
l l ()

TaLlC:: of Contents

Ch<lpt(![l Updates in xForth 2

J.J Multitasking
l.2 N,._,.y fiLe ~_;y,'3lt:~m facilities
1.~ New input/output facilities.
1.4 Miscellaneou~ changes.
l.S Change~ nee~ed to xPorth optional packages

1.5.l ASS~MBLE.BLK
l • ">. 2 FF. ELK
l • 5 • 3 T lO GS • n LI<
l. r::,. ,1 DE HUG. 13LK

J_. '). 'i N/\lWAT:~: .. BL!\ from Tu rt le 9raphics pack.

(' ~. . t :\ ., -, .. ' ·1 t· ; t· , ... ' ; ,, .. 11dp Lt. /... t•i:J· .. ,- .d~-.K,:.9 i. n xForth .

2.1 Simple mult1tdsking.
:~.2 U:>t'r vari:1b.l.1.~~3 .1nd private stacks.
2.:' Dt:.l,.1ys

2. 4 Senu.phore:;" or ho• . .v task::; comrnun ica te.

2.4.1 Two ~tat2 s hares, and ctcmons.
2.4.2 Mul i- t~te se1naphores.
:2.4.J Bufft:rs.

::'.. 5. 1. DEL!-1Y. BLK
2 • 5 • ::
:~ . ') . 3
') c; L'
·- ,, •' • j

UUFi"LH. hLi\
:;POOL. P[.l\
h' r l.JDOvJS. HLK and TASKDl~MO. B~,l<

2 . 1
) S u mm d r y : ta::;. k 1: '/ p es and s 1· a t e :; ..

2.6.1. Tak t.y£JCS
2 .. 6 .. :i: 'I1 a.~~ k s t d t (\ :~

C tia.p t •.": r 3 Tr ou b .l;:~

H pendix f... Alphabe'".ic list of words in x~"ori.:.h

l\ • I ~..,, o rd s d' ~ L~ t. e d .
«\. 2 ;,.;c)[\'i :.; ur:ch<.•.nq 1::1.

A.3 Voc;1bulary Li.c:t r.i::q '.Vith d1::'initior·s of nc~'v',r
word<:.:.

3

3
3
5
G
7

7
7
p -·

9

9
11
12
13

13
14
14

15

15
16
17
17

19

19
!. 9

20

23

..,,

./)

26

xForth 2 (c) Alistair Mees

Your new xForth system

Copy your disc before doing anything else.

The upgrade from xForth l to xForth 2 consists of this
documentation as described in the contents table, and in
particular containing a glossary update, together with a disc
or discs containing the following files:

XF'ORTH.COM

XF808014.COM

FOr.t'.Prl. BLK

SEE.BLK

SEEUA'l'A.RLl<

CONFIG.BLK

BINDINGS.BLK

NEWSIEVE.BLK

SPOOL.BLK

DELAY.BLK

TDELAY.BLK

BUFFE:R.BLK

This is the normal xForth system. Call CONFIG
when you first use it.

If you have an 8080 processor or your operating
system is CPMl.4 or COOS, or you have trouble
as described in "Trouble" below, use this file
instead of XFORTH.COM. You will lose the
ability to access user areas in CP/M and will
be restricted to 256K files. Not supplied with
Torch systems.

The usual FORTH.BLK file with some updates and
with blocks 30 onward removed.

The screen editor with some minor upddtes.
TORCHSEE.BLK for Torch systems has some
slightly different facilities.

Sets up editor keys from a file instead of from
keyboard. TSEEDATA.BLK differs slightly.

Called by CONFIG, minor changes from version 1.
TORCONF.BLK for Torch differs slightly.

Changes editor keys. Same as old version.

Faster Eratosthenes sieve.

A file listing background task.

Multitasking clock words. Needs edits to adapt
to your system.

DELAY.ELK configured for Torell.

Print buffer using multitasking.
to adapt to your system.

Needs edits

l~O

xForth 2 (c) Alistair Mees

'rBUFF'EH.. B LK

WINDOWS.BLK

TASKDEMO.BLK

NARHATE.BLK

SAVE.BLK

BUFFER.BLK configured for Torch.

Simple multitasking windowing demonstration for
Torch, needs adaptation to other systems.

Demonstration of WINDOWS.BLK, for Torch only.

Modified file for turtle graphics owners. See
cornml~nts on changes to xForth optional
packages.

For systems with no SAVE command
Turbodos, you can load this file then
SAVE-AS MYXFORTH.COM after configuration.

e.g.
type

Other files are not supplied since they are mostly the same
as in xForth l; you can copy them to your working disc. Note
that certain optional packages need slight changes: see
"Changes needed to xForth optional packages".

B:DIR

"'*''
B:DIR?

A>B:DIR
B: XFORTH COM LIFE BLK NEW-LOOP BLK FORTH BLK
B: SEE BLK SEEDATA BLK CONFIG BLK BINDINGS BLK
B: NEWS I EVE BLK SPOOL BLK TOE LAY BLK BUFFER BLK
B: SAVE BLK WINDOWS BI .. K DELAY BLK '!'BUFFER BLK
B: TASK DEMO BLK NARRA'l'E BLK QERROR BLK XF808014 COM
B: COPY BLK TTY-RUB BLK FIG-ED BLK JACK BLK
B: QUEENS BLK SIEVE BLK RANDOM BLK FRACTION BLK

B: OLDSTUFF BLK SEQ-IO BLK VMOVE BLK ASSEMBLE BLK
B: DEBUG BLK DUMP BLK QUICK BLK VLIS'I' BLK
B: SEARCH BLK CRYPT BLK TO-SOLN BLK HILEV-'rO BLK
B: EASTER BLK HAMURABI BLK EXPONENT BLK MODULF.~S BLK
B>

DIR
B: BUILD BLK XFCODE80 TXT XFHILSV TX'l' XFTASK TX'11

B: METASYS TXT XFUPPER BLK SYSEQUTS BLK CPM-I/O BLK
B: CPM-DISC BLK CPM-EQUT BLK FLAGS BLK XFOR'l'H COM

B: -READ ME- ASSEMBLE BLK VMOVE BLK FORTH BLK
'~

B>

-

l l ()

·-

l ~()

?i>
r) > t.,.I t c_r 1•c r ~.: C~r c: i:1 d. flll'.'e

er.\'.[A[1

;.:Furth ::. ::,w.J.rce i:.:ud1.~ d.1.'.:~c.

F or· r.,J o u r c on v 12· n :i. e n c t.~ , t I\ i '.:; di s c c o n t •1 i n <;; o t r u n c o. t ~ d c u ~' lJ o f
FOFnH. BU< o:nid .:1 Vt'r '.:;ion of XFOHTH. COM th•1 t i '.., pr e~-c unf i9 u r •:.: d (tt
•::i D[C VT-·52 terllli.ni::d.). Thi:;; lliE!-(1\1!;; the di'.;c c:anti:1in':; i:l11 t.ht
f i J. e '.., n •:, ~~· d (! d t o r u n J::l U I L D • BL i\ i:1 n d bu i. 1 d i:1 s y s t 1~ 1>1 t h o t i ~"; r e i:i d :,
fur SYSDEN.

To bu~ld i:i new kornel system in the file KERNEL.COM, simply lua0
thi::: fi.1(~ BUIL.D .. BL!\ ond 11n::;w1::~r Y to tht.~ qu.10stion~;; i:1b<.:>1..tt p•:lri::tlll~t;.;i
Lettinys. <If you answer N to the question about DEBUG ~Fort~
w :L 11 y 0 (l w (l i.! f u T' '. ; Cl Ill(! t :i. mt!- , l..J i. t h l1 n J. l,j Ill i n i Ill (I J. c: C) Ill 1\I (';'. n t :;:. ' b c f '] 1' '

it produces the new system.) Not all the files needed for th·
voriou'.> option'..> i::1r1~~ s;upp:!.i0)d~ in p(1rtic:1.1lo.r, t,;ou 111u<.;t olw:ltf·
leave 68k and f83 set to FALSE. Non-Torch users must leQvc
Torch set to FALSE ond Torch users must set it to TRUE.

Note that the .TXT files are loaded (slowly> by the standar~
L CJ AD FIL. E " Th t:' ::> i:.~ q u en ti i:1 l :i / o p s:1 c If. o <J e ' ~:; ~ 1 o •l d ~ w or r:i .1. ~:. 111uc:1·,
faster than LOAD-FILE for .TXT file~ but it insists that C~
con~tructs all be on one line which would m~an the files had t
edited. You could convert the .TXT files back to .BLK f1l0'.

(•..I d d :i n g ···· ··· > w h 0 r L~ n t~ 1:~ d e d) i f r e q u i r i:.~ d , u ~:>in 9 t. he ~ 1.ni o :; c: i J. ''

utility in the s~quential-i/o package.

• MEC~ :·.~k

()SSE:MBLE. I:il .. 1< 9k
E1U l L:O • BL.I< 3k
CF' M !? II I ~;; C • BL 1< :LOK
Ci=·MeFnUT • BU'\ lk
CPMC~Ieu • BLI\ l !:.
fl .CUM 31<.
FLtiG'.3 .BLK 3k
FOF~TH • E<L.l< 8'' ...
MET 1'.)~3 '{~) • T><T J()k
bYbEClUT;3. BL.l\ lk
;.JM0 1JF .BU~ ~? !c
><F.CODEBO. TXT 24!1.
>:F HJ L.E:. V T'-'T .. !\ ! ~iBk

:'Fur.;: TH • CCki 20:!
:i:rr1.\Si{ . r:r:T :.'k
XFur:.1~·L:::: .. BL.I\ J '::ik

CIJ. :>k ii:; l i< JJ :i. UL k :.;
Si=0· l85K, 17 r110~, u~2d~ 14?1<, '.3pO:lCt' .:

Additional notes.
;;:.: :.::: ~: .::::: ::: ::~. ~;.;.: __;,;, =~.:.:..;:. ... :: ;::;, ::.:: .:.;; ·.:::. :.:.:: ::

SYSGEN

.. r-·~)l't~I ~~~ i• .. ;) ~:~:Ltppli.(~{j Cinly .~\'?~ thE? fJ.lt?. it;i:()l-<(l··{.(;CH"'l ~~()if yc)t\ VJi::\nt

tu ']L!•lL'rdtt., c1 ~.w1vi.;1t.t:~ ~--•Y'.:,tt:!m by mud1fy1nc1 hi.uci· 1:11-icJ c<:1lllflCj

:>~Ybt·il:N, you l11:1YE! t.1.:.1 r·cinuve dll th<·~ wo1•·cJ•::, dc-+111t:?d ~;1nCi'? thl~

c:IL.!i1Vt.~r·p(I bluci .I i--kl~:i .lo"rlucL 'iu dci ~.-;CL, ril'CJC:C~L'Ci '-'~:; fol.lUvJ~::,:

x F-' i :\(JMF1 T f·'. L:J' I.. nL r: [). H '{ Cf~

fi:hIL!i'iCH'-1 l\L IL?\i LJl·Hl' <:3.Ibl\;Ul·;l
1: L !~CT:· [;[i OV..1 C\.'L !)

, 'l-<U lF1.·r
:.,Y'.-,11Ci'l

t,J ,,.1)1110;Lhin1J

r .-,:r" !V•."J" l i
r1L«'.'<! tu 11\,d l:':

'i:.·t·r~ Lhc~·n l'·,_·'1f!L•v~:' L'·v0!r·yth1nq 'i·1e1t 1·1·,~1::d~:. to

yCJu"v1:! rt:!···'11:,;·t:cw-r?d 1;1-:i:::·v rn··· «·\11yU11rici •!I ;;i::::.,
•,; 1. ! ,- 1.· t I 1 ;:-· y <> , ... c.'. c;;; :1 + Q t· o c; •

Changing KEY so tt doesn't scan the keyboard.

'y'f'll 1 ' i 1

fi·1c: f11c\rlUd] 11\C''''tl C't1·1 1:, (l !! i: .j(' <'i'i1:!pi:1:.-'t'' "l 1··1111b]t>" ! .:~ vii:\'/ 01 ,[l,0 1· J.~H)
;:1·.-cJr th 1"ur1 undt~r .. n1u11: 1 -~ -1~.il l fHJ •::.,'y'<..;t.t.'11:,:, vii th<:n1l. cn111p1,~t.11-1q +c11· t I·"'-''
tl"!'/bo,c1r-d. Nott::" th.:::tt \.r1.lc;,, 1ri1ll v1r·tc1<:\lly (.1\'·<:t.1·c·y >~l·:o1l.r1 1n ... 1lt.(··

t .. c-1:;;t i1ic;i J.11 r1rn··mdl cc.imp1 It'..! .:1nd •.:cl.Lt \\::,\:~., l:«.•t rt1.:1y ::;ti 11. he->
s d t. l ~.: + c:• ct ur· y + rn~ i:<.pp !. i. c <::1t 1 on:; ~-Jh er .. f:' y·c".1 put:· 1 ri F'1'.\LJ(:iF •11h pr· ~:v~:::r

n~:!CC:'""''·'.:.~ry. h·,:.'re l'-' hciv4 t:J dn it. "1i··1>:: ;;;ciiutinn pr-c:":;r"1·h::-1J hc1·•:
mt:1 ,,1ri~, LP1~)T-.. t EY INl 11 no l. on;_v=·r· \..;01·· ~-:. If '/C:••.\ dun'' t: vJ.~.nt. t.c.1 h ::•\/2

tnt~ i:l5"''E:'"T1blc!I" p.::~1-·!l•oH1f.;r-itly 1··uc.:.idE!nt yciu r.c.1n cu11vc"1't: thP +c.lic;w111r,1
tci l·ff .. 'x iJ.nd <:umm.:1 l t. in.

i .. ND ·CUDE

~-- f IL. D , D D {\ D , f CH L. .. ,

U FU b H , h U L K l ~ B I rn:; C r::i U ..
Pi I. M LN .. (1 11 r1 \,/ I , B ~-' Cl F' , I iF'U'lH

r-r~u ru 1 • ; i L c ri·i11

<c> A.I.M. Research u~, fl v.JiJ.41Jf.
REF=
X Pc 12-nf- 1 I

0at.ting •tart.ad.

To run KForth you need an 8080, 8085 or Z80 oproceseor
with at least 28K of memory, running the CP/ operating

You really need at least 32K to anything
thwhile. A VDU with cursor positioning abilit a great

hel but is not absolutely essential. Note that versions for
8080 and Z80 processors are different, and ver ons for· CP/ML4
and C /M2.2 different. If you have on
•cp /M ope..-·ati ng systems, you wi probably find no
problems but we don't guarantee it - ther 7 S no such thing as
100% comp tibility with a system like CP/M that isn't properly
defined an here except by its own source code.

Before yo
the original
your licence

anything else, cop
in a safe place.

ement if you haven'

the whole disc and put
Not-• f i 11 out and return

so already.

The disc e copied onto be your initial wodcing
COPY with appropriate

a copy of your operating
been supplied with both BOBO

you can make extra space by
ed (titles containing 8080 or

disc. Use rogram SVSGE
options, on some sys to
system on this disc.
and ZBO versions of
deleting the files you
180). You are ready to

Put the working disc A and type

to load up a basic syc
CP/M (i.e. xForth tak
by the CP/M system.

xForth
will see

sign on. Type

Now type

ol<
Stack "ty '

CONFIG

A>28K8080

run under as little as 28K
takes BK>. The A> is typed

carriage return and you

y a carriage return, and xForth
and answer session with you to

conduct a
p for yc>Ur·

I

I

<c > A. I. M- Research

\
terminal an~your number of disc drives. You might like to know that mc:is ter:-minal~ have 80 columns and 24 rows, ;rici do wrap long line <1.e. lines longer than 80 characte~s, spill over to the n~xt line rather than having the rightmo t part lost al together>\..

\ /
To all ow the\ screE~n ed:l tor tc1 work, x:Forth 9'eds to kno"'~

how to postion t.~ cursor. If you have any /! __ a numbt;1'1'' of common cursor addre sable terminals such as ADM" , Superbrain or Z19, the code is alr ady written and you will e able to choose the right code from a\menu. If you don't h e a terminal that appears on the configu ation menu or is co atible with one of the termi.nals appearing there, you"ll hav. write a little cursor handler as expl ined in the pendix ~Altering your·
system•. However, you ca ever·y i ng except. the screen
editor right aw~y, so don• out this until you~ve got
used to the basic system.

After
itself to
system. Notice
xForth tells you how many
then, when you are back ·

xForth will adjust
possible in your
to your system,

occupies. Type BYE and

wher·e 65 is ,repl a/ed by however ma y pages xForth you~ From now on,/you merely need to type
i

just told

j' A>XFORTH

to get going, !oless you change your
case you sh,~~n r-epeat the above !3teps.

\

size, in which

l ?, 0

xForth 2 (c) Alistair Mees

Chapter 1

Updates in xForth 2

Don't be put off by the length of this document; much of it is a glossary containing a detailed description. To get going you probably only need to know about the following:

Multitasking;

New file system facilities (mainly user numbers and DIR);

New churacter input/output facilities (mainly enhanced input/output streams);

Miscellaneous new features;

Minor changes needed to assembler and floating point pack due to change to direct threaded code, and to debug and turtle graphics packs due to changes to i/o system. Also, the decompiler no longer works.

'I'he following .is a surrunary of the most important features. 'l'hQ detailed glossary should be consulted in cases of doubt, and for precise definitions.

/

This is described in detail in the next chapter. Note here that the multitasking demonstration files may need to be set up for your system before you try to load them.

The filing system now knows about CP/M2 CP/M3 and CPN user areas. If a user number is 9 i ven in square brackets at the end of a file name that user number will be used for the file,

- 3 -·

llO

xForth 2 (c) Alistair Mees

e.g.

LOAD-FILE random.txt[O]

This is particularly useful for users with high capacity
discs. If no user number is given the currently set operating
system default user number is assumed. The new words setuser
and getuser have been introduced to allow control over this.

DIR now reads an ambiguous file specification with optional
us~r number from the input stream, and lists on the currently
selected output streams all files in the stated user area that
match the specification. Note that no stack argument is used
as in xForth 1. If the file specification is empty it ls
assumed to be *. * so that typing DIR and pressing return has
the same effect as it has in the operating system. Some
examples of calls are:

DIR
DIR *.BLK
DIR f?g·k.x(S)
DIR c:[2]
DIR b:
DIR [15]
DIR a:b?d.*[11]

'fhe word $DIR takes a strir..g argument and operates on it in
tht; same way.

LOAD-FILE now allows ordinary text files (prepared with any
standard editor) to be read as if they were being typed from
the keyboard. This is done by selecting input stream 2 which
is connected to the file in question. Loads may be nested and
files of type .BLK, which are treated as usual, may load and
be loaded by text files. The sequential i/o package provides
utilities to convert block files to and from ASCII files.

Since the word WHERE is no longer so useful with text
files, a variable ''echo' is provided. If it is set to 'I'RUE,
as in 'echo on·, each line of the file being loaded is
reflected to all currently selected outputs before being
interpreted. Note that the usual rules about (and { havin9
to have matching) and } on the same line in console input are
relaxed for text files, but that defining words such as : and
VARIABLE must be fol lowed on the same line by the word they
are defining.

-- 4 -·

l !, ()

xForth 2 (c) Alistair Mee~

'!'he input-output facilities are much shinier than bt:.fox::c,,
'l'hey are now vectored in such a way that thf~re may be 4
distinct input streams and 4 distinct output streams, and any
task may select any of them.

The method is to use bits set in the user vari~blc OUT?UTS
(which al 1 tasks have a private copy of) to SE~lect output
streams, and bits set in the analogous user variable INPUTS to
St?lect inf)Ut st.rf::~a1ns'5 C;onVt:!ntianal1)' 1 the lCJWeSt <)rder .bit'.:-;
a:re the normal output and input so that setting INPUTS ilnd
Ot.J'rPU'l'S both to 1 givefi normal opera~~.ion. The next n19.:wy
order bit in OUTPUTS corresponds to the printer and is toggled
when con trol/P is typed. 'I'hus to select the pr.in te .r a lcm{~
from within a pro9ram, set. OU'l'PO'fS to 2; to select both the
printer and the vdu set it to 3, since EMIT sends its
character to every st ream that has its bit set. (NotE· ,.
however, that KEY only asks for a characte:r from the inpul:
stream with the lo~est order bit set.)

The next bit, corresponding to setting OUTPUTS or INPUTS to
4 1 is resei:ved for file stream i/o though only a. (slowish)
version for input is provided in the standard sys tern. It h;
used by LOAD-FILE to load ASCII files containing xForth
pro9rams.

The next bi ts, corresponding to setting OUTPUTS or INPUT'S
to 8, are free for your own use.

The actual st.r(:~ams a.re defined by the f::xecution vector:~
XEMIT and XKEY which have room for 4 codes each instead of the
J each in xForth 1. On delivery, the codes for XEMI'I' arr:
EMIT'r, EMITP, DROP and DROP. On deli very, the codes f:or XKEY
are (KEY l , EOF, getc and EOF where getc reads from a f: i le ..
The intention is that you should always use EMIT in your
programs, altering OUTPUTS and INPUTS to get the desired
ef fE~ct, and h~aving u~;e of EMI'rT and EMITP and so on to :~;ystem
words ..

Finally, ~EMIT now interprets -M as a call to
intt,;qnets AL as a call to Pi~GE 1 ignores '\J, and expands
to a multiple of the constant tabsize which is normally 8
may be changed on conf igura ti on. ('j 1 s a good value
programming.)

CH,
tabs

but
fr,, ..

xForth 2 (c) Alistair Mees

xForth 2 is somewhat faster than xForth 1 since it u~;es
direct threaded code instead of indirect threaded code. This
change was made because it paves the way for a code optimizer
in future. The overall improvement in speed is about 15%:
test it on SIEVE and on QUEENS. By the way, your disc
includes a program NEWSIEVE which was written to do the Byte
SIEVE benchmark properly in FORTH and so give a fairer
comparison between Forth and other languages. It takes about
43 seconds for 10 iterations in xForth 2 on a 4MHz ZBO
machine.

to
Note that a few changes are needed as a result of
direct threaded code. They are described in

section.

th(;
the

move
next

xforth 2 now sizes memory automatically so there is no need
for the 28KZ80 followed by CONFIG followed by SYSADAPT
operation formerly needed.. ,Just type XFOR'l'H. You still need
to run CONFIG to set up for your terminal.

xForth 2 is about 2600 bytes larger than xForth 1.21,
thouqh because of the way free space is now measured (see
DIC'l'LIM) the amount shown on signon may not appear to agree
with this.

Three new words have been added: ·on' 'off, and '0 ! - .
set a variable whose address is on the stack to 'rRUE,
and 0. For example, you can say "echo on· and -echo off'.

They
FALSE

A number of other new words have been added, some of them
from Forth 8 3. One example is >BODY which converts a code
field address to a parameter field address, i.e. it. is the~
opposite of CFA. Make sure that anywhere you were using 2+ to
do this job you now use >BODY since the size of the code field
is no longer 2 and is not guaranteed to have any fixed size.

Two other new words from Forth 83 are SPAN and #TIB which
hold the number of characters read by the last call to EXPECT,
and the number of characters in the text input buffer.

One new word, not from Forth 83, is +LIST which lists from
a block number until the end of file is encountered.

A number of words ha.ve been removed: an example is (LOOP)
which is merely the code: compiled by LOOP. It is hoped that
thos',~ removed wi 11 not be missed: actually, we were glad to

- 6 -

xForth 2 {c) Alistair Mees

see the back of them. They are surrunar i zed at the beg i.nn ing of the glossary update.

'rhere are minor changes to the screen editor: for example, you qet a chance to change your mind if you hit the abandon key. The word "count• has been shifted into the (EDITOR) vocabulary.

USER is slightly changed: it no longer uses a stack argument to tell it where to put its variable relative to the bottom of the USER variable area. Instead it keeps track of how many user variables there are in the constant #UVARS.

The following changes need to be made to packages you have already purchased from us. They are mainly concerned with production of CODE sections and result from th(:°! chanqe to direct threaded code which has changed the header structure of xForth words. If you have written any CODE words yourself they will only need to be recompiled unless you have made use of special knowledge of the structure of word headers.

There are also a couple of changes to the DEBUG pack which are concerned with deletion of a definition and with the new input output facilities.

If you have bought packages with or since the upgrade to version 2 the changes will have been made for you.

1.5.l ASSEMBLE.BLK

In 1 i n e 1 0 o £ b 1 o ck 3 of the as s em b 1 er , t b-:; de f i n i ti on of CODE should now be

: CODE ?EXEC CREATE SMUDGE -3 ALLOT
[COMPILE] ASSEMBLER !CSP : IMMEDIATE

i.e. instead of 'HERE DELTA - -2 ALLOT . we simply have ~-3 ALLO'r ••

1.5.2 FP.BLK

In line 11 of the first block of the floating point pack, ·..i·::. now n':':!ed

- 7 -

l ?, ()

xForth 2 (c) Alistair Mees

CREATE fppack HERE 4 + -3 ALLOT HEX 0C3 c, I

DECIMAL

which puts a jump to HEHE+4 in to the code field instead of
merely comrna-ing in the address of HERE+4.

In 1.ine 1 of block 2 of the floating point pa~::k, replace
'FIND fppack @' with 'FIND fppack l+ @' to compensate for the
above change.

1. :>. 3 'l'RIGS. BLK

Owners of the t.urtle graphics
code def ini ti on for ·· U2/' in the
all occurrences of it with '2/'.

1.5.4 DEBUG.BLK

package should
file 'l1 RIGS. BLK

remove the
and replace

'I'he debug pack needs to have a couple of changes. Since
the lethal word LIT is no longer present, line 12 of the first
block of the debug pack, which redefines it to be safer,
should be deleted. Also, because of the new input/output
facilities the definition of 'wait' on block 4 of debug.blk
doesn't work. Delete the definition of (last-key) and replace
the definition of 'wait' with

: wait KEY
IF

DUP INTRPT-KEY @ ~
XINTRPT @ EXECUTE ENDIF

You can also check for hitting control/C if you like. The
normal interrupt facilities during output are still there: all
that this affects is the operation when pausing is turned on.

1.5.5 NARRATE.ELK from Turtle graphics pack.

A tr icksy 1',orth def ini ti on was supplied with the turtle
graphics demo, to let selected parts of Forth blocks be echoed
while loading. Because of the changes to input/output
facilities, a slightly different set of dirty tricks is
needed. Replace the file NARRATE.BL!< from your original
turtle demo with the new one on the upgrade disc. Ignore the
revolting style and layout of this file!

t c: n

xForth 2 (c) Alistair Mees

Chapter 2

Multi-tasking in xForth.

In computer jargon, "multi tasking" refers to a situ at ion
where a computer appears to be doing several diff~~rent a.nd
possibly unrelated things ("tasks" or "processes") at the same
time. Most computers, and nearly all microcomputers, do not
really do sev<::ral things at once, but chop up all of their
tasks into bits and do a bit of one, then a bit of the next,
and so on. This requires great care if the tasks want to
communicate with one another successfully.

xForth multitasking facilities are more powerful than those
we know of in any other Forth. For most purposes they are
easy to use; the instructions that follow describe them in
general terms, and the example files and the update 91.o~c;;sary
give more details.

An obvious use for multitasking is to let slow peripherals
like printers be driven by special background tasks instead of
holding up normal use of xForth. Th is can be don(~ (:!it r by
providing a print buffer or by making sure that any tasks
which talk to the printer are in the background. Examples of
both are supplied: for the second case, a word PRIN'r-FILE is
defined which passes a file over to a background task for
printing and does not need a large print buffer.

Some of the other uses for multitasking range frcm simply
showing a clock or calendar in a fixed part of the vdu screen,
through displaying the current values of memory locations as a
check during debugging, to timed control and data collection
tasks. A sample windowing program is provided so you can see
different tasks working at once. The only limitation is your
imagination!

A
11
task.. in xFor th is a special sort of def ini ti on t.ha t

looks like a colon definition except that it starts with
'TASK:· instead with ': . When first defined it does nothing,

- 9 -

l ~ ()

xForth 2 (c) Alistair Mees

but once it is started, it takes over: control of the computer and retains control until it runs to completion, or it temporarily hands over control to another task, or it gets blocked until some event happens. What this means is that tasks in xF'orth cooperate with one another, by not deli b(':!ra tely hanging on to the computer for long periods of time.

In the first case, where the task runs to completion, control then passes to t.tw: next task in a queue which .1.s managed in such a way as to give all tasks a fair chance. The same happens in the second case, except that the task is reinserted at the tail of the queue, When its turn come~-; it will continue where it left off. The third case, waiting for an event, occurs when the task asks to be held up until some particular time, or until it receivt:~s a si9nal from another task saying, perhaps, that . here is some data waitinq to be processed.

Here is an example of a t.o\sk that sound£i an alarm if UH~ value of a variable gets outside a certain range. 'l'h is so:r t of thing is useful for debugging, as you can run the watchdog task then start up whatever you are debugging. This will work as long as the word being debugg•2d gives up control from ti.me to time. As was mentioned above, this is only one of many uses for multitasking.

VARIABLE va1·
0 CONSTANT minvar

-- Assumed to be used by some other task.
9998 CONSTANT maxvar

TASK: checkvar BEGIN var @ minvar maxvar in-range?
WHII.E PAUSE
REPEA'l'
BELL 2 CRS ." var = " var 7 2 CRS ;

hs you can sc~e, this is just like a colon definition except that it starts with ''rASK: ~ instead with ': ~. Nothing happens when you first define it but once you start it, with

cfH .. ~ckvar START

it loops around, checking the value of 'var· on each pass. If the value is ok, checkvar calls the special word 'PAUSE" which says Hpass control to the next task that's waiting to go, b~t put me back in the qt.H:!ue so I SF~ t a chance to run aga i..n" , When it next runs it will restart where it left off, with the stacks and so on all intact, so it will meet REPEA'I' which sends it back to BEGIN und another time around. If the value ia bad, it sounds the alarm and then stops, bece::..use presu;nably want a chance to put things right. In this cas2 the tasks stopped because it reached the end of its definition but it could also have called QUI'l' froir: with.in the definition.

. .. 1) -

llO

xForth 2 {c) Alistair Mees

Now try typing in the above example and starting the task,
and then define

: changevar BEGIN 10001 RANDOM var ! PAUSE ?TERMINAL UNTIL

and run 'changevar·. You can stop it by hitting any key, but
if you don't then eventually it will set var to 9999 D.r

10000 and 'checkvar· will complain. The use of PAUSE in this
example makes sure the user task (the one you' re talkin9 to
normally) gives other tasks their chance to run. It would
also have done so without special action on your part if :.t
had called KEY which has a call to PAUSE in its def ini ti.on.
In fact, a possible definition of the keyboard reading part o~
KEY is

: (KEY) BEGIN ?TERMINAL NOT WHILE PAUSE REPEAT LAST-KEY

Notice how the so-called 'busy waiting~ loop

: (KEY} BEGIN ?TERMINAL UNTIL LAST-KEY

has been changed to give other tasks a chance if the present
task is waiting for input.

If that were all you had available to control when a task
runs, you could still do quite a lot. Many large data
monitoring and control applications have been written in this
way, including, I understand, American Airlines' bagga1e
handler, speed and depth monitoring on Missippi tugboat
trains, and many others. However, if two tasks have to
cooperate they must be written very carefully. The xForth
task handler allows advanced control via delays, semaphores,
counting semaphores, demons and monitors. Before studying
them we have to think a little about the structure of a task.

A task needs to be able to work 1 arqel y i1vfop0ndent}.y of
other tasks. To do so it needs its own stack and return stack
(althouqh so-called multitasking ~:;ystems exist which try to r1o
without this). It also needs some private variables so t!Bt
it can, for example, change OUTPUTS to send its output
somewhere without messing up other tasks.

Such variables are traditionally called USER variables Jn
Forth. They are provided in xForth for each task r with a
complete set being available for normal tasks and a. limited
set for small "background" tasks. When you type the name of a
task it leaves the base of its user variable area on the stack

- 11 -

xForth 2 (c) Alistair Mees

and this is used by other words to manipulate the task.

When you define a task xForth sets aside an area of memory
for user variables, with the stacks and, for normal tasks, a
terminal input buffer and a small private dictionary area.
This is initialized when a task starts up and is accessed only
by the task itself. Tasks comrnun ica te via ordinary VARIABLEs
or via semaphores as we will see later.

Delays are easiest to explain. Suppose you want a task
that just does one thing at a fixed future time: maybe it
opens a control valve, puts an appointment reminder on your
vdu, or something quite different that you can no doubt think
of yourself. You need a clock. If your computer has a
built-in clock you will .find out later how to tell xForth
about it, but for now just load the file DELAY.ELK which
simulates a clock by having a little task that just increments
a variable every time it has its chance to run. (Torch users
can load the file TDELAY.BLK which uses the BBC micra's clock
correctly.) Now type

5 seconds DELAYFOR

and xForth will go dead for a while (which is unlikely to be
very near 5 seconds unless you have a Torch or your computer
is very similar to ours). What has happened is that the user
task - the one that talks to you and listens to your answer -
was put on a delay list with a tag saying when it was to be
restarted, and a clock monitor checked the list whenever its
turn came to run~ when the pseudo-timer said the time was 5
seconds later than it. was when you first typed DELAY FOR, tl11c.:.
user task was allowed to continue.

The reason for having a special clock monitor is that there
may bl::· many delayed tasks, bll t they do not all need to keep
coming back to check the clock since the special clock monitor
task can do so more ef f ic ientl y. Indeed, it may be poss ibl<~
on some systems to make the clock monitor interrupt-driven, so
it doesn't consume any time at all unless a task is due to be
run.

A more realistic use of DELAYFOR {and its friend
DELAYUNTIL, which waits until the clock shows a certain time>
is in a task such as

TASK: readdata
- 19 hours DELAYUNTIL

·- 12 -
l ?, 0

I. i".O

xForth 2 (c) Alistair Mees

initialize
BEGIN meterl read meter2 read

5 minutes 20 seconds D+ DELAYFOR
AGAIN

The words 'hours', 'minutes~ and 'seconds' all take a sin9l(:?
precision integer from the stack and scale it to a double
precision number which is the correct number of clock ticks
for your system. To combine them we use D+ as in the last
example. Both DELAYUNTIL and DELAYFOR expect a double
precision number of clock ticks on the stack, and you can
generate it any way you like, not just with 'seconds' and so
on.

•rasks communicate to some extent via public (non-USER)
variables, but there are certain types of communication that
are so common and so important that it is a good idea to
provide special facilities. These facilities are concerned
with event control.

A good way to think about the way the delay words work JS

to say that words that call them are giving up control of the
computer until a certain event occurs: in this case, a certain
time shows on the clock. Other sorts of events can be handled
too, via "semaphores" which are indicator lights that are red
when an event hasn't happened or a facility is in use by
someone else, and green when the event has happened or the
facility is available for use.

2.4.1 Two state semaphores, and demons.

Par example, suppose several tasks are sending output to
the printer. We don't want their output to get tangled up so
we make them obey the semaphores like traffic lights or
railway signals. They use the word WAIT to look at the signal
and hold off if required. We define a semaphore:

which is an object
variable is nonzero,
can go on:

SEMAPHORE printer

with a variable and a queue. If the
(typically 1) the light is green and we

printer WAI'r

will decrement the variable and do nothing else. But assuming

- 13 -

l i ()

xForth 2 {c) Alistair Mees

the variable was 1,
then WAIT discovers
of the task, adding
WAIT.

if some other task calls 'printer WAIT'
the signal is red and suspends execution
it to the ta i 1 of the queue managed by

When our first task is finished with the printer, it tells
the world by saying

printer AVAILABLE

which removes the first task from the queue Cleaving the light
at red to hold up the next one) and makes it ready to continue
execution where it left off. If there were no tasks waiting,
AVAILABLE would have changed the light to green. In either
case, AVAILABLE doesn't pass on control: if you want this to
happen, call PAUSE afterwards.

By cunning use of semaphores you can have demons: programs
which lurk unseen until some event occurs, when they jump onto
the stage and cast their spells. The clock monitor and the
print buffer manager in the example files are both implemented .
as demons: they don't appear unless there's work for them to
do. This is much better than constantly cycling round,
calling PAUSE when there's nothing interesting to do.

2.4.2 Multi-state semaphores.

Sometimes it is useful to have values other than red and
green for the variable, giving so-called counting semaphores.
SEMAPHORE and WAI'r work as bappi ly with counting semaphores
but AVAILABLE has to be replaced by SIGNAL. For most uses,
AVAILARLE is the one to use.

2.4.3 Buffers.

One of the supplied facilities using semaphores is a set of
buffer manag(~ment routines. To define a buffer of size 100
you say

100 BUFFER: foo

and this defines a data object with
semaphores, counters etc. Buffers are
devices, unlike stack which are last-in,
Buffers may only be used via their monitor
'fetch', which work in the obvious way:

foo fetch EMI'l'

lots of associated
first-in, first-out
first out devices.
words 'deposit' and

will fetch and display a character from buffer foo if there is
one available, while if the buffer is empty the task will be

- 14 -

l ('.O

xForth 2 (c) Alistair Mees

put on a queue managed by a semaphore in the buffer. (As you
may have guessed, fetch does a call to WAIT.) Similarly,

ASCII Q foo deposit

will put a Q in the buffer foo if there is room, and otherwise
wait until the buffer is signalled as being nonfull.

The f.il.es DELAY.DLK, BUFFER.ELK, SPOOL.BL!< and ~\'P·JDOWS .. BLK
have examples of the USf2! of fetch and deposit and of vJf\I'l' :irid
AVAILABLE.

2.5.l DELAY.BLK

Look first at the file DELi\l .BLK. Tnis has a ps,c:udo-c2ock
mad(: from a background task ~:hat just .increment~o a doubJ e
precision variable every time it runs.. The function 't;_nc~ ·'
returns the value of that variable. If ycur comput<~r h<lS .::
clock or timer that you can access, red,:~fine 'tirn'."' l::.o ret:nrn
the number: of clock ticks as a 32 bit count. For. t:.~:.cr'";np1ro,,
TDELAY.BLI\ does thit> by calls to OSWOH.D which is an q:erati.nc1
system call.

Now redefine ··seconds', 'minutes· and
stack quantity to the requisite number
the BBC micro, the ticks are every
definitions are

second~-, 100 U*

and so on.

'hours" to conv<:;rt a
of clock tick.s. Fer

centisecond so the

'rhis file also hc1~> a clock monitor which is a \J(:rnon that
stays out of things when no tasks are waiting but stays active
all the time, checking the clock, when any are waiting. This
means only one task is checking the clock, which io:; b 1~tb:.:r·
than everybody having to keep looking at it. The monitor us~s
some knowledge of the internals of :::;emaphore~> to compensa t.e
for the fact that the~ delay queue isn't an ordinary first-in
first-out queue. We suggest you look at the other f il~s
before trying to work out what it does; and we don 1 t recommend
you copy this procedure yourself: since other sorts c,f queue:~;
are best manaqed in the standard ways. The clock rncni tor,
likf; tht~ print dernon d.efined latt..~r, is ,:1 backgrcn2nCl ta.sk.
defined via BTASK: since it needs few (in this ca::;e, 110)

input/output facilities. Background tasks use less memory
than foreground tasks.

l i ()

xForth 2 (c) Alistair Mees

2.5.2 BUFFER.ELK

·rhis file implements a print buffer. You need to do a
little installation as explained at the end of this section.

'fhe buffer works by setting aside an area (1000 bytes as
deliver_-ed) for character storage when th•:_> printer isn't
ready. There is a small task whose only job is to fetch from
the buffer and output to the printer using EMI'l'P. It is<':
backqround task since it doesn't use the dictionary or PAD
areas at al 1. It writes to the printer using EMI'I'P and no
other task should use EMITP. Once it has been defined, we can
re-vector the printer output in XEMIT+2 to deposit a character
in the buffer and let the buffer task handle the actual
output. Now whenever OU'rPU'l'S has bit 1 s{c!t (e.g. ' 2 OU'rPU1''.·)
I') output will go via the buffer. This will be true for all
tasks that use EMIT or any standard xForth output, which
always uses EMIT.

This file also defines the semaphore ~printer'

long as everyone trying to pr int uses it - keeps
different tasks separate. Tasks wanting to use
should do

printer WAIT

before trying to output and

printer AVAILABLE

which - a£:>
output f rorn
the printer

when done. The control/P toggle for the slaving the printer
to the main task output does not consult this semaphore: don't
use it when the print monitor is loaded. The reason it
doesn't work is that we thought it would be too risky to have
your system hanging because you accidentally hit control/P and
another task had failed to reset the semaphore.

Before loading BUFFER.BLK you need to edit it to tell
x:F'orth how to read your printer status. This is often, but
not always, possible by a BIOS call, and you may want to
implement this yourse1 f. Another common way 1s by a direct
port read; an example is shown in the file for our North Star
Horizon. The idea is to return a TRUE flag if the printer is
busy. (If you are completely stuck you can leave the
definition as it is in the file, returning FALSE always so the
buffer printer always tries to output and so will often hang
uselessly.) The Torch has a special OSBYTE call that is
implemented in TBUFFER.BLK.

Depending on what you manage to do about the printer busy A
flag, on your printer speed, and on other characteristics of W

.. 16 -

l (; 0

xForth 2 (c) Alistair Mees

your system, you may find it helpful to tune the printer
buffer performance by trying different combinations of the
presence or absence of PAUSE in the words (EMITT) and (EMITPl
defined in the file. Don't be afraid to experiment.

It is possible, but less often useful, to definll k~yboard
and VDU buffers. Samples are given in the file; you ne(~d to
provide a status word (analogous to ?PRBUSY) for your vdu, and
insert a ·-->' continuation word at the end of the last print
buffer definition block so that the other buffers get loaded
too.

2.5.3 SPOOL.BLK

'l'his file implements a background file listing spooler. A
word PRINT-FILE reads a file name and assigns it to a
temporary file in order to check it exists. If all is well it
puts th,':! name in a buffer which is monitored by a demon whose
job is to wait for file names then print them out. 'I'his can
work whether or not you . have installed a print buff er. ·rhe
point is that when you say ~PRINT-FILE abc.def" you qet
control immediately and you can send another file to the
printer in the same way, and so on until the file name buffer
fills up. The supplied version allows at least 5 files at a
time; more if they have short names.

2.5.4 WINDOWS.BLK and 'I'ASKDEMO.BLK

Full windowing requires a memory mapped display. Some VDUs
such as the BBC micro allow hardware defined windows for both
text and graphics, and the file WINDOWS.BLK shows how to take
advantage of these. If you have more powerful facilities, you

should find it easy to modify the code. 1 If all you have is a
standard VDU you can st i 11 manage 1 r you write software to
take care that all output stays within its window.

The method is to define a new set of USER var iaL b=:s that.
specify text and graphics window edges, and graphics cursor
position. (The text cursor position is kept in >LINE and OUT
which is consistent with normal xForth usage). Then we define
words 'make·, 'open· and 'close' which create such windows and

... ,.. _____ ._ -·--

1. For example, if you can read the contents of a window you
can handle overlapping windows by arranging that. when a window
is opened you store the existing c~ntents somewhere, and
rest.on::; them when the window is closed. Each task will need
its own temporary storage area, big enough to hold a complete
copy of the window. This can even be done with the BBC micro
a.nd Torch.

- 1.7 -

I
f
!

l
·~
I ,,
~
1

Lio

xForth 2 (c) Alistair Mees

control access to the screen. For example

" Headlines" twindow make

makes a text window with a label "Headlines" at the top left.
And

" Brownian motion" gwindow make

makes a graphics window with a suitable label. In each case
the window edges are given by the values of the variables at
the time make is called: for example, the left edge of a
task's graphics window is given by xl.

To use a window, you have to say

twindow open

before sending output, which checks a semaphore to see if the
screen is available, then sets up the windows. After writing
to it for a while, say

twindow close

to restore the default text area and flag the screen as
available to some other task. It would be reasonable to do
this after every line or two of text. With graphics, how
often you close the window to give others a chance depends on
the application.

Torch users can load the file TASKDDEMO.BLK to get a
running demonstration with 2 graphics windows, 2 text windows
and a reserved window at the bottom of the screen where normal
editing, compilation and so on can take place. Try typing DIR
or VLIST and see what happens. When you pause the output
using control/S the other tasks will go on while the display
is help up. As well as the tasks owning the windows, there
are several other tasks like the clock monitor running, and
you should still find it feasible to load the print buffer and
print spooler and use them. 'l'o get a four colour display we
use mode 1 which makes editing a bit painful because the
screen width is too small, but if you use mode 0 instead you
will find you can edit quite happily while the demonstration
is going on. It may help if you modify the 'log' task to be
less greedy in its use of the window. At present it may print
out several lines before giving anyone else a chance to run.

" 18 -

al .¥

xForth 2 (c) Alistair Mees

2 . 6 s u l!l..!!)_~£Y..!...._.~ as k _ __!_Yf?.. es an a s tat es .

2. 6. l '!'ask types

A task may be one of two types: a normal task or a
background task. A normal task can call all xFor t:1 words,
though unless it is the normal user task it usually only has a
tiny private dictionary so it should not att~mpt to compile
anything. A background task takes up less room than n normal
task but has no terminal input buffer, has smaller stacks, and
has no PAD and only a few user variables. Nevertheless, as
long as it does no file name operations, or calls to WORD or
number f o.rma t ting words or most string words, it can do a
great deal. For information about how to change stack sizes
etc of tasks, se .. ~ 'taskframe' and 'btaskframe' in the
glossary.

2.6.2 Task states

I\ task may be in any of 3 states: stopped, active and
waiting.

Tasks are stopped when first created or when they have
attempted to run after S'rOP bas been applied to them (see
later) • In particular, a task goes in to the stopped state if
it calls QUIT or if it runs to completion.

Active tasks may be running or ready to run. 'I'he running
task is the one that has control at any particular moment and
the address of its user variable area is returned by the word
UP@. Tasks that are ready to run get their chance when PAUSE
is called, either explicitly or implicitly as .in KEY. Tht->.y
also get their chance to run if a running task gets moved to a
queue by WAIT or by one of the DELAY words.

Waiting tasks
they were put by
or by AVAILABLE,
a DELAY word
clockmonitor.

may be waiting in a semaphore queue, where
WAIT and whence they may be removed by SIGNAL
or in the clock queue where they were put by

and whence they may be removed by the

- 19 -

tio

xForth 2 (c) Alistair Mees

2.7 General task manaqement
.,. ____ ... ----·----···· ----·--- -~---- -----------·~--- ~·--~--······-· -·

To [;tar.t a task that is in t.he stopped stdte, use ~;'l'l->F'I'.
To stop one that is active or waiting use STOP. Thus

taskl S'rAH'r task2 STOP

can be called from the main user task. A STOP does not take
effect until the next time a task tries to run; it is
equivalent to inserting QUI'r in place of the instruction tlH.'!
task is next duE: to exl~CL1t,~. l1-S we saw befon::, a task will
always STOP itself if it calls QJIT or if it reaches the end
of its definition.

To output the name of a task, use .TASK as in

task.l .'l'i\SK

which would merely output ·· taskl '. If you have loaded t
file DELAY.BLK you can output the names of all active tasks by
using .TASKS which takes no arguments, and you can output the
names of all tasks that arc waitinn for the clock by usinJ
.DELAY~D which also takes no arguments.

Wlk.~n tasks hav'.~ been dc~f i ned, you have: to lJt: rather careful
about uses of FORGET or :::MP'I"{, You must n:dkt:: sure all task'::;
th.1t wiJ 1 be rem:)vo"d f ;:;::1 tb,.: dicti.unary i:tre stoppt::'d, k:"/
callinq ::J'rOP for tht~rn then ::;i.qna11ing ilny Sf~rPa.phores tht:·y <:,re
wa.itinq on .. (For example, it is <Jk to t:.yix~ ·aelay(,~cl
AVAI¥AB¥E" as often as r0quired to flush out the layed
queue,) AlternC1.tivtdy you can r·12initi2l.i.ze al.l St?ma.pbores by
.repeatin9

0 0 c .. :ma 2 !

for t.!Very semaphore, r1~placinq sema
nam~~.. In that case any ta::;ks that were;
lost unless restarted with ~TART.

by the appr·opr l.atc
w .::i. J. t inc_; on t h.:: m .3 ::· e

If you call COLD, there is an immediate call to EMP'l'Y and
then all tasks are t<illcd on the spot. 'l'l'w main user task
will restart after the cud,; i.n XSIGNON has been executed. Tf
you want to make xForth come up running several tasks either
on initial startup or after COLD i.s typed, can v•.::ctor
XSTGNON to a word that. s::arts all n1:cessary tasks. Don't
forqet to run PHOTEC'f' before you save the modified system.

.. ~.~ 0 ...

lcO

xForth 2 (c) Alistair Mees

Chapter 3

'!'rouble

Obviously we want to know about any bugs you discover, but
our experience, believe it or not, is that most probl<:ms are
caused by the fact that xForth reaches the parts of your
operating system that most programs don't.

If you have trouble getting xForth to run at all, there is
possibly a bug in the BIOS of your CP/M. We have been amazed
at how many well-known and respected systems have bugs in
their ver::>ions of CP/M. The commonest are as follows:

Failure to produce output on vdu, or crash after disc
access e.g. Zorba.

* 'rhe most likely problem is that the BIOS uses ~:.;ome
Z80 additional registers and fails to restore them.
Use the 8080/CPMl.4 version of xForth.

VDU output anc1 terminal input OK but can't handle (H£;c
files, e.g. listing a file you know to exist gives long
strings of A@ (i.e. nulls), e.g. early ALTOS.

The random access disc routines are not properly
implcm~nted. Use the 8080/CPMl.4 version of xForth.

Cursor fails to appear, but input and output are ok
except that you don't know where you are on scr0en, e.g.
Sharp with Xtal CPM, early Gemini.

* The cursor is flashed in software and is not
interrupt driven. ~he only effective solution is to
insist that your supplier give you a bug-fr0e
version of CPt-1. In the meant:i1ne, put tip with thf.~
lack of cursor or else write your own word to rc:ad
keys (using CPM-·CALL for function 6, for example_~)
and put it in XKEY. You will lose most multitasking
abilities. It miqht b•"' worth trying to build a
fJashing cur~>or with the xForth delay words: sornr:~
character appears for so many clock ticks, then is

removed, then is replaced and so on.

- 21 -

l <.: ()

t tA ~ ... iflf 'i\IJ 'ltf"'IW:k'olulM' 2't"' tm''b --~·_.N!W+ ··....a·ti•'1il.U1nt'.~~~....IJllM!M fM'flll ua.W.ib.MW~ti.,,_.,.,,J~,,~"'~.-..~~~a;r Mt fdliltiiilU~1tliJllft2fl•• ~I'~~"''""'_.. .. ~

~·

xForth 2 (c) Alistair Mees

xForth greatly slows down a system running MP/M or other
multitasking DOS.

* What can you expect when two multitasking
compete for resources! You can re-vector
above, and give up most multitasking, or
persuade other users to use xForth instead!

.. 22 -

systems
KEY as

you can

~'

·'\. xFo~th 2 (C) Alistair Mees

\ f(+:-oe_~ z ~fGffi'D~ ~ J --
Appendix. A

Alphabetic list of words in xForth

A.l Words deleted. _, __________ _

.COVOC .CUVOC ;S (DO) (LOOP) (+LOOP) (OF) BLIS'rS FILE·-INI'I'
INDEX LISTS LIT PRINTER-ON? SEC/BLK TRIAD XCANCEL

Also, OBRANCH has been renamed ?BRANCH and CPM-CALL and
CPM-CALLb have been renamed DOS-CALL and DOS-CALLb

! !CSP II #
#->$ #> #BUFF #files
#S $! $+ $->#
$< $== $FIND ,

s-FCB ,
s-S'.rATUS-BY'l'E 'th-FILE

(ASCII) (EDI'l'OR) (file-voe) (FIND)
(FLUSH) (ID) (LINE} (skip-until)
(skip-while) ([,]Vl\RIABLE) ([]VARIABLE) * */ */MOD + +!
+-· +LOOP ,
--> -1 -TRAILING

" .CPU .LINE .R
.SIZE • STACK .VERSION I
/MOD 0 0< 0=
0> 1 l+ l+! ,L

1.- 1-·· ! 2 2 !
2* 2+ " 2@ ,;.-

2CONS'l'ANT 2DHOP 2DUP 20VER
2HO'l' 2SWAP 2VARIABLE 3
7 9-·S'rANDARD ;CODE
< <# <= <>
<CMOVE> ;:::: > >==
>IN >LINE >R '?
?COMP '?CSP ?DEPTH ?DUP

. 23 -

, '''··~~# ... ~." .. '"~ ,,,~._""'.w,,..;.,.-.. ... ,.,.._....__..-....__.,,, ••.• ._-._..,,..........,, __,.h """~' ·~···"'~ •····~-"'~'-'·'"''~·dwi..-,. ,_,.,,~··"""~'"' '''"~-~ ,,"""*""-.i.."'-•~ .. ,~ --. w.., .·w-,<~, ... ,., ,,.,.,. ·~"''"''""·'"'"~''**' 1'1r*JZ tt#MlitW"1l1'1111J&·ill!f't I.SF i tM • ~

~ .
j xForth 2 (c) Alistair Mees ~ 1
!) ..
l

ij
?ERROR ?EXEC ?LOADING ?PAIRS

1 ?PAUSE ?'rERMINAL @ ABS e :l
-~

AGAIN ALLOT /\.ND ASCII 11
B/BUF BASE BEGIN BELL j 13INARY BL BLANKS BLK l BLOCK BRANCH BUFFER BYE l

1i C! C# C, C/L

'i
C@ CAN-KEY CASE CLOSE
close-files CMOVE: COLD COMPILE

! CON FIG CONS'fANT CONTEXT CONVERT
COPIES COPY COUN'r CR i
CREATE CRS CSP CTRL

:1
CURRENT D+ D+- D-
D. D.R DO< DO=

l
D< D= DABS DECIMAL
DEFAUL'r DEPINITIONS DEL-KEY DEPTH
DLI'rERAL m·mx DMIN DNEGATE
DO DOES> DOS-CALL DOS-CALLb

l
DP DPL DROP DU<
DUP ELSE EMI'rP EMI'rT
EMP'l'Y EMP'rY-BUFFERS ENDCASE END IF
ENDOF ENSURE-LINE EOF ERASE
ERROR EXECU'rE EXIT FALSE
£assign FCREATE FENCE FILE
FILL FIND FIRS'l' fname!
FORGE'r FOR'nl HERE HEX
HLD HOLD I ID. 8 '- IF IMMEDIA'rE in-range? INS'rALL-$$$
I NTH PT-CHAR J L/S LATEST
LEAVE LFA LIST LI'rERAL
LOAD LOOP M* M/
M/MOD MAX MESSAGE MIN
MOD MOVE MYSELF NEGATE
NEXT NFA NOOP NOT
NUMBER OPEN OR OUT
OVER P! P@ PAD
PAGE PFA PICK PREV
OUERY R# R/W RO
R> R@ REPEA'r REPLACED-BY
RESTORE-$$$ REVERSE ROLL ROT
RP! RP@ S->D so
SAVE-BUFFERS SCH SEE SEE-FILE
seg-size SIGN SMUDGE SP!
SP@ SPACE SPACES STATE
STRING SWAP SYS ADAPT SYS FILE
SYSGEN 'rHEN TIB TOGGLE
TRUE TYPE U$ U*
u. U.R U/MOD U<
UCHAH UN'I'IL UPDA'I'E USE
VARIABLE VLIST VOC-LINK VOCABULARY
WARM WARNING WHILE WIDTH
WORD wrap XCUHSOR XNUMBER e - XOFF-CHAR XOK XOR XPAGE

l 7 (\
- 24 -

-d••••11

I.,,.,

XPROMP'r
[,] VARIABLE
{

XROBOUT
(COMPILE]

I

xForth 2 (c) Alistair Mees

XSIGNON
[)VARIABLE
}

·- 25 -

l?'.fl

xForth 2 (c) Alistair Mees

A.3 Voc:._abulary list_~.!}.9_with definitions of new words.

These are all the words in the vocabulary FORTH in xForth 2. Where they are changed from xForth 1 or new to xForth 2, they are defined here. The usual notation of the xForth technical manual is used: stack pictures are of the form

stack before --- stack after)

unless text is read from the input in which case they take the form

Stack items are
$
c
flag
n
u
d
du
addr

!CSP
"

#->$
#>
#BUFF
#files
#S

#TIB

stack before+++ stack after).

string (address and count),
character or byte,
logical,
16 bit integer,
16 bit unsigned integer,
32 bit signed integer,
32 bit unsigned integer, and
16 bit address.

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

(--- addr u

A USER variable containing the length of text in the terminal input buffer when it is being used for input.

iUVARS (--- n)

- 26 -

·-'

LlO

xForth 2 (c) Alistair Mees

A CONS'rANT ret: urning the number of USER variables so far
defined.

$!
$+

·- ai .. £

$->U#

Unchanged
Unchanged
Unchanged

$ --- du flag)

Convert string $ to an unsigned double number and leave the
result under a flag which is TRUE if and only if thP s tr i nq
consisted entirely of digits in the present base.

$<
$=

$break

Unchanged
Unchanged

($ c --- $1 $2 flag) "String break"

If character c is contained in string $, return $1 and $ 2
such that $ is $2c$1 and leave a true flag. If c is not
contained in $ then $2 is empty, $1 is identical with $, and
the flag is false.

$DIR ($ ---)

Send a directory
corresponding to the
contained in string $.

listing to the current
ambiguous file and user

See the entry for DIR.

$FIND

's-fCB

s-name

Unchanged
Unchanged
Unchanged

(file---·$

output device
specification

Return the name of the
assigned to 'file', in the
number in the range 0 to 15.

operating system file currently
form A:NAME.EXT[u] where u is a

's-STATUS-BYTE
'th-FILE
(

(ASCII)

Unchanged
Unchanged
Unchanged
Unchanged

-- 2 7 -

~~

xForth 2 (c) Alistair Mees

(EDITOR) Unchanged
(file-voe) Unchanged
(FIND) Unchanged
(FLUSH) Unchanged

(get) Internal use; do not use.

(ID) Unchanged

(KEY) (-·-- c

The default code for input stream O. (See INPUTS.)
a character typed at the console, calling PAUSE as
necessary if a character is not ready.

(LINE) Unchanged

(prompt) (·-·- -·

The default prompt message: a stack display.

(SIGNON) (--·-

Returns
often as

The default signon co~nand which displays the text printed
after cold start. If the contents of XSIGNON are changed from
CSIGNON) to a user defined word then xForth will execute that
word on startup.

{skip-until)
(skip-while)
((, J VAH. I ABLE)
([]VA!UABLE)

*
*/
*/MOD
+
+!
+-

+LIST

Unchanged
Unchanged
Unchanged
Unchangc~a
Unchanged
Unchanged
Unchanged
Unchanged
Unchangt~d
Unchanged

(u -·--

Cdll LIST for all blocks from block u until a block
starting with EOF is read.

+LOOP Unchanged

I 71'"\

Unchanged
Unchanged

(+++)

xForth 2 (c) Alistair Mees

Ignore all text
being interpreted.
(control/M) during
nonzero, when they

un ti 1 the end of the current input 1 in(?.
Lines are terminated with carriage return

input from all streams except when BT_,f< is
are all 64 characters long.

-->
-1

-'l'EX'l'

Unchanged
Unchanged

(addrl nl addr2 --- n2

Compare two strings over the length nl beginning at addrl
and addr2. Return zero if the strings are equal. If unequal,
return n2, the difference between the last two characters
compared.

-TRAILING

"

.BASE

Unchanged
Unchan9ed
Unchanged

(---

Type the current base, in decimal, on the currently
selected output stream(s), followed by a space.

.CPU

.LINE

.H
• :; I ZE
.STACK

• S'l'ORE

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

(----)

Type on the standard output an unsigned number which is the
number of bytes between the the current dictionary top (HERE)
and the value stored in DICTLIM.

• 'l'ASK (addr ---

For the task whose user variable base is at addr, print its
dictionary name~ on the currently selected output stream(s).

- 29 -

-••nm 11 11 r·w 1

N1W'rttmillillil11tAU:ft"UllWif d!lftdlGi1~•''9't""~~-ttnttsWd' l lll!BJlllUfillf• lltirY,P"
~ "·;

xForth 2 (c) Alistair Mees

.VERSION
I
/MOD
0

0 !

Unchanged
Unchanged
Unchanged
Unchanged

addr ---

Store 0 in the two bytes starting at addr.

0<
Q:::

0>
1
l+
l+!
1-
1-!

lsttirne

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

(---- ud

Leave on the stack a double unsigned number which is the
time the soonest dl::layed task is due to be restarted.

- Undefined if there are no delayed tasks.

I.,.,..

2 Unchanged
2 ! Unchanged
2* Unchanged
2+ Unchanged
2- Unchanged

2/ (nl n2

Replace nl with its arithmetic
shifted right but the hi9hest
Equivalent to floored division by 2,
is -·2.

2@
2CONSTANT
2DROP
2D!JP
20VER
2ROT
2SWAP

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

- 30 ..•

right
bit
i.e.

shift, i.e. nl is
remains the same.
3 2/ is l but -3 2/

- -
- rni a11t11r rmr Nin n 111 r mrn r mr

2VARIABLE
3

4

79-STANDARD

iCODE
<
<#
<=
<>
<CMOVE>

<MARK

Unchanged
Unchanged

Leave 4 on the stack.

Unchanged
Unchanged
Unchanged

xForth 2 (c) Alistair Mees

Unchanged (but see comments on direct thr•?.adcd code
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

--- addr "backward mark"

A system word extension. Used at the destination of a
backward branch. addr is typically only used by <RESOLVE to
compile a branch address.

<RESOLVE addr ----) "backward resolve"

A system word extension. used at the source of a backward
branch after either BRANCH or ?BRANCH. Compiles a branch
address using addr as the destination address.

.::::

>
>=

>BODY

Replace
stack with
address).

>IN
>LINE

>MARK

Unchanged
Unchanged
Unchanged

(cf a --- pf a)

the execution address (code field address) on the
the corresponding body address (parameter field

Unchanged
Unchang1::d

--- addr "forward mark"

A sys tern word ex tens ion. Used at the source of a forward
branch. Typically used after either BRANCH or ?BRANCH.
Compiles space in the dictionary for a branch address which
will lctter Ge resolved by >RESOLVE.

- 31. -

L 7' n

xForth 2 (c) Alistair Mees

>R Unchanged

>RESOLVE (addr --- "forward resolve"

Used at the destination of a forward branch. Calculates
the branch address (to the current location in the dictionary)
using addr and places this branch address in the space left by
>MARK.

Unchanged ?
?BRANCH
'?COMP
?CSP
?DEP'l'H

Same as OBRANCH in xForth 1.
Unchanged
Unchanged
Unchanged

?DIC'l' (---)

Check that the PAD (which lies
bytes below the . value stored in
not.

?DUP
?ERROR
?EXEC
?LOADING
?PAIRS

?PAUSE

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

Unchanged.

above HERE)
DICTLIM and

is at least 96
call ERROR if

But note that if output is suspended using XOFF-CHAR other
tasks may still execute.

?STACK (---)

Check that the stack pointer lies between Sl @ and SO @,
and that the return stack pointer lies between Rl @ and RO @,
and call ERROR if not.

?TERMINAL
@

ABOR'r

Unchanged
Unchanged

(---)

- 32 -

L Z 0

xForth 2 {c) Alistair Mees

Clear the stack and call QUIT. No message is printed.

ABS Onchan0ed

active (--- addr

A variable which points to the tail of the circular list of
currently active tasks.

advance (addr --·-)

Adjust the circular list tail pointer stored in addr so
that the current head becomes the tail and the successor of
the current head becomes the new head.

AGAIN
ALLO'r
AND

append

Unchanged
Unchanged
Unchanged

(addrl addr2 ---)

Add the item at addrl to the circular linked list whose
tail pointer is addr2. Used typically to append the task
which has user area base at addrl to the tail of the circular
list whose tail pointer is at addr2.

ASCII Unchanged

AVAILABLE (addr ----·

In conjunction with WAIT, manage a two-state semaphore.
'rhat is, assuminq addr is the addre~;s of a semaphore, c11c:'ck
whether there are any tasks queued by the semaphore. If so,
remove the first in the queue and add it to the tai 1 of the
active list, but do not call PAUSE. If then~ are no ta::;k::;
queued, set the ~:;emapbore's counter to 1. See WAIT and
SEMAPHORE and S.LCNAL.

B/BUF'
BASE
BEGIN
BELL
BINARY

Unchanged
Unchanged
Unchan9cd
Unchanged
Unchan9ed

- 33 -

-·

I.,,,...

xForth 2 (c) Alistair Mees

BL Unchanged
BLANKS Unchanged
BLK Unchanged

blkdestroy (u ---)

If virtual memory block u is in a buffer, mark the buffer
as empty without writing its contents to disc.

BLOCK
BRANCH

BTASK:

Unchanged
Unchanged

(+++)

Define a background task; that is, allocate space for 12
USER variables (the only public ones being SO Sl RO Rl XERROR
INPUTS OUTPUTS restart-time) and initialize them according to
the pattern in btaskframe, but with the values offset
correctly. Then perform various pre-initialization tasks, and
finally switch to compilation mode. If • ~~ is executed
successfully the-result is to define a background task that is
initially in the stopped state. A background task has only
the user variables indicated and in particular has no
dictionary or PAD so it may not call WORD .H #->$ $+
LOAD-FILE DIR or any other number formatting word or string
handling word Cor any other word) that uses the PAD.

btaskf rame (---- addr)

The address of a 4 byte region which is used to determine
the size of the stacks in a background task. The values are
the size of the stack and the size of the return stack in that
order. On deli very the stacks are both 4 0 (dee imal) bytes
long.

BUl''FER Unchanged

BUFFER: (n +++

Define a buffer of
10, 000. This buffer is
'deposit' and 'fetch'.

size n, where n 1 ies between 1 and
only to be accessd via the monitors

Example:

1000 BUFFER: printbuffer

When ·pr in tbu ff er' is execu tea it leaves . its address on the
stack. See also 'buffinit' which is called on buffer creation

- 34 -·

-'**••11 •.• ,, a121meumn·te it r •. ._,,·sril

l 7 ()

x~0rth 2 Cc) Alistair Mees

but may be called, with care, at other times.

buffinit. addr ---)

Initialize the buffer at ~addr' so that it is empty, has no
waiting tasks, and is ready for use.

BYE Unchanged
Cl Unchanged
Cf Unchanged
C, Unchanged
C/L Unchanged
C'J ~. Unchanged
CAN-KEY Unchanqed
CASE Unchanged

CF'A pf a ---- .cfa)

Return .the
corresponding to
the stack. Not
xForth 1.

execution address (code field address)
the body address (parameter field address) on
necessarily equivalent to 2- as it was in

CFA->NFA (cf a --- nfa)

Return the code field address corresponding to the name
field address.

cb-in-str? (c $ ---- n)

If character c i.s
position in the string
l) • If not, return 0.

to be
(with

CLOSE
close-files
CMOVE

Unchangl~d

Unchanged
Unchanqed

found in string $,
the first character

return its
tn::ated as

COLD
COMPILE

Unchanged in meaning; does additional jobs.
Unchanqed

CON FIG
CONS'l'AN'r
CON'l'EX'l'
CONVEH'l'

Unchanged
Unchanqcd
Unchdn~red
Unchanged

- 35 -

. _ _.._,.,. e tt* P: !
1

@i&'fr
5

" ,.,.rt r=u •• tt't'UHt Mt'Wn#tt M1 bNSWM·tettt'•lt'MttMt*rf#rt#Mtt 'Ntm C'#fltmersm·rr Ui1Ml'721'!"MI•--"

l 7. 0

xForth 2 (c) Alistair Me0s

COPIES
COPY
COUNT

CR

Unchanged
Unchanged
Unchanged

Unchanged

But note that it calls ?PAUSE as it has done since xForth
1. 21

CREATE
CHS

CS-S1ZE

Unchanged
Unchanged

(--- n

Return the number of bytes in the cold start table which is
used to initialize the USER variables from SO up.

CS-TABLE (--- addr)

Return the address of the cold start table. See CS-SIZE.

CSP
CTRL
CUHHENT

CURSOH

Unchanged
Unchanged
Unchanged

(row col ---)

Move the cursor to the given row and column, and set OUT to
the value of col and >LINE to the value of row.

D+
D+-
D-
D.
D.R
DO<
UO-=
D<
D=
DABS
DECIMAL
DEFAULT

defdrv

Unchanged
Unchanged
Unchangt:~d

Unchan9ed
Unchanged
Unchanged
Unchanged
Unchanged
Unchanqed
Unchanged
Unchangi~d

Unchanged

(--- n)

- 36 -

· --· •wmnr nu I t'•• 1

I ?n

xForth 2 (c) Alistair Mees

Return the presently selected drive known to CP/M as the
default drive.

DEFINI'rIONS Unchanged

def user (--- n

Return the CP/M user number that was in force the last time
COLD was called. This will be used by file operations
(including DIR) if no user number is specified. Typically O.

De:L-KEY Unchanged

delayed (--- addr

A semaphore used by the clock monitor to hold a queue of
tasks waiting to be restarted when the value returned by
- time'. becomes 9reater than or equal to their restart-times.
Not for use. except by the clock monitor.

DELI\ YUN'r IL (ud ---)

Set the USER variable 'restart-time' to ud.
the present task from the active 1 ist and insert
list managed by the semaphore 'delayed', such that
in increasing order of restart times.

deposit c addr ---)

Then remove
it into the
the list is

A monitor for buffers. If the buffer at addr is not full.,
deposit byte c in the buffer, and signal that the buffer is
not empty. If the buffer is full, remove the present task
Crom the active 1 is t and add it to the queue managed by the
buffer and it~ monitors.

DEPTH Unchan9ed

DICTLIM (---"- addr u

A USEH variable containing the address used by ?DICT to
determine whether the dictionary is within bounds. Set on
delivery to be 2 less than the contents of Sl.

- 37 -

. -• , • ., •*""'-- ••illlloffiilll 1 ttJew01t1i'11J;i1;~~.11i &iA~wMtl!f1il'~W~ll!ifA.~dili~lliw'lfl'lflMlllllM!,,.,,

xForth 2 (c) Alistair Mees

DIH (+++)

Read the next WORD, delimited by blanks, from the currently
selected input stream. Convert all letters to upper case and
then at Lerrpt. to inter pr et it as an ambiguous file and user
specification (afus) as follows:

afus: drive:name.ext[u]

where 'drive:· is any drive specification legal for the
system, name is up to (l characters legal for CP/M fill~
names, together with ? and * with their usual meanings; 'ext'
3 such characters; and 'u· is a user number in the range 0 to
l'S. All parts are optional and have defaults defdrv for the
drive; defuser for the user number; and empty for the name and
exten~;ion except that if both are empty they are treated as ' * * ~

DLITE!{AL
DHl\X
DMIN
DNEC;ATE

Unchanged
Unchanged
Unchanged
Unchanged
Unchan9ed
Unchanged

l 7: ()

DO
DOES>
DOS-CALL
DOS·-CALLb
DP
DPL
DRCW
DU<
DUP

echo

Unchanged (but was called CPM-CALL in some versions).
Unchanged (but was called CPM-CALLb in some versiocs).
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

(--- addr

A variable which is used by LOAD-FILE to determine whether
each line of input from streams other than the terminal or
. BLK f i 1.es is to be copied to the currently selected outputs
b(~fore it is interpreted.

ELSE Unchanged

EMI'I' (c --·--

Send the character c to each of the currently selected
OU tpu t streams. See OU'rPUTS and XEMI T.

- 38 -

,,

l 7 ()

· ·--•· ,.,,,, ·-w"te•·• cw'rotn wu .. ,._:: ::::: :::;:::::::::t';t'lt;; : ,;::::: .::::: .:.J
xForth 2 <cl Alistair Mees

EMI'rP
EMIT'r
EMP'rY
EMP'rY-BUFFERS
ENDCASE
ENDIF
ENDOF
ENSURE-LINE
EOF

eof?

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

(--- flag

A constant used by EXPECT to signal to LOAD-FILE that the
end of file has been reached on an input s tr earn. See EXPEC'I'
and XEOF.

eol? (--- f l.ag }

Return TRUE if a return AM or an end of file ~z has just
been read, .or if at the end of a block when BLK is nonzero.

ERASE Unchanged

ERR> IN (--- addr

A variable which is set by s•ro-ERROR to the value of >IN
when the error occurred. Used by WHERE.

ERHBLK (--- addr)

A variable which is set by s·ro-ERROR to the value of BLK
when th~ error occurred. Used by WHERE.

EHROR
EXECUTE

exist-delayed

Unchanged
Unchanged

(--- addr

A semaphore u:>c~d to put the clock monitor into
state if there are no delayed tasks to execute.
used except by th1~ c Lock monitor.

- 39 -

a waiting
Not to be

-

L (; 0

xForth 2 (c) Alistair Mees

EXIT Unchanged. (The code compiled by';')

EXPECT addr n ---

Reads up to n characters from the currently selected input streum and stores them in a string beginning at addr. Allow editing by character and line deletion when the characters in DEL-KEY and CAN-KEY are received. 'I'he string is terminated
when n characters have been read, or if return "'M or end of file ''Z is read. A space is output if return is read. The
USER variable SPAN is set to the number of characters actually put in the buffer. Tabs are expanded to multiples of 'tabsize', line-feeds are ignored, and AZ, as well as being treated as a carriage return, causes the code in XEOF' to be executed after the line has been interpreted. These changes are to allow input from text files. See LOAD-FILE.

EXPECT$ (addr n --- addr n'

As EXPECT but return the string read.

fallocate file --- n

If the file is already allocated to a virtual memory segment, return the number of the segment (0 to #FILES-1). If the file is not allocab'!d, allocate it an unused segment if tht.'!re is one and return its number. Otherwise return 0. (Note that SYSFILE is permanently allocated to segment 0.)

FALSE
f assign
FCREA'l'E
Fl::NCE

FENCE-BELOW

Read
blanks,
Example:

the
and

Unchanged
Unchanged Cbut it is better to use fallocate).
Unchanged
Unchanged

next
call

+++)

word from
ERROR if

the
it

input stream, delimited by
is not in the dictionary.

FENCE-BELOW word

Then s~t the value of FENCE to what HERE was before 'word- was
created.

- 40 -·

·~

L 7 n

xForth 2 Cc) Alistair Mees

fetch ad,1r --- c)

If the buffer at addr is nonempty, removi? a character c
from it and signal that it is nonfull. If it is empty, remove
the current task from the active list and put it on a queue
managed by the buffer and its monitors deposit and fetch.

FILE
FILL
FIND
FIHS'r
fname!
FORGET
l•'01«rH

f relc.::ise

Unchangt"!d
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

n -·--

Clo~:ll.~ the file th,1t. is all.ocab:id to virtual memory :::;eqmc~nt
n,, and ma.rk the ::;eg::.k·nt as unused.

GE'l'··FILE (u --- ul addr)

GiV\~n a virtual memory block mrn1'.:1er u, return lh<~ addr·~~:;::;
of the corn~spondinq file and tbe operating system sector u]
of the star·t of tnat block.. If the block corresponds to no
file, call RHHQP.

get.user (-·-- n

Return the presently select0d CP/M user number.

HEHE
11 l·~X
llLD
fl OLD
I
ID.
IF
LMMEDlATE

in-addr

Unchanqed
L' ncha ntJed
:,'. nc ;!a rJ(J cd
! ! :1c han(y.:d
Unch<:HHJC'd
c1nchanq.:~d

Unchang~~ci
Unchanqed

(--·- addr

Rc~turn the: ,,,ddn::;:; of the next char•1ctt?.r to be read when
interpret.in').

- 41 -

l c::o

xForth 2 (cl Alistair Mees

in-range? Unchanged

I\JPUTS (--- addr u
A US ER variable whose least s ig ni f ican t 4 bi ts determi n1;; wrld t input. st ream is selected when BLK is zero. KEY wi 11 take: inrut from the stream with the lowest bit set; conventionally, s•oc'tti.n<J the lowest bit by 'l INPUTS ! ' will cause input to be ta~~n Erom the CP/M terminal device. If INPUTS is 0 then EOF i:; rt:: turned by KEY. See KEY and XKEY.

INST/\LL-$$$
IN'l'!~l{Pl\~'.T

T:'\J'J'i{P'l'-CrJAR
,J

KEY

Unchanged
Unchanged (but vectored through XINTERPRET).
Uncban1~ied
Unchan9ed

--- c

u the 4 low order bi ts of INPUT~; are set to 0, return EOF. OtherwL;c, oxecute the code pointf::!d to by the element of XKl~Y corresponding to th.;: lowest order set bit of INPU'I'S, e.g. if KEY is set to 8=2-3 then execute the code at XKEY+2*3=XKEY+6. See INPUTS and XKEY.

L/S Unchanged

LJ\S'l'-KEY (--- c

Return the last byte input from the CP/M terminal device.

LATEST
u: r, v : ·:
LFA

LIM l 'l'

Unch.::ingcd
Unchanqcd
UnchaniJ(·~c1

(---- aJdr

t~:x~~cute tht:~ code pointed to by XLIMIT. Used by COLD to ~etermine how much space is availabl0 for xForth; 'addr" ~; hou ld be 1 more than the last address permitted.

LIST Unchansed

LTS'J'-FILE (t++)

- 4? -

. J

xForth 2 (c) Alistair Mees

Read a word from the input stream delimited by blanks, and attempt to interpret it as an unambiguous file and user :
0;pec if ica ti on. If unsuccessful, call ERHOR. Otherw i~;E~, .i [the file does not exist, call ERROR. Otherwise, if th(:: f de is a ~BLK file then list it in the format used by LIST. Oth2rwise, list it as an ASCII file, expanding tabs to multiples of 'tabsize 1 and calling PAGE whenever control/L is read. Output goes to all currently selected output streams; line feeds AJ are ignored and carriage returns AM cause CR to be called.

LITERAL
LOAD

LOAD-FILE

Unchanged
Unchanged

(+++)

Read a word from the input stream delimited by blanks, and i1ttempt to interpret it as an unambiguous file and user ~>pccification. If unsuccessful, call ERROR. Otherwise, if the file does not exist, call ERROR. Otherwise, if the file is a .BLK. file then load its first block using LOAD. Otherwise, select input stream 2 (i.e. set INPUTS to 4) and interpret one file of input; if the variable ~echo- is set to TRUE then reflect e~ch line of the file to all currently selected outputs before attempting to interpret the line • Note that even although BLK is set to 0, the normal rule~:: about terminating contmen ts and execution conditionals (delimited by parens () and braces {}) are relaxed. The input file is terminated by EOF i.e. ~ Z. Files for loading may be nested and .BLK and others may be mixed arbitrarily.

LOCAL (addrl addr2 --- addr3)

Given the USER variable address addrl for the current task and the user variable base addr2 (typically belonging to another task) return the corresponding USER variable address for that base. Example:

LOOP
M*
M/
M/MOD
MAX

rnaxdrv

SO depthtask LOCAL

Unchanged
Unchdnged
Unchanged
Unchanqed
Unchanqed

(-·-- n)

-· 4 3 ·-

llO

xForth 2 (c} Alistair Mees

Return the number of drives xForth thinks the system has.

MESSAGE
MIN
MOD
MOVE
MYSELF

n-'rI\B

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

u ---)

Used for zoned printing. Output one or more spaces to make
OUT d multiple of u, if this is possible without OUT exceeding
C/L, and provided there would still be at least u po~;itions
left on the line. Otherwise execute CR.

NEGA'I'E
NEX'l'
NFA
NOOP
NO'I'

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

not-in-memory? Internal use. Do not use.

NUMB EH
OF

of£

Unchanged
Unchanged

(addr ---·

Set the two bytes at addr to FALSE.

on (addr ---)

Set the two bytes at addr to TRUE.

OPEN
OH
OU'r

OUTPUTS

Unchanged
Unchanged
Unchanged

(--- addr u

A USER variable determining which
se lee tcd. EMIT sends its byte to each
!5Ct; th,~re are 4 streams, corresponding
bits of OUTPUTS. Conventionally, output
(i.e. the CP/M standard output device).

- 44 -

output streams are
stream whose bit is
to the 4 low order

stream 0 is the VDU
OUTPUTS is set to 1

J

L C: 0

xForth 2 (c) Alistair Mees

on cold start and after errors, so that output goes to the VDU
in such cases.

OVER
Pl
P@
PAD
PAGE

PAUSE

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

(---)

Move the present task to the tail of the active list and
transfer control to the task which is now at the head of the
active list. Should always be used in "busy waits" (loops
which do nothing while waiting for some event to happ(:;n such
as a key press) though semaphores are the preferred and
usually more efficient way to handle cases such as th is. Is
implicitly called by KEY if there is no character waiting to
be read, and by ?PAUSE· if the output pause character in
XOFF-CHAR has been pressed.

PFA Unchanged

physical-eof? (--- flag

TRUE if the last disc input operation attempted to read an
unallocated operating system sector. ·

PICK Unchanged

PHEV Unchanqed

PROTECT

Unchanged except that it calls EMP'tY after setting other
variables. This ensures the vocabulary links are correct.

QUERY Unchanged

QUIT ----)

If the current task is the main user task,
stack, set interpret mode and select
Otherwise, put the task in the stopped state.

- 45 -

clear the return
console input.

·-·

l (; ()

xForth 2 (c) Alistair Mees

R# llnchanqed
H/W Unchanged
RO Unchanged

Hl (--- addr u

A USEH variable containing the return stack lower bound;
used by ?STACK in checking that the stack is within bounds.

R>
R@

remove

Unchanged
Unchanged

(addrl --- addr2)

Assuming addrl 1s t.he address of a. variable which is a
circular list tail pointer, remove the head of the list and
leave its address addr2. ·Typically used to remove a task from
a queue.

REPEA'r
HSPLACE:D-BY

restart-time

Unchanged
Unchanged

(---· addr) U

A USER 2VARIABLE containing the time a task will be
res tarted by the clock monitor. Only valid when the task is
on the list managed by the semaphore ~delayed-.

HES TORE-$$$
REVERSE
ROLL
RO'r
RP!
RP@
S->D
so

Sl

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchan9ed
Unchanged

(--- addr u

A USER variable containing the stack lower limit. Used by
?STACK to check that the stack is within bounds.

SAVE--BUF'FEHS Unchanged

l 7. 0

xFo~th 2 (c) Alistair Mees

SCR
SEE
SEE-F'ILE
seg-size

SEMAPHORE

Unchanged
Unchanged
Unchanged
Unchanged

(+++)

A defining word used to define semaphores as in

SEMAPHORE printer

which defines a semaphore called 'printer'. When 'printer··
executes it leaves its address on the stack. Typical usage is

printer WAIT
Some operations

using the printer
printer AVAILABLE

See AVAILABLE and SIGNAL and WAIT.

setuser (n --- }

Set the current operating system user number to n.

SIGN Unchanged

SIGNAL (addr ---

In conjunction with WAIT, manage a counting semaphore.
That is, assuming addr is the address of a semaphore, check
whether there are any tasks waiting in the semaphore 1 s queue
and if so, transfer the first one to the tail of the active
list but do not call PAUSE. Otherwise, increment the
semaphore's count by one. SIGNAL is mainly useful in buff er
management but is included since counting semaphores have
other uses. For normal use, AVAILABLE is more appropriate.

skip-until (c ---)

Advance the input pointer >IN until a character equal to c
has been reached or the end of file is reached. In th is
context, a file is any of

1. A line of input when BLK is zero and the input stream is
not 2;

- 47 -

-

-

xForth 2 (c) Alistair Mees

2. A complete ASCII file terminated by EOF when BLK is zero
and the input stream is 2;

3. A lK block of virtual memory when BLK is nonzero.

In case 2 a new line is read into TIB and >IN is set to 0 if
the end of a line is reached.

skip-while (c ---)

Advance the output pointer until it points to a character
other than c or until the end of file has been reached. A
file is defined in the same way as for -skip-until'.

SMUDGE Unchanged

SOFTWRAP (--- flag

A constant that is TRUE except in Torch/BBC systems; it
causes AEMIT to call CR if there is insufficient space on the
line for the character it is outputting, as measured by the
contents of OUT compared with the value of C/L.

SP! Unchanged
SP@ Unchanged
SPACE Unchanged
SPACES Unchanged

SPAN (--- addr u

A USER variable set by EXPECT to the number of characters it. actually read.

STAR'r addr --- }

Assuming addr is the address of the start of the user
variable area of a task and assuming that task is in the
stopped state, initialize it to start executing at the
beginning of its code and append it to the tail of the active
list. · Then call PAUSE. If the task is not in a stopped state
the effect is undefined (and often disastrous).

STATE Unchanged

- 48 -

·~

L C: 0

xForth 2 Cc) Alistair Mees

STD-ERROR (n ---)

The standard xForth error routine which outputs, on stream
0 and any other streams currently selected, an error message
which has been read from disc if the low order bit of WARNING
is set and a numeric error message otherwise. Then it sets
OUTPUTS to 1 (i.e. selects output stream 0) and calls QUIT.

S'I'OP addr ---)

Assuming addr is the address of the beg inning of the user
variable area of a task, and assuming the task is on the
active list but is not executing, set its next instruction so
that it will be removed from the active list and put in the
stopped state as soon as it attempts to execute.

STRING Unchanged
SWAP Unchanged

SYSADAPT Unchanged

SYS FILE Unchanged
SYSGEN Unchanged

TAB (n ---)

If the contents of OUT are greater than or equal to n, do
nothing. Otherwise, call SPACE often enough to make the value
of OUT equal to n.

tabs.ize (--- n

A constant used Cby the screen editor and by EXPEC'l') to
determine the width of a tab stop. For example, EXPECT will
convert a tab character one or more spaces so as to make the
number of characters input equal to a multiple of tabsize.

TASK: (+++)

Define a foreground taski that is, allocate space for
#UVARS USER variables and initialize them according to the
pattern in taskframe, but with the values offset correctly.,
Then perform various pre-initialization .tasks, and finally
switch to compilation mode. If ' "" is executed successfully

- 49 -

-

l 7. 0

xForth. 2 (c) Alistair Mees

the result is to define a task that is initially in the stopped state. A foreground task may perform any functions but typically only has a small dictionary area used mainly for the sake of its PAD and to allow WORD to be called. Unlike a background task, it has a terminal input buffer and a PAD; it may use all file handling, string handling and number formatting words.

taskf rame addr)

The address of an 8 byte region which is used to determine the sizes of the stacks, of the terminal input buffer, and of the private dictionary in a background task. 'I'he values are the size of the stack, the size of the return stack, the size of the terminal input buffer and the size of the dictionary area in that order. On delivery the sizes of both stacks are 128 bytes, that of the TIB is 86 bytes and that of the dictionary is 192 bytes. Note that the PAD is 68 bytes above the dictionary pointer and is used widely, so do not make the dictionary area too small. On the other hand, it is often acceptable to make the size of the TIB zero since this is not normally used except during compilation.

THEN Unchanged
TIB Unchanged
TOGGLE Unchanged
TRUE Unchanged
TYPE Unchanged
U$ Unchanged
U* Unchanged u. Unchanged
U.R Unchanged
U/MOD Unchanged
U< Unchanged
UC HAR Unchanged
UNTIL Unchanged

UPI (u ---)

Set the user variable pointer to u. VERY DANGEROUS. Used by the ~windows' demonstration to fool a word into saving or restoring the main user task 1 s variables instead of those of the calling task.

UP@ (--- addr)

- 50 -

. _J

l~O

xForth 2 (cJ Alistair Mees

Leave on the stack the address of the beginning of the user
variable area for the present task. J.i'or sys tern use, but may
be useful in allowing a word to determine what task is calling
it.

UPDATE
USE

USER

Unchanged
Unchanged

(+++)

Define a new USER variable, incrementing #UVARS so that the
next defined USER variable will have a unique location. Note
that COLD leaves space for 16 new user variables to be
defined.

VARIABLE
VLIST
VOC-LINK
VOCABULARY

WAIT

Unchanged
Unchanged
Unchanged
Unchanged

addr ---

Assuming addr is the address of a semaphore, check whether
its count is nonzero. If this is the case, decrement the
count and continue execution. Otherwise, remove the present
task from the active list and transfer it to the tail of the
semaphore's queue and transfer control to the new head of the
active list.

WARM
WARNING

WHERE

Unchanged
Unchanged

(---)

Invoke the screen editor with the cursor at the block and
position within the block given by the contents of ERRBLK and
ERR> IN.

WHILE
WIDTH
WORD
wrap
XCURSOR

XEMIT

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

(---- addr

- 51 -

··-"'"'""''--' ••-·-· _ -•, tHlw•·• ••••••••·-··-••""'·,...,....,. •-,,-•'-MiM*WIW .. ,..'=111·&
1 •r 1111o•illiw-·~a.ccMWft"lll'1•,,..,.~1A--M•M1111 H18111'.•IHll-illlitMtlft1H'tt·•

-

xForth 2 (c) Alistair Mees

Leave on the stack the start of a region containing 4 execution addresses which are used · by EMIT when the corresponding bi ts of OUTPUTS are set. Thus when the low order bit is set, the action is XEMIT @ EXECUTE, when the cext bit is set it is XEMIT 2+ @ EXECUTE and so on.

XEOF (--- addr)

An execution variable containing the code to be called when EXPECT reads the end of a file when INPUTS is set to 4 (i.e. input stream 2 is selected).

XE RR OR < --- addr >

An execution variable containing the code to be called by ERROR. Set to STD-ERROR on delivery.

XINTERPRET --- addr

An execution variable containing the code called when INTERPRET executes. Used by the metacompiler; lethal; avoid.

XINTRPT (--- addr)

An execution variable containing the code called when the user interrupt key contained in INTRPT-KEY is read by ?PAUSE.

XKEY --- addr)

Leave on the stack the start of a region containing 4 execution addresses which are used by KEY. The code corresponding to the lowest order set bit; of INPUTS is called. Conventionally, the low order bit corresponds to the operating system standard input.

XLIMIT

An
LIMIT.

--- addr

execution variable containing
Set to '6 @~ on delivery.

- 52 -

the code executed by

XNUMBER
XO FF-CHAR
XOK
XOR
XPAGE
XPROMPT
XRUBOU'l'
XSIGNON
[
[,]VARIABLE
[COMPILE]
[]VARIABLE
]

A EMIT

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

c ---

xForth 2 Cc) Alistair Mees

Strip the high order bit of c so it lies in the range 0 to
127. If it is 127, discard it and call • " ... ?" while if it is
32 to 126 inclusive, call EMIT for the ~alue on the stack. If
it is 13 (... M} call CR; if· it is 12 C ... L) call PAGE; if it is 10
(AJ) ignore it; if it is 9 (... I) tab to the next multiple of
tabsize. Otherwise output a caret ... followed by the stack
value plus 64, so that 3 is output as ... C and so on •

... TYPE ($ ---)

If $ has length zero, do nothing. Otherwise, call "'EMIT
for each of the characters in the string in turn.

Unchanged
Unchanged
Unchanged

- 53 -

	Table of Contents
	Your New xForth System
	xForth 2 Source Code Disc
	Addtional Notes
	1. Updates in xForth 2
	2. Multi-Tasking in xForth
	3. Trouble
	A. Alphabetic List of Words in xForth

