be changed
arbitrarily as they are interdependent. This chapter deals with the system
tunable parameters for the IPC facilities.

GENERAL
System tunable parameters are initialized to their initial maximum or initial
default values when the UNIX System is built. These values are contained
in a directory named /etc/master.d. Only a process with an effective user
identification of super-user (0) can change these values. The initial
maximum or initial default values are given in the following sections of this
chapter for each IPC facility. Additionally, information on how they
interrelate is given.

IP 6-1

SYSTEM TUNABLE PARAMETERS

MESSAGES
There are seven system tunable parameters for the message type facility.
Each parameter and its initial value follows:

,. MSGMAP-100

.. MSGMAX-8192

.. MSGMNB-16384

.. MSGMNl-10

.. MSGSSZ-8

.. MSGTQL-40

.. MSGSEG-1024.

The following sections describe each system tunable parameter and how
they interrelate to each other.

MSG MAP

This parameter specifies the size (amount of entries) of the memory
control map used to manage message segments. A warning message is
sent to the console port if this value is insufficient to handle the message
type facilities. The initial value for this parameter is a default. MSGMAP
can be raised as required to accommodate the message facilities. Each
map number represents eight (8) bytes.

MSG MAX

This parameter determines the maximum size of a message sent (msgsnd).
The initial value is a default, but it can be raised to a maximum of 131,072
bytes (128 kilobytes) (see MSGSSZ and MSGSEG). When receiving a
message (msgrcv), a value larger than this parameter can be used to
insure receiving the whole message without truncation.

IP 6-2

SYSTEM TUNABLE PARAMETERS

MSGMNB

This parameter specifies the bytes that each message queue can have for
storing its message header information. The initial value is a default, and it
can be tuned as desired to fit the application; each header requires 12
bytes, so keep it in multiples (regardless of the default, two raised to the
fourteenth power). The OWNER of a facility can lower this value, but only
the super-user can raise it afterwards (msg_qbytes).

MSGMNI

This parameter specifies the amount of message queue identifiers (msqid)
system wide. MSGMNI, therefore, determines the amount of message
queues that can be created (msgget) at any one time. The initial value is a
default, and it can be tuned to fit the application.

MSGSSZ

This parameter determines the segment size used for storing messages in
memory. Each message is stored in contiguous segments numbering
enough to fit the message. The initial value of this parameter is a default.
MSGSSZ can be tuned as desired to fit the application. Keep in mind that
the larger the segments are, the probability of having more wasted
memory at the end of each message increases. The product of this
parameter and MSGSEG should be no larger than 131,072 bytes (128
kilobytes). The 128 kilobyte value is also equal to the maximum value for
a single message to be sent, MSGMAX.

MSGTQL
This parameter specifies the maximum amount of message queue headers
on all message queues system wide, and consequently the total amount of
outstanding messages. Each header occupies 12 bytes; this relates to the
length of a message queue (MSGMNB). The initial value of MSGTQL is a
default. MSGTQL can be tuned to fit the application.

IP 6-3

SYSTEM TUNABLE PARAMETERS

MSGSEG

This parameter specifies the amount of memory segments system wide for
storing messages. The initial value is a default. The product of MSGSEG
and MSGSSZ should be no larger than 131,072 bytes (128 kilobytes).

The following data structure is contained in the /usr /include/sys/msg.h
header file:

struct msginfo

int msgmap, ,. # of entries in msg map •/
msgrnax, /* max message size •/
msgmnb, /* max # bytes on queue */
msgmni, ,. # of message queue identifiers •/
msgssz, /* msg segment size (word size multiple) •/
msgtql; ,. # of system message headers •/

ushort msgseg; /* # of msg segments (MUST BE < 32768) •/
),

J'

This data structure is initialized from the /etc/master.d/msg file when the
UNIX System is initialized.

IP 6-4

SYSTEM TUNABLE PARAMETERS

SEMAPHORES
There are nine system tunable parameters for the semaphore type of IPC
facility. Each parameter and its initial value follows:

• SEMMAP-10

• SEMMNl-10

" SEMMNS-60

" SEMMNU-30

.. SEMMSL-25

• SEMOPM-10

• SEMUME-10

.. SEMVMX-32767

• SEMAEM-16384.

The following sections describe each system tunable parameter and how
they interrelate to each other.

SEMMAP

This parameter specifies the size (amount of entries) of the memory
control map used to manage semaphore sets. A warning message is sent
to the console port if this value is insufficient to handle the semaphore
type facilities. The initial value for this parameter is a default. SEMMAP
can be raised as required to accommodate the semaphore facilities. Each
map number represents eight (8) bytes.

IP 6-5

SYSTEM TUNABLE PARAMETERS

SEMMNI

This parameter specifies the amount of semaphore set identifiers (semid)
system wide. SEMMNI, therefore, determines the amount of semaphore
sets that can be created (semget) at any one time. The initial value is a
default, and SEMMNI can be tuned to fit the application. This parameter
occupies 32 bytes.

SEMMNS

This parameter specifies the total amount of semaphores in all semaphore
sets system wide. The initial value is a default. SEMMNS can be tuned to
fit the application. This parameter occupies 8 bytes.

SEMMNU

This parameter specifies the amount of semaphore undo structures system
wide. The initial value is a default, and SEMMNU can be tuned to fit the
application. The size of each undo structure equals [8 x (SEMUME + 2)]
bytes.

SEMMSL

This parameter specifies the maximum amount of semaphores that can be
in one semaphore set. The initial value is a default. SEMMSL can be tuned
to fit the application.

SEMOPM

This parameter specifies the maximum amount of semaphore operations
allowed for each semop() system call. The initial value is a default.
SEMOPM can be tuned to fit the application. This parameter occupies 8
bytes.

IP 6-6

SYSTEM TUNABLE PARAMETERS

SEMUME

This parameter specifies the maximum amount of undo structures per
semaphore set. The initial value is a default. SEMUME can be tuned to fit
the application. Keep in mind that it would be better to be able to undo as
many operations as allowed per semaphore set; make SEMUME equal
SEMOPM. This parameter occupies 240 bytes.

SEMVMX

This parameter specifies the maximum value that any semaphore can be.
That is, the next higher number would be negative.

SEMAEM

This parameter specifies the maximum value that a semaphore adjust on
exit value can be. That is, when decrementing a semaphore, this is the
most that can be added to the adjust value for undoing the operation.
Note that this parameter value is one more than half of SEMVMX.

The following data structure is contained in the /usr /include/sys/sem.h
header file:

struct seminfo
int semmap, ,. # of entries in semaphore map .,

semmni, ,. # of semaphore identifiers .,
semmns, ,. # of semaphores in system .,
semmnu, ,. # of undo structures in system .,
semmsl, ,. max # of semaphores per id .,
semopm, ,. max # of operations per semop call */
semume, ,. max # of undo entries per process */
semusz, ,. size in bytes of undo structure .,
semvmx, ,. semaphore maximum value .,
semaem; ,. adjust on exit max value */

l. , ,

This data structure is initialized from the /etc/master.d/sem file when the
UNIX System is initialized.

IP 6-7

SYSTEM TUNABLE PARAMETERS

Note that the semusz member is not listed in the /etc/master.d/sem file
as it will vary depending on the semaphore facility use.

IP 6-8

SYSTEM TUNABLE PARAMETERS

SHARED MEMORY
There are five system tunable parameters for the shared memory type of
IPC facility. Each parameter and its initial value follows:

.. SHMMAX-8192

.. SHMMIN-1

., SHMMNl-8

.. SHMSEG-4

.. SHMALL-32

The following sections describe each system tunable parameter and how
they interrelate to each other.

SHMMAX

This parameter specifies the maximum amount of bytes that can be in a
shared memory segment.

SHMMIN

This parameter specifies the minimum amount of bytes that a shared
memory segment can be.

SHMMNI

This parameter specifies the total amount of shared memory facilities that
can be in the UNIX System at one time. It corresponds to the amount of
unique identifiers (shmid) that can be generated.

IP 6-9

SYSTEM TUNABLE PARAMETERS

SHMSEG

This parameter specifies the maximum amount of shared memory
segments that any one process can attach itself to at any one time. The
default value is 4. Its maximum value is 15.

SH MALL

This parameter specifies the total amount of assigned physical pages of
memory that can be in the UNIX System at one time. A page of memory
equals 2048 bytes.

The following data structure is contained in the /usr /include/sys/shm.h
header file:

struct

];

shminfo

int shmmax, /* max shared memory segment size */
shmmin, /* min shared memory segment size */
shmmni, /* # of shared memory identifiers */
shmseg; /* max attached shared memory segments per process */

int shmall; /* maximum physicaJ assigned simultaneously •/

This data structure is initialized from the /etc/master.d/shm file when the
UNIX System is initialized.

IP 6-10

Chapter 7

COMMAND DESCRIPTIONS

PAGE

GENERAL. 7-1

INTER-PROCESS COMMUNICATION STATUS . 7-2

lpcs Without Options . . . • . 7-2

lpcs With Options . 7-5

INTER-PROCESS COMMUNICATION REMOVE. 7-13

Chapter 7

COMMAND
DESCRIPTIONS

GENERAL
This chapter gives usage information for the two Inter-Process
Communication (IPC) Utilities. The two utilities are as follows:

.. ipcs - Inter-Process Communication status

., ipcrm - Inter-Process Communication remove.

The following sections contain the usage information and examples for
each command.

IP 7-1

COMMAND DESCRIPTIONS

INTER-PROCESS COMMUNICATION STATUS
The ipcs command can be used in two ways:

• Without options

• With options.

lpcs Without Options

When using ipcs without options, a short status format is displayed for all
IPC facilities that are in the UNIX System at the time of command
execution. The short status format consists of the following information for
all types of facilities:

• T -type of the facility

• ID-the identifier for the facility

• KEY-the key used for creating the facility

• MODE-the operation permissions and flags

• OWNER-the login name of the owner of the facility

• GROUP-the group name of the owner of the facility.

The example that follows is the result of entering the following command
line:

IP 7-2

$ipcs <CR>
IPC status from /dev/kmem as of Fri July 19 15:14:45 1985
T ID KEY MODE OWNER GROUP
Message Queues:
q 0 OxOOOOOOOO S-rw-------
q 1 OxOOOOOOOa -Rrw-rw----
q 2 OxOOOOOOOl --rw-rw-rw-
Shared Memory:
m 0 OxOOOOOOOO D-rw-------
m 1 OxOOOOOOOa -Crw-rw----
m 2 OxOOOOOOOl -Crw-rw-rw-
Semaphores:

0 OxOOOOOOOO --ra-------
1 OxOOOOOOOa --ra-ra----
2 OxOOOOOOO 1 --ra-ra-ra-

hrp other
hrp other
hrp other

hrp other
hrp other

hrp other

hrp other
hrp other
hrp other

COMMAND DESCRIPTIONS

From looking at this example, you can see several points of interest.

First, note that the display is separated into Message Queues, Shared
Memory, and Semaphores. Note also that there are common column
headings for these facility types. These headings correspond to the short
status format information that ipcs without options displays as previously
discussed.

The codes for the type (T) of facility are q, m, and s for message queues,
shared memory, and semaphores, respectively.

Identifiers (ID) are integers (zero and positive) that are returned when
creating a facility using the msgget(), shmget(), and semget() system calls.

Keys (KEY) are either IPC_PRIVATE (0) or equal to the value passed to the
msgget(), shmget(), or semget() system calls for the key argument when
creating a new facility; they can be 0, hexadecimal values, or decimal
values. See the example display.

Mode (MODE) gives the operation permissions for each type of facility
along with flags for the message and shared memory facilities. The mode
is represented by a sequence of eleven character fields.

IP 7-3

COMMAND DESCRIPTIONS

For message queues, the first character field is an S if a process is blocked
from sending a message to the facility, and the second character field is an
R if a process is blocked from receiving a message from a facility.

For shared memory, the first character field is a D if the shared memory
segment facility is to be removed when the last process attached to the
segment detaches it, and the second character field is a C if the shared
memory segment facility is to be cleared when the first attach is made.

For semaphores, these two fields are not used as semncnt and semzcnt
serve the same purpose. See the /usr /include/sys/sem.h file.

The corresponding special flags are not set for message queues and shared
memory when the character field is " - " . These first two character fields
are always" - " for semaphores as they are not used.

Operation permissions use the remaining nine character fields. They are
used in groups of three and from left-to-right they represent the
permissions for OWNER, GROUP, and OTHER. Note that for message
queues rw means read/write and for semaphores ra means read/alter. All
fields not in use are depicted by a hyphen.

The OWNER column heading gives the owner name of the facility. Note
that when using msgctl(), shmctl(), or semctl() to change ownership of a
facility, a positive integer value is used to represent the owner. These
values can be determined for a particular owner name by searching
through the /etc/passwd file.

The GROUP column heading gives the group name of the owner. Changing
the group is analogous to changing the owner.

IP 7-4

COMMAND DESCRIPTIONS

Epes With Options

The options available for the ipcs command consist of facility type options
and general options. The facility type options allow the short format status
information to be displayed for just the facility type desired. The general
options allow information about size, creator, usage, process identification,
and time to be observed. The general options can be used with the facility
type options to observe the general options for a particular facility type.

Facility Type Options

The options that allow the status of only a particular type of facility to be
observed are as follows:

-q Message Queue Type

-m Shared Memory Type
-s Semaphore Type

Proper formats for entering these options are as follows:

$i pcs -q<CR> Message Queue Type
$ipcs -m<CR> Shared Memory Type
$ipcs -s<CR> Semaphore Type

The status can be displayed for selected facilities by putting the options on
the same command line, separated by spaces.

The following display occurs if status is requested but no facilities exist.

ipcs<CR>
IPC status from /dev/kmem as of Fri July 19 09:31:16 1985
T ID KEY MODE OWNER GROUP
Message Queues:
Shared Memory:
Semaphores:

IP 7-5

COMMAND DESCRIPTIONS

General Options

The general options allow additional kinds of information to be displayed
for all facility types or for specific facility types. In other words, these
general options can be used with ipcs alone to obtain the desired
information for all facility types, or they can be appended to the facility
type options for specific facility type information. More than one of these
general options can be specified on the command line as well.

The following options are available:

• -b Biggest allowable size

• -c Creator login name and group name

• -o Outstanding usage

• -p Process number

• -t Time

• -a All general options

• -C Use a different corefile than /dev /kmem

• -N Use a different namelist than /unix.

Of course, these options will reflect only the information applicable to each
facility type.

IP 7-6

COMMAND DESCRIPTIONS

The biggest allowable size information option is illustrated as follows:

$ipcs -b<CR>
IPC status from /dev/kmem as of Fri July 19 07:55:13 1985
T ID KEY MODE OWNER GROUP QBYTES
Message Queues:
q 0 OxOOOOOOOO --rw------- hrp other 16384
q 1 OxOOOOOOOa --rw-rw---- h1·p other 16384
q 2 OxOOOOOOOl --rw-rw-rw- root other 500
T ID KEY MODE OWNER GROUP SEGSZ
Shared Memory:
m 0 OxOOOOOOOO -Crw------- hrp other 8192
m 1 OxOOOOOOOa -Crw-rw---- hrp other 1024
m 2 OxOOOOOOOl -Crw-rw-rw- root other 8192
T ID KEY MODE OWNER GROUP NSEMS
Semaphores:

0 OxOOOOOOOO --ra-------
1 OxOOOOOOOa --ra-ra----
2 OxOOOOOOOl --ra-ra-ra-

hrp other 25
hrp other 25
root other 5

Notice that for the message queue type of facility, QBYTES is the biggest
allowable size information that is returned; it has been lowered for ID 2 to
be 500. They were all initialized to the value of the system tunable
parameter that specifies the maximum allowed bytes on a queue,
MSGMNB.

For the shared memory type of facility, SEGSZ is the biggest allowable size
information returned. SEGSZ specifies the size in bytes of the shared
memory segment. The maximum is 8192 bytes (SHMMAX), and the
minimum is 1 (SHMMIN).

For the semaphore type of facility, NSEMS is the biggest allowable size
information that is returned. These values were determined when the
facilities were created. The nsems argument passed to semget()
determines these values. Remember that the system tunable parameter
SEMMSL determines the maximum semaphores in a set (25).

IP 7-7

COMMAND DESCRIPTIONS

The creator information is illustrated as follows:

$ipcs -c<CR>
IPC status from /dev/kmem as of Fri July 19 07:56:15 1985
T ID KEY MODE OWNER GROUP CREATOR CG ROUP
Message Queues:
q 0 OxOOOOOOOO --rw-------
q 1 OxOOOOOOOa --rw-rw----
q 2 OxOOOOOOOl --rw-rw-rw-
Shared Memory:

hrp other hrp other
hrp other hrp other
root other hr-p other

m 0 OxOOOOOOOO -Crw------- hrp other hrp other
m 1 OxOOOOOOOa -Crw-rw---- hrp other hrp other
m 2 OxOOOOOOOl -Crw-rw-rw- root other hrp other
Semaphores:

0 OxOOOOOOOO --ra-------
1 OxOOOOOOOa --ra-ra--
2 OxOOOOOOO 1 --ra-ra-ra-

hrp other hrp other
hrp other hrp other
root other hrp other

The results are the same for all facility types in this case. The column
headings CREATOR and CGROUP show the login name and group name of
the creator, respectively. The corresponding positive integer values for
these names can be determined by searching the /etc/passwd file.
Remember, the creator of a facility always remains the creator while the
owner and group can change_

IP 7-8

The outstanding usage option is as follows:

$ipcs -o<CR>
IPC status from / dev /kmem as of Fri July 19 07:58 13 1985
T ID KEY MODE OWNER GROUP CBYTES QNUM
Message Queues:
q 0 OxOOOOOOOO --rw------- hrp other 16 1
q 1 OxOOOOOOOa --rw-rw---- hrp other 0 0
q 2 OxOOOOOOOl --rw-rw-rw- root other 359 14
T ID KEY MODE OWNER GROUP NATTCH
Shared Memory:
m 0 OxOOOOOOOO D-rw-------
m 1 OxOOOOOOOa -Crw-rw----
m 2 OxOOOOOOOl D-r·w-rw-rw-
Semaphores:

0 OxOOOOOOOO --ra----- -
1 OxOOOOOOOa --ra-ra----
2 OxOOOOOOO 1 --ra-ra-ra-

hrp other·
hr·p other
root other

hrp other
hrp other
root other

1
0

5

COMMAND DESCRIPTIONS

For message queues, the CBYTES and QNUM column headings stand for
the total amount of bytes in core memory for all messages and the total
amount of messages, respectively, for each message queue. The sum of
all CBYTES is associated with the product of the amount of segments,
MSGSEG, and the size of the segments, MSGSSZ. QNUM is associated
with the total amount of bytes allowed for headers on each queue,
MSGMNB. The sum of all QNUMs is associated with the total amount of
message headers system wide, MSGTQL

For shared memory, NATTCH corresponds to the amount of processes
attached to the facility.

The outstanding usage option does not apply to the semaphore type
facility even though the short format status information is displayed for it.

IP 7-9

COMMAND DESCRIPTIONS

The process number option is illustrated as follows:

$ipcs -p<CR>
IPC status from /dev/kmem as of Fri July 19 08:12:53 1985
T ID KEY MODE OWNER GROUP LSPID LRPID
Message Queues:
q 0 OxOOOOOOOO --rw-------
q 1 OxOOOOOOOa --rw-rw----
q 2 OxOOOOOOOl --rw-rw-rw-
Shared Memory:
m 0 OxOOOOOOOO --rw-------
m 1 OxOOOOOOOa --rw-rw----
m 2 OxOOOOOOOl --rw-rw-rw-
Semaphores:

0 OxOOOOOOOO --ra-------
1 OxOOOOOOOa --ra-ra----
2 OxOOOOOOO 1 --ra-ra-ra-

hrp other 2275 2281
hrp other 0 0
root other 0 0

hrp other 158 2254
hrp other 2208 2254
root other 166 2252

hrp other
hrp other
root other

For message queues, the LSPID and LRPID column headings represent the
last process identifier that sent and received a message from the
associated message queue, respectively.

For shared memory, LSPID and LRPID represent the last process identifier
to attach and detach from the facility, respectively.

The process number option does not apply to the semaphore type facility
even though the short format status information is displayed for it.

IP 7-10

COMMAND DESCRIPTIONS

The time information option is illustrated as follows:

$ipcs -t<CR>
IPC status from /dev/kmem as of Fri July 19 08:15:57 1985
T ID KEY MODE OWNER GROUP STIME RTIME CTIME
Message Queues:
q 0 OxOOOOOOOO --rw------- hrp other 8:11:44 8:12:07 15:09:25
q 1 OxOOOOOOOa --rw-rw---- hrp other no-entry no-entry 15:09:53
q 2 OxOOOOOOOl --rw-rw-rw- root other no-entry no-entry 7:25:23
T ID KEY MODE OWNER GROUP ATIME DTIME CTIME
Shared Memory:
m 0 OxOOOOOOOO --rw------- hrp other 8:04:50 8:05:12 15:10:39
m 1 bxOOOOOOOa --rw-rw---- hrp other 8:05:00 8:05:29 7:54:41
m 2 OxOOOOOOOl --rw-rw-rw- root other 8:03:42 no-entry 7:26:30
T ID KEY MODE OWNER GROUP OTIME CTIME
Semaphores:
s 0 OxOOOOOOOO --ra------- hrp other 8:14:45 15:11:56
s 1 OxOOOOOOOa --ra-ra---- hrp other no-entry 15:12:14
s 2 OxOOOOOOOl --ra-ra-ra- root other no-entry 7:25:57

The message queue type of facility has three new column headings for this
option: STIME, RTIME, and CTIME. STIME represents the last time that a
process sent a message. RTIME represents the last time a process
received a message. CTIME represents the time of the facility creation or
the last time changed with a msgctl() system call.

The shared memory type of facility has three headings also. ATIME
represents the time of the last attach operation. DTIME represents the
time of the last detach operation. CTIME is the time of the facility creation
or the last time changed with a shmctl() system call.

The semaphore type of facility has two new column headings for this
option: OTIME, and CTIME. OTIME represents the last time that a process
performed operations on the associated semaphore set. CTIME represents
the time of the facility creation or the last time changed with a semctl()
system call.

IP 7-11

COMMAND DESCRIPTIONS

The display all options keyletter is illustrated as follows:

Note: The short status format information is not included in this
example so the pertinent information will fit on the page. On the
display screen, the status information will wrap around.

$ipcs -a<CR>
IPC status from /dev/kmem as of Fri July 19 08:17:09 1985
CREATOR CG ROUP CBYTES QNUM QBYTES LSPID LRPID STIME RTIME CTIME
Message Queues:
hrp other 0 0 16384 2275 2281 8:11:44 8:12:07 15:09:25
hrp other 0 0 16384 0 0 no-entry no-entry 15:09:53
hrp other 0 0 500 0 0 no-entry no-entry 7:25:23
CREATOR CG ROUP NATTCH SEGSZ CPID LPID ATIME DTIME CTIME
Shared Memory:
hrp other 0 8192 158 2254 8:04:50 8:05:12 15:10:39
hrp other 0 1024 2208 2254 8:05:00 8:05:29 7:54:41
hrp other 0 8192 166 2252 8:03:42 no-entry 7:26:30
CREATOR CGROUP NSEMS OTIME CTIME
Semaphores:
hrp other 25 8:14:45 15:11:56
hrp other 25 no-entry 15:12:14
hrp other 5 no-entry 7:25:57

The -C and -N options allow all the preceding options to be used on a
different corefile and namelist. These options are useful for performing
ipcs on a coredump file (-C) or when more than one version of the UNIX
System (-N) is installed. Since the status of facilities can change while ipcs
is running, these options allow more control.

IP 7-12

COMMAND DESCRIPTIONS

INTER-PROCESS COMMUNICATION REMOVE
The command used to remove IPC facilities is as follows:

ipcrm [options]

There are two ways to remove a selected IPC facility from the UNIX
System:

., Using the facility identifier (ID)

., Using the facility key (KEY).

The following sections illustrate how to remove IPC facilities using their IDs
and KEYs.

Removal by ID

The options that are available to remove a facility by its ID are as follows:

• -q msqid

• -m shmid

• -s semid

An example of its use is as follows:

r $ipcrm -q2 -sl -qO -ml<CR>

Note that the options can be repeated and placed on the command line in
any order. The result of this command line will be to remove message
queues 2 and 0, semaphore set 1, and shared memory segment 1.

IP 7-13

COMMAND DESCRIPTIONS

Removal by Key

Note: The key used for ipcrm must be a decimal value. The ipcs
command reports keys in hexadecimal, however.

The options available to remove a facility by its key use the same letters as
for removal by ID except that they are capital letters. They are as follows:

• -Q msgkey

• -M shmkey

• -S semkey

An example using these options follows:

r$ipcrm -QO -510 -Ql -Ml<CR>

The result of this command is to remove the message queue facilities with
keys of 0 and 1, to remove the semaphore facility with the key of a (10),
and to remove the shared memory segment with the key of 1.

IP 7-14

Appendix

IPC ERROR CODES

PAGE

MESSAGE ERROR CODES . A-2

Msgget() . A-2

Msgctl() . A-3

Msgop()... A-5

SEMAPHORE ERROR CODES . A-8

Semget() . A-8

Semctl(). A-10

Se mop() . A-12

SHARED MEMORY ERROR CODES. A-16

Shmget() . A-16

Shmctl() . A-18

Sh mop(). A-20

Appendix

IPC ERROR CODES

This appendix contains the error codes for the 382 Computer Inter
Process Communication (IPC) system calls. Positive integer error codes
are set in the external errno variable when a system call is unsuccessful.

An error has occurred when an IPC system call returns a -1 value. The
value of errno is only valid immediately following this occurrence.

Each error code number has a corresponding mnemonic name. In this
appendix, error code numbers and mnemonic names are categorized by
facility type and associated system calls. The error reasons as they apply
to IPC system calls are given.

IP A-1

Appendix

These error codes are the same as those on the intro(2) manual page
found in the AT&T 382 Computer Programmer Reference Manual. The
reasons for the errors given there are more general than the reasons given
in this appendix as they are used for all system calls.

MESSAGE ERROR CODES
The IPC error codes for the message type facility are contained in this
section.

Msgget()

Each possible error code number, along with its mnemonic and reason(s),
that the msgget() system call returns is contained in Figure A-1.

IP A-2

Appendix

IPC (MSGGET) ERROR CODES

NUMBER MNEMONIC REASON

2 ENO ENT A key not already in use is passed to
the system call, but the IPC_CREAT
flag is not set

13 EACCES Operation perm1ss1ons deny the
calling process.

17 EEXIST A key already in use is passed to the
system call with the IPC_CREAT and
IPC_EXCL flags set. This is the
exclusive create ability.

28 ENOS PC The system wide amount of message
queue identifiers would be exceeded
(MSGMNI).

Figure A-1. Msgget Error Codes

Msgctl()

Each possible error code number, along with its mnemonic and reason(s),
that the msgctl() system call returns is contained in Figure A-2.

IP A-3

Appendix

IPC (MSGCTL) ERROR CODES

NUMBER MNEMONIC REASON

The process does not have the
effective user identification of
OWNER/CREATOR (msg_perm.[c]uid)
of the facility or super-user when an
IPC_RMID or IPC_SET control
command is specified.

1 EPERM

The process does not have the
effective user identification of super-
user when using IPC_SET to increase
the number of bytes (msg_qbytes) for
the specified message queue.

13 EACCES Operation permissions deny the
calling process.

14 EFAULT The pointer (buf) passed to the
system call does not point to the
necessary data structure (msqid_ds)
in the user memory area.

The message queue identifier (msqid)
is invalid; the facility does not exist.

22 EINVAL

The value of the control command
(cmd) passed to the system call is not
equal to IPC_STAT, IPC_SET, or
IPC_RMID.

Figure A-2. Msgctl Error Codes

IP A-4

Appendix

Msgop()

Each possible error code number, along with its mnemonic and reason(s),
that the msgsnd() and msgrcv() system calls return is contained in Figures
A-3 and Figure A-4, respectively.

IPC (MSGSND) ERROR CODES

NUMBER MNEMONIC REASON

4 EINTR The process received a signal while it
was performing a " blocking message
operation" that was blocked.
(IPC_NOWAIT is not set.)

11 EA GAIN The process cannot send a message
because there are not enough bytes
on the message queue (msg_qbytes),
or the total amount of messages on
all message queues would be
exceeded (MSGTQL) while the
process is performing a " nonblocking
message operation." (IPC_NOWAIT
flag is set.)

13 EA CC ES Operation permissions deny the
calling process.

14 EFAULT The pointer (msgp) passed to the
system call does not point to the
necessary data structure (msgbuf) in
the user memory area. (The data
structure contains the message type
value and message text array.)

Figure A-3. Msgsnd Error Codes (Sheet 1 of 2)

IP A-5

Appendix

IPC (MSGSND) ERROR CODES

NUMBER MNEMONIC REASON

The message queue identifier (msqid)
is invalid; the facility does not exist.

22 El NV AL The value of the message type
(msgtyp) variable passed to the
system call is less than 1.

The message size (msgsz) value
passed to the system call is less than
zero or greater than the system
imposed limit, MSG MAX, for
maximum message size.

36 EIDRM The facility that the system call is
performing a "blocking message
operation" on is removed while the
process is blocked. (IPC_NOWAIT is
not set.)

4 EINTR The process received a signal while it
was performing a " blocking message
operation" that was blocked.
(IPC_NOWAIT is not set.)

Figure A-3. Msgsnd Error Codes (Sheet 2 of 2)

IP A-6

Appendix

!PC (MSGRCV) ERROR CODES

NUMBER MNEMONIC REASON

7 E2BIG The value passed to the system call
for the message size (msgsz) to be
received is less than the message size
and the IPC_NOERROR flag is not set.

13 EACCES Operation permissions deny the
calling process.

14 EFAUL T The pointer (msgp) passed to the
system call does not point to the
necessary data structure (msgbuf) in
the user memory area. (The data
structure contains the message type
value and message text array.)

The message queue identifier (msqid)
is invalid; the facility does not exist.

22 El NV AL

The value of the message size
(msgsz) variable passed to the system
call is less than zero.

35 ENOMSG The specified message queue does
not contain the desired message type
(msgtyp), and the IPC_NOWAIT flag is
set (msgflg).

Figure A-4. Msgrcv Error Codes

IP A-7

Appendix

SEMAPHORE ERROR CODES
The IPC error codes for the semaphore type facility are contained in this
section.

Semget()

Each possible error code number, along with its mnemonic and reason(s),
that the semget() system call returns is contained in Figure A-5.

IP A-8

Appendix

IPC (SEMGET) ERROR CODES

NUMBER MNEMON!C REASON

2 ENO ENT A key not already in use is passed to
the system call, but the IPC_CREAT
flag is not set.

13 EACCES Operation permissions deny the
calling process.

17 EEXIST A key already in use is passed to the
system call with the IPC_CREAT and
IPC_EXCL flags set. This is the
exclusive create ability.

The number of semaphores (nsems)
to be in the set is less than or equal
to zero or greater than the system
tunable parameter SEMMSL.

22 EINVAL

The value passed to the system call
for the number of semaphores
(nsems) is greater than what is in the
set.

The system call would cause the
maximum amount of semaphore
identifiers (sets) system wide to be
exceeded (SEMMNI).

28 ENOS PC

The system call would cause the
maximum amount of semaphores in
all sets to be exceeded (SEMNS).

Figure A-5" Semget Error Codes

IP A-9

Appendix

Semctl()

Each possible error code number, along with its mnemonic and reason(s),
that the semctl() system call returns is contained in Figure A-6.

IP A-10

Appendix

IPC (SEMCTL) ERROR CODES

NUMBER MNEMONIC REASON

1 EPERM The process does not have the
effective user identification of
OWNER/CREATOR (sem_perm.[c]uid)
of the facility or super-user when an
IPC_RMID or IPC_SET control
command is specified.

13 EA CC ES Operation permissions deny the
calling process.

14 EFAULT The pointer (arg.buf) passed to the
system call does not point to the
necessary union data structure
(semun) .in the user metnory area.

The semaphore set identifier (semid)
is invalid; the facility does not exist.

22 EINVAL The semaphore number (0 through
24, semnum) is less than zero or
greater than the number of
semaphores in the set (sem_nsems).

The value of the control command
(cmd) passed to the system call is
invalid.

34 ERAN GE When setting a semaphore(s) value
(SETVAL, SET ALL), the system
imposed maximum is exceeded
(SEMVMX).

Figure A-6. Semctl Error Codes

IP A-11

Appendix

Se mop()

Each possible error code number, along with its mnemonic and reason(s),
that the semop() system call returns is contained in Figure A-7.

IPC (SEMOP) ERROR CODES

NUMBER MNEMONIC REASON

4 EINTR The process received a signal while it
was performing a "blocking
semaphore operation" that was
blocked. (IPC_NOWAIT is not set.)

7 E2BIG The value passed to the system call
for the number of semaphore
operations (nsops) to be performed
exceeds the system tunable
parameter SEMOPM.

11 EAGAIN The process would be blocked from
performing its semaphore operation,
but the IPC_NOWAIT flag is set.

13 EACCES Operation permissions deny the
calling process.

Figure A-7. Semop Error Codes (Sheet 1 of 3)

IP A-12

Appendix

IPC (SEMOP) ERROR CODES

NUMBER MNEMONIC REASON

14 EFAULT The pointer (sops) passed to the
system call does not point to an array
of data structures (sembuf) in the
user memory area. (Each data
structure in the array contains the
semaphore number, the operation to
be performed, and the control
command flags.)

The semaphore set identifier (semid)
is invalid; the facility does not exist.

22 EINVAL

The maximum amount of undo entries
per system call (SEMUME) system
tunable parameter would be
exceeded.

27 EFBIG The semaphore number (sem_num)
for a data structure in the array is
less than zero or greater than or
equal to the total semaphores in the
set.

Figure A-7" Semop Error Codes (Sheet 2 of 3)

IP A-13

Appendix

IPC (SEMOP) ERROR CODES

NUMBER MNEMONIC REASON

28 ENOS PC The maximum amount of undo entries
system wide (SEMMNU system
tunable parameter) would be
exceeded.

The result of the operation would
cause the semaphore value to exceed
the maximum value for a semaphore
(SEMVMX).

34 ERAN GE

The result of the operation would
cause the maximum undo data
structure value for semaphore adjust
(SEMAEM) to be exceeded.

36 EIDRM The facility that the system call is
performing a "blocking message
operation" on is removed while the
process is blocked. (IPC_NOWAIT is
not set)

Figure A-7" Semop Error Codes (Sheet 3 of 3)

IP A-15

Appendix

SHARED MEMORY ERROR CODES
The IPC error codes for the shared memory type facility are contained in
this section.

Shmget()

Each possible error code number, along with its mnemonic and reason(s),
that the shmget() system call returns is contained in Figure A-8.

IP A-16

Appendix

IPC (SHMGET) ERROR CODES

NUMBER MNEMONIC REASON

2 ENOENT A key not already in use is passed to
the system call, but the IPC_CREAT
flag is not set.

12 ENOMEM There is not enough physical memory
to fill the request.

13 EA CC ES Operation permissions deny the
calling process.

17 EEXIST A key already in use is passed to the
system call with the IPC_CREAT and
IPC_EXCL flags set. This is the
exclusive create ability.

The size of the shared memory
segment passed to the system call is
invalid. The size must be greater than
or equal to l or less than or equal to
8192. See SHMMIN and SHMMAX.

22 EINVAL

An identifier exists for the facility
(key) but the shared memory
segment size is less than the size (not
zero) passed to the system call.

28 ENOSPC The system wide amount of shared
memory segment identifiers would be
exceeded (SHMMNI)_

Figure A-R Shmget Error Codes

IP A-17

Appendix

Shmctl()

Each possible error code number, along with its mnemonic and reason(s),
that the shmctl() system call returns is contained in Figure A-9.

IPC (SHMCTL) ERROR CODES

NUMBER MNEMONIC REASON

The process does not have the
effective user identification of
OWNER/CREATOR (shm_perm.[c]uid)
of the facility or super-user when an
IPC_RMID or IPC_SET control
command is specified.

1 EPERM

The process does not have the
effective user identification of super-
user when using the SHM_LOCK or
SHM_UNLOCK commands.

13 EA CC ES Operation permissions deny the
calling process.

Figure A-9. Shmctl Error Codes (Sheet 1 of 2)

IP A-18

Appendix

IPC (SHMCTL) ERROR CODES

NUMBER MNEMONIC REASON

14 EFAUL T The pointer (buf) passed to the
system call does not point to the
necessary data structure (shmid_ds)
in the user memory area.

The shared memory identifier (shmid)
is invalid; the facility does not exist

22 El NV AL

The value of the control command
(cmd) passed to the system call is not
equal to IPC_STAT, IPC_SET,
IPC_RMID, SHM_LOCK, or
SHM_UNLOCK.

The command is SHM_UNLOCK but
the specified shared memory
segment is not locked in memory.

Figure A-9. Shmctl Error Codes (Sheet 2 of 2)

IP A-19

Appendix

Sh mop(}

Each possible error code number, along with its mnemonic and reason(s),
that the shmat() and shmdt() system calls return is contained in Figures
A-10 and Figure A-11, respectively.

!PC (SHMAT) ERROR CODES

NUMBER MNEMONIC REASON

12 EN OM EM There is not enough in core memory
to accommodate the shared memory
segment.

13 EACCES Operation permissions deny the
calling process.

The shared memory identifier (shmid)
is invalid; the facility does not exist.

22 El NV AL The shared memory address
(shmaddr) passed to the system call
is not equal to zero and [shmaddr-
(shmaddr modulus SHMLBA)) is an
illegal address.

The shared memory address
(shmaddr) passed to the system call
is not equal to zero, the SHM_RND
flag is false, and the address is illegal.

Figure A-10" Shmat Error Codes

IP A-20

Appendix

IPC (SHMDT) ERROR CODES

NUMBER MNEMONIC REASON

13 EACCES Operation permissions deny the
calling process.

The system call detaches the shared
memory segment located at the
specified address (shmaddr) from the
process data segment.

22 El NV AL

The address (shmaddr) passed to the
system call is not the start of a
shared memory segment.

24 EM FILE The number of shared memory
segments attached to the calling
process would exceed the number
allowed, SHMSEG.

Figure A-lL Shmdt Error Codes

IP A-21

