
Replace this

page with the

EDITING

tab separator.

AT&T

AT&T 382 Computer
UNIXTM System V Release 2"0
Editing Utilities Guide

CONTENTS

Chapter 1. INTRODUCTION

Chapter 2. EDIT EDITOR

Chapter 3. EX EDITOR

Chapter 4. VISUAL EDITOR (vi)

Chapter 1

INTRODUCTION

GENERAL
This guide describes the command format and use of the Editing Utilities.
The commands and procedures described in this guide are for use by all
users.

The UNIX* System contains a file system that is used to store user
information. Changing files by adding or deleting information can only be
done using UNIX System Editor Commands. The editing utilities give the
user an easy way to create, read, and change information in these files.

The edit, ex, and vi editors are based on a consistent set of text editor
commands. These commands serve as the fundamental building blocks for
increasing text editing proficiency.

* Trademark of AT&T

ED 1-1

INTRODUCTION

The editing utilities allows the user to do two types of editing:

• Basic editing allows the casual user to use basic commands to do
text editing .

., Visual editing allows the user to view several lines of the file at a
time and use screen oriented display editing based on basic editor
commands.

The editing utilities consists of three text editors designed to meet the
needs of the novice user, while allowing the experienced user to use more
complex and powerful editing tools. These editors are actually three
versions of the ex editor.

The ex editor is an interactive editor that normally accesses only one line
of the file at a time. Many of the ex commands are similar to the ed editor
commands. The advantage of using the ex editor is the large amount of
options available in it.

The edit editor is the simplified version of ex editor and is normally used by
novice users. Messages displayed on the screen after an invalid command
are more descriptive than with ex or vi. Edit contains fewer commands
and most beginners should pick it up quickly. All commands that execute
in the edit editor will also execute in the ex editor.

The vi editor is actually the visual mode of editing within the ex editor. Vi
is the most complex of the three editors, because there are so many
commands that do the same function. However, it is the easiest to use
once you understand the basic movement and editing commands. With
the vi editor, you can view several lines of the file at one time, and you can
move the cursor to any character in the file. Most ex commands can be
invoked separately from vi by first entering a ":" and then the ex
command. To execute the command, depress the carriage return.
Experienced users often mix their use of ex command mode and vi
command mode to speed the work they are doing.

ED 1-2

INTRODUCTION

RESTRICTIONS
The limits of the editors are as follows:

• 1024 characters per line

• 256 characters per global command list

• 128 characters per file name

• 100 characters per shell escape command

• 63 characters in a string valued option

• 30 characters in a tag name

• 128 characters in the previous inserted or deleted text in (open) or
(visual) mode

• 250000 lines in a file.

If you try to use these editors on a file and you receive a message stating
that the file is too large, you can either split the file into smaller files or use
a different editor. To split the file, you can use the split or csplit
commands contained in the AT&T 382 Computer Directory and File
Management Utilities. If you want to use another editor, you can use the
bfs editor (big file scanner) contained in the AT&T 382 Computer Directory
and File Management Utilities or the sed (stream) editor contained in the
Essential Utilities.

ED 1-3

INTRODUCTION

SPECIAL PURPOSE KEYS
There are several special purpose keys that are used by the vi editor.
These keys are important and will be used throughout the document.
Their descriptions are as follows:

ESCAPE This key is sometimes labeled <ESC> or <ALT>. It is
normally located in the upper left corner of your keyboard.
When you are in the editor, depressing the <ESC> key
causes the editor to ring the bell indicating that it is in an
inactive state. On smart terminals where it is possible, the
editor will quietly flash the screen rather than ring the bell.
Partially formed commands are canceled with the <ESC>
key. When you insert text in the file, text insertion is ended
with the <ESC> key. This is a harmless key to use, so you
can depress it whenever you are not certain what state the
editor is in.

CR The <CR> key refers to the RETURN key and is used to start
execution of certain commands. It is normally located on
the right side of the keyboard.

DELETE This key is sometimes labeled , <RUBOUT>, or
<BREAK>. It generates an interrupt that tells the editor to
stop what it is doing. This is a forceful way of making the
editor return to the inactive state if you do not know or like
what is going on.

CONTROL This key is often labeled <CTRL>. It is used with other keys
to do various functions. It will be represented in this
document by the <CTRL> symbol. The associated key will
be represented by an uppercase letter. To execute a control
function, both keys must be depressed at the same time. An
example of this will be represented as follows:

ED 1-4

<CTRL cf>

The function illustrated will cause the screen to scroll down
when in the vi editor.

INTRODUCTION

HOW TO INTERPRET COMMANDS
The following conventions Gire used to show your terminal input and the
system output in screens and command lines:

This style of type is used to show system generated
responses displayed on your screen.

This style of bold type is used to show inputs
entered from your keyboard that are displayed on your
screen.

These bracket symbols, < > identify inputs from the
keyboard that are not displayed on your screen, such
as: <CR> carriage return, <CTRL cl> control d, <ESC g>
escape g, passwords, and tabs.

This style of ita,lfr type is used for notes tha,t
prov1:de you, wi:th a,dditiona,l inform,a,tion.

Refer to the AT&T 382 Computer User Reference Manual for UNIX System
V manual pages supporting the commands described in this guide.

ED 1-5

INTRODUCTION

GUIDE ORGANIZATION
This guide is structured so you can easily find desired information without
having to read the entire text. The remainder of this document is
organized as follows:

• Chapter 2, "EDIT EDITOR," provides instructions on how to use the
edit editor .

• Chapter 3, "EX EDITOR," provides instructions on how to use the ex
editor.

• Chapter 4, "VI EDITOR," provides instructions on how to use the
visual (vi) editor.

ED 1-6

Chapter 2

EDIT EDITOR

PAGE

INTRODUCTION. 2-1

CURRENT LINE DEFINITION . 2-2

GETTING STARTED . 2-2

Creating a New File . 2-3

Entering Text. 2-3

leaving the Input Mode. 2-4

Writing the Buffer Into the File . 2-4

Quitting the Editor . • 2-5

Editing an Existing File . • 2-6

DISPLAYING LINES IN THE FILE . 2-7

MOVING AROUND IN THE FILE . • 2-8

Basic Movement Commands . • 2-8

Forward and Backward Search Commands . 2-9

Repeating Searches . 2-10

Global Searches . • 2-10

Special Search Characters. 2-11

MAKING CORRECTIONS TO THE FILE . • 2-13

Appending Text . • 2-13

Inserting Text . 2-14

Changing Text . 2-14

Deleting Text . 2-15

Substituting Text. • 2-16

Special Substitution Characters . 2-17

Global Substitutes . 2-17

Copying Text . 2-19

Moving Text. 2-20

FILE MANIPULATION. 2-21

Writing the Buffer to Another File. • 2-21

Reading Another File Into the Buffer . 2-21

Obtaining Information About the Buffer . 2-22

ISSUING UNIX SYSTEM COMMANDS . 2-23

RECOVERING LOST TEXT . 2-24

Undoing the last Command • . 2-24

Recovering lost Files. 2-24

Chapter 2

EDIT EDITOR

INTRODUCTION
This chapter describes the edit editor used on the 382 Computer. Edit is a
simplified version of the ex editor, and it is recommended for new or
casual users. Messages displayed on the screen after an invalid command
are more descriptive than with the other editors.

When using the edit editor, all commands must be entered on a command
line. The command line is identified by a colon ":" on a line by itself.
Commands entered on the command line can affect the line you are on in
the file (current line), a specified set of lines, or the entire file.

Most edit editor command names are English words that can be
abbreviated. When an abbreviation conflict is possible, the more
commonly used command has the shorter abbreviation. For example,
since substitute is abbreviated by s, set is abbreviated by se.

ED 2-1

EDIT EDITOR

The edit editor does not directly change the file being edited. Instead, it
works on a copy of the file stored in a temporary memory location called
the buffer. The edited file is not changed until you write the changes from
the buffer to the edited file.

This editor description assumes that you know how to log on to the
computer. If you do not, refer to the AT&T 382 Computer
Owner /Operator Manual.

For additional information on the edit editor, refer to the AT&T 382
Computer User Reference Manual for UNIX System V manual pages.

CURRENT LINE DEFINITION
The term "current line" is referred to throughout this chapter. The
current line is the line in the file you are now on. Each time you move to a
different line in the file, that line becomes the current line. Whenever a
command is given, the current line is used as a reference point. Any
command that is not directed at any specific line is executed against the
current line.

GETTING STARTED
The edit editor can be used to create a new file or to change an existing
file. To execute edit you must be logged onto the computer. After the $
or # prompt is displayed, you can begin working with the edit editor.

ED 2-2

EDIT EDITOR

Creating a New File

To create a new file, you will need to type edit followed by a space and
then the name of the file you wish to create. Execute the command by
depressing the carriage return <CR>. For example:

$ edit filename<CR>
"filename" [New file)

If you did not enter the command correctly, you will receive a usage
message indicating an incorrect command syntax was used. You will need
to re-enter the command correctly.

If you entered the edit command without a filename, the editor will still
create a new file. However, when you decide to write the file into memory
you will be prompted for a filename. See "Writing the Buffer Into the File."

When the edit command is executed, a colon ":" is displayed. The colon
identifies the command line and indicates that the edit editor is ready to
accept your input commands.

Entering Text

The edit editor commands have two forms: a word that describes what
the command does and an abbreviation of the word. You can use either
form. Many beginners find the full command name easier to remember,
but after some practice use the abbreviation. The command to input text
is append, that may be abbreviated a. Enter append after the colon on the
command line and then depress the carriage return.

:append<CR> or :a<CR>

ED 2-3

EDIT EDITOR

Edit is now in the text input mode (append mode). The colon is no longer
displayed on the command line, and this is your signal that you may begin
entering lines of text. Anything that you type on your terminal, except a
period on a line by itself, is entered into the buffer. If the message:

Not an editor command

is displayed, check to see what you entered incorrectly and then enter the
command again.

Note: The computer considers a blank space to be a character.
Be careful not to input blanks into lines of text unless you mean for
them to be there.

Leaving the Input Mode

To leave the input mode, simply enter a period "." on a line by itself and
depress the carriage return. This is the signal that you want to stop
inputting text. After receiving a period on a line by itself, edit will re-enter
the command mode and display the command line prompt ":".

The text just entered is now stored only in the buffer. If you wish, you can
make changes to the text Making changes is discussed throughout the
remainder of this chapter.

Writing the Buffer Into the File

The buffer is only temporary storage for the file. Now that you have
entered text in the buffer, you need to write the buffer to the file. This is
the only way to save new text from one editing session to another. To
write the contents of the buffer to the file, use the write command
(abbreviated w).

:wri te<CR> or :w<CR>

Edit will then copy the buffer into the file. If the file does not yet exist, a
new file will be created and a message will be given indicating that it is a

ED 2-4

EDIT EDITOR

new file. The newly created file will be given the name specified when you
entered the editor, "filename". To confirm that the file has been
successfully written, the editor will repeat the filename and give the
number of lines and the total number of characters in the file. The buffer
remains unchanged, so you can make further changes if you want to.

Edit must have a filename to use before it can write a file. Therefore, if
you did not specify the name of the file when you began the editing
session, edit will issue the message:

No current filename

when you give the write command. If this happens, simply re-enter the
write command and specify the filename. Here you would enter:

:write filename<CR> or :w filename<CR>

This will write the buffer to a file named "filename".

Quitting the Editor

When you have finished editing the file and you are ready to return to the
UNIX System, enter the quit command (abbreviated q).

:qui t<CR> or :q<CR>

This returns you to the UN IX System unless you forget to write the buffer
to the file. The system will issue a message reminding you to write the file.
A quick way to write and quit the edit editor is with the single command:

:wq<CR>

If you do not want to save the changes, enter the command:

:q!<CR>

This will quit edit and leave the file unchanged from the last write
command.

ED 2-5

EDIT EDITOR

Editing an Existing File

To edit the contents of an existing file named "filel," you begin by issuing
the command:

$ edit filel<CR>
"filel" 150 lines, 4285 characters

This places a copy of the file in a buffer, and displays how many lines and
characters are in the file. A colon ":" will then be displayed at the
command line.

Note: If you do not give a filename, edit will create a new file
instead of editing the file you want.

After the file description and the colon ":" are displayed, enter a 1 on the
command line followed by a carriage return. This will make the first line in
the file the current line. The editing process is described throughout the
remainder of this chapter.

The procedure for saving changes to the buffer is described in "Writing the
Buffer Into the File." The procedure for quitting the editor is described in
"Quitting the Editor."

ED 2-6

EDIT EDITOR

DISPLAYING LINES IN THE FILE
When editing a file, you should always display the current line before
making changes. This is important since most commands are executed on
the current line. After making any changes, display the lines again to make
sure you are happy with the changes. If you do not like the changes, you
can use the undo command described in "RECOVERING LOST TEXT."

To display a line, all you need to do is depress the carriage return. This
will display the current line in the editor. Each time you depress the
carriage return, the next line is displayed, and it becomes the current line.

If you want to display the entire contents of the buffer, enter the
command:

:1, $print< CR> or :1, $p<CR>

The "1" stands for line l of the buffer, the "$" is a special symbol
designating the last line of the buffer, and the "p" is the command to print
from line 1 to the end of the buffer. After displaying the buffer, the last
line becomes the current line.

Occasionally, characters that do not appear on your terminal screen are
contained in a line of text. These characters are normally called "control
characters" because the control key was depressed when they were
entered. To display all the characters in a line, including control
characters, you can use the list command instead of the print command.
For example:

:5, 20list<CR> or :5, 20l<CR>

will display any character contained in that line regardless of what type it
is. The list command executes exactly the same way the print command
does.

ED 2-7

EDIT EDITOR

MOVING AROUND IN THE FILE

Basic Movement Commands

Edit accepts "." and "+" as movement commands. As you would expect,
" moves the current line backwards and + moves the current line forwards.
With these commands you can move to adjacent lines in the buffer.

You can move more than one line at a time by using numbers with the +
and " commands. For example:

:-5<CR>

moves the current line backwards 5 lines from its current position and
displays the line. Likewise,

:+25<CR>

moves the current line forwards 25 lines from its current position and
displays the line. This makes it much easier to move to the line you want
to work on. Another useful command is:

:$<CR>

that moves the current line to the last line in the buffer and displays the
line.

Each line in the file has a line number associated with it, although they are
not displayed. Edit allows you to move across large areas of the buffer by
entering the line number and a carriage return. For example:

:43<CR>

makes 43 the current line and displays the line.

ED 2·8

EDIT EDITOR

Forward and Backward Search Commands

If you are not sure where a line you want to change is, but you know an
exact pattern of characters on the line, you can search for that pattern.
The pattern must be on one line. The command line interprets the
character "/" as meaning "search for this pattern." The search
command "/" searches from your present position forward through the
buffer for the first occurrence of the pattern. For example, if you know
the pattern "learning to use edit" is somewhere in the buffer, you can find
it by executing the command:

:/learning to use edi t/p<CR>

This will make the line containing this pattern the current line and display
the line. If you leave the "p" off the command, edit will still search for the
pattern and make it the current line, but will not display the line. Always
include the p as part of the search command. The pattern may be used
more than once in the buffer.

If you execute a search, but edit cannot find the pattern, the message:

Pattern not.found

will be displayed. This means the pattern you searched for is not in the
buffer and the current line does not change. Check to see if you correctly
entered the search command or if it included any characters with special
meanings. (See Special Search Characters.)

The character "?" also executes a search when used on the command
line. It works the same as the "/" search character, except that it
searches backwards from your present position in the buffer.

ED 2-9

EDIT EDITOR

Repeating Searches

When searching for a pattern, the first occurrence is not the one that you
are actually looking for. You could repeat the search command, but there
is a much easier way. The editor remembers the last search pattern
entered. If you enter the command:

://<CR>

a forward search will look for the remembered pattern. The backwards
search command ?? will also repeat searches. The repeated search does
not have to be the same type as the original search.

Global Searches

The edit editor also allows you to do global searches on the file. A global
search is used to find all the occurrences of a specified pattern in a file.
This type of search is useful when scanning for a pattern that occurs in
several places. The two types of global searches that can be executed use
the g and v commands.

The global search that uses the g command locates all the lines that
contain a specified pattern. An example would be:

:g/sample pattern/p<CR>

This will search for and display all lines containing the words
"sample pattern". The current line will be the last line displayed.

The global search that uses the v command locates all lines that do not
contain a specified pattern. An example would be:

:v/sample pattern/p<CR>

This will search for and display all lines that do not contain the words
"sample pattern". The current line will be the last line displayed.

ED 2-10

EDIT EDITOR

Special Search Characters

Several characters have special meaning when used in specifying searches.
These characters will work with all types of searches. They can be used
to: match repetitive strings of characters, turn off special meanings of
characters, or denote the placement of characters in the line. These
characters and their use are explained below:

*

The period matches any single character except the newline
(carriage return) character. For example, if a line in your file
contains the words "edit editor", or a pattern with any other
character between "edit edit" and "r", you could find the line by
entering the command:

:/f(BB/edit edit.r/<CR>

The asterisk matches any repeated characters except the first ., \,
[, or - in that group. For example, if a line in your file contains the
pattern "the xxxx editor", you could search for the line by
entering the command:

:/the x* editor/<CR>

[] Brackets are used to enclose a variable set of characters. For
example, if a line in your file contains the patterns"file2", "file3",
and "file4", you could search for the first occurrence of these
patterns by entering the command:

:/file[2-4]/<CR>

$ The dollar sign is interpreted by the editor to mean
"end of the line". It is used to identify patterns that occur at the
end of a line. For example, if a line in your file ends in the pattern
"last character" you could find the line by entering the command:

:/last character$/<CR>

The circumflex (caret) works like "$" except it looks for the
pattern at the beginning of the line. For example, if a line in your

ED 2-11

EDIT EDITOR

file begins with the pattern "First character" and you could find
the line by entering the command:

:/ First character/<CR>

\ The backslash is used to cancel the meaning of the special
characters. It should be placed immediately before the character
it is to nullify. For example, if a line in your file contains the
pattern "This is a $" you could search for it by entering the
command:

:/This is a \$/<CR>

The character $ will be searched for instead of interpreting it as
meaning "end of the line."

To search for the characters ., *, \, [,], $,or , you must precede the
characters with a backslash. You can also combine these special
characters in one search command. For example, .* can be used to
search for any string of characters.

ED 2-12

EDIT EDITOR

MAKING CORRECTIONS TO THE FILE
There are several edit commands you can use to make corrections to a
file. These commands are: append, input, delete, substitute, change,
move, and copy.

Appending Text

The append command (abbreviated a) is used to input text in the buffer
after the current line. It places edit in the text input mode. While in this
mode, the colon prompt on the command line is not displayed. Anything
you type, except a period on a line by itself, will be entered on lines of text
in the buffer. To leave the text input mode, simply enter a period "." on a
line by itself and depress the carriage return. Edit will then return to the
command mode and display the command line prompt ":".

As previously discussed in "GETTING STARTED," the append command
can be used to input text when the buffer is empty. The append command
can also be used to input text anywhere in an existing file. The following
steps outline how to append text to the current line:

1. Move to the place in the buffer where you want to append text. This
can be done using movement commands or a search command.
The line you select becomes the current line.

2. Enter the command:

:append<CR> or :a<CR>

The colon prompt will no longer be displayed on the command line.

3. Enter any text you like using as many lines as you like.

4. To leave the text input mode and return to the command mode,
enter a period "." on a line by itself and depress the carriage return.

5. The command line prompt ":" will reappear. This indicates that you
may enter another edit command.

ED 2-13

EDIT EDITOR

Inserting Text

The insert command (abbreviated i) works similarly to the append
command. The only difference is that text is inserted before instead of
after the current line. To insert text in the buffer, enter:

:insert<CR> or :i<CR>

on the command line. You may now begin inserting text To return to the
command mode, simply enter a period "." on a line by itself and depress
the carriage return. The command prompt will be displayed on the screen.

Changing Text

There may be instances when you want to delete one or more lines and
insert new text in their place. This can be done easily with the change
command (abbreviated c). The change command instructs edit to delete
specified lines and then switch to text input mode to accept text to replace
the lines. The number of lines you insert does not have to match the
number deleted. For example, if you want to change the current line,
enter:

:change<CR> or :c<CR>

The colon prompt will no longer be displayed. You may begin inserting as
many lines of text as you want. To return to the command mode, enter a
period "." on a line by itself and depress the carriage return.

If you want to replace lines 25 through 34 with some new text, you would
enter:

:25, 34c<CR>

Edit will respond with:

10 lines changed

The colon prompt will no longer be displayed. The procedure for entering
text and for returning to the command mode is the same as for changing

ED 2-14

EDIT EDITOR

one line. By default, if five or fewer lines are changed, edit will not display
the number of lines being changed. (See report option given in Chapter 4.)

Deleting Text

The delete command (abbreviated d) is an easy command to execute.
This command can also be disastrous if you are not careful when using it.
To delete the current line, all you have to do is enter:

:delete<CR> or :d<CR>

This will delete the line and display the next line which becomes the
current line.

Note: You can use the undo command "u" to retrieve deleted
lines as long as you have not executed any other commands that
changed the buffer. (See "Recovering Lost Text.")

If you know the line number of a line you want to delete, you can enter the
line number followed by delete or d. For example:

:15d<CR>

will delete line 15. You can also delete a range of lines by using commands
such as 2,3d to delete lines 2 and 3, or 2,8d to delete lines 2 through 8.

When one or more lines are deleted, the numbers of all following lines are
changed. When deleting different groups of lines from a file, it is easier to
start with the higher line numbers and work toward the lower line
numbers.

If you do not know the line number, you can search for the line and then
delete it. Searching for text is discussed in "Forward and Backward
Search Commands."

ED 2-15

EDIT EDITOR

Substituting Text

To change any characters on an existing line without replacing the whole
line, you can use the substitute command (abbreviated s). The substitute
command searches for a specified pattern and then changes the pattern
accordingly. The substitute command normally executes on the current
line.

Note: The global option can be used with the substitute command,
but you must be careful. (See "Global Substitutes.")

Using the substitute command can sometimes be confusing to a novice
user. However, if you think about the parts of the command, it is really
easy. The format of the command is:

: s I old-pattern I new-pattern Ip

The "s" is the substitute command. The "/old-pattern/" tells edit to
search the current line for the pattern. The "new-pattern/" tells edit
what to substitute for "old-pattern" and "p" tells edit to display the new
form of the current line. For example, if the current line is
"Substituting is very confusing." and we want to change it to
"Substituting is very easy.", we would use the command:

:s I confusing I easy /p<CR>-

If you want to delete the word "very" from the new sentence, you could
use the substitute command and not put a pattern where the new pattern
should be.

:s/very //p<CR>-

Your new sentence would be "Substituting is easy." Notice that a blank
space was also removed because edit considers it a character.

ED 2-16

EDIT EDITOR

Special Substitution Characters

All the special search characters given in "Special Search Characters" are
also special characters in the search portion of substitution commands.
However, there are two characters that have special meaning when used
in the replacement portion of substitute commands. These characters are
& and-.

& The ampersand (&) character is used to save you from having to
repeat the search portion of the substitute command when you are
only adding characters. For example, if a line in your file contains
the pattern "The game is tonight" and you wanted to change it to
"The game is tonight at eight" you could use the following
substitute command:

:s/The game is tonight/& at eight/p<CR>

The tilde C) character works similar to the ampersand (&)
character, except that it also repeats previous substitution
commands.

To turn off the special meaning of the & and the - in the substitution
command, it must be preceded by a backslash (\). These special
characters will work with all types of substitution commands.

Global Substitutes

A global substitute is similar to a regular substitute, except that instead of
only working on the current line it works on every line in the buffer.
Before trying to understand global substitutes, be sure you understand
regular substitutes. (See "Substituting Text.")

ED 2-17

EDIT EDITOR

You must be careful when using global substitutes. There may be an
occasion when you want to use a global substitute, but the pattern you
want to search for may not be unique. If you think a line you want left
alone might change, first do a global search and display all the lines. You
may be able to find a pattern that is unique only to what you want
changed. The format of a global substitute is as follows:

: g I old-pattern Is I old-pattern I new-pattern I gp

In this example, the "g/ old-pattern/" instructs edit to search for every
occurrence of "old-pattern". The "s/ old-pattern/ new-pattern/" instructs
edit to substitute "new-pattern" for every occurrence of "old-pattern".
The "g" after the substitute command instructs edit to execute the
substitution for every occurrence on each line if "old-pattern" is on a line
more than one time. The "p" tells edit to display all the lines where
substitutions were made.

Note: The "g" at the end of the command should be omitted if
you only want the first occurrence of the pattern on each line to
change.

When using a global substitute command where the pattern you search for
is the same as the pattern you want to change, you can use an
abbreviated version of the command. For example, the command:

: g I old-pattern Is// new-pattern I gp

will execute the same as the previous example. This saves you from
having to input the pattern (old-pattern) in twice.

ED 2-18

EDIT EDITOR

Edit also allows you to execute a global substitute within a range of lines.
For example:

:35, 75g/ o/d-pattern/s/ /new-pattern/gp<CR>

would only do the substitutions from line 35 to line 75. All other lines
would not be affected. This option allows you a much greater flexibility
when using global substitutes.

If you decide you do not like what happened when you used the global
substitute you have two choices. You can either try the undo command or
you can quit the editor without writing the buffer into the file. (See
"RECOVERING LOST TEXT")

If you are not sure whether you want to keep the changes, you can write
the buffer to a new file, and then either use the undo command or quit
without writing. This way you can review both files before deciding which
one to keep. (See "Writing the Buffer to Another File.")

Copying Text

Edit allows you to create a copy of specified lines in the buffer and insert
them where you want by using the copy command. The original lines will
remain unchanged. The copy command has the same format as the move
command. For example:

:14, 19copy<CR> or :14, 19co<CR>

would create a copy of lines 14 through 19 and place it at the end of the
buffer. The original lines 14 through 19 will stay the same. When the
command has finished executing, the lines are automatically renumbered.

Note: The abbreviation for the copy command is co. The c
command is to change lines of text.

ED 2-19

EDIT EDITOR

Moving Text

Edit allows you to move lines of text from one location to another in the
buffer by using the move command (abbreviated m). You are allowed to
move as many lines as you want. For example,

:2m15<CR>

would move line 2 to the position after line 15, and then renumber the
lines. If you wanted to move a block of text, you could use the command:

:2, 20m25<CR>

This would move lines 2 through 20 to the position after line 25.

When using the move command, you can specify the end of the buffer by
using the $ character instead of the line number. This is often much
easier than looking to see what is the last line number. Two examples of
using the $ in a move command are:

:15, $mlO<CR> and :1, 20m$<CR>

The first example would move lines 15 through the end of the buffer to the
position after line 10.

The second example would move lines 1 through 20 to the end of the
buffer.

ED 2-20

EDIT EDITOR

FILE MANIPULATION

Writing the Buffer to Another File

The write command (abbreviated w) allows you to write all or part of the
buffer to a new file. This allows you to keep copies of the buffer in various
states of change. To write the whole buffer to another file, simply use the
write command and the name of the file. For example:

:write filename<CR> or :w filename<CR>

Be careful when naming the file. If you use an existing filename, the editor
will display the message:

"filename" File exists - use 11 w! filename" to overwrite

When this occurs, you can either use a different filename, or use the w!
command to overwrite the file. If you overwrite the file, the information
being overwritten is no longer accessible.

If you only want to write part of the buffer to another file, you must specify
the beginning and ending lines you want to write. For example:

:85, $w save< CR>

will write lines 85 through the end of the buffer to the file named save.
The write command does not change the buffer.

Reading Another File Into the Buffer

The read command (abbreviated r) allows you to input the contents of
another file into the buffer without destroying the text already there. To
use the read command, first move to the line where you want the file
appended. Then enter the read command using the following format:

:read filename<CR> or :r filename<CR>

ED 2-21

EDIT EDITOR

Edit will append a copy of the file after the current line, and issue a
message stating the name of the file, the number of lines, and the number
of characters that were inserted.

Obtaining Information About the Buffer

Edit maintains a record of the current information about the buffer. To
access this information, enter the file command (abbreviated f). Edit
displays the filename, your current position, and the number of lines in the
buffer. If the contents of the buffer have been changed since the last time
the file was written, the editor will tell you that the file has been modified.
It also displays what per cent of the way you are through the buffer. For
example, enter the command:

:f<CR>

The computer will respond with a message such as:

"filename" (Modified] line 15 of 75 - -20%- -

Note: After you save the changes by writing the buffer to the file,
the buffer will no longer be considered modified.

ED 2-22

EDIT EDITOR

ISSUING UNIX SYSTEM COMMANDS
Edit allows you to execute a single UNIX System command by entering a
command of the form:

:!cmd<CR>

where "cmd" represents the command you want to execute. The system
will then execute the command. When finished, edit displays an ! and then
reissues the command line prompt ":". You can then continue editing or
enter another UNIX System command.

If you need to execute more than one UNIX System command, enter the
command:

:sh<CR>

When you are finished executing UNIX System commands, enter <CTRL
d>. The editor will then display the message:

[Hit return to continue]

After depressing the carriage return, the editor will display the command
line prompt.

Caution: Be sure to write the buffer into the file before escaping
to the UNIX System. The editor will normally save the buffer, but
it will issue a message to remind you.

ED 2-23

EDIT EDITOR

RECOVERING LOST TEXT

Undoing the Last Command

The undo command (abbreviated u) is able to reverse the effects of the
last command executed that changed the buffer. This enables you to
restore the buffer after making an editing mistake. To execute the undo
command enter:

:undo<CR> or :u<CR>

The undo command only works on commands such as append, insert,
delete, change, move, copy, and substitute. You can also undo an undo if
you decide to keep the change. Commands that do not affect the buffer
such as: write, edit, and print cannot be undone.

Recovering Lost Files

If the system crashes, you can recover the contents of the buffer by using
the recover command. The recover command! ca111101t lbe abbre\fnatedl.
You will normally receive mail the next time you log in, giving you the
name of the file that was saved for you. You should then change to the
directory containing the file being edited when the system crashed. Then
access the file by entering:

:edit filename<CR>

replacing "filename" with the name of the lost file. Once in the editor,
enter:

Recover is sometimes unable to save the entire contents of the buffer, so
always check the contents of the saved buffer before writing it back to the
original file.

ED 2-24

EDIT EDITOR

If something goes wrong with the editor when you are using it, do not
leave the editor. You may be able to save your work by using the preserve
command (abbreviated pre). This saves the buffer as if the system had
crashed.

If you are writing the buffer into the file and you get the message:

Quota exceeded

you have tried to use more disk space than you are allotted. When this
happens, it is likely that only part of the buffer was written into the file.
When this happens you should escape to the UNIX System using the sh
command and remove some files you do not need. Then, try writing the
file again. If this is not possible, enter the command:

:preserve<CR>

and then get help from the person who is administrating the system. Do
not quit the editor or your buffer will be lost.

After using the preserve command and then finding the cause of your
problem, you can use the recover command again.

ED 2-25

Chapter 3

EX EDITOR

PAGE

INTRODUCTION • . • • . . . • . . • . . . • • • • . . • . 3-1

CURRENT LINE DEFINITION • • • . • . . • • . . • • • • • • 3-2

GETTING STARTED • . • • • • • • • . . • • • • 3-3

Creating a New File • • • . . . • • • • • • . . • • 3-3

Entering Text • . . • • . . . • . • . • . • . . . 3-4

Leaving the Input Mode. . • . . . • . . • • . • . . • • • • • • . • . . • . . • 3-4

Writing the Buffer into the File • • • • • • • • . . • . • 3-5

Quitting the Editor • . • • • . . • • . . • • • . . . • . . . • • . . • . . . • . • . • • • 3-5

Editing an Existing File . • . • . . • • . • • • • 3-6

DISPLAYING LINES IN THE FILE . • • . . • • . • 3-7

MOVING AROUND IN THE FILE • . . . • . . • • • • • . • . . • • • • 3-7

MAKING CORRECTIONS TO THE FILE • . . . • • • • • . . . • • • • • • • • 3-7

FILE MANIPULATION. • • • . . . • • . • . . • • . . . • • • • • • 3-8

Writing the Buffer to Another File • • . • • . . • . . . • • • • • • . 3-8

Reading Another File Into the Buffer • • • • . • . • • • • 3-8

Obtaining Information About the Buffer • . . . • • . . • . . • . . . 3-9

Read-Only Mode. . . • • . • . • • • • • . • . • • • • . 3-9

Editing More Than One File • • . • . . • . • • • • . . • 3-10

Editing Multiple Files and Using Named Buffers. • • . • • • . . 3-10

ISSUING UNIX SYSTEM COMMANDS • . . • . . • • . . • . . . • . . . • • . • 3-11

RECOVERING LOST TEXT . . • • . • • . . • . . • . • . . . • • • . • . • • . . • • 3-12

Undoing the Last Command • • • . • . • • • . • . • • . • • • • • • • • • • • • • • • • • • . • • . 3-12

Recovering Lost Files. • • • • • . • . . • 3-12

Recovering from Hang-ups and Crashes . . • • . . . • . . • • • . • • • 3-13

Errors and Interrupts. . • • • • • • . . • • • • • . • • • • • • • • • • • • . • • • . . • . . • . . . • . . • . • 3-14

COMMENT LINES • • • • • • • • • • • • • . • . . • • . • • • • . . . • . • • • . • . . . • . . . • . • • 3-14

MULTIPLE COMMANDS PER LINE . • • • . . • . • • • • • . • • • 3-14

OPTION DESCRIPTION . • 3-15

Ex Command Line Options . • 3-15

Chapter 3

EX EDITOR

INTRODUCTION
This chapter describes the ex editor used on the 382 Computer. Ex
provides the advanced user a wide range of commands and options, but
can also be used by new or casual users who only need a simple editor.

When using the ex editor, all commands must be entered on a command
line. The command line is identified by a colon ":" on a line by itself.
Commands entered on the command line can affect the line you are on in
the file (current line), a specified set of lines, or the entire file.

Most ex editor command names are English words, that can be
abbreviated. When an abbreviation conflict is possible, the more
commonly used command has the shorter abbreviation. For example,
since substitute is abbreviated by s, set is abbreviated by se.

The ex editor does not directly change the file being edited. Instead, it
works on a copy of the file stored in a temporary memory location called
the buffer. The edited file is not changed until you write the changes from
the buffer to the edited file.

ED 3-1

EX EDITOR

This editor description assumes that you know how to log on to the
computer. If you do not, refer to the AT&T 382 Computer
Owner /Operator Manual.

For additional information on the ex editor, see the manual pages in the
AT&T 382 Computer User Reference Manual.

CURRENT LINE DEFINITION
The term "current line" is referred to throughout this chapter. The
current line is the line in the file you are now on. Each time you move to a
different line in the file, that line becomes the current line. Whenever a
command is given, the current line is used as a reference point. Any
command that is not directed at any specific line is executed against the
current line. You should always know what line is the current line, or you
could mess up the file.

ED 3-2

EX EDITOR

GETTING STARTED
The ex editor can be used to create a new file or to change an existing file.
To execute ex, you must be logged onto the computer. After the $ or #
prompt is displayed, you can begin working with the ex editor.

Creating a New file

To create a new file, you will need to type ex followed by a space and then
the name of the file you wish to create. Execute the command by
depressing the carriage return <CR>. For example:

$ ex filename<CR>
"filename" [New file]

If you did not enter the command correctly, you will receive a usage
message indicating an incorrect command syntax was used. You will need
to re-enter the command correctly.

If you entered the ex command without a filename, the editor will still
create a new file. However, when you decide to write the file into memory
you will be prompted for a filename. See "Writing the Buffer Into the File."

When the ex command is executed, a colon ":" is displayed. The colon
identifies the command line and shows that the ex editor is ready to
accept your input commands.

ED 3-3

EX EDITOR

Entering Text

Most ex commands have two forms: a word that describes what the
command does and an abbreviation of the word. You can use either form.
Many beginners find the full command name easier to remember, but after
some practice use the abbreviation. The command to input text is
append, that may be abbreviated a. Enter append after the colon on the
command line and then depress the carriage return.

:append<CR> or :a<CR>

The ex editor is now in the text input mode (append mode). The colon is
no longer displayed on the command line, and this is your signal that you
may begin entering lines of text. Anything that you type on your terminal,
except a period on a line by itself, is entered into the buffer. If the error
message:

Not an editor command

is displayed, check to see what you entered incorrectly and then enter the
command again.

Note: The computer considers a blank space to be a character.
Be careful not to input blanks into lines of text unless you mean for
them to be there.

leaving the Input Mode

To leave the input mode, simply enter a period "." on a line by itself and
depress the carriage return. This is the signal that you want to stop
inputting text. After receiving a period on a line by itself, ex will re-enter
the command mode and display the command line prompt ":".

The text just entered is now stored only in the buffer. If you wish, you can
make changes to the text. Making changes is discussed throughout the
remainder of this chapter.

ED 3-4

EX EDITOR

Writing the Buffer into the File

The buffer is only temporary storage for the file. Now that you have
entered text in the buffer, you need to write the buffer to the file. This is
the only way to save new text from one editing session to another. To
write the contents of the buffer to the file, use the write command
(abbreviated w).

:wiri te<CR> or :w<CR>

Ex will then copy the buffer into the file. If the file does not yet exist, a
new file will be created and a message will be given indicating that it is a
new file. The newly created file will be given the name specified when you
entered the editor, "filename". To confirm that the file has been
successfully written, the editor will repeat the filename, and give the
number of lines and the total number of characters in the file. The buffer
remains unchanged, so you can make further changes if you want to.

Ex must have a filename to use before it can write a file. Therefore, if you
did not show the name of the file when you began the editing session, ex
will issue the message:

No current filename

when you give the write command. If this happens, simply re-enter the
write command and specify the filename. Here you would enter:

:wiri te filename<CR> or :w filename<CR>

This will write the buffer to a file named "filename".

Quitting the Editor

When you have finished editing the file and you are ready to return to the
UNIX System, enter the quit command (abbreviated q).

:qui t<CR> or :q<CR>

This returns you to the UNIX System unless you forget to write the buffer

ED 3-5

EX EDITOR

to the file. When this happens, you will receive a message reminding you
to write the file. A quick way to write and quit the ex editor is with the
single command:

:wq<CR>

If for some reason you do not want to save the changes, enter the
command:

:q!<CR>

This will quit ex and leave the file unchanged from the last write command.

Editing an Existing File

To edit the contents of an existing file named "filel ", you begin by issuing
the command:

$ ex filel<CR>
"file!" 150 lines, 4285 characters

This places a copy of the file in a buffer, and displays how many lines and
characters are in the file. A colon ":" will then be displayed, this is the
command line.

Note: If you do not give a filename, ex will create a new file instead
of editing the file you want.

After the file description and the colon ":" are displayed, enter a 1 on the
command line followed by a carriage return. This will make the first line in
the file the current line. The editing process is described throughout the
remainder of this chapter.

ED 3-6

EX EDITOR

The procedure for saving changes to the buffer is described in "Writing the
Buffer Into the File." The procedure for quitting the editor is described in
"Quitting the Editor."

DISPLAYING LINES IN THE FILE
The procedures for displaying lines of a file when using the ex editor are
the same as for the edit editor. Refer to the procedures given in
Chapter 2.

MOVING AROUND IN THE FILE
The procedures for moving around in a file when using the ex editor are
the same as for the edit editor. Refer to the procedures given in
Chapter 2.

MAKING CORRECTIONS TO THE FILE
The procedures for making corrections to a file when using the ex editor
are the same as for the edit editor. Refer to the procedures given in
Chapter 2.

ED 3-7

EX EDITOR

FILE MANIPULATION

Writing the Buffer to Another File

The write command (abbreviated w) allows you to write all or part of the
buffer to a new file. This allows you to keep copies of the buffer in various
states of change. To write the whole buffer to another file, use the write
command and the name of the file. For example:

:write filename<CR> or :w filename<CR>

Be careful when naming the file. If you use an existing filename, the editor
will display the message:

"filename" File exists~ use 11 w! filename' 1 to overwrite

When this occurs, you can either use a different filename, or use the w!
command to overwrite the file. If you overwrite the file, the information
being overwritten is no longer accessible.

If you only want to write part of the buffer to another file, you must specify
the beginning and ending lines you want to write. For example:

:85, $w save<CR>

will write lines 85 through the end of the buffer to the file named save.
The write command does not change the buffer.

Reading Another File Into the Buffer

The read command (abbreviated r) allows you to input the contents of
another file into the buffer without destroying the text already there. To
use the read command, first move to the line where you want the file
appended. Then enter the read command using the following format:

:read filename<CR> or :r filename<CR>

Ex will append a copy of the file after the current line, and issue a message

ED 3-8

EX EDITOR

stating the name of the file, the number of lines, and the number of
characters that were inserted.

Obtaining Information About the Buffer

Ex maintains a record of the current information about the buffer. To
access this information, enter the file command (abbreviated f). Ex
displays the filename, your current position, and the number of lines in the
buffer. If the cohtents of the buffer have been changed since the last time
the file was written, the editor will tell you that the file has been modified.
It also displays what per cent of the way you are through the buffer. For
example, enter the command:

:f<CR>

The computer will respond with a message such as:

"filename" [Modified] line 15 of 75 --20%--

Note: After you save the changes by writing the buffer to the file,
the buffer will no longer be considered modified.

Read~Only Mode

If you want to look at a file you have no intention of changing, you can
execute ex in the read-only mode. This mode protects you from
accidentally overwriting the file. The read-only option can be set by using
the -R command line option, by the view command line invocation, or by
setting the read-only option. It can be cleared by setting the noreadonly
mode. (See "OPTION DESCRIPTION.") It is possible to write, even while in
the read-only mode, by writing to a different file or by using the :w!
command.

ED 3-9

EX EDITOR

Editing More Than One File

The ex editor is normally used to edit the contents of a single file, whose
name is recorded in the current file. However, if you want to access
another file without quitting ex, you can use the e command. For example:

:e file2<CR>

where "file2" is the name of the second file. This allows you easy access
to both files. The current file is always the one currently being edited.
The alternate file is the other file you have access to.

When you want to change to the alternate file, use the e command with
the filename. Each time you use the e command to change files, the file
you name becomes the current file and the file you leave becomes the
alternate file.

When using thee command within the editor, normal shell expansion
conventions such as "f'' l" for "file 1" may be used. In addition, the
character % can be used in place of the current filename, and the
character # in place of the alternate filename. For example:

:e #<CR>

will cause the alternate file to become the current file, and the current file
will become the alternate file. This makes it easy to deal alternately with
two files and eliminates the need for retyping the filename.

Editing Multiple Files and Using Named Buffers

When you have several files that you want to edit without actually leaving
and re-entering the ex editor, you can list these files in your ex command.
After receiving the command line prompt":", you can edit filel as
described in this chapter. The remaining arguments are placed with the
first file in the argument list. To display the current argument list, enter
the args command on the command line. To edit the next file in the
argument list, enter the next command on the command line. The
following example shows how to enter three files with the ex command,

ED 3-10

EX EDITOR

how to display the argument list, and how to change to the next file to be
edited:

$ ex filel file2 file3<CR>
3 files to edit
"file l" xxx lines, xxxx characters
:args<CR>
[filel] file2 file3
:next<CR>
"file2" xxx lines, xxxx characters

The argument list can be changed by specifying a list of filenames with the
next command. These names are expanded with the resulting list of
names becoming the new argument list, and ex edits the first file on the
list

For saving blocks of text while editing, and especially when editing more
than one file, ex has a group of named buffers. These are similar to the
normal buffer, except that only a limited amount of operations are
available on them. The buffers have names a through z. It is also possible
to refer to A through Z; the uppercase buffers are the same as the
lowercase, but commands append to named buffers rather than replacing
if uppercase names are used.

ISSUING UNIX SYSTEM COMMANDS
The procedure for issuing UNIX System commands from the ex editor is
exactly the same as for the edit editor. Refer to the procedure given in
Chapter 2.

ED 3-11

EX EDITOR

RECOVERING LOST TEXT

Undoing the Last Command

The undo command (abbreviated u) is able to reverse the effects of the
last command executed that changed the buffer. This enables you to
restore the buffer after making an editing mistake. To execute the undo
command enter:

:undo<CR> or :u<CR>

The undo command only works on commands such as; append, insert,
delete, change, move, copy, and substitute. You can also undo an undo if
you decide to keep the change. Commands that do not affect the buffer
such as: write, edit, and print cannot be undone.

Recovering lost Files

If the system crashes, you can recover the contents of the buffer by using
the recover command. The recover command cannot be abbreviated.
You will normally receive mail the next time you log in giving you the name
of the file that was saved for you. You should then change to the
directory containing the file being edited when the system crashed. Then,
access the file by entering:

:ex filename<CR>

replacing "filename" with the name of the lost file. Once in the editor,
enter:

:recover filename<CR>

Recover is sometimes unable to save the entire contents of the buffer, so
always check the contents of the saved buffer before writing it back to the
original file.

If something goes wrong with the editor when you are using it, do not
leave the editor. You may be able to save your work by using the preserve

ED3-12

EX EDITOR

command (abbreviated pre). This saves the buffer as if the system had
crashed.

If you are writing the buffer into the file and you get the message:

Quota exceeded

you have tried to use more disk space than you are allotted. When this
happens, it is likely that only part of the buffer was written into the file.
When this happens, you should escape to the UNIX System using the sh
command and remove some files you do not need. Then, try writing the
file again. If this is not possible, enter the command:

:preserve< CR>

and then get help from the person who is administrating the system. Do
not quit the editor or your buffer will be lost.

After using the preserve command and then finding the cause of your
problem, you can use the recover command again.

Recovering from Hang-ups and Crashes

If a hang-up signal is received and the buffer has been modified since it
was last written, or if the system crashes, either the editor (in the first
case) or the system (after it reboots in the second case) will attempt to
preserve the buffer. The next time you log in you should be able to
recover the work you were doing, losing at most a few lines. To recover a
file you can use the -r option. For example: if you were editing the file
"filename", you should change to the directory where you were when the
crash occurred, and give the command:

:ex -r filename<CR>

After checking that the retrieved file is good, you can write it over the
previous contents of the file.

ED 3-13

EX EDITOR

You will normally get mail from the system telling you when a file has been
saved. The command ex -r will print a list of the files that have been saved
for you.

Errors and Interrupts

When errors occur, ex rings the terminal bell (or flashes the terminal
screen) and prints an error message. If the primary input is from a file,
editor processing will end. If an interrupt signal is received, ex will display
the message:

Interrupt

and returns to its command level. If the primary input is a file, ex will exit.

COMMENT LINES
It is possible to give editor commands that are ignored. This is useful
when making complex editor scripts for which comments are desired. The
comment character is the double quote, " . Any command line beginning
with " is ignored. Comments beginning with " may also be placed at the
end of commands except in cases where they could be confused as part of
the text (shell escapes, substitute commands, and map commands).

MULTIPLE COMMANDS PER LINE
More than one command may be placed on a line by separating each pair
of commands with a : character. However, global commands, comments,
and the shell escape (!) must be the last command on a line, as they are
not ended by a :.

ED 3-14

EX EDITOR

OPTION DESCRIPTION
The options that you can set when using the ex editor are the same as for
the vi editor. For a listing and a description of these options, see
Chapter 4.

Ex Command Line Options

Instead of just entering the standard ex editor, you can use many options
that are sometimes helpful. An example of a command line showing the
proper format for using options is shown below.

ex [-][-v][-t tag][-r][-wn][-R][+command] filename

These options are given in the following list, along with a short description
of their function.

The - command line option suppresses all interactive-user
feedback and it is useful in processing editor scripts in command
files.

-v The -v option is equivalent to using vi rather than ex.

-t The -t option is equivalent to an initial tag command, editing files
containing tag and positioning the editor at its definition.

-r The -r option is used in recovering after an editor or system crash,
retrieving the last saved version of the named file, or, if no file is
specified, typing a list of saved files.

-w The -w option sets the default window size to n and is useful on
dial-ups to start in small windows.

-R The -R option sets the read-only option at the start.

+command
An argument of the form +command tells the editor to begin by
executing the specified command. If +command is omitted, ex
will make the last line of the first file the current line.

ED 3-15

EX EDITOR

filename

ED 3-16

The filename arguments show the file to be edited. More than
one filename can be given if several files are to be edited. See
"FILE MANIPULATION" for further information on editing multiple
files.

Chapter 4

VISUAL EDITOR (vi)

PAGE

INTRODUCTION. 4-1

Relations Between vi and ex Editors • 4-3

GETTING STARTED . 4-4

Defining Your Terminal. • 4-4

Setting Up Your Terminal Configuration. • 4-4

Creating a New File . 4-5

Entering Text. 4-6

Leaving the Text Insertion Mode . • 4-6

Writing the Buffer into the File . 4-6

Quitting the Editor . 4-7

Editing an Existing File . 4-8

Reading an Existing File . • 4-9

MOVING AROUND IN THE FILE . • 4-10

Scrolling and Paging Through the Screen. 4-10

Cursor Movements . 4-11

Searching Through the File . • 4-15

Repeating Searches . 4-16

Special Search Characters. 4-17

Go To, Find, and Previous Context Commands . 4-18

MAKING SIMPLE CHANGES. 4-20

Inputting Text . 4-20

Removing Text . 4-22

Changing Text . 4-23

COPYING TEXT . 4-25

The Concept of Yank and Put . 4-25

Copying Objects . 4-26

MOVING TEXT • . 4-30

GLOBAL COMMANDS . 4-32

Global Searches . • 4-32

Global Substitutes . • 4-33

REPEATING ACTIONS WITH THE . COMMAND . • • . 4-34

FILE MANIPULATION. • 4-35

Writing the Buffer to Another File. 4-35

Reading Another File into the Buffer • . . . • 4-36

Reading the Output From UNIX System Commands into the Buffer • 4-37

Changing Files in the Editor • . 4-38

Editing Multiple Files and Using Named Buffers. • 4-39

Read-Only Mode. 4-40

Obtaining Information about the Buffer . 4-41

ISSUING UNIX SYSTEM COMMANDS . • • 4-42

RECOVERING LOST TEXT . • • 4-43

Undoing the last Command . 4-43

Recovering lost lines • . • . . 4-43

Recovering Lost Files. • . 4-44

MARKING LINES • . 4-45

WORD ABBREVIATIONS.. 4-46

ADJUSTING THE SCREEN . 4-46

LINE REPRESENTATION IN THE DISPLAY.................................... 4-47

line Numbers . 4-47

List All Characters on a line . • 4-47

MACROS • • . • . • 4-48

OPTIONS • . • 4-50

Setting Options . 4-50

List of Options . • . . 4-51

CHARACTER FUNCTIONS SUMMARY . 4-58

Chapter 4

VISUAL EDITOR (vi)

INTRODUCTION
This chapter describes the visual editor (vi)':' used on the 382 Computer.
Vi is an interactive text editor that uses the screen of your terminal as a
window into the file you are editing. Any changes you make to the file are
reflected on the screen.

The vi editor does not directly change the file you are editing. Instead, it
makes a copy of the file in a buffer and remembers the file's name. You
do not affect the contents of the original file unless you write the changes
made back into the original file.

Most vi commands move the cursor around in the buffer. A small set of
operators such as d for delete and c for change alter the text in the buffer.
Some of these commands and operators are combined to form operations

* The visual editor (vi) was developed by the Electrical Engineering and Computer Science
Department of the University of California, Berkeley Campus.

ED 4-1

VISUAL EDITOR (vi)

such as "delete a word" or "change a paragraph." the mnemonic
assignment of commands to keys makes the editor command set easy to
remember and use.

There are normally several different vi editor commands you can use to
get the same results. If you are trying to use vi for the first time, pick a
few commands and use them until you no longer have to look them up.
Then, gradually try using new commands. You will eventually find more
efficient ways of doing the same things. The "CHARACTER FUNCTIONS
SUMMARY" at the end of this chapter provides a complete list of vi
commands.

This editor description assumes that you know how to log on to the
computer. If you do not, refer to the AT&T 382 Computer
Owner /Operator Manual.

For additional information on the vi editor, see the manual pages in the
AT&T 382 Computer User Reference Manual.

ED 4-2

VISUAL EDITOR (vi)

Relations Between vi and ex Editors

The vi editor is actually one mode of editing within the ex editor. When
you are running vi, you can escape to the line-oriented editor (ex) by giving
the Q command. Most ex commands can be invoked separately from vi by
first entering a : and then the ex command. To execute the command,
depress the carriage return.

In rare instances, an internal error may occur in vi. Here, you will get a
diagnostic and be left in the command mode of ex. You can then save
your work and quit, if you wish, by entering the command:

If you would want to re-enter vi, you can enter the command:

:vi<CR>

Experienced users often mix their use of ex command mode and vi
command mode to speed the work they are doing. The ex editor is
described in Chapter 3.

ED 4-3

VISUAL EDITOR (vi)

GETTING STARTED

Defining Your Terminal

To use the vi editor, your 382 Computer needs to know what type of
terminal you are using. The file /etc/terminfo contains the parameters of
various terminals. Each type of terminal has a unique code assigned to it.
To access the information in /etc/terminfo, you need to set the variable
"TERM" to the code for your terminal and then export the variable. For
example, to tell the computer you are using a TELETYPE* Model 5620
terminal, you would need to enter the following commands:

$ TERM=5620 <CR>
$ export TERM<CR>

$

Setting Up Your Terminal Configuration

Vi will work on many types of video display terminals, and new terminal
types can be added to a terminal description file. Before vi can be used on
some terminals, the terminal setup parameters will need to be changed.
The changes will vary depending on the terminal. For example, the
TELETYPE Model 5410 terminal has a settable parameter called
"RCVD'LF" that should be set to "INDEX". For instructions on how to
change settable parameters, see the manual supplied with the terminal.

Note: For more information on setting up your terminal, see the
AT&T 382 Computer Owner /Operator Manual.

* Trademark of AT&T

ED 4-4

VISUAL EDITOR (vi)

Creating a New File

To create a new file, you will need to type vi followed by a space and then
the name of the file you wish to create. Execute the command by
depressing the carriage return <CR>. For example:

$ vi filename<CR>

will create a file named "filename", clear the screen, and place the cursor
at the top of the screen.

" f i 1 ename" [New f i 1 e]

Once the vi command is executed, proceed to "Entering Text." If you did
not enter the command correctly, you will receive a usage message
indicating an incorrect command syntax was used. Reenter the command
correctly.

Another problem that can occur is if you gave the system an incorrect
terminal code (see GETTING STARTED). The editor may mess up your
screen because vi sends control codes for one type of terminal to some
other type of terminal. Here, enter the command:

This should get you back to the UNIX System shell. Make sure you
entered the correct terminal type and then try again.

ED 4-5

VISUAL EDITOR (vi)

Entering Text

To begin inputting text in a file, you must enter the text insertion mode.
To do this you will need to enter either an a, an i, or an o (not followed by
a carriage return). Since these are vi commands, they will not be
displayed on the screen. After entering the text insertion mode, any
characters you type are entered into the buffer.

Note: The computer considers a blank space to be a character.
Be careful not to input blanks into lines of text unless you mean for
them to be there.

leaving the Text Insertion Mode

To leave the text insertion mode, simply depress the <ESC> key. The
computer response should be to backspace one character. This will return
you to the command mode.

Returning to the command mode does not destroy the text in the buffer.
You must return to the command mode to change any other type of editor
command.

Writing the Buffer into the File

The buffer is only temporary storage for the file you are editing. Once you
have entered text in the buffer, you need to write the buffer to the file.
This is the only way to save new text from one editing session to another.
To write the contents of the buffer to the file, use the write command
(abbreviated w).

:wri te<CR> or :w<CR>

Vi will then copy the buffer into the file. If the file does not yet exist, a
new file will be created, and a message will be given indicating that it is a
new file. The newly created file will be given the name specified when you
entered the editor, "filename". To confirm that the file has been
successfully written, the editor will repeat the filename, and give the

ED 4-6

VISUAL EDITOR (vi)

number of lines and the total number of characters in the file. The buffer
remains unchanged, so you can make further changes if you want to.

Note: The :w command should be used every few minutes if you
are happy with the changes you have made. This will keep you
from losing all of your changes if you mess up the file or decide you
do not like the changes you have made since the last time you
wrote the file.

Vi must have a filename to use before it can write a file. If you did not
show the name of the file when you began the editing session, vi will not
write the file when you give the write command. If this happens, simply
reissue the write command and specify the filename. Here you would
enter:

:write filename<CR> or :w filename<CR>

This will write the buffer to a file named "filename".

Quitting the Editor

When you have finished working in the file and you are ready to return to
the UNIX System, there are several methods you can use. If you have
already written the buffer to the file, enter the command:

:q<CR>

To write the contents of the buffer back into the file you are editing and
then quit the editor, enter the command:

:wq<CR>, :x<CR>, or zz (without depressing <CR>)

If for some reason you do not want to save the changes, enter the
command:

:q!<CR>

ED 4-7

VISUAL EDITOR (vi)

This will quit vi and leave the file unchanged from the last write command.

Editing an Existing File

To edit the contents of an existing file named "filename", you begin by
issuing the command:

$vi filename<CR>

This places a copy of the file in a buffer. The screen should clear and the
text of your file should appear on the screen. For example:

This is the first line in the file.
This is the second line in the file.
When a tilde (-) is displayed on a line by
itself, it normally means "end-of-the-file".

"filename" 4 lines, 161 characters

If the editor printed a "New file" message, you either gave the wrong
filename or you are in the wrong directory. Here, you should enter
: q<CR> to get you out of the editor. Check what directory you are in and
try entering the command again.

If the editor makes a mess out of your screen, perhaps you gave the
system an incorrect terminal type. Here, enter : q<CR> to get you back
to the command level interpreter. If the editor does not respond, try
sending an interrupt to it by depressing the , <BREAK>, or
<RUBOUT> key on your terminal. Then try entering : q<CR> again.
Figure out what you did wrong and try again.

ED 4-8

VISUAL EDITOR (vi)

Once you have executed the vi command and you are in the buffer, you
may begin moving the cursor around and change the file. Procedures for
saving the changes to the buffer are described in "Writing the Buffer into
the File." Procedures for quitting the editor are described in "Quitting the
Editor."

Reading an Existing File

If you only want to use the editor to look at a file rather than to make
changes, use the command:

$view filename<CR>

This will set the read-only option that will prevent you from accidentally
overwriting the file. Commands that move the cursor or change the file
will execute. However, if you try to use the write command, you will
receive the message:

"filename" File is read only

If you decide that you do want to change the file, you can still write the
buffer to the file by entering the command:

:w!<CR>

ED 4-9

VISUAL EDITOR (vi)

MOVING AROUND IN THE FILE
The vi editor has many commands for moving around in a file. These
commands allow you to: scroll through the file; search for a string of
characters; or move from page to page, line to line, or character to
character. Most of these commands can be preceded by a number to
make movement in the file easier. A simple example would be to depress
the 5 key and then the return key, this will move the cursor down 5 lines
in the file.

Note: Searching for a string of characters will not work when
preceded by a number.

While reading through this chapter, you will notice that commands such as
<CTRL D>, <CTRL L>, or <CTRL H> are used. This refers to commands
where it is necessary to depress the control key and one other key at the
same time. These are referred to as control characters. This may cause
some confusion at first, but should not be a problem when you actually
start using the vi editor.

Note: When using the vi editor, be careful not to leave the caps
lock key locked down. Capital letter commands are different from
lowercase letter commands and you could accidentally mess up
your file. If you do execute the wrong command, you can either
use the undo command or quit without writing. (See
"RECOVERING LOST TEXT.")

Scrolling and Paging Through the Screen

Scrolling and paging are two of the ways to move through a file. The
main difference is that it is easier to read through a file while scrolling
because the screen rolls up or down one line at a time. Paging causes
the screen to be blanked each time a new page is displayed.

ED 4-10

VISUAL EDITOR (vi)

Scrolling

Scrolling allows you to continuously read through the file you are
editing. <CTRL D> allows you to scroll down through the file until you
release the keys. You can also scroll up through the file by using the
<CTRL lf> command. Some terminals cannot scroll up at all.
Depressing <CTRL U> clears the screen and refreshes it with a line
farther back in the file at the top.

If you want to see more of the file below where you are, you can
depress <CTRL E> to expose one more line at the bottom of the
screen, leaving the cursor where it is. The <CTRL Y> command is
similar to the <CTRL £> command, except that it exposes one more
line at the top of the screen.

Paging

Paging is a way to move forward or backward through a file a page at a
time. The <CTRL F> command will move forward a page, keeping a
couple of lines of continuity between screens so that it is possible to
read through a file. The <CTRL B> command is similar to the <CTRL
F> command, except that it will move backward a page.

Cursor Movements

Moving Within a Line

Some commands move the cursor one position at a time, and others
move the cursor a word at a time. Preceding numbers may be used
with all these commands. Keys that move the cursor a word at a time
will wrap around the end of the line to the next line.

ED 4-11

VISUAL EDITOR (vi)

These commands are described in the following list:

b

e

h

w

B

w

Moves the cursor to the beginning of the previous word

Moves the cursor to the end of the next word

Moves the cursor one position to the left

Moves the cursor one position to the right

Moves the cursor to the beginning of the next word

Moves the cursor to the beginning of the previous word
without stopping at punctuation marks

Moves the cursor to the beginning of the next word
without stopping at punctuation marks

<CTRL H> Control character that moves the cursor one position
to the left

backspace Moves the cursor one position to the left

spacebar Moves the cursor one position to the right.

Note: On some terminals, the arrow keys will also move the
cursor around on the screen. Most experienced users of vi
normally prefer the h, j, k, and I keys because they are usually
right beneath their fingers.

ED 4-12

VISUAL EDITOR (vi)

Moving To Different Lines

There are several commands you can use to move the cursor to a
different line on the screen. All these commands except H, L, and M
take preceding numbers and act on them. These commands are
described in the following list:

k

RETURN

+

H

M

L

Moves the cursor down

Moves the cursor up

Moves the cursor to the first position on the next line

Moves the cursor to the first nonwhite position on the
next line

Moves the cursor to the first nonwhite position on the
previous line

Moves the cursor to the top line of the screen

Moves the cursor to the middle of the screen

Moves the cursor to the last line of the screen

<CTRL N> Control character that moves the cursor down a line in
the same column

<CTRL P> Control character that moves the cursor up a line in
the same column.

ED 4-13

VISUAL EDITOR (vi)

Moving Through a File

When working with a file containing text, it is often easier to work in
terms of sentences, paragraphs, and sections. The following list
describes some useful commands for working with text. Preceding
numbers may be used with sentence and paragraph commands.

(Moves the cursor to the beginning of the previous sentence.

Moves the cursor to the beginning of the next sentence.

Note: A sentence is defined to end at a ., !, or ? , and is
followed by the end of the line or two spaces. Any
number of), } , '" , and ' closing characters may appear
after the ., !, or ? , and before the spaces or end of line.

{ Moves the cursor to the beginning of the previous paragraph.

} Moves the cursor to the beginning of the next paragraph.

Note: A paragraph begins after each empty line and also
at each paragraph macro specified in the paragraphs
option. The .bp request is also considered to start a
paragraph.

[[Moves the cursor to the beginning of the previous section.

]] Moves the cursor to the beginning of the next section.

ED 4-14

Note: Sections begin after each macro in the section
option and each line with a form feed <CTRL L> in the
first column. Section boundaries are always line and
paragraph boundaries.

VISUAL EDITOR (vi)

Searching Through the File

Another way to position yourself in the file is by having the editor
search for a specific string of characters on one line. Type the
character / followed by a string of characters for which you want to
search. To execute the search, depress the carriage return. For
example:

/character string<CR>

The editor will search from the current position toward the last line in
the buffer for the first occurrence of "character string" on one line.
The editor will also search backward if you use the ? character instead
of the / character.

If the character string you search for is not present in the file, the
editor will display the message:

Pattern not found

on the last line of the screen and the cursor will return to its initial
position.

A search will normally wrap around the end of the file and continue
searching until the string Is found or the position where the search
started is reached. The wrap-around scan feature can be disabled by
entering the command:

: set nowrapscan<CR> or : set nows<CR>

You can have the editor ignore whether letters are uppercase or
lowercase in searches by entering the command:

: set ignorecase<CR> or : set ic<CR>

The command : set noic<CR> turns this option off.

ED 4-15

VISUAL EDITOR (vi)

Repeating Searches

If the first pattern found by the search command is not the one you
were searching for, you can search for the next occurrence of the
pattern by entering the command:

n

The n command works with forward and backward searches.

Another way to repeat a search without re-entering the entire
command is to enter the search command character (/) or (?)
followed by a carriage return. The direction of the search is
determined by the search character you enter.

ED 4-16

VISUAL EDITOR (vi)

Special Search Characters

Several characters have special meanings when used in specifying
searches. These characters will work with all types of searches. They
can be used to: match repetitive strings of characters, turn off special
meanings of characters, or denote the placement of characters in the
line. These characters and their uses are explained below:

*

The period matches any single character except the newline
(carriage return) character. For example, if a line in your file
contains the words "vi editor", or a pattern with any other
character between "vi edit" and "r", you could find the line by
entering the command:

:/vi edit.r/<CR>

The asterisk matches any repeated characters except the first
., \, [, or - in that group. For example, if a line in your file
contains the pattern "the xxxx editor", you could search for
the line by entering the command:

:/the x* editor/<CR>

[] Brackets are used to enclose a variable set of characters. For
example, if you have a file containing the patterns"file2",
"file3", or "file4" you could search for the first occurrence of
these patterns by entering the command:

:/file[2-4]/<CR>

$ The dollar sign is interpreted by the editor to mean
"end of the line". It is used to identify patterns that occur at
the end of a line. For example, if a line in your file ends in the
pattern"last character", you could find the line by entering the
command:

: /last character$/<CR>

ED 4-17

VISUAL EDITOR (vi)

The circumflex (caret) works like "$" except it looks for the
pattern at the beginning of the line. For example, if a line in
your file begins with the pattern "First character'', you could
find the line by entering the command:

: I First character/<CR>

\ The backslash is used to cancel the meaning of the special
characters. It should be placed immediately before the
character it is to nullify. For example, if a line in your file
contains the pattern "This is a $", you could search for it by
entering the command:

: /This is a \$/<CR>

The character $ will be searched for instead of being
interpreted as meaning "end of the line".

To search for the characters ., *, \, [,], $, or , you must precede the
characters with a backslash. You can also combine these special
characters in one search command~ For example, .* can be used to
search for any string of characters.

Go To, Find, and Previous Context Commands

The go to (G) command allows you to move the cursor to a specific
line in the file by using line numbers. For example:

32G

will move the cursor to line 32 in the file. If a line number is not used
with the G command, the cursor will move to the last line in the file.

ED 4-18

VISUAL EDITOR (vi)

The find (fx) command locates the next x character to the right of the
cursor in the current line. For example, to find the next occurrence of
the letter t you would enter the command:

ft

The ; command repeats the last find command for the next instance of
the same character. By using the f command and then a sequence of
;'s, you can often get to a particular place in a line much faster than
with a sequence of word motions or spaces. There is also an F
command, that works like f, but searches backward. The ; also
repeats the F command.

The previous context " (two back quotes) command allows you to
move back to the previous position in the file after a motion command,
such as/, ?, or G. This command is often more convenient than using
the G command or performing a search because no advance
preparation is required.

Note: If you are near the last line of the file, and the last line is
not at the bottom of the screen, the editor will place a -
character on each remaining line to show the end of the file.

ED 4-19

VISUAL EDITOR (vi)

MAKING SIMPLE CHANGES

Inputting Text

The vi editor uses append, insert, and open commands to input text
into a file. First, use the movement commands described earlier to
move the cursor to the position in the file where you want to input
text. Then depress the input command you want to use (see list
below). Now any characters you type are entered into the buffer. If
you are entering more than one line, depress a carriage return
whenever you want to start a new line. You can also use the autowrap
option discussed in "OPTIONS." To stop inputting text, depress the
<ESC> key. All the commands for inserting text are described in the
following list:

a Appends everything you type after the current position of the
cursor

A Appends everything you type to the end of the line

Inserts everything you type before the current position of the
cursor

Inserts everything you type before the first nonblank on the
line (inserts before the first character on the line)

o Opens a new line below the position of the cursor

0 Opens a new line above the position of the cursor.

Erasing Inserted Text

While inserting text, you can use the <CTRL H> or # character to
backspace over (erase) the last character typed. To erase the text
you have input on the current line, depress the @, <CTRL X>, or
<CTRL U> characters. The <CTRL W> will erase a whole word and
leave you after the space following the previous word. It is useful for
quickly backing up in an insert.

ED 4-20

VISUAL EDITOR (vi)

While inserting text, the following conditions should be noted:

• When you backspace during an insertion, the characters you
backspace over are not erased. The cursor moves backward
and the characters remain on the display. This is often useful if
you are planning to type in something similar. The characters
disappear when you depress <ESC>. If you want to get rid of
the characters immediately, depress <ESC> and then a again.

• You cannot erase characters that you did not insert, and you
cannot backspace around the end of a line. If you need to back
up to the previous line to correct something, depress the <ESC>
key, move the cursor back to the previous line, and then make
whatever corrections you want.

Continuous Text Input

When you are typing in large amounts of text, it is convenient to have
lines broken near the right-hand margin automatically. You can cause
this to happen by entering the command:

: set wm=lO<CR>

This causes all the lines to be broken at a space at least ten columns
from the right-hand edge of the screen. The number 10 can be
replaced by any number you wish to use.

Joining lines

If the editor breaks a line and you wish to put it back together, you can
tell it to join the lines with the J command. You can give the J
command a count of the amount of lines to be joined (such as 3J to
join 3 lines). The editor supplies white space, if appropriate, at the
juncture of the joined lines and leaves the cursor at this white space.
If you do not want white space, you can kill it with the x command.

ED 4-21

VISUAL EDITOR (vi)

Removing Text

The vi editor allows you to remove text from a file with several versions
of the delete command. The commands listed below let you remove
any object that the editor recognizes (characters, words, lines,
sentences, and paragraphs). You do not need to use the <CR> or
<ESC> keys with these commands. To delete more than one object at
a time, you can use numbers with these commands. For example, 5dd
removes five lines of text.

dd Delete the current line.

dw Delete the current word.

db Delete the preceding word.

d) Delete the rest of the current sentence.

d(Delete the previous sentence if you are at the beginning of the
current sentence, or delete the current sentence up to your
present position if you are not at the beginning of the current
sentence.

d} Delete the rest of the current paragraph.

d{ Delete the previous paragraph if you are at the beginning of
the current paragraph, or delete the current paragraph up to
your current position if you are not at the beginning of the
current paragraph.

D Delete the rest of the text on the current line and leave the
cursor on a blank line.

x Delete the current character.

X Delete the character before the cursor.

ED 4-22

VISUAL EDITOR (vi)

Note: To recover text that was accidentally deleted, see
"Recovering Lost Text."

Changing Text

The vi editor allows you to use several different commands to change
text in a file. With the commands listed below you can change any
object that the visual editor recognizes (characters, words, lines,
sentences, and paragraphs). All these commands, except r, are ended
by depressing the <ESC> key. Numbers can be used with these
commands to determine how many of the objects to change. For
example, the command 2cw removes two words and then changes to
the input mode so new words can be inserted.

cc Change a whole line.

cw Change the specified word to the following word.

c) Change the rest of the current sentence.

c(Change the previous sentence if you are at the beginning of
the current sentence, or change the current sentence up to
your current position if you are not at the beginning of the
current sentence.

c} Change the rest of the current paragraph.

c{ Change the previous paragraph if you are at the beginning of
the current paragraph, or change the current paragraph up to
your present position if you are not at the beginning of the
current paragraph.

C Change the rest of the current line.

r Replace a character.

R Replace the following characters.

ED 4-23

VISUAL EDITOR (vi)

s Replace a character with a string.

S Replace the current line with a new line.

When you type a change command, the end of the text to be changed
is marked with the $ character to show that a change is now expected
up to the $character. You are now placed in the insert mode so that
anything you type is entered into the buffer. You end the insert mode
by depressing <ESC>. To summarize, change commands in the visual
editor deletes text objects and then places you in the insert mode.

The simplest change that you can make is to change one character.
The r and the s commands can be used for this. If the character is
incorrect and is to be replaced by a single character, correct the
character by giving the rx command, where xis the correct character.
If the character is to be replaced by a string of characters, give the s
(string) <ESC> command that substitutes a string of characters for the
incorrect character. The s command can be preceded with a count of
the amount of characters to be replaced.

You can also give a command like cl to change all the lines up to and
including the last line on the screen, or c3L to change through the
third line from the bottom line. Using the c/ string command allows
you to change characters from the current position to the first
occurrence of the search string.

Note: To recover text that was accidentally changed, see
"Recovering Lost Text"

ED 4-24

VISUAL EDITOR (vi)

COPYING TEXT

The Concept of Yank and Put

Vi provides a method of making a copy of text and placing this copy in
another location in the file. This method is called "yank and put." The
y operator yanks a copy of any specified object (word, line, sentence,
or paragraph) into a specially reserved space called a register. The
text can then be put back in the file from the register with the
commands p and P; the p command puts the text after or below the
cursor, while P puts the text before or above the cursor.

If the text you yank forms a part of a line or is an object such as a
sentence that partially spans more than one line, then when you put
the text back, it will be placed after the cursor (or before the cursor if
you use P). If the yanked text forms whole lines, whole lines will be put
back without changing the current line.

The Y command is used to create a copy of a line. The cursor can
then be moved to any character on another line, and the p used to
place the yanked line following the current line. The P command places
the copied line above the current line. The VP command makes a
copy of the current line and places it before the current line. The
cursor is placed on the first character of this copy. The command Y is
a convenient abbreviation for yy. The command Yp will also create a
copy of the current line and place it after the current line. You can
give Y a count of lines to yank and thus duplicate several lines.

Vi has a single unnamed register where the last yanked text is saved.
Each time a yank command is performed that uses the unnamed
register, the previous yank command is lost. To prevent the loss of
this text, the editor has a set of named registers [(a) through (z)] that
can be used to save copies of text. The general format of the yank
command using named registers is

"xyobject

ED 4-25

VISUAL EDITOR (vi)

where xis the name of the register [(a) through (z)] into which an
object is copied. The following procedure copies a line into a new
location in a file.

1. Enter the command:

"ayy

This yanks a line from where the cursor is into the narr:ied register
a.

2. Move the cursor to the eventual resting place of this line.

3. Enter the command:

"ap or" aP

This puts the line at the new location.

Copying Objects

The yank and put commands can be used to copy characters, words,
lines, sentences, or paragraphs. All the object commands can be
preceded by a number, that allows you to copy more than one object.
This is especially useful when copying characters. Each of the
following objects should be experimented with so you understand what
happens during a yank and put.

Characters can be copied by typing the yank command and then
typing the following object commands:

space bar Yanks one character in forward direction.

backspace Yanks one character in backward direction.

h Yanks one character in backward direction.

ED 4-26

fx

Fx

tx

Tx

VISUAL EDITOR (vi)

Yanks one character in forward direction.

Yanks all characters from cursor up to x in forward
direction.

Yanks all characters from cursor up to x in backward
direction.

Yanks all characters from cursor up to and including
x in forward direction.

Yanks all characters from cursor up to and including
x in backward direction.

Words can be copied by typing the yank command and then typing the
following objects:

w Yanks one word in forward direction (punctuation counts as
word).

W Yanks one word in forward direction (punctuation does not
count as word).

b Yanks one word in backward direction (punctuation counts
as word).

B Yanks one word in backward direction (punctuation does not
count as word).

e Yanks one word in forward direction up to last character in
word (punctuation counts as word).

Lines can be copied (in addition to yy and Y) by typing the yank
command and then typing the following objects:

$ Yanks one line from cursor to end of line.

ED 4-27

VISUAL EDITOR (vi)

<Cf?>. Yanks one line plus line cursor is on in forward direction.

Yanks one line plus line cursor is on in forward direction.

+ Yanks one line plus line cursor is on in forward direction.

k Yanks one line plus line cursor is on in backward direction.

Yanks one line plus line cursor is on in backward direction.

H Yanks line cursor is on through top line on screen.

M Yanks line cursor is on through middle line on screen.

l Yanks line cursor is on through bottom line on screen.

G Yanks line cursor is on through last line in file. If a number
precedes G, yanks through that line in forward or reverse
direction.

/ Yanks from where cursor is up to "searched for" string in
forward direction.

? Yanks from where cursor is through "searched for" string in
backward direction.

Sentences can be copied by typing the yank command and then typing
the following objects:

Yanks from cursor to end of sentence in forward direction.

Yanks from cursor to beginning of sentence in reverse
direction.

Paragraphs can be copied by typing the yank command and then
typing the following objects.

ED 4-28

VISUAL EDITOR (vi)

Yanks from cursor to end of paragraph in forward direction.

{ Yanks from cursor to beginning of paragraph in reverse
direction.

ED 4-29

VISUAL EDITOR (vi)

MOVING TEXT
The blocks of text that can be moved around in the file are:
characters, words, lines, sentences, and paragraphs. To move blocks
of text from one location to another, use the following procedure:

1. Delete (or change) the information you need to move with one
command. It will be saved in an area and appointed to a register.

2. Move the cursor to the location you wish to insert the text just
deleted and put it back in the file with the commands p or P. The
p command puts the text after or below the cursor while P puts
the text before or above the cursor. An example of a delete and
put command is:

xp

The x deletes the character the cursor is on; the cursor moves to
the next character to the right. The p puts the deleted character
back following the character the cursor is on. The result is two
characters have swapped positions.

3. If the text you delete forms a part of a line or is an object such as
a sentence that partially spans more than one line, then when you
put the text back it will be placed after the cursor (or before if you
use P). If the deleted text forms whole lines, they will be put back
as whole lines without changing the current line.

4. You may wish to place the text you are to move into a specific
location. The editor has a set of named registers [(a) through (z)]
that you can use to save copies of text. The general format of the
delete command using named registers is

" xdelete object
or

" xchange object

where (x) is the name of the register [(a) through (z)] into which
an object is deleted.

ED 4-30

VISUAL EDITOR (vi)

The following procedure moves a line to a new location in a file.

1. Enter the command:

II add

This deletes the line the cursor is on into the named register (a).

2. Move the cursor to the eventual resting place of this line.

3. Enter the command:

"ap or" aP

This puts the line at the new location. You can also do the same
with a change operation. After the new text is entered and the
<ESC> key pressed, the deleted text can be "put" at another
location in the file.

ED 4-31

VISUAL EDITOR (vi)

GLOBAL COMMANDS

Global Searches

When you need to locate all the occurrences of a specific pattern on a
line in your file, the global command (:g) and a search command (/ or
?) can be used. The global search command can be used in any of the
following formats:

(1) :[m],[n]g/text
(2) :[m],[n)g/text/p
(3) :[m],[n]g/text/nu

The [m] represents the line number where the search will start. The
[n] represents the line number where the search will stop, or $ that
causes the search to continue to the end of your file. If no numbers
are entered, all lines in the file will be searched.

,. When (1) is entered, the cursor will move to the last occurrence of
"text".

,. When (2) is entered, all the lines containing "text" are displayed
on the screen.

,. When (3) is entered, all the lines containing "text" are displayed
on the screen. Line numbers will be displayed with each line.

In global searches, a ? substituted for the / will have the same affect.
The special characters described in "Special Search Characters" can
be used in global search commands.

ED 4-32

VISUAL EDITOR (vi)

Global Substitutes

The global substitute command can be used when the same change
needs to be made in several places in the file. The command can be
executed against a range of lines or against the whole file. The
following formats can be used for global substitutes:

(1) :[m],[n]g/text/s/ /newtext
(2) :[m],[n]g/text/s//newtext/p
(3) :[m],[n]g/text/s//newtext/c

The [m] represents the line number where the search will start. The
[n] represents the line number where the search will stop. $ can be
used to represent the end of your file. If no numbers are entered, all
lines in the file will be searched.

• When (1) is entered, "newtext" will be substituted for "text" at
the first occurrence on each line requested in the command.
The cursor will be placed at the last occurrence of the changed
"newtext".

• When (2) is entered, "newtext" will be substituted for "text" at
the first occurrence on each line requested in the command.
The lines containing all occurrences of "newtext" substitutions
are displayed on the screen.

• When (3) is entered, you are in a "prompt" mode. The
"prompt" mode will allow you to decide if you want to make the
substitution. The line with the first occurrence of "text" is
displayed at the bottom of Athe screen. Each of the characters in
"text" will be replaced by (caret). If you type a y followed by
a <CR>, "newtext" will be substituted for "text" in th~ file. The
next line containing "text" will then be displayed with 's
replacing "text". If you decide not to make the substitution,
type a <CR> and the next line with "text" will be displayed. The
line displayed may appear as follows:

The of this sentence needs to be changed.

ED 4-33

VISUAL EDITOR (vi)

The special characters described in "Special Search Characters" can
be used in the search part of the global substitution command.

REPEATING ACTIONS WITH THE. COMMAND
Vi provides a timesaving command, called the "dot" command. The
"dot" command allows you to repeat the last command that changed
the buffer by placing the cursor at the location you wish to repeat the
command and entering a:

The actions that can be repeated using the • command are append,
insert, open, delete, change, and put. An example of how to use the
dot command would be to insert a line of text in a file and then
depress the <ESC> key. Then move the cursor to a different location
in the file and enter a • "dot". Vi will repeat the previous insert
command and insert the line of text here also.

If you want to place text at another location that is in a named register
after doing a put, you can save time by using the • command.
However, if you executed a put command that is associated with an
"unnamed" register, the • command should not be used. This is
because the text in the unnamed register may not be the same.

ED 4-34

VISUAL EDITOR (vi)

FILE MANIPULATION

Writing the Buffer to Another File

The write command (abbreviated w) allows you to write all or part of
the buffer to a new file. This allows you to keep copies of the buffer in
various states of change. To write the whole buffer to another file,
simply use the write command and the name of the file. For example:

:wiri te filerrrnme<CR> or :w filename<CR>

Be careful when naming the file. If you use an existing filename, the
editor will display the message:

"filename" File exists - "w! filename" to overwrite

When this occurs, you can either use a different filename, or use the w!
command to overwrite the file. If you overwrite the file, the
information being overwritten is no longer accessible.

If you only want to write part of the buffer to another file, you must
specify the beginning and ending lines you want to write. For example,

: 85, $w save<CR>

will write lines 85 through the end of the buffer to the file named save.

The write command does not change the buffer. The editor will display
the name of the file "save" that you have copied into, the number of
lines, and the number of characters entered into the file "save". If no
numbers are entered, the entire file you are in will be copied to the
filename entered.

ED 4-35

VISUAL EDITOR (vi)

Sometimes it is necessary to append information onto the end of a file
that already exists. For example, if you wanted to append several lines
to the file "save", you could use the command:

:12,25w >>save<CR>

The editor will display the name of the file "save", the number of lines,
and the number of characters added to the file.

Reading Another File into the Buffer

While using vi, it may be necessary to copy another file into the file you
are editing. This can be done using the :r command. To copy a file
into your file, enter the :, a line number that you desire the new text to
follow, the r, and the name of the file you wish to copy. The format for
this command is:

: [n]read filename<CR> or: [n]r filename<CR>

[n] can be any line number in your file. If you enter a 0, the copied file
will be added before line 1 in your file. If you enter a $, the copied file
will be added to the end of your file.

When the file is added, the editor will display at the bottom of the
screen the name of the file you copied, the number of lines in that file,
and the number of characters it contains. If you do not enter a
number in the above command, the file to be copied will be added
following the line your cursor was on when you entered the command.
For example, if you wish to write a file named "test" to follow line 10
in your file, enter the command:

: lOr test<CR>

ED 4-36

VISUAL EDITOR (vi)

Reading the Output From UNIX System Commands into
the Buffer

There are two commands that you can use to put the output from a
UNIX System command into a fUe. The only difference between the
two commands is that one inserts the text between lines and the other
replaces the current line with the text.

To insert the output from a UNIX System command between two lines,
position the cursor where you want the text and execute the
command:

:r !cmd<CR>

where "cmd" is the UNIX System command. The inserted text will be
displayed on the screen. This command will also allow you to use a
line number instead of positioning the cursor where you want the text
inserted.

If you want to replace a line in the buffer with the output of a UNIX
System command, position the cursor on that line and execute the
command:

! !cmd<CR>

where "cmd" is the UNIX System command. Only the current line will
be replaced by the inserted text. The inserted text will be displayed on
the screen.

ED 4-37

VISUAL EDITOR (vi)

Changing Files in the Editor

The vi editor is normally used to edit the contents of one file, whose
name is recorded as the current file. However, you can edit a different
file without leaving the editor by using the command:

: e filename<CR>

where "filename" is replaced by the name of the file to which you
want to change. This command allows you easy access to both files,
because vi does not have to be executed again.

When you are accessing two files, the file you are editing is always
considered the current file, and the other file is considered the
alternate file. When you want to change to the alternate file, use the e
command with the filename. Each time you use the e command to
change files, the file you name becomes the current file and the file
you leave becomes the alternate file.

When using thee command within the editor, normal shell expansion
conventions, such as "f'~ l" for "filel ", may be used. In addition, the
character % can be used in place of the current filename and the
character # in place of the alternate filename. For example:

:e #<CR>

will cause the alternate file to become the current file and the current
file will become the alternate file. This makes it easy to deal
alternately with two files and eliminates the need for retyping the
filename.

If you have not written the current file, the editor will display the
message:

No write since last change (:edit! overrides)

and delay editing the other file. You can either give the :w command
to write the file or :e! filename if you want to discard the changes to

ED 4-38

VISUAL EDITOR (vi)

the current file and begin editing the next file. To have the editor
automatically save the changes, you should include set autowrite in
your EXINIT and use the :n command instead of the :e command.

If you want to edit the same file (start over), give the :e! command.
These commands should be used carefully because once the changes
are discarded they cannot be recovered.

Editing Multiple Files and Using Named Buffers

When you have several files that you want to edit without actually
leaving and re-entering the vi editor, you can list these files in your vi
command. For example, if you enter the command:

vi file! file2 file3<CR>

the computer will respond with a message such as:

3 files to edit
"filel" xxx lines, xxxx characters

The current file "filel" can now be edited. The remaining arguments
are placed with the first file in the argument list. To display the
current argument list, enter the command:

: args<CR>

The computer will respond with the message:

[filel] file2 file3

The next file in the argument list may be edited by entering the
command:

: next<CR> or : n<CR>

ED 4-39

VISUAL EDITOR (vi)

If you have already written the buffer to the file, the computer will
respond with a message such as:

'
"fi le2" xxx lines xxxx characters

If you use the next command regularly, you may want to set the
autowrite option.

The argument list can be changed by specifying a list of filenames with
the next command. These names are expanded with the resulting list
of names becoming the new argument list, and vi edits the first file on
the list.

For saving blocks of text while editing, and especially when editing
more than one file, vi has a group of named buffers. These are similar
to the normal buffer, except that only a limited amount of operations
are available on them. The buffers have names a through z. It is also
possible to refer to A through Z; the uppercase buffers are the same as
the lowercase, but commands append to named buffers rather than
replacing if uppercase names are used.

Read~Only Mode

If you want to look at a file that you have no intention of changing, you
can execute vi in the read-only mode. This mode protects you from
accidentally overwriting the file. The read-only option can be set by
using the -R command line option, by the view command line
invocation, or by setting the read-only option. It can be cleared by
setting the noreadonly mode. (See "OPTIONS.") It is possible to write,
even while in the read-only mode, by writing to a different file or by
using the :w! command.

ED 4-40

VISUAL EDITOR (vi)

Obtaining Information about the Buffer

You can determine the state of the file by using the <CTRL G>
command. The editor will show you the name of the file, the number
of the current line, the number of lines in the buffer, and the
percentage of the way through the buffer that the cursor is located. A
sample response would be:

"filename" [Modified] line 1048 of 3096 --33%--

Note: After you save the changes by writing the buffer to the
file, the buffer is no longer considered modified.

ED 4-41

VISUAL EDITOR (vi)

ISSUING UNIX SYSTEM COMMANDS
Vi allows you to execute UNIX System commands by entering
commands of the form

: !cmd<CR>

where "cmd" represents the command you want to execute. Once
the command has executed, the computer will issue the message:

[Hit return to continue]

You can then depress the carriage return to continue editing or enter
the :! command to issue another UNIX System command.

If you need to execute more than one UNIX System command enter:

:sh<CR>

The computer will respond with the shell prompt ($). When you hav~
finished executing UNIX System commands, enter a <CTRL d>. This
will return you to the vi editor.

Caution: Be sure to write the buffer into the file before
escaping to the UNIX System. The editor will normally save
the buffer, but it will issue a message to remind you.

ED 4-42

VISUAL EDITOR (vi)

RECOVERING LOST TEXT

Undoing the Last Command

The undo command (abbreviated u) is able to reverse the effects of
the last command executed. Undo can often rescue the buffer from a
disastrous mistake. To execute the undo command enter:

: undo< CR> or : u<CR>

The undo command only works on commands that change the buffer,
such as - append, insert, delete, change, move, copy, and substitute.
You can also undo an undo command if you decide to keep the
change. Commands such as write, edit, and print cannot be undone.

The U command works like the u command, except that it returns the
current sentence to its original state.

Recovering Lost Lines

You might have a serious problem if you delete text and then regret
that it was deleted. The editor saves the last nine deleted blocks of
text in a set of numbered registers [l through 9]. (Text consisting of a
few words is not saved in these registers.) You can get the nth
previous deleted block of text back into your file by the command:

"np

The " tells that a register name is to follow, n is the number of the
register you wish to try, and p is the put command that puts text in
the register after the cursor. If this does not bring back the text you
wanted, type u to undo this command and repeat the command using
a different numbered register. You can repeat this procedure until you
find the correct deleted text

An easier way to search for the correct register can be to use the .
(dot) command to repeat the put command. In general, the •

ED 4-43

VISUAL EDITOR (vi)

command will repeat the last change. As a special case, when the last
command refers to a numbered text register, the • command
increments the number of the register before repeating the put
command. Thus, a sequence of the form

"lpu.u.u

will, if repeated long enough, show all the deleted text that was saved.
Omit the u commands and place all the text in the numbered registers
at one location. Stop after any . command to put just the then
recovered text at one location. The command P can also be used
rather than p to put the recovered text before instead of after the
cursor.

Recovering lost Files

If the system crashes, you can recover most of the work you were
doing. You will normally receive mail the next time you log in giving
you the name of the file that has been saved for you. To recover the
file, change to the directory where you were when the system crashed
and give a command of the form:

$ ex. -r filename<CR>

replacing "filename" with the name of the file that you were editing.
This will recover your work almost at the point where you left off.

You can get a listing of the files that are saved for you by giving the
command:

$ ex -r<CR>

If there is more than one instance of a particular file saved, the editor
gives you the newest instance each time you recover it. Therefore,
you can get an older saved copy back by first recovering the newer
copies.

ED 4-44

VISUAL EDITOR (vi)

For the "recover lost file" command to work, vi must be correctly
installed and the mail program must exist to receive mail.

MARKING UNES
The vi editor allows you to mark lines in the file with single letter tags
and return to these marks later by naming the tags. For example,
mark the current line with an a by entering the command:

ma

Then, move the cursor to a different line using any commands you like
and enter the command:

'a

The cursor will return to the place you marked. Marks last only until
you edit another file.

When using operators such as d and referring to marked lines, it is
often desirable to delete whole lines rather than deleting to the exact
position in the marked line. Here, use the form 'x rather than 'x. Used
without an operator, 'x will move to the first nonwhite character of the
marked line. The " moves to the first nonwhite character of the line
containing the previous context mark ".

ED 4-45

VISUAL EDITOR (vi)

WORD ABBREVIATIONS
Word abbreviation allows you to type a short word and have it
expanded into a longer word or words. The commands are:

: abbreviate (or : ab)
and

: unabbrevia te (or : una)

and have the same syntax as :map. For example:

:ab ecs Engineering and Computer Sciences<CR>

causes the word "ecs" to always be changed into the phrase
"Engineering and Computer Sciences." Word abbreviation is different
from macros in that only whole words are affected. If "ecs" were
typed as part of a larger word, it would be left alone. Also, the partial
word is echoed as it is typed. There is no need for an abbreviation to
be a single keystroke as it should be with a macro.

ADJUSTING THE SCREEN
If the screen image is messed up because of a transmission error to
your terminal or because some program other than the editor wrote to
your terminal, use the <CTRL L> command to refresh the screen.

If you want to place a certain line on the screen at the top, middle, or
bottom of the screen, you can position the cursor to that line and use
the z command followed by its argument. The following list describes
the three possible uses of the z command:

zz Places the line at the top of the screen

z. Places the line at the center of the screen

z. Places the line at the bottom of the screen.

ED 4-46

VISUAL EDITOR (vi)

LINE REPRESENTATION IN THE DISPLAY
The editor folds long logical lines onto many physical lines in the
display. Commands that advance lines, advance logical lines and will
skip over all the segments of a line in one motion. The : command
moves the cursor to a specific column and may be useful for getting
near the middle of a long line to split it in half. Try 80: on a line that is
more than 80 columns long.

The editor puts only full lines on the display. If there is not enough
room on the display to fit a logical line, the editor leaves the physical
line empty, placing only an @ on the line as a place holder. When you
delete lines on a dumb terminal, the editor will often clear just the lines
to @ to save time (rather than rewriting the rest of the screen). You
can always maximize the information on the screen by giving the
<CTRL R> command.

Line Numbers

Vi allows you to place line numbers before each line on the display. To
set the line number option, enter the command:

; set nu<CR>

To remove the line number option, enter the command:

: set nonu<CR>

list All Characters on a line

You can have tabs represented as I and the ends of lines shown with
$ by entering the command:

: set list<CR>

To remove the display of tabs and ends of lines enter the command:

: set nolist<CR>

ED 4-47

VISUAL EDITOR (vi)

Lines consisting of only the - character are displayed when the last line
of the file is in the middle of the screen. These represent physical lines
that are past the logical end of the file.

MACROS
The vi editor allows you to create macros so that when you enter a
single keystroke the editor will act as though you had entered a longer
sequence of keystrokes. You can do this if you find yourself typing the
same sequence of commands (keystrokes) repeatedly.

There are two types of macros:

" One type, you put the macro body in a buffer register such as x.
You can then type @x to invoke the macro. The @ may be
followed by another @ to repeat the last macro.

"' You can use the map command from the vi editor (typically in
your EXINll') with a command of the form:

:map lhs rhs<CR>

mapping lhs into rhs. There are restrictions: lhs should be one
keystroke (either one character or one function key). It must be
entered within l second (unless notimeout is set, in which case
you can type it as slowly as you wish, and vi will wait for you to
finish before it echoes anything). The lhs can be no longer than
ten characters, the rhs no longer than 100. To get a space, tab,
or newline into lhs or rhs you should escape them with a <CTRL
V> (it may be necessary to double the <CTRL V> if the map
command is given inside vi rather than in ex). Spaces and tabs
inside the rhs need not be escaped. To make the q key write
and exit the editor, enter:

:map q :wq<CTRL V><CTRL -·CR> <CR>

this means that whenever you type q, it will be as though you

ED 4-48

VISUAL EDITOR (vi)

had typed :wq<CR>. A <CTRL 11> is needed because without it
the <CR> would end the : command rather than becoming part
of the map definition. There are two <CTRL 11>'s because from
within vi, two <CTRL 11> 's must be typed to get on. The first
<CR> is part of the rhs, the second ends the : command.

Macros can be deleted with

: unmap lhs

If the lhs of a macro is #0 through #9, the particular function key is
mapped instead of the 2-character # sequence. So that terminals
without function keys can access such definitions, the form #x will
mean function key x on all terminals (and need not be typed within 1
second). The character # can be changed by using a macro in the
usual way:

:map <CTRL V><CTRL 11><CTRL i> #

to use tab, for example. This will not affect the map command, that
still uses #, but affects the invocation from visual mode.

The undo command will reverse all the changes made by a macro call
as a unit.

Placing an ! after the word map causes the mapping to apply to text
input mode rather than command mode. Thus, to arrange for <CTRL
t> to be the same as four spaces, type

:map <CTRL i><CTRL 11>)1StiJtlts

where 16 is a blank. The <CTRL V> is necessary to prevent the blanks
from being taken as white space between the /hs and rhs.

ED 4-49

VISUAL EDITOR (vi)

OPTIONS

Setting Options

There are three kinds of options: numeric, string, and toggle. Numeric
and string options are set by a statement of the form:

: set option=value<CR>

Toggle options can be set or not set by statements of the forms:

: set option<CR>
and

: set nooption<CR>

These options can be placed in your EXINIT in your environment or
given while you are running vi by preceding them with a : and following
them with a <CR>.

You can get a list of all options that you have changed with the
command:

: set<CR>

or the value of a single option with the command:

: set option ?<CR>

A list of all possible options and their values is generated by the
command:

: set all<CR>

Set can be abbreviated se. Multiple options can be placed on one line,
for example:

: se ai aw nu<CR>

ED 4-50

VISUAL EDITOR (vi)

Options set by the set command last only while you stay in the editor.
!t is common to want to have certain options set whenever you use the
editor. This can be done by creating a list of ex commands that are to
be run every time you start ex, edit, or vi (all commands that start
with : are ex commands). A typical list includes a set command and
possibly a few map commands. Since it is advisable to get these
commands on one line, they can be separated with the I character; for
example:

set ai aw terse: map @ ddi map # x

this establishes the set command options autoindent, autowrite, terse,
makes @delete a line (the first map), and makes #delete a character
(the second map). One way to have the commands execute every
time you enter the vi editor is to put the line in the file .exrc in your
home directory. Another way to execute the commands automatically
is to place the string in the variable EXINIT in your environment. Using
the shell, put these lines in the file .profile in your home or working
directory:

EXINIT=set ai aw terse: map @ ddi map # x
export EXINIT

Of course, the particulars of the line would depend on the options you
want to set.

List of Options

The editor has a set of options that can be useful. Some of these
options have been mentioned earlier. They are as follows:

autoindent, ai (default: noautoindent)
Can be used to ease the preparation of structured program text.
At the beginning of each append, change, or insert command or
when a new line is opened or created by an append, change,
insert, or substitute operation, the editor looks at the line being
appended after, the first line changed, or the line inserted before,
and calculates the amount of white space at the start of the line.

ED 4-51

VISUAL EDITOR (vi)

Autoindent then aligns the cursor at the level of indentation so
determined.

If the user then types in lines of text, the lines will continue to be
justified at the displayed indenting level. If more white space is
typed at the beginning of a line, the following line will start
aligning with the first nonwhite character of the previous line. To
back the cursor to the preceding tabstop, type <CTRL d>. The
tabstops (going backwards) are defined as multiples of the
shiftwidth option. You cannot backspace over the indent except
by sending an end-of-file with a <CTRL d>.

Specially processed in this mode is a line with no character added
to it, that turns into a completely blank line (the white space
provided for the autoindent is discarded). Also, spAecially
processed in this mode are lines beginning with a and
immediately followed by a <CTRL d>. This causes the input to be
repositioned at the beginning of the line while retaining the
previous indent for the next line. Similarly, a 0 followed by a
<CTRL d> repositions at the beginning without retaining the
previous indent.

The autoindent option does not happen in global commands or
when the input is not a terminal.

,;:u11topri111t,ap (default: autoprint)
Causes the current line to be printed after each delete, copy,
joi!"l, move, substitute, t, undo, or shift command. This has the
same effect as supplying a trailing p to each such command. The
autoprint is suppressed in globals, and only applies to the last of
many commands on a line.

2i!.ll'lt0'111!""ite,aw (default: noautowrite)
Causes the contents of the buffer to be written to the current file
if you have modified it and enter a next, rewind, tab, or !
command, or a <CTRL t> (switch files) or <CTRL]>(tag goto)
command in 'll'isual.

ED 4-52

VISUAL EDITOR (vi)

Note: The command does not autowrite. In each case,
there is an equivalent way of switching when the autowrite
option is set to avoid the autowrite (ex for next, rewind!
for rewind, tag! for tag, shell for !, and :e # and a :ta!
command from within visual).

!beautify, bf (default: nobeautify)
Causes all control characters except tab, newline, and formfeed
to be discarded from the input. A complaint is registered the first
time a backspace character is discarded. The beautify option
does not apply to command input.

directory, dir (default: dir=/tmp)
Specifies the directory in which ex places its buffer file. If this
dii-ectory is not writable, then the editor will exit abruptly when it
fails to be able to create its buffer there.

edcompatible (default: noedcompatible)
Causes the presence or absence of g and c suffixes on substitute
commands to be remembered and to be toggled by repeating the
suffixes. The suffix r makes the substitution similar to the ~
command instead of like the &. command.

errnrbells,eb (default: noerrorbells)
Error messages are preceded by a bell. Bell ringing in open and
visual mode on errors is not suppressed by setting noeb. If
possible, the editor always places the error message in a standout
mode of the terminal (such as inverse video) instead of ringing
the bell.

flash, fl (default: flash)
Errors or illegal inputs respond by flashing the screen instead of
ringing the bell in the terminal. On terminals that do not have
flash capability, the bell will still ring.

ED 4-53

VISUAL EDITOR (vi)

hardtabs, ht (default: hardtabs=8)
Gives the boundaries on what terminal hardware tabs are set (or
on what the system expands tabs).

ignorecase,ic (default: noignorecase)
All uppercase characters in the text are mapped to lowercase in
regular expression matching. In addition, all uppercase
characters in regular expressions are mapped to lowercase
except in character class specifications.

'ist (default: nolist)
All printed lines will be displayed showing hidden characters such
as tabs and end-of-lines.

magic (default: magic)
If nomagic is set, the amount of regular expr~ssion
metacharacters is greatly reduced with only and $ having
special effects. In addition, the metacharacters - and & of the
replacement pattern are treated as normal characters. All the
normal metacharacters may be made magic when nomagic is set
by preceding them with a \.

mesg (default: mesg)
Causes write permission to be turned off to the terminal while in
visual mode, if nomesg is set.

rumber,m..1 (default: nonumber)
Causes all output lines to be printed with line numbers. In
addition, each input line will be prompted for by supplying the line
number it will have.

optimize, opt (default: optimize)
Throughput of text is expedited by setting the terminal not to do
automatic carriage returns when printing more than one (logical)
line of output, greatly speeding output on terminals without
addressable cursors when text with leading white space is printed.

ED 4-54

VISUAL EDITOR (vi)

paragraphs, para (default: para=IPLPPPQPP Llpplpipbp)
Specifies the paragraphs for the { and } operations in open and
visual mode. The pairs of characters in the option's value are the
names of the macros that start paragraphs.

prompt (default: prompt)
Command mode input is prompted for with a colon (:).

readonly (default: noreadonly)
Sets the editor so you cannot accidentally change the file.

redraw (default: noredraw)
The editor simulates (using great amounts of output) an intelligent
terminal on a dumb terminal (for example, during insertions in
visual, the characters to the right of the cursor position are
refreshed as each input character is typed). This option is useful
only at high speeds.

remap (default: remap)
If on, macros are repeatedly tried until they are unchanged. For
example, if o is mapped to 0, and 0 is mapped to I; then if remap
is set, o will map to I; but if noremap is set, it will map to 0.

report (default: report=5)
Specifies a threshold for feedback from commands. Any
command that changes more than the specified amount of lines
will provide feedback on the scope of its changes. For commands
such as global, open, undo, and visual, that have potentially
more far-reaching scope, the net change in the number of lines in
the buffer is presented at the end of the command, subject to
this same threshold. Thus, notification is suppressed during a
global command on the individual commands performed.

scroll (default: scroll=V2 window)
Determines the amount of logical lines scrolled when an end-of
file is received from a terminal input in command mode, and
determines the amount of lines printed by a command mode z
command (double the value of scroll).

ED 4-55

VISUAL EDITOR (vi)

sections (default: sections=NHSHH HUnhsh)
Specifies the section macros for the [[and]] operations in open
and visual modes. The pairs of characters in the option's value
are the names of the macros that start paragraphs.

shell, sh (default: shell=/ bin/ sh)
Gives the path name of the shell forked for the shell escape
command ! and by the shell command. The default is taken
from SHELL in the environment, if present.

shiftwidth, sw (default: shiftwidth=8)
Gives the width a software tabstop used in reverse tabbing with
<CTRL d> when using autoindent to append text and by the shift
commands.

showmatch, sm (default: noshowmatch)
In open and visual modes when a) or } is typed, it moves the
cursor to the matching (or { for one second if this matching
character is on the screen.

slowopen, slow (terminal dependent)
Affects the display algorithm used in visual mode, holding off
display updating during input of new text to improve throughput
when the terminal in use is both slow and unintelligent.

tabstop, ts (default: tabstop=8)
The editor expands tabs in the input file to be on tabstop
boundaries for the purposes of display.

taglength, ti (default: taglength=O)
Tags are not significant beyond this many characters. A value of
zero (the default) means that all characters are significant.

tags (default: tags=tags /usr /lib/tags)
A path of files to be used as tag files for the tag command. A
requested tag is searched for in the specified files, sequentially.
By default, files called tags are searched for in the current
directory and in /usr /lib (a master file for the entire system).

ED 4-56

VISUAL EDITOR (vi)

term (from environment TERM)
The terminal type of the output device.

terse (default: noterse)
Shorter error diagnostics are produced for the experienced user.

timeout (default: notimeout)
Set a time limit for the execution of an editor command.

ttytype=
Terminal type defined to system for visual mode. Can be defined
before entering visual editor by TERM=type.

warn (default: warn)
Warn if there has been "[No write since last change]" before a !
command escape.

window (default: window=speed dependent)
The amount of lines in a text window in the visual command. The
default is eight at slow speeds (600 baud or less), 16 at medium
speed (1200 baud), and the full screen (minus one line) at higher
speeds.

w300,w1200,w9600
These are not true options, but set window only if the speed is
slow (300), medium (1200), or high (9600), respectively. They
are suitable for an EXINIT and make it easy to change the
8/16/full screen rule.

wrapscan, ws (default: wrapscan)
Searches that use regular expressions in addressing will wrap
around past the end of the file.

wrapmargin, wm (default: wrapmargin=O)
Defines a margin for automatic wrapover of text during input in
open and visual modes.

ED 4-57

VISUAL EDITOR (vi)

writeany, wa (default: nowriteany)
Inhibit checks normally made before write commands, allowing a
write to any file that the system protection mechanism will allow.

CHARACTER FUNCTIONS SUMMARY
This summary shows the uses that the vi editor makes of each
character. Characters are presented in their order in the ASCII
character set: control characters first, most special characters, digits,
uppercase characters, and then lowercase characters.

Each character is defined with a meaning it has as a command and any
meaning it has during an insert. If it has meaning only as a command,
then only this is discussed. Usually, uppercase and lowercase <CTRL>
characters do the same action.

<CTRL @> Not a command character. If typed as the first character
of an insertion, it is replaced with the last text inserted;
and the insert ends. Only 128 characters are saved from
the last insert; if more characters have been inserted, the
mechanism is not available. A <CTRL @> cannot be part
of the file owing to the editor implementation.

<CTRL a> Unused.

<CTRL b> Backward window. A count specifies repetition. Two lines
of continuity are kept, if possible.

<CTRL c> Unused.

<CTRL d> As a command, it scrolls down a half window of text. A
count gives the amount of (logical) lines to scroll and the
count is remembered for future <CTRL d> and <CTRL u>
commands. During an insert, it backtabs over autoindent
white space at the beginning of a line. This white space
cannot be backspaced over.

ED 4-58

VISUAL EDITOR (vi)

<CTRL e> Exposes one more line below the current screen in the
file, leaving the cursor where it is, if possible.

<CTRL f> Forward window. A count specifies repetition. Two lines
of continuity are kept, if possible.

<CTRL g> Equivalent to :f <CR>, printing the current filename,
whether it has been modified, the current line number,
the number of lines in the file, and the percent of the way
through the file.

<CTRL h> (BS)
Same as left arrow (see h). During an insert, it eliminates
the last input character backing over it but not erasing it.
The character remains so you can see what you typed if
you wish to type something slightly different.

<CTRL i> (TAB)
Not a command character. When inserted, it prints as
some amount of spaces. When the cursor is at a tab
character, it rests at the last of the spaces that represent
the tab. The spacing of tabstops is controlled by the
tabstop option.

<CTRL j> (LF)
Same as Down arrow. It moves the cursor one line down
in the same column. If the position does not exist, vi
comes as close as possible to the same column.
Synonyms include j and <CTRL n>.

<CTRL k> Unused.

<CTRL I> The ASCII form feed character that causes the screen to
be cleared and redrawn. It is useful after a transmission
error, if characters typed by a program other than the
editor scramble the screen, or after output is stopped by
an interrupt.

ED 4-59

VISUAL EDITOR (vi)

<CTRL m> (<CR>)
A carriage return advances to the next line, to the first
nonwhite position in the line. Given a count, it advances
that many lines. During an insert, a <CR> causes the
insert to continue onto another line.

<CTRL n> Same as Down arrow. It moves the cursor one line down
in the same column. If the position does not exist, vi

comes as close as possible to the same column.
Synonyms include j and <CTRL j>.

<CTRL o> Unused.

<CTRL p> Same as Up arrow. It moves the cursor one line up. A
synonym is k.

<CTRL q> Not a command character. In text input mode, <CTRL q>
quotes the next character, the same as <CTRL V>, except
that some TELETYPE drivers will delete the <CTRL q> so
that the editor never sees it.

<CTRL r> Redraws the current screen eliminating logical lines not
corresponding to physical lines (lines with only a single @

character on them). On hardcopy terminals in open
mode, retypes the current line.

<CTRL s> Unused. Some TELETYPE drivers use <CTRL s> to
suspend output until <CTRL q> is invoked.

<CTRL t> Not a command character. During an insert with
autoindent set and at the beginning of the line, it inserts
shiftwidth white space.

<CTRL U> Scrolls the screen up (inverse of <CTRL d>). A count
gives the amount of (logical) lines to scroll, and the count
is remembered for future <CTRL d> and <CTRL U>

commands. The previous scroll amount is common to
both. On a dumb terminal, <CTRL u> will often require
clearing and redrawing the screen further back in the file.

ED 4-60

VISUAL EDITOR (vi)

<CTRL V> Not a command character. In text input mode, it quotes
the next character so that it is possible to insert
nonprinting and special characters into the file.

<CTRL W> Not a command character. During an insert, it backs up
as b would in command mode; the deleted characters
remain on the display (see <CTRL h>).

<CTRL X> Unused.

<CTRL y> Exposes one more line above the current screen leaving
the cursor where it is, if possible. There is no mnemonic
value for this key; however, it is next to <CTRL U>.

<CTRL Z> Unused.

<CTRL [> (<ESC>)
Cancels a partially formed command (such as a z when no
following character has yet been given), ends inputs on
the last line (read by commands such as:, /, and ?), and
ends insertions of new text into the buffer. If an <ESC> is
given when in the command state, the editor rings the bell
or flashes the screen. Therefore, you can press <ESC> if
you do not know what is happening until the editor rings
the belL If you do not know if you are in insert mode,
type <ESC a> and then the material to be input; the
material will be inserted correctly whether or not you
were in insert mode when you started.

<CTRL e> Unused.

<CTRL]> Searches for the word that is after the cursor as a tag. It
is equivalent to typing :ta, this word, and then a <CR>.

<CTRL i> Equivalent to :e #<CR>, returning to the previous position
in the last edited file, or editing a file that you specified if
you got a "No write since last change" diagnostic and do
not want to have to type the file name again. You have to
do a :w before <CTRL i> will work in this case. If you do

ED 4-61

VISUAL EDITOR (vi)

not wish to write the file, enter :e! #<CR> instead.

<CTRL _> Unused. Reserved as the command character for the
TEKTRONIX* 4025 and 4027 terminals.

SPACE Same as right arrow (see I).

$

An operator that processes lines from the buffer with
reformatting commands. Follow ! with the object to be
processed, and then the command name ended by <CR>.
Doubling ! and preceding it by a count causes count lines
to be filtered; otherwise, the count is passed on to the
object after the !. Thus 2!}fmt<CR> reformats the next
two paragraphs by running them through the program
fmt. To read a file or the output of a command into the
buffer use :r. To simply execute a command use :!.

Precedes a named buffer specification. There are named
buffers (1 through 9) used for saving deleted text and
named buffers (a through z) into which you can place text.

The macro character, when followed by a number, will
substitute for a function key on terminals without function
keys. In text input mode, if this is your erase character, it
will delete the last character you typed and must be
preceded with a \ to insert it since it normally backs over
the last input character you gave.

Moves to the end of the current line. If the :se list<CR>
command is used, then the end of each line will be shown
by printing a $ after the end of the displayed text in the
line. When a count is used, the cursor advances to the
end of the line following the count. For example, 2$
advances the cursor to the end of the following line.

* Registered Trademark of Tektronix, Inc.

ED 4-62

%

&

(

)

*

+

VISUAL EDITOR (vi)

Moves to the parenthesis (()) or brace ({}) that precedes
or follows the parenthesis or brace at the current cursor
position.

A synonym for :&<CR>, analogous to the ex & command.

When followed by a ', the cursor returns to the previous
context at the beginning of a line. The previous context is
set whenever the current line is moved in a nonrelative
way. When followed by a letter (a through z), it returns to
the line that was marked with this letter with an m
command at the first nonwhite character in the line.
When used with an operator such as d, the operation
takes place over complete lines; if you use ', the operation
takes place from the exact marked place to the current
cursor position within the line.

Retreats to the beginning of a sentence. A sentence ends
at a ., !, or ? followed by either the end of a line or by two
spaces. Any amount of closing characters (),], " , and ')
may appear after the ., !, or ? , and before the spaces or
end of iine. Sentences also begin at paragraph and
section boundaries (see { and [[). A count may be used
before (to advance more than one sentence.

Advances to the beginning of a sentence. A count repeats
the effect. See (for the definition of a sentence.

Unused.

Same as <CR> when used as a command.

Reverse of the last f, F, t, or T command, looking the
other way in the current line. Especially useful after
typing too many ; characters. A count repeats the search.

Retreats to the previous line at the first nonwhite
character. This is the inverse of + and <CR>. If the line
moved to is not on the screen, the screen is scrolled or

ED 4-63

VISUAL EDITOR (vi)

I

0

ED 4-64

cleared and redrawn. If a large amount of scrolling would
be required, the screen is also cleared and redrawn with
the current line at the center.

Repeats the last command that changed the buffer.
Especially useful when deleting words or lines; you can
delete some words/lines and then type • to delete more
and more words/lines. Given a count, it passes it on to
the command being repeated. Thus, after a 2dw, a 3.
deletes three words.

Reads a string from the last line on the screen and scans
forward for the next occurrence of this string. The search
begins when you press <CR>, and the cursor moves to
the beginning of the last line to show that the search is in
progress. The search may be ended with a or
<RUB>, or by backspacing when at the beginning of the
bottom line returning the cursor to its initial position.
Searches normally wrap end-around to find a string
anywhere in the buffer.

When used with an operator, the enclosed region is
normally affected. By mentioning an offset from the line
matched by the pattern, you can force whole lines to be
affected. To do this, give a pattern with a closing/ and
then an offset +nor -n.

To include the / character in the search string, you must
escape it with a preceding \. A t at the beginning of the
pattern forces the match to occur at the beginning of a
line only; this speeds the search. A $ at the end of the
pattern forces the match to occur at the end of a line
only. More extended pattern matching is available.
Unless you set nomagic in your .exrc file, you will have to
precede the characters ., [, *, and - in the search pattern
with a \ to get them to work as you would expect.

Moves to the first character on the current line. Also
used, when forming numbers.

1-9

<

>

?

@

A

B

c

D

VISUAL EDITOR (vi)

Used to form numeric arguments to commands.

A prefix to a set of commands for file and option
manipulation and escapes to the system. Input is given on
the bottom line and ends with a <CR>, and the command
is then executed. If you accidentally type :, you can
return to where you were by typing or <RUB>.

Repeats the last single "character find" that used f, F, t,
or T. A count iterates the basic scan.

An operator that shifts lines left one shiftwidth, normally
eight spaces. Like all operators, it affects lines when
repeated, as in < <. Counts are passed through to the
basic object, thus 3<< shifts three lines.

An operator that shifts lines right one shiftwidth, normally
eight spaces. Affects lines when repeated as in >>.
Counts repeat the basic object

Scans backward, the opposite of /. See the / description
for details on scanning.

A macro character. Since this is the kill character, you
must escape it with a \ to type it in during text input
mode. It normally backs over the input given on the
current line.

Appends at the end of line, a synonym for $a.

Backs up a word, where words are composed of nonblank
sequences, placing the cursor at the beginning of the
word. A count repeats the effect.

Changes the rest of the text on the current line; a
synonym for c$.

Deletes the rest of the text on the current line; a synonym
ford$.

ED 4-65

VISUAL EDITOR (vi)

E

F

G

H

J

K

L

M

ED 4-66

Moves forward to the end of a word, defined as blanks and
nonblanks, like B and W. A count repeats the effect.

Finds a single following character, backwards in the
current line. A count repeats this search a specified
amount of times.

Goes to the line number given as preceding argument or
the end of the file if no preceding count is given. The
screen is redrawn with the new current line in the center,
if necessary.

Same as Home arrow. Homes the cursor to the top line
on the screen. If a count is given, then the cursor is
moved to the count's line on the screen. In any case, the
cursor is moved to the first nonwhite character on the
line. If used as the target of an operator, full lines are
affected.

Inserts at the beginning of a line.

Joins lines together, supplying appropriate white space:
one space between words, two spaces after a ., and no
spaces at all if the first character of the joined on line is).
A count causes that many lines to be joined rather than
the default two.

Unused.

Moves the cursor to the first nonwhite character of the
last line on the screen. With a line count number, moves
the cursor to the first nonwhite character of the indicated
line from the bottom. Operators affect whole lines when
used with l.

Moves the cursor to the middle line on the screen at the
first nonwhite position on the line.

N

0

p

Q

R

s

T

u

v

VISUAL EDITOR (vi)

Scans for the next match of the last pattern given to / or
? , but in the reverse direction. N is the reverse of n.

Opens a new line above the current line and inputs text
there up to an <ESC>. A count can be used on dumb
terminals to specify a number of lines to be opened; this is
generally obsolete as the slowopen option works better.

Puts the last deleted text back before/above the cursor.
The text goes back as whole lines above the cursor if it
was deleted as whole lines; otherwise, the text is inserted
between the characters before and at the cursor. The P
character may be preceded by a named buffer
specification" x to retrieve the contents of the buffer.
Buffers 1 through 9 contain deleted material, buffers a
through z are available for general use.

Quits from vi to ex command mode. In this mode, whole
lines form commands and end with a <CR>. You can give
all the : commands; the editor supplies the : as a prompt.

Replaces characters on the screen with characters you
type (overlay fashion). End with an <ESC>.

Changes whole lines; a synonym for cc. A count
substitutes for that many lines. The lines are saved in the
numeric buffers and erased on the screen before the
substitution begins.

Takes a single following character, locates the character
before the cursor in the current line, and places the
cursor just after that character. A count repeats the
effect. Most useful with operators such as d.

Restores the current line to its state before you started
changing it.

Unused.

ED 4-67

VISUAL EDITOR (vi)

w

x

y

zz

[[

\

]]

t

ED 4-68

Moves forward to the beginning of a word in the current
line where words are defined as sequences of
blank/nonblank characters. A count repeats the effect

Deletes the character before the cursor. A count repeats
the effect, but only characters on the current line are
deleted.

Yanks a copy of the current line into the unnamed buffer
to be put back by a later p or P; a synonym for yy. A
count yanks that many lines. May be preceded by a
buffer name to put lines in that buffer.

Exits the editor (same as :x<CR>). If any changes have
been made, the buffer is written out to the current file.
Then, the editor quits.

Backs up the previous section boundary. A section begins
at each macro in the sections options, normally a .NH or
.SH, and also at lines that start with a form feed <CTRL
I>. Lines beginning with { also stop [[; this makes it useful
for looking backwards, a function at a time, in C programs.

Unused.

Forwards to a section boundary. See [[for a definition.

Moves to the first nonwhite position on the current line.

Unused.

When followed by a ', returns to the previous context.
The previous context is set whenever the current line is
moved in a nonrelative way. When followed by a letter (a
through z), the cursor returns to the position that was
marked with this letter. When used with an operator such
as d, the operation takes place from the exact marked
place to the current position within the line. If you use ',
the operation takes place over complete lines.

a

b

c

d

e

f

g

h

VISUAL EDITOR (vi)

Appends arbitrary text after the current cursor position;
the insert can continue to multiple lines by using <CR>
within the insert. A count causes the inserted text to be
replicated, but only if the inserted text is all on one line.
The insertion ends with an <ESC>.

Backs up to the beginning of a word in the current line. A
word is a sequence of alphanumerics or a sequence of
special characters. A count repeats the effect.

An operator that changes the following object, replacing it
with the following input text up to an <ESC>. If more
than part of a single line is affected, the text to be
changed is saved in the numeric named buffers. If only
part of the current line is affected, the last character to
be changed is marked with a $. A count causes that many
objects to be affected, thus both 3c) and c3) change the
following three sentences.

An operator that deletes the following object. If more
than part of a line is affected, the text is saved in the
numeric buffers. A count causes that many objects to be
affected; thus 3dw is the same as d3w.

Advances to the end of the next word, defined as for b
and w. A count repeats the effect.

Finds the first instance of the next character following the
cursor on the current line. A count repeats the find.

Unused.

Same as left arrow. Moves the cursor one character to
the left. Like the other arrow keys, either h, the left
arrow key, or the synonyms (<CTRL h>) has the same
effect A count repeats the effect.

Inserts text before the cursor; otherwise, like a.

ED 4-69

VISUAL EDITOR (vi)

k

m

n

0

p

q

r

s

t

ED 4-70

Same as Down arrow. Moves the cursor one line down in
the same column. If the position does not exist, vi comes
as close as possible to the same column. Synonyms
include <CTRL f> (linefeed) and <CTRL n>.

Same as Up arrow. Moves the cursor one line up. <CTRL
p> is a synonym.

Same as Right arrow. Moves the cursor one character to
the right. SPACE is a synonym.

Marks the current position of the cursor in the mark
register that is specified by the next character a through
z. Return to this position or use with an operator using '
or'.

Repeats the last / or ? scanning commands.

Opens new lines below the current line; otherwise, like 0.

Puts text after /below the cursor; otherwise, like P.

Unused.

Replaces the single character at the cursor with a single
character you type. The new character may be a <CR>;
this is the easiest way to split lines. A count replaces each
of the following count characters with the single character
given; see R above, this is usually the more useful iteration
of r.

Changes the single character under the cursor to the text
that follows up to an <£SC>; given a count, that many
characters from the current line are changed. The last
character to be changed is marked with $ as in c.

Advances the cursor up to the character before the next
character typed. Most useful with operator such as d and
c to delete the characters up to a following character.

u

v

w

x

y

z

VISUAL EDITOR (vi)

You can use . to delete more if this does not delete
enough the first time.

Undbes the iast change made to the current buffer. If
repeated, will alternate between these two states; thus, is
its own inverse. When used after ah insert that inserted
text on more than one line, the lines are saved in the
numeric named buffers.

Unused.

Advances to the beginning of the next word, as defined by
b.

Deletes the single character under the cursor. With a
count, deletes that many characters forward from the
cursor position, but only on the current line.

An operator that yanks the following object into the
unnamed temporary buffer. If preceded by a named
buffer specification, "x, the text is placed in that buffer
also. Text can be recovered by a later p or P.

Redraws the screen with the current line placed as
specified by the following character:

Specifies the top of the screen

Specifies the center of the screen

Specifies the bottom of the screen.

A count may be given after the z and before the following
character to specify the new screen size for the redraw. A
count before the z gives the amount of the line to place in
the center of the screen instead of the default current
line.

ED 4-71

VISUAL EDITOR (vi)

{

}

Retreats to the beginning of the preceding paragraph. A
paragraph begins at each macro in the paragraphs
option-- normally .IP, .LP, .PP, .QP and .bp. A paragraph
also begins after a completely empty line and at each
section boundary (see [[).

Places the cursor on the character in the column specified
by the count.

Advances to the beginning of the next paragraph. See {
for the definition of paragraph.

Switches character from lowercase to uppercase and vice
versa.

<CTRL ?>()

ED 4-72

Interrupts the editor returning it to command-accepting
state.

