

TECHNIQUES
OF BASIC

To Our families

Contents

Acknowledgements
Introduction

Decisions and Branching
IF-THEN-—-ELSE 1
Logical Operators 4
ON—GOTO and ON—-GOSUB 6

Statements and Functions
Multiple Statements on a Line 9
RND Function 10
RANDOM 11
DIM and Subscripted Variables 12
String Functions 22
User-defined Functions 26

Input and Output
Cued INPUT 29
LPRINT 30
PRINT USING 30
INP and OUT 39
PEEK and POKE 40

Variables
Long Variable Names 43
Variable Types , 44
Conversion of Constants 45
Implicit Conversion 48
Memory Storage After Mixed Operations 49
DEFINT, DEFSNG, DEFDBL, DEFSTR 51
Hexadecimal and Octal Constants 52
VARPTR 53

xi

xiii

29

43

vii

viii

10

11

Graphics 55
Line Printer Graphics 55
Character Graphics 75
Pixel Graphics 84

I/O, Strings, and Disk BASIC 103
DEFUSR and USRn 103
POS, INSTR, and MIDS$ 105
INKEYS$ 107
LINE INPUT 109
MIDS$ for Replacement 111
TIMES 112

Sequential Access File Processing 117
Commands for Program Files 117
Commands for Data Files 120

Direct Access File Processing 133
FIELD 134
GET 137
LOF 138
LSET and RSET 138
PUT 139
MKIS$, MKSS$, and MKD$ 140
CVI, CVS, and CVD 141
Direct Access File Creation 142
Direct Access File Processing 144

Conversational Programming 149
User Prompts and Menus 149
ERR, ERL, ON ERROR GOTO, and RESUME 153
Anticipating User Responses 155
Check Digit Calculations 157
Praise and Chastisement 160
Informing the User During Processing 162

Structured Programming 165
Program Planning 166
Phrase Flowcharts 167
ANSI Flowcharts 167
Programming Structures 171
GOTO-less Programming 174
Top-down Programming 176

Documentation 179

Internal Documentation 179
External Documentation 183

Contents

Building 187

Accessing 193

Modifying 197

Deleting 197

Sorting 197

Sorting Algorithms 199

Direct Access File Statistics Program 204

N
. \
File Manipulation Techniques 187 /

T

Inventory System Application 213

Appendix 239
A Comparison of Three BASICs 240
B ASCII Codes and Character Set for the TRS-80 241
C 48K TRS-80 Level II with Disk Memory Map 243
D Level II Instructions and Reserved Words 244
E TRSDOS Commands 245
F Error Codes 246

Index ' 249

Contents ix

Acknowledgements

When two people decide to write a book, the problems of
planning, communication, and finally production are compounded.
Were it not for the efforts of Ed Bowers and Rita Dunkin of the
Wm. C. Brown Business, Professional, and Trade Division, we would
not have maintained our enthusiasm during this project. We are
indebted to them for their patience and foresight.

We owe special thanks to Steve Grillo, who as a 1980 high
school graduate, has demonstrated a level of talent and
responsibility beyond his years. He proofread the book, helped type
the final manuscript, shot, developed, and printed all pictures in the
book, and wrote a substantial portion of the programs.

xi

s

Introduction

BASIC has come a long way since its first days at Dartmouth
College in 1964, when because of its simplicity it helped students
to learn about the computer. It has evolved in two stages. The first
stage occurred in the early 1970’s when minicomputers became
standard fixtures in many small business, scientific, and educational
environments. At that time BASIC became more than a curiosity.
Because of its expanded features, particularly file management, it
began to appear as the application language of choice for the
popular minis.

The second stage of BASIC’s evolution is occurring right now,
at the turn of the decade. The popularization of the microcomputer
in the last three years of the 1970’s has resulted in BASIC being the
de facto standard as a high-level language for these new devices.
Remember that minis were used primarily in small businesses,
scientific labs, and schools. The micros have come into the home,
and BASIC has come with them. Suddenly the phrase “computer
power to the people” means something tangible to millions of
individuals. The decade of the ’80s is going to see a substantial
fraction of the public actively involved in developing programs for
their acquisition, and most of these programs will be written in
BASIC.

All this is fine, as long as this tool is used for its intended
purpose, that being to entertain, educate, calculate, and manage
files. However, many purchasers of microcomputers will bring it
home, play a few games of Blackjack, Chess, or Star Trek, and
perhaps maintain a recipe file. This is not enough. These devices
are more powerful than the million-dollar computers of the 1960’s,
and to use them only for such trivial tasks is to waste their true
potential. It’s as if you were to buy a TV set and leave it tuned to
just one channel. Microcomputer power should be explored and
exploited to its fullest, and one way you can do so is to use it for
more than repetitive execution of one or a few programs. Program
it yourself.

As educators we have exposed many students to the joys of
computer programming, and we are continually surprised at the
variety of people who exhibit a talent for this science, or art, or
craft. No general rule seems to apply; programming talent seems to
appear in a fairly large and unpredictable segment of the population.

xiii

Xiv

The microcomputer revolution will add greatly to the growing
numbers who know how to write programs. A few of these people
will become excellent programmers. Our aim with this book is to
increase the ranks of better programmers by exposing them to some
techniques for solving problems that are commonly found in a wide
variety of applications.

When you write a program, remember that you must consider

three different points of view.

1. The programmer is the originator of the program, its creator.
In many situations, you will find no existing program that
even remotely begins to solve your problem. This is when
your skill as a programmer is tested to its fullest. You are
most of all a problem solver at this stage, and your major
task is to decide on the method of solution, or algorithm,
for your problem.

9. The reader of your program is very possibly also its author,
but may also be someone else who wishes to adapt it to his
or her own application. A program’s reader must
understand the fundamentals of the language about as well
as the programmer, but is rarely involved in its original
creation. The remarks in a program are intended for its
reader. During your program’s development, you are also
its reader, and you can use the remarks effectively to remind
you of the program’s logic or to help modularize it for easier
alteration.

3. The user of your program is the intended target for its
application. Usually, that person is naive about computers
and programs. The program, its advanced techniques, and
its wealth of remarks are lost to the user. Butyou, the
programmer, must always keep the user in mind. Here’s one
of the few general rules that has no exceptions: All well
‘written programs are easy to run.

The programs, program segments, and examples contained
within this book have been tested on a Radio Shack TRS-80 Level-11
system with one minifloppy disk drive. The listings were produced
on an Integral Data Systems Model 225 printer. We have purposely
oriented this book toward the TRS-80 for the following reasons.

1. The TRS-80 is one of the many microcomputers that use
Microsoft BASIC, which is fast becoming a standard of
comparison for performance and for variety of extensions.

9. The TRS-80 as of this writing is the most popular
microcomputer for personal use, and its Level I BASICis a
subset of the BASIC that is implemented on its bigger
brother, the TRS-80 Model II. The Model II gives all
indications of becoming a very popular small business
computer.

3. The TRS-80 does not have a color display monitor, so its
BASIC does not have the variety of commands to manage
that aspect of output. This may seem to be a disadvantage,

Introduction

but the fact is that of all of the sets of BASIC commands
that are available on microcomputers, those that deal with
color displays are the least standardized.

4. The TRS-80 has a wide range of available peripheral
equipment. In addition, the TRS-80’s popularity has
prompted many peripheral manufacturers other than Tandy
to produce competing hardware, including hard disks with
capacities on the order of 20 million characters.

We hope that you will try out all of the features that are
discussed in this book. Your reward will be a deep understanding
of both a fine computer programming language and some excellent
programming techniques.

Introduction XV

l Decisions and
Branching

IF-THEN—-ELSE

The IF-THEN and the GOTO are certainly simple to learn and
understand, but as a person improves in programming techniques,
the limitations of these statements become a real burden. This is
where the extensions to the language are particularly rewarding.
They are very easy to learn and use, and they make any program
easier to read.

Primitive BASIC is limited to having just a line number
following the THEN, for example:

300 IF X=A THEN 820

This restriction leads to awkward programs full of GOTOs
that force the reader to jump around from one line of code to
another. This process of bypassing some lines and tracing the
program in various sequences tends to frustrate both the programmer
and the reader. As an example of this poor, and all too common
type of programming, look at the program below:

Chapter 1 Decisions and Branching 1

10 “FILENAHE: "ClFLY :

20 CFUMCTION: 7O FIND LARGEST OF % NUMBERS (POORLY STRUCTURED:
30 4 AUTHOR ¢ JPG COBATE:D 12457
40 DATA 192935193525 225 11 33: 20233511935 1525535255 15905040
50 ‘read three values from dsts block

&0 READ A+RSC '

70 IF AXBXC=0 THEM 10000

80 ‘check to see if & is lardgest

90 IF B > & THEN 130

100 IF C > A THENW 170

110 L = A

120 GOTO 190

130 ‘check to see if B is lardgest

140 IF C > B THEN 170

150 L = B

160 GOTO 1990

170 ‘here uwe Know thet C is larsest

180 L = € ‘

19¢ ‘erint the value of L# il is the lardest
200 LPRINT Ls "IS THE LARGEST OF": &% H: C
210 GOTO &0

100006 END

3 I5 THE LARGEST OF 1 2
3 I5 THE LARGEST OF 1 3
33 I8 THE LARGEST OF 22 11 33
33 I5 THE LARGESY OF 22 33 11
35 I5 THE LARGEST OF 35 13 23
3% 15 THE LARGEST OF 3% 25 15

3
2

*Note: The LPRINT command is used here and throughout the
book whenever we wish to show the program’s output. To
run the program on your computer and have the output

appear on the screen, just change all LPRINT commands to
PRINT.

The program C1P1 is difficult to compose, to trace, and to
debug. Extended BASIC lets the programmer instruct the computer
to do something after finding out that the condition is true, instead
of just branching somewhere else. Look at this rewrite of the same
program.

Chapter 1 Decisions and Branching

a0

&0
70
80
70

10 “FILEHARE: "CiP2"

20 CFURCTIOND TO FIND LARGEST OF 3 MUMBERS (BETTER:

30 7 AUTHOR JPG DATED 12/79

40 7

50 [DATA 19293+19392¢225 119339225335 115355 185254359255 1540:0490
60 “resd three vslues from dals block

70 RE&RN ArEsC

af IF A¥R¥C=0 THEN 100090

20 ° store the lsrgest in Ly then rrint L

100 IF AXB THEW IF AL THEN L=A
110 IF EBxA THEM IF E:C THEN L=K
120 IF Cx& THEN IF CxB THEN L=C

130 LPRIRT Ls "IS THE LARGEST OF"s A% By C
140 GOTO 79
10000 END

Notice that the decisions in this program have no branches. Each IF
statement checks the truth of a pair of conditions, and the value of
L is set when both conditions within the same statement are true.

But extended BASIC has even more. The THEN clause may be
followed by another clause, called the ELSE clause. The resulting
compound statement allows the programmer to specify one statement
to be executed if the condition is true, and another statement if the
condition is false.

fif discriminent D of cuasdrstic eaustlion is non-negatives
“Lhen comrute and Print the rootss otherwise rrint the
‘messsses "NO REAL ROOTS®

D=RiB-4%A%C 7 calculstle the discriminant

Da=2%n 7 celeuleste denominastor of auadrstic eaustion

100 IF D=0 THEM PRINT "ROOTS="3(-RY¥SQR(D)I/D25(-B-5QR{D) /T2

ELSE PRINT "NO REAL ROOTS"

1ie

120

200 “let user stor or rroceeds but sccert onle YES or NO answer
210 PRINT "DO YOU WANT TO GO OH (ANSWER YES OR NOO"s

220 INPUT 4%

230 IF A%="NO" THEW STOF

ELSE IF A%C:"YES" THER 210

Chapter 1 Decisions and Branching 3

Logical Operators

10
20
30
40
50
&0
it
80
on

7 5

160

116 -7

120
130
149
150

1060

3
3
33
33
3%
39

This feature allows more English-looking conditional statements
by the use of OR, AND, and NOT operators.

sn B oend A iz less ihen Ly
the smellest.

HEM FRINT &3 "IS SMALLEST®

gt GURE" OR A$="0K" THEN 300

10 7if A& is less U
28 ‘lhen Frint A B
a6 IF AR AND AL

TF a%="YES" OK

&

.
T
fi

Program C1P3 shows how much more readable these logical
operators are in a program, as opposed to nested IFs or an abundance
of GOTOs.

CETLENAMESD "CLR3T
‘EUNCTIONS TO FIND LARGEST OF 3 NUMBERS (BEET)
/ AUTHOR ¢ JPG LATES 12779
HaTh 1r2f3!19372522!11?33722?33711735115525735525!1596;070
‘resd Lhree velues from dets nlock
READ AsB.C
IF A%BxC=0 THEN 10000
‘find sng erint the lerdest 21l in one shot
‘pote thel the FrosErsh GCCUFlies more SFECEe In memords
hul its orerstion is vers clesr.
IF arE &Nk AXC THEN LPRINT As w15 THE LARGEST OF"#AsEIC
TF ErA 6ND B0 THEN LPRINT Bi w15 THE LARGEST OF"#AsEC
IF Cxf AND CHR THEN LFRING G5 "5 THE LARGEST OF"iAsBiC
GOTD 70
00 END

T T e

15 THE LARGEST OF 1 2
15 THE LARGEST OF ¥ 3
15 THE LARGEST OF 22
15 THE LARGEST OF 22
15 THE LARGEST OF 33
15 THE LARGEST OF 33

33
11
23

15

L LA el = B G

3 b Ll b

The logical operators AND, OR, and NOT can be used for
Boolean logic operations. Study this statement:

10 * set A to TRUE (-1) if nwolh conditions sre trues
alherwise to FALSE (0)
20 a={¥=Y) AHD (J50)

Chapter 1 Decisions and Branching

i0
20

30

40
a0
&0
70
80
90
100
110

The parentheses around each of the conditions are necessary to
isolate the conditions from the assignment of the answer to A.

the Tlzz U Lo TRUE if A is not less then B

This statement sets V to true (-1) if the statement is true; that is,
the value of A is not less than B. Notice that the statement

does the same thing, and it is perhaps clearer.

There are some applications for using purely logical operators.
Remember that in these cases the values in question are stored by
the computer as either true (-1) or false (0). Such applications lead
to statements like these:

A

16 “set Fobo -1 if X% is O ang vice verss

306 IF T THE;.?-% FRINT "TRUE™
40 IF NOT(A ANDN B THEH PRINT "HEITHER IS TRUE®
54 IF (& OR R) THEM PRINT "EITHER ONE OR ROTH IS TRUE"

A third possible application of logical operators is in bit
manipulation or bit comparison. This could be used in a program to
identify the positions of the 1-bits in any variable, in effect
representing it in binary form. The program C1P4 exemplifies the
problem, converting the variable X that the user input to its binary
representation. The test value T starts at the value 16384, which is
two to the fourteenth power. Each time through the loop in lines
100-150, T is reduced by a factor of two, in effect shifting the
single one-bit to the right one position.

‘FILENAME: "CiP4"
SFUNCTIONS DISFLAY LAST 15 RITS OF INTEGER X
AUTHOR JFG , DATES 12779
‘ gal t to be the Pirst (largest) rower of 2
T=16384
FRINT "WHAT INTEGER [0 YOU WISH CONVERTED (0=85TOF)":
INFUT X

IF X=0 THEN 10000 ELSE LFRINT X» "IN BINARY IS i
FOR I=1 T0 15

isg)! ste the single bit from X

r

\

Chapter 1 Decisions and Branching ' 5

ON-GOTO and
ON—-GOSUB

120 E=T AND X
130 IF B0 THEN LPRINT "1 "4 ELSE LPRINT "¢ »;
140 T=T1/2
190 MEXT I
160 LFRINT
170 GOTG &0
10000 END
INBINARY I5 00 000000000000
2 IN BINARY IS5 00 00 00000000 01
15 IN BINARY IS 00 000000 0001 11
3456 INBINARY IS 000 1 10 11000000
32767 INBINARY IS 11 111111111111

Some of the effects of binary operations using the logical
operators can be very misleading. You should study the explanations
of these operations in the Level Il Manual. We include the examples
below more for completeness than for clarification. We suggest that
you use these operations only if you feel comfortable with binary
representation of values in the computer.

Instruction Outrut

10 LPRINT 0 AND 0 it
20 LPRINT 0 AND 1 0
30 LPRINT 1 AND 0 0
40 LFRINT 1 AND 1 1
S0 LFRINT ¢ OR 0 it
&0 LPRINT ¢ OR 1 i
70 LPRINT 1 OR 0 1
80 LFRINT 1 OR 1 i
70 LPRINT NOT 0 -1
100 LPRINT NOT -1 0

These closely related branching statements allow a great deal of
flexibility when a program needs to perform a multiple-way branch.
They both use a variable after the ON, and a series of line numbers
after the GOTO or GOSUB. The integer value of the variable is
calculated, and a branch is taken to the first statement if the variable
is 1, the second if 2, the third if 3, and so on. On the TRS-80, as on
most other computers, if the integer value of the variable does not
correspond to the position of a given line number, the statement
following the ON—GOTO or ON—GOSUB is executed.

Example:

a0 ON X BOTD 80s 300y 7505 105 80 900
60 ¢ fzll throush if X0 or X6

Chapter 1 Decisions and Branching

Frek LD ek WD e

The computer obtains the integer portion of X, which must be
between 0 and 255.

If the integer then the computer branches
portion of X is to this line number
<0 ERROR MESSAGE
0 60 (the next line—no branch)
1 80
2 300
3 750
4 10 (notice that the line numbers do not
need to be in order)
5 80 (notice that the same line can be
reached with different values of X)
6 900
7-255 60 (the next line—no branch)
>=256 ERROR MESSAGE

You could write the equivalent of line 50 above without use of
an ON—GOTO like this:

S0 IF INT(X)=1 THEN 80
ol IF INT(X)=2 THEN 300
32 IF INT(X)=3 THEN 750
a3 IF INT{X)=4 THEN 10
IF INT(X =5 THEN 80
IF INT(X)=6 THEN 200

6(’66i§0}6006§0l~

[R5 0N A
[FL IO 9

If the word GOTO was replaced by GOSUB, the multiway branch
would become:

30 ON X GOSUR 80y 3005 7505 105 B0s 900
2 "fell throush if X<0 or X6

which is equivalent to:

H

IF INTOX =1 THEN GOSUR 80 ¢ G0OTO
2IF INTOX)=2 THEN GOSUR 300! GOTD &
IF INTOX)=3 THEN GOSUE 7503 GOTO &
IF INTOX)=4 THEN GOSUB 10 ¢ GOTO
IF INTOX=5 THEN GOSUE &0 ¢ GOTO
IF INTOX =6 THEN GOSUE 900

*

o

!

Fn)
i

i 3
[I S OO O 0 I

O~ O O LT LT L en
P 03 O e B3 T

A AR EEEY

Chapter 1 Decisions and Branching

Obviously the economy of the ON—GOTO and ON-GOSUB
makes them very attractive to any programmer who has this kind of
branching to perform.

One nice application of these statements is in a branch that is
based on the sign of a number. Suppose your program must branch
(with either a GOTO or a GOSUB) to line 50 if the value of X2-4=0,
and to line 150 if X?-4 is positive. Either one of these statements
would do it.

20 0N SGNOX¥X-4)+2 GOSUR S0y 100y 150
20 0N SGNCXEX-4)+2 GOTO 50s 100» 1350

This three-way branch uses the fact that the SGN function evaluates
its argument, and returns a -1 if the argument is negative, O if it is
zero, and +1 if it is positive. ‘

In this chapter, we have explored a few of the many extensions
that provide flexibility and make the programmer’s job easier and in
many ways more enjoyable.

Chapter 1 Decisions and Branching

Statements and
Functions

Multiple Statements
on a Line

Language features such as multi-statement lines, RANDOM,
DIM, string functions, and many more are incorporated into
extended BASIC to make the programmer’s job easier and to
provide problem solving power seen in other high-level programming
languages. This chapter explores these extensions and suggests some
possible applications.

Because the variable names in primitive BASIC are limited in
size to no more than three characters, many BASIC programs take
on the appearance of one long list of tiny statements down the left
side of the screen. This is somewhat inconvenient when the screen is
limited to displaying 16 lines, as on the TRS-80.

Fortunately, most BASICs allow mere than one statement on
a given line. The Microsoft Company (Bellevue, Washington) has
been a leader in developing languages for microcomputers. Many
microcomputers, including the Apple-II and the TRS-80, use some
version of BASIC developed by Microsoft. For a full comparison of
two popular BASICs on microcomputers, see Appendix A. All
versions of Microsoft BASIC, including the TRS-80’s Level II, use a

9

RND Function

10

g0
9% 7
140
110

4
129

90
95 -
100
110

120

colon (:) to separate statements; but some other BASICs use other
symbols. For example, DEC’s BASIC-PLUS that is used on the
PDP-11 series of computers uses the backslash (\). We will use the
colon because it is used by Level II BASIC on the TRS-80, and it is
also the most common statement separator for microcomputers.

10 Z=0% Y=1% F=3,141591 E=EXF(1)
70 Y$=X$+Js1 IF I<20 THEN I=I+1% GOTO 20
30 IF J1:J2 THEN T=J1¢ Ji=J2i J2=1

Note that these examples do not necessarily improve the
readability of the code. In many cases where multiple statements
are crowded into one line the readability suffers as far as the
understanding of the program logic. This problem is often alleviated
through indentation and logical grouping in its multistatement lines.
Consider the two examples that follow:

crowderd -- saves srace st the cost of readshilite
PRINT! PRINT "WHAT ACTIVITY (0=5T0F)"§

INFUT 4% IF A=0 THEN STOF ELSE ON A GOTD 200s 300y 400
GOTO 100

better -- multirle stztement lines chandged L0
to meintzin logicel flow of rFrosram
FRINTS PRINT "WHAT aCTIVITY (O=8TOF "5 INFUT A

IF A=0 THEN STOF
ELSE ON & GOTO 200 300, 400
GOTO 100

In the first example, the IF statement is crowded into the same
line as the INPUT, while in the second example, the IF statement is
isolated and indented for high legibility, and the INPUT is relocated
with the output to produce one line that generates the message.
Note that statement 110 has a line feed (4) after the word STOP
instead of a carriage return (ENTER). This allows statement 110 to
be spread over two lines, greatly improving the overall readability of
the program.

The RND function is commonly found on primitive BASICs as
well as the extended versions of the language. Usually, its argument
is immaterial or even omitted, and its purpose is to return a pseudo
random number between zero and one. A pseudo random number
differs from a truly random number in that the former is produced

Chapter 2 Statements and Functions

by an algorithm that uses a seed value to generate a number
apparently at “random”. For various reasons, most pseudo random
number generators use a large prime number as a seed for the first
random value, then use that random value, or some modification of
it, as a seed for the second value, and so on.

Level IT BASIC on the TRS-80 is similar to most BASICs in that
if the RND function call uses 0 as an argument, the returned value is
a positive real number between 0 and 1.

10 “rendom numbers belween 0 and 1

20
30 FOR I=1 70 5! LPRINT RNIK0)35! NEXT I
10000 END

JFBBO3Z 64224 047816 0655122 473838

A useful extension to this function is its ability to return a
pseudo random integer within a given range. You can return
random integers between 1 and 6 with the function call RND(6)
which might be used to simulate the throw of one die.

10 “random inlesgers

20 7

30 LPRINT "1 TO 6"y "1 TO 10"y "1 TO 527, 0 TQ v
490 FOR I=1 TO 10

a0 LFRINT RNI &)y RNINC10)s RND(S2)s END(2)-1

&0 NEXT 1

10000 END

170 6 170190 1 70 52 6 TO 1
4 5 30 9
b o 45 it
4 8 11 1
3 2 7 0
5 9 41 1
b} 5 29 1
2 10 38 1
2 2 50 H
¥ 3 25 0
b 8 48 0

RANDOM A feature of pseudo random number generators is that the

initial seed is always the same. If you turn off the computer, then
reload and rerun the program, you get the same output.

Chapter 2 Statements and Functions 11

DIM and
Subscripted
Variables

12

10

2457 comn REPEATARLE RANDOM MUMBERS
A7 DaTE:D 12779

407

50 FoR I o= 1 70 40

&4 LFRINT RHDOLOO0)y

70 ‘reburn the cerrizse afler evers 1ath value

g0 IF INTCI/Z10010=1 THEN LFRINT

4 NEXT 1
100040 END

148 72 219 825 52 891 11% 981 911 616
917 844 856 153 324 550 271 532 832 409
500 199 51Y 75 83 62 4BE 474 736 29C
n19 470 92 86 677 290 178 867 173 697
4E5 508 976 907 798 31 866 266 234 L3

The purpose of the RANDOM statement is to seed the
generator with a different value, based on some varying internal
value in the computer. Add a new line

45 RANDOH

and run the program after turning off the computer and then
powering it back up. Notice that the output is different.

250 469 426 63 14 733 905 368 147 718
55 913 75 201 B4Y 823 778 494 334 TG
731 820 840 489 321 232 73 I3D 405 287
840 458 317 465 741 461 752 340 299 340
370 523 946 29 162 285 838 787 352 31

BASIC is not limited to managing its variables in memory one
at a time. It can allow the programmer to set up lists and tables in
memory by name, and access specific positions of those lists and
tables by using subscripts.

The DIM statement does two things:

(1) It names a list or table.

(2) It sizes that list or table.

Examples:
10 DIM A(S0)
The variable named A is a list 5_0 values long.

20 DIW X(90,20)

Chapter 2 Statements and Functions

| The variable X is a table with 50 rows and 20 columns.
30 DIH V1§30
The string variable V18$ is a list of 30 strings.

Most people call dimensioned variables arrays, so that a list is
called a one-dimensional array and a table is a two-dimensional
array.

The statement
10 DIM X{5:7+2)

creates a three-dimensional array. You can imagine it as a cube,
with 5 rows, 7 columns, and 2 ranks.

L

b7 colomns |

Most microcomputer BASICs, including Level II for the TRS-80,
allow the creation of arrays with multiple dimensions.

When a program refers to a particular element of an arrays, it
does so by subscript. In mathematics, a matrix element is referred to
by its subscripts, such that the matrix A has an element A ..

In BASIC, a true subscript cannot be written below the line, so
it is parenthesized. Thus the programmer can refer to the seventh
element of the one-dimensional array X as X(7).

Examples:

10 IIM A(S#20) ‘set ur the arrays 5 rowss 20 columns

20 AC1912)=30 ‘rlace the value 50 in row 1y column 12

30 A(2520)=A(1s1) ‘cory row 1y col. 1 into row 2y col. 20

40 X=31 Y=7! A(XsY)=8.3 ‘rlace the value 8.3 in row 35y col. 7
90 ‘sel sll values to -1

60 FOR I=1 TO 5! FOR J=1 TO 20! A(I»J)=-1! NEXT Js I

Chapter 2 Statements and Functions 13

14

Notice in line 10 the use of the apostrophe as a substitute for the
REM to denote a remark. Also notice in line 20 that the apostrophe
does not have to follow a colon to start a remark in the middle of a
line. These niceties allow more flexibility in the practice of writing
remarks.

One common use of multiply subscripted arrays is in the
statistical analysis of polls and questionnaires. Suppose these are the
characteristics that one wishes to analyze:

Characteristics Number of possible responses

Sex 2 (male and femaie)

Age 3 (under 20, 20 to 50, over 50)

Geographical 5 (Pacific, Mountain, Midwest,
Location South, Atlantic)

Political 3 (Republican, Democratic,
Preference Other)

Answer to Poll 5 (Strongly disagree, disagree,
Question no opinion, agree,

strongly agree)

Now suppose that 50,000 observations are made all over the
country, and that they are encoded as numeric values. For example,
the coded response 13225 represents a male more than 50 years old,
living in the Mountain states, a Democrat, whose answer was
“strongly agree”, The encoded value is generated this way: The
response to “‘sex”, a1l ora?2,is multiplied by 10,000. The age
response is multiplied by 1000 and added to the previous number,
10,000 or 20,000. The remaining three responses are multiplied by
100, 10, and finally 1. The resultant integer sum lies between 1 1,111
and 23,535. Note.that this encoding scheme won’t work for polls of
6 or more questions, or with 5-question polls in which the first
response is greater than 3. An interesting challenge might be to
develop a coding scheme in octal integer representation, which would
allow values of 37777, or even 77777.

The results of the entire poll could be stored on one or two
cassette tapes for input to a microcomputer for analysis. The program
segment below transfers all of the information on tape into a
5-dimensional array for analysis. Rather than storing one
questionnaire’s results as a single value, say the integer 13225, this
program adds one to the tally of like responses in the 5-dimensional
array. The DIM A(2,3,5,3,5) statement names the array A and sizes
it as 2x3x5x3x5, or 450 values. A program such as the one below
could analyze almost any number of questionnaire responses of this
type, and yet run on a moderately configured microcomputer
system.

Chapter 2 Statements and Functions

10
20
30
40

1=
of

&0

70

a0

70

100
119
120
130
149
150
1690
170
180
190
200
210
220
230
240
230
2460
270
280
290
300
310
320
330
340
330
340
370
380
390
400

The program C2P2 listed below does such an analysis. It
@mmwﬂmomﬂwnmmbmwwﬁﬁﬂwmﬂwmw&mmwmmﬂ
than the data which is the issue here. The output that follows the
pmwmﬂmmawmﬂnm.MMwMWﬁMWHﬁmeMﬁm
responses by scanning the sea of numbers. Imagine how error-prone
such a visual analysis would be with a sample size in the thousands,
instead of just 297,

“FILENAME: "gapae
"FUNCTION! QUESTIONNAIRE ANALYSIS WITH LARGE ARRAY
T AUTHOR + JFG DATED 12/7%9

LEFINT A-Z
DIM A(2:345:3:5) RIS
“inrul from tere is simulsted with artificial dats
LFRINT"T A R L E 0F ARTIFICIAL LAaTa"
LPRINT ‘essume & total of 297 resronses
FOR OBS =1 TO 297
GOSUR 500! LFRINT ¥:¢‘genersie one S-snSWer resronse
IF INT(OBS/9 %9=0R5 THEN LFRINT ‘new line evers 9ih
FOR J=5 T0 1 STEF -1 Textract esch disgit zs RO
BOJI=X-INTOX/7100%100 X=X/10

NEXT J
* add 1 to rrorer rosition of A
! ACBIL)sBC2 3 B(3)y o4y is tedicus

D=R{1) E=R(2)¢ F=R{3)! G=R{4)! H=R(5)
ACTESFIGsH) = A(DSESFsGsHY + 1
NEXT OBS? LFRINT! LPRINT
‘sum ur 2ll resronses sccording to sEH
GOSUR 400
LFRINT "SUM OF MALE RESFONDENTS ="3;51
LFRINT "SUM OF FEMALE RESFONDENTS ="§82
‘Print user-selected elements of the srray A
INFUT "SEX: M=l F=2 STOF=0"; Ni
IF N1=0 THENW 10000
INFUT "AGE: C30=1 30-50=2 50=3"; N2
INFUT "AREA: PAC=1 MTN=2 MIW=3 S=4 ATL=5"; N3
INFUT "PARTY: REF=1 DEM=2 OTHER=3"; N4
T=0 “totsl a1l resrondents for this czledory
FOR I=1 70 5 BCI)=ACNLsN2sN3sN4s 1) T=THR(T) HEXT I
‘rerort the results of the tallw
LFRINT"SEX ="iN1,"AGE =";N2,"AREA ="INIs"FARTY ="iN4
FOR I=1 TO 5
LFRINT B(I)5 "OF THIS GROUF ANSWERED" 31
NEXT I
LFRINT "TOTAL OF RESFONIENTS" sNLSNZSNZIN4; Y =237
LFRINT
GOTO 240

Chapter 2 Statements and Functions 15

16

500 HRERE

510 JizRNIM 2% J2=RND(30 JI=RND(S) JA=RND(30t JS=RNIKD)

520 Y=(¢ {J1KI0+IZ 0¥10+I3 010414 0%104J5 ‘

530 RETURN

&00 ¥¥¥¥¥ sum Lthe sexes

510 FOR N2 =1 70 3 ‘N2=subscrirt for sge

620 FORNZ =170 5 ‘N3=cuhscrirt for location

&390 FOR M4 =1 TO 3 'Né=gyubscrirt for rol. rref,

6490 FOR N5 = 1 TO 5 ‘NE=gubscrirt for snswer

650 61 = 51 + ALLsN22NIZsN4:NS) ‘sum of msles

660 g7 = §2 4+ ALZsN2sNIsN4sNS) ‘sum of femasles

670 NEXT NSsN4sNI3sN2

680 RETURN

10000 END

TABLE OF ARTIFICIAL DaTaA
1232724 23321 13215 11411 13243 23524 22422 22131
11122 23435 13135 21521 21321 23114 13311 11131
12312 22322 23515 13215 13213 13512 11114 21235
anin2 19212 12525 23313 12233 11521 12533 21213
29123 13325 22421 22434 22333 11511 21334 23324
an401 12335 21422 11332 23231 13234 22434 22531
23433 13335 21422 22521 11322 21435 13422 11334
13312 21132 13531 12315 12220 a9311 12211 23112
13125 21521 21222 21135 13321 11112 12122 13134
23135 21334 11334 22133 11113 22323 22521 21135
11235 13431 225025 11422 12330 23424 13423 22435
n1522 23331 22134 12533 11132 11112 22231 22315
13523 11311 23334 23532 13123 12314 13314 13421
21313 11322 22324 12524 22125 21121 12312 23413
172421 13521 11523 21235 21211 23523 11313 21325
11533 11533 12231 23314 11311 12531 23424 23424
12312 23135 21424 22134 13423 23132 11333 21412
2317 12725 13422 21211 12534 11512 13522 11412
21411 13211 21335 23212 23515 22134 23132 13121
122272 22534 23125 12225 13425 13124 22425 11314
11131 21114 22424 13111 13825 11224 23117 12325
aon13 23125 21415 13212 23321 23432 12115 23322
11433 23132 11312 23531 22834 23120 11435 22435
23323 13315 12512 11124 23313 12130 21121 13312
23514 22431 23234 12435 11121 22115 22233 22425
11423 11534 21213 21333 23514 13112 13311 21225
11131 23415 11311 22233 21121 21421 22222 21422
13113 22515 11424 13535 23333 13533 21522 13424
12431 17224 12134 23524 22112 13134 21213 21434
13124 11231 12433 13223 12335 21321 22333 23333
23411 12435 22113 22315 12315 12122 21222 22412
02324 11331 22233 23535 12313 23323 23215 21221
12235 22331 13323 22321 13325 22334 23432 22130

Chapter 2 Statements and Functions

make artificisl dels using random funoc

tion

13225
2122

13331
21222
12535
12411
23515
11114
12231
11533
22221
11513
21434
21211
13531
21332
21132
12535
13313
21115
21424

e lnh B ard
L

21335
13511
23414
23511
1352

23235
22523
13324
21432

23222

21211

SUM OF MALE RESPONDENTS
sUM OF FEMALE RESFONDENT

SEX =

0 OF

3 OF
1 OF
1 OF
2 OF

TOTAL

SEX =
1 OF
1 OF
1 0OF
¢ OF
1 OF

TOTAL

SEX =
0 OF
2 OF
1 OF
2 OF
0 OF

TOTAL

SEX =
1 OF
1 OF
0 OF
0 OF
¢ OF

TOTAL

SEX =
1 0OF
0 OF
1 0OF
1 OF
0 OF

TOTAL

1 AGE = 2

THIS GROUF ANSWERED
THIS GROUF ANSWERED
THIS GROUF ANSWERED
THIS GROUF ANSWERED
THIE GROUF ANSHERED
OF RESPONDENTS 1 2

2 AGE = 3

THIS GROUF ANSWERED
THIS GROUF ANSWERED
THIS GROUP ANSWEREL
THIS GROUFP ANSWERELD
THIS GROUF ANSWEREL
OF RESFONDENTS 2 3

1 AGE = 1

THIS GROUF ANSWERELD
THIS GROUF ANSWERELD
THIS GROUF ANSWERED
THIS GROUF ANSWEREL

THIS GROUF ANSWEREL
OF RESPONDENTS 1 1

2 AGE = 2

THIS GROUF ANSWEREL
THIS GROUP ANSWERED
THIS GROUF ANSWERED
THIS GROUP ANSWEREL
THIS GROUFP ANSWERED
OF RESPONDENTS 2 2

2 AGE = 3

THIS GROUF ANSWERED
THIS GROUP ANSWERED
THIS GROUFP ANSWERED
THIS GROUF ANSWERED
THIS GROUF ANSWEREL
OF RESPONDENTS 2 3

5

140
= 157
AREA = 3
1
2
3
i
3 1¥=7
AREA = 5
1
2
3
4
5
5 3 X =4
AREA = 1
I .
2
3
4
5
1 1X=5
AREA = 2
1
2
3
4
5
2 2%=0
AREA = 3
1
2
3
4
5
33X =3

Chapter 2 Statements and Functions

PARTY = 1
FARTY = 3
PARTY = 1
PARTY = 2
PARTY = 3

17

18

The two programs that follow exemplify the Monte Carlo
technique, which is a common way to establish randomness in a
series of observations.

The first program, C2P3, demonstrates how to shuffle a deck of
52 cards quickly and effectively on the computer by picking two
cards at random and switching their positions. The pick-and-switch
is repeated 100 times, although fewer switches might be just as
effective.

10 ‘FILENAME: "C2F3"

ng FUNCTION: SHUFFLE A TECK OF CARDS

30 7 AUTHOR © JFG DATEY 12/79

40 DIIW G452

50 ¢ generaie Lhe deck end desl it in order

40 FOR T = 1 70 52% C(Iy =TIt MNEXT I3 GOSUR 300
70 ‘shuffle the deck

80 RAHDOW ‘

on ‘owiteh two cerds el rendom 100 times

106 FOR I = 1 70 1003 X = ENIMI2)Y Y = RNIK 52)
110 T = COX)P COX) = CLY)E CLY) = Ti NEXT 1

1720 ‘now desl it shuffled

130 GOSUR S00% GOTO 10000

500 ‘dezling subroutine (4 hends)

510 FOR I=1 T0 52

520 LPRINT C(IDit IF INTCI/Z13) % 13 =1 THEN LPRINT
530 NEXT It LPRINT: RETURN

10000 ERND

1 2 3 4 5 & 7 8 % 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 16
27 28 29 30 31 32 33 34 3 36 I 38 39
40 41 42 43 44 45 46 47 48 49 50 91 52

18 3 17 27 37 19 14 2 10 8 51 26 31

4 925 5 13 30 22 49 36 20 41 15 50 35
24 23 52 & 11 32 029 44 21 9 42 45 28
39 33 43 34 46 16 48 47 7 1 40 12 38

The second Monte Carlo demonstration shows how the
technique can be used to balance two (or more) series of events.
Suppose a record company wishes to equate as closely as possible
the total playing time on each of two sides of an LP record. The
first side must contain 12 selections while the second side must
contain 13 selections for a total of 25 selections with a total
playing time of 93 minutes. Ideally, each side should be recorded
with 46 minutes and 30 seconds of playing time. The problem
arises when trying to find the 12 or 13 tunes whose playing time
most closely approximates that figure. The Monte Carlo technique
selects 12 tunes at random, adds their playing time, and keeps the
“best” schedule.

Chapter 2 Statements and Functions

19
20
30
40
50
&0
70
a0
29
1040
110
126
130
140
150
160
170
180
190
200
210
220
230
240

250

280
270
2890
2940

300,

310
320
334
‘Z#{)
350
340
370
380
390
400
410
420
430
440
450
4460
479
430
490

“FILENAME: "C2F4"

’FUNETIGN. MONTECARLO SELECTION OF SONG FROGRAMS
’AUTHGR VIPG/IIR 12779

DIM T$C25)y W25)s 80250, T(25), hqu}s Le25)

Y T$= sons title M = minutes rer cut

* 5 = seconds rer cub T = time rer culs in seconds
" K = random rFoinbler L = second random rointer

I

“ read in the titless minutess and seconds

“ N o= tolel number of sonzos both sides
INFUT "HOW MANY OF THE 25 SONGS ON THIS ALEUK" N

LPRINT "THIS ALEUM HAS";N;"OF THE 25 SONG TITLES"
FOR I=1 T0 25

READ T$(I)s M(I)y S(I)

TCI=60 % MOI) + 50100 K(I) =1

NEXT I
C=a00001 7 set smallest diff. hFiNEen sides very high
INFUT "HOW MANY SCRAMRLES" NS
LPRINT "SELECTED NUMEER OF SCRAMBLES=" N5
FOR 8=1 T0 H5 " serembile songs NS Lipes
FOR I=1 TO N
JERNDON DD Z=K0I)8 KOI=K00) K(J)=7
NEXT I
sum Limes for sides
Z1=00 Z2=07 N2=INT(N/D)
FOR I=1 TO N2
JERUTY ZE1=Z14T0.000 J=K(T4+N29E 772 224700
HEXT I
IF N/ZINTONAZ) THEN Z2=7247T()
B=ARG(Z1-22)t 7 B = diff. in Lime betueen sides
IF Bx=C THEN 380! * € = rrevicuslu smallest diff,
C=Bt Cl=71! Co=72

FOR I=1 TO N: L(I)mK(I): NEXT I

FRINT "LEAST="3Ci"IN TRY";Q

LFRINT "LEAaT*"‘ "IN TRY":Q
IF C=0 THEN 390 ‘dgrest! 0 is difference!
HEXT @
FRINT: PRINT “get next shuffle of times
LPRINTILFRINT

MI=INT(C1/60): S1=C1-40%M1
FRINT "SIDE 1"sM15"$"$51% LPRINT "SIDE 1"sM13" 17351
FOR I=1 7O N2 J=L(I)
PRINT T$CJITABC40)M(J)" 1 5()
LFRINT T$CJ)ITAERC40)MCJ)"1"5(.0)
NEXT I
FRINTIFRINTILFRINT SLFRINT
M2=INT(C2/60)1 &2 C - 60 KM2
FRINT "SIDE 2"y M25 "i"; 52

Chapter 2 Statements and Functions 19

500
310
920
330
3490
G50
360
70
580
70
&00
610
620
&30
&40

| ~4
650

&&60

670

10000 END

LPRINT "SIDE 2"y M2§ “i"§ 52

FOR I=N2+1 7O M J=L{1)
FRINT TH(JITARC40 M 1"800)
LFRINT T$OJOTARC40 MO IME0D)

NEXT
LaTA
UaTa
HaTH
OaTa
BaTA
DaTA
DAaTA
DatTh
LATA
DaTH
HaTa
nata
DaTa

I

"HAGHA COME LOUDLY"»2s45,"CRAMF MY STYLE" 2520
"PORKY AND TESS" :5y21s"PUSHEUTTON POLKA" 56,23
"THE GODKOTHER THEME"s4533:"FIG NEWTON"»3:2
"MOTEL COLORADO"»2s435"YELLOW FEVER"s2510
"STAGHANT" s 3555, "NEW HAVEN NEW HAVEN" 8523
"LIFE IN THE FAT LANE"s3521,"HOT SNUFF"»5s31
"EIRST RATE ROMANCE RITZ RENDEZVOUS" 3,33
"TRON ORCHID" s3s 36 "FIFTY-FIRST STREET"s1,23
"ELACK HOLE BLUES" 525515 "YELLOW PILLOW" r690
PETHACOLATAVILLE" » 20445 "SALADA CANTATA" 4,20
SFLORTBUNDAY #3585 " TAKE THIS JOERIM SHOVEL":3,8
"STAR TRUCK® s 3540 "SEMIHEMIDEMIQUAVER" v 242
"TFHEGENTA IN QUEENS" 2534, "CARINETWORKS" 5342

THIS ALEUM HAS 25 OF THE 25 BONG TITLES
SELECTED NUMBER OF SCRAMBLES= 50

LEAST= 46 IN TRY 1

LEAST= 36 IN TRY 7

LEAST= 8 IN TRY 28

SIDE 1 47 11

THE GOIMOTHER THERE 41 33
HOT SNUFF 5131
IPHEGENIA IN QUEENS 21 34
FIFTY-FIRST STREET 132
IRON ORCHID 3136
SALADA CANTATA 4125
FORKY AND TESS 5121
FUSHEUTTON POLKA 6123
BLACK HOLE BLUES 251
TAKE THIS JOREIN SHOVEL 318
STAGNANT 3455
LIFE IN THE FAT LANE 32

20 Chapter 2 Statements and Functions

SIDE 2 47 1 %
FINACOLATAVILLE

FIRST RATE ROMANCE RITZ RENDEZVOUS
FLORIBUNDA

CRAMF MY STYLE

STAR TRUCK

YELLOW FILLOW
SEMIHEMIDEMIQUAVER

NEW HAVEN NEW HAVEW
CARINETWORKS

YELLOW FEVER

FIG NEWTOM

MOTEL COLORADC

MAGMA COME LounLy

THIS ALEUM HAS 17 OF THE 25 S0NG TITLES

SELECTED NUMBER OF SCRAMBLES= 50
LEAST= 200 IN TRY 1

LEABT= 145 IN TRY 2

LEAST= 17 IN TRY 4

LEAST= 8 IN TRY 14

SIDE 1 35 ¢ 11
NEW HAVEN NEW HAVEN

FIG NEWTON

FORKY AND TESS

YELLOW PILLOW

YELLOW FEVER

LIFE IN THE FAT LANE

HOT SNUFF

FIFTY-FIRST STREET

SIDE 2 35 1 3

STAGNANT

CRAMF MY STYLE

THE GOIMOTHER THEME

MAGMA COME LOUDLY

FUSHERUTTON FOLKA

FIRST RATE ROMANCE RITZ RENDEZVOUS
ELACK HOLE BLUES

MOTEL COLORADO

IRON ORCHID

Chapter 2 Statements and Functions

P3P L B Ged OO0 R O el B G G B3

e LA el B O L Gl €0

Gl B3PI G O Y B PO G

MR A S L

TE P e T a ed P o

PP X TSP B e e> T e

44
33

20

40

23
42
10

43
45

£l

DRI R
e

10
21
31
23

55

20
33
45
23

-
o}

al
43
34

21

String Functions

LEN

LEFTS and
RIGHTS$

MID$§

22

10
20
30

30
60

//
String functions are designed to return strings or information
concerning the strings that are referenced in the argument.

The LEN function returns the length of the string.argument.

Insiruction Outrut

FRINT LEN("AEC") 3

PRINT LEN(" COUNT" +" DRACULA") 12

PRINT LENC"MAC" JLENC"HINES") 8

A$="SCR": R$="AH"

IF LEN(A$)<10 THEN A$=ASH"E"! GOTO 50

A%=ASHES] FRINT LENCAS)3AS 12 SCREEEEEEEAN

Line 50 above pads A$ with as many “E”’s as it takes to make
it 10 characters long, then “adds” (concatenates) B$ to the result.

LEFTS$ and RIGHTS$ return substrings of the string argument
for the length specified by the numeric argument.

LEFT$(X$,N) returns the N leftmost characters of X8$.

RIGHT$(X$,N) returns the N rightmost characters of X8.

Instruction gutrut
70 PRINT LEFT${"ABCLI"s3) ARC
g0 PRINT RIGHT${ "ARCIH" 2 cn
90 AS="RAN"! FRINT A$+RIGHTS(A%,2)4+"A" RANANA
100 PRINT LEFTS("FIRE"®+" T 1 A FIRE 1Z

MIDS$(AS,P,L) extracts a substring of the argument string A$
starting with the character at position P for a length of L characters.
If the third argument L is omitted, the function returns all of the
string starting at position P.

Instruction Jutrut
100 PRINT MID$("ARCDE" +3:2) cn
110 PRINT MID${ "ARCDE"s3:3) CIE
120 FRINT MIDS${"ARCDE",2) RCIE

Chapter 2 Statements and Functions

ASCand CHR $

If the position argument exceeds the length of the string, the
returned (“‘extracted”) string is null.

Instruction Qutirut

130 BE=MID$("ARCDE"»8)! PRINT E$; LEN(R$) 0

The MIDS function is useful for searching a string for a
particular character or substring. This example shows how the
length of a person’s first name could be determined in order to
reposition the last name.

10 “FILENAHE: "C2F5"

20 “FUNCTION! REVERSE LAST AND FIRST NAME
30 7 AUTHOR ¢ JPG DATE: &/7%
40 7

S0 CLEAR 1007 INFUT "TYFE YOUR NAME -- LAST FIRST MI":Ng
60 LFRINT N3

70 FOR I=1 TO LEN(N%)

a4 IF MIDS(NSsIs1 <" " THEN NEXT I

0 IF I=LEMN(N$) THEN 490

100 LFRINT MIDS(N$s IH104" "+LEFTH(N$sI-1)
10000 END

Clone Boro 7T
Boxa T Clone

The ASC function returns the ASCII (American Standard
Code for Information Interchange) code equivalent in decimal of
the first character of its string argument, which cannot be null.
See Appendix B for a complete listing of all ASCII codes.

Instruction Outrut
10 FPRINT ASC{"ARC™) 65
20 PRINT ASCL"1979") 49
30 PRINT ASCin) 32
40 PRINT ASCL"1") 49

Chapter 2 Statements and Functions 23

VAL and STRS

24

The CHRS$ function is the reverse of the ASC function. Its
argument is a value that is taken to be the decimal equivalent of an
ASCII code, and the character it represents is returned.

Instruction Qutrul
50 PRINT CHR$(77) #
&0 PRINT CHR%(63) A
70 FOR I=40 70 &3 .
80 FRIMT CHR$(I1)s (YKt r- /012345678915 4=0T
90 MEXT 1

The TRS-80 has an unusual extension to the character set. As
is the case with all 8-bit micros, the 128-character ASCII code uses
only half of the possible bit patterns, and so Radio Shack uses the
values 128 to 255 for a variety of reasons. Half of these, from 192
to 255 inclusive, can be printed using the CHRS$ function, and the
result is a variable-length TAB argument.

Examples—Various Ways to Tab

Tabbing withoul TAR with TAE
10 PRINT CHR$(19245)"X" 10 FRINT TAR(S)#"X"
50 PRINT CHR$(253)5"Y" 50 PRINT TAB(&3)3"Y"
100 Y=192% PRINT CHR$(V " Z" 100 FRINT TARCO):“Z"

The VAL and STR$ are two companion functions used for
string-to-numeric and numeric-to-string conversion. The VAL
function uses a string as its argument. It returns the value that is
represented in the string. If the string is mixed, and starts with
numeric characters, the value of the leading number is returned. If
the string starts with non-numeric characters the value returned is O.

Instruction Outrut
130 LFRINT VAL{"2ZE3™) 2000
140 LPRINT VAL{"12.34") 12.34
150 LPFRINT VAL{"8 0’Clock" 3X100 800
160 LFPRINT VALC"B29"™)]
170 X$="-B.,765": LPRINT VAL(X$) ~8.765

Chapter 2 Statements and Functions

164
176
184
176
200
210

220

10

20

30

44

a0

&0

70

80

70

100
110
120
130
140
150
140
170
180
190
200
210
220
230
240
250
280
270
280
290
300
310
100

The STRS$ function performs the opposite of the VAL function.
It converts a value to a string. Its argument is a constant, a numeric
variable, or a numeric expression. Note that 9-digit accuracy is
maintained.

Ingtrﬁcyimn Jutrut

LERINT 8TR$(5) 3

LFRINT STRE(123458789 123456785
LERINT VALOSTREC 1234574689 1) 123456789
LFRINT STR$(VALOT 123457489) LE345678Y
LERINT RIGHTH(BTRS(S)s 1 MHRIGHTS(STRS(7 1) 57

LFRINT RIGHTSCSTRSCS) L HLEFTS(STRS(7 151 o]

LERINT RIGHTH(STRSCS 10 1 048TRS(C7) w7

Note that STR$(5) is two bytes long, representing the sign and
the digit.

CFILENAMES "C2F6"
TFUNCTION: VERY LONG ALDITION
C AUTHOR t JPrG DATE: 12/79
CLEAR 10007 clear enoush siring srace
! inrutl both long integers ss siringss A% znd B
FRINT "TYPE THE FIRST NEMBER, UF TO 40 DIGITS LONG,"
PRINT "TYFE 'STOFY TO EXIT.®
IHFUT A%: L1 = LEM(A$): C=0
IF &% = "STOP™ THEN STOR
FRINT "TYFE THE SECOND NUMEERs UF TO 40 DIGITS LONC."
INFUT EB$: L2 = LEN(ES)
Ce=""1 C=0' set answer sitring Lo nulls caerre to 0
! rad both strings st left wilh blanks
AP=STRINGS(&0-L1s" " 3403
BE=5TRING${ 60-L2s" " ME%
! add one digit 2t 2 Lime’ Keer track of carru
FOR I=60 T0 1 STEF -1
S=VALIMIDS(A$s 15100 + VAL(MID$(BS-I51)) ¢+ C
IF 5%% THEN C=1{ S=5-10 ELSF =0
CE=RIGHT$(STR$(S5)s1) + C3
NEXT I
" now gel rid of leading zeros in snswer
first find rosition of first non-zero character
FOR I = 1 7O LENCC$)? IF MIDS(C$sI21)="0" THEN NEXT I
! then concatenzte blanks where there were reros
CE=8TRING$(I~-1»" ") 4+ RIGHTH(C%r41-1)
“ rrint both the inrut znd Lhe answer
LFRINT " "+A$! LPRINT "4" 4 E$
LPRINT STRING$(&61s"~")¢ LPRINT " "4C%
LFRINTY LPRINT! GOTO 20
090 END

Chapter 2 Statements and Functions , 25

7

User-defined
Functions

26

7645685435807 3354374 53311285003
346B44343222609212144399

7645685782651 678660062023429402

D07 454987 65443321 25439870987 765432327 65487 654325457 66565
1111111111131 1331242212 300122112312111111111111 301311

109876460987 655443236550 98209887 45434387 65987 6543656877676

123456707 65432123456787 654321234 56787 654321
87654321 234567 87654321 23456787 6543212345678

PR99995999999999999999999997799979997777757

d
~J
~d

7777777777777

~.

F77FIIIIIIIIIFIIIIIIIFIIIVIIIIIIIIIVIIIVT
i
s

BOGF999759999709YRIITIRITITITITPIITIIITIIIIIIITIIIII

100

Some programs use a few simple routines so often that they
are best written as single-line functions. This is possible in most
versions of extended BASIC. The format for defining single-line
functions is:

DEF FNX(V1, V2, ...) = expression

or
DEF FNX$(V1, V2, .. .) = string expression

The X or X$ is any legal numeric or string variable that will
identify whether the function returns a numeric or string result.
The V1, V2, and others if necessary are dummy arguments to the
function definition. That is, their name is immaterial, except for
type and position. They represent the type and position of the
actual arguments as the function is invoked within the program.
The expression shows the way the dummy arguments interrelate to
produce the single answer.

There are two distinctly different occurrences of user-defined
functions in any program. One occurrence is its definition, and
this must precede all other occurrences, which are called its
invocations. Your study of these examples will help you to
appreciate this feature of BASIC.

Chapter 2 Statements and Functions

Instruction

5 T1=5% R7=8 E2=75

10
20
30
44
30
&0
70
80
70

DEF FNACKS Y2 Z)=X4Y+Z

LFRINT FNA(TIsR7+R2)

DEF FNIM{ AsEsC)=REE-4%A%C

LPRINT FNIM T1sEB2sR7)

DEF FNR(CAsBsC)=(-B+5RR(FNICAsESC))/ ATA D)
LFRINT FNR{T1sR2+R7)

DEF FNXON)I=LEFTHIN$»2 MRIGHTH N$-2)
LPRINT FNX$("FINS SFLASH")

DEF FNL¥CA%sBEI=A$/RE

100 LPRINT FHL#(R7SB2)

110 LPRINT FNA(45,67+87)

120 LFRINT FNIM 32435234.123)
130 LPRINT FHR(345347,89)
140 LPRINT FNL#(1:7)

utrut

88
G465

676074

FISH
1066666666666647
201

-1.5408E4+06

-558.82

142857142857 1429

Notice that the variables used when the function was invoked are
not the same as those used in the definition, but that they are used

in a one-to-one substitution.

Double precision is explained in Chapter 4, but this example
is used here to show that user-defined functions can return integer
or double precision answers, unlike the library functions, which

return only single precision answers.

In this chapter, you have learned that strings can be
manipulated in a variety of ways to ease the burden of character
processing. Also, you have seen some unusual features of the
TRS-80 Level II BASIC that further extend its flexibility in
programming. The next chapter discusses some extensions of BASIC
that the TRS-80 uses to communicate to the user through video

screen and line printer.

Chapter 2 Statements and Functions

27

. N . N B N B “ . - . - N > N N . . . B N . - - . . . = j
' . .

Input and Output

Cued INPUT

Programmers are often quick to point out that programming a
computer to process information is only one phase of the work.
Often the input of data into the computer for future processing or
the output of the processed information is at least as troublesome.
As college teachers we have found that what is obvious to the
professional programmer is not at all obvious to the beginning
programmer: Good output is by definition highly readable and well
organized, and requires a great deal of prior planning to produce.

In this chapter we will discuss the PRINT USING, a statement
that greatly simplifies the task of making output readable. We will
also discuss the PEEK and POKE instructions that read or alter
memory directly, and the INP and OUT instructions that control
the interface ports of the microcomputer.

Most extended BASICs have a feature that allows a message to
be printed along with the usual question mark prompt upon
execution of an INPUT statement. The programmer simply places
the message in quotes after the word INPUT, then a semicolon and
the list of variables.

29

LPRINT

PRINT USING

30

Examples:

Instruction Outrut
10 INPUT "NAME" iM% NaME T
20 INPUT "WEIGHT":UW WEIGHTY
30 INPUT "SEX"35% SEXT
40 INFUT "VALUE" 4 VaLUET

One of the signs that BASIC has matured as a computer language
is its ability to use an attached printer as an output device. The
LPRINT command acts exactly like all versions of the PRINT
command, except the output is sent to the printer. Most of the
examples and programs in this book have used and will use the
LPRINT as well as the PRINT.

If any one feature has enhanced the reputation of BASIC as a
language in the professional community, it is the PRINT USING
statement. This feature allows a great deal of flexibility in the
formatting of output, and for this reason is used extensively in the
printing of reports and in increasing the readability of screen output.

Some .examples should clarify its use. Suppose you want to
produce a chart of the values of the sine, cosine, and tangent for
angles between 0 and 45 degrees in increments of 5 degrees.

10 'FILENAME: "C3FL"

20 YFUNCTION: CHART FOR VARIOUS FUNCTIONS

30 7 AUTHOR @ JFG IATE:D 3780

40 7 rrint column hesdings

50 LPRINT "DEGREES"»s "SINE", "COSINE"» "TANGENT"

40 FOR I = 0 TO 45 STEF 5)

707 converi radiesns to dedrees *///HFW @UDTESM
80 A= 0174533 % 1 /

20 LPRINT I. SINCA)s COSCA)s TANCA)

100 NEXT I

10000 END

Chapter 3 Input and Output

DEGREES SINE COSINE - TANGENT

g { 1 ¢

5 0871558 FPH195 0874887
10 + 1734648 + 784808 176327
15 258819 +F6E924 267949
20 34202 +F394693 + 36397
25 +422418 LF046308 466308
30] +B864025 + 577351
35 Wa73577 819152 S L 700208
490 +642788 66044 +8371

45 FOT 107 07107 1

Wouldn’t it be nice if the same chart could contain the square
root and cube root of these values? Unfortunately, this would print
six values causing overflow of the four 16-column zones that make
up the TRS-80 screen. The first four values would appear on one
line, then the last two on the second line, as shown here.

DEGREES SINE COSINE TANGENT
5@ ROOT CUBE ROOT

Q 0 1 it

0 0 ‘

3 +0B7 1558 9961795 0874887
295409 44355

10 + 173648 +784808 +176327
417772 308847

153 + 258817 F65726 267949
eall1b63 3972

20 V34202 37473 + 36397
+970818 704103

25 422618 06308 +466308
+560555 758471

30 3] +866025 «a77351
723601 +B05T94

35 V373577 +819152 700208
781379 +8484%4

40 +642788 1766044 +8371
+835543 +887114

45 7071407 707107 1
+886227 + 922635

A clever programmer could use the TAB function and a
rounding function to produce some much better looking output.
Consider this alteration of the program.

Chapter 3 Input and Output 31

32

1%
20
30
49
30
&0
70
a0
0
100
110
120
139
149
150
140
170
180
190
200
100

LEG
it
3
10
15
20
25
30
35
40

45

FILEMNAME: "C3F2"
SFUNCTION! PRINT NEAT TARLE WITH NOT-S50-NEAT PROGRAM
f AUTHOR ¢ JPG DATE: 4/80
! erint column hesdings
LPRINT "DEG": TAR{10)F "SINE™: TAR{20)r “"COSINE";
LPRINT TAR(30 s "TAMGENT": TabB(40)s "5Q ROOT"s
LPRINT TaR(S0)s "CUBE ROOT"
FOR I=0 70 45 STEF 35
f=.0174533%1 convert radians to dedgrees
 ponvert sll values to 3-rlace numbers
X=5IN(AY GOSUR 190% S5=X -
¥=C05{ At GOSUR 190: C=X
Y=TaN(At GOSUR 1907 T=X
X=5QR({ 1)} GOSUR 1901 U=X
¥=I0{1/3): GOSUR 190: V=X
‘ pote the minimsl runclusltion
LPRINT I TARC10)5 TAR(C20)C TAR(30T TARC40)U TAR{ 50OV

MEXT It GOTO 10000
A=INT{1000%X+.0005)/1000
RETURN
00 END
SINE COSINE TANGENT 5@ ROOT CURE ROOT
it 1 0 0 0
087 996 +087 2236 1.709
173 784 176 34162 2,154
258 765 + 267 3.872 2466
e 342 939 + 363 4.472 2.714
+422 +706 4bb 9 2,924
+9 +866 w77 G477 3,107
+ 973 819 o7 G.916 3,271
1642 766 +839 64324 3.419
707 1707 1 4.708 3,556

The real problem with this kind of programming is not that it
doesn’t do the job. Rather, the job it does is not obvious to the
reader of the program. One doesn’t “see” the layout of the output
line by studying the program. Also, a small change in layout format
would be difficult to implement.

The PRINT USING statement allows the programmer to define
an image of the output line as a string variable, and then print the
variables using that image. There two ways this can be done:

(1) The PRINT USING statement can contain the image

(without any variables).

(2) The PRINT USING statement can contain a string variable

that defines the image.

The image is a string that acts as a mask for the output line.

Chapfér 3 Input and Output

g

There are five possible contents to an image statement.

(1) Spaces, used to spread out the values of the variables.

(2) Literals, used to place headings or messages.

(3) Digit specifiers (#), used to mask digit positions.

(4) String specifiers (% and !), used to mask characters in a
string.

(5) Special characters (,.$*+-), used to designate punctuation, -
fill characters, signs, or exponents in scientific notation.

See Table 3.1 for a summary of these image specifiers and their
effects.

The PRINT USING statement has the following form:

PRINT USING string; values
where string is the image, either as a string constant or variable, and
values is the list of variables or constants to be printed.

The following examples show the use of spaces, literals, and
digit specifiers.

Surrose A=25: B=368s and [=71904

30
40
30
&0
70
7%
a0
83
70
93

Instruction Qutrut
FRINT USING "$#333"7A 25
FRINT USING "#33#3" R 348
FRINT USING "$¥333"iC 71904
FRINT USING "#3%4% $3334%" 505K 25 368
FRINT USING "#¥3% 3483 #3384 5AsRsC 25 368 %71904
AR="33F 3F HEEEET
FRINT USING A$#AsEsC 25 368 71904
Ed="A=%F B=fEid" '
FRINT USING B$7AsR A=25 B= 348

C$="VALUES:"

100 PRINT USING CH+A$iAsEC VALUES? 25 368 71904

Chapter 3 Input and Output - 33

SPECIFIER CHARACTER

Litersl zne erinteble
charscter tutl
$ or srecisl
charscters

Srecial ¥
Characlers

FUMCTION

srresds outrut

srrears exscltly
in imase

marks s digit
rosition

serarzles every
three didits in
the correct
rositions
(47593465257)

marks the rosition
of the decimal roint
in 2 numeric field

rrints & flosting
dollar sign

gives check
rrotection

rrints correct sign
of the followng
numbenr

rrint 8 - if value
i negative

four of them denote
scientific notation
using exronents

marks the boundaries
of an zlrhenumeric
field

marks the rosition
of 8 character

Table 3.1 Image Specifiers and Their Effects

34 Chapter 3 Input and Output

EFFECT

& &Face

the litersal
itself

digit or 2
SFECE

s or & blank

the . is
aluwsus rrinted

rrinted Just

in front of the
first didit in
the numeric field

is rrinted
instezd of the
leading zeroe
or SFraces

rositive velue
rrints & +
nesative value
rrints 3 -

rositive velue
rrints & sraces
negative value
rrints 8 - sign

the letter E rlus
the sign of the
exronent rlus Lwo
exronent digits

zllows string
variasbles to be
used in Lthe imade

zllows single
characters

A number of features enhance the value of the PRINT USING.

(1) It prints the value even if it is too large for its
corresponding image. ‘

(2) Formats can be changed during the execution of the
program.

(3) Trailing zeros are printed.

(4) Values are printed in rounded form.

(5) If the number to be printed is too large for its image, the
entire value is printed, but with a leading percent sign to
signal the user that the number was too large for its image.
An example of this was shown in the output from line 70
in the above examples. For more, see the following

examples.
Instruclion Outrut
10 PRINT USING "#%.23" 5450 Z4T0 .00
20 PRINT USING "$%.28"5830.375 4830.38

Punctuation, such as decimal points, commas separating
thousands and millions, plus and minus signs, dollar signs, and fill
characters, can be inserted in an output field with very little trouble.

Surrose E=2.718082y G=-65,432y H=7492835; and P=3.141593

20

Instruction Qutrut

10 PRINT USING "$,$333"F 2.7183
FRINT USING ", %33 332, 23" H 75492:840,00
25 A%="4%. ¥
30 PRINT USING A$;G 1-85.43
40 PRINT USING A%3F 314
O BE="3F.43-"0 CH="4%F, 334"

G0 FRINT USING R4$3G 65,43~
&0 FPRINT USING C$:5G 65,43~
70 FRINT USING EB$;F 3.14
80 FRINT USIMG C$sF J.144

Chapter 3 Input and Output 35

The examples above show that when a plus sign is placed at the
end of a digit specifier field, it forces the printing of a sign at that
position: + for positive numbers and - for negative numbers. When a
minus sign is placed at the end of a digit specifier field, it forces the
printing of a space for positive and a - for negative numbers.

Now let’s look at that table-printing program again, only this
time it will have a PRINT USING statement.

10 ‘FILENAME: "C3F3"
20 ‘FUNCTION? FRINT A TABLE WITH PRINT USING STATEMENTS

30 ¢ AUTHOR 1§ JFG HatTE: 4/80

40/ print column hesdinss

50 LPRINT " IEG SIH £os 0 TAM 54 RT ¢y RT"
&0 ¢ define the imzge for the table ‘

70 a¢ = " ¥ 3443 MM BLOHE BB A

80 FOR I = 0 TO 45 STEF 5

90 A=.0174533%1 ‘ convert redisns lo dedrees

100 7 note the minimsl runctustion

110 LFPRINT USING A% TsSINCA)2 COSCAYP TANC A SRRET L ID(1/3)

120 NEXT 1
10000 ENI
LEG SIN cos TAM SR RT CU RT
0 0,000 1,000 0,000 0,000 0,000
5 0,087 0.996 0,087 2,236 1,710
10 0.174 0.985 0.176 3.162 2,154
15 0,259 0.966 0.268 3.873 2,466
20 0.342 0,940 0,344 4.472 2,714
25 0,423 0.906 0.466 5.000 2,924
30 0.500 0.866 0,577 5.477 3.107
35 0,574 0,819 0,700 5.916 3.27
40 0.643 0.766 0,839 6.325 3.420

45 0,707 0,707 1,000 6.708 3.557

The output of program C3P3 shows the advantage of the
PRINT USING in printing trailing zeros to fill the image. The
computer prints the sine of 30° as 0.500, and not just 0.5.

You can build image strings during execution of the program
that depend upon certain features of the variable values to be
printed. For example, suppose your program is to print an amount
with varying size embedded within text without any extra blanks.
Study the following program to see how this is done.

Chapter 3 Input and Output

10 "FILENAME! "C3F4"

20 “FUNCTION: ANOTHER EXAMPLE OF HOW IMAGES CAN BE USED
30 7 AUTHOR @ JPG DATE: 4/80

40 CLEAR 300 '

o0 INFUT "AMOUNT TO BE EMEREDDED (DOLLARS AND CENTS)":X
60 TF X=0 THEN 10000

70 F#=""1 A$=5TR${X)! L=LEN(A%)

80 FOR I=1 TO L-3% F$=F$+"$"INEXT I

70 Fe="4$"1F54" 44"

100 LPRINT "OUR ACCOUNTS SHOW YOU TO BE IN ARREARS"
110 LPRINT USING "RY THE AMOUNT OF "+F$+" DOLLARS"; X
120 LFRINT " FOR THE MONTH OF AUGUST."

130 GOTO 50

10000 END

OUR ACCOUNTS SHOW YOU TO BE IN ARREARS
BY THE AMOUNT OF $ 4338.24 DOLLARS
FOR THE MONTH OF AUGUST.
OUR ACCOUNTS SHOW YOU TO BE IN ARREARS
BY THE AMOUNT OF $ 1.23 DOLLARS
FOR THE MONTH OF AUGUST.

When very large or very small values are to be printed, it is
sometimes better, either for convenience or for appearance, to print
these values in scientific notation. The up-arrow (1) indicates the
exponentiation operation in BASIC, but in a PRINT USING
statement it also serves as an image specifier for the exponent portion
of a number. Four up-arrows (1111) are used in an image that serves
for scientific notation output.

The first + masks the letter E.

The second t masks the sign of the exponent.

The last two 11 mask the value of the exponent.

Study the following examples to see how very large values can be
printed.

Chapter 3 Input and Output 37

Instruction)

10 CLEAR 200

20 A=6.023E-81 B=.000000000012345
30 C=5.43E121 D=4720450000000000
40 SE="4 FEEEEEEE R EE AR

50 Lé="$#4 35358 338 B4 104
60 E$="F. 3350101017

70 FRINT USING 5%34

75 FRINT USING S%iR

80 FRINT USING E$iA

85 FRINT USING E$5E

90 PRINT USING L$s5C

9% PRINT USING L$iD

100 PRINT USING E$iC

105 PRINT USING E$3D

0.0000000480230000000
0, 000000000012345000
0. A6023E-07
0. 3235E-140
54 30:000,000,000
499204505000 0005000
0.5430E+13
0.4920E+16

The $ and * characters can be used as fill characters in an image
statement. This is useful in payroll programs that contain a check
protection feature.

Suprcse A=3,75s Be-4.86y XE="o3REEE" and YE="sERE EEV

38

Instruclion Outrut
10 FPRINT USIHG "RkE"+X$:4 b4 3 ¢ KW
20 OFRINT USIHG "dEE"+Y$:A A3 75X
30 FRINT USING "k IX$iR EAkd-4,.84
40 FRINT USING "SX$"+Y$S:R kyd4 .86
S0 FPRINT LSING "$33"+X$iR ~%4 .86
&0 PRINT USING "$33"1Y$:R $4.856-
70 OPRINT USING "$ #"+X4$R % ~4,84
80 FRINT USING "$ $"1Y$R % 4,86~
G0 PRINT USING "dk$"+X%:R Yik-%4 .86
100 PRINT USING "%X$"4Y4$5E ¥hkh44,.86-

Chapter 3 Input and Output

10
20

“Z
3

49

[
e

60
70

INP and OUT

String specifiers in a PRINT USING image statement can control
the positioning of strings. There are two string specifiers:

!is used to denote a single character.
% % is used to denote an enclosed string.

The ! specifier positions just the first character of a string.

Instruction Outrut

A$="ABC" ! X$="XYZ"! Tg="1®

FRINT USING I$5A% A

FRINT USING "1"iX$ X

FRINT USING "1!1"iA%:X$ AX

FRINT USING "1 1 1 I";A$,X$:"LIVID"»"ENACT" & X L F
FRINT USING ™11 1I"3"ROZO" " ,"s"THE"»" "3

FRINT " CLONE" Bo T. CLONE

The % % specifiers are always used in pairs, each pair enclosing
the string that it is masking. The spaces between the % characters,
plus the % characters themselves, provide the mask.

Instruction futrut

20 A%="X A" Be="yuv
100 X$="HMONTANA"! Y$="0HIO"

110 PRINT USING AiX HONTA
120 PRINT USING A%$:ivY$ OHIO
130 PRINT USING B$+E$iXsY HOOH
140 FRINT USING B%+" "4E$5Y$sY$ OH OH

The four features that follow—INP, OUT, PEEK, and POKE—
are not found just in the TRS-80 Level Il BASIC. This is why they
are explained in this chapter. However, the reader should be
cautioned that some microcomputers handle these features in slightly
different ways than the TRS-80. We have explained them as they
operate on the TRS-80 because that is the target system for this book.

The INP is a function that returns a-single byte from the
TRS-80’s I/O (input/output) port specified in the argument. For
example, the statement

30 X=INP(127)

Chapter 3 Input and Output 39

PEEK and POKE

40

returns the byte that is at port 127 and stores it in the variable X.
The expansion interface is necessary to make full use of this function.

The OUT statement acts much like the INP, but in reverse. It

requires two values, the first being the port number in decimal and
the second being the byte that is to be transmitted to that port.
For example, the statement

40 QUT 127+60

transfers a 60 to port 127.

The PEEK function and POKE statement are very much like
the INP function and OUT statement respectively. The difference
is that they pick up or deposit single bytes in memory, rather than
at the I/O ports.

The function PEEK has a single argument which is a decimal
memory address. An example statement using the PEEK function
is

G0 A=PEERL 14520)

This statement causes the variable A to take on the value of the byte
stored at the decimal address 14520.
The statement

&0 PRINT FPEER{16650)

prints the byte at memory address 16650.
The statement

70 X=PEEK(15360+1)

places in X the value at location 15360 displaced by an increment I

The POKE statement has two arguments, an address and a
value. For example, the statement

80 FOKE 156505465

places the character “A” in a location of memory which happens to
be in the portion of memory that is displayed on the video screen
(see Appendix C for a complete memory map for the TRS-80).

The memory positions with addresses 15360 to 16383 represent the
1024 specific positions on the screen, that section of memory which

Chapter 3 Input and Output

serve as a buffer to the screen. The image of the screen at any time
is in memory at those addresses, and a programmer can “read” the
screen with a PEEK or “write” to the screen with a POKE into that
area.

This program accesses (and does a quick read/write check of)
the memory addresses 17129 to 20479, the 3300-byte area of memory
that a 4K Level II system has reserved for user programs.

10 “FILENARED "C3P3Y

20 CFUNCTIOND HEHORY TESTER

30 7 RUTHOR © JFG BATED 4780
40 FOR I = 17129 TO 20479

90 X = PEER{(IN Y = %

60 IF INTOI/Z100)%100=1 THEN PRINT Is

70 PORE I.Y: Y = PEEK(I)

80 IF X <> Y THEN PRINT "SOMETHING WROHG AT"351
F0 NEXT I

10000 END

This chapter concludes the coverage of the extensions of
BASIC that are commonly found on most microcomputers. The
following chapters discuss in detail the extensions of BASIC that are
found in the TRS-80s version of Microsoft BASIC.

Chapter 3 Input and Output 41

Variables

Long Variable
Names

Level II BASIC on the TRS-80 is rich with features that makes it
perform like other popular high-level languages. This chapter will
discuss how variables can be used in various ways to make them more
appropriate for their application.

Most BASICs hold to the rule of letter or letter-and-digit as the
only permissible variable names. This stringent requirement reduces
the total possible number of variable names to 286. (26 for A to Z,
26 for AO to ZO, ..., 26 for A9 to 79). A serious flaw with this
scheme is that it greatly reduces the meaning that can be attached to
a particular variable. For example, the high-level language COBOL
allows up to 30 characters per variable name, so that names like
NET-AFTER-TAXES, NAME-TABLE-POINTER, and
DEPRECIATION are allowed. FORTRAN allows up to 6 characters,
and names like SUM, SPEED, and BALNCE can be used in programs.
The majority of BASIC programs, because of the variable naming
limitation, are terse and harder to understand.

Many of the best modern BASICs for microcomputers have
incorporated the feature of allowing long variable names. Microsoft’s

43

Variable Types

Integer Variables

Single Precision
Real Variables

44

BASIC, as incorporated in the TRS-80’s Level 11, has adopted a
compromise. A variable name can be a single letter, or it must begin
with a letter and be followed by either a letter or a digit, so there are
exactly 962 possible distinct variable names. Level II BASIC allows
longer names, but only the first two characters are used by the
computer to distinguish between variables. Also, a Level II reserved
word cannot be contained within a variable name. Appendix D has a
full list of all reserved words in TRS-80’s BASIC.

Examples:
Legal in Level 11 Illegal in Level 11
X 8J (digit first)
V7 STAB (contains TAB)
AB COST (contains COS)
ABC (same as AB) IRON (contains ON)
SUM STIFF (contains IF)
SUPER (same as SUM) POST (contains POS)
SHUPER FORMIDABLE (contains FOR)

The programs in this book will use names of one or two
characters only, except for a few carefully chosen names that are
longer when their use clarifies the meaning of the programs
significantly.

Variables are named according to their application by using a
type declaration character as part of the variable name. The string
variable A$ is distinct from the numeric variable A because it is
declared as a string by the dollar sign (§), which is its type
declaration character.

Integers in Level II BASIC use the percent sign (%) as a type
declaration character. Integers are whole numbers that vary in size

‘between -32768 and +32767 inclusive.

Examples:

Integer variables Typical values
X% 5
SUM% 0
NUM% -8
1% 7982
2% -3000
COUNT% -1

Single precision real variables use the exclamation point (!) as a
type declaration character, or they use nothing at all, since numeric
variables are declared by default to be single precision real variables.
These variables are accurate to seven digits, and vary in size from

Chapter 4 Variables

Double Precision
Real Variables

Conversion of
Constants

about -1.7x103%% to about +1.7x1038.

Examples:

Single precision real variables Typical values
A 372.871
V7 -6.5
XX -.09
J! 142.
B2! 4E-12
GROUP! 2.5E-34

Double precision real variables use the pound sign (#) to signify
the ability to represent 16 decimal digits of accuracy. Like single
precision values, they vary from about -1.7x1038 to about +1.7x1038
in magnitude.

Examples:

Double precision real variables Typical values
F# 32984532891.77
V8# 3.141592653589793
JA# .3333333333333333
GR# 1.000000000000001
NUM# 2.718281828459045

The flexibility of programming that these three numeric precision
types allow is bought at a price. Integer variables have a limited
range; single precision real variables are accurate to just 7 digits;
and double precision real variables take up more than twice as much
memory as single precision variables. Each type has various
characteristics, favorable and unfavorable, as table 4.1 shows.

The conversion of a constant to internal representation can be
a time-consuming process, and a good programmer should always be
on guard for ways to speed up particularly slow sections of code.
This is where some basic knowledge about the particular
characteristics for the TRS-80 and its Level II BASIC can be very
helpful.

The program below does some simple additions in a loop that
can be varied in the number of times it is executed. Both constants
and variables appear in the calculations within the loop. The
timings for the program’s execution are shown in table 4.2.

Chapter 4 Variables 45

Ture integer Single Frecision Double Precision

Declarastion % b {defsuli’ ¥
charscter

Range ~327 &7 LF01411-E38 1.701411834404469221-E38
to Lo Lo
+327 67 1.7014114E38 1.701411834404692214E38
Sizer 2 4 8
butes
Frecision zll in 7 17
{siared range
gigits)
Frecision gll in & 16
{rrinled ranse
gigits)
Fun Lime 5 7 11
memory
zllocation
Conversion NG 1 5-10 500~-1000
time to

bhinarys msec

Table 4.1 Variable Types and Their Characteristics

10 CFILENAME: "C4F1"

70 FUNCTION! DEMONSTRATE DECLARED. VARIABLE, CONSTANT TIMING
A0 CAUTHOR ¢ JPG ATEY 12779

407

g0 ¥¥=07 ¥=0! X$=0! ‘declasre three turesy initislize to zero
&0 INFUT "LOOF SIZE= (0=5TCF)"iNi IF N=0 THEN STOF

70 ME=1¥! G=1.1% Dd=,123454789012345% ‘increments for loor
80 7 let user select the ture Lo be sdded.

24 7 IC=intleger constanls IV=integer verishle
100 7 SC=cingle rrecision constants SVU=single rrec. var.
110 7 IC=double rrecision constants W=double rrec. var.

120 INFUT "TYFE (1=ICs 2=IVs 3=5C, 4=8Yy 5=DCy &=IW)"iTY

130 FRINT "TIME BEFORE="iRIGHTH{ TIME%$+3)

140 now execule 2 simrle zddition N timess according to
150 the user’s reauested ture. note that the loor

160 7 overhead of ON-GOTO and GOTO instructions is the same

170 for azll tures of conversion or sddition.

46 Chapter 4 Variables

180
199
200
210
220
230
240
250
2460
270
280
290
300
310

FOR I=1 TO N

O TY GOTO 210522052305 2405250+ 240
GoT0 40
XE=X%+13 GOTO 270
XA=XE+MEEY GOTO 279
A=d+1.18 GO0TQ 270 \
X=X+58 GOTO 270 .
X¥=X#1+.1234546789012345 GOTO 270
FE=XEHIEY GOTO 270
MEXT I
! Frint the velues and the current time.
FREINT X%y ¥: ¥3

FRINT "TIME AFTER="3iRIGHT${ TINE$.5)
GOTO 50
10000 END

Form within loor

Varishle Constant

INT SNG DEL INT SNG IRL

5 - - - - 4

10 - - . - - 8

20 - - - - 1 9

50 1 1 i 1 2 38

100 2 2 3 2 3 -
200 3 4 5 4 3 -
500 8 8 13 14 12 -
1040 17 18 27 20 23 -
Execution i7 18 27 20 23 300

timer rer

instruction {(msec)

Table 4.2 Timings from Program C4PI, in Seconds

Notice that the time it takes to deal with double precision is
negligible, so long as conversion is kept to an absolute minimumn.
This can be achieved by doing all arithmetic within the program on
values that are stored as variables. For example, both of these
program segments produce double precision answers to the same
problem, but their execution times are vastly different. The first one,
which executes a loop that contains some double precision conversion,
executes in 80 seconds, while the second, which contains only
previously defined variables, executes in 2 seconds.

10 FRINT TIMES 10 PRINT TIMES$

20 BE=1.,00000000000001 20 B#=1.00000000000001
25 7 25 C#=,100000000000001
30 FOR I=1 70 100 30 FOR I=1 TO 100

40 S#=5%+,100000000000001 40 S#=5#4CH

30 NEXT I 90 NEXT I

&0 FRINT S#» TIMES$ 60 FRINT S¥#, TIMES$
10000 END 10000 END

Chapter 4 Variables 47

Implicit Conversion

48

10
20
30
40
G0
&0

70

A program may have numerous statements that mix different
types of variables, and a programmer who writes such mixed mode
expressions and statements must be able to predict exactly what the
computer will do in all circumstances.

These rules show how the TRS-80 will treat various constants
that appear in the program, either as a part of an expression or as
created during the actual execution of an expression. Notice that in
general, the precision of an answer maintains the maximum precision
of any operand. v

Rule 1: Any constant with more than 7 digits, with a # type

declaration character, or with a D exponent forces
storage as a double precision value. In the examples
that follow, the values in the PRINT statement are
first converted as necessary, then operated upon and
stored temporarily, and finally printed as shown.

Instruction ‘ Outrut
FRINT 123456784.12345 1234547812345
FRINT 12345D0+12345 12345,12344997611
FRINT 123.45678 123.45678
FRINT +0000000000001% 10-13
FRINT -6000000000001 ~&0000000000001
FRINT 5000000000000 5000000000000
YE=50000% PRINT X$+.,000005 50000.,000049997995

Rule 2: Any non-double precision constant less than -32768
or more than +32767 or containing a decimal point
forces storage as a single precision value.

Instruction Qutrut
10 PRINT 12345+.12345 12345,1
20 PRINT 123.456 123,456
30 PRINT 123.4567 123,457
40 FRINT ~-81245 -81245

Note that if a value that is printed cannot be represented with
either six digits for single precision, or sixteen digits for double
precision, the value is printed in scientific notation. The following
examples show this.

Chapter 4 Variables

Memory Storage
After Mixed
Operations

Instruction Quirut

10 FRINT .0000000000001% 10~13
20 PRINT +00000000000012345 1.2345E-13

Rule 3: Any constant between -32768 and +32767 inclusive
not containing a decimal point and not declared single
precision with a ! or double precision with a # is
stored as an integer value.

When an operation is performed on two or more operands in a
statement, the result must be predictable even though the operands
are not all the same type. Microsoft’s Level Il BASIC is not only
predictable, but it usually produces the result that a programmer
would have liked to get.

(1) Most Precise Operand Rule

The result of a +, -, or * operation has the precision of its
most precise operand.

Instruction Qutrut Comments

10 PRINT 2%3.6 72 INT ¥ SNG -» SNG
20 PRINT 2%4 8 INT % INT ~-» INT
30 PRINT 342.718281828 5.718281828 INT 4+ DBL -> DRL

40 FRINT 3.3+2.718281828 4.018281828 SNG + DBL -» DRL

Note that when two different precision operands are compared,
the computer actually compares temporary versions of the operands,
and these temporary versions have a precision of the most precise
operand.

Instruction Outrut

10 IF 2=2,00001 THEN LPRINT "YES"

ELSE LPRINT "NO" NO
20 IF 2.5=2,5000000000001 THEN LPRINT "YES"
ELSE LPRINT "NO" NG
30 IF 2=2,00000000001 THEN LFRINT "YES*
ELSE LFRINT "NO" NO

Chapter 4 Variables 49

50

In

10
20
30
40
50

60

(2) No Integer Division Rule
The result of a division obeys the Most Precise Operand
Rule, except that when it is indicated between two integers,
both operands are converted to single precision before the
division is performed.

struction fJutrut Comments
FRINT 273 +HOOE6T INT/INT - SNG
FRINT 2%/3%4 LHELEET INTZINT -» SHNG
PRINT 2/3% LY INT/ZINT -+ 5NG
FRINT 2/3.5 571429 INT/5HG -» SNG
FRINT 2/3,12345678 HA0316207 60893 INT/DEL -» DRL
FRINT 3.5/4.123454678 CH48B02397 293467 SHG/TBL -» DEL
(3) Integer Truncation, Otherwise Rounding Rule
During conversion from single precision to an integer, a
number is reduced to the largest integer not greater than the
original number, exactly as the INT function does it.
During conversion from double precision to single precision,
the number is rounded up. Conversion from double
precision to integer goes through conversion to single
precision.
Instruction Qutrut Comments

10 1%=7.999% PRINT 1X 7 SNG -» INT {truncstion)
20 51=7,999999999: PRINT 5! 8 LRL - SNG {(rounding)
30 Ju=7 9999999970 PRINT JX 8 DEL -» SNG -> INT
{roundings
then truncstion)

(4) Integer Boolean Operations Only Rule
A Boolean AND, OR, or NOT between two unlike
operands forces conversion to integer first. This rule is
included here only for the sake of completeness. It is
unlikely that you would ever need to use this feature.

Instruction Outrut Comments

10 PRINT 2 AND 3.5 2 same as 2 ANDN 3
20 PRINT 2 OR 4.999999999 7 same s 2 OR S
30 PRINT 1.9999 OR 7.999979999 ki gsame 25 1 OR 8 {7494+

rounded ur firsts then
converted to integer)

Chapter 4 Variables

DEFINT, DEFSNG,
DEFDBL, DEFSTR

Level II BASIC allows a programmer to reserve sections of the
alphabet for various types of variables. This is in effect a form of
implicit type declaration. Instead of having to type a # character at
every occurrence of a double precision variable, the programmer can
declare any variable starting with that letter of the alphabet to be
double precision.

The general form of these statements is

DEFtyp letter-range

where typ is:
INT for integer,
SNG for single precision real,
DBL for double precision real, or
STR for string variables.

and letter-range is:
a single letter from A to Z,
two or more letters separated by commas,
two letters separated by a hyphen, or
any combination of the above.

These statements are normally used at the beginning of a program.

Examples:
100 DEFINT I-N

All variables beginning with any letter I through N are integer,
such as I, J2, I8, MM, NICE.

110 DEFIBL EBs C» It

All variables beginning with the letters B, C, or D are double
precision, such as DIG, C, COUNT, BB, Bs5.

120 DEFSNE X-Zs Vs R

All variables beginning with the letters X through Z, V, or R are
single precision. Note that single precision is the default condition
of the computer, so this statement is not necessary except as a

reminder to the programmer, unless it is used to override a previous
declaration.

130 DEFSTR Ay F

All variables beginning with the letters A or P are strings, even
though they are not followed by a $.

Chapter 4 Variables 51

Hexadecimal and
QOctal Constants

52

140 DEFINT Is» K-Rs T-Z
150 DEFSNG As Cy T-Z
140 DEFDERL IisE

170 DEFSTR H-0

180 DEFINT A-L

The use of the DEF statements does not preclude the use of
type declaration characters. For example, if your program has the
statement:

25 DEFDRL It

the variable D in the program is double precision, the variable D% is
a distinctly different integer variable, D$ is a string, and D! can be
used for single precision. If the program uses D#, it will be
considered the same variable as D when it is used.

Radio Shack’s Disk BASIC allows the programmer to define
constants in hexadecimal (base 16) or octal (base 8) as well as
decimal. This feature is convenient for dealing with memory
addresses or for manipulating specific bytes in memory.

The prefix &H signifies a hex constant and the prefix &O or
& (the O is optional) signifies an octal constant. These constants
represent signed integers in memory, SO they are two bytes (16 bits)
long. See table 4.3 for examples of this feature.

Constant” stored as decimal
(octsal) {hex) hex butes eauivalent

&0 &HO 0000 0

&1 &H1 0001 ' 1

&17 &RHF 000F 15

&20 §H1O 00190 16
§255 LHAD 00AT 173
K377 SHFF 0OFF 255
877777 LH7FFF 7FFF 327467
£100000 &HBOOO 8000 -32768
&100001 §HBOO1 8001 -32767
£100002 §HBOO2 8002 ~32766
&177774 SHFFFE FFFE -2
&177777 SHFFFF FFFF -1

Table 4.3 Octal and Hexadecimal Conversions

Chapter 4 Variables

VARPTR

The following example illustrates the use of hex conversion as a
possible aid in program writing. If you become more familiar with
the hexadecimal representation of certain memory addresses, such as
hex 3C00 being the first address of the screen buffer area, you may
take advantage of this feature as illustrated here. '

Exemrle Result
110 FOR I=(&H3C00) TO (&H3FFF) The screen buffer is at
120 FOKE Is RNIM &43+127 memory sddresses from 3000
130 NEXT I Lo 3FFFy so this segment

rlazces & random srarhic
cheracter {see Lhe next
charter) on everv rosilion
of the screen.

This function of Level-Il BASIC returns the address of its
argument. The argument is a variable name and if it has not been
defined, the computer prints an error message.

When the argument’s variable is numeric, whether it is integer,
single precision, or double precision, the address that is returned is
that of the least significant byte (LSB) of the variable. The other
bytes are from 1 to 7 bytes past the returned address, with the
address of the most significant byte (MSB) being the largest.

When the argument of the VARPTR function is a string variable,
the value returned is the address of the length of the string and the
two-byte address for the string itself is in the next two bytes.

The VARPTR function is useful for passing the addresses of
variables back and forth between assembly language routines and
BASIC programs, but it finds little use elsewhere.

With what you know now about the screen’s buffer area and
the computer’s memory representation of variables, you are ready to
explore graphics, which many programmers consider to be the most
exciting challenge in a microcomputer. The following chapter
discusses graphics in detail, and includés a wealth of examples for
you to try.

Chapter 4 Variables 53

[

. ooy
N [N
[

[—

v

LAY

[

sy

i

]

o

[

o

[

v

o

Graphics

Line Printer
Graphics

Graphing with
Tabs

There are three distinctly different ways to produce pictures on
the screen of a TRS-80. The first is as old as computers; lines are
printed one at a time on the screen, just as if it were paper. The
other two methods are more accommodating to the programmer,
allowing considerable flexibility and some rather stunning graphical
displays.

This chapter will discuss all three methods and show by example
what can be done with a little care and imagination.

Line printer graphics is called what it is because anything that
can be done on the screen can also be done on a line printer. It can
be used on almost any computer and with most computer languages.
In many ways it is the most powerful method of graphing. We
propose to show you by example some of the various pictures that
can be produced with line printer graphics.

Problem: Represent the sine and cosine functions graphically
for all values between 0 and 360 degrees.

55

10 ‘FILENAME: "CaFL®
70 ‘FUNCTION? GRAFH SINE ANDN COSINE FUNCTIONS
30 Y AUTHOR ¢ JPE DATES 12779
40 7
50 ¢ K=eonversion constant for desrees to ratisns
&0 K=3.14157/180
70 / draew sxis of values -1 to 1}
80 LPRINT " "3
90 FOR I=-1 TO 1 STEF .2
100 LFRINT USING "#%.% "#13
110 MEXT I LFRINT
170 ‘print 5 for sines C for cosine st srprorriate rosition.
130 ‘eszch roint is 10 degrees asrari.
140 FOR [=0 TO 340 STEF 10
150 ‘converl dedsrees to radianc
1480 R=DkK
170 ‘determine rositions of the § and C characters,
180 S=25%SINCRIH32: C=25%COB(RI+32
190 ¢ if sngle is @ eusdrent divider then rrint its velue
200 7 and rrint the grid line
210 IF INT(CD490)/90)=(D1490)/70 THEN LPRINT T3t GOSUR 240% GOTO 240
299 ‘if cosine is lesss erint C then Sy optherwicse reverse.
230 IF C<5 THEN LFRINT TAR(C)H"C™ TAR(S)"S"
ELSE LFRINT TAR(S)'S" TAR(CHI'CY
240 HEXT D
250 STOF
240 LFRINT TAB(G):" "3
276 FOR I=-1 TO .8 STEF .21 LPRINT "4-——-"31 MNEXT 1
280 LFRINT "+"i1 RETURN
10000 ENDI

Chapter 5 Graphics

10 =008 0.6 0,4 0.2 -0.0 0.2 0.4 0.6 0.8 1.0

T B e TR T i A SN
5 c
5 C
5 C
5 C
C o5
C 5
C 5
c 5
L R i ittt S SO SRS S SO S
€ 5
C 5
c 5
C g
C 8
C 5
C 5
c 5
180 e e}
C 5
C 5
c 5
C s
5 C
5 C
5 c
5 C
B e s U Y MR S
5 C
5 C
5 c
5 C
5 C
5 c
5 C
5 C
360 b ey

Chapter 5 Graphics 57

58

Another way that tabs can be used in a design is to symbolize
them in a list of data statements. The program below was written by
Steve Grillo to draw the Starship Enterprise. We have included just a
portion of its three pages of data statements. Note that the program
analyzes the data that it reads and executes its LPRINT statements
according to the contents of the DATA statements.

10 “FILENAMED "COF2ZY
20 /FUNCTION: FRINT & FICTURE OF THE USS ENTERFRISE

30 ° AUTH
40 7

30 Y Here
&0 7

FA U

80

20 7

100 7
1107

120 7

130 7

140 7

150 CLEAR
160 REAI
170 IF A%
180 READ
190 FOR H
200 IF
210 IF
220 IF
230 iF
240 IF
250 IF
260 HEXT
270 LFRIN
280 LPRIN
290 READ
o0 7

716 7
7207

930
1660 DATA
1010 DATA
1020 DATA
1030 DATA
1040 DATA
1050 DATA
10460 LATA
1070 DATA
1080 DATA
1090 DATA

Ok + SPG DATE S &/7%
are & few remerks concerning the rrosrami

about the dets stelemenis!
Tio = TAR (103

ANY STRING = Frinl the following text
R = Carriage Relurn
i = Lefl BracKel
W = Right Bracket
f = Tor to botlom dizsonzl (orrosite of "/%)
= i comms (1)
5 = f auotation mark (")

3600 DEFINT &-7

A% IF A$="END" THEN BTOP

="R* THEM LPRINT CHR$(13)50 GOTO 160

B$¢ IF E$="ENI" THEN STOF

=1 TO LENCE$)D CH=MID®(RS 1)

CH="G" THEN E$=MID$(B$s LoH-1 HCHRECFLIHHIDSCESrNE1)
CH="W" THEN E$=HID${ B$s1sN-1)HCHRSCIIMMIDSCRENIL)
CH="4" THEN E$=MID$L B LsN-1 HOHRSC 2 MMIDSCESoNEL)
CH="M" THEN BS=HIDG{ E$s 1sN-1 HCHRS 44)HMIDSLESaNEL)
C$="C" THEN BS=MID$(E$s1oN-1 HCHRS(S8 HMINSCRENTL)
C$="G" THEN E$=HID${ BSs 1 N-1 HCHRS 34)V HHIDSC RS NTL)
Ni IF LEFT$(A%$s1)="5" THEN 280

T TAR(LHVALOHIDS(AS,2)))3RE: 1 GOTO 290

T STRINGH VALCHID$C A% 200" ")iB%s

A$t IF LEFTH(A%s1)="T" THEN 190 ELSE 170

This is only & rertisl dele listing
for the Enterrrise

T2 333, T21:0F $2:F.T22:%F MIR.T220% HE
RyT22sd~~--HE:RsT2273 PEsRsT225% MEsRT22
$ 0W MEsFeT27+% QW MEsRHT22,3 QW ME,T225 "N
RsT22+% Ve R T229% MEsR=T21 %3 HERaT21
E£ HEsRsT20 /%3 MEsR2T20

T20+% ¥ HEsFsT19:/% $——-HE«RsT17

¥ ¥ fEASRsT199% 3 MEXsRsT199% /3 MEX
FsTiBs/ %/ % HEQX R TI8s %/ £ HEQERSTIR

% $ HEQE,FRTi8:% /% HEO %R, T1E

¥ /% HMEQ %,R.T18:%/ % HEQ ¥R T17

Chapter 5 Graphics

%*
*

LE22 Y $----y30 x
X x /4 \30 x
£ 3 X /3 30 x
x x/ % 0 x
XX X/ 3 130 x
X ¥x[C1 x 3 130 X
X X[l x ¥ 130 0 x x
X KL1 $0 4 400 0 %x
(#x x [£1 » [£ Sntntt $0-~--0--% X
X1 K (4 40 0 XX
X KC1 X0 % 400 0 K x
X X ¥ * 140 0 x0x
X % X% .40 0%k
X0 x xn + 30 9}
¥00% X\ 4+ .10 0¥
EXKE, X N3 30" *0x
R03ir K \E=-—/40°"0 00K ¢
AKDOI DR\ § 440°"v0% !
*00000%\ # +30000%
XX000% \ # ,4000%
RKXOK \E 200k
XX K 40x
XK\ 3 30%
KK\ F 0%
X0+ ,20%
¥00# ¥
XO0# -~~~ /EXX
0% 1 #X0%
X0+ /4000
X0 "#0000% Y /000%%
K04 *"400000% NKERKKKARRK/
XX3 ""3000000% \KAX/
KX$" " " 2$0000000% KEAXORR RO K
X o
X 3" "*03$000 tox x - - 7 00X%%\
X ¥"""00#00 H x x X0 +00% x
X #0LC 30030 H * KRERKKRRKX HRHAKKRRK K
X 30000040 : * X 88888 X0 ,000% %
* 300 10040 b X REKRAKXKAK BBBOE KRXHKRKKKKK
* 30000040 : tokox X 88/\8 X0 ,00000%K
X $0004900 0i 0 i 8/
* 30000040 0: 0 0 } 20 2 ==\ 1y " 000%K
* 30004400 o S/ [788NT 1y, tv004kk
X 30440000 0 : 0 0 0 iL/BBBE T 1y,vv008kX
X #$300000 H H 88888 Tre " 000%K
X X000 : f {88888 i,,"*00DKK
X 3K 0K0 : : : 6eos
LESE *x" H H B 8"888
X H H 8 8'8
Xk i i 888
L H H 888 290" 000%%
/RRBRRRKRRKN e B8Oty " 000KK
/%% XK\ L2 R 888 Sy " 000XK
o0x XXk 178y81Br 1 iy " 000RX
x 00X XKk B8 i,;""0008%
N 0000k 8B 1,008k
KXLKRERRXOOEX KKK B8 iy,""000XK
x 000X 88
RRRKKKRRKKRRRRKRKR 8
FSIEIIIIIIX X % 8
AKKRRXKEXRKKKE & % 8
xi! XX % 8yt r000K
¥ RKKK 8 1y""000KK
Xy o ok 71" "000%/
x Xy kK v1" 000K
X RXKKKK ¥ 1" *000%
X " 00xRK 000Kk
x " 00RK 01 y*°000%/
Xt "0k 0 ,""000%
x " " 00Xk 7910y s000 0" 000KX
x *00xx 29" "000%/
x " DOXK 000X
Xt 71" "000%
Xil @88 ""00XD 0" "000%
Xil 888 ""00AD 05" *000%
Xil 888 ""0/%0 ’ 1" 000K
xi) Bes *0000;
Xil 888 "00X 00KXKXX
XiI @88 "0k " 00RK
*i1 @88 00k » 00K
Xil 888 "00K 00k
Xi) 888 "Q0K 0%
Xi1 888 "00k XX
Xi1 888 "00K *
Xt .
Kil s4984 00K
il 00K
KiL o aes4e "00K
xi) ¢ "00x
X3 " 00K
x:) *00X
xi 1 »00x
xi1 Q0%
Xt »00%
Xt 00X
Xt 00k
x 00K
X 00k
* 00K
X *00K
X "0
* 00X
Xil a4+ "00K
Xl 4 4 *00K
Xil 44a9% "00%
* 00k
#1344 00K
4 ook
: 00X
144 00x
00K
88 "ox
88,0
88 ,"0X
8 .v0k
: 8 0k
etz 8 »"OX
* 8 s0x
¥ e » 0%
x 8 00X
x 8 svox
X M
X yrox
¥ V0K
X VoK
X e
x Vox
x i ok
* s rox
* im0k
¥ im0k
X KIX #H48 0K

K====X $484 1" 0%
NEXKEX S84 0K

1" 0%
BXREXXY
XX o

Xl /% 00
X3 1 X%00000
X5K

Using Memory to Problem: Display the thermal gradient at equilibrium

Hold the Picture throughout a water-carrying rectangular copper pipe held at 0°Cif it
is covered with a heated lid at 100°C, and contains a rectangular
heater at its center heated at 200°C.

— &-\ea—Fmg ement
ok 100°C,

Heater oF
200°C,

Water at
&quilibrium

l |

i

This problem is a modification of an old FORTRAN problem
found in A4 Guide to FORTRAN IV Programming, Daniel D.
McCracken, p. 98 (Wiley, 1965).

Solution: (1) Consider the pipe’s dimensions to be 40 units
wide and 30 units deep; both sides and the bottom are the cold
copper, and the top is the hot heating element. (2) Reserve a
30x40 integer array X in memory, with X(0,1) to X(0,39) held at
a value of 100; X(30,0) to X(30,40), X(0,0) to X(0,30), and
X(0,40) to X(30,40) held at a value of 0. These are the edges of the
pipe. The 6-unit wide by 4-unit deep center heating element is held
at 200 degrees. (3) Proceed throughout the array wherever there is
water, from X(1,1) to X(1,39), then X(2,1) to X(2,39), . .. through
X(29,1) to X(29,39), modifying each point on the basis of its
neighbors according to the formula:

|
—— Copper yackel of 0°C

XLI) = (XT-1,1)+X(,I-1)+X(I+1 ,J);X(I,JH N4

This formula calculates the temperature of a point by averaging the
temperatures of that point’s four neighbors. (4) Repeat Step 3 for
as many iterations as the user wishes. (5) Convert all numeric values
of X, one 64-character line at a time, from numeric to graphic
symbols using this chart of symbols to indicate various temperature

60 Chapter 5 Graphics

ranges.
Integer value Graphic symbol

0-9
20-29
40-49
60-69
80-89
100-109
120-129
140-149
160-169
180-189
200

AN IDOTmOogoOw s

All temperatures in the unspecified intervals are symbolized with a
blank. (6) Paint the picture on the screen one line at a time.

10 "FILENAME: "CSF3"

20
30
40
30
60
70
80
20
100
110
120
139
149
150
140
170
180
190
200
210

22

230

240

250
260
270
280
290

“FUNCTION: SHOW THERMAL GRADIENTS USING RELAXATION

* AUTHOR : JFG DATE 3/80

CLEAR 300: DEFINT a-Z ‘a2ll intedger malh

DEF FNACX) = 5 % X 7 12 ‘FNA is rrorortion of rire widtih
DEF FNB(X) = 7 ¥ X 7 12 “FNE is rrorortion of rire derlh
IT = 100 ‘IT is totazl iteraztions

DEFTH = 307 WIDTH = 40 ‘cel ur dgrarh sire
LL = FNACWIDTH)! LR = FNE(WIDTH) ‘=at four corners of rire
LT = FNACBEFTH)! LE = FNE(DEFTH)
INFUT "LIDsy EDGEs CENTER TEMFERATURES" sLINYEDNGE s CENTER
LFRINT "Temrerztures! Lig ="3LIISTARC 26)"Edse =";ENGE
LPRINT TAR(43)"Center ="3;CENTER
LPRINT
LPRINT
LFRINT "Dimensions! Derih ="3DEFTH;
LPRINT TAR(26)"Width =" SWIDTHI TARC 39)" Tterations ="$1T
LPRINT
DIM XCDEPTHsWIDTH)s S5%¢21) ‘5% is sumhol for temrerzture
FOR I = 0 TO 20 STEF 2! FREAD S$(I): NEXT 1
DATA Ay Bs Cy Ity Evy Fy Gy Hy I, Jr K
* every other sumbol is blank
FOR I =170 19 STEF 2% S$(I) =" "! NEXT I
gel starling temrerature from user
INFUT "INITIAL TEMFERATURE (0 TO 200, NEG. = RANDOM)";T
IF T>=0 THEN 310
* sel temrerature to random - besin
FOR I=1 70 DEFTH-1: FOR J=1 T0 WIDTH-1: XC Ty Jd)=RNIM 200)
NEXT Js1I: GOTO 330

Chapter 5 Graphics 61

100 ‘ set temrerazture Lo user’s susgestion
310 FOR I=1 7O DEFTH-1% FOR J=1 TO WIDTH-1% X(IsJ)=T1 NEXT Js1
120 ¢ set lid and edge temreralures
730 FOR I=0 T0 WIDTH! X(0,1)=LIIN X{DEFTHs TO)=EDGE: NEXT I
340 FOR I=0 TO DEFTH! X(I+0)=EDGE: X{T-WIDTH)=EDGE: NEXT 1
350 7 sel rire lLemrerzlures
740 FOR I=LT TO LE! FOR J=LL TO LR: Y(T)=CENTER? NEXT Js1
370 CLs 7 now comes the tediocus rortion
180 FOR M=1 TO IT: I = 01 GOSUE 440
390 ¢ celeulslions. The busw loor
400 FOR I = 1 TO DEFTH - 1t FOR J = 1 70O WIDTH - 1
410 IF I > LT AND I < LE ANDNJ > LL ANIU J < LR THEN NEXT J
420 X(IsJ)2§X(I*1;J}+X(I+1;J>+X(I:J—1)+X(I:J+1)}t « 23
430 NEXT J! GOSUR 440! NEXT It GOSUR 4460% NEXT N
440 GOTO 440 ¢ freere soreen
450 ¢ subroutine Lo calculste and rrint one line
440 A%=""% FOR K=0 TO WIDTH
470 * check if center rortion - don’t caleulste it
480 IF K > LL+1 ANDN K < LR-1 ANDN T > LT+ ANDL T < LB-1
THEN A$=A%$t"3" ELSE A$=A$+SH(X(IsK)/10)
490 NEXT K
500 ¢
510 IF DEFTH 15 PRINT A%$s Ni# I ELSE FRINT @ I%é&4s A%y N3 Is
500 IF INTON/10)¥10<3N OR I<30 THEN 560
530 LPRINT: LPRINT: LPRINT
=40 LPRINT TAB{15)"Outrut Grarh"
550 LPRINT TAR(153)"——-mm= ————— "TAR(43)" Tteration”
540 IF INTON/10)%¥10=N THEN LPRINT ASSTARC 44)N TAR(540351
570 RETURN
10000 END
Temrerastures: Lid = 100 Edsge = 0 Center = 200

‘Nimensions! Derth = 30 Width = 40 Iterations = 30
Qutrut Grarh

———————————— Iteration
AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFA 10 0
ACIID nocA 10 1
AE CCCCECCCCCCCCCCCCCCCCecCeeCCCCheCl BA 10 2
A BER REE A 10 3
ARA AA 10 4
AAAAAAAAAAAAAARAAAAAAAAAAAAARAAAAAAAAAAAAA 10 5
ARAAAAAAAAAAARARAAAAAAAAAAARAARAAAAAAAAAAA 10 é
ARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAA 10 7
AAAAAAAARAAAAAAAA E AAAAAAAAARARAAAAA 10 8
AAAAAARARAAAAAAA E B AAARAAARAAAAAAAA 10 9
AAAAAAAAAAAAAA EC DIID C AARARARAAAAAAAA 10 10
AAAAAAAAAAAAA ECDE FF EIC AAAAAAAAAAAAAA 10 11
AAAAAAAAAAAA ECTI HHHH LCE AAAAAAAAAAAAA 10 12
AAAAAAAAAAAA B E KKKKKKGE B AAAAAAAAAAAAA 10 13
ARARARAAAARAAA HKE$$4K E AARARAAAAAARA 10 14
AARAAAAAAAAAA K¥F$ER E ARAAAAAAAARAA 10 15
AAAAAAAAAAAA B EGKKKKKKGE AAAAAAAAAARAA 10 16
AAARAAAAAARA KCI GHHHHG IICE ARAAAAAARAAAA 10 17
AAAAAAAAAAAAA RCIE ENC AAARAAAAAAAAAA 10 18
AAAAAAAAAAAAA EC DII C B AAAAAAAAAAAAAA 10 19
AAARAAAAARAAARA F E ARAAARAAAAAAAARAA 10 20
AARAARARRANARANRAARA BEE AARARAARAAAAAAAAR 10 21
ARAAAARARAARAANAAAA AAAAAAARRRARAAAAAAA 10 22
AAAAAAAAAAAAAAAAAAAAAAAAAARAAAARAAARAAAAAA 10 23
AAAAAANARAAARAAARAAAAAAAAAAAAAAAAAAAAAAAAA 10 24
AAAGAAAARAAABAAAAAAAAAAAARAAAAAAAAAAAAAAA 10 25
ARAABAAAAAAAAAAAAAAARAAAAAAAARAAAAAAAARAA 10 26
ARAAABAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAA 10 27
AABABAAAAAAAAAAAAAAAAAAAAAARAARAAAAAAAAAA 10 28
AAABAAAAAAAAAABAAAAAAAAAARAAAAAAAAAAAAAAA 10 29
ANBAAANAAARAAAAAAAAAAARAAAAAAAAAAAAAAAAAA 10 30

Chapter 5 Graphics

Outrut Grarh

AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFA
i

ACT ncA
AR C CCRA
AR CCCCCCCCLCCCCOCteCeeeeteceen E A
AA BEREERERERERRE FEEEBREEERE AA
AAA EERBEREEEERREK AAA
AAARAAAAAAA HEREREE AAAAAAA

AAAAAAAAAAAAA REREKERE ARAAAAAAAAAAA
ARAAAAARAAAAA EE C F AAAAAAAAAAAAAA
AAAARAAAAAAAA K OO C R ARAAAAAAAAAAA
AAAAAAAAAAAA B C I EE - C R AAAAAAAAAAAAA
ARAAAAAAAAAA KCIIE F F EDCE AAAAAARAAAAA
AAAAAAARAAAA B F F B AARAAAAAAAAAA
AAAARAAAAAA KCD KKKKKK IICE AAAAAAAAAAAA
AAAAAAAAAARA ECTIFHKEEEEKHFICE AAAAAAAAAAAA
AAAAAAAAAAA ECIFHKEEESKHFICE AAAAAAAAAAAA
AARAAAAARAA ECII KKKKKK DICE AAAAAAAAAAAA
AAAAAAAAAAA B F H H F B AAAAAAAAAAAA
AAAAAAARAAAA EC F F DICE AAARAAAAAAAA
ARAARAAAAARA E C T I C E ARAARAAAAAAAA
AAAAAAAAAAAAA RE C C E AAAARAAAAAAAAA
AAAAAAAAAAAAAA KR EER AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA ER AARAABAAAAAAAAAA
ABAARAAAAAAAAAAAAA AAARAAAARAAAAAAAAAA
ARAAARANAARAAAAARAAAAAAAAAAAAAAAAAAAARAAA
ARAAAAANAAAARAAABAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAARAANAAAAAARAAAAAAAAAAAAAAAAAAAAAAAA
ARAAAARAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAA
ABAAAAAAAAAARAAARABAAAAAAAAAARAAAAAAAAAAA
AAARAAAABARAAAAAAAAAAAAAAAAAAAAAAAAAARAAA
ARAAAAAARAAAAAAANAAAAAAAAAAAAAAAAAAAAAAAA

Outrut Grarh
AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA
ACD EEEEEEEEEEEEEEEEEEE nca
AKCC 1200800000030 403304 030000001 CCRA
A B CCCccocecee cccececceee B oA
AA RERE cecececeeee BRE AA
AARA BRREERE BREEEERE AARA
RAAAAA RREE EREBE AAARAA
AAAAAAAAAA EEER CCCC RRE AARARAAAA
ANAAAARAAAAA RE CC CC E AAARAAAAAAA
ARAAAAAAAAA K ¢ DDDNND C ER ARAARAAAAAAA
AARAAAAAAAA B C DIEE EED C R AAAAAAAAAAAA
ARBAAAAAAAA B EF GG F B AAAAAAAAAAA
ARAAAAAAAAA RCIIE H H EQNC AAAARAAAANA
AAAAAAAAAAA € FHRKKKKKHF E AAAAAAAAAAA
ARBAAAAAAA R FHRKE3$$#KHF E AAAAAAAAAAA
ANARAARAAAA R FHK#$$$KHF B AAAARAAAAAA
AAAAAAAAAA C FHKKKKKKHF E AAAAAAAAAAA
AARAAAAAAAA RCIE H H ENCE AAAAAAAAAAA
AAAAARAAAAAA R CIEF FEIl B AAAAAAAAAAAA
ARAAAARARAAAAA B I EEEE I R AAARAAAAAAAA
ARAAAAAAAAAA B C DI C KR AAAAAAAAAAAAA
AARAAAAAAAAAA E CCCC R AAAAAAAAAAAAAA
ARAAAAAAAAAAAA ERRERBRER ARAAAAAAAAAAAAA
AAAABAAAAAARAAAA AARAAAAAAAAAAAAAA
AAAAﬁﬁAﬁﬁAnAAﬁAAAAAAAAAQAAAAAAAAAAAAAAAAA
nAAﬁmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAGAAAAAAAQAAAQAAAAAAAQAAAAAAAAAAAAAAAA
AAAAﬁAAﬁAAﬁAAﬁAAAAAAAAAAAAQAAAAAAAAAAAAAA
AﬁAAAAﬁﬁﬁAAAAAnﬁGAAAnAAAAAAAﬁAAAAAAAAAAAA
AAAAﬁﬁAﬁﬁAAAAAAnnAAAAAAAAAAAAAAAAAAAAAAAA
AﬁﬁﬁﬁﬁﬁAAanAAAAﬁhAAAAAAAAAAAAAAAAAAAAAAQA

Chapter 5 Graphics

Iteration
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

Iteration
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

RS M G ONO U B LI =D
BN D

[
w

-
o

NONOU SN =D

10

63

64

The previous output shows the effect of starting the pipe’s
water temperature at O degrees. In McCracken’s original work, no
mention was made of initializing the water at any other temperature.
We tried it at an average setting, that is, half way between heater and
edge, then at random settings from 1 to 200 degrees. Although the
latter case is not realistic, it seems to be the most effective in reaching
equilibrium quickly. Remember that the goal of this problem is to
produce a visual representation of the equilibrium condition in the
pipe, so the starting temperature can be anything, even an unrealistic
random value.

Temeerastures! Lid = 100 Edge = 0 Center = 200

Himensions? Derth = 30 Width = 40 Iterations = 30

Qutrut Grarh

———————————— Iteration
AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA 10 0
A E FF E A 10 1
A EE FFFF EDA 10 2
ARCD EE FFFFFF £ BA 10 3
ARCI EE FFFFFFF EEDNCEA 10 4
ARC EE FFFFFFF EEDCEA 10 9
ABC EE FFFFFFF EELCRA 10 &
ARC EE FFFFFFFF FFFFFFFFF E DCEA 10 7
ARCD EE FFFFFFFFFFFFFFFFFFFF E DCEA 10 8
AKCD EE FFFF FFFFFFF E DCEA 10 9
ARCIH £ FFFF GGG GGG FFFF E ICEA 10 10
ARCII E FFF 66 HHHHHH G FF E DICRA 10 11
ABCD E FFF GG I IH G FF EENICRA 10 12
ARCI E FFF 6 HIKKKKKKIHG FF EETICRA 10 13
ARCI E FF G H K¥EF$¥KIHG FF EDCEA 10 14
ABCD E FFF G H K¥F#¥KIHG FF ELCRA 10 15
ARCDI E FFF GHIKKKKKKI 6 FF EDCEA 10 16
ARCD E FFFFF GHIIL IIH G FF E CEA 10 17
ABC E FFFFF 6 HHHHH G FF E BA 10 18
AEC EE FFFF GGGGGE FF E BA 10 19
ARC EE FFF FF E ERA 10 20
‘ABRC I E FFFFFFFFFF FF E EA 10 21
ARC I E FFFFFFF FF E EA 10 22
ABC I E FF E EA 10 23
AR I EE E CEA 10 24
AR ©' EEEEEEEEEEEEEEEEEEEEEEEEEEE EEDCRA 10 25
A CDI EEE EEEE EE A 10 26
A F C DODDDEOOODDODDRDDDODDD DODDDD C A 10 27
A E CCCCCCcocccceccccccececeeeeeeoce B oA 10 28
AAA FEEERRRERREREREERBEBEBEEREREERE AR 10 29
AAA 10 30

Chapter 5 Graphics

Qutrut Grarh

AFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFEFFA
EE

' EE FF 6 HH HH G FF EEE I
I EEE FF GG GG FF EEE Il
Il EEE FFF G FFF EEE Il
It EEEE FFFFFFFFF EEEEE It
cn EEEEE EEEEEE It
B C oo EEEEEEEEEEEEEEEEEEE It
E C oo mceEe
RE © DOODODDDONODDDONDDDDDLEODE C RAA
AA R CCC CC B AA
AR RE CCCCcecceoeoeceeceecoeee E AA
ARA EBEEREERREEREERERERREREEREEREE AAA
ARAAAA AAAAAA
AAAﬁAAAAAAﬁAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

o m
o0

A E EE A
A I EEE EED A
ABC I EEE EEE I CRA
A CI' EEE EEEE Il A
A € I EEEE EEEE IC A
A C It EEEE EEE ' C A
A C I' EEE FFFFFFFFFF EEE D C A
A C I EEE FFFF FFFF EEE T C A
A C I EEE FFF GGGE FF EEE I € A
A CIEE FF G GG FF EEE I' € A
A CIEE FF G H HG F EEE D C A
A CDEE FF G 1 I GFF EEEDC &
A CIEE F HIKKKKKKIHG FF EEE I C A
A CDEE FGHKIEEEK HG FF EEE I C A
A CIDEE F H K¥#$#K HG FF EEE I C A
A BC I' EE FF GHIKKKKKKIMG FF EEE It © A
ABC I E F G HI I GF EEE I C A
A C A
A cC A
A C A
A CE A
A CE A
A CE A
A A
A

Outrut Grarh

AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEEFFA

ACI! EE EE DCA
A I EEEE EEEE I A
AR DD EEEEE EEEEE Il RA
A C D EEEE EEEEEE ' C A
A BC I EEEE EEEEE I B A
ARCT EEE EEEE D C Rk A
A B C DD EEE FFFFFFFF EEE ILCERA
A ECID EE FFFF FFFF EE nNCERA
ARCIN EE F GGGE FFF EE DCEA
ARCINEE F 6 GG F EE CEA
A EC DI EE FF G H H G FF EE nceEaA
ARBCIDEEF G I I GF E DCERA
A B CD EEF GHIKKKKKKIHG F EE ICEA
AEBECTID EEF H KE##3K HC F EE I cCEA
A ECDIEEF HK$##3%K HG F EE LD CEA
A B C D' EE F GHIKKKKKKIHG F EE Im CEA
ARC I E FFG HI I GF E II'CFEA
ABCCD EEF G HH HGF EE I' CERA

AA R C LD EE F ¢ GG FF EEE I CC RAA
AA B € Il EE FF FF EEE Il C K AA
AA B C Tt EEE FFFFF EEE I C R AA
AA B CC D EEEE EEEEE I C E AA

AA R CC DOoom DIDD CC B AA
AA EE CC jggadgaidg e dia0 CC BE AA
AA RE CCCCC cccce B AA
AAA RER ceccececececeececeeeeece EE AAA
AAAA ERERRRE EREER AAAA
AAAAA BERERREEEEREER AAAAA

AAQAAAAAAAQAAAAAAAAAAAAAﬁﬁAAAAéAAAAAAAAAA
AAAAAQAﬁAAﬁAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ

Chapter 5 Graphics

Iteration
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

Iteration
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

NONCU SLI-O

VO NOUD LN =S

PP P PO P S ik e b bk bt b ek s
LN HOYONOC NI WD

NMNREMNE
NN WU

W
=4

65

Histograms or
Bargraphs

66

The pictorial representations variously called histograms or

bargraphs are easy to understand but in some ways difficult to
program. If the bars vary in length horizontally, they are trivial to
program, but the descriptive text is arranged contrary to custom.

Problem: Draw a histogram of monthly rainfall for one year.

The rainfall in inches is stored in the array R dimensioned 12.

10
20

357

40
50
&0
70
80
KAl
100
110
120
130
140
150
1460

170 7

180
190
200
210
220
230
240
250
260
270
104

Solution 1: Horizontal arrangement of bars.

‘FILEHAME: "CSP4°
‘FUNCTION! RARGRAFH OF RAINFALL
AUTHOR § JFG NATE ! /80
CLEAR 5003 DIM M$(12)y ROIZD
¢ iprut seclion
FOR I=1 TO 12} READ M$C 1)1 MEXT I
FOR I=1 TO 123 READN RCIDE MEXT I
NaTH Jans Febs Mers Arrs Maws Jun
DATA Juls Auss Sers Octs MNovs Dec
I‘ﬁ-{ﬁ 5&23! 30—??? 3602‘3 Eb‘i"ﬁ‘i’ ?0627 3099
TATA 4.757 4,209 2,019 3495 4,21y 4,00
LPRINT "HMonth Inches of rsinfall"
¢ eazlculste constant for Keering ber under 40 ¥'=
L=0
FOR I=1 TO 12% IF L<=R(I) THEN L=R{I)
MEXT 1: R=40/L
loor Lo erint grerh
FOrR I=1 T0 12
LERINT " "5H$C 105" "$STRINGSHCRC I RK"X")i
LPRINT TAB(SS) USING "#3.#¥"iR(1)
S=54R(I)0 NEXT I
LERINT STRINGH{ &0."=")
LPRINT "Ave"is A = §/12
LFRINT STRINGSC AXK-2s"%")5
LFRINT TAR(SS) USING "3#E.34":A
LERINT "Twelve month totsl"i
LFRINT TAB(S54) USING "#$%.334"i0
00 ERI

Chapter 5 Graphics

Honih inches of rainfall

len RO OO .
Felr AR RO R Y
Mar ERhrbnoieeir sy

AFP KRR K

Maw XEdobdidbiesyeiysy

Juns BRRRRRE R

JUl R RO R

AUE BREREEE R O

Ser RERRERLLRRRRE

Oot nkokbbirsnnerr i gce gy

Nov SRR Rk ry

Dec ¥EEREROREREER RO R

AveXEEX R RR kR R ke
Twelve monlh tolzl

10 "FILENAME: "(C5p5»

20 "FUNCTIONY REVISED RATNFALL GRAFH

30 ¢ AUTHOR ¢ JFE IATE: 4/80

40 DIM FLAG(13)y M$(13)s R(13)

50 read in the dats

60 FOR I=1 TO 13% READ' M$(I)! NEXT I

70 FOR I=1 TO 12! READI R{I)% NEXT I

80 DATA Jans Febs Hars Arrs Mews Jun

90 DATA Juls fusgs Sers Ocly Novy Dlecs Ave

100 DATA 5,235 5,79 3,025 2,445 2,47, 3.99

110 DATA 4,75y 4,205 2,015 3,49, 4:215 4.05

120 LPRINT TAR(20)5"Rainfell hu month"

130 LPRINT TAR(20)§" e o e "

140 LPRINT

150 7 calculste constant for Keering the heisht under 20 lines
1460 L=0

170 FOR I=1 TO 123 IF L<R(I) THEN L=R(1)

180 S5=84R{1) ‘ealculste the sum

190 NEXT 1! K=L/20% R(13)=5/12

200 FOR J=20 TO 1 STEP -1

210 FOR I=1 TO 13

220 IF ROI)<JEK THEN 250

230 IF FLAB{ I)=1 LPRINT TABC TX4—-4)USING "% % "iM$(I);¢ GOTO 250
240 IF FLAG(I)=0 LFRINT TABC I¥4-4)USING "#.4 "3R(I);? FLAGC I)=1
230 MEXT It LFRINT

260 NEXT J

10000 END

Another bargraph could be arranged so that the bars are

vertical, which is the more typical display. The following program
does this, and also shows the use of a list of sentinels, or flags, in

the FLAG array.
Solution 2: Vertical arrangement of bars.

Chapter 5 Graphics

67

Rainfell by month

5.8

Fen
5.2 Feb
Jan Feb
Jan Feb 4.9
Jan Feb Jul
Jan Feb Jul 4.2 444
Jan Feb 4.0 Jul Aus Hov 4.1 3.8
Jan Feb Jun Jul Aus 3.5 Hov Dec Ave
Jan Feb Jun Jul Aus fct Hov llec Ave
Jan Feb 3.9 Jun Jul Aug fct Nov Dlec Ave
Jan Feb Her 2.6 Jun Jul Aug Oct Nov Dlec Ave
Jan Feh Mar 2.4 Hew Jun Jul Aug fct Hov llec Ave
Jan Feb Mar Arr Hew Jun Jul Aug fct Nov Dec Ave
Jan Feb Mer Aer Haw Jun Jul Aug 2,0 Oct Nov [lec Ave

Jan Feb Har Arr Mew Jun Jul Aus Ser Oct Hov Dec Ave
Jan Feb Maer Arr Hew Jun Jul Aus Ser Oct Hov [lec Ave
Jan Feb Her aer Mee Jun Jul Aug Ser Oct Nov [lec Ave
Jan Feb War Aer Hew Jun Jul Aus Ser Oct Nov Ier Ave
Jan Feb Mar Aer Mew Jun Jul Aug Ser Oct Hov llec Ave

Table-Driven Many graphic designs can be summarized in the form of a table

Pictures of starting addresses and lengths. For example, the design of the
numeral 1 could be stored in a two-dimensional integer array D(12,2)
in which the first subscript represents the starting column and the
second subscript represents the string length. The following program
prints the numeral 1 shifted right approximately 30 spaces.

10 ‘FILENAHE: "CSFé"

20 ‘FUNCTION: TARLE-DRIVEN DIGIT

30 Y AUTHOR © JFG DATE: 12/79
40 DEFINT A-7¢ DM IM12,2)

50 FOR I=1 TO 12¢ FOR J=1 TO 2 REAI DCIsdde NEXT Jol
&0 DATA 31y 35 300 45 29 5y 31y 3y 3143 31y 3
70 DATA 31, 3s 31y 3y 31y 3y 305 5y 30s 5y 309 5
80 FOR I=1 TO 12

90 LPRINT TAB(D(Is1))3 STRINGH(D(I-2)"¥")

100 NEXT 1

10000 END

68 Chapter 5 Graphics

Picture Within
Program

L4 ¢4
Ry
13754 8
53]
E$ ¢4
it
Ak
E4-4 4
R
bER %
ES 4 0.4

The graph of this digit is hardly representative of the many such
designs that could be done, particularly since it is solid throughout;
each printed line is made up of just one string. The Starship
Enterprise printing program shown earlier (program C5P2) includes
a number of features that lend flexibility to this technique. That
program requires the printing of one or more strings per line, so it
uses a signal value which has to be included in the table. This table
is really a series of DATA statements, and the signal value tells the
computer to return the cursor for the production of another line.

The simplest procedure for painting a picture is to contain the
design itself within the program. For example, the output of
program C5P7 is obvious.

This technique wastes memory, because each line that is printed
is stored in its entirety. However, it can be useful as an intermediate
tool to develop pictures, from which data tables can be designed.

Program C5P8 is one last example of table driven graphics. It
was written by Steve Grillo and his goal was to write a program that
would produce banners of his choice on the screen. It does this, and
more: You can select whether you want the banner displayed on the
screen or printed on paper, and you can select the width of the
letters. The output hints at the power of the program.

Chapter 5 Graphics 69

10 "FILENAME: "CSP7"

20 “FUNCTION? PICTURE OF SNOOPY

30 7 AUTHOR | SFG DATE: 2780
40 CLS! CLEAR 1000
100 LPFRINT ® XXXX"

110 LPRINT X XX"

120 LPRINT ¥ PO ¢ ¢ S ¢ XXXXX"

130 LPRINT © Xoownkkk X XXX Xx"

140 LPRINT © XXXX sbokksd X3x XXXX XXt

130 LPRINT ¥ XX X kit 000K XX XXX"
160 LFRINT " X X okkxk X Xy X"
170 LPRINT " X XX XX X Xonkx"
180 LPFRINT " X VAP 999 X KXXX"
190 LPRINT " X T § XX

200 LPRINT "X /7 X XHKXEXH OO XY

210 LPRINT "X XXX/7 X"

220 LPRINT "X ¥ X X"

230 LPRINT "X X X X"

240 LFRIWNT " X X X X XX

230 LFRINT " X X X X XXX Xx"

260 LFRINT " X XXX X X X XX xv
270 LFRINT " X X 4 XXX XXX
280 LPRINT " X X XXXRXXAXA XX XX X
290 LPRINWT " xX XX X X XXX
300 LPRINT " XX XKXK XXXXXX/ X XXXX"

310 LFRINT " XXX KXXEX X X"

320 LPRINT ™ KXXXXKRXEKEE, ¥ % X X"

330 LFRINT ¥-—-% X X X"

S M Bl L

© 340 LPRINT " =X % XXX X X"

70

350 LPRINT " - % XXX X"

360 LFRINT ¥ %X XXX

370 LPRINT " - 2 X XA

380 LPRINT " - XX X xx"

390 LPRINT " ¥- kXX X X"

400 LFRINT ® *okXE X X X"

410 LPRINT " ¥ R ¥ X X X"

420 LPRINT " o oXek X XXX X"

430 LPRINT " ok Xk XX 4 X"

440 LFRINT " L ¢ 2% & o4 XX X

430 LFRINT ¥ oxk Xy XXX X X"

460 LPRINT " LS £ XK XXXX XXX

470 LPRINT " ¥ XX XAXX X X"

480 LPRINT " ¥ ¥z X X X"

490 LFRINT " =so=oz=pkkdidy X ¥ X p XXXAXXXXA"
900 LPRINT ® ¥ ¥ X 18999 44 XEXRXXXXA »”
510 LPRINT " =s==s=pkibokisik § X Yy A)
920 LFRINT " zzzzf ¥ X A A 19009 &
930 LPRINT "==ssszssssopikkgikiok V3099909990 9900409 000004

10000 END

Chapter 5 Graphics

HY

£

FILENAME: "CSFa"

20 ’FUNCTIBN TO PRINT MESS5AGES ON THE SCREEN OF PRINTER

30 ¢ AUTHOR 1 SFG DATE: 6779

40

45 7 dets lines! 1000-1070

ol mador subroutines!

& 7 2000 converts the decimal number to hinarve znd
N rlots the rrorer rixels on the screen

80 3000 rlots 2 larse word (E$) on the screen a2t XY
70 ¢ 4000 initislize malrix P(NsF) using the datls

160 7 000 stores 6 rower of 2 in arraw 0

g &000 zecerls & temrorary string from the user and
120 7 if desireds cories the screen Lo the rrinter
136 ¢

300 CLEAR 200% DEFSTR A! DEFINT EB-Z! DIM F(91.8)

510 GOSUR 4010F GOSUR 5000

520 CLSY INFUT "WOULD YOU LIKE A SAMPLE MESSAGE";A

330 IF A<:"YES™ THEN 700

400 CLSY WINTH=1! E$="LETTER": ¥=30! Y=0! GOSUR 3000 E$="Rut":

700
710
7240
730
740
750

740

770

780
790
800
810
8350
840
700

710
20
230
240

X=30% Y=15! GOSUR "000* E$="Gleve"! X=0! Y=25! GOSUR 30ﬁ0‘
E$="Grillo"? X=3G! Y=34! GOSUR 3000 FRINTRPS0."<<CR:
INFUT 5%

Y=01 H=0t CLS

FRINT " Hotet"

FRINT " To rrint lower case messatesy nold the"

PRINT ® snift Kew while luring.”

FRINT ‘

H=H+1? IF H>% THEM 810

ELSE LINE INFUT "TYFE IN THE WORD (YEND’ TO STOP ! "3E$(H)
IF E$CH)="END" THEN 810 :
WIDTHIH =0

INFUT "WHAT WIDTH {1-4) WOULD YOU LIKE";WIDTH(H)t

IF WIDTH(H)=0 THEN WIDTH(H)=1

A(H =0

INFUT "FIRST HORIZONTAL FOSITION OF THIS WORD (>=0)";X(H)
FRINT: GOTO 7490

PRINT! PRINT

FRINT "IIC YOU WANT THE MESSAGE SENT TO THE FRINTER"

INFUT ® 1=YES 2=N0"5F1

CLS: FOR I=1 TO H-1: X=X(I)! WIDTH=WIDTH(I) E$=E$(1)}
GOSUER 30003 Y=Y49: HNEXT It GOSUR 4000

GOTO 320

! lines 1000-1070 hold zll of the datsz

‘ for Lhe charascters

s

Chapter 5 Graphics 71

72

1000 LATA —de=R=Ry =251 95s 1875297 e~1s20 1279205127520
s A AT 1075429160167 032019580100 25975~1548574269:185322 44
s 4 Ts el s TA AT -1 085 B4y D8 -1 34520 127520534, -1 585851275
A5y~ 508:56s-1s8s 858 Be~1s32,805305 1564532916985 4:25 -1

1010 TATA 2B:34:45:465: 34528 ~15660127 5645 -1564+3356451716459
T 17 aa7bds 197255 74:4Fs 151690205 25125 1651937964255 5644 0,
E4557s~1948s7 2545745157 29485 1565325175855 25 1910045735207 3
257354y ~1r65F 10404151659 565-1 9345855345 -14905335 2601

1020 DATA Br-29209-2s34 02485 ~1920: 2052052091565 -2: 3452420
RO 2s 152593295 -1962565 2989584 1451120, 20518517
18: 2051200 -158%52127 573730549~ 12825659855655 3418602127580 65y
62015127 s73573:485:-151279F99 1 s-1582565:65:81 55051

1030 DATA 1279898127 5~19659127 2655 -1548s64460563219~12127 5458y
{0, 3234513127 18496496451 9127 92949854525 127 9151279254485 16
3251279 -19829655850 6516219127 99599br-198625 651655179335
P4,-151275F:251385845 -1

1040 DATA 3Bs73:73s73:500 1215191279191 9~19639642645645630-1
155 167823849325 165151 -1 9632645325 245325645635 1260342058520
Ths A5 -191s 2542120045250 y~1965s32:81 8569929659 -15456112716494>
~15165485127 5485165 ~158s20942+85-1+8:42520+8s~1v649641641645-1
1050 DATA 62565:-25895845145-1932+84:84,84,405-1,127,68:68468y
Bhe-1sT6168568568:725-1:56768:6856851275-1:56584584584:8:-154y
12655:1s29-1972+84s 8484510615127 9454545120, -1+6812585645-1>
3256406406400 1-10127 585205 345645-1:655127 964

0860 DATA -1s12454:32074:1205 1124544451202 -1+54558)
48548706 -1s124520:20:20:85~1:56:68568:20:346,88,
~191245454+448
ngQ_jEﬂIL"178584?84?84732?“1?45639637&4?325“176@564564;1247“11
T2 145325845325 165121-1980964532:16532564:805-1558240:165404568
~1512:80580:80:44:~1+68537968516:68:8,685-7999

2000 7 subroutine to chende decimel % to binary

2010 7 znd rlot the discrele rixels on the screen

SO0 FOR V=1 TO 7% W=00Wt IF D-W<0 THEW 2090

20%0 =Dl

2040 FOR R=1 TO WIDTH

2050 IF XHR<128 ANDD Y-U47<48 THEN 2070
2049 FRINT: FRIMNT " ¥k QUT OF BOUMDS ERROR ¥3¥" ¢ STOP
2070 SET{XHRY-VI7)

2080 NEXT R

2000 NEXT Vi X=X+WIDTH-1: RETURN

30040 7 subroutine to rlol & word (E$) on the screen st XoY

3010 FOR G=1 70 LEMCE$)! M=ASC{MID$(E$sGs1))-311 E=0

3020 RB=R+1t IF P{M:E)=0 THEN 3030 ELSE D=P{M,R)T X=X+11
GOSUR 20001 GOTO 3020

Chapter 5 Graphics

3030

40046 7

NEXT G RETURN

A= 45
subroutine Lo initislize

matrix FINsR) uging

4005 7 the data in lines 1000-1070
4010 CLSY E=0) PRINT! FRINT "LOADING CHARACTER - "3
4020 FOR M=1 TO %1
4039 READN C$! C=VALIC%)! IF C$="-1" THEM 4050 ELGE
IF €0 PRINTRES: CHR$ NE31
40410 IF C=-%9% GOTO 4070 ELSE R=R+1t PONLE)=C! GOTO 4030
40590 B={
4060 NEXT M
4070 RETURM
G000 subroutine to store & rowers of 2 in arpaw 0
G810 FOR M=1 T0 7! O(H)I=20(7-H)>! NEXT M! KETURN
S000 PRINTESGO "<<CR>>"§JINPUT 5%
4010 IF P1=2 THEN RETURN ELSE PRINTBSSO." "y
&020 7 the next line sels the IF-22% erinter to 16.5 cpi
H030 LPRINT CHRE$(31)
50490 7 cory the screen grarhics to the erinter
6050 FOR Y=0 TO 47% FOR ¥=0 TO 123
&0480 IF POINTOXsY) THEM LFRINT "%"5 ELSE LFRINT " *;
S07C¢ NEXT X1 LPRINT ™ " SET{0:Y)! NEXT Y! RETURN
10004 END
FEEEEErER S ¥ 44
i 4 44
b4 oy o ook
b4 ¥ b+ 3 Eé ¢ Hoon
¥ 4 ¥4 b ¢ EE O ¢
be b 4 ¥ E¢ 4 L+ S ¢
¢ 44 ¥i FiitEed E+ S 1
b ¢ Yix bR b 444
K EEed b 4
FE e] ik pREEEE P RS ftressis s
b ¢4 i+ Rt et Yk b ok i
oy EE e ¥4 X 441 o ERbethteteatd
b2t ¢ £ S + ¢ S ¢ ¢4 ok E4] 44 EEE 4
iy Yk FreEree s FriEebbeitied FEEEEsELE]
FEEE RS EEEEEEEES ek
EE 44 b d
ey freseeitestsd preteeseibesd
Hrkronieky x h
ik LRk ok
hvk ok ik ok ¥y
oy brtEeevesised FErEREYE
Chapter 5 Graphics 73

W
i

b4
B
1%
4

e

W N R e
e
P B FE BE RE IE HE

74

b4

b4 4

L4

L S
Won
Etatd

¥

¥

bt

e

EE1
B

L4
pt 4
¥
bt

v
ey
E
E
P e e M M Bt

Eeteseiid bt

Lt b4 4

& Et
fraetes bt 4

i Ed
¥ b3 4
Eeatthts

b+ 4
won
b4 E4 4
¥ "
pritretritess
L4 ¥
Ei L&

£ EEEEEd
LA | ¥

ko
PE P e BE PE

Chapter 5 Graphics

¥ peresd oy o
X ¥ X XX
¥ ¥ X P x
¥ ¥ m]
¥ ¥ ¥ ix
¥ ¥ X X
iy i EEe E R
b3 frasabts] peeetel
f 4.4 p £ LS ¢ ¢
E4 4 ¥ Hoox
b4 ¢ pesitdd ke
b4 4 b4 L ¢
X Lt LR ¢ ¢
b4 Ty L4
n b4 ook
Lt S ¢ ¥
Tk b
BHon eavEts
LA ¢ Lt
41 b4 3 &
L4 f Forkon
Fheed ¥ ¥
¥ L | X
X ¥ 4
4 4 X L ¢
¥ FreEetss L |
¥ ¥ b4 LS |
ey ¥ kS LS ¢

b

Character Graphics

PRINT @

Instruction

The second major graphical method is character graphics. This
method is realized on the TRS-80 through the use of the PRINT @
instruction which can address any of the video screen’s 1024
positions. The positions in the screen’s top row have addresses O to
63, the second row 64 to 127, the third row 128 to 191, and so on
until the last row, which has addresses 960 to 1023.

The PRINT @ instruction uses the screen address to position the
leftmost character to be printed. Caution: The @ symbol is
represented differently in memory when the shift key is depressed,
so be sure to use the unshifted @, otherwise a syntax error results
when the program is executed.

10 PRINT @ 04 y" X at the tor left of Lhe screen

20 PRINT @ 95,

wzaTe 207 centered on the second line

30 PRINT @ S510,"Z07TZ0T" Z0TZ07T centered on the screen
40 PRINT @ 1023,"7"; Z at the botlom risht of Lhe screen

STRING$

If the PRINT® instruction ends with no punctuation, the cursor
returns to the beginning of the next line, and this may produce
undesirable results. If the address is between 960 and 1023, the
string prints on the last line of the screen, then the screen scrolls one
line. The effect of a PRINT @960 is the same as a PRINT @896,
which of course is not what was intended.

If the PRINT @ instruction ends with a semicolon (;) the result
is predictable. We recommend that you always end all PRINT @
instructions with a semicolon.

A Level II BASIC function which is useful in graphing is the
STRINGS function. This function has two arguments: The first is
the number of characters desired, up to 255, and the second is the
character itself.

Chapter 5 Graphics 75

The Character Set

76

10
20

30

4

=

F

Instruction

FRINT STRING$H(10,"%")
FRINT STRINGH! SsCHR$(E5))
PRINT STRING$(8:CHR$C13))

FRINT B940s STRINGH(64:"1%)5

0 A=128% E$="9"! PRINT STRINGH(AsEH)

Qutrut

ey

ABAAH

Cursor moves down 8 liness
rasitions itself at lefi of
line. CHR$(13) is &
carriade/cursor relurn
which is the characler
sroduced bu the ENTER

kew (/ENS).

7727 v+4277 (44 of them) on
the bolttom of lhe screen
Tuo rows of 9s

Note: Since the computer builds the string in its memory first
before displaying it, your program may require additional string
space to be reserved for it. Use the CLEAR instruction to allow for

more string space.

A look at Appendix B reveals that the TRS-80 has a total of

256 possible characters, and the effect of each can be displayed by

using the instruction PRINT CHR$(N) where N is a number from O
to 255. A few of these values of the TRS-80’s character code have

no effect on the TRS-80, but most do, and they are certainly more

numerous than would be necessary for just the alphabet, digits, and
special characters that BASIC needs. The table below is a summary
of the expanded table in Appendix B.

Code

0-7

8-31
32-47
48-57
58-64
65-90
91-95
96
97-122
123-127
128-191
192-255

Chapter 5 Graphics

Function

Carriage/Cursor Control
Special Characters

Special Characters
Alphabet (Upper Case)
Carriage/Cursor Control
Lower Case @

Alphabet (Lower Case)
Lower Case of Codes 91-95
Graphics Characters

Tabs for 0 to 63 Spaces

Tabulation Codes The last two groups of codes represent half of the possible
printable characters, and they deserve special mention. The last 64
codes allow tabbing without the TAB function.

Instruction Outrut
10 PRINT CHR$(202)3mgn % in the 10th rosition
20 A$=CHR$C 1924101 FRINT Agsvge ¥ in the Ith rosition

These codes make possible some very simple graphics programs,
such as the one below. Note that this technique is restricted to
screen graphics because printers don’t respond to the tabulation
codes.

10 “FILENAHME: "Capen

20 "FUNCTIOM: DRAW A VERY SIMFLE CHRISTHAS TREE
30 7 AUTHOR ¢ JFG DATE: 79

490 CLEAR 200

S0 M=32

60 FOR I=1 70 12

70 IF Ix1 THEN M=M-RNI{2)5 RISRND(S)-33 R2=RNI(5)-3
80 F$=CHR${ 192+M-F1)

20 L=65-ME24R2

100 FRINT P45 STRINGS(L:"X")

110 NEXT 1

120 PRINT TAR(29)"MERRY"

130 FRINT TAR(Z9)"XMAS!"

140 BOTO 149 ! freeze Lhe screen

10000 ERD

Chapter 5 Graphics 77

Graphics Codes

Graphic to Binary
Conversion

78

& Cearisrsaiaisies B
MR

bo Lha e RRi LRI ;

birbh radbad et bnasneiEasiEns iR
Pa R s 3 HEEAIIEES S EIAIERTEISRLEEREEEIS
HERRY

The codes from 128 to 191 are graphic characters that are made
up of six small rectangles, or pixels, arranged in three rows and two
columns for each character. Each character entirely fills one of the
1024 print positions on the screen. Each pixel is either on (bright)
or off (blank), depending on the code. For example, the graphic
character 134 looks like this:

is off, and

and D is on.

The result of PRINT CHR $(134) would be the graphics
character shown above. »

where

Each character code can be thought of as a visual representation
of a six-bit binary number from 000000 to 111 111, corresponding to
all 64 possible combinations of bits. The character’s code value can
be computed by translating each off pixel to a 0 and each on pixel to
a 1. Then the positions of the 1s can be masked into the six-bit

Chapter 5 Graphics

Uses for Graphics
Characters

‘bin‘afy number. Thekvalue of that number plus 128is equal to the

code value.

b+|2d =134

and so the statement PRINT CHR$(134) produces that graphic
symbol. The graphic character whose code is 191 is the one in
which all pixels are on, resulting in a large rectangle of light. This
graphic symbol is one of the most useful, as shown in the following
discussion.

All pictorial printer graphic applications that have been
mentioned so far in this chapter are fair game for these characters.
For example, the histogram application (program C5P4) requires
this line change and all LPRINTS to be changed to PRINTS to
modify the output dramatically.

190 FPRINT " "iM$(I)5" ";STRINGS(R(I MK,CHR$(191));

Chapter 5 Graphics 79

80

Program C5P4 will now produce output like:

Other programs can be changed very simply, and their output reflect
the use of graphics characters.
Program C5P6 with the change

50 FRINT TAR(CIM I:1))5TRINGH(IM T,2),CHRE(19] 1)
yields output like:

Chapter 5 Graphics

Program C5P9 with the modification
60 FRINT P$5! FOR J=1 TO Li FRINT CHR$(RND{ 64)4128)5¢ MEXT J¢ FRINT

now produces output like:

Cartooning is possible with these graphic characters. This
technique requires very fast display rates, so the POKE commands
should be used to transfer the characters directly to the screen.
POKE is about six times faster than PRINT, so it’s worth the effort.

To give the semblance of motion, it is necessary to display a
sequence of slightly altered pictures in rapid order. The time it takes
to plan this sequence is truly imposing.

The following program uses the character graphics, and its
purpose is to draw a full screen of digits on the screen very quickly.
The digits are made up of four screen positions each, so they appear
larger than normally printed character digits. We show you this
program and its output here to prompt you into thinking of uses for
this “enhanced digits” display.

Chapter 5 Graphics 81

82

10 ‘FILENAME:Y "CSF10"

20 FFUMCTION: PRINTS DIGITS UBING CHARAGCTER GRAFHICS
30 ¢4 AUTHOR § JIR IaTE: 9/7%9

40 CLS: DEFINT a-7¢ CLEAR 100% IIM 04410y initislize
50 ¢ comrose string to linefeeds then becksrace luwice
&40 E4=CHR%{ 24 1+CHR$(B 1 CHR$(8)

70 ¢ ihis loor forms &1l of the ten gigils

a0 FOR I=1 TO 10% A$=""

90 FOR J=1 TO 4! READ X! A$=ASHCHRE(1284X)
100 IF J=7 THEN A$=A$+E%’ =dd LF & backsrace tuice
110 HEXT J

120 D 1)=a%F NEXT I

130 DATA 735435 13514947 5015515551559, 13512

140 TATA S5 1015521948, 3515, 55,515,105 14

156 DATA 3354811371453127719;9955759113!1455555970slﬁ

160 7 srint Lhe digits on Lhe screen Fendomly
170 FOR K=0 TO &2 S5TEF 3

180 FOR Y=k T0 8%94+K STEP 128

190 C=RND(10)-1% PRINT@Y D CH1)3

200 NEXT Y

210 MEXT K
220 GOTO 2297 freeze the screen
10000 END

Chapter 5 Graphics

The output of the following program should look familiar.
This program’s output is used as the chapter heads, or first page
illustrations.

P CER10A"
10N CHAFTER HEAD FROGRAM USING CHARACTER GRAFHICS
30 ¢ AUTHOR ! JIR DATE: 10/79

4G RANDOMD DEFINT A-73 CLEAR 100: DIM D$(10) initislize
50 comrose siring Lo linefeeds Lhen backsrace tuice

60 E$=CHR${ 26 }4CHR${ B 4CHRS$(8)

76 comrose string for simrle desisn
30 B$=CHR$(1?1}+CHR$(1?1)+E$+CHE$(143)+CHR$(143)
70 7 this loor forms =11 of the len digits
100 FOR I=1 70 107 Ag="r
10 FOR J=1 TO 4% READ X! AS=A%TCHRS 12843
120 IF J=2 THEN A%=A%+E$’ azdg LF & becksrace tuwice
130 HEXT J§ D% 1)=a%
140 NEXT 1
150 ¢ dzte for digits 0-9

1460 DATA 23543513914547509155 155515595135 17

170 LATA 91953512515y 21548535 15+55,51512, 14

180 DATA 53:48, 1351473!27:1090755759!13!14!55’5?!0715
190 7 mein loor for rrintinsg 10 charters is below
200 FOR K=0 T0 9 CLS

210 Frint hesding on left rortion of screen

220 PRINTR138y"CHAFTER";: FRINTR205: D% K+1)3

230 loors to rrint designs on Lhe sCreen

240 FOR I=1 TO 8 BE=AES{I4+I-3)! E=1+9-INTC 1/8)

2580 FOR J=R TO E

260 IF ENIM 3)=3 THEN FRINT@RI031-128%I+3%.JsE%;
270 NEXT J

280 NEXT 1
279 loor to rrint digits on the sereen

300 FOR J=1 T0 19! R=RNIK &)

310 B=ARS{R+R-3): E=R+9-INT(R/8)! S=B-14+RNIME-B+1)
320 PRINT@L1O31~128%R+355, D% K+1)3

330 NEXT J .

340 - hold the screen before gelting newt charter
350 FOR I=1 TO 1000: NEXT I

360 7 get next charter

370 NEXT K

10000 END

Chapter 5 Graphics 83

| Pixel Graphics
numbers 0 to 47 for Y.
SET
‘ word SET.
Instruction

10 SET(0s0)

20 SET(2+:4)

30 SET(127+47)

40 SET(0+47)

50 SETC12740)

40 POKE 15260y 128421

70 SET(0s0)) SET(0s1)% SET(052)

84

The third major technique for programming graphic displays is

pixel graphics, so-called because the programmer controls the on-off
state of every single pixel. Whereas the screen contains 64 columns
and 16 rows of characters, whether they are script or graphic, the
same screen contains six times as many pixels. There are 128
columns and 48 rows of pixels, and their screen addresses are
radically different from the addresses of the graphic characters they
generate. A programmer can address a single pixel with X and Y
coordinates, using the column numbers 0 to 127 for X and the row

The SET command turns on the pixel whose screen address is
in X,Y coordinate form in parentheses immediately following the

Chapter 5 Graphics

Qutrut

Urrer left rixel is turned on
Second rixel on fourth row
Last rixel on 47Lh row

Bottom left rixel

Tor right rixel

See text belouw

See text below

RESET

The last two statements above have the same effect, except
that the POKE is much faster. Both light up the top left pixels like
this:

The RESET command turns off the pixel whose screen address
isin X,Y coordinate form.

10 PRINT @05 CHR$(191)

10 “FILENAME! "CSF11"

20 FUNCTION! SHOOT A DIAGONAL LINE ACROSS THE SCREEN
30 7 AUTHOR ¢ JFG DATES &/7

40 CLS

S0 FOR I=0 70 1193 X=I: Y=IX.4! J=I-10 K=J¥,4

60 SET(XsY)

74 IF Ix9 THEN RESET(JsK)

80 NEXT I

10000 END

The program above “shoots” a line from the top left to the
bottom right of the screen. Try it.

Chapter 5 Graphics 85

POINT

86

The POINT function returns a zero (false) if the pixel at the X,Y
coodinates that make up its argument is off, and a -1 (true) if that
pixel is on. Thus it is useful when testing if a particular spot is on or
off.

10 IF POINT(0:0) THEN RESET(0:0)
26 IF PDINT(X»Y) THEN SET(X+1sY+1)P RESET(XSY)

Pixel graphics give the programmer a true graphing capability on
the screen with 128-column, 48-row resolution. This may not be the
finest resolution you can find on the graphic terminals and
computers, but the latter generally cost about five times as much as a
TRS-80. With pixel graphics you can draw horizontal, vertical, and
angled lines, and even graph geometric shapes.

10 FILENAME:D "CHP12"

20 ‘FUNCTION: DRAW & HORIZONTAL OR VERTICAL LINE
30 ¢ AUTHOR © JFG DATES 6/79

40 CLS

50 INFUT "HORIZONTAL (1) OR VERTICAL (2)"F A

&0 INFUT "STARTING COORIITNATE": R

70 CLS: OM A GOTG BOs%00 GOTO 50

80 FOR X=0 TO 127% SETCXsE)P MEXT X1 GOTO 50

90 FOR Y=0 TO 47¢ SETCE:Y)i HEXY Yi GOTO 50
10000 END

Chapter 5 Graphics

10 “FILENAME: "Cspi3»

20 YFUNCTION: DRAW AN ANGLED LINE {FOLAR METHOD
30 7 AUTHOR @ JPG IATE: 6/7%

40 OLS

S0 INFUT "X ARDN Y OF ORIGIN"; X.Y

&0 INFUT "ANGLE IN DEGREES"iTH: a=TH/57.3¢ 8=8IN(A ! C=CO0504a)
70 INPUT "LEHGTH":R

80 CLS

94 7 daraw Lhe line

100 FOR N=1 TO R

119 SETOXHNRC s 47~ YEN%S)

120 WEXT N

130 GOTO 130 * freeze Lhe screen

10000 END

Chapter 5 Graphics 87

88

10
20
30
49
30
&0
70
80
79
100
110

120

130
140
150
160
170
180
190
200
210
220
230
240
230
260
100

‘FILEHAKE: "Capl4”
FEUNCTION? DRAW AMY LINE BY CARTESIAN HETHOUD
¢ AUTHOR ¢ SPEG aTE: 5779
CLS! INFUT * FPOINT OF ORIGIN (XeY)" iX12Y1
INFUT * FPOINT OF TERMINATION {(XeY)" 3X29Y2
CLs
¢ ewitch verisbles if needed Lo reverse girection

IF Y2<Y1l THEN X3=X21 X2=X11 X1=X3i Y3=¥2: Y2=Y1V Y1=Y3
! checks for & verticel asnsle and zels accordinsly

TF ¥14x%2 THEN 180

IF Y1<YZ THEM 5T=1 ELSE ST=-1’ sel ster size

! loor Lo drew verticsl line

FOR Y=Y1 TO Y2 STEF 57

SET (X1:Y)

NEXT Y
G070 2690

! tzkes care of =ll other engles

M= Y2-Y1)/ 0X2-X1) czleculate slore of ensle

! sel sler size

IF M<-1 OR M>1 THEM 5T=1/M-1/(M%%0) ELSE ST=5GN(H)

IF 5T=0 THEM §T=1‘ setl ster size if M=0

! draw line belueen roints

FOR ¥=0 TO X2-X1 STEF &7

SET (X+X1eMEXEYL)

NEXT X

GOTO 2607 freeze screen
00 END

Chapter 5 Graphics

10
20
30
40
50
60
70
80
90

‘FILENAME: "CSP15"
"FUNCTIOND IRAW A CIRCLE USING S5INE AND COSINE FUNCTIONS

“ AUTHOR ¢ JFG DATED 10/79
CLS
INFUT "RADTUS" SR INFUT "CENTER COORDIINATES"X1.Y1

CLs
FOR TH=0 10 4.3 STEF 1/R

X=RECOBCTHIHX1! Y= SHRESTINCTH YL SET(XsY)
HEXT TH

100 GOTO 100 freere screen
10000 END

Chapter 5 Graphics 89

Bouncing Dots

90

In many games, as well as in serious graphing applications, you
will want to have a dot move in a straight direction until it meets an
obstacle and keep moving in a new direction. Consider the possible
bounces:

Vertical Wall Collision

Each moving dot changes its X direction by an amount DX,
and its Y direction by an amount DY. In all the conditions above,
the Y direction increment DY never changes sign. In conditions 1
and 2, DX starts as positive, but changes sign to negative on the
bounce.

If you investigate the four possible bounces from a horizontal
wall, you will find that, as expected, the only change is the reversal
of the sign of DY.

This understanding is all that is necessary to graph a moving and
bouncing dot. The dot is a pixel drawn with a SET command. The
coordinates of the SET are X and Y. The movement is provided with
a SET at a new position X+DX, Y+DY followed with a RESET of the
old dot at X,Y.

100 BETOXY)

110 X=X4IE Y=Y4IY
120 BETOX:Y)

30 RESET(X-DX, Y-TY)
o Garo 110

Chapter 5 Graphics

To bounce the dot off the wall, you must “feel” ahead to see if
any part of the surrounding territory is occupied. It is not enough
to just sense the status of the next point. For example, suppose the

dot is moving up and to the right, and it encounters a horizontal wall.

.7 Next place to be set
. is already occupied

If the “next place” is the only point that is considered on a
bounce, the computer couldn’t tell if the wall were horizontal or
vertical.

. Next place to be set
. + is already occupied

The only way to judge which direction increment, the DX or the
DY, needs to change sign is to sense in all four directions.

Examples:
........ sie:e « » There is something above
LAk the dot, so reverse the sign
o e of DY

Chapter 5 Graphics 91

92

»e
SO0
.

./*

. e,
T3l

it} There is something to the right of
the dot, so reverse the sign of DX

This program bounces a dot off any wall set up in either a
horizontal or vertical position. It allows DX and DY to be defined
for any value between 1 and 2, and builds its walls on the four sides

of the screen.

10
20
30
40
50
60
70
80
20
100
110
120
130
149
150
1560
100

‘FILENAHE: "CSF16"
FUNCTION? ROUNCING DOT PROGRAM
Y AUTHOR + JFG nATE: 2/80
INFUT "Xy DY BETWEEN 1 ANDN 2 INCLUSIVE" ;DX Y
INFUT "STARTING COORDINATES"#X»Y: CLS
FOR I=0 T0O 127 © this loor drauws horizontal boundaries
CET(Is0)% SET(Is1)) SET(Is46)1 SET(I1:47)
NEXT I
FOR I=0 TO 47 / draw verticsl boundaries
SET(O0sI)! SET(1,I)} SET(126+1) SET{12751)
MEXT I
SETC XYY ! rul 2 roint 2t location X#Y
! change direction of dot if necessary
IF FOINTOX4DXsY) OR FOINT(X-IN0Y) DIX=-TIX

IF POINT(X:Y$0Y) OR POINT(X»Y-DY) DY=-DY
¥=X+0¥: Y=Y4DOY: BOTO 120
00 END

Chapter 5 Graphics

93

Chapter 5 Graphics

94

A very nice program that actually served as an inspiration for
the discussion above is the one that Steve Grillo wrote as an exercise
in visual graphics. He calls it “The Happy Hopi” for obvious reasons.

ILENAME: "CBFILTY

UMCTIOND CREATING COMPUTER ART

AUTHOR ¢ SPG DATED 2779
¥

CLOSEY PRINT " PRESS!"

FPRINT " L- 10 LOOK AT OLD FICTURES"
PRINT " M- 10 CREATE NEW FICTURESR"
A=IMKEY$: IF A="" THEN 70

1F 4="L" THEN 790
! user wents to creste new ari
CL

rs

wl

Lhe nexi loor draws & rendom lines on the screen

! (3 verticels 3 horizontsl)

FOR T=1 10 3

! et up rencom verisbles

BO=RND 2508244 ¢ B1=RERND(OS0-. OB ¥23 B2=RMI(21 0%2+4

C=RNIC110%244 1 CL=CHRNDN 23~ 080 %23 Co=RND(60 0%2+H4
drzw the lines using the varishbles

FOE M=EO TO Bli SET(NsBZIE NEXT

FOR N=C TO C13 SET(CZeNIt NEXT

MEXT T

* the next Lwo lines initielize the direction of the dot

G=TNT(RNIK 100 3/50 0% IF §=0 THEN 5=-1

T=INT{RNDC100)/50 0 IF T=0 THEN T=-1

’ the next two lines draw 8 boundars around the screen

FOR N=1 TO 125 SET(Ns3)% SET(Ns47)0 NEXT

FOR N=4 TO 46¢ SETCLSNDE SETCLIZGNN NEXT N

! next line sives the roint e sterting spol &

‘ mekes surne it isn’t cccuried

YeRNDO 6108242 Y=RNDC 20 BE2450 IF POINT(Y:Y) THEN 3190

! erint the command stelement on the screen

FRINTE 105 "COMMAND(FsSs sFsEN "y
! the rest is the main rortion af Lhe Frogram

next 4 lines chsnse the direction if necessary
1F POINTOX+1sY) THEN 5=-1
IF FOINT{X-1sY) THEN 5=1
IF FOINT(XsY4+1) THEM T=-1
IF FOINT(XsY-1) THEN T=1
! srevious roint is blanked if F=1
IF F=1 THEN RESET{XsY)

Chapter 5 Graphics

440
450
450
470
480

450 ¢

SO0
10
a2

330

540

iy
Séi
a76
agd

BGn

o3

G040
410
620

630 ¢

640
680
6460
670
680
590
700
710

7

7207

730
740
7390
740
770
789
790
800
810
820
830
840
830
840
a7
880

7

next 4 lines acluslle tell the dot where Lo move
IF 5=1 THEN X=x+1

IF S=-~1 THEW X=x-1

IF T=1 THEW v=Y43

IF T=-1 THEW Y=Y-i

next line ersses roint if it wes white and Ex]

IF POINTOXSY) AND E=1 THEWN RESET(XsY) ELSE SET(XsY)
© the next line checks Lo see if & Kew was rressed-
if nols then o besck to the main FIOSErEm
A=INKEY$: IF &="" THEN 380

g

Frint the letter thel was rressed in Lhe corner
FRINTE 3054
! execute Lhe command
reverse thne dol?
IF A="R" THEN T=-T! 5=-5§! GOTO 330
! erase ithe dots trail?
IF A="P" THEN F=-F! GOTO 330
! erzse the dol when it runs over snother?
IF A="E" THEWN E=-E: GOTO 330

stor the molion of Lhe dolf?
[F A" " THEW 670
=INKEY$! IF A="" THEN 650 ELSE 330

store the ricture on disk?
IF A<="5" THEW 330
‘ store the file using random sccess
OFEN "R"y1y"SCRNGRFH/LAT" oren the file for sccess
FIELD 1y 255 AS B$! M=LOF(1) I=15359¢ initialize
f="" nullife A%
the next 5 lines cory Lhe screen Lo disk
I=1+41
IF LENCA)C2E5 THEN 770
M=M+11 LSET E$=4A: PUT 1sH
IF M/4=INT(M/4) THEN &0 ELSE 710
A=A+CHR$(FEERCI))Y POKE Is4463 COTO 730
‘ this rortion cories the ari on disk to lhe screen
OFEN "K"s1s"SCRNGRFHZDAT": FIELD 1, 255 A5 B%
IF LOFCL1)<:0 GOTO 830
FRINT "SORRYs BUT THERE IS NO ART ON FILE... A CREE
A=INKEY$! IF A="" THEN 820 ELSE 40
CLs
FOR C=1 TO LOF(1) STEF 4

FOR D=0 TO 3! GET 1+C+D: FPRINT E$: NEXT I

FRINT @970, " <CRz";

A=INKEY$! IF A="" THEN 870 ELSE PRINT
MEXT C

rd

I bt

-

10009 END

Chapter 5 Graphics 95

i isisiiniiald

Chapter 5 Graphics

96

97

Chapter 5 Graphics

98

19
20
30

40

50
60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
299
300
100

The last program produces graphic designs that are familiar to
aﬂmﬁMmﬂEMm:ﬂwwawmeMwadm%&ﬁmmmm
lemniscates, or Lissajous figures, and they are not difficult to
produce. The following program allows the user to select a pattern,
choose its density, then produce the output on either the screen or
both the screen and the line printer. We have included a number of
examples to show you its flexibility.

FILENAME: "CaFR18"
SFUNCTION: PRODUCE INTERESTING FATTERNS
¢ AUTHOR @ 5FG DATES /7Y
DEFINT XsYsZs8sK
DEEINT KsQsXeYsZ) PE=6.2831 I=230 K=l C=62t T=3
THFUT "FIRST VARIARLE {0<X<10)" 54
THFUT "SECOND VARIARLE (GREATER THAR THE FIRST VARIAELE) sB
THFUT "OUTREUT TO FRINTER (1=YES)"iF
THPUT "DENSITY (1=5UFER DBEMSEs BUT SLOWS 200=5CATTEREI)"56T
S5T=57/1000" comrFule sler size
CLS
! creste Lhe riclure
FOR TH=0 TO F2 STEF ST
COR=7ESINCTHET 31 X=KER¥COSCARTH O YeRESINCRETH MZ
SET(X:Y)
NEXT TH
IF F<>1 THEW 3007 did the user wenl it coried?
! erint velues for luwo mein verisbles
LPRINT CHR$(2%)/ normel rrinter density (10 cri)
LERINT TAR(12)"First Verisble="iki
LERINT TAR(44)"Second Verisble="iF
LPRINT
LPRINT CHR$(31)° set erinter densily Lo 16.3 cri
‘ cors Lhe screen to the Frinler
FOR Y=0 TO 47

FOR ¥=0 T0 123 .
IF FOINT(X:Y) THEN LPRINT "#"5 ELSE LPRINT " "¢
NEYT X! LPRINT ™ "1 SET(QsY)
HEXT Y
GOTa 3007 freeze Lhe screen
00 ERD

Chapter 5 Graphics

Chapter 5 Graphics 929

S

™
, %Wm

L el

.

.%gm

el
-2

Chapter 5 Graphics

100

Graphing techniques are supremely rewarding to both the
programmer who masters them and the program user who delights
in their visual effects. They often transform a dull program into an
exciting one, and provide the user with pictures, generally known to
be worth a thousand words each. Sometimes, though, words are the
stock in trade for the computer, as in the many word processing
applications indicate. When this is the case, BASIC’s ability to handle
strings is of paramount importance, and this capability makes it a
language chosen by many. String handling will be discussed in the
next chapter.

Chapter 5 Graphics 101

I/0O, Strings, and
Disk BASIC

DEFUSR and USRn

As good as Level II BASIC is with its graphics and enhanced
string handling capabilities, the TRS-80 Disk Operating System or
TRSDOS, includes some embellishments that further increase the
power of the language. These additions to the language are
supplemental to the 12K ROM (Read Only Memory) BASIC, and
occupy RAM (Random Access Memory). You may refer to the
memory map in Appendix C for a visual explanation of the way
these enhancements use the RAM.

This chapter discusses the Disk BASIC features that don’t deal
with tape or disk I/O, since chapters 7 and 8 cover those topics
thoroughly.

These two language features are very closely related. The
DEFUSR corresponds to a DEF FN, except that it refers to a
user-defined machine language function, and the USR corresponds
to the invocation of that function.

The DEFUSR defines the entry point to a machine language
routine as an address, and it also associates that routine with a
number from O to 9, which allows up to 10 machine language

103

104

routines to be called within a program.

10 DEFUSR0=32000 ' Ezch of the four arsuments is in
20 DEFUSR1=32100 ' decimel (buw defaullls

30 DEFUSR2=32200

40 DEFUSR3=32300

The four lines above could just as well have defined the machine
language subroutine entry points in hexadecimal.

10 DEFUSRO=&H7IOO 7 7000 HEX= 32000 DECIMAL
20 LEFUSR1=&H7DI64 7 7hé64 HEX= 32100 DECTIHAL
30 DEFUSRZ=&H7ICE ’ 7OCE HEX= 32200 DECTIMAL
40 DEFUSR3=&HZEZC * FE2C HEX= 32300 DECIMAL

You may wish to define a machine language subroutine’s entry point
in hex depending on which way it is convenient for you to think of
addresses in the computer’s memory. In this example we have
assumed that the four programs have been loaded into the appropriate
places, and that each one is less than 100 bytes long. Note that when
BASIC is loaded and asks the question “MEMORY SIZE?” you
should respond 31999 (or less) to prevent your BASIC program from
using the area above 32000, which is the portion of memory in which
the machine language subroutines were loaded.

The USR instruction is really a function, and in TRSDOS
BASIC it must have a suffix digit of 0 to 9 corresponding to the
DEFUSR statement that specifies the entry point. There is but a
single argument to the function, and as with all functions it returns
only one value. Both the argument and the returned value are
integers.

Examples:

500 X=USR3(J+1)
00 Y=USRE7{RNDC9))
700 Z=ULR6L~3)

If you are interested in writing an assembly language routine
that can be placed in memory for use with USR and DEFUSR, we
refer you to your local Radio Shack store, on whose shelves you will
find several books dealing with this subject. Below are some
examples of functions that could be written in assembly language
(for speed), and are therefore suited to the DEFUSR—USR approach.

(1) The argument is the screen address (0 to 1023) for the
cursor. The value returned is the length of the nonblank string of
characters to the right (or left) of the cursor.

(2) The argument is a distribution specifier for a random
variable. The value returned is a random variate of the specified
distribution (Poisson, normal, or other).

(3) The argument is a coded musical note. Ten thousands =
port number (1, 2, or 3). Thousands = A to G (A =1000, B=2000,
etc.) Hundreds = Octave (100 = lowest, 800 = highest). Tens = time

Chapter 6 1/0, Strings, and Disk BASIC

POS, INSTR,
and MID$

(1 =32nd note, 2 = 16th, 3 = 8th, 4 = 4th, .. .). Ones = sharp (1),
natural (2), or flat (3). The value returned is the specified note for
the specified time on the specified port.

Although the POS function can be used with Level II BASIC
without having to use TRSDOS BASIC, it is closely related to the
other topics of this chapter. It is a function that returns the position
of the cursor on the line, a value from O to 63. The argument of the
POS function is a dummy. It must be there, and can be any numeric
expression.

Examples:

10 FRINT "A" TAE{FOSCOMHL10I"R" TAR(FOS(04100

There will be 10 spaces between the A and the B, and 10 spaces
between the B and the C.

10 FOR I=1 TO 100% INPUT X
20 IF POSCOMFLER X$)=
30 FRINT X$+" "5

40 NEXY 1

This loop reads text one word at a time and prints the words
side by side, separated by blanks. A word will not be divided
between two lines.

%
3 THEM PRINT

The INSTR function searches one string to see if it contains
another. Like the MIDS$ function, it can have either two or three
arguments. The function is written

INSTR(p,string1 $,string2 $)

where the optional variable p indicates the byte position at which
the search is to begin; stringl$ is the string expression being searched;
and string2$ is the string expression being sought.

The value returned is the starting position of the substring that
was found in the target string, or zero if it wasn’t found. If the
optional starting position for the search is not specified, the search
begins at byte 1.

Instruction Outrut

10 A$="NOT WITH A BANGs RUT A WHIMFER"
20 FRINT INSTR(A%," ™)

30 PRINT INSTR(SsA$s" ")

40 FRINT INSTR(A$:"A")

30 PRINT INSTR(A$,"J")

60 FRINT INSTR(4sA%+"T ")

70 PRINT INSTRCA$s"WITH")

80 FRINT INSTR(2sA%s" & ")

Chapter 6 I/0, Strings, and Disk BASIC 105

=

0L R D e D
<>

106

The INSTR function can simplify the neat printing of inputted
text, as in the example for the POS function.

10 ‘FILEHAME:D "CéFIT

20 CFUNCTION: DEMONSTRATION OF STRING FUNCTIONS

30 AUTHOR + JPE naTE: &/77

40 CLEAR 30007 DIM E$(350)0 I=1 7 initislize verizbles
50 INPUT “TYPE TEXT (ND COMMAS)"§ A%$D LPRINT A%

40 TF A%="$$END® THEN 1460 * check for end of dels entries
70 BHI=RESCI " "HAs concetenste old and new sirings
an IF LENCE$(T))<40 THEN 50 7 beck if string short enaush
o6 ¢ loos Lo Tind Tirst (rishlmosl) srece < 60 cheraclers
100 FOR J=40 T0 1 STEF -1% X=INSTROJSBHCID" ™)

110 IF ¥=0 THEN HEXT 4 7 keer checking for & srace
176 ‘found one. esddust sirings sccordingles then so fhieck

130 RSO I 0=HIDSCRS(T X0 B I =LEFTHORECT 19X

140 I=T411 GOTO GO

150 7 srint Lhe finsl cord
160 FOR J=1 70 I LPRINT B$(J) MEXT J

10004 END

The rrogrem which is resronsible

for zllowing the user Lo

modifye & record’ s contents

chould be feirle simrle wel reauires gresl cere in its design.

Consider the Tields of lhe

record snd the effect thst

s chenge would have

on each of Lhem.

FHEND
The prosrem which is resronsible for sllowing the user to modify
s record’ s contents should be fairly simele wel reauires dgresl
care in iis design. Consider the fTields of the record and Lhe
effect Lhel s chense would have on esch of them.

In the example above, notice how in line 130 the two-argument
MID$ function acts like a RIGHT$ function, but instead of the
mmmmu@mﬂnmmgﬂmgmﬁmaﬂmePMMmLTm
INSTR can take advantage of this feature of the MID$ in a name
reversal subroutine, such as the one below. Compare the following
program to program C2P5 in chapter 2. This example is typical of
many applications, such as mailing lists or accounting, in which the
name on a record is its key and it is arranged last name, then first
mnﬁmuwdmﬂwoﬂaﬁmtﬂwnhﬁnmm.Fmemmmh&smwd
record might contain:

MINDERBINDER MILO
and the output should be:
MILO MINDERBINDER

Chapter 6 1/0, Strings, and Disk BASIC

INKEY$

10 “FILENAME:D "CeP2"

20 JFUNCTION? REVERSAL OF NAMES

30 ¢ AUTHOR ¢ JPG IATE! 7/79
40 Y the next lines use Lhe subroutine

S50 INFUT H%: LPRINT N$

&0 TF Ne="4$4$ENDI" THEN STOF

70 GOSUER 80: LPRINT N$! £OTO 50

80 ° the next line does the reversal

90 X=INSTR{N%s" ") NE=HIDB(NS» X+1 14" "HLEFTH(NS X-1)
100 RETURN

190000 END

Bleaux Jo

Jo Blesux

Fernsworth Ferdinand
Ferdinand Farnsworth
Badinssge Rillubob
Billvbob Badinsse
FHEND

A one-line user-defined function could do all that this
subroutine does, but it leaves much to be desired in clarity.

o DEF FNRONI=MID$H{ NS INSTRINSG," ")1)
+* "HLEFTS{NS» INSTRINS" ")-1)

The INKEYS string function is a very powerful part of LEVEL II
BASIC. It does not have an argument. You can think of it as a
single-character input function that doesn’t need an enter keystroke.
When the INKEYS$ function is executed, it “strobes”, or scans, the
keyboard checking for a depressed key. If no key is depressed, the
string returned is a null string, “”. If a key is depressed, the string
returned is that keystroke, even if it is'a control key such as the
backspace or the ENTER key. Because the keyboard scan occurs so
fast, when INKEY'S is executed it must be given multiple
opportunities to execute in order to find.a key that is depressed. For
this reason the INKEY§ is always placed inside a loop.

Example:

100 X$=INKEY$: IF X$="" THEN 100
110 PRINT @ 960:X%3

Chapter 6 I/O, Strings, and Disk BASIC 107

This program segment strobes the keyboard repeatedly. When a
key is depressed, the keystroke isn’t null, X$ isn’t “”, so line 110 is
executed and prints that character at the bottom of the screen. Note
the ¢“;” punctuation at the end of the PRINT @. Remember that it
keeps the carriage/cursor from returning so that what was printed on
the bottom line stays on the bottom line without the standard
single-line scrolling of the screen.

100 X$=INKEY$? IF X$="" THEN 100
110 PRINT @ 05 ABC(X$)iX$5: GOTO 100

When a key is depressed the ASCII code value for the depressed
character is printed at the upper left, immediately followed by the
character itself.

100 PRINT "TYFE JUST DIGITS"

110 X$=IMKEYS$: IF X$="" THEN 110

120 IF X$<"0" OR X$>"%9" THEMN PRINT "ERROR": GGTO 100
130 PRINT @ 0,X$50 GOTO 110

The two following subroutines might seed a fertile mind with
ideas for other uses of their capabilities.

19 “FILERAMED "CaFP3Y

20 CFUNCTION! USING INKEY$S FOR MUMERIC VARIARLES
0 7 AUTHOR § JPG DATE: 7/7%
40 7 routine Lo tesl the inrut subrouline

50 CLS: FREINT "TYFE AN INTEGER VALUE (0=5TOF)"
GO GOAUR 1000% PRINT: FRINT A

FOOIF =0 THEN 10000

a9 GoTo go

1006 7 subroutine to rlsce an ell-digilt rositive value
1019 7 into & siring (A%)

1020 Ag="" 7 null the string

1030 X$=INKEY$: IF ¥$="" THEN 1030 / wuzil for rressed Keu
1040 IF X$=CHR$(13) THEM A=VAL{A%$)} RETURN * /EN/ KEYT

1050

‘meke sure kew is & digits then a2dd strings & S0 back

1040 IF X$:=="0" ANII X$<="9" THEN

A$=A%TXSL PRINT € S12,A%30 GOTO 1030

1070 ¢ erint error messade (A% not lessl Kew) and g0 back
1080 FRINT @ 574s"%#%¥FRROR%%EY ~- 850 FAR YOU HAVE -"3iA%s
1090 GOTO 1030

10600 EHD

108

Chapter 6 I/O, Strings, and Disk BASIC

LINE INPUT

-

FILENAME: "C&F4"

20 JFUNCTION: FLASH A FROMPT WHILE REYING IN A STRING

30
49 7

@0 F

AUTHOR § SFG DATE: 1/80
test the subroutine
$="HNaAME: " 7 this will be Tlashed on the scoreen

&0 GOSUER 10400 PRINTS PRIMT! FRINT Hé
70 STOF

o’
0 7
140

110

120

130

1000
1010
1020
10390
1940
1050
1040
1070
1080
1490
1100

subroutine to Tlesh & rromrl for string inrut
Hotetl
I is & dumms Liming varishle which is
chenged st necessary Lo Keer lhe rromrt
fleshing st & faeirly constant ralte while itne
string is being tured in.
gL I=30 - meke sure rFromel gels printed soon
A$=INKEY$: IF X$="" THEN 1050 ‘wsil for rressed Keu
IF ASC(X$)=13 RETURN * lesve routine if done entering
 gdd strings snd rrint the string on the screen
Né=NE+X%: FRINT B 13GsN$:t I=143
I=I+1 7 increment Lhe btiming varisble
“ pub rromrl on screen.d resel timer if necessary
IF Tr=20 THEN I=0: PRINT @ 128+F%;
! plank oul the rromet 1if iU is time Lo do so.
IF Ix7 AND I<13 PRINT B 128y STRINGHCLEH(PS)s™ ")i
GOTO 1010

¢

£

4

E

10000 ENEK

The commonly used INPUT command is quite flexible, but it
has its limitations. You can’t input commas or quotes, and if you
try to input a string with leading blanks, BASIC does you the
questionable favor of eliminating them to shorten the string. Also,
a question mark is printed on the screen every time the INPUT is
executed, sometimes leading to awkward-looking displays.

The LINE INPUT command overcomes all of these difficulties
at the minor expense of being able to input only one variable at a
time, which must be a string. Probably the most useful feature of
the LINE INPUT results from the fact that if you input a null string
(hit the ENTER key) it is inputted, whereas this action is ignored
during the usual INPUT operation.

The following examples should serve to show the power of this
very useful command.

Assume this statement is executed:

10 LINE INFUT "TYPE A& LINE: "3X$! PRINT X$¢ GOTO 10

Study this dialog to see how the LINE INPUT works.
(The /EN/ signifies the ENTER stroke).

Chapter 6 I/O, Strings, and Disk BASIC 109

19
20
36

40

[
o}

60

110

TYFE A LINE? 79+282.44/EN/

79128244

TYFE A LINES HE SAID "HI!"/EN/

HE S5AlDs "HIM®

TYFE A LINES CENTERED TITLE/EN/
CENTERED TITLE

The next program segment illustrates a useful feature of LINE
INPUT: it accepts a new value as input, even if a null string is
entered. Note that the INPUT statement cannot accept a null string.
If a null string is INPUT, the previous INPUTted value is used.

INFUT A$: IF A$="" PRINT "NULL A" ‘ ture ABC (no oulrut)
INFUT B$! IF B$="" PRINT "NULL B" * tuee DEF (no outrut)
INFUT A$: IF A$="" FRINT "NULL A AGAIN"
ELSE FRINT LENCA$)3AS * ture ""s o
LINE INFUT X$i IF X$="" PRINT "NULL X" ~* tupe XVZ
LINE INFUT Y$i IF Y$="" PRINT "NULL Y" * ture RST
LINE INFUT X$i IF X$="" PRINT "NULL X AGAIN"
ELSE FRINT LEM(X$)iX$ / ture ""» outrul is NULL X AGAIN

trut is 3 ABC
{po ocutrutl?
(no oulrul)

u

This feature of the LINE INPUT is quite useful in file editing.
In the example below, the array X$ contains the names, street
addresses, city, state, zip code, and phone numbers of some data that
is on file, and this subroutine allows the user to update the data.

10 ‘FILENAHED "C&FT"

20 CFURCTIOND MORE EXAMPLES OF USING LINE INFUT

30 ¢ AUTHOR ¢ JPG DATE: 9/79

40 CLEAR 1000:% DIM X$(20+6 Y make lots of room for sirindgs
90 7 X%{Is1) ic neme X${Is2) is street X$(153) is citw
a0 7 X$(Is4) is zip X$(1:5) is state X${I58) is rhone
70 7 main rFrosrsm begins here

80 M=3% GOSUR 100% GOSUR 100¢ GOSUR 100

90 STOF

100 7 subrouline for urdate of records

110 FOR J=1 T0O &% READ P$(.J)0 NEXT J! RESTORE

120 FOR I=1 TO HICLSY FOR J=1 T0 &

130 PRIMT G&4%JsP$(J)s X$(Isd)5

140 LINE INFUT A%$! IF A$<:="" THEN X${(IsJ)=A%

150 NEXT JyI! RETURN

160 IATA NAMESSTREETCITYsSTATEsZIF»FHONE

10000 END

Chapter 6 I/0, Strings, and Disk BASIC

MIDS$ for
Replacement

The LINE INPUT in the subroutine uses an ENTER stroke on
the keyboard as an indication that there is no change in the filed
data. Otherwise, the user types in the new information and it
replaces the old information in the array.

Our previous encounter with MID$ showed it to be a powerful
function that would extract one string from another.
For example, if A$ = “ABCDEFG” the statement:

X$=HIDNB(A$s4+2)

copies the two characters of A$, starting at the fourth, into X§$.

With Disk BASIC, the MID$ function can disobey the usual rule
that functions must appear to the right of the equal sign. If MID$
appears to the left of the equal sign, it is a replacement function

~ instead of an extraction function. It copies any portion of the string

to the right of the equal sign into the string argument of MID$
beginning at the position specified by the middle argument for the
length specified by the third argument.

Surrose X$="ABCIDEFGH"

Instruction Jutrut
10 MIDSLX$s42)="XY"! LFRINT X% ARCEYFGH
20 MIDSC XS 1:5)="12345") LFPRINT X% 12345FCGH
30 MIDBOX$s6010="XYZ") LFRINT X% ARCIEXGH

This function is powerful in text editing programs. The example
below searches the 64-character string X$ for the specified target
string T$. If TS is found in X$, it is changed to the new version N§$.
For example, the string might contain a line of text and the user
could change an occurrence of the misspelled word “COERTION”
to the proper spelling “COERCION”.

10 T FILENAME: "CaFs"

20 FUMCTION: TO SUBSTITUTE WITHIN & STRING
30 7 AUTHOR ¢ JPG IATE: 8/80
40 7

o0 CLEAR 200 CLS

&0 DIM X$020)

70 LAaTA "entelore elund dikdik imrzls
80 DATA "couger tiser lion leorard Jas
20 FOR I=1 TO 2

95 READ X$CI00 PRINT X$(I1): GOSUR 1000
100 MEXT It GOTO 10000

zelle derenuk”

=31
uar lunx®

Chapter 6 I/0, Strings, and Disk BASIC 111

TIME$

112

1009 “¥ksdx subroutine to substitute

1010 LINE INFUT "tuepe tergel stringt "iT% '

1020 LINE INFUT "ture new {rerlzcemenl’ sirinsd "iN$
1030 IF LEN(N%) LEMS T4y THEM FRINT "loo long™i GOTO 1629
1059 FOR J=1 TO LENCES(I 30 P=INSTROJX${01I3574%)

1060 IF P00 THEN HIDBOX$(I)P)=N$

10740 HEXT Jb PRINT X#(1)

1080 RETURHM

100090 END

sntelore eluﬂd fi%di!
ture tsrset fi
ture new (rer : g
antelore eland JLKJLK imEala :
couger tisger lion leorsrd Jessusr lend
ture tarsgel siringt couder

ture new (rerlecement) sirinst coudar
cougar liser lion leorard Jdssusr luny
READY

S

TIMES is a variable that is defined by the computer when it is
turned on and Disk BASIC is loaded. If this statement is executed:

500 FPRINT TIMES

the output is the system date and time. That is, whatever date and
time was typed in when TRSDOS was initiated is displayed as

MM/DD/YY HH:MM:SS
This 17-character string is initialized automatically to
00/00/00 00:00:00

if the TIME and DATE DOS commands were not used to accurately
set the internal clock and.calendar.

The TIMES string is useful in two very important application
areas. First, the date portion can be used in programs for account
ageing, proper billing, inventory reorder, and all the other business
applications that require action on particular dates. Second, the time
portion can be used by a programmer for timing program loops and
user responses. The two programs below illustrate this use.

Chapter 6 I/O, Strings, and Disk BASIC

10

20

34

40

59

&0

79

a0

g0

100
110
120
136
140
150
1a0
170
180
190
200
210
220
23

240
250
260
270
280
a0
10
G320
330
340
100

NO .

‘FILENAME!
TFUNCTIONS

"CEPT"
TIMING OF ARITHMETIC OPERATIONS

CAUTHOR §+ JPE aTEY 12/79

DEFSHE A-7

‘eddg=ls sub=Z2s mul=3s div=4

CL5: Fé="% A A SR A A A A A A
GE="3443%F F3F $3%F 3 80

LPFRINT USING F$: "HO. OPS™"ADDM,

" :SUBH P " é\..iUL- n 3 L I‘}‘vll

“iterztions gre 100 to 1000 in sters of 100,
‘note that each iteration contzins 10 oreralions.

T1=T
§=5+K

S=5+KE

Ti=T

S=5H¥K
T1=T
S=6/K

5=5/K1

icolste hours

+
¥

L]

+
&

¢ 5=5/K
i 5=5/

S=5+K
S=54K

isolate minutes
isolate seconds

Far I=1¢ 70 160 STEF 10
S=07 K=1.012321% GOSUER 500%
FOR J=1 T80 I 5=54Ki{ S5=5+Ki
5=5+K: 5=5+K1
MEXT Ji GOSUR 5000 Ta=T-Ti:
FOR J=1 T0 I! 5=5-K{ 8=5-Ki
S=h-RKi B5=5-f1
NEXT Ji GOSUR 5000 T8=T7-Ti¢
FOR J=1 70 I S=5kK{ S=5%K!
S=5%K: S5=5%K:
MEXT J¢ GOSUR 500%7 TH=T-T1:
FOR J=1 TO Ii S5=8/Ki 5=5/Ki
S=5/K1 8=5/K3
MEAT Ji GOBUR 5006¢ Th=T-Ti
LFRINT USING G$5 IsTAsTS5:THsTD
NEXT 1
STOF
‘subroutine returns the time in seconds
H=VALIMIDS TIMESs 1121208
H=UALCHIDS(TINES$ 13520007
S1=VALOMIDS(TIMES 16523007
T=51+H%60+H¥36007 RETURN
40 END
gFs ADD SUE HUL v
10 1 f 1 2
20 1 2 1 3
30 2 2 3 3
49 3 3 3 5
S0 3 4 4 5
69 4 4 S b
70 4 5 & 7
80 5 5 7 2
90 & b 7 10
109 7 7 8 11

Chapter 6 I/0, Strings, and Disk BASIC

113

114

10
20
30
40
50
0
70
80
90
100
110
120
130
140
150

160
176
180
196
200
210
104

‘FILENAME: "CoF8"
FUNCTION: SIMPFLE MATH PROGRAM USING TIMED INFUTS

* AUTHOR © JFG DATES 7/79
DEF FNT(ASB)=VALINIDS{ TIHESsAsR))
CLS

rs

time user resronses Lo 10 seconds or less
A=RHDL 100)0 E=RND{ 100)
FRINT B 5205 A +"iB:"="3
GOSUR 1700 Ti=Ti Yé=""
¥$=INKEY$! IF X$<="" THEW 130
GOSUE 1703 IF T-T1<10 THEN 100
FRINTY FRINT "SORRY -- OUT OF TIME": GOSUR 2100 GOTO 70
IF ASCOX$)<x13 THEN Y$=Y$+X$! FRINT € “345Y%5 0 GOTO 100
C=UALIYS: PRINT
IF C=f+E THEN PRINT "CORRECT!!®
ELSE PRIMT "S0RRYs THAT IS INCORRECT."
GOSUR 2106% CLS: €070 70
7 TIMIHG SUBROUTINE
HeFHTC1101 08 HeFNT(13:200 S=FNT{14.3)
T=5+MEA0HHE3A00 T RETURN
! hold screen for & Tew secondss Lhen go back
FOR I=1 TO 400% MEXT I: RETURHM
09 ENI

32+ 80 =

SO0RRY -- OUT OF TINME

Chapter 6 -I/O, Strings, and Disk BASIC

10
20
30

40

30

60

70

80

20

100
110
120
130
140
130
1460
170
100

If you need more accurate timing of a routine or of a response
from a user, you may access the running clock of the computer from
BASIC by PEEKing at (decimal) addresses 16448 through 16450.
Try this program to test this feature.

‘FILENAME: "C&F%"
“FUNCTION: USE COMPUTER AS STOFWATCH (T0 100THS OF SECONDS)
 AUTHOR : SFG DATE: 7/79
CLE? H=14450% 5=156449 P=16448 ‘clock locstions in memory
INPUT "TYFE “ENTER’ TO BEGIN":A%
! gel originsl timinsg values
CLS: MI=FEEK(M)! S1=PEEK(S)! PI1=FEEK({F)
INFUT "PRESS /EN/ AGAIN TO STOF THE TIMER":A$%
‘ gel finzl timing values
M2=FEEK{ M) S2=FEER(S)Y; P2=FEER(P)
! comrule the elarsed lime
E2=M2%¥15300+52%255+P21 El1=MIX18300451%255+4F1
PRINTIFRINT
! chandge the time to seconds
ET = {E2-E1)/255%
* rprint the elarsed time in seconds

FRINT USING "ELAPSED TIME WAS ABOUT #3+%.4% SECONDS"ET
00 END

This chapter has explored a number of niceties that Radio
Shack’s TRS-80 provides the programmer. These features give a
flexibility to BASIC that tends to make it more acceptable as a
language to be used in most application areas. But it is the ability to
deal with files that makes BASIC particularly useful in business,
education, scientific, and home applications. The file handling
capabilities of the microcomputer will be discussed in depth in the
next chapter.

Chapter 6 I/0, Strings, and Disk BASIC 115

iy

Sequential Access
File Processing

Commands for
Program Files

SAVE, CSAVE

The next three chapters will differ from those that have gone
before because they cover the BASIC commands, statements, and
functions that deal with cassette and disk files. This chapter will
cover the subject of sequential files on tape and on disk.

Files on tape or disk can be either programs or data, and in most
instances both kinds of files will reside on a given medium. When a
program is stored on disk or tape, it is copied directly from memory
onto the medium as a whole. The command to do this is CSAVE for
a tape file and SAVE for a disk file. The name under which the
program is stored is written within quotes immediately following the
SAVE or CSAVE command. The names of programs stored on tape
are limited to a single character, but the names of programs on disk
can be from one to eight characters long, as discussed in the TRSDOS
manual. Just remember that the SAVE command does not store data

117

LOAD, CLOAD

KILL, RUN

files, just program files. The SAVE command can store a program on
disk in ASCII character format by placing a comma and the letter A
following the file name.

The reverse of the program saving process takes programs
stored on disk or tape and copies them into the computer’s memory.
The commands that effect this transfer are LOAD for disk programs
and CLOAD for cassette tape programs. The file name must be
specified for a disk load. If the file name is not specified for a tape
load, the computer will load the first program it encounters on the
tape.

Disk BASIC has three more commands that manage program
files. The KILL command is used to delete a file from the disk. It
is the same command that TRSDOS uses (see Appendix E for a list
of all TRSDOS commands), except that the file name must be
enclosed in double quotes. The RUN command can be used to run
the program in memory, or in Disk BASIC it can be used to load a
specified program, then run it. In Disk BASIC the LOAD command
can also copy the named program into memory and run it if the
command ends with a comma and the letter R.

Examples:

10 LOAD "PROGL® Dick RBASIC command within s rrosram.

After losding the rrograms lLhe comruter
returns to the command mode (>READY),

20 RUN "PROG4™ Load the named erodram from disk and

begin its execution.

30 LOADIN "FROG4"sR This effect is identical to line 20.

LOAD "FROG2" Lozd the rrogrem Trom command mode.

RUN "FROG3" Losd the rrodrames then run it,

LOALN "FROG3"sR This command is identicesl to RUN

"FROG3" .

SAVE "FROGS" Save the rrodgraem in memory Lo disk

under the nsme "FPROGS".

KILL *PROGS" Ilelete the file called "PROGS™ from

CSAVE "R"

118

the disketle.

Save the erosrsm in memory to casselte
under the nsme "R".

Chapter 7 Sequential Access File Processing

MERGE

CLOan "x» L.osd the rrodgram "X" from csssetie Lo

Hemors.

cLOAR Losd Lhe nexi rrogrem on the cesselte to
Wemors.

RUN Execute the rrogram in memnors.

SAVE "FROGS"shA Seve Lhe rrosram in memory onto disk
in ASCII (charescter) fTormsls one record
Fer line.

This command combines a program in memory with a program
on disk. The program on disk must have been SAVEd in ASCII
format with a SAVE “filename”,A command. The result of the
combination is left in memory. The MERGE command meshes
together, or merges, the two programs according to their respective
line numbers. If the disk program has a line number that is not
present in the memory version, that line is added to the memory
version. If the line number is present in both versions, the line from
the disk version replaces the line in memory.

Examples:

Assume the disk file’s name is “TESTSUB”’, and the command

is MERGE “TESTSUB” ’

Memory Disk Result in memory

10A 15B 10A
20A 25B 15B
30A 20A
25B
30A
Memory Disk Result in memory
10A 30B 10A
20A 40B 20A
30B
40B
Memory Disk Result in mémory
10A 20B 10A
20A 30B 20B
30A 40B 30B
40B

The MERGE command is nice for adding commonly used
routines to various programs. For example, suppose you have a good
sorting subroutine that is numbered from 1000-1999. You can

Chapter 7 Sequential Access File Processing 119

MERGE it into a number of programs without having to reenter it
line by line in each program.

Commands for Data files are entirely different from program files. For this

Data Files reason very few commands work for both kinds of files. The KILL
command is one of the few exceptions that doesn’t discriminate. It
can delete both program files and data files.

A data file is a collection of records. Each record is a related

set of data. For example, you could have a data file of rainfall for a
given year. There might be 12 monthly rainfall records, each one
containing between 28 and 31 data values for the daily rainfall. Or
maybe there would be 52 weekly records, each with 7 daily data
values. You could even arrange the data to be hourly (if needed) so
that each of the 365 records contains 24 values. It is the
programmer’s decision to arrange the data and records. The
commands that manipulate data files are of two types: Either they
deal with the entire file as a unit, or they manipulate records one at a
time. You have already seen the KILL command, which deals with
the entire file.

OPEN, CLOSE The records on a disk data file are inaccessible unless the file is
opened for use. Also, some records on a file may be lost if that file
is not closed when processing is complete.

The OPEN command has two primary functions:

(1) It identifies the mode of the file. That is, the OPEN
statement prepares the file for (a) input, in. which records
can be transferred sequentially from file to memory;

(b) output, in which records can be transferred sequentially
from memory to file; and (c) rand0m>, in which the transfer

! ¢an occur in either direction.

(2) It associates the name of a file with a file number, so that
commands using the file need only refer to its number once
the file has been opened.

The OPEN command has the format:

OPEN m$,n,filename$ |

where mS$ is either “I”’.for input mode, “O” for output mode, or
“R” for random access mode. The next chapter, which
discusses direct access files, will cover the case where m$ is “R”.
n is a numeric expression from 1 to 15, which is the number
that the program uses to refer to the file. filename$§ isa
standard file name.
Once the records on a file have been read, written,or modified,
the file must be closed. The command

CLosE o
closes the file numbered n. The CLOSE command can have more

120 Chapter 7 Sequential Access File Processing

than one argument separated by commas, or it can be just the word
CLOSE. In the latter case, all opened files are closed.

When a program deals with tape files, OPEN and CLOSE
commands are not used.

Examples:

10 OFEN "I"s1," INVEN/LAT" The file called INVER/TIAT i
corened Tor dinrul. It is Tile #1.

20 CLOSE 2 . - The file numbered 2 iz orened for

30 OPEN "0"s2s"HARTER" outrul, If the old Tile 22 {ihe
one thal was closed) wes celled
MASTERs il is no longer scoessible
for inrut,

49 CLOSE

50 CLOSE 1,253

60 CLOSE:D OPEN "I"s15."ACCRCVE/DATY

70 INFUT "FILE NAME":F$! OFEN "I"24F%

80 IMFUT "HODE"iM$: OFPEN M$sS."HASTERZ"

Sequential File ‘ Sequential files, whether they are on cassette tape or floppy

INPUT and PRINT disk, are accessible with only two commands that actually read or

write records once the file is opened. They are the INPUT # n. If
nis -1, the cassette drive is accessed, otherwise n must be between
1 and 15 inclusive, and it corresponds to the file number that was
assigned with the OPEN statement.

Two variations to the INPUT and PRINT are available for
record input and output. These are the LINE INPUT # and the
PRINT #, USING. The formats of the two statements are:

INPUT # n,vl,v2,...
LINE INPUT # n,vl,v2,...
PRINT #n,vl,v2,...
PRINT # n, USING f$;vl,v2, ...
With the LINE INPUT # statement, there can be only one string

variable name following the command.
Examples:

90 INFUT #-1:4-B4,C

60 FRINT #-1-AiB$708%

70 PRINT #4:XE5" s 5HEi" 5" 54

80 LINE THFUT #1,V4

70 FRINT #3» USTNG "$#3% #3385 .3" 54

Chapter 7 Sequential Access File Processing 121

Command File medium File transfer Variables

INPUT #n, . .. disk file to string and
' memory numeric
PRINT #n, ... disk memory string and
to file numeric
INPUT #-1, ... cassette file to string and
memory numeric
PRINT #-1, ... cassette memory string and
to file numeric
LINE INPUT # n disk file to one string \\
memory only ,)
PRINT # n, USING ... disk memory any,
to file ' formatted

Table 7.1 Sequential File Commands

The following program illustrates first the output of numeric
variables to cassette tape, then the input from that same tape.

10 ‘FILENAME: "C7P1v
20 YFUNCTION: STORE & NUMERIC HMATRIX ON TaAFE
30 7 AUTHOR ¢ JFG DATES 8/79
40 DIM X(30:53 7 define malrix ss 30 elements bw 5 elements
50 ‘fill metlrix with rendom velues from 10601 Lo 7999
60 FOR I=1 T0 30% FOR J=1 70 5
70 X(IsJd)=RNI{ 89993410001 PRINT X{IsJ35¢ NEXT Jsl
80 ° now store the melrix on Lare -
20 FRINT "Rewind the tere asnd Sel rast the lesder:"
100 INFUT "ihen rress /EN/" A%
110 FOR I=1 TO 30
120 PRINT S-1oX{Ted 3eX0 Ts2 088003040 4580155
130 NEXT I '
140 INPUT "Rewind sgains rress rleyes Lthen rress FENS"i4%
150 FOR I = 1 TO 300 INPUT #-1» A«BsCoIE '
160 FRINT "REC #"5 I "CONTAINS"$ASBICIDE
170 NEXT I
10000 END

122 Chapter 7 Sequential Access File Processing

The next program represents a disk-based game that uses a
sequential file called “GEOG/DAT”. The point of the game is to
challenge the computer in a dialog to see if the computer’s “memory”’
contains the name and description of a geographical location that the
player knows.

The program uses a data structure that is known as a binary
tree. Each record has two elements of string information, the name
of the geographical location, and the characteristic that distinguishes
it from the previously reached location. Each record also has two
pieces of numeric information, YES and NO links to further
locations. Thus each record has four fields.

Variable Field Type Description
name length
L1 4 Numeric YES links, 0 to 999
L2 4 Numeric ~ NO links, 0 to 999
Al1$ Not limited String Location name
Q3 240-len(A$) String Distinguishing
characteristic

Table 7.2 GEOGRAPH Record Layout

The program “learns” new geographical locations and their
characteristics from the player. It starts the play with the question,
“ARE YOU THINKING OF A GEOGRAPHICAL LOCATION?”’
There are five possible responses:

1. A YES response elicits a very specific location, for example,

“ISIT LAKE ERIE?” ‘

2. A NO response is refused, and the computer displays the
message, “YES, LIST, SAVE, OR DEBUG”. Later on in
the game, a NO response elicits a very general characteristic,
for example, “IS IT A LAKE?”.

3. DEBUG displays a table of links, locations, and
characteristics. It is used only for debugging purposes.
LIST displays all locations that the computer “knows”.
SAVE transfers all records, both those that were initially
loaded into memory from the file, and those that the
computer “learned” during the play.

vk

Chapter 7 Sequential Access File Processing 123

124

Consider the sample dialog below:

ARE YOU THINKING OF A GEOGRAPHICAL LDCATIONT YER
IS IT A LAKET NO

IS IT A HOUNTAINT YEG

15 IT HT. FOPOCATAPETLT NG

15 IT IM AFRICAT YES

16 IT HWT. KILIWMANJAROGT YER

L4

T,ﬂ

I THOUGHT S0.
ARE YOU THINKING OF & GEQGRAPHICAL LOCATIONT YER
15 IT A LAKET YES
1§ IT LAKE ERIET HNO
15 IT IM EURGRET RO
WHAT WaS THE PLACE YOU W
TYPE & CHARACTERISTIC WH
FROM LAKE GENEVA
7 IS5 IT IN SCQUTH AHERICA
ARE YOU THINKING OF & GEOGRAPHICAL LOCATIONY

Table 7.3 shows the contents of a file record by record after

one typical session of this game.

ERE THIMKING OF7 LAKE TITICACA
TOH WOULT DISTINGUIEH LAKE TITICADA

Record # AlS$ Q3 L1 L2
1 LAKE ERIE ISIT A LAKE 4 2
2 MT. SHASTA ISITA 6 3

MOUNTAIN
3 CINCINNATI WHAT ABOUT A 7 999
CITY
4 LAKE ISITIN SOUTH 4 5
TITICACA AMERICA
5 LAKE GENEVA IS IT IN EUROPE 5 9
6 MT. EVEREST IS IT IN ASIA 8 999
7 WASHINGTON IS IT A CAPITOL 7 999
8 MT. FUIJI IS IT VOLCANIC 8 999
9 LAKE MEAD ISIT DAMMED 9 999
10 END END 0 0

Table 7.3 Example Record for GEOGRAPH

This table can be represented as a binary tree structure,
which indicates how the two links L1 and L2 tie the array
together.

Chapter 7 Sequential Access File Processing

A LAKE?

\

Leme’ A MOUKTARS ?
/N
n&sAMﬂuuV MT. SHASTA? Acxry?
\ N
LT'rrchcA" I E0ROPE? / IS ASIA? CDXDWATL? 722
/N N
\??-g L. @prm7 MT. EVEREST? \IOUANU 722

/ 27 L, ME/AB\\?n / 777 ML FU\JI’ 77?2

Figure 7.1 GEOGRAPH Binary Tree Structure

2?22

10 ‘FILEHAME: “CFpav

20 “FUNCTION! GEOGRAFHY QUIZ GaME

30 7 AUTHOR ¢ JFG DATEY 6779 ,

40 ‘Q$=cheracteristics Ald=localion names A= temrorary sbring

90 ‘Li=left links L2 = pisght links N =number of rlzces

60 DEFINT I-Ni CLEAR 2000¢ DIM G3(50 3815050),L1¢ G e L2050}

70 7 sel ur first record iT nterwu

80 INFUT "DIOES THE DATA FILE EXIST":a

20 IF A% "YEQ" THEN Q%{1)="15 1T 4 aﬁf{"i L1{1}112L251}=???:
N=11 AL$C1)="LAKE FRIF™: GOTO 180

100 ¢ i get &8ll filed siles .

110 CLOSE 1% OPEN "I"#1,"GEQG/DAT" ! I=0 -

120 I=I+10 INFUT #1s G0 D05l 10058180 sl T2 FRINT 15

130 IF Q$CI»"END" THEN 120

140 N=I-11 INFUT "/CR/"5a3%

150 IF N>30 THEN PRINT "C AR E F UL | MORE THAN 5010
160
170 7 next rlace

180 CLS: INFUT "ARE YOU THINKING OF & LOCATION" ;A%
190 IF A$="LIST" THEN K=1
200 IF A$="YES" THEN K=2
210 IF A$="DERUG" THEN K=3
220 IF A$="SAVE" THEN K=4

Chapter 7 Sequential Access File Processing 125

126

230 0N K GOSUER 2705300600630
240 IF K0 AND K<5 THEN 180
a56 INFUT "YESs LISTs SAVEs OR DERBUG JOR/ZTiR%S LOTO 186
260 F "LISTY ROUTIRE

270 FRIMT "THE FLACES 1 EMOW ARE .7

280 FOR I=1 T0 Hi FRINT A1#(10s0 NEXT I

290 INFUT JCR/A"5A% T RETURH

K1 U "YESY, the plewer is thinking of & rlsce
310 I=1

390 PRINT G4$01)57 INPUT A
330 IF A%$="YES" THEN 41¢
240, IF a$<:-"HO" THEN 320

356 ¢ MDs nol the lis characteristic so AT risht link
340 7 is nulls use it - olherwise gel new sile’s detsils
3740 TF L2010099% THEM I=L20130 GOTG 320
ELSE GOBUR 5490
380 el up 2ll links snd gel & new locelion
- e - . vy 4 7/
390 120 T)=N+1t GOSUR 5801 RETURN
440 7 ask if Lhis is the correcl cherscleris 2L i
419 fFIHT w1g T "sal%L I35 INFUT A%

420 IF A%<"YES" THEN 480

430 7 upss Lhe compubler suessed it (erinl lhe TR =10
440 PRINTY PRINT: PRINT "... I THOUGHT 80.7

450 FOR %=1 TO 400% NEXT i

460 IF &%<:"NO" THEN 410

470 7 gel next locstion if left link isnl null
489 IF T<3L10I) THEN I=L1(I): GOTO 3290

490 7 set Lhe new locslion’s detasils

500 GOSUR 540

510 7 seb ur ell new links end gel nexi locstion
520 Ll Ti=N+1t GOSUR 5803 RETURHN

530 HIALOG

540 INFUT "WHAT WAS THE PLACE YOU WERE THi KING OF"38%
550 FPRINT "TYPE A& CHARACTERISTIC thet WOULL DISTINGUIBH "
9460 FRINT A% FROK "5a1%(1)0 IRFUT Gl$2 RETURNY

570 new location links

580 N=N+1104(N)I=RL$IALSONI=ASILION=RILY =997 P RETURN
590 7 - "DERUG" routine - gisrlave ali linKsy dsis
600 PRINTI G 1) Alei 1) Licry Lzeny

410 FOR I=1 TO NIFRINT I5Q8CI)sA1$CT),LI0T 5L JIMEXT 1
620 INPUT "/CR/"iA$: RETURN

630 7 "SAVE" routine

440 PRINT "REC.$"s$ CLOSE 1% OFEN "0"»1,"GEQG/DATY

650 FOR I=1 TO N

660 PRINT $1,0$0T05% " sLACT Iy " ALECTI " M 5L20T)

670 PRINT I3t NEXT I

4680 PRIMT #1s"ENDs" 3§05 ENIs"50

690 INPUT "/CR/"iA%1 RETURM

10000 ERND

Chapter 7 Sequential Access File Processing

The following program demonstrates two software techniques.
One of these, the Shell-Metzner sort, is also used in a later chapter.
The other technique, that of merging two sequential files, is the
primary reason for including the program here.

Themngmnh%theemum.Pmtlamﬁ%anumbﬂofﬁb&
that number determined by the user, and all files are of the same
size, again determined by the user. Part 2 sorts each of the files in
memory, then rewrites the files in sorted order. Part 3 merges all
the files into one which is in sorted order.

Since the program’s purpose is to demonstrate a technique
rather than to produce output for some more useful reason, the
output that follows the listing should be considered in that light.
The first part of the output shows three unsorted files. The second
part shows those three files, each in sorted order. The last part
shows the single file that results from the merge operation. Note
that this sorted output could not have been produced nearly as
quickly had the sort been conducted any other way.

10 “FILENAME! "Crpanv

20 “FUNCTION! SORT-MERGE OF SEQUENTIAL FILE

30 7 AUTHOR ¢ JFG UaTE: 11/79

40 CLEAR 20007 DEFINT a-7t CLS! DTN MECE0)

90 Je="33$ ¥ AR ENE SAE T NS

60 INFUT "How mang files"iNE

70 INFUT "How manw entries will he in gach Tile"$517E
80 INFUT "File grour name" iF$

70 FRINT "0=Shuffle 1=Crezle 2=Edit d=Hori"

25 INPUT "4=Hersze =5tor"; Y

100 ON Y+1 GOSUR 1105170523053205480¢ GOTO 90

119 - shuffle the entries in 311 of the filec
120 FOR W=1 70 WF: FL$=F$+RIGHTH(STR$(W) 1)

130 K=1: GOSUE 430

140 FOR J=1 TO SIZE! A=RND{SIZE): B=RNIK 5I7ZE

130 T$=N$(AI NSCAI=NSIR)D N$(E)=T$: NEXT J

155 LPRINT "File "5 FL%5 " in originsl order."”
160 GOSUR 670¢ N=GIZE! GOSUE 720: NEYT Wi RETURNM
170 creste the files

180 FOR W=1 TO NF! FLE=F$+RIGHT$(STR$(W) 1)

190 FOR J=1 T0 SIZE! FRINT "FILE #"iWi", ENTRY 4"3.J;
200 INFUT N$CJ)E NEXT J! PRINT

210 K=1! GOSUER &79 " write oul nemes on file
220 NEXT W: RETURN
230 edil entries within & file

240 FOR W=1 TO NF: FLE=F$+RIGHTH{ STR$(W)s1) v

280 FRINT “INFUT FILE I5 ";FL$! K=1: GOSUR 6307 resd
260 FOR J=1 TO BIZE

270 FRINT N${J)y TAR(30)s"i";

280 INFUT NE$: IF LENCNE$)<>0 THEN N$(I)=NE$

290 NEXT J

300 GOSUR &7¢ * write oul edited file

310 NEXT W: RETURN

Chapter 7 Sequential Access File Processing 127

128

320
330
340
370
380
390
400
419
420

25
430
440
450
460
470
480
490
500
510
520
530
540
550
540
570
580
590
500
610
620

630 7

640
650
660
670
680
&90
700
710
720
730
740

750

4

sinsle file sort
CLSY FOR W=l TO NFG FLe=F$+RIGHTHBTR$(W I 1)
K=1% GOSUR 630 7 resd the file
M=517ZE
M=TNT(HM/2)¢ PRINT Mit IF M=0 THEN FRINTS GOTO 449
k=51ZE~-#t J=1
I=J
L=T+Mt IF N$(I)<=N${L) THEN 430
TE=NS(1)) HSCII=N$(L)L Ne(L)=T$L I=1-H

IF Ix=1 THEN 410
J=Jd4+1t IF Jo=K THEN 400 ELBE 380
LFRINT "File "3 FL$%$ " in soried order.”
N=RI7ZE: GOSUR 720 7 rrint Lhe sorted file
K=1! GOSUE 480 / write oul sorled file onto disk
FRINT: FRINT: FRINT! PRINT! NEXT Wi RETURNM

! merse the files
FRINT "Reauires"sNF+li"files JEN/"Y LINE INFUT A%
LFRINT "Herged file ‘NEW'."! OFEN "Or S HFHLNEWT 0 oren Tile
FOR W=1 TO NF? OFEN Py, W FSHRIGHTS(STR$(WIS 1)
INFUT $Wy NS(WO! E(WI=11 MEXT W
CN=0% §=0% FLUG$="ZZZZZZ"! GOSUR G590
FRINT BNF+1sGHALLS " »" 5 ON=CNFLIPRINTCNS & KM I=KIH M1
TIF E{¥)1<=GIZE INPUT #HMsN$(MIIGOSUR =90 1G0TO G40
NEC HO=FLUGS:5=5+1 1 IF S<NF THEN GOSUE 5906070 540
PRIHT:CLGSEISIZE=SIZEKHF:K=NF+1tFL$="NEM"IGGSUB 630
N=ST7E! GOSUR 720% SIZE=SIZE/HF! RETURN
/' fipd the smellest of NF strings
SHALL$=FPLUGS
FOR W=1 TO NF: IF N$(W)ZSHMALLS THEN SHALLS=N$(W1 M=U
MEXT Wi RETURN
losd = dete file from diskette
OFEN "I"sKsFLS
FOR J=1 TO SIZE! INFUT #KsN$(.J)0 HEXT J
CLOSEY RETURN
! cave @ dete file-on diskette
OFEN "0"sKsFL%
FOR J=1 TO SIZE

FRINT $Ks N$(J)i"s"5

NEXT J¢ PRINT: CLOSE:?