
XFORTH

by A.I.M. RESEARCH

,.,.)

L~O

Table of Contents

Chapter 1 Preliminaries.

Chapter 2 First Steps.

Chapter 3 Manipulating the stack.

Chapter 4 Defining your own words.

Chapter 5 Loading and listing definitions
commands ff'"Offi disc.

Chapter 6 Control Structures.

Chapter 7 Constants and variables.

Chapter 8 Text strings and characters.

Chapter 9 Virtual memoryu

Chapter 10 Interfacing with the operating

Chapter 11 Other topics.

Appendix A The screen editor.

A.1 Star·ting up the editor.
A.2 Using the editor.
A.3 Changing the key bindings.
A.4 Editor-related functions.

Appendi >< B Us:i ng the FIC:i Edi tor.

B.1 Loading the editor
B.2 Selecting a block and input of text
B.3 Line editing
B.4 Cursor control and string editing
B.5 Block editing commands

and

system.

Appendix C The demonstration package and the basic

1-l

2-1

3-1

4-1

5-1

6--1

7-1

8-1

9---1

10-·1

11--1

A-1

A-2
()-7

A--1

B--1

13--· 1
B·-2
B-3
B-4
B-6

examples. C-1

C. 1 Jack
C.2 Fractions

C-1
C·-2

l i'. ()

C.3 Random numbers.
C.4 The Sieve of Eratosthenes.
C.5 The eight queens problem.
C.6 Quicksort.
C.7 SEARCH
c.a crypt
C.9 The ~to solution~.

C.10 Easter
C.11 Hamurabi
C.12 Exponent
C.13 Life
C.14 DisForth
C. 15 New--loop
C.16 Modules

Appendix D The Filing System.

D.1 Random access files.
D.2 Sequential input/output.
Ds3 Some other useful words-

Appendix E The debug package.

E.1 Protection.
E.2 Tracing.

Appendix F The assembler.

Append i >< G Adapting your system

G.1 General
G.2 Basic terminal handling.
G.3 Cursor addressing
G.4 The screen editor.
G.5 Removing the screen editor
G.6 Prompts and showing t.he stack

AppendiK 1-1 Bugs.

C-2 -C·-·2
C-3
C-4
C-5
G-5
C-5
C-··6
C-7
C-7
C·-7
C-8
C·-8
C-9

D-1

D-2
D--5
D-7

E--1

E·-2
E·-3

F-1

G-1

G-1
G--2
B-3
G-.-.'t
G--4
G·-4

H·-·1

J

l 7, 0

Cc> A.I.M. Research

How to u1u1 thi 111 manual,.

Although this manual cannot teach you all about Forth, it
"''ill help you gf:?t started.. The best way is to read Chapter·s 1
and 2 first, then work through Chapter 2 at the console. After
that youpll be ready to read the rest of the Chapters and as
much of the technical material in the Appendices as you need.
Even by the time you reach Chapter 8 you 7 ll be able to do far
mare than most Basic systems would allow.

The FORTH--79 and >{For-1:h reference 1 i sts summa.r-i ze the
me~nings of all the xForth words described in the text and more
besides. It may be worth sticking them on the wall near your
terminal.

Studying the examples on your disc in conjunction with the
Appendb: descr·ibing them will pr-obably help you get a ·h~el for
Forth programming, as long as you've worked through the basic
materi.al first. The scn .. "en editor source codt'! in the file
SEE.BLK also shouldn't bt'! t0<:1 hard to follo~..e and is a good
example of a non-trivial program coded easily in xForth. Note
that the editor has been written to be simple to modify rathar
than with 'aff iciency' in mind; this editor spends most of its
time waiting for the user anyway. You should find it
reasonably easy to produce your own customized version (but
remember the xForth licence covers the design and original
coding so you may not sell or give away the modified version>.
The system source code on blocks 30 to 42 is hardt~r to foll 01''1 1,

mainly because it uses xForth words that are only defined in
the xForth Technical Manual, but you can still get some feel
for what's going on.

To learn more about Forth,
For·th Interest Group <FIG>.

your best bet is ta join the

Its address is

for U.K. users a

Forth Inte1~est

Forth Interest Group,
P.O. Bo>< 1105,
San Carlos,

Koc~.:-\(. ~-tf.:T1:>.\.. ,
~-\.8A 6-i;~ ((? ~C.. ..II; l ~ (0 l<')
(CIJ '(fJD t+--1\1\1\. c b:::Se . ..t-~T

"')00'1:'> 1.-,~-y

f...f~I tJlr fu

r mrr·m I

for others.

CA 94070,
USA

Cc> A.I.M. Research

The best teaching book is usually considered to be
•starting For-1 th• by Leo Brodie, published by Prentice-Hall in
1981. It is likely that the BBC book will also be goodJ even
though it is aimed at Forth for the BBC microcomputer, most of
it will be applicable to wForth because xForth obeys the
Forth79 standard.

l i".O

Watch for magazine articles; most of the computer· magazines
have had articles on ForthJ for example, Computing Today had a
whole series in 1981-82 and Byte had a special issue on Forth
in August 1980.

.'#tttMd#!f'' 41t••·~ ll"1't'

t ?'. n

<c> A.I.H. Research Preliminaries.

Chapter 1

Preliminaritta.

Forth is a computing language that at first sight is very
different from most others. It~s best if you temporarily
forget what you already know about computing and read this
introduction with an open mind.

To use
needn•t be
non- blank

·+.+

xForth, you type
English wards:
ASCII characters,

+ dog Dog DOG

~wards~ at a terminal. The words
a word is in fact any sequence of

up to 31 characters long, so

+dog dog+ dogs 1 •
'

are all (different> possible xForth words. The xForth system
reads the first word that is,. after you type a carriage
return to tell it you're ready, it takes the first sequence of
non-blank characters. It looks up the word in a dictionary
that is built into the system. If it finds the word, it
performs <m action that has previously been defined for that
word. Then it goes on to the next word, and so on until
there's nothing left to read, when it waits for you to type in
more words. This process of looking up words and obeying their
definitions is called interpreting, and the part of xForth that
does the job is called the interpreter.

It may be helpful to think of xForth words as like English
verbs, which also describe actions. Some verbs in English
don't need a noun after them ('yawn') while o~hers do need a
noun after them (~do something~>. Similarly, some xForth words
can act on their own, as in BELL which sounds the terminal's
noise-maker, while others operate on words that follow them and
that the xForth interpreter hasn"t seen yet. An example is
VARIABLE which takes the next word and adds it to the
dictionary with an appropriate definition so that VARIABLE x
acts in much the same way as you•d expect it to in any
l anguaga.

Writing programs in Forth consists of defining sequences of
actions in terms of existing words, and assigning the sequences
to new words which are added to the dictionary. You"ll learn
how to do this in Section 4, but the idea is to end up being
able to type, say,

1-1

-11'1111

Preliminaries. Cc> A.I.M. Resear~h

3 frames

t.o do three frames of your animation program, or

Saturn-probe

to run your video game. The process of word building is he~l ped
by the controlling wards already in the dictionary that let you
handle conditionals, loops and so on.

Of course, the different words will have ta communicate
sc.1mehow and in Forth most messages are sent simply by being
left on a stack for the next word to pick up. The stack is
just like a tidy pile of papers1 most words pick messages off
the top of the pile and leave others there, rather than making
.an untidy mess· by scr·abbling around lower down the pile. To
help beginners (and experts who admit they sometimes make
mistakes> xForth is initially set up to show what 7 s on the
stack every time control is returned to the terminal. A side
effect of having a stack is that arithmetic can be done using
~reverse Polish 7 notation very easily, so Forth systems arenpt
u5ually supplied with a direct means of understanding the usual
algebraic type of notation. One could be supplied, but 1tKJst
programmers find the rewards of programming directly with the
stack once theypve got used to it - are so great that they
never get round to writing an algebraic expression parser.

Even if you haven~t followed everything that 7 s been said so
far, go an and read the next section and try out t.he examples.
You•11 find it's really easy.

t-2

l c; 0

(c) A.I.M. Research First Steps.

Chapter 2

First Steps.

You are now ready to start using xForth, though it's worth
skimming through this chapter before actually sitting down at a
terminal with it.

You'll certainly make the odd typing mistake when using
wForth, so make some now and correct them& unless you chose
some> other char·a.cter during the CONFIG process, xForth re!Sponds
to backspace <control/H if you haven~t a backspace key) by
backing up and removing the last character typed. It responds
to control IX (or whatever you chose for yourself> by r·emovi ng
the whole 1 i ne typed so -far·. If control IP is typed, a copy of
everything that appears at the terminal will go to the printer
until such time as you type another control/P. If you have a
teletype or a VDU that can~t backspace, you should have let the
CONFIG program know. If you didnp·t, you should now type

LOAD-FILE TTY-RUB.BLK

followed by a carriage return, and then backspace and control/X
will behave in a more suitable way for your terminal.

Type

."Hello "

followed by a carriage r·eturn. Make sure there 7 s a space a·fter
the first quote, and make sure the dot is there. xForth will
reply Con the same line)

Hello ok

and then type on a new line

Stack empty

What has happened is this. The interpreter read the word "
<dot-quote> from the input. As explained earlier, anything not

2·-1

First St.eps. Cc> A.I.H. Research

1 cont.:lining a blank is a word as far as Forth is concerned.
This p.ar-ticular word is defined to read all text up to thE~ n-im<t
doubl e·-quote character " and type out that text. l-lavi ng done
this, the interpreter finds there is nothing left to read Sf.l it
returns control to you, typing ok to let you know there wera no
errors, and then prompting you for more input. The prompt i~Oi
initially set to show the present state of the stack. You'll
find later that the prompt and the ok print can be changed: for
example, if your terminal has a separate status line you can
put th~ stack picture t:hr-:!'re, out of the way. Now tl'"y

" Hello .. TVPE

Yau get the same as before. The word " hai:.; r·ead c.11.nd stored the
text appearing ·the input up to the next " then has left a
!Mil6Sage on the stad< saying where it stored the text and how
much text there is, which is exactly what TYPE needs to type
out stored taxt.

Type 1 2 3 4 and qet

ok
Stack base 1 2 3 4

When xFarth's int.erpr-eter sees a word it. can't rec:ogni~=e, it
tries to decode it &s a number and if it succeeds, it lsaves
that number on the st.ack. If it fails, it issues an e~r·-rot·
message (a question mark} indicating that it can•t find the
word in its dictionary. Try typing AAA and see this in
action.

Type 1 2 3 4 + and the stack will contain 1 2 7. The word +
takes the top two numbers off the stack and puts back their
sum. Type • and the 7 will be typed out, leaving 1 2 on the
stack, since the word • removes and prints the number on the
stack top. Type - and get -1 on the stack. Type • ta prin~ .t
and the stack will be empty. Type again and see what
happ~ns.

The wards + - i I MOD = < > <= >= <> AND OR XOR all take
two items from the stack and put back the result of the
appropriate operation. For instance, * is integer
multiplication and >=is •greater-than or equal to~. Note that
I is integer division and MOD is remainder, so 1 2 I gives 0

1. Sometimes, Wl.~ li'lill distinguish an xF01rth wor·d
text or punctuation by putting it betrw>Jeen a
forwar·d si fHJl e quote. For t?xampl e, we c:oul d have
for dot-quote. As a reverse quote is never used
this should always make it clear what's meant.

from nor·mal
reverse a.nd a.
wr i t ten ' .. " •

in ><Forth,

(c) A.I.M. Research First Steps.

and 1 2 MOD gives 1 • You can get both at once with /MOD which
leaves the result of division on top and the remainder
underneath. The word= means •equal' and leaves TRUE (i.e. 1>
on the ~tack if the top two items were equal, and FALSE (i.e.
0) if they weren't. The word <>means ~not equal'. The
logical operators work bitwise so 1 2 OR is 3 • You can see
this better by working in base 2 arithmetic: type

BINARY 1 10 OR

and £,ee 11 on the stack. Now type DECIMAL and the 11 wi 11 be
typed as 3 This facility to change base is very handy.
><Forth has the words BINARY DECIMAL and HEX which arrange for
all further numerical input and output to be in the appropriate
base. Actually, all bases are possible within the limitations
of the ASCII character set to represent them. Vou 7 11 learn
later how to get an arbitrary base.

Internally, numbers are 16 bit sign~d binary integers and
so they lie in the (decimal) range -32768 to 32767. Double
precision (32 bit) integers and unsigned 16 bit integers are
also available: see the ~Handy Reference•. If you ordered the
floating point package, you will also have floating point
numbers with 10 digits of precision, and all the appropriate
operators and functions to go with them.

The wards NEGATE and ABS take one item from the stack top
and replace it by its negative or its absolute value
respectively. The word O= leaves a logical true Cl in fact> if
the stack top was O and a logical false <O> otherwise. NOT
reverses the logical state of the stack top (and you can see
it•s equivalent to O=). The word O< leaves true if the stack
top was negative so gives the same result as typing the two
words 0 < • Try it for yourself. Try O> too.

Now you know how to do simple arithmetic and how to print
messages. Try this out far a while. You'll discover that the
stack is cleared after errors, but if you want to clear the
stack explicitly, use the word SP! which throws away
everything.

2-3

I (; ()

(c) A.I.M. Research Manipulating the stack~

Chapter 3

Hanipulatino the stack.

It. doesn 7 t take long to get used to stack arithmetic. Even
if it seems a pain at first, youpll discover that the
versatility of Forthps simple message passing system makes more
advanced work easy, so bear with it. You can always write an
algebraic notation converter later. Notice that brackets are
never necessary. The algebraic notation (1-«-2)1l(3-4> becomes

1 2 + 3 4 - *
in Forth. This is much as you•d think of it: take 1 and 2 and
add them, noting the.result <on the stack>, then take 3 and 4
and subtract them, noting the result, then take the noted
results and multiply them. Actually, brackets are sufficiently
redundant that they are used to enclose comments1 the word (
gobbles up everything in the input until a > is found. As a
result, you can write

1 2 + C Add 1 and 2 > 3 4 - < Subtract 4 from 3 >

Try it. What happens if you leave out the final
bracket? By the way, < is a Forth word and so
surrounded by spaces. The closing) is just something
C is looking for so it doesn't need a space before it,
most people put one there.

closing
must be
the wor·d

though

Often you want to make a copy of what~s on top of the
stack. The word DUP does this, replacing the stack top with
two copies of what was there. So 99 DUP leaves 99 99 and
99 DUP + is one way to get 198. The word SWAP reverses the
order of the top two items so 99 100 SWAP - leaves 1 rather
than the -1 that 99 100 - would leave. The word OVER copies
the second top item so 99 100 OVER leaves 99 100 99 With
these words you can do most of the manipulations you need.
Other useful ones are

ROT

ROLL

(rotate> which pulls out the third item down
and puts it on top: l 2 3 ROT leaves 2 3 1.

is a generalized rotate, defined so that typing
3 ROLL gives the snme effect as ROT. So

3-·1

.I
il
~
'i
I
j

Manipulating the stack. (c) A.I.M. Research

PICK

99 100 101 3 ROLL leaves 100 101 99 Verify
for yourself that 2 ROLL is like SWAP and 1
ROLL does nothing. What happens with 0 ROLL ?

is like ROLL except that it copies
appropriate item rather than pulling it
So 99 100 101 3 PICK leaves 99 100 101 99.
are 2 PICK and 1 PICK equivalent to?
about 0 PICK ?

the
out.
What
What

Actually, DUP SWAP OVER and ROT are enough for nearly all
work with the stack, and since they are efficient they tend to
be favoured. If you are having to fiddle with lots of stack
items you probably should be breaking your definitions up into
~mailer pieces: more on that later.

Some arithmetic operations are so common that it>s worth
taking advantage of inbuilt machine facilities to do them
faster, even though the same effect: can be achieved otherwise.
Thus 1+ is defined to have the same effect as 1 + (i.e. it
increments the stack top>, and 1- 2+ 2- 2* all have the obvious
effect.

Other useful words will be found in the r-eference lists.
For example, .R prints an integer right-aligned in a field, so
101 4 .R prints 101 preceded by a blank, but without the usual
fallowing blank that the free-format output word gives The
idea is that with .R you always know how many character
positions a number will occupy <as long as it isn•t too big to
fit in the space you asked for). SPACE prints a space and
6 SPACES prints 6 spaces. CR moves to the start of a new line
while 3 CRS moves down 3 lines. 44 TAB moves the cursor or
print head of the terminal to the 44th position in the line, if
it can do so without backing up.

3-2

A •

l 7 ()

(c) A.I.M. Research Defining your own words.

Chaptar 4

Defining your own words4

Now we can really get going. As you saw earlier,
programming in Forth is about defining new words. This is done
mostly by the word : (colon> which takes the next word in the
input and prepares a dictionary entry for it. The definition
to be entered in the dictionary is specified by all fallowing
word~i unt i 1 a semi col on is encountered. So

defines a new word that multiplies the stack top by 4. In
future, when 4t is read by the interpreter, the sequence of
actions 23 2l will be carried outft However these words won't
be looked up again so the interpreter doesn't waste time or
space; this is part of the secret of Forth's small size and
high speedd

If you have programmed in Basic or in APL, you will need to
l<now that '"hen ycJu make a definition like this, Forth does not
keep the exact text you type in. When xForth or any other
Forth system puts a word in its dictionary, it keeps the
definition in special internal form. This means you can't edit
the definition like you can in, say, Basic. If you think this
is a limitation, you haven't yet learned how fast and powerful
xForth is! To make definitions that you can edit - the normal
way of working - you put them in disc blocks as explained in
the next chapter.

Since Forth works differently from other languages, it is a
good idea to learn a bit about how the interpreter and the
colon operate in definitions. When 1 executes, it enters the
t...nrd fol lowing (for example, 43 in the above example> intc the
dictionary and then tells the interpreter to store (compile>
the actions described by wor··ds that follow instead of executl.ng
them as it reads them. The interpreter does so until it finds
a semicolon, after which it reverts to its normal behaviour.
Comments still work correctly. Try out

: Blast-off 1 2 3 4 5 • ."We have lift off."
(And notice you can have a colon definition stretching
< O'lt'E:>r more than one line, but comments should always)

4-·1

I '7 ,.,

Defining your own words ..

(be closed at th2 end of a line.>
2 CRS 47 EMIT 92 EMIT 15 CRS ;

Cc> A.I.M. Research

You'll discover that xForth reminds you you 7 re in the middle of
a colon definition by putting ;;~ pr~ompt ll..c: at. the Gt;:u·t o·f'. ~::-1:ir:h

new line until the closing ; is typed. Incidentally, the word
EMIT outputs one· char·act.er 1;~hose i.\SCl I codt:? is on the ~'°'Ldck.

Later you~11 see how ta avoid having to look up the ASCII codes
for characters ta be emitted. Now type Blast-off to see what
you just defin~d,

We could define a word 2DUP that would make a copy of the
top tw~ stack items.

11 2DUP OVER OVER ;

If you try this xForth will tell you a definition already
~xists for that word, since 2DUP is built into the system with,
as it happens, an equivalent definition to the present one.
Thi~ is not treated as an error: your definition is added to
the dictionary and will be the one used in future definiticnsw
since the mast recent definition is always found when the
interpreter looks in the dicticmary.. Now we could "''ritei a wr:Jr·d
that prints the sum and difference of the top t.wo i:;tack
numbe,rs.

: surnl!<d i ff 2DUP + ;

Notice that definitions are more readable if you put logically
connected items close together, separated by spaces or new
lines from others. In xForth, unlike Basic, neat formatting
and comments do not cost you memory space, so you may as well
make life ea5y for yourself!

As you might expect,

= NOOP ;

defines a word that has no effect anything. Definitions can
be as short as this or as long as you like, but on the whole
they should be at most a few lines long. Complicated problems
should be split into simpler parts to achieve this; the
solution will then be much easier to write and test.
Generally, you should design «from the top down', by looking at
your problem and deciding hc;w to split it up, then deciding ho1;<>1
to split up the~ separate bits themselves, and so on until you
have words that can be defined in terms of words that are
already in the dictionary. Then you type in and test your
low--level definition~; fir~;t~ followed by the next lev1~l up, and
&o on until you~re back up at th~ top level with a debugged and
working program. This technique not only makes sur·e you n<."?ver
need to wonder whether what you want is 8 levels deep or 9

I 7"

<c> A.I.M. Research Defining your own words.

levels deep on the stack, it also makes it much easier to write
correct programs in the first place and to make the changes you
invariably want to make later.

Note that when reading programs you should realize that
they•11 have been designed in this way, so start at the end
where the high level words are and work your way back to the
low level ones.

The remainder of this Chapter may be skipped on first
reading.

To help you when you come
definition, you should add lots of
A useful convention is to add,
defined, a comment that describes
follow5:

back 6 months later to a
comments as 1 . .,ie noted above.
right after the word being
the action on the stack, as

a 2DUP < nl n2 --- nl n2 nl n2) OVER OVER

The information before the is what 7 s on the stack before
and the information after is what~s there after. If you use
descriptive names like addr or #bytes you~ll find it much
easier to keep track of what your words are supposed to be
doing, and xForth•s stack display will be more useful to you.
Another piece of notation used in same xForth descriptions
(mainly in the technical manual> is

. . .. (+++ addr length > ;

where the +++ says something is read from the input stream and
the other items in the comment say the word takes nothing off
the stack but leaves two items, an address and a length with
the length on top.

A useful trick is to start every new set of definitions
with a dummy word that has a useful mnemonic name. For
example, if you are writing a word processing program, you can
maka the first definition : Words ; and this acts as a marker
in the dic'tionary for where you started. When ycJu~ve made lots
of errors and want to clean it all out and start again (or if
you need the memory space for something else>, type EMPTY and
all your definitions will be removed. If you only want to
remove some of them - say, all the definitions since Words, and
including Words itself - type

FORGET Words

and everything you defined since Words will be removed.

Incidentally, to see what~s in the dictionary, type VLIST
<which ~eans vocabulary-list> and you will get a long list of

L (; ()

Defining your own words. (c:) A. I. M. Research

2 words most of which you"ve never heard ofN Don"t be tempted
to try them out at random, since some are system words that
interface to CP/M, for example, and they could have disastrous
~ffects if misused. If you want to get deeply involved with
the system programming aspect of xForth, get the xFarth
Technical Manual or even the Meta system. Returning to VLIST,
the reason for the name of the command is that the dictionary
can be split into separate vocabularies, each dealing with a
specific topic. We don"t say much about this in the present
manual, but if you read the Appendix desc1~ i bing the assembler
you'll learn a little about the subject since the assembler
words are kept in a separate vocabulary so they don't get in
the way during normal use.

If you type COLD at any time, the xForth system will re~at
itself to a pre-defined 'protec:tedp state. ThF: resetting will
includl~ removing all unprotected definitions, emptying all
buffers and stacks, and resetting the filing system and thu
execution variables. <Some of these terms are not defined
until later in the manual.> The protected state is usually the
state ><Forth is in when you enter it from CPIM, but. you can
type PROTECT at any time ;md the present state wi 11 become th~~
protected state and so will be restored by COLD • Thi& is
mainly of use when you hc:JiVe a set of working words you don't
want to lose, and you"re debugging some new set. You will
learn later about the need for PROTECT if you alter an
execution variable.

2. You can stop the listing temporarily by hitting cantrol/S,
and restart it by lhittinq any key except cont.rol/C. <To abort
the listing, type control/C either while the listing is running
or while it•s been paused with control/S.> This general
techniqu~ of paw.:.ing or· brt~aking output applies ta all ~~ords
that use CR, and so to all system ll'tur ds that send output to Uu~
terminal.

4-4

l zn

(c) A.I.M. Research Loading and listing

Chapter '5

LoadinQ and liatino dltfinitton• and commands from disc~

Until now you have been typing everything at the terminal.
You can also put definitions and commands onto disc where thfi'y
wi 11 ba kept for future use and can be altered whenever·
necessary. However, then~"s a little more to learn about Forth
first.

Normally, Forth doesn•t work directly in terms of disc
files but uses an idea called virtual memory instead. If you
imagine a huge memory space, with each place in it needing two
numbers to identify it <a block number and an address within
the block> then you have the idea. Of course, present
microcomputer memories don 7 t contain the many megabytes that
this implies, so not all of the huge memory space can be
present in the true memory at once. To get round this, xForth
automatically transfers blocks (of size 1K, i.e. 1024 bytes>
to and from disc as required. Even discs don~t usually have
enough storage, but xForth lets you assign any virtual memory
block until the disc is full, then gives you an error message.
You could have, for example, blocks 1 to 200 and 16321 to 16520
on a 400K disc. So when you're writing programs that
manipulate files, you just pretend you have a huge memory and
read and write within it nearly as easily as you do in true
memor·y.

What has all this to do with keeping definitions on disc?
Well, ><Forth can interpret from viftual memory instead of from
the input buffer, and in practice this means reading from
disc. Suppose for- the moment you have somehow got a definition
into virtual memory and you want to compile it. The word LOAD
takes the number on the stack as the identifier for a lK block
of virtual memor-,y, reads it into true mf2mory if nece'!lsar-y, <ind
then inter,prets its contents as if you 7 d just typed the'ffi in.
For example,

29 LOAD

would load all the definitions on block 29.

When the end of the block is reached, the interpreter
returns to where it left off when it obeyed LOAD. This could be

5-1

I 7"

Loading and listing <c> A.I.M. Research

to the terminal, to another block that contained the LOAD (yes,
LOADs c:an be nested, though it 7 s bad style to nest them deeply>
or even to a word that contained LOAD. A simple example is
SYSGEN in the kernel system, which is defined as

: SYSGEM :: LOAD ;

Now you could hunt around for an empty block (by liuting
everything you could think of, using, say, 54 LIST>. Then you
could put your definitions in it somehow and finally type
54 LOAD. In fact, this is what most Forth systems make you do.
But even though the system of having numbered blocks of virtual
memory is great for use within programs that manipulate files,
~.1hen you want to write an application it,s much nicer to have
named files since these are easier to remember than a string of
numbers. This is where xForth scores heavily over most other
versions of Forth, since it gives you the best of both worlds.
You will learn later how you can associate named files with
different regions of virtual memory. For just now, let 7 s see
how easy it is ta create a file and then load it.

First, type

SEE-FILE myfile.blk

The word SEE·-FILE is an HForth word t.hat takes the
following it Chere, myfile.blk) and tries to convert it
file name acceptable to the operating system. For CP/M,
would be an acceptable name if it were in upper cas9,
SEE-FILE treats it as if you had typed

SEE-FILE MYFILE.BLK

word
to a
this

!SO

and then procat?ds to try to find a f i 1 e of that name. If none
exists, a new file is created. Then the screen editor is
called up at the start of the first block of the file. If this
is a new file, the editor will tell you that you hava a new
bl oc:k as soon as it starts up. You can now enter your·

definitions (~ee the relevant Appendix for detailed
instructions on how to use the editor> and then return to the
xForth interpr~ter level by typing control/Z.

Now you can load your definitions by typing

LOAD-FILE myfile.blk

which makes the interpreter go ta the first block of that file
and start interpreting from there instead from the k~yboard

input buffer. (Actually, what LOAD-FILE does is to make the
file •myfila.blk 1 possess blocks 8001 to 8999 and then do 8001
LOAD. The Appendix on th£~ filing system describes t:his in
di?.t ai 1. >

5--2

l 7. ()

<c> A.I.M. Research Loading and listing

You may have wondered what the '.bl!<~ extension is do:i.nq on
the end of these file name·s. The answer is that this ext~?n~',ion
tells the screen editor and the loader that this file is a
picture of blocks of virtual memory and so is suitable far
loading Forth programs. If .blk is mis~ing SEE-FILE and
LOAD-FILE will refuse to cooperate, to give a measure of
protection against mistakes-

Fram now on you can put your definitions and so on into
disc blocks, using the editor~ This meana you can alway~::~ se[t
ju~:;t what you defined, and also mf?ans that when you make! a
mistake you don•t have to retype everything. In fact, to make
things easy the interpreter leaves information on the stack F
it. ·finds an error durim] loading. You can then type WHEHE a.Pd
the editor will comm into action with its cursor pointing just
after the offending word.

To use the screen editor on a numbered block, just typ~
<say> 45 SEE. Blocks l to 1000 are set up initially to belong
to a file called FORTH.BLK on the currently selected default
dies drive, and the system expects to find its error messa~es
and so on there. So if you insist, you can treat KForth like
any other Forth system and ignore the filing system interface
altogether. You should, however, note that blocks I to 48
inclusive are regarded as reserved for system use, even if your
system is delivered with nothing on these blacks. In
particular, block 3 is used for temporary storage in most
systems.

Not•••

1. The word --> makes th~ interpreter go to the start of the
next block, even in the middle o~ a colon definition. It
can bs~ used to st:ri nq blocks together so you don, t tulvm
to type lats of LOADs.

2. To halp catch errors, a colon definition isn 7 t allowed to
cross a block boundary except when --> is used.

3. To see whatrs on a block without editing it, use LIST.
For example, 4 LIST wi 11 show you !Some of t.he er-r-or·
messages, and LIST-FILE see.blk will list the •creen
editor·. LIST-FILE will tr)t' to list. any file that doe!:,;:.n't
have a .blk extension, by treating it as a normal ASCII
file and listing it with line numbers at the console.
You can get a printed copy of any file (.blk or not> by
typing cuntrol/P to turn on the printer, then using
LIST-FILE, then typing control/P again to turn the

l ?, (')

Loading and listing (c) A.I.M. Research

printer off. As with all words that produce output, LIST e
and LIST-FILE can be paused or aborted by typing
control/S or control/C.

4. A word TRIAD is useful in keeping permanent documentation
if you'd rather worl< in terms of numbered blocks than
named files. Try typing 30 TRIAD and then try a few
other block numbers until you see what•s happening~ If
you want to fine-tune the format to suit your printer,
the sourca for TRIAD <and LIST and INDEX> is on block 37
in most systems.

5. A useful convention is to make the first line of every
block a comment line. This is particularly usef

0

ul with
INDEX which prints the first lines of a range of blocks:
30 41 INDEX shows the headers for the basic 5ystem file.

6. The whole block is treated as one long line so th:;:> last
column of t?ach line shown by the edit.or is effectively
adjacent to the first column of the next line. So take
care not to run a terminating ; into the 1 starting the
next definition.

7. Use the same trick as you learned earlier: type

: TASK ; LOAD-FILE foo.blk

or the like, so you can
finished, or to remove junk
still, put

do FORGET TASK when
caused by errors.

1 a-descriptive-name J

you' F·e
Better

at. the beginning of your load blocks and then you. needn't
remember to define a dummy before loading. Yau can type

FORGET a-descriptive-name

to clean up.

This might be a good time to try out the example •Jack'
described in the Appendix. It uses one or t'"o features you
haven•t met yet but you should still' get the general idea. If,
like us, you always try things out before reading the
instructions, you only need to know to type

LOAD-FILE jack.blk

to get started. You might well want to look at the
instructions a few s~conds later, though.

5-4

l ?: ()

(c) A.I.M. Re~earch Control Structures.

Chapter 6

Control Structures.

Within colon definitions, though not outside, the
interpreter allows you to use certain control structures for
repetitive or conditional execution. The main ones are IF
ENDIF and BEGIN UNTIL but some others are also useful and
will be described.

Often one wants a certain sequence of words to be performed
only if a certain condition is true, indicated by the stack top
being nonzero. This is achieved by enclosing them between IF
and ENDIF which may be regarded as a special pair of opening
and closing brackets. Thus

:i inay·-i +-great£?r > IF • " Greater .. " END IF J

types 'Greater.• in reply to 2 1 say-if-greater but nothing in
reply to 1 2 say-if-greater • If you want something else to be
done if the condition is false Ci.e. if there~s a 0 on top of
the stack when IF executes) put the do-this-if-true part
between IF and ELSE and the do--this-·if·-false par·t between ELSE
.;md ENDIF "

1 say-whether-gr-eater > IF • " Greater·.'"

Actually, FORTH-79 uses
is confusing to people
allows you the choice
always uses ENDIF K

ELSE ." Not greater."
ENDIF ;

THEN instead of ENDIF but we feel this
who know other languages so xForth
of either ENDIF or THEN • This manual

Another common problem is to execute a series of words
again and again until some condition is found to be true. To
do this, enclose the words between the special brackets BEGIN
and UNTIL , and make sure the word before UNTIL leaves the
condition test result on the stack.

a annoy BEGIN BELL ?TEHMINAL UNTIL ;

will sound the bell until any
word that returns true Cl) if

:;ey i Ii hit, since ?TERMINAL is a
a key has been struck, and false

L ?. O

ann1m~:nM: r ' r 1 · '1lf'" w

- ,., .. ,,,, .. -,~!'At' ¥tttlfiMF1&a~u.t.l<l"""i'·--

Control Structures. (c) A.I.M. Research

(0) if not.

If you want to make a test at the beginning or in the

middle of a loop, use BEGIN ••• WHILE ••• REPEAT , in which the
words between BEGIN and WHILE are executed, then WHILE tests

the stack and allows execution to continue if it•G true but
Jumps to beyond REPEAT if it•s false. If the condition is

true, the words between WHILE and REPEAT are e><ecuted and lhen

execution starts again from just after BEGIN •

A counting loop is obtained by using DO ••• LOOP •

t count-to-9 10 1 DO I • LOOP ;

defines a word that prints the digits 1 through 9. What happens

is that at execution time, DO takes the stack top as the

initial value and the number below it as one more than the

final value. Then everything between DO and LOOP is executed

the requisite number of times, with the counting index I being

set to the initial value the first time through, to that value

plus 1 the next t:imtf through and so on. Notice that writing

10 1 DO rather than 1 10 DO is nice because the finishing

condition is more often passed as a parameter on the stack than

the starting condition. If we define

~ count l+ 1 DO I • LOOP ;

then •10 count~ prints out 1 through 10.

Like all conditionals and loop words, DO ••• LOOP may be

nested. The limit t.o DO ••• LOOP nesti.ng depth is machinr:>-

dependent but is never less than five and is usually far more.

The index I always refers to the innermost loop <the one you're

presently in> but you can get the one from the next enclosing

loup by using J • Try out

for yourself.

: pairs 3 0 DO CR

CR

2 0 DO J " I • 10 SPACES LOOP
LOOP

The structuring wards you have met so far are the most

often used. There are two more constructs to describe, but you

may want to skip them for now and come back later.

If a loop index is tu be incremented by some different

amount than 1 ea.ch time, use DO ••• +LOOP ~ The increment is

placed on the stack just bafore +LOOP is reached and control

passes back to just aftt?r DO if the index, after incrementing,

is greater than or equal ta the limit, assuming the increment

6---2

Cc> A.I.H. Research Control Structures~

is positive. So DO . • • 1 +LOOP is equivalent to DO LOOP •
Owing to an unfortunate FORTH-79 standards committee decision,
+LOOP behaves oddly if the increment is negative, so we advise
you to avoid negative increments - the more so because a change
in the standard is threatened on this point.. The •u:ticm few
this case is defined in the FORTH-79 "Handy Re·ferem::e-.

Quite a common problem is to do a lot of successive tests
for equality of the stack top against some constants. The word
KEY waits for a terminal key to be struck and returns its ASCII
code on the stack, so in an editor one might want something
like the following.

1 obey·-command
KEY DUP 65 c IF do-the-A-thing

ELSE DUP 66 E IF do-the-B-thing
ELSE DUP 67 u IF

ENO IF
END IF

ENDIF ;

This works, but is ugly and error-prone. It's better to write

1 obey-command
KEV CASE 65 OF do-the-A-thing ENDOF

66 OF do-the-B-thing ENDOF
67 OF do-the-C-thing ENDOF

••• DEFAULT
do-the-default-thing ENDCASE ;

!rlh i ch is:. xFc:wth, s way of writing successive tests. The stacl<
top before CASE was entered is tested against the stack top
before the first OF and if they,re equal, the words up to ENDOF
ain~ executt:::d and then control passes to beyond ENDOF • If
they're unequal, the next stack top is tested and so on until
either a single OF ••. ENDOF part has been executed or the
DEFAULT part has been reached. If the DEFAULT part is reached,
it always executes, with the original test nunilier Cleft by KEY
here) still available on the stack.

Any number of words, including none, can appear between OF
and ENDOF Al so, any number of words may appear bE~twE·en CASE
or ENDOF and the next OF , as long as pF·ecisely one numbe1~ is
left on the stack for comparison with what was originally there
before CASE was entered. If an OF part is obeyed, the original
number Ci.e. the result of KEV here) is gone, since the or part
knows what it must have been. If the DEFAULT part is obeyed,
however, the number is still there in case you have some other
action to perform. If there is no default part, the effect is
as if you had written DEFAULT DROP.

6-3

<c> A.I.M. Research Coni;:st.ants and variablf.u:o.

Chapter 7

Con nt.t111.ni: • and var:!. ab lflHh

It is good practice not to have too many magic numbers in a
program. For inst.:mce, the editor~ needs to use the number 63
quite a lot because the columns are numbered 0 through 63, but
it would be a bad idea to have lots of 63's around since that
would mean lots of changes if the number of columns ware
changed. Instt:!a.d, at an ear·ly stage a constant is define~d:

63 CONSTANT MAX-COL

whl.ch puts the word MAX-COL. in the:-? dictionary and mal<P·s its
execution code put 63 on the stack. Note that CONSTANT is a
defining word like and constants go in the dictionary just
like anything else, are forgotten by FORGET just like anything
else, dnd have the same rules for naming as anything else - up
to 31 characters excluding blank and null. Now whenever
MAX-COL appears inside or outside a colon definition it will
have the same effect as if 63 had appeared there. Of coursm,
we could have produced the original 63 indirectly, 5.ince
CONSTANT ia only interested on what~s on the stack, not how it
got there:

B/BUF 16 I l- CONSTANT MAX--COL

lfmuld have done the job since B/BUF is a predefined constant
that returns the number of bytes in a buffer, viz 1024.

Although the stack makes it less necessary in Forth than in
most languages to use lots of temporary storage locations,
there are times when the only sensible way to go is to define a
variable. This is done by the word VARIABLE which defines a
new dictionary entry and gives it execution code that merely
returns on the stack the address of a storage location. Sc if
'"''e" ve typed

VARIABLE x

then whenever >< executes, a memory address appear·s on top of
th~ stack. We're usually interested in seeing what~s stored at
that address or in putting something there. <The contents will
be rubbi~h when the variable is first defined because FORTH-79

7-1

--..,~~'>,.>.>

l 7. ()

Constants and variables. Cc> A.I.H. Research

doesn't initialize variables.)

To put something in it, we use ! <pronounced •store 7 J which
stores the number at the second top of the stack in the address
at the top. So 2 x ! makes x point to a location containing
the value 2. Make sure you get the order right, since x 2 ! is
a perfectly goad instruction that will put something in the
address 2 and will probably cause grief later. The optional
debug package protects you against these errors and others at
the expense of execution speed: we recommend you use it until
you~re used to xForth, and even then use it except for
production runs.

To see what's in a variable, use @ (pronounced ~fetch')
which de-references the address on the stack, i.e. it replaces
the address by whatever is stored at that address. So x @ now
leaves 2 on the stack.

Some common operations on variables have special words. If
>< has been defined as above, 3 >< +! adds 3 to the contents of x
and leaves nothing behind on the stack. Adding and subtracting
1 are so often needed that 1+! and 1-! are supplied so you can
type x 1+! to increment the valua of x and x 1-! to decrement
it.

Arrays work as follows. The word []VARIABLE <pronounced
•row variable') defines a vector such that 10 []VARIABLE y
makes y refer ta a vector of 11 elements, numbered 0 thr·ou.gh
10. At execution time, 3 y returns the address of the element
with index 3. The notation []VARIABLE helps you to remember
where to write the index. Similarly 3 4 [,]VARIABLE z defines
a matrix with 4 rows numbered 0 through 3, and 5 columns
numbered 0 through 4. The defining word [,]VARIABLE i$
pronounced ~matrix variable~. At execution time, 1 2 z returns
the address of the element with row index 1 and column index 2.
Now you can type things like

6 y G})(1 2 z 1+! 0 7 y

and so onM

You can try the first 3 examples described in the Appendix
now. Example 4 is also worth looking at, but uses ideas you
haven•t mat yet. The final paragraphs of this section are a
little more advanced and may be skipped the first time
through.

Some variables already defined
BASE PRIN1ER-ON? WARNING >LINE and
many so-called execution variables.
eMplains how these work.

7-2

within the
XOFF-CHAR.

system are OUT
There .ar .. e al so

The rest of this section

llO

(c) A.I.M. Research Constants and varia.ble<z.

The variable OUT holds the present position of the cursor
or print head, and is adjusted by all the output operations ..
So you might define

BO CONSTANT cols
; ENSURE-LINE (n) (Check room for up to n chars)

OUT a + cols > IF CR ENDIF ;

<This word already exists in the dictionary and does exactly
this job.>

The variable >LINE is incremented by CR just as OUT is
incremented by EMIT; it is not used by xForth but you may find
it useful for keeping track of output.

The variable XOFF--CHAR normally contaims t.he code for
control/S, and i~ read by ?PAUSE. If XOFF-CHAR is altered to
contain -1, the ward ?PAUSE does nothing at all. Other·wi se
?PAUSE looks for a key to be typed1 if none is typed, it
returns to the word it was called from while if a key has been
struck, it checks whether it was control/C - in which case it
abor·ts by calling 6 ERROf~ -· or the contents of XOFF-CHAR, in
which case it waits until another key is struck before
retur·ning to the calling word. <If control/C is st.ruck,
however, it aborts.) Of course, this is what CR use~ to check
whether to pause, but you c:an put ?PAUSE in any word you like~
If you don• t want any pa.using or breaking, set XOFF-CHAR to ·-1.
If you want breaking but not pausing, set it to -2 or some
other value that isn~t an ASCII code.

The variable BASE holds the current base for input and
output of numbers, so 2 BASE ~ is equivalent to BINARY . Since
BASE Q.l • will ah1a.ys print 10 <why?> the word .BASE is supplied
to show the present base in decimal. Try out the effect o·f

HEX ~BASE

BINARY .BASE
DECIMAL .BASE

BASE ?
BASE ?
BASE ?

<The word? is exactly equiv.ala!nt to~ • i.e.
contents of a variable.)

it prints the

The variable PRINTER-ON? i5 0 when output is going to the
terminal only and 1 when it is being reflected to the printer,
so you can switch reflection on and off from inside a colon
definition.

The variable WARNING is normally set to 1. If you set it to
O, error messages will come out as numbers instead of as textQ
Message 0 means a ward can't be found in the dictionary and
others are relative to the start of block 4. The main reason

7-3

~·--·---""'..:"''''

I (, 0

Constants and variables. (c) A.I.M. Research

for this facility is ta allow you to use a non standard disc
l-.ithout ~Jetting nonsensical error messages. If WARNING is set
to -1 error messages will be read from disc, but you will no
longer get the "isn~t unique" message that you normally get
when you redefine a word.

One special use of variables in xForth is for execution
addresses. Certain variables such as XPAGE and XCURSOR contain
addresses of definitions that are executed by other words.
This makes it easier to alter installation-dependent features
such as cursor addressing. The Appendix •Altering your system'
tells you how to do the latterJ let~s look here at XPAGE.
Whenever a word calls on PAGE to be executed (for instance,
TRIAD do~s so) the definition stored in XPAGE is actually
used. On delivery this is set just to be CR Suppose your
terminal needs control/L to clear the screen <or your printer
needs it to do a paper throw). Define

1 (page> CTRL L EMIT ;

(note that CTRL L gives the ASCII code for control/L - wepll
learn more about this later> and then put this definition into
XPAGE by typing

XPAGE REPLACED-BY <page>

The word REPLACED-BY takes t.he execution definition of the
word foll a .. •i ng it and assigns it to whatever address was on the
stack, which is just what we want. Whenever you make a change
like this, type PROTECT because FORGET <page) would leave XPAGE
pointing into limbo.

7--4

··~

(c) A.I.M. Research Text strings and characters.

Chapter 0

Ta><t 11trinon and characters.

Strings of text are handled as single entities almost
numbers. You can daclar·a

16 STRING Customer's-name

which makes the word after SlRING into a string variable with
r·oom for up to 16 characters (or in gr~ne1-al, for up to the~
numbr~r of characters given by the stack tap>. Then

" Smith" Customer's-name $~

will assign the text 'Smith• to the variable. Note
should only be Llsed to assign to string variables.
the string at the right if necessary to fit in the
length you have asked for.

that $ ~

It. tr-1 ms

maximum

No~ when you type Customer's-name two items will be left on
the stack: the address of the first character and, on the top,
the present length of the text stored. This means that, for
example, TYPE will type it out. If you type

4 STRING abbrev Customer~s-name abbrev $! abbrev TYPE

you'll get 'Smitr typed at the terminal.

Strings are joined <concatenated) using $+ as follows:

Customer's-name " -J~1es" $+ TYPE

types '6{ni th-Jones•.

Note that string literals, defined by t.he word " whic:i1
raad5 text up to the next '' , leave the same stack information
as string variables so they can be used in exactly the same way
except that they can't be assigned to. The ward " works inside
col on def i ni ti ons just as • " and < do. When you use " ·fr·om t.he
terminal but outside a colon definition, you should realize
that " merely returns the address of the relevant text in the
input buffer, so you must not expect the string literal to
still ba there when you 7 Ve typed another line. Thus you can

8--1

~----------------------~-....,......,..,.,,..~ LCJ......,,,.. •• ,,...,.,.,Gil..,u_....,.......,.......,,..,.,..Mw-•.,.ns""""""ai ... Wl...,Ul9".,.ll""""' _________ r..,..,.i'~b<..~"-""''"-
.,... . .-....it, ... '""'""'"''"' ,"""'-"_..............,.,...._, __ UM"''~' ~""".,_""'.~·-',.1..s~i. .. ,~.u."'._"'~"•" ... u..:".-1" ,.~""'""'""··,,,,MJl,.,;i., •*-•1'~1'",;.'.·d-l~,'..;.W.. _,,_..,,,,.. -••,.J; :.r.lf~~i,:.'..iotlt."'1~'" •

1 c n

Text strings and characters. Cc) A.I.M. Research

type

" abed" " efgh" $+ TYPE

and get abcdefgh but if you type

youpll not get what
any problems in
unrealistic, but it
actually doing.

" abed"
" efgh" $+ TYPE

you probably intended. This
practic~ because the second
is as well to be aware of

nev£~r- c: a.uses
example is
what " is

Strings are
are identical,
alphabetically
char·acter set.

compared using $= which returns true if they
and •< which returns true if the first is

prior to the second, using the entire ASCII
So

Custom£:!r ~ s-name? " Adamson" Iii<

leaves a false flag <O> on the stack.

xForth also pr·ovides facilities for da:.:iling with 5:i.nglr::<:
characters. It doesn't seem worth saving single bytes by
having special variables fur" characters, but you do need ~•ingh~ ~
byte store and fetch. These are C! ('c-store'> which stores
the low-order byte of the second-top stack item in the address
on the stack top~ and C.G> < •c .. ·fetch ~) which r'"epl aces the addrc~ss
on the stack with the by·te con-tents, sett:ing 1:he high-ord!i!r· 8
bits of the stack top to O.

A common requirement is to get the ASCII coda of some
character for comparison with some input command. This is done
with ASCII which takes the first character of the next word and
le~ves its ASCII code on the stack. It works in or out of
colon definitions. Similarly, CTRL leaves the low-order 4 bit~
of the next word'& firmt character, so

CTRL C and CTRL c

both leave 3.

If you want to r·ead a string in during
easiest way is to use EXPECTS which takes an
maximum length and returns a string literal. So

PAD 40 EXPECT$

a progr·a.m,
addres-:; and

the
a

would a.11 ow you to typt~ in up t.o 40 char.::u:ters termi natii;~d by ill

retrun, with all UH! usual facilii:if'..!~:> like rubout, printer -
toggle, break with contrcl/C and so on. The string would be

-·~

l (';0

(c) A.I.M. Research Text strings and c.haracter6.

stored at PAD which is the address of a scrat.chpad an:>a o-f
store that can hold at least 80 characters. Then the address
of PAD and the actual length of the string would be left on the
stack so your program could do

Customer~s-name $!

to store the infor·mat.ion away.

The words #-)$ and $-)# are used for internal number
formatting. The first converts a double precision number ·::a a
string, so

S->D #-)$ TYPE

is equivalent to 0 .R because S->D converts a single precision
number to a double precision number. The second word $->~

tries to convert a string to a double number. If the string
contains anything other than digits and possibly a leading
minus sign, the number found so far is left and a FALSE flag is
left on top of it. Otherwise the number is l~ft with a TRUE
flag. So you can do things like

1 get-number
BEGIN

REPEAT

PAD 10 EXPECT$ fi->tl NOT WHILE
." ???" CR

DROP ; (DROP converts double to single >

l ;:>; ()

(c) A.I.M. Research Virtual memor-y.

Chapter 9

Virtual 8IHIHMJf"y.

One of the most powerful features of all proper Forth
syste~s is the virtual memory system we learned about in
Chapter 5, which gives you the effect of a much larger memory
by swapping lK blocks to and from disc. These blocks
(sometimes called screens> are handled automatically by
commands such as LOAD and SEE but you can use them ymJr self
directly via the words BLOCK and UPDATE. For example, 14 BLOCK
returns the address of a buffer containing the 14th 1K block,
which ~d 11 be rF..oad if need be from disc. So 14 BLOCK C@ will
give the contents of the first byte of the block, while

14 BLOCK B/BUF 0 DO DUP I + @ fao 2 +LOOP DROP

inside a colon definition passes the word 'foo• the 512
sixteen-bit integers contained in block 14, assumin~J fem leaves
nothing on the stack.

Blocks are read in and out of buffers automatically, so the
address given is only valid until the next call of BLOCK Car·
LIST or any oth~r word that uses BLOCK>. If a buffer is needed
for another block, its previous contents are written back to
disc if they have been updated: you mark the contents as
updated by calling UPDATE {which doesn't touch the stack) while
the buffer address is still valid.

To associatH a named file with a virtual memor·y segment,
you have to create a file structure and then assign it to that
segment, like this:

FILE name.ext 5 name.ext fassign

will create a file structure called name.ext by xForth and
(initially, at least> referring to a CP/M file called name.ext
on thu current default disc drive. Then the fi.le will be
associated with the 5th virtual memory segment, namely blocks
5001 to 5999. So now, 5001 BLOCK C@ will give you the first
character in the file name.ext. If the file is newly created,
that character will be a CP/M end of file marker Ccontrol/Z)
followed by 127 zero bytes. When you are finished with the
file it's a good idea to tidy up by typing

9·-1

LlO

Virtual memory. <c> A.I.M. Research

5 frelease

which removes the association you set up earlier.

There are 8 segments available for normal use, numbered 0
to 7. For more details see the Appendix on the filing system.

Not•••

1. SAVE-BUFFERS ensures all updated buffers are written to
disc. Use it before doing anything risky. Note that BYE
calls SAVE-BUFFERS automatically so get in the habit of
always logging out with BYE rather than just switching
of-f.

2. EMPTY-BUFFERS· marks· all buffers as empty, so undoing t.he
effect of any updates.

3. See also the
Chapter 10
system.

operating
and the

system
Appendix

9-2

interface description in
describing the filing

l (, ()

(c) A.I.M. Research Int.erfaci ng with the operating system.

Chapter 10

lntm-·fac:lno with the operating syut.m.

This section describes how xForth for· CP/t12.2x systems
interacts with CP/M, how you can use CP/M 7 S facilities, and how
to access 8080/ZBO input-output port5.

Virtual memory blocks are 1K segments of random access
files. The file for blocks 1 to 999 is set up on loading to be
FORTH.BLK on the current CP/M default drive and if you like you
can work with this all the time, as long as you remember to
leave blocks 1 to 48 for· the system 7 s use. Within xForth this
file i5 called SYSFILE. Note that error messages are always
read from blocks 4 to 7 so you should not change these blocks~
Also, it is a good idea to make sure you have a backup copy of
the original FORTH.BLK file in case you clobber it, since it
contains the filing system and the structuring and input/output
words, loaded by SYSGEN.

To copy blocks either within a file or between two file»,
just use COPY for a single block or COPIES for several, giving
the appropriate block numbers, as in 20 1020 12 COPIES. This is
explained in Appendix A.3.

For more information on the filing system, read the
relevant Appendix. On the whole, it~s best to use lots of short
files rather than one enormous one, since LOAD-FILE can happily
be called from within another file being loaded so you can have
one master file that loads many others. It may be useful to
you to know that CP/M's PIP doesn 7 t copy properly in the case
where you 7 ve used, say, blocks 1 to 54 and 82 ta 99 of a file:
the second part will not normally be copied. This is a
1'oell···known PIP bug and is nothing to do with any limitation of
xForth. So use xForth 7 s COPIES command instead.

You can access any of CP/M~s system functions using the
word CPM-CALL which takes the stack second top as the parameter
to be left in the DE register and the top item as the number of
the function. So 2 14 CPM-CALL DROP will select drive B as the
default drive. Another example is 0 13 CPM-CALL DROP which
resets the disc system and allows you to change discs. If you
do this, type SAVE-BUFFERS first to make sure everything is
safely on disc. The contents of the HL register on return from

10-1

·---..................................... .._ _________ ~'«ll.'>'"'"-'"

I
I

:J_._·

~
f

l~O

Cc) A.I.M. Research

CP/N are left on top of the stack, since they often have (llr
necessary information~ This is why we needed DROP above.
Unfortunately, imitation& of CP/M such as COOS don~t leave this
information compatibly with CP/M2.2, sc> an additional •\!Ol'"d

CPM-CALLb is provided to 1 eave the contents of the ac:cumul a tor· ..
on return from the CP/M call.

To allow direct use of i/o ports
and P<i> are supplied. They work very
fetch operationsa

127 15 P! and

from ><Forth, thEr 11<Jr.lr·ds: P!
like normal store and

14 P@

respectively send 127 to por·t 15 and read port 14, leaving thtl:l
result on the stack~

10--2

··~

L?, n

<c> A.I.M. Research Other topics.

Chaptltr 11

Other topics.

Thi~ section contains miscellaneous information. It covers
<CMOVE> FILL R> >R R~ and it refers to double number formatting
and mentions soma advanced topics, namely recursion and the
wor"ds IMMEDIATE COMPILE [l [COMPILE] CREATE DOES> Most o-f what
is descr· i bed here is not covered in detail •

To move blocks of memory around, use <CMOVE> which is a
'smart' word in that it handles overlapping blocks c:oFrectly.
It ii& pronounced •bidirectional c-move'. The arguments an:~

from to #bytes <CMOVE>

where ~from• is the address of the first byte of the block to
be moved, •to' is the address of the first byte of th~
destination, and ••bytes' is the number of bytes, treated as an
unsigned integer in the range 0 through 65535. FORTH-79 define~
a word CMOVE that only works safely for non-overlapping blocks
and that treats the number as a signed integer. We recommend
you use <CMOVE> instead.

To fill a block of memory with a single byte, use FILL for
which the arguments are addr #bytes byte FILL.

The wards >R R> and R@ deal with the return stack, which is
what xForth uses to keep track of where it is in tlhe pr-·ogram.
It can be used for temporary storage <within colon definitions
only) by executing >R <<to-r~> which transfers the normal
<parameter) stack top to the return stack, and R> (<from-1~ 7)

which brings it back again. These must be used with great
care, and must always be balanced correctly within any level of
structu.re of a word. Moreover, they shouldn~t be used within a
DO LOOP construction since the retur·n stack is used for
index manipulation. You can read whatever you left on the
return stack without deleting it from there using R@
(•r-fetch" >.

It is possible to handle double precision numbers;
definitions are given to add and subtract them and to do the
basic stack operations. A versatile set of formatting words is
available for double number output. All of these facilities

11-1

Other topics. (c) A.I.M. Research

are standard For·th facilities -- see any book on Forth.

Look at the ca queens• program described in the example§
Appendi>< as a non trivial program with some information nn the
topic o·f recursion. In general, recursion in xForth c:.:m be
done in several way!5 but the easiest is via the word MYSELF
which 111akes a word c:all itself.. Another and more versatile way
is to use execution variables as in

VARIABLE forward-ref
: this forward-ref ~ EXECUTE ;
:i that this ;
forward-ref REPLACED-BY that

which makes cthis' call cthat~ and makes cthat~ call ~this' -
to no avail here since we've just set up an infinite loop which
will finally terminate when the return stack overflows.

You may have wondered how the words (" ." ASCII and CTRL
<not to mention all the structuring words> manage ta do their
tricks when the interpreter is supposed to be compiling rather
than executing everything it sees. The answer is that it is
possible to mark a word far execution even when everything else
is being co111piled& if the word IMMEDIATE is executed, it marl<s
the most recent dictionary entry ~o that the interpreter will
know it is to be executed even if found inside a colon
definition. Once we start getting involved with this, we h•ve
to get into the advanced topics of words like COMPILE and
(COMPILE] and then into C J CREATE DOES> which would take too
much explaining for this introductory manual. If you get to
the stage of needing to find out about them, it»s time to join
FIG and get some books on the subject! The xForth Technical
Manual has information on these topics, but it as'!5umes you 7 ve
absorbed everything in this manual first.

11-2

'

' I Cc> A.I.M. Research The screen editor.
I
1~

l <: 0

Appendix A

The screen editor.

xForth~s editor is a screen editor that is specially suited
to the block-based virtual memory disc system needed frn- the
FORTH-79 standard. It is compatible with nearly all
cursor-addressable VDU,s, since it can scroll both horizontally
and vertically if your VDU screen is too narrow or too short;
in addition, since the source code is supplied it can be
adapted for any special requirements you have.

Merely changing the key bindings <i.e. saying which special
key i~ for what action) doesn~t require you to touch the source
code. There is a special program to do that interactively,
described later. As delivered, the command keys are set up as
shown in the table later in this Appendix: most are simple
mnemon:i c:s of the form cont.rol /S for 1u11arch, but there are too
many actions to fit happily into the set of control characters~

so some are of the form ESC1 followed by a character·. This
fits in well with the special function keys of many terminals,
which send ESC followed by a character. By following the table
you will be able to use the editor until you have time to
change the command keys to suit yourself.

The cursor addressing is set up during normal xForth
configuration; the configuration program knows about the more
common VDUs such as those that use DEC VT52 compatible cursor
addressing. Unusual cursor sequences require you to do same
minor programming tasks, as explained in the Appendix 'Altering
your system•.

1. ESC is the code control/[sent by the key marked ESC or
ESCAPE or ALTMODE on most terminals.

(.'.1-1

~»l ::m ti$~ 1 l ll FU Q IDI N m ii UNllHill IA:¥i'bJ!JP?'! ijj!til;lrt UN N 1 1 hHlNNal~---'tl"-.,, rm Tl ?t1 I n WW) '"~*-~'''": .. ~
................. ~.# P Mtltb'OROH1" ! tl1"alf~..a~~~+i'Ot1'·Stii ·~~).,.._•~..:.~"~~Jo,~-...._-~,~.f.o'1* 1,-. ;,c>J_Jh,,;;(::.·iiUf~.,,,.,~,.?,.~~~!ff!llBtf~~..,,_.,,"-

I ·7 .t">

The screen editor. <c) A.I.M. Research

The usual way to enter the editor is to type, say,

SEE-FILE my-defs.blk

to invoke the editor starting at the first block of file
MY-DEFS.BLK. As usual, Forth79 compatibility is maintained in
that you can also type

12 SEE

to edit block 12 Cand blocks before and after this, if you
like>. If you are loading a prepared set of definition& from
disc, either with LOAD or with LOAD-FILE, and an error message
is given, you can type WHERE to go straight to where the error
occurradc the block being read when the error was detected will
be shown ~•ith the cursor positioned immediately after the
offending word.

The editor is simple yet versatile. A cursor is moved
around thl:'! screen by control keys. Whatever you type appEu1r-·s

at the cursor position, either overwriting the present contents
nr displacing the present cont.ents to the right, depending on
t:he mode which you can change with another control key.. You
can delete a single character, causing the text to close up to
fill the gap, you can delete a whole line, causing the lines
below to move up, or you can delete it but leave a blank line
in6tead of moving up the lines below. You can search for ~

string, with or without replacing it by another one. You can
copy a line to another place, move to the block after or the
block before the present one, or exit ·from the editor with or
without writing the updated block to disc.

Assuming yau~ve 6et up the screen
during configuration, the screen will
and dokin whe11ever necessary to keep
part~

width .and depth correctly
scroll sideways and/or up
the cursor in the visible

The following description gives names to each of the editor
actions. The keys corresponding to the names are shown in the

A-2

Cc) A.I.M. Research The screen editor.

table, e.g. fwd <meaning forward to the next block> is
control/F, obtained by holding dawn the control key and typing
t::: ' .

When you enter the editor by typing something like 12 SEE
t~e block appears on the screen with the cursor in the top left
(home) po.,,ition. To retur·n tlu~ cursor there at any time·~ use
hcmm. To move the cursor right on~ place, use righti to move it
left use laft; to move it up use up; to move it down use down;
and to move it right in multiples of 8 columns use t~b. You
will find your terminal's repeat key <or automatic repeat>

ust:~{·ul for moving
functions as you'd
the nil:"., t line so you

·~)

the cursor rapidly.~ The n~wlina key
expect, moving the cursor to the star·t of
can type in text normally.

While typing in text, you will find the rubout and c&ncul
keys u5uful2 the fir-~•t del..etes the character· immediatE?ly tu : .. hci

left of th~ cur·sor position, closing up any te;·<t to thE-J right
and putting a blank in the last column~ and the second replaces
the whole line with blanks. Like all keys, these may olso be
used during correction of previously prepared text.

Initially the editor is in overwrite mode, as shown in the
top right of the scn?en. Thi~; means anything you type 1-·epX.u.c:Ps

what ~fr.E:i ther-e be·fore. !~,suing the mode command changes yo·.J to

insert mcde, in ~.,hich !t-1h,ntev1;:,•r· "''ds at the cur-~.;or pnsition muvr;::•:;

to th~~ r~ight as you type in ne\., text~ Anything that disapwc:,~r·s
off the right hand edge is lost. Issuing mode again returns
you to overwr·i te mode.

la delete thE~ chr<:u··acte:?1r at (r,"lther than bel:cwf2) the C«.!r~_;or·,

UGe dml-ch. The linE' closes up and a. blank appear·s at the t:md.
To insert ~ line b~fore the cursor line, use open. The lines
below Rcr·oll down, leaving a blank line to work i'lit.h. l'H1ab?ver-
was in the last line of the block is lost. To delete the whole
cursor line use dcl-lin•. The lines below scroll Llp, and blanks
appear in thu last line. The line you have just deleted is
saved (in the xForth PAD> and can be recalled by from-pad,
which takes what~ver was l act s;;1ved .and copies it to the cu.T·sor·

line, destroying the line 7 S previous contents. You will see a
copy of what's in the PAD at the foot of the screen. To save
copy of a line without deleting it, use to-pad. Saved lines
survive outside the editor for a short time, so you can save a

2., Hcn~eve1-, take car·e 1rdth tf::rminals h.'lving cLw~:ior movr:"f!ll~nt

keys th~l send multiple characters, as sometimes escape

sequences can be mi S'::'·t".'d if the r--epeat key is used, s:.~o that
spurious characters appear. The best thing to do if you get
this problem is to us~ the prav-cmd key to do the repeating,
maldng sure you've bound it to a simple contr·ol character-~

The screen editor. Cc) A.I.M. Research

line, exit, type say 99 SEE,
99. (Note the commands fwd,
later: they may save you from

and then copy the
back, start and
having t.o exit.>

line into block
end descr· i bed

On rare occasions you may want to write control characters
in the text. This is done with the quote key, which puts any
character following it into the cursor position (either
inserting or overwriting) regardless of what that character may
be5 So to insert an ESC you hit the quote key and then the ESC
key. If your VDU has a reverse video or dim mode or the like,
you ~an alter the word *EMIT in the editor to display a
character in this mode, and then control characters <and
characters with the high bit set) will be shown like this. An
ASCII delete (127> will be shown as a reverse video or dim
question marl<.

is essentially
string and you

To search for a string, use aearch. This
self-explanatory, since it asks for the
terminate it with the return key as you 7 d expect. However,
here are a few notes:

~Jhen you are asked for the search string, nota that it is
entered with the normal ><Forth i nterpr·eter·; s editing
conventions for character deletion and so on, rather than
with 11>Jhatever keys you have set up for SEE.

The search starts with the character just after the
cursor, so if you search for xyz and the cursor· is on an
x, that x won't play any part in the search. This is done
to simplify repeated searches as described below.

If you want to go on with the sear· ch, you can use prcav-cmd
to continue without being asked for the search string
again. The search continues until a CP/M end of file is
encountered, so the search facility is most suitable for
use with SEE-FILE rather· than with SEE.

If you get unexpected results you might like to remember
that in Forth79 blocks, the end of one line is adjacent to
the start of the next!

You can also do global replacements: use rmplaca instead of
aearch. You will be asked for a new search string and then for
the string to replace it. The replacement string you give will
be trimmed, or padded on the right with spaces, to make it the
same length as the search st...-ing. Again, pr11v-c.:md wi 11
contim1e the operation, using the same strings as before.

If you want to replace a block's contents completely, use
clear to fill it with blanks. Since this is a potentially
disastrous command, you will be asked for confirmation. Note
that a newly created block will automatically be filled with

L 7 n

(c) A.I.M. Research The screen editor.

blanks, and there will be a message at the top of the screen
indicating that this is a new block.

To move on to the next block, use fwd. The present block
may or may not be written to disc if it was c:hanged1 thiw
depends on whether the virtual memory system needs the memor·y
space at present. Similarly, to move back a block use back. To
move to the end of the file use and and to move to the star-t
use atart. The latter is especially useful with searching and
replacement since when a search fails you are left with the
blcx.:k containing the last match, or the block you ~tarted from
if there was no match. You can use start to go back to the
beginning and try a different string.

To finish editing and ensure that all changed blocks anE
written to disc, use finish. To abandon editing and scrap any
work you•ve done on the present block, use abandon. In this
case, the block you•re on is discarded but all other blacks are
written back to disc to preserve tha integrity of the filing
system. <Note that this' is different from the effect of
ABANDON in the old xForth editor.)

A-5

·;--,!~¥·'

l70

The screen editor. <c> A.I.M. Research

Table of editor kays •• set up on daliv.,..y.

Action Keys

left ""H or backspace
riQht L
up ""'K
down AJ or linefeed
htHBa ESC H
t.mb TAB or "'I
nfflWlin• RETURN or "'M
rubout Key marked
cancel "'X
11nod• ESC I
dml-ch D
datl-lina ESC x
opmn ''O
from-pad ESC <
to-pad ESC >
quote AQ

saerch ""'S
rapl11c• AR
prev-cmd p

clatttr ""C
f tr-Jd ""F
bac:k ""B
•tart ESC s
tmd ESC E
f iniflh ""'Z
abandon ,, .• A

Note1u · "'H means control /H etc. A sequence
escape character (control/[) is sent and
Most terminals~ special function keys work
should be easy to set up the editor for
control keys or escape sequences not shown
tenni nal beeps.

n-·-6

RUBOUT or DELETE

like ESC A means an
then an A is sent.

in this way, so it
your terminal. Any
are rejected: tha

-

I 7 r.

<c) A. I. M. Research The screen editor.

To change the relationship between keys and actions, type

LOAD-FILE BINDINGS.BLK

and wait while the program loads. You will be asked if you
want to delete all the old bindings. This will set all control
key~ just to beep - handy if you want to remove an old set of
key bindings before you start. If you have just generated a
new system from the kernel, the keys will be set up like this
and you'll have to set the bindings to make the editor usable.
Otherwise, there's no need to re-initialise everything sinca
you will be told what action corresponds ta any key before you
change it.

Then you will be asked to hit a control key (or the ESC key
followed by a key> and state what action from the table is to
be bound to that key. Several keys can have the same action.
To make a key have no action, give its action as BELL. To
finish, type return when you're asked for an action. <The
original action for the present key will remain.) Note that
after ESC, any of the keystrokes A a or AA will have the same
effect - you don't need to wor·ry about what shift yau'rt~ in.
As a result, when you type things like ESC > you may see
something else reflected, but you can still type the mnemonic
that suits you bests for example, the > in ESC > is intended to
be an arrowhead.

ro copy blocks use COPY and COPIES. The first behaves in
the obvious way: 15 7061 COPY would copy block 15 to block
7061. Multiple copying is done as in 15 7061 2 COPIES which
would copy block 15 to 7061 and 16 to 7062. Overlapping
sequences are handled correctly, so 1 2 30 COPIES and 2 l 30
COPIES both do what you'd hope.

By the way, PIP <at least in the versions of CP/M we've
used) doesn't work properly if there are holes in the file.
That is, if you've used a file and created, say, black 2 but
not block 1, then PIP will fail to copy it. This is a bug in
PIP, not in xForth. Use COPIES to copy individual blocks in

A-·7

The screen editor.

'funny• files like this. Any file created by SEE-FILE will be
perfectly all right to copy with PIP - it's only if you've been
doing your own direct virtual memory access that the?re ma.y be
problems.

You may want to read the Appendix on the filing system to
find how to handle copies between different files.

A.I.M~ Research Using the FIG Editor.

AppendiK B

U•inQ the FIB Editor.

Not••

Appendix B is part of the Forth Interest Group ln$tallation
Manual and describes the FIG editor, supplied with xFarth as
file FIG-ED.BLK. The description was written by Bill Stoddart.
It and the editor itself have been updated by A.I.M. Research
to meet the FORTH-79 Standard. Like all publications of FIG,
this Appendix (but not any other part of the xForth manual) may
be freely copied provided the following notice is included:

through
PO Box

A. I. M.

This publication has been made available
the courtesy of the Forth Interest G..-·oup,
1105, San Carlos, CA 94070, USA; and of
Research, 20 Montague Road, Cambridge, England.

The FIG context
LOAD-FILE FIG-ED.BLK from

editor
><Forth.

permanently in your system in place
the Appendix ~Altering your system~.

9-1

is loaded by typing
It can be installed
of the screen editor: see

~.::.==·=r =::;.;;.;:11 :;._: ;; .• :::, : .• : ... :.t.:.:.m:n:· ·==: .. :,11:\tt:;'t: .• ::wett=Pl!='·M=·•=W.:df;. :~;.;;;~=· :.!li;Jllliii;,;.l:.~:. ;;: ..• :..._......;;; .. ;;;: ... :(tll!!tlq;;:illlf:Ull!flid:.:;;.,;,,;,1:llj!:.;.:;;.;Q ;,.; .. ;; :·: :.:.1:1*""~.f-,,.

Using the FIG Editor. A. I. M. R£~sean:h

To start an editing session, the user loads the editor if
necessary and then types EDITOR to invoke the appropriate
vocabulary. To end it later, it is important to type
SAVE-BUFFERS to ensure that changes are written to the disc,
and then to type FORTH Car DEBUG if the debug vocabulary is
being used) to reset the vocabulary to normal. Note that if
the vocabulary is not reset, very strange things can happen
since, for example, the word •r~ has a different meaning in the
EDITOR vocabulary from its meaning in the FORTH vocabulary.

The block <or 'screen,) to be edited is then selected,
usinq either:

n LIST List block n and select it for editing J OR

n CLEAR (Clear block n and select it for editing

To input new text to block n after LIST or CLEAR the P
<put> command is used, as in:

0 P This is how
1 P to input text
2 P to lines O, 1 and 2 of the selected block.

B-2

;~

A.I.M. Research Using the FIG Editor.

During this description of the editor, reference is made to
PAD. This is a text buffer which may hold a line of text to be
found or deleted by a string editing command.

PAD can be used to transfer a line from one editing black
to another, as well as to perform edit operations within a
single block.

n H

n D

n T

n R

n I

n E

n S

Lin• •ditor command•

Hold line n at PAD. Used by systmm more often
than by user.

Delete line n, but hold it in PAD.
becomes blank as lines n+l to 15 move
line.

Type line n and save it in PAD.

Replace line n with the text in PAD.

Line
up

15
one

Insert the text from PAD at line n, moving down
the old line n and following lines. Line 15 is
lost.

Erase line n with blanks.

Spread at line n. Line n and subsequent lines
move down one line. Line n becomes blank.
Line 15 is lost.

B·-·3

l 7 (l

Using the FIG Editor. A- I. M. Resea.rch

The block of text being edited resides in a buffer area of
storage. The editing cursor is a variable holding an offset
into this buffer area. Commands are provided for the user to
position this cursor, either directly or by searching for a
string of buffer text, and to insert or delete text at the
cursor position.

TOP

n M

F t:.£rnt

X text

C text

Commands to position th• curnor

Position the cursor at the start of the block.

Move the cursor by a signed amount n and print
the cursor line. The position of the cursor on
its line is shown by a_ <underline>.

String editino command•

Search forward from ttu~ current cur'5ar- p .. Jsi ti on
until the string 'text~ is found. Leave the
cursor at the end of the text string, and print
the cursor line. If the string is not found,
give an error and position the cursor at the
top of the block.

Used after F to back up the cursor.. by the
length of the most recent text.

Find the next occurrence of the string found by
an F command.

Find and delete the string 'next 7
•

Copy in te><t to the cursor 1 ine from the cu~-sor·
till the end of the string •text 7

• Nataa Typing
C with no text will copy a null into the text
at the cursor position. This will abruptly
stop later compiling, since a null marks the

B-·-4

A.I.H. Research Using the FIG Editor.

end of the input stream.
error, type TOP X •return".

To correct this

l 7 ()

Using the FIG Editor. A.I.M. Research

n LIST

n CLEAR

n1 n2 COPY

L

SAVE-BUFFERS

List block n and select it for editing.

Clear block n and select it for editing.

Copy block n1 to block n2. Note that this and
the more general word COPIES a.r& contain~d in
the file COPY.BLK and are described in the
screen editor <cSEE~> Appendix.

List the current block. The cursor line is
re-listed after the block listing, ta show the
cursor position.

Used at the end of an editing session to ensure
all entries and updates of text have been
transferred to disc.

B-6

llO

(c) A.I.M. Research Demonstration and examples

AppendiM C

The demonstration packaQ• and th• basic DM&mpl••·

This Appendix describes the examples supplied with the
basic system as well as the demonstration package. The first
five examples ar~ the basic ones and the rest are from the demo
package, though the 8 queens example from the basic package is
a lot harder ta understand than most of the others. If you
have the option, look at later ones before this.

The demonstration package consists of a set of applications
which are either useful or enjoyable in themselves, or which
show how to do particular things. For example, you will see
how t.o modify the xForth language, adding new data types and
operators and even new structure words. The best way to learn
Forth is to use it and ta try to understand Forth code, and
this package is intended as much as a teaching aid as anything
else.

The following notes are a brief guide to the main featur~s
of the programs. In general, you type LOAD-FILE name.blk to
load the package called NAME and you type SEE-FILE name.blk to
edit it ..

For a simple set of definitions that's just for fun, type
LOAD-FILE .JACK. BLK and then type a return every time you• ve
finished reading what's on the screen. List the file to see
how the effect is achieved. The original was by Frederick
Winsor, and the Forth version by Bill Ragsdale.

C-1

·l.: •'

l
1

l
,I

I '7"

Demonstration and examples Cc) A.I.H. Research

The file FHACTION.BLK defines arithmetic operatioms on
fraction!I. Type LOAD-FILE FRACTION.BLK and then

1 2 1 4 fr+ fr.

and get 3/4 as output. List the file. The first word gcd was
contributed to •Forth Dimensions~ by R. L. Smith. If you don't
know Euclid,s algorithm for finding the greatest common divisor
of two numbers, you may find it mysterious, but it,s certainly

. I concise.

The other words should be clear.
changing fr. to give 2/1 instead of 2
fr. Ask yourself if the word simplify
.as it does.

As an exercise, try
in response to 78 39
needs to appear as often

Another numerical example is in the file RANDOM.BLK. It
produces pseudo-random numbers, useful in games and in
simulation programs. This is based on a •Forth Dimension•'
article by J. E. Rickenbacker. To use it type (say)

25 RANDOM

to get a random number between 0 and 24. The working& should be
apparent, though unless you know about random number generatar5
you probably won~t see why some of the arithmetic is as it is.

The file SIEVE.BLK contains a program that calculat~s all
the primes less than 16384 in about 7.8 seconds. This was used
as a benchmark test in Byte and has become very popular among
software sellers as •proof 7 that their system is the best. lhe
xForth program runs at about 1/5 of the speed of an optimized
compiled program Cin, say, Whitesmith~s C> and up to 1000 times

(c) A.I.M. Research Demonstration and ~~amples

as fast as some Basic ver5ions. It is slightly faster than FIG
Forth according to the figures in the Byte article.

On the file QUEENS.BLK there 7 s a program developed from a
Forth Dimensions submission by Jerry Levan. It solves the eight
queens problem in chesss find all the ways you can put 8 queens
on & chessboard such that none of them threat.ens any other. In
thi9 veraion you can actually have a chessboard that•s any size
from 1 by 1 to 12 by 12, with the requisite number of queens.
You type B queens or 3 queens etc. The progr· am is quite hard
to follow, but the main reason for its inclusion is that it
shows you how to do recursion, i.e. how to let a word call on
itself.

In xFORTH, a word can call on itself in several ways, the
easiest of which is to use the special word MYSELF as follows

: a-word some-words
IF MYSELF
ELSE 1
END IF
some-more-words

Tha effect is as if MYSELF had been replaced by
reason it~s done like this is that unt.il the
reached, a new definition is made invisible to
checking. This has the useful side effect that
thing'll like

a-word. The
; has been

help in error·
you can do

J LIST PAGE LIST BEGIN ?TERMINAL UNTIL ;

to define a new word called LIST in terms of the old one.

The idea behind the main word •try 7 of the queens program
is that once a queen has been placed, you can delmte its row
and column from the chessboard and then solve the proble."'fn f0t~
the new, smaller board with one queen fewer. A complic::atirJn is
that the smaller board has to have some squares painted out
because they're threatened by the queen~s diagonal moves. This
is dealt with by the words 'same' 'mark' and •unmark~.

C-3


~~~----~~----------------------------------------------............................................................... 11111111illlllllll ....... -...-'~~ 1lllillll'Pt 

Demonstration and examples <c> A.I.M. Research 

The file QUICK.BLK contains an implementation of the 
qui ck sort algorithm. <See Knuth 11 'Searching and Sor .. .:ing'.) Om~ 
of the nicest features of Forth is that you can sort anything 
you like - numbers, words, database records - just by changing 
the word "<" to do the required job. There is a suggestion 
for strings in tha text of the file; to sort, say, integers in 
dt=1scending order you rmly need change the definition of "(" in 
the first block to 

> ; 

See the last block of the file for a simple example. 

Quicksort is another example of a recursive process. 
Contrary to what some people say, recursion is net necessarily 
inefficient and in xForth, this particular program runs fast. 

The work is all done in the word ~partition~ which splits 
an array into two pieces, with all the elements in the left 
piece less than or equal to a given element and all those on 
the right greater than or equal to that element. The special 
element is taken to be the initial last element of the array, 
but other choices are possible. There are several tweaks one 
can make for efficiency - at present, there may be as many as 

around 1.5nlogn comparisons3 for n elements instead of the 
nloyn or so that can be achieved, because the lrKJird partition 
avoids special cases like the plague, and so sometimes takes 
longer than it might. For all normal use, the effort of 
improving the performance is almost certainly not worthwhile. 

This 1 !:> a simple utility far searchinq through some bl oc:l<s 
for a piece of text. It uses the search facility in the FIG 
editor, so load FIG-ED before you load SEARCH. You U$e it lika 
this~ 

3. logs are to base 2. 

C-·4 



·.~ 

<c> A.I.M. Research Demonstration and example$ 

EDITOR 10 16 SEARCH Some text to look for. 

will look through blocks 10 to 16 and type out every occurrence 
of thm teMt from SEARCH to the end of the line. The blank 
immediately after SEARCH is ignored, being eaten up by the 
interpreter, but all other blanks are significant. SEARCH has 
been put in the EDITOR vocabula.ry, but then:! is no reason why 
you shouldn 7 t leave it in FORTH if you prefer. If you do keep 
it in EDITOR, dan~t forget to type FORTH <or DEBUG> when you 
are finished searching, especially as the FIG EDITOR redefines 
~I' an~ so you wi 11 get some very mysterious goi ngs--on in your 
loops if you remain in the EDITOR vocabulary. 

This is an enciphe1-ing and deciphering word patterned after 
one in Software ToolsM The source code gives full instructions 
on how to use it. The id~a of choosing two passwords of 
different lengths is that this gives the same effect a~ a 
single long password and even if you were to encode a long 
string of nulls, it would be hard to find the key for 
decoding. 

If you have the assembler, load it and then load 
TO-SOLN.DLK. Otherwise load HILEV-TO.BLK which is slower, but 
still adequate for most purposes. The idea is to define a new 
data type <called INT here, for integer> which acts li.ke a 
constant most of the time but can still be assigned to without 
fuss. l~is means the words ! and ~ needn't be used except for 
writing to buffers and the like. As a result, one of the 
biggest sources of error has been removed and the c:od£~ is 
easier to read. The method of assigning to an INT ia to 
precede it with the word to as in 

which 
x and 
write 
stack. 

INT x INT y 100 to ~ x 3 + 6 MOD to y 

&et.s x to 100 
y themselves 
their values 

The flag is 

and y to 1. The magic is done by the words 
which look at a flag to decide whether to 
on the stack or store the value from the 
called Xto and all that to does is set %to. 

C-5 



17n 

Demonstration and examples <c> A.I.M. Research 

The assembler version is just as fast as ~ and 
with standard FORTH-79 variables. 

would be 

Examples of how ta use 
p..-ograms. 

are given in the next two 

Load the file EASTER.BLK. This calculates dates of Easter 
using Clavius•s algorithm, as explained by Knuth in volume l of 
~The Art of Computer Programming'. <Buy it! It 7 ll teach you 
more about computing than a hundred other books.) 

As an example, 1970 1990 Easters will print a 
dates of Easter for the years 1970, 1971, 1990. 
shows how to use •to 7 and.also shows how to make one 
word make lots of dictionary entries. 

table of 
The code 
defining 

Notice how this program automatically loads the •ta~ words 
if they aren't already there. It uses FIND to see if the 
needed wards are in the dictionary and tests whether the result 
is zero using the C I } construction described in the assembler 
Appendix. If the result of the FIND is zero <so the word isn't 
there> it loads the needed file, again checking whether the 
assembler is available to decide which file to load. 

If you load HAMURABI.BLK, the RANDOM and Easter words will 
be loaded automatically if required, using the trick described 
under the Easter heading. Hamurabi is a game from the People's 
Computer Company's famous book 'What to do after you hit 
RETURN'. It has spawned many imitators, and is a good example 
of a simulation-type game. Load it and then type 

·t-tamurabi. 

and try to work out what~s going on. Look at the source code 
lat er to find out hm .. to read keyboard input from wit.hi n a 
word, giving the user the usual facilities to delete 
characters, switch t.he printer on and off, and break out using 
control IC. 

C·--·6 



· 'f P'M 1 

I '7r'\ 

Cc> A.I.M. Research Demonstration and examples 

This is a definition of a word ** that does integer 
exponentiation. It isn 7 t as trivial as it sounds - it takes 
less than 20 arithmetic operations to raise something to the 
power 1000, for :instance <though 16 bit integers can only hold 
1 to the power 1000 anyway>. This method is used in the 
floating point package. See if you can understand it. 

The file LIFE.BLK contains is a fast version of John 
Conway•s game ~Life 7 • Most computing magazines have had 
articles on it. This implementation could be made ~ven faster 
by improving the word +neighbours. The word Life itself expects 
a virtual memory block number to be on the stack. You can use 
the screen editor to set up an initial pattern: anything 
non-blank is considered to be alive. Note that you must have 
the cursor positioning commands and the word SEE working 
correctly before you can use this. Also, there i6 no check 
that your screen is big enough - it assumes you can use SEE 
without the automatic horizontal and vertical scrolling coming 
into action. 

A sample pattern to start with is tacked on the end of the 
file LIFE.BLK and can be read by typing 

INSTALL-$$$ life.blk 8005 Life 

Thi5 is a solidly useful program, yet is surprisingly 
~hort. Load DISFORTH.BLK and type 

DECOMPILE SEE 

to reconstitute the original form of SEE. It can't cope with 
everything, but it's easy to add to, as all the special cases 
are dealt with in one place. If it runs off the end of a ward 

C-7 



I .,. ,-, 

Demonstration and examples <c> A.I.M. Research 

(e.g. SYSADAPT> hit control/C to stop it. 

Here is how to change the !:>yntax of the 1 anguage ! The f i 1 ~ 
NEW-LOOP.BLK contains definitions that overcome what we think 
ar~ weaknesses in the FORTH-79 loop words. The new words are 
fewer, simpler, and more logically coherent than the existing 
ones. Be warned, though, that this is only a demonstration and 
there is no proper error checking. If enough people write to 
A.I.M. Research and tell us this is what they want, w~'ll 

produce fast and safe versions. 

If you load it, your definitions can contain 

begin some-stuff repeat 

where ~some-stuff• can contain any number (including zero> of 
occurrences of the word while giving a direct generalization of 
the BEGIN ••• WHILE ••• REPEAT and BEGIN UNTIL and BEGIN 

AGAIN structures. There is no 
but beware of typing WHILE when you 
on. 

speed penalty at run time, 
really mean •while 7 and so 

If 'begin~ is replaced by ~cycle' you get a properly 
designed counting loop with index •i' though the given 
implementation is slow because it 7 s all at high level. Thus 

5 1 cycle i . repeat 

types 1 2 3 4 5 <not 1 2 3 4 as you 7 d get with DO ••• LOOP>. 
You can also use •while' for early exits: 

B/BUF 1 cycle word! word2 ?TERMINAL NOT while 
word3 while 

repeat 

If the final value is less than the initial value, 'cycle' does 
the right thing by not doing any iterations at all: 

--1 0 cycle " Error" repeat 

prints nothing. 

You can use +cycle for a step other than +1, as in 

0 10 -1 +cycle i . repeat 

C-·8 



(c) A.I.H. Research Demonstration and examples 

which prints 10 9 8 7 6 5 4 3 2 1 0. 

Nested loops work correctly and the words "j' anti 'k' 
r·eturn th Et values of the 1 oop counters one and two l e~·vel s out. 
The return stack isn•t used so if you like you can even read 
loop indices from within other words, though this is bad 
style. 

Modular programming is a particular· sort of sti··uc:b..wed 
programming. The idea is to write small modules Csay, one 
block each> which have their own private word$ as well as 
public ones. You write applications that take the form 

. STAHT--MODULE 
somf~-·def in it ions 

EXTEHNl-)L 
more·-de+ in it ions 

END-MODULE 

and then the definitions between START-MODULE and EXTERNAL will 
be private, known only to the>se bet.ween EXTEHNl-'!L and 
END-MODULE, which themselves are public, appearing in the 
dictionary normally. 

Note that the module wor·ds use the stack so you must t.alke 
care to leave it i nta.ct t-ahi le you are cnaki ng your def i ni ti ons. 



l 7.0 

Cc> A.I.M. Research The Filing System. 

Appandi>t D 

The Filing System. 

The xFcrth filing system gives you a vvrsatile but 
straightforward means of using virtual memory and disc files. 
It maintains compatibility with Forth block5 so that 
application6 written for less advanced systems still work. For 
eMample, you can make 

LOAD-FILE c:accounts.blk 

do the same job as 134 LOAD might do on an ordinary system. 
You can have many random access files open at once, all looking 
like segments of virtual memory, and you can also access files 
sequentially, taking advantage of features, like pipe5, which 
are not usually found on microcomputers. The two kinds of file 
acceG!ii are described separately below, and if you are not using 
the sequential access facilities you need not load them, so 
they cost you nothing in terms of wasted memory. Before goi.ng 
into detail, let us look briefly at the simplest and commonest 
kinds of U6e. You can then try out the system without worrying 
too much about the details, and come back later· on to 
understand more advanced use. 

Suppose you have the demonstration package and you want to 
load the decompiler. You need only type 

LOAD-FILE disforth.blk 

(where the file name may be in either lower case or upper case) 
and the decompiler will be loaded and be ready for use. The 
word LOAD-FILE reads the word following it and trie!s to 
interpret it as a file name as defined by your operatinq 
system. For CP/M systems, the file extension .blk indicates 
that the file is a virtual memory image and can be loaded as 
above. A file bein<] loaded may itself contain LOAD--FILE 
instructions, of course, so this is a very useful feature for 
organizing your programming .. 

If you want to read or edit the decompiler you can type 

SEE-FILE disforth.blk 

D-1 



I 7 i"\ 

The Filing System. Cc> A.I.M. Research 

and the screen editor will come into action with the cursor at 
the beginning of the file. The block numbers will be shown as 
8001 onwards for reasons explained later. Modified virtual 
memory blocks will always be written back to disc if thc-~y are 
changed, even if you exit using ABANDON. This is because th~ 
system keeps its house in order at all times to allow things 
like nested loading as described above. If you like to jump in 
and out of the editor without constantly retyping file names, 
there is a way to do so using INSTALL-$$$ as described below. 

To list a file with line numbers, use LIST-FILE name.ext 
which handles both .blk and other files, by assuming that any 
extension other than .blk indicates a teKt file that is to be 
listed in an obvious way. You can pause or break the listing 
by hitting control/S or contral/C as usual. LIST-FILE is 
particularly useful in conjunction with the printer, which is 
switched on and off using control/P or by setting the variable 
PRINTER-ON? to TRUE or FALSE. 

Files are xForth data objects like strings, integers and so 
on. They ara declared like this1 

FILE data 

which creates an xForth word called 'data 7 which contains all 
the information the system needs for file manipulation. The 
~"ord can be anything you 1 i ke, since it is not necessar-y for 
the xForth name to be the same as the CP/H name, but when you 
declare a file it is initially given the same CP/M name as its 
xFor-th name. <If this is an illegal CP/M name, even after 
conversion to upper case, you will get an error message but the 
xForth word will still be there ready for you to give a valid 
CP/H name to.) Since assignment of CP/M names to files need 
not be done until you are running a program, you can write 
applications in terms of files and then decide on the CP/M 
names of your files at execution time. To give a file a new 
CP/M name, use the word fname! a~ follows: 

" b:results9.dat" data fnarne! 

The Hord fname! (pronounced ~f-name-store•) takes a string and 
a file argument and sets the file name to the string if the 
string is a legal name. 

If you forget what a file"s CP/M name is, you cah find it 
by using "s-name like this: 

D-2 



<c> A.I.H. Research The Filing System. 

data ~s-name TYPE 

will type out BaRESULTSuDAT. The word ~s-name takes a file 
argument from t.ha stack and replaces it by a string argumt~nt 
which i~ the CP/M name of the file. 

To use a file you must. allocate it a segment of virtual 
memory. This is done by the word fassign as follows: 

2 data fassign 

will assign virtual memory segment 2, i.e. block!I 2001 thr·ough 
2999, to the file you have just declared. <If any other· file 
previously owned segment 2, it will be closed and detached from 
the segment before data is assigned.) Ther·e are 8 segmcmts, 
numbered 0 to 7, and on initial startup or after COLD has been 
typed, segment 0 belongs to FORTH.BLK on the default CP/M 
drive. <The ><Forth name of this file is SVSFILE.> You are 
advised not to change the allocation of segment 0 because error 
mQssages are read from there, and some internal buffer 
operations use this file. Blocks 1 to 48 of segment 0 are 
reserved for system use, even in systems which apparently do 
not use all of these blocks. 

Virtual memory segments 
in the constant seg-size 
though if you type, say, 

are all the same size contained 
and are normally 1000 blocks long, 

SAVE-BUFFERS 1024 seg-size COLD 

the segments will become 1 Megabyte in (virtual) size. The 
value lOOO was chosen because 100 is sometimes a bit small and 
anything else is a lot less convenient far human beings to 

4 
use. Now you can type, say, 

2071 1010 COPY 

to copy block 71 of the CP/M file B:RESULTS.DAT to block 10 of 
the file B:FORTH.BLK. 

Initially, blocks 2 to 7 an? not allocated to any file. 
You can allocate. them as ex plained above and then trf.:!at them 
just like pieces of virtual memory; if block 2 were assigned to 
the file B:RESULTS.DAT you could read or write that file 

4. If you have a CP/Ml.4 system, files can only be 256K in size 
so block numbers wittnn a segment are taken modulo 256. Thus 
blocks 1 to 256 behave normally but 257 is the same as 1, 258 
is the same as 2 and so on. Similarly 2260 is the same as 2004 
etc. 

D-3 



~--------------------------------------------------... \,,, __ 
teW• iil'MKM•lt6'lld lillJnN zt'h1ffflJW·ttiH*N!_. M 1.U1J • e1't~~ ....... t......,.,~...._W·-'..li.< ........ ~....,,_"tt4,MS.l"'Ul8~-"•"'._,,%.,._,,.i>o,~••-··-·ft.-W,"''•• .. .., """"~~,,.,.,•tl'lttl!loll.~;,~,Slld;Jirtl·flt'lfifti'•n"'\tMl-"'1"'·""'···,...C 

l 7 (\ 

The Filing System. (c) A. I.M. Research 

starting at block 2001 or anywhere else. This makes file 
access hardly more complicated than writing to a memory 
location. See chapter 9 of the manual for details. Files are 
created if necessary when written to, and will be opened and 
closed automatically. If you try to read from a part that has 
not been written you will get a block whose first character is 
the CP/M endfile marker control/Z, followed by 127 nulls. This 
condition is recognised by the screen editor, and causes it to 
fill the block with blanks and announce it's a new block. <The 
block is not marked as updated until you actually do some 
editing on it, however.) 

Ta find what file, if any, is allocated to a segment, use 
the word •th-FILE as in 4 •th-FILE which wi 11 retuF·n 0 if there 
is no corresponding file and the address of the file 
otherwise. So 

2 •th-FILE •s-name TYPE 

gives B:iRESULTS.DAT. 

You can de-allocate a file using cfrelease 7 like this: 

2 frelease 

which is a good idea when you"'re finished with 
valuable data will then be protected from mistakes 
make later. 

it as yciur 
you might 

For simple use, there is a 
files. The system maintains a 
always owns the segment just 

quick and dirty way of handling 
temporary file called $$$ which 
beyond the last user-accessible 

one, i.e. blocks 8001 to 8999 unless seg-size has been 
changed. You can just type 

INSTALL-$$$ FILE.BLK 

to make these blocks correspond to the file X:FILE.BLK where X: 
is the present default CP/M drive. So for example, if you had 
a file you wanted to do some editing on and also to do 5ome 
copying to, you could install it as above and type, say, 

15 8001 10 COPIES 8007 SEE 

The assignment lasts until next time you use INSTALL-$$$ and in 
fact is restored whenever· LOAD·-FILE, LIST-FILE and 6EE-·FILE 
make temporary US£.;? of $$$. 

D-4 



'·~ 

<c> A.I.M. Research The Filing System. 

The commonest form of file access is to read ar write anH 
character at a time in order, starting from the beginning. 
Proqrams that only read one file and write another in this w.ay 
are often called filters - they perform one operation on the 
file such as changing tabs to multiple spaces. It is often 
bettf.?r to write a lot of simple filters and then string ·th£M11 
together when required, as this allows you to put together new 
operations in terms of simple existing ones. For a full 
discussion of this and many other points of good programming 
technique, read the book 'Software Tools' by Kernighan and 
Plauger <Addison-Wesley, 1976.) 

To read a sequential file, use the word gate which gets a 
character· -fro·m the pr£:sentl y Helected sequential input: file. 
If the and of the file has been reached or the file does not 
exist, getc returns control/Z every time it is called. To 
write a character to the presently selected sequential output 
file, use putc as in 

ASCII A putc 

which writes the:~ letter ?'\. To write~ a str-i ng, use put$ afi in 

" This wi 11 go to the output ·file." put$ 

If you load the sequential i /o oper-·ati ans by LO.C\D-FILE 
seq-io.blk Cas you will have to do to use getc, putc and put$) 
the default output file is the console, except that output is 
spooled: that: is, it is all collected together- in a temporary 
file before typing out at tha console. So if you had an xForth 
word poem thc\t produced random gibberish, you could type 

pot?.m 

and the whole output would be written to virtual memory and 
then typed back at you. The default input file is another 
spool file that is initially empty. Suppose you have written 
word& encode and decode that use getc and putc to convert text 
between encrypted and plain forms. You could type 

<< secure.dat decode 

to df~c:ode a,nd then tj'pe thH data from the file SECURE.D{.\T. The 

word << takes a file name following it and makes it the 
sequential input file. In similar vein, the word >> selects 



---------------------------------------------------· .. ,, 

l 7. () 

Th~ Filing System. <c> A.I.M. Research 

the file name following it for output, as in 

poem >> archive.txt 

You can also redirect to the pseudo-file LST: which is the CP/M 
list device. Of course, you can combine these: 

<< raw.dat process >> LST: 

will let the word process take its input from the file raw.dat 
and send its output to the list device. 

The simplest such filter is one that just does enough 
getc•s and putc~s to transfer its input to its output, and this 
is supplied for you. It is called, logically enough, copy, and 
one way to type out a text file without line numbers is 

<< letter.txt copy 

If you redirect the output to LSTc the file will be sent to the 
printer. 

The words >> and << are called redirection words, since 
they redirect input and output from their defaults. This idea 
seems to have been most extensively used in the Unix operating 
system, where the e~uivalent of our xForth words would be 
different processes 1n the machine, all running at once. 
Another idea used in Unix is the pipeline. The output from one 
word can be piped <think of the output as a strmam in the 
literal sense!) into another. In xForth the pipeline word is 
== which is supposed to look like a picture of a pipe. Vou 
might do something like 

<< secure.dat decode =~ process == encode >> secure.res 

to decode some data, process it, and encode the results. 

The pipline word can be very useful since it lets you write 
small words that do simple jobs on files, and t.hen put them 
together as you need them. An additional example is 

<< unsorted.dat sort == 10 discard-all-but-last 

which might type out the last 10 items in a list. This may 
seem inefficient, but the point is that if you aren>t going to 
want to do this very often, why bother writing a special word 
to do it? 

D-6 



i 7 ''"' 

(c) A.I.H. Research The Filing System. 

To examine your disc directory, use 1 DIR or 2 DIR which 
gives a listing very like the CP/M directory command. If you 
have some other number of disc drives than 2, you $hould change 
the drive number checking part of DIR Cin block 16 in most 
systems). The reason for trapping illegal drive numbers at 
this stage is that CP/M gives a hard error if an illegal drive 
is called for, rather than returning an error code to the 
calling routinr~. 

To delete a file, use 
identifier. If data is still 

fdelete with an 
as it was above, 

data fdelete 

xFor-th f i l E! 

will delete the file B=RESULTS.DAT and return a TRUE flag to 
let you know it managed. If fdelete fails you get a FALSE flag 
back. If you intend to do a lot of deleting, you can define a 
new word DELETE-FILE like this. 

1 DELETE-FI LE < f i l ll~-voc ) 
NOT IF CR 

INSTALL-$$~ $$$ fdelete 
" Can't delete." CR ENDIF 

HESTORE-'$$$ ; 

The first word (file-voe) tells xForth that you are going to be 
using some definitions from the vocabulary called (file-voe). 
The second word INSTALL-$$$ reads the file name from the input 
stream at the time DELETE-FILE is executed, and makes that the 
name of $$$. Then ~$$ is deleted and if the deletion fails 
(because the file doesn't exist, or is write protected} a 
message is given. Finally RESTORE-$$$ r-esets $$$ to whatever 
it was before INSTALL-$$$ was called. 

You can now try to define a few file handling words of your 
own. A good one to start wit.h is PRINT-FILE which prints a 
file without line numbers. Either use the method suggested in 
(b) or use the fact that LIST-FILE actually won't put in line 
numbers if the flag #s? in (file-voe) is set to FALSE. If you 
do it this way, don~t forget to reset #s? before exit from 
PRINT-FILE. Note that #s? is a constant, so you have to use 
to get at its address so it can be altered. This is the same 
as in the case of seg-size above. 

D-7 



[ 7 () 

(c) A.I.M. Research The debug package. 

Appmndi>c E 

Th• debug package. 

The debug package provides two things; extra protection 
against common errors, and a tracing facility that allows 
execution of a word or words to be followed either 
in~:__eractiv1r4ly or othen,•ist~. '\ bonus is that execution can be 
paused or interrupted even if tracing is turned off. Since the 
source code is supplied, it is easy to add other facilities. 
An example might be a profiler, which records how often certain 
words are executed as an aid to locating ~inner loops' when 
speed is important. 

The package is installed by loading the file DEBUG.BLK. The 
sy&tem is then left in an altered state. A minor point you 
might notice is that XOFF-CHAR is set to -1, so that CR doesn't 
intercept key presses. This is to allow the debug words easy 
access to the keyboard. Although scrolling control for 
listings etc is switched off, you can now pause and interrupt 
execution altogether for words that are in the debug 
vocabulary. 

Other changes are more significant. Instead of new words 
being added to the FORTH vocabulary, and existing definitions 
being looked up there, words are added to a new vocabulary 
called DEBUG. <A vocabulary is merely a conceptually distinct 
part of the dictionary, rather like a separate chapter.) Words 
are also looked up in DEBUG, but DEBUG is linked to FORTH in 
such a way that if a word isn't found in DEBUG, the FORTH 
vocabulary will be searched for it. This means that, for 
example, the new definition of ! in DEBUG will be used but 
since @ does not appear in DEBUG, the original FORTH definition 
will be used for it. 

The idea is to load DEBUG before testing any new 
definitions, then test your new ideas with the help of its 
facilities. If the DEBUG vocabulary has already been loaded, 
you merely type. DEBUG DEFINITIONS befor~e defining untested 
words and FORTH DEFINITIONS before defining t~sted ones. 
<Actually, you could use the DEBUG vocabulary at all times, but 
there is an execution time penalty which may be significant in 
r:>ome cas12s.) 

E-1 



t ?'. (l 

The debug package. Cc) A.I.M. Research 

Once your new definitions are working properly, you can 
FORGET them, then reload them into the FORTH vocabulary. By 
the way, FORGET does FORTH DEFINITIONS so if you want to use 
the DEBUG vocabulary after a FORGET, don't forget to type 
DEBUG DEFINITIONS. Words defined after FORTH DEFINITIONS will 
be added to and will use definitions from the original FORTH 
vocabulary; they will not be traceable, for example. 

The protection facilitie~ divide into two groups: compile 
time protection and execution time protection. We take the 
latter first. 

On the last block of the file a word ?~ is defined to be 
executed before any of the words ! C! 2! or TOGGLE alters the 
contents of a m~mory location.. It checks that the location is 
safe to write to and issues an error message if not. The 
definition of ~safe~ is rather difficult, and the choice made 
here is a trade-off between speed loss and reasonable 
protection: it is possible to write to a few dangerous 
locations or to be prevented from writing to some safe ones. 
The commonest beginners• errors are trapped, however, such as 
X 1 ! instead of 1 X ! 

If you are trying to understand the action of?!, note the 
use of [ ••• l LITERAL to calculate an expression at compile 
time and store its value as a literal, to be put on the stack 
at execution time. Here the use is to find the code executed 
by something that is known to be a variable at compil~ time, to 
determine whether a variable is being assigned to at execution 
time. <A constant is also allowed, being checked for in the 
same way. Otherwise, any location in the disc buffer area and 
any location not protected against FORGET is permitted.> 

More execution time checks are provided on an earliei 
block, where arrays are redefined to check they hav9 legitimate 
index valuesm <If your original ><Forth system already did 
this, you will now have been supplied with code that donsn~t, 
and so runs a little faster. As always, you should only use 
the unsafe code if speed is important and your definitions are 
debugged.) 

On the very first block of the file the words >R R> LIT And 
LEAVE ar·e defined to do compile-time checks. (The same is done 
for 1 later on.) This incurs no penalty at execution tim~. To 
do this they have to be made IMMEDIATE so that even when most 
words are being compiled, the redefined words execute and check 

E-2 



I r n 

<c> A.I.H. Research The debug package. 

that they like their environment, then themselves compile the 
necessary exe1:ution-time act.ions. Except for >H and H>, the 
new definitions merely check that compilat.ion n::-ally is takinq 
place, since (for e~ample> LEAVE alters the return stack with 
fatal effects if typed from a terminal. The new >Rand R> do 
an additional job of making sure they are nested and balanced 
correctly. If they are not, an error message is given. ff an 
R> appears without a preceding >Rat the same nesting level~ 
the error message says the return stack isn~t balanced. If a 
>R isn•t closed by an R> the error message says conditionals 
aren't matched if you are just leaving a conditional or looping 
structure, and it says the definition isn't finished if you 7 ve 
reached a semicolon. 

The tracing facility wclrks by rede·Fining to compil~c a 
call to the tracer as the first instruction in any word. To 
allow selective tracing, you can turn this off by typing 
maka-unt~aceable and on again by typing make-traceable • 

A word with tracing ability compiled will behave apparently 
normally unless you type a special key while it is executing, 
as described below, or you have pr-evious.ly typed tr-ace-on or 
pau~3e-on • <The opposites o·f these are, of course, trace-·off 
and pause-off .> If trace-on has been typed, the name of ~very 
traceable word is typed when it is executed, together with a 
picture of the stack. If pause-on has been typed, the action 
is the same except that ~ok?~ is then typed and the system 
pauses until you hit a key. The special keys below have their 
special actions and all others cause normal execution ta 
cc:mtinue. 

Traceable wards call ?TERMINAL as well as checking the 
state of the tracing and pause switches. Since ?TERMINAL has 
been redefined in the debug package, certain keys are treated 
specially. COf course, any cf your definitions that use 
?TERMil'U\L will also havu access to this facility, r-eganH¥-:·ss of 
whether they are traceable.) The keys are as follows; all 
others are ignored. 

Control/C 

Control/P 

causes immediate return of control 
terminal. 

to the 

toggles the printer on and off, 
normal input. 

just. .~~:. in 

E·<S 



l i'. 0 

The debug package. Cc> A.l.M. Research 

Control/6 

ESC 

temporarily stops everything until any key 
{except control/C, which behaves as above} is 
typed. This is useful for controlled scrolling 
of output, among other things. 

acts to suspend execution: it returns control 
to the terminal, but saves everything including 
the previous terminal input buffer contents. 
If you type 

resume 

then execution will continue where it left off, 
but in the meantime you may have turned pausing 
or tracing on or off, altered the stack, or 
even edited blocks of virtual memory. Note 
that the interpreter now types ~ak+P to let you 
know you are not at the usual level of 
interpretation. 

E-4 



I-,,-.. 

l J 'tlMrMJ 10 Ult ti til ·a11- ti IJ'iilllltit liiS llJ I t1 OM!V? )t '7' 'S lM '¥$ )) lt$ -" i ",~,, 

We •1W,111.......,..,~"--*""~~.·•i.~.01•M••11u~··"'~"".......,... .• ,'19'3<1i..,11t,a,,.,,..,_.;~o·h'*"-'"Wlllll"i" 'bt\ri'iW.¥ iit±tdttl"t UUl!d¥'1111M'8 MtJifliiWI't.i-~··:::r 

(c) A.I.M. Research The assembler. 

Appendix F 

The &saambler. 

Most programs spend nearly all their time e>,ecuting .a ver·y 
small part, known as the ~inner loop 7

• For example, Forth 
systems on microcomputers - including xForth - spend mo5t of 
their time in the ~inner interpreter" which arranges frn·
instruction~ to be threaded together in the correct order. If 
speed is important, inner loops can be coded in assembler while 
the rest of the program is written normally. This can result 
in a program that runs nearly as fast as a pure assembler 
pr·ogram, while retaining xForth~s advantages of compactness and 
ease of writing and maintaining. 

This Appendix assumes you already know 8080 assembly 
language. It tells you how to define words which execute just 
like other xForth words but which operate at the machine code 
level, so bypassing the inner interpreter. You should never 
star·t by writing ><Forth ~..iords in assembler: write and test them 
at high level first, then if absolutely necessary, re-code the 
few words that are executed most often. <If you are not 
convinced, re-code a randomly chosen word from one of your 
programs. If it isn't an inner loop word, you will probably be 
disappointed at the small speed increase>. 

The file ASSEMBLE.BLK contains the source of the xForth 
assembler which is itself written in high level xForth. The 
file DUMP.BLK contains a dump utility producing output similar 
to that of DOT'S dumpJ use it like this: 20000 100 DUMP which 
displays the contents of 112 bytes starting at 20000. <The 
reason 112 bytes <:H" .. t:? displayed rather than 100 is that DUMF 
alway rounds up to a multiple of 16.> 

To defii1e a word that will execute directly, enclose it 
between CODE and END-CODE instead of between : and ; as you 
usually do. Then you type in assembly language instructions 
using Intel 8080 mnemonics except that reverse polish (i.e. 
stack-oriented) notation is used. For example, 

A C MDV, 

store5 code to move the contents of the A regi~ter to the C 
register. The order of all the instructions is 

F-1 



l ?. () 

The assembler. (c) A.I.M. Research 

source destination instruction 

We use, say, 10 D LXI, where conventional assemblers use LXI D, 
10. The comma at the end of MOV, or LXI, reminds you it's an 
instruction rather than a parameter, and so will actually store 
some code. 

All the standard 8080 instructions are available <see the 
source coda> together with some ZBO extensions like EXX, which 
switches back and forth between the two registers sets, EXA, 
which does the same for the accumulator·/flag sets, PCIX, which 
jumps to the address in the IX register, and LDI, LDD, LDIR, 
LDDR, which perform ZBO semi·-automatic block moves. 
Instructions like 

0 IX LXI, 

work corr·ectl y but not al 1 Z80 instructions are supplied. With 
tht?t samples given you can see how to make your own extensions. 

While in the assembler you can still use xForth~s 
structuring facilities. For example, 

o~ IF, 1 OUT, ENDIF, 

will •">lrite the accumulator to port 1 if the zero flag is set~ 
The code produced is exactly the same as a conventional 
assembler would produce given 

JNZ Ll 

Similarly BEGIN, LDI, PE 
automatic black move in 
repeated until the parity 

OUT 1 ! Ll 

NOT UNTIL, performs a ZBO 
which the LDI instruction has 
flag is unset. 

SeR'li ·
to be 

The available constructions are IF, ••• ELSE, ••• ENDIF, and 
BEGIN, ••• UNTIL, and BEGIN, ••• WHILE, ••• REPEAT, The tests 
performad by IF, UNTIL, •nd WHILE, have to be ••t&tad 
explicitly• PE for parity flag set, Qa for zero flag set, O< 
for negative flag set and CS for carry flag set; these c~n all 
be negated by following them directly by NOT 

For the rare occasions where explicit labels are needed, 
you can set them by saying, for instance, 

LABEL Lt H D MOV, 

and then any of the U5ual jumps like Ll JNZ, will work. Of 
course, labels are just xForth words so things like 
John's-label are legitimate. Yau must, however, take care: 
labelling a subroutine and then calling it is fine, but. putting 
a label in the middle of some code (whatever for?> will cause 

F-2 



llO 

<c> A.I.M. Research 

disaster unless you jump round it, since a 
dictionary entry and will be entered along with 
code being assembled. 

The assembler. 

label 
the 

is a 
machi nE~ 

To insert a character st.ring in line, use " as in 

LABEL stringl " This is string one " 

which puts acme byte character count at the point labelled by 
string1 and puts the t£:xt immediately following. 

Conditional assembly is often useful. For example, the 
source of xForth has a flag Z80 that. is true Nhen Z80 code is 
to be compiled, and false otherwise. The flag is tested by C 
which acts like IF except it takes effect at assembly time, 
The analogues of ELSE and ENDIF are : and >. For example, 

Z80 { A XRA, SBX, I SSUB CALL, } 

either inserts in-line ZBO code for 16 bit subtraction, or 
calls a subroutine. As it happens, { ••• : ••• }can also be used 
in other places outside a colon definition so you can type 
things like 

2 RANDOM { 1 colour ."Black" 
1 colour ."White" 

} 

The last thing you must do in an assembler word is to thread 
your definition back into xForth. To do so, restore the 
original BC register contents <which point to the next xForth 
instruction to be obeyed) and jump to NEXT which is a label in 
the inner interpreter. 

CODE 2* H POP, H DAD, H PUSH, 
NEXT JMP, END-CODE 

<Note that the 8080 stack pointer really does point to th~ 
xForth stack) 

F-3 



~~~~~~~~~~~~~~~~~~~---------------------_.. .......... .._ ...... _.. ..................................................... ~~~ ~~-~ill'lllifll8lhl'l ''H_..1;.tr.wiiii#'k- 5#t'f11·~·4j+,i1MJiWbiatt..&.1.'t•#.M.&~Wlt .. ~~..itJ.r-ili.t-hal'Mill:.llA::~~idS •.• ,,;!ll-.,.b-J.-... .l~i:!iJ.~~#.rl·.:.'>WA: •• iilui::1.llltia~~~"--'iW<' 

J ")' {'\

The assembler. Cc) A.I.M. Research

180 { CODE 2SWAP EXX, H POP, D
EXX, H POP, D POP,
EXX, D PUSH, H PUSH,
El<X, D PUSH, H PUSH,
NEXT JMP, END-com:::

I 1 2SWAP ROT >R ROT R> ;
}

POP,

(Note that { I and l must all ba in the same xForth block)

CODE BYE 0 JMP, END-CODE

CODE 2/MOD < unsigned
H POP, A XRA,
H A MDV, RAR, A
L A MOV, RAR., I'.\
CS IF, 1 D LX I,
NEXT 2- JMP,

END-CODE

--- remainder result
(Clear carry

H MOV, (Left half >
L MOV, < Right half >
ELSE, 0 D LXI, ENDIF,

< Push D 3nd then H >

A note on vocabulari••

To avoid confusion between the many assembler mn~monics and
other xForth wor-ds, the mnemonics are kept in a separate pe:1rt
of the dictionary that is only looked at if CODE or LABEL has
been typed,and until ENO-CODE is typed. The separ·ate par·t is

.. ..,
llO

<c> A.I.M. Rese~rch The assembler.

called a vocabulary and advanced programs like metaForth
manipulate several different vocabular·ies. The interpreter-·
searches the assembler vocabulary when looking for words. and
if it fails to find a word it then searches the Forth
vocabulary. This means you can use all of xForth's normal
facilities for arithmetic and so on, while in the middle of a
CODE definition. Note that CODE definition time is not
considered to be compile time, so all words between CODE and
END-Code execute at once, which is always what's required. All
you really need to know here is that an error during a CODE
definition leaves you in the assembler vocabulary. Type FORTH
(or DEBUG if you have the debug package) to return to normal .

F-5

L 7. 0

<c> A.I.M. Research Adapting your system

Appendix 8

Adapting your syat1111

You can alter or add to your system and then save the new
version so it can be run directly from CP/M. For example, you
might want to add the assembler permanently: in that case, just
load it and then read on.

(a) The usual way is to make whatever changes you want,
type n SYSADAPT (where n is however many virtual memory buffers
you want - at least 2> and then save the system as described in
the Preface 'Getting Started 7

• That is, you use the CP/M SAVE
command to save a file XFORTH.COH of whatever size SYSADAPT
tells you to use. <You can use CONFIG instead of SVSADAPT;
this is useful if you intend to change assignments to things
like the delete key.> If you are doing a lot of work with
files~ it is worth having more buffers: SYSADAPT won't let you
allocate more buffers than there 7 s space for, but of cour-se if
you're about to load a huge application then it'5 prudent to
leave enough room for it. With the sequential i/o file
package, it's sometimes useful to have as many as 16 buffers,
since this reduces disc activity for the spool files.

Cb) If you want to alter the editor or other basic xForth
words, you can change the relevant blocks then exit to CP/M and
type

A>KERNZBO or A>KERN8080

to load a kernel system. Then type SYSGEN and the new system
will be built. It can be saved as in (a) above. Block 1
handles the system building so by changing that you can
custom-build a system to suit yourself.

G-1

l 7. ()

Adapting your $ystem (c) A.I.M. Research

The following information is not normally needed, but is
included so you can understand the action of CONFIG. Terminals
that have several possible screen formats can be dealt with by
defining a Forth word that does whatever is needed to change
the mode, then puts the correct values in things like C/L and
LIS.

xFarth needs ta know how wide your screen is so it can wr&p
long lines imd so the edit.or can decide whether and how t.o
scroll. If you have a VDU that wraps lines but has the common
bug that if you write in the last column it takes a new line
without waiting ta sea if you wmre going to send a printable
character next <e.g. SuperBrain and TRSBO Model II>, you should
tell xForth you have one column less than you really do havet
79 instead of 80, in most cases. This is not needed if you use
CONFIG, since it subtracts 1 always if you say your terminal
wraps long lines.

The constant C/L contains what xForth thinks is the number
of characters pf?r line for- your terminal. It is set to 80 on
delivery unless we have told you otherwise. To change it to,
say, 79, type

79 7 C/L !

which U5ta5 the word ' to get at the address where the constant.
value is stored* Similarly, you can change L/S to the numbe~
of 1 i nes in yow- VDU screen.

Two variabl~m you can alter are DEL-KEY and CAN-KEY
are respectively the character used to rub out the
character typed and the character used to remove the
line. For example,

127 DEL --KEY

which
last

wholE.?

will make the standard 'DELETE' key rub out characters and
backspaces will then be reflected as AH. Note that these keys
only refer to standard input as done by EXPECT or QUERY, which
are the words used by the interpreter. If you call KEY you get
exactly what was typed, with no system intervention.

Another variable which has already been mentioned is
XOFF-CHAR, which contains the code used in controlled scrolling
of the screen. You could change it to space by using

G-2

''""'*- rbwttt

I . ., "

<c> A.I.M. Research Adapting your system

BL XOFF-CHAR ~ and then just hit the space bar to arrest
output, or you could set it to some impossible value like -2 to
switch off scrolling control. If you set it to -1 there is a
special effect both scrolling control and control/C breaking
are switched off.

If you have a cursor-addressable terminal, the first thinq
is to tell xFarth how to position the cursor. If your terminal
wasn't mentioned in the configuration menu, you will have to
write a special word. This is quite simple. For example, her;e
is how wa wrote a word to cope with the popular DEC VT52
method& this allows us ta go to raw r, column c relative to
rmO, c=O as top left, by sending ESC Y 32+r 32+c wher~ ESC is
the escape code control/[. This is done as follows:

Look at
position the
type in

: <cursor> CTRL (EMIT
ASCII Y EMIT
SWAP 32 + EMIT
32 + EMIT ;

the manual
cursor. If,

for your terminal to find how to
say, it uses control/P 32+r 32+c then

2 <cursor> CTRL P EMIT
mtJAP 32 + EMIT
32 + EMIT ;

Now test your work: type 0 0 <cursor) and make sure ok
appears in the top left corner. Take particular care that it
appears in the top left and not l character away in either the
horizontal or the vertical direction. You will know you've
~dded the wrong offset <32 above) if this happens or if the
cursor is out of step with where it should be when you use the
editor later. Now type 10 0 (cursor> to get it about half way
down the left column and 0 40 (cursor) to get it about half way
across the top row. This make5 sure you have row and column
the right way round.

Once all is well, type

XCURSOH REPLACED-BY <cursor>

and go to !(a) above.

G-3

Adapting your system <c> A.I.M. Research

The screen editor is now configured almost entirely by
using the file BINDINGS.BLK which lets you choose the keys to
have whatever functions you want.

If your terminal can display in reverse video or dim (we
don't really recommend flashing) you can redefine $EMIT in the
editor source to output a character in this form, which will
show up control characters better.

If you make any changes, type LOAD-FILE SEE.BLK and test
the modified edit.or ver·y thoroughly4 When you are sun:? all is
well, go to 1(b) above.

If you don•t have a cursor-addressable terminal, you may
want to remove the screen editor to save space, replacing it
with the FIG editor supplied on the file FIG-ED.BLK and
described in the relevant Appendix.

To do the replacement, edit block 1 to
instead of SEE.BLK, and alter occurrences
COPY.BLK ta EDITOR. Then go to (b) above&

To remove the stack prompt altogether, type

XPROMPT REPLACED-BY CR

load FIG-ED.BLK
of <EDITOR> in

To change it, 6ay, &a th•t the stack picture appears on your
terminal's status line, define and test 3 words

save-··cursor
to-status-line
restore-cursor

G-·4

l~O

<c> A.I.M. Research Adapting your system

and then edit block 9 so that .STACK becomes

a .STACK save cursor
to-status-line

restore-cursor
CR ;

Check your new definition and then go to 1Cb>

Similarly you can change the "ok" message, for exam~le,

XOK REPLACED-BY NOOP

will remove it altogetheru

G-5

t ;::o

(c) A.I.M. Research Bugs.

AppendiK H

Bugs.

We believe our software is reliable and well-designftd, but
o·f course we welcome information that will help us to rt?movr::!
errors or make improvements. If you think there is a fault in
the system we supplied, or even a bad design feature that is
inherent in xForth rather than in the FORTH-79 standard, please
let us know.

To help us help you, please make absolutely sure the fault.
isn't in your program and make sur·e you have done your best to
isolate where the fault lies. Try to remove anything not
relevant to the problem, and send us the shortest program you
can together with output that displays the fault. You must
show every step from loading the kernel system, typing SYSGEN
Cwith blacks 1 through 41 exactly as in the delivered system)
to the paint where the error occurred. We are sorry that lf#e
cannot undertake to deal with errors in systems that have be~n
altered or patched in any way, or in systems that use
imitations of CP/M instead of CP/M itself. None of this is
intended to intimidate you - itps merely to give us s04l1e chance
of helping you!

Note that because of the great freedom xForth gives you, it
is possible to crash the system by overwriting xForth, CP/M or
the buffers, stacks or user variables. This is why we
recommend the debug package and vocabulary for all normal use~
it protects you against nearly all common errors. Even without
the debug option, you are far better protected in xForth than
in most other Forth systems, and if you take care with the
words ! C! 2! R> and >R you should have no trouble.

H-1

	Cover Page
	Table of Contents
	How to Use This Manual
	1. Preliminaries
	2. First Steps
	3. Manipulating the Stack
	4. Defining Your Own Words
	5. Loading and Listing Definitions and Commands From Disc
	6. Control Structures
	7. Constants and Variables
	8. Text Strings and Characters
	9. Virtual Memory
	10. Interfacing With the Operating System
	11. Other Topics
	A. The Screen Editor
	B. Using the FIG Editor
	C. The Demonstration Package and the Basic Examples
	D. The Filing System
	E. The Debug Package
	F. The Assembler
	G. Adapting Your System
	H. Bugs

