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Preface

About this Book

This book is intended to provide for the support of a wide range of products,
including both Uni-Processor (UP) and Symmetric Multiple Processor (SMP)
systems. It allows for the building of many system features, such as, memory
with caches. Its primary objective is to define an architecture, which allows
each Operating System (OS), in particular, the AIX Operating System, to run
unchanged on all systems that comply with this architecture. This objective is
met by providing a consistent interface to software across a broad range of
system implementations.

The RISC System/6000 model 250 follows the architecture in this book. Other
future RISC System/6000 models will follow this architecture. Those products
that follow the architecture in this book are referred to in this book as “RISC
System/6000 PowerPC systems.”

This book identifies at a high level the state of the system when the Operating
System receives control. This book identifies those items which must be
initialized by the hardware (which includes Initial Program Load (IPL) Read
Only Memory (ROM)) prior to passing control to the Operating System. In
addition, this book documents those items which must be initialized by the
Operating System, i.e., that are architecturally not yet handled or not
accomplished via the hardware, but are needed to have an operational system.
Although this book does not provide specifications for AIX configuration, it
does provide all hardware/software dependencies necessary for a successful
system configuration process. This book also defines the memory architecture
as it relates to defining the interface between the hardware and software.

Referenced documents’ details take precedence over this book in case of
ambiguities or conflicts. If an item is identified as “optional architectural
support,” then this support is not required, but if done should be done in the
specified manner.
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Who Should Use this Book

This book provides an overview of the operation of the system. It is intended for
programmers and engineers who understand computer architecture and
programming concepts and who develop hardware and software products for
the system family. This includes adapter design and the software device driver
required to access the adapter. In addition this book may be used by System
Programmers, involved in Operating System Design as well as the System
Integrators building products and part producers for these products.

How to Use this Book

Prerequisite Documentation
B PowerPC Architecture (books 1, I1, IIT)

Related Documents

B PowerPC 601 User’s Manual and other Processor specific books as
they become available

B BM Personal System/2 Hardware Interface Technical Reference —
Architectures (S84F-9808)

B POWERstation and POWERserver Hardware Technical Information
General Architectures (SA23-2643)

B POWERSstation and POWERserver Common Diagnostics and Service
Guide (SA23-2687)

Overview of Contents
This book contains the following:

B Edition notice, which includes referenced trademarks.
B Table of Contents.

B Preface, which describes the general system objectives (the class of
products which follow or are expected to follow this architecture), the
audience for this book, how to use this book, an overview of the
contents, and acknowledgements.

B Chapter 1, “Introduction,” describes at a high level an overview of the
architecture, some important terms, and the addressing notation.
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B Chapter 2, “PowerPC Processor Architecture,” provides a high level
description of the prerequisite book and related documents and how
some of the instructions are to be interpreted from a system point of
view.

B Chapter 3, “Architected System Memory Map,” details the placement
in the real address space of the architected system facilities. A brief
description of many of the system facilities is defined in this chapter.

B Chapter 4, “Bring-Up and Configuration Architecture,” defines the
interface between hardware and software that allows software to
identify and set up (configure) each variable component of the system.

B Chapter 5, “NVRAM Contents and Mapping,” details the usage and
architected mappings of the Non-Volatile Random Access Memory
which contains information that persists across Initial Program Loads
(IPLs) and power cycling.

B Chapter 6, “Bus Unit Controller (BUC) Architecture,” describes some
of the system and processor addressing interfaces for BUCs including
both T=0 and T=1 addressing, address protection, data consistency and
ordering requirements, and error reporting. In addition, BUC Interrupt
handling requirements are discussed.

B Chapter 7, “IOCC [Input/Output Channel Controller] Architecture,” is
a special case of the BUC architecture as it relates to the Micro Channel
bus support functions for Load and Store instructions, interrupt, and
channel control. Familiarity with the IBM Personal System/2 Hardware
Interface Technical Reference — Architectures (S84F-9808) is helpful
for understanding this chapter. This chapter describes bit and byte
numbering conventions, I/O bus protocols, the programming model,
load and store instructions, the translation, protection, commands, I/O
interrupts, special facilities, the system I/O and standard 1/O, exception
reporting and handling, and implementation details.

B Chapter 8, “System Resources,” describes the facilities which are
present on all RISC System/6000 PowerPC systems. It includes the
operator interface facilities such as the display Light Emitting Diode
(LED) interface, the Initial Program Load (IPL)/Operation modes
(keylock switch positions), and operator reset support. In addition, this
chapter briefly identifies some other system facilities such as the timer
facilities.

B Chapter 9, “External Interrupt Architecture,” describes the interfaces
external to the processor to handle interrupts, that is, the signalling of a
processor than an “interrupt condition” exists at a given “source.” This
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chapter describes the system level interrupt registers which are defined
for a Symmetric Multi-Processor (SMP) system. This chapter defines
the facilities required to identify which processors are available for
handling interrupt support, which processors are available for handling
interrupts that can go to any processor (the global queue) and the
software interface to tell the hardware its current priority and that it has
completed processing an interrupt.

Chapter 10, “System Exception Processing,” describes the architecture
related to the system requirements for processing (error detection, error
recording, and recovery) of system exception conditions, including
items such as parity errors, address range errors and time-outs.

Chapter 11, “System Bus Architecture,” gives a brief overview of some
example system busses.

Chapter 12, “Bring-Up Function and IPLCB,” describes the Power-On
hardware requirements to bring up an SMP system without a Service
Processor. It also describes the IPLCB, which contains information
needed by the OS to understand the machine characteristics, similar to
the PRePs residual data area.

Chapter 13, “Vital Product Data (VPD),” defines the format of the
electronically sensed data which uniquely describes each hardware,
software, and microcode configurable element of the system.

Chapter 14, “AIX Based Diagnostic Requirements,” defines the
dependencies that the AIX based diagnostics has on the system
resources (Chapter 8), the IPL ROM, and the VPD. This chapter also
includes the Operator Panel Display interface message format,
including the codes that are displayed on the LEDs during bring up.
The information in this chapter is required by maintenance package
developers.

Chapter 15, “Feature ROM Scan (FRS) Architecture,” gives the
highlights of a specific aspect of the configuration architecture.

Appendix A, “Processor Dependencies,” identifies some of the system
dependencies on PowerPC processor implementation details that are not
part of the PowerPC processor architecture.

Appendix B, “Standard I/O Interface,” defines the addresses typically
allocated to each of the standard I/O devices as they are addressed in
T=1 space.

Appendix C, “Target Market Categories,” defines a range of machine
classes which is intended to be used in conjunction with the System
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Exception Architecture (Chapter 10) to assist in understanding the
applicability of the system exception architecture to a particular
implementation.

B Appendix D, “Memory Controller Example,” documents some of the

configuration and exception support in the memory controller used in
the RISC/System 6000 model 250.

B Appendix E, “System Exception Implementation Examples,”
documents the exception support in the RISC/System 6000 model 250.
and provides additional approaches for other types of systems,
including SMPs.

B Appendix F, “IPLCB Example,” provides detailed descriptions of
individual sections in the IPLCB.

B Appendix G, “AIX Dependencies on the IPLCB,” identifies AIX
restrictions on changes to the IPLCB.

B Appendix H, “AIX Command and Event Indicators,” lists the message
indicators representing AIX command and events which are displayed
by AIX on LEDs when the normal AIX Operating System is not
operational, that is, typically during initialization.

B Appendix I, “Power IOCC Architecture versus PowerPC IOCC
Architecture,” identifies the changes made to the Power [OCC
Architecture to get to the PowerPC IOCC Architecture.

B Appendix J, “32-Bit/64-Bit BUC Architecture Differences and
Considerations,” summarizes the differences between 32-bit and 64-bit
BUC implementations.

B Appendix K, “Big-Endian and Little-Endian Tutorial,” describes the
big-endian and little-endian numbering conventions.

B Glossary contains the acronyms and many of the phrases used in this
book, along with a brief definition or where to find additional
information.

B Index typically contains the first and some of the more important
references of many of the phrases and acronyms used in this book.
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Introduction

This book identifies at a high level the state of the system when the Operating
System receives control. It defines the hardware/software interfaces at the
system level, that is, outside of the PowerPC processors.

1.1 Memory Architecture

This book defines the memory architecture as it relates to defining the interface
between the hardware and software. Memory access is often used as a means of
communication between the hardware and software and “architected
addresses” are used to facilitate this communication, refer to Section 3.1 on
page 7 for these addresses. See the NVRAM chapter starting on page 35 for the
layout of the Non-Volatile Random Access Memory.

There should be no software dependency on any particular characteristic of the
memory subsystem structure, such as, the location of caches. In fact, the
PowerPC architecture does not require any particular cache organization and is
intended to allow many different implementations. Software may however, do
system performance tuning, by using the cache management instructions which
are provided.

Figure 2 (System Block Diagram on page 60) contains a logical view of a
system, where memory is directly attached to the system bus to allow transfers
of data among the various components of the system. The interface between the
physical memory and the system bus is part of the memory controller. In order
to get consistency among all RISC System/6000 PowerPC systems, the bus
controller interface of the memory controller must be designed according to
the “Bus Unit Controller (BUC) Architecture” starting on page 59.
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The PowerPC Architecture (book I) defines storage as a linear array of bytes
indexed from O to a maximum of 2**64—1 on a 64-bit machine (a machine that
implement the 64-bit architecture) and 2**32-1 on a 32-bit machine (a machine
that implements the 32-bit subset architecture). Each byte is identified by its
index, called its address. The PowerPC Architecture (book II) and PowerPC
Architecture (book III) expand this simple storage model to include virtual
storage, caches and shared storage multiprocessors. Refer to the “PowerPC
Processor Architecture” chapter staring on page 5 for more information on what
can be found in the PowerPC Architecture (books I-III).

The RISC System/6000 PowerPC systems implement a virtual storage model
for applications. This means that a combination of hardware and software can
present a storage model which allows an application to exist within a “virtual”
address space larger than either the effective address space or the real address
space. Each program can access 2**64 bytes on a 64-bit machine and 2**32
bytes on a 32-bit machine of “effective address” space (see PowerPC
Architecture (book I) for effective address calculation), subject to limitations
imposed by the Operating System. In a typical RISC System/6000 PowerPC
system, each program’s effective address space is a subset of a larger virtual
address space managed by the Operating System. The Operating System is
responsible for managing the real (physical storage) resources of the system by
means of a “storage mapping” mechanism. Storage is always allocated and
managed in units of “pages” which have a fixed, 4096 byte size. The storage
mapping process translates accesses to pages in the Effective address space to
real pages in main storage PowerPC Architecture (book III).

The PowerPC architecture specifies a weakly consistent storage model, this
model provides an opportunity for significantly improved performance over
the strongly consistent model. For SMP enabled programs or for programs
which perform I/O on UPs, the weakly consistent storage model places the
responsibility on the program to ensure that ordering or synchronization
instructions are properly placed when necessary for the correct execution of the
program.

1.2 Definition of Terms

The terms and notation identified in this section are used throughout this book.
Use the glossary to find the usage of acronyms and the index to find the
definition of terms defined elsewhere in this book.

1.2.1 Reserved

The term “reserved” is used within this document to refer to memory areas,
words, bit fields or values of bit fields reserved for future architecture use or for
bits that are implementation dependent and not available for architecture use.
These bits may or may not be implementation dependent and may or may not
be “reserved/unimplemented” see Section 1.2.2. In either case, software shall
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write these bits as 0 (unless indicated otherwise in the text of this document).
Unless noted elsewhere, hardware shall return either O or the value last written
by software. Software should assume that the reserved bits may be used some
day and therefore may not be returned as 0’s in the future. Software should
therefore ignore the reserved bits before using the data returned from a Load
instruction in order to assure future compatibility.

1.2.2 Reserved/Unimplemented

The term “reserved/unimplemented” is used within this document to refer to
memory areas, words, or bits that have not been assigned an architectural use.
Unimplemented bits are a special case of reserved bits. Often, these bits
are “reserved” for future architecture use. These bits may become
implementation dependent or they may be assigned an architected use. In any
case, software shall write these bits as 0 (unless indicated otherwise in the text
of this document). Hardware shall return either O or the value last written by
software. If these bits are truly “unimplemented” and not in main memory, then
for a memory mapped (T=0) access, hardware shall ignore the write and shall
return 0’s when the bits are read back. In some Bus Unit Controller (BUC)
implementations, with T=1 access, the results may be different, see Section
6.1.3.1 on page 66 for more details. Software should assume that the
unimplemented bits may be used some day and therefore may not be returned as
0’s in the future. Software should therefore ignore the unimplemented bits
before using the data returned from a Load instruction in order to assure future
compatibility.

1.2.3 Addressing Notation

Bit and byte numbering in this book is assumed to be in the “Big Endian”
format, where bit O is the high order bit, unless specified otherwise. The Big
Endian format is defined as the byte ordering with the most significant byte first
( e.g., Big End first) and located at the referenced address. Refer to the
Appendix “Big-Endian and Little-Endiant Tutorial” starting on page 293 and
the PowerPC Architecture (book I) for additional details. Addresses and
displacements in this book use the C programming conventions, with 0x1bc2
representing a hexadecimal number, 0b10101011 representing a binary
number, and 25 representing a decimal number. In addition, leading or trailing
zeroes are used to unambiguously represent the value of the number.

The addressing notation of Oxf..ff as a prefix to a hexadecimal number
represents a hexadecimal number with the high order sign bit extended as
necessary to indicate the highest allowable address on the machine. That is,
0xf...ff123456 represents the address 0xff123456 on a 32-bit machine, and
Oxffffffffff123456 on a 64-bit machine. For example, on a 64-bit machine that
only supports 48 bits of real address, the actual implementation shall map the
0xf...f123456 to the real address of Oxffffff123456.

Architecture Note

Reserved bits within
RAM resident control
block structures, such
as, TCEs (see Section
6.1.4 on page 68) shall
typically return to
software the last value
written by software.
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Architected Addresses, such as, those that are defined in the Memory Map
section, Section 3.1, starting on page 7, are restricted to the upper four (4)
gigabytes because on a 64-bit word machine, software shall assume that the
upper 32-bits are all ones. This is true for those items that are allowed to be at
machine dependent locations.

1.2.4 Symbolic Notation

C symbolic notations are used throughout this book, for example, “if (a==b)” is
used to represent “if a is equal to b.”

1.3 Reliability, Availability, and
Serviceability (RAS)

Product owners are expected to identify the Reliability, Availability, and
Serviceability (RAS) requirements for their products and to meet their own
product objectives.



PowerPC Processor
Architecture

The PowerPC Processor Architecture consists of the instructions and facilities
described in PowerPC Architecture (books I, II, and III).

Book I defines the User Instruction Set Architecture. This Book describes the
registers, instructions, storage model, and execution model that are available to
all application programs.

Book II defines the Virtual Environment Architecture. This Book describes
features of the architecture that permit application programs to create or modify
code, to share data among programs in a multiprocessors system, and to
optimize the performance of storage accesses.

Book III defines the Operating Environment Architecture.  This Book
describes features of the architecture that permit Operating Systems to allocate
and manage storage, to handle errors encountered by application programs, to
support I/O devices, and to provide the other services expected of secure,
modern, multiprocessor Operating Systems.

2.1 PowerPC Implementation Specific
User’s Manual

There are a number of books that cover the details of the implementation of
specific microprocessors which are beyond the scope of the PowerPC
Architecture Books I, II, and III. For example, for 601 PowerPC processor,
there is a corresponding book with the title PowerPC 601 User’s Manual. This
book provides a technical overview of the specified microprocessor
implementation. As other processors are released, other chip specific User
Manuals will be released.

Engineering Note

Different processor
implementations may
cause substantial
difference in system
design consideration, for
example, because the 603
processor orders bus
accesses, it does not
broadcast either eieio or
sync instructions. System
designers using the 603,
for example, must use this
strong ordering feature of
the 603 to guarantee
ordering across I/O space.
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BUCs may allow software
to force or to guarantee
completion of /0O by a
variety of means: For
example, software may be
allowed to read back the
data written when the data
is returned from the end
target. Another approach
would be to have the BUC
provide a status word
which can be polled via
the software to indicate
that the I/0 is complete.
Also, the BUC may issue
an interrupt upon the
completion of the 1/0.

BUCs that are designed to
work in all system
structures should have
those registers that can be
cached in the processor’s
cache placed in system
memory, or shadowed in
system memory. The
reason for this is that not
all system structure will
allow processor cacheable
memory locations to be
located on the I/O.

2.1.1 Processor Requirements

See Appendix A,“Processor Dependencies,” starting on page 233 for the
Processor requirements used by the RISC System/6000 Architecture.

2.1.2 Hardware I/O Design Instruction Support
Requirements

In order to provide for a consistent hardware software interface, System
Designers are responsible for ensuring that eieio and sync guarantee ordering
across I/O space.

In addition, BUCs must provide an implementation dependent mechanism to
the software that allows software to know or to guarantee that a previously
issued I/O is complete. An I/O operation is defined to be complete when all side
effects of the I/O have occurred, including any error status reporting or
interrupts. For additional information related the hardware I/O design
requirements, see Chapter “BUC Common Architecture” starting on page 59.



Architected System
Memory Map

The System Memory Map in the PowerPC (32-bit/64-bit) system architecture
consists of n gigabytes (GB) of real memory and is shown on the left of Figure 1.

The Architected System Memory Space, which is located in the upper 16
megabytes (MB) of the overall System Memory Map, is expanded on the right
of Figure 1. Note that, for simplicity, the resolution of this figure is 1 MB.

3.1 Memory Map Layout

Table 1 contains more details regarding the layout, the descriptions, and the
specific ranges of addresses in the 16 MB of Architected System Memory
Space. All RISC System/6000 PowerPC products comply with the RISC
System/6000 PowerPC Architecture and support each facility in this
architecture, unless the facility is specifically identified as optional under the
details regarding the specific facility. (It is possible for an IBM product to
follow the architecture but be allowed to deviate from the architecture due to
business reasons. When this occurs, the deviation is expected to be documented
in the product specific documentation.)
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Figure 1. System Memory Map



3.1 Memory Map Layout

Start End Address | Fixed Description
Address Address
Required

0xf...ff000000 | Oxf...ffO00fff | Partial Architected System Registers

0xf...ff001000 | Oxf...ffOO1fff | Yes System Specific System Registers

Oxf...ff002000 | Oxf...ffOfffff Yes Reserved/Unimplemented, see Section 1.2.2 on

page 3.

Oxf...ff100000 | Oxf..ff17ffff | Yes Architected System Interrupt Registers

Oxf...ff180000 | Oxf..ff181fff | No SMP Global Queue Interrupt Routing Masks

(GQ_IRMs)

Oxf...ff182000 | Oxf...ff182003 | Yes SMP Early Power Off Warning (EPOW) Exter-

nal Interrupt Vector Register (XIVR)

Oxf...ff182004 | Oxf...ff1fffff Yes Reserved/Unimplemented, see Section 1.2.2 on

page 3.

Oxf...ff200000 | Oxf...ff200fff | Yes Architected Configuration Registers

Oxf...ff201000 | Oxf...ff201fff | Yes Device Specific Configuration Registers

Oxf...f£202000 | Oxf...fESEEEEF Yes Reserved/Unimplemented, see Section 1.2.2 on

page 3.

Oxf...ff600000 | Oxf...ff7fffff Yes NVRAM

Oxf...ff800000 | Oxf...fAOfffff Yes Reserved/Unimplemented, see Section 1.2.2 on

page 3.

Oxf...ffa00000 | Oxf...ffbfffff Yes Architected Feature/VPD ROM Space

Oxf...ffc00000 | Oxf.. ffAffFff Yes Reserved/Unimplemented, see Section 1.2.2 on

page 3.

Oxf...ffe00000 | Oxf.. ffffffff Yes IPL ROM

Table 1.  Architected System Memory Map

Currently the only item in Table 1 with a “Fixed Address Required” field value
of “No” is the SMP Global Queue Interrupt Routing Mask (GQ_IRM) field.
The IPLCB software interface allows the SMP Global Queue Interrupt Routing
Mask (GQ_IRM) register to be placed at different physical locations than the
actual address in the table. The “Architected System Registers” item in Table 1
with an “Fixed Address Required” field value of “Partial” has some facilities
which are allowed to be placed in different machine dependent locations, see
Table 3 for additional details. The placement of these facilities is restricted to
the upper four (4) gigabytes because on a 64-bit word machine, software shall
assume that the upper 32-bits are all ones. The IPLCB software interface must
allow for the different machine dependent placements to be in NVRAM.
Because NVRAM may not have parity in some implementations, a CRC is
often used when updates are made. The “access_id” interface is provided in the

Engineering Note

For those items, whose
addresses are allowed to
float, Table 1 identifies
the “recommended
placement of the facility,”
which should help
facilitate hardware
component reuse. If the
attached addresses

are “fixed” in the
hardware, different
hardware components
should not have
conflicting addresses,
that is, one address used
for two different
purposes. Conflicting
addresses can also be
avoided by allow the
facilities to be placed at
configurable locations.
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Engineering Note

For those items, whose
addresses are allowed to
float, Table 3 identifies
the “recommended
placement of the facility,”
which should help
facilitate hardware
component reuse. By
fixing the attached
addresses in the
hardware, different
hardware components
should not have
conflicting addresses,
that is, one address used
for two different
purposes. Conflicting
addresses can also be
avoided by allow the
facilities to be placed at
configurable locations.

Architecture Note

The PIDI register is not
intended to be used as
an interface between
hardware and software
to allow software to know
its current processor ID.
The usage of the PIDI
register may be
implemented by strictly
controlling the bring up
of the individual
processors. The
initialization firmware
may use other
mechanisms to load the
individual processor’s
PIRs. The PIR may be
read by software and is
used to put out bus tags
which are used for
DSIER responses and
Programmed I/Os
(PIOs).

There is no required
relationship between the
value of the PIR and the
Interrupt Server Number,
refer to Table 8 on page
15. ltis highly
recommended, however,
that the numbers be the
same for ease of system
debug.

IPLCB to distinguish between normal memory mapped accesses and NVRAM,
refer to Section “IPLCB/Implementation Dependent Placements” starting on
page 271 for more information related to the “access_id.” In AIX, if
“access_id” == 1, then the OS routine “machine Device Driver” (machine DD)
is used to isolate the special processing required). Refer to Chapter “NVRAM
Contents and Mapping” starting on page 35 for more information related to the
usage of NVRAM for the placement of the architected facilities that are
implementation dependent.

The sections that follow expand on each of the major address space ranges in
Table 1.

3.2 Architected System Registers

All systems may not provide all the functions defined by this set of registers.
Functions that are provided in a system must be compatible with this
architecture. The IPLCB software interface allows some of the architected
system registers to be placed at different physical locations than the actual
address in the table. Items in Table 3 with a “Fixed Address Required” field
value of “No” are allowed to be placed in different machine dependent
locations. The bit definitions within each of these facilities is not allowed to
change when the location is changed.

3.2.1 Physical Identifier Initialization (PIDI)
Register

The Physical Identifier Initialization register (PIDI) is an optional facility that
may be used by SMP systems. The primary purpose of the Physical Identifier
Initialization register is to provide an architected mechanism for IPL ROM to
load the internal Processor ID Register (PIR) for each processor in the system.
The PowerPC processor architecture requires that the processor load the
internal Processor ID Register (PIR) [refer to PowerPC Architecture (book III)
in the implementation specific Special Purpose Register (SPR) appendix] in the
processor SPR before it can generate any identification tags.

Bit Description

0-23 Reserved/Unimplemented, see Section 1.2.2 on page 3.

24-31 Physical Identifier

This field provides a unique number for each processor reading this location. It
is used by processors to differentiate themselves in multiprocessor configura-
tions. Processor identifiers are assigned starting with 0 and incrementing up-
ward.

Table 2. Physical Identifier Initialization Register 0xf...ff000008
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Start End Fixed Description
Address Address Address
Required

0xf...ff000000 | Oxf...ff000007 | Yes Reserved/Unimplemented, see Section 1.2.2 on
page 3.

Oxf...ff000008 | Oxf...ff00000b | Yes Physical IDentifier Initialization (PIDI) Register

0xf...ff00000c | Oxf...ff00000f | Yes Connectivity Configuration Register

0xf...ff000010 | Oxf...ff00004f | Yes Connectivity Reset Registers

Oxf...ff000050 | Oxf...ffl0000bf | Yes Reserved/Unimplemented, see Section 1.2.2 on
page 3.

Oxf...ff0000c0 | Oxf...ff0000dc | Yes Time of Day Registers

Oxf...ff0000dd | Oxf...ff0000df | Yes Reserved/Unimplemented, see Section 1.2.2 on
page 3.

0xf...ff0000e0 | Oxf...ff0000e3 | No System Reset Count Register

Oxf...ff0000e4 | Oxf...ff0000e7 | No Power Status/Keylock Register

0xf...ff0000e8 | Oxf...ff0000eb | No Software Power On Reset Control Register

Oxf...ff0000ec | Oxf...ff0000ef | No Software Power Off Control Register

Oxf...ff0000f0 | Oxf...ff0000ff | Yes Reserved/Unimplemented, see Section 1.2.2 on
page 3.

Table 3. Architected System Register Address Map

3.2.2 Connectivity Configuration Register

For more information regarding the Configuration Architecture, see Chapter
“Bring-Up and Configuration Architecture” starting on page 19 and Section
4.2.1, “Configuration Sequence,” on page 22 for the detailed usage of this
register. The bit description is in Table 4.

Bit Description Init

0 Enable Configuration 0b0

This signal enables slot selection for Configuration cycles.
0b1 = enable configuration

1-22 | Reserved/Unimplemented, see Section 1.2.2 on page 3.

23-31 | Connectivity Configuration Select don’t
This binary encoded number selects a physical Connectivity node location sflze

as the target for configuration cycles

Table 4. Connectivity Configuration Registers 0xf...ff000000 —> Ox(...ff00000c
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3.2.3 Connectivity Reset Register

The hardware system designer is responsible for making sure that each
configurable entity has a unique bit assigned in the Connectivity reset register.

For more information regarding the Configuration Architecture, see Chapter
“Bring-Up and Configuration Architecture” starting on page 19 and Section
4.2.1, “Configuration Sequence,” on page 22 for the detailed usage of this
register. The bit description is in Table 5.

Bit Description Init

0-31 Connectivity Enable 0x00000000

This register is bit significant. Writing a 0 into a bit position
resets the physical Connectivity node location represented by
that bit position. Writing a 1 removes the reset.

Table 5. Connectivity Reset Registers 0xf...ff000010 —> 0xf...ff00004f

3.2.4 Time of Day Registers

The Time of Day clock function is accessed via the locations 0xff0000c0—>
0xff0000dc. The definition of these registers is implementation specific.

3.2.5 System Reset Count Register

During system initialization, the firmware initializes the reset count register as
per Table 6.

Bit Description Init

0-30 Reserved/Unimplemented, see Section 1.2.2 on page 3.

31 System Reset Count 0b0 Warm Boot Ob1 Cold Boot Power-On 0bl
Reset (POR) or Software POR (write to Oxf...ff0000e8) forces this
bittoa 1.

Table 6. System Reset Count Register (recommended address: 0xf...ff0000e0)

3.2.6 Power/Keylock Status Register (PKSR)

During system initialization, the firmware initializes the Power/Keylock Status
Register as per Table 7. The system shall initiate an Early Power Off Warning
(EPOW) interrupt after the system has been initialized whenever any power
related status changes, that is, any change to the Power/Keylock Status Register
other than bits 28-31, the keylock position. Refer to Table 60 on page 168



3.2 Architected System Registers

13

regarding the EPOW interrupt and the XISR special value that indicates the
power status change.

0-32

Power Interrupt Decode

0b0000 No Interrupt

0b0001 Running on Battery
0b0010 Programmed Power off
0b0011 Manual Switch off
0b0100 Remote Power off
0b0101 Thermal High Limit
0b0110 Internal Power Supply Failure
0b0111 Power Supply Overload
0b1000 Loss of Primary Power
0b1001 Fan 1 Fault

0b1010 Fan 2 Fault

0b1011 Fan 3 Fault

0b1100 Fan 4 Fault

0b1101 Fan 5 Fault

0b1110 Fan 6 Fault

Power Up Decode

0b000 Manual On Button Pushed

0b001 Remote On Signal from external

0b010 Timed Power On from TOD Clock

0b011 Remote On Signal from Power Control I/F
0b100 Automatic Restart

Obl Thermal Warning: Indicates that the operating temperature of the
System is above a normal safe level.

0b0 No Thermal Warning

0b1 Backup Battery Installed
0b0 Backup Battery not Installed

0Obl Low Battery: Indicates a discharged or faulty
Backup Battery

0b0 Backup battery OK (if installed)

1027

Reserved/Unimplemented, see Section 1.2.2 on page 3.

28-31

Keylock position — refer to Table 56 on page 155.

The Keylock Decode may be invalid for up to 25 milliseconds following
Power On.

Table 7.

Power/Keylock Status Register (recommended address: 0xf...ff0000e4)
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Architecture Note 3.2.7 Software Power On Reset Control
The Software Power On Reg|Ster
Reset Control register is
intended to be written to

when the system is
mainly powered down. If
the system is not
powered down, then it
should force the system
into a graceful reset,
where operations are
completed or cleared
from the system prior to
actually initiating the cold
restart.

The Software Power Off
Control register is
intended to force the
system into a graceful
power off, where
operations in process
are completed or cleared
from the system prior to
actually forcing the
power to being off.

Architecture and
Programming Note

In some
implementation(s), a
Store instruction issued
to the DSIER may cause
loss of state information.

The value of the data in
the DSIER at startup
time is indeterminate.
This register shall get set
to meaningful data the
first time a DSl is taken.

Any write to the Power On Reset Control register (recommended address
0xf...ff0000e8) shall generate a reset to all processors.

3.2.8 Software Power Off Control Register

Any write to the Power Off Control register (recommended address
0xf...ff0000ec) shall create a software power off. This register is optional and is
not required in all implementations.

3.2.9 System Specific System Registers

This space is allocated for general system support type functions that may be
unique for each System Product. It is available to each Device to allow
whatever specific system-wide registers are necessary. This address space, if
implemented, shall always be available. The operation of these System
Specific System Registers are independent of the operation of the Architected
System Registers.

3.3 Architected System Interrupt Registers

See Chapter “External Interrupt Architecture” starting on page 157 for the
explanation of the Architected System Interrupt registers. Table 8 contains the
mapping for the Architected System Interrupt registers.

3.3.1 Data Storage Interrupt Error Register
(DSIER)

This register is a 4-byte register which traps the value of the last I/O Load or
Store instruction exception as well as various other exception conditions. The
DSIER logic shall trap the error status information on the bus which is returned
with an I/O Load or Store instruction reply or error packet when that reply or
error packet indicates a DSI has occurred. Each processor in the system has its
own DSIER. As anexample of DSIER usage for Micro Channel errors, refer to
Section 7.4.8.1, “Recoverable Load and Store Error Conditions,” on page 144.
The bits in the DSIER are defined in Table 9.

The DSIER is in real memory space at address BA+8. Refer to Section9.1.3 on
page 163 for the definition of BA. A Store instruction issued to the DSIER shall
either be performed or it shall be a NOP. This register is never reset, the value in
the register is just overlaid each time a DSI occurs.
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Address
Bits

Description

0-12

Interrupt Register Region — refer to Chapter “External Interrupt Architecture”
starting on page 157 for the description of this facility at the address indicated.
This region begins at 0xfe200000 and these address bits contains the value
0b1111111100010.

13-16

Reserved for additional Optional MFRRs (non-zero values).

1724

Interrupt Server Number

Servers are either Processor Servers, which start at server number 0x00 and
increment upward, or Global Servers, which start at server number 0xff and
decrement downward.

25-31

Interrupt Registers
Address of Processor Server Registers
0x00 External Interrupt Request Register (XIRR)
XIRR = CPPR + (XIRR)
No Side Effects
0x04 External Interrupt Request Register (XIRR)
XIRR = CPPR + XISR
With Load/Store Side Effects
0x08 Data Storage Interrupt Error Register (DSIER)
0x0c Most Favored Request Register (MFRR)
0x10—>0x7c Optional MFRRs
Address of Global Server Most Favored Requested Registers
0x00 First Global Server MFRR for Global Server Oxff
Global Server MFRR Registers start at 0x0 and incrementing upward.

Table 8.

Architected System Interrupt Address Map

Bits Description
0-1 Reserved: These bits are reserved, see Section 1.2.1 on page 2.
2 Reserved: This bit is reserved. This bit corresponds to the completion bit (the bit
indicating the error) in the reply packet. On a Load instruction, the value of this
bit shall be 0.
3-11 Source: These bits designate the source (BUID) of the error.
12-27 BUC specific: These bits are defined differently depending on the BUC which
had the error (as indicated by the source field of this register). On a Load instruc-
tion, the value of the unused bits shall be 0.
28-31 Reserved: These bits are reserved, see Section 1.2.1 on page 2.

Table 9.

DSIER Definition
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3.3.2 SMP Early Power Off Warning (EPOW)
External Interrupt Vector Register (XIVR)

Refer to Section 6.2.2 on page 72 for the XIVR definition.

3.3.3 IPLCB/Global Queue Interrupt Routing
Mask Location Interface

The following interface allows all the GQ_IRM support for a single global
queue for an SMP system with up to 32 processors to be kept in a single 32-bit
register by using the same Real Address (both read and write) of each processor
and different bit masks. It also allows the support to be separated such that
multiple registers are supported and each register supports one or more
processors with different write and read/verify addresses. Systems capable of
more than 32 processors must use multiple registers or registers larger than 32
bits.

It is recommended that these GQ_IRMs be compacted and be found in the
architected system memory map with the recommended addresses from
0xf...ff180000 to Oxf...ff181fff. This recommendation allows for a variable
number of GQ_IRMs with the queues starting from Oxff and working
downward. It also allows up to 256 processors. The recommended placement
of the GQ_IRM for global server Oxff is 32 bytes starting at Oxf...ff180000
through Oxf...ff18001f and the GQ_IRM for the next global server Oxfe is also
32 bytes starting at Oxf...ff180020 through Oxf...ff18003f .

The Software interface to the GQ_IRMs is defined in Table 10, where:
(IF (access_id_pn_waddr == 0 ) then normal memory map for

loc_pn_waddr )

(IF (access_id_pn_waddr == 1) then machine DD for
loc_pn_waddr )

(IF (access_id_pn_raddr ==0) then normal memory map for
loc_pn_raddr )

(IF (access_id_pn_raddr ==1) then machine DD for
loc_pn_raddr )
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Byte Length Identifier Description
(in
bytes)

0 4 num_processors Number of Processors (N)

4 4 access_id_pl_waddr Access Identification of type of
Access for loc_pl_waddr

8 4 loc_pl_waddr Real Address of First Processor
32-bit (software write address) word

12 4 access_id_p1_raddr Access Identification of type of
Access for loc_p1_raddr

16 4 loc_p1_raddr Real Address of First Processor
Verification (software
read address) 32-bit word

20 4 pl_mask 32-bit word Mask for First Proces-
sor

24 4 access_id_p2_waddr Access Identification of type of
Access for loc_p2_waddr

28 4 loc_p2_waddr Real Address of Second Processor
32-bit (software write address) word

32 4 access_id_p2_raddr Access Identification of type of
Access for loc_p2_raddr

36 4 loc_p2_raddr Real Address of Second
Processor Verification
(software read address) 32-bit word

40 4 p2_mask 32-bit word Mask for Second
Processor

4+420(n—-1) 4 access_id_pn_waddr Access Identification of type of
Access for loc_pn_waddr

8+20(n-1) 4 loc_pn_waddr Real Address of nth Processor
32-bit (software write address) word

12+20(n-1) 4 access_id_pn_raddr Access Identification of type of
Access for loc_pn_raddr

16+20(n-1) 4 loc_pn_raddr Real Address of nth Processor
Verification (software read address)
32-bit word

20+20(n-1) 4 pn_mask 32-bit word Mask for nth Processor

Table 10. IPLCB/Global Queue Interrupt Routing Mask Interface






Bring-Up and
Configuration
Architecture

The PowerPC system design defines the architected interfaces among the set of
processors, memory cards, I/O adapters, and other components during the
system configuration. System configuration is an integral part of the IPL
Process, and may be re-run after IPL in response to new conditions.

The primary purpose of the Bring-Up and Configuration Architecture is to
define the interface between hardware and software that allows software to
identify and set up (configure) each variable component of the system. The
configuration software uses the component identification to allocate system
resources (e.g., address space, interrupt levels, etc...) to the component and
communicates these allocations to the component and/or its controlling
software. The Bring-Up and Configuration Architecture defines the elements
that are common to components, the method of identifying each component,
and the methods of communicating with it. Due to a legacy of system
components, the architecture allows for components which do not implement
the optimal configuration functionality. Those component designs that do not
incorporate the required features specified in this document require approval as
architectural deviations and risk additional development expense as well as
extended time to market.

All T/O adapters shall have adapter specific functionality defined in ROM on
the adapter. There are many reasons for this. Among them are the following:

®  The system IPL ROM will not need to keep adapter specific contents.
B Boot device and display device supported by IPL ROM are simplified.

B AIX display and bosboot diskettes will not need to keep adapter specific
contents.
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Engineering Note

Care should be taken
when designing an /O
device, to consider which
of the device specific
configuration registers
should be in the
Architected System
Memory address space
and which should be in
the normal address
space. Because the
configuration
synchronization
requirements, the
performance of the
on-line system may be
degraded.

Because of this potential
degradation, registers
which shall be used
often during run-time
should NOT be placed in
the address space of the
Architected
Configuration Registers.

®  Very Large Scale Integration (VLSI) and Application Specific Integrated
Circuits (ASIC) parts should not have to have adapter level personality
hardwired and/or built into them (such as adapter ID values); but instead,
should extract these values from a ROM.

Features and adapters which are not I/O devices must follow a common
configuration architecture along with the I/O devices. The architecture permits
ample flexibility for implementation details.

4.1 Device Configuration Architecture

The Connectivity Reset register provides a unique setup signal for each logical
system bus slot and/or system interconnect port (refer to Section 3.2.3 on page
12). Note that if the setup signal is asserted, then the configuration address
space shall be decoded; otherwise, the normal address space shall be decoded
(refer to the “Architected System Memory Map,” Section 3.1, on page 7 for the
architected configuration address range to be decoded by BUCs).

The configuration address space is contained within the last 16 megabytes of
physical address space of the system. On a 64-bit system, software addresses
these real addresses by assuring that the upper 32 bits of address are all one’s.
Included in this 16 Megabyte address space are the registers for system control
(e.g., the Connectivity Reset registers, the Connectivity Configuration
register,...), the architected registers for device configuration, the architected
System Interrupt registers, the SMP Available Processors registers, the SMP
Early Power Off Warning (EPOW) External Interrupt Vector Register (XIVR),
the System IPL ROM, and the device Feature ROM Scan address space.

The Architected System Memory address locations Oxf...ff000000 through
Oxf...ffffffff are reserved for system support and configuration functions.

Configuration system bus cycles are basic protocol (T=0) cycles.

System bus I/O devices shall contain VPD for self identification (refer to
Chapter “Vital Product Data (VPD)” starting on page 191). The system itself
shall have VPD, which shall be used for device independent and standards
items.

Each device that is attached to the PowerPC System Interconnect (e.g., 60X
system bus, 6XX system bus,...) and many other features of each system shall
have device IDentifications (IDs). The device IDs are 32-bit quantities. Each
new device shall be assigned unique values (refer to Section 4.2.3.2 on page
27).

For any other adapters (e.g., Micro Channel adapters) that are attached to the
PowerPC system via IOCC, please refer to Chapter “IOCC Architecture”
starting on page 75.
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4.1.1 Hardware Architecture Assumptions and

i

Requirements

RISC System/6000 PowerPC systems are expected to provide flexible
configurability.

RISC System/6000 PowerPC system bus attached features must be able to
be configured, enabled, and used as a console or boot device without
requiring an AIX device driver. IPL ROM meets this requirement by
executing the Feature ROM Scan functions for boot and display devices.

Different systems may have different structures requiring configuration
support ranging from the simple and low cost to the large and high cost
multiprocessor systems. In simple and low cost systems, system failure due
to base processor failure is acceptable and it may not require additional
diagnostic processor such as OCS. In large multiprocessor systems, a
diagnostic processor may be required.

Required functions for configuration architecture include:

identify items attached to the system bus

support device “self identification”

assign address spaces to system bus attached items
— ROM scan procedure for boot and display device support

PowerPC processor architecture accesses only memory (T=0) space when
operating in real mode.

Gaps (non-contiguous allocations) are acceptable in real memory space

-~ between Single In-line Memory Module (SIMMS) on a single memory
controller

— between memory controllers
— inside the address space decoded by a PowerPC adapter

PowerPC processor architecture requires that the processor load the
internal Processor ID Register (PIR) [refer to PowerPC Architecture (book
III) in the implementation specific SPR appendix] in the processor Special
Purpose Register (SPR) before it can generate any identification tags.
External devices cannot access this register. The value of the internal
Processor ID Register (PIR) is loaded via Physical Identifier Initialization
register defined in the “Architected System Memory Map,” Section 3.2.1,

Note

The real memory space
address assignment
granularity must be
greater than or equal to
2 megabytes.

Any processor speed
data (if required) shall be
contained in VPD.

Device Feature ROM
must be able to be
enabled and/or disabled
independently of the bus
device enable/disable
state.

Feature ROM Scan
contents are copied to
RAM prior to execution.

System logic must
prevent system hang
during configuration
cycles.
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on page 10. The initialization firmware is responsible for setting up the
latter Physical Identifier Initialization register.

8. Only one process(or) at a time can own, via software locking mechanisms,
a specific common system resources such as the configuration address
space, boot ROM, NVRAM areas, and the operator panel.

9. During configuration, the BUC must report an error condition via some
means that preferably allows system operations to continue, but may
involve a machine check or even a checkstop.

10. Hardware shall implement fixed addresses. However, AIX locates most of
the resources via pointers passed from the System Boot ROM in the IPL
Control Block (IPLCB).

4.2 Configuration Registers

Each System Bus Unit responds to accesses in these address ranges only when
its configuration signal is active (see Connectivity Configuration register).
System Bus Unit must fully decode the first 20 bits of the address to guarantee
that the memory access is to Configuration Space. Configuration Space is split
into two areas: The first is the address space of the Architected Configuration
Registers. The second is the address space of the Device Specific
Configuration Registers.

4.2.1 Configuration Sequence

Initially, software may receive control from the initialization firmware with
some number of devices already configured. Devices that have been
configured from the initialization firmware shall have their reset removed, that
is, a one shall be in the appropriate bit position of the Connectivity Reset
register. The information as to whether a device can be reconfigured by the
software is passed to software in the IPLCB. There also may be some number of
devices which cannot be reset by the software. The information as to whether a
device can be reset by the software is passed to software in the IPLCB.
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Devices that have not been configured shall be left in the reset state (bit
positions in the Connectivity Reset registers that represent devices that have not
been configured shall be zero). If the device supports dynamic reconfiguration,
then software may configure each of the configurable entities by inactivating
the “Reset” or by writing a one into the bit position for the device. Software can
determine if a bit position is supported by reading back the Connectivity Reset
register and verifying that a one is in the bit position, that is, that the reset is
removed. The number of bits implemented is optional but shall be contiguous
starting with bit O through bit 31 of consecutive address starting from
0xf...ff000010 moving upward in 32-bit word increments. Also there has to be
at least one unimplemented bit left in the architected address space so that
software can algorithmically determine the maximum number of supported bits
without being dependent on the last architected address to determine that no
more devices can be selected.

The Connectivity Reset register allows software to reconfigure the hardware. It
consists of 64 bytes of system address space. Software is allowed to access any
32-bit word on a 32-bit word boundary within the architected facility range.
The number of bits implemented within the facility is system specific. Bits
shall be implemented contiguously starting at bit O of the lowest address.

When software has written a one into an implemented bit of any position in the
Connectivity Reset registers and the reset for the selected hardware has been
removed, software can configure specific devices under the control of the
hardware whose reset has been removed by writing to the Connectivity
Configuration register. There is a one-to-one correspondence between the bit
number of the Connectivity Reset register and the Connectivity Configuration
Select value of the Connectivity Configuration register. Software sets bit zero
on and uses bits 23-31 as a binary value to select the specific bit position of the
Connectivity Configuration register.

After software writes to the Connectivity register, it must issue a completion
barrier (e.g., sync instruction in most of the cases) to make sure that the
hardware has asserted the configuration signal.

Following the completion barrier, software may read the Device
Characteristics Register (DCR), (see Table 13 on page 25 for an example), to
determine if a device is actually present and if so, what type of device is present
(bits 0-3 return this information). Further information about the device can be
determined by reading the Device ID register (see Table 14 on page 27 for an
example). Once the type of device is determined, software can configure the
device by writing to the Device Bus Unit IDn (n=1, 2, 3, or 4) register (see Table
16 on page 28) and to the Device Base Real Address n (n=1 or 2) register (see
Table 17 on page 28 for an example). After configuring the device, the software
must disable the configuration of the device by issuing a write to the
Connectivity Configuration register by either selecting another device or
setting bit O to one to disable configuration and issuing a completion barrier.

Programming Note

Software may turn on
bits within the facility one
at a time; thereby,
activating the facilities
one at a time. Reading
the facility shall allow
software to determine if
the bit was implemented.
Software shall have
activated all facilities
when it reaches the first
unimplemented bit.

Engineering Note

In the RISC
System/6000 model 250,
the bit for resetting its
1/0 controller is bit
number 3. The
corresponding
Connectivity
Configuration Select
value is 0b00000011.
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Engineering Note

Because of the diversity
of system bus
connections possible on
the PowerPC system,
the spacing of the
architected configuration
registers is not constant
for all devices or on all
hardware reference
platforms. The construct
of a device configuration
word address increment
value, called i, is used to
compute the offsets. For
a given device on a
given reference platform,
the value of i is provided
by the three bit field (bits
27-29) in the first
architected configuration
register, named Device
Characteristics Register.
The spacing of other
configuration registers is
defined by delta where
delta = 2**(2+i).
Typically, i=0, and these
registers are spaced on
4 byte boundaries
(delta=4.) As another
example, if i=1, then
these registers are
spaced on 8 byte
boundaries (delta=8).

4.2.2 Architected Configuration Registers

The Architected Configuration Registers are intended to provide a consistent
interface to software regardless of the system interconnect topologies (e.g.,
system bus, cross bar switch, ring, star...) and types within each topology (e.g.,
60X, 6XX, PCL,... within system bus). There are, however, a few differences
related to the size of the real addresses supported on the system.

4.2.3 Architected Configuration Register
Address Map

Table 11 contains the Architected Configuration Register Address Map used for
machines using the 60X bus (32-bit word bus) as a system bus. Table 12
contains the Architected Configuration Register Address Map used for
machines using the 6XX bus (64-bit word bus) as a system bus. Delta, used in
these tables, is computed using the device configuration word address
increment field, i, bits 27-29 in Table 13, where delta = 2**(2+i).

For the 6XX bus, the value of i that defines the word increment field should
always have the value 0b000 and in this case, delta has the value of 4.
4.2.3.1 Device Characteristics Register

This is a one word read only register found at fixed address Oxf...ff200000. It
has the bit definitions shown in Table 13. It is composed of several fields.

Al 1/O devices shall use the same value of 0b0011 in the Device Class field of
the Device Characteristics Register, bits 03 in Table 13. I/O Devices shall use
this value, whether or not they are addressed in Memory Space or I/O space.
Distinction between I/O Devices shall be from the Device ID Type fields of the
Device ID register, bits 8—23 and 24-31 in Table 14.

There are particular considerations to the mapping of Device ROM into the
Memory Space. The device feature/VPD ROM indicator mask field (j), bits
25-26 in Table 13 indicates whether word access may be used. Byte access
shall be permitted, in all cases. The device configuration word address
Increment field, bits 27-29 in Table 13 indicates the mapping of bytes of the
Device ROM into the System Feature/VPD ROM address space. When the
word address increment field has the value 0b000, then there is a one to one
mapping of bytes of the Device ROM into the address space. When the word
address increment field has the value 0b001, then each four-byte of the Device
ROM are mapped into an eight-byte range of the address space, and specifically
into the addresses in which bit 29 is 0.
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Address Description

0xf...£200000 Device Characteristics Register
0xf...ff200000-+delta Device ID Register
0xf...ff200000+2*delta Device Bus Unit ID 1 Register
0xf...ff200000+3*delta Device Bus Unit ID 2 Register
0xf...ff200000+47*delrta 7 Device Bus Unit ID 3 Register
0xf...ff200000+5*delta Device Bus Unit ID 4 Register
0xf...ff200000+6*delta Device Base Real Address 1 Register
0xf...ff200000+7*delta Device Base Real Address 2 Register

Table 11. Architected Configuration Register Address Map for 60X Bus

Address Description

0xf...£200000 Device Characteristics Register
0xf...f£200000+delta Device ID Register
0xf...ff200000+2*delta Device Bus Unit ID 1 Register
0xf...ff200000+3*delta Device Bus Unit ID 2 Register
0xf...ff200000+4*delta Device Bus Unit ID 3 Register
0xf...£f200000+5*delta Device Bus Unit ID 4 Register
0xf...ff200000+6*delta Device Base Real Address 1 Register
0xf...ff200000+8*delta Device Base Real Address 2 Register

Table 12. Architected Configuration Register Address Map for 6XX Bus

Bit Description
0-3 Device Class Description
0b0000 Device present but not ready
0b0001 Executable Memory
0b0010 Processor
0b0011 I/O Device
0b0100 Cache Controller Device
0b0101 Bus Bridge
Ob1111 Device not present
other Reserved

Table 13. Device Characteristics Register 0xf...ff200000
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Bit Description
4-5 BUID Allocation Indicator
0b00 No BUID required
0b01 1BUID
0b10 2 BUIDs
Obl1 4 BUIDs
6-7 Reserved
8-11 Memory Allocation Indicator 1
0b0000  No allocation required
0b0001 1 MB (Minimum Allocation)
000010 2MB
0b0011 4MB
0b0100 8MB
0b0101 16 MB
0b0110 32MB
0b0111 64 MB
0b1000 128 MB
0b1001 256 MB
0b1010 512MB
0b1011 1GB
0b1100 2GB
0b1110  Reserved
0b1111  Reserved
12-15 Memory Allocation Indicator 2
Same encodings as bits 8-11.
16-24 Reserved
25-26 Device Feature/VPD ROM Indicator (j)
0b00 No Feature/VPD ROM Present
0b01 Reserved
0b10 Byte-Wide ROM (8 bits)
Ob11 ‘Word-Wide ROM (32 bits)
27-29 Device Configuration Word Address Increment (i)
0b000 4 Byte Increment, value of delta is 4
06001 8 Byte Increment, value of delta is 8
30-31 Reserved

Table 13. Continued
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4.2.3.2 Device ID Register

The Device ID register is a one word read-only register found at address
increment delta. It has the bit definitions shown in Table 14. The 32-bit value
must be unique for a given device. No device shall have more than one unique
value. No two devices shall have the same value.

Assigning the value Obxxxxxxxx000000000000000000000000 to the Device
ID register shall mean that the Device ID register of the Feature/VPD ROM
holds the actual value. There shall be strong, device-specific requirements on
programmability and similarity between all devices that have the same value of
bits 8-23, except for the case where bits 823 have the value 0x0000.

Bit Description

0 IBM Device
0b0 Adapter is an IBM logo adapter
0Ob1 Adapter is an OEM adapter (non-IBM)

1-7 Reserved
Must be set to 0b0000000
8-23 Device ID Type Field

Used to identify the type of a device. The set of unique types is defined in the
table shown below of Device ID Types Registry.

24-31 Specific Device ID of a particular type
The following bit assignment applies for devices that don’t have VPD:
Bit 28-31: Specific Device Engineering Level ID

Table 14. Device ID Register

Hex Value Description
0x0000 Base Devices
0x0040 Display Adapter
0x1000 Memory Controller
0x3000 I0CC

Table 15. Device ID Types Registry

4.2.3.3 Device Bus Unit ID n (n=1, 2, 3, or 4) Register

Device Bus Unit IDs are required if Devices reside in I/O space or generate
interrupts. Bus Unit IDs are assigned as required by configuration software.
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The Device Bus Unit ID n register is a one word register found at address
increments 2*delta, 3*delta, 4*delta, and 5*delta. It has the bit definitions
shown in Table 16. This register is present only if the Bus Unit IDentification
(BUID) Allocation indicator field, bits 4-5 of the Device Characteristics
Register in Table 13 indicates that BUID assignments are required. The system
configuration software uses this register to set the Bus Unit ID needed by the
device.

Bit Description
0-6 Unimplemented/reserved, see Section 1.2.2 on page 3
7-15 Bus Unit ID
16-31 Unimplemented/reserved, see Section 1.2.2 on page 3

Table 16. Device Bus Unit ID Register n (n=1, 2, 3, or 4)

4.2.3.4 Device Base Real Address n (n=1 or 2)
Register with 60X as a System Bus

Device Base Real Addresses are required if the devices resides in Memory
Space. Up to 2 regions in memory space may be allocated to a single Device.
The minimum memory space allocation is 1 MB. Memory spaces are assigned
on boundaries equal to the allocation (e.g., a 256 MB space is allocated on an
even 256 MB boundary).

Because the allocation of Memory Space shall always be aligned, devices may
implement the register(s) as left-justified registers which hold only enough bits
necessary to define the proper size and alignment. All other bits must be
ignored on write and must return 0 on read.

Each register shall be a one word register found at address increments 6*delta
and 7*delta, respectively. Each shall have the bit definitions shown in Table 17.
This register is present only if the Memory Allocation Indicators in the Device
Characteristics Register are non-zero. System configuration software shall use
this register to set the base real memory address that is recognized by the device.

Bit Description
0-11 Device Base Real Address
12-31 Unimplemented/reserved, see Section 1.2.2 on page 3

Table 17. Device Base Real Address Register n (n=1 or 2) for 60X Bus
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4.2.3.5 Device Base Real Address n (n=1 or 2)
Register with 6XX as System Bus

Device Base Real Addresses are required if the devices resides in Memory
Space. Up to 2 regions in memory space may be allocated to a single Device.
The minimum memory space allocation is 1 MB. Memory spaces are assigned
on boundaries equal to the allocation (e.g., a 256 MB space is allocated on an
even 256 MB boundary).

Because the allocation of Memory Space shall always be aligned, devices may
implement the register(s) as left-justified registers which hold only enough bits
necessary to define the proper size and alignment. All other bits must be
ignored on write and must return 0 on read.

Each register shall be a 64-bit word register found at address increments 6*delta
and 8*delta, respectively. Each shall have the bit definitions shown in Table 18.
This register is present only if the Memory Allocation Indicators in the Device
Characteristics Register are non-zero. System configuration software shall use
this register to set the base real memory address that is recognized by the device.

Bit Description

043 Device Base Real Address

Table 18. Device Base Real Address Register n (n=1 or 2) for 6XX Bus

4.2.4 Device Specific Configuration Registers

This space is available to each Device to allow whatever configuration or
Device setup features it requires. There are no system requirements on the
implementations of registers or devices which decode this address space.

4.3 Feature ROM Scan (FRS) Architecture

4.3.1 Address Range

The Feature/VPD ROM Space occupies the region from Oxf...ffa00000 to
Oxf...ffbfffff. This space is defined in the Architected System Memory Space
definitions in Section 3.1 on page 7.

Access to the Feature/VPD ROM Space shall only be meaningful when the
Architected System Register that controls enablement of bus slots has been
written to enable a particular slot. The Feature/VPD ROM of at most one device
at a time shall be mapped into the Architected Feature/VPD ROM address
space.
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4.3.2 Criteria for Required ROM

The definitions in this section present the architected interface that shall be
supported on each device in a PowerPC system that meets the following
criteria:

B The device sets the Class field, bits 0-3 of the architected Device

Characteristics Register (refer to Table 13 on page 25 to the value 0b0011,
and

B The device sets the ROM Indicator field, bits 25-26 in Table 13 on page 25
of the architected Device Characteristics Register to a non-zero value.

4.3.3 ROM Type Attributes

The architecture anticipates several types of ROM. The three main variations
are:

B A basic, byte device which only holds a limited amount of VPD, or

A byte device which holds VPD, feature ROM, and potentially other objects
in the ROM, or

B A word device which holds VPD, feature ROM, and potentially other
objects in the ROM.

4.3.3.1 Specifying Device ID and Type

An T/O device may choose to put its device ID into the Feature/VPD ROM
Space by placing the value Obxxxxxxxx 00000000 00000000 00000000 into
the Device ID register, refer to Section 4.2.3.2 on page 27.

4.3.3.2 Feature ROM Addressability

Access to the contents of the Feature/VPD ROM space are governed by the
same rules as found in the Architected Configuration Registers space. Recall
that the Device Characteristics Register defines the device feature/VPD ROM
indicator bits 25-26 in Table 13 on page 25. In this section, the value j
represents the ROM indicator field value, where the value of bits 25-26 is 0b10
means j is one byte and the value of Obl1 means j is 4-bytes or a 32-bit word.
The Device Characteristics Register also defines the device configuration word
address increment field (i), where bits 27-29 having a value of 0b000 defines a
4-byte increment value of delta and a value of 0b001 defines an 8-byte
increment value of delta.
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4.3.3.3 Computation of Lengths and Offsets

All lengths in this section are independent of the value of delta. The lengths
apply to contents only. For example, in the case of a device configuration word
address increment value of 0b001, where delta is 8 bytes, the total content
length of the ROM shall be 1/2 of the address space consumed by the ROM, due
to the skipping of each word in which address bit 29 is Obl.

All offsets in this section, however, do include the value of delta. The offsets are
used to generated addresses relative to BASE, which is 0xf..ffa00000.
Addressing schemes for the ROM shall be able to compute addresses much
easier in this fashion. Offsets within the objects themselves are almost always
relative to the start of the object.

4.3.3.4 The ROM Has Two Distinct Forms

Tables 20 and 21 show the layout of the Feature/VPD ROM. Table 20 on page
33 shows the layout of the Feature/VPD ROM Space for the basic byte device
which only holds limited VPD. Only devices which are extremely constrained
by space or cost considerations shall use this minimal layout.

All other devices shall use the layout specified in Table 21 on page 33.

Differentiation between the two forms is based on the contents of the word at
offset delta from the BASE of the Feature/VPD ROM space.

4.3.3.5 The Standard Form Supports Objects of
Several Kinds

The Feature/VPD ROM is composed of several kinds of objects. Table 19
describes the Architected Objects. They fall into three categories, shown below.
They are differentiated by three bit flags set in the ID of the object.

B Architected Objects, some of which are required for all devices.

B Objects that are defined for all devices that share the same value of the
Device Type field of the Device ID register.

B Objects that are uniquely defined for only the unique Device ID.

4.3.3.6 External Requirements on the Organization of
the Feature ROM

The Feature/VPD ROM is composed of a set of nested blocks of ROM. For
compatibility with previously released software, some redundancy exists
between the inner and outer blocks.
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ID Value Description

0x8000 0001 Title: Architected VPD Object

This object holds the VPD data for the device. It is a required object. All
devices shall provide VPD.

0x8000 0002 Title: Architected Feature ROM Scan Object

This object holds the Feature ROM Scan data for the device. It is a re-
quired object for devices which are boot or base display devices.

Table 19. Architected Feature / VPD ROM Object IDs

4.3.3.7 Considerations for the Architected Feature
ROM Scan Object

There are some important data structures to consider when discussing adapter
configuration. The data structures all apply to the Feature ROM Scan (FRS)
Architecture. The data structures describe how the processor reads the contents
of the FRS contents of the adapter and interprets them.

The FRS architecture utilizes a set of software structures that are linked
together by pointers or by offset values. The ROM contents of a given adapter
contain the set of all of these structures completed and linked together.

The root structure of this set is called the FRS header. It has certain properties
that make it easily located in a search of bus memory address space. It has offset
variables that point to the other structures. In non-Micro-Channel adapters,
none of the members of the structure would need to be changed.

The FRS header contains the total length of the ROM and an offset to the
beginning of a linked list of other data structures. The data structures that form
the linked list are called FRS blocks. The header and the blocks are assumed to
be contiguous and are protected by a summation checksum residue calculation.

Each FRS block holds the offset of the next block. It also holds two special
fields. If the proper values are found in the special fields, then the FRS block is
assumed to contain pointers to the desired data.

One member of the FRS block structure is the block ID. Another is the ID string
field. For example, all FRS block IDs for RISC System/6000 adapters are set to
the value of 1. Similarly, the ID string field for RISC System/6000 boot devices
is “RISC6000”, while the ID string field for video devices is “RISC6002”.

4.3.3.8 Considerations for the Architected Feature
ROM Scan Object

The full details of creation of a Feature ROM are outside the scope of this
document.
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Address Description

0xf..ffa00000 Field Name: Feature/VPD Device ID

This is a 32-bit quantity. The device ID has exactly the same form as
that of the Device ID Register described in “Device ID Register,” Sec-
tion 4.2.3.2, on page 27.

(BASE)

BASE+1*delta Field Name: Feature/VPD ROM Characteristics Word

For the case of “simple VPD only,” this word is set to Oxrrrr rrf00
Where r is a reserved nibble and is presently required to be the value

0x0.
BASE+2%*delta Field Name: Simple VPD Data
to
BASE+63*delta

For the case of simple VPD data, there are 248 bytes of VPD character
data that follow the Device ID and Characteristics Word. The full 248
bytes must be addressable.

Note that the spacing of the bytes is dependent on the addressing
scheme set forth by the Device Characteristics Register.

Table 20. Architected Feature / VPD ROM Space for the Case “Simple VPD Only”

Address Description

0xf..ffa00000 Field Name: Feature/VPD Device ID
This is a 32-bit quantity. The device ID has exactly the same form

(BASE) as that of the Device ID Register described in “Device ID Register,”
Section 4.2.3.2, on page 27.
BASE+1*delta Field Name: Feature/VPD ROM Characteristics Word

Composed of two fields:
Obrrrrrrrr rrerrrrr rrrrrrr NNNNNNNN

The “r” field is reserved and is presently required to be the value
“0”, thus

0b00000000 00000000 00000000 NNNNNNNN

The “N” field is the number of ROM objects that follow. N must
satisfy the following constraint:

N=NA+NT+ND

N!=0

Where NA is the number of architected objects, and
1 <=NA<=2,and
NT is the number of device-type objects
required for all objects of this device type, and
ND is the number of device-ID specific objects
for this unique device.

Table 21. Architected Feature / VPD ROM Space
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Address Description

BASE+2*delta Field Name: Feature/VPD Length and CRC

This is a 32-bit quantity. It is divided into two fields.
ObsssssSSS SSSSSSSS CCCCCCCC CCCCCCee

The field “s” is the size of the total ROM in units of 512 byte
blocks, from the BASE until the last byte. The ROM shall be
padded with “0” to complete the last block. The length shall be less
than the quotient of the architected length of the Feature/VPD ROM
address space divided by the word increment value.

The field “c” is the CRC residue calculated on the contents of the
ROM from BASE+3*delta until the last byte of ROM, inclusive.

BASE+3*delta Field Name: Feature/VPD Block Array

This is an array of dimension “N”, where N is the number of objects
named in the Feature/VPD ROM Characteristics Word. Each item
in the array is the same size, which is 3 words. The array items are
used to locate the ROM objects. The array items are organized as
follows:

to

BASE+3*delta+
3N*delta

WORD 0: Holds the ID of the ROM object. The word has
the following format:

ObCTDrrrrr rrrrrrrr THIITIT IITITITT

“C” is a flag that says the object
is common to all Feature/
VPD ROM I/O devices

“T” is a flag that says the object
is defined for any device
that has a device type of the
same value as this device

“D” is a flag that says the object
is only defined for objects
with the unique 32
bit device ID value.

“° The 16 bit I field is the
unique block ID

WORD 1: Holds the offset in bytes from BASE to the
start of the block of ROM

WORD 2: Holds the length in bytes of the block of ROM.

BASE+3N*delta+ Field Name: Start of ROM Blocks

4*delta From this word on, the ROM blocks defined in the Block Array
begin. Each block shall begin on a double-word aligned address.
There are particular requirements on the internal contents of each
ROM block.

Table 21. Continued
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and Mapping

Non-Volatile Random Access Memory (NVRAM) is the primary interface used
to communicate between the hardware and the Operating System for those
items which are needed to tailor the initialization of the Operating System.

All NVRAM addresses are offsets from the NVRAM base address, refer to
Section 3.1, “Architected System Memory Map” on page 7 for the architected
starting address.

The current architecture allows for the effective implementation of some
hardware facilities in NVRAM space, for example, the Light Emitting Diode
(LED) display interface and the Available Processor Mask (APM). These
facilities may be monitored by a Service Processor which may use
unarchitected hardware support to perform the desired function. Although it is
preferable that NVRAM be protected via hardware parity bits, this is not a
hardware requirement at this time. For this reason, the burden of providing the
appropriate RAS characteristics may require a coordinated effort between the
hardware and the software.

5.1 NVRAM Usage

There is a battery backed up RAM, Non-Volatile Random Access Memory
(NVRAM). ThisNVRAM s utilized by software to store information that must
persist across IPLs and power cycling. The NVRAM size is at least 64 kilobytes
(KB) and can grow bigger to include additional functions for a particular
product. The NVRAM is primarily intended for:

W Fast Path Boot

Engineering Note

There are platform de-
pendent NVRAM areas
that are not defined in this
document. Consult the
appropriate platform
specification for details.

Architecture and
Programming Note

If the “access_id” field is
set to one, then AIX will
use the machine DD to
access the NVRAM
area and the range will
be used to determine the
type of checking. If
real-time validation is
required, not just at
initialization, it may be
appropriate to have
another value assigned
to the “access_id.”
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B A persistent save area (with a simple access) path for fatal error information

B An alternative to requiring OEM IPL device ROMs for extending planar IPL
ROM

B Customer tailoring of IPL source and search order (both Normal and Service
Modes)
The detailed NVRAM utilization by AIX and IPL ROM on the RISC/6000

platform is as follows:

B LED Access and LED String Output

B IPL device list for Normal and Service modes

B Last device IPLed from

B SCSI adapter initiator addresses for slots 015

B On-Card Sequencer (OCS) communications, logout areas, and work area
B Network Boot Support (and ROM Diagnostics)

B Dynamically managed software area

B Up to two alternate IPL device — device drivers loaded and executed by IPL
ROM

B Last Error Log Entry

B Manufacturing Use (during manufacturing test)

Systems can contain a micro-processor that is used to provide initialization of
the CEC (Central Electronics Complex). These micros also allow scanning of
the VLSI scanable storage chains (latches). The original version of this
micro-processor capability in the RISC System/6000 has been named OCS
(On-Card Sequencer). Future systems can contain other versions of such a
micro-processor and we will hereby define the term “SP” (for “scanning
processor” or “service processor”) to indicate any OCS-like micro-processor
that has similar capabilities. The OCS or SP cannot write NVRAM at offsets
0-0x2ff (768 bytes) but is able to read all of NVRAM and write any location
from 0x300. The following information details each field in the NVRAM,
when and who initializes it, updates it and reads it.
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5.1.1 ROM Specific Areas and Their Management

5.1.1.1 NVRAM Area from 0x00 to Ox2ff

The area from 0x00 — Ox2ff is an area that is maintained by a CRC check and is
accessed by IPL ROM and system software for boot control. On systems with
network boot IPL. ROM support, this area of NVRAM is initialized by the
system IPL ROM whenever the CRCis not valid. Systems with this level of IPL
ROM will also support two NVRAM status bits in the IPL Control Block. This
field is defined as NVRAM._section_1_valid, resides in the ipl_info structure
within the IPL Control Block, and has the following definition:

bits O thru 28 are reserved and contain Os

bit 29 = 0 if NVRAM battery test okay

bit 29 = 1 if NVRAM battery test failed (machine dd will log failure)
bit 30 = 0 IPL ROM did not initialize NVRAM

bit 30 = 1 IPL ROM did initialize NVRAM (machine dd will log)

bit 31 = 0 NVRAM CRC miscompare

bit 31 = 1 NVRAM CRC is okay

The area of NVRAM from offset 0 to offset 0x2ff is initialized by IPL ROM if
the CRC for this area is determined to be invalid. The Machine Device Driver
(DD) code also has the ability to initialize this area if the CRC is found bad.
However, if the IPL ROM was unsuccessful in initializing the area, the Machine
DD will most probably fail as well. Such a failure will not prevent the IPL ROM
from starting the system, and it is up to AIX to report an unsuccessful attempt to
correct the CRC of the area.

5.1.1.2 NVRAM Address 0x0000—-0x0003, Intentionally
Unused

5.1.1.3 NVRAM Address 0x0004-0x0007, NVRAM Size
Contains the number of contiguous good bytes starting from offset zero

B Read by: Machine DD to determine NVRAM size, if NVRAM CRC is valid

5.1.1.4 NVRAM Address 0x0008-0x000b, NVRAM
Contents Version Number

Contains NVRAM Contents Version number for distinguishing NVRAM
layout changes

M Read by: Machine DD, IPL ROM

B Current Value: integer 0x0001
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5.1.1.5 NVRAM Address 0x000c—0x000f, Pointer to
Dynamic Software Area

Pointer to dynamic software area start

M Read by: Machine DD

5.1.1.6 NVRAM Address 0x0010-0x001f, Slots 1-16
SCSI Initiator Addresses

Read by: IPL ROM, SCSI adapter configuration methods (default set to SCSI
Initiator Address 7 by IPL ROM if CRC is bad)

Updated by: SCSI adapter configuration methods

Format:
Offset Definition
0x0010-0x001f SCSI Initiator Address for BUID 0x20 and BUID

0x21
0x0010 —slot 0, ..,0x001f — slot 15
low nibble — BUID 0x20
high nibble — BUID 0x21
nibble definition
SCSI address 0 —7
5.1.1.7 NVRAM Address 0x0020-0x00ff, BUID 0
Address 0x1000—-0x10d0
Memory Bit Steering Regs
Read by: IPL ROM

Written by: IPL ROM to provide bit steering if the IPL ROM test indicates
steering is required. This allows software to set up bit steering due to memory
problems when warm IPL takes place.

5.1.1.8 NVRAM Address 0x0100-0x01fb, Remote Boot
Information

Maintained by: IPL ROM

Read by: IPL ROM

Written by: IPL ROM

Format:
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Offset
0x0100-0x0101
0x0102-0x0111

0x0112

0x0113-0x011a

0x011b

Definition
Two byte validity ID (ASCII “rs,” 0x7273)

Token Ring Speed Area and 3COM Ethernet Port
Selection

0x0102 - slot 0, .., 0x0111 — slot 15
low nibble — BUID 0x20

high nibble — BUID 0x21
nibble bit definition

0bxx00 — Token ring speed not set
Obxx01 — 4 MB

Obxx10 - 16 MB

0b00xx — Ethernet port not set
0b01xx — BNC port

0b10xx — DIX port

Ob11xx — Twisted Pair port
Console Type Code

0 — None set

1-RS232 tty

2 -RS422 tty

3 — Graphics display

ASCII String for Console
location

bus_eu

slot — two characters

unit — two characters

port — two characters

ser port 1- 0000S100

Language Code

0 — not set 1 — English
2 — German 3 — Spanish
4 — French 5 — Swedish
6 — Norwegian 7 — Belgium

8 — Italian
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0x011c-0x011d Reserved

0x011e-0x0121 Reserved

0x0122-0x0125 Reserved

0x0126-0x0129 Reserved

0x012a Integrated Ethernet Transceiver Configuration
bit definition

Oblxxx xxxx — SQE expected
Obxxxx x1xx — IBM transceiver
Obxxxx xx00 — None or unknown
Obxxxx xx01 — 10 Base 2 transceiver
Obxxxx xx10 — 10 Base T transceiver

0x012b-0x013a 3 COM 15 Pin D Connector Transceiver Ethernet
Configuration

0x012b —slot 0, .., 0x013a —slot 15
low nibble — BUID 0x20
high nibble — BUID 0x21

nibble bit definition:
—0Oblxxx — SQE expected
—0bx1xx — IBM transceiver
—0bxx00 — None or unknown
—0bxx01 — 10 Base 2 transceiver
—0bxx10 — 10 Base T transceiver

0x013b-0x01fb Reserved (ex: FCS, FDD], ...)

5.1.1.9 NVRAM Address 0x01fc-0x01ff, IPL ROM Boot
State Information Save

Maintained by: IPL ROM
Read by: IPL ROM
Written by: IPL ROM

Format:

Offset Definition

0x01fc Reserved for IPL ROM usage
0x01fd Rampost Flag

Used to control memory testing by rampost code
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0x01fe NVRAM boot device list current entry count
0xO1ff bit usage
0x01 — resume bootlist if ROM Scan device returns
0x02 — keyswitch state (normal vs service)
0x04 — controls entering the menus

0xf8 — these bits are undefined

5.1.1.10 NVRAM Address 0x0200-0x0223, Normal Mode
Previous Boot Device

Descriptor for normal mode previous boot device
Maintained by: IPL ROM, Sys Method, bootlist utility
Read by: IPL ROM

Format: Same descriptor format as for a device list but only a single specific
device list entry is allowed (refer to Section 5.1.1.11, “NVRAM Address
0x0224-0x0277, Normal Mode BOOT Device List” for a description of a
device list entry). Unlike a normal or service mode device, the previous boot
device is only processed once (refer to Section 5.1.1.11.1, “Device List
Format”).

5.1.1.11 NVRAM Address 0x0224—-0x0277, Normal Mode
BOOT Device List

A device list contains one or more entries defining a device which is a potential
candidate for containing IPL code. Each entry may describe a general type of
device that is independent of its logical address in the system (e.g. any type
drive that may exist on the SCSIbus). Or, it may describe a very specific device,
including the necessary addressing information which IPL. ROM needs to
directly access it. IPL. ROM will process the list of devices in sequential order,
attempting to IPL from each. The list processing will terminate only if an IPL
attempt is successful. In other words, if all the devices in a list fails to produce a
successful IPL, the list will be retried from the beginning.

A few noteworthy comments:
1. A listis present if its 2 byte validity header is present.

2. IPL ROM does its best to validate each entry. If it detects an invalid entry,
that entry will be skipped and it will proceed to the next.

3. On systems that support network boot, service mode device list processing
may be interrupted in service mode by a call to a menus display if the
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service mode list fails to produce a successful IPL before the list is
exhausted.

Current RISC/6000 systems do not have the capability to detect a SCSI
device as being internal or external. Hence, any references to internal SCSI
devices and any references to external SCSI devices should be interpreted
as “internal OR external.”

Maintained by: bootlist utility
Read by: IPL ROM

Contents: 2 byte validity header (ASCII “JM”, Ox4add), 82 bytes for
descriptors, terminated by 0.

5.1.1.11.1 Device List Format

The following list of “type codes” is for completeness, only, since they must be
unique. Details of their meanings are to be obtained from the device list entries
described below. The type values identify an IPL device.

A

Q ™o m g0

X YO ZZ R

v

Global memory device. This represents an area of
global memory that may contain an executable
image of the Operating System.

A SCSI CDROM device.

An ethernet device.

A SCSI external DASD device.
A diskette device.

A “general” device. This code is modified by one
of the other type codes. Refer to the description
below for more details.

An SCSI internal DASD device.
OBSOLETE placeholder (was SJL device).
A ROM scan device.

A diskette device.

A token ring device.

A FDDI device.

OBSOLETE placeholder (was expansion code
device).

A SCSI specific device.

A “volume ID” device.

A device list entry begins with a descriptor length value, n.
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The next n bytes of any device entry is the descriptor itself.

The IPL ROM will process each device entry in turn, attempting to IPL from
each device, until a 0 descriptor length is encountered or the end of the list is

encountered.

The n bytes of descriptor information is made up of one or more sequences of a
device type code followed by device specific information and is described
below (unless otherwise noted, numerics are pure numbers and characters are

ASCII)

General Device List Entry (if there is more than one of the general devicesona

system, IPL. ROM will search for them in an internally defined order)

length type specifics
2 G A

2 G C

2 G D

2 G E

2 G F

2 G 1

2 G M

2 G (0]

2 G P

2 G T
NVRAM Expansion Code Device List Entry
length type specifics
2 R lor2

Diskette Device List Entry

comments

Global memory
SCSI CDROM
Ethernet

SCSI external DASD
Diskette

SCSI internal DASD
Feature ROM

Token ring

FDDI

SCSI tape

comments

Expansion code area
lor2

comments
Diskette unit O or 1

comments

ROM Scan type
Ethernet type

length type specifics
2 N Oor1
Feature ROM, Ethernet or Token Ring Device List Entry
length type specifics
3 M
D
0}

0x20-0x21/0-15

Token Ring type
BUID/slot for device
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8 Byte SCSI Device List Entry

length type specifics comments
8 S 1byte type followed
by 7 bytes SCSI id
information:
0x20-0x21 byte 1 (BUID value)
IorE byte 2 (internal or
external)
0-15 byte 3 (slot value)
0-7 byte 4 (initiator SCSI
id, not used by IPL
ROM)
1,3,0r4 byte 5 (DASD,
CDROM, or TAPE)
0-7 byte 6 (device SCSI
ID)
0-7 byte 7 (device LUN ID)
8 Byte Ethernet or Token Ring Device List Entry
length type specifics comments
8 D Ethernet type
(0] Token Ring type
(1-byte type, followed
by 7 bytes specific
data)
0x20-0x21 byte 1 (BUID value)
0-15 byte 2 (slot value)
B byte 3 (indicates a
BOOTP server IP address
follows)
PPPP bytes 4 thru 7
(IP address)

15 Byte Ethernet or Token Ring Device List Entry

length  fype  specifics

15 D
0)

0x20-0x21

comments

Ethernet type

Token Ring type

(1-byte type, followed by
14 bytes specific data)

byte 1 (BUID value)
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0-15

PPPP

hhhhhh

17 Byte SCSI Device List Entry

length type specifics
17 \'

byte 2 (slot value)

byte 3 (indicates a
BOOTP server IP
address follows)

bytes 4 thru 7 (IP
address)

byte 8 (indicates a
Hardware address
follows)

bytes 9 thru 14
(“burned-in” adapter
address)

comments

1 byte type followed
by:

8 bytes of ignored
data followed by:

8 Byte SCSI Device
List Entry

18 Byte Ethernet or Token Ring Device List Entry

length type specifics
18 D
(0]

0x20-0x21
0-15
W

PPPP

comments

Ethernet type

Token Ring type

(1-byte type, followed by
17 bytes specific data)

byte 1 (BUID value)
byte 2 (slot value)

byte 3 (indicates a
Gateway IP address
follows)

bytes 4 thru 7
(Gateway IP address)

byte 8 (indicates a
BOOTP server IP
address follows)
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pPPPP

L

ppPP

25 Byte SCSI Device List Entry

length  type specifics
25 \%

bytes 9 thru 12 (IP
address)

byte 13 (indicates local or
client IP address)

bytes 14 thru 17 (IP
address)

comments

1 byte type followed
by: 16 byte PVID
(Physical Volume ID)
followed by:

8 Byte SCSI Device
List Entry

25 Byte Ethernet or Token Ring Device List Entry

length type ifics
25 D
(0]

0x20-0x21
0-15

comments

Ethernet type

Token Ring type
(1-byte type, followed
by 24 bytes specific
data)

byte 1 (BUID value)
byte 2 (slot value)

byte 3 (indicates a
Gateway IP address
follows)

bytes 4 thru 7
(Gateway IP address)

byte 8 (indicates a
Hardware address follows)

bytes 9 thru 14
(“burned-in” adapter
address)

byte 15 (indicates a
BOOTP server IP address
follows)
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PPPP bytes 16 thru 19
(IP address)

L byte 20 (indicates local or
client IP address)

PPPP bytes 21 thru 24
(IP address)

5.1.1.12 NVRAM Address 0x0278-0x02cb, Service
Mode BOOT Device List
Maintained by: BOS Install, bootlist utility

Contents: 2 byte validity header (ASCII “WR”, 0x5752), 82 bytes for
descriptors, terminated by O

Device List Format: Same as 5.1.1.11, “NVRAM Address 0x0224-0x0277,
Normal Mode BOOT Device Lit.”

5.1.1.13 NVRAM Address 0x02cc—0x02f7, NVRAM Dev.
Driver #1 & #2 Header Blocks

Maintained by: nvload utility (Th1s function, NVRAM Device Driver, is no
longer supported)

Read by: IPL ROM

Format:

ffset Definition
0x02cc—0x02cd Driver #1 two byte validity ID (0xa5a5)
0x02ce—0x02cf Driver #1 byte length (16 bit unsigned int)
0x02d0-0x02d3 Driver #1 starting offset location in NVRAM
0x02d4-0x02d7 Driver #1 code CRC value
0x02d8-0x02e3 Reserved for expansion (twelve bytes)
0x02e4-0x02e5 Driver #2 two byte validity ID (0xa5a5)
0x02e6—-0x02¢e7 Driver #2 byte length (16 bit unsigned int)
0x02e8-0x02eb Driver #2 starting offset location in NVRAM
0x02ec—0x02ef Driver #2 code CRC value

0x02f0-0x02f7 Reserved for expansion (8 bytes)
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Note

Only used on systems
using system RAM for
TCW/TAG/TCE table
space (as opposed to
10CC space for
example). This includes
all future systems such
as PowerPC.

5.1.1.14 NVRAM Address 0x02f8, TCW/TCE Table Size

Maintained by: IPL ROM and AIX busconfig when DMA limit attribute is set
(special bail out for non-standard adapters). IPL ROM verifies that the value
meets system requirements for each machine type

Read by: IPL ROM when NVRAM CRC is good. If the size is larger than the
default determined by IPL ROM, the size is used. If not (or if the NVRAM CRC
is bad), IPL ROM uses a machine based internal algorithm to determine table
size.

The TCW/TCE size value is the same as the value that is stored in the IOCC
configuration register.

Offset Definition

0x2£8 TCW/TCE space size
— low nibble — BUID 20
— high nibble — BUID 21

5.1.1.15 NVRAM Address 0x02f9-0x02fb

Reserved for future use.

5.1.1.16 NVRAM Address 0x02fc-0x02ff, CRC for
SEQ/OCS Read Only Area
Maintained by: Any write to 0x0004-0x02fc by IPL ROM or Machine DD.

Read by: IPL ROM. If the value is determined to be incorrect, [IPL ROM will
initialize the area and recheck this value. The results of the initialization and
checking procedure will be reported in the IPL Control Block (refer to Section
5.1.1.1, “NVRAM area from 0x00 to 0x2ff”).

5.1.2 OCS/SP Implementations

The areas described below are read/write addressable by the OCS, however
only designated areas are indeed written by the OCS. The only area that is CRC
checked when read is in the software dynamic allocation area.

5.1.2.1 NVRAM Address 0x0300-0x0307, LED Data
Mirrored

Written by: OCS/SP, IPL ROM, Machine DD (LEDs support)
Read by: Machine DD
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5.1.2.2 NVRAM Address 0x0308-0x030b, Checkstop
Count

Written by: OCS/SP — Set to zero on Power-on, incremented on checkstops.
Also set to zero by diagnostics or OS SYS method.

Read by: OCS/SP, If count >= 3 then stop with LED Error Displayed, Error Log
Daemon Init — reads and clears count. If it was non-zero, reads checkstop log
and saves in error log and associated file.

5.1.2.3 NVRAM Address 0x030c—-0x030f, Pointer to
OCS/SP Checkstop Logout Area

Maintained by: OCS/SP

Read by: Error Log Daemon Init — If Checkstop count is not equal to O then this
pointer is used to locate the checkstop logout area, which must be on at least a
word (4 byte) boundary.

The high order byte of this pointer, SP_TYPE, is used to indicate the type of SP
that is present. The next three bytes, LOG_PTR, define the location of the
logout area in NVRAM.

If SP_TYPE and LOG_PTR is equal to 0, there is no SP (or OCS).

If SP_TYPE is equal to 0, the SP is an OCS type processor in a uni-processor
environment.
LOG_PTR defines a hybrid form of offset to the NVRAM logout area.
This form of offset is understood by extant versions of AIX and will remain
unchanged to maintain compatiblity. The logout area is of fixed size.

If SP_TYPE is equal to 1, the processor is a SP in an SMP environment.
LOG_PTR defines the offset, from the base NVRAM address, to the
beginning of a partitioned logout area. The logout area is partitioned as
follows:

B The first word of each section contains a size field, LOG_SIZE, and
an offset field NEXT_LLOG_OFFSET. LOG_SIZE is the high order
byte of the word and defines the number of contiguous 1 K (1024) byte
blocks in the current logout section. The minimum value of
LOG_SIZE is 1. The remaining three bytes are
NEXT_LOG_OFFSET, which defines the offset, from the base
NVRAM address, to the next logout area. If NEXT_LOG_OFFSET
is equal to 0, the current section is the last.

If SP_TYPE is greater than 1, reserved.
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5.1.24 NVRAM Address 0x0310-0x0313, OCS Code
E/C Level

Maintained by: OCS

Read by: Sys Method and stored in System Customized object class (system
VPD)

5.1.2.5 NVRAM Address 0x0314-0x0317, OCS “Seed”
EPROM E/C Level

Maintained by: OCS

Read by: Sys Method and stored in System Customized object class (system
VPD)

5.1.2.6 NVRAM Address 0x0318-0x031b,
Manufacturing Control

Maintained by: OCS and useable by SP for manufacturing purpose.
Read by: IPL ROM, OCS/SP, Manufacturing (through VRAM DD)

5.1.2.7 NVRAM Address 0x031c-0x031f, Pointer to
Manufacturing Data Area

Maintained by: Manufacturing Test using NVRAM DD and SP usage
Read by: Manufacturing test

5.1.2.8 NVRAM Address 0x0320-0x035f, LED String
Output Area

Maintained by: Machine DD (LEDs Access)
Read by: OCS/SP/Boot ROM
Usage: Output string is sequenced through LEDs when Reset button pushed

5.1.29 NVRAM Address 0x0360-0x0363, Pointer to
OCS Code Execution Area

Maintained by: OCS

Read by: OCS, IPL ROM (execution area used as temporary scratchpad by IPL
ROM)
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5.1.2.10 NVRAM Address 0x0364—-0x0367, Pointer to
OCS Work Area

Maintained by: OCS
Read by: Future use to indicate OCS area that must not be modified by system

Also assigned to Salmon for LED string output pointer used by sequencer
hardware

5.1.2.11 NVRAM Address 0x0368—-0x037b, Machine
Check Save Area — 20 Bytes

Maintained by: Machine DD

Written by: Machine Check Handler

Read by: Error Log Daemon

5.1.2.12 NVRAM Address 0x037c—-0x037f, OCS/RS
Command Interface

Written by: OCS/SP, Machine DD

Read by: OCS/SP, Machine DD
Bit 1 =0 indicates a POR reset
Bit 1 = 1 indicates a push button reset
Bit 7 = 0 indicates step mode inactive
Bit 7 = 1 indicates step mode active

5.1.2.13 NVRAM Address 0x0380-0x03ff, OCS
Information Area

Written by: OCS/SP
Read by: IPL ROM, Sys Method (system VPD)
Content: System Vital Product Data

5.1.2.14 NVRAM Address 0x0400-0x43ff, OCS
Transient Work/Code Area (16 KB)

Written by: OCS, IPL ROM

Read by: OCS, IPL ROM

Content: Data Area for OCS, Transient Code execution area for OCS
OCS Checksums 0x0400-0x2000 internal code/work area

OCS Checkstop Logout area 0x2000-0x43ff
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IPL ROM Temporary Data Area 0x1000-0x1£ff

B (0x1000-0x17ff Temporary tables, statistics, memory error info for bit
steering

B (0x1800-0x187f Bad memory extent information (found during memory
configuration)

B (0x1880-0x18C7 Memory Card VPD temporary save area

B 0x1C00-0x1fff IPL ROM Work Area (1KB)

- 0x1C00-0x1C03 4 byte validity ID (ASCII “IPLR”,
0x49504¢52)

- 0x1D00-Oxleff Reserved

- 0x1f00-0x1f23  Service Mode Previous Boot Device

- O0x1ff8-0x1ffB  Reserved

- Ox1ffC-0x1fff  CRC value for IPL ROM Work Area

OCS/SP Checkstop Logout area 0x2000-0x43ff

W This area may be partitioned. If so, it will be partitioned as defined by
NVRAM Addresses 0x30c — 0x30f. In any event, the remaining format,
other than the partition definition, is defined by the extant service processor.

5.1.2.15 NVRAM Address 0x4400-0x47ff, Medialess IPL
ROM Diag./Boot Info Save

1 KB medialess IPL ROM only
Written by: IPL ROM
Read by: IPL ROM

Contains: Diagnostic and system boot information that must be saved across
power sequences, but is not accessed by system software.

5.1.2.16 NVRAM Address 0x4400-0x7fff, Dynamically
Controlled Software Area

15 KB non-medialess IPL ROM

5.1.2.17 NVRAM Address 0x4800-0x7fff, Dynamically
Controlled Software Area

14 KB medialess IPL ROM
Written by: NVRAM DD
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Read by: IPL ROM and NVRAM DD

Current Utilization

B NVRAM Device Driver (DD) Allocation Structures
B Up to two alternate IPL device — device drivers

B Fatal Error Log Information

B Manufacturing Test Area (during mfg test only)

5.1.3 Non-OCS Implementations

5.1.3.1 NVRAM Address 0x0300-0x0303, LED Data
Mirrored

B Written by: Sequencer, IPL ROM, Machine DD (LEDs support)
B Read by: Machine DD

5.1.3.2 NVRAM Address 0x0304-0x0317, Reserved

5.1.3.3 NVRAM Address 0x0318-0x31b,
Manufacturing Control

B Read by: IPL ROM and Manufacturing (through NVRAM DD)

5.1.3.4 NVRAM Address 0x031c-0x031f, Pointer to
Manufacturing Data Area

B Maintained by: Manufacturing Test using NVRAM DD

B Read by: Manufacturing Test

5.1.3.5 NVRAM Address 0x0320-0x035f, LED String
Output Area

B Maintained by: Machine DD (LEDs Access)

B Read by: Boot ROM for LED Step.

B Usage: Output string is sequenced through LED when Reset button is

pushed
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5.1.3.6 NVRAM Address 0x0360-0x0363, MFG
Information

B Maintained by: IPL ROM
B Written by: IPL ROM

B Read by: IPL ROM (mfg mode)

5.1.3.7 NVRAM Address 0x0364-0x0367, IPL ROM
supported LED String Output Ptr

B Maintained by: IPL ROM
B Read by: IPL ROM

5.1.3.8 NVRAM Address 0x0368—0x037b, Machine
Check Save Area (20 bytes)

B Maintained by: Machine DD
B Written by: Machine Check Handler

B Read by: Error Log Daemon

5.1.3.9 NVRAM Address 0x037¢c—-0x037f, LED Step
Interface

B Maintained by: Boot ROM set to 0 at POR, Machine DD for LED step
B Written by: Boot ROM, Machine DD

B Read by: System Reset Count, LED Step Mode Enable

— Bit 1 =0 indicates a POR reset

- Bit 1 =1 indicates a push button reset
- Bit 7 = 0 indicates step mode inactive
—~ Bit 7 =1 indicates step mode active
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5.1.3.10 NVRAM Address 0x0380-0x03ff, Reserved

5.1.3.11 NVRAM Address 0x0400-0x07ff, IPL ROM
Diag, & Scratch pad area (1kb)

B Written by: IPL ROM
B Read by: IPL ROM

B (0x0400-0x07ff IPL ROM Work Area (1 KB)

— 0x0400-0x0403 4 byte validity ID (ASCII “IPLR”,
0x49504¢52)

—  0x0404-0x04ff Reserved

— 0x0500-0x06ff Diagnostics config table

- 0x0700-0x0723 Service Mode Previous Boot Device

- 0x0724-0x07f5 Reserved

— 0x07f6-0x07fb  Ethernet Randomized Network Address

- 0x07fc-0x07ff  CRC value for IPL ROM Work Area

5.1.3.12 NVRAM Address 0x0800—-0x1fff, Dynamically
Controlled Software Area (6 KB)

B Written by: NVRAM DD
B Read by: IPL ROM, NVRAM DD

B Current Utilization:

— NVRAM DD allocation structures

— Fatal error log information (512 bytes)

— Dump status area (64 bytes)

— 0x0800-0x13ff Manufacturing run-in test posr return codes

- 0x1400-0x17ff IPL ROM Work Area 2 (1 KB) Written/Read by IPL

ROM
" 0x1400 - 0x1403 4 byte validity ID (ASCII “IPLR”,
0x49504¢52)
® 0x1404 - 0x17fb reserved for [PL ROM

B (0x17fc—-0x17ff CRC  value for IPL ROM Work Area 2
5.1.3.13 NVRAM Usage Summary

The common NVRAM area usage is summarized in Table 22 on page 56. The
OCS/SP usage is summarized in Table 23 on page 57. The non-OCS/SP usage
is summarized in Table 24 on page 58.
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Offset Size Description

0x0000-0x0003 4 bytes Reserved

0x0004—0x0007 4 bytes NVRAM size

0x0008—0x000b 4 bytes NVRAM initialization data

0x000c—-0x000f 4 bytes Pointer to dynamic software area

0x0010-0x001f 16 bytes SCSI initiator address for slots 1 — 16

0x0020-0x00ff 224 bytes Memory control and error registers,
BUID 0, address 0x1000 — 0x10D0

0x0100-0x01fb 252 bytes Remote BOOT information

0x01fc-0x01ff 4 bytes IPL ROM BOOT state information save
area

0x0200-0x0223 36 bytes Normal mode previous boot device

0x4800-0x7fff 14KB Dynamically controlled software area
(medialess)

0x4400-0x7fff 15KB Dynamically controlled software area
(non-medials)

0x0224-0x0277 84 bytes Normal mode BOOT device list

0x0278-0x02cb 84 bytes Service mode BOOT device list

0x02cc—0x02£7 44 bytes NVRAM device driver headers (no
longer supported)

0x02£8-0x02£8 1 byte TCW/TCE table size

0x029-0x02fb 3 bytes Reserved

0x02fc—-0x02ff 4 bytes gl%(; ffl:)r NVRAM area 0x0000 thru

X

Table 22. NVRAM Usage (Common Area) Summary
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Offset Size Description

0x0300-0x0307 4 bytes LED data mirrored

0x0308-0x030b 4 bytes Checkstop count

0x030c-0x030f 4 bytes Pointer to OCS/SP checkstop logout
area

0x0310-0x0313 4 bytes OCS code E/C level

0x0314-0x0317 4 bytes OCS “seed” EPROM E/C level

0x0318-0x031b 4 bytes Manufacturing control

0x031c-0x031f 4 bytes Point to manufacturing data area

0x0320-0x035f 64 bytes LED string output area

0x0360-0x0363 4 bytes Pointer to OCS code execution area

0x0364-0x0367 4 bytes Pointer to OCS work area

0x0368-0x037b 20 bytes Machine check save area

0x037c-0x037f 4 bytes OCS/RS command interface

0x0380-0x03ff 128 bytes OCS information area

0x0400-0x43ff 16 KB OCS transient work/code area

0x4400-0x47£f 1KB IPL ROM diagnostic BOOT save area
(medialess)

0x4800-0x7ftf 14 KB Dynamically controlled software area
(medialess)

0x4400-0x7£ff 15KB Dynamically controlled software area

(non-medialess)

Table 23. NVRAM Usage (OCS/SP Implementations)
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Offset Size Description

0x0300-0x0303 4 bytes LED data mirrored

0x0304-0x0317 20 bytes Reserved

0x0318-0x031b 4 bytes Manufacturing control

0x031c-0x031f 4 bytes Point to manufacturing data area

0x0320-0x035f 64 bytes LED string output area

0x0360-0x0363 4 bytes Manufacturing information

0x0364-0x0367 4 bytes lPI:, ROM supported LED string output
pointer

0x0368-0x037b 20 bytes Machine check save area

0x037¢c-0x037f 4 bytes LED step interface

0x0380-0x03ff 128 bytes Reserved

0x0400-0x07ff 1KB IPL ROM diagnostic and scratch pad
area

0x0800-0x 1£ff 6 KB Dynamically controlled software area

Table 24. NVRAM Usage (NON-OCS/SP Implementations)



Bus Unit Controller
(BUC) Architecture

Figure 2 on page 60 illustrates the logical view of RISC System/6000 PowerPC
systems. The system interconnect allows for the transfer of data among the
various components of the system: the processor, memory, I/O attached via a
Bus Unit Controller (BUC) which is directly attached to the system
interconnect, and the Micro Channel Input/Output (I/O) bus via the I/O Channel
Controller (IOCC). For information on the architecture of the IOCC, see the
Section “IOCC Architecture,” beginning on page 75. There may also be
System Bus(es) generated from the processor chip set or memory controller to
which BUCs are attached. The system interconnect may be one of several
different constructs (for example, a System Bus, a switch, etc.) and is system
dependent. Any given system may or may not have an IOCC and may or may
nothave a BUC, but shall have at least one of these. The IOCC can be thought of
as an implementation of a BUC for a specific application, namely that of
providing a Micro Channel bus on a system.
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Figure 2. System block diagram

6.1 BUC Addressing

A BUC can be designed such that a program can gain access to its address space
by one of several approaches:

B A BUC design can allow access only for addresses with the T bit set to a 1
(the T bit is in the Segment Register (SR), for 32-bit machines, or in the
Segment Table Entry (STE), for 64-bit machines). This is sometimes called
addressing by direct-store segments. See PowerPC Architecture (book III),
“Storage Segments” for additional information. The device address space
for T=1 is partitioned into 16 segments of 256 megabytes (MB) each for a
total of 4 gigabytes (GB) of address space per BUID (see Figure 6 on page
67).
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B A BUC design can allow access only for addresses with the T bit set to a 0.
This is sometimes called addressing by ordinary segments or sometimes
referred to as memory mapped addressing. For T=0 access, the “System
Memory Map” is described in Section 3.1 on page 7.

B A BUC design can allow access for addresses with both T=0 and T=1.

There are a number of differences in the designs for the T=0 and T=1 cases.
This book does not go into details on all of the differences, instead, it only
describe the architectural differences (there are implementation differences
also).

SRs (32-bit machines) or STEs (64-bit machines) provide access authority to
the BUC address spaces for I/O Load and Store instructions. They are protected
resources within the system and generally cannot be changed except by the
Operating System.

The architectural differences for BUCs which get addressed with T=0 versus
T=1 fall into several categories:

B SR or STE definition
B Protection mechanisms

B Error reporting

In addition, a BUC can be designed to operate in a 32-bit machine or a 64-bit
machine. Architectural differences between 32-bit and 64-bit machines
include:

B Use of SRs (32-bit machines) versus STEs (64-bit machines)
B Use of 32-bit TCEs (32-bit machines) versus 64-bit TCEs (64-bit machines)
because a longer Real Page Number (RPN) is needed in 64-bit machines

These items are discussed in following sections.

6.1.1 Addressing with T=0 (Memory Mapped or
Ordinary Segments)

BUC:s which are addressed with T=0 have their address spaces mapped into the
physical memory address space. These devices are addressed like any other
piece of memory. For an example of amemory controller implementation, refer
to the Appendix on page 243.

Engineering Note

Some systems may not
allow for both T=0 and
T=1 /0, and so BUC
designs should take into
consideration the
architecture of the
systems in which they
may be used.

Engineering Note

Most T=0 I/O shall be set
up such that the pages
to which the Load or
Store operations are
done are marked as
cache inhibited.
However, for the case
where the /0 is
performed to cached
pages, care must be
taken in design of the
BUC to take the
coherency scheme into
account, and to not use
Store data before it is
guaranteed to be good.
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Note

T=1 Load and Store
operations are inherently
non-cached.

On a Load instruction,
SR bits 3 to 31 or STE
Dword 1 bits 0 to 63
shall be returned by the
hardware as the same
value that software
previously stored into
them with a Store
instruction.

6.1.1.1 SR (32-Bit Machines) and STE (64-Bit

Machines) Definitions for T=0

The SR and STE definition for T=0 addressing is described in the PowerPC
Architecture (book III).

6.1.1.2 BUC Protection Mechanism for T=0

The processor’s storage protection scheme which protects accesses to memory
applies for T=0 memory access. Refer to the PowerPC Architecture (book III)
“Storage Protection” for more information regarding storage protection.

6.1.1.3 BUC Error Reporting for T=0

Some systems and BUCs may not have a way of recovering from a T=0 error.
See the appropriate BUC Architectures for more information. BUC
Architectures must be defined to assure that errors which might cause data
integrity problems are not allowed to propagate, and this may mean producing
an unrecoverable error like a checkstop. “Unrecoverable errors” are those that
can not be recovered without taking down the Operating System and rebooting
the machine.

6.1.2 Addressing with T=1 (Direct-Store
Segments)

BUC:s which are addressed with T=1 have their address spaces disjoint from the
physical memory address space. These devices use a Bus Unit ID (BUID) in the
SR or STE for addressing of the BUC in order to get this disjoint address space.
6.1.2.1 SR (32-Bit Machines) and STE (64-Bit
Machines) Definitions for T=1

The SR and STE definition for T=1 addressing is shown in Figure 3 on page 63.

For more details on the processor-specific fields, see the PowerPC Architecture
(book IIT). Table 25 on page 64 details the usage of the SR and STE bits.
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STE Dword 0 (64-bit machines)

Defined by the Processor Architecture

1 \ \ L \ \ | TKKBB

0 3132 \63

AN
STE Dword 1 (64-bit machines)
Defined by the Processor ie Defined by the
Architecture BUID BUC Specific EXT Proc. Arch.
| | | | |
0 24825 31 32 51252 63
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(Arrows indicate how |
the 32-bit SR gets -
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Figure 3. SR and STE definition for T=1

6.1.2.2 BUC Protection Mechanism for T=1

It is recommended that all BUC implementations make BUC facilities
(registers, commands, and other addressing spaces) accessible to Load and
Store instructions from the system processor only when the applicable K bit in
the SR or STE is set to a value of 0. There are actually two K bits in the SR or
STE; these are the supervisory state storage key bit and the problem state
storage key bit. Throughout this document the phrase “applicable K bit” is used
to mean the K bit which is being used by the processor at the time it is executing
the Load or Store instruction. In BUCs which use the applicable K bit in this
way for protection, if the BUC facilities are accessed with the K bit set to a value
of 1, a Data Storage Interrupt (DSI) with invalid operation error status shall be
sent to the processor which issued the I/O Load or Store instruction for logging
into that processor’s Data Storage Interrupt Error Register (DSIER). BUCs
may also choose to implement other protection mechanisms in addition to, or
instead of, the K bit protection mechanism.
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SR Bit

STE Bit

Dword0 Dword 1

Description

0-35

Effective Segment ID

36-55

Defined by the Processor Architecture

56

Valid bit

57

T bit: Direct-store segment bit. Set equal to a value of
1 for this definition of the SR and STE.

58

K bit: Supervisory state storage key (see note). This bit
is sent to the BUC if the processor is in the supervisory
state when the Load or Store instruction takes place.

The usage of this bit by the BUC is implementation
dependent.

59

Kp bit: Problem state storage key. This bit is sent to the
BUC if the processor is in the problem state when the
Load or Store instruction takes place. The usage of this
bit by the BUC is implementation dependent.

34

60-61

BUID (bits 0-1): These are the first 2 bits of the Bus
Unit ID. These bits are placed on the bus during a T=1
Load or Store instruction, and are used by the BUCs to
determine whether or not the Load or Store operation is
directed towards them.

62-63

Defined by the Processor Architecture

0-24

Defined by the Processor Architecture

5-11

25-31

BUID (bits 2-8): These are the least significant 7 bits of
the Bus Unit ID. These bits are placed on the bus during
a T=1 Load or Store instruction, and used by the BUCs
to determine whether or not the Load or Store operation
is directed towards them.

12-27

32-47

BUC specific: These bits can be used by individual
BUC: for their own purposes. Note that some of these
bits may not be passed from the processor to the BUC,
depending on the processor and system implementations
(see Appendix beginning on page 233 for information on
processor dependencies). The BUC specific fields should
be defined by the documents defining the individual
BUCs. For the IOCC, see Section 7.4.1.2, “IOCC SR
(32-bit machines) and STE (64-bit machines)
Definitions,” on page 106.

28-31

48-51

EXT: Address extent field. These bits are appended to
the low order 28 bits of the processor effective address to
form the 32-bit I/O address. They are appended as the
most significant bits of the 32-bit address.

52-63

Defined by the Processor Architecture

Table 25.

SR and STE Definition for T=1
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6.1.2.3 BUC Error Reporting for T=1

Errors which occur synchronously with the I/O Load or Store instruction being
executed (that is, before a positive completion message is sent to the processor)
shall result in a DSI with an appropriate error status which is sent to the
processor which issued the I/O Load or Store instruction for logging into that
processor’s Data Storage Interrupt Error Register (DSIER). The DSIER has the
following basic definition (see Section 3.3.1 on page 14 for additional
information):

B One per processor
B In T=0 address space

B Holds the status of failing I/O Load and Store instructions

Some systems may not be able to recover from errors which occur
asynchronously with the instruction execution (that is, which are not reported as
a DSI for the Load or Store instruction which causes the error). This is
implementation dependent. See the appropriate BUC Architectures for more
information. System and BUC Architectures must be defined to assure that
errors which might cause data integrity problems are not allowed to propagate,
and this may mean producing an unrecoverable error, such as, a checkstop.

6.1.3 Load and Store Addressing Model

For T=0 accesses, the real address is generated the same way that it would be for
any other memory access, and will not be discussed further in this section. For
T=1 accesses, the 32-bit I/O address is formed by concatenating the least
significant 28 bits of the effective address (bits 4 to 31 for 32-bit machines, or
bits 36 to 63 for 64-bit machines) with the 4 extent (EXT) bits from the SR or
STE. Figure 4 on page 66 illustrates this concatenation process for 32-bit
machines and Figure 5 on page 66 illustrates this process for 64-bit machines.

By appending the four EXT bits to the 28 low order bits of the address, the
device address space for T=1 is partitioned into 16 segments of 256 megabytes
(MB) each for a total of 4 gigabytes (GB) of address space per BUID (see Figure
6 on page 67). Separate SRs or STEs must be used to address adjacent
segments. Results of crossing a T=1 segment boundary with a single Load or
Store operation is implementation dependent, and may be dependent on the
implementation of both the processor and the BUC.

Engineering Note

BUCs should be
designed to take into
account that PowerPC
processors expect BUCs
to provide data for an
entire Load instruction
operation, even if an
exception occurs on the
load operation. Failure
to provide data can
result in stale data being
clocked into the
processor registers, and
present a data security
problem. The data
provided can be all-1’s,
all-0’s, or other data (as
long as there is not
security exposure with
the data being provided),
and should have good
parity.

Note

Some BUCs may use
one or more of the BUC
specific bits in the SR or
STE to create additional
address spaces.
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32-bit Effective Address

Se L
Re
0 #34 | l | 31

4 28

Segment Registers

BUID lEXt

A 4

0 3|4 | | | 31
I/O Address

Figure 4. Creation of the I/O address for 32-bit machines (T=1)

64-bit Effective Address
0 1 1 1 1 1 1 1 63
Lookup 28
Segment Table
4 bits (EXT field)
from STE (see Figure 3) v
3|4 N L 31
/0 Address

Figure 5. Creation of the I/O address for 64-bit machines (T=1)

6.1.3.1 BUC Control Address Spaces

Most of the BUC address spaces shall have some of their address space
designated for control purposes. Results of attempts to access control address
spaces in the BUCs which are “reserved,” see Section 1.2.1 on page 2, will
depend on the architecture of the BUC. For T=0 BUCs, the result shall be the
data being ignored on a Store instruction and returned as a O on a Load
instruction. For T=1 BUCs, the result will either be a DSI or the data being
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ignored on a Store instruction and returned as a 0 on a Load instruction. A Load
or Store instruction which starts in an unimplemented address space and spills
over into an implemented address space will be treated as if all of the operation
had accessed unimplemented addresses. A Load or Store instruction which
starts in an implemented address space and spills over into an unimplemented
address space will have implementation dependent results.

System Address 1/0 Address
(T=0) (T =1, BUID = BUC BUID, K=0)
] ]
I 1 I
256 [ 256 I 256 [ 256 ‘
MB Physical MB mB mB
ysica BUID=0 BUID=1 BUID=n
ng:'ory Address Address Address
Space Space Space Space
o8 o0 oL—J¢ oL—0¢

A

n Segments of 256 MB Each
(Total 4 GB for 32-bit Systems,
252 Bytes for 64-bit Systems)

A

16 Segments of 256 MB Each per BUID

(4 GB Total per BUID)

Figure 6. Addressing model for Load and Store instructions

6.1.3.2 Load with Reservation and Store Conditional
Instructions

BUC:s are not required to support atomic reservation type operations like those
provided by the following processor instructions:

M ].0ad Word and Reserve Indexed (Iwarx)

W ] 0ad Doubleword and Reserve Indexed (Idarx)

M Store Word Conditional Indexed (stwex)

B Store Doubleword Conditional Indexed (stdcx)
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Engineering Note

Data coherency and
TCE coherency are
related. If software
issues a Store instruction
to a TCE such that the
BUC must invalidate any
copy of that TCE in a
BUC cache or buffer,
then if any data
associated with the page
represented by that TCE
is in a BUC cache or
buffer, it must be written
to system memory, if
modified, and invalidated
if modified or not. Only
after any associated data
in the cache is flushed
and/or invalidated can
the TCE be invalidated.

6.1.4 BUC Translation Control Entry (TCE)

TCE:s are kept in system memory and are used by the BUC for Direct Memory
Address (DMA) real memory access.

The TCE mechanism in a BUC provides a facility to translate accesses from the
BUC’s address space into the real system memory address space. This allows
data to be scattered throughout the real memory pages, but to have a contiguous
virtual memory address space mapped to a continuous BUC address space (that
is, the TCE provides a scatter and gather type of operation). In addition, the
TCE provides for some BUC specific bits which can be used by the BUC for
various purposes (for example, the IOCC uses some of the bits to provide Load
and Store access protection, and some for bus master page mapping control).
TCE:s are optional and not all BUCs need to implement TCEs, but those BUCs
which do implement TCEs should define them as shown in Figure 7 and Table
26 on page 69.

TCEs are located in system memory. For performance reasons, most BUC
implementations will also contain a local copy of the TCE in the BUC. The
BUC shall keep its local TCE copy or copies (its cached copies) coherent with
the copy in system memory. The BUC shall use the TCE in effect at the time a
request was issued.

A BUC is not required to maintain consistency with its own internal TCE cache
(if any) when DMAing into its own TCE table area.

Figure 7 on page 68 shows the TCE layout for both 32-bit and 64-bit machines.
For 32-bit TCEs, the TCEs will be adjacent to one another in the table with no
gaps in between (that is, there will be two TCEs per doubleword of storage).

TCE (64-bit machines)

RPN (most significant) RPN (least significant) | BUC Specific

0 1 1 i 31|32 1 1 51|52 63
TCE (32-bit machines)

RPN BUC Specific

0 1 | 19]20 , 31

Figure 7. TCE layout
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32-Bit | 64-Bit | Description
TCE TCE

- 0-31 | RPN: The most significant bits of the Real Page Number (RPN) when
operating with a 64-bit TCE. In certain BUC implementations, all of these
bits may not be required.

0-19 | 32-51 |RPN: The least significant bits of the RPN when operating with 64-bit
TCEs, or the entire RPN when operating with 32-bit TCEs.

20-31 | 52-63 | BUC specific: can be used by individual BUCs for their own purposes. If
these bits are not used by a particular BUC implementation, then they shall
be treated as reserved bits, see Section 1.2.1 on page 2.

Table 26. TCE Bit Definitions

6.1.5 BUC TCE Address Register

This register specifies the starting address and size of the TCE table in system
memory. This register is set up by the IPL ROM code or the device
configuration code before enabling the BUC to DMA, and should not be
changed thereafter. This register will only exist in the BUC if the BUC
implements TCEs. If the BUC implements TCEs, then it must also implement
this register.

Figure 8 on page 70 illustrates the BUC TCE Address register, Tables 27 on
page 70 and 28 on page 70 define the fields within this register. Thisregisterisa
2-word register. Word 0 will only exist in 64-bit implementations. In 32-bit
implementations, word 0 will not exist and attempts to access word 0 will have
the same results as accessing any other “reserved” address (see Section 6.1.3.1,
“BUC Control Address Space,” on page 66). In 64-bit implementations, the
register will always have two words, even if the implementation has a 32-bit
mode of operation and is switched to the 32-bit mode.

The BUC specific fields in the TCE should be defined by the documents
defining the individual BUCs.

The BUC TCE Address register resides in the BUC address space, and the
address of the register is defined by the architecture of the BUC.

The value of the data in the BUC TCE Address register at startup time is
indeterminate. The IPL ROM code or the device configuration code should
initialize this register before enabling the BUC to start DMA.
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Word 0 Word 1
Start Addr of TCEs (most significant) | [Start Addr Reserved ize
(least signif.)
] | ] ] ] |
0 310 1112 2829 31
Figure 8. BUC TCE Address register

Bit
Definitions

Description

0-31

TCE Table Starting Address: These bits compose the most significant bits of the
real page number in system memory of the starting address of the TCE table
when operating with 64-bit TCEs. In certain BUC implementations, all of these
bits may not be required.

Table 27. TCE Address Register Bit Definitions for Word 0

Bit
Definitions

Description

0-11

TCE Table Starting Address: These bits compose the least significant bits of the
real page number in system memory of the starting address of the TCE table
when operating with 64-bit TCEs, or the complete address for 32-bit tables.
Software must guarantee that the table starting address is aligned on an
appropriate byte boundary, as defined in the table, below.

12-28

Reserved, see Section 1.2.1 on page 2.

29-31

Number of TCE Table Entries: These bits allow specification of the amount of
system memory to be used for TCEs. Different applications require different
amounts of TCE table, and the architecture allows this size to be varied. This
provides the flexibility to optimize cost and function across a wide range of
system applications. These bits are defined as follows:

Bit Number of  Table Alignment
29 30 31 TCE Entries Boundary
0 0 0 8K 1MB
0 0 1 16K 1 MB
0 1 0 32K 1 MB
0 1 1 64K 1 MB
1 0 0 128K 1MB
1 0 1 256 K 2MB
1 1 0 512K 4 MB
1 1 1 1024 K 8 MB

The maximum number of TCEs supported by an implementation is
implementation dependent and is presented to the software by the BUC in a
software accessible register. In the IOCC hardware, this is in the IOCC
Configuration register (see Section 7.4.5.2, “IOCC Configuration Register,” on
page 132).

Table 28. TCE Address Register Bit Definitions for Word 1
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6.2 BUC Interrupt Structure

The mechanism used to manage BUC external interrupts consists of several
registers. One of these is common to all BUCs, some are specific to the
individual BUC architectures, and some are system level registers. The register
which must be common to all BUCs is described in this section. The registers
which are unique to the IOCC architecture is described in Section 7.4.6, “IOCC
Interrupt Structure,” on page 137. The registers which are system level are
documented in Section 3.2, “Architected System Registers” on page 10. The
BUC structure is shown in Figure 9 on page 71. The system level interrupt
structure is described in Section “External Interrupt Architecture,” beginning
on page 157.

The eXternal Interrupt Vector Registers (XIVRs) that are common to all BUCs
have the following basic functions:

B One per interrupt source in each BUC.

B Up to a maximum of 16 per BUID (a BUC which has more than 16 sources
requires the use of more than one BUID for the BUC, and the multiple
BUIDs must be consecutive).

B In T=0 or T=1 address space, depending on the BUC implementation.
B Provides a table lookup of the interrupt priority for each external interrupt.

B Provides a interrupt server affinity field for each external interrupt.

The XIVR is described in more detail in Section 6.2.2 on page 72.

BUC Unique
Interrupt
Se_leqtion and
E{; oir;tization External Interrupt
Vector Registers (XIVRs)
i_._._.. —
(]
ey <
. . Tnt
Reserved . Server # Priority
External Q) 18,0, 31810 2212800003
Interrupt XIVR may be
Chooses read or written
One XIVR by software

Sent to Interrupt Routing Logic
along with the source of the
interrupt and BUC BUID

Figure 9. BUC interrupt structure
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6.2.1 BUC Interrupt Scenario

When an interrupt comes in to a BUC (or when a BUC generates an interrupt
internally), the following happens:

B The BUC unique logic selects and prioritizes the external interrupt(s) for
that BUC. When an external interrupt is selected, this interrupt is used to
select one of the External Interrupt Vector Register(s) (for a BUC which
supports only one interrupt, only one XIVR will be implemented).

B The XIVR information is sent to the system interrupt routing logic, along

with information about the interrupt source and BUC Bus Unit
IDentification (BUID).

B The interrupt may be rejected by the interrupt routing logic for various
reasons. If the interrupt is rejected and the condition which generated the
interrupt has not been reset, then the hardware must try to re-present that
interrupt at a later time.

B Even after the interrupt is accepted by the system, it may be rejected by the
interrupt routing layer at a later time. This could happen, for example, if the
software issues a Store instruction to the Current Processor Priority Register
(CPPR) with a priority which is more favored than the previously accepted
interrupt priority. If this rejection happens, then the BUC must re-present
that interrupt to the system if the external interrupt is still active (that is, has
not been reset by the software or has been reset but the device has raised the
interrupt again).

6.2.2 External Interrupt Vector Register (XIVR)

Each BUC contains one External Interrupt Vector Register for each external
interrupt that it will support. The bits in each of these registers are defined in
Table 29.

These registers reside in the BUC address space, and the addresses of these
registers are defined by the architecture of the BUC.

The value of the data in these registers at startup time is indeterminate. The IPL
ROM code shall initialize these registers before enabling interrupts for the
BUC.
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Bits | Description

0-15 |Reserved, see Section 1.2.1 on page 2.

16-23 | Interrupt Server Number: This determines to which interrupt service queue
in the system that the interrupt should be vectored.

24-31 |Interrupt Priority: This field specifies what priority should be assigned to the
incoming interrupt.

Table 29. XIVR Register Description

6.2.3 End Of Interrupt (EOI) Command

Following the presentation of an I/O interrupt to the system, the BUC must
automatically mask off that particular interrupt signal so the presentation is
made only once. An “End Of Interrupt” (EOI) command unmasks a particular
interrupt signal so that it can interrupt again, when it is active. An EOI
command is issued to the BUC by software issuing either a load instruction or a
store instruction to the BUC. On a Store instruction, the data is ignored. On a
load instruction, the data is indeterminate. This command may be issued
following the interrupt service, once the interrupt has been reset at the source.
This command performs exactly the same function as the interrupt rejection
mechanism (see also the information on the system level interrupt registers,
Section 9.1.1 starting on page 159), and if the interrupt has not been reset at its
source, then interrupt will be re-presented to the system.

The interrupt number field in the address of this command indicates the level of
interrupt to be unmasked.

This command is implementation dependent. BUCs which don’t present
interrupts to the system do not need to implement this command. BUCs which
do present interrupts to the system must implement an EOI command.

6.3 BUC Data Consistency and Ordering
Requirements

Different BUCs can have varying needs for data coherency (coherency not
necessarily implying any ordering requirement) or consistency (consistency
implying an ordering requirement) due to differing expressed or implied
architectural assumptions of the entities (devices, buses, etc.) that they are
controlling. Individual BUC architectures should specify the level of
coherency or consistency support that they require from the hardware. When
the processor is accessing the same page as an I/O Direct Memory Access
(DMA) operation or when it is accessing a Translation Control Entry (TCE) in
system memory, software must set the memory coherency bit (M) to a value of 1
for that page otherwise the hardware will not maintain coherency.
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Engineering Note

Some system
implementations might
call for the i-cache to be
kept consistent by the
hardware. In such
systems, the system
design must take into
consideration the data
which is in transit at any
given time (for example,
data in system queues
must be visible to the
coherency mechanism).

Architects and designers
(BUC and System)
should be aware that
consistency is no easy
matter, and should be
given careful
consideration in the
development process.

An example of a BUC
ordering requirement is
that the IOCC requires
that data be strongly
ordered; i.e., writes from
a Micro Channel device
must appear coherent in
the same order as the
data is written (that is the
requirement is
consistency, not just
coherency). The IOCC
also is required to make
the data consistent to all
mechanisms, including
the i-cache fetch
mechanism. For more
information on the IOCC
requirements, see the
Section “lOCC
Architecture,” beginning
on page 75.

This IOCC example, may
not be representative of
other BUC requirements.

Most BUC architectures will require that data be kept coherent by the hardware
(the BUC hardware and/or the system hardware). When the hardware is
required to keep the I/O data coherent, there is also a good chance that there will
also be an ordering requirement (that is, the BUC will be required to keep the
data consistent, and not just coherent).

In addition to the requirement of some BUCs to make the data coherent in the
same order as was originally written, there may also be timing considerations
relative to I/O operation completion event. For example, the I/O operation
completion event might be an external interrupt or a polled entity like a status
completion block in system memory or a location in the BUC’s address space.
Care must be taken in the system to assure that the I/O operation complete event
which signals the completion of a data write operation does not get serviced,
and the data accessed by the software, before the data which was being written
becomes consistent to the mechanism which is going to use the data.

Care must be taken when designing a BUC which will be used to transfer
instruction code pages. PowerPC processor hardware implementations are not
required to keep the i-cache coherent with changes to memory or data caches,
even if the page is marked as coherence required (the M bit in the PTE set to a
value of 1). As aresult, some processors will not indicate coherence required
when they perform an i-cache fetch. The result is that the system may not even
make the i-cache fetch visible to some BUCs in the system. Thus, if a BUC is
going to be used to transfer code pages, it should have a mechanism to assure the
data is in a place which is visible to the i-cache fetches of the processor(s) in the
system before a processor tries to access that data via an i-cache fetch (which
probably means it must be flushed into system memory). This mechanism must
not be visible to the software (that is, the software shall not have to do anything
special to flush the data from the I/O cache or buffer). If the operation is
interrupt driven, then an acceptable mechanism is to keep the interrupt, which is
signaling the completion of the operation, in order with the data; the interrupt is
not presented to the software until the data is made visible to the i-fetch
mechanism. If the operation is a polled operation (with the polled completion
block being in system memory), then one mechanism which is acceptable is to
make all data globally visible to all mechanisms in the same order as the device
has written the data.
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The RISC System/6000 PowerPC Input/Output Channel Controller (I0OCC)
Architecture is a special case of the BUC architecture as it relates to the Micro
Channel bus support functions for Load and Store instructions, interrupt, and
channel control. A number of feature I/O slots are associated with the IOCC for
pluggable I/O devices.

The IOCC Architecture allows certain variations of function and performance
to optimize its usage across multiple IOCC designs and machine environments.
The specific personalization is established with the contents of the IOCC
Configuration register (See Section 7.4.5.2, “IOCC Configuration Register,”
on page 132).

7.1 System Structure

Figure 10 on page 78 illustrates a logical view of the RISC System/6000
PowerPC IOCC. Functions provided by the IOCC include data buffering,
address translation, Direct Memory Access (DMA), and interrupt support.

The Operating System can access all system facilities, including, virtual
memory, system memory, Micro Channel bus I/O, bus memory, and the IOCC.
The IOCC contains special facilities needed by the system for translation, and
other functions.

Mapping of a virtual address to a system memory address is managed via the
translation mechanism associated with the processor chip set. The Operating

Note

This chapter uses the
abbreviated signal
names as they appear in
the IBM Personal
System/2 Hardware
Interface Technical
Reference—Architectures
(S84F-9808) document;
for example, ‘cd chrdy’
represents ‘card channel
ready’.
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System grants conditional access authority to processes, allowing the processes
to access the Micro Channel bus memory, the I/O, and to the IOCC facilities.

The IOCC Architecture includes the definition of 16 independent I/O channels.
One channel (0xf) is used by the system master for Load and Store transfers,
leaving 15 that can be programmed for bus master transfers. The number of
channels that can be programmed for DMA slave transfers is implementation
dependent. (See Section 7.4.5.2, “IOCC Configuration Register,” on page
132). A “bus master” is a Micro Channel device that contains its own direct
memory access controller. A “DMA slave” is a Micro Channel device that
requires the system to provide the direct memory access control.

A bus master on the Micro Channel bus can access bus memory and bus I/O.
Pages in the bus memory address space are mapped to system memory by the
Bus Mapping register which allow for mapping ranges of pages to system
memory (see Section 7.4.5.7, “Bus Mapping Register,” on page 136). Mapped
pages are checked for proper access authority (writes to read only pages are not
allowed) before allowing an access to proceed. Since the IOCC cannot
intercept or stop accesses from a bus master to bus attached memory or bus I/O
devices, no access checking is performed when a bus master addresses devices
on the Micro Channel bus.

The IOCC DMA slave controller provides a convenient mechanism for moving
data between an I/O device and system or bus memory. It provides addressing
and control functions on behalf of the I/O device.

Most processor accesses to system memory go through the processor data
cache. When sharing system memory areas with 1/O devices, hardware must
maintain the consistency among the processor data cache, the system memory,
and any I/O buffers or I/O cache for all I/O operations (Load and Store
instructions and DMA). When the processor is accessing the same page as an
I/O DMA operation or when it is accessing a Translation Control Entry (TCE)
in system memory, software must set the memory coherent bit (M) to a 1 for that
page otherwise the hardware will not maintain coherency. Valid combinations
of the write through (W), cache inhibit (I), and M bits in these cases are 0b001,
0b011, or 0b101.

The fact that the hardware must keep the data consistent among the processor
data cache, the system memory, and any I/O buffers or cache for all I/O
operations has important implications. The following is meant to give an
indication of some of the considerations for consistency, but should not be
construed, in any way, to weaken the requirement of the hardware to keep the
data consistent (with the only requirement of software being to set the wim bits
appropriately). One implication of hardware enforced consistency is that
hardware must guarantee that the data appears consistent in the same order that
the device on the Micro Channel bus has written the data (for example, if the
device writes to address x and then to address y, then the data written to address
x must be guaranteed to be consistent to the software before, or at the same time
as, the data written to address y). Another implication is that it is hardware’s
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responsibility to keep the I/O data consistent under all conditions. PowerPC
processor implementations are not required to keep the i—cache consistent with
changes to memory or data caches, even if the page is marked as coherence
required (the m bit in the PTE set to a value of 1). As aresult, some processors
will not indicate coherence required when they perform an i—cache fetch. The
result is that the system may not even make the i—cache fetch visible to the
IOCC. Thus, since the IOCC is going to be used to transfer code pages, it must
have a mechanism to flush the data to a point which is visible to the i—cache
fetch mechanism (call it the point of global visibility) of the processor(s) in the
system before a processor tries to access that data via an i—cache fetch. In most
systems the point of global visibility will be system memory. This mechanism
must not be visible to the software (that is, the software shall not have to do
anything special to flush the data from the I/O cache or buffer). Additionally,
the IOCC hardware must take into consideration the fact that the I/O operation
complete event from the device, which signals completion of the write to the
software, could be any of several mechanisms (for example, an external
interrupt or a polled status completion block in system memory).

7.1.1 Virtual Memory

Virtual memory is a large address space containing logical system objects such
as programs and data. Each object is assigned a unique address in the virtual
memory space at the time of creation and this address is used thereafter to
reference that object.

Virtual memory objects are mapped to system memory on a demand basis. At
the time of reference by a system or user program, the translate unit associated
with the processor chip set verifies whether that object is currently in system
memory and, if so, supplies the appropriate (real) memory address. If not in
system memory, the Operating System is called to obtain the requested object,
place it in system memory, and update the tables used by the translate unit. The
original faulting instruction is then retried and control is returned to the original
system Or user program.

The Translation Control Entry (TCE) mechanism in the IOCC provides a
facility to translate accesses from the Micro Channel Address space into the real
system memory address space. This allows data to be scattered throughout the
real memory pages, but to have a contiguous virtual memory address space
mapped to a continuous Micro Channel address space (that is, provides a scatter
and gather type of operation).

Programming Note

If the virtual mapping has
real-time dependencies,
then the software
designer should consider
“pinning” the appropriate
pages, that is, forcing
the appropriate pages to
stay in system memory.
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7.1.2 System Memory

System memory is that memory closely associated with the processor chip set
complex. The RISC System/6000 PowerPC architecture provides for up to 4
GB of system memory in 32-bit machines, and up to 252 bytes in 64-bit
machines.

7.1.2.1 Load and Store Instruction Access to System
Memory

System memory is accessible with normal processor accesses with the T bit in
the SR (32-bit machines) or STE (64-bit machines) set to a 0; these T=0
accesses do not involve the IOCC.

7.1.2.2 Bus Master Access to System Memory

Bus memory references made by the bus master are redirected to system
memory by the TCE mechanism and the Bus Mapping register. Accesses to
system memory are translated before allowing them to proceed. This mapping
of bus addresses to system memory is transparent to the requesting bus master.
See Section 7.4.2, “Bus Master,” on page 115 for more information, in general,
and Figure 27 on page 117 for the address model for bus master operations.

7.1.2.3 DMA Slave Access to System Memory

DMA slave accesses are directed to system memory via the TCE mechanism
and bits in the Channel Status Register (CSR). The Bus Mapping register does
not get involved for DMA slave operations. See Section 7.4.3, “DMA Slave,”
on page 119 for additional information and Figure 31 on page 122 for the
address model for DMA slave operations.

7.1.3 Bus Memory and Bus I/O Address Space

Bus memory is the memory that logically resides on the Micro Channel bus.
The Micro Channel bus includes 32 address bits, providing up to 4 GB of
addressability. Bus memory is generally packaged on feature I/O cards and is
associated with specific devices. Devices are generally mapped into the bus
memory space when they have large addressability requirements, such as video
display buffers and floating-point work space.

The Micro Channel bus includes a special address space for accessing 1/O
control registers in Micro Channel devices. It includes 16 address bits and
provides up to 64 KB of addressability. I/O devices do not decode address bits
A31 to A16 and these address bits are considered undefined for I/O devices.
Note that the addressing nomenclature for the Micro Channel bus is
little-endian format (see Appendix “Big-Endian and Little-Endian Tutorial,”
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on page 293 and Section 7.2, “Bit and Byte Numbering Conventions,” on page
82.

7.1.3.1 Load and Store Instruction Access to Bus
Memory and I/O

The IBM family compatible buses have separate address spaces for bus
memory addresses and bus I/O address spaces. When accessing bus memory
and 1/O via Load and Store instructions in RISC System/6000 PowerPC
systems, these two address spaces are mapped together. Also mapped into this 4
GB address space are part of the IOCC facilities at addresses from 64 KB up to
(but not including) an address of 512 KB (see Section 7.1.4, “IOCC Facilities,”
on page 81 for more information about IOCC facilities, and Figures 23 on page
105 and 24 on page 105 to see how the Load and Store address space is mapped).
These address spaces are differentiated from each other via an address decode
as illustrated in Figure 23 on page 105. Bus memory is referenced when the
Load or Store instruction effective address is 512 KB and above and the
Alternate IOCC Address Space bit in the SR or STE is set to a 0. Bus I/O is
referenced when the Load or Store instruction effective address is less than 64
KB. See Section 7.4.1, “Load and Store Instructions,” on page 104 for more
information about Load and Store operations.

The Micro Channel bus memory and I/O address space is accessible to Load
and Store instructions from the system processor with the T bitin the SR or STE
set to a 1. Load and Store accesses to bus memory and I/O are protected by
several protection mechanisms. See Section 7.4.1.3, “Load and Store
Authority Checking,” on page 109 for more information on these protection
mechanisms.

7.1.3.2 Bus Master Access to Bus Memory and I/O

When a bus master is accessing bus memory and I/O, it has control of the
‘M/IO’ signal line on the Micro Channel bus, and therefore has access to the
entire 4 GB of bus memory address space, with the I/O space being entirely
disjoint from the bus memory space. Any bus master on the Micro Channel bus
has unconditional access to other devices on the Micro Channel bus if the access
is to bus memory and those devices have their memory address space marked as
not being mapped to system memory by the Bus Mapping register or if the I/O
address space is being accessed. In such cases, accesses are unprotected; the
TIOCC just acts as a bus monitor (looking for address parity errors), allowing the
operation to continue if the channel is enabled. See Section 7.4.2, “Bus
Master,” on page 115 for more information.

7.1.3.3 DMA Slave Access to Bus Memory and I/O

The address map for DMA slaves accessing Bus Memory is illustrated in Figure
31 on page 122. On DMA slave accesses to the Micro Channel bus, the access
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shall always be to the bus memory address space of 0 to 4 GB. Bus I/O space is
not accessible to DMA slave operations. See Section 7.4.3, “DMA Slave,” on
page 119 for more information about DMA slave operations.

7.1.4 10CC Facilities

IOCC Facilities are special addresses in the IOCC Load and Store instruction
address space (for specifics, see Section 7.4.1.1, “Address Spaces and Effective
Addresses,” beginning on page 104). The IOCC facilities are only accessible to
Load and Store instructions from the system processor. Load and Store
accesses to IOCC facilities are protected by several protection mechanisms.
See Section 7.4.1.3, “Load and Store Authority Checking,” on page 109 for
more information on these protection mechanisms. These facilities are not
accessible to bus master or DMA slave devices on the Micro Channel bus and
the address space of these facilities does not reside in the address space of the
bus master or DMA slave devices (see Figure 24 on page 105 for the Load and
Store address model, Figure 27 on page 117 for the address model for bus
master operations, and Figure 31 on page 122 for the address model for DMA
slave operations).

7.1.4.1 10CC Registers

IOCC registers are IOCC facilities managed by the system supervisor that
control all aspects of the Load and Store instructions, channel, and interrupt
operations. Refer to Section 7.4.5, “IOCC Registers,” on page 130 for a
description of these registers and Section 7.4.1.1, “Address Spaces and
Effective Addresses,” on page 104 for a description of how these registers are
addressed.

7.1.4.2 10CC Commands

IOCC commands are IOCC facilities used to change the state of the IOCC or
control special bus actions. They take the form of Load and Store instructions to
special (effective) addresses, where the addresses specify the actions to be
taken. In most cases, the Load or Store processor instruction can be either string
or non-string instructions. See Section 7.4.4, “IOCC Commands,” on page 128
for more information.
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Note

For a tutorial on
big-endian and
little-endian, see
Appendix “Big-Endian
and Little-Endian
Tutorial,” on page 293
and also the appendix of
PowerPC Architecture
(book I).

7.2 Bit and Byte Numbering
Conventions

This section describes the big-endian and little-endian impacts on the IOCC
Architecture.

7.2.1 Big-Endian and Little-Endian Mode
Concurrency

The LE bit in the processor Special Purpose register controls the current mode
of operation of the processor (LE=0 for big-endian and LE=1 for little-endian).
There is also the concept of being able to change this bit on a more dynamic
basis, namely at an interrupt boundary. In this book, however, only the
requirement of switching the mode at boot time is being addressed.

7.2.2 Two Processor Implementations of
Little-Endian Mode

There are currently two defined implementations of the PowerPC Architecture
for the processor for the little-endian mode. For convenience, they are denoted
as the True Little-Endian (TLE) and the Little-Endian via Address
Modification (LE/AM) processor implementations. It is assumed, for
discussion here, that what the IOCC sees, from the system perspective, is the
same for both types of processors; namely, the TLE view. That is, for systems
using LE/AM processors, the system shall store the data in memory in TLE
format and Loads and Stores (to the IOCC, Micro Channel bus, or to system
memory for data which will be accessed via DMA) shall look to the IOCC like
Loads and Stores from a TLE processor.

7.2.3 1/0 Load and Store Access from the
Processor to the 1/0

This section describes the big-endian and little-endian considerations when I/O
is accessed via I/O Load and Store instructions.

7.2.3.1 1/O Load and Store Operations with LE=0
(Big-Endian Mode)

When performing I/O Load and Store instructions with LE=0, the system
should be designed so that the Micro Channel bus and IOCC facilities are
treated as big-endian entities. For example, for a 1-word Store operation, byte 0
of the register gets directed to byte 0 of the target (the Micro Channel bus or
IOCC facility). Notice that if the target is a little-endian target (a little-endian
register on a Micro Channel adapter, for example), then the software may need



7.2 Bit and Byte Numbering Conventions

83

to make use of the Load or Store Reverse instructions to get the right data
between the big-endian program and the little-endian target (see Section
7.2.3.3, “Programming Considerations,” on page 87 for more details).

Figure 11 shows how the bytes get steered from the processor register to the
bytes of an IOCC register internal to the IOCC, and Figure 12 on page 84
shows examples of how the bytes get steered from the processor register to the
Micro Channel bus space. Figure 13 on page 85 is similar to Figure 12 except
that it shows the effect of dynamic bus sizing when issuing a 4-byte Load or
Store instruction to a 2-byte Micro Channel device. Dynamic bus sizing is
described in Section 7.3.2.2, “Dynamic Bus Sizing” on page 98.

Note in Figure 12 that although the data bits require renaming in going from the
big-endian format of the processor register to the little-endian format of the
Micro Channel bus, the bits remain in the same sequence within the byte.

4-byte Load or Store operation to an IOCC register

Processor Register
0 1
Jpshende o N ag ° 1516 o3pa 3
(e.g., 0x00010010) NERRERL A ARRRTL G A NN« AR R
3 ¥ X
(e.g., 0x00010010) (o0, 0x00010013)
' oy 1 ‘} v2 3

(address x) “A” “B” ; “g” »s “p»
VETERERL A REEERYd AT s AT &
4-Byte IOCC register

Figure 11. Byte steering for an I/O Load or Store to an IOCC register (LE=0)
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1-byte Load or Store operation to a 1-byte Micro Channel device
Pr10cessor Regist;r

0 3
(address) o M8, 15160, 2RI28 0 A
“A”
7I Ll 11 p
(address x) 1-Byte Micro Channel Transfer
2-byte Load or Store operation to a 2-byte Micro Channel device
Processor Reglgter
()] 1 2 3
(address x) “wpn P
9 N8, ,15116 IAII L3328, |?| KL
/
1 / 0
“B!! “A”
(addressx) 15IIIIII8I7IIIIIIIO

2-Byte Micro Channel Transfer

4-byte Load or Store operation to a 4-byte Micro Channel device
Pr{:cessor Reglstzer

0 3
(addressx) o, N, 718 5, 15118, L, B8, Ly &
3 2 1 0
(address x) “py P « «p
31, |D| 2423, |<|:| L 1§15, |"|B| 1817 4 |A| P

4-Byte Micro Channel Transfer

Figure 12. Byte steering for an I/O Load or Store to a Micro Channel device (LE=0)
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4-byte Load or Store operation to a 2-byte Micro Channel device

First Micro Channel Bus Cycle
Processor Register

0 1 2 3
(address x) “p” «g” “gn “p”
A L L TR T P L

T

“RY “p

(address x) B 800 0
2-Byte Micro Channel Transfer

Second Micro Channel Bus Cycle ;
Processor Register

0 1 2 3
(address x) “pn «g” «gr “p”
ol L1 1 11 I-,Iq L1 11 I115I1lsl 111 l2p|2i4IJ L Ll{‘

1/0/'

ﬂD" “cu
(address x+2) L. LA
2-Byte Micro Channel Transfer

Figure 13. Byte steering for an I/O Load or Store to a Micro Channel device
(LE=0), showing dynamic bus sizing

7.2.3.2 1/O Load and Store operations with LE=1
(Little-Endian Mode)

For I/O Load and Store operations performed with LE=1, the system should be
designed so that the Micro Channel bus and IOCC facilities are treated as
little-endian entities when the processor is running in the little-endian mode
(LE=1). For example, for a 1-word Store operation, the left-most byte of the
register (byte O of the register in big-endian format, byte 3 in little-endian
format) gets directed to byte 3 of the target. Notice that if the target is a
big-endian target (a register, for example), then the software may need to make
use of the Load or Store Reverse instructions to get the right data to or from the
little-endian register to the big-endian target (see Section 7.2.3.3,
“Programming Considerations,” on page 87 for more details). Since the TLE
processor implementation itself does some of the byte steering, the byte
steering that is done by the IOCC should be the same (given that everything else
in the system is the same) as the IOCC steering required for the LE=0.
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Note

The cross-over of data in
the case of the IOCC
registers is done for
consistency with Micro
Channel bus big-endian
registers. See also
Section 7.2.3.3,
“Programming
Considerations,” on page
87.

Figure 14 on page 86 shows how the bytes get steered from the processor
register to the bytes of an IOCC register internal to the IOCC, and Figure 15 on
page 87 shows examples of how the bytes get steered from the processor
register to the Micro Channel bus space. Note that the byte steering in Figure 14
looks different from the Figure 11 on page 83, but this is not due to a difference
in the steering required by the IOCC, but rather it is due to the difference in
steering provided by the processor.

4-byte Load or Store operation to an IOCC register
Processor Register

0 (shown with b1ig-endian byte nzumbering)

“p “pr [T o 3id “p”

C
(address x) VERERENL A NETETL LR o G TR |3|1

(address X) “pr “cr “g” “A”

TR TERL L PR L ST J R
4-Byte IOCC register

Figure 14. Byte steering: /O Load or Store to IOCC registers for LE=1
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1-byte Load or Store operation to a 1-byte Micro Channel device
oProcessor Regi1$ter (shown witl; big-endian byte raumbering)

(address x) wpn
OIlIIIlI7I8IlIIII'J5|1l6IIIII213I2F'IIII'q1

«p»

(address x) o000 0
1-Byte Micro Channel Transfer

2-byte Load or Store operation to a 2-byte Micro Channel device

Processor Register (shown with big-endian byte numbering)
0 1 2 3

L L W L AT <1t PR

(address x)

“A” “B”
(address x) L AL LA
2-Byte Micro Channel Transfer

4-byte Load or Store operation to a 4-byte Micro Channel device
Processor Register (shown with big-endian byte numbering)
2 3

0 1
K‘A" ‘LB” l[c’l Ny
(address x) % v vy N8y 15118y 128028 |I|J| 3
]
3 2 1 0
(address x) “A” “g” “c” “p”
AR o - FIRL J LT L A

4-Byte Micro Channel Transfer

Figure 15. Byte steering: /O Load or Store to a Micro Channel device for LE=1

7.2.3.3 Programming Considerations

There are two I/O Load/Store models for PowerPC, one for writing big-endian
programs and one for writing little-endian programs. These two models are
largely the same. The difference is that when running with LE=0, the hardware
shall direct processor byte 0 to byte O of the Micro Channel bus, byte 1 tobyte 1,
etc., but when running in LE=1, the hardware shall assume a little-endian
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device or register and shall direct the bytes appropriately. Thus, when running
in little-endian mode (LE=1), a Load or Store to a little-endian device on the
Micro Channel would nof require the Load or Store Reverse instructions, but a
Load or Store to a big-endian device would not. This is shown in Table 30.

Target LE=0 LE=1
TOCC register Load or Store Load or Store Reverse
(big-endian)
TCE Load or Store Load or Store Reverse

(big-endian)

Big-endian Load or Store Load or Store Reverse
Micro Channel device

Little-endian Load or Store Reverse Load or Store
Micro Channel device

Table 30. Programming Considerations

7.2.4 DMA Data Interchange Between I/O and
Memory

This section deals with the DMA data paths and addressing for all DMA
operations. DMA Slave and DMA for bus masters are treated the same.

Input/output, such as writing the contents of a memory page to disk, transfers a
byte stream on both big-endian and little-endian systems. For a disk transfer,
for example, byte 0 of the page is written to the first byte of the disk record and
so on. Figure 16 on page 89 shows how the structure s would be mapped onto a
disk device for the big-endian and true little-endian cases (assume that structure
s starts at address 0).

For a PowerPC system running in big-endian mode with a big-endian memory,
I/O transfers happen “naturally” because the byte that the processor sees as byte
0 is the same one that the storage subsystem sees as byte 0. Figure 16 shows that
for a system with a TLE memory implementation with LE=1, that transfers
would happen “naturally,” also.
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Example of a C structure (s), showing values of the elements

struct {

int

long

int

char
short

int
}s;

-

ee0gp

S..

/¥ 0x5152

/* 0x11121314
/* 0x2122232425262728
/* 0x31323334
A B, C,D,E,F, G

/* 0x61626364

Big-endian mapping
of structure s
as seen by the processor

word */
doubleword  */
word */
array of bytes */
halfword */
word *

Little-endian mapping
of structure s
as seen by the processor

00 1 12 13 14 00 14 13 12 1
00 0102 0304 05 06 07 00 01 02 03|04 05 06 07
og |21 22 23 24 25 26 27 28 08|28 27 26 25 24 23 22 21
los 09 0A 0B oC 0D OE OF los 09 0A 0B 0C 0D OE OF
10 31 32 33 34 |'A’'B ‘C D 10 34 33 32 31 |'A’'B 'C D
10 1112 13 |14 15 16 17 10 11 12 13 |14 15 16 17
18 E’'F ‘G 51 52 18 E’‘F ‘G 52 51
1819 1A |1B|1C_1D|1E 1F 18 19 1A lB|iC ID|1E 1F
20 61 62 63 64 20 64 63 62 61
20 21 22 23 20 21 22 23
Big-endian mapping Little-endian mapping
of structure s of structure s
on a disk device on a disk device
00 1 12 13 14 o o o 00 14 13 12 11 e o o
00 01 02 03 00_01 02 03

\A/

-

—

Figure 16. Example of C structure, and the mapping of that structure on to a disk

device

7.2.4.1

For the big-endian mode, during DMA, no translation is required; byte 0 is
transferred to byte 0, and so on. Figure 17 on page 90 shows how the system

DMA of LM=0 Stored Data

must transfer data when handling big-endian format data.
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Big-endian structure s
in big-endian memory or cache with LM=0

1 12 13 14
Joo o1 02 03]04 05 06 07
21 22 23 24 25 26 27 28
08
08 09 OA OB 0C_OD OE o]
31 32 33 34 |'A’B ‘C D
10 1112 13 |14 15 16 17
E’ ‘F ‘G 51 52
18 19 1A | 1BJ1C 1D|1E 1F
oo |61 62 63 64
20 21 22 23

00

10

18

Example of a cache line transfer to an I/O cache line in the IOCC and then to the Micro Channel device

Cache line in system memory:
11 12 13 14 2122 2324 25 26 27 28|31 32 33 34[A ‘B’ ‘C’‘D’|'F’ ‘F ‘G’ 51 52
00 01 02 03]04 05 06 07108 09 0A 0B 0C 0D OFE oF|10 11 12 13|14 15 16 17|18 19 1A |1B|1C 1D JIE 1F|

Cache line in /O Cache:
YV VY VbV VY VY YY YYYY YYYY VYYYYYYYYYYY

11 12 13 14 2122 23 24 25 26 27 28|31 32 33 34[A’‘B’‘C’‘D’|‘E’ ‘F'‘G’| |51 52
00 01 02 03104 05 06 07j08 09 0A 0BOC 0D OE OF|10 11 12 13[14 15 16 17]18 19 1A] 1BJ1C 1D JIE 1F|

Example of a 1-word
transfer to the Micro Channel bus
(device puts out address = 0x10)

34 33 32 31
03 02 01 00

Figure 17. Transfer of an LM=0 data structure via DMA

7.2.4.2 DMA of LE=1 Stored Data

For systems where the memory controller or processor assures that the data gets
stored in memory as true little-endian format when LE=1 (as shown in Figure
16 on page 89) and where there is no modification in going from the memory to
the IOCC, then DMA transfers occur the same as for the LE=0 case (see Figure
18 on page 91). No translation is required; byte 0 is transferred to byte 0, and
SO on.
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Little-endian mapping of structure s
In Big-endian memory or cache with
TLE processor and LM=1

1413 12 11
00 01 02 03 ]04 05 06 07
s |28 27 26 25 24 23 22 21
08 09 OA 0B 0C 0D OE OF
34 33 32 31 |'A” ‘B C D
10 11 12 13 [14 15 16 17
s [E P @ [s52 51
i8 19 1A |1B|1C 1ID|1E 1F
2 |64 63 62 61
20 21 20 23]

00

Example of a cache line transfer to an I/O cache line in the IOCC and then to the Micro Channel device

Cache line in system memory:

141312 11 2827 26 2524 23 22 21|34 33 32 31 fA' ‘B’ ‘C’ ‘D|'E’ ‘F" ‘G’| |52 51

00 01 02 03 05 06 07]08 09 0A 0 oD _OE oFj10 11 12 13 J14 15 16 17|18 19

1A J1BJ1C 1D JIE 1F|

ac e Ime |n IJ
vy

i

BRR YV Y Y Y Y Y YYYY VY

Yy Yyvyvyyvyy

0 01 02 0304 05 06 07]08 09 OA 0BOC OD OE OF|10 11 12 13|14 15 16 17|18 19

141312 11 2827 26 2524 23 22 21|34 33 32 31 |A ‘B’ ‘C’ ‘D’|'E’ ‘F ‘G| |52 51

1A | 1B|1C 1D [1E 1F|

Example of a 1-word
transfer to the Micro Channel bus
(device puts out address = 0x10)

31 32 33 34
03 02 01 00
Figure 18. DMA transfer of a data structure written with LE=1 via a TLE processor

7.2.4.3 DMA Access of the TCE table

The TCE table is stored as a series of 1-word or 2-word scalars in big-endian
format. The transfer of the TCE data occurs the same as it would for any data
(see previous sections on DMA of stored data). Figure 19 on page 92 shows
examples of accessing 1-word TCEs for LE=0 and LE=1 and Figure 20 on page
93 shows examples of accessing 2-word TCEs.

Programming Note

TCEs are always
assumed to be in
big-endian format in
memory. That means
software should use
Load and Store Reverse
instructions when
building the TCE table in
LE=1 mode (see Section
7.2.3.3, “Programming
Considerations,” on page
87).
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Example of a 1-word TCE table structure (t1) showing values of the elements

struct
int
int
int
int
int
int
int
int
m

{

08

10

18

a; Tad
b; r*
c; *
d; I
e; r*
f; I*
g; r*
h; ™

0x11121314

0x21222324
0x31323334
0x41424344
0x51525354
0x61626364
0x71727374
0x81828384

Structure t1 in big-endian memory

for LE=0 or for LE=1

with a TLE proc. implementation

1 12
00 _ 01

13
02

14
03

21
04

22
05

23 24
06

31 32
.08__00

33
OA

34
0B

M
oC

07
43 44
OE  OF]

42
oD

51 52
10 11

53
12

54
13

61
14

62
15

63 64
1617

71 72

18 19

73
1A

74
1B

81
1C

82
1D

83 84
1E_1F

word */
word */
word */
word *
word */
word */
word *
word */

(LE=1 tables built
with Store Reverse
Instructions)

Example of accessing the third TCE in the table (offset 0x08 into the table)

Table in system memory:

11 12 13 14|21 22 23 241313233 34|41 42 43 44|51 52 53 546162 63 64|71 72 73 74 |81 82 83 84
00 01 02 0304 05 06 07]08 09 0A oBloc oD OE oF}10 11 12 1314 15 16 17]18 19 1A 1BJiC 1D 1E 1F|
address =

TCE base addr + offset

1132 3334 | TCE holding register

3
00 01 02 03

(cache) in the IOCC

Figure 19. TCE table access for 1-word TCEs
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Example of a 2-word TCE table structure (t2) showing values of the elements

struct {
long a; /* 0x1112131415161718
long b; /* 0x2122232425262728
long c; /* 0x3132333435363738
long d; /* 0x4142434445464748
2

Structure t2 in big-endian memory with LE=0
or for LE=1 and TLE proc. implementation

doubleword
doubleword
doubleword
doubleword

o |11 12
00 01

13
02

14
03

15
04

16
05

17
06

18
07

08 |21 22
08 09

23
0A

24
0B

25
oc

26
oD

27
OE

28|
OF|

10 |31 32
10 11

33
12

34
13

35
14

36
15

37
16

38
17

1g |41 42
18 19

43
1A

44
1B

45
1C

46
1D

47
1E

48
1F

*f
¥/
*/
*/

Example of accessing the third TCE in the table (offset 0x10 into the table)

Table in system memory:

11 12 13 14 15 16 17 18)2122 23 2425 26 27 28
00 01 _02 03 04 05 06 07]08 09 0A OBOC 0D OE OF

1 32 33 3435 36 37 38
13 14 15 16 17

10_11

1

1 42 43 4445 46 47 48
18 19 1A 1B 1C 1D 1E 1F

address = TCE base addr + offset

TCE holding register

(cache) in the IOCC

\

|

|

00 01

31 32 33 3435 36 37 38
02_03 04 05 06 0

Figure 20. TCE table access for 2-word TCEs
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7.3 Micro Channel Bus Protocols

The RISC System/6000 PowerPC IOCC is optimized to use the Micro Channel.
The IOCC Architecture fully complies with all requirements of the Micro
Channel Architecture.

A brief description of the Micro Channel protocols is summarized in this
section. For more details, see the IBM Personal System/2 Hardware Interface
Technical Reference—Architectures (S84F-9808).

This section uses the abbreviated signal names as they appear in the /BM
Personal System/2 Hardware Interface Technical Reference—Architectures
(S84F-9808) document; for example, ‘cd chrdy’ represents ‘card channel
ready’.

7.3.1 Micro Channel Arbitration

Arbitration is the resolution of multiple bus requests, awarding use of the bus to
the highest priority requester. It applies to all devices that request bus use such
as processors, bus master devices, and DMA slave devices. Characteristics of
the Micro Channel arbitration mechanism include:

M One to 16 bus masters

B Parallel prioritization

B Asynchronous operation

B Programmable priority levels

B Programmable fairness mode

B Mixable linear and fairness modes
B Preemptive burst capability

M Extendable to multiple buses

The arbitration mechanism distributes prioritization among the adapters but
retains control and clocking functions within the IOCC.

Parameters such as arbitration level and burst characteristics are programmable
via the Configuration registers in each device. There are no restrictions on
changing operating modes following system startup.

Figure 21 illustrates an arbitration cycle. Devices request service by activating
the ‘preempt’ signal. The IOCC responds by deactivating the ‘arb/gnt’ signal
when the current bus owner completes its bus activity. Each requesting arbiter
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then presents its arbitration level on the arbitration bus. The IOCC then
reactivates the ‘arb/gnt’ signal, and the device with the highest priority (lowest
arbitration level value) on the arbitration bus is granted use of the bus. Device
Request (Drq) and Device Acknowledge (Dack) are signals (internal to each of
the device arbiters) which signal a request to arbitrate for the bus, and
acknowledgement of being granted the bus, respectively.

Atthe end of the bus cycle, the arbitration cycle is repeated if the ‘burst’ signal is
not active. If there are no requesters, control is returned to the default arbiter at
the arbitration bus level Oxf.

I ———
| T
N Dack v

Cmd

Figure 21. Arbitration cycle

Both DMA slave and bus master devices utilize the arbitration mechanism to
initiate bus cycles. The difference is that once granted use of the bus, the bus
master device controls bus cycles, while the IOCC controls the bus cycles for
DMA slave devices.

7.3.1.1 Micro Channel Priority Assignment

At startup, each device supporting arbitration is assigned a unique priority level
ranging from Ox0—-Oxf. This priority level establishes the selection criteria to be
used when contention exists. If multiple requests occur simultaneously, the
device with the lowest numbered priority level is awarded use of the bus.

Arbitration level Oxf is always assigned to the system processor. If there are no
other bus requesters, bus ownership defaults to level 0xf. Thus, the IOCC owns
the Micro Channel bus during idle conditions. Since Micro Channel bus
utilization is normally low, the IOCC does not normally have to arbitrate for the
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bus for I/O Load and Store instructions. Some IOCC implementations execute
any pending I/O Load or Store instruction during the arbitration cycle (that is,
when the ‘arb/gnt’ signal is in the ‘arb’ state), and shall extend the arbitration
cycle as needed to complete the I/O Load or Store instruction.

Micro Channel I/O devices with long bursting characteristics should be
designed using the Fairness (rotational) Arbitration Protocol, without which it
is possible to lock out system processor I/O Load or Store instructions until the
/O device transfer is complete. If a lockout occurs for an extended period of
time, a bus timeout error is posted, the ‘arb/gnt’ signal is set to the ‘arb’ state,

¢ Y a1 1 Tnta WWhila tha kg fimmanit awsens 1o
and the ‘reset’ signals are activated to all slots. While the bus timeout etror is

active, all system processor I/O Load and Store instructions are guaranteed
access to the bus.

7.3.1.2 Non-Preemptive Burst

Devices can force non-preemptive burst operations if it is necessary to retain
control of the bus for short periods of time. Examples include use of a
read-modify-write sequence in setting locks and use of a burst to allow the
completion of a word-organized transfer sequence. The device signals the
arbiter that a forced burst is required by activating the ‘burst’ signal to the
arbiter. When the burst sequence is complete, the device must deactivate the
‘burst’ signal.

7.3.1.3 Preemptive Burst

This function allows a device to use consecutive bus cycles without any
arbitration overhead, as long as no other device is requesting bus service. It
takes advantage of the low average utilization of I/O buses in general, and
increases the effective data rate of a device. Devices programmed for
preemptive burst mode conditionally activate the ‘burst’ signal when the
‘preempt’ signal is inactive. A device can remain temporarily non-preemptive
for up to 7.8 microseconds following a preemption request. This allows
completion of, for example, block transfers.

7.3.1.4 Fairness Modes

Devices operating in burst mode or devices with high bus request rates can
cause severe interference to devices assigned lower priority levels. The
problem is compounded when multiple high-bandwidth devices are present in
the system. The programmable fairness mode is provided to make these
high-bandwidth devices subject to preemption by any device. If multiple
high-bandwidth devices are active simultaneously, service is rotated in a
priority sequence, and each receives a percentage of bus cycles inversely
proportional to the number of active bus requesters. Two devices with fairness
turned off can totally monopolize a Micro Channel bus, causing other device
operations to fail.
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To meet wide variations in device operating requirements, arbiters are
programmable to operate in either linear or fairness mode. Operating modes
can be mixed on the same bus. Linear priority mode is provided to meet low
latency requirements of unbuffered devices, while fairness mode provides a
more equitable distribution of bus cycles in a high-demand environment, for
example, with two or more high-bandwidth bus masters.

Fairness mode is a special case of preemptive burst. If there is only one bus
requester, the current bus owner can utilize all of the bus bandwidth. As with
preemptive burst, a device programmed in fairness mode can remain
temporarily non-preemptive for up to 7.8 microseconds following a preemption
request.

7.3.1.5 DMA Slave Selection

A DMA slave on a Micro Channel bus is selected either by its arbitration level
or, optionally, by its I/O address (but not both). In RISC System/6000 PowerPC
systems, the method supported for selection of DMA slave devices is by its

arbitration level, status (‘sO’ exclusive-ored with ‘s1’), and an I/O cycle
(‘M/IO’ signal in the IO state and ‘arb/gnt’ is in the ‘gnt’ state).

7.3.2 Basic Transfer Cycle

Although the RISC System/6000 PowerPC IOCC Architecture is generic and
can attach a number of unique buses, the intended design point is the Micro
Channel bus. These bus protocols are illustrated in Figure 22.

0 100 200

>< A31 to A0, MO X

\ ADL /
\ S1/S0 (R/W) / N

Cmd

( < Data > >____

Figure 22. Micro Channel bus cycles

__________
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The Micro Channel bus offers a 32-bit or, optionally, 64-bit (in implementation
using 8-byte Streaming Data Protocol) data path and 4 GB of address space. It
includes extensive support for reliability, availability, serviceability,
extendability, and configurability. The physical package and connector are
designed to improve electrical characteristics.

Two status lines, ‘s0” and ‘s1’, define the initiation of bus write and read cycles
respectively, while the ‘M/IO’ line differentiates between I/O memory and I/O
devices. All addresses for the next cycle are overlapped with the processing of
the current cycle. The Micro Channel bus architecture includes a special
nrntannl Fre trangforring gaminntial hlaalo ~AF doéa Mhic 205 baaca ag tha
lJlUlU\rUl 1vl uauou/uuls D\/\iu\«llllal UVIULVAD VUl uaia. L111ID 1D AIIUWIL ad uic

Streaming Data Protocol, and is described in the next section.
7.3.2.1 Streaming Data

The Streaming Data Protocol is a single-address, multiple-data protocol that
improves bus efficiency by amortizing bus cycle arbitration and address setup
across multiple data cycles. It has particular value in transferring data between
amemory and a processor cache or between a memory and a high-performance
1/O device.

Streaming data begins with a cycle similar to a standard basic transfer cycle, but
switches to a clock synchronous transfer protocol.

The IOCC supports streaming data operations for bus master operations. In
addition, IOCC implementations may support streaming data operations for
DMA slave and Load and Store string operations.

Following the activation of the ‘cmd’ signal, the bus master indicates
Streaming Data Protocol capability by starting a bus clock called the ‘sd strobe’
signal. This clock is used by both the bus master and slave to clock data onto
and off of the bus. The operation proceeds with new data being placed on the
bus every time the ‘sd strobe’ signal makes a high-to-low transition. The
frequency of the ’sd strobe’ signal supported by the master and the slave in the
Micro Channel operation is implementation dependent, and is communicated
between the master and slave as part of the Micro Channel protocol. For
additional information on the Streaming Data Protocol, refer to IBM Personal
System/2  Hardware Interface  Technical  Reference—Architectures
(S84F-9808).

7.3.2.2 Dynamic Bus Sizing

Micro Channel bus read or write operations do not necessarily have to match the
physical width of the device. The Micro Channel architecture requires that
discrepancies in data transfer widths be automatically managed by the current
bus master. The IOCC is considered to be the current bus master for processor
initiated I/O Load and Store instructions, and thus, must manage logical
data-width transformations.
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A Load or Store instruction issued to a device of lesser width than the command
causes multiple I/O cycles to be taken until the transfer width is satisfied. This
automatic data-width matching is referred to as dynamic bus sizing in the Micro
Channel architecture. The multiple I/O cycles complete as a preemptable
operation in the RISC System/6000 PowerPC IOCC, allowing bus master and
DMA slave cycles to break in for service. As such, bus master or DMA slave
latency is unaffected by use of dynamic bus sizing.

Protocols and sequencing of dynamic bus sizing are described in the /BM
Personal System/2 Hardware Interface Technical Reference—Architectures
(S84F-9808).

It is generally recommended that the programmer writing an I/O device driver
be aware of the physical characteristics of the target device. One should be
aware when dynamic bus sizing is invoked by IOCC hardware since this
operation requires more time to complete. See Section 7.4.1.6, “String
Operations,” on page 114 for details on when this could be a problem.

7.3.2.3 Partial Transfer Cycles

Partial write operations, for example, writing one byte of a 2-byte device, or two
bytes of a 4-byte device, are permitted in the bus architecture and are useful in
performing unaligned moves. The Micro Channel supports partial write
operations when operating with both memory and I/O devices.

Bus write operations issued on address boundaries matching the device width
allow completion of the operation in the minimum number of bus cycles.
Operations issued to non-aligned addresses transfer the data to the device using
multiple (partial write) cycles. These write operation use the bus ‘sbhe’/‘a0’
and ‘be0 to be3’ protocols to write the desired portion of the word. Partial
transfers apply to I/O Load and Store instructions and (potentially) to bus
master and DMA slave operations when operating with bus memory.

Partial transfers can take two to four times the normal number of bus cycles and
caution should be exercised in their use. Non-aligned I/O Load and Store
instructions slow the processor for alonger period of time than aligned I/O Load
and Store instructions, adding latency to system interrupt service. See Section
7.4.1.6, “String Operation,” on page 114 for details on when this could be a
problem.

7.3.2.4 Micro Channel Bus Refresh

Bus refresh cycles are provided as a convenience to I/O devices with embedded
random access memory (RAM).

A refresh cycle is similar to an I/O memory read operation, except that the
‘refresh’ line is also activated. Address bits 0 through 11 (using the Micro
Channel little-endian notation) are incremented by one, and are placed on the
bus during the refresh cycle.
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7.3.3 Micro Channel Bus Errors

Four different kinds of errors are detectable on the Micro Channel bus:
B Invalid address

B Parity

B Channel check

M Bus timeout.

When an error occurs, an error status is either logged in IOCC registers (in the
case of a bus master or DMA slave operation) or is is sent back to the processor
which issued the I/O Load or Store instruction for logging into that processor’s
DSIER (in the case of an error during an I/O Load or Store instruction) as an aid
in error recovery. For bus master operations, individual error status is kept for
each arbitration level to assist in recovery of multiple errors and is stored in the
Channel Status Register associated with that device.

7.3.3.1 Invalid Address

The Micro Channel architecture requires a positive response to all addresses.
Address response is signalled on the Micro Channel by driving the ‘cd sfdbk’
signal low. Some conditions which could cause a lack of ‘cd sfdbk’ to occur
are:

W If the device is not present
B If the device is not seated in the card slot properly
B If the device is not enabled

B If there is bad address parity on the bus and there is no detection of the bad

address parity on the bus, and if the resulting bad address does not select any
device

When an I/O Load or Store instruction is issued, the IOCC checks for this
address response. If none is received, a DSI is issued and a Micro Channel bus
error code is sent to the system for logging into the DSIER.

When a bus master gets on the Micro Channel bus, it is the responsibility of the
bus master to check for a ‘cd sfdbk’ signal.

7.3.3.2 Micro Channel Parity Errors

The Micro Channel architecture definition includes address and data parity
functions. Data parity checking is performed only when both the bus master
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and slave support data parity. Address parity checking is performed when the
bus master supports address parity and any slave on the bus supports address
parity. Since the IOCC acts as a bus master for I/O Load and Store operations,
and since the IOCC supports address parity checking, if any Micro Channel
device (not necessarily the target slave of the Load or Store operation) supports
address parity, address parity shall be checked on an I/O Load or Store
instruction (and therefore a device driver which uses I/O Load and Store
instructions to the Micro Channel should always provide an exception handler
for address parity error). Refer to Section 7.3.4, “Exception Reporting and
Handling,” on page 102 for details of the RISC System/6000 PowerPC 1/O
parity support.

7.3.3.3 Micro Channel Channel Check (‘chck’)

The Micro Channel includes a ‘chck’ signal which is driven by Micro Channel
slave devices and indicates an unusual event occurred during the bus cycle.
Examples include data or address parity error and page fault.

For details on the use of the ‘chck’ signal in reporting exception conditions
within the RISC System/6000 PowerPC system, see Section 7.3.4, “Exception
Reporting and Handling,” on page 102.

Itis important to note that RISC System/6000 PowerPC systems are designed to
recover from synchronous channel checks on the Micro Channel bus (see the
IBM Personal System/2 Hardware Interface Technical
Reference—Architectures (S84F-9808) manual for a definition of
‘synchronous’ in relation to the ‘chck’ signal). Adapters that use the ‘chck’
signal asynchronously, shall force the system to initiate an Initial Program Load
(IPL) in order to prevent data integrity exposures.

7.3.3.4 Micro Channel Bus Timeout

A number of conditions can result in a hung bus or in grossly extended Micro
Channel bus cycles. These errors can result in overrun conditions to other
devices on the Micro Channel bus and are checked by the IOCC using a bus
timeout mechanism. Although the minimum architected bus timeout value is
7.8 microseconds, the IOCC does not attempt to check that finely and shall
implement a timeout that varies between 15 and 120 microseconds.

Bus hang problems are caused by either hardware or software errors. These
errors are generally associated with arbitration for the Micro Channel bus
followed by failure to complete the bus cycle.

On a bus timeout error, the IOCC deactivates the ‘arb/gnt’ signal, sets bit 1 (the
bus timeout bit) in the IOCC Miscellaneous Interrupt register, see Table 46 on
page 141, and generates an interrupt. This error is considered to be
uncorrectable and the master enable control in the IOCC Configuration register
isreset. This disables all interrupt and channel requests. Also, a ‘reset’ signal is
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Note

Suitable pull-up resisters
should be utilized as
appropriate (see the IBM
Personal System/2
Haraware Interface
Technical
Reference-Architectures
(S84F-9808) manual).

applied to all I/O slots. Inaddition, if an1/O Load or Store instruction is pending
in the IOCC when the bus timeout occurs and the target of that Load or Store
instruction is the Micro Channel bus, a DSI is sent for the terminated Load or
Store Instruction. If an I/O Load or Store instruction is pending in the IOCC
when the bus timeout occurs and the target of that Load or store instruction is an
IOCC facility, then the Load or Store instruction shall be completed after the
Micro Channel bus is cleared by the IOCC. IOCC architected registers (except
if targeted by a pending Store instruction) remain unchanged, so that channel
conditions at the time of the error can be logged. As an aid in determining the
cause of the error, the state of some of the Micro Channel bus signals at the time
of the error are also captured in the Bus Status Register.

Incorrect programming of the DMA controller can result in a hung bus. The
DMA controller includes multiple channels; each can be personalized to
control either a bus master or DMA slave device. Personalization can be
dynamically performed. If a programmer were to personalize a channel for bus
master operation, but the device was actually a DMA slave device, the bus
would hang on the first DMA request that the device makes.

7.3.4 Exception Reporting and Handling

The IBM  Personal System/2  Hardware Interface  Technical
Reference—Architectures (S84F-9808) manual contains a section entitled
“Exception Condition Reporting and Handling” that defines the data and
address parity on the Micro Channel.

The following are guidelines that should be followed in designing RISC
System/6000 PowerPC systems and adapters:

B Full parity support should be provided for all address and data buses for all
RISC System/6000 PowerPC adapter boards, internal boards, and internal
devices (such as Standard I/O devices, NVRAM, and System registers).
Full address and data parity support is defined as traversing the complete
paths of the address and data busses (generate parity at the signal source and
check parity at each destination point where the address and data is used).

B Internal RISC System/6000 PowerPC boards (Standard I/O and I/O Boards)
should provide both address and data parity support to each of their devices.

B Adapter boards to be supported for RISC System/6000 PowerPC should
provide both address and data parity support at the board connector and on
all internal data and address buses.

— 8- and 16-bit devices should provide the 32-bit board connector to gain
access to all the required parity signals.

— 8- and 16-bit devices, must also implement a notch in the board tab so
they can be installed in a 16-bit board slot.
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W Adapters that do not use the 32-bit board connector (8- and 16-bit data),
should support data parity as a minimum. The objective is to include the
32-bit connector described previously to allow address parity, also, if
possible.

B Existing adapter boards that may be useful in RISC System/6000 PowerPC
that do not support parity will be addressed on an individual basis to correct
over time.

B Devices and boards should meet the signal timing specifications described
in the “Exception Condition Reporting and Handling” section of the IBM
Personal System/2 Hardware Interface Technical Reference—Architectures
(S84F-9808).

7.3.5 Micro Channel Interrupts

Eleven Micro Channel interrupt lines are supported by the IOCC. Interrupts on
the Micro Channel are level-sensitive, active-low, and exhibit natural
interrupt-sharing capabilities. The I/O Planar provides pull-up resistors on all
Micro Channel interrupt signals so that unused lines float to the inactive state.
Refer to Section 7.4.6, “IOCC Interrupt Structure,” on page 137 for additional
details.
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7.4 10CC Programming Model

The following section describes the programming model for the Micro Channel
bus support functions provided by the IOCC.

7.4.1 Load and Store Instructions

The Load and Store instructions can be issued to devices on the Micro Channel
bus in a similar manner that they are issued to system memory. The
programmer specifies a SR (32-bit machines) or STE (64-bit machines)
identifying a specific address space and supplies an offset into that space. The
offset is obtained from the effective address and is not translated prior to being
applied as a Micro Channel bus address. Figure 23 on page 105, in conjunction
with Figure 4 on page 66 and Figure 5 on page 66, illustrates this process.

I/O Load and Store instructions are under control of the SRs or STEs. A
command is directed to the IOCC when the type (T) bit of the SR or STE is set to
a1 (adirect-store segment) and the Bus Unit ID (BUID) in the SR or STE is set
to select an IOCC (see Section 7.4.1.2, “IOCC SR (32-bit machines) and STE
(64-bit machines) Definitions,” on page 106 for the definition of the SRs, STEs,
and BUIDs). All I/O operations require that the applicable K bit in the SR or
STE be set to a 0 (the privileged mode).

For details on how the I/O address is generated, see Figure 4 on page 66 (for
32-bit machines) or Figure 5 on page 66 (for 64-bit machines).

7.4.1.1 Address Spaces and Effective Addresses

Figure 24 on page 105 illustrates the RISC System/6000 PowerPC address
space which can be accessed by I/O Load or Store instructions. The addressing
view from a device on the Micro Channel bus is slightly different and is shown
in Figure 27 on page 117.

The I/O effective address provides for 32-bit addressing of the Micro Channel
bus and IOCC facilities. Load and Store accesses are protected by several
protection mechanisms. See Section 7.4.1.3, “Load and Store Authority
Checking,” on page 109 for more information on these protection mechanisms.
Attempts to access addresses which are undefined (that is, unarchitected and
unimplemented) in the IOCC control address space shall cause a DSI with an
invalid operation error code and this is sent to the processor which issued the I/O
Load or Store instruction for logging into that processor’s DSIER.

The 32-bit Micro Channel bus memory address is formed by concatenating 28
bits of the effective address with the 4 EXTent (EXT) bits from the SR or STE.
This partitions the bus memory device space into 16 segments of 256 MB each
(4 GB of total address space), and separate SRs or STEs must be used to address
adjacent segments.
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Figure 23. I/0 Load and Store instruction addressing
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Figure 24. Addressing model for I/O Load and Store instructions
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Results of crossing a T=1 segment boundary with a single Load or Store
operation is implementation dependent, and may be dependent both on the
implementation of the processor and the BUC. For implementations which DSI
the operation, an invalid operation error code shall be sent to the processor
issuing the Load or Store for logging in that processor’s DSIER.

Although Micro Channel bus memory and Micro Channel bus I/O are disjoint
in PC products, RISC System/6000 PowerPC systems map these two address
spaces together. I/O requires 64 KB of addressing and this address space maps
into the low addresses of the (4 GB) bus memory address space. When the
Alternate IOCC Address Space bit in the SR or STE is set to a 0, part of the
IOCC facilities are mapped into the address space from 64 KB up to (but not
including) 512 KB. In addition, when the Alternate IOCC Address Space bit in
the SR or STE is set to a 1, part of the IOCC facilities are mapped into the
address space from 64 KB up to (but not including) 4 GB. The architecture of
PC products is such that no bus memory feature cards may be hardwired in the
address range of 0 to 640 KB, and no address conflicts exist. Effective
addresses are not translated, but are used as real addresses into the Micro
Channel and IOCC address spaces.

Table 31 on page 107 and Table 32 on page 108 summarize the RISC
System/6000 PowerPC I/O addresses. The I/O address is obtained from the
processor general purpose register and is under software control. The 32-bit
address is formed by concatenating 28 bits of the effective address with the 4
extent (EXT) bits from the SR or STE before being used by the IOCC.

EXT bits from the SR or STE get concatenated with the least significant 28 bits
of the processor effective address (value of EXT bits shown here). Addresses
which are not architected are reserved, see Section 1.2.1 on page 2.

7.4.1.2 10CC SR (32-bit machines) and STE (64-bit
machines) Definitions

SRs (32-bit machines) or STEs (64-bit machines) provide access authority to
the Micro Channel and IOCC address spaces for I/O Load and Store
instructions. They are protected resources within the system and generally
cannot be changed except by the Operating System. Certain bits of the SR or
STE are passed from the processor to the IOCC during an I/O Load or Store
instruction. For the definition of the BUC common fields of the SRs and STEs
see Section 6.1.1.1, “SR (32-bit machines) and STE (64-bit machines)
definitions for T=1,” on page 62. Table 33 on page 109 defines the fields of the
SR or STE which are passed by the processor and used by the IOCC and may
only be applicable to IOCC and Micro Channel bus applications (not to other
BUC implementations).
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0 718 15 | 16 23 |24 31 | Description

0000 | 0000 | 0000 | 0000 I/O Device Address BusI/O

x000 00001 110(0r r r|time delay command

1 0 x x| Reserved (see time
delay)

Q001 {0000 © 000|100 0|00 0 0|IOCC Configuration Reg

1 0 0 0| IOCC Personalization
Reg

100 1|00 0 0|Bus Status Reg

1 0 0 0| TCE Address reg Word 0

1 1 0 0| TCE Address reg Word 1

1010|000 0|Component Reset Reg

1 0 0 0| Bus Mapping Reg

0001|1000|00 0 0| Interrupt Enable Reg

1 0 0 0| Interrupt Request Reg

100 1|00 0 0|Misc. Interrupt Reg

0010]00] intrpt |0 O | External Interrupt Vector
# Reg’s

0011|10| ctrl |00|DMA Slave Control

reg# Reg’s
0100|00|chnl# |0 O|Channel Status Reg’s.
Acceesing Oxf is
implementation
dependent

1 0| Intrpt [0 O | End of Interrupt
# command

010 1|00]|chnl# |0 O|Enable and Disable
Channel (Arb Lvl)
command

0111 | 1111 (101 1|1 11 1{1 x x x|Reserved (for
implementation
dependent use)

11xx|XxXXxx|[xXx Xx x|Reserved (for
implementation
dependent use)

Bus Memory Address (0x00080000 and above) Bus Memory

Table 31. 1/O Load and Store Instruction Addresses as Seen by the IOCC
(Alternate IOCC Address Space Bit in SR or STE = 0)
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0 8 15|16 23 124 31 | Description
0000 | 0000 | 0000 | 0000 I/O Device Address Bus I/O
x000 0000(1110(0r r r|time delay command
1 0 x x| Reserved (see time
delay)
0001 | 0000 0 00O01000|000 0|IOCC Configuration Reg
1 0 0 0| IOCC Personalization
Reg
100 1/000 O|Bus Status Reg
1 0 0 0| TCE Address reg Word 0
11 0 0| TCE Address reg Word 1
1010|000 0|Component Reset Reg
1 0 0 0| Bus Mapping Reg
0001({1000(0O0O0 O0|Interrupt Enable Reg
1 0 0 0| Interrupt Request Reg
100 1|00 0 0| Miscellaneous Interrupt
Reg
0010{00] intrpt |0 0| External Interrupt Vector
# Reg’s
0011({10| ctrl |00} DMA Slave Control
reg# Reg’s
0100|00|chnl# |0 0|Channel Status Reg’s.
Acceesing Oxf is
implementation
dependent
1 0| Intrpt |0 O | End of Interrupt
# command
0 101|00]|chnl# |0 O|Enable and Disable
Channel (Arb Lvl)
command
0111 | 1111 |1 01111 1 1|1 x x x|Reserved (for impl.
dependent use)
11xx{x x x XX x X x|Reserved (for impl.
dependent use)
0100 | slot# | 0000 [0 0 0 x|0 00 0|0 r r r|Board Configuration
register (rrr=reg #; see
Table 42 on page 132)

Table 32. 1/O Load and Store Instruction Addresses as Seen by the IOCC

(Alternate IOCC Address Space Bit in SR or STE = 1)
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SR bit STE bit Description
(Dword 0)
(Dword 1)
0 57 - T bit (see definition in Table 25 on page 64)
1 58 - K bit (see definition in Table 25 on page 64)
2 59 - K, bit (see definition in Table 25 on page 64)
34 | 60-61 - BUID (see definition in Table 25 on page 64)
5-11 - 25-31 | BUID (see definition in the Table 25 on page 64)
12-13 - 32-33 |Reserved: These bits are reserved and should be set by any new

software which is written to a 0, see Section 1.2.1 on page 2.
PowerPC IOCC hardware implementations should ignore these
bits for compatibility with POWER software, which might set
these bits to something other than 0. Software can make use of
operating system kernel services in order to provide compatibility
of code from POWER to PowerPC (the kernel services shall hide
the differences).

14-16 - 34-36 | Reserved: See Section 1.2.1 on page 2.

17-23 - 37-43 | Authority Mask: This field is used to give conditional access to
various effective addresses. See Section 7.4.1.3, “Load and Store
Authority Checking,” on page 109 for more information.

24 - 44 | Alternate IOCC Address Space: This bit, when set, provides
additional IOCC facility address space. This bit was the “TOCC
Select’ bit in the POWER I/O Architecture.

25-26 - 45-46 | Reserved: These bits are reserved and should be set by any new
software which is written to a 0. PowerPC IOCC hardware
implementations should ignore these bits for compatibility with
POWER software, which might set these bits to something other
than 0. Software can make use of operating system kernel
services in order to provide compatibility of code from POWER to
PowerPC (the kernel services shall hide the differences).

27 - 47 Reserved: See Section 1.2.1 on page 2.

28-31 - 48-51 | EXT (see definition in the Table 25 on page 64)

Table 33. 10CC SR and STE Definition for T=1

7.4.1.3 Load and Store Authority Checking

Load and Store access to the IOCC is limited by several protection mechanisms
in the IOCC. These mechanisms are controlled by the K bit and the authority
mask field which reside in the SR or STE. All accesses to the IOCC must have
the appropriate K bit setto a0. Accesses made to the IOCC with the appropriate
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Programming Note

The applicable K bit of
the SR or STE must be
set to a 0 before the
Load or Store instruction
execution shall proceed
to this authority check.

K bit set to a 1, shall cause a DSI with invalid operation error code to be logged
into the DSIER of the processor which issued the I/O Load or Store instruction.

In addition, the authority mask field is used as an additional level of access
protection for Load and Store instructions to I/O and bus memory address
spaces. This works as follows:

B A Load or Store instruction is targeted at the I/O or bus memory address
spaces with a non-0 authority mask field

B The IOCC accesses the TCE for the given effective address

— If the protection class (or one of the classes, if more than one class) that
the SR or STE contains, matches with the page protect key in the TCE,
then the IOCC allows the access

— If there is no match, this causes a DSI with an authority error code to be
sent to the processor which issued the I/O Load or Store instruction for
logging into that processor’s DSIER

A mask of all 0’s says that the process issuing the Load or Store instruction has
unconditional access to all protection classes, and the IOCC shall not access the
TCE (and therefore it doesn’t matter if a TCE even exists). Accesses to the
IOCC address spaces (with the Alternate IOCC Address Space eitheraQora 1)
require that the mask be all-0’s or else causes a DSI with an invalid operation
status and this is sent to the processor which issued the 1/O Load or Store
instruction for logging into that processor’s DSIER. The exception to the
authority mask checking is for accesses to the time delay command. For the
time delay command, the authority mask is treated as though it is all 0’s, even
when itis not all 0’s. The authority mask protection mechanism is independent
of the K bit protection mechanism; both mechanisms must indicate that the
access is permitted in order for the access to proceed. Table 34 on page 111
summarizes the protection mechanisms.

The authority mask protection mechanism is shown in Figure 25 on page 112.
Table 35 on page 112 shows how the authority mask compares against the TCE
key.

If the data accessed by a Load or Store instruction crosses a page boundary, then
the I/O Load and Store Access Authority Checking shall be performed on both
pages, and the instruction shall fail if the authority check fails for either page.
Note that on a Store instruction, if the authority check fails for the second page,
then data for the first page shall have already been sent to the device.
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Bits from SR or STE
Address Range Actions
K | Authority | Alt. IOCC
bit Mask Address
bit

1 XXXXXXX X don’t care DSI; all accesses to the I/O, IOCC, or bus
memory address spaces must have K=0

0 0000000 X Oup to (but not | Allow accesses to the Micro Channel I/O

including) address space
64 KB - -
0 | non-zero X . Access the TCE for the given effective
(except time | address and compare the TCE page protect
delay command key to the authority mask field from the SR
address) or STE and allow access if there is a
match. If no match, then DSI the access
and return an authority error code back to
the processor issuing the Load or Store for
logging into that processor’s DSIER. See
also Figure 25 on page 112 and Table 35
on page 112.
0 | XXXXXXX X time delay Allow access to the time delay command
command
address
0 | 0000000 X 64 KB up to (but | Allow accesses to the the IOCC facilities
not including) | in both the primary and Alternate IOCC
512KB Address Spaces.

0 | non-zero X 64 KB up to (but | DSI the access and return an invalid

not including) | operation status back to the processor
512KB issuing the Load or Store for logging into
that processor’s DSIER. Accesses to
IOCC facilities must have an all-0
authority mask.

0 | 0000000 0 512KB and up | Allow accesses to bus memory address
space.

0 | non-zero 0 512KB andup | Access the TCE for the given effective
address and compare the TCE page protect
key to the authority mask field from the SR
or STE and allow access if there is a
match. If no match, then DSI the access
and return an authority error code back to
the processor issuing the Load or Store for
logging into that processor’s DSIER. See
also Figure 25 on page 112 and Table 35
on page 112.

0 | 0000000 1 512KB andup | Allow accesses to the IOCC facilities in
the Alternate IOCC Address Space at 512
KB and above

0 | non-zero 1 512KB and up | DSI the access and return an invalid

operation status back to the processor
issuing the Load or Store for logging into
that processor’s DSIER. Accesses to
IOCC facilities must have an all-0
authority mask.

Table 34. Load and Store Instruction Authority Checking
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TCE Table Effective Address

one of the bits in the SR or
STE authority mask field is 1

- J Access TCE only if at least

SEL

1L

Access
7:1 Passes
SR (32-bit machines)or |7 éﬂg“:"’(’“"
STE (64-bit machines)
Authority
Mask
— 1t tild —_—
Figure 25. 1/0 Load and Store access authority checking
TCE SR or STE authority mask field which gives access to
page protect key the corresponding page protect key
field value (x = don’t care about setting of bit)
0 none; key of 0 corresponds to a bus master or DMA slave
1 Oblxxxxxx (bit 17 =1)
2 Obx1xxxxx (bit 18 = 1)
3 Obxx1xxxx (bit 19=1)
4 Obxxx1xxx (bit 20 = 1)
5 Obxxxx1xx (bit 21 =1)
6 Obxxxxx1x (bit 22 =1)
7 Obxxxxxx1 (bit 23 =1)

Table 35. Load and Store Access Authority Checking

7.41.4 1/0 Load and Store TCE

The TCE layout for use with I/O Load and Store operations is illustrated in
Figure 26 on page 113, and Table 36 on page 113 shows the bit definitions. The
TCE table has a one-to-one correspondence with the first » pages of direct-store
(T=1) address space. The first TCE controls access for Micro Channel bus
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addresses 0x00000000 to 0x00000fff; the second entry controls access for
addresses 0x00001000 to 0x00001fff, and so on.

TCE:s are located in system memory, and the memory must be continuous, real, Engineering Note
and pinned. For the proper setting of the Page Table Entry bits for TCE pages,
see Section 7.1, “System Structure,” on page 75. Any error while the [OCC is The data in the TCEs at

accessing this memory may or may not be recoverable, depending on the startup time is

implementation (see Section 7.4.7, “Non-Recoverable Errors,” on page 141 indeterminate. The IPL
pleme; see -7, TNO IS, pag ROM code should

and Section 7.4.8, “Recoverable Errors,” on page 143). The size of the address initialize the TCEs before

space that can be mapped depends on how much system memory is allocated to turning on the master
the TCE area. A field in the TCE Address register is used to specify the amount 220 b0 the 000
of TCE RAM supplied. Refer to Section 7.4.5.5, “TCE Address Register,” on

page 135 for details.

TCE (64-bit machines)

Reserved Reserved
1 1 1 1 | 1
0 3132 58T 63
Page Protect Key
TCE (32-bit machines)
Reserved
] ] 1
0 26 T31

Note: 0b01 is recommended for bits 3!
to 31 or 62 to 63; see Table 36.

Figure 26. 10CC TCE layout for /0 Load and Store operations

32-bit 64-bit Description

TCE TCE

0-26 0-58 Reserved: See Section 1.2.1 on page 2.

27-29 59-61 Page protect key: These bits determine the protection class of the

page for which the particular TCE is associated.

30-31 62-63 Reserved: These bits are reserved. These bits correspond to the
page mapping and control field when a TCE is used for bus master
operations, and therefore these bits can never be used for future
changes to the architecture. By setting these bits to a 0b01 a bus
master accessing this TCE in error shall receive a ‘chck’ (channel
Check) error indication on the bus.

Table 36. 10CC TCE Definition for /O Load and Store Operations

7.4.1.5 Address and Data Alignment

Except for string instructions, data for Load and Store instructions is normally
right-justified in the processor register. One-byte operands are located in byte 3.
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Two-byte operands are located in bytes 2 and 3. String operands are
left-justified in the processor register.

Target I/O device addresses should be aligned on boundaries equal to the device
width. This maintains optimal performance when performing Load and Store
instructions. If this rule is not observed, the IOCC performs the operation using
multiple (narrower) Micro Channel bus cycles. This can take up to four times
longer to complete the Load or Store operation. Refer to Section 7.3.2.3,
“Partial Transfer Cycles,” on page 99 for additional details.

7.4.1.6 String Operations

String operations allow the issuance of Load or Store instructions with data
widths from 1 to 128 bytes. The Micro Channel bus protocol used in the data
transfer is dependent on the I/O device. String operations are applicable to any
addressable device on the Micro Channel address space and to the IOCC
address space. However, applicability of string operations may be limited by
the device or facility itself. For example, string operations to IOCC facilities
which do not match the length of the facility exactly shall cause a DSI with an
invalid operation error code being logged into the DSIER of the processor
which issued the I/O load or store instruction (however, the facility may have
been modified). Also, string operations to IOCC address space which start in a
reserved/unimplemented address space and spill over into an implemented
facility shall be treated as though the operation was entirely to the reserved
space (that is, the data is ignored on a Store instruction and returned as 0 on a
Load instruction).

String operations issued to normal PC devices are performed using standard
Micro Channel bus protocols. Multiple bus cycles are issued, using dynamic
bus sizing, until the transfer length is satisfied. These multiple cycles operate
under preemptive burst arbitration rules and Load or Store string instructions
shall be momentarily suspended if any 1/O device requests DMA slave or bus
master operation.

String operations issued through IOCC implementations which support Load
and Store streaming data operations, to devices supporting the streaming data
transfer protocol, use that protocol where appropriate. This protocol operates
under non-preemptive burst arbitration rules. It is up to the IOCC to guarantee
that a bus timeout condition does not occur during an I/O Load or Store
instruction due to conditions which are under its control.

If the data accessed by a string operation crosses a page boundary, then the
Access Authority Checking shall be performed on both pages; the instruction
shall fail if the authority check fails for either page. If the authority check fails
for the second page for a store instruction, then data for the first page shall have
already been sent to the device.

It is generally recommended that the programmer writing an I/O device driver
be aware of the physical characteristics of the target device when using string
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operations. One should be aware of the effects of dynamic bus sizing and partial
transfers, since these operations require more time to complete. Refer to
Section 7.3.2.2, “Dynamic Bus Sizing,” on page 98 and Section 7.3.2.3,
“Partial Transfer Cycles,” on page 99 for details of these functions. Slower than
expected I/O instruction processing can have detrimental effects on system
performance. For example, the system processor can not accept an interrupt
while I/O Load or Store instructions are in process. Both dynamic bus sizing
and unaligned moves (partial transfers) take longer to complete, adding latency
to system interrupt service. Although most devices are reasonably fast and do
not cause any problems, this latency can be large if extended string operations
are performed against slow devices.

In an SMP environment, string operations are not atomic.
7.4.1.7 Load or Store Multiple Instructions

If an I/O Load or Store multiple instruction is issued, then this gets treated like a
string operation of the same length, and the same rules apply (see Section
7.4.1.6, “String Operations,” starting on page 114.

7.4.2 Bus Master

Bus master transfers refer to data transfers between a bus master I/O device and
bus memory, I/O, or system memory where the bus master device supplies the
memory addresses and controls all aspects of the data transfer. RISC
System/6000 PowerPC systems, for performance reasons, put the system
memory on a separate bus from the Micro Channel bus. Transfers from a bus
master shall be directed to either bus memory (for bus to bus operations) or to
system memory. The Bus Mapping register provides a means to specify that
certain blocks of bus address space are allocated for bus to bus data transfers by
bus masters. For more information, see Section 7.4.5.7, “Bus Mapping
Register,” on page 136. If the target of a bus master operation is the Micro
Channel bus, and if the channel is enabled via the Channel Status Register
(CSR), see Table 37 on page 118, for that device, then the IOCC does not
participate in the bus transaction, it only acts as a monitor. During this monitor
activity, the IOCC looks for address parity errors. In addition, if the prevent
channel disable on error bit in the CSR is set to a 0, the IOCC also monitors for
the card selected feedback error. In addition, only the parity on the low order 16
bits of the address (Micro Channel address bits O to 15) is checked if the bus
master is doing an operation to the 64 KB I/O space. For more information on
bus master error checking, see Section 7.4.8.2, “Bus Master Error Conditions,”
on page 146.
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Engineering Note

Software should ensure
that no device on the
Micro Channel bus is
configured in the
address range of O up to
(but not including) 512
KB.

Engineering Note

The data in the CSRs at
startup time is
indeterminate. The IPL
ROM code should
initialize these registers
before turning on the
master enable bit in the
I0CC Configuration
register.

7.4.2.1 Bus Master Addressing Model

The addressing model for bus master accesses is shown in Figure 27 on page
117. The Bus Mapping register determines whether the address is an address
targeted for system memory or if it is a bus to bus operation. If the operation is
targeted for system memory, the TCE table is used to translate the address from
the Micro Channel address to the system memory (real) address.

Note that for bus master operations, the Micro Channel I/O space is disjoint
from the bus memory address space (unlike Load and Store operations and
DMA slave operations where it is mapped into the bus memory address space);
that is, the bus master controls the ‘M/IO’ signal line on the Micro Channel bus
and this signal effectively gives the bus master the choice of making the I/O
address space an entirely disjoint address space.

7.4.2.2 Bus Master Control Registers

The bus master Channel Status Register (CSR) is illustrated in Figure 28 on
page 117 and the field definitions are in Table 37 on page 118. Channel number
0xf does not have a CSR; the results of accessing a CSR with the channel
number of Oxf is implementation dependent. This register contains status and
some personalization controls. Each of the other 15 channels has its own CSR.

Following device arbitration, the appropriate CSR is selected and the
information in this register is used to control various aspects of the transfer.

7.4.2.3 Bus Master Operations to System Memory
Figure 29 on page 118 illustrates the bus master operations to system memory.

7.4.2.4 Bus Master Use of TCEs

TCE:s are used by the IOCC to map Bus Master Micro Channel Bus addresses
into System Memory Addresses.

The IOCC uses TCEs to provides address translation for all bus master
operations to system memory. Translation allows the organizing of I/O buffers
within the context of the processor’s virtual page map and assists in eliminating
a subsequent move operation. The processor maps discontiguous system
memory pages into a contiguous virtual address space for use by the software.
The TCEs do a similar task for the I/O; they map discontiguous system memory
pages into a contiguous Micro Channel address space. The TCE table is an
IOCC analogue of the system translation tables, and is generally managed in
concert with those tables. Address translation mechanisms apply to 4 KB
memory pages, matching the system page size. Although the TCEs contain a
page fault code point, the intent of this is not to allow dynamic paging during
I/O, but rather to allow for error isolation.
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Micro Channel System Memory
Address Space lmaxAddress Space
Real
GB Mem|
l———p1> Bus
Bus ;‘ Mapping Sys
Mem Register Mem

TCE
Table

Ot==xxxlg— Devices should notbe 0
configured in the address range of
0x00000000 to 0x0007ffff, although
this address range may be mapped
to system memory

4 KB I/0
Addr Space

Figure 27. Addressing model for bus master operations

Channel Status Register

[ I T
Bus 0 | Status|0 P Reserved
f_\";?")on 1 |34|5 |7|8| Lty ?5|1|6| 111 1?3|2f‘1 [ 131
[ | Tp PreventcChannel Chnl # field from
Disable on Error the Load or Store
¢ instruction
Slave Flag effective address
00|0 0] Channel Disabled
0 1| Channel Enabled
10
11
01{0 0| Authority Error
0 1| Page Fauit
1 0| Micro Channel bus error
1 1| System Error
10|00
01
10
11
11j00
01
10
11

Figure 28. Channel Status Register
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Bits

Description

0-3

Status: This field contains channel status, and may be set by the software or the
IOCC. A 0x0 indicates the channel is disabled and a 0x1 indicates that the channel is
enabled. Values between 0x2—-0xf are error codes. Refer to Section 7.4.8.2, “‘Bus
Master Error Conditions,” on page 146 for a description of bus master error condi-
tions. Bit 3 is controlled by channel enable and disable commands. Refer to Section
7.4.4.3, “Enable and Disable Commands,” on page 130 for more information on the
enable and disable commands. Logging of errors and disabling of the channel on
errors can be inhibited during bus to bus operations by use of the prevent channel
disable on error bit (see the description of this bit in this register, below).

DMA Slave Flag: This bit is set to 0 to use an I/O Store instruction to personalize a
channel for bus master data transfer operation. The IOCC never changes this bit.

Prevent Channel Disable on Error: If set to a 1, this bit shall disable the logging of
errors during the bus monitoring function (that is, during a bus to bus operation) and
shall also ensure that the channel remains enabled. This bit only affects the operation
during bus to bus data transfers, and does not affect operations during transfers to
system memory (errors that occur when the IOCC is involved in the transfer shall
always log an error and shall always disable the channel). For cases where the hard-
ware cannot tell whether the access is to system memory or not (for example, an ad-
dress parity error which makes access to the Bus Mapping registers uncertain), when
this bit is set to a 1 the hardware shall assume the access is bus to bus, and this bit
shall prevent the logging of the error.

6-31

Reserved, see Section 1.2.1 on page 2.

Table 37. CSR Definition for Bus Master Operations

[ Micro Channel Bus Address | I Micro Channel Bus Data J
1 ] ] ] L1
A
20 ' 12 T 32
toe--|--Eoré-bge . ...,
Streaming Data
(optional) '
X
.
1
L
TCE Entry :
Yv
-1 2
o System
Tl | Memory
RPN >

Figure 29. Bus master data transfer operation
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System memory translate and protection information is contained in the TCE
table. Following device arbitration, the appropriate CSR is selected, and the
Micro Channel bus address is used to select the appropriate TCE. The RPN
from the TCE and 12 bits from the Micro Channel bus address are used to
address system memory. Each TCE identifies whether that page is mapped to
system memory. If a page is mapped, the TCE also contains mapping
information.

The TCE layout for bus master operations is illustrated in Figure 30 and Table
38 on page 120 details the usage of the TCE bits for bus master operations.. The
TCE table has a one-to-one correspondence with the first n pages of Micro
Channel bus memory addresses. The first TCE maps Micro Channel bus
addresses 0x00000000 to 0x00000fff; the second entry controls mapping of
addresses 0x00001000 to 0x00001fff, and so on.

TCE:s are located in system memory, and the memory must be continuous, real,
and pinned. For the proper setting of the Page Table Entry bits for pages which
are mapped to system memory, see Section 7.1, “System Structure,” on page 75.
Any error while the IOCC is accessing this memory shall result in a TCE access
error. The number of bus memory addresses that can be mapped depends on
how much system memory is allocated to the TCE area. This amount is product
dependent. A field in the TCE Address register is used to specify the amount of
TCE RAM supplied. Refer to Section 7.4.5.5, “TCE Address Register,” on
page 135 for details.

TCE (64-bit machines)

RPN (most significant) RPN (least significant) |Reservd 00(1
| 1 . | 1 1 |
0 3132 5152 5859 463
Control
TCE (32-bit machines)
RPN Reservd0
1 1 1
0 19 20 2627 31

Figure 30. TCE layout for bus master operations

7.4.3 DMA Slave

The IOCC contains a DMA controller (“DMA controller” is the name givento a
system-supplied resource that mediates data transfers between memory and
DMA slaves) for the Micro Channel bus. Three parties are involved in this type
of DMA operation: the DMA slave, the system memory, and the DMA
controller.

Engineering Note

Data coherency and
TCE coherency are
related. If software
issues a Store instruction
to a TCE such that the
I0CC must invalidate
any copy of that TCE in
an I0CC cache or buffer,
then if any data
associated with the page
represented by that TCE
is in an I0CC cache or
buffer, it must be written
to system memory, if
modified, and invalidated
if modified or not. Only
after any associated data
in the cache is flushed
and/or invalidated can
the TCE be invalidated.

The data in the TCEs at
startup time is
indeterminate. The IPL
ROM code should
initialize the TCEs before
turning on the master
enable bit in the IOCC
Configuration register.
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32-bit | 64-bit | Description
TCE | TCE

- 0-31 |RPN: These bits compose the most significant bits of the Real Page
Number (RPN) when operating with a 64-bit TCE. In certain IOCC
implementations, all of these bits may not be required. Software should
ensure that the RPN is valid (for example, is not outside the range of real
memory).

0-19 | 32-51 |RPN: These bits compose the least significant bits of the RPN when
operating with 64-bit TCEs, or the entire RPN when operating with 32-bit
TCEs. This field in the TCE contains the real page number that the bus
address is mapped to in system memory. Software should ensure that the
RPN is valid (for example, is not outside the range of real memory).

20-26 | 52-58 | Reserved: See Section 1.2.1 on page 2.

27-29 | 59-61 |Reserved: These bits are reserved and should be set to a 0. These bits
correspond to the page protect key field when a TCE is used for Load and
Store instruction authorization checking, and therefore these bits can never
be used for future changes to the architecture. By setting these bits to 0, this
guarantees that a bus master TCE cannot be used for a Load or Store
instruction access (there is no bit in the authorization field which
corresponds to a key of 0).

30-31 | 62-63 | page Mapping and Control: These bits define page mapping and read-write
authority. They are coded as follows:

00 Reserved

01 Page Fault (no access)

10 System Memory (read only)
11 System Memory (read/write)

Code points 0b0X signify that the page is not mapped to system memory.
Code point 0b00 is reserved and should not be coded by the software. If
code point 0b00 is programmed in error, the hardware shall treat this as a
page fault. Code point 0b01 should be set when a page is not mapped at that
address. It causes a synchronous channel check response to a bus master on
a bus master operation. Bus master devices designed to take advantage of
this function are expected to cause an interrupt and to halt and wait for the
system to take corrective action.

Code point 0b1X signifies that the page is mapped to system memory. Code
point 0b10 signifies that the page is a read-only page while code point Ob11
is for a page which can be written to as well as read from.

Table 38. I0CC TCE Definition for Bus Master Operations

Each DMA slave channel includes a pair of 32-bit registers containing the
current memory address, the length of the transfer remaining, and the control
information corresponding to the current page being accessed. The IOCC
implements up to 15 DMA slave channels. Each DMA slave channel can be
associated with one of 15 Micro Channel bus arbitration levels. The number of
DMA slave channels is implementation dependent (see Section 7.4.5.2, “IOCC
Configuration Register,” on page 132).

Bit 4 of the Channel Status Register must be set to a 1 when controlling a DMA
slave device. Software should program unallocated channels as bus master
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channels. After the system supervisor loads the DMA slave control registers
and enables the channel, the IOCC is ready to control DMA operations on
behalf of the DMA slave device.

Software supports assignment of DMA slave channels to arbitration levels on a
first come first serve basis. If a channel is not available the resource request is
rejected. Hardware does not check for the mapping of a DMA slave channel to
more than one arbitration level at a time. This must be controlled by the
software.

If the DMA slave operation completes without error, the IOCC terminates the
DMA slave operation and disables the channel. If an error occurs during the
DMA slave operation, the IOCC sets a code identifying the class of error into
the CSR status field and terminates the DMA slave operation. No additional
DMA slave requests or enable commands shall be accepted by this channel
until the error is cleared by a Store instruction. The DMA Slave Control
registers are frozen, capturing details on channel status at the time of error.
Refer to the “DMA Slave Error Conditions,” on page 150 for details.

To suspend or terminate a DMA slave operation prior to its normal ending point,
it is recommended that a DMA disable command be used. This command
provides a soft termination of a DMA operation without destroying the current
state of the DMA slave control registers. Refer to Section 7.4.4.3, “Enable and
Disable Commands,” on page 130 for details on these commands.

DMA slave termination is accompanied by the IOCC pulsing the ‘tc’ signal on
the Micro Channel Bus. Devices are expected to post an interrupt when this
occurs, notifying the system that the DMA operation is complete.

7.4.3.1 DMA Slave Addressing Model

The addressing model for DMA slave accesses is shown in Figure 31 on page
122. The CSR determines whether the address is an address targeted for system
memory or if it is a bus to bus operation. If the operation is targeted for system
memory, the TCE table contains the system memory (real) addresses. If the
operation is a bus to bus operation, the DMA Slave Control register contains the
Micro Channel bus address of the target device. Note that for DMA slave
operations, the Micro Channel I/O space is not accessible and the access shall
always be to the bus memory address space at addresses of 0 to 4 GB.

TCEs provide support for page level scatter and gather DMA slave operations
to system memory. The DMA Slave Control register is initialized with the first
page TCE number; the rest of the TCEs involved in the transfer are sequential.
Figure 32 on page 122 illustrates DMA slave operations. Notice that the
memory address consists of a TCE number and an offset.

Programming Note

Software should ensure
that no device on the
Micro Channel bus is
configured in the
address range of 0 up to
(but not including) 512
KB. The reason is that
certain system
implementations may
place some IOCC
facilities on the Micro
Channel bus in that
address range and may
not isolate those devices
from the other Micro
Channel devices.
Devices configured in
this address range, then,
could pose an
addressing conflict with
IOCC facilities.

DMA slave operations
cannot access Micro
Channel I/O address
space, only bus memory
and system memory
address spaces.
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Micro Channel System Memory
Address Space Address Space
4GB Max
Real
Mem
Bus Sys
Mem M‘{am

TCE

— P Table [ W

]
For bus to bus operations,
the TCE table is not involved, and the
DMA Slave Control register contains the
bus target address

0 Devices should not be 0
configured in the address range of
0x00000000 to 0x0007ffff (this address range may be
mapped to system memory)

Figure 31. Addressing model for DMA slave operations
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Figure 32. DMA slave operations
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7.4.3.2 DMA Slave Control Registers

Figure 33 on page 124 shows the registers used for DMA slave operations.
Figure 34 on page 124 illustrates the TCE table entry.

The following are the detailed definitions for the registers used in controlling
DMA slave operations.

B Channel Status register

There are 15 CSRs each having a one to one correspondence to one of 15
arbitration levels (level Oxf is not included; the results of accessing a CSR with
the channel number of Oxf are implementation dependent. The bit assignments
for this register are in Table 39 on page 125.

B DMA Slave Control register

The DMA Slave Control register contains the system or bus memory address
for the DMA slave operation. The number of DMA Slave Control registers is
equal to the number of DMA slave channels implemented. (See Section
7.4.5.2, “IOCC Configuration Register,” on page 132). The number of DMA
Slave registers implemented is defined in the IOCC Configuration register field
maximum number of DMA slave channels. Trying to access a control register
number greater than the number of DMA slave channels supported by the
implementation will produce results which are implementation dependent.
This register is dynamically associated to the arbitration level based on the
Control register number field assigned in the CSR. Software must ensure that
the same channel number is never assigned to more than one CSR a time.

If the DMA transfer is to or from bus memory (CSR bit 5 equal to 0) the DMA
Slave Control register is applied as a 32-bit address directly to the I/O address
bus. If the transfer is to or from the system memory, this register is defined in
Table 40 on page 125.

The DMA address is incremented by the size of the transfer and the length count
is decremented by the same amount. Each time the TCE number is incremented
in the DMA Slave Control register, the next sequential TCE entry is fetched
from system memory so that the IOCC can complete the translation to a system
memory address. Note that only one DMA slave channel can be assigned per
arbitration level.

Engineering Note

The data in the CSRs
and DMA Slave Control
registers at startup time
is indeterminate. The
IPL ROM code should
initialize these registers
before turning on the
master enable bit in the
I0CC Configuration
register.
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DMA Slave Control Register
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Figure 33. DMA slave registers

TCE (64-bit machines)

RPN (most significant) RPN (least significant) | Rservd|00
1 | 1 | | 1
0 3132 5152 5859 63
TCE (32-bit machines)
RPN Rservd|000)
1 1

i
0 19 20 26 27-T31
Note: A 0b01 is recommended for bits 30 to 31 or 62 to 63, see Table 41.

Figure 34. TCE layout for DMA slave operations
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Bits

Description

0-3

Status: This field contains channel status, and may be set by software or the IOCC.
A 0x0 indicates the channel is disabled and a Ox1 indicates that the channel is en-
abled. Values 0x2 to Oxf are error codes. Refer to Section 7.4.8.3, “DMA Slave
Error Conditions,” on page 150 for a description of DMA slave error conditions.
This field is controlled by channel enable and disable commands. Refer to Section
7.4.4.3, “Enable and Disable Commands,” on page 130 for more information on the
enable and disable commands. Once the transfer is complete (after transferring the
number of bytes indicated by the length count field plus one), the IOCC shall disable
the channel.

DMA Slave Flag: This bit is set to a 1 using an I/O Store instruction to personalize a
DMA channel for DMA slave operation. The IOCC never changes this bit.

System Memory Flag: This bit selects whether system memory or bus memory is to
take part in a DMA slave transaction. This bit is set to a 1 for DMA slave transfers to
or from system memory and set to a 0 for DMA slave transfers to bus memory.

Reserved, see Section 1.2.1 on page 2.

Direction Flag: This bit selects the direction (device to memory or memory to de-
vice) of a DMA slave transfer. This bit is set to a O to transfer data from memory to
the I/O device and is set to a 1 to transfer data from the I/O device to memory.

8-11

Control Register Number: This field is used to assign a DMA Slave Control register
to a specific CSR. Setting of this field with a control register number greater than the
number of DMA slave channels supported by the implementation minus 1 (as indi-
cated by the maximum number of DMA slave channels field of the IOCC Configura-
tion register) will produce results which are implementation dependent.

12-31

Length Count: This field is used to indicate the length of the DMA slave transfer
(byte count minus 1). The IOCC shall pulse the ‘tc’ signal on the Micro Channel bus
when this field goes from all 0’s to all 1s, that is, when the IOCC is transferring the
last byte of data to the device. This field is updated by the IOCC during the transfer
to reflect the number of bytes remaining to be transferred minus 1.

Table 39. CSR Definition for DMA Slave Operations

Bits | Description
0-19 | TCE Number: The TCE number in the memory address provides an index into the
TCE table where the TCE information (RPN) is obtained if the channel is mapped to
system memory. When mapped to system memory, the address used to address sys-
tem memory consists of the RPN from the TCE concatenated with the offset.
20-31

Offset: These bits are the lower 12 bits of the memory address.

Table 40. DMA Slave Control Register Definition

7.4.3.3 DMA Slave Use of TCEs

The TCE layout for DMA slave operations is illustrated in Figure 34 on page
124 and the fields are defined in Table 41 on page 126.
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32-bit | 64-bit | Description
TCE | TCE

- 0-31 |RPN: These bits compose the most significant bits of the Real Page
Number (RPN) when operating with a 64-bit TCE. In certain IOCC
implementations, all of these bits may not be required. Software should
ensure that the RPN is valid (for example, is not outside the range of real
memory).

0-19 | 32-51 |RPN: These bits compose the least significant bits of the RPN when
operating with 64-bit TCEs, or the entire RPN when operating with 32-bit
TCEs. This field in the TCE contains the real page number that the bus
address is mapped to in system memory. Software should ensure that the
RPN is valid (for example, is not outside the range of real memory).

20-26 | 52-58 | Reserved: See Section 1.2.1 on page 2.

27-29 | 59-61 |Reserved: These bits are reserved and must be set to a 0. These bits
correspond to the page protect key field when a TCE is used for Load and
Store instruction authorization checking, and therefore these bits can never
be used for future changes to the architecture. By setting these bits to a 0,
this guarantees that a DMA slave TCE cannot be successfully used for a
Load or Store instruction access (there is no bit in the authority mask field
which corresponds to a key of 0).

30-31 | 6263 |Reserved: These bits are reserved. These bits correspond to the page
mapping and control field when a TCE is used for bus master operations,
and therefore these bits can never be used for future changes to the
architecture. By setting these bits to a 0b01, a bus master accessing this
TCE in error shall receive a ‘chck’ error indication on the bus.

Table 41. 10CC TCE Definition for DMA Slave Operations

TCEs are located in system memory, and the memory must be contiguous, real,
and pinned. For the proper setting of the Page Table Entry bits for TCE pages,
see Section 7.1, “System Structure,” on page 75. Any error while accessing
TCE memory results in a TCE access error.

7.4.3.4 DMA Slave Bus Protocols

Conventional Micro Channel bus protocols are used in DMA operations and are
documented in Section 7.1, “Basic Transfer Cycle,” on page 97.

I/O devices request DMA service on a demand basis by arbitrating for the bus
using the ‘preempt’ line. This causes the ‘grant’ line to be deactivated, causing
an arbitration cycle. When the ‘grant’ line is reactivated, the IOCC inspects the
Control register associated with the bus requester to determine if any DMA
service is required. Ifitis, the IOCC performs a DMA slave sequence on behalf
of the requester.

When service is granted to a device, data is transferred between the device and
memory. The sequence to be used depends on whether the memory is bus or
system memory. The number of bytes transferred is generally equal to the data
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width of the device. The DMA address is incremented by the size of the transfer
and the length count is decremented by the same amount.

If the specified DMA address does not have the same boundary as the I/O device
data width, the operation proceeds using a Partial Transfer Protocol as
described in Section 7.3.2.3, “Partial Transfer Cycles,” on page 99. For
example, a DMA transfer involving a 2-byte I/O device and a buffer starting on
an odd address results in two 1-byte DMA sequences being performed. This
retains the functional integrity of the operation, but requires additional time to
complete the operation. As a result, it is suggested that buffers in system
memory be located on address boundaries matching the physical width of the
I/O device.

7.4.3.5 DMA Slave Transfers to Bus Memory

DMA slave transfers between a device and Micro Channel bus memory consist
of two bus cycles: one to read the data from the source and one to write the data
to the target. An input operation consists of an I/O device read cycle followed
by a bus memory write cycle. An output operation is reversed.

There is no buffering on transfers to or from bus memory.

7.4.3.6 DMA Slave Transfers to System Memory

DMA slave transfers between a device and system memory have only one
apparent Micro Channel bus cycle: an I/O device read or write. The memory
operation does not appear as a bus cycle.

7.4.3.7 Special Sequences

Special mechanisms are provided to improve the relative data transfer
efficiency of highly buffered devices.

The Micro Channel supports preemptive burst operations to take advantage of
low average Micro Channel bus loading. A device starts this mode by
activating the ‘burst’ line prior to the end of the DMA slave cycle. No
arbitration cycle occurs, and the DMA controller concatenates successive
DMA sequences until the ‘burst’ line is deactivated. Micro Channel arbitration
rules require preemptive burst devices to deactivate the ‘burst’ line request if
any other device requires bus service.

The DMA controller also supports a special transfer mode called streaming data
transfer. This mode is a single-address, multiple-data protocol, and is described
in Section 7.3.2.1, “Streaming Data,” on page 98.
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7.4.4 10CC Commands

IOCC commands are used to change the state of the IOCC or control special bus
actions. They take the form of Load and Store instructions to special (effective)
addresses (see Table 31 on page 107 and Table 32 on page 108), where the
addresses specify the actions to be taken. In most cases, the Load or Store
instruction can be either a string or non-string operation, however, the length of
the operation must exactly match the length of the target facility or else the
IOCC shall cause a DSI with invalid operation error code and this is sent back to
the processor which issued the I/O Load or Store instruction for logging into
that processor’s DSIER. Commands supported by the IOCC include:

B Time delay
B End Of Interrupt

B Enable and disable

The IOCC commands are only accessible to Load and Store instructions from
the system processor. The IOCC commands are protected by several protection
mechanisms. See Section 7.4.1.3, “Load and Store Authority Checking,” on
page 109 for more information on these protection mechanisms.

ANl TOCC commands are 4-byte operations except for the time delay command.
7.4.4.1 Time Delay Command

A number of Micro Channel devices have strict rules regarding minimum
periodicity of Programmed I/O commands. ‘“Programmed I/O (PIO)”
commands are commands that are issued using processor reads and writes.
Using program path lengths for timing is not a good programming practice,
since program performance varies widely by processor type and (current)
operating environment. To assist in programming devices with real-time
dependencies, the IOCC supports a special time delay command that can
guarantee separation of bus I/O commands.

Execution of this command is overlapped with succeeding processor
instructions as long as they do not attempt to access the same IOCC. If,
however, another I/O Load or Store instruction is issued to the same IOCC
before the time delay has expired, that command is held off until the pending
delay is completed. This command affects only Programmed I/O and has no
effect on DMA or other I/O operations run by hardware.

Although the time delay command can be coded as a 1-, 2-, or 4-byte Load or
Store instruction, the multi-byte Loads and Stores in the time delay command
are provided for POWER compatibility (with the POWER delays of 2 to 7
microseconds becoming IOCC induced delays of 8 microseconds minimum
and 32 microseconds maximum), and should be avoided for new code or
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rework of existing code. When writing new code or reworking existing code,
only the 1 microsecond time delay command should be used. There are two
reasons for this. First of all, the PowerPC Architecture of the processor does not
guarantee atomic operations for unaligned Load and Store operations and may
break multi-byte unaligned time delay commands into multiple time delay
commands. Some processors may keep the operation atomic, and will not
break the operation into multiple operations (the 601 processor implementation
is one example). Note that the delay specified here only reflects the IOCC
induced delay; there may be other significant delays introduced by the system
which will add on to the total delay.

The second reason for using only the 1 microsecond version in all new and
reworked code is that all versions except the 1 microsecond version are for
POWER compatibility, and may be removed from the PowerPC I0CC
Architecture in the future.

The 1 microsecond time delay command is coded as a Load or Store instruction
with the last four address bits of the command address equal to 0b0000 and a
length of one byte, and has a tolerance of minus zero and plus one microsecond.
Details on the POWER time delay commands which are implemented in the
TIOCC for compatibility purposes, can be found in the POWER I/O Architecture
documentation. The Alternate IOCC Address Space bit is a don’t care for the
time delay command.

Implementations of the IOCC for systems where the processor will break
unaligned time delay commands into multiple commands shall decode the
addresses immediately following the time delay command so that valid
unaligned POWER time delay commands are guaranteed not to cause a DSIon
those machines.

If aLoad instruction is used to call the time delay command, the data returned is
indeterminate. If a Store instruction is used, the data is ignored.

7.4.4.2 End Of Interrupt

Following presentation of an I/O interrupt to the system, the IOCC
automatically masks off that particular interrupt signal so the presentation is
only made once. An End Of Interrupt command unmasks a particular
interrupt signal so that it can interrupt again, when it is active. On a Store
instruction, the data is ignored. On a Load instruction, the data is indeterminate.
This command should be issued following the interrupt service, once the
interrupt has been reset at the device.

The interrupt number field in the address of this command indicates the level of
interrupt to be unmasked (see Table 31 on page 107).
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7.4.4.3 Enable and Disable Commands

The enable and disable commands allow system initiation and suspension of
DMA slave and bus master operations for devices attached to the Micro
Channel. Each command is directed to a specific channel as specified by the
channel field in the effective address. The effective address of the command
specifies the channel to be started or stopped.

The enable command initializes a channel to accept requests by changing the
channel status in the Channel Status Register from the disabled (0b0000) state
to the enabled (0b0001) state. This command is coded as a Load instruction and
returns the original contents of the selected CSR to the target processor register.
The channel status field must initially be 0b000O for this command to update the
channel status to the enabled state. This command always returns a status
consisting of the full contents of the associated CSR prior to the operation of
this command. The status field is the only field changed by this command.

The disable command disables operation for a particular channel by changing
the channel status from the enabled state (0b0001) to the disabled (0b0000)
state. The disable command is coded as a Store instruction (the store data is
ignored). It does not disrupt any other data in the channel registers, allowing
restart of the operation if the device is designed accordingly. The channel status
field must initially be 0b0001 for this command to update the status field. Ifitis
not a 0b0001, then the operation shall be ignored by the IOCC.

A request from a DMA slave when the channel is disabled is considered to be an
error and sets an extra request error code in the CSR associated with that device.
The ‘tc’ signal on the Micro Channel bus is pulsed in an attempt to shut off the
device.

If a bus master makes a request to a disabled bus master channel, the IOCC shall
not activate the ‘sfdbkrtn’ signal and synchronously activates the ‘chck’ signal,
but does not update the error code.

The disable command issued to channel Oxf is ignored by the IOCC (on a Store
instruction, data is ignored, on a Load instruction, data returned is
indeterminate).

7.4.5 10CC Registers

The IOCC registers are only accessible to Load and Store instructions from the
system processor. The IOCC registers are protected by several protection
mechanisms. See Section 7.4.1.3, “Load and Store Authority Checking,” on
page 109 for more information on these protection mechanisms.

All IOCC registers except the Board Configuration Registers are 4-byte
registers and should be accessed only with 4-byte Load and Store instructions.
IOCC implementations may take either one of the following two choice of
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actions in the case where the software accesses the 4-byte registers with
something other than a 4-byte Load or Store (implementation dependent):

1. Complete the operation correctly as specified by the software.

2. DSI the instruction with an invalid operation error code and send this back
to the processor which issued the I/O Load or Store instruction for logging
into that processor’s DSIER.

7.45.1 Board Configuration Register (BCR)

The Micro Channel defines a slot select mechanism for accessing board-unique
configuration data. This data is called the Programmable Option Select (POS)
data by the Micro Channel Architecture and is accessed through the BCRs in the
IOCC. The Micro Channel Architecture defines this data to be accessible only
with 1-byte operations, and therefore, software should assure that only 1-byte
Load and Store instructions are used in accessing this data. Eight bytes of
addressing (eight 1-byte registers) are provided per board, which includes a
unique 2-byte board identification and up to 4 bytes of programmable
parameters. This mechanism is called setup, and is used at startup time to
determine the boards in the system and to set configuration parameters on each
board. Support is provided for up to 16 boards. The definition of the BCRs and
their addressing are shown in Table 42 on page 132.

Refer to the IBM Personal System/2 Hardware Interface Technical
Reference—Architectures (S84F-9808) manual for more information on the
POS registers and a description of the setup mechanism. Even though the Micro
Channel architecture specifies that only Micro Channel address bits O to 2 are to
be used in the address decode operation, some boards are developed with a
dependency on setup addresses being between 0x0100 and 0x0107. To
accommodate these boards, bit 23 of the processor effective address is allowed
to be eithera 1 or 0, giving two different processor effective address ranges (see
Table 31 on page 107). Address bits 29 to 31 designate the byte being addressed
within the 2-word field.

Board Configuration register data is unique to each specific board. Refer to
each board specification for details.

The BCRs are only accessible with the Alternate IOCC Address Space bit in the
SR or STE setto a 1. See Table 32 on page 108.

Engineering Note

For compatibility with
device drivers written for
POWER, I0CC designs
should allow multi-byte
access to Micro Channel
adapters for setup cycles
to the BCRs when the
Micro Channel adapter
signals appropriately that
it can accept such
accesses.

For compatibility with
PS/2 systems, adapters
should not be designed
to allow multi-byte
access during Micro
Channel setup cycles to
the POS registers.
Adapters which allow
multiple byte access to
the POS registers will
probably not work in
PS/2 systems.

Some of the data in the
Board Configuration
registers at startup time
is indeterminate. The
IPL ROM code should
initialize these registers
before turning on the
master enable bit in the
I0CC Configuration
register.
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Least Operation Processor Register Contents POS Data
Significant Meaning
3 Bits of
the
Effective
Address

ByteO | Bytel | Byte2 | Byte3

000 Load or Store String | POS0 | (note 1) | (note 1) | (note 1) | Board ID, LSB

001 Load or Store String | POS 1 | (note 1) | (note 1) | (note 1) | Board ID, MSB

010 Load or Store String | POS2 | (note 1) | (note 1) | (note 1) | Device Unique

011 Load or Store String | POS 3 | (note 1) | (note 1) | (note 1) | Device Unique

100 Load or Store String | POS 4 | (note 1) | (note 1) | (note 1) | Device Unique

101 Load or Store String | POS 5 | (note 1) | (note 1) | (note 1) | Device Unique

110 Load or Store String | POS 6 | (note 1) | (note 1) | (note 1) | Sub-Addressing,

LSB
111 Load or Store String | POS 7 | (note 1) | (note 1) | (note 1) | Sub-Addressing,
MSB
000 Load or Store Byte | (note 2) | (note 2) | (note2) | POSO | Board ID, LSB
001 Load or Store Byte | (note 2) | (note 2) | (note2) | POS1 | Board ID, MSB
010 Load or Store Byte | (note 2) | (note 2) | (note2) | POS2 | Device Unique
011 Load or Store Byte | (note 2) | (note 2) | (note 2) | POS 3 Device Unique
100 Load or Store Byte | (note 2) | (note 2) | (note 2) | POS 4 Device Unique
101 Load or Store Byte | (note 2) | (note 2) | (note2) | POS 5 Device Unique
110 Load or Store Byte | (note 2) | (note 2) | (note 2) | POS 6 | Sub-Addressing,
LSB
111 Load or Store Byte | (note 2) | (note 2) | (note 2) | POS 7 Sub-Al\tjlér;ssing,

1. On a Load String instruction, unloaded bytes are undefined, on a Store String instruction, unused
bytes are don’t cares.

2.0naLoad Byte instruction, the upper bytes of the register are dependent on which instruction form
is used, and on a Store Byte instruction the upper bytes are don’t cares.

Table 42. BCR Addressing for Load and Store Instructions

7.4.5.2 10CC Configuration Register

The IOCC Architecture allows for certain variations of function and
performance that optimize its usage across multiple IOCC designs and machine
environments. This personalization is established via the IOCC Configuration
register.

Figure 35 on page 133 illustrates the organization of the IOCC Configuration
register and Table 43 on page 133 defines the fields.
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Configuration Data

[: Reserved $| Max # | Max #
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Figure 35. 10CC Configuration register

Bits

Description

0

Master Enable: This bit functions as a master enable control for channel and inter-
rupt operations only. When set to a 0, this bit shall inhibit external interrupts from
being passed to the system and shall prevent any device arbitration cycle on the Mi-
cro Channel bus. This bit is intended to disable channel operations until the system
has initialized the Channel Control registers and TCE table, but also could be used
following startup to assist recovery from catastrophic errors. The only time that
hardware changes this bit is during startup and on a bus timeout error, and in both
cases it sets the bit to a 0. Normally, this bit is set to a 1 following initial program
load (IPL) and is never changed thereafter.

Reserved, see Section 1.2.1 on page 2.

64-bit Mode: This bit is set to a one by the hardware at startup if the IOCC hard-
ware can operate in the 64-bit mode. The following are the differences when this bit
is on:

® 64-bit TCEs are used instead of 32-bit TCEs

® The JOCC TCE Address register is larger

For 64-bit implementations, this bit is setable by software; if this bit is set to a 0 by
the software then the IOCC shall use 32-bit TCEs instead of 64-bit TCEs (the IOCC
TCE Address register remains at 2-words, however). For 32-bit implementations,
this bit is ignored on a Store instruction.

25-27

Maximum Number of TCEs: These bits indicate the maximum number of TCEs
that can be programmed by software into the TCE Address register for the particular
hardware configuration. For the legal values to which these bits can be set, see the
description for the number of TCE table entries field in the TCE Address register
table 28 on page 70; the number of TCE table entries field of the TCE Address regis-
ter should not be set to a value greater than reported by the hardware by these bits, or
the results will be implementation dependent (the number of TCE table entries field
can be set to any value less than or equal to the value of these bits). These bits are
read-only to the software, and on a Store instruction issued to the IOCC Configura-
tion register, the data will be ignored for these bits.

28-31

Maximum Number of DMA Slave Channels: These bits indicate the maximum
number of DMA slave channels (that is, the number of DMA Slave Control registers)
that can be programmed by software for the particular hardware configuration.
0b0000 indicates that none are available and Ob1111 indicates that 15 channels are
supported. The Micro Channel Architecture requires that at least 2 channels be confi-
gurable for DMA slave operations. The minimum required by the IOCC Architecture
is the number of slots plus the number required by the Standard I/O devices. The
number of DMA slave channels supported is implementation dependent. However,
the number of arbitration levels supported is not implementation dependent and must
be equal tol5. These bits are read-only to the software, and on a Store instruction
issued to the IOCC Configuration register, the data will be ignored for these bits.

Table 43. 10CC Configuration Register Definition



134

Chapter 7 10CC Architecture

The IOCC Configuration register shall be initialized by hardware, including
IPL ROM code and, with the exception of the master enable bit, this register
shall be treated as a read-only register by the Operating System.

The data in the IOCC Configuration register at startup time shall be all 0’s,
except for bits 24 and 28 to 31, which indicate the mode of operation
(32-bit/64-bit) and maximum number of DMA slave channels that the
implementation will support. The IPL ROM code should ensure that all IOCC
facilities are initialized before turning on the master enable bit in this register.

7.4.5.3 10CC Personalization Register

This register allows various IOCC implementations to have a place where
implementation variables can be established. Examples of the types of things
which might be in this register are system arbitration time, bus memory refresh
rate, and so on.

This register shall be initialized by hardware and IPL ROM code and shall be
treated as a read-only by the Operating System. On a Store instruction,
unimplemented bits shall be ignored. Unimplemented bits shall be returned by
the hardware as a 0 on a Load instruction (software note: unimplemented bits
are only guaranteed to be 0 as long as this field remains unimplemented; if these
bits are redefined in the future, software may get back something other than 0).

This register is totally implementation dependent.

7.4.5.4 Bus Status Register (BSR)

The Bus Status Register (BSR) is a diagnostic facility that aids in I/O error
isolation. It is comprised of one read-only register and provides the ability to
sample certain signals on the Micro Channel bus when a bus timeout error
occurs.

Figure 36 on page 135 illustrates the organization of the Bus Status Register.

The ‘arb’ bus lines, ‘burst’ signal, ‘cd chrdy’ signal, and ‘sdr (0)’ and ‘sdr (1)’
signals are latched in the BSR latches when a bus timeout error occurs. The
‘arb’ bus bit 0 is the least significant and bit 3 is the most significant bit. If a bus
timeout error occurs during an I/O cycle, further bus errors shall not be trapped
until the error interrupt is cleared out of the Miscellaneous Interrupt register. As
such, the BSR contains a copy of the sampled Micro Channel bus signal lines at
the time of the first error. No provision is made for saving bus states for
successive errors.

On a Store instruction, data is ignored. On a Load instruction, the data returned
is the contents of the register as described, if an error has occurred (bit 1 of the
Miscellaneous Interrupt register is on); bits 0 to 23 are returned as a 0.
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BSR Data
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Figure 36. Bus Status Register

7.45.5 TCE Address Register

This register specifies the starting address and size of the TCE table in system
memory. This register shall be initialized by the hardware and the IPL ROM
code before the master enable bit in the IOCC Configuration register is enabled
and shall not be changed thereafter.

Implementations which have the 64-bit mode set to a 1 at startup require that the
IPL ROM code treat this register as 2 words, regardless of whether or not the
64-bit mode bit has been turned off prior to setup of this register. 32-bit
implementations do not implement word 0 and an access to word 0 in 32-bit
implementations shall result in a DSI with an invalid operation error code and
this is sent to the processor which issued the I/O Load or Store instruction for
logging into that processor’s DSIER.

For information about this register, see Section 6.1.5, “BUC TCE Address
Register,” on page 69.

The data in this register at startup time is indeterminate. The IPL ROM code
should initialize this register before turning on the master enable bit in the IOCC
Configuration register.

7.45.6 Component Reset Register (CRR)

The Component Reset Register (CRR) is comprised of one register and
provides the ability to individually drive the resets to each I/O slot. Writinga 0
into a bit position resets that slot, and writing a 1 removes the reset.

The use of the bits in this register are implementation dependent. The usage
includes the reset of the standard I/O devices as well as the Micro Channel slots.
On a Load instruction from this register, the value of the unimplemented bits is
indeterminate. On a Store instruction, unimplemented bits are ignored.

The CRR s initialized to a 0 by the hardware at startup. This sets and holds a bus
reset to all the I/O boards until explicitly enabled by a startup diagnostic utility.
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Note

1/0 address space
accesses by bus
masters are always
assumed to be bus to
bus operations.

Engineering Note

The data in the Bus
Mapping register at
startup time is
indeterminate. The IPL
ROM code should
initialize this register
before turning on the
master enable bit in the
I0CC Configuration
register.

After a reset operation occurs, the software removes the reset by writing a 1 to
the board slots. To ensure proper timing relationships, the software must make
sure the reset is held a minimum of 100 milliseconds before removing the reset.

Software can determine if a slot exists and contains a board by removing the
reset to the slot and reading the board identification. A board identification of
Oxffff means that no slot exists, or that the slot is empty.

On a bus timeout error, hardware sets the implemented CRR bits to a 0.

7.4.5.7 Bus Mapping Register

The Bus Mapping register provides a means to specify which blocks of bus
memory address space are allocated for bus to bus data transfers by bus masters.
This register allows for the flexibility of directing some of a bus masters
transfers to bus memory and some to system memory.

Table 44 on page 137 shows the address ranges mapped by the Bus Mapping
register bits. If a bit in the Bus Mapping register is set to a O, then the
corresponding range of bus address space shall NOT be mapped to system
memory for bus master operations (that is, a bus master access to an address in
this range shall result in a bus to bus transfer cycle). If a bit in the Bus Mapping
register is set to a 1, then the corresponding range of bus address space is
mapped to system memory for bus master operations. Notice that not only is
the mapping granularity is different for the first 16 bits than it is for the second
16 bits, but also that the address range for bit 16 of this register is not the same as
for bits 17 to 31. The address range for bit 16 is not a full 256 MB due to the
overlap with the address range mapped by bits 0 to15.

7.4.5.8 Other IOCC Registers

The following IOCC registers are described elsewhere in this document, and
are listed here for completeness:

B Interrupt Enable Register, see Section 7.4.6.1 on page 139.

B Interrupt Request Register, see Section 7.4.6.2 on page 139.

B Miscellaneous Interrupt register, see Section 7.4.6.3 on page 140.
B External Interrupt Vector Register, see Section 7.4.6.4 on page 141.
B DMA Slave Control registers, see Section 7.4.3.2 on page 123.

B Channel Status Registers, see Table 37 on page 118.
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Register bit Address range mapped Size of address range (MB)
0 0x00000000-0x000f££ff 1
1 0x00100000-0x001£ffff 1
2 0x00200000-0x002fffff 1

.

]

.
15 0x00f00000—-0xOOfE£EEf 1
16 0x01000000-OxOfffffff 240
17 0x10000000—0x 1 fffffef 256
18 0x20000000—0x2fffffff 256

.

.

.
31 [ 0xf0000000-Oxffffftff 256

Table 44. Bus Mapping Register

7.4.6 10CC Interrupt Structure

This section describes the IOCC interrupt structure. The system level interrupt
structure is described in Chapter 9, “External Interrupt Architecture,”

beginning on page 157.

The IOCC supports 11 bus I/O interrupts, 3 native I/O interrupts, 1
miscellaneous interrupt, and 1 reserved interrupt level. The miscellaneous
interrupts are collected together and are presented as one logical level. This
results in a total of 16 IOCC interrupt levels.

The IOCC interrupt structure is shown in Figure 37 on page 138.
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Figure 37. 10CC interrupt structure
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The registers which are IOCC unique are described briefly, below, and in more
detail beginning on page 139.

B Interrupt Enable Register (IER)

—  One per IOCC
— Allows for masking off of unused interrupts

B Interrupt Request Register (IRR)

—  One per IOCC
— Allows the software to read which interrupts are pending in the IOCC

B Miscellaneous Interrupts Register (MIR)

—  One per IOCC

— Contains several miscellaneous interrupts which get combined and
presented to the system as one interrupt priority

B EXternal Interrupt Vector Register (XIVR)

— 16 registers (one per interrupt source)

— Provides a table lookup of the interrupt priority for each external
interrupt

— Provides a processor affinity field for each external interrupt (for MP
implementations)

7.4.6.1 10CC Interrupt Enable Register (IER)

This register provides the ability to enable or disable any of the interrupt
request signals. Each bit in this register is defined to enable or disable the
interrupt in the same corresponding bit position in the IOCC Interrupt Request
Register, described in the next section. Unimplemented bits shall be set to 0 by
a Store instruction. On a Load instruction, the value of the unimplemented bits
are indeterminate. No dynamic management of the IER is necessary during
interrupt service. It is provided primarily to allow disabling of unused,
potentially noisy interrupts.

The data in the IER at startup time is indeterminate. The IPL ROM code shall
initialize this register before turning on the master enable bit in the IOCC
Configuration register.

7.4.6.2 10CC Interrupt Request Register (IRR)

This register provides access to the device interrupt sources after they are
masked by the IER, and can be read using an I/O Load instruction. On an I/O
Store instruction to this register, data is ignored. A detailed description of each
bit is in Table 45 on page 140.
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Bits | Description

0 Miscellaneous Interrupt: The IOCC presents miscellaneous interrupts as a class
interrupt, consuming one logical level. This appears in bit 0, and is an OR of all the
bits in the Miscellaneous Interrupt register. If this interrupt is posted, the system is
required to read the Miscellaneous Interrupt register to determine the cause of the
interrupt. Bit O is set to 1 when any miscellaneous interrupt occurs and bit 0 in the
Interrupt Enable Register is set to 1. This bit is reset to a 0 when the Miscellaneous
Interrupt register is set to a 0.

1 Keyboard Interrupt: This bit is set to a 1 when a keyboard interrupt occurs and bit 1
in the Interrupt Enable Register is set to a 1. This interrupt is level-sensitive and must
be reset within the device prior to a return from interrupt.

2 Serial Port Interrupts: This bit is set to a 1 when a board serial port 1 or serial port 2
interrupt occurs (Shared Interrupt) and bit 2 in the Interrupt Enable Register is set to a
1. This interrupt is level-sensitive and must be reset within the device prior to a
return from interrupt.

3-7 | /O Bus Interrupts: These bits are set to a 1 when I/O bus interrupts occur and their
9-12 corresponding bits in the Interrupt Enable Register are set to a 1. These bits reflect
14-15 | the current signal level of each of the Micro Channel interrupt lines and are not
latched. It is not necessary to reset these bits as part of interrupt service.

8 Reserved, see Section 1.2.1 on page 2.

13 Parallel Port Interrupt: This bit is set to a 1 when a Standard I/O parallel port inter-
rupt occurs and bit 13 in the Interrupt Enable Register is set to a 1. This interrupt is
level-sensitive and must be reset within the device prior to an interrupt return.

16-31 | Reserved, see Section 1.2.1 on page 2.

Table 45. 10CC Interrupt Request Register Definition

7.4.6.3 Miscellaneous Interrupts Register (MIR)

The first two bits of the MIR contain IOCC errors not reported in the Channel
Status Registers. These errors are caused by asynchronous events or are
associated with situations where no device interrupt is posted. As such, the
IOCC reports these errors via its own interrupt.

The summary OR of the MIR is presented as bit 0 of the Interrupt Request
Register.

The data in the MIR at startup time is indeterminate. The IPL ROM code shall
initialize the MIR before turning on the master enable bit in the IOCC
Configuration register.

This register is accessible by both Load and Store instructions. Store
instructions function only as a masked reset. Writing a 0 to a bit position resets
that bit, while writing a 1 does nothing. A detailed description of each bit is in
Table 46 on page 141.
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Bits | Description

0 Channel Check: This bit is set if the I/O bus ‘chck’ line is active during a Micro
Channel operation (Bus master, PIO or DMA slave) at the beginning of a cycle (after
‘arb/gnt’ signal falls and before the first time the ‘cmd’ signal falls). There should be
no devices that asynchronously report errors by activating the ‘chck’ signal. Howev-
er, if this occurs, the channel check posts an asynchronous IOCC error interrupt.
Normally, in RISC System/6000 PowerPC systems, the ‘chck’ signal is presented as a
synchronous exception and a DSI is posted instead. Refer to Section 7.3.4, “Excep-
tion Reporting and Handling,” on page 102 and Section 7.3.3.3, “Micro Channel
Channel Check,” on page 101 for more information.

1 Bus Time-out: This bit is set if an I/O bus timeout occurred. See Section 7.3.3.4,
“Micro Channel Bus Timeout,” on page 101 for additional details. While this bit is
active, the ‘arb/gnt’ signal is forced high, bus arbitration is suspended, and control of
the I/O bus is unconditionally given to the IOCC.

2 Auxiliary Processor Interrupt: This bit is defined for use in systems that have some
form of auxiliary processor (for example, a bring-up processor or service processor).
This bit is implementation dependent. This bit can be used by systems to allow an
auxiliary processor to interrupt a system processor. This bit, if implemented, shall be
ORed with the other bits of this register to form bit 0 of the IOCC Interrupt Request
Register. If this bit is not implemented, or is implemented but not used by a system,
then this bit should be set to a 0 by the software with a Store instruction.

3-31 |Reserved, see Section 1.2.1 on page 2.

Table 46. Miscellaneous Interrupts Register Definition

7.4.6.4 10CC External Interrupt Vector Register (XIVR)

This register is described in more detail under Section 6.2.2, “External Interrupt
Vector Register (XIVR),” on page 72. There are 16 of these registers in the
IOCC, one per interrupt source.

7.4.6.5 Interrupt Source Sent to the XISR

The External Interrupt Source Register (XISR) is a 3-byte system level register
that contains the address of the physical source of an interrupt. Each processor
has its own XISR. The low order 4 bits define up to 16 sources within a BUC
and the upper 20 bits specify the system address (route) of the BUC. For
interrupts from the IOCC, the XISR is defined in Table 47 on page 142.

7.4.7 Non-Recoverable Errors

Non-recoverable errors are defined as errors which, due to hardware
limitations, software limitations, or both, have corrupted the system state such
that it is not possible, by use of standard (known) procedures, to continue to the
state that should have resulted if the operation had completed without error.
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Bits | Description

0-10 | Hardware Implementation Dependent Field 1, refer to Table 59 on page 168 for more
information regarding this field.

11-19 | BUID: These bits are the BUID of the interrupting IOCC.

20-23 | IOCC Interrupt Number: This field represents the interrupt number of the interrupt
that the IOCC has selected to present to the system and corresponds to a bit number
of the IOCC IRR; for example, 0x0 in these bits indicates that bit 0 of the IOCC IRR
is on (the Miscellaneous Interrupt), 0x1 indicates that bit 1 is on (the keyboard inter-
rupt), and so on. For the definition of the IOCC IRR, see Section 7.4.6.2, “IOCC
Interrupt Request Register (IRR),” on page 139.

Table 47. 10CC XISR Definition for IOCC Interrupts
Examples of non-recoverable errors include:
B Errors which cannot be associated with a particular device driver

B Errors which can be associated with a particular device driver, but cannot be
associated with a particular application

B Errors which are reportable back to the correct application, but may, if left
unchecked until handled by the software, allow data corruption to propagate
past the initial point of corruption

-~ For example, onto the disk or onto the LAN
— Initial point of corruption might be in data from another application

The general characteristic of non-recoverable errors is that they pose risks to
further system operations. Since the potential for propagation of corrupted data
must be minimized, it is important that hardware stop the propagation. How
this is handled is system and IOCC implementation dependent. In some
systems, this may mean the IOCC may need to checkstop.

See also Section 7.4.8, “Recoverable Errors,” on page 143.

7.4.7.1 Non-Recoverable Load and Store Error
Conditions

Error conditions that arise in Load and Store instructions issued to the IOCC
include bus errors, programming errors, and hardware errors. The following
errors may fall into the non-recoverable or recoverable category, depending on
the IOCC, the system hardware, and Operating System implementations:

B An attempt to cross a segment boundary with a single Load or Store
instruction

B TCE reload error
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If it is possible for the IOCC to report these as recoverable errors, then they
should be reported as recoverable errors, not as non-recoverable ones. If
reported as a non-recoverable error, then the implementation should not report
an error code in the DSIER.

Errors which are always non-recoverable include:
B Bus time-outs

B Errors on I/O Load and Store instructions issued to the IOCC facilities (for
example, CSRs)

7.4.7.2 Non-Recoverable Bus Master and DMA Slave
Error Conditions

Error conditions that arise in bus master and DMA slave operations include
Micro Channel bus errors, programming errors, and hardware errors. The
following errors may fall into the non-recoverable or recoverable category,
depending on the IOCC and Operating System implementations:

B TCE Reload error
B System Address error

B System Data error

If it is possible for the IOCC to report these as recoverable errors, then they
should be reported as recoverable errors, not as non-recoverable ones. If
reported as a non-recoverable error, then the implementation should not report
an error code in the Channel Status Register for that device.

Errors which are always non-recoverable include:

B Bus time-outs

7.4.8 Recoverable Errors

Recoverable errors are defined as errors which allow the system to keep
operating and have the following characteristics:

B For Load and Store operations, can be reported to the device driver in such a
way that the device driver can either retry the operation or can shut down the
operation cleanly, without allowing any propagation of corrupted data.

B For a bus master or DMA slave operation, can be reported to the device and
to the device driver in such a way that the device driver can retry the
operation or can shut down the operation cleanly, without allowing any
propagation of corrupted data. In the bus master case, this implies the
capability of reporting the error to the device as a synchronous channel
check.
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It is the intent of this architecture to have all errors which can reasonably be
reported as recoverable errors, to be reported as recoverable errors, and not
non-recoverable ones.

See also Section 7.4.7, “Non-Recoverable Errors,” on page 141.

7.4.8.1 Recoverable Load and Store Error Conditions

Error conditions that arise in Load and Store instructions include bus errors,
programming errors, and hardware errors. Micro Channel bus errors such as
address or data parity errors can be caused by hardware malfunctions or
transient electrical noise (refer to Section 7.3.4, “Exception Reporting and
Handling,” on page 102 for more information). Software should try to
distinguish between transient and hard failures by retrying the operation. The
recommended approach is for the software to retry the operation three times
before terminating the recovery procedure.

The class of errors which fall into the recoverable category include:
B Invalid operation

B Authority error

M Channel check

B Data parity error

B Card selected feedback error

The following errors may fall into the non-recoverable or recoverable category,
depending on the IOCC and System implementations:

B An attempt to cross a segment boundary with a single Load or Store
instruction

B TCE reload error

If it is possible for the IOCC to report these as recoverable errors, then they
should be reported as recoverable errors, not as non-recoverable ones. If
reported as a recoverable error, then the implementation should deliver a DSIto
the processor and report an error code in the DSIER.

Load and Store instruction errors that are synchronous on the Micro Channel
bus generate a DSI to the processor with an error code which gets logged into
the DSIER of the processor which issued the Load or Store instruction. DSIs
are ordered and precise.

No device should report errors by activating the ‘chck’ signal asynchronously.
However, if this occurs, the error is reported as an miscellaneous interrupt (see
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Section 7.4.6.2, “IOCC Interrupt Request Register (IRR),” on page 139). In
addition, if the asynchronous channel check is present at the start of a Load or
Store operation on the Micro Channel bus, a DSI shall also be reported and an
error code shall be logged into the DSIER. Load and store error codes that get
logged into the DSIER and are summarized in Table 48 which starts on this
page, and continues to the next page.

No provision is made to capture status for multiple errors.

Error code
(DSIER bits
12-15)

Description

0b0000

Reserved.

0b0001

Invalid Operation: This error occurs for one of the following conditions:

‘When an attempt is made to access an IOCC facility (register or command)
or Micro Channel address space (bus memory or I/O) without the applicable
K bit in the SR (32-bit machines) or STE (64-bit machines) being set to a
value of 0.

‘When an attempt is made to access undefined address in the IOCC control
address space.

‘When an attempt is made to access a bus address for which a TCE does not
exist and the authority mask in the SR or STE requires a TCE access (that is
the mask is not all 0’s).

‘When an attempt is made to access an IOCC facility (command or register)
with a length inappropriate for that facility and IOCC implementation.

‘When an attempt is made to access an IOCC facility (command or register)
with the authority mask in the SR or STE not set to all-0’s.

‘When an attempt is made to cross a segment boundary with a single Load or
Store instruction. This error is implementation dependent; some imple-
mentations may not detected it or may detect it but produce an non-recover-
able error (see Section 7.4.7, “Non-Recoverable Errors,” on page 141).

0b0010

Reserved.

0b0011

Reserved.

0b0100

Reserved.

0b0101

Authority Error: This error occurs for accesses for which the page protect
key in the TCE and authority mask in the SR or STE do not agree, including
the case where the page protect key in the TCE field is set to a 0.

0b0110

Reserved.

0b0111

Reserved.

Table 48. Load and Store Error Condition Descriptions
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Error code | Description
(DSIER bits
12-15)

0b1000 Channel Check: This error occurs if a device responds with a synchronous
channel check indication during a Load or Store operation, or if an asynchro-
nous channel check is present at the start of the operation. For example, a
device might respond with a channel check for a write operation to that
device where there is bad parity on the data or address, or for other device
detected errors during an operation to that device.

0b1001 Data Parity: This error occurs if the IOCC detects bad parity on a Load
operation from an I/O device.

0b1010 Reserved.

0b1011 Card Selected Feedback Error: This error occurs if, after a device is ad-

dressed, it does not respond by driving the ‘cd sfdbk’ line. Some conditions

which could cause this to occur are:

® If the device is not present

o If the device is not seated in the card slot properly

® If the device is not enabled

® If there is bad address parity on the bus and there is no detection of the bad
address parity on the bus, and if the resulting bad address does not select

any device.

0b1100 Reserved.

0b1101 Reserved.

0b1110 | TCE Reload Error: This error occurs if the authority mask in the SR or
STE requires a TCE access (that is the mask is not all 0’s) and the IOCC
receives an uncorrectable data parity or ECC error response from the system
interconnect (for example, system bus) during the TCE access. The results
of this error are implementation dependent. In some implementations, this
error may be non-recoverable (see Section 7.4.7, “Non-Recoverable Errors,”
on page 141).

0b1111 Reserved.

Table 48. Continued

7.4.8.2 Recoverable Bus Master Error Conditions

Error conditions that arise in bus master operations include Micro Channel bus
errors, programming errors, and hardware errors. Micro Channel bus errors,
such as an address or data parity error, may be caused by hardware malfunctions
or transient electrical noise. Refer to Section 7.3.3.2, “Micro Channel Parity
Errors,” on page 100 and Section 7.3.3.3, “Micro Channel Channel Check,” on
page 101 for a description of these errors. Errors have the potential of being
handled differently depending on whether or not the channel is mapped to
system memory. These different cases are described below.

In general, all recoverable errors shall result in the IOCC activating the ‘chck’
signal to the device at the time the error occurred (that is, synchronous to the
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operation which caused the error). The class of errors which fall into the
recoverable category include:

B Authority Error

B Page Fault

W Data Parity

B Address Parity

M Card Selected Feedback Error

B TCE Extent

The following errors may fall into the non-recoverable or recoverable category,
depending on the IOCC and system implementations:

B TCE Reload error
B System Address error

B System Data error

If it is possible for the IOCC to report these as recoverable errors, then they
should be reported as recoverable errors, not as non-recoverable ones. If
reported as a recoverable error, then the implementation should deliver a
synchronous channel check to the device and report an error code in the device’s
Channel Status Register.

If the transfer is to or from system memory (that is, the channel is mapped to
system memory and the IOCC is involved in the transfer), then on an error, an
error code identifying the class of error is set into the Channel Status Register
(bits 0 to 3) corresponding to that channel. The CSRs capture the channel status
until the error code is reset by a Store instruction. All errors cause the ‘chck’
signal to be pulsed. In addition, on TCE extent and address parity errors, the
IOCC shall not activate the ‘sfdbkrtn’ line. When a bus master device sees this
error condition, it should suspend operations and post an interrupt. For
additional information refer to Section 7.3.4, “Exception Reporting and
Handling,” on page 102. After the error condition, if the bus master device tries
to continue accesses with the channel effectively disabled (also, if the bus
master tries to make an access and the channel was never enabled), the IOCC
activates ‘chck’ and shall not activate ‘sfdbkrtn’. If the access is directed to the
TOCC, the IOCC shall not take or supply data, and continued read accesses by
the device after the error results in the IOCC bus drivers being disabled which
results in all ones on the Micro Channel data bus.

If the transfer is a bus to bus operation and the prevent channel disable on error
bitis setto a 1, then the IOCC shall still monitor the bus for address parity errors,

Programming Note

Not all Micro Channel
Adapters look at the
‘chek’ (channel check)
signal. Device drivers
which are written for
adapters which do not
look at the ‘chck’ signal
must read the CSR for
that adapter, even if
even if that adapter
reports successful
completion of the
operation with no error.
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but shall not log that error or disable the channel on an error (the ‘chck’ signal is
still pulsed). Note that if the prevent channel disable on error bitis settoa 1 fora
particular bus master, then that bus master must have the capability to detect and
report (to the system) address parity and card selected feedback errors.

If the transfer is a bus to bus operation, and if the prevent channel disable on
error bit is set to a 0, then this is treated like the mapped case, and on an error an
error code identifying the class of error is set into the CSR (bits 0 to 3)
corresponding to that channel. The CSRs capture the channel status until the
error code is reset by a Store instruction. All errors cause the ‘chck’ signal to be
pulsed. In addition, on address parity errors, the IOCC shall not activate the
‘sfdbkrtn’ line. When a bus master device sees this error condition, it should
suspend operations and post an interrupt. For additional information refer to
Section 7.3.4, “Exception Reporting and Handling,” on page 102. After the
error condition, if the bus master device tries to continue accesses with the
channel effectively disabled (also, if the bus master tries to make an access and
the channel was never enabled), the IOCC activates ‘chck’ and shall not
activate ‘sfdbkrtn’.

Table 49 on page 148 summarizes the various IOCC actions for errors that occur
during bus to bus (non-mapped) operations. Table 50 on page 149 summarizes
the actions for operations involving system memory (operations mapped to
system memory). Table 51 on page 149 summarizes the actions for operations
involving a disabled channel or an access to a channel with an error pending.
More details on these error codes are shown in Table 52 on page 151.

Error CSR Prevent | Pulse Log Disable
Channel ‘chek’? | Error | Channel?
Disable on in
Error Bit CSR?
Address Parity 0 yes yes yes
(On an address parity error, bus to bus versus 1 yes no no

bus to system memory operation is
indeterminate, therefore assume bus to bus)

Card Selected 0 yes yes yes

Feedback 1 no no no

Table 49. I0CC Actions on Errors during Bus to Bus Operations
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Error CSR Prevent | Pulse Log Disable
Channel ‘chek’? | Error | Channel?
Disable on in
Error Bit CSR?
Authority don’t care yes yes yes
Page Fault don’t care yes yes yes
TCE Extent don’t care yes yes yes
Data Parity don’t care yes yes yes
Address Parity 0 yes yes yes
(On an address parity error, bus to bus versus 1 yes no no
bus to system memory operation is
indeterminate, therefore assume bus to bus)
Card Selected Feedback don’t care yes yes yes
ECC don’t care yes yes yes
System Address don’t care yes (if yes yes
synchro
nous)
TCE Reload don’t care yes yes yes

Table 50. I0CC Actions on Errors during Transfers to or from System Memory

CSR Status on Bus Master Access CSR Prevent | Pulse Log
Channel ‘chek’? | Error
Disable on in
Error Bit CSR?
Disabled don’t care yes no
Error Previously Logged don’t care yes no

Table 51. 10CC Actions on a Bus Master Access when the Channel Is Not Enabled
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7.4.8.3 Recoverable DMA Slave Error Conditions

Error conditions that arise in DMA operations include bus errors, programming
errors, and hardware errors. The class of error is coded and set in the status field
(bits 0 to 3) in the CSR. The ‘tc’ signal is then pulsed, which should cause the
1/O device to suspend DMA operations and post an interrupt. If it does not stop
DMA, but continues to request DMA service, the IOCC services the DMA
requests with dummy cycles, pulsing the ‘tc’ signal on every cycle.

The class of errors which fall into the recoverable category include:
B Extra request

B Channel check

B Data Parity error

B Card selected feedback error

B TCE extent error

The following errors may fall into the non-recoverable or recoverable category,
depending on the IOCC and system implementations:

B TCE Reload error
B System Address error

B System Data error

If it is possible for the IOCC to report these as recoverable errors, then they
should be reported as recoverable errors, not as non-recoverable ones. If
reported as a recoverable error, then the implementation should pulse the ‘tc’
signal on the Micro Channel bus and report an error code in that device’s
Channel Status Register.

Error codes are summarized in Table 53 on page 152.
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Error

code

(CSR
bits 0-3)

Description

0b0100

Authority Error: This error code is set if an attempt is made to write to a read-only
page in system memory.

0b0101

Page Fault: This error code is set if an attempt is made to access a page in system
memory and TCE page mapping and control bits are set to 0b01. This can occur in
normal operation. Devices attempting to take advantage of this function must
present an interrupt after receiving a ‘chck’ signal on the Micro Channel bus.

0b0110

Error on the Micro Channel bus: This error code is set for the following detected
errors:

Data Parity: This error occurs if the IOCC detects bad parity when operating as a
slave on the bus (when the transfer is from device to system memory). This error
shall not occur on a bus to bus data transfer.

Address Parity: This error occurs if the IOCC detects bad parity on Micro Chan-
nel address bus and the prevent channel disable on error bit in the CSR for the
device on the bus is set to a 0. This error code is not set if the prevent channel
disable on error bit is set to a 1 and the operation is a bus to bus operation.

Card Selected Feedback Error: This error occurs if, after a device is addressed by
a bus master, it does not respond by driving the ‘cd sfbk’ line and the prevent
channel disable on error bit in the CSR for the bus master on the bus is set to a 0.
This error code is not set if the prevent channel disable on error bit is set to a 1 and
the operation is a bus to bus operation.

0b0111

System Access Error: This error code is set if the operation is to system memory
and one of the following errors is detected:

TCE Extent: This error occurs if the bus master is attempting to access system
memory and an attempt is made to access a bus address for which a TCE does not
exist.

System Data Error: This error occurs if the IOCC received an uncorrectable data
parity or ECC error response from the system interconnect (for example, system
bus) during a bus master transfer request to system memory. The results of this
error are implementation dependent. In some implementations, this error may be
non-recoverable (see Section 7.4.7, “Non-Recoverable Errors,” on page 141).

System Address Error: This error occurs if the real page number in the address is
invalid. Software should make sure that the real page number in the TCE is valid.
The results of this error are implementation dependent. In some implementations,
this error may be non-recoverable (see Section 7.4.7, “Non-Recoverable Errors,”
on page 141).

TCE Reload Error: This error occurs if the IOCC detects a parity or uncorrectable
ECC error during a TCE access. This results of this error are implementation
dependent. In some implementations, this error may be non-recoverable (see
Section 7.4.7, “Non-Recoverable Errors,” on page 141).

Table 52. Bus Master Error Condition Descriptions
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Error

code

(CSR
bits 0-3)

Description

0b0011

Extra Request. This error code is set if a DMA slave request is received by a
DMA slave channel when the channel is disabled. Receipt of an unsolicited DMA
request is an error unique to a DMA slave. This error is generally caused by I/O
device malfunctions after the IOCC pulses the ‘tc’ signal in an attempt to shut off
the DMA slave. This error can also occur with incorrect programming of the
channel.

0b0110

Error on the Micro Channel bus: This error code is set for the following detected
errors:

Channel Check: This error occurs if the device responds with a channel check
indication during a DMA slave operation or if an asynchronous channel check is
present at the start of the operation.

Data Parity: This error occurs if the IOCC detects bad parity on the Micro Chan-
nel data bus when the IOCC is reading data. (See Section 7.3.4, “Exception Re-
porting and Handling,” on page 102 for details.)

Card Selected Feedback Error: This error occurs if, after a device is addressed, it
does not respond by driving the ‘cd sfbk’ line. Conditions that could cause this to
occur are: if the device is not present; is not seated in the card slot properly; is not
enabled or detects bad address parity and does not respond to that address. This
error can only occur on the second cycle of a bus to bus operation.

0b0111

System Access Error: This error code is set for the following errors on operations
to system memory:

TCE Extent Error: This error occurs if a DMA slave request is received and the
DMA slave control register 4 contains a TCE number for which there does not
exist a corresponding TCE.

System Data Error: This error occurs if the IOCC receives an uncorrectable parity
or ECC error response from the system interconnect (for example, system bus)
during a DMA slave request to system memory. The results of this error are imple-
mentation dependent. In some implementations, this error may be non-recoverable
(see Section 7.4.7, “Non-Recoverable Errors,” on page 141).

System Address Error: This error occurs if the real page number in the address is
invalid. The results of this error are implementation dependent. In some imple-
mentations, this error may be non-recoverable (see Section 7.4.7, “Non-Recover-
able Errors,” on page 141).

TCE Reload Error: This error occurs if the IOCC detects a parity or uncorrectable
ECC error during a TCE access. The results of this error are implementation de-
pendent. In some implementations, this error may be non-recoverable (see Section
7.4.7, “Non-Recoverable Errors,” on page 141).

Table 53. DMA Slave Error Condition Descriptions



System Resources

System Resources are those facilities which are present on all PowerPC
systems and are necessary to configure and operate the system, especially at
Initial Program Load (IPL) time. These resources are accessed through the high
real memory addresses reserved for them.

8.1 Operator Interface

The operator interface is used primarily at IPL time to provide a means for the
operator to indicate the mode and path for IPL, as well as a means for the system
microcode and IPL software to display messages on the progress of IPL/or
abnormal conditions. A means is also provided for the operator to generate a
reset to the processor which may be independent of a keyboard.

8.1.1 Display Interface

The operator interface display is accessed via the memory mapped word at
address Oxf...ff600300. The minimum display capability is three characters as
defined in Table 54 and Table 55. This capability is defined to be compatible
with the LED display on the Risc System/6000 POWERSstation Model 320.

This capability is defined to be compatible with the three position Key Mode
Switch on the Risc System/6000 POWERstation Model 320.
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Bit(s) Description

0-3 First Character (leftmost)
4-7 Second Character

8-11 Third Character

12-31 Reserved

Table 54. Display Data Word Definition

The characters displayed for each of the values stored in these three positions

are defined in Table 55.
Value Character displayed
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 a
1011 b
1100 c
1101 d
1110 e
1111 f

Table 55. 4-Bit Character Values

8.1.2 IPL/Operation Mode

There are three modes in which the system may be powered up and/or IPLed.
The mode to be in effect at the time the system is powered-up or re-IPLed may
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be selected by the operator either via a Key Mode Switch or an equivalent
system facility.

The system microcode shall determine the state desired by the operator by
accessing bits 30 and 31 of the memory mapped word at location 0xff0000e4.
The “Mode Name” and Icon are example representations and may be varied on
different system implementations. The three modes are encoded as shown in

Table 56.
Value Mode Number Mode Name Icon
01 1 Secure 2
10 2 Service %
1 3 Normal

Table 56. IPL/Operation Modes

8.1.3 Operator Reset

The operator may generate a reset to the processor via a reset button or
equivalent facility. The System Reset Count in the Reset Status register (shown
in Table 6 on page 12) and the IPL/Operation Mode (shown in Table 56)
determine the Operating System’s actions.

IPL/Operation | System Reset Count Bit 31 Reset Generated When Operator Reset
Mode Number Activated

1 0 None

1 1 None

Not 1 0 Soft

Not 1 1 Hard

Table 57. Operator Reset

A soft reset causes the processor to perform a system reset interrupt. A hard
reset causes the processor to perform a power-on reset cycle and IPL, if
possible. The details of how the processor handles these signals may be found
in the processor’s Book IV.

Note

The operator reset
capability is defined to
be compatible with the
Rest Button on the RISC
System/6000
POWERstation Model
320.
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Architecture Note

The Time Base Enable
section does not apply to
601 based systems.

8.2 Non-Volatile Random Access
- Memory (NVRAM)

Non-Volatile RAM (NVRAM) is used by PowerPC systems to allow the system
bring-up routines to save system configuration and other information relating
to system operation without having to access peripheral storage. This
information is used during bring-up to determine if the configuration has
changed and/or an error occurred which caused the system to restart.

The NVRAM contents and mapping is described in Section on page 35.
8.3 Timer Facilities

Each PowerPC system provides facilities for the maintenance of clocks for
timing and time of day purposes. Multiprocessor systems also provide means
for the synchronization of these facilities among the various processors. This
section describes those facilities which, if implemented, are common to all
PowerPC systems implementing them.

8.3.1 Time of Day Clock

A non-volatile Time of Day (TOD) Clock reference is available through the
memory mapped locations 0xff0000c0 — 0xff0000dc. The definition of the use
of this area is system implementation specific.

8.3.2 Time Base Enable

PowerPC systems shall incorporate support for the enabling and
synchronization of the processor’s local clock facility. PowerPC Architecture
(book III) has defined a TBE_ pin (Time Base Enable pin) which enables a
system clock circuit to be implemented.

8.3.3 Symmetric Multi-Processor (SMP)
Synchronization

Through the use of the PowerPC TBE_pin, the local clocks on all the
processors in the system can be stopped and set to the same time. When the
clocks are restarted, they all start on the same cycle and count the same
frequency, keeping them in sync.



External Interrupt
Architecture

The term “interrupt” is used to mean the signalling of a processor that
an “interrupt condition” exists at a given “source.” When enabled (with the
MSR EE) the processor starts “interrupt processing” as specified in the
PowerPC Architecture (book III), continuing as directed by software.

9.1 External Interrupt Overview

The External Interrupt Architecture is separated into an Interrupt Routing
Layer and an Interrupt Presentation Layer. The Interrupt Routing Layer is
expected to route all interrupt conditions to the appropriate instance of an
interrupt management area within the Interrupt Presentation Layer. The
Interrupt Presentation Layer communicates the interrupt source to software.
Software accepts the interrupt condition and is responsible for resetting the
interrupt condition (via path(s) not specified in this section). Software is also
responsible for indicating the acceptance of the interrupt and for notifying the
Interrupt Presentation Layer that it has processed the Interrupt.

The architecture of the PowerPC external interrupt structure is required to span
a wide range of system requirements; from the simple single user personal
computer to multi-user systems consisting of a hierarchy of multiple
processors. Identical implementations can not effectively address such arange.
However, the programming interface and the logical view shall be consistent.

The logical view of the system is that of n (up to 256) queues of events. Within
each queue there exists a prioritized list of events. Each queue is associated
with a logical server. In the single processor system, there is one server and,
therefore, one queue. In a multi-processor system there would be one queue
associated with each processor and at least one global queue associated with the
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collection of processors viewed as one logical server. For multi-processor
systems, the Available Processor Mask (APM) shall be supported to identify
which processors are available in the system. The APM is expected to be placed
in NVRAM in order to allow the turning off or on of a processor to be specified
prior to system reset and reinitialization. The effect of the mask is required to be
supported during initialization. Failure to support the updating of the APM
mask after the Operating System has been initialized will prohibit the support of

“Live Insertion” of a new processor, that is, the support of dynamically using a
newly inserted processor. In addition, failure to support the updating of the
APM mask after the Operating System has been initialized will prohibit the
turning off of a processor. Because a processor could not be turned off, there
would be no opportunity to support a graceful system degradation when a
processor is no longer working properly. The complete architecture to allow the
turning off or on of a processor is not included in this document, For
multi-processor systems, the Global Queue Interrupt Routing Mask shall be
supported to identify which processors are available for use for global queues.
For multi-processor systems, the SMP EPOW XIVR shall be supported to
allow the EPOW interrupt to be directed to a specific processor by the software.
A system with a richer hierarchy might group subsets of processors into server
groups and associate with each group a queue common to the group.

In PowerPC systems, the highest priority interrupt is 0x00 and the lowest is
Oxff. Since ‘higher priority’ and ‘lower priority’ could be confusing (since they
relate to a numerically smaller and numerically larger priority number,
respectively), this document uses the terms more favored and less favored.
Hence, interrupt level 0x55 is more favored than interrupt level Oxff and less
favored than interrupt level 0x00. Similarly, 0x00 is the most favored interrupt
level and Oxff is the least favored interrupt level.

Associated with each queue is a server number in the range of 0x00 through
Oxff. The individual processors within the complex are assigned server
numbers ascending from 0x00 and queues which serve multiple processors are
assigned server numbers descending from Oxff. Queue lengths are
implementation dependent, but have a minimum depth of one.

External interrupts are sourced from Bus Unit Controllers (BUCs), other
processors in the complex, and from other sources in the system (for example,
EPOW). While the different sources require different physical signalling
mechanisms, the logical appearance to the server is as one queue headed by the
most favored event.

The PowerPC External Interrupt architecture defines two layers; the interrupt
presentation layer and the interrupt routing layer. These layers are shown in
Figure 38 on page 161. The interrupt presentation layer consists of the registers
associated with processors or servers to which the Operating System software
interfaces to create and handle individual interrupts. The interrupt presentation
layer’s only option is the number of processors or servers within a system. The
interrupt routing layer, routes the interrupts from the sources to the destinations



9.1 External Interrupt Overview

159

and is by its nature far more implementation specific. Software may have to
manage the configuration of the interrupt routing layer but does not have to
interface to this layer on a per interrupt basis.

9.1.1 System Level Interrupt Register
Overview

The registers used to manage interrupts are described, briefly, below, and in
more detail beginning on page 165. The placement of these facilities is
restricted to the upper four (4) gigabytes because on a 64-bit word machine,
software shall assume that the upper 32-bits are all ones. For additional
information regarding the location of the registers defined below, see Section
3.2 starting on page 10.

B SMP Global Queue Interrupt Routing Mask (GQ_IRM)

— Required facility for each global queue supported by the interrupt
routing layer hardware. The software uses this facility to tell the
hardware which processors are available for a particular global queue.
See Section 9.2.7 on page 171 for more details regarding the GQ_IRM.

M Available Processor Mask (APM)

— Required facility for SMP systems to be used by the interrupt routing
layer hardware to know which processors are available. The support for
this facility is required at system initialization, but optional after IPL.

B Global Queue Interrupt Request Register (G_QIRR)

— This register may be written as a single byte or as four bytes (a 32-bit
word).

— Used in SMP systems as a non-processor specific server queue.

— Consists of two registers:

B Global Most Favored Request Register (G_MFRR), which is an
MFRR.

B Interrupt Source Specification Register (ISSR)

O Used in SMP systems to configure the source
specification of a G_MFRR interrupt (see XISR).

B Queued Interrupt Request Register (QIRR)

— This register may be written as a single byte or as four bytes (a 32-bit
word).

— Consists of two registers:

Architecture and
Programming Note

It is expected that many
systems will typically
support a single byte of
the QIRR, that is, the
MFRR byte with the
second register, that is,
the low order three bytes
being unimplemented.
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® Most Favored Request Register (MFRR)

O At least one per processor plus one per non—processor
specific server queue

O Holds the priority of the most favored request on the
queue

O This register can be read back by the software to verify
that the write has taken place

® Interrupt Source Specification Register (ISSR) or reserved or
unimplemented

B External Interrupt Request Register (XIRR)
— One per processor

— Consists of two registers:

B Current Processor Priority Register (CPPR)

O This register is updated by the software to contain the
current processor priority

O This register is updated when the software issues a Load
instruction to the XIRR at a certain address and is
updated to the priority of the interrupt represented by the
XISR data which is delivered by the executed Load
instruction.

® External Interrupt Source Register (XISR)

O Indicates the source of a pending interrupt (or a value of
0, if no pending interrupt)

B EXternal Interrupt Vector Register (XIVR)

— One per interrupt level in each BUC

— Defined in section 6.2.2 on page 72
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Figure 38. External interrupt architecture layers
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Engineering Note

Those systems which
have processors which
externalize the EE bit of
the MSR are encouraged
to use it to override the
value in the CPPR in
interrupt routing
decisions.

9.1.2 Interrupt Routing Layer

The goal of the implementation dependent interrupt routing hardware within
the interrupt routing layer is fo direct the most favored interrupt request to the
processor operating at the least favored priority. To the best of its ability, the
interrupt routing layer shall avoid sending an interrupt to a processor which is
running at a more favored level than the incoming request. Due to the range of
system requirements, just one method of interrupt routing is not architected.
Different implementations may approximate the above goal to different levels
of accuracy and this will appear as a variable delay in the routing of interrupt
requests. The greater the expected system load due to interrupts, the closer the
interrupt routing hardware must approach the goal in order to achieve proper
system performance. To fully achieve the goal, the interrupt routing hardware
must be fully aware of the state of the system (that is, the exact per cycle
processor priority, and the contents of all logical interrupt request queues). In
practice this is not possible; there may be more potential interrupt requests than
the queue manager logic can hold, and processor priority may take several
cycles to propagate from the processor to the interrupt routing hardware. The
depth of queue problem is handled by requiring the BUCs to resubmit interrupt
request messages that are rejected by the interrupt routing hardware. This
allows the interrupt routing hardware to implement a queue depth (minimum of
one) to satisfy some percentage of the expected cases with the interrupt
rejection mechanism used to handle any overflow cases. The software is
unaware of the rejection mechanism which only exhibits a variable latency to
affected interrupt requests. Since the interrupt routing hardware may be
unaware of the true processor priority when it first routes a request toward a
processor, the routing hardware shall be prepared for the priority to change after
it has initially assigned a request to a specific processor. Failure to take
changing processor priority into account can result in priority inversions and
severe system performance degradation (priority inversion can occur if an
interrupt is queued which has a less favored priority than the current processor
priority, and if that queued interrupt prevents an interrupt with a more favored
priority than the processor from getting in and interrupting the processor); the
queued interrupt will not get serviced until the processor drops in priority below
the queued interrupt priority. Again the interrupt rejection mechanism may be
used to recover from queue resource problems.

‘When an interrupt source submits an interrupt request to the routing layer, the
same instance of the request shall be resubmitted if and only if the interrupt
condition has not been reset when either the interrupt is rejected by the routing
layer or software issues the End Of Interrupt.

Various implementations are possible including a single element queue per
processor consisting of an external interrupt priority and source, through
multiple external interrupt source queue registers. The exact queueing
implementation shall be transparent to the software interfacing to the Interrupt
presentation layer.
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At system configuration time, the configuration of the Interrupt routing layer
shall include determining how many logical servers are supported, which
processors support which logical server, and which interrupts are to be directed
to which server. GQ_IRMs shall be used to specify which processors work
against which logical server queue. The GQ_IRMs may be replicated in the
BUCs or may be centralized. In addition, the interrupt routing layer shall use
the APM to determine which processors are available for any interrupt routing.

9.1.3 Interrupt Presentation Layer

Each processor has associated with it a memory mapped Interrupt Management
Area which contains the eXternal Interrupt Request Register (XIRR). The
XIRR is a 4-byte facility and is composed of two fields: the Current Processor
Priority Register (CPPR) and the External Interrupt Source Register (XISR).
For more information on the XIRR, see Section 9.2.1, “External Interrupt
Request Register (XIRR),” on page 165.

The CPPR contains the processor’s operating priority. The CPPR may be
written by software to prevent interruptions from less favored priority requests.
The interrupt routing layer shall only direct an interrupt request to a processor if
its CPPR field is less favored than the priority of the interrupt request. Software
stores to the CPPR as a 1-byte register to inform the interrupt hardware of the
current operating priority of the processor. For more information on the CPPR,
see Section 9.2.2, “Current Processor Priority Register (CPPR),” on page 167.

To determine the source of the interrupt the software reads the XISR by issuing
a Load instruction to the XIRR. The value in the XISR specifies the source of
the interrupt (if a BUC, which BUID and level or, if a processor, which server
queue). Based upon this information, the software can determine the location
of the request parameters. The XISR presents the appearance of a read only
register from the interrupt routing layer for Load operations, and a write only
register to the interrupt routing layer for Store operations. That is, what is
written is not automatically what is read. The XISR is only accessed atomically
with the CPPR by 4-byte accesses directed to the XIRR. (PowerPC only
supports atomic accesses to fields on their “natural” alignment.) For interrupts
from BUCs, the upper bits of the XISR indicate the BUC BUID, and the low
order 4 bits of the XISR field define up to 16 sources (or levels) within a BUC.
Several values of this register have defined meanings. For more information on
the XISR, see Section 9.2.3, “External Interrupt Source Register (XISR),” on
page 167.

The interrupt presentation layer of the architecture is embodied through an
Interrupt Management Area for each processor in the system. The Interrupt
Management Area is within the system’s System Management Memory Space,
refer to Table 8 on page 15. The address of the processor’s interrupt
management area is referred to as its Base Address (BA) for the rest of this
document. The BA is different for each processor (that is, there is a separate

Architecture Note

The hardware which
implements the Interrupt
Management Area is not
required to participate in
any cache coherency
protocol. Software shall
mark the corresponding
page or pages as cache
inhibited.

Programming Note

The inter-processor
interrupt mechanism has
associated with each
logical queue, a physical
queue of request blocks
in system memory. This
queue is maintained in
priority order by the
software. The
implementation of the
queue is not defined in
the interrupt mechanism
architecture but is left up
to the Operating System
software. The
implementation of the
various queues may be
different depending upon
the expected frequency
of use. Associated with
each queue is a Most
Favored Request
Register (MFRR) (in
system memory space).
When a program
enqueues a request
block to the queue, it
determines if the new
request is at a more
favored priority, and if it
is, the value of the new
request’s priority is
written into the MFRR.
When a process
dequeues a request for
service, the priority value
of the next request on
the queue is loaded into
the MFRR. If the queue
is empty after dequeue,
the least favored value
(Oxff) is loaded into the
MFRR. A value other
than Oxff in the MFRR
indicates to the interrupt
hardware that an
interrupt of that priority
should be signalled to a
(the) processor which
services that queue.
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Interrupt Management Area for each processor), and these areas can be
accessed by any processor (there is no protection against it). The BA for a
processor is setup at configuration time. The layout of the Interrupt
Management Area is in Table 58.

Address |Byte 0 |Byte 1 ‘ByteZ ‘Byte?, Comments

BA+0 |CPPR XISR XIRR without side effects
BA+4 CPPR XISR XIRR with Load/Store side effects
BA+8 | DSIER DSIER Data Storage Interrupt Error Register

BA+12 | MFRR |ISSR or Reserved or Unimplemented | Required QIRR

Table 58. Interrupt Management Area: Interrupt Presentation Layer Registers

9.1.3.1 Interrupt Handling

When the interrupt routing layer wishes to signal an interrupt to a processor, it
loads the XISR with the source of the interrupt. Any non zero value in the XISR
field shall cause a interrupt to be signalled to the processor. This signal is
masked by the processor’s MSR EE bit prior to the processor generating the
interrupt sequence. The loading of the XISR shall be atomic. If at alater time, a
higher priority interrupt is made available to the interrupt routing layer, the
interrupt routing layer may atomically change the value in the XISR to reflect
the source of the higher priority interrupt. If a higher priority interrupt preempts
alower priority interrupt in this way, the interrupt routing layer shall insure that
the lower priority interrupt shall be re-presented at a later time.

Once the processor has read the XIRR at BA+4, the interrupt routing layer may
not “change its mind” and either preempt or cancel the request.

The XIRR facility appears twice in the external interrupt management area.
Address BA+0 is designed to be used with interrupt polling. Address BA+4 has
side effects when read or written, and is designed to allow efficient interrupt
handler software by having the hardware assist the software in the interrupt
queueing process. For more information on these side effects and how the
external interrupt registers are used, see Section 9.2.1, “External Interrupt
Request Register (XIRR),” on page 165.

9.1.3.2 Processor to Processor Interrupts

The Most Favored Request Register (MFRR) holds the priority of the most
favored request queued on a software managed queue for this processor. When
written to a value other than Oxff the MFRR competes with other external
interrupts for the right to interrupt the processor. When the MFRR’s priority is
the most favored of all interrupt requests directed to the processor, an
appropriate value is loaded into the XISR (see Section 9.2.3, “External
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Interrupt Source Register (XISR),” on page 167) and an interrupt is signaled to
the processor. When the processor reads the XIRR at BA+4, the value in the
MFRR shall be loaded by the hardware into the CPPR. The MFRR may be read
back by the software to ensure that the MFRR write has been performed.

During the processing of an inter-processor interrupt, the highest priority
request is dequeued by the software from the software queue associated with the
MEFRR and the priority of the next favored request is loaded into the MFRR by
the software.

9.1.3.3 Global Queues

In MP systems, the System Management Memory Space shall also contain one
or more Global Queue MFRR’s which are used by software to send
inter-processor interrupts to any processor within some server group. The
Global Queue MFRR’s work just like the per processor MFRR described above
except that the interrupt routing layer determines the processor to receive the
request based upon its own algorithm, and the value loaded into the XISR is a
BUID which indicates the Global Queue.

9.2 Interrupt Register Definition Details

This section describes the registers that shall be implemented by the interrupt
routing layer hardware.

9.2.1 External Interrupt Request Register
(XIRR)

The XIRR is a 4-byte register at addresses BA+0 and BA+4. Issuing a Load
instruction to the XIRR at address BA+0 causes the CPPR and XISR to be
Loaded into the processor with no side effects. This is designed for software
polling of external interrupts. Issuing a Load instruction to the XIRR at address
BA+4 has the following atomic side effects:

Prior to data transfer:

B Clear the interrupt signal to the processor, whose BA is being accessed,

returning the load data to the requesting processor only after the time the
processor will no longer respond to this instance of the interrupt.

After data transfers:

B The contents of the CPPR are set to the priority of the interrupt signalled in
the XISR (if XISR was zero the CPPR field is unmodified).

B The XISR is reset to 0x000000. Subsequent interrupt requests of more

favored priority shall now cause an interrupt to be signaled and presented in
the XIRR.

Architecture Note

Software is not required
to be aware of the high
order XISR bits required
to route an EOl to a
given BUC. If a given
BUC design needs
software to generate an
EOI (say to reset a
BUC's hung interrupt
routing logic) that is not
associated with a
presented XISR value,
then the means for such
an EOI shall be included
in the BUC specific
architecture.
Engineering Note

If the hardware elects to
reject interrupts on a
CPPR change from a
more favored to a less
favored level, then on a
4-byte Store to the
XIRR, the hardware can
do one of two things:

1. Do a multiple
rejection (on both the
CPPR change and the
XISR write)

2. Do the rejection for
the XISR write (using the
fact that the write of the
CPPR shall be of a less
favored priority than the
previous CPPR value; a
requirement placed on
the software).

The interrupt routing
layer shall insure that all
interrupt signal
constraints of the
processor are met. If, for
example, the processor
does not internally latch
the interrupt signal, and
were not able to
guarantee proper
operation if the interrupt
signal was deactivated
during the processor’s
interrupt presentation
cycle, then the interrupt
routing layer would have
to externally latch the
interrupt signal resetting
the latch with the read of
the XISR rather than as
the result of an interrupt
rejection.
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Programming Note

At the end of the
interrupt handler, writing
the XIRR at BA+4 with
the value read at the
start of the interrupt
handler has the
combined effects of
issuing an explicit End
Of Interrupt to the BUC
and returning the
processor’s operating
priority to its
pre-interrupt value.
Software may keep the
interrupt’s operating
priority in the interrupt
source table structure for
internal shadowing of
the operating priority
during the execution of
the interrupt handler, or
read the value of the
CPPR at BA+0.
(Alternatively, the
interrupt handler
software may update the
value of the CPPR at
BA+4 with an equal or
less favored priority.)

When software is polling
interrupts, after the
software decides to take
an interrupt, the software
shall signal the hardware
that the interrupt is being
taken by issuing a Load
to XIRR at BA+4.
Software shall then
compare the XISR with
the value it read at BA+0
to make sure that the
hardware did not change
the XISR between the
Loads.

Changing the CPPR is
not a context
synchronizing operation.
Due to timing windows,
the interrupt line to the
processor may glitch as
an interrupt is being
rejected causing a
phantom interrupt to the
processor. The interrupt
handler shall see an
XISR value of zero for
these interrupts and can
ignore them.

This setting of the CPPR on the Load of the XIRR has the effect of rejecting all
less favored or equal priority external interrupts from the time that the software
issues a Load instruction to the XIRR until it issues a Store instruction to the
CPPR with a new value.

Issuing a Store instruction to the XIRR facility at BA+0 is undefined (data is
ignored). Storing to the XIRR at address BA+4 has atomic side effects and the
effects are different for a 1-byte versus a 4-byte Store. When the Store
instruction is a 1-byte Store, then this is a Store to the CPPR (see Section 9.2.2,
“Current Processor Priority Register (CPPR)” on page 167). When the Store
instruction is issued to the XIRR with a length of 4 bytes, an interrupt reset is
sent to the source as indicated in the data that accompanies the Store to the XISR
(not to the source indicated in the XISR at the time of the Store). This interrupt
reset is said to indicate the End Of Interrupt (EOI) by the software. When
issuing an EOI, software shall store the same XISR value (bits 0-23) to BA+4
that were read from the XISR when the associated interrupt was accepted. The
results of an attempt to issue an EOI by storing into BA+4 without having
previously read the XISR shall be unpredictable. The data that accompanies the
Store to the XISR is not written into the XISR (and shall not be obtained if
subsequently read with a Load instruction); it is used to indicate the source to be
reset and provide other hardware implementation dependent information.
Issuing a Store to the XISR at this address allows the source to present
subsequent interrupts at the level indicated in the data accompanying the Store
instruction. For a 4-byte Store, byte 0 is stored in the CPPR, but software shall
ensure that this store of the CPPR is of a less favored or equal priority than the
previous CPPR value, because hardware is not required to handle dual resets for
this case (one for the change in CPPR value to a more favored or equal priority
and one for a write to the XISR).

9.2.1.1

When software begins to process an interrupt, the PowerPC Machine State
Register (MSR) External interrupt Enable (EE) bit is off — masking off any
subsequent external interrupts. During the interrupt processing sequence, the
software shall set the EE bit to allow subsequent interrupts to be presented. Care
shall be taken to insure that the contents of the XIRR at BA+4 have been
returned to the processor prior to setting the EE bit, in order to avoid arace with
interrupt routing layer’s interrupt signalling termination. Such a race can
produce undefined results. One way to insure the data has returned, in the face
of potential processor speculative instruction execution, is to place an XIRR
value data dependency in the code prior to the setting of the EE bit; as in the
following code.

Iwz 14, BA+4 /* get XIRR */

Interrupt Programming Considerations

mfmsr 15

xor 16,r4,r4 /* create data dependency on the load of BA+4 & set r6=0 */
ori 16,6, EE  /* so will not be executed until the load of XIRR is complete */
or 15,1516

mtmsr r5 /* MSR = MSR+EE */
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9.2.2 Current Processor Priority Register
(CPPR)

This register is a 1-byte register containing the current priority of the processor
with which it is associated. This register is in real memory space at addresses
BA+0and BA +4. Issuing a 1-byte Load to the CPPR (at either BA+0 or BA+4)
has no side effects. The CPPR is a field in the XIRR register. Each processor
has its own CPPR. When the processor changes state, such as entering or
leaving a “critical section” of code, software may store the process priority of
the processor into the CPPR. Hardware shall reject all interrupts for a processor
that are at a priority less favored than the CPPR priority. Thus, keeping the
CPPR current shall prevent an external interrupt from interrupting a process of
more favored or equal priority.

The CPPR is a field in the XIRR and can be read or written as part of the XIRR.
For more information, see Section 9.2.1, “External Interrupt Request Register
(XIRR),” on page 165.

When the contents of the CPPR are changed, the interrupt routing layer shall
insure that only interrupts of more favored level are signaled to the processor
and are presented in the XIRR. It is acceptable to recompute (possibly by
interrupt rejection) the most favored interrupt to present after any Store to the
CPPR if the direction of change of priority is to a less favored priority, and it is
mandatory if the Store to the CPPR is a more favored or equal priority to any
queued interrupt. When an interrupt is removed from the XIRR because of a
store to the CPPR, if there is no interrupt of higher priority (higher than the new
CPPR value) waiting to replace it in the XISR, then the hardware shall set the
XISR to a value of 0 (atomically, with the CPPR store), indicating that no
interrupt is pending, and shall lower the interrupt request line to the processor.

The value of the data in this register at startup time is indeterminate. The ROM
code should initialize this register before the processor MSR EE bit is set to
allow interrupts.

9.2.3 External Interrupt Source Register (XISR)

This register is a 3-byte register that contains the identifier of the source of the
interrupt. Each processor has its own XISR. This register is in real memory
space at address BA + 1 and BA + 5. However, this register shall be accessed as
part of the XIRR for purposes of atomicity. Issuing a Load instruction to the
XIRR at address BA+0 causes the XISR to be Loaded into the processor with no
side effects. This is designed for software polling of external interrupts. Issuing
aLoad instruction to the XIRR at address BA+4 has the side effects of resetting
the XISR to 0x000000 atomically after the contents of the XIRR have been
transferred to the processor. Subsequent interrupt requests of more favored
priority shall then cause an interrupt to be signaled and presented in the XIRR.
For more information see Section 9.2.1, “External Interrupt Request Register

Engineering Note

Because software will be
issuing Load and Store
instructions to the CPPR
frequently, the
performance of a Load
and Stores to this
register should be
optimized.

The assignment of 4-bit
interrupt source numbers
to internal BUC
conditions are device
dependent. Normally the
assignments will be
contiguous starting with
the value of 0.

Bits 0—10 of the XISR,
the Hardware
Implementation
Dependent Field 1, may
be used by
implementations
requiring BUID extension
or routing bits. A system
may use this field (or
portions of this field) for
routing an interrupt reset
to a system bus on
which a BUC resides.
This field (or portions of
this field) is expected to
be used as a routing field
in systems with a
hierarchical MP structure
where there are multiple
buses. The BUID
extension is not part of
the address of the BUC,
and the BUC does not
need to look at the BUID
extension field.
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Engineering Note

The value of the data in
the XISR at startup time
is indeterminate. The
IPL ROM code should
initialize this register
before the processor
MSR EE bit is set to
allow interrupts.

(XIRR),” on page 165. The value which gets written into this register by
hardware is one of the following:

B For a BUC, an 11-bit “Hardware Implementation Dependent Field 1”
concatenated with the BUID (assigned by the system at configuration time)

concatenated with a 4-bit interrupt source number of the interrupt within the
BUC.

B For an MFRR, a BUID (assigned by the system at configuration time).

A single physical BUC may be assigned multiple 4-bit interrupt source groups
thus the architecture allocates interrupt sources in groups of 16. Thus, BUCs
which need to specify more than 16 interrupt sources must use multiple
sequential BUIDs. The BUIDs shall be allocatable in a compact form starting at
0 so that the content of the XISR may be used as a direct index into an interrupt
source vector data structure (this implies a system configuration method that
allows software to be able to set the BUID for any given BUC). Several values
have special meanings in the XISR, see Table 59 for the XISR bit meanings and
Table 60 for the special values.

XISR Bits | XIRR Bits | Meaning

0-10 8-18 Hardware Implementation Dependent Field 1: These bits are
reserved for use by the hardware and have no other architected
use. This field is not to be used as a communication vehicle be-
tween hardware and software, that is, hardware cannot expect
software to take any actions as a result of values in this field.

11-19 19-27 BUID: These bits indicate the BUID of the interrupting BUC.
20-23 28-31 Interrupt Source: These bits indicate one of 16 possible caused of
interrupts for the BUC.

Table 59. XISR Content for T=0 and T=1 BUCs

Value Meaning
0x000000 Reset: This value indicates that there are no current external interrupts
pending. The XISR takes on this value as a side effect of a load from the
XIRR at location BA + 4.

0x000001 Early Power Off Warning (EPOW): This value indicates that an EPOW
interrupt is pending, that is, a change to any non-keylock field in the pow-
er/keylock status register in table 7 on page 13.

0x000002 Inter-Processor Interrupt (IP): These values indicate that an Inter-Proces-
and up to but not | sor Interrupt is pending (see the definition of the MFRR, below). There is
including the | one value allocated per MFRR. In an SMP System, each processor has an
first BUID value | MFRR with its XISR value of 0x000002. The system configuration soft-
ware shall set up the first BUID in the system such that the value loaded
into the XISR for the lowest BUID shall be greater than the largest pre-
viously defined BUID values.

Table 60. XISR Special Values
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Address Byte 0 Byte 1 ] Byte 2 ‘ Byte 3 | Comments

BA+0 | G_MFRR ISSR Required QIRR for SMP Systems

Table 61. Interrupt Management Area: Interrupt Presentation Layer Registers

9.2.4 Queued Interrupt Request Register
(QIRR)

The Queued Interrupt Request Register is a 4 byte register with the first byte
being the Most Favored Request Register (MFRR) and the remaining low order
3 bytes as being either the ISSR or unimplemented or reserved. Software may
write either a single byte, the MFRR or a full four bytes.

9.2.5 Most Favored Request Register (MFRR)

This is a 1-byte register. The content of this register is controlled by software
and indicates the most favored Inter-Processor (IP) interrupt priority on an IP
interrupt queue for the processor or server to which the particular MFRR is
associated. If an MFRR for a processor is set to a value of Oxff, then there are no
items in that IP interrupt queue for that processor, and the hardware is not to
signal an IP interrupt to that processor. When software puts something on an IP
queue for a processor, it shall also set this register to the priority of the most
favored item on the IP queue. When this register is a value other than Oxff, it is
treated by the interrupt routing layer as another interrupt request competing for
presentation to the processor via the XIRR. When the value in an MFRR is the
most favored of all interrupt requests directed to the processor, an appropriate
value is placed into the XISR (see Section 9.2.3, “External Interrupt Source
Register (XISR),” on page 167) and an interrupt is signaled to the processor. As
with all other interrupt sources, an MFRR interrupt shall be resubmitted if and
only if the interrupt condition has not been reset when either the interrupt is
rejected by the routing layer or software issues the End Of Interrupt. The
interrupt condition is taken to be an MFRR value other than Oxff, therefore,
once the MFRR has a non-0xff value, and the interrupt routing layer has started
to route the interrupt, the interrupt routing layer shall not reroute the interrupt
request to the interrupt presentation layer because of a subsequent change of
value in the MFRR. The only way that the interrupt routing layer will reroute
the MFRR interrupt request is due to an interrupt rejection or an interrupt reset
(given that the MFRR does not have the value 0xff). The MFRR’s value is only
changed due to a software store. Each processor has at least one MFRR. There
is also one or more global MFRRs in an SMP system.

Hardware does not initialize the MFRR so software should initialize it prior to
the first setting of the processor’s MSR EE bit to allow interrupts.
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The MFRRs associated with a specific processor’s IP interrupt mechanism is
located at an address of BA+12, BA+16, and so on. The addresses of the
MFRRs associated with global queues are defined in Section 3.3 in Table 8 on
page 15.

9.2.5.1 Programming Timing Considerations

Due to unpredictable delays of the queueing in the interrupt routing layer,
software can make no assumptions as to when an interrupt caused by a store to
an MFRR will occur. Nor can software assume that changing the value of the
MFRR from one non-0xff value to another will have any direct/predictable
affect upon the interrupt presentation sequence.

The value loaded into the MFRR is a guide to the interrupt routing layer, there is
no architected mechanism to make it globally performed. When an
inter-processor interrupt is signaled to the processor, the software shall rely
upon the in storage request queue which can be maintained consistently via
architected locking primitive operations.

Depending upon the software/hardware interactions, any of the following
conditions could occur:

B The priority of the incoming inter-processor interrupt may be more or less
favored than the highest priority request on the queue — software should
adjust the CPPR value according to the queue request priority.

B If multiple queue requests are processed per inter-processor interrupt cycle,
an inter-processor interrupt may be signaled to a processor when the request
queue is indeed empty. Software should perform an XIRR load of
BA+4/Store BA+4 sequence for each inter-Processor interrupt request it
processes.

9.2.6 Global Queue Interrupt Request Register
(G_QIRR)

The Queued Interrupt Request Register is a 4 byte register with the first byte
being the Global Most Favored Request Register (G_MFRR), which is an
MFRR, and the remaining low order 3 bytes as being the ISSR. Software may
write either a single byte, the G_MFRR, or a full four bytes.

The ISSR (Interrupt Source Specification Register) contains the value to be
loaded into the XISR when the interrupt associated with the corresponding
MFRR is signalled to a processor.
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9.2.7 SMP Global Queue Interrupt Routing
Masks (GQ_IRMs)

Symmetrical multiprocessor (SMP) systems use the GQ_IRM as its
communication mechanism for determining which processors are available for
the use of global queues. The location of the software/hardware interface for
the GQ_IRMs is defined in the IPLCB, which contains the number of global
queues and a variable length structure for each global queue supported which
allows for various placements for this support. See Section 3.3.3,
“IPLCB/Global Queue Interrupt Routing Mask Location Interface,” on page 16
for the software interface to the GQ_IRMs.

During initialization, the firmware initializes each supported GQ_IRM to no
processors available for global queue routing. Software has the responsibility
of assigning processors to service the global queues.

The hardware/software communication protocol allows the hardware to read
from the GQ_IRM and software to both read and write the GQ_IRM. The mask
is a 32-bit value with one bit set to a one and the rest of the bits set to zeros.
Software is expected to read from the GQ_IRM using the loc_pN_raddr and to
write to the GQ_IRM using the loc_pN_waddr as a 32-bit word. In order to turn
on a specific processor, the software should read the GQ_IRM verification
word associated with the processor OR in the mask associated with the
processor and write back the word associated with the specific processor.
Similarly, to turn off a specific processor, the complement of the mask would be
ANDed with the word read and the new word would be written back.

9.2.8 Available Processor Mask (APM)

The Available Processor Mask (APM) facility is a required hardware facility
for SMP systems. The APM is used by the interrupt routing layer hardware to
know which processors are available for routing interrupts. The support for this
facility is required at system initialization.

The read and write addresses are 32-bit word aligned addresses and software is
expected to read and write on 32-bit word aligned boundaries. The processor
number is expected to be used to form a mask to turn a processor off or on. The
mask (constructed by software) is a 32-bit value with one bit set to a one and the
rest of the bits set to zeros. This mask is constructed modulo 32, for example,
access to the 35th processor would be formed by using a mask with the
remainder of 35/32, which is 3 or the third bit or bit 2 (starting from 0) in the
mask word set to one (0x2000). In order to turn on a specific processor, the
software should read the APM verification word associated with the processor
OR in the mask associated with the processor and write back the word
associated with the specific processor. Similarly, to turn off a specific
processor, the complement of the mask would be ANDed with the word read

Engineering Note

Although hardware could
support a single address
for the APM to be both
written and read from
software, it is
recommended that
hardware support two (2)
separate addresses.
This is especially true if
the location(s) of the
APM is(are) in NVRAM
with the changes
monitored by a Service
Processor.

Architecture and
Programming Note

In order to write machine
independent software,
software should poll for
the change. In order to
provide for software that
runs efficiently on all
machines, it is
suggested that a time
delay be used between
reads that do not reflect
the changed value.
Because hardware may
change the value
immediately to indicate
that all NEW interrupts
shall use the new mask,
software shall be
prepared to handle
interrupts that had
previously been issued
and that may still be in
the pipeline.

Hardware documentation
should specify the
minimal, nominal, and
worst case support for
the change to take
effect.
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and the new word would be written back. Software should write using the write
address and verify using the read address.

Software shall be able to verify that any change has taken place. The architected
mechanism is for software to issue a read after a write. Once the read value
reflects the value written, the hardware shall have guaranteed that the change
has taken place; that is, all NEW interrupts shall use the new mask.

Software shall be able to verify that any change has taken place. The architected
mechanism is for software to issue a read after a write. Once the read value
reflects the value written, the hardware shall have guaranteed that the change
has taken place; that is, all NEW global interrupts shall use the new mask.

9.2.8.1 IPLCB Interface for Available Processor Mask
(APM) Format

It is recommended that the Available Processor Mask be kept in NVRAM with
some type of CRC checking.

Byte length Identifier Description
(in bytes)
0 4 num_processors Number of Processors (N)
4 4 access_id_waddr Access Identification of type of Access for
loc_waddr

(IF ( access_id_waddr == 0 ) then normal
memory map access at loc_waddr )

(IF (access_flag_waddr == 1) then
machine DD access at loc_waddr)

8 4 loc_waddr Real Address of First Processor 32-bit
(software write address) start

12 4 access_id_raddr Access Identification of type of Access for
loc_raddr

( IF ( access_id_raddr == 0 ) then normal
memory map access at loc_raddr )

(IF (access_flag_raddr == 1 ) then
machine DD access at loc_raddr)

16 4 loc_raddr Real Address of First Processor Verification
(software read address) start

Table 62. IPLCB/Available Processor Mask Location Interface



System
Exception
Processing

The following is the system architecture for the processing of system exception
conditions. The architecture addresses exception detection and logging, and,
specifically, does not support system recovery. The intent of the document is to
specify the architecture for systems which elect to implement this function. It
describes the architected system facilities required to support the architecture,
and the actions the system elements are to take in response to system error
conditions. The detection mechanisms rely on error detection logic, such as
parity and Error Correction Code (ECC) checking, but must also cover protocol
and time-out error conditions.

10.1 Exception Handling

In general, when there is no data integrity exposure, it is preferable to retry error
conditions that may be transient to avoid end user interaction. In the remainder
of this section, it is assumed that the errors under discussion are non-transient
errors. Also, whenever there is no data integrity exposure, it is preferable to
cause the least system (and thus end-user) impact.

The strategy for handling non-transient (errors that still occur after retry) errors
is torecord sufficient information to let the operating system recover from some
set of problems, and to stop the system as close to the point of error, as possible,
for other cases. With this in mind, a number of system exception facilities are
defined by the architecture. State data, maintained in these facilities and others,
must be accessible to isolate the failing components. Depending on the
recoverability of the error, one of the interrupts, in Section 10.1.2 on page 174,
shall be generated to signal the system to initiate its error handling sequence.



174

Chapter 10 System Exception Processing

Engineering Note

With increased operating
frequencies (50+ Mhz),
timing errors are more
likely to occur, and,
therefore it is
recommended that
additional debugging and
isolation facilities be
introduced into the
designs. This assists not
only in servicing the
system, but in shortening
the test cycle during
development.

10.1.1 Target Market Categories

Appendix “Target Market Categories,” starting on page 239, defines the
minimum level of exception processing support, in terms of error checking,
detection, logging, retry, and service and exception facilities, required for a
given system implementation. In the error handling section of Table 75 on page
241, logging refers to recording system state into NVRAM or system registers
for later processing by system software. The categories are defined to correlate
to a system’s market segment and price point. In general, when a given element
is defined as being required, it is applicable to both the processor and Bus Unit
Controllers (BUCs) of the system.

As you progress from the low-end, or Class-1 category, to the Class-6 category,
the requirements are more stringent, and costly to implement. As an example,
in the Class-1 category, there is:

B Minimal error checking, or exception handling or registers
required

At the other end of the spectrum, the Class-6 category demands:
N Al memory, bus, and caches must be ECC protected

B Detection of processor and bus transaction time-out conditions
B Detect, and not propagate, log, and attempt recovery from errors
B Provide service processor interfaces

B Provide exception facilities and I/O retry

With the preceding information as background, the remainder of this chapter
defines the System Exception Architecture and facilities in support of this
architecture. The categories of implementations are included here to clarify the
basis for design.

10.1.2Interrupts and Checkstop

In this section, interrupts and checkstop, which result from system exceptions,
are presented along with the system actions which result. For details on
interrupt processing internal to the system processor, reference the PowerPC
Architecture (book III).

10.1.2.1 Checkstop

A checkstop condition causes the system to enter a state from which the only
recovery sequence is to reset the hardware, presumably, after some service
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action. When this interrupt is signalled, the processor shall freeze its state to
allow hardware, such as an Engineering Support Processor (ESP), to record the
strings in nonvolatile memory and allow software to subsequently analyze the
information collected. Examples of conditions which result in a checkstop are:
address parity errors, internal parity, and instruction dispatch time-outs by the
processor. Other sources may also signal this interrupt, whenever the ability of
the processor to reliably process instructions is in doubt, and BUCs must be able
to latch the condition, so as to permit the actions previously described.

10.1.2.2 Machine Check

Although, machine check interrupts may occur due to a variety of reasons, for
example, address range errors and bus time out errors; the typical source for a
machine check interrupt is associated with memory access errors. These may
have been caused by hardware failures in the memory subsystem or, during
DMA operations, when an invalid ECC may have been written with the data to
indicate bad data parity on the store operation. If the processor detects a data
parity error on a DSS load operation, it shall also signal this interrupt. In
general, the system shall attempt to identify and log the cause of the error and
resume execution. If this is not possible, it shall enter the checkstop state.

10.1.2.3 External

An external interrupt is used to signal either error conditions that are detected in
the system logic or BUCs, or service requests from another processor or BUC.
On uncorrectable memory errors, during DMA operations, this interrupt could
also be used to notify the system of an error condition. It can also be generated
by a time-out condition, and is an alternative to a checkstop or machine check
condition, when in diagnostic mode.

10.1.2.3.1 Early Power Off Warning (EPOW) Interrupt

In the event that power must be dropped in an emergency, an early warning
signal is given to the processor. This signal shall be activated at least 4ms prior
to the loss of DC supply regulation. The cause of an EPOW interrupt can be
seen in Table 7 on page 13.

In the event of an EPOW, the software can try to complete critical I/O
operations prior to the loss of power. In the event of a false alarm transient, the
system can be easily restarted. If power does totally fail, a full system restart
shall be required.

10.1.3 Exception Conditions

The system response to the following exception conditions are outlined in
Table 81, “System Exception Processing,” on page 251. The errors associated
with data and address parity in the table, refer to an error that occurs on the
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Engineering Note

These resources are
provided to allow
software to identify the
memory errors and
detect areas of storage
with questionable
reliability. By logging the
errors and analyzing the
log at a later time,
software can identify
storage areas that
contain single bit hard
failures or that are more
susceptible to soft errors
than is acceptable. The
intent is to capture the
information needed to
isolate to the FRU (Field
Replaceable Unit).

transfer across the bus. Parity errors that occur within the BUCs are marked as
BUC internal errors and are presented as external interrupts.

Section E.4.2, “System Exception Processing,” on page 249, refers to
exception condition which can not be attributed to a specific system operation,
but occur due to program or logic errors. References are made to diagnostic
mode in this section, the definition and requirements associated with it are
presented in Section 10.1.8 on page 180.

10.1.3.1 Hardware Correctable Memory Error

The system response to a hardware correctable memory error is to record the
type of error in a status register, and save the referenced address. For systems
with single Bit Error Correction/Double bit Error Detection (SBEC/DBED)
ECC, single bit errors may be automatically corrected by the hardware, in
memory or may be corrected on each access. If correction is not implemented a
mechanism to protect against error propagation must be provided. No other
system indication is required, although software may monitor and record
occurrences. In diagnostic mode, if supported, an external interrupt is
generated.

10.1.3.2 Hardware Uncorrectable Memory Error

Under this error condition, the memory controller shall log the type of errorin a
status register and save the referenced address. Signals on the system buses
shall be sent by the memory subsystem to the processor, I/O, or other BUCs, as
indication of an error condition. On some systems, if the error cannot be
presented on the same bus tenure as the error, a checkstop shall be signalled.
Additional information may be logged through system-specific exception
registers to isolate memory errors to the failing component. In diagnostic
mode, if supported, an external interrupt shall be generated for these cases.

10.1.3.3 Address Range Error

This exception is detected when a real address is presented which falls in the
data space of the system address map, but is outside of its physical extents. The
cause may be either a hardware malfunction, for example, an address in error
being propagated or a device not responding, or by a software error in
computing the address. This error is logged by the processor or BUC and an
interrupt shall be signalled by the system. In diagnostic mode, if supported, the
error shall be presented as an external interrupt.

With the introduction of real address memory mapped devices, an address
range error is not, solely, within the province of the system memory controller.
Therefore, unless specific facilities are implemented to detect this condition, it
may go undetected for store operations and shall default to a time-out error for
read operations. If the error is detected (as expected on the 60x bus which
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requires a response for a store), then the information to diagnose the errant
address should be captured and logged.

10.1.3.4 Address Parity Error

For system implementations in categories above Class-2, an address parity
error on the system bus shall ultimately result in a system checkstop condition.
Since the information on the bus is corrupt, the target of the transaction on the
bus is suspect. Itis assumed that parity is checked at each BUC and each BUC is
responsible for detecting and signalling a checkstop. Each BUC shall also save
the parity bits associated with the address, and, additionally, the contents of the
address bus are held for hardware access.

BUC:s are to indicate this condition to the system, as a diagnostic aid, by all
recording the occurrence in their status and address registers, but will not signal
a checkstop. In diagnostic mode, the system will also be checkstopped.

10.1.3.5 Data Parity Error

For a write request where an uncorrectable data parity error is detected, the
memory subsystem could signal an error condition or defer it by writing storage
with invalid parity or an ECC code to indicate an error was detected on the write
to memory. In this case, the operation is aborted and no interrupt is generated.
As with the address parity condition, the parity fields associated with the data to
indicate which byte(s) is in error are saved in an error status register. In
diagnostic mode, if supported, an external interrupt is also generated.

10.1.3.5.1 Memory Mapped (T=0) Access

For system implementation in categories above Class-2, an uncorrectable data
parity error shall result in a machine check or checkstop. This can occur as the
error is detected or on a subsequent access to that data. In either event the error
type and corresponding address must be logged.

10.1.3.5.2 Direct-Store (T=1) Access

On an access to a Direct-Store Segment (DSS) the controller shall indicate that
the error occurred and the processor shall generate a Data Storage Interrupt
(DSI).

10.1.3.5.3 DMA Access

A parity error on a DMA Read Request results in the operation being aborted
and an external interrupt being generated.
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10.1.3.6 Processor or BUC Error

For processor or BUC errors, other than internal processor errors or those
resulting in a checkstop state, refer to Chapter “Bus Unit Controller (BUC)
Architecture” starting on page 59, for requirements, and to Chapter “IOCC
Architecture” starting on page 75 for IOCC specific examples. For DSS
transactions these exceptions are reported as DSIs, all others may be reported as
external interrupt. In diagnostic mode, if supported, a BUC internal error shall
be reported as external interrupts.

For processor internal errors, the action taken by the processor will be
implementation specific. However, the system requirement, when internal
errors are detected, which result in a checkstop state are:

B The processor/BUC signals the system when it enters the checkstop state.

B The processor/BUC monitors a system checkstop signal and enters the
checkstop state when asserted.

10.1.3.7 Time-out Error

In order to detect hung conditions caused by any number of sources, each
transaction on the bus which expects a response, and internal processing within
the processor must be protected by a timer. Table 82, “System Time-out
Processing,” on page 253 defines the time-out conditions and appropriate
system response.

The bus master will usually control the time-out event and, if so, it is
responsible for logging the event in a status register along with the
corresponding address. Alternately, in systems where only one bus transactions
is outstanding at a time, the time-out function could be centralized. The
granularity and number of timers required is implementation dependent.

10.1.4 Processor Designs

A processor must have the following interfaces defined, when its intended use
is in system implementations above category Class-1:

1. External interrupt

2. Checkstop input/output

3. System Reset input/output

4. Data Transfer error/Bus Check

The following shall be required for system implementations above category
Class-2:
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1. Data parity input/output
2. Address parity input/output

In addition to the interrupt mechanisms defined by the PowerPC processor
architecture, the following internal detection mechanism must be supported:

1. Internal error detection (system implementation above category Class-2)

2. Instruction dispatch time-out (system implementations above category
Class-3)

10.1.5 BUC Designs

A BUC must have the following interfaces defined, for system
implementations above category Class-1:

1. Checkstop input/output
2. System Reset

The following are required for system implementations above category
Class-2:

1. External Interrupt
2. Data parity input/output
3. Address parity input/output

In addition to the interrupt mechanisms defined by the BUC architecture, see
Chapter “Bus Unit Controller (BUC) Architecture” starting on page 59, the
following internal detection mechanism must be supported by system
implementations above category Class-3:

1. Time-out Detection (master BUC only)

The following are required for system implementations above category
Class-2:

1. Internal error detection

10.1.6 Real Address Memory Mapped I/O

There is, currently, no architected error detection or recovery mechanism for
errors that occur during stores to real address memory mapped I/O.

10.1.7 Multiprocessor

The system actions which results from an error internal to the processor is
implementation dependant. For example, a checkstop condition presented by
any of the processors could cause the system to checkstop. Since data required
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Engineering Note

Data in the sytem
exception registers can
reflect only one
occurrence of multiple
events. Data loss
between software or
hardware reset of the
registers is allowable,
since most errors are not
recoverable. The one
exception is single-bit
errors, but no
requirement to record
multiple occurrences has
been specified.

by one of the other processors is likely isolated in the failing processor, it is best
to preserve system state by checkstopping the system, and logging the error
state.

10.1.8 Diagnostics

Systems, above category Class-2, must provide, for bring-up and debug
purposes, a means for error conditions to be masked or presented in a less
disruptive manner. A diagnostic mode bit may be defined for this purpose. In
diagnostic mode, if supported, a checkstop condition may be presented as an
external interrupt. The diagnostic mode bitindicates to a BUC that the system is
operating in this mode. Since a checkstop state, would normally result in the
system being halted, the type and the source of the error must be captured to be
able to determine the source of the error.

10.1.9 System Exception Support Facilities

To assist in problem determination and isolation, a set of registers has been
defined to maintain exception status and address information. The IPLCB is the
machine-dependant method of identifying the location of system exception
facilities. These are read-only registers that are set by hardware and are
automatically reset when read by software. They contain the first occurrence of
the highest priority event they monitor. The set of registers is defined on a per
BUC basis. As an enhancement, a stack could be supported that maintains a
history of the first n-events.

10.1.9.1 System Exception Registers

Each system BUC may have system exception register(s). The set may consist
of registers documented in this book, and other system-specific registers, which
are not documented in this book which are considered implementation
dependant. If a “documented” register is implemented, its fields should be
coded as defined in Appendix E.4 on page 248 to minimize the variations of
system software needed to process the data. “Documented” registers which are
not implemented shall return a value of zero.

10.1.10 System Exception IPLCB Interface

The IPLCB has data and pointer fields defined to locate the system exception
registers. The placement of these facilities is restricted to the upper four (4)
gigabytes because on a 64-bit word machine, software shall assume that the
upper 32-bits are all ones. The IPLCB software interface must allow for the
different machine dependent placements to be in NVRAM.

The IPLCB shall contains a structure of the form defined in Table 63.
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The first field associated with the exception registers in the IPLCB holds the
number of Identification, data length, and pointer fields which follow it. The
pointer fields are used to address system exception register structures in
memory mapped, I/O address spaces, or within NVRAM. This structure
accommodates a variable number of BUCs, system exception registers, and
system-specific exception register implementations. A value of zero in the first
entry indicates that no exception facilities are implemented.

Byte Length | Identifier Description
(in
bytes)
0 4 num_except_fields | Number of Exception fields (N)
4 4 access_id_1 Identification of type of Access for 1st field
(IF (access_id_1 == 0 ) then normal
memory map for read_addr_1)
(IF (access_id_1 == 1 ) then machine
DD access for read_addr_1)
8 4 read_addr_1 Real read address for 1st field
12 4 num_words_1 Number of 32-bit words to read at the 1st real
address
16 4 access_id_2 Identification of type of Access for 1st field
(IF (access_id_2 == 0 ) then normal
memory map for read_addr_2 )
(IF (access_id_2 == 1 ) then machine
DD access for read_addr_2 )
20 4 read_addr_2 Real read address for 2nd field
24 4 num_words_2 Number of 32-bit words to read at the 2nd real
address
4+12(N-1) |4 access_id_N Identification of type of Access for Nth field
(IF (access_id_N == 0 ) then normal
memory map for read_addr_N )
(IF (access_id_N == 1) then machine
DD access for read_addr_N )
8+12(N-1) |4 read_addr N Real read address for Nth field
12+12(N-1) |4 num_words_N Number of 32-bit words to read at the Nth real
address

Table 63. IPLCB/System Exception Interface






System Bus
Architecture

There exists an interconnection between the various BUCs and system
components, such as, main memory and the processors. This interconnection is
called the “system bus.” Refer to the Figure 2 on page 60 for an example of an
interconnection via a system bus. The primary restriction on implementations
of the bus and the various attachments is the requirement for software
transparency. OS software should not be affected by the different attachments
and configurations, including the hardware support for additional components,
such as, a Level 2 cache. The following two sections are examples of two
System Bus Architectures: the 60X bus and the 6XX bus. Compared to the
6XX System Bus, the 60X is limited in its ability to overlap pipe-lined snoops.
Specifically, the 6XX System Bus is designed for more concurrency and better
scaleability with frequency as compared to the 60X bus.

11.1 60X Bus Overview

The system perspective of the 60X bus is a processor independent interface that
supports the memory model defined in the PowerPC Architecture (book IIT) for
32-bit implementations. The bus is synchronous, with all timing relative to the
rising edge of the bus clock. Input are sampled and outputs are driven from this
edge. Depending on processor implementation, the bus clock may run at the
processor rate or it may be ratioed in some manner. The bus supports
multi-master operation through arbitration provided by the system. The
arbitration function is defined so that the arbiter can “park™ any master on the
bus, eliminating arbitration overhead. The 60X uses separate address and data
busses and a variety of control and status signals. The address bus is 32 bits
wide and the data bus is 64 bits wide.
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11.1.1 60X Bus Memory Coherence

The bus supports maintenance of a coherent memory system using the
Note

A detailed description of
the maintenance of the
coherent memory system
can be found in PowerPC
Architecture  (book Il).
601 specific processor re-
lated information is con-
tained in the correspond-
ing PowerPC 601 User'’s
Manual.

See PowerPC Architec-
ture (book lll), “Storage
Segments,” for informa-
tion regarding direct-store
segments.

Modified Exclusive Shared Invalid (MESI) snoop protocol found in the 601,
604, and 620 processors and the Modified Exclusive Invalid (MEI) snoop
protocol found in the 603 processor. Coherency of memory is maintained at a
granularity of 32 bytes. In order to maintain a coherent memory system, each
processor must broadcast the intention to read a sector that is not in its own
cache as well as the intention to write to a sector that is not currently owned
exclusively by the processor itself.

11.1.2 60X Bus Transfer Protocols

The bus supports two transfer protocols. The Basic Transfer Protocol is used
for accesses to normal storage segments and supports transfer of any number of
contiguous bytes within an aligned double word. It also supports transfer of
aligned 32 byte blocks via a multi-beat (burst) transfer. The 60X bus provides a
peak data bus bandwidth of 8 bytes per bus clock in the Basic Transfer Protocol
that is a 264 MB peak throughput per second on a 33 MHz bus. The Extended
Transfer Protocol, used for accesses to Direct Store Segments, provides an
extended address, split transactions and a positive reply for each transaction.
Because the performance of these transfer is limited compared to the basic
protocol, this mode is only for compatibility with Power Architecture. Both
transfers consist of an address and a data tenure each having three phases:
arbitration, transfer and termination. Following are outlined the functions
performed on the bus during each phase:

Address tenure:

W Arbitration — A master is trying to gain ownership of the address bus

B Transfer — The master drives the address and address related signals on the
address bus

B Termination — The master terminates the address tenure or, if a condition in
which the address tenure must be rerun is detected, the master issues another
bus request.

Data tenure:
B Arbitration — A bus master is trying to gain ownership of the data bus

B Transfer — The master samples the data bus for reads or drives the data bus
for writes

M Termination — The master terminates the data tenure unless a condition in
which the data tenure must be retried is detected.
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Furthermore, the 60X bus also supports address-only-transfers, which have an
address tenure but no data tenure. This capability is used for a variety of
broadcast operations useful in multiprocessor system.

11.2 6XX System Bus Overview

The 6XX bus is an interface for attachment of memory and high speed 1/O
devices expected to be used by future RISC System/6000 PowerPC System
Architecture compliant systems. It provides the capability to build I/O data
consistent systems as well as SMP ( Symmetric Multi-Processing ) systems. It
is intended to support PowerPC system implementations. It assumes that one of
the devices on this bus is an I/O controller chip that implements the BUC
Architecture as defined starting on page 59.

This bus can be used as a high end Processor bus, an I/O mezzanine bus, or a MP
system bus for mid range systems. It shall accommodate both 32-bit and 64-bit
processors with real memory addressing beyond 32 bits. It supports the
PowerPC asynchronous memory model, and the PowerPC synchronous
direct-store segment model.

Logically this bus definition sﬁpports several functions:
B Memory protocols

B Arbitration protocols

B Cache coherency protocols

B Programmed I/O (PIO) load/store protocols

A device can support one or more of the above, or any combination of these. It
does not need to attach to signals unless they are required to support the protocol
it needs.

The bus consists of separate, i.e., non-multiplexed address bus and data buses.
The address bus is 64 bits wide and supports addressing multiple address
spaces. For example, multiple Microchannel I/O space of 32 bits, real memory
spaces of 48 bits max, special purpose spaces to pass interrupts and processor
commands, etc. The data bus width is defined to be 8 or 16 bytes (2 or 4 words).

These separate address and data buses, run mostly independent, thus allowing
true split transactions. The requests and replies are tagged, allowing out of
order replies, which are common for PIO to another bus or in a Non-Uniform
Memory Access time (NUMA) environment.






Bring-Up
Function and
IPLCB

A global data structure, called the IPL Control Block (IPLCB), shall be created
in main memory by IPL ROM after a sufficient amount of memory testing has
been completed. This structure is re-created each time a system goes through a
“hard initialization” (hard IPL), which is the equivalent of a power-on
initialization. The structure is kept intact throughout the IPL process. On a
“soft initialization” (soft IPL), the IPLCB shall be used in its existent state by
the IPL ROM (i.e., it will not be recreated). The “official” definition of this
structure is maintained in a C header file named iplcb.h which resides in both
the AIX and the IPL ROM build environment. It also resides in the
“fusr/include/sys” directory on systems that contain AIX. The structure is
passed to the Operating System upon a successful IPL and contains information
that is used by the Operating System. Itis also passed from routine to routine in
the IPL ROM execution environment as is explained later.

12.1 SMP Bring-Up Function

Initial Program Load (IPL) Read Only Memory (ROM) requires certain
capabilities from 6xx hardware to be able to effectively boot a Symmetrical
Multiprocessor (SMP) system. These requirements are listed below and are
conditions that must be met before a Power-On Reset (POR) causes control to
be passed to IPL ROM at IPL ROM offset location 0x100 from the IPL ROM
start address, refer to Section 3.1, “Memory Map,” on page 7 for the architected
IPL ROM starting address.

B One and only one processor shall be executing instructions. This processor
shall be the one in control of instruction execution (at IPL. ROM address
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Note

Although the architecture
for the Available
Processor Mask (APM)
is defined to allow “Live
Insertion,” that is,
installing and using in a
new processor after
power is applied, the
complete support for this
function is not defined in
this book. For additional
information regarding the
APM, refer to Section

9.1 on page 157 and to
Section 9.2.8 on page
171.

0x100) after a POR sequence is complete. Other processors present must be
disabled (effectively in a reset state) after the POR has completed.

B IPL ROM must be able to uniquely identify each processor so it can
associate instruction execution with a processor.

B IPL ROM must have the capability to start up each of the processors from its
reset state.

B TPL ROM must have the capability to selectively put each of the processors
into its reset state.

B IPL. ROM must be able to determine the number of processors that are
configured in a given system. This algorithm (if not a simple read of data
from a system register) must be able to determine the presence of a processor
that may not be able to execute instructions (a “broken” processor) and a
processor that is not present (unplugged).

12.2 IPL Control Block (IPLCB) Interface

This document does not detail all of the structures within the control block.
However, sufficient information is given to allow understanding, locating, and
using any of the structures that may be present. The latest level of the iplcb.h
header file should always be used when detailed information in the IPLCB is
required.

12.2.1 Purpose of the IPLCB

The two main purposes for the existence of the IPLCB are:

B IPL. ROM Power-On Self-Tests (POSTs) and Device Interface Routines
(DIR) use “scratch pad” areas defined within the IPLCB to keep track of
machine state information.

B IPL ROM passes configuration information, VPD information, and the like
to the Operating System via the IPLCB. IPLCB is the preferred source for
system configuration information required by AIX.
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12.2.1.1 General Notes and Graphical Presentation of
the IPLCB Definition

1. The address of the IPLCB is on a page boundary.

2. All offset values are referenced to the address of the IPLCB.

3. The gpr_save_area[32] is a fixed length (128 bytes) and is always the first
structure in the IPLCB.

4. The ipl_directory is the second structure in the IPLCB and starts at the
129th byte.

5. The memory_bit_map is the last structure.

6. The ipl_directory structure contains the offset and size (in bytes) of all
IPLCB structures except the first two. The size of the ipl_directory is the
value of ipl_info_offset minus sizeof(gpr_save_area). The size is used to
determine the number of offset/size pairs that are present.

7. Except as noted above, the order of the structures within the control block
are determined by the offset values that are maintained within the
ipl_directory.

IPLCB Front End Structure :

typedef struct ipl_cb {

unsigned int gpr_save_area[32];

struct ipl_directory s0;

} IPL_CB, *IPL_CB_PTR;

The front end structure is the only structure that should be referenced by name:

EX:
my_var = IPL_CB.s0.ipl_info_offset;

All other references should be a pointer reference in order to be able to maintain
binary compatability with the operating system:

EX:
my_var =

(struct iocc_post *) ((uint)IPL_CB_PTR + IPL_CB_PTR->s0.iocc_offset)->iocc_data;
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IPL_CB_PTR
(address of IPLCB)

ipl_directory

IPL Control Block

offset to struct ipl_info : -

uint struct_size;

_uint num_of_structs;

int offset_to_related_struct;

uint gpr_save_area[32];

typédef struct ipl_directory {
contains offsets and sizes

of structures with the

control block

} Name, *ptr_name;

typedef struct_ipl_info {

} name, *pir_name;

typedef struct nio_post {

} name, *ptr_name;

typedef struct processor_array {

e, *ptr_name;

} name, *ptr_name;

typedef struct buc_info{

} name, zptr__name;

_ » ~ memory_bit_map

Figure 39.

Graphical representation of the IPLCB
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Vital
Product
Data (VPD)

Vital Product Data is the electronically sensed data which uniquely describes
each hardware, software, and microcode configurable element of the system.
Configuration is the information that identifies the physical and logical location
of each element of the system. One of the requirements for VPD is in support of
Reliability, Availability, and Serviceability (RAS), failure analysis, and
administrative support systems which rely on this mechanism to describe a
machine’s installed configuration. The target of most VPD resources are field
replaceable or customer replaceable devices.

In current AIX implementations, the VPD data is gathered by a software device
driver and stored in a repository (the ODM). The defined VPD format is
described below. If the data format for a device deviates from the defined
standard, then the individual device driver must convert that data into the
correct format before storing in the repository provided by the Operating
System. It should be noted here that if any data values are stored in binary on a
device, it is the responsibility of the individual device driver to convert the data
to ASCII or a hexadecimal representation of the binary value in ASCII before
storing data in the repository.

13.1 VPD Format

The keyword header on the device is composed of 4 bytes of information. The
first character is “*” in ASCII. The next two characters are an abbreviated
mnemonic associated with a specific descriptor. The last byte is in binary and
represents the total length (in words) of the keyword descriptor including its
header. The length byte is represented in Section 13.1.1, “Keyword
Definitions,” on page 192 by “£”. The value of 4 is the total byte count divided
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Note

Refer to the IBM Personal
System/2 Hardware Inter-
face Technical Refer-
ence-Architectures
(S84F-9808) manual for
information on the POS
registers.

by two (2) (to convert from words to bytes). Hence, descriptor data is always an
even number of bytes. Padding of fields to achieve an even byte count is
required for each keyword.

The format for the data as it appears on the hardware differs from the format
used by the Product Topology Service Aid interface. The data on the device and
in the ODM contains the £ (length) byte as part of the data. The Product
Topology Service Aid interface strips the length (£) out and retains the “*”, the
two character mnemonic, and the actual data. An example is shown below:

VPD data on the part: “*PN” || 06 || “099F9999”
VPD data on a PT diskette: “*PN” || ”099F9999”

Note that the length field has been dropped in the service aid interface but the
actual data, “099F9999” is replicated exactly as it appears on the part.

Binary data must be described as the ASCII representation of its hexadecimal
value.

13.1.1 Keyword Definitions

The following list identifies the descriptor keywords currently defined for
electronically sensed VPD data.

13.1.1.1 Addressing Field: “*AD” Il £

The addressing field format is unique to each component described. It must
include the Bus Unit Id, and slot designation if appropriate. In addition, it
specifies sufficient addressing information in order to program the adapter. The
format of the addressing field is specified by software. This descriptor is not
present within the machine-readable VPD field contained within an adapter or
channel. Itis added by software to the Configuration/VPD file or NVRAM area
for VPD.

13.1.1.2 Card Id (Adapter Card Id) = “*CD” Il £

The Card ID field is supplied by software after reading the Card ID from POS 0
and POS 1. This descriptor only applies to Micro Channel adapters. This
descriptor is not present within the machine-readable VPD field contained
within an adapter or channel. It is added by software to the Configuration/VPD
file or NVRAM area for VPD.
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13.1.1.3 Device Driver Level (Minimum Required) =
“*DD” Il £

The data portion of this descriptor is in ASCII. It represents the minimum
device driver level required. The first release is level zero. Levels are
incremented by one for each successive level, independent of Operating
System version/modification level. This field is required for all adapters and
channels. If not present, level zero is implied. The minimum value for 4 is 3,
which is two bytes or two ASCII character numbers of descriptor data plus
header.

This represents a “generic” interface level to software. If the interface between
software and hardware changes such that a new interface is required by
hardware, then the value of this level is incremented. This level is independent
of the Operating System being used.

13.1.1.4 Diagnostic Level (Minimum Required) = “*DG”
|3

The data portion of this descriptor is in ASCII. It represents the minimum
diagnostic level required. The first release is level zero. Levels are
incremented by one for each successive level independently of Operating
System version/modification level. This field is required, however, if not
present, level zero is implied. The minimum value for £ is 3, which is two bytes
or two ASCII character numbers of descriptor data plus header.

This represents a “generic” interface level to diagnostics. If the interface
between diagnostics and hardware changes such that a new interface is required
by hardware, then the value of this level is incremented. This level is
independent of the Operating System being used.

13.1.1.5 Drawer Level = “*DL” Il £

The data portion of this descriptor is in ASCII and is two numeric characters in
size. Itrepresents the drawer location within arack for an Enclosure. Levels are
specified beginning with the number “01” in increments of one. The bottom
drawer is designated as level “01” and each level higher is incremented by one.
A “filler” cover or “dummy” location used as a cover to provide spacing in the
rack is assigned its corresponding number. These levels are unrelated to EIA
unit values. These values are originally entered by manufacturing when a rack
is in final manufacturing test. In the field, configuration changes which alter
drawer information must be supplied by the trained customer, or customer
engineer installing the change.
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13.1.1.6 Displayable Message (ASCIl) = “*DS” Il £

This is an optional field which may include a message to be printed or displayed
for this record type. The ASCII character “*” should be avoided within the data
content of this message.

13.1.1.7 Engineering Change Level = “*EC” Il £

The data portion of this descriptor is in ASCII. The characters are alphanumeric
and represent the Engineering Change level for this element. The values of £
may range from 6 to 8, which represents descriptor data counts of 8 to 12
alphanumeric characters. This descriptor number is left-justified. For IBM
released parts this field must contain the IBM EC number.

13.1.1.8 FRU Number for Replacement Parts = “FN” || £

The data portion of this descriptor is in ASCIL. The characters are alphanumeric
and represents the IBM FRU (Field Replaceable Unit) for this element for the
RISC System/6000 product. The values of £ may range from 6 to 8, which
represents descriptor data counts of 8 to 12 alphanumeric characters. The data
is right-justified and padded with higher order zeros. For IBM released parts
this field contains the IBM FRU Number.

13.1.1.9 Pointer t|? Loadable Microcode on the Adapter
- “*LA” £

If an adapter chooses to implement Loadable Microcode using the POS
registers for writing/reading microcode, then this field is used.

13.1.1.10Load ID = “*LI” Il £

The Load Identification is a part of the name of the base “down load” which
may be required by adapters during the IPL process. Data in the field may be
encoded in binary on the device but is externalized in ASCII or a hexadecimal
representation of a binary value in ASCIL.

13.1.1.11 Loadable Microcode Level (Minimum
Required) = “*LL” Il £

The data portion of this descriptor is in ASCII. It represents the minimum
loadable microcode level required. The first release is level zero. Levels are
incremented by one for each successive level. Loadable microcode is
associated with a given Card ID rather than Part Number/EC level. Therefore,
as changes are made to a particular adapter, a corresponding microcode level
may be required for correct operation. This field is required if loadable
microcode is required for functional operation of the adapter. Its presence
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notifies the initialization code of this additional requirement. The minimum
value for 4 is 3, which is two ASCII characters of descriptor data plus header.

This is a “generic” level equivalent in use to device driver or diagnostic level. It
indicates that a significant change has been implemented on the adapter that a
new minimum level of loadable microcode is required.

13.1.1.12 Location (Internal or External) = “*LO” Il £

This descriptor is optional. The data portion of the descriptor contains the
ASCII characters “IN” for internal devices or “EX” for external devices or
other components. The default value for this descriptor is “IN” and is implied if
this field is not specified. This field is generated dynamically by software for
hard files attached to a SCSI adapter which provides “internal” reset capability.
For other devices, it may be entered by the user in the Configuration/VPD
utility. Its use is required for power domain and security domain requirements.
The value of £ is 3.

13.1.1.13 Manufacturer and Location = “*MF” || £

The manufacturer descriptor field is typically six characters of ASCII data. For
IBM built components the first three characters are “IBM”. The next three
characters are the alphanumeric code assigned to each IBM location.

13.1.1.14 Network Address = “*NA” || £

This field is an optional field use by those adapters which require a unique
network address for a local area network. Adapters such as Token Ring or
Baseband use this field. Data in the field may be encoded in binary on the device
butis externalized in ASCII or a hexadecimal representation of a binary value in
ASCIL

When specified, this field must be implemented as the first descriptor keyword
and therefore “*NA” || £ is located at address 00 08. The first data byte is,
therefore, located at byte 12 within the extended storage area located by POS
registers 6 and 7.

13.1.1.15 Address of VPD Data for Next Adapter in
Multi-adapter Cases = “*NX” Il £

This is used by multi-card adapters including those which occupy more than
one card slot. The primary card must provide POS registers. Additional
(secondary) cards must be plugged in slots adjacent to the primary card. This
field specifies the VPD address to be specified in POS registers 7, and 6
respectively, in order to address VPD data on the adjacent (secondary) adapters.
Data in the field may be encoded in binary on the device but is externalized in
ASCII or a hexadecimal representation of a binary value in ASCIIL.
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13.1.1.16 Operating System Level = “*OS” || £

The data portion of this descriptor contains the name of the Operating System
(such as “AIX”) followed by Version, Modification, and PTF level. All
characters are specified in ASCII. Additional data can be included to specify
specific options being used (such as cluster). This descriptor is required in the
Enclosure Record store in NVRAM and the Configuration/VPD file.

13.1.1.17 Processor Component Definition = “*PC” Il £

The processor component description list identifies each chip within the
processor complex including IOCC and SLA components. The first two bytes
of data represent the cycle time of the processor, and the model of the processor,
respectively. Each module (or chip) is then defined with four bytes of
information in binary format sequentially. The first byte for each module
specifies a position on the planar. The second byte specifies a compressed Part
Number. Bytes three and four specify a change level. A group of four bytes is
specified for each chip or module within the processor complex.

13.1.1.18 Processor ID = “*PI” || £

The data portion of this descriptor is an ASCII alphanumeric field which
represents the Processor ID for a Processor Enclosure. This data is normally
extracted from IPL ROM associated with the System Planar.

13.1.1.19 Part Number = “*PN” || £

The data potion of this descriptor is in ASCII. The characters are alphanumeric
and represent the IBM Part Number for this element. The values of £ may range
from 6 to 8, which represents descriptor data counts of 8 to 12 alphanumeric
characters. This descriptor number is right-justified and may be padded with
high-order zeros.

13.1.1.20 Pointer to ROM Code on Adapter = “*RA” Il £

If an adapter chooses to access on-board ROM using the POS registers for
reading microcode, then this field is used. Data in the field may be encoded on
the device in binary, but is externalized in ASCII or a hexadecimal
representation of a binary value in ASCII. The first data byte represents a POS
register to use as a Port to read/write data to the adapter for purposes of reading
microcode on the adapter. Any POS register (0-5) may be specified. The
second byte specifies the number of low-order bit positions of POS register 5 to
use for expanding the address range of POS registers 6 and 7. The address so
formed is specified as:

POS 5 (n low order bits), POS 6, POS 7
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The second byte may be specified from 0 to 6 bits of additional addressability.
Data bytes 3, 4, 5, and 6 specify the initial address for reading microcode. This
is an optional descriptor type available for use.

13.1.1.21 ROM Level /ID = “*RL” Il £

This descriptor is used to identify the part number of any non-alterable ROM
code on the adapter. The data field of the keyword is defined as follows:

B Bytes 0— 11 Part number of the ROM code (alphanumeric ASCII).

B Bytes 12-23 EClevel of ROM code (alphanumeric ASCII), this is optional if
the ROM code PN is not changed when updated.

Previous definitions of the data field for the “*RL” keyword should be phased
out over time.

13.1.1.22 Alterable ROM ID = “*RM” || £

This descriptor is used to identify the part number of any alterable ROM code
on the adapter. The data field of the keyword is defined as follows:

B Byte 0 An optional “field patch level.” A value of “0” indicates “no
field patch applied” (ASCID).

B Bytes 1 — 12 Part number of ROM code (alphanumeric ASCII).

B Bytes 13-24 EClevel of ROM code (alphanumeric ASCII), this is optional if
the ROM code PN is not changed when updated.

13.1.1.23 Pointer to Read / Write Adapter Registers =
““RW” Il £

This is an optional descriptor type available for use. If an adapter chooses to
implement read/write registers using the POS registers, then this field is used.
Adapters may use the POS extended addressing facility or any other method of
their choice to implement access to read/write registers/storage.

The data portion of this descriptor is in BINARY. The first data byte represents
a POS register to use as a Port to read/write data to the adapter for specific
adapter purposes. Any POS register (0—5) may be specified. The second byte
specifies the number of low-order bit positions of POS register 5 to use for
expanding the address range of POS registers 6 and 7. The address so formed is
specified as:

POS 5 (n low order bits), POS 6, POS 7
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The second byte may be specified from O to 6 bits of additional addressability.
Data bytes 3, 4, 5, and 6 specify the initial address for accessing read/write
registers or storage. The size and use of this Read/Write area is adapter specific.
The minimum value for 4 is 5, which represents 6 bytes descriptor data plus
keyword.

13.1.1.24 Serial Number = “*SN” Il £

The data portion of this descriptor is in ASCII. The characters are alphanumeric
and represent the serial number of the device. The value of £ is 6 representing a
descriptor data count of 8. The descriptor data is left justified and may be
padded with low order blanks.

13.1.1.25 Size = “*SZ” Il £

Memory board adapters use this description to specify the size in megabytes.
The data portion contains 1 to 8 digits, left justified, with no leading zero’s and
padded on the right with blanks as required.

13.1.1.26 Machine Type / Model = “*TM” |l £

The data portion of this descriptor specifies the machine type in ASCII for a
length of four characters followed by a “~” and a machine model of three
characters for a total data length of eight characters. Therefore, 4 is specified as
6 representing 8 characters of data plus header.

13.1.1.27 User Data = “*US” Il £

The data portion of this field is an ASCII character string which is specified by
the user utilizing the Configuration/VPD utility. It could be used to specify
owner, location, or similar information. It must contain an even number of
bytes.

13.1.1.28 Pointer to VPD Extended Data = “*VE” Il £

This optional descriptor is used as an address pointer in the sub-address space of
VPD for a Micro Channel adapter. It points to a storage location that contains
additional keyword descriptors in order to support an implementation of
non-contiguous keyword descriptor data.

The data portion of this descriptor is an address pointer in the POS sub-address
space. Byte 0 is the most significant address byte, and Byte 1 is the least
significant address byte in binary-form.
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13.1.1.29 Available for Specific Use = (“*20”-“*29” |

“*ZA”_“*ZZ,!) ” £

These fields are available for device specific data for which no unique keyword

has been defined.

13.1.2 Device Specific VPD Data Requirements

The following tables indicate the VPD data expected for each class of part. An
“R” indicates REQUIRED data, a “CR” indicates CONDITIONALLY
REQUIRED, and an “O” indicates the data is OPTIONAL but desired.
“Conditionally Required” means that if the data type is relevant for the part it

should be supplied.

Bus Attached Adapters and Attached devices include currently implemented
architectures such as Micro Channel, PCMCIA and other local defined I/O

busses.

Keyword Header — Description Use Required

*PN — Part Number VPD R

*EC — Engineering Change Level VPD R

*SN — Serial Number VPD R

*FN — FRU (Field Replaceable Unit) Number VPD R

*MF — Manufacturer VPD R

*TM — Part Type/Model VPD R

*RN — Rack Name VPD CR
Table 64. Rack VPD

Keyword Header — Description Use Required

*PN — Part Number VPD R

*EC — Engineering Change Level VPD R

*SN — Serial Number VPD R

*FN — FRU (Field Replaceable Unit) Number VPD R

*MF — Manufacturer VPD R

*PL — Part Location AIX R

*AX — AIX Device name AIX R

Table 65. I/O Planar VPD
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Keyword Header — Description Use Required
*PN — Part Number VPD R
*EC — Engineering Change Level VPD R
*SN — Serial Number VPD R
*FN ~ FRU (Field Replaceable Unit) Number VPD R
*MF — Manufacturer VPD R
*TM — Part Type/Model VPD R
*DL — Drawer Level VPD CR
*DU — Drawer Unit VPD CR
Table 66. Enclosures VPD
Keyword Header — Description Use Required
*PN — Part Number VPD R
*EC — Engineering Change level VPD R
*FN — FRU (Field Replaceable Unit) Number VPD R
*MF — Manufacturer VPD R
*PI — Processor ID VPD R
*PC — Processor Component Definition VPD CR
*RL — ROM Level/ID VPD
*ZN — Part Specific Data VPD
*PL — Part Location AIX CR
*AX — AIX Device name AIX CR

Table 67. System Planar/Processor Card VPD
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Keyword Header — Description Use Required
*PN — Part Number VPD R
*EC — Engineering Change level VPD R
*SN — Serial Number VPD R
*FN — FRU (Field Replaceable Unit) Number VPD R
*MF — Manufacturer VPD R
*ZN - Part Specific Data VPD R
*DS - Displayable Message VPD R
*SZ - Size AIX CR
*PL — Part Location AIX CR
*AX — AIX Device name AIX CR
Table 68. Memory VPD
Keyword Header — Description Use Required
*PN — Part Number VPD R
*EC — Engineering Change Level VPD R
*SN — Serial Number VPD R
*FN — FRU (Field Replaceable Unit) Number VPD R
*MF — Manufacturer VPD R
*TM — Part Type/Model VPD CR
*LL — Loadable Microcode Level VPD CR
*RL — ROM Level/ID VPD CR
*ZN — Part Specific Data VPD CR
*SZ — Size AIX
*PL — Part Location AIX
*AX — AIX Device name AIX R

Table 69. SCSI and Direct Attached I/O Devices VPD
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Keyword Header — Description Use Required
*PN — Part Number VPD R
*EC - Engineering Change Level VPD R
*SN — Serial Number VPD R
*CD — Card ID (Micro Channel POS Register) POS R
*FN — FRU (Field Replaceable Unit) Number VPD R
*MF — Manufacturer VPD R
*DD — Device Driver Level VPD CR
*DG - Diagnostics Level VPD CR
*DS - Displayable Message VPD CR
*RM - Alterable ROM level VPD CR
*RL — ROM Level/ID VPD CR
*LL — Loadable Microcode Level VPD CR
*NA — Network Address VPD CR
*LI-Load ID VPD CR
*RA - Pointer to ROM Code VPD 0
*RW — Pointer to Read/Write Registers VPD 0
*LA — Pointer to Loadable Microcode VPD 0
*ZN - Part Specific Data VPD 0
*PL — Part Location AIX R
*AX — AIX Device name AIX R

Table 70. Bus Attached Adapters and Attached Devices



AIX Based
Diagnostics
Requirements

The information in this chapter provides an overview of the hardware support
required by AIX maintenance package developers. For more detailed
information and future updates regarding AIX diagnostics, refer to
POWERstation and POWERserver Common Diagnostics and Service Guide
(SA23-2687). For additional explanations of the three-digit display numbers,
refer to the Problem Solving Guide (SC23-2204).

14.1 AIX Based Diagnostics Dependencies

For the AIX Diagnostics maintained with current RISC System/6000 products,
diagnostics has dependencies on the following areas:

B Hardware
M IPL ROM
B vPD
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Engineering Note

Hardware testing is often
done by IPL ROM, OCS,
or a Service Processor.

The Mode Selection
Facility is often
implemented via 3
position mode switch
(keylock) that supports
Normal, Secure, and
Service positions.

14.1.1 Hardware Dependencies

All hardware shall provide the following items or equivalent facilities:

B Operator Panel with:
— Power Control
— Power-On Indicator
— Mode Selection Facility

O A means to indicate and select three (3) different modes, refer to
Table 56 on page 155 for example names and icons for this
facility.

— Display (or LEDs) with scroll capability or a large enough multi-digit
display that scrolling is not necessary.

— Reset Function.

B Ability to test the Central Electronic Complex (CEC) by Built-In Self-Tests
(BISTs), see Section 14.1.5 on page 220 or Power-On Self-Tests (POSTs),
see Section 14.1.6 on page 222.

— The current AIX Diagnostics do not provide any tests for the CEC. The
BISTs and POSTs shall report progress and problems via the Operator
Panel Display.

B Ability to identify the type of Field Replaceable Units (FRUs), for example,
system planar, adapter, daughter card, device, etc., in the system.

B Ability to identify the location of any adapter and device that plugs into a
slot.

B Ability to physically identify any device that attaches to a bus, such as a
SCSI bus.

B Ability to detect changes in the configuration.

B Ability to read VPD at anytime.

See Sections 14.1.4, 14.1.5, and 14.1.6 for additional information about the
operator panel, BISTs, and POSTSs, respectively.

14.1.2 Hardware Testing Dependencies

Hardware shall provide tests for areas that cannot be or is not easily tested using
the AIX Diagnostics, that is, once the OS is loaded. This includes any function
that, if tested, could cause the OS to crash or could cause data integrity
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problems. An example of a function that is more easily tested before the OS is
loaded is the memory testing. The current AIX Diagnostics do not provide any
tests for memory. Other examples of areas normally tested before the OS is
loaded include functions on the I/O Planar and buses.

Hardware shall provide the following information to the Operating System:

B Time that the IPL (boot) occurred.
B Results of all tests.
B Any VPD that can only be obtained by hardware.

B Results of memory test and initialization:

— Bit Map that shows which pages of memory are available and which
pages have errors and are not available for Operating System usage.

O Memory size (total size, extent sizes, card sizes, etc.)
O Memory types and locations

O If a problem is detected, then the location of the broken FRU,
for example, which Single In-line Memory Module (SIMM)
needs replacement

Hardware should record the result of all adapter self-test and make the results
available to the Operating System.

14.1.3 VPD Requirements from AIX Based
Diagnostics

Diagnostics requirements for VPD information are:
B Each system shall be able to uniquely identify its type and model.

B Each FRU (system planar, adapter, daughter card, device, etc.) shall be able
to uniquely identify itself.

B Each FRU (system planar, adapter, daughter card, device, etc.) shall support
VPD.

— The VPD that shall be supported is
O Model Type
O Hardware EC level

O Microcode level



206

Chapter 14 AIX Based Diagnostics Requirements

— The VPD that should be supported is
O Part number

O Serial number

B Items such as ROM and BISTs shall provide a readable EC level.

14.1.4 Maintenance Package Operator Panel
Requirements

The RISC System/6000 maintenance package assumes a specific Operator
Panel user interface which consists of power control, power-on indicator, mode
selection facility, Reset function, and a display (3 digits or more). The
requirements for the Operator Panel are provided in the following sections.
Any deviations from these requirements requires the approval of the System
Diagnostics Department or a new maintenance package.

14.1.4.1 Power Control Facility
The power control controls the system power.
14.1.4.2 Power-On Indicator

The power-on indicator indicates that all voltages in the power supply are
present and within limits and that a sufficient number of fans are running. The
power-on indicator is used to help analyze power and cooling problems.

14.1.4.3 Mode Selection Facility

The mode selection facility has three states (refer to 8.1.2 on page 154 for
naming convention):

B Mode 1 or “the secure” state prevents the system from performing an initial
program load (IPL). If an IPL is attempted with the mode selection facility
in the secure state, the number 200 is displayed in the operator display. If
the system is already IPLed, this state does not lock the keyboard or block
system network communication. When the mode selection facility is in the
secure state, then:

— The reset facility is disabled to prevent resetting the system unit.

B Mode 3 or “the normal state” allows IPL from the Normal Bootlist. This
state is used to prevent IPLing from non-secure devices such as the diskette
drives. Normally, it is used to load AIX. The Reset button is enabled in this
state.
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B Mode 2 or “the service state” allows IPL from the Service Bootlist. This
state is used to allow IPLing from non-secure devices such as the diskette
drives. Normally, it is used to load diagnostics and install AIX. The Reset
and Power-Off functions are enabled in this state.

The mode selection facility is also used for the following:

B To indicate to the diagnostic programs that there is no console available.
This is done by switching the mode selection facility from service to normal
and then back to service when a c31 is displayed in the operator panel
display.

B With the reset function to start a dump. If the system is IPLed in Normal
mode, a manual dump is started by placing the mode selection facility in
Service and activating the Reset function. If the system is IPLed in Service
mode, a dump is started by placing the mode selection facility in Normal and
activating the Reset function. If the Reset function is pressed twice, the
system is IPLed.

B With the reset function to enter the Built-In Diagnostics. If the system is
IPLed in Secure mode, the Built-In Diagnostics are entered by placing the
mode selection facility in Service and activating the Reset function.

The state of the mode selection facility should always be visible. The state of
the selection facility shall not be lost due to a power failure, etc. This can be
accomplished by using a mechanical selection facility or by storing the state in
NVRAM.

14.1.4.4 Reset Function

The Reset function is used to:

B Reset the system unit and cause an IPL when the mode selection facility is
set to Normal or Service.

B Read out messages (scroll) after a flashing 888 is displayed.
B Start the dump program when a manual dump is needed.
B Enter the Built-In Diagnostics.

B Used in conjunction with the mode selection facility to bring up IPL ROM
network boot menus.

Engineering Note

On and off push-buttons
are used to control the
power on racks while
on/off switches are used
on the other systems.
The on/off switch allows
the system to
automatically power itself
back on when there is a
power failure. The on/off
button does not provide
this capability.
Unattended applications
require an on/off switch
or an on/off button
scheme that can
remember the state of
the system if a power
failure occurs such as
storing the state in
NVRAM.

On IBM RISC
System/6000 model
7015 type systems
(racks), the power-off
push button is disabled
to prevent powering off
the system unit.

A three position keylock
is used on all systems
except the RISC
System/6000 model 220.
The RISC System/6000
model 220 uses a three
state selection facility
with the same labels
used on the keylock. On
a model RISC
System/6000 model 220,
if the system is IPLed in
secure mode and the
mode selection facility is
turned to normal or
service mode, then
activating the reset
function, causes the IPL
ROM to put up a network
boot menu.
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14.1.4.5 Operator Panel Display

The Operator Panel Display shall have three or more digits. The display is used
for:

B Event indications and problem reporting during Built-In Self Tests (BISTs),
Power-On Self-Tests (POSTs), and Configuration Methods.

B Progress and command indications when loading diagnostics from diskette.

B Event indications while the Diagnostic Programs are running when a
Console-Display is not available or has not been tested.

B Problem reporting by the Diagnostic Programs when a Console-Display is
not available, has a problem, or has not been tested. Problems are reported
by a Diagnostic Message.

B Checkstop indications when the machine can not recover from a checkstop.
This indication is displayed by BISTs.

M Crash reporting when the machine can not recover from a Crash. Crashes
are reported by a Crash Message.

B Dump progress and command indications during dump.

B Problem reporting when there is a power problem. This feature is only
supported on newer racks and deskside systems.

A blank display is used to indicated that the configuration methods have

completed and AIX, diagnostics, etc., have started.

14.1.4.6 3-Digit Display Message Format and Examples
The rules for displaying information on the 3-digit display are:

B Event, progress, and command indication are displayed in the 3-Digit
Display.

B All messages that begin with an 888 on the 3-Digit Display shall begin with a
flashing 888 in the 3-Digit Display. The flashing 888 indicates that there is
additional information and assures the user that all segments of the 3-Digit
Display are working. The firstnumber displayed after the blinking 888 is the
message type. The following values are defined:

— 102 - a system crash message is being displayed.

— 103 — a diagnostic message is being displayed. This is the number that
should be used when reporting a problem.
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— 104 — a manufacturing message is being displayed.
— 105 - an encoded diagnostic message is being displayed.

— The numbers following the message type are dependent on the message
type.

B The Reset function is used to scroll through the message 3 digits at a time.

B After all the message has been displayed, a flashing 888 is displayed. The
message can be displayed again.

B Blanks should not be used.
B A ccc is displayed between concatenated diagnostic messages.

B A coX is used to identify the beginning of a location code in a diagnostic
message. X indicates which location code, i.e., first, second, etc.

M [ ocation codes and some SRNs contain alpha characters that cannot be
displayed in 3-digit display. These codes are encoded as follows:

If the character is a digit, then it is displayed as “X0Y” where X indicates the
sequence and Y is the digit.

If the character is an alpha character, then it is displayed as “XYY” where X
indicates the sequence and Y'Y is the alpha character where the alpha characters
are translated as follows:

a=11,b=12,.. j=20,.. t=30... z=36.

14.1.4.7 Message Concatenation

A Diagnostic Message can be concatenated with a Crash Code or with another
Diagnostic Message. If a Diagnostic Message is concatenated with a Crash
Message, the Diagnostic Message immediately follows the Dump Status in the
Crash Message. An example of a Diagnostic Message concatenated with a
Crash Message is shown below:

888 102 XXX YYY 103 SSS RRR
1 AB-CD-EF-GH

XXX = Crash Code

YYY = Dump Status

SSS & RRR = Service Request Number

1 AB-CD-EF-GH indicates FRU 1 location

The 103 following the YYY Dump Status indicates the beginning of a
Diagnostic Message.
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The following is an example of a Diagnostic Message concatenated with a
Diagnostic Message:

888 103 SSS RRR
1 AB-CD-EF-GH
cce

103 SSS RRR

1 AB-CD-EF-GH

SSS & RRR = Service Request Number
The ccc indicates the ending of one Diagnostic Message and the beginning of
another Diagnostic Message.

14.1.4.8 Location Identification

RISC System/6000 is a family of systems that consists of racks, a desksides, and
desktops. Expansion boxes, rack drawers, portable files, etc., can be attached to
the system. FRUs can be located in any of these units. To locate a FRU the
repair technician needs to know the following information:

B For rack the following are needed:
- rack
- drawer
- slot if adapter, memory card, or serial link adapter
- [I/O Planar
- physical location if a device such as a disk or diskette

— location on card for memory SIMM

B For desksides and desktops the following are needed:
- slot if adapter, memory card, or serial link adapter
— physical location if a device such as a disk or diskette

— location on card for memory SIMM

B For expansion boxes and devices the following are needed:
—~ expansion box or device
— slot if adapter
~ physical Location if a device such as a hardfile or diskette

The rules for labeling is that items should be labeled going from left to right, top
to bottom, and front to back. The first label should begin with the smallest label.
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Software can identify the following location information:
B the system type

B adapter slot

B 1/O Planar

B memory slot

B SCSI Address

B The adapter an external device or expansion box is attached to.

Software can NOT identify the following location information:
W rack

B drawer

B SCSI device’s physical location

B Diskette Drive physical location
The location code is defined as follows:
AB-CD-EF-GH

For planars, cards, and non—SCSI devices the location code is defined in Figure
40.

AB-CD-EF-GH

Drawer ID —J

Channel/Bus
Slot ID

Connector ID

Device/FRU/Port ID

Figure 40. Location code for Planars, Cards, and Non-SCSI Devices

where:

B AB is the Drawer ID
— Itis used to identify CPU and Async Drawers.



212 Chapter 14 AIX Based Diagnostics Requirements

For CPU Drawers and non-rack systems AB is 00.

For Async Drawers, A identifies the Channel/Bus (I/O Planar) and B
identifies the Slot ID of the Async Adapter that attaches to the drawer.
This corresponds to the CD value of the Async Adapter location code.

B CD is the Channel/Bus and Slot ID.

It is used to identify the location of an adapter, memory card, or Serial
Link Adapter.

o]

For CPU Cards that attach to the system bus, C shall be equal to
0. D shall identify the Slot ID. D shall be equal to the slot
letter. Slots shall be numbered starting with the letter P.

For microchannel adapters, C identifies the Channel/Bus (I/O
Planar) and D identifies the Slot ID. For systems with 2 I/O
Planars, C is equal to O for the first I/O Planar and 1 for the
second I/O Planar.

For GIO and SIO adapters that attach to the system bus, C
identifies the Channel/Bus and D identifies the Slot ID. C shall
be equal to A for the first GIO bus, B for the second GIO bus,
etc. D shall be equal to the slot number. Slots should be
numbered starting with number 1.

For integrated adapters, C identifies the planar and D is 0.

For memory, C (Channel/Bus) is equal to 0 and D is equal to the
slot number (A to H) for cards on non-RISC System/6000 220
systems and SIMMs on System/6000 220 systems.

For devices, CD is equal to the CD value of the adapter which
the device attaches to.

For a Serial Link Adapter, C identifies the Channel/Bus (1) and
D identifies the slot (A or B).

M EF is the Connector ID.

It is used to identify the adapter connector that a resource is attached to.

If the external connectors are not labeled, then they should be numbered
from 1 to n starting at the top of the card. The top of the card is defined as
the side opposite the connector that plugs into the bus.

Some examples of connectors are:

O The 64 port connectors should be 01 to 04.
O The GIO connectors should be 01 and 02.
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O

o

The 8 port and 16 port connector should be 01.

S1 and S2 should be used for the Standard I/O Planar Serial
connectors.

OP should be used for the Standard I/O Planar parallel
connector.

OK should be used for the Standard I/O Planar keyboard
connector.

OM should be used for the Standard I/O Planar mouse
connector.

OT should be used for the Standard I/O Planar tablet connector.

0D should be used for the Standard I/O Planar diskette
connector.

The Serial Link Adapter connectors should be 01 and 02.

M GH is the Port/Device/FRU ID

— Itis used to identify a port, device, or a FRU. GH has several meanings

depending upon the resource type. They are:

0]

O

The Location Code for SCSI and Serial Disk Devices is defined in Figure 41.

For memory cards GH defines a memory SIMM. Values for
GHare 1, 2, or 16.

For caches GH defines the cache. Values for GH are 1, 2, or 16.

For PCMIAs GH defines the PCMIA. Values for GH are 1, 2,
or 16.

For async devices GH defines the port on the fanout box.
Values are 00 to 15.

For a diskette drive H defines which diskette drive 1 or 2. G is
always 0.

For all other devices GH is equal to 00.



214 Chapter 14 AIX Based Diagnostics Requirements

8-bit SCSI and Serial Disk Devices
AB-CD-EF-GH

Drawer ID of SCSI Controller ‘J_] ‘

Channel/Bus of SCSI Controller or Serial Disk Adapter
Slot ID of SCSI Controller or Serial Disk Adapter —

Connector ID ——

Control Unit Address of SCSI Device ——

Logical Unit Address of SCSI Device —

16-bit SCSI and Serlal Disk Devices
AB-CD-EF-G,H

Drawer ID of SCSI Controller ~—'
Channel/Bus of SCSI Controller or Serial Disk Adapter —!
Slot ID of SCSI Controller or Serial Disk Adapter

Connector ID

Control Unit Address of SCSI Device ——

Logical Unit Address of SCSI Device —

Figure 41. Location code for SCSI and Serial Disk Devices
where:

B AB is the Drawer ID that contains the adapter.
~ AB is always equal to 00 at release 1 and 2.

B C is the Channel/Bus (I/O Planar) for the adapter and D is the Slot ID for the
adapter. If the SCSI Controller is integrated, then CD is 00.

B EF is the Connector ID that the Device is attached to.
B CD-EF can be used as the Drawer ID.

B G (0-15) defines the control unit address of the device.
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B H (0-255) defines the logical unit address of the device.

SCSI device drawers should be labeled with the CD-EF value of the device
location code.

14.1.4.8.1 Location Code Examples

Some examples of Location Codes are as follows:

B A CPU drawer is
- 00
B Anasync drawer attached to the async adapter in slot 1 of the first I/O Planar
is
- 01
— The drawer should be labeled 01.

B An async drawer attached to the async adapter in slot 4 of the second I/O
Planar is

- 14
— The drawer should be labeled 14.

B A TTY device attached to port 13 of a fanout box attached to the second
connector of a 64 port card in slot 5 of an async drawer attached to the async
adapter in slot 3 of the second I/O Planar is

- 13-05-02-13
— The TTY device should be labeled.
- 13-05-02-13

B ATTY device attached to port 5 of a fanout box attached to an 8—port card in
slot 6 of a deskside system is

- 00-06-01-05

B A fanout box attached to second connector of a 64 port card in slot 8 of an
async drawer attached to the async adapter in slot 3 of the first I/O Planar is

- 03-08-02
— The fanout box should be labeled.
- 03-08-02
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B A 64 port card in slot 5 of an async drawer attached to the async adapter in
slot 7 of the second I/O Planar is

- 17-05

B An internal SCSI device attached to SCSI adapter in slot 2 of a desktop
system with a control unit address of 3 and a logical unit address of 1 is

- 00-02-00-31
~ The device should be labeled.
- 00-02-00-31

B An external SCSI device in a drawer attached to SCSI adapter in slot 2 of the
second I/O Planar with a control unit address of 3 and a logical unit address
of 1is

- 00-12-00-31
— The drawer should be labeled.
- 00-12-00-31

B An external SCSI device in a drawer attached to SCSI adapter
in slot 2 of the second I/O Planar with a address of 3 and alogical unit address
of 1is

- 00-12-00-31
— The drawer should be labeled.
- 00-12-00-31

B An external device in a drawer attached to the third port of a Serial Disk
Adapter in slot 6 of the second I/O Planar with a control unit address of 3 and
a logical unit address of 1 is

- 00-16-02-31
— The drawer should be labeled.
- 1602

B The first diskette drive attached to the Standard I/O Planar is
- 00-00-0D-01

W The second diskette drive attached to the Standard I/O Planar is
- 00-00-0D-02
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B The keyboard attached to the Standard I/O Planar is
- 00-00-0K-00

B A display attached to the display adapter in slot 2 of the CPU drawer is
- 00-02-01

B The fourth memory SIMM on the memory card in slot D of the CPU is
- 00-0D-00-04

14.1.4.9 System Crash Messages

System Crash Messages are displayed whenever a crash occurs. They are
formatted as follows:

888102 XXX YYY

XXX = Crash Code
YYY = Dump Status

14.1.4.9.1 System Crash Message Example
An example of a single Crash Message being displayed is shown below:

Crash Code = 503
Dump Status = Oc4

3-Digit Display format:
888 102 503 Oc4
2X16 LCD format:

M Line 1 888 102 503 Oc4
Line2 888102XXXYYY

14.1.4.10 Diagnostic Messages

Diagnostic Messages are displayed to report a problem. Diagnostic Messages
shall be displayed on the control panel display when:

B A problem is detected that prevents the completion of the IPL.
B A Console-Display problem is detected.
B No Console-Display is available.

B A crash occurs when running diagnostics.
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14.1.4.10.1 Diagnostic Message Format and Examples

Diagnostic Messages are formatted as follows:

888 103 SSS RRR c01 1DD 2DD 3DD 4DD 5DD 6DD 7DD 8DD
<02 1DD 2DD 3DD 4DD 5DD 6DD 7DD 8DD
c03 1DD 2DD 3DD 4DD 5DD 6DD 7DD 8DD
c04 1DD 2DD 3DD 4DD 5DD 6DD 7DD 8DD

SSS & RRR = Service Request Number (SRN)

c01 indicates FRU 1 location

¢02 indicates FRU 2 location

c03 indicates FRU 3 location

c04 indicates FRU 4 location

DD = location

Eight location characters are read out.

If the location is a digit, then it is displayed as “X0Y”

where X indicates the sequ