
t"J4"'- 4....,.(!_,) ":...

= 'ii7 PiuA

.:: f /)

:::: rt> Dr"'d

J 7 "'°l-.- ""1 L If) ; I y
-:::-1y c)ru1-f

C./ l

REVISION ,2,.,4

eoPYRI~ "tc) :a1a2' CU.IS?QRHER J;,6QBRAN

COPYRIGHT (C) 1982, BY CHRISTOPHER COCHRAN

All rights reserved. No part of this manual or the software it covers may be
reproduced or copied in any form or by any means -- graphic, electronic,
magnetic, or mechanical, including photocopying, recording, taping, or
information retrieval systems ·-- without written permission from the author.

The name 'NORTH STAR' is a registered trade mark of North Star Computers, Inc.
The name 'CP/M' is a registered trade mark of Digital Research, Inc.

**** TABLE OF CONTB.

1.0 Introduction •

1.1
1.2
1.3
1.4
1.5
1.6

2.0

2.1

2.2

2.3

2.4

3.0

3.1
3.2
3.3
3.4
3.5

4.0

4.1
4.2
4.3
4,4
4.5
4.6

Runn~ng Programs from the DOS •
Program Development Overview
Lines, Statements, & Program Form •
Introduction to the Line Editor
Advanced Editing Features •
Summary of Editing Control Keys

APCBASIC Commands

Program Entry, Storage and Retrieval

ENTER
LIST
LOAD
SAVE

Editing and Alteration

EDIT
CHANGE
DEL
REN
MERGE

Execution Control & Debugging •

RUN
CTRL-C
CONT
Direct Execution
TRACE

Miscellaneous Comm.ands

SIZE
DOS
DIR

Representing and Manipulating Numbers

Numeric Constants •
Simple Numeric Variables
Numeric Arrays
Expressions
Functions •

Representing and Manipulating Strings

Strings and String Constants
Simple String Variables
String Arrays •
Expressions
String Indexing
String Functions

2
3
4
5
5
6

9

11

13

17

21

23

23
23
24
25
29

35

35
36
37
38
43
45

5.-'

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

APCBASIC Statements

Data Definition Statements

DIM statement
DATA, READ
RESTORE, ON •• RESTORE

Input & Output Statements •

PRINT
INPUT
EDIT

Data Transformation Statements

Assignment Statements
BIT statement
SWAP

Program Control Statements

GOTO , ON •• GOTO
IF THEN •• ELSE
FOR •• NEX'.i.
EXIT
ERRS ET
STOP, END, DOS

Subroutine Statements •

GOSUB, ON •• GOSUB, RETURN
LOCAL
DEF, FNEND

File Processing Statements

CREATE, DESTROY & RENAME
OPEN & CLOSE
READ#, WRITE# & NOMARK
DIR Statement
FREE Statement

Segmentation & Overlay Statements •

LINK, MERGE & DELETE

System Interfa .. g Statements •

FILL Statement
EXAM Statement
OUT Statement
PARAM() Statement

Documentation Statements

REM Statement

49

51

57

59

67

69

73

75

77

6.0 APCBASIC Function Library

6.1
6.2
6.3
6.4
6.5

7.0

7.1
7.2
7.3
7.4
7.5
7.6

8.0

8.1
8.2
8.3

9.0

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Arithmetic Functions
Mathematical Functions
String Functions
File and Device I/O Functions •
System Interface Functions

Miscellaneous Information

Error Messages
Alternate Keywords & Symbols
Configuration Options •
APCBASIC Variations Under CP/M
Version Change History
Implementation Notes

APCBASIC Utility Programs

ZBIG
CRUNCH
CONFIG

APCBASIC for North Star BASIC Users

Compatability Issues
Program Development Facilities
Program Control Enhancements
Data Definition and ·Manipulation •
Enhancements to Device I/O and Line Editor
String Manipulation
File Processing Enhancements
System Interface

83
84

87

88
91
92
94
97

109

113

114
119
120

123

123
127
129
130
132
133
134
135

**** 1 • 0 INTRODUCTION TO Al

This manual is a reference guide to the facilities pro~Id:ec:f~''b} A.Pc'a.Asl~.1
creating, modifying, debugging and running programs written in the APCBAS1C
programming language. Since it is intended for programmer reference, rather
than as a tutorial, people unfamiliar with general BASIC programming should
select a beginning BASIC programming guide to supplement this manual for
further clarification of BASIC structures. A working knowlege of your
computer system and its operating system is assumed (especially its file
handling capabilities).

fect1on 1.0 is written not only to introduce APCBASIC to the programmer, but to
i. llly orient a person who will be running programs written by someone else and
who is generally disinterested in the details of actual APCBASIC programming.
It includes a full description of the APCBASIC line editor available whenever
entering programs or data from the keyboard. Section 2.0 describes all
commands available under the APCBASIC command level. Sections 3.0 through 7.0
explain the facilities supported by the APCBASIC language. Section 8.0 describes
several programming aids which are included in the APCBASIC software package.
Section 9.0 describes APCBASIC from the point of view of a North Star BASIC user
moving up to APCBASIC, ie. as a super-set of that language.

The minimum system requirements for using APCBASIC include a Z80 microprocessor,
32K memory or more, at least one floppy disk drive (5.25" North DOS or CP/M, 8"
CP/M), and a CRT console (preferably 80 columns by 24 lines or better). Use of
a printer-terminal as the console is not recommended. Additional equipment to
further enhance its capabilities includes additional disk drives (dual-sided
access or hard-disk capacity useful), a North Star Floating Point Processor
(highly recommended), up to 64K memory, a high-speed printer and a
letter-quality printer.

1

1.1

-- 1.1 RUBNING PROGRAMS FROM THE OPERATING SYSTEM LEVEL --

APCBASIC operates under several different operating systems, which are programs
that provide access to the various system resources such as the disk file
system, printers, keyboards, CRT consoles, etc. Depending on which version
of APCBASIC you have, a slightly different form of command must be typed from
the console keyboard to execute a APCBASIC program. Under the North Star DOS,
type the following command:

GO APCBASIC program

where 'program' is the name of the file which holds the desired APCBASIC program.
This command causes the DOS (disk operating system) to load APCBASIC which in
turn loads your program file and then begins its execution. At that point your
program takes over the computer and proceeds with whatever it is programmed to
do. The program file contents must have been created by APCBASIC, North Star
BASIC or another compatible BASIC.

Under the CP/M operating system the command sequence to run APCBASIC programs
is quite similar:

APCBASIC program

The 'GO' is unnecessary under CP/M but the result is the same. The program
file is type .ZBA under CP/M and its contents should have been created by
APCBASIC.

A 2nd form of APCBASIC is provided with the standard release for the production
environment, as it furnishes more memory (about 3600 bytes more) to the running
program as well as executing it about 50% faster than under the normal
(development) APCBASIC version. This version is called simply: RUN. To use it
instead of APCBASIC, substitute the name 'RUN' for the name 'APCBASIC' in the above
command forms. RUN executes programs exactly as APCBASIC does in all respects
except for its optimizing properties.

Remember that RUN and APCBASIC are simply files under your particular operating
system and their names have no special meaning other than to identify the files
to the system. (They must however be type! files under North Star DOS and
type.COM files under CP/M.) Their names may be changed or accessed from other
drives, so read your system manual for further details on files and their
naming conventions. Also see Section 7.4 for more on the CP/M versions of
APCBASIC.

-- 1.2 PROGRAM DEVELOPMENl

To use the APCBASIC program development environment, fype,~the, 'cfo APC.i cc. .JJd
described earlier, but omit the program file name. Without a program name, ycu
immediately enter into the command mode of APCBASIC which under your direction
provides facilities to create and debug programs. Only APCBASIC (the development
version) provides this command mode, while RUN (the runtime production version)
does not.

The command mode provides a selection of about 18 commands, from which you
choose and enter from the keyboard., Each command performs a single task which
APCBASIC performs after accepting the command. In this manner, commands may be
entered one by one until your total task is completed. These commands are
organized within Section 2.0 in the following way:

2.1 Program Entry & Retrieval

2.2 Editing & Alteration

2.3 Execution Control & Debugging

2.4 Miscellaneous Commands

Entering programs from the keyboard or
from files, listing your programs on the
console or other devices, saving your
programs to files.

Sequential line editing, global search
and replace, line renumbering, line
range deletion, rearrangement of program
sections, merging program modules from
files into your current program.

Running and testing, breakpoint and
single-step debugging, interruption and
continuation, interactive examination
and setting of program data structures.

Displaying program statistics, listing
file directories, and exiting back to
the operating system command level.

After entering the APCBASIC command mode, the first thing you do is either key in
a program from the console or load an existing program from a file. To type
new program lines from the console, enter a line number (an integer from 0 to
65535), followed by a sequence of program statements separated by semi-colons
and terminated with a carriage return. Lines may be up to 159 characters long.
The line number tells APCBASIC where to insert the new line into the current
program. Therefore new lines may be entered in any order, providing a simple
way to insert changes at a later time. See Section 1.3 below for further
details on APCBASIC program format.

After entering or loading a program and making any desired changes, you
can then run the resulting program under interactive control of execution
to check its correctness. If errors are found, you can alter the program
to correct the errors, and then repeat the process until you are satisfied
witn program operation. At any stage of the development phase, the current
program may be saved on a disk file to safeguard your work from system
failures or your own blunders (eg. power failures, mistaken revisions),
or so that you may continue work at a later time. On completion of your
working program, save the final version on a file for execution as
described in Section 1.1.

3

1.3

-- 1.3 LINES, STATEMENTS AND PROGRAM FORM --

APCBASIC programs consist of a series of typed lines beginning with a line number
and ending with a carriage return. Line numbers must be in the range 0 - 65535
and serve a dual purpose. First, since APCBASIC continually keeps the program
lines arranged in ascending order, you can easily insert additional lines by
typing them with appropriate line numbers. Secondly, some APCBASIC statements
refer to program steps by line number, perhaps to repeatedly execute some group
of statements or skip over undesired statements.

Besides being numbered, the lines themselves may be up to 159 characters long
(two full CRT screen lines) and consist of one or more statements. Statements
are separated from one another in the line with semi-colons (;) or backslashes
(\) and exist as the fundamental process building-blocks of APCBASIC. Statements
in general begin with a specific keyword followed by additional data parameters.
By themselves, statements perform simple and easily understood operations, but
in combination they can express procedures of unimaginable complexity. See
Section 5.0 for a summary of the statement groups as well as full descriptions
of every APCBASIC statement.

-- 1.4 IHTB.ODUCTION TO THE APC~

A number of editing features apply whenever you are enter "~ ~r new
program lines. These functions are invoked with special characters called
control characters that are typed by pressing a specific character while
holding down the key labeled CTRL on the left of the keyboard (the SHIFT key
may be up or down). Not all keys perform editing functions and if accidentally
struck will be rejected by the computer with a warning 'beep' sounded. For the
purpose of notation 'CTRL-?' will denote a control character where ? is any
character.

To delete a character mistakenly typed, follow it with the BACKSPACE key.
Repeated use will remove successive characters one by one all the way back to
the beginning of the line if necessary. This may be used to correct any input
as often as necessary prior to terminating the line with the return key.

To delete the entire current line, (prior to terminating it with the return
key), use CTRL-N. This is preferable to repeating backspaces as it
eliminates unnecessary key strokes. Its effect may be cancelled if it is
followed immediately by a CTRL-G, (see 1.6). CTRL-N will display a caret
(A) followed by a carriage return to indicate it was typed, and allows you to
re-enter your response to the last request.

- 1.5 ADVANCED EDITING FEATURES -

Whenever you are entering data you may use the previously accepted response
(the 'old line') in formulating the current entry (the 'new line'). This
saves time when the computer requests successive entries that are identical
or differ only slightly. The old line is always retained in memory for use
in creating the new line. By using the control characters described in the
following Section 1.6 you may edit the data in the old line and enter it as
part of the new line as needed.

Each time you type a character into the new line it replaces the character
available from the old line in the corresponding position. Backspacing,
explained in the previous Section 1.4, retreats to the previous character
in both the old line and the new line. By using the CTRL-A control character
you may copy characters one by one from the old line to the new line. In this
case the position in the old line is advanced to the next character. You may
also suspend advancement in the old line to insert characters (using CTRL-Y).

Using these control characters is easy but it requires practice for them to be
understood and become efficient tools. Each computer request for input offers
an opportunity for unlimited practice. Enter a practice line and erase it with
the CTRL-N before entering a carriage return. This makes it the old line. Now
you may try out each of the control characters described in the following
Section 1.6 to formulate a new line. As long as the return key is never
pressed, this practice session may continue indefinitely.

5

1.6

~ 1.6 EDITING CONTROL CHABACTER.S --

All editing control characters used by APCBASIC are described below. For
convenience several alternates are provided which, for some, may correspond to
function characters used in other systems for a similar purpose. These may be
used interchangeably to your taste.

CTRL-A

BACKSPACE
DEL

CTRL-Z

CTRL-Y
CTRL-E

CTRL-G

CTRL-D
CTRL-S

CTRL-X

CTRL-N

CTRL-B

CTRL-F

CTRL-R

RETURN

Copies the next character from the current position in the old line
into the new line. Repeat for successive characters.

Erases the last character typed in the new line and restores
the corresponding character from the old line. Can be repeated
to backspace all the way back to the beginning of the line.

Deletes the next character in the old line; a '%' is printed merely
to indicate that a character was deleted. This control is used to
skip undesired characters in the old line.

Allows insertion of characters. The first CTRL-Y prints a '<' to
show entry into this mode. After typing the characters to be
inserted, a second CTRL-Y ends this mode, echoing a'>'.

Copies all remaining characters from the old line to the new. Does
the same thing as repeated use of CTRL-A, but with one stroke.

Copies all characters from the old line up to, but not including, a
specified character. Operating like CTRL-A, this control permits
copying long strings of characters with one stroke. After typing
the CTRL-D, enter the character desired. Upper and lower case
letters are equivalent. If that character is not in the old line
a warning 'beep' is sounded and the sequence must be repeated.
Remember that this is a two-stroke sequence.

Deletes all characters from the old line up to, but not including,
a specified character. Remember that this is a two-stroke
sequence, just like CTRL-D above.

Terminates the line, then permits re-editing from the beginning of
the line. A caret (A) is printed to indicate this control was used.
All remaining characters from the old line are lost.

Copies the rest of the old line, then editing continues from
the beginning of the line. (Same as a CTRL-G,N sequence)

Copies the rest of the old line, then editing continues from the
end of the line. (Same as a CTRL-B,G sequence)

Throws away the new line and restarts with the old line that existed
after the last carriage return, CTRL-R, CTRL-N, CTRL-B, or CTRL-F.

The carriage return terminates the line-edit and copies the new
line into the old line buffer for use in the next keyboard entry.
This ends the current data-entry item and signals the computer it
may now process that input item. Whatever stage of editing you
were in has now been terminated. If a RETURN is typed as the first
character of a line, an empty line is given to the requesting
process and the program continues.

7

1.6

*'*** 2.0 APCBASIC COMMANDS *'***
Syntactic Notation

To facilitate your understanding of APCBASIC commands (and statements), the
following notation shall be used to simplify their syntactic description.
Each command (or statement) consists of a sequence of typed symbols. The
symbols are of two varieties: letters, digits and punctuation typed exactly
as they appear in the command description, and general 'objects' that refer
to kinds of symbol sequences to be typ~d. For example, DEL <line#>,<line#>
requires the actual keyword DEL to be followed by two line numbers separated
by a comma. Neither the angle brackets <> nor the characters they contain
are actually typed: the angle brackets <> are always used to enclose the
'object' descriptions for which you must substitute specific values.

Optional items will appear within square brackets []. These brackets are
not typed in actual commands (or statements) because they exist only to
indicate portions of the command which may be omitted. Thus RUN [<line#>]
means that an optional program line number may follow the RUN keyword.
All other characters specified in each command (or statement) description
must be typed exactly as shown.

Command and Statement Form

Most APCBASIC commands (and statements) that require multiple arguments have the
form: <keyword> <argument list>, where the keyword is the name of the command
(or statement), and the argume~t list may consist of strings, numbers, other
keywords, etc. You must separate the list elements with commas, but no comma
separates the keyword from the argument list. You may insert any number of
spaces (or line-feeds) within your program to make commands (and statements)
more readable. APCBASIC ignores all such characters ,not enclosed within quotes.

Specifying I/O Devices

Another common feature in APCBASIC commands is the 1/0 device used for any data
input required or output generated. Denoted below as #<device>, this is a
value from 0 to 15 preceeded by a lb-sign (#) to signal its presence
within the command. This is necessary since <device> is always an optional
feature whose omission defaults to device #0, the console. Device #1 refers
to the printer. See Section 5.2 for additional details about the devices.

Specifying Program Line Ranges

Several APCBASIC commands (LIST, DEL, REN, CHANGE) have the option to restrict
their operation to a line range within the program. Specified as <line# range>
in the discussions that follow, a line range consists of a starting and ending
line number pair separated by a comma. A dollar sign ($) may be used to
designate the last line of the program. For example, LIST $ or DEL 200,$.

Search Strings

Certain other commands (LIST, EDIT, CHANGE) restrict their operation to lines
which contain a pre-determine character pattern called a search string. This
string is specified in the command and used internally to select the lines for
processing. A search string is formed by simply typing the characters you
wish to match. If the search string contains commas (used as an argument
separator in some commands), you must surround the string with quotes ("").

9

2.0

-- ALPHABETIC COMMAND SYNTAX SUMMA.RY --

CHANGE <line# range>,<search string>,<replacement string>
CONT
DEL [<line# range>]
DIR [#<device number>,][<drive number>]
DOS
EDIT [<starting line#> [, <search string>]
EllTER #<file number>
ENTER [<starting line number> [,<stepsize>]]
LIST [#<device>,] [<starting line#>[, [<ending line#>[,<search string>]]]]
LOAD <program file name>
MERGE <program file name>
REN [<new start#> [, <stepsize> [, <old start#> [,<old end#>]]]]
REN$ <new start#> [,<old start#> [,<old end#>]]
RUN [<line#>]
SAVE <program file name> [<file size>]
SIZE
TRACE RET
TRACE [#<device>,] IF <logical exprn>
TRACE [#<device>,][<line#>]

Several of the above command keywords may be abbreviated to a specific two
or three character sequence. These have been indicated above in bold face.

1n

-- 2.1 PB.OGB.AM DTB.Y, STORAGE AND RETRIEVAL

ENTER [<starting line number> [,<stepsize>]]

At any time you· can type a line number followed by a line of statements and
APCBASIC will insert it into the appropriate place in the program. The ENTER
command provides automatic line numbers for a series of new lines that your
enter. You may optionally specify a starting number and stepsize; if either
is omitted it defaults to 10. To terminate the process, type either a CTRL-C
or just a carriage return immediately after the automatic line number appears.

ENTER #<file number>

APCBASIC programs are normally stored in a special coded form on the file.
Occasionally, you may have a text file containing program text from another
system or different dialect of BASIC that you wish to convert to the APCBASIC
system. Such a file may be entered into APCBASIC with this special form of
ENTER. Do not use this to enter programs already stored by APCBASIC (or North
Star BASIC) with the SAVE command. LOAD is provided for that purpose.

Before using this command, you must OPEN the text file under a file number
ranging from 8 to 15. Having done that, simply say ENTER #N, where 'N' is the
file number assigned. APCBASIC will input each line from the text file, code it
into its internal form and display it on the console. This process continues
to the end of the file according the following rules:

(a) Each line is terminated with a carriage return (ASCII 13).

(b) When a line-feed and a carriage return appear in pairs, the
2nd character of the pair is ignored.

(c) Empty lines, consisting of only a carriage return, are ignored.

(d) A control character (ASCII codes 0 - 31) or any character with
bit 7 on (ASCII codes 128 - 255) as the 1st character of a line
signals that the end-of-file has been reached.

(e) Control characters elsewhere in the line will appear as question
marks (?) and will have to be removed in a later editing phase.

(f) Each and every line must begin with a line number in the range
0 to 65535. Otherwise a LINE# ERROR is issued and the input process
terminates. APCBASIC inserts each line into its proper sequence
according to its line number, so they need not be in order.

(g) Lines are limited to a maximum of 159 characters. Additional
characters beyond this limit are ignored and lost.

(h) The input process may be interrupted by typing a CTRL-C. To
resume input after a CTRL-C or a LINE# ERROR, just retype the
original ENTER #F command (possibly with a CTRL-G and a return).

11

2.1

LIST [#<device>,] [<starting line#>[, [<ending line#>[,<search string>]]]]

Provides a display or printout of your program on the device specified, or on
the console by default. With the exception of the <device> which is purely
optional, all remaining arguments are optional but may only be omitted from
right to left, as indicated above. For example omitting the <ending line#>
means that no <search string> may be supplied either. With both line numbers
omitted the entire program is LISTed. With only the start number given, just
that line is displayed. To LIST through to the last program line use a dollar
sign ($) to denote the last line as shorthand for the its line number.

APCBASIC uses the optional string argument to search through the line range given
and list only those lines containing that string. Question marks (?) may
be included in the string to act as 'wild card' characters that match any
character (this feature is described further under the EDIT command in
Section 2.2). Upper and lower case letters are seen as equivalent.

Since LIST displays your program as fast as your output device will accept
characters, a APCBASIC provides a simple method to control this speed to suit
your requirements. During a LIST, you can type the space-bar to start and stop
the display. Once stopped, you can type a carriage return (or line-feed) to
display successive program lines one at a time.

The <device> number need only be specified to direct the program listing to
an output device other than the console (device #0). Usually this would be
the printer (device #1), but may also be a file (devices #8 through #15).
The resulting file contains pure text and is unsuitable for subsequent LOADing,
but it can be processed by other text file utilities (eg. text editors or
formatters) which cannot handle the coded format .of 'normal' APCBASIC program
files. See Section 5.2 for further details about text file processing.

LOAD <program file name>

Erases the current program, if any, and then LOADs another program from the
file specified. The program must have previously been created and saved by
APCBASIC (or North Star BASIC) to be va.lid. Errors in this process occur from
LOADing an improper program or from insuff icent memory to hold the desired
program. After such an error, APCBASIC will maintain as much of the program as
it could so that you can determine the point of error.

SAVE <program file name> [<file size>]

SAVE will save a program on a new or existing file. In either case APCBASIC will
respond with an OLD or NEW FILE message and request user confirmation of the
SAVE (Y/N response). A file length specification may follow a new file name to
assign the initial file capacity (under Nortp Star DOS only). Omitting this
size for a new file defaults to a file size that is 3 file blocks larger than
the program SAVEd.

If you type SAVE without a file name, APCBASIC uses the file name specified in
the previous successful SAVE command. This feature makes program backup during
development fast, repeatable and mistake proof. If no prior SAVE bas been
issued since a start-up or a prior LOAD command, SAVE without a file name
results in an ARGUMENT ERROR.

, ...

2.2 EDITING AND ALTERATION coMMANDs
EDIT [<starting line#> [, <search string>]]

Provides the opportunity to edit your program lines sequentially from a
specified starting line number, or from the beginning of the program if not
specified. Each line is displayed, then placed in the edit-buffer for
unlimited editing. Only on a carriage return will APCBASIC accept this line and
proceed to the next one in the program. You may skip over a line (leaving it
unchanged) by typing an immediate carriage return, instead of performing some
editing function. See Section 1.5 for all the details on the editing control
characters.

Since editing always continues with the first line after the current line
entered, you can re-start the editing sequence anywhere in the program by
simply typing an unused line number at the desired starting point (followed by
a carriage return). This normally deletes the line there, so the number you
pick must be unused. The EDITting mode persists until you enter a line without
a line number (such as a command or direct statement) or you type a CTRL-C or
the end of the program is reached.

By including a string parameter, APCBASIC will provide editing to only those
lines containing that string. For example the command: 'EDIT 100,FILE'
displays each line after line# 100 that contains FILE, allowing you to edit
them. Upper and lower case letters in the search string are equivalent.
You must enclose the string with quotes ("") if it contains any commas, for
example: EDIT 100,"A$(I,J)"

For flexibility, your search string may contain special 'wild card' characters
that match any character. This special character, a question mark (?),may
appear anywhere in the search string (except as the first character) and as
many times as desired. With this concept, the string A??= will match all
assignment statements with variable identifiers 3 characters long beginning
with the letter 'A'.

CHANGE <line# range>,<search string>,<replacement string>

Global search-and-replace may be done with the CHANGE command, which replaces
one string with another everywhere or selectively within a line range. The
use of the line range and the <search string> is identical to the LIST command,
except that all four arguments are mandatory. APCBASIC will request 'VERIFY?' to
allow user control of each replacement ('Y' response). An 'N' response causes
automatic replacement of all occurences found. In either case APCBASIC displays
the number of replacements made on completion.

The CHANGE command does not permit access to the line number portion of program
lines. Be sure to use the VERIFY option after you specify a number search in
a CHANGE command, as it may match portions of line numbers in GOTOs, GOSUBs,
etc. Changing line numbers should only be attempted with the REN command.

To permit commas (,) and lower case characters in string arguments of the
CHANGE command, the string argument must be surrounded by quotes ("''). For
example: CHANGE 1,$,"A(I,J)",Z(R) will change A(I,J) to Z(R). Such quotes
may not be used as ordinary characters in either string.

13

2.2

DEL [<line# range>]

Deletes the specified line range from your program. If no range is supplied
then APCBASIC erases the entire program, but first requests verification to
prevent unintentional erasure. Note that a dollar sign ($) denotes the last
line of the program. S~e Section 5.7 for a discussion on executing DEL from
APCBASIC programs. Single line deletions are best performed by typing the line
number followed immediately with a carriage return.

REN [<new start#> [, <stepsize> [, <old start#> [,<old end#>]]]]

Provides a general program renumbering facility that renumbers any range to
any other range. APCBASIC does not permit any renumbering that would cause line
interleaving or duplicate line numbers. However it does support rearrangement
of whole groups of lines as well as 'simple' renumbering, given appropriate
instructions.

All arguments are optional, but must be omitted from right to left (eg. the
start# and stepsize must be present in order to specify a line range). When
left out, the following defaults are used: <start#>=lO, <stepsize>=lO,
<old start#>=lst program line, <old end#>=last program line. By omitting the
<old end#> from the line range, the range RENumbered includes of all lines from
the <old start#> to the end of the program. APCBASIC adjusts all references made
to lines renumbered by the process, however unsatisfied references remain
unchanged. The following examples illustrate how REN may be applied:

Example REN Command

REN

REN 250

REN 37 5, 5

REN 500,12,2000

REN 200,3,800,899

Effect on the Program Lines

Renumbers the entire program from 10 by !Os.

Renumbers the entire program from 250 by !Os.

Renumbers the entire program from 375 by 5s.

Moves lines numbered 2000 and up into
the range 500, incrementing by 12s.

Moves all lines in the 800 range to 200 by 3s.

APCBASIC always validates the implied operation that you request and aborts
with an OUT OF BOUNDS ERROR to prevent interleaving of lines or illegal line
numbers. References throughout the program to altered line numbers are
updated properly. Line number references to non-existent lines will remain
unchanged.

REN$ <new start#> [,<old start#> [,<old end#>]]

When you wish to RENumber program sections without disturbing the current line
increments, a different REN form is available. It works exactly like the above
form except that no <stepsize> may be specified. When omitting the <old end#>
line number, the last program line# is assumed. When omitting any specified
old line range, the entire program is RENumbered. The <new start#> parameter
MUST be supplied, which specifies the new starting number for the range given.

MERGE <program file name>

The MERGE command provides a generalized facility for adding APCBASIC code lines
from other files to your currently LOADed program. Line ranges in both current
program and source file are unrestricted. On duplicate line number conflicts,
MERGE replaces the old line with the new line from the file, while the
remaining lines are inserted into their proper places. Meaningless code may
result from interleaving lines indiscriminately.

MERGING large files with large programs can sometimes be quite slow, up to a
minute in rare cases. Since APCBASIC loads the entire file before merging its
lines, you must have sufficient memory for this operation to succeed. See
Section 5.7 for a description on the executable MERGE.

15

2.2

2.3 EXECUTION CONTROL & DEBUGGING coMMA.Hns
RUN [<line#>]

Causes program execution to begin at the first program line or starting from a
line specified. If the program has been interrupted (see CTRL-C below), a RUN
command erases all previous data before beginning execution. In most cases the
optional line number will be never be specified, but this can be useful when
several independent programs reside within the program text (usually for
debugging purposes).

CTRL-C

This is not a command, but a control key used for stopping whatever process
is currently underway: sort of a panic button. When CTRL-C is struck during
execution of a program, it performs exactly the same action as a programmed
STOP. This is useful during the debugging phase to see where execution
is currently happening or to immediately terminate an erroneous program.

CTRL-C stop may be trapped by the ERRSET (in Section 5.4) statement as a type
15 error, allowing program control over the computer response to a CTRL-C.
Also, the PARAM(l) statement (in Section 5.8) can enable/disable the CTRL-C
apparatus during program execution. Disabling CTRL-C permits control over
user intervention and speeds up execution within tight loops by a small but
noticable amount.

When CTRL-C is typed in the command mode, the current entry or command is
aborted but no STOP message will be issued, only READY. The STOP message is
given only to indicate the interruption of a running program. The CTRL-C break
character is recognized only from the console device and is just another
control character when input from devices 1 to 15.

Resumes program execution after a CTRL-C or programmed STOP. The prior state
of program execution is restored (DATA READ pointer, ERRSET status and program
location) before CONTinuation. You cannot CONTinue after changing the program
in any way (eg. by EDIT, CHANGE, ENTER, etc). Between the STOP and subsequent
CONTinue, you may execute direct statements (below) without losing the ability
to CONTinue. APCBASIC preserves all variables and OPEN files, but they may be
altered by direct statements while in the command mode.

17

2.3

DIRECT EXECUTION

Any executable program statement or line of statements may be typed as a
command (ie. without a line number) causing immediate execution of what you
typed. For instance you can interrupt a running program and then display
the contents of an entire array before continuing. Or you might want to use
APCBASIC as an intelligent calculator by displaying complex numerical expression
values. Direct execution is a very important tool for debugging programs, but
may also be employed for learning the properties of any APCBASIC statement.

Direct FOR •• NEXT loops execute properly only when the entire loop is entered
as one line (159 characters maximum). Direct expressions may access currently
DEFined User-Functions. But since these functions only become defined after
execution begins, you must interrupt (CTRL-C) the program or it must STOP or
END before such access becomes possible. GOSUBs may be executed without any
difficulty, but GOTOs cause a CONTinuation (see above) at the line number
specified. A direct RETURN also CONTinues program execution, but the program
must have been interrupted within a GOSUB. You can alter the contents of
program variables (eg. X=FNT(Y)+SQRT(Z)), alterations which carry over to
CONTinued execution.

TRACE [#<device>,][<line#>]

The TRACE command provides an excellent environment for debugging APCBASIC
programs and may be invoked prior to RUNning or CONTinuing your program.
TRACE without arguments breaks subsequent program execution to display the
remaining unexecuted statements of the current line and suspend further
program execution until a TRACE control character is typed. In the break
mode, the following control characters are recognized:

SPACE BAR

ESC

CTRL-R

CTRL-N

Executes the next statement and breaks (single-step mode).
By hitting the space-bar repeatedly you can watch program
execution one statement at a time.

Terminates the TRACE mode and continues program execution.
This is the only way to terminate the TRACE mode. The only
way to reinstate the TRACE mode is to interrupt your program
with a CTRL-C, enter another TRACE command, then CONTinue
program execution.

Resumes normal program.execution (without displaying program
statements) until the current line is again be processed.

Resumes program execution until execution passes to the
line following the current line.

Resumes program execution until the current sub-program or
loop terminates (GOSUB, FN, FOR-NEXT, WHILE-NEXT). This
permits you to ignore the remaining details of any loops or
sub-programs you happen to fall into while tracing your program.

CTRL-T

CTRL-C

Resumes program execution until a line number transfer
occurs, such as a GOTO, GOSUB, ERRSET trap, etc. This permits
you to skip sequences of in-line programming which are not
of detailed interest at the time.

A CTRL-C will enter the command mode (causes a STOP to be
executed), so that commands & other direct statements may be
entered, and the TRACE mode can be resumed by using CONTinue
or terminated by entering TRACE without a line number. ERRSET
(in Section 5.4) will not trap a CTRL-C with TRACE in effect.

APCBASIC rings the bell (sends CTRL-G to console) to indicate an illegal control
character was typed in the break mode. For debugging convenience, if a LINK to
program occurs while the TRACE mode is active, no automatic size reduction
(space & REM removal) will take place. If during the TRACE mode an automatic
LINK, MERGE or DELETE (from Section 5.7) is encountered, the execution breaks
at the first statement of the program (ie. breaks on completion of segmentation
or overlay statements). Once invoked, the TRACE mode persists until terminated
with the ESC control or an untrapped error occurs during program execution.

Typing TRACE followed by a line number and then RUNning the program causes
execution to break on reaching that line. The line is displayed and execution
is suspended until a character is typed on the console. You can direct TRACE
output to a device other than the console by specifying the device number
immediately after the TRACE keyword. However all TRACE control characters
are always accepted from the console keyboard (device 0).

19

2.3

TRACE [#<device>,] IF <logical exprn>

To conditionally TRACE your program, use the TRACE IF <expression> command,
where the expression may be any logical or numeric expression. When running,
the program proceeds as usual until the expression becomes TRUE (non-zero). The
TRACE then begins and continues until the expression becomes FALSE (zero),
during which time you may use any of the controls described above. Note that
complex expressions will slow execution considerably. Any errors in evaluating
the expression will be reflected as errors in the line being executed. All
TRACE control characters are available during the break to further control or
modify the TRACE operation. By using the conditional TRACE you can determine
dynamically how and where erroneous values originate.

TRACE RET

This command will display the RETURN path (in line numbers) after the program
stops for any reason (eg. CTRL-C, STOP, program error, etc). If the program is
CONTinuable, the first line number displayed will be the point of CONTinuation.
The RETURN path is displayed all the way back to the first FN or GOSUB
reference that began the sequence. Since this may be quite long, you can abort
this display by typing a CTRL-C (GOSUBs and FNs can descend hundreds of levels
in APCBASIC). TRACE RET operates only in the command mode and has no effect on
the dynamic TRACE mode if set.

-- 2.4 MISCELLANEOUS COMMANDS --

Displays your cµrrent program size in number of file blocks (units of 256
bytes). APCBASIC also prints the program size automatically after a program
SAVE, LOAD, or MERGE (see Sections 2.1 and 2.2).

Causes an immediate return to the operating system level. Control may be
regained by causing a JMP to memory location START+l4H without disturbing
the state of the program, possibly in progress, that you left.

DIR [#<device number>,][<drive number>]

Prints a copy of the file directory from <drive> to <device>. When omitted,
both arguments take on the current default assigned to them {see Section 5.8
for the PARAM() statement). Normally the defaults for the <device> and <drive>
are 1 and 0 (console) respectively. DIR is also an executable statement (see
Section 5.6), so that your APCBASIC programs can also list file directories.

21

**** 3.0 REPRESENTING AND MANIPULATING NUMBERS ****
APCBASIC possesses two fundamentally different data representations: Numbers
and Strings. The numeric representation supports BCD floating point in fixed
precision in the range -10A63 and 10A63 (exclusive). This section describes in
depth the concepts and use of numeric constants, variables, arrays, expressions
and functions. Strings and their associated representations and operations are
discussed in Section 4.0.

-- 3.1 NUMERIC CONSTANTS -

The most obvious numeric form is the constant, which is a number in the usual
sense of the word. Examples are: -1, 5675261, 4.536, 0, -11.111, 00934.2, etc.
Constants may be signed or unsigned, but numbers like 1,435 are not permitted,
since commas imply separate objects. The smallest numeric value permitted in
APCBASIC is lOA-64. Arithmetic operations producing smaller numbers than this
always result in zero (ie. underflow=> zero).

Constants may be expressed in so-called E-notation as well. Similar to
scientific notation, this format includes a scaling factor to indicate a
power of ten multiplier. For example, 23.4104E-2 and .234104 are identical
values with the first in E-notation. This representation becomes important
when extremely large or small constants are required. For example the
constants: -.20152E42 and 3.3142E-19 would not be humanly digestable with
all the zeros needed to represent them in standard notation.

Constants are used within programs to represent fixed quantities which are
needed in computations when forming results. Constants may also be entered
from the keyboard in response to requests from the computer as directed by
the program.

- 3. 2 NUMERIC VAIUABLES

As in most other programming languages, numeric variables in APCBASIC provide the
means for storing numbers for later access. Variables represent numbers just
as constants do but with one big difference: the quantity they represent can be
altered by storing a different value into the variable. See Section 5.3 for
details on storing values into variables with assignment statements.

Numeric variables are identified in your programs by a one or two character
name. The first character must be a capital letter (A-Z) and the optional 2nd
character must be a digit (0-9). For example X, X2, AS, Zl and Y are legal
variable names, while XX, RO, TOT and lZ are not. Variable names may be used
wherever numeric values are expected, causing access to their current stored
value. Numeric variables may be later referred to as scalar variables, simple
variables, or just variables to distinguish them from array variables described
later in Section 3.3.

APCBASIC numeric variables as in all programming languages maintain only a finite
amount of precision. In the standard version, 8 decimal digits is the maximum
precision possible. Constants are rounded to the nearest 8th digit whenever
9 or more digits are specified. Precisions of 10, 12 and 14 digits are
similarly rounded. The number of memory bytes assigned to each variable value
depends on the prevailing precision. If P represents the number of digits
precision, then the number of bytes required is given by the expression: l+P/2.

23

3.3

- 3.3 NUMERIC AB.RAYS

Another type of numeric variable is the array, in which a group of numeric
values can be stored under one name. Arrays are organized as an ordered set of
storage locations, called elements, that are identified by a position number
within the ordering. For example A(O), A(l) and A(2) represent the first three
elements of array A(). Parentheses are used to indicate that A() is an array
and serve to contain the position of the desired element. The positions are
numbered from zero by integers up to the size of the array. Since APCBASIC can
distinguish between variables and arrays of the same name (eg. A(3) and A),
such variables can co-exist in the same program without conflict.

The arrays described above can be conceived of as a column of numbers with
positions numbered from zero down the side. Suppose that we have many columns
side by side and that we number them from zero along the top. This is called a
2-dimensional array. By identifying the row and the column we can locate any
element of the group. For example A(I,J) refers to the element of A() in
Row(!) of Column(J), where I,J are simple variables containing the element
position. By adding further levels to this idea, 3 or higher dimension arrays
can exist. An N-dimensional array requires N position numbers, called
subscripts, to uniquely specify an element in the array.

DIMensioning Numeric Arrays

In order for an array to exist it must be defined in your program prior to its
use. The information necessary consists of the array variable name and the
range of valid positions for each dimension, which you can provide in the DIM
statement. DIM A(50),B(l2,15) defines array A() as a I-dimensional array with
element positions 0-50, and array B() as a 2-dimensional array with row
positions 0-12 and column positions 0-15. Dimension postions always begin at
zero and continues up to and including the limit specified for that particular
dimension. An OUT OF BOUNDS ERROR occurs if you attempt to access a dimension
position outside its range. One DIM statement can define one or more arrays
by simply listing their definitions one after another separated by commas. All
array elements are initialized to zero when DIMensioned. If you refer to an
array without DIMensioning it, APCBASIC implicitly DIMensions it as a I-dimension
array with positions 0-10.

Once an array has been DIMensioned, all references to it must specify positions
for each dimension defined. For example an error results from the reference
B(3) to the 2-dimensional array example above. However you can re-DIMension
the array at any time (except within FNs and FOR loops) by re-defining it in
another dimension statement. All stored values are erased after such an
operation and set to zero. In this manner arrays can grow or shrink depending
on your program requirements. When arrays are made smaller the unused memory
space is available to the system for use elsewhere. Never DIMension arrays
inside FOR •• NEXT loops (Section 5.4) or inside User-DEFined Functions.

~ 3.4 IUMEB.IC EXPRESSIONS ~

The fundamental computational structure in APCBASIC is the expression, which
is constructed from data symbols and operation symbols, much like algebraic
notation. Expressions permit you to specify a number as a combination of
other numbers. For example (2+5)*3 represents 21 by arithemetically combining
2, 3 and 5. In general, you may use expressions wherever numbers are needed.

Data symbols can be constants (representing fixed quantities), variables
(storing the data used), functions (returning computation results), or
sub-expressions. A sub-expression is actually another expression enclosed
inside parentheses to group it as a computational unit.

Operation symbols, called operators, are of two types: unary and binary.
Unary operators act on a single number to form a single result number. For
example the unary minus operator (-) causes negation of a value that follows it
(eg. -X). Binary operators however act on two numbers to form one result.
For example the binary plus operator (+) forms the sum of two values (eg. X+S).

APCBASIC evaluates expressions by proceeding left to right, accumulating the
result with each operation as it goes. The various operators are not however
applied with equal priority. Take the following expression using addition (+)
and multiplication (*) for example:

2 * 3 + 7 * 8

If we apply the usual rules of algebraic evaluation to this expression, we
would perform the multiplications prior to the additions (in the absence of
parentheses). Thus multiplication is said to take precedence over addition.
Similarly, a priority scale has been assigned to all operators in APCBASIC which
can modify the order in which their operations are performed, according to the
generally accepted rules of algebraic evaluation. You can override the default
operator precedence as needed by surrounding a sub-expression with parentheses
(sub-expressions take precedence over all operators). To evaluate the addition
in the example before the multiplications, just write it like this:

2 * (3 + 7) * 8

All numeric operators are listed below in order of decreasing precedence and
followed by a brief description of each.

Numeric Operators in Decreasing Order of Precedence

(0) Evaluate Constants, Variables, Functions and Subexpressions
(1) NOT and Unary Minus (-)
(2) Exponentiation (A)
(3) Multiplication (*) and Division (/)
(4) Addition (+) and Subtraction (-)
(5) Comparision Operators: =, <>, <, >, <=, >•
(6) AND
(7) OR
(8) XOR (Exclusive OR)
(9) EQV (Equivalence)

Operators on the same line have equal precedence and are evaluated from
left to right as encountered.

25

3.4

ARITHMETIC OPERATORS

The arithmetic operators are the most familiar and simplest to describe. The
left and right operands around an arithmetic operator are simply combined
algebraically into a result value using the specified operation. APCBASIC
includes the following five operators:

OPERATOR

+

*
I

l'tC

ADD

SUBTRACT

MULTIPLY

DIVIDE

POWER

D E S C R I P T I 0 N

Forms the algebraic sum of the two operands.

Algebraically subtracts the right operand from
the left operand.

Forms the product of the two operands.

Divides the left operand by the right operand.

Raises the left operand to the power specified by
the right operand. XAO is always 1, even if X;Q.
OUT OF BOUNDS ERROR if X is negative and the power
is a non-integer or outside the range [-9999,+9999],
or if the attempted result is greater than 10E62.

LOGICAL OPERATORS

Logical operators are unusual in that they do not use the numeric value of
their operands. Instead, they only look at their operands as being zero or
non-zero, ie. values are of two classes: zero and non-zero. Think of this
property in terms of TRUE and FALSE, with TRUE being non-zero and FALSE being
zero.

The result of a logical operation is always zero (0) or one (1) and reflects
the combination of two logical values into one logical result. NOT causes a
logical reversal of the logical vafoe following it, ie. NOT FALSE= TRUE= 1,
NOT TRUE c FALSE = O. See the truth-table below for complete definition of
the logical binary operators.

TRUTH TABLE DEFINITION OF LOGICAL OPERATORS

LOGICAL OPERATION LEFT ARGUMENT RIGHT ARGUMENT LOGICAL RESULT

NOT False True
True False

AND False False False
True False False
False True False
True True True

OR False False False
True False True
False True True
True True True

XOR False False False
True False True
False True True
True True False

EQV False False True
True False False
False True False
True True True

Another way to look at these logical operators is as follows. AND results in
TRUE only when both operands are also TRUE. OR results in TRUE only if at
least one of its operands is TRUE. XOR (exclusive OR) results in TRUE if one
operand is TRUE and the other is FALSE. Finally EQV (equivalence) results in
TRUE only if both operands are TRUE or both are FALSE.

27

3.4

COMPARISON OPERATORS

Comparison operators are similar to logical operators in that their result is
the logical value 0 or 1. However their operands can be either numeric values
or string values. Each comparison operator compares its operands and returns
TRUE or FALSE (1 or 0) indicating the outcome of the comparison. Both
operands must be of the same data type (strings with strings, numbers with
numbers).

OPERATOR DESCRIPTION

= Equality
< Less-Than
> Greater-Than
<= Less-Than or Equal
>= Greater-Than or Equal
<> Not Equal

See Section 4.4 for the discussion on string comparision operations.

3.5 APCBA.SIC FUNCTIONS ~

Data can be represented in expressions not only as constants and variables
but also as results of special procedures called functions. For example
SQRT(l7) is a built-in function that represents the square-root of the
constant 17. Functions are always of the same form:

<function name> (<argument list>)

In the above example the argument list consists of one element: 17. Enclosed
in parentheses, the argument list contains data which the function uses to
produce a single string or numeric result. Arguments may be string or numeric
expressions whose number and type depends on the particular function being
used. APCBASIC possesses a library of about fifty built-in functions and
provides facilities for user-defined single and multiple line functions.

Built-in Function Library

Section 6.0 provides a complete description of all the built-in functions in
APCBASIC. These should be studied for utility in your particular applications
since there may be several that already do what you have in mind and they run
many times (even hundreds of times) faster than similar procedures written out
in APCBASIC. They are grouped into arithmetic functions, mathematical functions,
string functions (including bit operations), file & device 1/0 functions, and
functions for system interface. This function set bas been carefully selected
to cover the widest variety of applications with a minimal number of separate
function entities (when applie~ in combination).

The remainder of this section is devoted to the definition and application of
user-defined functions. Refer to Section 4.0 for details on strings if you
encounter difficulty with any string concepts used below.

User-DEFined Functions

User-defined functions are identical to built-in functions except the procedure
that uses the argument list to produce a result is constructed from APCBASIC
statements. In this manner you can define a procedure once and refer to it
as of ten as necessary anywhere else in your program without having to duplicate
it each time, saving programming time and memory space in the process. The
arguments are passed to the function procedure as parameter variables which
the procedure uses for input data. The data type (string or numeric) of the
parameter variable defines the argument type to be employed. This information
is entered into the DEF statement portion of a function definition, described
later.

As with library functions, user-defined functions are named and include an
argument list. The name consists of the two identifying characters 'FN'
followed by an ordinary variable name (eg. FNZ, FNXO, FNA$, FNR3$, etc). A
dollar sign ($) ending the name indicates that the function generates a string
result; functions named without a dollar sign must generate a numeric result.

The argument list is enclosed in parentheses and may contain string or numeric
argument expressions, but both their number and type must correspond to your
definition of the function (described below). The argument list need not exist
if no arguments are required for its operation. For example FNT$ might be such
a function that returns a string containing the current time of day. Of course
FNT$ must be defined without a parameter list.

29

3.5

Single Line User-DEFined Functions

User-function definitions come in two varieties: single line and multiple
line functions. Single line functions must be contained within one line
(159 characters maximum) and take the following form:

DEF <function name>[(<parameter list>)]=<expression>

where <function name> specifies a unique function name reflecting the data
type of the result, the optional <parameter list> lists in parentheses the
variables through which the argument data is passed to the function body,
and <expression> specifies a string or numeric expression combining the
parameters (with possibly other data) into a new result of the data type
specified by the function name.

This form of function definition provides a simple way to combine data using
a complex expression, particularly when that expression is required in many
places of the program. For example: DEF FNM(N,M)=N-INT(N/M)*M. The variables
N and M are the function's parameters and will be used to represent the data
presented by an actual reference to the function: FNM(X-17,SQRT(Y)). Numeric
parameter definition variables have no relation to variables of the same name
used outside the function definition. This type of variable is called a local
variable because the scope of its existence is localized to a subset of the
program. String parameter variables and all other variables may be accessed
throughout the program and hence are called global variables.

Remember that each call creates new local variables (numeric only) which
receive the arguments. After their data has been used, local variables can
serve as temporary storage that lasts only as lo~g as the current call. If
more local variables are desired you can use a LOCAL statement (in Section 5.5)
to create them. This method also provides LOCAL string variables when desired.

String arguments may be passed to user-defined functions but the local variable
approach is not employed. Instead the actual string argument is copied to the
corresponding string variable of the definition parameter list. Data present
in the parameter variable is overwritten and lost. In addition, the size of a
string argument is limited to the DIMensioned size of its corresponding
parameter string variable.

Multiple Line User-DEFined Functions

Multiple line user-defined function permit construction of functions with any
number of statements. The definition has three parts: all DEF statement similar
to the above, the main body of the function procedure, and a FNEND statement to
terminate the definition. Use the following form of the DEF statement for
multiple line functions:

DEF <function name>[(<argument list>)]

The only difference between this and the single-line DEF statement above
is absence of the equal sign (=) and <expression>. Instead, the main body of
the function procedure immediately follows the DEF statement. This main body
is an unrestricted APCBASIC procedure (except that it cannot include another DEF
statement) that performs the desired task. However it must do something
special to pass the result back to the expression that used the function. To
do this, the RETURN <result exprn> is executed which computes and transmits a
result back, then causes program excution to continue from the point it left
off when the function was used. The <result exprn> must compute a numeric
result for numeric functions and a string result for string functions.
For example:

100 DEF FNNO(N$); ERRSET 120,E,E
110 E=VAL(N$); RETURN l
120 RETURN O; FNEND

This simple but useful function logically tests a string for whether or not
it correctly represents a numeric constant. It returns 0 (false) if an error
occurs when VAL(N$) attempts to convert N$ to a number, or returns 1 (true) if
successful. Thus FNNO(" 234.017 ")•l and FNNO("l,047 ,471")=0.

Multiple line functions must have FNEND as their final statement. You cannot
define other functions within function definitions, but you can define them in
terms of other functions by employing user-defined functions as components in
forming higher level results.

Recursive Progrannning

You are free to employ the function you are defining within its own definition.
Known as recursion, such functions. must utimately reduce down to a result
without reference to itself in order to terminate in a finite amount of time.
Otherwise they continue to invoke themselves until all the memory in the
machine is consumed, ending in a MEMORY FULL ERROR. Recursive functions
often split a problem into several smaller but similar problems, then call
themselves to solve each of these.

31

3.5

Side-Effects caused by User-DEFined Functions

User functions permit execution of APCBASIC procedures within the evaluation of
APCBASIC string and numeric expressions. When the function RETURNs, expression
evaluation resumes where it left off and the program continues. Ideally,
the context in which the function is used should be unaffected by the act of
calling the function, other than the result generated. However there are
two areas where function calls can potentially upset program integrity in
non-trivial and unobvious ways, which are known as side-effects.

The first side-effect is the problem of global variables changed within the
function procedure and is one of the most frequently encountered sources of
programming errors when programming with User-DEFined Functions and GOSUBs. In
the example below, variables outside the function are affected by the function
call causing a FOR •• NEXT loop to continue 'forever':

200 FOR I=lOO TO 1 BY -1; A(I)=FNT(I); NEXT; END
800 DEF FNT(N); T=O
805 FOR I=l TON; T=T+B(I); NEXT
810 RETURN T; FNEND

You must ensure that this kind of situation never happens in your programs by
restricting potentially harmful variable accesses. Two mthods are available
for controlling variable access. Every time you use a variable, find out how
and where it is used elsewhere in the program. Use the ZBIG utility program
(Section 8.1) to print an index to your program structures and all references
to them.

Data stored in variables must of course be preserved for the term of its
usefulness. Variables which contain long-term data must be protected from
unintential use, especially in large programs. You may safely obtain temporary
storage by using available FN parameters (if any), or by temporarilary creating
new variables with the LOCAL statement (Section 5.5). Both methods should be
employed but use local variables wherever possible.

The 2nd type of side-effect is quite obscure, but you should be aware of it.
READ or WRITE statements containing user function calls which in turn perform
their own READs or WRITEs to the same file, can upset the current file position
causing the original READ or WRITE to access the wrong file position. For
example if you directly WRITE the result of a function that itself accesses the
same file, the data will be written at the file position left by the function
call rather than the position specified by the original WRITE statement. Or
suppose that a READ statement includes a user function that CLOSEs the file in
its procedure. Such an operation would produce highly unpredicable results.
Awareness of this side-effect is essential to prevent it from occurring. You
can always store the function result in a variable for subsequent use in READ
or WRITE statements to avoid such difficulties.

33

3.5

**** 4.0 REPRESENTING AND MANIPULATING STRINGS ****

APCBASIC possesses two fundamentally different data representations: Numbers
ana Strings. Numbers and their associated operations are fully described in
Section 3.0. Strings are series of adjacent characters (8-bit bytes) used to
represent anything from text to integers to arbitrary binary information.
Their representation and manipulation is fully discussed in this section.

4.1 STRINGS AND STRING CONSTANTS -

Most typical business application programs spend most of their time dealing
witn strings: word processing, mailing lists, report generation, command
processing, record processing, and formatting to name a few. Strings can
represent binary information, text, packed numbers or virtually any other data
representation. APCBASIC bas a carefully chosen set of operations which when
used in combination can efficiently perform all string operations supported
by PL/l or other high-level computer language with exceptional string handling
facilities. Becoming fluent in APCBASIC string handling concepts can greatly
simplify many of your non-numeric data processing applications.

A string is a sequence of bytes treated as a single data object. For example
the string constant "This is a String" is a 16-byte string. The quotes are
used to clearly separate the string characters from those around it but are not
actually part of the string. Only double quotes (") may serve this purpose and
single quotes (') may not, which precludes use of the quote character (")
within a string constant. String constants are sometimes called literals. Of
special note is the literal ""·, which is a string of zero bytes called a null
string.

String constants are used in programs to represent fixed character sequences
(usually text) which are manipulated with other strings to form string results.
This is analogous to the use of numeric constants (Section 3.1) in programs
as fixed quantities. Because string constants are fixed sequences of printable
ASCll characters, their utility is limited and mostly found in PRINT statements
(Section 5.2). A more general string representation called string variables
will now be discussed.

35

4.2

4.2 SIMPLE STRING VARIABLES -

Character strings may be stored in string variables for later retrieval by
name. Their names are similar to numeric variables but always end with a
dollar sign ($) to indicate a string variable name. For example the string
variable names A$, Z$, RO$ and W2$ are legal, while X2, 5$, $A and TEXT are
not. Using string varible names wherever string data is expected gives access
to the data stored in the variable. Assigning string data to a string variable
replaces its previous contents with the new string and can be performed by
assignment statements, EXAM statements or (file or data) READ statements (all
in Section 5.0).

Unlike string constants, the characters stored in string variables may assume
the full 8-bit ASCII character code range from 0 to 255. String variables in
APCBASIC may be defined to hold any length string that the memory in your machine
will permit. However since strings are variable length objects, APCBASIC sets
aside an area for each string variable that will hold any string up to a
maximum length. Unless you inform APCBASIC how large a particular variable
should be, APCBASIC will assign a default area that can hold only up to 10
characters. You may assign your own maximum string size using a DIMension
statement like this:

DIM A$(50),B$(9999),C$(1)

where A$ may store 0 to 50 bytes, B$ may store 0 to 9999 bytes and C$ can store
only 1 or 0 bytes. The same DIM statement can define one or more strings by
listing their definitions one after another, separated with commas as shown
above. Both string and numeric (array) variables may appear in the same DIM
statement. Newly DIMensioned strings are filled.to their maximum length with
spaces (ASCII 32). This default may be altered at any time to any ASCII code
from 0 to 255 using PARAM(7) (Section 5.8).

DIMensioning a string that already exists is legal everywhere except in FNs and
FOR •• NEXT loops. Such an operation is useful for releasing unneeded memory
back to the system for further use, and to permit program control over the
size of string and array variables. Since DIMensioning always re-initializes
strings (with the default ASCII code), all previous contents of the variable
are lost (as in numeric arrays).

- 4.3 STRING AllRAYS -

Another type of string variable is the array, in which a group of string values
can be stored under one name. String arrays are organized as an ordered set of
storage locations, called array elements, that are identified by a position
number within the ordering. For example A$(0), A$(1) and A$(2) represent the
first three string elements of array A$(). Parentheses are used to indicate
that A$() is an array and serve to contain the position of the desired array
element. The positions are sequentially numbered from zero up to the size
of the array.

The !-dimensional array A$() above could act as storage for a list of lines of
text, collectively representing a page of text. Thus you can directly access
each line on the page by its line (position) number. Suppose that we combine
many such pages together into one string array for access by page (position)
number. This is called a 2-dimensional array. By identifying the line and
the page we can directly access any line in the 'volume'. For example A$(I,J)
refers to line J on page I, where I,J are simple variables specifying the array
element positions. By adding further levels to this idea, you can define and
access string arrays with 3 or more dimensions. An N-dimensional array
requires N position numbers, called subscripts, to uniquely specify an element
position in the array.

DIMensioning String Arrays

In order for an array to exist it must be defined in your program prior to
its use. The definition of a string array must include its name, a maximum
position for each dimension subscript, and the string capacity of each of
the array elements. Specify string array DIMensions just like numeric arrays
except that you must include the maximum length of each array element as the
last value of the DIMension list. Take the following 2-dimensional string
array definition example:

DIM B$(7,20,16)

This defines an 8 by 21 (zero-based array subscripts), two-dimensional string
array whose array element strings may range from 0 to 16 characters each. You
must always refer to B$ with a subscript list to indicate a specific array
element, as in R$=B$(I,J); R$=B$ would generate a SYNTAX ERROR. When accessing
string array elements, specify only the array DIMension positions and leave off
the length parameter, given only when DIMensioning.

An OUT OF BOUNDS ERROR occurs if you attempt to access a dimension position
outside its defined range. A single DIM statement can define one or more
arrays by simply listing their definitions one after another separated by
commas. All array elements are initialized the same way as simple strings.
You cannot assign the same string variable name to both a string array and a
simple string variable. All string arrays must be defined explicitly,
otherwise APCBASIC thinks they are simple string variables instead of arrays.

You can re-DIMension the array at any time (except within FNs and FOR loops) by
re-defining it in another dimension statement. All stored strings are erased
after such an operation and re-initialized. In this manner arrays can grow or
shrink depending on your program requirements. When arrays are made smaller
the unused memory space is available to the system for use elsewhere. Never
re-DIMension anything inside FOR •• NEXT loops (Section 5.4) or inside User
DEFined Functions.

37

4.4

- 4.4 STRING EXPRESSIONS -

String are manipulated and processed by combining them in structures known as
string expressions, not unlike numeric expressions. Such expressions permit
you to specify a string as a combination of other strings and are formed from
string symbols and string operations. Although the notation of string
expressions looks similar to numeric expressions, their operation is totally
different. For example the string expression "ABCDE"+"l2345" evaluates to the
new string result of "ABCDE12345". As you can see, the plus sign (+) has a
different meaning depending on whether it is being applied to numbers or to
strings.

String symbols used in string expressions include string constants, string
variables, string functions (including user-defined FNs), and string sub
expressions. A sub-expression is actually a portion of a larger expression
that has been surrounded by parentheses, grouped as a computational unit.

String operations, called string operators, are of two types: unary and binary.
Unary operators act on a single string to form the result string. For example
the NOT operator preceding a string (eg. NOT Z$) will produce a result string
of the same length but with each byte logically complemented. Binary operators
however act on two strings situated on either side of the operator to combine
them in some fashion producing a result string, as in the plus sign operator
demonstrated above.

APCBASIC evaluates string expressions from left to right accumulating the results
from each operation as it goes. The various string operators are not however
applied with equal priority. Take for example the following string expression
involving concatenation (plus again) and string repetition (*) factors:

"ABC" * 2 + "xyz" * 3

This expression produces a result consisting of "ABC" repeated twice and
followed by "xyz" repeated three times (ie. "ABCABCxyzxyzxyz"). Since the
string factors (*) are evaluated before the concatenation, we say that such
factors take precedence over concatenation (just like their numeric
counterparts). Similarly, all string operators have been assigned to a
priority scale that controls the order of operations when several precedence
levels are present in the same expression (much like the numeric operator
precedence ordering).

When required, you can override these default priorities by surrounding any
operation by parentheses to force its evaluation in the order of your choice.
The example below illustrates a situation where concatenation (+) is performed
prior to a string repetition factor:

("ABC" + "xyz") * 5

The concatenation in parentheses is evaluated first, followed by repeating its
result five times. The table below lists the various string operators in order
of decreasing precedence followed by a discussion of each.

STRING OPERATOR PRECEDENCE TABLE

(0) Evaluate string constants, string variables,
string functions and sub-expressions.

(1) String Indexing (Section 4.5)
(2) NOT
(3) String Repetition Factors (*)
(4) String Concatenation (+)
(5) Comparision Operators (=, <, >, <=, >=, <>)
(6J AND
(7) OR
(8) XOR
(9) EQV

This ordering is similar to that of numeric expressions except that strings
have fewer operators. Any ordering of operations may be accomplished using
appropriately placed parentheses. Be most careful in using complex string
expressions in -string comparison operations. The comparison operators are not
really string operators since they produce a numeric result (0 or 1). They are
included in the table above only to show their precedence within mixed mode
expressions. It is the programmers' responsibility to ensure that mixed string
and numeric expressions are sufficiently parenthesized to resolve any inherent
ambiguities.

STRING CONCATENATION

The simplest of the string operations is concatenation (+), which merely
appends two string operands together, end to end, in the order given. For
example "ABCDE"+"l2345" = 11ABCDE12345".

STRING REPETITION FACTORS

Any term of a string expression may be repeated by following the term by a
multiply operator (*)and a numeric expression [eg. "ABC"* (X+Y)]. First the
factor is evaluated (X+Y), then the string is repeated by that many times.
The repetition factor expression needs parentheses surrounding it only if it
contains more than one numeric term, as in the example above. When only simple
factors are used, no parentheses are required, as in the string expression:

A$ * X + B$ * 37 + C$ * 23.

Any complex string expression may be multiplied by enclosing it in parentheses
followed by the desired multiplier [eg. (A$+STR$(N)+"XYZ") * (R+2)]. Compound
nesting is permitted to almost any depth. Typical applications of string
multiplication include dynamic formatting of strings in print statements,
high-speed graphics, and initialization of large strings. String expressions
are always formed in APCBASIC's control stack, which can rapidly overflow when
compound repetition factors build up enormous strings that exceed the available
memory space.

39

4.4

LOGICAL OPERATORS IN STRING EXPRESSIONS

Logical string operators (NOT, AND, OR, XOR, EQV) perform processes similar to
their function in numeric expressions, except that both operands and result
are bit-strings. NOT performs a logical reversal on each bit of the operand
string following it (ls become Os, Os become ls). Its result string is the
same length as its operand.

All other logical string operators are binary (dual-operand) and result in
a string which is a logical combination of corresponding bits in the operands.
If the operand strings differ in length, the shorter of the two will determine
the extent of the operation and hence the length of the result. See the truth
table of numeric logical operations in Section 3.4 for the definition of these
logical operators, remembering that the operands and result are bit-vectors.

This type of processing is exactly suited to processing set data structures.
AND and OR implement the Intersection and Union operations respectively, while
NOT produces the complement of a set. Set operations have many applications.
For example in data base applications, sets of various item selections may be
logically combined into a single set of items representing a complex selection.

Other useful applications for bit-vector operations include the following
conversion from lower case to upper case. It turns out that if you set bit5
of a character to the logical combination of (NOT bit6 AND bit5) then the
res~lting character will be upper case (see an ASCII code chart to verify this
as an exercise). This operation can be performed on an entire string using
the following string assignment statement:

U$ =NOT ROTAT$(L$ AND CHR$(64)*LEN(L$),l) AND L$

where L$ is the original string, U$ is the upper case result string, and LEN(),
CHR$() and ROTAT$() are string functions described in Section 6.3. A similar
statement may be implemented to convert from upper case to lower case. If
of ten required within your program, this is best programmed as a User-Defined
String Function (one-line function).

COMPARISON OPERATORS

Comparison operators are different from all the other string operators in that
they give a numeric result instead of a string result. This result is always
a floating point zero or one, just as if the two operands were numeric values
being compared. Such an operation must therefore be in the context of a
numeric expression. Each comparison operator compares its operands and
returns TRUE or FALSE (1 or 0) to indicate the outcome of the comparison.
Both operands must be of the same data type (attempting to compare a number
witn a string results in a SYNTAX or TYPE error).

OPERATOR DESCRIPTION

= Equality
< Less-Than
> Greater-Than
<= Less-Than or Equal
>= Greater-Than or Equal
<> Not Equal

When strings are compared, the ASCII codes, of corresponding characters are
compared from first to last until an ~ difference is detected or the end of
either string is encountered. Strings are equal only if all characters are
identical and both strings are of equal length. If one string 'runs out'
before a difference is encountered the longer string is defined as 'greater
than' the shorter string. It is important to remember that string comparisons
give logical (0 or 1) results which may be used anywhere that numbers are
permitted.

Exercise great care when complex string expressions are supplied as comparison
operands. String operators look similar to numeric operators but their
actions are totally different. APCBASIC requires the programmer to resolve any
such ambiguities by placing parentheses () around ambiguous sub-expressions.
A simple example is the expression: X+A$>B$. APCBASIC trys to evaluate this as
(X+A$)>B$, whereas its only meaningful usage is X+(A$>B$). In this example
APCBASIC will generate a TYPE ERROR for the first expression when encountered.
However is it quite possible to construct more complex expressions that execute
witnout detectable errors but produce nonsensical results.

41

4.4

- 4.5 STRING INDEXING -

Although a string is composed of separate characters, we have up to now been
treating strings as indivisible units of information. It is often desirable
to access portions of strings rather than their entirety. Most programming
languages implement such access through special functions like LEFT$(), MID$(),
RIGHT$() and SUBSTR$(). APCBASIC uses a different method that is easier to
learn, executes faster and performs the job in a more general fashion.

By convention, the beginning and end of a string (oriented horizontally) shall
refer the its left and right ends respectively. String indexing is based on
the idea that each character in a string has a position relative to the
beginning of the string. Let the first character be in position 1, the 2nd
character in position 2 and so on to the end of the string. Any portion of
a string could then be designated by a position range within the defined
positions of the string. For example if A$ is our string and we wish to
access positions 10 through 27, we would express this as follows:

A$(10,27)

As long as the length of A$ is 27 or more, this indexing expression accesses
the 18 characters in A$ starting at the one in position 10. If A$ contains
less than 27 characters, APCBASIC will access all characters from position 10 to
whatever the length of the string. A null string ("") results if A$ is less
than 10 characters long. Any string constant, string variable, string function
or sub-expression may be the subject of an indexing expression.

Variations on this theme provide several other modes to specify substrings
in diffent ways having advantages over one another. Each of the the string
indexing modes are discussed in the table below. The examples shown in the
table use the variable A$ to represent a general string expression to which
the indexing expression is applied.

String Indexing Modes

MODE

Interval

Open
Ended

Position
& Length

Right
Length

Single
Byte

Last
Byte

EXAMPLE

A$(I,J)

A$(I)

A$(I:L)

A$(:L)

A$(I:)

A$(:)

D I S C U S S I 0 N

A$(I,J) refers to the substring starting at position I
and ending with the byte at position J (inclusive).

Refers to the substring consisting of all bytes from
position I to the last byte of the string.

Refers to a string of length L starting with the byte at
position I. This is equivalent to A$(I,I+L-l) using the
Range method. A null string results if L=O.

Refers to a string of length L taken from the
end of A$. Equivalent to A$(LEN(A$)-L+l:L).

Refers to the single character substring in position I
of string A$. Equivalent to A$(I,I) or A$(I:l).

Refers the single character substring at the end of A$.
This follows from the preceding two indexing modes as
a special case. Equivalent to A$(LEN(A$)).

43

4.5

Given a string A$(I,J), APCBASIC returns a null string ("")whenever J is less
than I (J=O is permitted) or I is greater than the length of A$. Also if the
substring specified exceeds the length of the stored string, only that portion
which is defined will be accessed. For example if A$="This is a String", then
A$(9,1000) = A$(9:100) = A$(9) = "a String". Examine these carefully to see
how rules (1)-(3) apply. An OUT OF BOUNDS ERROR occurs on a starting position
less than 1.

Assigning Strings to Indexed String Variables

An indexed string variable may be target of an assignment statement or any
other operation that moves data into a string variable. However such an
assignment can only affect defined character positions within the indexed
region specified and cannot alter the overall length of the string. Strings
moved into these positions are truncated (from the end) when to long to fit.
Shorter strings are placed left-justified into the indexed area, replacing
only those characters in positions required by the incoming string.

String arrays may be indexed by following the array subscript expression with
a string indexing expression (2 sets of parentheses). In such a case, you
are gaining access to a substring in an array e1lement of a string array.
String array elements are always functionally identical to simple string
variables in any context.

Extended String Indexing

Index expressions may be appended to any string representation, including
another indexed string. This flexibility perm.its several layers of indexing
to be applied to the same string, which can facilitate implementation of
various hierarchial data structures stored in large string variables. For
example:

A$(I,J)(R:L)(T)

Each indexing expression is evaluated from left to right and is applied as
a simple indexing expression to the result substring of the prior indexing
expression. Internally, APCBASIC arithmetically evaluates a series of indexing
expressions as a unit and only then does it apply it to the string being
indexed. This replaces many potentially time-consumming string move operations
witn a simple binary arithmetic computation that executes many times faster.
At the cost of some floating point arithmetic, this same example could have
been done with a single indexing expression as follows:

A$(I+R+T-2,MIN(J,I+R+L-2))

Not only does this approach execute more slowly, but it is not at all obvious
what is really going on. Extended string indexing simplifies certain kinds of
operations but in the vast majority of applications simple indexing should be
all that is necessary.

""I'• u

- 4.6 STl.ING FUNCTIONS -

Strings can be represented in expressions not only as constants and variables
but also as results of special procedures called functions. For example
REV$(A$) is a built-in function that returns A$ in reverse order. Functions
are always of the same form: <function name> (<argument list>). In the
REV$() example, the argument list consists of one parameter: A$. Enclosed
in parentheses, the argument list contains data expressions (separated by
conunas) which the function uses to produce a single string or numeric result.

Arguments may be string or numeric expressions whose number and type depends
on the particular function being used. APCBASIC possesses a library of about
fifty built-in functions and provides facilities for user-defined single and
multiple line functions.

Section 6.0 provides a complete description of all the built-in functions in
APCBASlC. These should be studied for utility in your particular applications
since there may be several that already do what you have in mind and they run
many times (even hundreds of times) faster than similar procedures written out
in APCBASIC. They are divided into arithmetic functions, mathematical functions,
string functions (including bit operations), file and device 1/0 functions, and
system interface functions.

The division between string and numeric functions become a little unclear when
arguments and result are a mixture of string and numeric data types. For
example LEN(A$) returns the numeric length of A$, is it a string function?
Although such functions are associated with strings, a function which returns a
string will be referred to as a string function in this manual unless otherwise
noted.

There is no significant difference between User-DEFined string functions
and User-DEFined numeric functions. String function names are formed by
concatenating "FN" with a valid string variable name (similarly with numeric
functions). A string result is returned from a string function, a number is
returned from a numeric function. Both may be defined with string or numeric
parameters and formats include both single and multiple line. See Section 3.5
for all the details on defining and using User-DEFined functions.

45

4.6

**** 5.0 APCBASIC PROGRAM STATEMENTS ****
This section provides brief descriptions of all executable statements available
in APCBASIC. See Section 2.0 for the description of the notation used to specify
command and statement formats also employed in this section. The statements
are grouped into the following categories:

5.1 Data Definition

5.2 Input/Output

5.3 Data Transformation

5.4 Program Control

5.5 Subroutines

5.6 File Processing

5.7 Segmentation & Overlays

5.8 System Interface

5.9 Documentation

Setting sizes, providing memory space,
establishing initial values for working
variables and defining data constants
for program operation.

Interactively exchanging data with the
user, formatting results and editing
during data entry.

Moving data between variables, packing
and unpacking bit-strings and performing
computations.

Altering the sequence of program
statement execution, looping structures
and error control processing.

Defining and Executing subprograms and
providing temporary local storage for
their computational needs.

Accessing files and their data.

Executing programs larger than the
the memory space available.

Altering APCBASIC system parameters,
direct access to memory and I/O ports.

Including descriptive remarks within
programs.

47

5.0

- ALPHABETICAL STATEMENT SYNTAX SUMMARY

<numeric variable> = <numeric exprn>
<string variable> = <string exprn>
BIT(<string variable>,<bit address>[:<bit width>]) = <exprn>
CALL <address exprn>,<data register exprn$>[,<result register vbl$>]
CLOSE [#<file number>]
CREATE <new file name>,<file size>[,<file type>]
DATA <data list>
DEF <function name>[(<argument list>)][=<expression>]
DELETE <line# range>
DESTROY <existing file name>
DIM <list of string & array definitions>
DIR [#<device number>,] [<drive number>]
DOS
EDIT <string exprn>
END
ERRSET #<numeric error type exprn>
ERRSET [<line# trap> [,<error line variable> [,<error type variable>]]]
EXAM <starting address>,<variable list>
EXIT [<line#>]
FILL <starting address>,<data list>
FNEND
FOR <index variable>= <rangel>,<range2>,<range3>, ••• ,<rangeN>
FREE
GOSUB <line#>
GOTO <linel>
IF <logical exprn> THEN <statement!> [ELSE <statement2>]
INPUT[!] [#<device number>,]<input list>
LINK <program name string exprn> [,<common variables>]
LOCAL <list of string & scalar variables>
MERGE <program name stringexprn>
NEXT [<index variable>]
NOMARK <logical exprn>
ON <exprn> GOSUB <line# list>
ON <exprn> GOTO <line# list>
ON <exprn> RESTORE <line# list>
OPEN #<file number> [%<file type>], <file name> [, <size variable>]
OUT <port number>,<8-bit data value>
PARAM(<exprn>) = <exprn>
PRINT [#<device number>,]<data list>
READ #<file number>,<data variable list>
READ <list of data variables>
REM <descriptive text>
RENAME <old file name>,<new file name>
RESTORE <list of variables>
RESTORE [<line#>]
RETURN [<exprn>]
STOP
SWAP <list of variable pairs>
SWAPDEF <list of variable pairs>
WHILE <logical expression>
WRITE #<file number>,<data exprn list> [,NOMARK]

5.1 DATA DEFINITION STATEMENTS

DIM <list of string & array definitions>

Sets aside memory space for simple strings, string arrays and numeric arrays.
DIM is an executable statement, so space for its defined variables will not be
allocated until the DIM statement is actually executed in the running program.
You must therefore make sure that your DIM statements are executed before the
variables they define are used in any way by your program. If a variable
already exists, DIMensioning it will alter its size and re-initialize it as
if it was being created for the first time. See Sections 3.2 and 4.2-4.3
for a complete discussion of DIM, arrays and strings.

RESTORE <list of variables>

Restores (or reinitializes) the variables listed to their original contents
at creation time (by default or DIMension statement). Specify arrays and
strings the same way as LINKs passing variables. Simple numeric variables may
be listed by name. Strings are always filled to their DIMensioned size with
blanks unless the default string initialization ASCII code has been modified
using PARAM(7) (see Section 5.8). Numeric variables including arrays are
filled with zeros. For example: RESTORE X,Y,A(),B$,R$(), where the empty
parentheses indicate array variables. This use of RESTORE is unrelated to
its use with DATA-READ statements.

DATA <data list>

Specifies a list of numeric and/or string (in quotes) constants, separated by
commas. DATA statements do nothing when encountered during program execution,
as their purpose is solely to provide programs with built-in data values
which may be assigned to variables by the READ statement (described next).
DATA statements are unsuitable for large amounts of data or when the data will
be revised during program execution. In such cases you should store the data
on disk files for the purposes you have in mind.

DATA statements in a program are best visualized as a list of statements
separate from the rest of the program, but in the order given in the program.
Data supplied in DATA statements is accessed sequentially from the beginning
DATA statement or from a starting line number given by a RESTORE statement
described below.

49

5.1

READ <list of data variables>

Sequentially READs string or numeric constants from the current DATA statement
into the list of data variables. Data variables may include simple and array
numeric variables and both unindexed and indexed strings. If the current DATA
statement runs out of data before filling all data variables, then the next
DATA statement in the program is automatically found and REA.Ding continues
to the end of the variable list. Both DATA and READ lists are scanned in the
order given, and all variable types must match the data items encountered.
An error results from a type mismatch or from an attempt to READ past the
last DATA statement in the program.

APCBASIC maintains an internal READ pointer to keep track of the current DATA
position. This pointer is set to the first DATA statement when program
execution starts. Thereafter, the pointer is localized within GOSUBs &
user-defined functions (DEF FN •••) so that DATA lists may be used in
subroutines without affecting the access to data lists outside the subroutines.
This is more powerful than the 'global' READ pointer supported in standard
BASIC, but may not be compatible with some programs that use DATA statements
in standard ways. For example, GOSUBs cannot be used to set up the READ
pointer for subsequent READ operations after its RETURN. After such a
RETURN, the pointer will always appear unchanged from where it was before
executing the GOSUB.

RESTORE [<line#>]

Sets the DATA READ pointer to the first DATA statement in the program, or to
the first DATA statement after the requested line number. This is used to
reset the READ pointer or to provide random access to DATA statements. This
use of RESTORE is unrelated to restoring variables described earlier in this
section.

ON <exprn> RESTORE <line# list>

Evaluates the numeric expression and truncates the result to an integer that
specifies a line number in the <line# list>. This integer must be from 1 to
the length of the <line# list>. Then the DATA READ pointer is set to the first
DATA statement on or after that line number. This is useful for selecting data
through a multi-way computational decision.

- 5.2 IHPUT/OUTPUT STATEMENTS -

These program statements allow the transfer and formatting of data between your
APCBASIC program and 16 virtual devices (numbered from 0 to 15). All devices are
considered general purpose byte-oriented I/O data channels whose details are
the concern of the operating system. By convention devices 0 and l represent
the console and the printer (or list device) respectively. Device numbers 0-7
refer to actual devices, while numbers 8-15 access open files when required
(see below). CP/M versions have the option of patching jump vectors to map
devices 0-7 to arbitrary machine I/O drivers present somewhere in memory (using
the CONFIG program described in Section 6.3). See Section 7.4 for further
details on the CP/M device I/O channels.

Devices 8 through 15 may be employed to connect I/O operations with files
OPENed under any corresponding file numbers. This usage allows files to appear
as though they were ordinary devices, allowing redirection of PRINTed material
to files, INPUT of strings from text file, or LISTing programs to ASCII text
files. Remember that a file must be OPEN under a 'device' number in the range
8-15 before such I/O operations are attempted. See further details under the
specific statement or command you wish to apply (any process that directs I/O
using #device numbers). See Section 5.6 for further details on file processing
(especially OPEN, CLOSE, and NOMARK).

In all cases, device I/O statements may optionally specify any of the 16 device
numbers to access that device. When omitted, APCBASIC accesses the current
default device number. Initially zero (#0 accesses the console), this default
can be changed at any time by ~sing the PARAM(3)=<exprn> statement described
in Section 5.8.

PRINT [#<device number>,]<data list>

Causes the data list specified to be output as characters on the device
specified (or the default device). The <data list> is a series of numeric
expressions, string expressions, format specifications and control
specifications separated by commas. The numeric and string expressions are
evaluated and PRINTed in the order in which they appear, while the format
specifications describe how subsequent numeric data will be presented on the
output device. Control specifications perform useful operations during the
printing process such as tabs and extra blank lines. Because of the frequent
use of PRINT statements in most programs, the 'PRINT' keyword can be replaced
by an exclamation mark (1) for brevity. This notation performs the identical
function that PRINT does.

APCBASIC scans the data list, printing numbers and strings as they come and
attending to format and control specifications as encountered. Numbers are
printed in the currently defined format, which may be redefined any point in
the data list. At the beginning of the print statement, the currently defined
format is the default format, which may also be re-defined at any point.

Normally a carriage return is generated on completion of a PRINT statement, but
this can be suppressed by terminating any PRINT with a comma. This permits
several PRINT statements to contribute to the formation of a single line.

51

5.2

Numeric Format Specifications

Format specifications always begin with a percent sign (%) to indicate that
a format follows. By itself, this specifies free-form formatting (described
below). Other formats are denoted explicitly (after the percent %) in the
form: wXr, where w=field width (total number of characters), X11111D.ode character
(I, F, or E), and r=number of trailing decimals (to the right). Such numeric
formats position the value right-justified within the specified field width,
ideal for single or multiple columns of numbers. Omitting the width (w)
formats the number with one leading space, r trailing decimals (E,F only) and
no trailing spaces.

Under free-form format, which is also the initial default format, APCBASIC
outputs numeric values as follows: a single space, a minus sign (-) if
negative, followed by the value itself including all the digits of precision
available (no trailing zeros after the decimal). When the value cannot be
represented without shifting the decimal with leading or trailing zeros, the
value is formatted with E notation (all digits of precision supplied). Note
the precision of your APCBASIC determines where the switch-over occurs between
E-notation and standard formats. Each of the numeric format specifications
is described below:

wI Right-justifies an integer in a field w columns wide. No trailing
decimals (r) can be specified. Non-integral values are rounded
prior to printing. Free-form integers are generated by omitting
the width (w).

wFr Right-justifies a number with r places to the right of the decimal
within a field w columns wide. Free-form floating point layout
is formed by omitting the width (w).

wEr Same as wFr except that E-notation (scientific) is used. This
notation prints as a base value (X.XXXXX •••) followed by a
power-of-ten scaling factor (E+XX or E-XX) called the exponent. The
exponent always appears as the last 4 characters of the specified
field. See Section 3.1 for a discussion of E-notation.

Attempting to PRINT data using an insufficient width results in the entire
field being filled with asterisks (*), instead of a number (a programming error
in your program that must be rectified). Both wand r, when supplied, must be
given as unsigned integers. Only one numeric format (I, F, or E) can be
included per specification. When r=O (zero decimals), the number is rounded
to an integer and the decimal point removed.

Format Modifier Specifications

Each of the numeric specifications may be preceded by certain format modifiers
to produce additional features: dollar signs, comma grouping (eg. 1,435,801),
zero suppression, etc. Such modifiers consist of a single character which when
inserted in front of a numeric specification invoke the desired effect. When
not followed by one of the format specification described earlier, the modifers
act on free-form formatting. All modifiers are described below:

$

c

z

+

T

D

Places a dollar sign ($) to the left of each number printed. When
a leading numeric sign(+ or-) appears with the dollar sign($),
the sign comes first, then is followed by the dollar sign. Be sure
to provide sufficient room in your field widths (w) allowing for
the dollar sign. See the special note concerning ambiguity in the
discussion of dynamic format specifications later on.

Inserts commas every three places (left of the decimal) after 1000.
Remember that these commas take up space in your specified widths.
This modifier (C) has no effect on E-formatted numbers.

Suppresses trailing zeros to the right of the decimal. Trailing
zeros are changed to spaces (blanks). If the format does not
include a width specification (w), then these spaces will not
appear in the field. The 'Z' modifier has no effect on I-formatted
numbers.

Indicates positive numbers with a plus sign (+), the same way as
negative numbers are.shown with a minus sign(-). All numbers will
be printed with a numeric sign, regardless of their value.

Positions the plus (+) or minus (-) sign to the right of the value
(trailing sign), instead to the left (leading sign). The sign
will appear as the last character of the specified field, which might
not immediately follow the last numeric digit (see the 'Z' modifier
above). Be sure to account for the additional place after the
decimal in your printing layout (the width is unaffected). 'T' bas
no effect on E-formatted numbers.

Specifies all modifiers that are currently defined in the default
format. All immediately preceding format modifiers are lost and
thus this modifier should be first when more than one is supplied.

Causes this format specification to become the default format
as well as the current format. This is not really a format
modifier since it has no effect on the current format. Used
alone in the specification, I sets the default format to
free-form numeric output.

Several modifiers may be listed between the % and the numeric specification for
their combined effect. If no numeric specification follows the modifier(s)
then a free-formatted number will be modified accordingly.

53

5.2

Dynamic Format Specifications

Dynamic formatting permits your program to determine the format specification
at run-time rather than being fixed throughout execution. Such formats are
specified by following the format lead-in character (%) with a string
expression instead of the usual format specification. This expression
must evaluate to a legal format specification, which is then applied. For
example to print X with comma-insertion, zero-suppression, dollar sign,
right-justified in a field W characters wide with D decimals, use the
statement:

PRINT %" $ZC"+STR$(W) +"F"+STR$ (D) ,X

Because of this flexibility, you must watch out for non-dynamic specifications
that 'look' dynamic. For example does the statement 'PRINT %C$,X,Y,Z' specify
dollars with comma-insertion or does it specify a dynamic format in the
string variable C$? This is easily rectified by placing quotes around such
specifications (%"C$") or by reordering the format modifiers to eliminate
the ambiguity (%$C). APCBASIC always assumes a dynamic format if what follows
the percent lead-in (%) 'looks like' a string expression. Such ambiguities can
only occur when the dollar sign is used as the 2nd character of the format.

Control Specifications

Special control specifications may also appear in the <data list>. These are
not format specifications and are not preceded by a percent (%). A plus sign
(+) resets the line count for the device to zero before proceeding and is
necessary only in applications where this count is being used with the LiNES()
function. The plus sign (+) does not generate any printed characters and has
nothing to do with the similar format modifier (+).

Multiple blank lines may be generated from a single PRINT statement by a field
of slashes, similar to FORTRAN format statements. For example: PRINT #D,///,
will generate 3 carriage returns on device D. Slashes may be interspersed
throughout the data list.

APCBASIC generates a carriage return at the end of the PRINT statement unless you
suppress it by ending the statement with a comma. For example 'PRINT X' will
display X followed by a carriage return, while 'PRINT X,' displays X and
suppresses the carriage return so that later PRINT statements can continue
PRINTing on the same line.

Finally the TAB(P) function may appear to advance to column position P prior
to PRINTing the next item, where P is a numeric expression that evaluates to a
value from 0 to 255. This is accomplished by PRINTing spaces until the desired
position is reached. TAB(P) is ignored if P is less than or equal to the
current position.

Printing on Files

When PRINTing to 'devices' 8-15, you are really transferring data to a file
OPENed under the same file number. Exactly the same data is transferred to the
file as would be displayed on the console if device #0 were employed. However
it is important that the last byte PRINTed before the file is CLOSEd be an
appropriate end-of-file mark so that the file can be processed correctly by
other programs. The APCBASIC endmark (a 8-bit value of 1, ASCII CTRL-A) is
placed automatically after each PRINT for this purpose.

This is appropriate for later INPUT processing by APCBASIC programs, but typical
text-oriented programs external to APCBASIC usually expect other endmarks. For
example ASCII codes 0 and 255 are common and CP/M environments require an ASCII
code 26 (CTRL-Z) to terminate text files. You must handle this situation by
PRINTing the appropriate endmark as the very last byte written to the file as
dictated by these external requirements. Note that whatever code is used
cannot be part of the text PRINTed without causing a false end-of-file
condition when later processed.

INPUT[!] [#<device number>,]<input list>

Inputs data from device 0-15 and it stores into a list of string or numeric
variables. All devices use the same old-line buffer through the APCBASIC line
editor. Each input must be entered with a carriage return as the last
character and must be less than 160 characters long (2 screen lines). If this
input format is undesired, use the INP() or INCHR$() functions described in
sections 6.5 and 6.1 respectively. APCBASIC echos a carriage return after each
input entry, but this may be suppressed with a 1 (for one-line input) placed
immediately after the INPUT keyword.

The input list contains variables which receive the input data and whose type
(string or numeric) determines how the input characters are to be interpreted.
By entering a numeric constant (followed by a carriage return) you store a
value into a numeric variable, or a string that 'looks like' a number into a
string variable. By entering a line of numeric constants separated by commas
(and optional spaces) you can input several numeric variables at once, and
any prompts encountered for these inputs (after the initial prompt) will
be ignored. String variables accept the entire line of input, even if it
contains spaces, commas, numbers or words and phrases. Input strings larger
than the DIMensioned size of the input variable will be truncated to fit the
string.

The input list may also contain string messages called prompts, which are
displayed on the device to signal or request specific input data. Normally,
APCBASIC prompts you with a question mark (?) for each variable input. However
you can insert your own prompt (string expression) in front of any input
variable. Remember that it must not begin with a variable name and it must
be followed by a comma and the input variable(s). Thus a complete input list
would be a series of: prompt!, vbll, prompt2, vbl2, ••• , promptN, vblN. To
suppress all prompt messages, including the automatic question mark, specify a
null string ("") as your prompt. This permits prompts from PRINT statements
elsewhere in your program.

55

5.2

When INPUTing from 'devices' 8-15, APCBASIC takes data from a file instead of the
usual device and enters a special mode of operation. All prompts are ignored
and only string variables may be specified to receive input (a TYPE ERROR occurs
on encountering numeric variables). Carriage returns and line-feeds (ASCII
codes 13 and 10) are treated differently when they appear in pairs. A carriage
return line-feed sequence collapses into a single carriage return code (the
line-feed is ignored). A line-feed carriage return sequence collapses into
a single line-feed (the carriage return is ignored).

Strings from devices 8-15 are INPUT as a sequence of characters ending with a
carriage return or an end-of-file mark (8-bit value of 1), whichever comes
first. This ending character serves only to define the end-of-line and is not
otherwise a part of the INPUT data. Thus a sequence of carriage returns is
INPUT as a sequence of null strings ('"'). A TYPE ERROR occurs if your program
attempts to INPUT a string when the first character is the end-of-file mark (1
code). You can test for this condition by examining the TYP(N) function for a
value of zero before each INPUT line (see Section 6.4), or by trapping the
error with the ERRSET statement (see Section 5.4).

EDIT <string exprn>

The EDIT command may be executed within a program to allow editing a string not
previously entered. Used in conjunction with and prior to an INPUT statement,
EDIT places the string expression evaluated into the old-line buffer so that
editing CTRL characters may be used on it. Very powerful tool for editing any
data already within the grasp of your program. For example the statement
sequence:

EDIT A$+B$+C$; INPUT "Edit string -- ",R$

This permit editing of the string produced by the concatenation of A$, B$ and
C$ without prior entry of that string from the keyboard.

-- 5.3 DATA T.RANSFOB.HATIOH STATEMENTS --

These statements permit transfer of data between variables and support
combinations of many data items into single data results through arithmetic,
mathematical, logical, or other computational means. You should understand how
to use variables and constants (Sections 3.1-3.3), strings and string variables
(Sections 4.1-4.3), string and numeric expressions (Sections 4.4-4.S and 3.4),
and functions (Sections 3.5 and 4.6), to make full use of the data
transformation statements.

<numeric variable> • <numeric exprn>

Assigns the numeric value evaluated from the expression on the right of the
equals sign (=) to the numeric variable on the left. The variable may be a
simple variable or a unique array element. Note that this (context dependent)
use of the equals sign has nothing whatsoever to do with its use in equality
comparision expressions.

<string variable> • <string exprn>

Assigns the string generated from the string expression on the right of the
equals sign (=) to the string (or sub-string) variable on the left. If the
string variable is not indexed then its entire previous contents is replaced by
the string on the right and that may change its string length. If the string
variable is indexed then only its indexed sub-string portion is affected.
Strings longer than this sub-string are truncated to fit and shorter strings
are placed left-justified within the sub-string field. This indexed mode of
assignment cannot alter the length of the string.

Care should be taken to avoid assigning expressions involving very long or many
strings in one expression, since working memory proportional to the length
assigned is required. Use the FREE{) function (Section 6.5) to determine how
much memory is available when such operations might cause an MEMORY FULL ERROR
in order to perform the procedure a different way (possibly by breaking
it up into smaller pieces that can be processed independently).

SWAP <list of variable pairs>

Exchanges the contents between each pair of variables listed. Both variables
of each pair must be of the same type (string or numeric). Each variable pair
is exchanged independently of one another. The list of pairs is processed from
left to right and may contain a mix of string and numeric variables. For
example:

SWAP X,Y,A$,B$,R4(J),Z(I,K)

A SYNTAX ERROR results from an odd length list. A TYPE ERROR results from
attempting to SWAP strings with numbers. SWAP is limited to single string
or numeric data. To swap arrays, you can use the SWAPDEF statement below.

When exchanging the contents of two numeric or string variables, the SWAP
statement may be used to gain a 3-5 times speed improvement over the usual
assignment statement implementation. SWAP is directly useful for sorting
routines, where total sorting time can be cut substantially. When strings
of differing lengths are SWAPped, APCBASIC uses the shorter of the two lengths
as the length of the swap; characters after the SWAPped area of the longer
string remain unaffected. Hence if one of the strings is null ("") then no
action is taken.

57

5.3

SWAPDEF <list of variable pairs>

Exchanges variable definitions between variable names given in each pair. The
variable pair list follows the same rules as the ordinary SWAP statement except
that array variables must not be subscripted and string variables must not be
indexed. Instead, simple string or numeric variables are always specified by
name only and arrays (both string and numeric) are indicated by their name
followed by an empty set of parentheses, for example:

SWAPDEF X,Y,A$,B$,X(),Y(),D$(),E$()

Suppose that X() and Y() two numeric arrays that are dimensioned 5x5 and 8x8xl0
respectively, and each contain data. After the statement SWAPDEF X(),Y() has
been executed, X() is now the 8x8xl0 array and Y() is the 5x5 array. SWAPDEF
merely re-labels the variables of each pair as each other.

Because the data in the variables is not actually moved (as done by an ordinary
SWAP statement), the execution time required is extremely small and independent
of data size. SWAPDEF may be employed to pass arrays and strings to GOSUBs (or
FNs) by easily substituting them for the variables used within the GOSUB
procedure, then SWAPDEFing them back again after the RETURN. The variables
are indicated under the same conventions for specifying a LINK common variable
list.

BIT(<string variable>,<bit address>[:<bit width>]) = <exprn>

Evaluates the numeric expression (on the right), converts it to a non-negative
integer, and assigns the result to any bit sequence (1-16 bits wide) within a
string variable. The string variable reference may be indexed or unindexed;
the <bit address> is a numeric expression that specifies the relative bit
position within the string at the start of the bit sequence. The (optional)
<bit width> expresses the number of bits to be stored, which defaults to 1
when omitted. BIT() may appear on either side of the equals sign depending on
whether you are storing a value (left) or accessing a value (right).

The BIT function is capable of accessing groups of 1 to 16 bits as a numeric
unit. This provides very efficient utilization of memory when large tables of
small positive integers are required. The <bit address> specifies the 1st bit
of the group, which must range from 0 to (string length * 8 - width) and cannot
exceed 65535. Values are stored modulo 2Awidth, causing reduction of values
too big for the given length. Widths outside the 1-16 range generate an OUT OF
BOUNDS error. For example BIT(A$,17:8)=259 stores a value of 3 into the 8 bits
starting at bit 17 of A$.

The <bit address> always refers the the high-order bit of the integer (bit
sequence) being accessed. The table below ~llustrates the relationships
between BIT addresses, bit numbers (within bytes), and memory byte addresses.
For simplicity we assume the 1st byte of the string to be located at memory
address 0.

Byte Address: 0 1 2 3 4 5 6
Bit Numbers: 76543210 76543210 76543210 76543210 76543210 76543210 76543210
BIT Address: 0 4 8 12 16 20 24 28 32 36 40 44 48 52

For example bit4 of the 3rd byte of the string has the BIT address of 19. Note
that the BIT addresses in the table go by fours only to simplify illustrating
the idea.

co

- 5.4 PB.OGJWI COBTB.OL S'IATEMEBTS -

Normally, program execution proceeds sequentially through the statements in
order by line number. These program control statements allow you to change
the course of execution to suit the processing requirements.

GOTO <line#>

Causes program execution to continue at the line number specified. This is
sometimes referred to as an unconditional branch. A LINE# ERROR occurs if
the line number is not in the program.

ON <exprn> GOTO <line# list>

Evaluates the numeric expression and converts the result to an integer which
selects one position in the <line# list>. Hence, this integer must be from 1
to the length of the <line# list>. Program control is then transferred to the
line number selected. The <line# list> consists of a sequence of line numbers,
separated from one another by commas, which must already exist in the program.
This is commonly referred to as a computed GOTO or a multi-way branch.

STOP, END, DOS

These three statements cause innnediate suspension of program execution. STOP
puts you back into APCBASIC command level and allows a CONTinuation later on
(useful during debugging as breakpoints). END terminates all further execution
like STOP, but does not allow CONTinuation. DOS lands you back into the
operating system command level~ bypassing the APCBASIC command level altogether.
Under the runtime version (RUN) all three statements terminate back to the
operating system level, as no command level exists in version RUN.

All three statements update any unwritten file data buffers to their respective
files prior to actual termination. This is the same as CLOSing all your files
except that the files remain OPEN for access upon CONTinuation (STOP only) or
by direct statements at the APCBASIC command level.

59

5.4

IF <logical exprn> THEN <statement!> [ELSE <statement2>]

Evaluates the <logical exprn> and if the result is true (non-zero) executes
<statement!> and not <statement2>; otherwise (false or zero) <statement!> is
skipped and <statement2> is executed when present.

Although the <logical exprn> is usually a simple comparison of some type (eg.
IF X=Y THEN •••), an expression of any complexity is permitted as long as it
produces a numeric result and the entire statement fits on one line. Any
combination of string comparisons, numeric comparisions and general numeric
expressions is possible (eg. IF A$>B$ OR NOT X+Y AND Z<SO THEN •••).

Any single statement except for FOR and NEXT may be used as <statement!> or
<statement2>. Since IF •• THEN •• ELSE is also a single statement, using it here
creates a compound or nested IF statement. The optional ELSE clause in such a
statement is always associated with the nearest previous IF. For example:
IF el THEN IF e2 THEN sl ELSE s2 ELSE IF e3 THEN s3 ELSE s4 would be executed
as: IF el THEN [IF e2 THEN sl ELSE s2] ELSE [IF e3 THEN s3 ELSE s4]. The
brackets are used only for illustration and need not be employed in actual IF
statements. As a special case, if a GOTO <line#> follows a THEN or ELSE
clause, the GOTO is optional. For example: IF X>4 THEN 250 ELSE 400.

Compound Statements

For greater expressive power, either <statement!> or <statement2> or both may
be a compound statement, which is several ordinary statements grouped together
and executed as a unit. To form a compound statement from several individual
statements, surround them with brackets []. Compound statements can only
appear within IF statements and must fit entirely on a single line, which may
extend up to 159 characters (2 full CRT lines). ·The following example should
clarify their use:

IF X=Y THEN [R=SQRT(Z+lO); SWAP S,T] ELSE [FOR I=l TO 10; R=R+X(I); NEXT]

Notice that FOR •• NEXT (and WHILE •• NEXT) loops may be included within compound
statements. When an IF statement is employed within a compound statement, it
too can include compound statements for its THEN or ELSE clauses. You can
use the bracketting mechanism to override the normal precedence of ELSE clause
processing whenever required, for example:

IF X=Y THEN IF A$=B$ THEN S=T ELSE T=S

In this example, the ELSE refers to (by default) the 2nd IF which is only
executed if X=Y. Suppose that the desired action is to execute the ELSE clause
upon failure of the 1st IF test (X=Y). This can clearly be done as follows:

IF X=Y THEN [IF A$=B$ THEN S=T] ELSE T=S

Of course the complexity of compound IF •• THEN •• ELSE statement is limited to
what you can fit into 159 characters, but this contruct will surely satisfy
the vast majority of cases encountered which exceed the possibilities of
simple IF •• THEN •• ELSE statements. Incorrectly formed IF statements result
in a SYNTAX ERROR in all but two cases. Examples of each now follow:

IF X=Y THEN R=T ELSE T=U ELSE U=V

IF A=B THEN [statements] GOTO 100

Too many ELSE clauses are specified in the first example. In such a case,
APCBASIC simply ignores the extra ones (ie. they are never executed) and the
program continues without reporting the error. The 2nd example illustrates
a compound statement followed by another statement (GOTO 100) without a
statement separator (; or \) in between. This error is detected as a SYNTAX
ERROR if the THEN clause is executed (ie. when A=B). But if it is not
executed, neither is the GOTO 100. APCBASIC continues program execution after
the end of the IF statement, as defined by a semi-colon or the end of the line.
To detect all these cases would significantly degrade IF statement performance
beyond the possible inconvenience that not detecting might create. Therefore
you should keep these in mind when programming IF statements.

61

5.4

FOR <index variable>= <rangel>,<range2>,<range3>, •••• <rangeN>

Used in conjunction with the NEXT statement below, the FOR statement provides
a general purpose high-speed cycling (looping) method for iterative program
structures. Between the FOR statement and its 'closing' NEXT is the main body
of the loop, which may consist of any number of program statements (even other
FOR •• NEXT loops). The idea is to execute a group of statements (located
between a FOR and a NEXT statement) repeatedly while setting the index variable
to succesive values of each specified range. The ranges are accessed from left
to right and may assume one of the following three forms:

(1) <first value> TO <last value> BY <step size>
(2) <first value> TO <last value>
(3) <single value>

Form (1) specifies that the index variable will start at the <first value> and
is incremented by the <step size> after each iteration until the <last value>
has been exceeded (terminating the loop). Form (2) is the same as form (1)
except that the omitted <step size> defaults to a <step size> of 1. Form (3)
is the same as form (2) except that the <first value> and the <last value> are
the same and exactly one iteration results. All range parameters are specified
with general numeric expressions and may evaluate to non-integer values.

These three forms of <range> may be mixed in a single FOR statement whenever
necessary. Most of the time you will be using a single <range> of form (2)
but look at the following examples for a feeling of the other possibilities:

FOR X=l TO 100 FOR X=l75 TO 38 BY -1 FOR X=SQRT(Y) TO Z-10 BY S

FOR X=-12,Y*Z,15,A(F,G) FOR X=l TO 10, 20 TO 100 BY 10, 200 TO 1000 BY 100

FOR X=l,2,4,8,10 TO 20 BY 2,-58 TO -1000 BY -7

Each iteration begins by comparing the current index variable value with the
<last value>. Execution proceeds through the loop body only while the index
variable value remains within its defined range. As each <range> is completed,
the next <range> is loaded internally and the loop continues. The loop
terminates at the end of the last <range> listed in the FOR statement. Zero
iterations are possible when the <first value> at the outset exceeds the <last
value> (or below on negative <step size>). Since the ranges are evaluated only
once and maintained internally, none of the range parameters can be altered
during loop execution.

For efficiency, APCBASIC maintains a FOR •• NEXT internal structure on the control
stack for the lifetime of the loop. Because of this it is imperative that you
properly terminate the loop, enabling APCBASIC to remove this internal control
structure. Three methods of loop terminations are possible: falling 'out the
bottom' when the index value runs out, branching out using the EXIT statement
below, or executing a RETURN statement to exit not only the loop but a GOSUB
or user-defined function as well (see Section 5.5). Never leave a loop with a
GOTO statement! Without proper loop termination, the loop control mechanism
will remain on the control stack indefinitely, which can result in a later
error at some unpredictable point in the program.

WHILE <logical expression>

Similar to a FOR statement, WHILE implements a general looping structure that
repeatly executes a group of statements (terminated by a NEXT statement) until
some condition ~s no longer true. The condition in this case is a logical
expression that is evaluated at the start of each iteration of the loop. In
order for a WHILE loop to terminate, the body of the loop must at some point
cause the logical expression evaluate to zero (false). No iterations through
the loop will be made if the logical expression evaluates to zero at the top
of the first iteration. For example:

WHILE X<lOO; X=X+l; NEXT Increments X until it X=lOO.

WHILE Z=Y; X=X+l; NEXT Increments X forever.

The first example does nothing if X is already 100 or greater. The second
example illustrates what happens when the logical expression is not altered
the body of the loop. It may be that you desire such an infinite loop in your
application because you employ other means to terminate the loop, for example:

WHILE Z=Y; X=X+l; IF X>=lOO THEN EXIT; NEXT

This example illustrates the use of the EXIT statement (described below) in
terminating a WHILE loop, bypassing normal termination. The WHILE token in
APCBASIC is the same one used in North Star BASIC for the optional LET token (eg.
LET X=O). Thus WHILEs found in existing North Star BASIC programs LISTed in
APCBASIC must be deleted.

NEXT [<index variable>]

Defines the end of a FOR or WHILE loop. When executed it increments the index
variable and re-starts the loop for the next iteration. When supplied, the
<index variable> must be exactly the same one defined in the corresponding FOR
statement. This is a formality however and is useful only for programming
clarity and style (faster loop execution actually results without it). An
<index variable> is illegal in NEXT statements that terminate WHILE loops.
There must be one and only one NEXT statement associated with each FOR
statement and it may not appear immediately after a THEN or ELSE.

EXIT [<line#>]

This special form of GOTO is required to properly transfer program control
from an active FOR or WHILE loop before all the iterations have been completed.
EXIT with the line number omitted causes control to pass to the statement
immediately after the current closing NEXT statement. A line number may be
supplied to specify any other EXIT point immediately outside the current loop.
EXIT can exit only one level of looping structure and trying anything else
results in either an EXIT ERROR or unpredictable program results.

63

5.4

ERRSET [<line# trap> [,<error line variable> [,<error type variable>]]]

When an error occurs during program execution, APCBASIC normally prints an error
message and the line number in which it occurred, then terminates execution.
ERRSET sets up an 'error trap' which instead re-routes program execution in
case of an error. In this manner your program remains in control at all times.

When an error occurs, execution transfers to the line number <line# trap> and
sets two simple numeric variables to the of fending line number and the error
type code (see Section 7.1 for error codes). It also resets the trap until
another ERRSET statement is executed setting another error trap (so that errors
in your error-processing will not cause infinite looping). Your program can
nullify an existing error trap by executing an ERRSET without arguments. .An
example of each form of ERRSET now follows with brief descriptions.

Sample ERRSET Statement

ERRS ET

ERRSET 125

ERRSET 125,L

ERRSET 125,L,T

Operation Performed

Disables the active ERRSET at the
current subroutine level until that
subroutine returns. No operation
is performed if no ERRSET in effect.

Sets an error trap so that execution
will branch to line 125 if any trappable
error should occur. This trap remains in
effect until the current subroutine RETURNs
or until re-defined by another ERRSET.

Same as the las·t form except that
variable L will be set to the line
number in which the error occured.

Same as the last form except that
variable T will be set to the error
type code corresponding to the type
of error that occured.

The ERRSET statement provides so much freedom that you can get into trouble
applying it haphazardly. Each GOSUB or user-defined function may independently
set up (or disable) its own ERRSET traps without affecting traps set by higher
levels of your program. If a lower level GOSUB or function does not set any
traps of its own, any higher level trap will function within the lower level.

Such a transfer out of a lower level to a higher one is fully supported and
constitutes the only legal way to bypass the normal RETURN mechanism. For
example if GOSUB 100 sets a trap then calls G0SUB 200 which in turn generates
an error, the original trap is used. However if GOSUB 200 sets its own trap
before the error was encountered then that trap is used. Upon RETURN, GOSUB
100 is still protected by its original trap, unaffected by any ERRSETs within
GOSUB 200.

What this means for applying ERRSETs is that the error trap line number should
be a line at the same program level as the ERRSET statement that assigns it.
Specifically, never assign an error branch that can jump out of the current
GOSUB, user-defined function or FOR •• NEXT loop that contains the ERRSET itself.
Instead, assign.a trap to a line within the same structure. For example, to
transfer control out of a FOR •• NEXT loop when an error occurs within the loop,
execute the ERRSET statement prior to entering the loop, with an error trap
referring to a line also outside the loop (at the same level as the ERRSET
statement). This is actually the most straight forward and easily debugged
method for constructing error traps within a procedure oriented language of any
type. APCBASIC cannot enforce these rules when the ERRSETs are made, so you must
be careful to apply them properly.

Local variables with GOSUBs or FNs will never be restored to their original
state if an error trap transfers out of that subprogram to a higher level.
In fact, all data localized between the error level and the trap level will
be in effect at the trap level and their restored values will be unrecoverable.
You must be aware of this shortcoming of APCBASIC error processing in order
to deal with this issue as needed.

ERRSET #<numeric error type exprn>

Generates an error of the given type for purposes of debugging and special
program control applications. You must have an active ERRSET in effect at the
time this statement is executed, otherwise a USER TRAP ERROR is issued. For
example: ERRSET #7 generates a FILE ERROR exactly the same way that OPENing a
non-existent file would. The <type> can be a numeric expression that evaluates
to a value between 0 and 127.

65

5.4

J•J

-- 5.5 SUBROUTINE STATEMENTS --

A subroutine is a procedure that includes apparatus permitting its use by
simply referring to it, instead of repeating the same section every time it is
needed. This allows efficient use of memory and provides a means for 'hiding'
the details of such procedures to clarify program logic. Programs are
generally built from subroutine building blocks. Subroutines themselves may
be constructed from other subroutines at 'lower levels', and so on.

APCBASIC provides two types of subroutines: GOSUBs and User-Defined Functions.
The GOSUB is simply a means for re~using a section of program lines from any
place in the program. User-Defined Functions have in addition the ability to
pass argument data to the function procedure through local variables and
return result data back to the requesting entity. The bulk of the discussion
on such functions is found in Sections 3.6 and 4.5 and only a brief syntax
description is provided below.

GOSUB <line#>

Short for GOTO Subroutine, a GOSUB statement transfers program control to the
line number specified as with the GOTO statement. However in a GOSUB, APCBASIC
keeps track of the statement following the originating GOSUB so that when
a RETURN statement is executed control returns to it. Although the GOSUB
(referred to as a GOSUB call) jumps to a specific line number, there may be
any number of RETURN statements within the body of the GOSUB subroutine, and
any of them will RETURN the same continuation statement when executed.

Think of GOSUBs as program blocks that perform a procedure as an operational
unit. Although the body of a GOSUB has no obvious structure required by APCBASIC
language syntax, it is important to treat it as a unit by clearly defining its
entry and exit points and using them in rigidly controlled ways. APCBASIC
provides several mechanisms that depend on well-defined block structured GOSUBs
to be useful. Error processing structures (ERRSETs) and DATA READ pointers
are local within GOSUBs and within User-defined functions. This means that
changes made to these areas do not affect or propagate back up through to
the program when the GOSUB returns. You can define your own LOCAL variables
within GOSUBs which may be used in any way whatsoever without affecting
anything outside that GOSUB (discussed below). Awareness of these features is
necessary for proper programming of GOSUBs, DATA-READs and ERRSET processing.

RETURN [<exprn>]

Directs program control to the statement following the most recent GOSUB call,
or returns a string or numeric expression result from a user-defined function.
The <exprn> is always and only used in RETURNs from User-Defined Functions
(described in Sections 3.5 and 4.6).

Before the actual return, RETURN restores the state of the previous READ
pointer (for DATA statements), the previous ERRSET structure and any LOCAL
variables (see LOCAL statement below) to their state at the time of the
GOSUB or user function call.

67

5.5

ON <exprn> GOSUB <line# list>

Evaluates the numeric expression and truncates the result to an integer that
specifies a position in the <line# list>. This integer must be from 1 to
the length of the <line# list>. Program control transfers to the GOSUB
selected as in the ON •• GOTO statement of Section 5.4. This is commonly
referred to as a computed GOSUB. RETURNs pass control to the statement
following the <line# list>.

LOCAL <list of string & scalar variables>

Creates temporary simple string and numeric variables (not arrays) which may
be used freely for any purpose within GOSUBs and FNs. Global variables of the
same name which already exist are protected but inaccessable until the sub
program executes a RETURN statement. Scalar & string variables may be listed
separated by commas after the LOCAL keyword, and can then be used for unlimited
local working storage. Since local variables carry their previous value after
the LOCAL declaration, they may be employed for passing data parameters to
GOSUBs. On RETURN, their prior values are restored, and program execution
resumes. Use within recursive procedures to create temporary working variables
makes this is a particularly useful and powerful tool. See the discussion of
recursive programming at the end of Section 3.5.

Subscripted variables and strings exceeding 255 characters cannot be LOCALized.
Also, LOCAL declarations are illegal if not within a GOSUB or FN, or if
directly within FOR or WHILE loops. Re-DIMensioning of a LOCAL string is
permitted as long as its previous string value will fit upon RETURN. The new
DIMension will remain in effect after the current GOSUB RETURNs.

LOCAL variables will not be restored to their original state if you branch out
of a GOSUB or FN using them with a GOTO, instead of a normal RETURN. This is
also the case when the branch is an error trap to a higher program level.

DEF <function name>((<argument list>)][=<expression>]

Defines a User-Defined Function, including its name, its list of parameters and
its mode of operation: single or multiple line DEFinition. The parameter list,
if it exists, consists of a sequence of unindexed string or numeric variable
names, enclosed in parentheses as shown. If the <expression> at the end of the
DEF statement is omitted, then a multiple-line Function is DEFined and whose
procedural ~EFinition must follow. This consists of a sequence of statements
that includes at least one RETURN <exprn> statement and ends with an FNEND
statement (described below). The DEF statement must appear as the first
statement on the line in which it appears. Section 3.5 contains further
details on User-Defined Functions.

FNEND

Used as the last statement of a multiple-line User Function to indicate where
its DEFinition ends. Unlike the DEF statement, which must be the first
statement on a line, the FNEND statement may appear anywhere on a line as
long as it is the last statement of the Function. Single-line User Functions
do not use the FNEND statement.

-- 5.6 FILE PROCESSING STATEMENTS --

Described below are the file statements from the North Star DOS perspective.
See the CP/M exceptions to these in Section 7.4 and be sure to see 6.4 for
various file functions: FILE(), FILEPOS(), FILESIZE(), TYP() and SPACE().
A file is identified with a sequence of characters known as its file name.
Consult your operating system manual for details concerning file names, file
types, and internal file structures.

Files may be CREATEd, DESTROYed, RENAMEd, OPENed and CLOSEd. An OPEN file can
then be READ or WRITten in mixed 'sequential and random access modes. APCBASIC
provides random access to the byte level, with file capacities to 16 megabytes
(8 megabytes under CP/M). The CP/M version also fully supports dynamic files.
Data formats supported are Floating Point values, Proper Strings, Binary
Strings, 8-bit values and 16-bit values.

CREATE <new file name>,<file size>[,<file type>]

Creates a new file on the disk. The <new file name> must not already exist and
will become a type 3 file unless the <file type> option requests a different
file type number (0-127). The <file size> is the number of file blocks to
allocate to the new file (256 byte increments). Omitting a drive reference
from the file name refers to the default drive number (usually 1). The file
name is a string expression; size and type are numeric expressions.

DESTROY <existing file name>

Permanently deletes the specified file name from the disk and its directory.
A FILE ERROR results from specifying a non-existent file name. The file
name is given as a string expression.

RENAME <old file name>,<new file name>

Programs can RENAME files using this statement. APCBASIC reports a FILE ERROR if
either the <oldname> doesn't exist or the <newname> does exists. Both file
names are given as string expressions.

69

5.6

OPEN #<file number> [%<file type>], <file name> [, <size variable>]

Associates a file number (0-15) with an existing file to provide program access
to that file in either sequential or random access mode. The file type is
assumed to be type 3 unless otherwise specified by the optional <file type>
expression. A size variable may be supplied to receive the number of file
blocks in the file at OPEN time. This provision maintains compatibility with
North Star BASIC but is unnecessary since the FILESIZE() function in Section
6.4 does the same thing in a more obvious way.

OPEN assigns each file a 512-byte internal buff er that acts as a high-speed
interface between APCBASIC and the disk operating system. A file may be OPENed
under several different file numbers simultaneously. This can be most useful
when several independent file buffers are indicated, as in sorting programs.
APCBASIC controls multiple buff er usage so that at all times any given 512-byte
file segment can only be buffered by at most one buffer. This is transparent
to the program and prevents any file update problems due to the multiple
buffers.

Files OPENed under file numbers 8-15 may be sequentially accessed by PRINT or
INPUT statments, in addition to by READ and WRITE statements. This facility
provides efficient sequential access to text-files. See Section 5.2 for the
details (under PRINT and INPUT).

CLOSE [#<file number>]

Disassociates an OPEN file from its APCBASIC file number and writes any current
data remaining in its file buffer to the file. The <file number> specifies the
file number (0-15) to CLOSE. Omitting it CLOSEs all OPEN files. The file
buff er remains in memory until reassigned to the next newly OPENed file or
until released to free memory by the FREE statement discussed below.

The FREE statement (not to be confused with the FREE() function) will release
all dead buff er space left by files after they are CLOSEd. This statement must
NEVER be used while any FOR •• NEXT loop or FN is in progress as it may cause a
APCBASIC system failure. No arguments are specified with this statement. Memory
released is then available for use in new variables and internal working
storage.

READ #<file number>,<data variable list>

READs data from a file in sequential or random mode from the previously OPENed
file number specified. The data variable list consists of numeric variables,
string variables and file position specifications, in any combination and
separated by commas. If positioning is omitted, all data is automatically
READ sequentially from ascending file positions.

File positions are resolved to the byte level (numbered from zero) and are
specified as numeric expressions preceded by a percent sign (%) to indicate
the special positioning function. Several random file position changes may
be specified within the same READ statement data list if desired. Example:
READ #F,%Pl,X,Y,%P2,Z reads X and Y from position Pl, and Z from position P2.

Simple numeric variables and individual array elements may be READ from the
file. Therefore, the numeric precision of APCBASIC must match the precision in
effect when the data was written. Binary data can also be READ into numeric
variables by prefixing each numeric variable reference with an ampersand (&)
for 8-bit values or an at-sign (@) for 16-bit values. (Note that 16-bit values
are defined as the next two bytes on the file with the low-order byte first.)
Binary file operations bypass all type checking since they READ whatever is
presented to them. The 8-bit and 16-bit values are converted to floating
point format when READ from the file into numeric variables. For example,
READ #F,X,A(I,J),&Y,@B(K) illustrates the various numeric READ methods.

String variables can be READ as a whole or as indexed sub-strings. String data
is written in a special compact format: the amount of storage taken equals the
length of the string plus two for up to 255 characters, or plus three for over
255 characters. Regardless of the string variable capacity, the file pointer
is always set properly to the next item in the file after REA.Ding any string.
Preceeding the string variable name with an ampersand (&) READs 8-bit binary
data directly into the string, with the number of bytes READ controlled by the
current (before the READ) length of the string. 16-bit binary READs are not
possible with string variables. For example READ #F,A$,B$(I,J),&C$,&D$(K,L)
illustrate the string READ possibilities.

As each data item is READ from the file, the file position is incremented by
the number of bytes READ, so that the file position is always aligned to the
next data item. When randomly accessing a data file, you must specify file
positions which always refer to the 1st byte of multi-byte data items (such as
strings, 16-bit values, and floating point values. To do this you must know
the number of bytes required for each data item. String and binary data types
are covered above. The length of floating point values is always the same for
a given APCBASIC precision: PRECISION/2+1. Thus the standard 8-digit precision
requires 5 bytes (8/2+1 • 4+1 • 5). If you ever access a data item somewhere
past its 1st byte, a TYPE ERROR will usually occur to inform of the problem.
However binary data items have no identifying characteristics to permit such
error detection, so exercise great care when processing random binary files.

71

5.6

WRITE #<file number>,<data exprn list> [,NOMARK]

WRITEs a data list to the specified OPEN file in either sequential or random
access mode. Like the READ statement except for the direction of data
transfer. Instead of variables in the data list, general data expressions can
specify the data to be written. The data expression list may contain numeric
expressions, string expressions and file position specifications. See the
previous discussion on the READ statement for details on file positioning and
numeric data on files. Example: WRITE #F,%Pl,X,Y,%P2,Z writes X and Y at
position Pl, and Z at position P2.

Ordinary numeric expressions specify the floating point data to WRITE. Binary
data can also be written by prefixing each numeric expression with an ampersand
(&) for 8-bit values or an at-sign (@) for 16-bit values (see the READ
statement for details). Floating point values from 0 to 65535 are
converted to binary format before the WRITE takes place. For example,
WRITE #F,X,A(I,J),&Y,@B(K) illustrates the various numeric WRITE possibilities.

String expressions may also be included in the data expression list and are
WRITten in a manner corresponding to the READing of strings. Preceding string
expressions with an ampersand (&) WRITEs the string as a sequence of binary
bytes the length of the string. No type or length information is WRITten
as in the usual string WRITE operation described above. For example,
WRITE A$,B$(I,J),&C$,&D$(K,L) illustrates the string WRITE possibilities.

After executing each WRITE statement, APCBASIC WRITEs an additional single-byte
end-of-file mark at the prevailing file position (without advancing the file
pointer however). While useful for purely sequential file usage, this often
proves unsatisfactory for binary or random access operations. To prevent the
generation of the end-of-file mark, you may finish WRITEs statement with the
NOMARK keyword. This same keyword may also be used as a program statement to
provide global control over the generation of end-marks for subsequent WRITE
operations (see the next statement).

NOMARK <logical exprn>

The end-of-file mark written after each WRITE operation may be suppressed (or
not) for all subsequent WRITE operations by using the NOMARK statement. A
non-zero expression (logical true) causes file mark suppression, and a zero
(logical false) expression brings it back again. Most useful for random or
binary file processing, since it eliminates the need for the NOMARK keyword in
WRITE statements. The NOMA.RK statement affects the action of only those WRITE
statements which omit the NOMA.RK keyword; any WRITE statement terminated with
NOMARK will never WRITE and end-of-file mark.

DIR [#<device number>,] [<drive number>]

To generate a file directory listing from a APCBASIC program, the DIR statement
may be executed from a APCBASIC program in the same manner as the DIR command
described in Section 2.4.

- 5. 7 SEGMENTATIOB & OVDLAY STATEMENTS -

Accepting the reality of finite memory, very large programs must be partitioned
into components that reside on disk files which are called into memory as
needed. Three APCBASIC statements provide the ability to automatically LOAD &
RUN a program, MERGE subroutine libraries into the currently executing program,
or DELETE arbitrary program lines no longer needed by the current executing
program.

Use of MERGE or DELETE requires that you keep a 'map' of your program line
assignments both in mind and well documented, or you can introduce strange
errors of logical integrity into your programs by DELETing or overlaying the
wrong lines. Both MERGE and DELETE should therefore be used with great care.

LINK <program name string exprn> [,<common variables>]

Terminates the current program, erases it, loads another program specified
by the string expression, then begins execution on the first new program
statement. All files are generally closed and data stored in variables may
or may not be lost, depending on the <common variables> portion of the LINK
statement. LINK thus provides a means for APCBASIC programs to automatically
LOAD & RUN program segments of their own choosing. Unless you have TRACE
on, LINK removes all spaces and REMarks from the new program just prior
to RUNning it.

Variables may be passed between LINKed programs by listing their names after
the program file name expression in the LINK statement. Any type or size of
variable may be passed as long· as space in the LINKed program permits. For
example the statement: LINK "PGM",X,Y,B$,V() will LINK to PGM and pass
X,Y,B$,V() to it, where () indicates that V is an array. Syntax errors
result from specifying subscript expressions or unused variables.

To preserve all variables, use an at-sign (@) instead of the variable list.
For example LINK "PGM",@ will pass all variables to PGM. With this method, any
files OPEN before LINKing will still be OPEN when the LINKed program begins.
At-sign LINKing permits writing programs as though the machine possessed
unlimited memory for the program statements.

MERGE <program name stringexprn>

Program files may be MERGEd during program execution in the same way as
described in Section 2.2. Sophisticated overlay structures can be created
using this feature. For instance, your 'core' routines can always stay in
memory while special purpose libraries can be MERGEd into the program as
they are needed. Use the same syntax as the MERGE command, but with the
program name expressed as a string expression.

Execution continues at the 1st line of the program after a MERGE and some
method must be employed to restart at your desired point of continuation.
Since all variables retain there values (and open files remain open), the
1st program line may branch on a previously defined control variable
using an IF •• THEN or ON •• GOTO statement. Another method is to MERGE a new
line 0000 into the program that jumps to the desired continuation line.

73

5.7

The result is essentially a new program. You must make sure that all line
references are resolved and that DEFined FNs are not duplicated. In
general the program must be intact and complete after each MERGE executed.
Because the CRUNCH utility program (Section 8.2) shifts many program statements
to adjacent lines (removing their line numbers in the process), you must take
this into account when you set up your MERGE operation to guarantee correct
MERGing of CRUNCHed programs.

DELETE <linel range>

To remove unneeded program lines after they have been executed (such as one
time initialization routines), use the DEL statement in the running program
just like the DEL command. All variables and open files are preserved. Like
the MERGE above, control passes to the 1st line of the program after executing
this statement. The only restriction is that the DEL statement must appear
within the range being deleted. You must guarantee that the resulting program
is complete in all respects as with the MERGE statement.

When you compact a program containing DELETE statements using CRUNCH (Section
8.2), be sure tha~ the line immediately following each DELETEd range is
referenced elsewhere in the program (eg. by GOTOs, GOSUBs, ERRSETs, etc).
CRUNCH joins unreferenced lines with its neighbors wherever possible (while
preserving all references), and could otherwise append additional statements
to each of the specified DELETE ranges.

--: 5.8 SYSTEM INTERFACE STATEMENTS ~

These statements provide access to system memory and hardware ports 0 to 255
and permit control of various APCBASIC system parameters. See Section 6.5 for
the discussion of additional functions: FREE(), EXAM(), INP(), CALL(•••) and
variable addressing.

FILL <starting address>,<data list>

Stores a list of data values directly into sequential memory locations.
Numeric values are reduced modulo 256 (8-bit value) unless otherwise specified
by placing an at-sign (@) in front of a FILL-value, in which case a 16-bit
value is stored instead. (16-bit values use 2-bytes in which the 1st & 2nd
bytes are the low & high order bytes respectively.) String expressions may
also be specified for FILLing into memory. The number of bytes stored depends
on the length of the string expression.

EXAM <starting address>,<variable list>

Loads string or numeric variables directly from memory and is the inverse
operation of FILL. The first variable is loaded from memory at the address
specified, and subsequent variables are loaded sequentially from memory in the
order given. By placing an at-sign (@) in front of an EXAM-variable, a 16-bit
value is loaded from memory instead of an 8-bit value. String variables may
also be EXAMined from memory. The number of bytes loaded depends on the
current length of the string in the variable.

OUT <port number>,<8-bit data value>

Sends an 8-bit value (0 •• 255) out through the hardware port specified. No
status interrogation is performed and the transfer takes place immediately.
The OUT statement will accept either numeric or string data for output
through CPU ports. For example: OUT P,C$ will output the 1st character
in string variable C$. Any general string (or numeric) expression may be
specified, however only the 1st character of the string is OUTput. If a
null string is specified, an undefined value is OUTput.

CALL <address exprn>,<data register exprn$>[,<result register vbl$>]

Executes a machine CALL to the (16-bit) memory address specified by the numeric
<address exprn>. This statement permits machine register access on both the
call (input registers) and the return (result registers). Register values are
specified as characters in the string arguments and are positionally defined:
ACC, F, B, C, D, E, H, L. The data registers may be a string expression of any
length. The result register string vbl must be at least 8 bytes long to bold
all returned register values (when this optional parameter is supplied). Use
BIT(), ASC(), CHR$(), FILL and EXAM to pack/unpack your desired values to/from
the string arguments.

75

5.8

PARAM(<exprn>) = <exprn>

The PARAM(P) statement allows control of several internal execution factors.
It may be used on the left side of an assignment statement (=) to assign
new values, or accessed as a function to determine current PAR.AM() values.
Expression P must evaluate to a value from 0 to 8 to select one of the
following parameters:

0 Version number of the current APCBASIC release.

l* CTRL-C Disable may be set to a non-zero value to ignore a CTRL-C typed
during progrm execution, or to zero to re-enable the CTRL-C apparatus.
This has no effect on CTRL-C typed at the command level or during
direct statement execution.

2* Default Drive Number (Initially 1) used whenever drive #0 or no
drive is specified in commands, statements, functions and file names.

3* Default I/O Device (Initially 0) used whenever an optional device
number is omitted. Has no effect on the console messages displayed
by APCBASIC (Ready, error messages, etc).

4 Prevailing Numeric Precision (Returns 8, 10, 12, or 14)

5 Operating System Environment Code. O=North Star DOS, l=CP/M,
2=APC's MTOS.

6 Address of original invoking (system level) command that was typed to
auto-run the program. Returns 0 if none. Use with EXAM statement to
access the command tail, which ends with a carriage return (ASCII 13)
when present.

7* Specifies the ASCII code to be used in initializing string variable
on creation (or restoration). PARAM(7)=32 on start-up (for spaces).

8 Addresses the first memory byte above APCBASIC that is not reserved or in
use by APCBASIC. Thus data placed their is accessible by your programs
and is unaltered by by multi-segement execution. Since APCBASIC normally
assigns all available memory to your program and its data, no memory
space exists at PARAM(8) until you assign lower memory bounds with the
CONFIG utility program described in Section 8.3.

All may be 'read' but only those marked (*) may be altered. Expect further
parameter definitions in later releases. See Section 6.5 for further
details.

5.9 DOCUMEN'IATIOR STATEMENTS --

REM <descriptive text>

Everything from the REM keyword to the end of its program line is taken as a
non-executing comment, including statement separators (; and \) or text which
would ordinarily constitute valid executable statements. APCBASIC preserves
the case (upper/lower) of all letters that follow the REM keyword.

REM statements provide additional information and guidance to the programmer
during program development and later program maintenance. Well commented
programs generally take less total time to construct and debug. A good
practice to adhere to is to briefly describe each procedure or subprogram in
its first line. Also, type a line-feed as the last character of each program
line that precedes such REMarks. Since this creates double spacing between
procedural blocks of code, the program structure becomes much more evident.

77

OL

u.v

**** 6.0 APCBASIC FUNCTION LIBRARY ****
Unless otherwise noted, all parameters to functions can be general string
(denoted by 5$, T$ or U$) or numeric expressions (denoted by X, Y or Z).

6.1 ARITHMETIC FUNCTIOBS --

INT(X) Returns the greatest integer less than or equal to expression X.
Examples: INT(34.524509)=34, INT(.2)=0, INT(-7)=-7, INT(-1.3)=-2

CEIL(X) Returns the lowest integer greater than or equal to expression X.
Examples: CEIL(3.4)=4, CEIL(-2.13)•-2, CEIL(l)=l

TRUNC(X) Returns X with any fractional part removed and is equivalent to
ABS(INT(X))*SGN(X). Examples: TRUNC(3.4)=3, TRUNC(-2.71)=-2

MOD(X,Y)

FRAC(X)

ROUND(X)

Returns the smallest non-negative remainder R such that X-R is
exactly divisible by Y. Examples: MOD(34,17)=0, MOD(13,5)=3,
MOD(-13,5)=2

Returns the non-negative fractional part of expression X and is
equivalent to X-INT(X). Examples: FRAC(3)=0, FRAC(4.23)=.23,
FRAC(-7.2)=.8

Returns X rounded to the nearest integer. Note that this is
easily generalized to round to the nearest value modulo V by
using the express~on: V*ROUND(X/V).

ROUND(X,P) Returns X rounded to the number of significant digits precision
specified by expression P, which must be 1 or greater.

ABS(X) Returns the positive value of X. Examples: ABS(-3)=3, ABS(2)=2

SGN(X) Returns -1, 0, or 1 for X<O, X=O, or X>O respectively.
Examples: SGN(-4.S)z;-l, SGN(O)=O, SGN(3521)=1

SGN(X,Y) Returns Y with the sign of X, irregardless of the sign of Y.
Examples: SGN(-4,10)=-10, SGN(0,-34)=34, SGN(-3,-99)=-99

MIN(X,Y, ••) Returns the minimum value among a list of expression values.
Example: MIN(45,2,987,-12,0,34)=-12, MIN(2,l)=l

MA.X(X,Y, ••) Returns the maximum value among a list of expression values.
Examples: MAX(45,2,987,-12,0,34)=987, MAX(2,1)=2

INDEX After a MIN(••) or MAX(••) function call this system variable
returns the position of the value returned. After the MIN(••)
examples above, INDEX returns 4 and 2 respectively; after the
MAX(••) examples it returns 3 and 1 respectively.

RND(X) Returns a pseudo-random number sequence uniformly distributed
over the interval o ••. 1, not inclusive. The expression value x
controls the method of computation: X=O causes the return of the
next number in the current sequence; O<X<l defines a new starting
'seed' which is derived from X; and X<O defines a new starting
seed based on a random hardware condition.

79

6.2'

SQRT(X)

LOG(X)

LN(X)

EXP(X)

PI

SIN(X)

ASIN(X)

COS(X)

ACOS(X)

TAN(X)

ATN(X)

- 6.2 MATHEMATICAL FUBCTIOBS --

Returns the square-root of the non-negative expression X.
Examples: SQRT(9)=3, SQRT(l)=l, SQRT(S.7)•2.38746727 •••

Returns the logarithm base 10 of any X>O. Example LOG(l000)=3

Returns the logarithm base e of any X>O.

Returns e raised to the power of X. To avoid a numeric overflow
error, X must be within a range of -147.36549 to +145.06286.

Returns the constant pi (3.141592 ••) rounded to the prevailing
precision of APCBASIC.

Returns the sine of X specified in radians. Note that X must be
multiplied by PI/180 if it represents degrees.

Returns the angle in radians of X specified as a sine from -1 to
1. In other words, if X=SIN(A) then ASIN(X)=A.

Returns the cosine of X specified in radians.

Returns the angle in radians of X specified as a cosine from -1
to 1. Thus if X=COS(A) then ACOS(X)=A.

Returns the tangent of X specified in radians.

Returns the angle in radians of X specified as a tangent. Thus
if X=tangent(A) then ATN(X)=A. .

POLY(X,A(),D) Returns the polynomial evaluation of X using coefficient array
A() containing D+l coefficients (D=polynomial degree). Note that
the array A() specifies the starting coefficient (constant term)
of an ascending coefficient sequence stored in A(). D must be a
value from 1 to 255. Invalid evaluations result if your degree
and coefficient sequence extends past the end of the array.

80

Multi-dimensional arrays may be employed with the understanding
that their last dimension index specifies the coefficient sequence
position, and prior dimension subscripts serve to select one
sequence of many. This follows from the sequential coefficient
access employed by POLY() and the organization of array storage
elements. For example POLY(X,C(I,J),5) evaluates a 5th-degree
polynomial using the coefficient list C(I,J) on X, where I selects
the sequence and J specifies the low-coefficient position of the
six coefficient sequence (coefficient 0 to 5).

LEN(S$)

STR$(X)

STR$(X,S$)

VAL(S$)

CHR$(X)

CHR$(X,Y)

ASC(S$)

TRIM$(S$)

REV$(S$)

-- 6.3 STi.IBG FUBCTIOHS --

Returns the length of the string expression 8$. This function
requires more execution time and memory space when the string
i~ not a simple string variable or constant.
Examples: LEN("ABCDEFG")•7, LEN("")•O

Returns the ASCII string representation of the value of X
according to the current default numeric format.
Examples: STR$(123.70)•" 123.7", STR$(-34E2)•" -3400"

Same as STR.$(X) except that a format string is given to control
the format of the value. Examples: STR.$(23.87,"6Fl")=" 23.9",
STR$(1234567 .8, "CI")=" 1,234,568"

Returns the numeric value of an ASCII string representation of
a value (the inverse of the STR$(X) function). The string
may contain leading or trailing spaces (and/or line-feeds), but
must be an otherwise valid numeric constant.
Examples: VAL(" 92E3")•92000, VAL("0012.4300 ")=12.43

Returns a one-character string corresponding to the ASCII code
given by X. Examples: CHR$(65)="A", CHR$(57)="9"

Returns a string of the ASCII codes X through Y in ascending
sequence. IF X>Y then a null string is returned. Examples:
CHR$(48,57)•"0123456789", CHR$(87 ,43)•""

Returns the ASCII code value corresponding to the 1st character
in string S$. Examples: ASC("A")•65, ASC("9")=57, ASC('"')=-1
S$ may be a general string expression, but only the 1st
character is used for the result. ASC(S$) executes faster
and uses less memory when 8$ is a simple variable.

Returns S$ stripped of all leading and trailing spaces.

Returns S$ with the characters in the reverse order.

TRAN$(S$,T$,U$) Returns S$ after substituting (translating) any characters
also contained in T$ to corresponding characters in U$. When T$
and U$ differ in length, the longer is truncated to length of the
shorter. If T$ or U$ is null ("") then S$ is returned unchanged.
Example: TRAN$("ABCDEFG","BDFR","---")="A-C-E-G"

Internally, TRAN$() requires an additional workspace area and
thus erases the prior content of the 'old line' editing buffer.
Neither replacement string (2nd and 3rd arguments) may exceed 256
characters without causing an OUT OF BOUNDS ERROR.

MATCH(S$,T$) Searches string 5$ for the 1st occurrence of string T$ and
returns the character position in 8$ where the first character
of T$ was found; or returns zero if no exact match was found.
Examples: MATCH("abcdefg","de")-=4, MATCH("abcdefg","DE")•O

MATCH(S$,T$,X) Same as the MATCH function above except the search process
begins at position X in S$ instead of the first character
position. Examples: MATCH("abcdefg","de",S)•O

81

6.3

FIND(T$=S$,X) Searches string variable T$ for the first occurance of
string expression S$ (which must not exceed 255 characters) that
satisfies the relation specified by the comparison operator (in
this case '='). Any comparision operator may be employed (=, <>,
<, >, <=, or >=). The last argument is optional and specifies the
number of positions to advance the search for each successive
comparison. For example, X=5 compares S$ with T$ at positions
1,6,11,16,21, ••• until the relation is satisfied. Omitting this
argument implies a default of 1. To search T$ backwards from the
end to the beginning, specify a negative X. In such a case, the
search begins from the last possible comparison position in T$
{ie. LEN(T$)-LEN(S$)+1).

To control the extent of the search, T$ may be indexed to the
desired region. FIND returns the position in T$ that satisfied
the relation, or it returns zero if not satisfied. This position
is always relative to the beginning of the string variable, no
matter how you index T$. For convenience, FIND sets INDEX to the
result position relative to the indexed region in T$ actually
searched (so that it is available for subsequent use when needed).

You may have noticed the similarity bewteen FIND and MATCH. In
fact, FIND(T$=S$) returns the same result as MATCH(T$,S$). However
FIND has several differences that should be emphasized. FIND can
search string variables containing huge strings, but since MATCH
requires working memory to hold all of its parameters, it fails
if memory fills up (like searching a 20000 byte table). FIND is
designed to find relationships in string tables by searching
forward or backward through fixed l~ngth sub-strings. MATCH is
designed for simple pattern matching in relatively small strings.

BIT(V$,X) Returns the value of the Xth bit of string variable V$. X must
evaluate to a value from 0 to LEN(V$)*8-l. V$ may be subscripted
or unsubscripted, but cannot be a string expression. Only values
0 or 1 are returned. Use on the left side of an assignment
statement to store values and on the right to obtain values. See
the BIT() statement described in Section 5.3 for further details.

BIT(V$,X:Y) Same as the BIT function above except that Y-bits are accessed
as one value. Y may be a value from 1 to 16. The range of values
accessed depends on Y. For example if Y=4, then four-bit numbers
ranging 0-15 are possible; if Y=l3 then 13-bit numbers ranging
0 to 8191 are possible.

ROTAT$(S$,X) Rotates the bit-string S$ by the number of bit-positions
specified by X. Negative X rota.tes 5$ to the left (toward the
beginning) and positive X rotates to the right (toward the

o"

end), consistent with BIT() addressing described in Section 5.3.
No action is taken if either $$="" or X=O. X may take on values
from -255 to 255. Note that the entire string rotates as a unit
and bits that 'fall off' the end are moved to the other end (ie.
no information is lost).

POS(X)

LINES(X)

INCHR$(X)

Q

-- 6.4 FILE AND DEVICE I/O FUBCTIOBS --

Returns the current column position of device 0-15 given by X. The
result ranges from 0 to 255.

Returns the current line position of device 0-15 given by X. The
result ranges from 0 to 255 and may be initialized to zero at any
time with PRINT statement containing a plus sign (+) control.
Examples: LINES(0)=124; PRINT+,; LINES(O)=O

Returns a one-character string containing the next data byte input
on device X, where X must be from 0 to 15. It will wait as long
as necessary until a character is available from the input device
specified. This method of input does not use the carriage return
terminator (like the INPUT statement). Control characters and
carriage returns may be input as ordinary characters using INCHR$.

You can read console (keyboard) characters without waiting, by
specifying any negative value for the device number D in
INCHR$(D). INCHR$(-l) always returns a one-character string, even
if no console character was typed. So you must test the result
character for the no-character-typed code. CP/M versions return
an ASCII 0, but other operating system system conventions are
different and this code, although consistent, must be determined
specifically in your operating environment (eg. under North Star
DOS). You must disable the CTRL-C detection system to use this
feature (PARAM(l)=l would do it) because it immediately swallows
any character appearing from the console.

INCRR$(X) will now input single characters from a file if the file
is OPEN under file number X, where X ranges 8 to 15. This was
added to be consistent with the other I/O redirection facilities
in APCBASIC. Exactly one (1) character is read with each reference
to INCHR$(X). No end-of-file mark is checked for, although an
OUT OF BOUNDS ERROR will occur if you attempt to read past the
physical end of the file.

Do not use INCHR$(X) in this manner directly in the data list of
a WRITE statement to the same file, as it will upset the file
pointer for the subsequent WRITE operation.

FILE(S$) Returns the file type of a file specified in 5$. If non-existent
file name specified then it returns -1. Under CP/M, FILE()
returns 1 if the file exists and 0 if it does not exist.

FILEPOS(X) Returns the position of the file pointer of open file number X.

FILESIZE(X) Returns the number of file blocks in the open file number X.

SPACE(X) Returns the number of file blocks (256 bytes) available on the
disk drive given by X. X=O for the default drive, X=l,2,3, •••
to refer to any attached disk system.

TYP(X) Returns the data type at the current file position of file number
X. The data types returned are as follows: O=ENDMARK, !=String,
2=Floating Point Value, 3=Unknown (most likely binary data).

83

6.5

PARAM(X)

~ 6.5 FUNCTIOBS FOR SYSTEM INTER.FACE --

Returns an internal APCBASIC condition selected by X, where X
may take on values from 0 to 8. Each PARAM is explained below.
Certain PARAMs may be set with an assignment statement (eg.
PARAM(l)=O). Such PARAMs are marked with an asterisk (*).

PAR.AM D e s c r i p t i o n

0 Returns the APCBASIC version number, taking the form: U.VWX,
where U=year digit, V=sequence number in that year, W=type
of arithmetic processing used (O=software, l=N* floating
point board), X=O for development version, X=l for
runtime version. Other indicators may be appended to
this form from time to time.

l* CTRL-C disable flag (!=disabled, O=enabled).

2* Default Disk Drive number (normally 1).

3* Default I/O Device number (normally 0).

4 Prevailing Floating Point Precision (8-14)

5 Returns a code specifying the operating system environment
under which APCBASIC is executing (0 for North Star DOS, 1
for CP/M, 2 for APC's MTOS).

6 Returns the address to the 9riginal command line typed
that loaded APCBASIC and a program for immediate execution.
Zero is returned if no auto-run program was specified.
Use this feature to pass additional parameters to your
program from the calling command sequence with the
statement: EXAM PARAM(6),L$. Your program must perform
all necessary decoding; the line always ends with a
carriage return code (ASCII 13). Since some systems (eg.
CP/M) reuse the input area for other things, be sure that
your program reads this parameter line at the start of
program execution.

7* Permits access to the ASCII code used to initialize
strings and string arrays. At startup, PARAM(7) = 32, the
ASCII code for spaces (blanks). You can revise this value
to any code from 0 to 255 with an assignment statement:
PARAM(7)=0.

8 Returns the address of the 1st memory location above
memory used by APCBASIC. Your APCBASIC can be made (using the
CONFIG program) to leave some memory unused at the top for
use by external machine code or data. PARAM(8) will
always tell you where this is located.

FREE(X)

EXAM(X)

INP(X)

Returns the number of memory bytes available at any point in time
given positive X; returns the starting memory address of that free
space given a negative X. Watch out! This starting address is
where the next new variable or file buffer will be created and
it will overwrite anything you place there.

Returns the value of memory byte at the address specified by X.
Note the distinction between this and the EXAM statement described
in Section 5.8.

Returns the value of an input data byte from hardward port X.
X is reduced to modulo 256 when X>256. No status is examined and
whatever data byte is present is returned immediately.

Higher processing speed is possible by employing INP(X) as a
string function so that it can return a single character string
(which avoids a floating point conversion). Used where a string
is expected, INP(X) returns a 1 byte string. Otherwise, a numeric
(floating point) result is returned.

CALL(X,Y, ••) Returns the value left in CPU register BL after return from
a machine subroutine at memory address X. One or more arguments
may be supplied. With two or more arguments, the last is passed
through register DE and those between the 1st and the last are
placed on the hardware stack in reverse order. Each argument is
converted to a positive 16-bit integer before passing it. The
machine subroutine is responsible for removing the proper number
of arguments from.the stack, which could not otherwise return
properly. See the CALL statement in Section 5.8 for a more
general CALL that permits full access to all machine registers.

[V] Returns the memory address of variable V, which may be a string
or numeric scalar or array element. String addresses refer to
the first character of given string or indexed string. Numeric
addresses refer to the exponent byte of the value, which is the
last byte of the number. Can be used in CALL functions for
passing pointers to data to be processed, or in FILLing or
EXAMining their memory contents directly from your program.

The addresses of APCBASIC variables may change during program
execution after certain operations: FREE statement, DIM, MERGE,
DELETE, and LINKs that perserve variables. Therefore external
processes using such pointers must not assume static locations
unless you exercise special care.

85

**** 7.0 MISCELLANEOUS INFORMATION****

This section covers various subjects that are less likely to be needed on a
regular basis, but are nonetheless of vital importance at certain times. The
following areas are covered:

7.1 Error Messages

7.2 Alternate Keywords

7.3 Configuration Options

7.4 CP/M System Differences

7.5 Version Change Histories

7.6 Implementation Notes

Descriptions of causal factors that
can lead to the generation of both
trappable and non-trappable errors.

Lists various keywords that may be
substituted for primary keywords for
purposes of brevity and convenience.

Lists various customization options
that may be used to personalize APCBASIC
to non-standard situations.

Describes all the differences in using
the CP/M APCBASIC over the North Star
DOS implementation of APCBASIC.

Describes all the changes made to
APCBASIC through the various upgraded
versions. Mostly useful to those
users moving up from an earlier
version to a later one.

Details on the internal operation of
various APCBASIC activities.

87

7.1

7.1 EB.ltOR MESSAGES --

This section describes all error types and messages handled by APCBASIC. Most of
the detected errors may be trapped by the APCBASIC program with the ERRSET state
ment described in Section 5.4 and have a type code associated to each. The
remaining error messages have no type and are always issued when their corres
ponding error occurs. It is not possible or feasible to recover from errors of
this type and ERRSET traps are ignored if they occur. Fortunately they are
usually revealed during the debugging phase of program development and do not
occur in well tested final versions of programs.

NON-TRAPPABLE ERRORS:

M E S S A G E

Continue Error

Loading Error

No Program Error

Double Def Error

Memory Full Error

Return Error

Exit Error

Missing Next Error

Next Error

FN Def Error

D E S C R I P T I 0 N

Attempted to CONTinue execution of a program without
being in the state of temporary suspension left after
a CTRL-C or programmed STOP.

Attempted to LOAD a APCBASIC program file that either
doesn't contain a valid program or the program is too
large to fit the memory available.

Attempted RUN without a program or a $ reference
was used in a command when no program existed.

Two or more function DEFinitions exist for the same
function name. This can only occur at the beginning
of program execution prior to executing the 1st
statement of the program.

All memory space allocated to APCBASIC has been
consumed. This can be caused by DIMensioning strings
and arrays too big, using recursive GOSUBs or FNs that
don't terminate, or performing operations that
temporarily use more memory than is available. String
expressions require enough temporary memory to hold
the entire result, for example.

RETURN statement encountered without an active
GOSUB or FN underway.

Looping structure (FOR or WHILE) not present
when Exit statement encountered.

No closing NEXT statement was found for a WHILE
or FOR statement being initialized.

Encountered a NEXT statement without an opening
FOR or WHILE statement.

Either a reference to an undefined function
was encountered, or a function was DEFined within
another function DEFinition.

Exprn-Depth Error

Local Error

User Trap Error

Translator Error

Buff er Update Error

TRAPPABLE ERROR TYPES:

TYPE MESSAGE

1 Argument Error

2 Re-Dimension Error

A result of too many nested levels of
parentheses in string or numeric expressions.
About 15 levels of parentheses are available.

LOCAL statement encountered inside a loop (FOR or
WHILE) or outside any calls to GOSUBs or FNs.

ERRSET #<error type> statement encountered without
an error trap in effect (as set by ERRSET <line>).

APCBASIC converts a program to a faster internal
form prior to RUNning it. This error is generated
when this task could not be completed for some
reason, most likely caused by insufficient memory.

Disk error encountered when attempting to update
file buffers at program termination. No line number
is associated with this error. The offending file
is CLOSEd without updating its buffer, losing all
new data it contains (512 bytes maximum). Other
error messages may immediately precede this one.

D E S C R I P T I 0 N

An invalid argum.ent was supplied to a command.
Arguments of the wrong data type will generate
error #4: TYPE ERROR.

Attempted to DIMension an existing string or array
within a User-DEFined function (legal elsewhere).

3 Out of Bounds Error A numeric value was outside the permitted

4 Type Error

5 Format Error

6 Line# Error

7 File Error

range or file operations attempted to extend
past the end of the file or disk. This is often
due to array or string subscripts out of range.

Data specified for an operation was of the wrong
type: usually a string (or number) was given where
a number (or string) was expec·ted. Also indicated
if an endmark is encountered during a READ#.

Unknown or impossible numeric format was
specified, such as a width specification not
greater than the decimal specification.

A line number refers to a non-existent line or
an ASCII line was ENTERed from a file without
a line number.

An improper file operation, file number or
file name was specified.

89

7.1

8 Disk Error

9 Div/O Error

10 Syntax Error

11 Read Error

12 Value Error

13 Mismatch Error

14 Numeric Ovfl Error

15 Stop

16 Length Error

Unreadable or non-existent disk area was accessed.
Also from writing to a write-protected disk.

An attempt was made to divide a number by zero.

Improperly constructed APCBASIC statement, command,
or expression.

Attempted to access a DATA list when none existed.

A string supplied to the VAL() function was not
a proper numeric representation.

User-DEFined function specified with the
wrong number of arguments.

Arithmetic operation attempted to produce
a value of 10A62 or larger.

The running program has stopped in a CONTinuable
state. This is caused by STOP statement or a
CTRL-C from the console to interrupt program
execution and trappable (as "error" type 15)
for various applications with ERRSET.

An INPUT line was typed which exceeded 159
characters or a CHANGE command lengthened a
program line past 159 characters.

I • .L..

7.2 APCBASIC ALTEDATE ~EYWORDS -

APCBASIC represents its reserved keywords internally as single-byte codes. When
LISTed, these are displayed as standard keywords which however may not be the
original keyword entered. For convenience and in some cases for brevity,
APCBASIC will accept several different keywords for the same thing while it
displays only its primary form. For example all of the keywords found in North
Star BASIC are accepted by APCBASIC on input but display in their corresponding
APCBASIC keywords. All such correspondences are listed below:

PRIMARY ALTERNATE KEYWORDS

RENAME REN
DOS BYE
SAVE NSAVE
DELETE DEL, CLEAR, SCR
DIR CAT
EDIT ED
CHANGE REPLACE, CH
TRACE TR
LIST LI
ENTER AUTO, ENT
MERGE APP

BY STEP
PRINT 1 (Both LISTable)
GOTO GO TO (Signif1cant Space)
NOMARK NOENDMARK
RETURN RET
LINK CHAIN

LOG LOGlO
LN LOGE
INCHR$ IN CHAR$
POS PTR
>= ==>
<= ==>

91

7.3

~ 7.3 CONFIGURATION OPTIONS~

Your version of APCBASIC can be personalized in several respects to accomodate
its operating environment. These options are implemented by making changes to
certain memory locations within APCBASIC. The CONFIG utility program provided
in the APCBASIC software package permits interactive option selection and updates
your various copies of APCBASIC to reflect your desired changes. All the options
available for both North Star and CP/M versions are given below (check for
applicabiltiy to your system). Details on location and format are not provided
since the CONFIG program (usage instructions in Section 8.3) eliminates the
need to know these. You can re-configure APCBASIC whenever necessary.

FLOATING POINT BOARD ADDRESS

The standard location of EFOO Hex may not be suitable in your situation. Any
address of the form XYOO, where Xis any Hex digit and Y is 3, 7, B, or Fis
permitted. Check your system documentation to determine the proper value.
Applies only to versions supporting the North Star Floating Point Board.

CONSOLE BACKSPACE SEQUENCE

When you strike a backspace (CTRL-H) or DEL key on the console keyboard, APCBASIC
sends a standard backspace-space-backspace (ASCII 8,32,8) to the console screen
to backup the cursor and erase the previous character. On rare CRTs or on hard
copy consoles this may be unsuitable. You may specify any sequence of 1 to 4
character codes for performing this function. Consult your terminal manual to
determine the proper sequence.

HIGH MEMORY ADDRESS

Normally, APCBASIC uses the highest available memory address above its load
address to always allocate the maximum amount of memory for its use. In some
situations, portions of high-memory are used for special purposes during APCBASIC
execution, precluding its use by APCBASIC. You can establish any memory address
(specified in Hex) to be permanently set as the high-memory address, however it
should be as high as possible to permit the maximum program and data size. See
your system documentation for the proper address where applicable.

SYSTEM INTERRUPTS FLAG

In CP/M systems, you must inform APCBASIC versions that use the North Star FPB
whether or not interrupts are used during APCBASIC operation (required for
proper arithmetic operation). North Star systems already have a special system
flag set aside for this purpose (RWCHK at DOS+2BH) and no corresponding
personalization is necessary.

I • _,

INITIAL STATE OF CTRL-C DETECTION

Normally APCBASIC will always detect a CTRL-C typed from the console and abort
program execution. Using PARAM(l) you can disable or re-enable this mechanism.
However for special 'turnkey' systems of APCBASIC programs, CTRL-C should be
disabled at startup (prior to executing the 1st program statement). The state
of the CTRL-C detect at startup can therefore be configured as a separate
option. Of course PARAM(l) may be later executed within the program to modify
this state as needed.

CUSTOM DEVICE I/O DRIVER SOFTWARE ,

The eight I/O devices supported under APCBASIC are generally the concern of the
operating system. Under North Star systems, you can personalize the DOS to
modify the I/O drivers used by APCBASIC. However under CP/M, only limited I/O
flexibility exists and does not normally support 8 1/0 devices. Because of
this, APCBASIC devices 1 through 7 (0 cannot be changed) may be re-assigned to
use your own I/O driver software already present somewhere in known memory
locations (CP/M versions of APCBASIC only).

Each device number can be assigned two jump addresses: one to an input
subroutine and one to an output subroutine. These routines may freely use any
of the registers for any purpose and return to APCBASIC via a RET instruction.
Input subroutines must return the character in the accumulator (ACC). Output
subroutines expect the output character in the E register when entered. No
other restrictions apply and reasonable use of the stack (SP) is permitted.

93

7.4

~ 7.4 APCBASIC VAB.IATIOBS UIDER CP/M SYSTEMS

Certain changes are necessary to conform to the conventions and facilities
provided under the CP/M operating system. These are described below with the
assumption that you understand general CP/M usage and will refer to the main
instructions for further details of the features below. Only the differences
between APCBASICs under CP/M and North Star DOS are described.

File Names (for Programs & Data)

APCBASIC programs must be in files of type '.ZBA'. Commands specifying program
files names do not however include the file type because '.ZBA' is always
assumed and inserted automatically (commands: LOAD, SAVE, MERGE, LINK). All
other file operations require unambiguous generic file names which bear
the file type with the name in all file references (operations: CREATE,
DESTROY, OPEN, FILE(), RENAME). Remember that ambiguous file names (those
containing '?' and '*') and names improperly formed (eg. too long) cause
an immediate FILE ERROR when used. General file names that do not specify
(eg. "XYZ" instead of "XYZ.TYP") will have a default type consisting
of three spaces (blanks).

Drive References in File Names

Absent drive reference always implies the default. Initially 1, this may be
changed with the PARAM() statement. Drive numbers range from 1 to 15 in
functions, statements and commands, and 'A' to 'O' in file names. Zero if
specified implies the current default drive#. Characters 'O' thru '9' may
specify file name drive references instead of 'A' through 'J', as well as
lower case letters 'a' through 'o' (only the least significant four bits
of the drive designator are used).

In file names, the drive reference may be placed in front of the name or
appended to the end of the file name. For example the file names "B:TFILE.DAT"
and "TFILE.DAT,2" and "tfile.dat,b" all refer to the same file on drive 2.
This flexibility permits use of North Star file names in programs running
under CP/M APCBASIC.

Due to a serious design ommission in the CP/M operating system, APCBASIC cannot
regain control after a BDOS SELECT ERROR. It is therefore imperative that
your program NEVER attempts to access a file on a non-existent or otherwise
unavailable drive. Other BDOS errors, such as a hard disk error, are usually
infrequent but will also send you back to the CP/M operating system level
without giving your program a chance to recover (thanks to DIGITAL RESEARCH).
This is a universal problem with all programs that run under CP/M.

OPEN, CREATE

OPEN #<file number>,<file name> opens an already existing file for general
file operations under the file number given (ranging 0 •• 15). No numeric file
type and no file size variable is specified as in North Star APCBASIC.

CREATE <filename> creates a new file of initial size 0. Note that file types
and drive references are included as part of the file name where applicable.
A trappable (with ERRSET) error occurs with attempts to create files already
in existence.

n1.

READ, WRITE

End-of-File processing must be done explicitly when the CP/M end-of-file mark
is used in the file being processed. Attempting to READ past the last file
block (128 byte units) written results in an OUT OF BOUNDS ERROR. Writing past
this point will extend the file size and does so in increments of 512 bytes at
a time. All files produced by CP/M APCBASIC will be a multiple of 512 bytes, but
can READ files with any multiple of 128-byte file blocks, but always extends a
file by 512 bytes at a time with the WRITE statement.

FILE(), FILESIZE(), SPACE()

FILE(F$) returns 0 if the file name string expression F$ is not found, and 1 if
it does exist. This is different from the North Star FILE() function which
returns a numeric file type (or -1 if not found) instead.

FILESIZE(<filenumber>) returns the number of blocks (256 bytes) of virtual file
space used in the file number specified. This differs from the unchanging file
size implemented by North Star DOS. Note that the block size is identical with
all versions of APCBASIC.

SPACE(<drive ref>) returns the number of file blocks still available on the
drive specified by the numeric drive reference. Drives 1 to 15 are permitted
with 0 referring to the current default drive. The implementation supports
block counts up to the floating point integer precision size.

DIR

A third parameter to DIR (both command and statement) may optionally be given
to specify a file type selection. Only those files of that type are displayed
in the directory listing. The file types are not shown on such listings to
provide a neater, more compact display. This type parameter must be specified
as a string expression, for example: DIR 2,"ZBA" (lists APCBASIC programs on
drive 2).

CALL(5)

The CP/M disk system must be reset after diskette changes by using the CALL(S)
function. The sequence of operations is as follows: CLOSE all files; direct
the user to make all diskette changes and press return when done; reset the
disk system [eg. R=CALL(5) would do it] and (RE)OPEN all files required from
that point.

Device 1/0

The eight input devices are assigned as follows: O,l,4-7=Direct Console Input,
2•Reader, 3•CP/M Console Input.

The eight output devices are assigned as follows: 0,4-7=Direct Console Output,
l•List Device, 2•Punch, 3•CP/M Console Output.

You can 'patch in' jump addresses to your own 1/0 driver routines for any or
all Input (0-7) or Output (0-7) devices. This process is done with the CONFIG
program described in Section 8.3. The 1/0 drivers themselves must already be
somewhere in memory at known locations (like in the BIOS user area).

95

7.4

MOVING NORTH STAR BASIC FILES TO CP/M

If you are using CP/M APCBASIC on a North Star system and you have North Star
type 2 files containing programs in BASIC, the following procedure may be used
to move those file to your CP/M environment:

(1) Determine the number of blocks in your program by LOADing it into BASIC
and using the SIZE command. Do not use the file size given in the DOS
directory because it is larger than the program size.

(2) From the DOS load your file into memory at 3000H: LF filename 3000

(3) Boot in your CP/M system and then get into DDT.

(4) Move your program memory image down to !OOH with the DDT command:
M3000,8000,100 where 8000 represents a memory address at or above
the end of the memory image.

(5) Type CTRL-C to get back into the CP/M command level.

(6) Save the memory image at 100 with the command: SAVE N FILE.ZBA where

o,;.

N is the number of blocks determined from step (1) and FILE.ZBA is any
file name with type .ZBA necessary for all APCBASIC programs under CP/M.

-- 7.5 VEB.SIOB CHANGE HISTORIES~

Periodically, extensions are added to APCBASIC that create a more powerful or
otherwise improved new version. New releases of APCBASIC will continue to
support programs written under earlier ones. Programs that take advantage
of the latest extended features will not execute properly under earlier
releases of APCBASIC.

Although this manual is complete through Release 2.4, if you were upgrading
from 2.1 to 2.4 it would be difficult to determine the differences without
comparing the entire manual with an 'earlier one. Therefore this section gives
brief descriptions of all the modifications included with each new release of
APCBASIC.

CHANGES LEADING TO VERSION 1.09:

(1) Faster RUN version. Compiles program to fast binary internal form
just prior to execution. Totally transparent to the user.

{2) Minor syntax changes: multiple character variable, array & function names
must be contiguous {no embedded spaces); the optional LET token is no
longer supported.

(3) Function DEFinitions must appear as the 1st statement on the line in
which they are defined.

(4) EDIT search strings may contain question marks (?) as 'wild card'
characters that match any single character.

(5) LIST & DEL may use a dollar sign ($) to denote the last line of a
range of lines. (Eg. LIST 1,$ or DEL 123,$)

{6) A third string argument may appear in the LIST comm.and. Similar to EDIT,
the string causes selective display of only those lines matching it.

(7) The TRACE IF <exprn> comm.and was added for. conditional debugging. It
provides the usual TRACE functions whenever the <exprn> evaluates to a
non-zero value. When zero, your program executes normally until the
condition again becomes true.

{8) NSAVE has been absorbed by the SAVE comm.and. When SAVing a program, APCBASIC
will respond with an OLD FILE or NEW FILE message requiring user verif ic
ation (Y or N response). It proceeds only upon a 'Y' response. In
addition, APCBASIC remembers the previous file name SAVEd and supplies this
file name for subsequent SAVEs if you do not give a file name in the SAVE
command (ie. SAVE followed by a carriage return).

(9) Overlay structures are supported using the dynamic MERGE and DELETE
statements. MERGE will overlay selected portions of the running program
with new modules. DELETE will delete selected portions of the running
program that are no longer needed. Any existing line range that includes
the DELETE statement itself is permitted. All variables and OPEN files
are preserved under both statements.

97

7.5

(10) The system variable INDEX always contains the list position selected by
a previous MIN(••) or MAX(••) function. Use it as any other variable.

(11) System variable PI returns its namesake rounded to prevailing precision.

(12) The MOD(N,M) function returns the smallest positive value V such that
N-V is divisible by M. This is different than the 'straight' remainder
when negative args are supplied.

(13) CEIL(X) returns the lowest integer greater than or equal to X.

(14) TRUNC(X) returns the 1st integer encountered when moving from X to zero.

(15) SGN(X,Y) returns ABS(Y) with the sign of X. SGN(X) remains unchanged.

(16) ROUND(X) returns X rounded to the nearest integer. ROUND(X,P) rounds X
to a maximum precision of P digits, where INT(P)>O.

(17) TAN(X) returns the tangent of X given as an angle in radians.

(18) SPACE(D) returns the number of blocks (256 byte blocks) remaining on disk
drive D. If D=O then the default drive is assumed. The feature in the
OPEN statement providing the same information is no longer supported, ie.
the file size variable will not be set to the #blocks remaining if the
file is not found.

(19) After a CTRL-C STOP in the RUN version, control passes back to the DOS.
By jumping to GO ADDRESS + 14H you may CONTinue from where you left off.

(20) The PARAM(P) statement allows control of several internal execution
factors. It may be used on the left side of an assignment statement (=)
to assign new values, or on the right side to determine their current
setting. Expression P currently selects parameters 0, 1, ••• , 4:
O=version number, l=CTRL-C disable, 2=default drive#, 3=default 1/0
device, and 4=prevailing numeric precision. All may be 'read' but only
1, 2 and 3 may be set. Expect further parameter definitions in later
releases.

(21) Programs can RENAME files using the statement: RENAME <oldname>,<newname>.
Both file names are given as string expressions. APCBASIC reports a FILE
ERROR if the <oldname> doesn't exist or the <newname> already exists.

(22) Global editing is further enhanced with the CHANGE command that replaces
one string with another everywhere or selectively within a line range.
Use the command form: CHANGE <linel>,<lineN>,<oldstring>,<newstring>
The line range & the <oldstring> are identical with the extended LIST
command. All four arguments are mandatory. APCBASIC will request 'VERIFY?'
to allow user control of each replacement ('Y' response). An 'N' response
causes replacement of all occurances found.

(23) REV$(<string exprn>) returns a reversal of the string argument supplied.

(24) TRIM$(<string exprn>) returns the given argument stripped of
leading & trailing spaces.

nft

7.5

(25) String expressions now include bit-vector logical combinations using the
operators: NOT, AND, OR, XOR, and EQV. Each binary operator logically
combines the corresponding bits of two strings into a new result string.
The NOT unary operator reverses each bit of the string that follows it.
If the argument strings differ in length, the shorter of the two will
determine the extent of the operation and hence the length of the result.
The string operator precedence follows in highest-to-lowest order:

(0) String vbls, Quoted text, String functions
(1) Strings in parentheses
(2) NOT
(3) String Factors (*)
(4) Concatenation (+)
(5) AND, OR, XOR, EQV (Descending Precedence)

Any ordering of operations may be effected using appropriately placed
parentheses. Note also that string factoring must be enclosed in
parentheses when it is not the last term of the string expression to
avoid ambiguity (between numeric & string operators).

Be most careful using complex string expressions in string comparison
operations. It is the users' responsibility to ensure that mixed string
and numeric expressions are sufficiently parenthesized to resolve any
inherent ambiguities.

(26) XOR and EQV may be used for numeric logical expressions. They act on
the logical values (zero, nonzero) of their arguments. Thus A XOR B is
true only if one arg is iero and the other is nonzero; A EQV B is true
only if both args are zero or both ars are nonzero. Logical operator
precedence ordering is as follows: AND, OR, XOR, EQV.

(27) Polynomials from degree 1 to 255 may be evaluated using the POLY(X,A(),D)
function described in Section 6.2.

(28) Strings of any length may be rotated left or right by 0 to 255 bit
positions at once using the ROTAT$(S$,R) string function described
in Section 6.3.

(29) Re-direction of Device I/O to and from files is made possible using
'devices' 8 thru 15, which are assumed to be file numbers previously
assigned with the OPEN statement. This allows commands and statements
that use #device numbers (notably PRINT, INPUT, and LIST) to direct their
data transfer operations to files instead of the usual devices. See
Section 5.2 for details.

(30) The DEL command requests user verification before erasing the entire
program (when no line range is given).

(31) The CHR$() function may have two arguments to generate a sequence string
of ascending ASCII codes. See Section 6.3 for details.

99 '

7.5

CHANGES LEADING TO VERSION 2.1

(1) Numerous additions to the formatting capabilities permit much greater
flexibility. In particular, the width (w) specification (wI, wEr, and wFr)
may be omitted to suppress all but one leading space (as in free formatted
values). The wl (or I) format rounds all non-integers before printing the
number and is no longer considered a FORMAT ERROR. Finally a T format
modifier may be employed for trailing minus signs (or plus signs), which
are always placed as the last character of the field, regardless of any
zero-suppression in effect. See Section 5.2 for further details.

(2) The string function TRAN$(A$,S$,R$) returns A$ after translating any of
its characters matching those in 8$ to their corresponding characters in
R$. All three arguments may be general string expressions.

(3) APCBASIC will raise positive or negative numbers to integer powers from -9999
to 9999. An OUT OF BOUNDS ERROR occurs when negative numbers are raised to
non-integer powers or powers outside the range above. APCBASIC computes
integer powers much faster than non-integer powers.

(4) The CRUNCH utility reduces programs about 10% further than previously.
Both CRUNCH and ZBIG have an easier calling sequence; see Section 8.0
for further details.

(5) Direct statement execution can include any statement and may CONTinue via

, 1\1\

a direct GOTO, EXIT <line#>, RETURN or RETURN <result>. See the discussion
of direct statements in Section 2.3.

I • _,

CHANGES LEADING TO VERSION 2.2

(1) The FOR statement can now be defined as: FOR <vbl>•<rangel>,<range2>, •••
where each range can be one of three forms:

(1) <exprnl> TO <exprn2>
(2) <exprnl> TO <exprn2> BY <exprn3>
(3) <exprnl>

Form (3) specifies the special case range consisting of one value. When
the current range runs out, APCBASIC accesses the next range in the list,
evaluates all its expressions, then continues loop execution under its new
parameters.

(2) The FIND function was added specifically for searching large string
tables. Use the form:

FIND(<string vbl><comparison operator><string exprn>,<increment>)

For example: FIND(T$>" ",4) returns the position in T$ of the first
character greater than a space (ASCII 32), when comparing every 4th
character. The value returned is always relative to the beginning of
the string variable, even if it is indexed for a smaller, localized
search. Any of the comparison operators may be employed (=, <>, >, <,
>=, or <=). When the relation cannot be satisfied, zero is returned.
The search string expression must evaluate to a string not exceeding 255
characters long. The increment is optional and defaults to 1 when omitted.
Thus as a special case, FIND(T$=A$) is equivalent to MATCH(T$,A$).

(3) Errors in a RETURN <exprn> statement are now recoverable using the
appropriate ERRSET statement. This used to prevent the FN from RETURNing
normally after any attempts to recover from a RETURN error. An obscure
problem resulting from sequential parameter binding in FNs bas also been
fixed. All FN arguments are now fully evaluated before binding them to
their corresponding parameter variables.

(4) Error detection bas also improved to more accurately reflect the type
of error and its origin location in APCBASIC programs. In particular,
many TYPE ERRORs and MISMATCH ERRORs were erroneously reported as
SYNTAX ERRORs, and certain errors involving FNs would report the wrong
error line number.

(5) To further assist debugging efforts, the TRACE RET command was added.
This command will display the RETURN path (in line numbers) after the
program stops for any reason (eg. CTR.L-C, STOP, program error, etc).
If the program is CONTinuable, the first line number displayed will be
the point of CONTinuation. The RETURN path is displayed all the way back
to the first FN or GOSUB reference that began the sequence. Since this
may be quite long, you can abort this display by typing a CTRL-C. (GOSUBs
and FNs can descend hundreds of levels in APCBASIC)

101

7.5

CHANGES LEADING TO VERSION 2.3:

(1) Multi-DIMensional string arrays may now be defined and accessed. Specify
string array DIMensions just like numeric arrays except that you must
supply the maximum length of each array element for the last value of the
DIMension list. For example, DIM B$(7,20,16) defines an 8 by 21 (zero
based array subscripts), two-dimensional string array whose element
strings may range from 0 to 16 characters each. You must always refer to
B$ with a subscript list to indicate a specific array element, as in:
R$=B$(I,J); R$=B$ would generate a SYNTAX ERROR. Specify only the array
DIMension positions; leave off the length parameter. You may index string
array elements by appending the index specification, as in: B$(I,J)(K),
B$(I,J)(K,L) or B$(I,J)(K:3). Unlike numeric arrays, string array
variable names cannot be assigned to scalar strings too: they must be
unique.

(2) To re-initialize any variable (string or numeric), list them in the
following statement: RESTORE X,Y,A(),B$,R$(). The empty parentheses
indicate array variables. All numeric variables are set to zero and
string variables are filled with spaces. This usage has no relation
to the standard RESTORE statement used with DATA statements.

(3) You can read console (keyboard) characters without waiting, by specifying
any negative value for the device number Din INCHR$(D). INCHR$(-l)
always returns a one-character string, even if no console character was
typed. So you must test the result character for the no-character-typed
code. CP/M versions return an ASCII 0, but other operating system system
conventions are different and this code, although consistent, must be
determined specifically in your operating environment (eg. under North
Star DOS). You must disable the CTRL-C detection system to use this
feature (PARAM(l)=l would do it) because it immediately swallows any
character appearing from the console.

(4) SWAPDEF A(),B(),C$,D$, ••• will swap the variable names instead of their
contents as in the SWAP statement. This may be employed to pass arrays
and strings to GOSUBs (or FNs) by easily substituting them for the
variables used within the GOSUB procedure, then SWAPDEFing them back
again after the RETURN. The variables are indicated under the same
conventions for specifying a LINK common variable list.

(5) SWAP statements can now include a list of variable-pairs to SWAP. Separate
each pair with a comma (,). For example: SWAP X,Y,A$,B$,R4(J),Z(I,K).
A SYNTAX ERROR results from an odd length list. A TYPE ERROR results from
attempting to SWAP strings with numbers.

(6) The OUT statement will accept either numeric or string data for output
through CPU ports. For example: OUT P,C$ will output the 1st character
in string variable C$. Any general string (or numeric) expression may
be specified, however only the 1st character of the string is OUTput.
If a null string is specified, an undefined value is OUTput.

The INP(X) function reads a byte value from port X and returns either a
numeric result or a character string result, depending on the context in
which it is used. Used where a string is expected, INP(X) returns a 1
byte string. Otherwise, a numeric (floating point) result is returned.

These expansions to INP() and OUT operate faster, due to fewer conversions
between character and floating point format, and permit access to the
bit-masking operations provided by the logical string operators: AND, OR,
NOT, XOR, and EQV.

(7) Two new read-only PAR.AM() codes have been defined. PARAM(S) returns a
code specifying the operating system environment under which APCBASIC is
executing (0 for North Star DOS, 1 for CP/M, 2 for APC's MTOS). PARAM(6)
returns the address to the original command line typed that loaded APCBASIC
and a program for immediate execution. Zero is returned if no auto-run
program was specified. Use this feature to pass additional parameters
to your program from the calling command sequence with the statement:
EXAM PARAM(6),L$. Your program must perform all necessary decoding; the
line always ends with a carriage return code (ASCII 13). Since some
systems (eg. CP/M) reuse the input area for other things, be sure that
your program reads this ~arameter line at the start of program execution.

(8) A CALL statement (ie. not the function) has been added to permit full
access to the 8080 register set. Use the form:

CALL <address exprn>,<data register exprn$>[,<result register vbl$>]

Register values are specified as characters in the string arguments and
are positionally defined: ACC, F, B, C, D, E, H, L. The data registers
may be a string expression of any length. The result register string vbl
must be at least 8 bytes long to hold all returned register values (when
this optional parameter is supplied). Use BIT(), ASC(), and CHR$()
functions to pack & unpack your desired values to & from the string
arguments.

(9) CP/M versions of APCBASIC will accept North Star file name formats to promote
compatability between both systems. In particular you may always specify a
drive number at the end of a file name. For example, the file names B:TEST
and TEST,2 are equivalent. APCBASIC uses the lower four bits of the drive
character to determine the drive, permitting letter or digit designations
(eg. TEST,2 is the same as TEST,B).

(10) The DIR statement (and command) supports a third parameter to specify a
file type selection (under CP/M versions only). When supplied, only the
files that match that type are displayed. This parameter is specified by
a string expression that evaluates to the desired 1-3 character CP/M file
type. For example: DIR 2,"COM" will display all .COM files on drive #2.
The file type expression must follow an explicit drive number designation.
For example: DIR "ZBA" and DIR #1,"ZBA" are illegal.

103

7.5

(11) CP/M versions can now accept files with any number of CP/M file blocks.
Attempts in prior versions to read the last few (128 byte) file blocks
of a file whose current size was not a multiple of 4 blocks, would result
in an OUT OF BOUNDS ERROR. APCBASIC always increases file sizes by 4 (128
byte) blocks at a time.

(12) CP/M versions now properly detect an out-of-disk-space condition and end
with a DISK ERROR. Prior versions produced unpredictable results.

(13) The cross-reference utility (ZBIG) will selectively display only those
entries which have references to them in a user specified line range.
Type the line range in the ZBIG calling sequence ilIDilediately after
the source file name: ZBIG <program> <1st line> <last line>
Omitting the line range defaults to the entire program; omitting
the <last line> will reference a line range consisting of the
1st line only.

(14) The program size reduction utility (CRUNCH) permits user control over
the line-joining process it performs. Just answer Y or N (Yes or No)
to the CRUNCH request: JOIN LINES WHERE POSSIBLE? Remember that after
lines are joined, you may not be able to EDIT the program in APCBASIC.

(15) After ~ LOADING ERROR or MEMORY FULL ERROR when LOADing a program,
APCBASIC will maintain as much of the program as it could, rather than
clearing memory.

(16) To permit c01IDI1as (,) and lower case characters in string arguments of
the CHANGE c01IDI1and, any string argument may be surrounded by quotes ('"').
For example: CHANGE 1,$,"A(I,J)",Z(R) will change A(I,J) to Z(R).
Such quotes may not be used as ordinary characters in either string.

(17) The software floating point multiply and divide (ie. in APCBASIC versions
not requiring a hardware processor), has been significantly optimized.
They now run 2-4 times faster than the multiply and divide found in
standard North Star BASIC, depending on which precision you are using.

(18) The TRAN$() function now runs many times faster than the originally
introduced version, particularly on large strings. However, the new
method requires additional workspace for this improvement, and erases
the prior content of the editing 'old line' buffer. Neither replacement
string (2nd and 3rd arguments) may exceed 256 characters without
causing an OUT OF BOUNDS ERROR.

I • J

Changes leading to Version 2.4:

(1) String variable indexing methods are no longer limited to just string
variables. Any term of a string expression may now be followed with a
indexing expression, as in: STR$(X)(2), "ABDCEFG"(2,6), or FNA$(I)(K:L).
Apply the same rules that you use for string variable indexing. To index
·a complex string expression, surround it with parentheses then append
your indexing expression, as in: (A$+B$+C$)(J,K). Index expressions may
be appended one after another to further subindex a string, for example:

"ABCDEFGHIJK"(J,8)(4:2) = "CDEFGH"(4:2) = "FG."

An additional indexing mode has been added to the string indexing
capabilities to directly index a right-substring. Suppose you wish to
access the last N bytes of A$. Previously, you only had two options:
A$(LEN(A$)-N+l,LEN(A$)) or A$(LEN(A$)-N+l:N). The new method is much
simpler and faster: A$(:N), where the colon (:)as the first character
signifies this mode and N is a length. This notation may be used for
either string variable or expression indexing.

To streamline single character indexing, the length value following the
colon (:) defaults to one (1) when omitted. Thus A$(K:l) may now be
expressed as A$(K:), saving execution time on evaluation of the length
parameter. An additional benefit of this is that the last character
of string A$ may be indexed as A$(:), which follows from the preceding
paragraph.

(2) The context string search used in LIST, EDIT, and CHANGE commands has been
generalized to match letters without regard to their upper or lower case
status (eg. NEXT=next=NeXt etc). APCBASIC keywords embedded within string
arguments to these commands are no longer translated to internal form,
which in the past altered the intended effect of certain strings.

The CHANGE command no longer permits access to the line number portion of
program lines, due to its dangerous implications. Be sure to use the
VERIFY option after you specify a number search in a CHANGE command, as it
may match portions of line numbers in GOTOs, GOSUBs, etc. Changing line
numbers should only be attempted with the REN command.

(3) All APCBASIC messages have been re-written in upper/lower case format to
provide a more human, rather than DATA PROCESSING, appearance.

(4) IF statements may employ a compound statement for the THEN or ELSE clause.
A compound statement is one or more statements, separated by semi-colons
(;), and surrounded by brackets []. The entire IF statement is limited
to what can be fit into a program line (159 characters maximum). FOR-NEXT
loops can therefore be used as a THEN or ELSE clause, as long as the
entire loop fits within the brackets.

105

7.5

(5) A WHILE statement has been added to enhance the looping capability of
APCBASIC. It works just like a FOR statement, except that the FOR initial
ization statement (eg. FOR I=l to 100) is replaced with:

WHILE <condition>

where <condition> can be any numeric expression, comparision, etc. This
condition is tested at the 'top' of each loop and the loop terminates
when it becomes false (zero). Remember that unless the body of the loop
causes the condition to go false, WHILE loops will never terminate. You
can also terminate WHILE loops with an EXIT statement in exactly the same
manner as in EXITing FOR loops.

The WHILE token in APCBASIC is the same one used in North Star BASIC for the
optional LET token (eg. LET X=O). Thus WHILEs found in existing North
Star BASIC programs LISTed in APCBASIC must be deleted.

(6) The TRACE mode now waits until a valid TRACE control character is typed
and 'rings the bell' to indicate invalid controls. Several new controls
have been defined as follows:

ESC

SPACE BAR

CTRL-T

Terminates the TRACE mode and continues program execution.
This is the only way to terminate the TRACE mode.

Executes the next statement and breaks (single-step mode).
This was formerly done by 'any character'.

Resumes program execution until the current sub-program or
loop terminates (GOSUB, FN, FOR-NEXT, WHILE-NEXT).

Resumes program execution until a line number transfer
occurs, such as a GOTO, GOSUB, ERRSET trap, etc.

To set the single-step mode immediately, enter the TRACE command without
any arguments (which used to terminate the TRACE mode). For debugging
convenience, if a LINK to program occurs while the TRACE mode is active,
no automatic size reduction (space & REM removal) will take place. Once
invoked, the TRACE mode persists until terminated with the ESC control.
LIST, EDIT and TRACE RET no longer deactivate the TRACE mode.

(7) ERRSET #<type> may be used to generate an error of the given type, for
purposes of debugging and special program control applications. You must
have an active ERRSET in effect at the time this statement is executed,
otherwise a USER TRAP ERROR is issued. For example: ERRSET #7 generates
a FILE ERROR exactly the same way that OPENing a non-existent file would.
The <type> can be a numeric expression that evaluates to a value between
0 and 127.

The ERRSET variables (eg. X and Y in: ERRSET 4000,X,Y) are now optional.
These must be omitted from right to left when not specified, ie. if the
1st variable (for the line# of the error) is omitted, then you cannot
specify the 2nd variable (for the error type code) either.

(8) LOCAL statements may now be used directly in User-DEFined FNs, the way
they were previously available for GOSUBs only.

, 1\£.

(9) The ASC() function now accepts general string expressions, functions,
or literals (string constants), in addition to just string variables.
It still returns the ASCII code of just the first character, so long
expressions are unnecessarily redundant and will execute more slowly.

leJ

(10) The INTERNAL STACK ERROR now displays as EXPRESSION DEPTH ERROR. This is
what that error really meant all along. The CONTROL STACK ERROR message
has been replaced by one of four more meaningful error messages depending
on the context:

NEXT Statement without a preceding FOR or WHILE
LOCAL Statement inside loop or outside GOSUB or FN
EXIT encountered outside all FOR of WHILE loops

NEXT ERROR
LOCAL ERROR
EXIT ERROR
RETURN ERROR RETURN Statement encountered outside all GOSUBs and FNs

Re-Dimensioning string or numeric variables is now illegal within
User-Defined Functions (FNs), directly or indirectly. Such an occurance
generates a RE-DIMENSION ERROR (Type 2). You can however DIMension a
new string or array within User-Defined FNs.

(11) You can enter a APCBASIC program from an ordinary symbolic text file with
an extension to the ENTER command. First, you must OPEN the text file
under a file number ranging from 8 to 15. Then, simply say ENTER IF,
where 'F' is the file number assigned. At this point the text file is
input from the file and each line is displayed on the console. This
process continues to the end of the file according the the following
rules:

(a) Each line is terminated with a carriage return (ASCII 13).

(b) When a line-feed and a carriage return appear in pairs, the
2nd character of the pair is ignored.

(c) Empty lines, consisting of only a carriage return, are ignored.

(d) A control character (ASCII codes 0 - 31) or any character with
bit 7 on (ASCII codes 128 - 255) as the 1st character of a line
signals that the end-of-file has been reached.

(e) Control characters elsewhere in the line will appear as question
marks (?) and will have to be removed in a later editing phase.

(f) Each and every line must begin with a line number in the range
0 to 65535. Otherwise a LINE# ERROR is issued and the input process
terminates. APCBASIC inserts each line into its proper sequence
according to its line number, so they need not be in order.

(g) Lines are limited to a maximum of 159 characters. Additional
characters beyond this limit are ignored and lost.

(h) The input process may be interrupted by typing a CTRL-C. To
resume input after a CTRL-C or a LINE# ERROR, just retype the
original ENTER #F command (possibly with a CTRL-G and a return).

107

7.5

(12) In all comm.ands which accept line numbers (LIST, EDIT, CHANGE, DEL, TRACE,
ENTER, but not REN), you may use a dollar sign ($) to denote the last line
of the program. This notation, however, may not be used in any program
statements. For example: DEL 10,$ or LIST $ or TRACE $.

(13) The version number returned from PAB..AM(O) takes the following form: U.VWX,
where U=year digit, V=sequence number in that year, W=type of arithmetic
processing used (O=software, l=N* floating point board), X•O for develop
ment version, X=l for runtime version. Other indicators may be appended
to this form from time to time.

After changing the default device number with PAR.AM(3), all command level
console messages (READY, ERROR messages, etc) will continue to be sent to
the console, rather than directed to the current default device.

PARAM(7) has been added to permit access to the ASCII code used to
initialize strings and string arrays. At startup, PARAM(7) = 32, the
ASCII code for spaces (blanks). You can revise this value to any code
from 0 to 255 with an assignment statement: PARAM(7)=0.

PARAM(8) is another read-only parameter (cannot be changed) that returns
the address of the 1st memory location above memory used by APCBASIC. Your
APCBASIC can be made (using the CONFIG program) to leave some memory unused
at the top for use by external machine code or data. PARAM(8) will always
tell you where this is.

(14) INCHR$(X) will now input single characters from a file if the file is OPEN
under file number X, where X ranges 8 to 15. This was added to be
consistent with the other 1/0 redirection facilities in APCBASIC. Exactly
one (1) character is read with each referenc.e to INCBR$(X). No end
of-file mark is checked for, although an OUT OF BOUNDS ERROR will occur
if you attempt to read past the physical end of the file.

Do not use INCBR$(X) in this manner directly in the data list of a WRITE
statement to the same file, as it will upset the file pointer for the
subsequent WRITE operation.

(15) Editing control characters which search for a typed character (ie.
CTRL-D, CTRL-S, and CTRL-X) will, if that character is a letter, match
either case (upper/lower) of the character. A new control, CTRL-B, will
copy the rest of old line to the new line and then permit re-editing
from the beginning of the line (equivalent to a CTRL-G-N sequence).

(16) When CTRL-C is typed in the command mode no STOP message will be
issued, only READY. The STOP message is now given only to indicate
interruption of a running program. Th~ CTRL-C break character is .
recognized only from the console device and is just another control
character when input from devices 1 to 7.

(17) The power operator (eg. XAY) returns a value of 1.0 if both base and
exponent are zero (ie. OAO=l, whereas it used to evaluate to zero).

1nQ

I e V

- 7.6 NOTES OB APCBASIC IMPLEMENTATION

To assist those implementing programs requiring detailed information on how
programs are formed, saved and executed, this section should suffice for most
applications. This information permits writing programs that might run faster,
take less space or be less error-prone, by taking advantage of certain details.

PROGRAM INTERNAL FORM:

The first byte of the type-dependent information within the directory entry
for type 2 files (APCBASIC program files under North Star systems), contains the
number of file blocks of the file that actually contain APCBASIC program code.
APCBASIC always adjusts this byte to reflect the actual program size when it
SAVEs a program, and uses its value to determine program size when programs are
LOADed. If for any reason this byte requires user adjustment, two successive
TY commands (DOS command) can perform the task:

TY program 1 size
TY program 2

where. 'program' is the program file name, and 'size' is the value you wish to
overwrite the old value with (specified in Hex).

APCBASIC programs themselves consist of a sequence of specially coded lines and
are terminated by a program end.mark of 1 (byte value). After you type in each
program line, APCBASIC reformats the line into the following format:

o The first byte contains the total number of bytes in the line.

o Bytes 2 & 3 contain the line number as a 16-bit integer.

o The remaining bytes contain the body of the line, which
always ends with a carriage return code (ODH)

The various reserved words (eg. FOR, IF, GOSUB, GOTO, etc.) are all reduced to
single-byte codes representing the reserved word, in the internal program line.
References to line numbers are transformed into 16-bit integer format, and
preceded by a flag byte (9AH) for identification. When programs are LISTed,
APCBASIC converts these 'tokens' back into the standard reserved word, and line
numbers back into ASCII integer representation. This is why programs created
under other versions of North Star BASIC do not always LIST properly in APCBASIC.
The few changes necessary for APCBASIC operation are easily done with the APCBASIC
editing capabilities. See Section 9.1 for details on compatibility.

ARRAY ORGANIZATION:

String and numeric arrays are mapped into sequential memory locations in a
specific pattern which should be understood when interfacing with machine
code for array processing. The following example can be extended to any
number of dimensions. Using an array DIMensioned: A(l,2,3), the following
list of array subscript combinations is ordered by their sequential memory
locations: 000, 001, 002, 003, 010, 011, 012, 013, 020, 021, 022, 023, 100,
101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 123. Just remember that
array subscripts vary from right to left, exactly like the digits of a
automobile ·odometer.

109

7.6

DATA FILES:

Four fundemental data types are supported in APCBASIC files: North Star strings,
North Star floating point format, 16-bit words and 8-bit bytes. The strings
come in two types: short and long. Short strings have two leading bytes (a 3
value followed by a one byte length 0-255) followed by the string characters
(one byte for each). Long strings have three leading bytes (a 2 value followed
by a two byte length of 256+) followed by the string characters. Floating
point numbers are stored on files in the same representation as operated on in
memory (except for zero, which has its leading byte set to !OH). Their length
is dependent on the precision of the BASIC they were written in, and must be
read using a BASIC of the same precision.

16-bit integers are written low order byte first, high order byte second.
8-bit bytes are just written as is, in the order they appear. These binary
formats cannot be detected by the TYP() function, which is designed only for
strings, floating point values, and end-of-file marks. When floating point
values are read or written in 8-bit or 16-bit formats, APCBASIC must convert
between floating and binary formats, a rather time consumming process. When
strings are read or written in binary byte format, no such conversion is
required and operations procede literally hundreds of times faster.

APCBASIC performs file operations through a 512 byte buffer to increase through
put. When the same file is OPENed under several different file numbers,
several buffers are assigned to that file. This permits certain random file
operations to actually progress hundreds of times faster than could ordinarily
be done with singly-buffered files. When APCBASIC reads data into a buffer from
the file it first searches the other buffers to see if the desired data is
already present in one of them. If it is, that buffer is assigned to the file
and the operation continues without having to actually perform a file access to
obtain the data. This eliminates redundant file operations and prevents buffer
conflict in multi-buffered files.

THE SYMBOL TABLE:

Immediately after the program in memory is a table containing all the scalar
variables, arrays, strings, user-defined functions, and file buffers. Called
the symbol table, this structure is used for maintaining the working data and
providing high-speed access to each data structure. Symbol access is dynamic
in the sense that frequently accessed entries have faster access than seldomly
accessed symbols. This is particularly true for programs containing enormous
numbers of different variables (ie. 100 or more).

Because of the dynamic storage allocation of arrays and strings (re-DIMension
capability), the symbol table will be reorganized to some degree after re
DIMensioning arrays or strings, dynamic MERGing, preserving data through LINK
operations, FREEing file buffers and dynamic program line range DELETions.
Therefore external support software using variable addresses (eg. assembly
code matrix routines) must be used with care to ensure that data structures
are located where those routines 'think' they are.

When FREEing file buffers or re-DIMensioning strings and arrays', those data
structures and all those created after them will be physically moved in memory
(nothing else is moved). After dynamic MERGing or DELETion, or communicating
data between program LINKs, all data structures will be in memory locations
different from before that operation.

, • v

THE CONTROL STACK:

At the upper end of memory is a highly transient data structure called the
control stack, which is used for intermediate work space and various control
structures. When numeric or string expressions are evaluated, the control
stack maintains the temporary results that form the end result. In particular,
when strings concatenated, multiplied or logically combined, the control stack
must possess enough memory space to contain all the intermediate results until
the final result is transferred to its programmed destination area. String
expressions composed of large strings can easily consume all available memory
before finishing. This causes an 'MEMORY FULL ERROR, which occurs when either
the control stack or the symbol table expands into the other structure.

The control stack also maintains the return structures of GOSUBs and user
def ined functions, as well as their local variables, DATA-READ pointer and
local error control structures. This stack implementation of subroutines and
local data permits unrestricted recursive programming structures to be fully
realized. FOR •• NEXT looping structures also make use of the control stack to
maintain nested loops to virtually any depth.

111

ZII

u.v

***"* 8.0 APCBASIC UTILITY PROGRAMS **'**
This section concerns itself with several programs external to APCBASIC that
perform functions useful to the development process.

Section 8.1

Section 8.2

Section 8.3

ZBIG Cross-Reference Index Generator. Shows the
locations of each program structure used in your
programs.

CRUNCH Program Size Reducer. Reduces your program
size by 30% and more through removal of immaterial
spaces and REMarks.

CONFIG: A configuration program to set various
options in your versions of APCBASIC.

113

8.1

-- 8.1 CROSS-REFERENCE INDEX GENERATOR FOR APCBASIC --

In BASIC, it is not obvious what side effects are generated when lines are
modified, variables re-assigned, or functions renamed. When programs get
large, it is not clear whether a variable name is new or already in use, or how
many times a given line number is referred to. Indeed, modifying BASIC programs
written by someone else can be most frustrating without this information. If
we only knew where to find all occurences of each program structure •••

Written in Z80 machine code (8080 machines not supported), the APCBASIC Index
Generator (ZBIG) provides the programmer with an instant directory to all
user-defined functions, GOSUB's, variables, GOTO's, and other line referencing
used in his BASIC program. ZBIG prints each label (name or line#) followed by
a list of all lines that it appears in. These label entries are listed
alphabetically within each of the following sections:

0 Numeric functions
0 String functions
0 Array variables
0 String variables

0

0

0

Scalar variables (non-subscripted)
GOSUB references
Misc. line references (GOTOs, etc)

ZBIG places no restriction on source program size or content except that it
must be loadable in BASIC without error, and have reasonably correct syntax.

In recognition of the wide variety of hard & soft output devices available, a
number of output controls are implemented to freeze/restart the printout, skip
unwanted sections, single-step one entry at a time, etc. Using these controls,
the user may intervene during the listing to avoid excess output, reset printer
top-of-form between sections, or merely slow down a 1000 char/sec CRT display
to a readable line-at-a-time.

HOW TO USE ZBIG

Under the North Star DOS, type the command: GO ZBIG program, followed by a
carriage return, where 'program' is the name of the file containing the program
you wish to analyse. Under CP/M, type the same command but without the 'GO'
prefix. ZBIG aborts if the file is not found or is of the wrong type (type 2
under North Star DOS, type .ZBA under CP/M), then requests the output device
with the question: "HARD COPY?". Responding with 'N' (for NO) causes output
to the CRT console, while a 'Y' response (for YES) provides a printer listing
of the same thing. When you specifying CP/M files, do not supply the file
type (.ZBA) as part of the file name, as ZBIG appends it automatically.

You can optionally cause ZBIG to selectively display only those entries which
have references to them in a restricted line range by appending the line number
range to the start-up command, for example:

GO ZBIG FILENAME 1500 3600

GO ZBIG FILENAME 2200

Restricts listing to entries refered to
in lines 1500 to 3600.

Restricts ZBIG to lines 2200 to
the end of the program.

The entire program is still searched, but only entries containing line numbers
within the selected line range are displayed.

o. J.

At this point the listing begins and the following print-controls may be used:

SPACE-BAR:

ESCape:

TAB (CTRL-I):

Freezes output prior to printing the next item.

Skips all remaining items in the current section
and proceeds to the next.

Directs ZBIG to freeze the listing prior to printing
the next section, and ring bell (CTRL-G) to inform
the operator when there.

Once the listing freezes, the following additional controls may be used:

LINE-FEED: Prints the next item for each one typed.

CTRL-C: Aborts further processing, returning control to the DOS.

ESCape: Skips to the next section, but doesn't re-start the listing.

TAB (CTRL-I): Same as the TAB operation above.

Any other char: Resumes the listing printout from the current point.

Many variations are possible: omission of all controls allows output to proceed
normally without interruption; repeated use of the SPACE-BAR will switch output
on & off; once frozen, repeated line-feeds print labels one at a time. Typing
the TAB right after the device# request causes the listing to pause just prior
to the first section. These controls do not echo back to the terminal and
affect output only as described.

ZBIG relies on the standard CTRL-C detect routine for reading the controls, and
looks for them only between printed items. When more than one is typed during
the previous line list, only the last one can be processed. But during a pause
any number of controls may be used.

ZBIG CROSS-REFERENCE SAMPLE NORTH STAR RUN:

*GO ZBIG SAMPLE,3 <-~ You enter your file name immediately
after the program name.

HARD COPY? N <--- Enter 'Y' for console listing,
'N' for printer listing.

*** SCALAR FUNCTIONS ***
FNDO(): 485 2805
FNDl(): 5005 8070
FNF(): 4405 4915 4930 7450

FNFl(): 370 3610
FNGO(): 470 1012 3810 7510 7520

FNLO(): 1055 2240 5210 5310 7085 7150 7250 7320 7330 7340 7345
7350 7400 7405 7465 7480 7615 7620 7725 8125

115

8.1

*** STRING FUNCTIONS ***

FNBO$: 355 2603 2608 2618 2655 2665 2915 3425

FNE$: 1038 2005 2010 2012 2045 2046 2075 2155 2512 2712 2715
2745 2835 2920 3210 3220 3225 3320 3425 3715 3745 3845
4860 5465 7760 8110

FNX$: 460 485 1012 3305 4710 4725 7510

*** ARRAY VARIABLES ***

NO: 115 3620 3625 3630 3635 3640 3642 4820 4850 4890 4915 4940
4945

oo: 115 4050 4095 4115 4135

*** STRING VARIABLES ***

B$: 110 185 190 1125 2620 2625 2630 2932 2935 2945

Cl$: 3105 3108 3110

H$: 110 5403 5405 5455 5460

N$: 110 330 335 355 365 2504 2655 2660 2665 2915 2925 2945
3410 3415 3416 3865 4755

*** SCALAR VARIABLES ***

C2: 7055 7125 7135 8051 8070 8220 8250 8312 8325 8405 8410 8415
8430

G9: 120 700 4880 4917 4925 7460 7475

13: 3725 3735 3770 3772 3773 3774 4825 4845 4850 7075 7085 7105
7115 7125 7135 7150 7250 7260 7400 7420 7525 7 530 7610 7615
7620 7725 7840 7845 7850 7930 7935 8060 8080 8240 8250 8320
8325 8420 8430 8520 8530

Q: 3205 3220 3230 4903 4912 4915 4917 4925 4932 4935 4945 4948
4950 4965 5405

Tl: 7010 7030 7050 7105 7115 7125 7135

W2: 7315 7320 7335 7340 7350 7380 7390 7392 7420 7427 7450 7460
7475 8050 8051 8070

Y: 8525 8530

l.S.l

*** GOSUB REFERENCES ***

GOSUB 1100: 2715 2835 3845 4715 4735

GOSUB 2200: 470 500
GO SUB 2230: 7615
GOSUB 2300: 325 550 2530 3420

GOSUB 2400: 2320 2820 4030 4075 7160 7435 7440

GOSUB 2900: 305
GOSUB 3400: 295
GOSUB 4800: 710
GOSUB 7000: 610
GOSUB 8100: 7230 7810 7910 8010 8210 8315 8418 8515

GO SUB 8300: 663
GOSUB 8500: 658

*** MISCELLANEOUS LINE# REFERENCES ***

185: 265 440 600 685

215: 205
265: 275 278 285 295 305 315 340 350 355 365 370

37 5 385

440: 450 465 472 490 500 505 515 525 535

450: 410
552: 545 547 553

600: 610 620 630 640 650 653 658 660 663
685: 690 700 710

2740: 2715
2955: 2920 2925 2945

3225: 3205 3220
4155: 4040 4070
4725: 4715 4732 4735

4865: 4815 4855
5010: 5010 5015
7145: 7105 7115 7125 7135

7155: 7145
7160: 7040 7060 7075

7262: 7258
7430: 7365 7375 7385 7392 7400

7940: 7905 7910 7930
807 5: 8070
8515: 8540

117

rs

8.Z

- 8.2 APCBASIC PR.OGRAM CR.UBCBER. --

A surprising amount of memory space is taken up by blanks inserted into the
code and R.EMarks that have nothing to do with program execution. Well
commented, structured BASIC programs have 30% or more of their memory area
invested in blanks and remarks. The CRUNCH program conveniently optimizes a
BASIC pgm by creating a new BASIC pgm without spaces and remarks, leaving the
execution properties unchanged. This utility is useful only when more memory
or program security is desired.

APCBASIC performs this CRUNCBing process automatically when programs are run
from the operating system level (eg. GO APCBASIC program) and when LINKing
(CHAINing) to a new program. This utility program is included so that
convenient storage of a CRUNCHed program on a disk file is possible for
program secrecy or for extremely large programs that cannot even be LOADed
without size reduction. CRUNCH is able to reduce programs about 10% further
than the automatic method used by APCBASIC, which must reduce the program
prior to execution too rapidly to optimize the reduction.

-- FEATURES --

o Helps keep a program secret by removing all traces of internal
program commenting and readable formatting.

o Allows programs with several thousand statements to be executed
in 48K systems.

o Reduces program memory & file requirements by 20%-60% in only
seconds, due to high-speed Z80 machine code. Such programs load
faster and execute slightly faster. The memory saved increases the
capacity for program variables and working storage.

o File-to-file conversion allows preservation of the original version.

o Deletes all REMarks from your program. Line number references to
deleted REM lines (such as GOTOs, GOSUBs, or ERRSETs) are adjusted
to the nearest non-REMark following the deleted lines.

o Spaces and line-feeds within quotes ('"') are preserved; all others
are deleted.

o Adjacent lines are joined together where possible to eliminate
unnecessary line numbers (saving 3 bytes each). Resulting program
lines may extend up to 200 characters. Line number logic is unchanged.

o CRUNCH aborts if the source program bas any unresolved line number
references. It displays the number of such occurences.

o Single version handles any APCBASIC or North Star BASIC program,
including single & double density. The input & output files may be
of independent density format. The CP/M version is identical in
all respects.

o Prints the program size in bytes before & after the reduction process.

119

8.3

HOW TO USE CRUNCH

Under North Star DOS, type the command: GO CRUNCH source destination, followed
with a carriage return, where 'source' is the original file to be CRUNCHed and
'destination' is the file that receives the reduced program. CRUNCH aborts the
process if either file is of the wrong type (type 2 under North Star DOS, type
.ZBA under CP/M). When you specify CP/M files, do not supply the file type
as part of the file name, as CRUNCH appends it automatically.

CRUNCH requests confirmation of the destination file with the question "OLD
FILE, OK?" or "NEW FILE, OK?", depending on whether the file already exists or
not. Responding with a 'N' (for NO) immediately aborts the process; responding
with a 'Y' (for YES) permits the process to continue: reducing the program,
creating a new file if specified, then saving the reduced program on the
destination file.

CRUNCH will request whether or not you wish to join lines where possible.
You should respond 'Y' to have this done and 'N' to prevent it from being done.
This option can reduce your program by another 10% as compared with not joining
lines. CAUTION! Do not join lines in programs that contain MERGE or DELETE
statements. These statements may be relying on unreferenced line numbers that
the join option can potentially remove, causing the resulting program to
execute differently than intended.

8.3 APCBASIC CONFIGURATION PROGRAM --

Section 7.3 describes all the user-changeable options available in APCBASIC. The
CONFIG program, written in APCBASIC, is designed.to implement any combination of
these options desired by the user in up to 4 versions of APCBASIC simultaneously.
Before running CONFIG, read Sections 7.3 and 8.3 thoroughly and work out the
changes you desire to make. CONFIG operates on the files containing the APCBASIC
versions, rather than on memory copies, so all versions to revise must be on
diskettes installed in your machine. Assumming RUN and CONFIG are on drive #1,
run the program with the command:

GO RUN CONFIG
RUN CONFIG

(Under the North Star DOS)
(Under CP/M)

CONFIG is self-descriptive and executes in a conversational manner. Simply
answer the questions CONFIG presents to you by typing the options you have
previously worked out before running the program. CONFIG only implements
options where they apply and can determine whether or not each option applies
by examining the contents of the files. For example, if you change the
Floating Point Board address, it bypasses non-FPB versions that you may also
be configuring. Be sure to only modify copies of your original software while
protecting your originals by keeping them safely away from your computer system
as much as possible.

Always use a version not dependent on the floating point board for CONFIG
execution. The FPB versions may require CONFIGuration for your system before
they operate correctly (ie. if your FPB is addressed at other than EFFO Hex).

l?I

~.v

**** 9.0 APCBASIC FOR BORTH STAR BASIC USEB.S '****

This explanation is designed for those people already familiar with North Star
BASIC who require an understanding of the super-set facilities in APCBASIC.
The APCBASIC features explained here are not in North Star BASIC. All other
features not described are identical in both BASICs. Although the list of
incompatibilities appears formidable, most programs require no change and
nearly all the rest may be converted in one sitting. If you need more
fundamental information on using APCBASIC, read the general instructions
found in the other sections.

-- 9.1 COMPATIBILITY ISSUES --

Transparent Execution Enhancements

o A APCBASIC program may be run directly from the DOS by typing its file name
immediately after the GO APCBASIC command in the following form:
GO APCBASIC filename (followed by a carriage return).

o A special version of APCBASIC exists that RUNs a program, but all program
development features have been removed to provide extra memory space for
execution. This version, called RUN, has no command level where it says
'READY'. To run a APCBASIC program, you type 'GO RUN PROGRAM' in the DOS.
This technique eliminates the need for the cumbersome AUTO-START method of
running programs from the DOS provided in standard North Star BASIC. When
the program ends, this version returns to the DOS level. In addition to
more memory, RUN executes ·programs about 50% faster than the development
version.

After a programmed or CTRL-C STOP, RUN returns directly to the DOS. To
CONTinue execution, simply do a DOS JP command to the restart location at
14 Hex after the load address of RUN. For standard DOSS.2 versions, the
command is: JP OE14 (followed by a carriage return).

o When a program is loaded for immediate execution, as in LINKing or load
and-go from the DOS level, all REMarks and extra spaces are removed from
the program to provide maximum memory space for its execution. A slight
speed improvement may also be accrued. When such an execution terminates,
the program remains without spaces and REMarks, and must not be SAVEd over
the original file version if you value your program comments. This process
never occurs during program development, only on automatic program startup.

o Due to a different design approach in APCBASIC processes, most programs run
from 2 to 5 times faster than under North Star BASIC. This increase will
of course vary, and depends largely on the program being run. When the
processing is bound by file or other 1/0 operations, only small speed gains
are possible.

123

9.0

Potential Incompatibilities with North Star BASIC

o Generally, enhancements to APCBASIC have been incorporated to areas that have
heretofore been considered errors in standard BASIC. Programs that rely on
such errors, so that ERRSET recovery techniques can switch to alternate
routines, might run into difficulty since such 'errors' no longer exist.

o All ERRSETs must be examined for compatability. In particular, calls to
GOSUBs or FNs that setup ERRSETs for the program will not work, as the
scope of each ERRSET is confined to the execution of the invoking sub
program. See details on the ERRSET statement in Section 5.4.

o The DATA-READ pointer is preserved during GOSUB and FN calls. If the
subroutine itself alters the READ pointer for its purposes, this mechanism
conveniently localizes it until a normal RETURN is processed. Thus GOSUB
calls expected to revise the READ pointer before returning will not work.

o Token definitions since Release 5.0 will usually be treated differently in
standard BASIC than in APCBASIC. As of Release 5.2, only three examples are
known: LET, FILEPTR(I) and FILESIZE(I). North Star BAS!Cs' LET token lists
as WHILE and must be deleted, FILEPTR ends up as APCBASICs' MOD function, and
FILESIZE becomes the APCBASIC SWAP statement. Simply change all MODs ->
FILEPOS and all SWAPs -> FILESIZE in North Star BASIC programs to convert
them to APCBASIC. Use the APCBASIC CHANGE command to rapidly find and update
such program lines.

o MEMSET does not exist and in fact is unnecessary for all installations.
The distributed copy determines the top of memory (non-destructively)
automatically when loaded. The search uses ~he highest read/write RAM
location supported under North Star DOS systems and under CP/M it uses the
standard system vector at location 6 in memory for memory sizing. When
this is undesired, use the CONFIG program described in Section 8.3 to set
absolute limits on memory use.

o The LINE statement does not exist since APCBASIC generates no <CR> or checks
for line length on output. But in APCBASIC this token LISTs erroneously as
LOCAL and such statements must be deleted from the program. All inputs
may be up to 160 characters.

o Your program REMarks may have strange spelling errors due to the keyword
differences in APCBASIC. The quickest and easiest way to fix these is with
the command: EDIT 0,REM which extracts all REMarks for your editing (see
Section 2.2). The following list contains the changes you are most likely
to require: DELETE->DEL, ENTER->AUTO, MERGE->APPEND, RENAME->REN, DOS->BYE,
DIR->CAT, BY->STEP, LOCAL->LINE, DELETE->CLEAR, DELETE->SCR, LINK->CHAIN,
POS->PTR.

o Do not attempt any of the North Star BASIC Personalization procedures on
APCBASIC as they are not the same. Instead, use the CONFIG program provided
since it implements all personalization options available under APCBASIC and
in a much more straight forward manner. See Section 7.3 for details.

o Format specifications that include a dollar sign ($) may appear to APCBASIC
as dynamic formats, which will subsequently execute incorrectly. Such
formats appear to begin with a string variable (eg. Z$12F2, C$8I, etc).

1 "'I.

You can fix this problem by surrounding each such format with quotes ("),
for example: %"Z$12F2", %"C$8I", etc.

;; • v

Reserved Words and Special Characters

APCBASIC uses a number of keywords not found in North Star BASIC. These are
shown with their equivalent in each language. For convenience to the North
Star user both are accepted from the keyboard by APCBASIC. However only the
APCBASIC version is printed in all program listings. Note that old keywords
in existing programs will not have to be changed. APCBASIC will automatically
translates them to their proper names where ever required.

APCRASIC HORTH STAR BASIC PURPOSE

ENTER AUTO Numbering Input Lines
DIR CAT Disk directory listings
SIZE PSIZE Program size
DOS BYE Exit from BASIC to DOS
SAVE NSAVE Loading APCBASIC programs
BY STEP FOR •• NEXT loop step size
NO MARK NO END MARK End-of-file mark control
INCHR$ IN CHAR$ Single-character inputs
LN, LOGE LOG Logarithm base(e)
LINK CHAIN Automatic program sequencing
FILEPOS FILEPTR File position function

\ Statement separator
CTRL-R @ Editing control character

Other Minor Syntax Differences

o DEL SCRatches entire program when no args are given, but user verification
is required (Y or N response). SCR will DELete line ranges if followed
by the line range (DEL and SCR are equivalent). When specifying a line
range that includes the last line in the program, a dollar sign ($) may be
used to signify that last line (eg. DEL 1,$). See Section 5.7 to see how
to execute this command from within a program.

o FN DEFinitions must appear as the 1st statement on the line that you
define them. North Star BASIC allows it to appear anywhere in the line
which results in more time spent in the load-up process prior to program
execution.

o Through system errors in some North Star BASICs, program lines may contain
control characters - erroneously. APCBASIC will display such bad characters
as question marks (?) for your correction.

o Lines, commands, and direct statements may be entered in any combination
of upper and lower case. APCBASIC converts all lower case letters not inside
quotes ("") to upper case before proceeding.

o User defined names with more than one character (eg., Tl, A$, FNS6, Z3$,
etc.) must be entered run together without any inserted spaces to avoid
a syntax error. The left parentheses following function, string, or array
names is considered part of the name when applying this rule.

o Line-feeds may be entered into the program text for longer lines, and so
that spaces can be inserted between lines to make the text more readable.
When LISTed, each line-feed expands into a LF-CR sequence.

125

:1."'

9.2 PROGRAM DEVELOPMENT FACILITIES --

All the commands in North Star BASIC are supported, but in a much expanded
form. Only brief references to their extended capabilities are provided below
and you should read Section 2.0 for all details concerning their use.

Program Entry, Storage and Retrieval (Section 2.1)

o Programs can be entered into APCBASIC from ordinary text files. Such a file
must contain the same sequence of characters that you would normally type
into APCBASIC through the console keyboard. This facilitates conversions
of programs written in other BASICs to the APCBASIC environment.

o You can tell the LIST command to display only those lines which contain a
specified search string. This greatly simplifies the job of locating items
of interest within your program. The North Star paging method is not
supported. You can control the LISTings by touching the space bar to start
and stop the listing. Once stopped, a line-feed (CTRL-J) or a carriage
return (CTRL-M) produces lines one-at-a-time.

o The APPEND command bas been replaced by the MERGE command, which provides
a generalized facility for adding APCBASIC code lines from other files. Line
ranges in both memory and source file are unrestricted. On line4 conflicts,
MERGE replaces the old line with the new, while the remaining lines are
inserted into their proper places.

o APCBASIC prints the program size automatically after a program MERGE, LOAD,
or SAVE. SAVE will save a· program on a new or existing file. In either
case APCBASIC will respond with an OLD or NEW FILE message and request user
confirmation of the SAVE (Y/N response). NSAVE is identical with SAVE
in APCBASIC and a file length specification may follow a new file name. If
you type SAVE without a file name, APCBASIC uses the file name specified by
the last SAVE command accepted. This feature makes program backup during
development fast, repeatable and mistake proof.

Program Editing and Alteration (Section 2.2)

o The EDIT command displays the line being editted before you begin your
changes. On completion of each line, it proceeds to successive lines as
long as you desire. You can skip lines without editing them and proceed
to the next automatically. EDIT can also select lines for you to edit
which contain some specified string while skipping over the rest. See
Section 1.6 for the summary of editing control keys available.

o A global search-and-replace facility is provided by the CHANGE command.
This can replace one string with another everywhere or selectively within
a line range. APCBASIC will request 'VERIFY?' to allow user control of each
replacement ('Y' response). An 'N' response causes replacement of all
occurences found.

o The RENumbering facility can be restricted to affect only a subrange of
lines within a program. It also supports rearrangement of groups of lines
and can be made to renumber a program without disturbing the increments
between lines.

127

9.2

Execution Control and Debugging (Section 2.3)

o Direct statements are not limited to only one statement. Any correctly
formed multi-statement line can be executed, including FOR •• NEXT loops and
IF •• THEN •• ELSEs. GOSUBs can be called and FNs may be employed in string or
numeric expressions (after a STOP or END). GOTOs and RETURNs may be used
to CONTinue program execution after a STOP.

o The TRACE command provides the ability to 'walk' through your program
during execution and watch each statement as it is executed. Break points
may be set and various keyboard controls provide a testing 'harness' over
your program that keeps you in control at all times. Conditional break
points allow your program to execute normally until some condition is met,
at which time execution breaks and debugging facilities come into play.

l?R

9.3 PROGRAM COBTJlOL ERBABCEMENTS --

o The DOS (or BYE) command may be used as an executable statement to exit
into the DOS directly, instead of back to APCBASIC. (Section 5.4)

:1. J

o Computed GOSUBs can be done with the ON <expression> GOSUB <line# list>
statement that works exactly like the ON ••• GOTO ••• statement, except that
control passes to the following the <line# list> on RETURN from the GOSUB.
See Section 5.4 for further details.

o ERRSET statements are confined to the scope the current subprogram level
in which they are defined. It is possible (and highly useful) to setup
different ERRSET traps at each subprogram level at the same time. This
approach usually supports ERRSET traps in North Star BASIC programs, but
you should validate this when bringing up such a program for the first time
under APCBASIC. This feature should be well understood to avoid potential
incompatibilities.

o The IF statement supports multi-level IF •• THEN •• ELSE structures and any
THEN or ELSE clause may be a compound statement consisting of one or more
statements if needed. The conditional expression may contain any
combination of string and/or numeric comparisions, expressions and
logical operators. Eg. IF A$==B$ AND NOT (Z==Y OR C$>"XYZ") XOR W>X •••

o The EXIT <line#> statement will now jump to the statement following the
currently active FOR ••• NEXT loop, if the line# is omitted. This allows
more convenient use of th~ EXIT statement.

o User-DEFined functions may be DEFined with no arguments when this is
desired. Both multi-line and one-liners are supported. (Section 3.5)

o Program files may be MERGEd during execution in the same way as described
in Section 2.2. Sophisticated overlay structures can be created using
this feature. For instance, your 'core' routines can always stay in
memory while special purpose libraries can be MERGEd into the program as
they are needed. Use the same syntax as the MERGE command. (Section 5.7)

o To remove unneeded programming after it is executed (such as one-time
initialization routines), use the DEL statement in the running program
just like the DEL command. All variables and open files are preserved.
See Section 5.7 for important details.

129

9.4

-- 9.4 DATA MANIPULATION, CONTROL and COBVERSIOR --

o Variables may be passed between CHAINed programs by listing them in the
CHAIN statement after the program file name expression. To preserve all
variables, use an at-sign (@) instead of the variable list.

o Local variables may be defined using the LOCAL statement within GOSUBs and
FNs. These variables may be used for any purpose without fear of over
writing the values of variables of the same name outside the subprogram.
Use within recursive procedures makes this is a particularly useful and
powerful tool. See Section 5.5 for further details.

o Variables may be re-DIMensioned at any time. Unneeded memory space is
returned for re-use. A dimension error is never generated for this.
See Sections 3.3, 4.4, 4.5 and 5.1 for more details.

o The initial values stored in string and numeric variables and arrays when
created can be quickly restored using the RESTORE statement followed
by the list of variables. (Section 5.1)

o Conversions of string values to floating point will accept leading as well
as trailing spaces but non-numeric characters found elsewhere in the string
will generate a trappable VALUE error.

o The DATA statement READ pointer is localized within GOSUBs and user
defined functions (DEF FN •••) so that multiple-nested DATA lists may be
used without conflict. (Section 5.1)

o A multi-case ON •• RESTORE statement permits a .computed selection of the next
DATA statement to be accessed by the READ pointer. (Section 5.1)

o Random numbers are used the same way as in North Star BASIC. However the
generator is based on random 24-bit values in APCBASIC instead of 16-bit.
This yields much longer random sequences, and better distribution over
small intervals.

o Logical expressions may be used to generate a floating point zero or one
where ever a numeric expression is expected. Any complexity of logical
connectors, comparisons, or data types may be used as long as comparisons
involve like data types. Strings, values, arrays, and bits may be combined
within a single expression, for example. (Sections 3.4 and 4.4)

o Exchanging string or numer~c values between variables is supported by the
SWAP and SWAPDEF statements, which execute 3-100 times faster than
assignment statement implementations. (Section 5.3)

o The LEN() and ASC() functions both accept general string expression
arguments in addition to string variables. The ASC() will return -1
if its argument is a null string, instead of an OUT OF BOUNDS ERROR.
(Section 6.3)

o Positive integers 1 to 16 bits wide may be packed into (or unpacked from)
string variables with the BIT function (Section 6.3).

o MIN() and MAX() find the minimum and maximum values among a list of
numeric values. (Section 6.1)

1 "ln

o The MOD(N,M) function returns the smallest positive value V such that
N-V is divisible by M. This is different than the 'straight' remainder
when negative args are supplied.

:J. '1'

o ASIN(X) and·ACOS(X) are available to return the arcsin and arccos of expr X.
In both cases the input expression must be values between -1 and 1.

o The CEIL(X) function, similar to INT(X), returns the 1st integer greater
than or equal to X. It is equivalent to -INT(-X).

o The TRUNC(X) function returns' X without a fractional part. Note the
difference between TRUNC(X) and INT(X). This is equivalent to the
expression SGN(X)*INT(ABS(X)).

o The SGN(X) may be used with two arguments, SGN(X,Y), to return the value
of Y with the sign of X. [Eg. SGN(-3,34)=-34, SGN(0,45)=45, etc.]

o FRAC(X) returns the fractional portion of X. (Eg. FRAC(45.19) = 0.19).
This is equivalent to X-INT(X). Note that X may also be an expression.
Note also what occurs given a negative expression: FRAC(-305.7) = 0.3

o PI is a function without arguments that returns the value 3.1415926535898
rounded to the prevailing precision of APCBASIC.

o ROUND(X) returns X rounded to the nearest integer. ROUND(X,P) rounds X
to a maximum precision of P digits, where INT(P)>O.

o TAN(X) returns the tangent of X given as an angle in radians.

o XOR (exclusive OR) and EQV (equivalence) have been added to the numeric
logical operator repertoire. They fall after AND and OR in the operator
precedence and EQV has the lowest of all operators.

o Polynomials from degree 1 to 255 may be evaluated using the POLY(X,A(),D)
function described in Section 6.2.

o Powers (eg. XAY) of negative numbers are permissible if the exponent is an
integer from -9999 to 9999. For example: -2A3 = -8. XAO = 1 for any X.
See all the numeric operators in Section 3.4.

131

9.5

-- 9.5 DEVICE I/O AND EDITING

DEVICE 1/0 ENHANCEMENTS:

o The POS() function returns the current column position of device 0 to 15.

o The LINES() function returns the current line position of device 0 to 15.

o Multiple blank lines may be generated from a single PRINT statement by
a field of slashes, similar to FORTRAN format statements. For example:
PRINT #D,///, will generate 3 carriage returns on device D. Slashes may
be interspersed throughout a PRINT statement where ever needed.

o Dynamic formatting is achieved by following the format character (%) with
a string expression which evaluate to a legal format specification.

o INPUT statements permit specifying separate prompts for each variable to
be input. Each prompt may be specified with a string expression instead
of being limited simple quoted strings. (Section 5.2)

o Re-direction of Device I/O to and from files is made possible using
'devices' 8 thru 15, which are assumed to be file numbers previously
assigned with the OPEN statement. This permits access to files as if
they were I/O devices in commands (ENTER, LIST), statements (INPUT, PRINT),
and functions (POS, LINES, INCHR$) that use #device numbers. See Section
5.2 for details.

o Formatting in PRINT statements is considerably extended. See Section 5.2
for all the details.

o The default I/O device (always 0 under North Star) can be altered using
PARAM(3), described in Section 5.8.

ENHANCEMENTS TO THE LINE EDITOR:

o Line editing now has a CTRL-X control that deletes all characters up to
but not including a char typed after the CTRL-X. This combines the actions
taken by the CTRL-D and CTRL-Z controls.

o CTRL-F performs the combined effect of CTRL-G, CTRL-N, CTRL-G.

o The EDIT command may be executed within a program to allow editing a string
not previously entered. Use the syntax: EDIT <string expression>
This statement will place the string expr evaluated into the old-line
buff er so that editing CTRL characters may be used on it. Very powerful
tool for editing data of many kinds, not just keyboard entries.

o See Sections 1.4, 1.5 and 1.6 for full details on the APCBASIC line editor.

~ 9.6 STB.IRG MA.NIPULATIOB --

o String indexing is not limited to string variables. Any string constant,
variable, function, subexpression or indexed string may be followed with
an indexing expression. The six different indexing modes include the two
two in North Star BASIC. Instead of generating OUT OF BOUNDS ERRORS,
APCBASIC accesses only the real string portion within the indexed area.
See Section 4.5 for a thorough explaination of string index.

o String expressions support string repetition (*operator), bit-string
operations via the boolean operators (AND, OR, NOT, XOR and EQV), and
operations are controlled by precedence or parentheses. See Section
4.4 for the full discussion.

o The STR$ function may have an optional 2nd string expression argument to
specify the format for converting the value.

o Functions MATCH() and FIND() provide high-speed general purpose string
searching mechanisms which have many useful applications (eg. table lookup,
sorting and implementing case statements).

o REV$(string exprn>) returns a reversal of the string argument supplied.

o TRIM$(<string exprn>) returns the given argument stripped of
lead/trailing spaces.

o Strings of any length may be rotated left or right by 0 to 255 bit
positions at once using the ROTAT$(S$,R) string function described
in Section 6.3.

o CHR$() function may have two arguments to produce an ascending sequence
of ASCII codes, instead of just one code (see Section 6.3).

o The TRAN$(A$,B$,C$) function translates character codes of A$ found also
in B$ into their corresponding characters in C$ (identical to the
TRANSLATE() function in PL/I). See Section 6.3 for further details.

133

9.7

9.7 FILE PROCESSING ENHANCEMENTS ~

Detailed information about file processing enhancements can be found in
Section 5.6 for statements, or Section 6.4 for functions.

o A file may be OPENed under several different file numbers simultaneously.
Certain applications execute 5-100 times faster with several independent
buffers are carefully used to process a single file (eg. file sorting
and compaction).

o 16-BIT values may be READ/WRITTEN to file by placing an at-sign (@) prior
to the variable/expression in the I/O list. This is similar to the 8-BIT
data file 1/0 that uses the ampersend (&) for its designation.

o The ampersand (&) can direct 8-bit data transfer between files and strings,
in addition to numbers. For example the statement READ ll,&X,&A$(I,J)
reads one byte into X, and J-I+l bytes into A$ starting at posit.ion I.
Note that the number of bytes read (or written) is length of the string
(or string expression) specified.

o Up to 16 files may be opened simultaneously instead of just 8. Note that
each open file requires 512 bytes (256 in single-density systems) of memory
for its own private use. With 16 files open, this would consume 8192 bytes
that cannot be used for either the program or its data. Always try to
maintain the least number of open files at any one time.

o The random file positioning expression in READ and WRITE statements may be
used anywhere in the data lists of those statements. Thus the percent
sign (%) need not immediately follow the file number if not desired. To
position a file without performing actual fiie operations, simply state a
file operation without data. For example: READ 12 %Pl or WRITE IF %P2.

o The end-of-file mark written after each WRITE operation may be suppressed
for all subsequent WRITE operations using the statement: NOMARK <expr>.
A non-zero expression causes file mark suppression, and a zero expression
brings it back again. Most useful for random or binary file processing.

o The RENAME statement performs the obvious transformation on a file name.

o The FREE statement (not the function) releases all dead space left by
files after they are CLOSEd. This statement must NEVER be used while a
FOR •• NEXT loop or FN is in progress -- it may cause a APCBASIC system crash.
See Section 5.6 for details.

o DIR (CAT) is also an executable statement.

o CLOSE will close all open files if no file number is specified.

o SPACE(D) returns the number of blocks (256 byte blocks) remaining on disk
drive D. If D=O then the default drive is assumed.

o The FILESIZE(expression) function returns the number of blocks in any open
file as specified by the expression. The FILEPOS(expression) function
returns the file-position of the OPEN file specified.

o The default disk drive (always 1 under North Star) may be altered with
PARAM(2), described in Section 5.8.

l'H.1.

-- 9.8 SYSTEM INTERFACE --

The various North Star machine level interface capabilities are supported
within a much expanded framework and access to certain execution properties
internal to APCBASIC is also made available. See Section 5.8 for system
interface statements, Section 6.5 for system functions.

o The FILL statement permits a list of values instead of a single value.

:;J.o

Strings may be FILLed into memory and numeric values may also be FILLed in
16-bit format, in addition to the 8-bit format.

o The EXAM function still exists, but an EXAM statement is provided to
support the inverse capabilities of the FILL statement mentioned above.

o The CALL function may have one or more arguments. The last argument is
sent through the DE register, and all preceding arguments are saved on the
stack in reverse order (except the first argument, the jump addr). A CALL
statement is also provided (unrelated to the function) that supports full
access to all the CPU registers.

o Using brackets [] around any variable or array element evaluates to the
address in memory of that variable. Useful in the CALL function to pass
pointer arguments, and in FILL or EXAM statements to directly access the
contents of program variable memory cells.

o The FREE(expr) function returns the number of unused memory bytes available
at any point in time by specifying any positive expression. It returns the
starting memory address of that area if you give a negative expression.
This area may be used for scratch work provided that no new variables or
file buffers are created during its use.

o The PARAM(P) statement allows control of several internal execution
factors. It may be used on the left side of an assignment statement (=)
to assign new values, or on the right side to determine their current
setting. See Sections 5.8 and 6.5 for details.

o The INP() function returns a character or a number, depending on the type
of expression it is used in.

o The OUT statement will accept either a string or numeric expressions
for the byte value to be OUTput. When a string is supplied, only the
first character is sent.

135

Abbreviated commands, 10
Abbreviated keywords, 91
Abort messages, 88-90
Aborting program execution, 17
ABS function, 79
Absolute values, 79
Accessing

bits in strings, 58
data files, 69-72
DATA statements, 50
files as devices, 51-56
files, 70
inte~ers, 58
memory contents, 75, 84-85
program constants, 50
programs on files, 12
string arrays, 37
substrings, 43-44
system resources, 84-85
text files, 70

ACOS function, 80
Adding

numbers, 26
source lines from files, 15
strings, 39

Addresses of variables, 84-85
Addressing bits in strings, 58
Addressing memory, 75, 84-85 ·
Alias keywords, 91
Allocating memory space, 70, 110
Alphabetic command summary, 10
Alphabetic statement summary, 48
Altering

program line numbering, 14
programs, 13-15
sequential execution, 59-65
string length, 44, 57

Alternate editing controls, 6
Alternate keywords, 91
Ambiguous

expressions, 39, 41
file names, 94
format modifiers, 54

Ampersand lead-in character, 71-72
AND numeric operator, 27
AND string operator, 39
APCBASIC

alternate keywords, 91
for North Star

BASIC users, 123-135
function library, 79-85
personalization, 92-93
under CP/M, 2, 94-96
version number, 76, 84-85

Appending program modules, 15
Appending strings, 39

Argument
Error message, 89-90
function, 29
lists, 29, 68

Arguments to functions, 29-32
Arithmetic

assignments, 57
concepts, 23-32
expressions, 25-28
functions, 79
manipulation, 23-32
operators, 26
replacements, 57
representation, 23-32
use of comparisons, 28

Array
access, 24
communication

between programs, 73
elements, 24
memory addresses, 84-85
numeric, 24
organization, 109
reference indexing, 114-117
string, 37
subscripts, 24

ASC string function, 81-82
ASCII

code, 36
code initialization, 76, 84-85
collating sequence, 41
to character conversion, 81-82

ASIN function, 80
Assembly code access, 75, 84-85
Assigned devices under CP/M, 95
Assignment

statement, 57
to numeric variables, 57
to string variables, 36, 44, 57

Asterisk field filling, 52
At-sign lead-in character, 71-73
At-sign LINKing, 73
ATN function, 80
Automatic

documentation aids, 114-117
line numbers, 11
program backup, 12

Available
functions, 79-85
memory space, 84-85
space remaining on disk, 83

Avoiding program
duplication, 29-32, 45

Backslash separator, 3
Backspace code sequence, 92

137

Backspacing on the console, 5
Base array subscript, 24
Base file position, 71
BDOS errors under CP/M, 94
Binary

data file access, 71-72
integers, 58, 71-72, 75, 81-82
operators, 25-28, 38-41
rotation, 81-82
string operators, 38-41

BIOS user area, 95
Bit

access, 58
addressing, 58
manipulation, 40, 81-82
processing, 58
rotation, 81-82
statement, 58
string function, 81-82
string logical combinations, 40
vector processing, 40

Bit-wise
AND, 39
EQV, 39
NOT, 39
OR, 39
XOR, 39

Blank lines, 54, 77
Boolean

numeric operators, 27
operator definitions, 27
string operators, 38-41

Bracket variable addressing, 84-85
Bracketted IF statements, 60-61
Branch, unconditional, 59
Branching out of loops, 63
Branching out of

sequential execution, 59-65
Breaking program execution, 59
Brief syntax summaries, 10, 48
Bringing up APCBASIC, 2
Buff er

memory space, 70
operation, llO
Update Error message, 88
update, 70

Buffered file operations, 59, 70
Building programs

from components, 15
Built-in data values, 49
Built-in functions, 29-32, 79-85
BY increment specifier in loops, 62
BYE command, 21

138

Byte
access to memory, 75
data file access, 71-72
data to ports, 75
input from ports, 84-85
memory storage, 75
positions in strings, 43-44
strings, 35-45

Calculator mode, 18
CALL function, 84-85
Call-sequence display, 20
CALL statement, 75
Calling

functions, 29-32
machine code routines, 75, 84-85
subroutines, 67

Caret echo, 6
Carriage return, 5-6
Carriage return suppression, 51, 54
Case conversion example, 40
Catalog of disk files, 21, 72
Causing errors, 65
Cautions with

DELETE, 120
FNs, 32
global variables, 32
MERGE, 120
READ.ff, 32
WRITE/I, 32

CEIL function, 79
Chaining between programs, 73
CHANGE command, 13
Changing diskettes under CP/M, 95
Changing programs, 13-15
Character

data to ports, 75
input from ports, 84-85
patterns, 9
positions in strings, 43-44
processing, 35-45
strings, 35-45
swapping, 57
to ASCII code conversion, 81-82
translation, 81-82
waiting status, 83

Choosing maximum values, 79
Choosing minimum values, 79
CHR$ string function, 81-82
Cleaning up the control stack, 62
CLOSE statement, 70
Closing open files, 70
Code access, 84-85
Coded program format, 12
Codes for trappable errors, 89-90
Coefficients to polynomials, 80

Colon separator, 43, 58, 81-82
Column device positioning, 83
Column positioning, 54
COM files, 2
Combining IF statements, 60
Combining library functions, 29
Comma

groupings in numbers, 53
PRINT control, 51
separator, 9, 13

Command
environment, 3, 9-21
form, 9
mode execution, 18
organization, 3
tail access, 76, 84-85

Commands,
alphabetic summary of, 10
conditional editing, 13
device notation, 9
execution control, 17-20
formation of, 9
global replacement, 13
line range deletion, 14
line ranges in, 9
merging, 15
miscellaneous, 21
program debugging, 17-20
program deletion, 13-15
program development, 9-21
program editing, 13-15
program entry, 11
program listing, 12
program loading, 12
program rearrangement, 14
program saving, 12
program searching, 12
renumbering, 14
search strings in, 9
syntactic notation, 9
text file program, 11
utility, 21

Commented programs, 77
Common

data structures, 73
expressions, 29-32
logarithms, 80
memory area, 76, 84-85
procedures, 29-32

Communicating between programs, 73
Comparing strings, 39, 41
Comparison operators, 28, 39, 41
Comparison string operators, 41

Compatibility with
DATA statements, 50
different precisions, 71
North Star BASIC, 123-125

Complement logic, 27
Complement of sets, 40
Compound

IF statements, 60-61
statements, 60-61
string expressions, 39

Computed
format specifications, 54
GOSUB statement, 68
GOTO statement, 59
RESTORE statement, 50

Concatenate string operator, 39
Concatenating strings, 38-41
Conditional

editing, 13
execution, 60
expressions, 20, 60
loops, 63
program editing, 9
tracing, 20

CONFIG utility program, 120
Configuration options, 92-93
Configuring APCBASIC, 120
Console

backspace code sequence, 92
device, 9
input, 55
program listings, 12
trace controls, 19

Constant, numeric, 23
Constant, string, 35
CONT command, 17
Context

dependencies, 57
editing, 13
program listing, 12
search, 9

Continuable STOP, 59
Continue Error message, 88
Continuing program execution, 17
Control-C, 17, 93
Control

character summary, 6
characters, 5, 19
stack workspace, 39, 57, 62, 111
variables, 63

139

Controlling
APCBASIC parameters, 76, 84-85
console output, 12
debugging trace, 19
default drive, 76, 84-85
default I/O device, 76, 84-85
defaults, 76, 84-85
errors, 64
execution, 17-20
expression evaluation, 25-28
file endmarks, 72
internal parameters, 76, 84-85
numeric format, 81-82
operator precedence, 38-41
print statements, 54
program execution, 17
result precision, 79
string expression

evaluation, 38-41
string initialization, 76, 84-85
user intervention, 76, 84-85

Converting
between numbers

and strings, 81-82
files to CP/M, 96
from North Star BASIC, 124
to APCBASIC, 11

Copying characters, 5
Copying data to files, 72
Correcting typing errors, 5
COS function, 80
CP/M

customization, 93
differences, 94-96
file names, 94
files, 95
version customization, 92

CPU register access, 75-76, 84-85
CREATE statement, 69, 94
Creating data files, 69
Creating string variables, 36
Cross-reference generator, 114-117
CRUNCH utility program, 119
CTRL-C abort, 17, 76, 84-85
CTRL-C disable, 93
Current

data type on file, 83
disk capacity, 83
file capacity, 83
format, 52-53
memory space, 84-85
numeric precision, 76, 84-85

Cursor control, 54, 83
Custom I/O device drivers, 95
Custom 1/0 under CP/M, 93
Customizing APCBASIC, 92-93, 120

140

Data
access to memory, 75
communication

between programs, 73
definition statements, 49-50
editing, 56
file access, 71
file blocks, 69
file creation, 69
file directory listing, 72
file length, 69
file processing statements, 69-72
file renaming, 69
file size, 69
file types, 69
format on files, 110
initialization, 49-50
item type, 83
lists, 72
read-pointer, 50
statement, 49
structure memory addresses, 84-85
structures, 58, 110
SWAP statement, 57
symbols in expressions, 25-28
transformation statements, 57-58
type agreement, 50, 57
type conversion, 81-82
type on file, 83

Debugging
aids, 77, 114-117
error recovery procedures, 65
mode, 19
programs, 17-20
with direct statements, 18

Declarations, 68
DEF statement, 29-31, 68
Default

device, 9
dimensions, 24, 36
drive, 76, 84-85
ELSE clause, 60-61
file type, 69-70
format, 52-53
format modifiers, 53
input prompt, 55
1/0 device, 51-56, 76, 84-85
line numbering, 14
program file size, 12
string variable size, 36

Defining
data files, 69-72
FNs, 29-32, 68
loops, 62-63
multi-line FN's, 31
numeric arrays, 24
program structures, 63
single-line FNs, 30
string arrays, 37
string variables, 36

DEL command, 14
DELETE restrictions) 120
DELETE statement, 74
Deleting

an input line, 5
characters, 5-6
data files, 69
line ranges, 14

DESTROY statement, 69
Detecting data item type, 83
Detecting end-of-file, 83
Developing program, 11-12
Development version, 2
Device

assignments, 51-56
column positioning, 54, 83
default, 9, 51-56, 76
drivers, 93
expression, 9, 51-56
input, 55
I/O functions, 83
I/O statements, 51-56
line count, 54
number assignments, 95
numbers, 51-56
oriented file output, 55
oriented I/O, 51-56
positioning, 54, 83
row positioning, 54, 83
specification, 9

Devices under CP/M, 95
Differences under CP/M, 94-96
DIM statement, 24, 36-37, 49
Dimensioning

numeric arrays, 24
string arrays, 37
string variables, 36

DIR command, 21
DIR statement, 72
Direct

memory access, 75, 84-85
mode, 9-21
statement execution, 18

Directory listings, 95
Directory of disk files, 21, 72

Disabling CTRL-C
abort, 17, 76, 84-85

Disabling file end.marks, 72
Disconnecting from open files, 70
Disk

capacity, 83
directory listings, 95
drive references, 94

Disk Error message, 89-90
Disk

file directory listing, 21
space remaining, 95
system reset, 95

Displaying
program, 11-12
programs, 12
statement execution, 19
the RETURN path, 20

Dividing numbers, 26
Divisibility function, 79
Div/0 Error message, 89-90
Documentation aids, 114-117
Documentation statements, 77
Dollar format, 53
Dollar sign notation, 9
DOS command, 21
DOS statement, 59
Double Def Error message, 88
Double spacing, 77
Drive references, 94
Duplicate variable

namnames, arrayes, 24
Dynamic

allocation, 110
breakpoints, 20
CP/M files, 95
files, 94
format specifications, 54
line deletion, 74
numeric arrays, 24
program modules, 73
programs, 7 4
range, 23
tracing, 20

E-format, 52
E-notation, 23
EDIT command, 13
EDIT executable statement, 56
Edited input, 55
Editing

control characters, 5
on the fly, 13
programs, 5, 13-15
strings, 56

Elements of arrays, 24

141

Elements of string arrays, 37
Eliminating data files, 69
ELSE clause restrictions, 63
ELSE clauses, 60 ·
Enabling CTRL-C

abort, 17, 76 1 84-85
End-of-file processing, 55, 83, 95
End of subroutines, 67
END statement, 59
Ending multi-line

FN definitions, 68
Ending program execution, 59
End.mark on files, 72
Endmark suppression, 72
Entended versions, 97-108
ENTER command, 11
ENTER# command, 11
Entering

program lines, 11
programs from. text files, 11
programs, 3

Environment descriptor, 76, 84-85
Equality operator, 28, 41
Equivalence between

string indexing modes, 43-44
Equivalence operator, 27
EQV numeric operator, 27
EQV string operator, 39
Erasing data files, 69
Erasing the program, 14
Error

diagnosis, 20
messages, 88-90
recovery, 64, 94
trapping statement, 64
traps while tracing execution, 19
type codes, 65, 89-90

ERRSET statement, 64
ERRSET# statement, 65
Evaluating polynomials, 80
Evaluation of extended

indexing expressions, 44
EXAM function, 84-85
EXAM statement, 75
Examining memory

contents, 75, 84-85
Examining program variables, 18
Example FOR statements, 62
Example ZBIG session, 115-117
Exchanging

arrays, 58
contents of variables, 57
strings, 58
variables, 58

Exclamation point as PRINT, 51
Exclusive OR operator, 27

14~

Executable
line deletion, 74
MERGE, 73
statements, 47-77

Execution, aborting, 17
Execution, continuing, 17
Execution control statements, 59-65
Execution,

controlling, 17-20
debugging, 19-20
direct statement, 18
interrupting, 17
program, 17
single-step, 19
starting, 17
tracing, 19-20

Exit Error message, 88
EXIT statement, 63
Exiting

APCBASIC, 21
loops, 62-63
program execution, 59
subroutines, 67
the trace mode, 19

EXP function, 80
Exponential functions, 80
Exponential notation, 23
Exponentiation, 26
Exp~ession,

arithmetic, 25-28
boolean, 38-41
comparison, 41
conditional, 20, 27, 60
indexing, 43-44
logical, 27, 38-41
numeric, 25-28
relational, 20, 27, 41, 60
string indexing, 43-44
string, 38-41

Exprn-Depth Error message, 88
Extended string indexing, 44
Extending CP/M files, 95
Extracting square-roots, 80

F-format, 52
Factor, string replication, 39
Falling through loops, 62
Faster execution, 2, 17,

45, 57-58, 70, 75, 84-85
Faster string processing, 44
Fatal errors, 88
Field

width omission, 52
width overflow, 52
widths, 52

File
access, 70-71
b 1 o ck s , 6 9 , 9 5
buffer memory space, 70
buff er operation, 110
buffer update, 59, 70
buffers, 70
capacity, 83
creation, 69
deletion, 69
directory listing, 21, 72
directory listings, 95
endmark, 72
error detection, 71
Error messageJ 89-90
format conversion, 96
function, 83, 9S
functions, 83
input, SS
length, 69
lookahead, 83
names, 69, 94
numbers, OPEN, 70
operation upsets from FNs, 32
output, S5
position base, 71
position function, 83
processing statements, 69-72
renaming, 69
size, 69
type access, 83
types, 69, 9S

FILEPOS function, 83
Files as devices, 51-56
FILESIZE function, 83, 95
FILL statement, 75
Filling data to memory, 75
FIND string function, 81-82
Finding

maximum values, 79
minimum values, 79
string patterns, 81-82

Finite memory, 73
Fixed-point rounding, 79
Fixed string constants, 35
Floating point

data file access, 71-72
precision compatibility, 71
precision, 23, 76, 84-85
processor, 1-6
range, 23
representation, 23

Floor function, 79

FN
calling path, 20
DATA statement processing, 50
data types, 29
debugging, 20
Def Error message, 88
definitions, 30, 68
naming, 29
reference indexing, 114-117
results, 29

FNEND statement, 31, 68
FNs without parameters, 29
FOR

loop exiting, 63
statement, 62
value list, 62

Format
computed, 54
control, 81-82
current, 52
default, 52-53
dynamic, 54
Error message, 89-90
exponential, 52
floating point, 52
free-form, S2
integer, S2
lead-in character, 52
modifiers, 53
modifying, S3
specifications, S2
specifying, 52-54
static, 52
string expression, 54

Formatted
file output, 55
numbers, 52
output, 51-52

Forming constants, 23
Forming program lines, 4
FPB address customizing, 92
FRAC function, 79
Fractional portion of numbers, 79
Free-form format, 52-53
FREE function, 84-8S
FREE statement, 70

143

Function,
arguments, 29
arithmetic, 79
bit-manipulation, 81-82
built-in, 29-32
character, 81-82
conversion, 81-82
defining, 29-32, 68
inverse, 80
library of, 29
local parameters, 31
local variables, 68
mathematical, 80
multi-line, 29, 31
naming, 29, 45
parameters, 29
polynomial, 80
precision manipulation, 79
reference indexing, 114-117
side-effects from, 32
single-line, 29-30
string, 81-82
subprograms, 29, 45
trigonometric, 80
unpacking, 81-82
user defined, 29-32
zero parameter, 30

Generating
blank lines, 54
errors, 65
random numbers, 79

Global
editing, 13
endmark control, 72
replacement, 13-15
substitution, 13
variable side effects, 32
variables, 68

GO files, 2
GO SUB

calling path, 20
computed, 68
DATA statement processing, 50
debugging, 20
local variables, 68
recursive, 31
reference indexing, 114-117
statement, 67

GOTO, computed, 59
GOTO statement, 59
Greater-or-equal operator, 28, 41
Greater-than operator, 28, 41
Grouped statements, 60-61, 63

Hardware port access, 75, 84-85

144

Hardware register
access, 75-76, 84-85

Hiding procedure details, 67-68
Hierarchical data structures, 44
Hierarchical program

structures, 67-68
High memory address, 92
History of APCBASIC, 97-108

I-format, 52
IF statement errors, 60-61
IF statement, 60
Immediate statement execution, 18
Implementation notes, 109-111
Implicit dimensions, 24, 36
INCHR$ function, 83
Inclusive OR operator, 27
Incompatibility with

North Star BASIC, 123-125
Increment specifier in loops, 62
INDEX system variable, 79
Index variables, 62-63
Indexed

GOSUB statement, 68
GOTO statement, 59
RESTORE statement, 50
string assignment statement, 57
string assignments, 44

Indexing,
extended string, 44
modes of, 43
outside actual string, 43
program source, 114-117
string array, 44
string, 43-44

Infinite loops, 63
Inhibiting CTRL-C

abort, 17, 76, 84-85
Inhibiting file endmarks, 72
Initial default format, 52
Initial string variable size, 36
Initializing

numeric arrays, 24
string variables, 76, 84-85
variables, 49

!NP function, 84-85

(

Input,
device, 55
file, 55
I/O port, 84-85
numeric, SS
program, 11-12
prompt suppressed, SS
prompted, SS
statement, Sl-56
string, S5
variable list, 5S

Inserting characters, S-6
Inserting program lines, 4
INT function, 79
Integer

access to memory, 75
data file access, 71-72
memory storage, 75
packing/unpacking, 58
trunction, 79

Intentional errors, 65
Inter-segment communication, 73
Internal

APCBASIC parameters, 76, 84-85
data structures, 109-111
program constants, 49
program data, 49
program form, 109
register access, 75-76, 84-85
working storage, 111

Interrupting program
execution, 20, S9

Interrupts in CP/M systems, 92
Intersection of sets, 40
Interval string indexing, 43
Introduction to APCBASIC, 1-6
Inverse functions, 80
Invoking errors, 6S
Invoking subroutines, 67
1/0

data lists containing FNs, 32
device drivers, 95
device functions, 83
device specification, 9
devices, 51-56
drivers, 93
port access, 7S, 84-85
redirection, 83
statements, 51-56

Iterative program structures, 62-63

Jump statement, S9
Jumping out of loops, 63
Justification, left, 44, 52, 57
Justification, right, 52

Keyboard input, SS
Keyboard trace controls, 19
Keyword aliases, 91
Keywords, 9

Last-byte string indexing, 43
Leading space removal, 81-82
Leaving loops, 62-63
Left

bit rotation, 81-82
justification, 44, S2, 57
substrings, 43

LEN string function, 81-82
Length Error message, 89-90
Length of lines, 3-4
Length of strings, 44, S7, 81-82
Less-or-equal operator, 28, 41
Less-than operator, 28, 41
LET token, 63
Library functions, 29, 79-8S
Limited memory, 73-74
Limiting memory use, 92
Limiting result precision, 79
Line editing, S-6
Line-feed display control, 12
Line

length, 3-4
number alteration, 13-14
number list, 50, 59, 68
number order, 4
number reference

indexing, 114-117
number references, 14
numbers, 3, 11
range deletion, 14
ranges, 9
renumbering, 13-15
selection, 9

Line# Error message, 89-90
Lines from text files, 55
LINES function, 83
LINK statement, 73
LIST command, 12
List of commands, 10
Listing

disk files, 21
program, 11-12
program line ranges, 12
programs, 12
the RETURN path, 20

Literals, 35
LN function, 80
LOAD command, 12

145

Loading
data constants, 50
data from files, 71
Error message, 88
memory contents, 75, 84-85
programs., 12

Local
DATA statements, 67
Error message, 88
ERRSETs, 67
FN DATA statement processing, 50
GOSUB DATA

statement processing, 50
parameter variables, 30
protection, 64, 68
statement, 30, 32, 68
variable protection, 32
variables, 67-68

Localized error control, 64
Locating string patterns, 81-82
LOG function, 80
Logarithms, 80
Logical

expressions, 60
numeric operators, 27
operator definitions, 27
rotation, 81-82
string operators, 38-41

Loop
control, 62
control variables, 63
definition, 63
FOR .• NEXT, 62
WHILE •• NEXT, 63

Looping program structures, 62-63
Lower to upper case

conversion example, 40

Machine code access, 75, 84-85
Machine register

access, 75-76, 84-85
Manipulating data files, 69-72
Manipulating strings, 35-45
Mapping characters, 81-82
MATCH string function, 81-82
Mathematical functions, 80
MAX function, 79
Maximizing memory space, 119
Maximum string capacity, 36
Maximum values, 79
Memory

access, 75, 84-85
addressing, 75, 84-85
allocation, 92, 110

Memory Full Error message, 88
Memory limitations, 73

146

Memory maximization,
2, 70, 73-74, 119

MEMSET configuration, 92
MERGE

command, 15
restrictions, 120
statement, 73

Merging program modules, 13-15, 73
Messages, error, 88-90
Middle substrings, 43
MIN function, 79
Minimum hardware requirements, 1-6
Minimum values, 79
Miscellaneous commands, 21
Miscellaneous information, 87-111
Mismatch Error message, 89-90
Missing Next Error message, 88
Mixed data type expressions, 39, 41
MOD function, 79
Modifying APCBASIC, 120
Modifying

sequential execution, 59-65
Modular arithmetic, 79
Modular program structures, 67-68
Monitoring

program execution, 19
program variables, 18
statement execution, 19
subprogram calls, 20

Movfog data
between variables, 57-58
from files, 71
to files, 72
to memory, 75

Moving
files to CP/M, 96
memory contents, 75, 84-85
program lines, 14

Multi-dimensional
numeric arrays, 24

Multi-dimensional string arrays, 37
Multi-level

error control, 64
IF statements, 60-61
string indexing, 44

Multi-line FNs, 31, 68
Multi-line print statements, 54
Multi-way

GOSUB statement, 68
GOTO statement, 59
RESTORE statement, 50

Multiple
file buffers, 70
file positioning, 71
statements on a line, 4

Multiply string operator, 39

\

Multiplying numbers, 26
Multiplying strings, 38-41

Names,
CP/M file, 94·
data files, 69
file, 69
function, 29
string array, 37
string FN, 45
variable, 23

Natural logarithms, 80
Negative number exponentiation, 26
Nested

GOSUBs, 67
IF statements, 60-61
loops, 62-63
statements, 60-61
string expressions, 39

New
data files, 69
file message, 12
files, 69

New-line, 5-6
New programs, 12
Newline suppression, 54
Next data type on file, 83
Next Error message, 88
NEXT statement, 63
No Program Error message, 88
NOMARK in WRITEI statements, 72
NOMARK statement, 72
Non-negative values, 79
Non-numeric processing, 35
Non-subscripted

string variables, 36
Non-trappable errors, 88
North Star

BASIC, 70
BASIC programs, 63
DOS, 2

Not-equal operator, 28, 41
NOT numeric operator, 27
NOT string operator, 39
Notation of syntax, 9
Null FN parameter list, 29
Null strings, 35, 43-44, 55, 57
Number list input, 55
Number to string conversion, 81-82

Numeric
arrays, 24
assignments, 57
comparison operators, 28
concepts, 23-32
constants, 23, 49
data file access, 71-72
data to ports, 75
expressions, 25-28
FNs, 29
format specifications, 52
functions, 29-32, 79
input, 55
keyboard input, 23
manipulation, 23-32
memory storage, 75
operator precedence, 25-28
operators, 25-28
Ovfl Error message, 89-90
precision, 76, 84-85
relational operators, 28
replacements, 57
representation, 23-32
rounding, 79
sign to the right, 53
string conversion example, 31
SWAP statement, 57
use of comparisons, 28
value list loops, 62
variables, 23

Old file message, 12
Old-line, 5-6, 55
ON

GOSUB statement, 68
GOTO statement, 59
RESTORE statement, 50

Open-ended string indexing, 43
Open file numbers, 70
OPEN statement, 70, 94
Opening data files for use, 70
Operands, 25-28
Operating system

command tail, 76, 84-85
commands, 2
exit, 59
type, 76, 84-85

Operator,
arithmetic, 25-28
boolean, 27, 40
comparison, 28, 41
logical, 27, 40
numeric, 25-28
precedence, 25-28, 39

Operator precedence override, 38-41
Operator, relational, 28, 41

147

Operator, string, 38-41
Optional

field width, 52
reserved words, 91
spaces and line feeds, 9
syntactic components, 9

OR numeric operator, 27
OR string operator, 39
Order of evaluation, 38-41, 60-61
Order of operations, 25-28
Orientation to APCBASIC, 1-6
Out of Bounds Error message, 89-90
OUT statement, 75
Output, formatted, 51-52
Output

statements, 51-56
to devices, 51
to ports, 75
to text files, 51, 55

Overlaying program modules, 73-74
Overriding operator

precedence, 38-41
Overview of functions, 29
Overview of string functions, 45

Packing integers, 58
Paging program listing, 12
Panic button, 17
PARAM function, 84-85
PARAM statement, 76
Parameter lists, 29, 68
Parentheses

expression control, 25-28
Parentheses in string

expressions, 38-41
Partial directory listings, 95
Partitioning programs, 73-74
Passing

arrays to subprograms, 58
data between programs, 73
numeric arguments to FNs, 30
parameters from

startup command, 76, 84-85
string arguments to FNs, 30

Pattern matching, 9, 81-82
Peeking at memory, 75, 84-85
Percent

file positioning
lead-in character, 71

format lead-in character, 52
lead-in character, 71-72

Personalizing APCBASIC, 92-93, 120
PI constant, 80
Plus sign format modifier, 53
Poking data to memory, 75
POLY function, 80

148

Polynomial evaluation, 80
Port access, 75, 84-85
POS function, 83
Position-length string indexing, 43
Positioning devices, 54, 83
Positioning file pointer, 71
Positive values, 79
Power failures, 3
Powers, 26
Precedence of ELSE clauses, 60-61
Precision

compatibility, 71
control, 79
numeric, 23, 76, 84-85

Preparing program, 11-12
Preserving

global structures, 32
line number increments, 14
state of program execution, 17

Preventing file endmarks, 72
Previous input line, 5
Previously developed modules, 15
Primary reserved words, 91
Print

column positioning, 54
control specifications, 54
fields, 52

PRINT statement, 35, 51
Printer device, 9
Printing program listings, 12
Printing to files, 55
Prior SAVE file, 12
Problems with CP/M, 94
Procedure statements, 67-68
Processing bit vectors, 40

Program
access to constants, 50
access to data, 50
alteration, 13
backup, 3, 12
components, 47-77
constants, 49
control over CTRL-C, 17
control statements, 59-65
cross-reference

generator, 114-117
data editing, 56
data, 49-50
debugging, 17
deletion, 13-15
development commands, 9-21
development, 15
development summary, 3
documentation, 77
editing, 13-15
entry, 11
execution, 17
file capacity, 21
files, 2, 12
form, internal, 109
index generation, 114-117
integrity, 73-74
line length, 3
line ranges, 9
line selection, 9
loading, 12
partitioning, 73-74
rearrangement, 14
remarks, 77
renumbering, 14
saving, 12
security, 119
size, 21
size reduction, 119
statements, 47-77
subset restriction, 9
testing, 20

Programmed STOP, 17
Programmer defined FNs, 29, 68
Programs

from text files, 11
in other BASICs, 11
in textual form, 11-12

Prompt string expressions, 55
Prompt suppression, 55
Prompted input, 55
Prompted line numbers, 11
Pseudo random numbers, 79
Punctuation, 9

Question mark input prompt, 55

Quote delimiter, 35
Quote protection, 9, 13, 54

Raising to powers, 26
Random

access to DATA statements, SO
file access, 71
file endmark suppression, 72
file position base, 71
file position function, 83
file positioning, 71
file processing, 72
numbers, 79

Re-Dimension Error message, 89-90
Re-dimensioning

numeric arrays, 24
string arrays, 37
string variables, 36

Re-entering input lines, 5
Re-entry to APCBASIC, 21
Re-initializing variables, 49
Read Error message, 89-90
READ statement, SO
READ# statement, 71, 95
READ# statement side effects, 32
Reading data from files, 71
Recovery from program errors, 64
Recursive programming, 31, 68, 111
Reference index generator, 114-117
References to line numbers, 14
Referring to subroutines, 67
Register access, 75
Relational

expressions, 60
operators, 28
searching, 81-82
string operator, 39
string operators, 41

Release
1.09' 97-99
2.1, 100
2.2, 101
2.3, 102-104
2 .4' 105-108

Releasing buffer memory space, 70
Releasing unneeded memory space, 36
REM statement, 77
Remainder function, 79
Remaining disk space, 95
Remaining memory space, 84-85
Removing data files, 69
Removing spaces, 81-82
REN command , 14
RENAME statement, 69
Renaming data files, 69
Renaming variables, 58

149

REN$ command, 14
Renumbering, 14
Renumbering program lines, 14
Repetitive

editing, 6
program structures, 62-63
string indexing, 44

Replacement statement, 57
Replicating strings, 38-41
Reserved word aliases, 91
Resetting

CP/M disk system, 95
DATA statements, 50
device line count, 54

Resolving
expression ambiguities, 41

RESTORE data statement, 50
RESTORE variables statement, 49
Restoring

initial variable contents, 49
local subroutine structures, 67
local variables, 68

Restricting memory use, 92
Resuming program execution, 17
Retrieving programs, 11-12, 15
Return Error message, 88
RETURN expression statement, 31, 67
Return path, 20
RETURN statement, 67
Returning to APCBASIC, 21
Returning to the

operating system, 21
REV$ string function, 81-82
Reversing strings, 81-82
Revising programs, 13-15
Right

bit rotation, 81-82
justification, 52
sign format, 53
string indexing, ~3
substrings, 43

RND function, 79
ROTAT$ string function, 81-82
ROUND function, 79
Rounded numeric output, 52
Rounding numbers, 23, 79
Routines in machine

memory, 75, 84-85
Row device positioning, 83
RUN command, 17
RUN version, 2
Running out of DATA statements, 50
Running programs, 2, 17

Safe memory area, 76, 84-85
Safeguarding your work, 3

150

Sample ZBIG session, 115-117
SAVE command, 12
Saving memory, 2
Saving programs, 3, 12
Scalar string variables, 36
Scalar variables, 23
Scientific notation, 23
Scratching the program, 14
Search strings, 9, 12-13
Searching programs, 12
Secondary reserved words, 91
Security of program files, 119
Seeding random numbers, 79
Segmenting programs, 73-74
Selective directory listings, 95
Selective program editing, 9
Self-calling subprograms, 31
Self-modifying program modules, 73
Self-modifying programs, 74
Semi-colon separator, 3
Sending data between programs, 73
Sequential file

access, 71
lookahead, 83
position base, 71
positioning, 71

Sequential line numbers, 11
Set processing, 40
Setting breakpoints, 19
Setting the default format, 53
SGN function, 79
Shifting program line numbers, 14
Side effects from FNs, 32
Sign

on positive values, 53
to the right, 53
transfer, 79

Simple
string factors, 39
string variables, 36
variables, 23

Simplifying expressions, 30, 44
SIN function, 80
Single-byte data file access, 71-7~
Single-byte string indexing, 43 ,
Single-character input, 83
Single-line delete, 14
Single-line FNs, 30, 68
Single-step program listing, 12
Single-step TRACE mode, 19
SIZE command, 21
Sizing string variables, 36
Slash print control, 54
Sorting applications, 57, 70, 81-82
Space-bar display control, 12
SPACE function, 83, 95

Space remaining on disk, 83
Specifying

E-format, 52
F-format, 52
formats, 52
I-format, 52
numeric formats, 52

SQRT function, 80
Square-roots, 80
Start-up command tail, 76, 84-85
Starting program execution, 17
Statement,

assignment, 57
commenting, 77
control, 59-65
data definition, 49-50
device 1/0, 51-56
direct execution, 18
documentation, 77
error control, 64
form, 4, 9
overlay, 73-74
program, 47-77
replacement, 57
segmentation, 73-74
separators, 3
subroutine, 67-68
syntax summary, 48
system interface, 75-76
transformation, 57-58

Static format, 52
STEP increment

specifier in loops, 62
Stop message, 89-90
STOP statement, 59
Stopping program execution, 17, 59
Storage layout of arrays, 109
Storing

data to files, 72
data to memory, 75
integers, 58
numbers, 23
program, 11-12
strings, 36
strings into indexed

string variables, 44
STR$ string function, 81-82

String
access to memory, 75
arguments in commands, 9
array elements, 37
array initialization, 37
array subscripts, 37
arrays, 37
assignment statement, 57
assignments, 36, 44
communication

between programs, 73
comparison, 39, 41
concatenation, 39
concepts, 35
constants, 35, 49
data file access, 71-72
data to ports, 75
data type, 35-45
editing, 56
element capacity, 37
expressions as formats, 54
expressions as prompts, 55
expressions, 38-41
factors, 39
FN names, 45
FNs, 29
functions, 29-32, 45, 81-82
indexing, 43-44
indexing modes, 43-44
initialization control, 76, 84-85
input, 55
length, 81-82
manipulation, 35-45
mapping, 81-82
memory addresses, 84-85
memory storage, 75
multiplication, 39
operations, 38-41
operator precedence, 38-41
processing, 35-45
quantities, 35
reference indexing, 114-117
relational operators, 39
repetition, 39
replication, 38-41
reversal, 81-82
rotation, 81-82
subexpressions, 38-41
SWAP statement, 57
symbols in expressions, 38-41
to number conversion, 81-82
variable initial contents, 36

Strings as integer arrays, 58
Subexpressions, 25-28, 41
Subprogram statements, 67-68

151

Subroutine
branching, 68
calling path, 20
debugging, 20
statements, 67-68

Subroutines in
machine memory, 75, 84-85

Subscript base position, 37
Subscripted numeric variables, 24
Subscripted string variables, 37
Substring assignment statement, 57
Subtracting numbers, 26
Summary of

commands, 10
editing controls, 6
program statements, 48

Support devices, 1-6
Suppressing INPUT question mark, 55
Suppression of trailing-zeros, 53
SWAP statement, 57
SWAPDEF statement, 58
Swapping contents of variables, 58
Symbol table, 110
Syntactic notation, 9
Syntax error message, 37, 89-90
Syntax summaries, 10, 48
Syntax summary of commands, 10
System

errors under CP/M, 94
interface statements, 75-76
messages, 88-90
parameter access, 84-85

TAB print control, 54
Tail of original

startup command, 76, 84-85
TAN function, 80
Temporary

numeric arrays, 24
variables, 68
working storage, 111

Terminating
input, 5
loops, 62-63
multi-line FN definitions, 68
program execution, 59
subroutines, 67

Testing numeric sign, 79
Testing programs, 17-20
Text file

access, 70
buffers, 70
character input, 83
input, 55
processing, 51-56
programs on, 11

152

Text processing, 35-45, 81-82
THEN clause restrictions, 63
THEN clauses, 60
TO range delimiter, 62
Token reassignments, 63
Too many ELSE clauses, 60-61
Top of memory, 92
TRACE command, 19
Trace controls, 19
TRACE IF command, 20
Trace mode, 19
TRACE RET command, 20
Tracing statement execution, 19
Trailing

decimals, 52
sign format, 53
space removal, 81-82
zero suppression, 53

TRAN$ string function, 81-82
Transcendental functions, 80
Transfer of control, 59-65
Transfer of sign, 79
Transf ering data

between variables, 57-58
Transferring data from files, 71
Transferring data to files, 72
Translating characters, 81-82
Translating to APCBASIC, 11
Tra~slator Error message, 88
Trappable errors, 89-90
Trapping end-of-file, 55
Trapping errors, 64
Trigonometric functions, 80
TRIM$ string function, 81-82
TRUNC function, 79
Truncating numbers, 79
Truncating strings, 44, 57
Truth table, 27
Turnkey systems, 93
TYP function, 83
Type Error message, 89-90
Typing error correction, 5
Typing search strings, 9

Unambiguous file names, 94
.Unary string operators, 38-41
Unconditional branch statement,
Underflow, 23
Uniform random numbers, 79
Union of sets, 40
Unique string array names, 31
Unneeded program lines, 74
Unpacking integers, 58
Unsatisfied line

number references, 14
Unused file buffers, 70

	Cover
	Table of Contents
	1.0 INTRODUCTION TO APCBASIC
	2.0 APCBASIC COMMANDS
	3.0 REPRESENTING AND MANIPULATING NUMBERS
	4.0 REPRESENTING AND MANIPULATING STRINGS
	5.0 APCBASIC PROGRAM STATEMENTS
	6.0 APCBASIC FUNCTION LIBRARY
	7.0 MISCELLANEOUS INFORMATION
	8.0 APCBASIC UTILITY PROGRAMS
	9.0 APCBASIC FOR NORTH STAR BASIC USERS
	Index

