
Pascal

Und(3rstandiii

Progiramming amd

Problem polvini
SECOND EDmON

Douglas W. Nance
CENTRAL MICHIGAN UNIVERSITY

WEST PUBUSHING COMPANY
ST. PAUL NEW YORK LOS ANGELES SANFRANQSCO

To Helen

Copyeditor and Indexer: Janet Hunter
Interior design: Paula Schlosser and Lucy Leslak
Illustrations: Christine Dettner and Rolin Graphics
Composition: Carlisle Communications

COPYRIGHT ©1984 By WEST PUBLISHING COMPANY
COPYRIGHT ©1989 By WEST PUBLISHING COMPANY

50 W. Kellogg Boulevard
P.O. Box 64526

St. Paul, MN 55164-1003

All rights reserved

Printed in the United States of America

96 95 94 93 92 91 90 89 8 7 6 5 4 3 2 1 0

Library of Congress Cataloging-in-Publication Data

Nance, Douglas W.
Pascal: understanding programming and problem solving / Douglas

W. Nance.—2nd ed.

p. cm.

Includes index.

ISBN 0-314-43051-2

1. Pascal (Computer program language) I. Title.
QA76.73.P2N35 1989

005.13'3—dcl9 88-29307

CIP

CHAPTER

CHAPTER

X

Contents

1 ■ Computer Science, Computer
Architecture, and Computer Languages

1.1

1.2

1.3

Computer Science: A Preview 1
Computer Architecture 4
A Note of Interest: Microprocessors
Computer Languages 9
A Note of Interest: Why Learn Pascal?
Summary 13

8

12

CHAPTER 2 ■Writing Your First Programs 14

2.1

2.2

2.3

Program Development—Top-Down Design 15
A Note of Interest: Software Engineering 21
Writing Programs 22
A Note of Interest: Blaise Pascal 32
Data Types and Output 33
Style Tip • 37
Style Tip 42
Summary 45
Programming Problems 46

3 "Arithmetic, Variables, Input, Constants,
and Standard Functions 47

3.1 Arithmetic in Pascal
3.2 Using Variables 52
3.3 Input 59

47

vi Contents

3.4 Using Constants 68
A Note of Interest: Defined Constants and Space
Shuttle Computing 69

3.5 Standard Functions 71

A Note of Interest: Herman Hollerith 74

Style Tip 78
Summary 78
Programming Problems 80

CHAPTER 4 ■ Designing and Writing Complete
Programs 82
4.1 Writing Code 82

A Note of Interest: Documentation Employment 91
4.2 Procedures for Output 96

Style Tip 103
4.3 Beginners' Errors 111
4.4 Mciking a Program Run 120

Style Tip 121
A Note of Interest: Debugging 123

4.5 Writing a Complete Pascal Program 128
A Note of Interest: Debugging or Sleuthing? 130
Summary 136
A Note of Interest: Debugging or Sleuthing: Answers 137
Programming Problems 138

CHAPTER 5 ■ Conditional Statements 145
5.1 Boolean Expressions 145

A Note of Interest: George Boole 153
5.2 IF ... THEN Statements 156

5.3 IF ... THEN ... ELSE Statements 164

5.4 Nested IF Statements 169

Style Tip 173
5.5 CASE Statements 180

Style Tip 182
A Note of Interest: "Cross-Over" Scholars 185

5.6 Assertions (Optional) 188
Focus on Programming 189
Running and Debugging Tips 194
Summary 195
Programming Problems 196

CHAPTER 6 ■ Looping Statements 203

6.1 Fixed Repetition Loops 203
Style Tip 211
A Note of Interest: Ada Augusta Byron 212

Contents Vll

6.2 Pretest Loops 214
A Note of Interest: Debugging Space Flight Programs 222

6.3 Posttest Loops 228
A Note of Interest: Charles Babbage 231

6.4 Comparison of Loops 235
6.5 Nested Loops 239

Style Tip 241
6.6 Loops with Conditionals 247

A Note of Interest: A Digital Matter of Life and Death 249
Focus on Programming 253
Running and Debugging Tips 258
Summary 258
Programming Problems 261

chapter 7"Functions and Procedures ^
7.1 Program Design 264

A Note of Interest: Structured Programming 265
7.2 Functions 265

7.3 Procedures 273

A Note of Interest: Ada 283

7.4 Scope of Identifiers 287
7.5 Using Subprograms 297

A Note of Interest: Niklaus Wirth: Pascal to Modula-2 300

7.6 Forward Reference and Nesting 307
Style Tip 308
Focus on Programming 314
Running and Debugging Tips 319
Summary 319
Programming Problems 322

CHAPTER 8"Text Files and User-Defined Data Types 324

8.1 Text Files 324

8.2 TYPE Definitions in Pascal 335

A Note of Interest: The Software System Life Cycle 339
8.3 Subrange as a Data Type 341

Style Tip 344
8.4 Operations on Ordinal Data Types 346

A Note of Interest: There's a Virus in My Software! 348
Focus on Programming 351
Running and Debugging Tips 355
Summary 355
Programming Problems 357

Vlll Contents

CHAPTER 9 ■ One-Dimensional Arrays 360

9.1 Basic Ideas and Notation 360

Style Tip 364
A Note of Interest: Monolithic Idea: Invention of the Integrated
Circuit 368

9.2 Using Arrays 370
Style Tip 376

9.3 Selection Sort 379

A Note of Interest: Transition to a Computer System 380
9.4 Arrays and Subprograms 385
9.5 Packed Arrays 393

A Note of Interest: Data Abstraction 398

9.6 Searching Algorithms 403
Focus on Programming 408
Running and Debugging Tips 414
Summary 415
Programming Problems 417

CHAPTER 10" Arrays of More Than One Dimension 422
10.1 Two-Dimensional Arrays 422

Style Tip 424
A Note of Interest: Telesecurity 433

10.2 Arrays of String Variables 436
10.3 Parallel Arrays (Optional) 440

Style Tip 440
A Note of Interest: Software Destruction 442

10.4 Higher-Dimensional Arrays 447
A Note of Interest: Computer Security 450
Focus on Programming 452
Running and Debugging Tips 460
Summary 460
Programming Problems 462

CHAPTER 11 ■Records 469
11.1 Record Definitions 469

Style Tip 473
A Note of Interest: Computer Industry Growth 473

11.2 Using Records 478
A Note of Interest: Using Key Fields in Records 486

11.3 Data Structures with Records 490
A Note of Interest: Neural Nets Catch the ABCs of DNA 493

11.4 Record Variants 501
Focus on Programming 506
Running and Debugging Tips 512
Summary 512
Programming Problems 514

Contents IX

CHAPTER 12 ■ Files 518

12.1 File Definition 518

12.2 Working with Files 521
A Note of Interest: Relational Databases 528

12.3 Files with Structured Components 532
A Note of Interest: Backup and Recovery 537
Focus on Progranmiing 539
Running and Debugging Tips 547
Summary 548
Programming Problems 550

CHAPTER 13■Recursion, Sorting, and Merging 554
13.1 Recursion 554
13.2 Sorting Algorithms 564

A Note of Interest: Sex Differences in the Association between
Secondary School Students' Attitudes toward Mathematics and
toward Computers 566

13.3 Merging Algorithms 574
Running and Debugging Tips 578
Summary 578
Suggestions For Further Reading 579
Programming Problems 579

CHAPTER 14 ■ Sets 581

14.1 Declarations and Terms 581
A Note of Interest: Developing Educational Software 583

14.2 Set Operations and Relational Operators 585
14.3 Using Sets 588

Style Tip 589
A Note of Interest: Time Is Cure for Computerphobia 592
Focus on Programming 593
Running and Debugging Tips 597
Summary 598
Programming Problems 599

CHAPTER 15■Dynamic Variables and Data Structures 603
15.1 Pointer Variables 604

Style Tip 606
15.2 Linked Lists 610

Style Tip 610
15.3 Working with Linked Lists 617

Style Tip 617
A Note of Interest: Using Pointers 627

X Contents

15.4 Other Dynamic Data Structures 630
Running and Debugging Tips 641
Summary 642
Suggestions for Further Reading 645
Programming Problems 645.

'Appendixes A.l
Appendix 1

Appendix 2

Appendix 3

Appendix 4

Appendix 5

Appendix 6

Appendix 7

Reserved Words A.2

Standard Identifiers A.3

Syntax Diagrams A.5
Character Sets A.16

Compiler Error Messages A. 18
Turbo Pascal Notes A.21

GOTO Statements A.2 7

Glossary G.l

Answers to Selected Exercises AN.i

Index I.i

Preface

Those who teach entry-level courses in computer science are fa
miliar with the problems that beginning students encounter. Ini

tially, students can get so involved in learning a language that they may
fail to grasp the significance of using the language to solve problems.
Conversely, it is possible to emphasize problem solving to the extent that
using a particular language to solve problems becomes almost incidental.
The intent of this text is to provide a happy medium between these ap
proaches. Students should understand language concepts and subse
quently be able to use them to solve problems.

Overview and

Organization
As with the first edition, the material in Chapters 1-4 is presented at a
deliberate pace. If students in the class have already had some program
ming experience, these chapters may be covered rapidly. However, stu
dents must be able to solve problems using top-down design with stepwise
refinement. Using this approach, students will be exposed to the concept
and to restricted use of subprograms very early in the course. If this is
overlooked, students will have difficulty designing solutions to more com
plex problems later.

Throughout the text, I have attempted to explain and develop concepts
carefully. These are illustrated by frequent examples and diagrams. New
concepts are then used in complete programs to show how they aid in
solving problems. An early and consistent emphasis has been placed on
good writing habits and on producing neat, attractive output. I firmly
believe program documentation and readability are important. Thus, I
frequently discuss them in the text, and I offer style tips where appropriate.

This text should provide a complete one-semester course in Pascal.
There are at least three general scenarios for which this text would be

appropriate.

1. A deliberately paced, thorough presentation of concepts would al
low you to get through records and/or files in a one-semester
course.

XI

xii Preface

2. An accelerated pace with students who have previous computing
experience would allow you to get into Chapter 15 in a one-
semester course.

3. A deliberate pace with a thorough presentation would allow you
to present the material in Chapters 1-15 in a two-quarter
sequence.

Subprograms have been treated in a manner slightly different from other
presentations. Procedures for headings only (no parameters) are intro
duced in Chapter 4. Formal development of procedures is then delayed
until Chapter 7 after conditional statements and loops have been dis
cussed. At this stage, students are better able to understand the use of
parameters. All subsequent work utilizes subprograms in problem solution
and program design.

In this edition, Chapter 8 presents text files as well as user-defined data
types. Since larger data sets are typically used with arrays and files, it is
assumed that most data will be read from data files (rather than entered
interactively) after this chapter.

Chapters 9 and 10 develop arrays. Due to the significance of this con
cept, these chapters contain numerous examples, illustrations, and ap
plications. A selection sort has been used to sort array elements. However,
a bubble sort and an insertion sort have been developed in Chapter 13,
and either could be used in place of the sorting algorithm presented in
Section 9.3. Records and files are discussed in Chapters 11 and 12, re
spectively. Their placement there is traditional. These chapters, combined
with Chapters 9 and 10, present a detailed treatment of static data structures.

Chapter 13 is an optional chapter that discusses recursion, sorting, and
merging. Recursion has been moved to this chapter so that an expanded
presentation would be more appropriately placed. This also allows the
quick sort to be developed. For advanced classes, material in this chapter
could be used to motivate additional work with data structures. It is
possible to use this material with preceding chapters. For example, sorting
could be discussed in conjunction with Chapter 9, and merging with
Chapter 12.

Chapter 14, Sets, could be presented any time after Chapter 8. Although
a full chapter has been devoted to this topic, a working knowledge could
be given to students in one or two days. Dynamic variables and data
structures are introduced in Chapter 15. A reasonable discussion and
development of pointers, linked lists, and binary trees is included. How
ever, a full development of these concepts would have to come from a
second course with a different text.

Pascal statements in this text conform to standard Pascal. Due to the
increasing use of Turbo Pascal with personal computers, Thrbo Pascal
references are included in the margins to indicate where Thrbo differs
from standard Pascal. Both interactive and batch mode examples are used
in this text. Interactive examples are indicated by a logo in the left margin,
as shown here.

Features This text has a number of noteworthy pedagogical features.

■ Objectives—a concise list of topics and learning objectives in each
section

Preface xiii

Style tips—suggestions for programming style, intended to enhance
readability
Exercises—^short-answer questions at the end of each section
Programming problems—^starting with Chapter 4, lengthy lists of sug
gestions for complete programs given at ends of chapters
Notes of Interest—^tidbits of information intended to create awareness

of and interest in various aspects of computer science
Suggestions for test programs—ideas included in exercises that en
courage the student to use the computer to determine answers to
questions and to see how to implement concepts in short programs
Focus on Programming—when appropriate, a complete program at
the end of the chapter that illustrates utilization of concepts devel
oped within the chapter
Running and debugging hints preceding each summary and program
ming problems set at the ends of chapters
New terms are italicized when first introduced

In the back of the book there is a complete glossary, as well as appen
dixes on reserved words, standard identifiers, syntax diagrams, character
sets, compiler error messages, Hirbo Pascal references, and the GOTO
statement. The final section of back matter provides answers to selected
exercises.

Changes for the Second Edition

The first edition of this text carefully presented and illustrated new con
cepts. It was assumed that users had little or no experience in computer
science; hence, a deliberate approach emphasizing language constructs
was used.

This edition was prepared using slightly different assumptions. First,
it is now rare for a student to enter a collegiate-level computer science
course with no programming or microcomputer use background. Second,
computer science is evolving as a discipline. Although Pascal is still the
language most used in entry-level courses, many concepts are presented
in a language-independent manner. Thus, learning a language for the sake
of learning the language is frequently deemphasized in favor of empha
sizing concepts and problem-solving skills. Finally, there is an increasing
need for students to see both interactive and batch mode programs. These
environments, coupled with popular nonstandard versions of Psiscal (Thrbo,
for example), dictate greater flexibility in text preparation.
As a result, the following are new features of this edition.

□ Increased emphasis on the design of solutions to problems.
■ Use of module specifications for program modules.
■ Use of structure charts to reflect modular development. These include

use of data flow arrows to emphasize transmission of data to and/or
from each module. This sets the stage for understanding use of value
and variable parameters when procedures are introduced.

■ A section on procedural abstraction.
□ More discussion and use of robust examples.
o Optional section on assertions.
□ Elaborate Notes of Interest on Software Engineering, The Software

System Life Cycle, and Data Abstraction.

XIV Preface

■ A mix of interactive and batch mode examples in the first half of the
text. This allows for greater flexibility in student use.

[TJ ■ Turbo Pascal references have been included whenever Turbo differs
from standard Pascal. A logo in the left margin, shown here, is used
in the text to indicate a reference to the Hirbo Appendix. Comments
about Tbrbo Pascal are appropriate for Versions 3.0, 4.0, and 5.0.

■ More mathematical examples.
■ Eleven of thirty-five new Notes of Interest which reflect the changing
scene of computer use and growth.

Ancillaries Ancillary material consists of a Student's Solutions Manual, an Instructor's
Manual, a set of transparency masters, software with machine readable
programming problem solutions, and a computerized test bank. The Stu
dent's Solutions Manual contains solutions to all the exercises at the end
of each section. Explanation and development is given for appropriate
problems. Starting with Chapter 4, complete solutions for two program
ming problems are included for each chapter in the Solutions Manual
The Instructor's Manual contains the following for each chapter:

1. Outline

2. Teaching test questions
3. Chapter test questions
4. Answers to chapter test questions

Furthermore, beginning in Chapter 4 of the Instructor's Manual, a com
plete program is included with each chapter. Thus, a total of more than
50 complete programs are available in the combined materials.

More than 75 transparency masters are available to adopters of the text
through West Publishing Company. These include figures, tables, and se
lected other material from the text. Additionally, software is available with
four complete programming problem solutions in each chapter and the
complete Focus on Programming Section programs. This software will run
on IBM-PCs and compatibles, Apple Macintoshes and DEC Vaxes. Finally,
adopters of this edition will receive a computerized test generation system
from West Publishing Company. This provides a test bank system that
allows you to edit, add, or delete as you wish.

West Publishing Company recognizes the growing need for an integrated
full-year textbook for computer science students. Consequently, this text
has been used as the basis for the first part of Introduction to Computer
Science: Programming, Problem Solving, and Data Structures co-authored
by myself, Tom Naps, and Baghat Singh. The full-year text would be
appropriate for a two-semester or three-quarter course (with generic titles
of CSl and CS2) which presents Pascal as the programming language in
the first term. Contact West Publishing Company for examination copies.

Each program and program segment in the text and all ancillaries have
been compiled and run. Hence, original versions were all working. Un
fortunately, the publication process does allow errors in code to occur
after a program has been run. Every effort has been made to produce an
error-free text, although this is virtually impossible. I assume full respon
sibility for all errors and omissions. If you detect any, please be tolerant
and notify me or West Publishing Company so they can be corrected in
subsequent printings and editions.

Preface XV

Acknowledg
ments

I would like to take this opportunity to thank those who in some way
contributed to the completion of this text. Several reviewers contributed
significant constructive comments during various phases of manuscript
development for this second edition. They include:

Robert B. Anderson

University of Houston—University
Park

Helen Casey
Sam Houston State University

Thomas Cheatham

Western Kentucky University

Richard G. Christensen

Kearney State College

Robert Christiansen

University of Iowa

Dan Everett

University of Georgia

June D. Fordham
Prince George's Community College

Charles E. Frank

Northern Kentucky University

George Friedman
University of Illinois at Urhana-
Champaign

Hugh Garraway
University of Southern Mississippi

Parent C. Johnson
University of Wisconsin—Oshkosh

Charles B. Koontz

Doris K. Lidtke

Towson State University

Anne Liu

San Bernardino Valley College

Ronald Mann

University of Louisville

Andrea Martin

Louisiana State University

John McGregor
Murray State University

David Meredith

San Francisco State University

Robert Raymond
College of St. Thomas

Lawrence L. Rose

University of Pittsburgh

Tom Scharnberg
Tarrant County Jr. College

Vijay K. Vaishnavi
Georgia State University

Trudy Weyzen
Ohlone College

Ball State University

Three people deserve special mention because, without their expertise,
this book would not exist. They are:

Janet Hunter, copyeditor. This is my third book with Janet. She willingly
rearranged her schedule to accommodate our deadlines. She is an out
standing copyeditor, but more importantly, she is a nice person with an
excellent sense of humor.

Deanna Quinn, production coordinator. I have had the good fortune of
working with Deanna before. She is one of the best in the business. Her
helpful suggestions, attention to detail, adherence to deadlines, and gen
eral positive nature make it delightful to work with her.

Jerry Westhy, acquisitions editor. This is our third hook together, and
my respect for Jerry keeps increasing. He has an excellent sense for what
makes a book useful. Most of the special features of this text are the result
of Jerry's suggestions. He has offered constant support and invaluable
suggestions.
My family and friends deserve special mention for their support and

patience. Most of my recent spare time and energy have been devoted to
this project. This would not have been possible without their encourage
ment and understanding.

XVI Preface

Finally, there is one person without whose help this project would not
have been possible. Helen, who was a student in my first Pascal class, has
been of tremendous assistance since the inception of this effort. She pre
pared every part of the manuscript on her word processor. She served as
an "in-house" copyeditor and made many helpful suggestions regarding
presentation of the material.

This is the third text for which she has done all of the above. Her

unfailing patience and support were remarkable. Fortunately for me, she
has been my wife and best friend for more than thirty years.

Douglas W. Nance

■ 1.1

Computer
Science: A

Preview

Computer Science,
Computer
Architecture, and
Computer Languages

This chapter provides a quick introduction to computer science,
computer architecture, and computer languages. Section 1.1 pro

vides a preview of the study of computer science. Section 1.2 examines
the structure and parts of a computer. Section 1.3 analyzes how computer
languages are used to make a computer run.
As you read this chapter, do not be overly concerned about the intro

duction and early use of terminology. All terms will be subsequently
developed. A good approach to an introductory chapter like this is to
reread it periodically. This will help you maintain a good perspective as
to how new concepts and techniques fit in the broader picture of using
computers. Finally, remember that learning a language that will make a
computer work can be exciting; being able to control such a machine can
lead to quite a sense of power.

Computer science is a very young discipline. Electronic computers were
initially developed in the 1940s. Those who worked with computers in
the 1940s and 1950s often did so by teaching themselves about computers;
most schools did not then offer any instruction in computer science.
However, as these early pioneers in computers learned more about the
machines they were using, a collection of principles began to evolve into
the discipline we now call computer science. Because it emerged from
the efforts of people using computers in a variety of disciplines, the in
fluence of these disciplines can often be seen in computer science. With

2 COMPUTER SCIENCE. COMPUTER ARCHITECTURE. AND COMPUTER LANGUAGES

that in mind, in the next sections I will briefly define what computer
science is (and what it is not).

Computer Science Is Not Computer Literacy

With the use of personal computers becoming increasingly widespread,
a common mistake is to confuse computer science with computer literacy.
In the 1980s and 1990s, computer literate people will know how to use
a variety of computer software to make their professional lives and home
lives more productive and easier. This software includes, for instance,
word processors for writing and data-base management systems for storing
every conceivable form of information (from address lists to recipes).
However, knowing how to use specific pieces of computer software is not
the same as acquiring an understanding of computer science, just as being
able to drive a car does not qualify you as an expert mechanic. The user
of computer software must merely be able to follow instructions about
how to use the software. On the other hand, the modern computer scientist
must, more than anything else, be a skillful problem-solver. The collection
of problems that computer science encompasses and the techniques used
to solve those problems are the real substance of this rapidly expanding
discipline.

Computer Science Is Mathematics and Logic

The problem-solving emphasis of computer science borrows heavily from
the areas of mathematics and logic. Faced with a problem, computer sci
entists must first formulate a solution. This method of solution, or algo
rithm as it is often called in computer science, must be thoroughly under
stood before the computer scientists make any attempt to implement the
solution on the computer. Thus, at the early stages of problem solution,
computer scientists work solely with their minds and do not rely upon
the machine in any way. Once the solution is understood, computer sci
entists must then state the solution to this problem in a formal language
called a programmmg language. This parallels the fashion in which math
ematicians or logicians must develop a proof or argument in the formal
language of mathematics. This formal solution as stated in a programming
language must then be evaluated in terms of its correctness, style, and
efficiency. Part of this evaluation process involves entering the formally
stated algorithm as a programmed series of steps for the computer to
follow. Another part of the evaluation process is distinctly separate from
a consideration of whether or not the computer produces the "right an
swer" when the program is executed. Indeed, one of the main areas of
emphasis throughout this book is in developing well-designed solutions
to problems and in recognizing the difference between such solutions and
ones that work, but inelegantly. True computer scientists seek not just
solutions to problems, but the best possible solutions.

Computer Science Is Science

Perhaps nothing is as intrinsic to the scientific method as the formulation
of hypotheses to explain phenomena and the careful testing of these hy
potheses to prove them right or wrong. This same process plays an integral
role in the way computer scientists work. Upon observing a problem, such

1.1 Computer Science: A Preview 3

as a long list of names that we would like arranged in alphabetical order,
computer scientists formulate a hypothesis in the form of an algorithm
that they believe will effectively solve the problem. Using mathematical
techniques, they can make predictions about how such a proposed al
gorithm will solve the problem. But because the problems facing computer
scientists arise from the world of real applications, predictive techniques
relying solely upon mathematical theory are not sufficient to prove an
algorithm correct. Ultimately, computer scientists must implement their
solutions on computers and test them in the complex situations that orig
inally gave rise to the problems. Only after such thorough testing can the
hypothetical solutions be declared right or wrong. Moreover, just as many
scientific principles are not 100 percent right or wrong, the hjrpothetical
solutions posed by computer scientists are often subject to limitations.
An understanding of those limitations—of when the method is appropriate
and when it is not—is a crucial part of the knowledge that computer
scientists must have. This is analogous to the way in which any scientist
must be aware of the particular limitations of a scientific theory in ex
plaining a given set of phenomena.
Do not forget the experimental nature of computer science as you study

this book. You must participate in computer science to truly learn it.
Although a good book can help, yoM must solve the problems, implement
those solutions on the computer, and then test the results. View each of
the problems you are assigned as an experiment for which you are to
propose a solution and then verify the correctness of your solution by
testing it on the computer. If the solution does not work exactly as you
hypothesized, do not become discouraged. Instead, ask yourself why it
did not work; by doing so you will acquire a deeper understanding of the
problem and your solution. In this sense, the computer represents the
experimental tool of the computer scientist. Do not be afraid to use it for
exploration.

Computer Science Is Engineering

Whatever the area of specialization, an engineer must neatly combine a
firm grasp of scientific principles with implementation techniques. With
out knowledge of the principles, the engineer's ability to creatively design
models for a problem's solution is severely limited. Such model-building
is crucial to the engineering design process. The ultimate design of a
bridge, for instance, is the result of the engineer's considering many pos
sible models of the bridge and then selecting the best one. The transfor
mation of abstract ideas into models of a problem's solution is thus central
to the engineering design process. The ability to generate a variety of
models that can be explored is the hallmark of creative engineering. Sim
ilarly, the computer scientist is a model-builder. Faced with a problem,
the computer scientist must construct models for its solution. Such models
take the form of an information structure to hold the data pertinent to the
problem and the algorithmic method to manipulate that information struc
ture to actually solve the problem. Just as an engineer must have an in-
depth understanding of scientific principles to build a model, so must a
computer scientist. With these principles, the computer scientist may
conceive of models that are elegant, efficient, and appropriate to the prob
lem at hand.

4 COMPUTER SCIENCE, COMPUTER ARCHITECTURE. AND COMPUTER LANGUAGES

An understanding of principles alone is not sufficient for either the
engineer or the computer scientist. Experience in the actual implemen
tation of hypothetical models is also necessary. Without such experience,
you can have only very limited intuition about what is feasible and how
a large-scale project should be organized to reach a successful conclusion.
Ultimately, computers are used to solve problems in the real world. There,
you will need to design programs that come in on time, that are within
(if not under) the budget, and that solve all aspects of the original problem.
The experience you acquire in designing problem solutions and then
implementing them is vital to your being a complete computer scientist.
Hence, remember that you cannot actually study computer science with
out actively doing it. To merely read about computer science techniques
will leave you with an unrealistic perspective of what is possible.

Computer Science Is Interdisciplinary

The problems solved by computer scientists come from a variety of dis
ciplines—^mathematics, physics, chemistry, biology, geology, economics,
business, engineering, linguistics, and psychology, to name a few. As a
computer scientist working on a problem in one of these areas, you must
be a quasi-expert in that discipline as well as in computer science. For
instance, you cannot write a program to manage the checking account
system of a bank unless you thoroughly understand how banks work and
how that bank runs its checking accounts. At minimum, you must be
literate enough in other disciplines to converse with the people for whom
you are writing programs and to learn precisely what it is they want the
computer to do for them. Since such people are often very naive about
the computer and its capabilities, you will have to possess considerable
communication skills as well as a knowledge of that other discipline.

Are you beginning to think that a computer scientist must be knowl
edgeable about much more than just the computer? If so, you are correct.
Too often, computer scientists are viewed as technicians, tucked away in
their own little worlds and not thinking or caring about anything other
than computers. Nothing could be further from the truth. The successful
computer scientist must be able to communicate, to learn new ideas quickly,
and to adapt to ever-changing conditions. Computer science is emerging
from its early dark ages into a mature process, one that I hope you will
find rewarding and exciting. In studying computer science, you will be
developing many talents; this text can get you started on the road to that
development process.

® 1.2 This section is intended to provide you with a brief overview of what
Computer computers are and how they are used. Although there are various sizes.
Architecture makes, and models of computers, you will see that they all operate in

basically the same straightforward manner. Whether you work on a per
sonal computer that costs a few hundred dollars or on a mainframe that
costs in the millions, the principles of making the machine work are
essentially the same.

Modern Computers

The search for aids to perform calculations is almost as old as number
systems. Early devices include the abacus, Napier's bones, the slide rule.

1.2 Computer Architecture 5

and mechanical adding machines. More recently, calculators have changed
the nature of personal computing as a result of their availability, low cost,
and high speed.

The last few decades have seen the most significant change in com
puting machines in the world's history as a result of improvements that
have led to modern computers. As recently as the 1960s, a computer
required several rooms because of its size. However, the advent of silicon
chips has reduced the size and increased the availability of computers so
that parents are able to purchase personal computers as presents for their
children. These computers are more powerful than the early behemoths.
What is a computer? According to Webster's New World Dictionary of

the American Language (2nd College Edition), a computer is "an electronic
machine which, by means of stored instructions and information, per
forms rapid, often complex calculations or compiles, correlates, and se
lects data." Basically, a computer can be thought of as a machine that
manipulates information in the form of numbers and characters. This
information is referred to as dxita. What makes computers remarkable is
the extreme speed and precision with which they can store, retrieve, and
manipulate data.

Several types of computers currently are available. An oversimplifi
cation is to categorize computers as mainframe, minicomputer, or micro
computer. In this grouping, mainframe computers are the large machines
used by major companies, government agencies, and universities. They
have the capability of being used by as many as 100 or more people at
the same time and can cost millions of dollars. Minicomputers, in a sense,
are smaller versions of large computers. They can be used by several
people at once but have less storage capacity and cost far less. Microcom
puters are frequently referred to as personal computers. They have limited
storage capacity (in a relative sense), are generally used by one person at
a time, and can be purchased for as little as a few hundred dollars.
As you begin your work with computers, you will hear people talking

about hardware and software. Hardware refers to the actual machine and
its support devices. Software refers to programs that make the machine
do something. Many software packages exist for today's computers. They
include word processing, data-base programs, spreadsheets, games, op
erating systems, and compilers. You can (and will!) learn to create your
own software. In fact, that is what this book is all about.
A program can be thought of as a set of instructions that tells the

machine what to do. When you have written a program, the computer
will behave exactly as you have instructed it. It will do no more or no
less than what is contained in your specific instructions. For example.

PROGRAM ComputeRv (input, output);

VAR

A, B, C : integer;
Average : real;

BEGIN

read (A, B, C);

Average :=(A+B+C) /3;
writeln (Average:ED:3)

END.

6 COMPUTER SCIENCE, COMPUTER ARCHITECTURE, AND COMPUTER LANGUAGES

is a Pascal program that causes a computer to get three integers (the data)
from an input device, compute their average, and then print the result.
Do not be concerned about specific parts of this program. It is intended
only to illustrate the idea of a set of instructions. Very soon, you will be
able to write significantly more sophisticated programs.

Learning to write programs requires two skills.

1. You need to be able to use specific terminology and punctuation
that can be understood by the machine: you need to learn a pro
gramming language.

2. You need to be able to develop a plan for solving a particular
problem. Such a plan is often referred to as an algorithm. This is
a sequence of steps that, when followed, will lead to a solution of
the problem.

Initially, you may think that learning a language is the more difficult task
because your problems will have relatively easy solutions. Nothing could
be further from the truth! The single most important thing you can do as
a student of computer science is to develop the skill to solve problems.
Once you have this skill, you can learn to write programs in several
different languages.

Computer Hardware

Let's take another look at the question: What is a computer? Our previous
answer indicated it is a machine. Although there are several forms, names,
and brands of computers, each consists of a central unit that is somehow
hooked to an input device and an output device (see Figure 1.1).

FIGURE 1.1

Computer compo
nents

Input
device

Central .
unit

Output
device

1. Keyboard
2. Tape
3. Disk

4. Mouse

1. Printer

2. Screen

3. Disk
4. Plotter

The central unit can be thought of as containing two parts: a central
processing unit (CPU), which is the "brain" of the computer, and main
(primary) memory. The CPU contains an arithmetic/logic unit (ALU), which
is capable of performing arithmetic operations and evaluating expressions
to see if they are true or false, and the control unit, which controls the
action of remaining components so your program can be followed step-
by-step, or executed.

Main memory can be thought of as mailboxes in a post office. It is a
sequence of locations where information representing instructions, num
bers, characters, and so on can be stored. If additional memory is needed,
secondary (peripheral) memory devices are used. On small computers,
these secondary memory devices could be floppy disks, hard disks, or
magnetic tapes; on larger computers, hard disks or magnetic tapes. Main

1.2 Computer Architecture 7

memory is usable while the computer is turned on. It is where the program
being executed is stored along with data it is manipulating. Other programs
and data waiting to be executed are kept "waiting in the wings" in sec
ondary memory.

As you develop a greater appreciation of how the computer works, you
might wonder: How are data stored in memory? Each memory location
has an address and is capable of holding a sequence of binary (0 or 1)
digits, which are commonly referred to as bits. Instructions, symbols, let
ters, numbers, and so on are tremslated into an appropriate pattern of
binary digits and then stored in various memory locations. These are
retrieved, used, and changed according to instructions in your program.
In fact, the program itself is similarly translated and stored in part of main
memory. Main memory can be envisioned as in Figure 1.2, and the central
unit can be envisioned as in Figure 1.3.

FIGURE 1.2

Main memory

Program

Data

FIGURE 1.3

Central unit

cm

Input devices are necessary to give information to the computer. A
typical keyboard, floppy disk drive, and microcomputer with hard disk
are shown in Figure 1.4. Whatever device you use, your program will be
entered through it, and the program statements will be translated and
stored as previously indicated. Output devices are necessary to show the

8 COMPUTER SCIENCE, COMPUTER ARCHITECTURE, AND COMPUTER LANGUAGES

—

BiEi

(a) (b)

FIGURE 1.4

(a) Keyboard, (b) disk
drive, and (c) micro
computer with hard
disk

results of your programs. These are normally in the form of a terminal
screen, line printer, serial printer, or laser printer (Figure 1.5). Input and
output devices are frequently referred to as HO devices.

In summary, a simple computer system consists of an input device, a
central unit, and an output device. A schematic representation of their

A NOTE OF INTEREST

Microprocessors

The microprocessor and its silicon companion,
the memory chip, are the cause of the computer
revolution. This revolution started in the 1970s

and is far from over. By the mid-1990s, the term
microcomputer will be almost synonymous with
computer, and all but a very few super-computers
will have silicon chips as their central process
ing imits. There will be nothing small about these
microcomputers, however, except their physical
size; in computing power they will be as pow

erful as today's mainframes. And in manufac
turing cost, they may be as inexpensive as to
day's video games.

Since the development of the von Neumann
architecture in the late 1940s, every computer
has had a central processing unit, or CPU. The
CPU pulls information out of a computer's mem
ory, alters it—for example, by adding another
number to it—and puts it back into memory.

1.3 Computer Languages 9

(b)

(c)

FIGURE 1.5

(a) Terminal screen,
(b) line printer
(mainframe], (c) se
rial printer (micro
computer), and (d)
laser printer

m

relationship is given in Figure 1.6. A more complete illustration, indi
cating the range of peripheral devices together with the nature of infor
mation transmission, is provided in Figure 1.7.

H 1.3

Computer
Languages

What is a computer language? All data transmission, manipulation, stor
age, and retrieval is actually done by the machine using electrical pulses
generated by sequences of binary digits. If eight-digit bineiry codes are
used, there are 256 numbered instructions from 00000000 to 11111111.
Instructions for adding two numbers would consist of a sequence of these
eight-digit codes.

Instructions written in this form are referred to as machine language.
It is possible to write an entire program in machine language. However,
this is very time consuming and difficult to read and understand.

Therefore, the next level of computer language allows words and sym
bols to be used in an unsophisticated manner to accomplish simple tasks.
For example, the previous machine code for adding two integers is re
placed by

10 COMPUTER SCIENCE, COMPUTER ARCHITECTURE, AND COMPUTER LANGUAGES

FIGURE 1.6

Input-output device
relationship with
computer

Input
device

Gpntrol umt'

MainmemGi^-

CPU

1 S^econdaiy'

Output
device

FIGURE 1.7

Complete computer
installation

rTerminal

Keyboard Monitor

Central unit

Tape drive Line printer

Disk drive

LOAD A

ADDB

STORE C

This causes the number in A to be added to the number in B and the

result to be stored for later use in C. This computer language is an assembly
language, which is generally referred to as a low-level language. What
actually happens is that words and symbols are translated into appropriate
binary digits and the machine uses the translated form.

Although assembly language is an improvement on machine language
for readability and program development, it is still a bit cumbersome.
Consequently, many high-level languages have been developed; these in
clude Pascal, PL/1, FORTRAN, BASIC, COBOL, C, Ada, Modula-2, Logo,

1.3 Computer Languages 11

and others. These languages simplify even further the terminology and
symbolism necessary for directing the machine to perform various ma
nipulations of data. For example, the task of adding two integers would
be written as

C := A + B; (Pascal)
C = A + B; (PL/I)
C = A + B (FORTRAN)
C = A + B (BASIC)
ADD A.B GIVING C (COBOL)
C = A + B; (C)
C:=A + B; (Ada)
C := A + B; (Modula-2)
MAKE "C :A + :B (Logo)

A high-level language makes it easier to read, write, and understand a
program. This book develops the concepts, symbolism, and terminology
necessary for using Pascal as a programming language for solving prob
lems. After you have become proficient in using Pascal, you should find
it relatively easy to learn the nuances of other high-level languages.

For a moment, let's consider how an instruction such as

C := A + B;

gets translated into machine code. The actual bit pattern for this code
varies according to the machine and software version, but it could be as
follows:

0100001lOOlllOJOOOll1101010000010010101101000010

In order for this to happen, a special program called a compiler "reads"
the high-level instructions and translates them into machine code. This
compiled version is then run using some appropriate data. The results
are then presented through some form of output device. The special pro
grams that activate the compiler, run the machine-code version, and cause
output to be printed are system programs. The program you write is a
source program, and the machine-code version is an object program (also
referred to as object code).
As you will soon see, the compiler does more than just translate in

structions into machine code. It also detects certain errors in your source
program and prints appropriate messages. For example, if you write the
instruction

C := (A + B;

where a parenthesis is missing, when the compiler attempts to translate
this line into machine code, it will detect that ")" is needed to close the
parenthetical expression. It will then give you an error message such as

ERROR IN VARIABLE

You will then need to correct the error (and any others) and recompile
your source program before running it with the data.

Before leaving this introductory chapter, let's consider the question:
Why study Pascal? Various languages have differing strengths and weak
nesses. Pascal's strong features include the following:

12 COMPUTER SCIENCE, COMPUTER ARCHITECTURE, AND COMPUTER LANGUAGES

A NOTE JNJTEREST

Why Learn Pascal?

From the point of view of many potential users,
Pascal's major drawback is that it is a compiled
rather than an interpreted language. This means
that developing and testing a small Pascal pro
gram can take a lot longer and involve many
more steps than it would with an interpreted
language like BASIC. The effect of this drawback
has been lessened recently with the develop
ment of interpreter programs for Pascal. Even so,
most programs written by users of personal com
puters are small ones designed for quick solu
tions to particular problems, and the use of Pas
cal for such programs may be a form of overkill.

Ironically, the characteristics of Pascal that
make it relatively unsuited for small programs
are a direct consequence of its strengths as a
programming language. The discipline imposed
by the language makes it easier to understand
large programs, but it may be more than a small
program demands. For serious development of
large programs or for the creation of tools that
will be used over and over again (and require
modifications from time to time), Pascal is clearly
superior.

Experts generally consider Pascal an impor
tant language for people who are planning to
study computer science or to learn program
ming. Indeed, the College Entrance Examination
Board has recently designated Pascal as the re
quired language for advanced-placemOnt courses
in computer science for high school students.
While it is true that an experienced programmer
can write clearly structured programs in any lan
guage, learning the principles of structured pro
gramming is much easier in Pascal.

Is Pascal difficult to learn? We don't think so,

but the question is relative and may depend on
which language you leam first. Programmers be
come accustomed to the first language they learn,
making it the standard by which all others are
judged. Even the poor features of the familiar
language come to be seen as necessities, and a
new language seems inferior. Don't let such sub
jective evaluations bar your way to learning Pas
cal, a powerful and elegant programming
language.

1. It incorporates program structure in a reasonable approximation of
English. For example, if a certain process is to be repeated until
some condition is met, this could be written in the program as

REPERT

(process here)

UNTIL (condition here]

2. It allows the use of descriptive words for variables and data types.
Thus, programs for computing payrolls could use words like
HoursWorked, StateTax, PICA, TotalDeductions, and GrossPay.

3. It facilitates good problem-solving habits; in fact, many people
consider this to be Pascal's main strength. As previously noted,
developing the skill to solve a problem using a computer program
is the most important trait to develop as a beginning programmer.
Pascal is structured in such a manner that it encourages—indeed,
almost requires—good problem-solving skills.

You are now ready to begin a detailed study of Pascal. 1 hope you find
the time spent and frustrations encountered will result in an exciting and
rewarding learning experience. Good luck.

Summary 13

Summary Key Terms

algorithm
arithmetic/logic unit
(ALU)

assembly language
binary digits
bits

central processing unit
(CPU)

central unit

compiler
control unit

data

executed

hardware

high-level language
input device
I/O devices

low-level language
machine language
mainframe

main (primary) memory
microcomputer

minicomputer

object code
object program
output device
program

programming language
secondary (peripheral)

memory

software

source program

system program

GHAPT^Jglt

;_LLUJ_

Writing Your First
Prograins

Chapter 1 presented an overview of computers and computer lan
guages. We are now ready to examine problems that computers

can solve. First we need to know how to solve a problem and then we
need to leam how to use a programming language to implement our so
lution on the computer.

Before looking at problem solving and writing programs for the com
puter, we should consider some psychological aspects of working in com
puter science. Studying computer science can cause a significant amount
of frustration because

1. Successful problem solving and programming require extreme
precision. Generally, concepts in computer science are not diffi
cult; however, implementation of these concepts allows no room
for error. For example, one misplaced semicolon in a 1,000-line
program could prevent the program from working.

2. Time is a major problem. Writing programs is not like completing
other assignments. You cannot expect to complete a programming
assignment by staying up late the night before it is due. You must
begin early and expect to make several revisions before your final
version will be ready.

3. Planning is a critical issue. You must plan to develop instructions
to solve your problem and translate those instructions into code
before you sit down at the keyboard. You should not attempt to
type in code "off the top of your head."

In other words, you must be prepared to plan well, start early, be patient,
handle frustration, and work hard to succeed in computer science. If you
cannot do this, you will probably neither enjoy computer science nor be
successful at it.

14

2.1 Program Development—Top-Down Design 15

■ 2.1

Program Devel
opment—^Top-
Down Design

OBJECTl^^S; ̂

■ to understand what

an algorithm is
■ to understand what

top-down design is
■ to imderstand what

stepwise refinement
is

■ to understand what

modularity is

•> to be able to de

velop algorithms

The key to writing a successful program is planning. Good programs do
not just happen; they are the result of careful design and patience. Just
as an artist commissioned to paint a portrait would not start out by shading
in the lips and eyes, a good computer programmer would not attack a
problem by immediately trying to write code for a program to solve the
problem. Writing a program is like writing an essay: an overall theme is
envisioned, an outline of major ideas is developed, each major idea is
subdivided into several parts, and each part is developed using individual
sentences.

Five Steps to Good Programming Habits

In developing a program to solve a problem, five steps should be followed:
understand the problem, develop an algorithm, write code for the program,
run the program, and test the results. These steps will help develop good
problem-solving habits and, in turn, solve programming problems cor
rectly. A brief discussion of each of these steps follows:

Step 1. Understand the Problem. This is not a trivial task. Before you can
do anything, you must know exactly what it is you are to do. You must
be able to formulate a clear and precise statement of what is to be done.
You should understand completely what data are available and what may
be assumed. You should also know exactly what output is desired and
the form it should take.

Step. 2. Develop an Algorithm. An algorithm is a finite sequence of ef
fective statements that, when applied to the problem, will solve it. An
effective statement is a clear, unambiguous instruction that can be carried
out. Each algorithm you develop should have a specific beginning; at the
completion of one step, have the next step uniquely determined; and have
an ending that is reached in a reasonable amount of time.

Step 3. Write Code for the Program. When the algorithm correctly solves
the problem, you can think about translating your algorithm into a high-
level language. An effective algorithm will significantly reduce the time
you need to complete this step.

Step 4. Run the Program. After writing the code, you are ready to run
the program. This means that using an editor, you type the program code
into the computer, compile the program, and run the program. At this
point, you may discover errors that can be as simple as typing errors or
that may require a reevaluation of all or parts of your algorithm. The
probability of having to make some corrections or changes is quite high.

Step 5. Test the Results. After your program has run, you need to be sure
that the results are correct, that they are in a form you like, and that your
program produces the correct solution in all cases. To be sure the results
are correct, you must look at them and compare them with what you
expect. In the case of using a program with arithmetic operations, this
means checking some results with pencil and paper.

16 WRITING YOUR FIRST PROGRAMS

Developing Algorithms

Algorithms for solving a problem can be developed by stating the problem
and then subdividing the problem into major subtasks. Each subtask can
then be subdivided into smaller tasks. This process is repeated until each
remaining task is one that is easily solved. This process is known as top-
down design, and each successive subdivision is referred to as a stepwise
refinement. Tasks identified at each stage of this process are called modules.
Graphically, this can be represented as shown in Figure 2.1. More spe
cifically, this can be illustrated by designing a solution to the problem of
updating a checkbook after a transaction has been made. A first-level
development is shown in Figure 2.2.

FIGURE 2.1

Illustration of top-
down design

Main

task

FIGURE 2.2

First-level refinement Update
checkbook

Get Perform Print
information computations results

An arrow pointing into a module means information is needed before the
task can be performed. An arrow pointing out of a module means the
module task has been completed and information required for subsequent
work is available. Each of these modules could be further developed as
shown in Figure 2.3. Finally, one of the last modules could be developed
as shown in Figure 2.4. The complete top-down design could then be
envisioned as illustrated in Figure 2.5. Notice that each remaining task
can be accomplished in a very direct manner.
As a further aid to understanding how data are transmitted, module

specifications will be listed for each main (first-level) module. Each mod-

2.1 Program Development—^Top-Down Design 17

FIGURE 2.3

Second-level i t

FIGURE 2.4

Third-level

refinement
Prinf
transactibii

ule specification includes a description of data received, information re
turned, and logic used in the module. The module specification for the
previous module is

Get Information Module

Data received: None

Information returned: Starting balance
Transaction type
Transaction amount

Logic: Have the user enter information from the keyboard.

For the checkbook problem, complete module specifications are

1. Get Information Module

Data received: None

Information returned: Starting balance
Transaction type
Transaction amount

Logic: Have the user enter information from the keyboard.

2. Perform Computations Module
Data received: Transaction amount

Transaction type
Starting balance

Information returned: Ending balance
Logic: If transaction is a deposit, add it to the starting balance;

otherwise, subtract it.

FIGURE 2.5

Top-down design
Gheckboblc

Get
information

Get
starting
balance

Get

tians^tta
type

Get

traiisaction

amount

Pejfdim
GpipputatiQns

Petermtne
balance:

reatuts

Prmt
endmlstartmg

transaction
balabce

Pnnt

type amouiit

2.1 Program Development—^Top-Down Design 19

3. Print Results Module

Data received: Starting balance
Transaction type
Transaction amount

Ending balance
Information returned: None

Logic: Print results in a readable form.

At least two comments should be made about top-down design. First,
different people can (and probably will) have different designs for the
solution of a problem. However, each good design will have well-defined
modules with functional subtasks. Second, the graphic method just used
helps to formulate general logic for solving a problem but is somewhat
awkward for translating to code. Thus, we will use a stylized, half-English,
half-code method called pseudocode to illustrate stepwise refinement in
such a design. This will be written in English, hut the sentence structure
and indentations will suggest Pascal code. Major tasks will be numbered
with whole numbers and subtasks with decimal numbers. First-level

pseudocode for the checkbook-balancing problem is

1. Get information

2. Perform computations
3. Print results

A second-level pseudocode development produces

1. Get information

1.1 get starting balance
1.2 get transaction type
1.3 get transaction amount

2. Perform computations
2.1 IF deposit THEN

add to balance

ELSE

subtract from balance

3. Print results

3.1 print starting balance
3.2 print transaction
3.3 print ending balance

Finally, step 3.2 of the pseudocode is subdivided as previously indicated
into

3.2 print transaction
3.2.1 print transaction type
3.2.2 print transaction amount

Two final comments are in order. First, each module developed should
be tested with data for that module. Once you are sure each module does
what you want, the whole program should work when the modules are
used together. Second, the process of dividing a task into subtasks is
especially suitable for writing programs in Pascal.

20 WRITING YOUR FIRST PROGRAMS

A Pascal program for this problem follows:

PROGRAM Checkbook (input, output);

VAR

StartingBalance,
EndingBalance,
TransAraount : real;

TransType : char;

BEGIN i Main Program }

•{ Module for getting the data I

write ('Enter the starting balance and press <RETURN>. •);
readln (StartingBalance);
writeln ('Enter the transaction type (D) deposit or (W) withdrawal '); 1'
write ('and press <RETDRN>. ');
readln (TransType);
write ('Enter the transaction amount and press <RETURN>. ');
readln (TransAmount);

{ Module for performing computations }

IF TransType = 'D' THEN v 2
EndingBalance := StartingBalance + TransAmount

ELSE

EndingBalance := StartingBalance - TransAmount;

{ Module for printing results >

writeln; writeln;

writeln ('Starting Balance $', StartingBalance:fl:E);
writeln ('Transaction $', TransAmount:fl:2, TransType:E);
writeln (' ' : 33);
writeln ('Ending Balance $', EndingBalance:fl:E)

END. < of main program >

Notice how sections of the program correspond to module specifica
tions. Sample runs of the program produce the output

Enter the starting balance and press <RETORN>. E35.lt
Enter the transaction type (D) deposit or (H) withdrawal
and press <RETURN>. D
Enter the transaction amount and press <RETaRN>. 75.□□

Starting Balance $ E35.lt
Transaction $ 75.D0 D

> 3

Ending Balance $ 310.lt

Enter the starting balance and press <RETORN>. 31Q.lt
Enter the transaction type (D) deposit or (W) withdrawal
and press <RETDRN>. H
Enter the transaction amount and press <RETURN>. t5.75

Starting Balance $ 31D.lt
Transaction $ t5.75 W

Ending Balance $ SAA.Al

•These numbers refer to the modules previously developed with module specifications.

2.1 Program Development—^Top-Down Design 21

A NOTE 0]E INTERESTV

Software Engineering

In the article "A Computer Science Perspective
on Bridge Design" [Communications of the ACM,
April 1986), Alfred Spector and David Gifford
interviewed bridge designer Gerald Fox to de
termine parallels between the design process fol
lowed by a professional engineer who is building
a bridge and a software designer who is devel
oping a complex program. Not surprisingly, many
similarities are found. Included among them are

Engineers designing a bridge view it first as
a hierarchy of substructures. This decompo
sition process continues on the substruc
tures themselves until a level of very funda
mental objects (such as beams and plates)
ultimately is reached. This decomposition
technique is similar to the stepwise refine
ment technique used by software designers,
who break a complex problem down into a
hierarchy of subproblems each of which ul
timately can be solved by a relatively sim
ple algorithm.

Engineers build conceptual models before
actually constructing a bridge. This model-
building allows them to evaluate various
design alternatives in a way which eventu
ally leads to the best possible design for the
application being considered. This process
is analogous to the way in which a skilled
software designer builds models of a soft
ware system using structure charts and first-
level pseudocode descriptions of modules.
The designer then studies these conceptual
models and eventually chooses the most
elegant and efficient model for the applica
tion.

By the fashion in which engineers initially
break down the bridge design, they insure
that different aspects of the design can be
addressed by different subordinate groups
of design engineers working in a relatively

independent fashion. This is similar to the
goal of a software designer who oversees a
program development team. The design of
the software system must insure that indi
vidual components may be developed si
multaneously by separate groups whose
work will not have harmful side effects

when the components are finally pulled
together.

Reliability and maintainability are of crucial
importance to both the engineer who de
signs a bridge and the software system de
signer. The users of a bridge do not expect
to be taking a risk with their lives when
they use the bridge. Similarly, the users of a
software package do not expect to be taking
a risk with their valuable information when

using a program that manipulates their in
formation. Hence bridge and software de
signers must be concerned with methods of
thoroughly testing their products before
they are put into use and then insuring that
the system can be altered with relative ease
to meet the changing needs of the future.

One of the reasons that increasing attention
is being given to similarities between the design
techniques used by an engineer and a software
developer is the hope that elements of the very
structured development process that has been
employed for years in the engineering profession
may influence the very haphazard way in which
computer software has often been developed. As
we come to better understand the similarities

and differences between the disciplines of en
gineering and computer science, we may well
enter a new age of software engineering in which
the productivity of software developers and the
reliability of their programs reach previously un-
attained heights.

You probably would not use the power of a computer for something as
simple as this program. You could just press a few calculator keys instead.
However, as you will see, the language supports development of subpro
grams for specific subtasks. You will, for example, soon be able to enhance
this program to check for overdrafts, save the new balance for later use,
and repeat the process for several transactions. Learning to think in terms
of modular development now will aid you not just in creating algorithms
to solve problems, but it will aid you in writing programs to solve problems.

22 WRITING YOUR FIRST PROGRAMS

Exercises 2.1 1. Which of the following statements are effective? Why or why not?

a. Pay the cashier $9.15.
b. Water the plants a day before they die.
c. Determine all positive prime numbers less than 1,000,000.
d. Choose X to be the smallest positive fraction. '
e. Invest your money in a stock that will increase in value.

2. What assumptions need to be made to understand each of the following
problems?

a. Find the largest number of a set of numbers.
b. Alphabetize a list of names.
c. Compute charges for a telephone bill.

3. Outline the main tasks for solving each of the following problems.

a. Write a good term paper.
b. Take a vacation.

c. Choose a college.
d. Get a summer job.
e. Compute the semester average for a student in a computer science course

and print all pertinent data.

4. Refine the main tasks in each part of Exercise 3 into a sufficient number of
levels so that the problem can be solved in a well-defined manner.

5. Use pseudocode to write a solution for each of the following problems. Indi
cate each stage of your development.

a. Compute the wages for two employees of a company. The input informa
tion will consist of the hourly wage and the number of hours worked in
one week. The output should contain a list of all deductions, gross pay,
and net pay. For this problem, assume deductions are made for federal
withholding taxes, state withholding taxes, social security, and union
dues.

b. Compute the average test score for five students iff a class. Input for this
problem will consist of five scores. Output should include each score and
the average of these scores.

6. Develop an algorithm to find the total, average, and largest number in a
given list of 25 numbers.

7. Draw a structure chart and write module specifications for each of the fol
lowing exercises.

a. Exercise 5a.

b. Exercise 5b.

c. Exercise 6.

■ 2.2

Writing
Programs

OBTECTIVES

a to be able to recog

nize reserved words

and predefined stan
dard identifiers

Objectives continued.

Words in Pascal

Consider the following complete Pascal program.

PROGRAM Example (input, output);

CONST

Skip = ' ';

VAR

J, X, Sum

Average :

: integer;

real;

to be able to recog
nize and declare

valid identifiers

to know the three

basic components of
a program

to understand the

basic structure of a

Pascal program

2.2 Writing Programs 23

BEGIN

Sum := □;
FOR J := 1 TO 3D DO

BEGIN

read (X);
Sura := Sura + X

END;
Average := Sura / 30;
writeln; writeln;
writeln (SkiprlD, 'The average is' / Average:fl:E);
writeln;
writeln (SkiprlG/ 'The number of scores is', 30:3)

END.

This program—and most every programming language—^requires the use
of words when writing code. In Pascal, words that have a predefined
meaning that cannot be changed are called reserved words. Some other
predefined words [standard identifiers) can have their meanings changed
if the programmer has strong reasons for doing so. In this text, reserved
words are capitalized and in bold type; standard identifiers are lowercase
and in bold type. When used in programs, reserved words are capitalized
and standard identifiers are lowercase. Other words [identifiers) must be
created according to a well-defined set of rules, but can have any meaning,
subject to those rules.

Reserved Words

In Pascal, reserved words are predefined and cannot be used in a program
for anjdhing other than the purpose for which they are reserved. Some
examples are AND, OR, NOT, BEGIN, END, IF, and FOR. As you continue
in Pascal, you will learn where and how these words are used. At this
time, however, you need only become familiar with the reserved words
in Table 2.1; they are also listed in Appendix 1.

TABLE 2.1

Reserved words
AND ELSE IF OR THEN

ARRAY END IN PACKED TO

BEGIN FILE LABEL PROCEDURE TYPE

CASE FOR MOD PROGRAM UNTIL

CONST FORWARD NIL RECORD VAR

DIV FUNCTION NOT REPEAT WHILE

DO GOTO OF SET WITH

DOWNTO

Standard Identifiers

A second set of predefined words, standard identifiers, can have their
meanings changed by the programmer. For example, if you could develop
a better algorithm for the trigonometric function sin, you could then sub
stitute it in the program. However, these words should not be used for
anything other than their intended use. This list will vary somewhat from
computer to computer, so you should obtain a list of standard identifiers
used in your local implementation of Pascal. Some standard identifiers
are listed in Table 2.2 and in Appendix 2. The term keywords is used to

24 WRITING YOUR FIRST PROGRAMS

TABLE 2.2

Standard identifiers
Data Types Constants Functions Procedures Files

boolean false abs dispose input

char maxint arctan get output

integer true chr new

real cos pack

text eof page

eoln put

exp read

in readin

odd reset

ord rewrite

pred unpack
round write

sin writeln

sqr

sqrt

succ

trunc

refer to both reserved words and predefined identifiers in subsequent
discussions.

Syntax and Syntax Diagrams

Syntax refers to the rules governing construction of valid statements. This
includes the order in which statements occur, together with appropriate
punctuation. Syntax diagramming is a method to describe formally the
legal syntax of language structures. Syntax diagrams show the permissible
alternatives for each part of each kind of sentence and where the parts
may appear. The symbolism we use is shown in Figure 2.6. A combined

FIGURE 2.6

Symbols used in
syntax diagrams

Reserved words or terms that cannot be
further defined

Items that are defined by another
diagram

Any form of a separator

listing of syntax diagrams is contained in Appendix 3. Arrows are used
to indicate possible alternatives. To illustrate, a syntax diagram for forming
words in the English language is

letter

2.2 Writing Programs 25

If the word has to start with a vowel, the diagram is

vowel 7H

where vowel and letter are defined in a manner consistent with the English
alphabet. Syntax diagrams are used throughout the text to illustrate formal
constructs. You are encouraged to become familiar with them.

Identifiers

Reserved words and standard identifiers are restricted in their use; other
words used in a program are identifiers, and most Pascal programs require
their use. The more complicated the program, the more identifiers needed.
A valid identifier must start with a letter of the alphabet and must consist
only of letters and digits. A syntax diagram for forming identifiers is

\

letteF

Table 2.3 gives some valid and invalid identifiers along with the reasons
for those that are invalid. A valid identifier can be of any length. However,
some versions of Pascal recognize only the first part of a long identifier,
for example, the first eight or the first ten characters. Therefore, identifiers
such as MathTestScorel and MathTestScore2 might be the same identifier
to a computer and could not be used as different identifiers in a program.
Thus, you should learn what restrictions are imposed by your compiler.

TABLE 2.3

Valid and invalid

identifiers

Identifier Valid If Invalid, Reason

Sum Yes

X + Y No " + " is not allowed

Average Yes

Textl Yes

IstNum No Must start with a letter

X Yes

K mart No Spaces are not allowed
ThisIsaLongOne Yes

The most common use of identifiers is to name the variables to be used

in a program. Recall from algebra that variables such as x, y, and z are
frequently used in functional relationships; these could also be used as
identifiers in a Pascal program. However, we should generally use names
that are more descriptive. A detailed explanation of the use of variables
is given in Chapter 3.

26 WRITING YOUR FIRST PROGRAMS

Another use of identifiers is to name S5nnbolic constants to be used in
a program; for example, to identify a certain name or date to be used
repeatedly. A third use of identifiers is to neime the program. Every program
requires a name, and the name must be a valid identifier. Identifiers are
also needed to name new data types and subprograms, but don't worry;
we'll get to that in later chapters.

It is important to develop the habit of using appropriate descriptive
identifiers in your programs. For example, if you are using scores in a
program, identifiers like Scorel, Score2, and ScoreS are better than X, Y,
and Z. Similarly, use descriptive identifiers like Sum, Average, Balance,
or Hours when appropriate. Initially, you may not think this important,
but as programs get longer and more complex, you will appreciate the
fact that descriptive identifiers make a program easier to read.

Basic Program Components

A program in Pascal consists of three components: a program heading, an
optional declaration section, and an executable section. These three com
ponents are illustrated in the program shown in Figure 2.7. The sjmtax
diagram for a program is

file list

Figure 2.8 illustrates the program components of the sample program
(PROGRAM Example) that started this section.

The program beading is the first statement of any Pascal program. It is
usually one line and must contain the reserved word PROGRAM; the
program name, which must be a valid identifier; a list of files used; and
a semicolon at the end. The respective parts of a program heading are

PROGRAM name (file list);

In standard Pascal, file list must include the files input and/or output.
Some other versions, for example Turbo Pascal, do not have this require
ment. Note: The symbol appears in the margin to alert you to cases in
which Turbo differs from standard Pascal. These differences are explained
in Appendix 6.

The template or fill-in-the-blanks form above is used throughout this
book. Reserved words and standard identifiers are shown. You must use

identifiers to replace the words in lowercase letters.
Examples of program headings include

PROGRAM FirstOne (output);

PROGRAM Rookie (input, output);
PROGRAM FindSum (input, output);
PROGRAM Checkbook (input, output);
PROGRAM Nuraberl (output);

2.2 Writing Progrcims 27

FIGURE 2.7

Components of a
program

Program

heading

Declaration

section

(optional)

Executable

section

C PBOGRAM name (hie list);

CONST

list of constants

TYPE

list of data types

VAR

list of variables

list of subprograms

BEGIN

body of program

_ END.

(Here we must

list each

identifier we

use and how it

is to be used.)

(Here we must

list any
subprograms.)

(Here is the source
program version
of the

algorithm: the
instructions

that tell the

computer what
to do.)

FIGURE 2.8

Components of PRO
GRAM Example

Program heading •

Declaration

section

Executable

section

C PROGRAM Example (input, output);

CONST

Skip = ' •;

VAR

J, X, Sum : integer;
— Average : real;

BEGIN

Sum := □;
FOR J := 1 TO 3D DO

^BEGIN

read (X) ;
Sum := Sum + X

END;
Average := Sum / 3D;
writeln; writeln;
writeln (SkiprlD, 'The average is'. Average:fl:2);
writeln;
writeln (SkiprlD, 'The number of scores is", 3D:3)

L END.

28 WRITING YOUR FIRST PROGRAMS

You need not be concerned about input and output files in the file list at
this point. Merely be aware that, if a program is producing some output
(and what program wouldn't?), output may be required. If data are to be
read into a program, input (or a similar file) may also be required. Any
list has its parts separated by commas. However, many current versions
of Pascal (Apple, 1\irbo, and UCSD, for example) do not require such a
list.

A syntax diagram for a program heading follows:

-W PROGRAM J idenfifier1 IQgnuupF

The remainder of the program is sometimes referred to as the main
block; major divisions are the declaration section and the executable sec
tion. The declaration section is used to declare (name) all symbolic con
stants, data t3q)es, variables, and subprograms that are necessary to the
program. All constants named in the declaration section are normally
referred to as being defined. Thus, we generally say constants are defined
and variables are declared.

When constants are defined, they appear in the constant definition
portion of the declaration section after the reserved word CONST. The
form for defining a constant is

CONST

identifier 1 = value 1;

identifier 2 = value 2;

identifier n - value n;

The syntax diagram for this part is

value

Values of constant identifiers cannot be changed during program execution.
If a value is a string of characters, it must be enclosed in single quotation

marks (apostrophes). For example,

CONST

Date = 'July 177t' ;

Any number of constants may be defined in this section. Maximum read
ability is achieved when the constants are listed consecutively and aligned
down the page. A typical constant definition portion of the declaration
section could be

2.2 Writing Programs 29

CONST

Skip = ' ';
Name = 'George Washington';
Date = 'July A, 177t';
SplatS — ' 3|e :tc:ic:(c :4c 9|c:tc:|c :|c>|c ^ 4^ ' ;
Line = ' ' ;
ClassSize = 35;

SpeedLimit = tS;
CmToInches = 0.3537;

The TYPE portion of the declaration section will be explained in Section
8.1. The variable declaration portion of the declaration section should be
listed after the TYPE portion, if present, and must begin with the reserved
word VAR. This section must contain all identifiers for variables to be

used in the program; if a variable is used that has not been declared, a
syntax error will occur when the program is compiled. As with constants,
variables must be valid identifiers and are usually listed down the page
to enhance readability.
The form required for declaring variables is somewhat different from

that used for defining constants: it requires a colon instead of an equal
sign and specific data types. The simplest correct form is

VAR

identifier 1 : data type 1;

identifier n : data type n;

The syntax diagram is

VAR typeidentifier

Since data types are not discussed until later in this chapter, assume for
now that real, integer, and char are valid data types. The reserved word
VAR may appear only once in a program (exceptions will he noted when
subprograms are developed). If no variables are to be used, a variable
declaration section is not needed; however, this seldom happens. A typical
variable declaration section could look like this:

VRR

Sum : integer;
Average : real;
I, J, K : integer;

Ch : char;

Four other examples of permissible methods of writing this declaration
section are

30 WRITING YOUR FIRST PROGRAMS

VRR

I : integer;
J : integer;
K : integer;

Sum : integer;
Ch : char;

Average : real;

VAR

I, J, K/ Sum : integer;

Ch : char;

Average : real;

VAR

I,

J,

K,

Sum : integer;
Ch : char;

Average : real;

VAR

1/ J/

K/ Sum : integer;
Ch : char;

Average : real;

The third basic program component is the executable section. This section
contains the statements that cause the computer to do something. It must
start with the reserved word BEGIN and conclude with the reserved word

END. Also, a period must follow the last END in the executable section.
The syntax diagram is

BEGIN stiatemeht

Writing Code in Pascal

We are now ready to examine the use of the executable section of a pro
gram. In Pascal, the basic unit of grammar is an executable statement, which
consists of valid identifiers, standard identifiers, reserved words, numbers,
and/or characters together with appropriate punctuation.
One of the main rules for writing code in Pascal is that a semicolon is

used to separate executable statements. For example, if the statement

wrlteln ('The results are'rED, Sum:a, ' and'/ Aver:Ea:5)

were to be used in a program, it would (almost always) require a semicolon
between it and the next executable statement. Thus, it should be

writeln ('The results are'rao, SumiO/ ' and', AverrtcE);

One instance exists where an executable statement does not need a fol

lowing semicolon. When a statement is followed by a reserved word END,
END is not a statement by itself, but part of a BEGIN... END pair; therefore
a semicolon is not required. However, as you will see in Section 2.3, if
one is included, it will not affect the program.

2.2 Writing Programs 31

FIGURE 2.9

Executable section

Executable

section

BEGIN

Statement 1;

Statement 2;

Statement n — 1;

Statement n
L END

Although you are not currently familiar with many executable state
ments, you can visualize the executable section as shown in Figure 2.9.
Two comments are now in order. First, Pascal does not require that

each statement be on a separate line. Actually, you could write a program
as one long line (which would wrap around to fit the screen) if you wish;
however, it would be very difficult to read. Compare, for example, the
readability of the following two programs.

PROGRAM ReadCheck (output); CONST Name = 'George';

Age = Et; VAR J, Sum : integer; BEGIN Sum := □;
FOR J := 1 TO ID DO Sura := Sura + J; writeln
('My name is ' :5fl/ Name); writeln ('My age is ':57/ Age);
writeln; writeln ('The sum is ' isa. Sum) END.

PROGRAM ReadCheck (output);

CONST

Name = 'George' ;
Age = Et;

VAR
J/ Sum : integer;

BEGIN
Sum := □;
FOR J := 1 TO ID DO

Sum := Sura + J;
writeln ('My name is ' :Efl/ Name);
writeln ('My age is ' :E7/ Age);
writeln;
writeln ('The sum is ' :Efl, Sura)

END.

You are not expected to know what the statements mean at this point, but
it should be obvious that the second program is much more readable than
the first. In addition, it is easier to change if corrections are necessary.

Second, Pascal ignores extra spaces and line boundaries. This explains
why the two programs are identical. For example, in a program heading,
the following are equivalent:

PROGRAM ExtraBlanks (output);

PROGRAM ExtraBlanks(output);

PROGRAM ExtraBlanks (output);

A good principle to follow is to use spacing to enhance readability.
Decide on a style you like (and your instructor can tolerate) and use it
consistently. Most programmers, however, include a space before a left

32 WRITING YOUR FIRST PROGRAMS

A.NOTE

Blaise Pascal

Blaise Pascal was bom in 1623 in France. He was

acutely ill most of his life and died in 1662 at
the age of 39. Mathematics was excluded from
his early life for fear that he would overstrain
himself by using his head. However, after a be
lated introduction, he became fascinated with

the subject and devoted most of the rest of his
life to its study. His major contribution was the
development (with Pierre de Fermat) of the the
ory of probability.

In 1641, at the age of 18, he invented the first
calculating machine in history. This machine op
erated using ten gears (base 10). Values were car
ried by one gear activating the gear for the next
decimal place. Pascal's machine was opposed by
tax clerks of the era who viewed it as a threat to

their jobs. Pascal presented his machine to Queen
Christina of Sweden in 1650; it is not known
what she did with it.

Exercises 2.2

parenthesis and after a right parenthesis when appropriate but no spaces
immediately inside parentheses; for example.

PROGRAM LooksNlce (Input/ output);

1. List the rules for forming valid identifiers.

2. Which of the following are valid identifiers? Give an explanation for those
that are invalid.

a. 7 Op

b. Payroll

c. RoomEES

d. Name List

e. A

f. A1

g. lA

h. TimeAPlace

i. CONST

j. X*Y

k. ListOfEraployees

1. Lima/Ohio

3. Which of the following are valid program headings? Give an explanation for
those that are invalid.

a. PROGRAM Rookie (output)

b. PROGRAM Pro (input/ output);

■c. TestProgram (input/ output);
d. PROGRAM (output);
e. PROGRAM GettingBetter (output);
f. PROGRAM Have Fun (input/ output);
g. PROGRAM EndOne (output);

4. Name the three main sections of a Pascal program.

5. Write constant definition statements for the following;
a. your name

b. your age
c. your birth date
d. your birthplace

2.3 Data Types and Output 33

6. Find all errors in the following definitions and declarations:

a. CONST

Company : 'General Motors';

VAR

Salary : real;

b. VAR

Age = 25;

c. VAR

Days : integer;

Ch : char;

CONST

Name = 'John Smith

d. CONST

Car : 'Cadillac';

e. CONST

Score : integer;

f. VAR

X/ Y/ Z : real;

Score/

Nura : integer;

7. Discuss the significance of a semicolon in writing Pascal statements.

■ 2.3

Data Types and
Output

OBJEQTiyjES .

■ to understand and

be able to use the

data types integer,

real, and char

■ to understand the

difference between

floating-point form
and fixed-point
form of decimal

numbers

■ to understand the

syntax for and use
of write and writeln

for output

■ to be able to format

output

Type integer

Numbers in some form will be used in computer programs and the kind
of numbers used is referred to as its data type. We will first look at numbers
of type integer, which are integers that are positive, negative, or zero.
Some rules that must be observed when using integers are

1. Plus " + " signs do not have to be written before a positive integer.
For example, + 283 and 283 have the same value and both are
allowed.

2. Minus " — " signs must be written when using a negative number.
3. Leading zeros are ignored. For example, 00073 +073, 0073, and

73 all have the same value.

4. Decimal points cannot be used when writing integers. Although
14 and 14.0 have the same value, 14.0 is not of type integer.

5. Commas cannot be used when writing integers. 271,362 is not al
lowed; it must be written as 271362.

The syntax diagram for an integer is

There is a limit on the largest and the smallest integer constant. The largest
such constant is maxint and the smallest is usually -maxint or
(-maxint-l). maxint and -maxint are recognized by every version of
Pascal; however, different machines have different values for them. This
section ends with a program that enables you to discover the value of

34 WRITING YOUR FIRST PROGRAMS

maxint on your computer. Operations with integers will be examined in
the next section and integer variables will be discussed in Chapter 3.

Type real

Working with reals is more complicated than working with integers. When
using decimal notation, numbers of type real must be written with a
decimal point with at least one digit on each side of the decimal. Thus,
.2 is not a valid real but 0.2 is.

Plus " + " and minus " - " signs for data of type real are treated exactly
as with integers. When working with reals, however, both leading and
trailing zeros are ignored. Thus, +23.45, 23.45, 023.45, 23.450, and
0023.45000 have the same value.

All reals seen thus far have been in fixed-point form. The computer will
also accept reals in floating-point or exponential form. Floating-point form
is an equivalent method for writing numbers in scientific notation to
accommodate numbers that may have very large or very small values. The
difference is, instead of writing the base decimal times some power of 10,
the base decimal is followed by E and the appropriate power of 10. For
example, 231.6 in scientific notation would be 2.316 x 10^ and in floating
point form would be 2.316E2. Table 2.4 sets forth several fixed-point

TABLE 2.4

Forms for equivalent
numbers

Fixed-point Scientific Notation Floating-point

46.345 4.6345X10 4.6345E1

59214.3 5.92143X10" 5.92143E4

0.00042 4.2 X 10-" 4.2E-4

36000000000.0 3.6 X 10^" 3.6E10

0.000000005 5.0X10-^ 5.0E-9

-341000.0 -3.41 X 105 -3.41E5

decimal numbers with the equivalent scientific notation and floating-point
form. Floating-point form for real numbers does not require exactly one
digit on the left of the decimal point. In fact, it can be used with no
decimal points written. To illustrate, 4.16E1, 41.6, 416.0E-1, and 416E-1
have the same value and all are permissible. However, it is not a good
habit to use floating-point form for decimal numbers unless exactly one
digit appears on the left of the decimal. In most other cases, fixed-point
form is preferable.
The syntax diagram for a real number is

) ̂ digit J

1
mi 7"

When using reals in a program, you may use either fixed-point or floating
point form. But the computer prints out reals in floating-point form unless
you specify otherwise. Formatting output is discussed later in this section.

2.3 Data Types and Output 35

Type char

Another data type available in Pascal is char, which is used to represent
character data. In standard Pascal, data of type char can be only a single
character. These characters come from an available character set that dif

fers somewhat from computer to computer, but always includes the letters
of the alphabet; the digits 0,1, 2, 3,4, 5,6, 7, 8, and 9; and special symbols
such as #, &, !, +, and so on. Two common character sets are
given in Appendix 4.

Character constants of type char must be enclosed in single quotation
marks when used in a program. Otherwise, they will be treated as variables
and subsequent use will cause a compilation error. Thus, to use the letter
A as a constant, you would type A'. The use of digits and standard op
eration symbols as characters is also permitted; for example, *7' would be
considered a character, but 7 is an integer.

If a word of one or more characters is used as a constant in a program,
it is referred to as a string constant. String constants, generally called
strings, may be defined in the CONST portion of the declaration section.
The entire string must be enclosed in single quotation marks. A string is
not a standard Pascal data type. Some sample definitions are

CONST

Name = 'John Q. Public';

Date = 'July 177ti';
Splats = '************************';

Students with experience in using BASIC usually expect the equivalent
m of a string variable for storing names, and other information. Standard

Pascal does not have such a feature. However, an analogous feature, packed
arrays of characters, is presented in Section 9.5.
When a single quotation mark is needed within a string, it is represented

by two single quotation marks. For example, if the name desired was
O'Malley, it would be represented by

'0''MALLEY'

When a single quotation mark is needed as a single character, it can be
represented by placing two single quotation marks within single quotation
marks. When typed, this appears as Note that these are all single
quotation marks; use of the double quotation mark character here will not
produce the desired result.

Output

The goal of most programs is to print something. What gets printed (either
on paper or on a screen) is referred to as output. The two program state

ly ments that produce output are write and writeln (pronounced "write
line"). They are usually followed by character strings, numbers, or nu
merical expressions enclosed in parentheses. The general form is

write (expression 1, expression 2, ..., expression n)

or

writeln (expression 1, expression 2, .. . , expression n)

36 WRITING YOUR FIRST PROGRAMS

A syntax diagram for write (applicable also for writeln) is

write) expression —«r—

An exception to this is that

writeln;

is a complete statement; it causes a blank line to be printed.
The write statement causes subsequent output to be on the same line;

writeln causes the next output to be on the next line. This is because
writeln is actually a write statement followed by a line feed. To illustrate,

write ('This is a test.');
writeln ('How many lines are printed?');

causes the output

This is a test.How many lines are printed?

whereas,

writeln ('This is a test.');
writeln ('How many lines are printed?');

causes the output

This is a test.

How many lines are printed?

Note:

1. Some printers reserve the first column for carriage control. Thus,
the first character in a string on the left side of a page would not
be printed.

2. Some implementations use a buffer to gather output from write
statements and then print the gathered line when a writeln is
encountered.

You should check with your instructor concerning these features.
As indicated, character strings can be printed by enclosing the string

in single quotation marks within the parentheses. Numerical data can be
printed by including the desired number or numbers within the paren
theses. Thus,

writeln (!□□)

produces
IDD

and

writeln (!□□/ fl ?, 95)

produces
fl ? 95

The spaces at the beginning of a line and between numbers are caused
Pf] by a default field width. Many implementations of Pascal use a predeter

mined field width for output. This predetermined default width will be

2.3 Data Types and Output 37

used unless output is controlled by the programmer. Methods for con
trolling field width of output will be examined shortly.

EXAMPLE 2.1 Write a complete Pascal program to print the address

1403 South Drive

Apartment SB
Pittsburgh, PA 15238

A complete program to print this is

PROGRAM Address (output);

BEGIN

writeln ('1403 South Drive');
writeln ('Apartment 3B');
writeln ('Pittsburgh, PA', 15230)

END.

When this program is run on a computer, you may get

1403 South Drive

Apartment 3B
Pittsburgh, PA 15230

You can also use writeln to produce blank lines in output. When writeln
is used without a following expression, it causes the printer (or cursor in
your monitor) to advance to the beginning of the next line. This technique
is frequently used to produce more readable output.

STYLE TIP Dsingrwxi at the beginningiand eiid of the exeicUtab^^^^
arate desired output from other messages or directions. Tl
program for printing an address could have been

^th>n wilLsep-
iliSi the previous

PROGRAM Address (output);

BEGIN

writeln; writeln;
writeln (M4D3 South DrlvO')!
writeln ('Apartment 3B');
Writeln ('iEittsburgh,> PA',. 15238);-
writeln; writeln

END.

EXAMPLE 2.2 Let's now combine various methods of using writeln to write a complete Pascal
program that may produce the following output:

COMPUTER SCIENCE 150

TEST SCORES:

IGG

aq

73

qa

a2

q3

7b

38 WRITING YOUR FIRST PROGRAMS

The program would be

PROGRAM PrintScores (output);

BEGIN

writeln; wrlteln;

writeln ('COMPUTER SCIENCE ISD');
writeln (• •) ;

writeln;

writeln ('TEST SCORES:');

writeln (!□□, Rfl, =13);
writeln (6=1/ 62/ 7t);
writeln (73/);
writeln; writeln

END. B

When designing a program to solve a problem, you should constantly
be aware of how the output should appear. The spacing of output on a
line can be controlled by formatting expressions in write emd writeln
statements.

Formatting Integers

If the programmer does not control the output, each integer will be printed
in a predetermined field width (unless the integer exceeds the field width).
This is referred to as a default field width. This width depends on the
machine and version of Pascal being used. In this text, we will assume a
width of ten spaces. Negative signs occupy one position in the field and
plus signs are not printed. Spacing of output on a page will frequently be
denoted by an underscore for each blank space. Some writeln statements
and their output with a default field width of ten follow.

Program Statement Output
writeln (153); 153
writeln (+5ab5); 5Db5
writeln (-15); -15
writeln (□); 0

A complete Pascal program to illustrate the field width for these integers
is

PROGRAM Printlnteger (output);

BEGIN

writeln; writeln;
writeln (153);
writeln (+5Db5);
writeln (-12);
writeln (□);
writeln; writeln

END.

Controlling output is referred to as formatting. It is relatively easy to
format output for integers. Using a writeln statement, the desired field
width is designated by placing a colon ":** after the integer and then an
integer specifying the field width. The integer printed will be right justified
in the specified field. The general form for formatting integers is

2.3 Data Types and Output 39

writeln (integer:^);

Some illustrations for formatting integer output are

Program Statement Output

writeln (123:b); 123

writeln (15, 10:5); 15 ID

writeln (-2t3:7, 21:3); -2b3_21

writeln (+50b2:fc); 5Gb2

writeln (b5221:3); b5221

Note that, in line five, an attempt is made to specify a field width smaller
than the number of digits contained in the integer. Most versions of Pascal
will automatically print the entire integer; however, some versions will
print only in the specified width. The following program will enable you
to find out exactly what yoiu- machine will do.

PROGRAM FieldWidth (output);

BEGIN

writeln; writeln;

writeln ('This program will check field width');
writeln (• ');

writeln;

writeln (123:5, 123<5:3, 1, -t7a5^2:4);
writeln; writeln

END.

When this program is run on a Control Data Cyber 174, the output is

This program will check field width

123123^5 l-t7flR42

Formatting Reals

As with data of type integer, data of type real can be used in writeln
statements. If no formatting is used, the output will be in floating-point
form. Different machines and different versions of Pascal produce a variety
of default field widths. For example, some use a standard field width of
16 and some use a standard width of 22. Assuming a field width of 22,
the program

PROGRAM UnformattedReals (output);

BEGIN

writeln; writeln;

writeln (231.45);

writeln (□.□□45t);
writeln (4.□);
writeln (-52t.lE5);
writeln (□.RlE-fl);
writeln; writeln

END.

produces

40 WRITING YOUR FIRST PROGRAMS

[T]

E.31<5DDDDD0a0DE+DD5

<.5bDDDDDDDDDDDE-DD3

<.□□□□□□□□□□□□□E+DOD
_-5.ablDD00DDDDDDE+DD7

q.lODDDDDDDQDODE-ODq

Most programs using data of type real require a neater method of ex
pressing the output. This can be accomplished by formatting. To format
reals you must specify both the field width and the number of decimal
places to the right of the decimal. This is done by writing the real, followed
by a colon followed by an integer, followed by a colon and another
integer. For example, if you are writing a program that prints wages of
workers, you could get a field width of eight with two places to the right
of the decimal as follows:

writeln (231.45:6:2);

231.45 is the computed wage, 8 specifies the field width, and 2 specifies
how many digits appear to the right of the decimal. The output for this
statement is

231.45

The general form for formatting reals is

writeln (real:nl:n2);

Use of this formatting procedure causes the following to happen:

1. The decimal uses one position in the specified field width.
2. Leading zeros are not printed.
3. Trailing zeros are printed to the specified number of positions to

the right of the decimal.
4. Leading plus " + " signs are omitted.
5. Leading minus " - " signs are printed and use one position of the

specified field.
6. Digits appearing to the right of the decimal have been rounded

rather than truncated.

As with integers, if a field width is specified that is too small, most versions
of Pascal will default to the minimum width required to present all digits
to the left of the decimal as well as the specified digits to the right of the
decimal. The following table illustrates how output using data of type
real can be formatted.

Program Statement Output

7t5.432
23.14
t5.5D

341.20
-341.20

It.4b
0.004b

writeln (7b5.432:10:3)
writeln (023.14:10:2)
writeln (bS.50:10:2)
writeln (+341.2:10:2)
writeln (-341.2:10:2)
writeln (lb.456:10:2)
writeln (0.0045b:10:4)

Reals in floating-point form can also be used in a formatted writeln state
ment. Output from the following complete program

2.3 Data Types and Output 41

PROGRAM FormatReals (output);

BEGIN

writeln; writeln;

writeln (1.23^E5:ID:a);
writeln (-7e3.4E-3:lD:5);
writeln (-7a3.'^E-3:lG:3) ;

writeln (t. 435Ea: ID; a, a. ai^^SEa: ID :a) ;
writeln; writeln

END.

IS

123.^0

._-G.7a34D

-G.7aG

b43.5G 231.45

Formatting Strings

Strings and string constants can be formatted using a single colon
followed by a positive integer "m" to specify field width. The general form
for formatting strings is

writeln (* string':n);

The string will be right justified in the field. The following program il
lustrates such formatting.

PROGRAM StringFormat (output);

CONST

Indent = • ';

BEGIN

writeln; writeln;

writeln (Indent:4,

writeln (Indent:4,
writeln;

writeln

writeln

writeln

writeln

writeln

END.END.

('This is

('This is
('This is

('This is

writeln

Note the strings below.');
I);

a sample string.':35);
a sample string 3G);
a sample string.';a5);
a sample string.':20);

The output from this program would be

Note the strings below.

This is a sample string.
This is a sample string.

This is a sample string.
This is a sample string.

Test Programs

Programmers should develop the habit of using test programs to improve
their knowledge and programming skills. Test programs should be rela
tively short and written to provide an answer to a specific question. For

42 WRITING YOUR FIRST PROGRAMS

STYLE TIP Npte the use of the constant indent in tifte last program. This is used to
control indented output. Since Pascal does not have a tabbing or spacing
command, you might want to also define something like

Skip = •

in the CONST section. Thus, you would have

CONST

Indent = ' ? ;

Skip = • »;

You could then use

indent: ii .

for indenting and

Skiprn

for spacing on a line.

example, maxint was discussed earlier in this section. It was mentioned
that the value of maxint depended upon the machine being used. You
could use a test program to discover what your computer uses for maxint.
A complete program that accomplishes this is

PROGRAM TextMax (output);

BEGIN

writeln ('Maxint is '/ maxint)
END.

Notice that a brief message, 'Maxint is ', is included to explain the output.
Such a message or "output label" is almost always desirable.

Test programs allow you to play with the computer. You can answer
"What if ... " questions by adopting a "try it and see" attitude. This is
an excellent way to become comfortable with your computer and the
programming language you are using. For example, you might change the
previous test program to

PROGRAM TextMax (output);

BEGIN

writeln ('Maxint is maxint);
writeln ('TooMuch is maxint +

END.

1)

Exercises 2.3 Which of the following are valid integers? Explain why the others are
invalid.

a. 521

b. -32.0

c. 5,621

d. +00784

+ 65

6521492183

-0

2. Which of the following are valid reals? Explain why the others are invalid.

a. 26.3

b. +181.0

c. -.14

d. 492.

e. +017.400

43E2

-0.2E-3

43,162.3E5

-176.52E+1

1.43000E + 2

2.3 Data Types and Output 43

3. Change the following fixed-point decimals to floating-point decimals with
exactly one nonzero digit to the left of the decimal.

a. 173.0 d. -1-014.768

b. 743927000000.0 e. -5.2

c. -0.000000023

4. Change the following floating-point decimals to fixed-point decimals.

a. -1.0046E-f3 d. -4.615230E3

b. 4.2E-8 e. -8.02E-3
c. 9.020E10

5. Indicate the data type for each of the following:

a. -720 e. '150'

b. -720.0 f. '23.4E2'

c. 150E3 g. 23.4E-2
d. 150

6. Write and run test programs for each of the following:

a. Examine the output for a decimal number without field width specified;
for example,

writeln (5.31)

b. Try to print a message without using quotation marks for a character
string; for example,

writeln (Hello);

7. For each of the following, write a program that would produce the indi
cated output.

a. Score b. Price

fib $ 19.94

65 $100.GO

79 $ 56.95

where "S" is in column 10. where "P" is in column 50.

8. Assume the hourly wages of five student employees are

3.65

4.10

2.89

5.00

4.50

Write a program that will produce this output.

Employee Hourly Wage

1 $ 3.b5

5 $ 4 .10

3 $ 5.69

4 $ 5.GG

5 $ 4 .50

9. What is the output from the following segment of code on your printer or
terminal?

writeln ('My test average is', 67.5);
writeln ('My test average is':5G, 67.5:1G);
writeln ('My test average is':55, 67.5:1G:5);
writeln ('My test average is':55, 67.5:b:5);

44 WRITING YOUR FIRST PROGRAMS

10. Write a program that will produce the following output. Start Student in
column 20 and Test in Column 40.

Student Name Test Score

Adamsr Mike 73

Conley, Theresa fit
Samson/ Ron 95

O'Malley/ Colleen fil

11. The Great Lakes Shipping Company is going to use a computer program to
generate billing statements for their customers. The heading of each bill is
to be

GREAT LAKES SHIPPING COMPANY

SADLT STE. MARIE/ MICHIGAN

Thank you for doing business with our company.
The information listed below was used to

determine your total cargo fee. He hope you
were satisfied with our service.

CARGO TONNAGE RATE/TON TOTAL DDE

Write a complete Pascal program that will produce this heading.

12. What output is produced by each of the following statements or sequence
of statements when executed by the computer?

a. writeln (1534/ 1534:fi/ 1534:t,);

b. writeln (15:4, -51:4, 150:4);

c. writeln ('FIGURE AREA PERIMETER');

writeln (' ');

writeln;

writeln ('SQUARE', 1L:5/ lt,:15);

writeln;

writeln ('RECT ', 54:5, 50:15);

13. Write a complete program that will produce the following table:

WIDTH LENGTH AREA

4 5 fi

51 5 105

14. What output is produced when each of the following is executed?

a. writeln (5 .134 :15 :5);

b. writeln (453.73:5:5);

c. writeln (-45.1:fi:3);

d. writeln (-4 .51E3 : t: 5) ;

e. writeln (10.55);

f. writeln (1.55, 1.55:t:5/ 1.55:L:1);

15. Write a complete program that produces the following output:

Hourly Wage Hours Worked Total
5.0 50.0 100.00

7.50 15.55 114.375

m m El @

Summary 45

Summary Key Terms

constant definition identifier string
data type keyword string constant
declaration section module syntax

effective statement module specifications syntax diagram
executable section program heading syntax error

executable statement pseudocode test program
fixed point reserved word top-down design
floating point standard identifier variable declaration

formatting stepwise refinement

Keywords

BEGIN integer real

char maxint VAR

CONST output write

END PROGRAM writeln

input

Key Concepts

□ Five steps in problem solving include: understand the problem, develop an
algorithm, write code for the program, run the program, and test the results
against answers manually computed with paper and pencil.

□ Top-down design is a process of dividing tasks into subtasks until each sub-
task can be readily accomplished.

□ Stepwise refinement refers to refinements of tasks into subtasks.
B Valid identifiers must begin with a letter and they can contain only letters

and digits.
D The three components of a Pascal program are program heading, declaration

section, and executable section.
a Semicolons are used to separate executable statements.
a Extra spaces and blank lines are ignored in Pascal.
a Output is generated by using write or writeln.
a Strings are formatted using a single colon followed by a positive integer that

specifies the total field width, for example
writeln ('This is a string, ' :3D);

□ The following table summarizes the use of the data types integer, real, and
char.

Data Type Permissible Data Formatting
integer numeric one colon; for example

writeln (25:b);

real numeric two colons; for example
writeln (1534 .5:fl:5);

char character one colon; for example
writeln ('A'cb);

46 WRITING YOUR FIRST PROGRAMS

■ Programming Write and run a short program for each of the following;
Problems A program to print your initials in block letters. Your output could

look like

JJJJJ A CO

J A A C C

J A A C

J AAAAA C

J J A R C C

JJ A A CC

2. Design a simple picture and print it out using writeln statements. If
you plan the picture using a sheet of graph paper, keeping track of
spacing will be easier.

3. A program to print out your mailing address.

■ ■■I
■ ■

■
■

■ ■ ■
■
■
■

I ■
■I■ ■

Arithmetic, Variables,
Input, Constants, and
Standard Functions

■ 3.1

Arithmetic in

Pascal

, QBJEGTiyjES ■ 1

□ to be able to evalu
ate arithmetic
expressions using
data of type integer

■ to be able to evalu
ate arithmetic
expressions using
data of type real

□ to understand the
order of operations
for evaluating
expressions

■ to be able to iden
tify mixed-mode
expressions

□ to be able to distin
guish between valid
and invalid mixed-
mode expressions

a to be able to evalu
ate mixed-mode
expressions

In this chapter we will discuss arithmetic operations, using data
in a program, obtaining input, and using constants and variables.

We will also discuss the use of functions to perform standard operations
such as finding the square root or absolute value of a number.

Basic Operations for Integers
Integer arithmetic in Pascal allows the operations of addition, subtraction,
and multiplication to be performed. The notation for these operations is

Symbol Operation Example Value

+ Addition 3 + 5 8

- Subtraction <3 - 55 18

* Multiplication £, * 1 28

Noticeably absent from this list is a division operation. This is because
integer arithmetic operations are expected to produce integer answers.
Since division problems might not produce integers, Pascal provides two
operations, MOD and DIV, to produce integer answers.

In a standard division problem, there is a quotient and remainder.
In Pascal, DIV produces the quotient and MOD produces the remainder.
For example, in the problem 17 divided by 3, 17 DIV 3 produces 5,
and 17 MOD 3 produces 2. Avoid using DIV 0 (zero) and MOD 0 (zero).
Several integer expressions and their values are shown in Table 3.1.
Notice that when 3 is multiplied by -2, the expression is written as
3 * (— 2) rather than 3 * —2. This is because consecutive operators

47

48 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

TABLE 3.1

Values of integer
expressions

Expression Value

-3 + a -1

5 - 3 -1

-3 * a -6

3 * (-•2) -6

-3 * (-•a) 6

17 DIV 3 5

17 MOD 3 2

17 DIV (-3) -5

17 MOD <-3) 2

-17 DIV 3 -5

-17 MOD 3 -2

-17 DIV (-3) 5

-17 MOD (-3) -2

TABLE 3.2

Integer arithmetic
priority

cannot appear in an arithmetic expression. However, this expression
could be written as —2 * 3.

Order of Operations for Integers

Expressions involving more than one operation are frequently used when
writing programs. When this happens, it is important to know the order
in which these operations are performed. The priorities for these are

1. All expressions within a set of parentheses are evaluated first. If
there are parentheses within parentheses (the parentheses are
nested), the innermost expressions are evaluated first.

2. The operations *, MOD, and DIV are evaluated next in order from
left to right.

3. The operations + and - are evaluated last from left to right.

These operations are the operations of algebra and are summarized in
Table 3.2.

To illustrate how expressions are evaluated, consider the values of the
expressions listed in Table 3.3.

Expression or Operation Priority

()
MOD/ DIV

+ / —

1. Evaluate from inside out

2. Evaluate from left to right
3. Evaluate from left to right

TABLE 3.3

Priority of operations
Expression Value

3 - A * S -17

3 - (< * 5) -17

(3 - 4) * 5 -5

3 * A - S 7

3 * (4 - 5) -3

17 - ID - 3 4

17 - (ID - 3) 10

(17 - ID) - 3 4

-A3 + SO MOD 17 -26

3.1 Arithmetic in Pascal 49

As expressions get more elaborate, it can be helpful to list partial evalu
ations in a manner similar to the order in which the computer performs
the evaluations. For example, suppose the expression

(3 - <) + la DIV 5 + E

is to be evaluated. If we consider the order in which subexpressions are
evaluated, we get

(3 - A) + la DIV 5 + E

i

-1 + la DIV 5 + E

-1 + E

+ E

Basic Operations for Reals

The operations of addition, subtraction, and multiplication are the same
for data of. type real as for integers. Additionally, division is now per
mitted. Since MOD and DIV are restricted to data of type integer, the
S5mibol for division of data of type real is The real arithmetic operations
are as follows:

Symbol Operation Example Value

+ Addition A.S. + iq.3t 23.56

- Subtraction iq.3b - 4.E 15.16

* Multiplication 3.1 * E.Q 6.2

/ Division / E.D 27.3

Division is given the same priority as multiplication when arithmetic
expressions are evaluated by the computer. The rules for order of operation
are the same as those for evaluating integer arithmetic expressions. A
summary of these operations is shown in Table 3.4.

TABLE 3.4

Real arithmetic

priority

Expression or Operation Priority

() 1. Evaluate from inside out

/ i 2. Evaluate from left to right
+ / — 3. Evaluate from left to right

Some example calculations using data of type real are

Expression Value

3.5 * E.D - 1.0 6.0

E.D * (l.E - A.3) -6.2

E.D * l.E - A.3 -1.9

.a

ni

1

/ 3.0 + 3.0 -1.2

ur

1

/ (3.0 + 3.0) -2.1

As with integers, consecutive operation signs are not allowed. Thus, if
you want to multiply 4.3 by -2.0, you can use -2.0 * 4.3 or 4.3 * (-2.0),

50 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

but you cannot use 4.3 * - 2.0. As expressions get a bit more complicated,
it is again helpful to write out the expression and evaluate it step by step.
For example,

-A.3 * (ID.l + (73.3 / 3.0 - . 5)) + Ifl.S
I

-A.3 * (ID.l + (3A.1 - A.5)) + lfl.5
I

-A.3 * (10.1 + iq.b) + lfl.2
i

-A.3 * gq.7 + ifl.g
I

-157.71 + IQ.a
i

-loq.Bi

Overflow and Underflow

Arithmetic operations with computers have some limitations. One of these
is the problem of overflow. Integer overflow occurs when an integer expres
sion exceeds the value of maxint. Real overflow occurs when the absolute
value of a real is too large to fit into a memory location (discussed further
in Section 3.2). Ideally, an error message should be given when overflow
occurs. Unfortunately, that is not always the case. Most systems just assign
a meaningless value and keep on computing. You should be sure to check
limitations for your system.
A second problem occurs when working with reals. If a real number is

too small to be represented, it is replaced by zero. This is called underflow.
Thus, your computations may produce a real of the magnitude 1.0 * 10"^°°,
but your system could replace this with a zero.

In general, underflow is less of a problem than overflow. You should,
however, always guard against both possibilities when performing nu
merical computations.

Mixed Expressions

We have seen examples of arithmetic expressions using data of types
integer and real. What happens if both integer and real data types are
used in the same expression?

It is possible for some expressions to contain data of both types. These
are called mixed-mode expressions. All of the operations studied thus far
except MOD and DIV will allow operands of both types. However, when
any operand in a simple arithmetic expression is of type real, the value
of the expression will be given as a real and not as an integer. For example,
4 + 3.0 will be the real 7.0 rather than the integer 7. It is permissible to
use data of type integer with the real number operation, division '7";
when this happens, the answer is given as a real number. For example,
6/3 will be the real 2.0 rather than the integer 2. However, when data of
type real is used with either MOD or DIV, an error message will occur.
Several examples of valid and invalid mixed-mode expressions are shown
in Table 3.5.

Evaluation of mixed-mode expressions is similar to evaluating either
real or integer arithmetic expressions. If an expression is valid, the order
of operations for evaluating the expression is the same as that used for

3.1 Arithmetic in Pascal 51

TABLE 3.5

Mixed-mode arith

metic priority

Expression Valid Data T3rpe

-5.D * 1? Yes real

13.1 - 55 Yes real

14/7 Yes real

14 / 7.D Yes real

10.□ MOD 5 No
ID HOD 5.G No

-15 DIV 3 Yes integer
-15 DIV 3.G No
35.D DIV 4.G No
7 + 5.G Yes real

the data type of the value of the expression. As an example, consider the
evaluation of the expression (— 4.2 + 17 DFV 3 * 2.1) /2. Within the pa
rentheses, 17 DIV 3 has first priority, hence the operation is valid. The
sequential evaluation is given by

(-4.5 + 17 DIV 3 * 5.1) / 5

(-4.5 +

(-4.5 +

♦ 5.1) / 5

10.5)
■"T"
t.3

/ 5

/ 5
i

3.15

Mixed-mode expressions can be used in writeln statements. The pro
grammer must be careful, however, when formatting output. Only data of
type real can be formatted using two colons (:8:3). If this method of for
matting is used on other data types, an error will result. However, reals
can be formatted with a single colon. For example,

writeln (15.5:6);

is a valid statement. This produces 18.5 in floating-point form in a total
field width of eight columns, as 1.850E + 1. However, this is usually not
a desirable practice.

Some valid and invalid statements using formatted output are

Statement Valid Output

writeln (14.G/(-5):a:5) Yes

1

1

1

j-

a
a

writeln (17*(3+a):t) Yes 157

writeln (17*(3-l-a): t :5) No

writeln (-57/3:5) Yes _-q.GE+G

writeln (-57/3:t:5) Yes _-q.GG

writeln (-5*15:5:3) No

Now that you have some degree of familiarity with mixed-mode expres
sions, you should know that, if possible, you should avoid them. There
are at least three good reasons for not using them: invalid expressions
may be obtained (10 MOD 2.0); improper formatting could result; and
improper assignment statements could result (see Section 3.2).

52 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

Exercises 3.1 Find the value of each of the following expressions:
a. 17 — 3 * 2

b. —15 * 3 + ̂

c. 123 MOD 5

d. 123 DIV 5

e. 5 * 123 DIV 5 + 123 MOD 5

f. -21 * 3 * (-1)

g. 14 * (3 + 16 DIV 4) - 50

h. 100 - (4 * (3 + 2)) * (-2)

i. -5t, MOD 3

j. 14 * 6 MOD 5-23 DIV (-4)

Find the value of each of the following expi:essions:
a. 3-21 + 5.02 - L.l

b. t.D / 2,0 * 3.0

c. fc.D / (2.D + 3.0)

d. -20.5 * (2.1 + 2.0)

e. -2.0 * ((5t.a / 4.0

f. 1.G4E2 * □.□2E3
g. 600. □E-2 / 4.0 + 15,

+ 0.6) + 5.0)

3. Which of the following are valid expressions? For those that are, indicate
whether they are of type integer or real.
a. 16 - (5 * 2)
b. (16 - 5) * 2
c. 16 — 5 * 2.0
d. 25 * (14 MOD
e. 1.4E3 * 5

7.0)

26

26

-5

24

/ 7

0/4

21 + It

DIV t /

3)j. 24 DIV (b /

Evaluate each of the valid expressions in Exercise 3.

What is the output produced by the following program?
PROGRAM MixedMode (output);

BEGIN

writeln; writeln;
writeln (•
writeln ('
writeln;
writeln ('
writeln ('
writeln; writeln

END.

Exp

10

ression Value');
1);

/5' / 10/5:12:3);
2.0+7*(-l)•, 2.0 + 7 * (-1));

6. Find all errors in the following Pascal statements:
a. writeln (-20 DIV 4.0 :6:3);
b. writeln (-20 DIV 4 :6:3);
c. writeln (-20 DIV 4
d. writeln
e. writeln
f. writeln

(6 - 3.0 *
(7 * b DIV
(-17.1 + 5

:6);
5 :b);
3 / 2 :

* 20.0

b:2) ;
:6:3);

B 3.2
Using Variables

DBJEGTIVES

B to understand utili
zation of storage
area

Objectives continued.

Memory Locations

It is frequently necessary to store values for later use. This is done by
putting the value into a memory location by using a symbolic name to
refer to this location. If the contents of the location are to be changed
during a program, the symbolic name is referred to as a variable; if the
contents are not to be changed, it is referred to as a constant.

3.2 Using Variables 53

to distinguish be
tween name of a

memory location
and value in a

memory location

to be able to use

variables in assign
ment statements,

expressions, and
output statements

A graphic way to think about memory locations is to envision them as
boxes; each box is named and a value is stored inside. For example,
suppose a program is written to add a sequence of numbers. If we name
the memory location to be used Sum, initially we have

Sum

which depicts a memory location that has been reserved and can be ac
cessed by a reference to Sum. If we then add the integers 10, 20, and 30
and store them in Sum, we have

60

Sum

It is important to distinguish between the name of a memory location
(Sum) and the value or contents of a memory location (60). The name
does not change during a program, but the contents can be changed as
often as necessary. (Contents of memory locations which are referred to
by constants cannot be changed.) If 30 were added to the contents in the
previous example, the new value stored in Sum could be depicted as

go

Sum

Those symbolic names representing memory locations whose values
will he changing must be declared in the VAR section of the program (as
indicated in Section 2.2); for example.

VAR

Sum integer;

Those that represent memory locations whose values will not be changing
must be declared in the CONST section.

Assignment Statements

Let's now examine how the contents of variables are manipulated. A value
may be put into a memory location with an assignment statement in the
form of

Variable name := value (or expression);

where "variable name" is the name of the memory location. For example,
if Sum had no value, then

Sura := 3D;

changes

to 30

Sum Sum

The sjmtax diagram for this is

-■^variable! i \ w e7q)restigii) *

54 ARITHMETIC. VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

Some important rules concerning assignment statements are

1. The assignment is always made from right to left (<—).
2. The syntax for assigning requires a colon followed immediately

by an equal sign (: =).
3. Only one variable can be on the left of the assignment symbol.
4. Constants cannot be on the left of the assignment sjnmbol.
5. The expression may be a constant, a constant expression, a vari

able, or a combination of variables and constants.
6. Values on the right side of the assignment symbol are not changed

by the assignment.
7. The variable and expression must match in data type.

Two common errors that beginners make are trying to assign from left to
right and forgetting the colon when using an assignment statement.

Repeated assignments can be made. For example, if Sum is an integer
variable, the statements

Sum := 50;

Sum := 70;

Sum :=

produce first 50, then 70, and finally 100 as shown.

50 100

Sum

In this sense, memory is destructive in that it retains only the last value
assigned.

Data types must match when using assignment statements: reals must
be assigned to real variables, integers to integer variables, and characters
to char variables. The only exception is that aq integer can be assigned
to a real variable; however, the integer is then converted to a real. If, for
example. Average is a real variable emd the assignment statement

average := 21;

is made, the value is stored as the real 21.0.
Assignments to a character variable require that the constant be en

closed in single quotation marks. For example, if Letter is of type char
and you want to store the letter C in Letter, use the assignment statement

Letter := •C•;

This could be pictured as

Letter

Furthermore, only one character can be assigned or stored in a character
variable at a time.

To illustrate working with assignment statements, assume that the vari
able declaration portion of the program is

VRR

Sura : integer;
Average : real;
Letter : char;

Examples of valid and invalid assignment statements using the variable
declarations just declared are shown in Table 3.6.

3.2 Using Variables 55

TABLE 3.6

Assignment

statements

Statement Valid If Invalid, Reason

Sura := 50; Yes

Sura := 10.5; No Data types do not match
Average :=: 15.L; Yes

Average :== 33; Yes

Letter := •A' ; Yes

Letter := •HI' ; No Not a single character
Letter := 20; No Data types do not match
Letter := •Z' ; Yes

Letter := A; ? Valid if A is a variable

or constant of type char
Sura := 7; Yes

Letter := '7' ; Yes

Expressions

Actual use of variables in a program is usually more elaborate than what
we have just seen. Variables may be used in any manner that does not
violate their type declarations. This includes both arithmetic operations
and assignment statements. For example, if Scorel, Score2, ScoreS, and
Average are real variables,

Scorel := 75.3;

Scorea :=

Score3 := R5.b;

average := (Scorel + Scorea + Score3) / 3.D;

is a valid fragment of code.
Let's now consider the problem of accumulating a total. Assuming

NewScore and Total are integer variables, the following code is valid.

Total := □;
NewScore := 5;
Total := Total + NewScore;
NewScore := 7;
Total := Total + NewScore;

As this code is executed, the values of memory locations for Total and
NewScore could be depicted as

Total := □;

NewScore := 5;

0

Total NewScore

Total NewScore

Total := Total + NewScore;

NewScore := 7;

Total := Total + NewScore;

Total NewScore

Total NewScore

12

Total NewScore

56 ARITHMETIC. VARIABLES. INPUT. CONSTANTS, AND STANDARD FUNCTIONS

Output

Variables and variable expressions can be used when creating output.
When used in a writeln statement, they perform the same function as a
constant. For example, if the assignment statement

ftge := 5;

has been made, these two statements

writeln (5);

writeln (Age);

produce the same output. If Agel, Age2, Age3, and Sum are integer vari
ables and the assignments

Agel := SI;
Ages := 30;
AgeB := IS;
Sum := Agel + AgeS + Age3;

are made,

writeln ('The sum is 51 + 30-1- IS);
writeln ('The sum is Agel + AgeS + Age3);
writeln ('The sum is Sura);

all produce the same output.
Formatting variables and variable expressions in writeln statements

follows the same rules that were presented in Chapter 2 for formatting
constants. The statements needed to write the sum of the problem we just
saw in a field width of four are

writeln ('The sura is '/ (SI + 30 + 1S):4);
writeln ('The sura is (Agel + AgeS + Age3):4);
writeln ('The sura is Sum:4);

j^AMlPLE 3;li Suppose you want a program to print data about the cost of three textbooks and
—" the average price of the books. The variable declaration section could include:

VAR

MathText, BioText/

CorapSciText,
Total, Average : real;

A portion of the program could be

MathText := 53.15;

BioText := 57.50;

CorapSciText := 11.15;
Total := MathText + BioText + CorapSciText;
Average := Total / 3;

The output could be created by

writeln; writeln;

writeln ('Text Price');

writeln (' ') ;

writeln;

writeln ('Math', MathText: 1< : S)-;

writeln ('Biology', BioText:11:S);
writeln ('CompSci', CorapSciText:11:S);
writeln;
writeln ('Total', Total:13:S);
writeln;

writeln ('The average price is'. Average:fl:S);

3.2 Using Variables 57

The output would be

Text Price

Exercises 3.2

Math

Biology
CompSci

23.qs

27 .5D

iq.RS

Total 71.AD

The average price is 23.flD

1. Assume the variable declaration section of a program is

VAR

Ago/ IQ
Income :

integer;
real;

Indicate which of the following are valid assignment statements. Give the
reason for each that is invalid.

a. Age := 21;

b. IQ := Age + 100;

c. IQ := 12D.5;

d. Age + IQ := 150;

e. Income := 220DD;

f. Income := IDD * (Age + IQ);

g. Age := IQ / 3;
h. IQ := 3 * Age;

Write and run a test program to illustrate what happens when values of one
data type are assigned to variables of another type.

Suppose A, B, and Temp have been declared as integer variables. Indicate
the contents of A and B at the end of each sequence of statements.

* (-3);

a. A = 5; c. A = □ ;
B = -2; B = 7;
A = A + B; A = A + B MOD 2

B = B - A; B = B + < * A;
b. A = 31; d. A = -fl;

B =

ru
IT

B = 3;
Temp := A; Temp := A + B;
A • = B; A = 3 * B;
B = Temp; B = A;

Temp := Temp + A + B;

Suppose X and Y are real variables and the assignments

X := 121.3;
Y := Sfl.t;

have been made. What writeln statements would cause the following output?
a. The value of X is 121.3

b. The sum of X and Y is 2iq.q

c. X = 121.3

Y = qa. t

Total = 2iq.q

58 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

5. Assume the variable declaration section of a program is

VRR

Rge, Height : integer;
Weight : real;
Sex : char;

What output would be created by the following program fragment?

Rge := 53;
Height := 73;
Weight := lflt.5;
Sex := 'M';

writeln ('Sex'/ Sex:13);

writeln ('Rge', Rge:1<);
writeln ('Height'/ Height:11/ ' inches');
writeln ('Weight'/ Weight:l<:l/ ' lbs');

6. Write a complete program that allows you to add five integers and then print

a. The integers.
b. Their sum.

c. Their average.

7. Assume Ch and Age have been appropriately declared. What output is pro
duced hy the following?

Ch := 'M';

Rge := 51;
writeln (•********»*********************' :<□);
writeln ('*' :11/ '*' :5q);
write ('*' :11/ 'Name' :?/ 'Rge' :^);
writeln ('Sex' :^/ '*':4);
writeln ('*' :11/ ' ' :?/ ' ' * '*' :<);
writeln; writeln;
write ('*' :11/ 'Jones':a, Rge:a/ Ch:R/ '*' :<);
writeln;
writeln ('*':11/ '*' :5R);
writeln (•******************************' :<□);

8. Assume the variable declaration section of a program is

VRR

Weightl/ Weight5 : integer;
RverageWeight : real;

and the following assignment statements have been made:

Weightl := ItS;
Weight5 := 174;
RverageWeight := (Weightl + Weight5) / 5;

a. What output would be produced by the following section of code?

writeln ('Weight');
writeln (' ');
writeln;
writeln (Weightl);
writeln (Weight5);
writeln;
writeln ('The average weight is'/ (Weightl + Weight5) / 5);

3.3 Input 59

b. Write a segment of code to produce the following output (use
Average Weight).

Weight

Total

174

33q

The average weight is ItR.S pounds.

9. Assume the variable declaration section of a program is

VAR

Letter : char;

and the following assignment has been made:

Letter := 'A•;

What output is produced from the following segment of code?

writeln ('This reviews string formatting,• :<□);
writeln ("When a letter'. Letter, 'is used,');
writeln ('Oops! ' :l<, 'I forgot to format. ' :50);
writeln ('When a letter' :5S, LettercS, 'is used,' :R);
writeln ('it is a string of length one. ' :3a);

■ 3.3

Input

> to be able to use
read and readln to
get data for a
program

I to understand the
difference between
interactive input
and batch input

I to understand the
concept of end-of-
line markers
to understand the
concept of end-of-
file markers

Earlier, "running a program" was subdivided into the three general cat
egories of getting the data, manipulating it appropriately, and printing the
results. Our work thus far has centered on creating output and manipu
lating data. We are now going to focus on how to get data for a program.

Input Statements

Data for a program are usually obtained from an input device, which can
be a keybocud, terminal, card reader, disk, or tape. When such data are

I obtained, the standard file input must be included in the file list of the
program heading. (Some interactive systems use a different method. Check
with your instructor.) Your program heading will (probably) have the form

PROGRAM program name (input, output);

The Pascal statements used to get data are read and readln; they are
analogous to write and writeln for output. General forms for these input
statements are

read (variable name);
read (variable 1, variable 2, , variable n);
readln (variable name);
readln (variable 1, variable 2, . . . , variable n);
readln;

A syntax diagram for read and readln statements is

60 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

toad variable

When read or readln is used to get data, the value of the data item is
stored in the indicated memory location. Data read into a program must
match the type of variable in the variable list. To illustrate, if a variable
declaration section includes

VAR

Age : Integer;
Wage : real;

and the data items are

21 5.as

then

read (Age/ Wage);

results in

21 5.25

Age Wage

To illustrate the difference between read and readln, we must first learn
about a line of data. Whether from the terminal or from a text file, numeric
data items are entered on a line with blanks separating items. When you
are through creating a data line, you press "return" on the keyboard. This
causes the computer to create a special symbol it recognizes as an end-
of-line marker (eoln). If we use the symbol | to represent this, two lines
of integer data could be shown by

89 93 781

95 84 100 6^

When either read or readln is first used, a data pointer is positioned at
the beginning of the first (perhaps only) line.

89 93 781 line 1

Pointer here

95 84 100 681 line 2

As data items are read using read, the pointer moves to the first position
past the last data item read. Thus, if Scorel and Score2 are declared as
integer variables, the statement

read (Scorel/ Scores);

results in

89 93 781 line 1

95 84 100 681 line 2

89 93

Scorel Score2

3.3 Input 61

The readln statement works in the same manner, with an exception: after
it has read a value for each variable in its list, it causes the pointer to skip
over data items remaining on that line and go to the beginning of the next
line. Thus, if the pointer is at the beginning of line 1,

readln (Scorel/ ScoreE);

results in

89 93 781 line 1

95 84 100 681 line 2

89 93

Scorel Score2

Variables in the variable list of read and readln can he listed singly or
in any combination that does not result in a type conflict when data are
read. For example, for the data line

89 93 781
t

read (Scorel, Scores);

could be replaced by

read (Scorel);
read (Scores);

Interactive Input

If you are working on a system where input is expected from a keyboard—
interactive input—^read or readln causes the program to halt and wait for
data items to be typed. When you press "return," an end-of-line marker
is placed after the last data entered. The difference between read and
readln is that readln causes a line feed. This has two effects. First, all
remaining (unread) data items on a line are skipped. Second, output from
write or writeln statements will start on the next line rather than the same

line. For example, when working interactively, consider the statements
shown below:

read (A);
write (A);

and

readln (A);

write (A);

When these are executed and you enter the number 45 and press "return,"
the first may cause

to appear on the screen and the second causes

45

AS

if pressing "return" causes a line feed.

62 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

Consider the following program that will find the average of three
integers.

PROGRAM Average (input, output);

CONST

Skip = ' ';

VAR

Numl/ NumS, Num3 : integer;

Aver : real;

BEGIN

readln (Numl, Num5, Num3);
Aver := (Numl + NumS + Num3) / 3;
writeln;

writeln (Skip:lD, 'The numbers are', Numl:<, NumS:4, Num3:<);
writeln;

writeln (Skip:lD, 'Their average is', Aver:fl:5);
writeln; writeln

END.

When this program is run, execution will halt at the line

readln (Numl, NumE, Num3);

and a prompt may appear on the screen. At this point, you must enter at
least three integers and press "return" (or some sequence of integers and
"return" until at least three numbers are read in as data items). The re
maining part of the program will then be executed and the output (using
20, -14, and 81 as input)

The numbers are SO -1< 61

Their average is 5S.QQ

will be printed.
Normally, interactive programs require a prompting message to the user

so the user can know what to do when the prompt is on the screen. For
example, the previous example could be modified by the line

writeln ('Please enter 3 integers and press <RETURN>.');

and when the program is run, the screen will display the message

Please enter 3 integers and press <RETURN>.

Clearly stated screen messages to the person running a program are
what make a program user-friendly. For long messages or several lines of
output, you can use

writeln ('Press <RETDRN> to continue.');
readln;

as a complete statement to halt execution. When you press "return," the
program will continue.

Note: Some users of this textbook will be working in an interactive
environment, others will not be. Consequently, both interactive and non-

a interactive examples are included. A logo of a computer screen accom
panies each interactive example.

3.3 Input 63

EXAfti#I^E 3.2 ^ Pjrthagorean triples are sets of three integers that satisfy the Pythagorean theorem.
That is, integers a, b, and c such that = c^. 3,4, 5 is such a triple because
32 + 42 =: 52 Formulas for generating Pythagorean triples are a = m? - n^,

b = 2mn, and c = where m and n are positive integers such that
m > n. The following interactive program allows the user to enter values for m
and n and then have the Pythagorean triple printed.

PROGRAM PythagoreanTriple (input, output);

VAR

M, N, A, B, C : integer;

BEGIN

write ('Enter a positive integer and press <RETaRN>. ');
readln (N);
write ('Enter a positive integer greater than ', N);
write (' and press <RETORN>. ');
readln (M);
A :=(M*M)- (N*N);

B := E * M * N;

C := (M * M) + (N * N);

writeln;

writeln ('For M = ', M, ' and N = ', N);
writeln ('the Pythagorean triple is ', A:5/ B:S, C:5)

END. II

Sample runs of this program (using data 1,2 and 2,5) produce the following:

Enter a positive integer and press <RETDRN>. 1
Enter a positive integer greater than 1 and press <RETDRN>. E

For M = E and N = 1

the Pythagorean triple is 3 A S

Enter a

Enter a

positive integer and press <RETURN>. E
positive integer greater than E and press <RETORN>. 5

For M = 5 and N = E

the Pythagorean triple is El ED E'l

Batch Input

Batch processing is a technique for executing programs and data without
user interaction with the computer. If you are working on a system that
uses batch processing, input data will have been previously entered in a
file created by you or the instructor. Input in this form is referred to as
batch or stream input and can be envisioned by lines listed consecutively
separated by end-of-line markers. For example,

93 84 95187 80 73 91 f

represents two lines of data with three integers on the first line and four
integers on the second line. When data are read from such an input file,
a pointer is moved as previously indicated. One additional feature should
be noted when using batch input. Since all data lines will have been
previously entered, a special marker is inserted by the machine to indicate
the end of the input file. This is referred to as an end-of-file marker (eof)
and is represented in this text by the symbol ■. This is placed immediately

64 ARITHMETIC, VARIABLES. INPUT. CONSTANTS. AND STANDARD FUNCTIONS

following the last end-of-line marker. Thus, the previous input file would
be illustrated by

93 84 95 187 80 73 911 ■

Reading Numeric Data

Reading numeric data into a program is reasonably straightforward. At
least one blank must be used to separate items on each data line and,
since leading blanks are ignored, the statement

read (variable name);

will cause the next numeric value to be stored in the appropriate memory
location. An end-of-line marker will be read as a blank, so even if the next
item is on another line, it will be located and stored as desired. In each
case, the pointer will be advanced as before.
Some caution should be exercised when both reals and integers are in

the input file. As long as the variable data t3^e matches the numeric data
type, there will be no problem. Thus, if the variable declaration section
is

VftR

A

X

integer;

real;

and a data line is

97.5 861

read (X, A) causes

8697.5

X A

However, read (A, X) would result in an error because A is of type integer
and 97 is read into A. The pointer is then positioned at the decimal.

97.5 sal"
T

An attempt to read a value into X then results in a type mismatch error.
One exception to type mismatch errors is that an integer value can be

read into a variable of type real. However, it is then stored as a real and
must be used accordingly.

Reading Character Data

Reading characters is much different from reading numeric data. When
using standard Pascal, the following features apply to reading character
data from an input file.

1. Only one character can be read at a time.
2. Each blank is a separate character.
3. Each end-of-line marker is read as a blank.

4. If the pointer is positioned at a numeric data item and you read a
character variable, the digit indicated by the pointer will be read
as a character.

3.3 Input 65

5. After the character has been read, the pointer is advanced one
position.

To illustrate the features of reading character data, assume a variable
declaration of

VAR

Chi, Ch5, Ch3

and a stream input of

char;

WDN 89|MJS 941

with the pointer positioned as indicated. Further, assume Chi, Ch2, and
Ch3 have not been assigned values, nor have they had values read into
them. They can be visualized as

Chi Ch2 Ch3

If

read (Chi);

is executed, we have

w

Chi Ch2 Ch3

WDN 89|MJS 941
t

If the line of code

read (ChE, Ch3);

is then executed, we have

w D N

Chi Ch2 Ch3

WDN 89|MJS 941

If the next read command in the program is

read (Chi, ChE, Ch3);

we obtain

'8' '9'

Chi Ch2 Ch3

WDN89|MJS 941 ■

Since we are reading character variables, the blank is read as a character
and the number 89 is read as two characters, '8' and '9'. Since these are
read as characters, you cannot perform arithmetic operations with them.
The pointer is now positioned at an end-of-line marker and you may

think that the three characters fMJS) can now be read by

read (Chi, ChE, Ch3);

66 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

However, this is incorrect because the end-of-line marker is read as a
blank and you actually obtain

M J

Chi Ch2 Ch3

WDN 89|MJS 941 ■

Some computers add a blank at the end of a data line in order to have an
even number of character positions. Thus, you may want to have a data
line be

WN89|

but when you enter the line, it could be stored as

WN89 I"

Check with your instructor regarding this feature of your machine.
When reading data from a stream input, you eventually get the pointer

positioned at the end-of-file marker. If you attempt to read more data, you
may get an error message such as

PROGRAM TERMINATED AT LINE 5 IN PROGRAM PRAC.

TRIED TO READ DATAt^l PAST EOS/EOF.

PRAC

A = UNDEF

When you see such a message, check your read statements to see if you
are trying to read past the end-of-file marker.
The material in Table 3.7 indicates what happens when an attempt is

made to read data into a variable location where the data type is different
from the data in the file.

TABLE 3.7

Results of reading
data of varying types

Variable Type Attempt to Read Result

integer integer Will read as expected

real Will read integer portion of
real

character Error message (unless the
character is a blank)

real integer Will read the integer and
convert it to a real

real Will read as expected

character Error message (unless the
character is a blank)

char integer Will read one position as a
character and advance the

pointer one position

real Will read one position as a
character and advance the

pointer one position

character Will read as expected

3.3 Input 67

Exercises 3.3 1. What must be included in the program heading in order to get data from an
input file?

2. Write a test program that will enable you to determine whether or not your
computer adds a blank at the end of a data line in order to have an even
number of positions per line. (Hint: read and write characters from short
lines of data.)

3. What is the difference between an end-of-line marker and an end-of-file

marker?

4. Assume that a stream input is as illustrated

18|19M| -14.3|J0|142.1F| ■

X);

Ch:5, X:1D:B);

and the variable declaration section of the program is

VAR

A, B : integer;
X, Y : real;

Ch : char;

What output would be produced from each of the following segments of
code? (Assume that the pointer is positioned at the beginning for each
problem.)

a. read (A);

read (B r Ch);

writeln (A:5/ B:5, Ch:5);

b. read (Ch);

write (Ch:ID);

readln (Ch);

writeln (Ch);

read (Ch);

writeln (Ch:lG);

c. read {A, B, Ch^ X);

writeln (A, B, Ch,

writeln (A:5, B:5,

read (Ch);

writeln (Ch:S);

d. readln;

read (Ch, Ch);

readln (Y);

writeln (Ch:5, Y:ID:B);

5. Using the same stream input and variable declaration section as in Exercise
4, indicate the contents of each variable location and the position of the
pointer after each segment of code is executed. Assume that the pointer is
positioned at the beginning for each problem.

a. read (Ch, A) ;

b. readln (Ch, A);

c. readln;

d. readln;

readln;

e. readln (A, B, Ch, X);

f. read (A, B, Ch, Y);
g. readln (A, Ch);

readln (Ch, Ch, B);
h. read (A, B, Ch, X, Ch);

68 ARITHMETIC. VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

6. Using the same stream input and variable declaration section as in Exercise
4, indicate which of the following will produce an error. For those that do,
explain why an error occurs.

a. read {X, Y) ;

b. readln (A);

read (B) ;

c. readln (Ch);

readln (Ch);

readln (Ch);

d. read (X/ K, Ch/ B/ Ch);

e. readln;

read (Ch/ Ch/ R/ Ch/ B);

7. Write a complete program that will read your initials and five test scores.
Your program should then compute your test average and print out all infor
mation in a reasonable form with suitable messages.

3.4

Using
Constants

OBTECTIVES

I to be aware of ap
propriate use of
constants

■ to be able to use

constants in

programs

1 to be able to format

constants

The word "constant" has several interpretations. In this section, it will
refer to values defined in the CONST definition subsection of a program.
Recall that a Pascal program consists of a program heading, a declaration
section, and an executable section. The declaration section contains a
variable declaration subsection, discussed in Section 3.2, and possibly a
constant definition subsection. When both are used, the CONST subsec
tion must precede the VAR subsection. We will now examine uses for
constants defined in the CONST subsection.

Rationale for Uses

There are many reasons to use constants in a program. If a number is to
be used frequently, the programmer may wish to give it a descriptive name
in the CONST definition subsection and then use the descriptive name
in the executable section, thus making the program easier to read. For
example, if a program included a segment that computed a person's state
income tax, and the state tax rate was 6.25 percent of taxable income, the
CONST section might include:

CONST

StateTaxRate = D-DEiBS;

This defines both the value and type for StateTaxRate. In the executable
portion of the program, the statement

StateXax := Income * StateTaxRate;

computes the state tax owed. Or suppose you wanted a program to com
pute areas of circles. Depending upon the accuracy you desire, you could
define pi "it" as

CONST

Pi = 3.1^15^;

You could then have a statement in the executable section such as

Area := Pi * Radius * Radius;

where Area and Radius are appropriately decleired variables.

3.4 Using Constants 69

Defined Constants and Space Shuttle Computing

An excellent illustration of the utilization of de- tions of the software on a mission-to-mission ba-

fined constants in a program was given by J. F. sis. For example, we've designed the software so
("Jack") demons, manager of avionics flight that characteristics like atmospheric conditions
software development and verification for the on launch day or different lift-off weights can be
space shuttle on-board computers. In an inter- loaded as initial constants into the code. This is
view with David Gifford, editor for Communi- important when there are postponements or last-
cations of the ACM, demons was asked: "Have minute payload changes that invalidate the orig-
you tried to restructure the software so that it inal inputs."
can be changed easily?"

His response was, "By changing certain data
constants, we can change relatively large por-

Another use of constants is for values that are currently fixed but subject
to change for subsequent runs of the program. If these are defined in the
CONST section, they can be used throughout the program. If the value
changes later, only one change need be made to keep the program current.
Some examples might be

CONST

MinimuraWage = 3.35;
SpeedLimit = tS;
Price = 0.75;

StateTaxRate = 0.01125;

Constants can also be used to name character strings that occur fre
quently in program output. Suppose a program needs to print two different
company names. Instead of typing the names each time they are needed,
the following definition could he used.

CONST

Companyl = 'First National Bank of America';
CompanyE = 'Metropolitan Bank of New York';

Companyl and Company2 could then be used in writeln statements.
Another situation could call for a constant defined for later repeated

use in making output more attractive. Included could be constants for
underlining and for separating sections of output. Some definitions could
be

CONST:

Underline = ' ' ;
Splats = '*+****♦♦♦************************* I ;

To separate the output with asterisks, the statement
writeln (Splats, Splats);

could be used. In a similar fashion

writeln (Underline);

could be used for underlining.

Formatting Constants

Formatting numerical constants is identical to formatting reals and inte
gers as discussed in Section 2.3. If the constant definition section contains

70 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

CONST

Pi = 3.1415S;

SpeedLlrait = 55;

then

writeln ('Pi is used as'. Pi:10:5);
writeln ('Speed limit is'/ SpeedLimit:<);

produces

Pi is used as 3.14155

Speed limit is 55

When character strings are defined as constants, a single positive integer
can be used for formatting. This integer establishes the field width for the
character string and right justifies the character string in the output field.
For example, suppose the constant definition section includes

CONST

Companyl = 'First National Bank of America';
CompanyE = 'Metropolitan Bank of New York';

' Underline = ' ' ;

If the program contains the program fragment

writeln; writeln;

writeln (Splats:50);
writeln;

writeln (Companyl:45);
writeln (anderline:45);
writeln;

writeln (CompanyE:44);
writeln (0nderline:45);
writeln;

writeln (Splats:5D);

these statements produce the output

First National Bank of America

Metropolitan Bank of New York

Ex6rciS6S 3.4 l. One use of constants is for values that are jused throughout a program but
are subject to change over time (minimum wage, speed limit, and so on).
List at least five items in this category that were not mentioned in this
section.

2. Assume the CONST definition section of a program is

CONST

CourseName = 'CPS 150';

TotalPts = 100;

Underline = ' ' ;

We want output as follows:

COURSE CPS 150 TEST #1

TOTAL POINTS 100

3.5 Standard Functions 71

Fill in the appropriate formatting positions in the following writeln
statements to produce the indicated output.

writeln ('COURSE:':?, CourseName: ,

writeln (Underline:);

writeln;

writeln ('TOTRL POINTS':IE, TotalPts:

TEST #1':13);

);

Using the same CONST definition section as in Exercise 2, what output is
produced by the following segment of code?

writeln;

writeln (CourseName:ID), 'TEST #2':2D);
writeln (Underline:<□);
writeln;
writeln ('Total points' :It, TotalPts:15);
writeln ('My score' :IE, S3:19);
writeln ('Class average':17, 6E.3:1<:1);

Use the constant definition section to define appropriate constants for the
following:
a. Your name.
b. Today's date.
c. Your social security number.
d. Your age.
e. The name of your school.
f. The number of students in your class. t ^
g. The average age of students in your class.
h. The average hourly wage of steelworkers.
i. The price of a new car.

7

5

H 3.5

Standard
Functions

OBJECTIVES

to understand rea
sons for having
standard functions
to be able to use
standard functions
in a program
to be able to use ap
propriate data types
for arguments of
standard functions

Some standard operations required by programmers are squaring numbers,
finding square roots of numbers, rounding numbers, and truncating num
bers. Because these operations are so basic, Pascal provides standard (built-
in) functions for them. Different versions of Pascal and other programming
languages have differing standard functions available, so you should al
ways check which functions can be used. Appendix 2 sets forth those
available in most versions of Pascal.

The standcu-d form for invoking (or calling) a function is

function name (argument]

where argument is a value or variable with an assigned value. A function
is invoked by using it in a program statement. If, for example, you want
to square the integer 5,

sqr(S)

produces the desired result.
The syntax diagram for this is

function name <I> argument

Many functions operate on numbers, starting with a given number and
returning some associated value. Table 3.8 shows five standard functions.

72 ARITHMETIC. VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

TABLE 3.8

Numeric function

calls and return

types

Function Call

Argument
Type

Type of
Return Function Value

sqr(argument] real or

integer
Same as

argument

Returns the square
of the argument

sqrt(argument) real or

integer

(nonnegative)

real Returns the square
root of the

argument

abs(argument) real or

integer

Same as

argument

Returns absolute

value of the

argument

round(argument) real integer Returns value

rounded to the

nearest integer

trunc(argument) real integer Returns value

truncated to an

integer

TABLE 3.9

Values of function

expressions

each with its argument type, data type of return, and an explanation of
the value returned.

Several examples of specific function expressions together with the
value returned by each expression are depicted in Table 3.9.

Expression Value

sqr(2) 4

sqr(5.□) 4.0

sqr(-3) 9

sqrt(25.D) 5.0

sqrt(SB) 5.0

sqrt(□.□) 0.0

sqrt(-a.□) Not permissible
abs(5.a) 5.2

abs(-3.<) 3.4

abs(-5) 5

round(3.7fl) 4

round(fl.50) 9

round(-4.a) -4

trunc(3.7fl) 3

trunc(fl.B) 8

trunc(-<.a) -4

Using Functions

When a function is invoked, it produces a value in much the same way
that 3 + 3 produces 6. Thus, use of a function should be treated similarly
to using constants or values of an expression. Since function calls are not

3.5 Standard Functions 73

complete Pascal statements, they must be used within some statement.
Typical uses are in assignment statements.

X := sqrt(lt..D);

output statements,

writeln (abs(-fl):5D);

or arithmetic expressions

X := round(3.7fl) + trunc(-<.l);

Arguments of functions can be expressions, variables, or constants.
However, be sure the argument is always appropriate. For example,

a := 3.2;

X := sqrt(trunc(A));

is appropriate, but

a := -3.2;

X := sqrt(trunc(a));

produces an error since trunc(-3.2) has the value -3 and sqrt(-3) is
not a valid expression.
The following example illustrates how functions can be used in

expressions.

EXAMPLE 3.3 value of the following expression:
4.2 + round(trunc(2.D * 3.1) + 5.3) - sqrt(sqr(-<.1));

The solution is

A.5 + round(truiic(2.D ♦ 3.1) + 5.3) - sort (sqr^-< . 1))
i 1

4.2 + round(trunc(b.2) + 5.3) - sqrt(lb.Q1)

i I

4.2 + rou nd (b . D i__5_;_3) — 4.1
I

4.2 + round(11.3) - 4.1

I

4.2 -f 11.□ - A.l
I

15.2 -
1

11.1 a

Character Sets

In addition to the numeric functions just examined, other functions can
have characters as arguments. Some of these return a character when called
and some return an integer.

Before we look at functions manipulating characters, we need to ex
amine the way in which character data are stored. In the char data type,
each character is associated with an integer. Thus, the sequence of char
acters is associated with a sequence of integers. The particular sequence
used by a machine for this purpose is referred to as the collating sequence
for that character set. Two such sequences currently in use are

1. American Standard Code for Information Interchange (ASCII) and
2. Extended Binary Coded Decimal Interchange Code (EBCDIC).

74 ARITHMETIC. VARIABLES. INPUT. CONSTANTS. AND STANDARD FUNCTIONS

Ac qg 1NTE11E$X

Herman Hollerith

Herman Hollerith (1860-1929) was hired by the
United States Census Bureau in 1879 at the age
of 19. Since the 1880 census was predicted to
take a long time to complete (it actually took
until 1887). Hollerith was assigned the task of
developing a mechanical method of tabulating
census data. He introduced his census machine

in 1887. It consisted of four parts:

1. a punched paper card that represented
data using a special code (Hollerith
code),

2. a card punch apparatus,
3. a tabulator that read the punched cards,

and

4. a sorting machine with 24
compartments.

The punched cards used by Hollerith were the
same size as cards still in use today.

Using Hollerith's techniques and equipment,
the 1890 census tabulation was completed in

one-third the time required for the previous cen
sus tabulation. This included working with data
for twelve million additional people.

Hollerith proceeded to form the Tabulating
Machine Company (1896). which supplied
equipment to census bureaus in the United States.
Canada, and western Europe. After a disagree
ment with the census director. Hollerith began
marketing his equipment in other commercial
areas. Hollerith sold his company in 1911. It was
later combined with twelve others to form the

Computing-Tabulating-Recording Company, a
direct ancestor of International Business Ma

chines Corp.
In the meantime. Hollerith's successor at the

census bureau, James Powers, redesigned the
census machine. He then formed his own com

pany. which subsequently became Remington
Rand and Sperry Univac.

Each collating sequence contains an ordering of the characters in a char
acter set and is listed in Appendix 4. For programs in this text, we use
the ASCn code. As shown in Table 3.10, fifty-two of these characters are
letters, ten are digits, and the rest are special characters.

TABLE 3.10

ASCII code
b! "#$%&'()* + , - . / G12345 6 789:;<=>?

ABCDE F GHIJKLMNOPQRSTUVWXYZ[\] t —'
abode f ghijklmnopqrs tuvwxyz{l}~

Note: Of the special characters. B is the symbol to denote a blank.

Character Functions

Ordering a character set requires associating an integer with each char
acter. Data types ordered in some association with the integers are known
as ordinal data types. Each integer is the ordinal of its associated character.
Integers are therefore considered to be an ordinal data type. Character sets
are also considered to be an ordinal data type, as shown in Table 3.11. In
each case, the ordinal of the character appears to the left of the character.

Using ASCII, as shown in Table 3.11, the ordinal of a capital a (A) is
65, the ordinal of the arable number one (1) is 49, the ordinal of a blank
(b) is 32, and the ordinal of a lowercase a (a) is 97.

Pascal provides several standard functions that have arguments of or
dinal type. These are listed in Table 3.12 together with a related function
chr that returns a character when called.

3.5 Standard Functions 75

TABLE 3.11

ASCII ordering of a
character set

Ordinal Character Ordinal Character Ordinal Character

32 b 64 @ 96 '

33 ! 65 A 97 a

34 " 66 B 98 b

35 # 67 C 99 c

36 $ 68 D 100 d

37 % 69 E 101 e

38 & 70 F 102 f

39
»

71 G 103 g

40 (72 H 104 h

41) 73 I 105 i

42 * 74 J 106 j
43 + 75 K 107 k

44 f 76 L 108 1

45 - 77 M 109 m

46 . 78 N 110 n

47 / 79 O 111 o

48 0 80 P 112 P
49 1 81 Q 113 q
50 2 82 R 114 r

51 3 83 8 115 s

52 4 84 T 116 t

53 5 85 U 117 u

54 6 86 V 118 V

55 7 87 W 119 w

56 8 88 X 120 .X

57 9 89 Y 121 y

58 : 90 Z 122 z

59 » 91 [123 {
60 < 92 \ 124 1
61 = 93] 125 }
62 > 94 T 126 ~

63 ? 95
—

Note: Codes 00-31 and 127 are nonprintable control characters.

TABLE 3.12

Function calls with

ordinal Etrguments or Function Call

Argument
Type

Type of
Result Function Value

character values ord(argument) Any ordinal type integer Ordinal corresponding
to argument

pred(argument) Any ordinal type Same as

argument

Predecessor of the

argument

succ(argument) Any ordinal type Same as

argument

Successor of the

argument

chr(argument) integer char Character associated

with the ordinal of the

argument

Again using the ASCII collating sequence shown in Table 3.11, we can
determine the value of these functions as shown in Table 3.13.

76 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

TABLE 3.13

Values of character

functions

Expression Value

ord('E') 69

ord('5') 57

ord(q) 9

ord('>') 62

pred('N') M

pred('A') @
succ('('))
succ('!')

9f

chr(74) J
chr(3E) b

chr(5R) 9

chr(114) r

Variables and variable expressions can be used as arguments for func
tions. For example, if Ch is a char variable and the assignment statement

Ch := 'D';

is made, then ord(Ch) has the value 68.
Let's now consider a short program that allows the use of standard

functions ord, pred, succ, and chr.

PROGRRM FunctionTest (output);

VRR

Ch : char;

BEGIN

Ch := 'C ;

writeln ('Ord
writeln

writeln

writeln

END.

of C is'

('Succ of C is
('Pred of C
('Chr of L7

is'

is'

ord(Ch):5);

succ(Ch):^);

. pred(Ch):^);
r chr(t7):A)

When this program is run, the output is

Ord of C is t7

Succ of C is D

Pred of C is B

Chr of t7 is C

You should obtain a complete list of characters available and their re
spective ordinals for your local system. Note particular features such as
when using EBCDIC, succ('R') is not'S'; and when using ASCII, chr(Ml is
nonprintahle for n< 32 or n > 126.

Exercises 3.5 Find the value of each of the following expressions:

a. abs(-11.5) + sqrt(round(lS.51))

b. trunc(abs(-l<.5))

c. A * 11 MOD (trunc(trunc(fl.'R) / sqrt(lt)))

d. sqr(17 DIV 5 + 2)

e. -5.0 + sqrt(5 *5-<*b) / S.D

f. 3.1 + D.E - abs(-<.2 * S.D / 3.D)

3.5 Standard Functions 77

2. Write a test program that illustrates what happens when an inappropriate
argument is used with a function. Be sure to include something like
ord(15.3).

3. Two standard algebraic problems come from the P5dhagorean theorem and
the quadratic formula. Assume variables a, b, and c have been declared in a
program. Write Pascal expressions that allow you to evaluate

a. the length of the hypotenuse of a right triangle
(Va2 +

b. one solution to a quadratic formula
—b ± — 4ac

2a

4. Indicate whether the following are valid or invalid expressions. Find the
value of those that are valid; explain why the others are invalid.

a. -b MOD (sqrt(lb))

b. a DIV (trunc(sqrt(b5)))

c. sqrt(b3 MOD (-2))

d. abs(-sqrt(sqr(3) + ?))

e. sqrt(lb DIV (-3))

f. sqrt (sqr(-4))

g. round(l'5.3a * ID) / ID

5. The standard function round permits you to round to the nearest integer.
Write an expression that permits you to round the real number X to the
nearest tenth.

6. Using ASCII, find the values of each of the following expressions:

a. ord(13 + A MOD 3)

b. pred(succ('E'))

c. succ(pred('E•))

d. ord(S)

e. ord('B')

f. chr(ord(' + '))

g. ord(chr(<G))

7. Assume the variable declaration section of a program is

VAE

X : real;

a : integer;
Ch : char;

What output is produced by each of the following program fragments?

a. X := -A.3;

writeln (X:b:E, abs(X):fc;2, trunc(X):b, round(X):b);
b. X := -A.3;

a := abs(round(X));

writeln (ord(a));

writeln (ord('a•));

c. Ch := chr(Eb) ;

writeln (Ch:5, pred(Ch):5, succ(Ch):5);

Writing styles and suggestions are gathered for quick reference in the
following style tip summary. These tips are intended to stimulate rather
than terminate your imagination.

78 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

STYLE TIP 1. Use descriptive identifiers.lilbrds—Sura, Score, Average—are easier td
luiderstand than letters—A, Bi G or X, Y, Z.

2. Constants can be used to Create heat, altiactive output. For eXaraple,

CONST

Splats =
Underline = •— — — i -

Border = ' * * ';

3. Use the constant defi^nitioh sectiph to defiue m appropriately named
blank and use it to control line spacing fPr output Thus, you could
have ■ ^

CONST

Skip = • ';
Indent = ' •;

and then oittput statemente cpvd^

writeln (Skip:20r message, Skip:iD, messagP);

or

writeln (Indent:20, raessage, Skip:ID, message);

4. As you write I^cal statements, use blanks for line spacipg ndtlun the
program. Spacing between words and expressions should resemble
t3^ical English usage. Thus,
PEOGRftM EarlyBird (inpht, output);

is preferable to

PitOGRaM EarlyBitd K { inpuM output);

5. Output of a column of reals should have decimal points in a line.

14.32

lai.BG

■q3.t3.

6. Output can be made more attractive by usihg columns, left and right
Triargins, underlining, and blank lines.

7. Extra writelns at the beginning and end of the executable section will
separate desired output from other messeges.
.^BEGIN ^

writeln; writeln;

- (program body here)

writeln; writPln
^END:.

Summary Key Terms

argument
assignment statement
batch processing
batch (stream) input
character set
collating sequence:

ASCII, EBCDIC
constant

end-of-file marker (eof)

end-of-line marker
(eoln)

input
integer arithmetic

operations: +, —,
MOD, DIV

interactive input
invoke (call)
memory location
mixed-mode expression

ordinal data type
overflow
prompt
real arithmetic

operations: +,
standard (built-in)

function
underflow
user-friendly
variable

*, /

Summary 79

Keywords

abs MOD round

chr ord sqr

DIV pred sqrt

eof read succ

eoln readln trunc

Key Concepts

B Operations and priorities for data of tjrpe integer and real are summarized as
follows:

Data Type Operations Priority

integer «, MOD, DIV 1. Evaluate in order from left to right
+ . — 2. Evaluate in order from left to right

real / 1. Evaluate in order from left to right
+ . - 2. Evaluate in order from left to right

Mixed-mode expressions return values of type real.
Priority for order of operations on mixed-mode expressions is
1. *, /, MOD, DFV in order from left to right
2. -f, — in order from left to right
Overflow is caused by a value too large for computing on a particular
machine.

Underflow is caused by a value too small (close to zero] for computing. These
numbers are automatically replaced by zero.
A memory location can have a name which can be used to refer to the con
tents of the location.

The name of a memory location is different from the contents of the memory
location.

Assignment statements are used to assign values to memory locations, for
example

Sura := 3D + tO;

Variables and variable expressions can be used in output statements.
read(ln) is used to get data from an input file; correct form is

read(ln) (variable name);
read(ln) (variable 1, variable 2, ... , variable n);
read (variable name) causes a value to be transferred to the variable location
and the input file pointer to be advanced to the first position following the
data item.

readln is used similarly to read except that it causes the input file pointer to
advance to the beginning of the next line of data after data have been read.
End-of-line markers are inserted at the end of each line of data (when "re
turn" is pressed).
An end-of-file marker is inserted after the end-of-line marker for the last line

of data.

Interactive input expects data items to be entered from the keyboard at appro
priate times during execution of the program.
Batch input expects data to be read from a file previously created.
Data types for variables in a read or readln statement should match data
items in the input file.
Appropriate uses for constants in the CONST definition section include fre
quently used numbers; current values subject to change over time, for exam
ple, (MinimumWage = 3.50); and character strings for output.

80 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

a Character strings are formatted using a single colon.
□ Five standard numeric functions available in Pascal are sqr, sqrt, abs, round,

and trunc.
□ Functions can be used in assignment statements, for example

X := sqrt(lt.□);

in output statements

writeln (abs(-fl):50);

and in arithmetic expressions

X := round(3.7fl) + trunc(-<.l);

□ Four standard character functions available in Pascal are ord, pred, succ, and
chr.

■ Programming Write a complete Pascal program for each of the following problems. Each
Problems program should use one or more read or readln statements to obtain

necessary values. For interactive programs, each read or readln should
be preceded by an appropriate prompting message.

1. Susan purchases a computer for $985. The sales tax on the pur
chase is 5.5 percent. Compute and print the total purchase price.

2. Find and print the area and perimeter of a rectangle that is 4.5 feet
long and 2.3 feet wide. Print both rounded to the nearest tenth of a
foot.

3. Compute and print the number of minutes in a year.
4. Light travels as 3*10® meters per second. Compute and print the

distance that a light beam would travel in one year. (This is called
a light year.)

5. The 1927 New York Yankees won 110 games and lost 44. Compute
their winning percentage and print it rounded to three decimal
places.

6. A 10 kilogram object is traveling at 12 meters per second. Compute
and print its momentum (momentum is mass times velocity).

7. Convert 98.0 degrees Fahrenheit to degrees Celsius.
8. Given a positive number, print its square and square root.
9. The Golden Sales Company pays its salespeople $.27 for each item

they sell. Given the number of items sold by a salesperson, print
the amount of pay due.

10. Given the length and width of a rectangle, print its area and
perimeter.

11. The kinetic energy of a moving object is given by the formula:

KE = (l/2)inv2

Given the mass (m) and the speed (v) of an object, find its kinetic
energy.

12. Miss Lovelace wants a program to enable her to balance her check-
hook. She wishes to enter a beginning balance, five letters for an
abbreviation for the recipient of the check, and the amount of the
check. Given this information, write a program that will find the new
balance in her checkbook.

Programming Problems 81

13. A supermarket wants to install a computerized weighing system in
its produce department. Input to this system will consist of a three-
letter identifier for the type of produce, the weight of the produce
purchase (in pounds), and the cost per pound of the produce. Print
a label showing the input information along with the cost of the
purchase. The label should appear as follows:

Penny Spender Supermarket
Produce Department

ITEM WEIGHT COST/lb COST

ABC 5.0 lb $i.qa

Thank you!

14. The New-Wave Computer Company sells its product, the NW-PC for
$675. In addition, they sell memory expansion cards for $69.95, disk
drives for $198.50, and software for $34.98 each. Given the number
of memory cards, disk drives, and software packages desired by a
customer purchasing an NW-PC, print out a bill of sale that appears
as follows:

New Have Computers

ITEM COST

1 NW-PC $t7S.DD

5 Memory card 131.=!□
1 Disk Drive llfl.SO
4 Software 131.15

TOTAL $1153.35

15. Write a test program that allows you to see the characters contained
within the character set of your computer. Given a positive integer,
you can use the chr function to determine the corresponding char
acter. On most computers, only integers less than 255 are valid for
this. Also, remember that most character sets contain some unprint
able characters such as ASCII values less than 32. Print your output
in the form:

Character number nn is x.

G«]PTiER

Designing and
Writing Complete
Programs

m 4.1

Writing Code

We are now at the stage where we can begin a thorough look at
writing more elaborate programs. Chapter 2 gave us the three basic

components of a program: program heading, declaration section, and ex
ecutable section. Chapter 3 provided some additional tools for use in
constructing programs, specifically, the use of variables, input, constants,
and standard functions. Before using these ideas to write programs to
solve problems, however, we need to look at the method in which pro
grams should be constructed. Oversimplified, but absolutely essential, the
idea is to design the program and write code for the program. You should
never start writing code to solve a problem imtil you have an adequately
designed solution. In this chapter, we will see how the writing of code
follows in a natural fashion from a carefully designed algorithm. We will
then look at typical errors, which include both mechanical errors (syntax,
declaration, assignment, and so on) and logic errors (why your program
doesn't solve the problem).

■ . ,i Writing Code from Pseudocode
to be able to write

code from

pseudocode
° to be able to use

program comments
° to be able to use in

denting and blank
lines to enhance

readability

The process of writing statements that are part of a program to solve a
problem is referred to as writing code. This expression is commonly used
and we will use it throughout the text. To illustrate the idea of writing
actual code to solve a problem from an algorithm developed using pseu
docode, consider the problem of computing your bowling score for an
evening. Assume you are to read in three integer scores, compute their
average, and print out the scores together with the average, A design for
this problem is shown in Figure 4.1.

82

4.1 Writing Code 83

FIGURE 4.1

Top-down design

Read in
scdies

Main Task

Get scores

Perform cofoputatibns
Print results

I t
Perfomi
cbmputaticrns

I t I t

Print
results

Conipute
total

Compute
average

Print

scores

Print

average

Corresponding pseudocode is

1. Read in Scorel, Score2, and ScoreS
2. Compute

2.1 let Sum = Scorel + Score2 + ScoreS
2.2 let Average = Sum divided by 3

3. Print results

3.1 print scores
3.2 print average

Assuming Scorel, Score2, and ScoreS have been declared as integer vari
ables, then

1. Read in Scorel, Score2, ScoreS

is coded as

read (Scorel/ ScoreE/ ScoreB);

Assuming Sum and Average have been declared as integer and real vari
ables, respectively, then

2.1 let Sum = Scorel + Score2 + ScoreS

2.2 let Average = Sum divided by 3

is coded as

Sura := Scorel + Score2 + ScoreB;
Average := Sura / B.D;

The third line of pseudocode,

3. Print results

requires us to know the desired form for the output. For example, assume
we would like the following output produced:

Garae Score

15D

17fl

lt2

Your series total is

The average score is ItB.BB

84 DESIGNING AND WRITING COMPLETE PROGRAMS

Before writing code for this you need to be aware of the significance of
being able to produce attractive output. Many students feel that just getting
the desired information printed is a sufficient accomplishment. This is
not true! It is extremely important that you develop good habits with
respect to producing clear, attractive output. Some ideas to consider include:

1. Use writeln to produce blank lines where appropriate.
2. Use writeln (' ') with the appropriate number of underscores

for underlining.
3. Move the output in from the left margin of the page.
4. Use appropriate left margins and columns for various sections of

the output.
5. Use descriptive headings and messages.

Consider the problem of writing code for the problem just described.
If the constant definition section includes

CONST

Skip = • ';

the output can be accomplished by using writeln statements as follows;
writeln (Skip:!*:!/ 'Game', Skip:t, 'Score');
writeln (SkiprlR, ' '/ Skiprt, ' ');
writeln;

writeln (1:SS/ Scorelzll);
writeln {E:52, ScoreEill);
writeln (3:52/ Score3:ll);
writeln;

writeln (Skip:lR/ 'Your series total is'r Sumrfl);
writeln (Skip:1*1/ 'The average score is'# average:a:2);
writeln;

Each line of pseudocode has now been translated into Pascal statements,
so we can write a complete program using five variables (Sum, Scorel,
Score2, ScoreS, and Average) to solve the problem. The program follows.

PROGRaH Bowling (input# output);

CONST

Skip = ' ';

vaR

Scorel# ScoreE# Score3 : integer;
Sum : integer;
average : real;

BEGIN

read (Scorel# ScoreE# ScoreB);
Sum := Scorel + ScoreE + ScoreB;
average := Sum / B.D;
writeln; writeln;
writeln (Skip:lR# 'Game'# Skip:b# 'Score');
writeln (Skip:ll# ' '# Skip:t# ' ');
writeln;
writeln (1:EE# Scorel:ll);
writeln (2:22# Score2:ll);
writeln (B:22# ScoreB:ll);
writeln;
writeln (Skip:11# 'Your series total is'# Sura:a);
writeln (Skip:11# 'The average score is'# average:fl:2);
writeln

END.

4.1 Writing Code 85

When this program is run on the computer, we obtain the following output.

Game Score

1 150

2 17fl

3 1G2

Your series total is

The average score is 1G3.33

Program Comments

Programming languages typically include some provision for putting com
ments in a program. These comments are nonexecutable and are used to
document and explain various parts of the program. In Pascal, the form
for including comments in a program is either

. comment. . . }
or

(♦. . . comment. . . ♦)

You should check with your instructor to see which form is preferred.
As you write more sophisticated and complex programs, you will see

the need for documentation and comments. Let's now go back to PRO
GRAM Bowling and see how comments could be used to enhance read
ability of the program.
The line of code

writeln;

causes the printer to skip one line; a line comment could be used to explain
this. Thus, the line of code could be

writeln; < Skip one line >

Since comments are nonexecutable, the output is not affected but the
program is now more readable.
A second major use of comments is for program documentation. Sup

pose your instructor would like you to include the following as part of a
program but not as part of the output.

Course number

Assignment number
Due date

Author

Instructor

This documentation is frequently included immediately after (or before)
the program heading and could be written as either a single comment or
a series of comments. A sample documentation section is

i Course Number CPS 15D }

{ Assignment One >
< Due Date Sept. 20 }
< Author Mary Smith >
< Instructor Dr. Jones >

These comments do not affect the output; they merely enhance readability.
You should try several ways to include comments within a program. You

86 DESIGNING AND WRITING COMPLETE PROGRAMS

are limited only by your imagination and your instructor's wishes. Let's
now rewrite PROGRAM Bowling using a documentation section and other
comments within the program.

PROGRAM Bowling (input, output);
Course Number CPS 150

Assignment One
Due Date Sept. SO
Author Mary Smith
Instructor Dr. Jones

CONST

Skip = ' •;
VAR

Scorel, Scores, Score3 : integer;
Sum : integer;
Average : real;

BEGIN { Main program >
read (Scorel, Scores, Scores);
Sum := Scorel + Scores + Score3;

Average := Sum / 3.0;
writeln; writeln;
writeln (Skip:lR, 'Game', Skip:L,
writeln (Skip:19, ' ', Skip:t, '
writeln;
writeln (1:SS, Scorelill);
writeln (S:SS, Scores:11);
writeln (3:SS, Scores:11);
writeln;

writeln (SkiprlR, 'Your series total is'
writeln (SkipilR, 'The average score is'
writeln

END. { of main program >

'Score');
• I);

Get the scores

{ Print heading >

Print the results

Sum:d);

Average:a:S);

Program Style

When writing a program, a major point to remember is to make your
program easy to read. Three commonly used methods for doing this are
indenting sections of code, using blank lines, and using program comments.

First, indenting is used to identify sections of code and should roughly
correspond to the indenting implied by pseudocode. No standard exists
regarding the number of spaces to use for indenting. However, we find
that one space makes programs difficult to read, and four or more spaces
sometimes does not leave sufficient space for complicated programs. All
sample programs in this text will use two spaces for indenting.
Many programmers use the leftmost column for the reserved words

PROGRAM, CONST, VAR, BEGIN, and END where BEGIN and END de
note the start and finish of the executable portion of the program. Other
statements are indented at least two spaces. This does not affect the pro
gram; it simply makes it easier to read.
A second stylistic technique is to use blank lines to separate sections

of code. The use of blank lines is not standardized; it depends on your
preference for readability. A note of caution, however; too many blank
lines can be distracting. To illustrate how blank lines may be used, con
sider the following version of the previous program to compute bowling
scores.

4.1 Writing Code 87

PROGRRM Bowling (input/ output);
Course Number CPS 15D

Assignment One
Due Date Sept. ED
Author Mary Smith
Instructor Dr. Jones

CONST

Skip = ' ' ;

VAR

Scorel/ Scores/ ScoreB

Sum : integer;
Average : real;

integer;

Get the scores

BEGIN < Main program >
read (Scorel/ ScoreE/ ScoreB);

Sum := Scorel + ScoreE + ScoreB;

Average := Sum / B.D;

writeln; writeln;

writeln (SkipilR/ 'Game*/ Skip:b, 'Score'); i Print heading >
writeln (SkiprlR/ ' '/ Skip:b/ ' ');
writeln;

writeln (1:EE/ Scorel:11); i Print the results >
writeln (S:EE/ ScoreErll);

writeln (B:ES/ ScoreBrll);
writeln;

writeln (SkipilR/ 'Your series total is'/ Sumrfl);
writeln (Skip:19, 'The average score is'. Average:fl:E);
writeln

END. < of main program >

Since this is such a short program, you may not see much difference in
readability between this and the version before it; but blcuik lines have
been used to separate all sections of the program and parts within the
executable section.

A third method for enhancing readability is the use of program com
ments for program description, a variable dictionary, and section com
ments. Let's first consider the problem of describing the program. Each
program should contain some description of what the program does. The
program description generally follows the program heading. You will re
alize the necessity for such descriptions as you accumulate a group of
programs. Using our bowling problem, a program description could be

This is one of our early complete Pascal
programs. It solves the problem of
listing bowling scores and computing the
total and average. In addition to this,

version will contain an initial

develop a programming style
the final

effort to

using
1.

E.

B.

Indenting
Blank lines

Program comments

Another relatively standard use of program comments is to establish a
variable dictionary. In short programs, the need for this is not obvious;
however, it is essential for longer programs.

88 DESIGNING AND WRITING COMPLETE PROGRAMS

Several styles are used for describing variables. One method is to use
comments on the same line as the variables in the variable declaration
section. For example, for the bowling problem, you might use

VRR

Scorel/ Scores, ScoreS : integer; ■(Scores for games >
Sum : integer; { Sum of the scores >
Average : real; < Average of game scores >

A second method is to use a separate comment section preceding the
variable declaration section, such as

Variable Dictionary

Average Average game score
Scorel Score for game one
Scores Score for game two
Scores Score for game three
Sum Sura of the scores

You are encouraged to try both styles of describing variables as well as
any variation you might like.

Another use of program comments is to describe what a section of code
is to do. In PROGRAM Bowling, the executable section consists of three
sections: get data, perform computations, and produce output. A comment
block could be used to describe what happens in each portion of the
program.

i Get the scores >

■(Perform the computations >

i Print the heading >

{ Print the results >

At this stage, you may be thinking that developing a style for writing
programs was the subject of Shakespeare's play Much Ado About Nothing
since none of these suggestions has anything to do with whether or not
a program runs. Not true. It is fairly easy to leam to write short programs.
As you continue your study of computer science, you will accumulate
programs that are progressively longer and more complex. Thus, you should
begin now to develop a concise, consistent style for writing programs.

Now we will incorporate all the previous suggestions for writing style
into PROGRAM Bowling.

PROGRAM Bowling (input, output);

Course Number
Assignment
Due Date
Author
Instructor

CPS ISO
One
Sept. 20
Mary Smith
Dr. Jones

4.1 Writing Code 89

Program Comments

This is one of our early complete Pascal programs. It
solves the problem of listing bowling scores and
computing the total and average. In addition, the
final version contains an initial effort to develop a
programming style using

1. Indenting
E. Blank lines

3. Program comments

CONST

Skip = ' •;

VAR

Scorel, Scores, ScoreB

Sum : integer;
Average : real;

BEGIN < Main program >
read (Scorel, Scores, ScoreB);

Sum := Scorel + Scores + ScoreB;

Average := Sum / B.D;

writeln (Skip:IS, 'Game', Skiprt,
writeln (Skip:lS, ' •, Skip:t>,

writeln;

integer;
< Variable Dictionary >
i Scores for three games }
•{ Sum of the three scores }

{ Average game score }

Get the scores

' Score'); •(
I I);

Print a heading >

Print the resultswriteln (1:SS, Scorelill);
writeln (S:SS, ScoreSrll);

writeln (BrSS, ScoreBcll);

writeln;

writeln (SkipilS, 'Your series total is', Sumifl);
writeln (Skip:IS, 'The average score is'. Average:fl:S);
writeln

END. i of main program >

When this program is run, the output is

Game Score

15D

17fl

IbS

Your series total is <SD

The average score is ItB.BB

EXAMPLE 4.1 Let's conclude this section by writing a program to compute the wages for an
employee of a company. The following questions will need to be answered:

1. Is the employee salaried or hourly?
2. What is the wage rate?
3. How many units (hoiu*s, weeks, and so on) in a pay period?
4. What deductions need to be taken from the total wage?
5. What information needs to be included as part of the output?

We will assume these questions are answered as follows:

1. Hourly
2. $12.75 per hour

90 DESIGNING AND WRITING COMPLETE PROGRAMS

3. 40 hours

4. Union dues, social security (FICA), federal withholding tax, and state
withholding tax

5. Hours worked, wage rate, list of deductions, total deductions, gross pay,
and net pay

You cannot yet start solving this problem because you need to know more. What
are the union dues? What are the rates for the other three deductions? This in

formation will be provided later. Typical output would be

Tite Packing Company

Employee name: Frederick Adamson

Hours worked: AU

Hourly wage: 15.75

Gross pay: 510.□□

Deductions:

Union dues t.SD
PICA 55.50
Federal tax at.70
State tax 51.53

Total deductions 140.t3

Net pay $ 3t5.37

Algorithm Development

Now that the problem is sufficiently defined, we can develop an algorithm
for its solution. We will continue using pseudocode with stepwise re
finement in developing our algorithms. An initial algorithm for this prob
lem is I

1. Get information from the company
2. Compute gross pay
3. Compute deductions
4. Compute net pay
5. Print check

Module specifications for the five main modules are
1. Get Data Module

Data received: None
Information returned: Hours worked

Hourly rate
Logic: Use read statements to get data.

2. Compute Cross Pay Module
Data received: Hours worked

Hourly rate
Information returned: Cross pay
Logic: Compute product of hours worked and hourly rate.

4.1 Writing Code 91

A NOTE OF INTEREST

Documentation Emplo3rment

The rapidly growing use of software and user-
friendly systems has created a new job market.
A need for user-friendly documentation has cre
ated a group of specialists referred to as technical
writers or documentation teams. These writers

must have a good background in computer sci
ence or m^agement information systems as well

as the ability to write clearly and concisely. Their
responsibilities include writing instructions, de
scriptions, and explanations for user's manuals.

The need for these writers is growing because
of customer demands concerning usability of
products. Major companies that employ such
writers include IBM, DEC, and Bell Laboratories.

5.

Compute Deductions Module
Data received: Gross pay

Deductions

Deduction rates

Information returned: Sepeirate deductions
Total deductions

Logic: Use defined constants to compute deductions.
Sum deductions to get total.

Compute Net Pay Module
Data received: Gross pay

Deduction total

Information returned: Net pay
Logic: Subtract deductions from gross pay.
Print Check Module

Data received: Gross pay
All deductions

Total deductions

Net pay
Information returned: None

Logic: Use writeln statements to produce the desired output.
A structure chart for this problem is given in Figure 4.2.
A second-level pseudocode solution is

1. Get information from the company
1.1 number of hours

1.2 hourly rate
2. Compute gross pay
3. Compute deductions

3.1 union dues

3.2 social security (PICA)
3.3 federal withholding tax
3.4 state withholding tax
3.5 get total deductions

4. Compute net pay
5. Print check

5.1 list gross pay
5.2 list deductions

5.3 list total deductions

5.4 list net pay

C
O

t
o

o

F
I
G
U
R
E
 4
.
2

S
t
r
u
c
t
u
r
e
 c
h
a
r
t
 f
or

C
o
m
p
u
t
e
W
a
g
e

p
r
o
g
r
a
m

G
e
t

d
a
t
a

I
 t

C
o
m
p
u
t
e

g
r
o
s
s
.
p
a
y

M
a
m

C
o
m
p
u
t
e

d
e
d
u
c
t
i
o
n
s

I
 t

C
o
m
p
u
t
e

n
e
t
 p
a
y

P
r
i
n
t

c
h
e
c
k

t
t

 \
t

 1
t

 1
t

 i
t

 i
t

 i
1

1
1

N
u
m
b
e
r

b
f
l
i
b
u
r
s

H
o
u
r
l
y

r
a
t
e

U
n
i
o
n
,

d
u
e
s

P
I
C
A

F
e
d
e
r
a
l

wi
th
ho
id
in
g

S
t
a
t
e

wi
th
ho
ld
in
g

T
o
t
a
l

d
e
d
u
c
t
i
o
n
s

G
r
o
s
s

p
a
y

D
e
d
u
c
t
i
o
n

li
st

T
o
t
a
l

d
e
d
u
c
t
i
o
n
s

N
e
t

p
a
y

4.1 Writing Code 93

We now need to decide if further refinement is needed. Since each

pseudocode line can be implemented in a relatively direct fashion, some
programmers might choose to make no further refinements. However, we
will further refine step 5.2 to obtain

5.2 list deductions

5.2.1 union dues

5.2.2 social security (PICA)
5.2.3 federal withholding tax
5.2.4 state withholding tax

The data for this problem are

Number of hours = 40

Hourly rate = $12.75
Union dues = $6.50

Social security rate (PICA) = 5%
Pederal withholding rate = 17%
State withholding rate = 4.3%

The pseudocode is translated into lines of code by

1. Get information from company

readln (NumHours/ HourlyRate);

2. Compute gross pay

GrossPay := NumHours * HourlyRate;

3. Compute deductions

UnlonDues := G.50;

PICA := GrossPay * D.DS;

FederalTax := GrossPay * □.!?;
StateTax := GrossPay *
TotalDeduc := OnionDues + PICA + PederalTax + StateTax;

4. Compute net pay
NetPay := GrossPay - TotalDeduc;

5. Print Check

Several writein statements, with suitable formatting, go here.
A program to solve this problem can now be written incorporating

previous suggestions of writing style.
PROGRAM ComputeWage (input, output);

This program is designed to compute the wage for an hourly
worker. Information for the employee is obtained,
deductions are computed and totaled, the net pay is
computed, and all information is printed in a reasonable
manner.

CONST
CorapanyName = 'Tite Packing Company";
EmployeeName = 'Frederick Adamson' ;
Underline = ' ' ;
Indent = ' ';
OnionDues = G.5D;
PICARate = 0.05;
StateTaxRate = D.DO;
PedTaxRate = 0.17;

Withholding for federal tax
Withholding for social security
Pay before deductions
Hourly wage rate
amount due employee
Withholding for state tax
Sum of deductions

Hours worked by employee

94 DESIGNING AND WRITING COMPLETE PROGRAMS

VAR

FederalTax/

PICA,

GrossPay,

HourlyRate,
NetPay,
StateTax,

TotalDeduc : real;

NumHours : integer;

BEGIN i Main program >

■C Get data >

writeln ('Please enter hours worked and hourly rate.');
writeln ('Press <RETURN> when finished.');
readln (NumHours/ HourlyRate);

i Compute gross pay >

GrossPay := NumHours ♦ HourlyRate;

■{ Compute deductions >

PICA := GrossPay * PICARate;
PederalTax := GrossPay ♦ PedTaxRate;
StateTax := GrossPay * StateTaxRate;
TotalDeduc := OnionDues + PICA + PederalTax + StateTax;

■{ Compute net pay >

NetPay := GrossPay - TotalDeduc;

< Now print all information }

writeln; writeln;
writeln (Indent:3D/ CompanyName);
writeln (Indent:3D/ Underline, Underline);
writeln;
writeln (Indent:lR, 'Employee name: ', EmployeeName:2D);
writeln;
writeln (Indent:lR, 'Hours worked: ', NumHours:17);
writeln (IndentrlR, 'Hourly wage:', HourlyRate:21:E);
writeln;
writeln (Indent:lR, 'Gross pay: ', GrossPay:33:2);
writeln;
writeln (Indent:lR, 'Deductions: ');
writeln;
writeln (Indent:21, 'Union dues' , UnionDues:21:2);
writeln (Indent:21, 'PICA', PICA:27:2);
writeln (Indent:21, 'Federal tax', PederalTax:20:2);
writeln (Indent:21, 'State tax', StateTax:22:2);
writeln (' ' : 52);
writeln;
writeln (Indent:21, 'Total deductions', TotalDeduc:15:2);
writeln;
writeln (Indent:15, 'Net pay', '$' :2a, NetPay:fl:2);
writeln (' ' : t2)

END. i of main program >

> 1

4.1 Writing Code 95

Output from this program is

Please enter hours worked and hourly rate.
Press <RETnRN> when finished.

AO IS.75

Tite Packing Company

Employee name: Frederick Adamson

Hours worked: AD

Hourly wage: 15.75

Gross pay: 510.□□

Deductions:

Union dues b.5D
FICA 55.5D
Federal tax fi t.70
State tax 51.53

Total deductions KD.tB

Net pay $ 3b5.37

Exercises 4.1 l. Assume that each of the following are lines of pseudocode. Write Pascal
statements for each.

a. Add the scores from Testl, Test2, Tests, and Test4
b. Let Average = Total divided by 4
c. Let Totallncome = Salary plus Tips
d. Let Time = Distance divided by Rate
e. Let Grade = TotalPoints divided by 6
f. Write out your name, TotalPoints, and Grade
g. Write out NumberAttending, TicketPrice, and TotalReceipts

2. Assume the output for a program to compute parking lot fees is to contain
a. Vehicle type (car or truck) d. Total time
b. Time in e. Parking fee
c. Time out

Use writeln statements to produce a suitable heading for this output.

3. Given the following algorithm in pseudocode form, write a complete pro
gram that will compute the volume of a box.
1. Assign dimensions
2. Compute volume
3. Print results

3.1 dimensions
3.2 volume

4. List four uses for program comments.

5. Discuss variations in program writing styles for each of the following:
a. Using blank lines.
b. Using program comments.
c. Writing variable dictionaries.

96 DESIGNING AND WRITING COMPLETE PROGRAMS

6. Use program comments to create a program description section that might be
used to solve the problem of computing semester grades for a class.

7. Which of the following are valid forms for program comments?

a. •C message here }

b. (* *)

(* message here *>

(* *)
c. (*

message here

* message here *)

* ♦

♦ message here ♦
* *

(* *

*

*)

*)

*)

♦)
*)

*)

*}

message here *}

»}

(*

(*

(*
*

*

*

*

message here

message here

i*

{*\ ̂ I

S 4.2

Procedures for

Output

OBTECTIVES

IB to understand the

idea of a

subprogram
B to be aware of some

uses for procedures
a to be aware of dif

ferences in

procedures
□ to understand the

form for a
procedure

B to be able to use a
procedure in a
program

This section is a slight departure from most other presentations of material
for a Pascal course. Some texts discuss the complete use of subprograms
relatively late in the text because using subprograms is somewhat ad
vanced. Disadvantages of such placement include: (1) a major concept
must be assimilated and used in a short period of time; and (2) some early
problems that could be readily solved using subprograms use different
solutions instead. In an attempt to avoid these disadvantages, some texts
include material on subprograms very early in the sequence of topics.
This, however, presents some new problems since a complete presentation
involves sophisticated use of variables and can be a stumbling block for
some students.

We will avoid some of the problems in early and late introductions to
subprograms by examining a limited use of them in this chapter to help
make you comfortable with the basic ideas of their design and use. In
Chapter 7 we will expand our understanding of subprograms with a com
plete discussion of their uses in problem solving and program design.

Concept of a Subprogram

The idea of a subprogram is not difficult to understand. It is a program
within a program and is provided by most programming languages. Each

4.2 Procediires for Output 97

subprogram should perform some task; the nature of that task can range
from simple to complex. You could have a subprogram that prints only a
line of data, or you could write an entire program as a subprogram. The
main idea is that a subprogram is used to perform some task. At present,
we will use them only for relatively small tasks.

Pascal provides for two kinds of subprograms: functions and proce
dures. You already used some built-in functions in Chapter 3 and in
Chapter 7 you will learn how to write your own functions. Therefore, for
now, we will discuss a limited use of procedures.

Uses for Procedures

A procedure can be used as a subprogram in a variety of ways. Two
significant uses are to facilitate the top-down design philosophy of prob
lem solving and to avoid having to write repeated segments of code.

Procedures facilitate problem solving. For instance, if the pseudocode
solution to a problem is

1. Get the data

2. Process the data

3. Print the results

a procedure can be written for each of these tasks and the program can
then call each procedure as needed. The idea of using a procedure to
implement a line of pseudocode is very important and, as you develop
more programming skills, will become an integral part of how you write
a program.

The second use of procedures is for the repeated use of several lines
of code throughout a program. A procedure can be written using those
several lines of code, and whenever that task is needed, a single call to
the procedure suffices. We will see examples of this type of procedure
later in this section.

Kinds of Procedures

Generally, procedures can be categorized into two types: those that use
parameters and those that do not. There are several variations of proce
dures that use parameters, and we will discuss them in Chapter 7. At this
point, we will examine only procedures that do not use parameters. This
is a very restricted use of procedures, for our procedures will not use
variables or variable values. But you will at least be familiar with pro
cedures before the presentation in Chapter 7.

Form for a Procedure

Let's now see how a procedure is written. Basically, a procedure is a
program and, as such, it has the same divisions as a complete program.

Procedure heading []

Declaration section —>

(optional) L

Executable section —>

98 DESIGNING AND WRITING COMPLETE PROGRAMS

The procedure heading must contain the reserved word PROCEDURE
followed by the procedme neune, which can be any valid identifier. Since
no parameters are used at this point, the form for a procedure heading is

PROCEDURE procedure name;

It is important to develop the habit of using descriptive names for
procedures. For example, if you are going to write a procedure to print a
heading for the output, PrintHeader might be a good choice. This allows
you to recognize the task the procedure is supposed to accomplish and
makes the program more readable. Each of the following would be a
reasonable, descriptive procedure heading.

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PrintHeader;

GetData;

CoraputeTax;
TotalPoints;

PrintScores;

PrintCourselnfo:

The declaration section of a procedure is identical to the declaration
section of a program containing CONST and VAR subsections.
The executable section of a procedure resembles the executable section

of a program in that it must start with the reserved word BEGIN, but it
differs in a significant way: the END of a procedure is followed by a
semicolon instead of a period. Thus, a procedure will have the following
basic form:

PROCEDURE procedure name;

CONST

(list of constants)

VRR

(list of variables)

BEGIN

(body of procedure)

END;

The syntax diagram for this is

bodydeclaration part

Constemts and variables declared in a procedure can only be used within
that procedure and cue said to be local to that procedure (see Chapter 7).

Let's look at one quick procedure before our next example. What will
the following procedure do?

PROCEDURE Skip3;

BEGIN

writeln; writeln; writeln

END;

The procedure skips three lines in the output.

/

4.2 Procedures for Output 99

EXAMPLE 4.2; Suppose you are writing a program for Our Lady of Mercy Hospital. The program
is to print a billing statement for each patient as the patient leaves the hospital.
Let's write a procedure that prints a heading for each statement as follows:

//

/

/ Our Lady of Mercy Hospital

/

/ 13Db Central City
/ Phone (<lt) 333-5555

/

//

The procedure that will do this is

t************♦*********♦*********************»*♦♦*****♦***»♦****>

PROCEDURE StatementHeading;

CONST

Marks = •///' ;
Edge = •/ / ' ;
Skip = ' • ;

BEGIN

writeln; writeln;
writeln (Skip:lD/ Marks);
writeln (Skip:10/ Edge);
writeln (SkiprlD/ '/'/ Skip:?, 'Our Lady of Mercy Hospital', Skip:L, '/');
writeln {Skip:lD, '/', Skip:?, ' ', Skip:t, '/•);
writeln (Skip:lD, Edge);
writeln (Skip:lD, '/', Skip:ll, '13Db Central City', Skip:ll, '/');
writeln (Skip:lD, '/', Skip:lD, 'Phone (41t) 333-5555', Skip:q, '/');
writeln (Skip:lD, Edge);
writeln (Skip:lD, Marks);
writeln; writeln

END; { of PROCEDURE StatementHeading }

Placement in a Program

Procedures are placed in the declaration section after the variable dec
laration subsection in a program. Thus, a full program with a procedure
would have the following form:

PROGRAM program name (output);

CONST

VAR

PROCEDURE procedure name;

CONST

VAR

BEGIN { PROCEDURE }

(body of procedure)

END; < of PROCEDURE }

100 DESIGNING AND WRITING COMPLETE PROGRAMS

BEGIN { Main program }

(body of program)

END. { of main program }

Using procedures in a program can make a program harder to read
unless you enhance the readability by using comments, blank.lines, and
indenting. You should develop a style with which you are comfortable.
Most examples in this text will use the following style:

1. Procedures will be preceded and followed by a row of asterisks.
2. A comment section separated by blank lines will follow the pro

cedure heading.
3. Except for the procedure heading, the procedure code will be

indented.

Therefore, our general form for putting a procedure in a program will be

PROGRAM program name (output);

CONST

VAR

<***********************♦**>

PROCEDURE procedure name;

< A brief description of the procedure }

CONST

VAR

BEGIN

(body of procedure)

END; •(of PROCEDURE procedure name >

{*****♦**♦***********>

•{ Now start the main program >

BEGIN f Main program >

(body of main program)

END. •{ of main program >

Calling a Procedure

Now that you know how to write a procedure and where it belongs in a
program, you need to know how to call the procedure from the main
program. Since no parameters will be used in procedures at this point, a
procedure name as a statement in the main program will cause the pro
cedure to be executed by the computer. For example, if PrintHeader is the
name of a procedure.

4.2 Procedures for Output 101

BEGIN { Main program >
PrintHeader;

(remainder of program)

END. { of main program >

will cause the procedure PrintHeader to be executed first in the main
program.

When a procedure name is encountered as a program statement, control
of execution is transferred to the propedure. At that time, the procedure
is run as a separate program and wljen the procedure is complete, control
returns to the next statement in ̂ e main program following the call to
the procedure. The following short program to call a procedure illustrates
this control.

PROGRAM FirstProcedure (output);

■{ **********************************♦*********************♦*♦****>

PROCEDURE PrintMessage;

BEGIN
writeln ('This is written from the procedure. ^3)

END; f of PROCEDURE PrintMessage >

{♦*****************»***********♦♦*******************************>

BEGIN -{ Main program >
writeln; writeln;
writeln ('This is written from the main program. ':^t);
writeln;
PrintMessage;
writeln; writeln

END. •{ of main program >

The output from this program is
This is written from the main program.

This is written from the procedure.

EXAl^PLE 4i3 As another example, let's construct a short program that calls a procedure several
times and have the procedure print the message

This is written by a procedure.
Now return to the main program.

Furthermore, let us have the main program print a message that includes a count
of how often the procedure is called. A pseudocode design could be

1. Initialize counter
2. Print message
3. Call procedure
4. Increment counter
5. Print message
6. Call procedure
7. Increment counter

8. Print message
9. Call procedure

102 DESIGNING AND WRITING COMPLETE PROGRAMS

The program for this design is

PROGRAM ProcedurePractice (output);

i This program illustrates multiple calls to a procedure >
< for printing a message. >

CONST

Indent = • ';

VAR

Count : integer;

PROCEDURE PrintHessage;

< This procedure prints a two—line message every time it >
■{ is called. >

BEGIN
writeln;
writeln (IndentrSO, 'This is written by a procedure. ');
writeln (Indent:5Dr 'Now return to the main program. ');
writeln

END; { of PROCEDURE PrintMessage >

i Now Start the main program >

BEGIN < Main program >

Count ;= 1;
writeln (IndentrlD, 'This is written from the main program. ');
writeln (IndentrlD, 'It is call #', CountrR, ' to the procedure. ');
PrintMessage;

Count := Count + 1;
writeln (IndentclD/ 'This is written from the main program.');
writeln (Indent:10, 'It is call #'/ Count:3, ' to the procedure. ');
PrintMessage;

Count := Count + 1;
writeln (Indent:lD, 'This is written from the main program. ');
writeln (Indent:10, 'It is call #', Count:3, ' to the procedure.');
PrintMessage

END. i of main program >

The output from this program is
This is written from the main program.
It is call # 1 to the procedure.

This is written by a procedure.
Now return to the main program.

This is written from the main program.
It is call # S to the procedure.

This is written by a procedure.
Now return to the main program.

4.2 Procedures for Output 103

This is written from the main program.
It is call # 3 to the procedure.

This is written by a procedure,
Now return to the main program,

STYLE TIP If a constant is going to be used in several procedures, it could be declared
in the constant definition section of the mam program and then used by
each subprogram. For example,

CONST

Indent = • •;

Multiple Procedures

You should now be able to write a procedure with no parameters, know
where it belongs in a program, and be able to call it from the main body
of the program. The next step is to use more than one procedure in a
program. Each procedure is developed separately and listed sequentially
after the variable declaration subsection of the main program. Thus, the
basic program with multiple procedures appears as follows:

PROGRAM program name (output);

CONST

VAR

PROCEDURE procedure name 1;

PROCEDURE procedure name 5;

PROCEDURE procedure name n;

BEGIN < Main program }

END •{ of main program >

These procedures can be called in any order and as often as needed.
Just remember that when a procedure is called from the main program,
control is transferred to the procedure, the procedure is executed, and
control then returns to the next program statement. The following program
illustrates the use of multiple procedures.

PROGRAM MultipleProcedures (output);

CONST

Indent = • ' ;

104 DESIGNING AND WRITING COMPLETE PROGRAMS

•{***♦******♦*♦♦********♦******♦*********♦♦♦****»**♦»»»****♦*♦***>

PROCEDURE Hessagel;

< This is procedure one >

BEGIN
writeln;
writeln (IndentilD, 'This is from Procedure #1')

END; < of PROCEDURE Messagel >

<**♦************************♦♦»*********♦♦***************♦****♦*>

PROCEDURE Messaged;

i This is procedure two >

BEGIN
writeln;
writeln (IndentclD, 'This is from Procedure #2')

END; i of PROCEDURE MessageE >

•(**♦************************♦♦************»*********************

PROCEDURE Messages;

{ This is procedure three >

BEGIN
writeln;
writeln (IndentrlD, 'This is from Procedure #3')

END; < of PROCEDURE Message3 >

<**************************♦***»*****************♦************** !■

< Now begin the main program >

BEGIN < Main program >
Messagel;
Messages;
Messages;
MessageE;
Messagel;
writeln; writeln

END. < of main program }

The output from this program is
This is from Procedure #1

This is from Procedure #E

This is from Procedure #S

This is from Procedure #E

This is from Procedure #1

Examples of Using Procedures for Output

We close this section with some examples using procedures to produce
output. By learning how to write and use procedures in this very limited

4.2 Procedures for Output 105

fashion, you should be better able to work with them when they become
more complicated.

EXAMPLE 4.4 Your computer science instructor wants course and program information included
as part of the output of a program. Consequently, you are to write a procedure
that can be used to print this information. Sample output is

* *

* Author: Mary Smith *

* Course: CPS-ISO *

* Assignment: Program #3 4c

* Due Date: September Ifi 4c

* Instructor: Mr. Samson 4c

* 4c

The procedure to do this is

PROCEDURE Printlnfo;

CONST

Indent = • ';

BEGIN

writeln

writeln

writeln

writeln

writeln

writenl

writeln

writeln

writeln

END; t O

(Indent:3Df

(Indent:3D/
(Indent:B0,
(Indent:3D/
(Indent:BOf
(Indent:BO/
(Indent:30/

(Indent:3D/
(IndentiBO/

)
* I)

Author: Mary Smith *•)
Course: CPS-ISD *•)
Assignment: Program #3 »•)
Due Date: September Ifl *')
Instructor: Mr. Samson *')

* I)

• *

I :4c

• *

I *

t *

I ♦

I *

f PROCEDURE Printlnfo

EXAMPLE 4*5 As part of a program that computes and prints grades for each student in your
class, you have been asked to write a procedure that produces a heading for each
student report. Assuming the columns in which the various headings should be
are as follows:

m the border for the class name starts in column 30
m Student Name starts in column 20

□ Test Average starts in column 40
B Grade starts in column 55

the heading should appear as
:«c:4c:|c:|e:4ei4c:tc:K:(c:|c:|c4c*:4c:|(:4c:|c:|c3|c:|c:|c:|(4c4c:tc

* *

* CPS ISO Pascal *
* *
:tc:((:|c)|c:|c:tc:(c:4c:tc:(c:tc4c4e:4c:4c:|c:(c:|e:tc:|e:|c3|c:tc:te4e

Student Name Test Average Grade

A descriptive name for this procedure could be PrintHeader. With this information,
the procedure could be written as follows:

106 DESIGNING AND WRITING COMPLETE PROGRAMS

EXAMPLE 4.6

PROCEDURE PrintHeader;

CONST

Skip = ' ';

BEGIN

writeln; writeln;

wrlteln (Skip:2'^r i*************************•
writeln (Skip:21/ '* *'
writeln (Skip:21/ '* CPS ISO Pascal *'
writeln (Skip:21/ '* *'
writeln (Skip:21/ •********************#****•
writeln;

write (Skip:11/ 'Student Name');
writeln (Skip:fl/ 'Test Average'/ Skip:3/ 'Grade');
write (Skip: 11/ ' ');
writeln (Skip:fl/ ' '/ Skip:3/ ' ');
writeln; writeln

END; < of PROCEDURE PrintHeader > H

The Greater Metro Airport has hired you to write a program that will print a ticket
for each parking lot customer. The parking lot authorities want each ticket to
contain a suitable message and the amount to be paid upon leaving the parking
lot. A pseudocode design for this problem is

1. For each customer

1.1 assign amount due
1.2 print heading
1.3 print amount due
1.4 print closing message

We will write procedures for steps 1.2 and 1.4 of this design.
Each ticket will have the following heading.

Greater Metro Airport

Parking Lot

April 15

Each ticket will contain the following message concerning the charge for parking:

Your charge is SXX.XX

Each ticket will contain the following closing message.

Thank you for using the
Greater Metro Airport

Please drive carefully

A procedure to print the heading is

PROCEDURE PrintHeader;

•I This procedure prints a ticket heading >

CONST

Date = 'April 15';

BEGIN

writeln;

writeln (Indent:20/ 'Greater Metro Airport');
writeln;

writeln (Indent:25/ 'Parking Lot');
writeln (Indent:27/ Date);
writeln

END; { of PROCEDURE PrintHeader >

4.2 Procedures for Output 107

A procedure to print the closing message is

PROCEDURE PrlntMessage;

{ This procedure prints a closing message >

BEGIN

writeln;

writeln (Indent:EDr 'Thank you for using the');
writeln (Indent:El/ 'Greater Metro Airport');
writeln;

writeln (Indent:ED/ 'Please drive carefully');
writeln (IndentrlS, ' 1);
writeln; writeln

END; { of PROCEDURE PrintMessage >

A complete interactive program that can be used for two customers follows.
This can be modified later to accommodate several customers.

PROGRAM ParkingLot (input, output);

CONST

Indent = ' ';

VAR

Fee : real;

PROCEDURE PrintHeader;

f This procedure prints a ticket heading >

CONST

Date = 'April 15';

BEGIN

writeln;

writeln (Indent:ED/ 'Greater Metro Airport');
writeln;

writeln (Indent:E5/ 'Parking Lot');
writeln (Indent:E7, Date);
writeln

END; < of PROCEDURE PrintHeader >

PROCEDURE PrintMessage;

< This procedure prints a closing message }

BEGIN

writeln;

writeln (Indent:EO, 'Thank you for using the');
writeln (Indent:El/ 'Greater Metro Airport');
writeln;
writeln (Indent:ED, 'Please drive carefully');
writeln (Indent:15, ' i);
writeln; writeln

END; i of PROCEDURE PrintMessage >

108 DESIGNING AND WRITING COMPLETE PROGRAMS

-{ Now begin the main program >

BEGIN < Main program >

■{ Process customer one >

write ('Enter amount due and press <RETURN>. ');
readln (Fee);
PrintHeader;
writeln (Indent:5D/ 'Your charge is $' , Fee:b:E);
PrintMessage;

< Process customer two }

write ('Enter amount due and press <RETORN>. ');
readln (Fee);
PrintHeader;
writeln (IndentrEO, 'Your charge is $', Fee:t.:E);
PrintMessage

END. ■{ of main program >

The output from this program for each of two customers is

Enter amount due and press <RETDRN>. 5.75

Greater Metro Rirport

Parking Lot
April 15

Your charge is $ 5.75

Thank you for using the
Greater Metro Airport

Please drive carefully

Enter amount due and press <RETURN>. fl .OQ

Greater Metro Airport

Parking Lot
April 15

Your charge is $ fl .OD

Thank you for using the
Greater Metro Airport

Please drive carefully

Exercises 4.2 l. Explain the difference between a procedure and a program.
2. What output will be produced when the following procedure is called from

the main program?

4.2 Procedures for Output 109

PROCEDURE ExerciseTwo;

CONST

Splcfts = '******************************• -
Line = ' • ;

Skip = • •;
BEGIN

writeln (Sklp:E<r Splats);
writeln (SkiprR/ Skip:IT '*•);
write (SkipiR/ ' Sample Output');
writeln ('*':5);
writeln (SkiprR, Line:15/
writeln (SkiprS, SkiprlR, '*•);
writeln (Skip:E4/ Splats)

END;

3. Write a procedure that will produce the following:

* *

* your name here *
* today's date here *
* *

4. Write a program that calls the procedure in Exercise 3 five times.

5. Several commercial establishments use computers to print bills for their
customers. For each of the following businesses, create a suitable message
for the heading of the billing statements and write a procedure that will
print the heading when called from the main program.

a. R & R Produce Company
b. Atlas Athletic Equipment
c. Sleep E-Z-E Motel
d. Pump-Your-Own Service Station

6. Consider the output

///////////////////////////////

/ /

/ Special Olympics /

///////////////////////////////

///////////////////////////////

/ /

/ Special Olympics /

///////////////////////////////

///////////////////////////////

/ /

/ Special Olympics /

///////////////////////////////

a. Write a program that produces this output without using procedures.
b. Write a program that produces this output using a procedure.

110 DESIGNING AND WRITING COMPLETE PROGRAMS

7. Consider the following program:

PROGRAM ExerciseSeven (output);

CONST

Splats = '*************************';
Edge = '* *';
Skip = ' •;

VAR

Interest : real;

BEGIN { Main program >
writeln; writeln;
writeln (Skip:15, Splats);
writeln (Skip:15, Edge);
writeln (Skip:15/ '* Federal Savings +');
writeln (Skip:15, •* Monthly Report *');
writeln (Skip:15r Edge);
writeln (SkiprlS, Splats);
writeln;

Interest := IK.53;

writeln (Skip:ID# 'Thank you for banking with Federal Savings.');
writeln (Skip:ID# 'Your current interest payment is below.');
writeln ('$':5G# Interest:a:B);
writeln;

Interest := fl7.53;

writeln (Skip:lG, 'Thank you for banking with Federal Savings.');
writeln (Skip:lG, 'Your current interest payment is below.');
writeln ('$':EG# Interest:fl:a);
writeln; writeln

END. i of main program >

and its output.

* *

» Federal Savings *
* Monthly Report *
* *

Thank you for banking with Federal Savings.
Your current interest payment is below.

$ IK.53

Thank you for banking with Federal Savings.
Your current interest payment is below.

$ 67.53

Rewrite this program using

a. a procedure for the heading.
b. a procedure for the customer message.

8. What is the output from the following program?

PROGRAM ExerciseEight (output);

CONST

Skip = ' ';

PROCEDURE Numberl;

BEGIN

writeln (Skip:lG/ 'She loves me.');
END; i of PROCEDURE Numberl >

' 4.3 Beginners' Errors 111

PROCEDURE NumberE;

BEGIN

writeln (SkipilD, 'She loves me not.');
END; •(of PROCEDURE NumberE >

BEGIN ■{ Main program }
Numberl;
NumberE;
Numberl;
NumberE;
Numberl

END. •(of main program >

9. Rewrite the following program using indenting, blank lines, comments, and
comment sections to enhance readability.
PROGRAM Plain (output);
VAR

Scorel/ ScoreE : integer;
Average : real;
PROCEDURE PrintHeader;
BEGIN

writeln; writeln;
writeln ('Your test results are below. 'cBt);
writeln;
writeln ('Keep up the good work! ':3D);
writeln; writeln
END;
BEGIN
PrintHeader;
Scorel := AH;
ScoreE := R5;
Average := (Scorel + ScoreE) / E.D;
writeln ('Scorel' :ED/ Scorelrt);
writeln ('ScoreE' :ED, ScoreE:t);
writeln;
writeln ('Your average is':E3, Average:a:E)
END.

M 4.3

Beginners'
Errors

QBTECTIVES

Q to be aware of tjrpi-
cal errors caused by
incorrect syntax

° to be aware of errors
made in the declara
tion section of a
program

° to be aware of typi
cal errors made
when using assign
ment statements

D to be aware of typi
cal errors made
when using writeln
to produce output

What you learn in this chapter will help you avoid problems when first
working with Pascal. You are now aware of the significance of carefully
designing an algorithm to solve a problem before you attempt to write a
program. Also, you are now able to write code to implement a simple
algorithm via a P&scal program. Therefore, to help you avoid frustration,
we will examine some typical errors made when writing code.

In an ideal situation, you would submit your program to the computer
and it would run with no errors and produce exactly what you desire for
output on the first attempt. Since this probably will not happen, you need
to be aware of the kinds of errors that can occur. These fall into three
general categories: compilation errors, run-time errors, and design errors.

Compilation errors are errors detected when the program is being com
piled. These include syntax errors, which are errors in spelling, pimctua-
tion, or placement of certain key symbols in a program. Run-time errors
are errors that are detected during execution of the program. Design errors
are errors that occur in the design of the algorithm or in coding the program
that implements the algorithm. These are also referred to as logic errors.

112 DESIGNING AND WRITING COMPLETE PROGRAMS

Syntax

In Section 2.2, it was stated that syntax refers to the rules governing
construction of valid statements. This includes spelling, punctuation, and
placement of certain key symbols. Errors made by improper use of syntax
are usually easy to identify and correct.

First, let's examine uses of the semicolon. This is the fundamental
punctuation mark in Pascal: it is used to separate statements. It first ap
pears after the program heading statement and then between complete
statements throughout the program. It may appear that semicolons are
used at the end of each line. This is not true. In particular, certain keywords
appear on a line but are not complete statements. Also, semicolons are
not required between a statement and END.
To see how semicolons are needed, consider the example given in Table

4.1. The program to the left in this table has no semicolons; the one on

TABLE 4.1

Illustration of using
semicolons

Incorrect Program Correct Program

PROGRAM CheckSemi (output) 1. PROGRAM CheckSemi (output);

VAR VAR

A, B : real 2. A/ B : real;

BEGIN BEGIN

A := 3.D 3. A := 3.D;

B := 5 * A 4. B := S * A;

writeln (A:S:E/ B:5:5) writeln (A:5:5/ B:5:a)

END. END.

the right has the minimum number of semicolons required to make the
program run: four. These are explained as follows:

1. A semicolon must appear after the program heading.

PROGRAM CheckSemi (output);

2. A semicolon must appear after each declaration list in the vari
able declaration section.

A, B : real;

3. and 4. A semicolon must appear between complete statements in
the executable portion of the program.

A := 3.D;

B : = E * A;

Two comments are in order. First, since Pascal ignores extra blanks and
line boundaries, the semicolons do not have to be written directly after
the statements. Second, as we've seen before, the semicolon at the end of
the last statement preceding the reserved word END is unnecessary.
A second syntax error results from using the symbol for equality " = "

instead of the symbol for an assignment statement This is com
pounded by the fact that several programming languages use the equal
sign to assign values to variables, and the equal sign is used to define
values in the CONST section.

A third type of syntax error occurs when writing program comments.
Most of these occur when a comment begins with and ends with

4.3 Beginners' Errors 113

As comments get longer and you attempt to produce attractive read
able programs, you may produce some of the following errors.

1. Improper beginning
(instead of (* or {

2. Improper ending
) instead of *) or }
* instead of

$) instead of«)
3. Extra blanks

(* comment *) instead of (* comment ♦)
4. No close for a long comment (no ending parenthesis or brace)

* *

* This is a long comment with *
* improper closing punctuation. *
* *

A fourth type of syntax error results from omitting the period after END
at the end of the executable portion of the program. This error will be
detected by the compiler.
A fifth type of error that some computer progreunmers consider a S5mtax

error is misspelling keywords. Table 4.2 sets forth a program with seven

TABLE 4.2

Spelling keywords
and identifiers

Incorrect Spelling Correct Spelling

PR06RH Spelling (output);

VR

Wage : reale;
Inital : chr;

Sere : interger;

BE6N

Wage := 5.0;
Inital := 'D';

Sere := 75;

writln (Wage:lD:5/ Inital:3, Scre:5)
END.

PROGRAM

VAR

real

char

integer

BEGIN

writeln

misspelled keywords. You may think the identifiers Inital and Sere are
also misspelled keywords. But remember: they are not kejrwords and can
be used as spelled in the program. It is not good practice to use identifiers
like this, however, since you could easily spell them differently through
out the program and they would not be recognized as variables by the
compiler.

Declarations

Errors sometimes made when defining constants in the CONST section
include:

114 DESIGNING AND WRITING COMPLETE PROGRAMS

1. Using an assignment statement rather than an equal sign

Incorrect
CONST

MaxScore :=

Correct
CONST

MaxScore = IDD;

2. Omitting single quotation marks from string constants

Incorrect
CONST

Name = Mary Smith;
Letter = Z;

Correct
CONST

Name = 'Mary Smith';
Letter = 'Z';

3. Using single quotation marks around numerical constants

Incorrect Correct
CONST CONST

MaxScore = •!□□' ; MaxScore = !□□;

The declaration

MaxScore = '!□□' ;

will not result in an error during compilation. Technically, it is
not an error. However, this declaration makes MaxScore a string
rather than the integer constant 100. Consequently, you could not
assign MaxScore to an integer variable or use it in arithmetic
computations.

More errors are usually made in the variable declaration section than
in the constant definition section. Several illustrations of incorrect vari
able declarations and the corrected versions are shown in Table 4.3.

TABLE 4.3
Errors in declaration
sections

Incorrect Correct

VftR VftR

ft ; B; C : real ft , B, C : real;

VftR VftR

ft ge ; integer; ft ge : integer;

VftR VftR

Initial = char; Initial : char;

VftR VftR

Wage : real; Wage : real;
Score Score,
Hours : integer; Hours : integer;

Assignment Statements

In Section 3.2 you learned to assign a value to a variable with a statement
such as

Score := fl?;

Some common mistakes in assignment statements are

1. Trying to put more than one variable on the left of an assignment
statement

Incorrect
X + Y := Z;
ft + 3 := B;

Correct
Z := X + Y;
B := ft + 3;

4.3 Beginners' Errors 115

2. Trying to make an assignment from left to right

Incorrect Correct
57 := Score; Score := fl?;

3. Trying to assign the value of one identifier (A) to another identi
fier (B) from left to right

Incorrect Correct
A := B; B := A;

(This statement will not be detected as an error during compila
tion; thus, your program will run, but you will probably get incor
rect results.)

4. Attempting to assign a value of one data type to a variable of an
other data type. If, for example. Score had been declared as an in
teger variable, each of the following would produce an error.

a. Score := 77.3;

b. Score := 15D / 3;

c. A 1= Ifl.tj;

Score := A;

There is an exception to this rule. The value of an integer data
type can be assigned to a variable of type real. For example, if Av
erage is a real,

Average := 43;

is a valid assignment statement. However, 43 is then stored as the
real 43.0 rather than the integer 43.

5. Attempting to use undeclared variables and constants. This error
often results from listing the variables used in the program in the
variable declarations section after the program has been written,
and inadvertently omitting some variable from the list. During the
compilation, you will get an error message something like "Identi
fier not declared" when the variable first appears in a line of
code. This is easily corrected by adding the variable to the VAR
section.

This same error results from misspelling identifiers. For exam
ple, if the VAR section has

VAR

Initial : char;

and you use the statement

Inital := 'D';

in the executable section, you will get an error message. The error
message will be the same as that for an undeclared identifier be
cause the compiler did not find Inital in its list of previously de
clared identifiers. Misspellings are not obvious and are difficult to
detect. This is another reason for using descriptive identifiers;
they are common words and you are less likely to misspell them.

This is one of the advantages of Pascal as a programming lan
guage. Since you cannot use variables unless you declare them,
misspelled variables are detected at compilation time. In some
other languages (BASIC, for example), if you misspell a variable,
create one unintentionally, or initialize one to zero, for example,
the problem may not be discovered until after a sample run has
been made.

116 DESIGNING AND WRITING COMPLETE PROGRAMS

Using writeln

The last general category of errors concerns statements used to create
output. Section 2.3 discussed the use of writeln for creating a line of
output. We have subsequently used this as part of executable statements
in several examples. In an attempt to help you avoid making certain errors,
we will examine common incorrect uses of writeln.

1. Format errors. When using format control with writeln statements,
three errors are typical.
a. Attempting to format an integer as a real

Incorrect Correct
writeln (Score:5D:2); writeln (ScoreiaO);

b. Attempting to use a noninteger as a format control number

Incorrect Correct
writeln (Average:SO:2.0); writeln (Average:SO:S);

(where Average is a real variable).

c. Attempting to format a real as an integer. This will not cause a
compilation error; your program will run, but you will get un
expected output. For example, suppose Average is a real vari
able whose value is 83.42 and you want a line of output to be

The average score is: 63.42

If you use the statement

writeln ('The average score is:':3D» AveragerlO);

the output is

The average score is: fl.3E+001

Floating-point form is used for the real but the total field width
is controlled by the use of ":10". This statement should be
written

writeln ('The average score is:':3D, Average:ID:2);

2. Inappropriate use of quotation marks. Errors of this type result
from omitting needed single quotation marks or putting quotation
marks where they are not needed. Remember that character
strings must be enclosed in single quotation marks. For example,
assume you want the output Hello.

Incorrect Correct
writeln (Hello:20); writeln ('Hello':2D);

A more subtle problem arises when constants and variables have
been declared in the CONST and VAR declaration sections. To il
lustrate, assume these sections are as follows:

CONST

Name = 'Mary Smith';
Age = Ifl;

VAR

A : integer;

and consider the following program fragments.

4.3 Beginners' Errors 117

a. writeln ('My name is'iED/ NamerlS);

This is correct and produces

My name is Mary Smith

b. writeln ('My name is':5D/ 'Name'rlS);

This format is also correct but produces

My name is Name

This program runs, but you get incorrect output.

c. writeln ('My age is':50, Age:<);

This is correct and produces

My age is Ifl

d. Assume the assignment A : = 10 has been made in the program
and consider

writeln ('A':5, A:5);

This produces

A 10

Note that using 'A' creates a character string of one character,
but using A causes the contents of A to be printed. This sug
gests a method of obtaining descriptive output. If you want
both the name of a variable and the value of a variable, you
could use

writeln ('A =•:5, A:5);

to obtain

A = ID

3. Attempting to have an executable statement within the
parentheses.

Incorrect Correct
writeln (A := B + C); A := B + C;

writeln (A);

or

writeln (B + C);

Attempts to do this probably result from the fact that expressions
can be used in a writeln statement. Assuming suitable declara
tions of variables, each of the following is correct.

writeln (A + B:15);

writeln ('Her IQ is'rlO, Age + 100:5);
writeln ('The total is':50. Average * 15:t:5);

In summary, you should now be aware of some errors you may make
at some time during your programming career. They are easily corrected
and you will make fewer of them as you write more programs.

ExGrciSGS 4.3 l. Find two syntax errors in the following program fragment.

X := 3 * Y

Y = /; - E * z;

writeln (X, Y);

2. Write a test program to illustrate what happens when extra semicolons are
used in a program.

118 DESIGNING AND WRITING COMPLETE PROGRAMS

3. Add the minimum number of semicolons required to make the following
program syntactically correct.

PROGRAM Exerclselhree (output)

CONST

Name = 'Jim Jones'

Age = Ifi

VAR

Score : integer

BEGIN

Score := R3

wrlteln ('Name':13/ Naine:15)

writeln ('Age'rlS/ Age:lb)
wrlteln (•Score * zlA, Score:lA)

END.

4. Find all incorrect uses of " = " and ": = " in the following program.

PROGRAM ExerciseFour (output);

CONST

Name := 'Jim Jones';

Age := 16;

VAR

Score = integer;

BEGIN

Score = =13;

writeln (Name:10/ Age:lD, Score:lD)
END.

5. Find and correct all misspelled keywords in the following program.

PROGRRAM ExercseFiv (output);

VAR

X, Y : reals;

Nam : chr;

Scor : interger;

BEGIN

X := 3.D;
Y := X * 4.E;

Nam := 'S';

Scor := X + Y;

writln (X:4:E, Y:4:5, Nam:3, Scor:<)
END.

6. Assume the variable declaration section of a program is

VAR

A, Score : integer;

X : real;

Init : char;

Indicate which of the following assignment statements are valid and which
are invalid. Give a reason for each that is invalid.

a. A :=4 + (-3); f. A :=X + A;

b. Score := 1 * E.D; g. Init := 'M';

c. A := Score MOD fl; h. Init := A;

d. X := Score / b; i. Init := 'A';

e. X := X + A; j. X := Init;

4.3 Beginners' Errors 119

7. Assume the declaration section of a program is

CONST

Name = 'John Harris';

VAR

A/ B : integer;
Wages : real;
CourseName : char;

Indicate which of the following statements are valid and which are invalid.
Explain those that are invalid.

a. A := A + B;

b. A + B := A;

c. C := A - 5;

d. Wage := 5.75;

e. CourseName := 'C;

f. Wages := Hours + ti.O;

g. CourseName := Name;

h. Name := 'John Harris';

1. A := 5 * Wages;

8. Assume the declaration section of a program is the same as in Exercise 7.
Label each of the following as valid or invalid. Correct those that are invalid.

a. writeln (Name);

b. writeln (Name:5D);

c. writeln ('Name':B0);

d. writeln (A/ B);

e. writeln ('A', 'B');

f. writeln ('A = A);

g- writeln ('A = ':!□/ A
h. writeln

>

II

a

i. writeln (WageS/ • are

j- writeln (' Wages are' Wages);

9. Find all errors in the following program.

PROGRAM Errors (output^;

(* *)
(* There are thirteen errors.
(* *)

VAR

Day : char;
Percent : real!
A, B / idfrt;

BEGIN .t#-* Main program ^
Day #= 'M';
Percentage := 7S / ID;
A := 5;
B := A * 3.5;
writdm (A, B:5D);
writeln (Day:lD:a);
writeln (A + B:fl/ Percent/:a)y

END /

@ S GB

120 DESIGNING AND WRITING COMPLETE PROGRAMS

51 4.4

Making a Pro
gram Run

QBJJECTIVES

a to be able to under

stand the difference

between compila
tion errors, run-time

errors, and design
errors

a to be able to use the

following error-cor

recting techniques:
debugging, program
walk-throughs, echo
checking, short pro
grams, and design
error checking

Now that we have examined some typical errors, you may think all pro
grams will run on the first try. Unfortunately, this is not true. All pro
grammers eventually encounter problems when trying to make a program
run. Although some short programs may run the first time and produce
the desired output, you should always plan time for correcting your pro
gram. This is a normal part of a programmer's life and you should not get
discouraged when you have to rework a program.

Compilation Errors

Compilation errors are errors detected when the program is being com
piled; the printed error messages usually are sufficient to enable you to
correct your program. As you gain experience, you will make fewer errors
of this type. Your program will not run until all compilation errors are
removed, so you must develop the ability to correct these errors.

Run-Time Errors

Run-time errors occur after your program has all compilation errors cor
rected, but when you run your program, you get error messages instead
of output. A run-time error occurs in the following incorrect program.

PROGRAM RunError (output);

VAR

A, B integer;

[S

BEGIN

A := 3;

B := □;
A := A DIV B;
writeln (A, B)

END.

The compiler will not detect any errors, but when this is run, you will
get a message something like the following (depending on your computer
and version of Pascal].

Program terminated at line ^ in program RunError.
Division by zero.

A =

RunError

B =

Another example of a run-time error is trying to read the value of a
variable that has been declared as an integer, but is entered as the value
of a different type (for example, real or char). As you develop more
programming skills, you may encounter run-time errors involving the
logical flow of your program that are generally more difficult to locate and
correct.

Design or Logic Errors

Design (logic) errors occur after you have eliminated both compilation
errors and run-time errors. At this stage, your program runs and produces
output; however, when you examine the output, it is not what you want.
The problems can include having columns incorrectly lined up, having
incorrect values for the output, or not getting all of the output.

4.4 Making a Program Run 121

PROGRAM DeslgnError (output);

integer;
VAR

Score

BEGIN

writeln; writeln;

writeln ('Scores 50);

writeln (' ' :55);

Score := fl7;

writeln (Score);
Score := =15;

writeln (Score);

writeln; writeln

END.

produces the output

Scores

a?

R5

instead of

Scores

a?

=15

Therefore, the program should be modified as follows:

PROGRAM DeslgnError (output);

CONST

LabelHidth = 5D;

VAR

Score : integer;

BEGIN

writeln; writeln;

writeln ('Scores':LabelWidth);
writeln (' • :LabelWidth);

writeln;

Score := a?;
writeln (Score:la);

Score := =15;

writeln (Score:la);
writeln; writeln

END.

STYLE TIP

@ ISI Bl i] B

We have been using constants Skip and Indent to control spacing of output.
If some strings are to be right justified (abutting the right-hand margih), we
can define a constant—as in PROGRAM DesignError—

CONST

LabelWidth =50;

and use it to format strings. For example,

writeln ('Score';LabelHidth);
writeln (• •;LabelHidth);

122 DESIGNING AND WRITING COMPLETE PROGRAMS

The remainder of this section covers techniques to help you detect and
correct program errors. Programmers use many different techniques for
doing this. We will examine some of the more common, helpful practices,
which include program walk-throughs (traces), echo checking, and writing
short programs.

Debugging Techniques

Debugging is a term loosely used to refer to the process of eliminating
errors or "bugs" from a program. When trying to debug a program, you
can do several things. First, carefully reading the code will help you
identify and eliminate many of the errors mentioned in the previous sec
tion, such as syntax errors, invalid identifiers, incorrect spelling, and
incorrect use of writeln statements. This technique requires patience and
thoroughness, hut will save you time in the end by making your programs
run sooner.

A second debugging technique is to use compiler error messages to help
you correct errors you missed during your careful reading of code. Since
these messages vary from machine to machine (they are implementation
dependent), you will have to learn to interpret the messages printed by
your machine. A list of typical messages is included in Appendix 5.

Errors causing compiler error messages are not always easy to find.
Sometimes an error message on one line is the result of a previous error
several lines earlier. For example, the program

PROGRAM CorapileError (output);

{ This will detect a corapilation error $

CONST

Name = 'Mary Smith';
Indent = ' ';

VAR

Age : integer;

BEGIN

Age := Ifi;
writeln (Indent:lD/ 'My name is'/ NaraerlS);
writeln (Indent:lD/ 'My age is'/ Age:3)

END.

when compiled, may produce

*** Incomplete program.
Compiler error message(s).

This can be corrected by changing the comment line

{ This will detect a compilation error $

to

•{ This will detect a compilation error >

Once you remove the syntax error ($), you should have an error-free com
pilation and be ready to run the program.
A third debugging technique can be utilized after you get an error-free

compilation. Run the program and get a list of run-time error messages.

4.4 Making a Program Run 123

(If you have been very careful, you may not have any run-time errors.)
Consider the program

PROGRAM RunTiraeError (output);

Var

A, B : integer;
Average : real;

BEGIN

A := ID;

Average := (A + B) / 5.G;

writeln ('The average is':ED/ AverageilDiE)
END.

There are no compilation errors in the program, but the output is some
thing equivalent to

Program terminated at line R in program RunTiraeErr.
Integer larger than maxint.

RunTimeErr

Average = Undef A = ID
B = Ondef

and not the desired output because B has not been assigned a value.
Use these messages to analyze and correct your program. Remember,

these messages are implementation dependent and it will take time before
you can understand them.

Program Walk-Through

Program walk-through, sometimes referred to as a trace, is used to describe
the process of carefully following, using pencil and paper, steps the com
puter uses to solve the problem given in your program. Two types of walk
throughs are used by programmers. First, you follow the logical flow of
your program. During this check, you are not looking for syntax errors;
you are merely making sure that the order in which things are done is
correct. This type of checking will be more efficient after you have written
more programs. A second type of program walk-through (sometimes called
hand execution) is to keep track of values of the variables on paper. The
following example illustrates this idea.

A NOTE OF INTEREST

Debugging

Do you wonder why the term debugging is used
when referring to the process of eliminating er
rors from a program? In 1945, computer scien
tists were working on the Mark II. Suddenly,
something went wrong with the machine. During

a check of the machine, someone found that a

moth had been caught in one of the relays. It was
removed and the first computer had been de
bugged. The term caught on and is now used in
a somewhat broader sense.

124 DESIGNING AND WRITING COMPLETE PROGRAMS

EXAMPLE 4.7 Let's walk through the following program.

PROGRAM HalkThru (output);

VAR

A, B : integer;

BEGIN

A

B

A

B

B

= 5;
= A + <;

= B - 5;

= A * 5;

= B DIV 3;

writeln (A:5, B:5)

END.

To walk through this program, we will list the variables and then proceed through
the program one line at a time.

Statement Value of A Value of B

A := 5; 5 Undefined

B := A + ̂ ; 5 9

A := B - 2; 7 9

B

in

*

II

7 35

B := B DIV 3; 7 11

At the end of the program, A has the value 7 and B has the value 11. IS

Echo Checking

Echo checking is a technique whereby you let the computer check the
values of your variables and the data used in your program. When reading
values or changing the value of a variable, you could use a writeln state
ment to immediately print out the new value with a short, descriptive
message. To illustrate, consider the short PROGRAM WalkThru in Ex
ample 4.7. An echo check could be implemented by inserting writeln
statements as follows:

PROGRAM WalkThru (output);

VAR

A/ B : integer;

BEGIN

A := 5;

writeln ('A =•/ A:3)

B := A + 4;

writeln ('B ='/ B:3)

A := B - 5;

writeln ('A ='/ A:3)
B := A * 5;

writeln ('B ='/ B:3)
B := B DIV 3;

writeln ('B ='/ B:3)
writeln (A:5, B:5)

END.

4.4 Making a Program Run 125

The output for this program is

R = 5

B = S

fi = 7

B = 35

B = 11

? 11

You can echo check input data similarly. For example, if an input
statement is

read (R ̂ B/ C);

the values can he checked by inserting an output statement such as

writeln ('R =', R, ' B =', B, • C =', C);

You probably will not want to print each variable value in the final
program. Therefore, once your program produces the desired output, re
move the writeln statements used for checking and you have a working
program.

Short Programs

Using short test programs is another technique for error checking. It is
particularly effective on longer, more complex programs, but to illustrate,
we will consider the following short example.

EXAMPLE 4.8 Suppose you are writing a program and you want to exchange the values of
variables A and B. You think this could be accomplished by

R := B;

B ;= R;

You could write a short program to check this as follows:

PROGRRM ExchangeCheck (output);

VRR

R, B : integer;

BEGIN

R := 5;

B := ID;

writeln ('R=«, R:3, ' B=', B:3);

•(Now exchange >

R := B;

B := R;

writeln ('R =', R:3, ' B =', B:3)

END.

When you run this short program, the output

R = 5 B = ID

R = ID B = 10

indicates your method of exchanging values did not work and you have to redesign
your program. The exchange could be accomplished by declaring a third variable
Temp and then using the code:

Temp := R;

R := B;

B := Temp; D

126 DESIGNING AND WRITING COMPLETE PROGRAMS

Exercises 4.4

The example given is quite simple, but as you start writing programs
to solve complex problems, you will find that using short programs is a
very effective technique.

1. Perform a program walk-through for the following program segment to deter
mine the values of A, B, and C at the end of the segment.

33;

-2;
A -

A;

B +

B;

A -

A

-

5;

5;

 B -H

+ 1;
1;

2. Write test programs to illustrate what error messages appear for each of the
following:

a. division by zero.
b. printing a variable that has not been assigned a value.
c. using a variable that has not been assigned a value.

3. Correct all compilation errors for the following programs. Check your results
by running each program exactly as it is written here and examining the
compilation error messages.

a. PROGRAM CompileErrors (output);

CONST

Max = : real;

VAR

A, Sum : Integer

BEGIN

A := at.Q;

Sura := A + □;
A + Sura := Sura

writeln (Sura:15:E)
END.

b. PROGRAM Compile Errors (output);

VAR

A : integer;
Ch : char;

BEGIN

Ch := 'M' ;
A := 63;
B := A - ID;
writeln (' The value of A is:2Df AiL);
writeln (Ch:5G)

END.

4. Suppose the output from a program is as follows:

NaraeJohn JohnsAge 16
Test Scores

73 63

Indicate a more desirable form for the output and describe what changes
could be made in the program to achieve those desired results.

4.4 Making a Program Run 127

5. Consider the program

PROGRAN Donations (output);

VAR

Amountl, AmountE/

Amount3/ Amounts/

Sum : real;

BEGIN

Amountl :=
Amounts := ISD.D;

Amounts := 75.□;
Amounts := E0G.50;
Sum := Amountl + AmountE + Amounts + Amounts;
writeln ('Donations' :E5);
writeln (Amountl:Efl:E);
writeln (AmountE:Sfl:E);
writeln (AmountS:EQ:E);
writeln (Amounts:Efl:E);
writeln (' ' :Ea) ;
writeln (SumrEflrE)

END.

The output for this program is

Donations

15D.DD

75.□□

EDO.50

5E5.5D

Change the program so the output would be
Donations

$

$ 150.□□
$ 75.DO
$ E0D.50

Total $ 5E5.50

6. The following program has no compilation errors. However, there are some
run-time errors. Find them and indicate what could be done to correct them.

PROGRAM RunErrors (output);

VAR

A : integer;
X : real;
Ch : char;

BEGIN
A : = < ;
X := IDD.O;
Ch := 'F' ;
X := X / (< MOD E);
X := S * X;
writeln (Ch:5, X:fl:E/ A:5)

END.

128 DESIGNING AND WRITING COMPLETE PROGRAMS

7. List three types of errors made by computer programmers. Discuss their
differences and what methods may be used to correct them.

8. Use writeln statements in the following program to echo check the values of
each of the variables. Indicate what the output would be when you run the
echo-check version.

PROGRRM EchoCheck (output);

VRR

Suni/ Score, Count

Average : real;
integer;

BEGIN

Count := □;
Sum := □;
Score := fi t;
Sum := Sum + Score;
Count := Count + 1;
Score := fl 'l;
Sum := Sura + Score;
Count := Count + 1;
Average := Sum / Count;
writeln; writeln;
writeln ('There were':SO,
writeln;
writeln ('The average is'

END

SI B B

Count:3, ' scores.');

24, Average:t:2)

B 4.5
Writing a Com
plete Pascal
Program

OBJECTIVE

a to be able to write a
complete Pascal
program to solve a
problem

By now you should be able to implement the five steps in problem solving.
You should also be able to write complete programs that include the
following features:

■ a procedure for the output beading
■ clear program documentation and writing style
■ the ability to get data from a data fi le
■ neat, attractive output

By way of example, we end this chapter with one complete program in
which problem solving and these design features are demonstrated. Once
you are comfortable that you can use these skills as illustrated, you can
easily add new programming skills to your repertoire.

Dr. Lae Z. Programmer, teacher of computer science, wants a program
that will allow him to give an individual progress report to each student
in his computer science class. The report for each student should include
the student's initials, three test scores, test average, five quiz scores,
weighted quiz total, and final percentage. We will develop a program for
this problem and test it by running it for two students. In Chapter 6, we
will see how this program could be conveniently used for the entire class.

The first step in problem solving is to understand the problem. For this
peuticular problem, we need to know what the stream input will look like,
how quizzes are to be weighted, how final percentage is to be computed,
and what form is desired for the output. Let us assume these questions
have been asked and answered as follows:

4.5 Writing a Complete Pascal Program 129

1. Each line of data in the stream input will start with a student's
initials followed by three test scores and then five quiz scores.
Scores will be integers and will be separated by blanks. The test
scores are based on 100 points each and the quiz scores are based
on 10 points each. Thus, the data file for two students will look
like

MJS 91 87 79 8 10 10 9 7|jHJ 93 85 89 10 9 8 10 7|

2. The quizzes are to be counted as the equivalent of one 100-point
test. Thus, their total should be multiplied by two when comput
ing the weighted total.

3. Final percentage is to be computed based on a total of 400 points:
100 for each test and 100 for the quiz total.

4. Each student's interim report should look like

* *

* Interim Report *
♦ ̂

if: *

Class: Computer Science
Date: October 15

Instructor: Dr. Lae Z. Programmer

Test Test Quiz Quiz

Initials Scores Average Scores Total

MJS Ri a? 7R as.b? a ID 10 q 7 aa

Final percentage = at .55

The second step in problem solving is to develop an algorithm. This
will be done using stepwise refinement. As a first level of pseudocode,
we have

1. Get data for first student

2. Perform computations
3. Print student report
4. Get data for second student

5. Perform computations
6. Print student report

Module specifications for the modules corresponding to steps 1,2, and
3 are

1. Get Data Module

Data received: None

Information returned: Three initials

Five quiz scores
Three test scores

Logic: Use read statements to get data.

130 DESIGNING AND WRITING COMPLETE PROGRAMS

Debugging or Sleuthing?

Investigating why programs don't work as ex
pected requires ingenuity. The reason can be quite
bizarre. To illustrate, consider two situations re

ported by Jon Bentley in Communications of the
ACM.

1. "When a programmer used his new com
puter terminal, all was fine when he was
sitting down, but he couldn't log in to
the system when he was standing up.
That behavior was 100 percent repeat-
able: he could always log in when sitting
and never when standing."

2. A banking system had worked for quite
some time, but halted the first time it

was used on international data. Program
mers spent days scouring the code, but
they couldn't find any stray command
that would return control to the operat
ing system."

What do you think are possible solutions? The
answers are set forth just before the program
ming problems for this chapter.

2. Perform Computations Module

Data received: Five quiz scores
Three test scores

Information returned: Test average
Weighted quiz total
Final percentage

Logic: Divide total of test scores by three.
Multiply quiz total by two for weighting.
Sum totals and divide by four for final average.

3. Print Student Report Module

Data received: All input data
Test average
Quiz total
Final percentage

Information returned: None

Logic: Use writeln statements to print information in desired format.

Since steps 4, 5, and 6 are repetitions of steps 1,2, and 3, we will refine
only the first three.

1. Get data for first student

1.1 get initials
1.2 get test scores

1.3 get quiz scores

Each of these lines could be refined further. For example, step 1.1 could
be subdivided into

1.1 get initials
1.1.1 get first initial
1.1.2 get second initial
1.1.3 get third initial

At some stage, you have to decide what is a sufficient refinement when
developing an algorithm. This will vary according to students and in-

4.5 Writing a Complete Pascal Program 131

structors. In general, when you have a clearly defined statement that can
be accomplished by a single line of code, there is no need for subsequent
refinement. In fact, a single line of pseudocode may require several lines
of written code in a program. The important thing to remember is that
algorithm development via pseudocode is only a step in helping solve a
problem; it is not the solution itself.

Refining step 2, we could have

2. Perform computations
2.1 compute test average

2.2 compute quiz total
2.3 compute final percentage

This can be further refined to

2. Perform computations
2.1 compute test average

2.1.1 add test scores

2.1.2 divide by three
2.2 compute quiz total

2.2.1 add quiz scores
2.2.2 multiply by two

2.3 compute final percentage
2.3.1 add test totals to quiz total
2.3.2 divide by four

A structure chart for one student with the second module developed
through three levels is given in Figure 4.3.

Refining step 3 might result in

3. Print student report
3.1 print report heading
3.2 print student information

This can be further refined to

3. Print student report
3.1 print report heading

3.1.1 print title
3.1.2 print class information
3.1.3 print column headings

3.2 print student information
3.2.1 print initials
3.2.2 print test scores
3.2.3 print test average
3.2.4 print quiz scores
3.2.5 print quiz total
3.2.6 print final percentage

Since a similar report is required for the second student, steps 4,5, and
6 will be repetitions of steps 1, 2, and 3. Thus, the complete algorithm
will be

CO
ts9

D
w
</>

!
o

FIGURE 4.3

Structure chart for

one student

Taskior.
one student

Get data

ComputeGet

test

scores

Ggt
Jfiltlals

I t
Perform
computations

Print ^

student
report

ill
Compute
quiz
total

i
Cpmp,ute>
'final
percentage

Print .

heading

■Print
student
informadcin

t i t
Add
scores

Divide
by ihree

t 1 t
Add
scores

{Multiply
by two

1 f i t
Add test
total and
quiz total

Diyide
by four

4.5 Writing a Complete P^cal Program 133

Get data for first student
1.1 get initials

1.1.1 get first initial
1.1.2 get second initial
1.1.3 get third initial

1.2 get test scores

1.3 get quiz scores
Perform computations
2.1 compute test average

2.1.1 add test scores

2.1.2 divide by three
2.2 compute quiz total

2.2.1 add quiz scores
2.2.2 multiply by two

2.3 compute final percentage
2.3.1 add test totals to quiz total
2.3.2 divide by four

Print student report
3.1 print report beading

3.1.1 print title
3.1.2 print class information
3.1.3 print column headings

3.2 print student information
3.2.1 print initials
3.2.2 print test scores
3.2.3 print test average
3.2.4 print quiz scores
3.2.5 print quiz total
3.2.6 print final percentage

Get data for second student

4.1 get initials
4.1.1 get first initial
4.1.2 get second initial
4.1.3 get third initial

4.2 get test scores
4.3 get quiz scores
Perform computations
5.1 compute test average

5.1.1 add test scores

5.1.2 divide by three
5.2 compute quiz total

5.2.1 add quiz scores
5.2.2 multiply by two

5.3 compute final percentage
5.3.1 add test totals to quiz total
5.3.2 divide by four

Print student report
6.1 print report beading

6.1.1 print title
6.1.2 print class information
6.1.3 print column headings

134 DESIGNING AND WRITING COMPLETE PROGRAMS

6.2 print student information
6.2.1 print initials
6.2.2 print test scores
6.2.3 print test average
6.2.4 print quiz scores
6.2.5 print quiz total
6.2.6 print final percentage

You may now write code for the algorithm. In the following version,
an attempt to create presentable output has included boxed descriptions
of headings, centering on the page when appropriate, underlining, skip
ping lines, and carefully created columns.

PROGRAM StudentReport (input/ output);

This progratQ is written for Dr. Lae Z. Programmer. It
produces an interim progress report for two students.
The following features have been included.

1. Program documentation
S. Writing style
3. Procedure for a heading
4. Using a stream input
5. Descriptive variables
b. Neat/ attractive output

CONST

Splats = I**********************'j
Edge = «* *•;
Line = •

Skip = • •;

VRR

FinalPercent : real;

Initl/ InitS/ InitB : char;

Quizl/ QuizP/ QuizB/

Quiz^/ QuizS : integer;
QuizTotal : integer;
Testl/ TestE/ Test3 : integer;
TestRverage : real;
TestTotal : integer;

•£ Final class percentage >
< Initials for one student }

< Quiz scores for one student >

{ Sum of five quizzes >
{ Test scores for one student >

i Average of three tests >
I Sum of three test scores }

{** >

PROCEDURE PrintHeading;

< This procedure prints a heading for each student report >

BEGIN

{ Print the title >

writeln; writeln;
writeln (Skip:30/ Splats);
writeln (Skip:3D/ Edge);
writeln (Skip:3D/ '*
writeln (Skip:3D/ '*
writeln (Skip:3D/ Edge);
writeln (Skip:3D/ Splats);

Interim Report *«);

*');

4.5 Writing a Complete Pascal Program 135

< Print the class information >

writeln;

writeln (Skip:15/ 'Class: Computer Science');
writeln (Skip:15/ 'Date: October 15');
writeln (Skip:15/ 'Instructor: Dr. Lae Z. Programmer');
writeln;

{ Print the column headings >

writeln (Skip:27/ 'Test'/ 'Test':10/ 'Quiz':13/ 'Quiz':l^);
writeln (Skip:15/ 'Initials'/ 'Scores':q/ 'Average':11/

'Scores':12/ 'Total':13);
writeln (Skip:15/ Line)

END; < of PROCEDURE PrintHeading >

•{**************************************»*********»*♦♦*♦**♦****♦ >

i Now begin the main program >

BEGIN < Main program >

< Get data for the first student >

read (Initl/ Init2/ Init3);
read (Testl/ Test2/ Test3);
readln (Quizl/ Quiz2/ Quiz3/ Quiz^/ Quiz5);

{ Perform necessary computations >

► 2
TestTotal := Testl + Test2 + Test3;
TestAverage := TestTotal / 3.D;
QuizTotal := (Quizl + Quiz2 + Quiz3 + Quiz< + Quiz5) * 2;
FinalPercent := (TestTotal + QuizTotal) / <.□;

Print the heading >

PrintHeading;

Print the student information >

write (Initl:ia/ Init2/ Init3); ^3
write (Testl:?/ Test2:3/ Test3:3);
write (TestAverage:fl:2);
write (Quizl:?/ Quiz2:3/ Quiz3:3/ Quiz^:3/ Quiz5:3);
writeln (QuizTotal:?);
writeln; writeln;
writeln (Skip:15/ 'Final percentage = '/ FinalPercent:?:2);
writeln (Skip: 15/ ' '); J

< Repeat process for the second student >

read (Initl/ Init2/ Init3);
read (Testl/ Test2/ Test3);
readln (Quizl/ Quiz2/ Quiz3/ Quiz^/ Quiz5);

■(Perform necessary computations >

TestTotal := Testl + Test2 + Test3;
TestAverage := TestTotal / 3.D;
QuizTotal := (Quizl + Quiz2 + Quiz3 + QnlzA + Quiz5) * 2;
FinalPercent := (TestTotal + QuizTotal) / A.O;

1

> 2

136 DESIGNING AND WRITING COMPLETE PROGRAMS

i Print the heading >

PrintHeading;

i Print the student information >

write (Initlrlfl, Inite, InitB);
write (Testl:7, Testa:3/ Test3:3);
write (Testftverage:a:a);
write (Quizl:?, Quiza:3, Quiz3:3, Quiz<:3, Quiz5:3);
writeln (QuizTotal:?);
writeln;

writeln (Skip:15, 'Final percentage = FinalPercent:?:a);
writeln (SkipilS, ' •);
writeln; writeln

END. < of main program >

V 3

Summary Key Terms

comment

compilation error
debugging
design (logic) error

echo checking
local

procedure
program walk-through

(trace)

run-time error

syntax error

variable dictionary

Keyword

PROCEDURE

Key Concepts

■ It is not sufficient to produce correct output; your output should also be
clear, neat, and attractive.

■ Attractive output is produced by using blank lines as appropriate, underlin
ing, right- and left-hand margins, columns, and descriptive headings and
messages.

■ Program comments are nonexecutable statements that can be included in a
program using the form

(♦ ...comment... *)

or

< comment.

Program readability is enhanced by indenting, using blank lines, and using
program comments.

Programs should be documented by using a comment section to describe the
program and a variable dictionary.
A subprogram is a program within a program; procedures and functions are
subprograms.
Subprograms are generally written to accomplish specific tasks.
A typical procedure heading that could be used when writing a procedure to
produce the heading for the output is

PROCEDURE PrintHeader;

Summary 137

□ A procedure is called, or invoked, from the main program by a reference to
the procedure name.
BEGIN { Main program >

PrintHeader
END. < of main program >

□ Procedures are placed in a program after the variable declaration section and
before the start of the main program.
PROGRAM Practice (input, output);

VAR

PROCEDURE PrintTitle;
BEGIN

END; { of PROCEDURE PrintTitle

BEGIN < Main program >

placement of
procedure

END. <. of main program >

a Common syntax errors result from inappropriate use of the semicolon, using
" = " for assigning rather than = ", incorrectly starting or ending comments,
forgetting the period at the end of the program, or misspelling keywords,

a Other sources of errors for beginners include errors made in declarations, or
assignment statements, or in using writeln.

□ Program errors can be detected and eliminated by debugging, program walk
throughs, echo checking, using short programs, and design error checking.

Q When writing a complete program, make sure you have answered all ques
tions concerning input, processing, and output before you attempt to design
the solution.

B After all questions are answered, design a solution to the problem; refine
steps in the solution until you can easily write code for the program,

a When writing the program, use a neat, consistent, readable writing style.
Your style should include documentation, including a program description
section, a variable dictionary, and, when appropriate, comment sections and
line comments. You should use consistent indenting, blank lines to separate
code, and a procedure for the heading.

a The output for your program should be neat and readable; features should
include use of the middle of the output page, appropriate titles and headings,
columns where appropriate, blank lines, and underlining.

A NOTE OF INTEREST

Debugging or Sleuthing: Answers
1. "The problem was in the terminal's key

board: the tops of two keys were
switched. When the programmer was
seated, he was a touch-typist and the
problem went unnoticed, but when he
stood, he was led astray by hunting and
pecking."

2. "When [the programmers] observed the
behavior more closely, they found that
the problem occurred as they entered
data for the country of Ecuador: when
the user typed the name of the capital
city (Quito), the program interpreted that
as a request to quit the run!"

138 DESIGNING AND WRITING COMPLETE PROGRAMS

■ Programiiiing Before going on, you should test your knowledge of the material by writing
Problems a complete program for some of the following problems. Each will require

an input file.

1. The Roll-Em Lanes bowling team would like to have a computer
program to print the team results for one series of games. The team
consists of four members whose names are Weber, Fazio, Martin, and
Patterson. Each person on the team bowls three games during the se
ries; thus, the input will contain three lines, each with four integer
scores. Your output should include all input data, individual series
totals, game average for each member, team series, and team average.

Sample output is

Name Game 1 Game 5 Game 3 Total Average

Weber 51E 550 IRD

Fazio I'lS E35 EID

Martin 17fl EDb

Patterson 1R5 E15 EID

Team Total:

Team Average:

2. The Natural Pine Furniture Company has recently hired you to help
them convert their antiquated payroll system to a computer-based
model. They know you are still learning, so all they want right now
is a program that will print a one-week pay report for three employ
ees. You should use the constant definition section for the following:

a. Federal withholding tax rate 18%
b. State withholding tax rate 4.5%
c. Hospitalization $25.65
d. Union dues $7.85

Each line of input will contain

a. Employee's initials
b. Number of hours worked

c. Hourly rate

Your output should include a report for each employee and a sum
mary report for the company files. A sample employee form follows:

Employee: JTM
Hours Worked:

Hourly Rate: R.75

Total Wages:

Deductions:

Federal Withholding
State Withholding
Hospitalization
Onion Dues

Total Deductions

Net Pay

Programming Problems 139

Output for a summary report could be:

Natural Pine Furniture Company
Weekly Summary

Gross Wages:

Deductions:

Federal Withholding
State Withholding
Hospitalization
Union Dues

Total Deductions

Net Wages:

3. The Child-Growth Encyclopedia Company wants a computer pro
gram that will print a monthly sales chart. Products produced by the
company, prices, and sales commissions for each are
a. Basic encyclopedia $325.00 22%
b. Child educational supplement $127.50 15%
c. Annual update book $ 18.95 20%

Write a program that will get the monthly sales data for two sales
regions and produce the desired company chart. Each line of data
will contain a two-letter code for the region followed by three inte
gers representing number of products a, b, and c sold, respectively.
The prices may vary from month to month and should be defined in
the constant definition section. The commissions are not subject to
change.
Sample data lines are

MI 150 120 1051TX 225 200 15oT

T3^ical output could be:

REGION SALES

(Encyclopedia) (Supplement) (Update)

MI ISO lED 105
TX 555 BDP 150

Total Sales:

Total Commission:

4. The Village Variety Store is having its annual Christmas sale. They
would like you to write a program to produce a daily report for the
store. Each item sold is identified by a code consisting of one letter
followed by one digit. Your report should include data for three
items. Each of the three lines of data will include item code, number
of items sold, original item price, and reduction percentage. Your re
port should include a chart with the input data, sale price per item,
and total amount of sales per item. You should also print a daily
summary.

Sample data lines are

Al 13 5.95 15|A2 24 7.95 20|A3 80 3.95 5oT

140 DESIGNING AND WRITING COMPLETE PROGRAMS

Typical output form could be:

Item Code # Sold Original Price Reductions Sale Price Income

13 $5.'=15 15% $5.Dt $b5.7a

Daily Summary

Gross Income: ^

5. The Holiday-Out Motel Company, Inc., wants a program that will
print a statement for each overnight customer. Each line of input
will contain room number (integer), number of nights (integer), room
rate (real), telephone charges (real), and restaurant charges (real).
You should use the constant definition section for the date and cur
rent tax rate. Each customer statement should include all input data,
the date, tax rate and amount, total due, appropriate heading, and
appropriate closing message. Test your program by running it for
two customers. The tax rate applies only to the room cost.
A typical data line is

1135 3 39.95 3.75 57.501 ■

A customer statement form is

Holiday-Out Motel Company/ Inc.

Date: XX-XX-XX

Room # ^35
Room Rate: $3*1."=15
Number of Nights: 3

Room Cost: $ll'=l.flS
Tax: XXX%

Subtotal:

Telephone: 3.75
Heals: 57.50

TOTAL DDE $165.05

Thank you for staying at Holiday-Out
Drive safely

Please come again

6. As a part-time job this semester, you are working for the Family
Budget Assistance Center. Your boss has asked you to write and exe
cute a program that will analyze data for a family. Input for each
family will consist of
Family ID number (integer)
Number in family (integer)
Income (real)
Total debts (real)

Your program should output the following:
a. An appropriate header.
b. The family's identification number, number in family, income,

and total debts.

Programming Problems 141

c. Predicted family living expenses ($3000 times the size of the
family).

d. The monthly payment necessary to pay off the debt in one year
(Debt /12).

8. The amount the family should save (the family size times 2 per
cent of the income minus debt—FamSize * 0.02 (income —
debt)).

f. Your service fee (.5 percent of the income).

Run your program for the following two families:

Identification Number Size Income Debt

51 4 18000.00 2000.00

72 7 26000.00 4800.00

Output for the first family could be:

Family Budget Assistance Center
March isaq

Telephone: (aDD)555-ia3<

Identification number 51

Family size
Annual income $ 160DQ.DD

Total debt $ EDDO.OO

Expected living expenses $ ISDDO.OG

Monthly payment $.t>7

Savings $ ISfiD.DG

Service fee $ qa.GG

7. The Caswell Catering and Convention Service has asked you to write
a computer program to produce customers' hills. The program
should read in the following data.

a. The number of adults to be served.

b. The number of children to be served.

c. The cost per adult meal.
d. The cost per child's meal (60 percent of the cost of the adult's

meal).
e. The cost for dessert (same for adults and children).
f. The room fee (no room fee if catered at the person's home).
g. A percentage for tip and tax (not applied to the room fee).
h. Any deposit should he deducted from the bill.

The following is sample data for this problem.

Child Adult Adult Dessert Room Tip/
Data Count Count Cost Cost Rate Tax Deposit

1 7 23 12.75 1.00 45.00 18% 50.00

2 3 54 13.50 1.25 65.00 19% 40.00

3 15 24 12.00 0.00 45.00 18% 75.00

4 2 71 11.15 1.50 0.00 6% 0.00

142 DESIGNING AND WRITING COMPLETE PROGRAMS

Data set 1 was used to produce the following sample output.

Caswell Catering and Convention Service
Final Bill

Number of adults: 53

Number of children: 7

Cost per adult without dessert: $ 15.75

Cost per child without dessert: $ 7.b5

Cost per dessert: $

Boom fee: $ 45.□□

Tip and tax rate: □ .Ifi

Total cost for adult meals: $ 553.55

Total cost for child meals: $ 53.55

Total cost for dessert: $ 30.□□

Total food cost: $ 37b.fiO

Plus tip and tax: $ b7.a5

Plus room fee: $ 45.DO

Less deposit: $ 50.□□

Balance due: $ 435.b5

Write a program and test it using data sets 2, 3, and 4.

gram to calculate the amount a customer should be charged. The
president of the company has given you the following information
to help in writing the program.
a. The carpet charge is equal to the number of square yards pur

chased times the labor cost per square yard.
b. The labor cost is equal to the number of square yards purchased

times the cost per square yard. A fixed fee for floor preparation
is added to some customers' bills.

c. Large volume customers are given a percentage discount but the
discount applies only to the carpet charge, not the labor costs.

d. All customers are charged 4 percent sales tax on the carpet;
there is no sales tax on the labor cost.

The following is sample data for this problem.

Sq. Cost per Labor per Prep.
Customer yds. sq. yd. sq. yd. Cost Discount

1 17 18.50 3.50 38.50 0.02

2 40 24.95 2.95 0.00 0.14

3 23 16.80 3.25 57.95 0.00

4 26 21.25 0.00 80.00 0.00

The data for customer 1 were used to produce the following sample
output.
Square yards purchased: 17

Cost per square yard: $ 16.50

Labor per square yard: $ 3.50

Floor preparation cost: $ 36.50

Cost for carpet: $ 314.50

Cost for labor: $ 56.00

Discount on carpet: $ b.55

Tax on carpet: $ 15.33

Charge to customer: $ 416.54

Write a program and test it for customers 2, 3, and 4.

Programming Problems 143

9. The manager of the Croswell Carpet Store has asked you to write a
program to print customers' bills. The manager has given you the
following information.
a. The store expresses the length and width of a room in terms of

feet and tenths of a foot. For example, the length might be re
ported as 16.7 feet.

b. The amount of carpet purchased is expressed as square yards. It
is found by dividing the area of the room (in square feet) by
nine.

c. The store does not sell a fraction of a square yard. Thus, square
yards must always be rounded up.

d. The carpet charge is equal to the number of square yards pur
chased times the carpet cost per square yard. Sales tax equal to
4 percent of the carpet cost must be added to the bill.

0. All customers are sold a carpet pad at $2.25 per square yard.
Sales tcix equal to 4 percent of the pad cost must be added to the
bill.

f. The labor cost is equal to the number of square yards purchased
times $2.40, which is the labor cost per square yard. No tax is
charged on labor.

g. Large volume customers may be given a discount. The discount
may apply only to the carpet cost (before sales tax is added),
only to the pad cost (before sales tax is added), only to the labor
cost, or to any combination of the three charges.

h. Each customer is identified by a five-digit number and that
number should appear on the bill.
The sample output follows:

Croswell Carpet Store
Invoice

Customer number: ELQ17

Carpet : 57<.SP

Pad : Ql.GG

Labor : aL./;G

Subtotal : 7<l.t,G

Less discount : b5.5E

Subtotal : E>7L.Ga

Plus tax : E3.5R

Total : t,qq.L7

Write the program and test it for the following three customers.
a. Mr. Wilson (customer 81429) ordered carpet for his family room,

which measures 25 feet long and 18 feet wide. The carpet sells
for $12.95 per square yard and the manager agreed to give him a
discount of 8 percent on the carpet and 6 percent on the labor.

b. Mr. and Mrs. Adams (customer 04246) ordered carpet for their
bedroom, which measures 16.5 feet by 15.4 feet. The carpet sells
for $18.90 per square yard and the manager granted a discount
of 12 percent of everything.

c. Ms. Logan (customer 39050) ordered carpet that cost $8.95 per
square yard for her daughter's bedroom. The room measures
13.1 by 12.5 feet. No discounts were given.

144 DESIGNING AND WRITING COMPLETE PROGRAMS

10. Each week Abduhl's Flying Carpets pays its salespeople a base sal
ary plus a bonus for each carpet they sell. In addition, they pay a
commission of 10 percent of the total sales by each salesperson.

Write a program to compute a salesperson's salary for the month
by inputting Base, Bonus, Quantity, and Sales, and making the nec
essary calculations. Use the following test data:

Salesperson Base Bonus Quantity Conunission Sales

250.00

280.00

15.00

19.50

20

36

10%

10%

1543.69

2375.90

The commission figure is 10 percent. Be sure you can change this
easily if necessary. Sample output follows:

Salesperson
Base

Bonus

Quantity
Total Bonus

Commission

Sales

Total Commission

Pay

1

S5D.DD

IS.DO

SO

BOa.OQ

10%

1543.tR

154.37

704.3?

CHAPTER

E

Conditional
Statements

fSI 5.1

Boolean

Expressions

OBJECTIVES

a to be able to use the

data type boolean
□ to be able to use

eoln and eof as
functions

a to be able to use re
lational operators

□ to understand the
hierarchy for simple
Boolean expressions

a to be able to use the
logical connectives
AND, OR, and NOT

■3 to be able to use
compound Boolean
expressions

a to understand the
hierarchy for com
pound Boolean
expressions

The previous four chapters set the stage for using computers to
solve problems. You have seen how programs in Pascal can be

used to get data, perform computations, and print results. You should be
able to write complete, short programs, so it is now time to examine other
aspects of programming.

A major feature of a computer is its ability to make decisions. For
example, a condition is examined and a decision is made as to which
program statement is next executed. Statements that permit a computer
to make decisions are called conditional statements. Conditional state
ments are examples of control structures because they allow the program
mer to control the flow of execution of program statements.

Before looking at decision making, we need to examine the logical con
structs in Pascal, which include a new data type called boolean. This data
type allows you to represent something as true or false. Although this
sounds relatively simple (and it is), this is a very significant feature of
computers.

The boolean Data T5rpe

Thus far we have used only the three data types integer, real, and char;
a fourth data type is boolean. A typical declaration of a Boolean variable
is

VAR

Flag : boolean;

In general. Boolean variables are declared by

145

146 CONDITIONAL STATEMENTS

VAR

variable 1,

variable 2,

variable n : boolean;

There are only two values for variables of the boolean data type: true
and false. These are both constant standard identifiers and can only be
used as Boolean values. When these assignments are made, the contents
of the designated memory locations will be the assigned values. For ex
ample, if the declaration

VAR

Flagl/

is made.

FlagE : boolean;

Flagl := true;
FlagE := false;

produces

true false

Flagl Flag2

As with other data types, if two variables are of type boolean, the value
of one variable can be assigned to another variable as

Flagl := true;
FlagE := Flagl;

and can be envisioned as

true true

Flagl Flag2

Note that quotation marks are not used when assigning the values true or
false since these are Boolean constants, not strings.

Output of boolean

In standard Pascal, Boolean variables can be used as arguments for write
and writeln. Thus,

[B Flag := true;
writeln (Flag);

produces

true

However, some versions will not support output of Boolean variables.
The field width for Boolean output varies with the machine being used.

It can be controlled by formatting with a colon followed by a positive
integer to designate the field width. The Boolean value will appear right
justified in the field. To illustrate, if Flag is a Boolean variable with the
value false, the segment of code

writeln

writeln

(Flag:t);
(Flagifl);

5.1 Boplean Expressions 147

produces the output

-false

false

Boolean constants true and false can also be used in writeln statements.
For example,

writeln (true);
writeln (false);
writeln (true:ts, false:t>);

executed on a machine using a default field width of ten columns produces

true

false

true_false

Although Boolean variables and constants can be assigned and used in
output statements, they cannot be used in input statements in standard
Pascal. Thus, if Flag is a Boolean variable, a statement such as

read (Flag);

produces an error. Instead, one would typically read some value and then
use this value to assign an appropriate Boolean value to a Boolean variable.
This technique will be illustrated later.

The Standard Identifiers eoln and eof as Functions

Section 3.3 introduced the concepts of end-of-line and end-of-file. These
were presented as markers that were put in a stream input to separate
lines and designate the end of a data file. Both eoln and eof are built-in
Boolean functions that are used to indicate when the pointer is positioned
at one of these markers. If the data pointer is positioned at an end-of-line
marker, then eoln is true; otherwise, eoln is false. Similarly, if the pointer
is positioned at the end-of-file marker, eof is true; otherwise, eof is false.
An exception to the eoln value being false when the pointer is not at end-
of-line marker is when the pointer is at an end-of-file marker. In this case,
eoln may have the value true.

Since eoln and eof are built-in functions, they can be used in assignment
statements. To illustrate, assume we have the data file

Hl|22|l3 -48B
T

with the pointer positioned at the beginning of the file. Furthermore,
assume the variable declcuration section of a program includes

VAR

A/ B : integer;
Chi, ChS : char;

EolnFlag, EofFlag : boolean;

If no previous assignments have been made, we have

A B Chi Ch2 EolnFlag EofFlag

148 CONDITIONAL STATEMENTS

The assignments

EolnFlag := eoln;
EofFlag := eof;

might be envisioned as

false false

A B Chi Ch2 EolnFlag EofFlag

If the line of code

read (Chi/ Ch5);

is executed, the data pointer is

Hl|22|l3 -48| ■

and the assignment statements

EolnFlag := eoln;
EofFlag := eof;

result in

H I true false

A B Chi Ch2 EolnFlag EofFlag

If the next three lines of code are

readln (A);

EolnFlag := eoln;
EofFlag := eof;

this produces

Hl|22|l3 -48| ■

22 H I false false

Chi Ch2 EolnFlag EofFlag

Then

read (A/ B) ;

EolnFlag := eoln;
EofFlag := eof;

produces

Hl|22|l3 -48|

B

13 -48 H I true false

A

And finally

read (Chi);

EolnFlag := eoln;
EofFlag := eof;

produces

Chi Ch2 EolnFlag EofFlag

5.1 Boolean Expressions 149

Hl|22|l3 -48| ■

13 -48 b I true true

B Chi Ch2 EolnFlag EofFlag

Both eoln and eof can also be used in output statements. For example,

writeln (eoln, eof);

write (eoln:t, eof:b);

are appropriate statements.
The following example illustrates the use of eoln and eof in output

statements and how their values change according to the data pointer for
a stream input. (This example assumes input from a data file; interactive
input would produce a different result.)

EXAMPLE Let's write a short program that allows us to examine a line of data and the
respective values of eoln and eof. Suppose the data file is

ab|i2|b

and you want to produce a chart that indicates the values after each character is
read. The chart heading should include the character read, eoln value, and eof
value. The code needed to produce one line of the chart is

read (Ch);
writeln (Ch:15/ eoln:5D, eof:50);

Since we can read four characters and two end-of-line markers from this data file,

this segment of code needs to be executed six times. An attempt to read (Ch)
seven times would produce an error since you would be trying to read past the
end-of-file marker. The complete program for this example follows.

PROGRAM ReadCheck (input, output);

CONST

Indent = ' ';

VAR

Ch : char;

PROCEDURE PrintHeading;

{ This procedure prints a heading for the output >

BEGIN

writeln; writeln;

writeln (IndentrlD, 'Character read', 'eoln value':17, 'eof value':1R);
writeln (IndentrlD, ' ', ' ':!?, ' ':1'=1);
writeln

END; < of PROCEDURE PrintHeading >

150 CONDITIONAL STATEMENTS

BEGIN < Main program }

PrintHeading;

•{ Now read the data file >

read (Ch);

writeln (Indent:15/ Ch, eoln:55, eof:2D)
read (Ch);
writeln (Indent:15, Ch, eolnrBE, eof:ED)
read (Ch);

writeln (Indent:15, Ch, eolniEE, eof:ED)
read (Ch);
writeln (Indent:15, Ch, eoln:EE, eof:ED)
read (Ch);
writeln (Indent:15, Ch, eoln:SE, eof:SO)
read (Ch);

writeln (Indent:15, Ch, eoln:EE, eof:ED)
writeln; writeln

END. i of main program >

The output from this program is

Character read eoln value

false

true

false

false

true

true

eof value

false

false

false

false

false

true

Relational Operators and Simple Boolean Expressions

In arithmetic, integers and reals can be compared using equalities (=) and
inequalities (<, >, 5^, and so on). Pascal also provides for the comparison
of numbers or values of variables. The operators used for comparison are
called relational operators and there are six of them. Their arithmetic
notation, Pascal notation, and meaning are given in Table 5.1.

TABLE 5.1

Relational operators
Arithmetic Relational

Operation Operator Meaning

= = Is equal to
< < Is less than

> > Is greater than
< < = Is less than or equal to
2: > = Is greater than or equal to
5^ <> Is not equal to

The previous section indicated how Boolean values could be generated
using the built-in functions eoln and eof when reading data. Let's now
examine some other methods of generating Boolean values. This is nec
essary so we can control selection in a program.
When two numbers or variable values are compared using a single

relational operator, the expression is referred to as a simple Boolean expres
sion. Each simple Boolean expression has the Boolean value true or false

TABLE 5.2

Values of simple
Boolean expressions

5.1 Boolean Expressions 151

according to the arithmetic validity of the expression. In general, only
data of the same type can be compared; thus, integers must be compared
to integers, reals must he compared to reals, and characters must be com
pared to characters. The usual exception can be applied here; that is, reals
can be compared to integers.

Table 5.2 sets forth several Boolean expressions and their respective
Boolean values, assuming the assignment statements A : = 3 and B : = 4
have been made.

Simple Boolean Expression Boolean Value

7 = 7 trueI

CO
b

II

p
b

false

4.2 > 3.7 true

-18 < -15 true

13 < 100 true

13 <= 100 true

13 <= 13 true

0.012 > 0.013 false

-17.32 <> -17.32 false

A <= B true

B > A true

Arithmetic expressions can also be used in simple Boolean expressions.
Thus,

4 < (3 + 5)

has the value true. When the computer evaluates this expression, the
parentheses dictate that (3 + 2) be evaluated first and then the relational
operator. Sequentially, this becomes

4 < (3 + 2)
^ < 5

true

What if the parentheses had not been used? Could the expression be
evaluated? This type of expression necessitates a priority level for the
relational operators emd the arithmetic operators. A summary for the prior
ity of these operations is

Expression Priority

/, MOD, DIV 1

+ , - 2

= . <, >, < = , > = . <> 3

Thus, we see that the relational operators are evaluated last. As with
arithmetic operators, these eu-e evaluated in order from left to right. Thus,
the expression

< < 3 + B

could be evaluated without parentheses and would have the same Boolean
value.

The following example illustrates the evaluation of a somewhat more
complex Boolean expression.

152 CONDITIONAL STATEMENTS

EXAMPLE 5.2 Indicate the successive steps in the evaluation of the Boolean expression
10 MOD < * 3 - fl <= Ifl + 30 DIV 4 - 2D

The steps in this evaluation are

1

2 * 3 - a <= la + 30 DIV 4 - 20 > first pass

* 3 - <= la + 3D DIV ^ - 2D

* 3 - <= la + 3D DIV 4 - 2D

I

L - Q <= la + 3D DIV < - 2D

i

- a < = la + 7 - 2D

I i

- 2 < = 25 - 2D

I

- 2 <= 5

second pass

third pass
1

true

As shown in Example 5.2, even though parentheses are not required
when using arithmetic expressions with relational operators, it is usually
a good idea to use them to enhance the readability of the expression and
to avoid using an incorrect expression.

Logical Operators and Compound Boolean Expressions

Boolean values may also be generated by using logical operators with
simple Boolean expressions. The logical operators used by Pascal are AND,
OR, and NOT. AND and OR are used to connect two Boolean expressions.
NOT is used to negate the Boolean value of an expression; hence, it is
sometimes referred to as negation. When these connectives or negation
are used to generate Boolean values, the complete expression is referred
to as a compound Boolean expression.

If AND is used to join two simple Boolean expressions, the resulting
compoimd expression is true only when both simple expressions are true.
If OR is used, the result is true if either or both of the expressions are
true. This is summarized as follows:

Expression 1 Expression 2
(El) (E2) El AND E2 El OR E2

true true true true

true false false true

false true false true

false false false false

As previously indicated, NOT merely produces the logical negation of
an expression as follows:

Expression
(E) NOTE

true false

false true

When using these operators with relational expressions, parentheses
are required because logical operators are evaluated before relational op-

5.1 Boolean Expressions 153

A NOTE OF INTEREST

George Boole

George Boole was a self-taught mathematician
who knew only hard work and deprivation dur
ing his early years. He was bom in England in
1815 and until 1849, when he was appointed
professor of mathematics at Queen's College in
Cork, Ireland, a major portion of his time was
spent teaching so he could support his parents.
After the appointment, he could devote more

time to mathematics and subsequently pub
lished "An Investigation of the Laws of Thought,
on which are founded the Mathematical Theo

ries of Logic and Probabilities" at the relatively
advanced age of thirty-nine. The data type. Bool
ean, is named in honor of George Boole because
he is credited with la3dng the foundation for what
is currently studied as formal logic.

erators. Illustrations of the Boolean values generated using logical oper
ators are given in Table 5.3.

TABLE 5.3

Values of compound
Boolean expressions

Expression Boolean Value

(4.2 > = 5.0) AND (8 = (3 + 5))
(4.2 >= 5.0) OR (8 = (3 -I- 5))
(-2 < 0) AND (18 >= 10)
(-2 < 0) OR (18 >= 10)
(3 > 5) AND (14.1 = 0.0)
(3 > 5I OR (14.1 = 0.0)
NOT (18 = (10 -I- 8))
NOT (- 4 > 0)

false

true

true

true

false

false

false

true

Complex Boolean expressions can be generated by using several logical
operators in an expression. The priority for evaluating these operators is

Operator Priority

NOT 1

AND 2

OR 3

When complex expressions are being evaluated, the logical operators,
arithmetic expressions, and relational operators are evaluated during suc
cessive passes through the expression. The priority list is now complete
as follows:

Expression or Operation Priority

() 1. Evaluate from inside out

NOT 2. Evaluate from left to right
*, /, MOD, DIV, AND 3. Evaluate from left to right

+.-,OR 4. Evaluate from left to right
<, < = , >, > = , =, <> 5. Evaluate from left to right

Thus, an expression like

□ < X AND X < E

154 CONDITIONAL STATEMENTS

produces an error. It must be written as

(0 < X) AND (X < a)

The following examples illustrate evaluation of some complex Boolean
expressions.

EXAM^E 5.3 (3 < 5) OR (El <> 16) AND (-61 > 0)
1

true OR (El <> 16) AND (-61 > □)
1

true OR true AND (-61 > □)
1

true OR true AND false

true OR false
I

true

first pass
(parentheses first)

second pass

third pass

EXAMPLE 5.4 NOT ((-5.D >= -t.E) OR ((■?

A
V

llJ

AND (t = (3 + 3))))

NOT (
i

true OR (
i

true AND (b =
i
b)))

NOT (true OR (true AND true))

NOT (true OR

i

true)

NOT

i
true

EXAMPLE 5.5

false

Assume X and Y are real variables, Flag is a Boolean variable, and the assignment
statements

X := IE.5;
Y := -IDD;
Flag := true;

have been made. (X <> 7 / 3) OR NOT ((X > = 4) AND (NOT Flag)) can be
evaluated as;

true

true

true

true

true

NOT ((X >= A) AND

NOT ((X >= A) AND
i

NOT (true AND

NOT (true AND
i

NOT false

false

OR

I

true

i

true

Extra care should be taken with the syntax of Boolean expressions. For
example, the expression

3 < 4 AND 100 > 60

5.1 Boolean Expressions 155

in a program produces an error. Since relational expressions are evaluated
last, the first pass through this expression would attempt to evaluate

AND

This is not valid because logical operators can only operate on Boolean
values true and false.

If an expression produces a Boolean value and is evaluated before a
connective, then that expression would not have to be in parentheses. For
example,

(3 < 5) AND NOT (□ >= -5)

is a valid expression, evaluated as follows:
(3 < 5) AND NOT (□ >= -E)

1
true AND NOT (□ >= -E)

1
true AND NOT true

I
true AND false

I

false

Exercises 5.1 l. Assume the variable declaration section of a program is
VAR

Flagl/ FlagE : boolean;

What output Is produced by the following segments of code?
Flagl := true;
FlagE := false;
writeln (Flagl/ trueit/ FlagErfl);
Flagl := FlagE;
writeln (FlagEiED);

Write a test program that Illustrates what happens when Boolean
expressions are not enclosed In parentheses. For example,
3 < 5 AND a.D <> < * 3

3. Assume the variable declaration section of a program Is

VAR

Ch : char;
Flag : boolean;

Indicate If the following assignment statements are valid or Invalid.
a. Flag := 'true' ; d. Ch := Flag;
b. Flag := T; e. Ch := true;
c. Flag := true; f. ch := 'T' ;

4. Can eoln and eof be true at the same time? Explain.

5. Indicate for each of the following simple Boolean expressions whether It Is
true, false, or Invalid.

a. -3.01 <= -3.001

b. -3.0 = -3

c. E5 — 10 <> 3 * 5

d. AE MOD S < AE DIV 5

e. -5 * (3 + E) > E * (-10)
f. 10 / 5 < 1 + 1

g. 3 + a MOD 5 >= t - IE MOD E

156 CONDITIONAL STATEMENTS

A
Evaluate each of the following expressions:

a. (3 > 7) AND (E < 0) OR (b = 3 + 3)

b. ((3 > 7) AND (a <0)) 0R (b = 3 + 3)

c. (3 > 7) AND ((a <D) 0R (b = 3 + 3))

d. NOT ((-<.E <> 3.0) AND (ID < EG))

e. (NOT (-A.S <> 3.0)) OR (NOT (10 < EG))

\ 7. Assume the variable declaration section of a program is

VAR

Intl, IntE : integer;
Rll/ Ria : real;

Flaglr FlagE : boolean;

and the values of the variables are

0 8 -15.2 -20.0 false true

Intl Int2 Rll Rl2 Flagl Flag2

Evaluate each of the following expressions:

a. (Intl <= IntS) OR NOT (RIE = Rll)

b. NOT (Flagl) OR NOT (FlagE)

c. NOT (Flagl AND FlagE)

d. ((Rll-RIE) < IGG/IntE) AND ((Intl < 1) AND NOT (FlagE))

e. NOT ((IntE - lb DIV E) = Intl) AND Flagl

8. Indicate for each of the following expressions whether it is valid or invalid.
Evaluate those that are valid.

a. 3 < < OR 5 <> b e. NOT true OR NOT false

b. NOT 3.G = b / S f. NOT (Ifl < E5) AND OR (-3 < G)

c. NOT (true OR false) g. fl * 3 < EG + ID

d. NOT true OR false

isl HI @

@ 5.2

IF .. . THEN

Statements

OBJECTIVES

Q to leam the form

and syntax required
for using an IF ...
THEN statement

□ to understand the
flow of control
when using an IF
... THEN statement

a to be able to use an
IF ... THEN state

ment in a program
□ to understand why

compound state
ments are needed

Objectives continued.

The first decision-making statement we will examine is the IF . .. THEN
statement. IF ... THEN is used to make a program do something only
when certain conditions are used. The form and syntax for an IF... THEN
statement are

IF Boolean expression THEN
statement;

The Boolean expression can be any valid expression that is either true
or false at the time of evaluation. If it is true, the statement following the
reserved word THEN is executed. If it is false, control is transferred to
the first program statement following the complete IF. .. THEN statement.
In general, code would have the form

statement 1;
IF Boolean expression THEN

statement 2;
statement 3;

as illustrated in Figure 5.1.

5.2 IF . . . THEN Statements 157

a to understand how

BEGIN ... END are

used to write com

pound statements
Q to be able to use

correct syntax in
writing a compound
statement

Q to be able to design

programs using IF
... THEN

statements

FIGURE 5.1

IF ... THEN flow

diagram
r

Statement 1

1 r

Boolean
true

Statement 2
expression

false
r

Statement 3

As a further illustration of how an IF ... THEN statement works, con
sider the program fragment

Sum := O.D;

read (Num) ;
IF Num > THEN

Sum := Sum + Num;

writeln (Sum:ID:5);

If the value read is 75.85, prior to execution of the IF.
the contents of Num and Sum are

. THEN statement.

75.85 0.0

Num Sum

The Boolean expression Num > 0.0 is now evaluated and, since it is true,
the statement

Sum := Sum -f Num;

is executed and we have

75.85 75.85

Num Sum

The next program statement is executed and produces the output
75.55

However, if the value read is —25.5, the variable values are

-25.5 0.0

Num Sum

The Boolean expression Num > 0.0 is false and control is transferred to
the line

writeln (Sura);

Thus, the output is

158 CONDITIONAL STATEMENTS

Now, let's suppose you want a program in which one objective is to
count the number of zeroes in the stream input. Assuming suitable initial
ization and declaration, a program fragment for this task could be

readln (Num);
IF Num = □ THEN

ZeroCount := ZeroCount + 1;

One writing style for using an IF. . . THEN statement calls for indenting
the program statement to be executed if the Boolean expression is true.
This, of course, is not required.

IF Num = □ THEN
ZeroCount := ZeroCount + 1;

could be written

IF Num = 0 THEN ZeroCount := Zerocount + 1;

However, the indenting style for simple IF .. . THEN statements is con
sistent with the style used with more elaborate conditional statements.

Compound Statements

The last concept needed before looking further at selection in Pascal is a
compound statement. Simple statements are single commands separated
by semicolons. Thus,

readln (ft/ B);
ft := 3 * B;
writeln (ft);

cire three simple statements.
In some instances, it is necessary to perform several simple statements

when some condition is true. For example, you may want the program to
do certain things if a condition is true. In this situation, several simple
statements that can be written as a single compound statement would be
helpful. In general, there are several Pascal constructs that require com
pound statements. A compound statement is created by using the reserved
words BEGIN and END at the beginning and end of a sequence of simple
statements. Correct syntax for a compound statement is

BEGIN
statement 1;
statement 2;

statement n

END;

Statements within a compound statement are separated by semicolons.
The last statement before END does not require a semicolon, but if a
semicolon is used here, it will not affect the program.

When a compound statement is executed within a program, the entire
segment of code between BEGIN and END is treated as a single statement.
This is referred to as a BEGIN .. . END block. It is important that you
develop a consistent, acceptable writing style for writing compound state
ments. What you use will vary according to your instructor's wishes and

5.2 IF . .. THEN Statements 159

your personal preferences. Examples in this text will indent each simple
statement within a compound statement two spaces. Thus,

BEGIN

read (A/ B);
A : = 3 * B;

writeln (A)

END;

is a compound statement in a program; what it does is easily identified.
Some examples of compound statements follow. Although the concept,

syntax, and writing style do not appear to be difficult at this point, one
of the most frequent errors for beginning programmers is incorrect use of
compound statements.

Let's write a compound statement that allows you to read a real, print the real,
and add it to a total. Assuming variables have been suitably declared and initial
ized, a compound statement to do this is

BEGIN

write ('Enter a real number and press <RETaRN>.
readln (Num);

writeln (Num:a:2);
Total := Total + Num

END;

);

EXAMPIiiE 5,7 Suppose you are writing a program to enable your instructor to compute grades
for your class. For^each student you need to read three scores from a line of data,
add the scores, compute the average score, print the scores, and print the test
average. Again, assuming variables have been suitably declared, a compound state
ment for this could be

BEGIN

write ('Enter three scores and press <RETDRN>.
readln (Scorel/ Scores, Score3);
Total := Scorel + Scores + Score3;

Average := Total / 3.D;
write (Scorel Scores:b/ Score3:t);
writeln (Average:1S:S)

END;

);

Using Compound Statements

As you might expect, compound statements can be (and frequently are)
used as part of an IF ... THEN statement. The form and syntax for this
are

IF Boolean expression THEN
BEGIN

statement 1;

statement 2;

statement n

END;

160 CONDITIONAL STATEMENTS

Program control is exactly as before depending on the value of the
Boolean expression. For example, suppose you want to determine how
many positive numbers are in a data file and also compute their sum. This
can be partially accomplished by the program fragment

Sura :=

Count := □;
read (Num);
IF Num > THEN

BEGIN
Sum := Sum + Num;
Count := Count + 1

END; { of IF THEN >

The next example designs a program to solve a problem using an IF
. .. THEN statement.

EXAMPLE 5.8 Let's write a program that reads two integers and prints them in the order larger
^ first, smaller second. The first-level pseudocode solution is

1. Read numbers
2. Determine larger
3. Print a heading
4. Print results

Step 1 is a single line of code, a procediire is used for step 3, and step 4 will be
some writeln statements. However, step 2 requires some refinement. A second-
level solution could be

1. Read numbers
2. Determine larger

2.1 IF Numl < Num 2 THEN exchange numbers
3. Print a heading
4. Print results

4.1 print Numl (larger)
4.2 print Num2 (smaller)

Step 2.1 is further refined to produce

2.1 IF Numl < Niun2 THEN exchange numbers
2.1.1 Temp gets Numl
2.1.2 Numl gets Num2
2.1.3 Num2 gets Temp

We can now write code for the program to solve this problem. The procedure
PrintHeading will be included in the complete program.

}—^ write ('Enter two integers and press <RETORN>. ');
readln (Numl/ NumE);
IF Numl < NumS THEN

BEGIN

Temp := Numl;
Numl := NumE;
NumE := Temp

END; { of IF...THEN >
PrintHeading; { PROCEDURE >
writeln (NumlrlS, NumS:15);

A complete program for this example follows.

5.2 IF . . . THEN Statements 161

PROGRRM UselFTHEN (input, output);

< This program illustrates using an IF ... THEN statement. >
< Two numbers are read and then printed in order, larger >
{ first. }

CONST

Skip = • •;

VAR

Numl, < First number >

NumE, < Second number >

Temp : integer; ■{ Temporary variable }

PROCEDDRE PrintHeading;

{ This procedure prints a heading }

BEGIN
writeln; writeln;
writeln ('Larger number'. Skip:ID, 'Smaller number');
writeln (' ', Skip:ID, ' ^—');
writeln

END; < of PROCEDURE PrintHeading >

< Now Start the main program >

BEGIN { Main program }

write ('Enter two integers and press <RETURN>. ');
readln (Numl, NumE);

PrintHeading;

IF Numl < NumE THEN
BEGIN

Temp := Numl;
Numl := NumE;
NumE := Temp

END;
writeln (Numl:7, NumE:E3);
writeln

END. { of main program >

A sample run of this program produces

Enter two integers and press <RETORN>. Ifl 30

Larger number Smaller number

3G Id I

162 CONDITIONAL STATEMENTS

Exercises 5.2 1. What is the output from each of the following program fragments? Assume
the following assignment statements precede each fragment:

:= ID;

:= 5;

a. IF a <= B THEN

B := A;

writeln (R, B);

b. IF A <= B THEN

BEGIN

B := A;

writeln ('A/ B)
END;

c. IF A < B THEN

Temp ;= A;

A := B;

B := Temp;

writeln (A/ B);

d. IF A < B THEN

BEGIN

Temp := A;

A := B;

B := Temp

END;

writeln (A, B);

e. IF (A < B) OR (B - A < □) THEN
BEGIN

A := A + B;
B := B - 1; .
writeln (A, B)

END;
writeln (A/ B);

f. IF (A < B) AND (B A < □) THEN
BEGIN

A := A + B;
B := B - 1;
writeln (A/ B)

END;
writeln (A, B);

y

2. Write a test program to illustrate what happens when a semicolon is inad
vertently inserted after THEN in an IF .. . THEN statement. For example,

IF A > □ THEN;
Sum := Sum + A;

3. Find and explain the errors in each of the following program fragments.
You may assume all variables have been suitably declared.
a. IF A := ID THEN

writeln (A);
b. X := 7;

IF 3 < X < ID THEN

BEGIN

X := X + 1;
writeln (X)

END;

c. Count := D;
Sura := D;
A := 5D;
IF A > D THEN

Count := Count + 1;
Sum := Sum + A;

d. read (Ch) ;
IF Ch = 'A' OR 'B' THEN

writeln (ChrlD);

4. What is the output from each of the following program fragments? Assume
variables have been suitably declared.

a. «J I— id;
IF J MOD 5 = D THEN

writeln (J);
b. A := 5;

B := 3D;
B := B DIV A - 5;
IF B > A THEN

B := A * 3D;
writeln (A/ B);

5. Can a simple statement be written using a BEGIN .. . END block? Write a
short program that allows you to verify your answer.

5.2 IF . . . THEN Statements 163

6. Discuss the differences in the following programs. Predict the output for
each program using sample values for Num..

a. PROGRAM Exerclseta (input, output).;

VAR

Num : integer;

BEGIN

write ('Enter an integer and press <RETURN>. ');

readln (Num);

IF Num > □ THEN

writeln;/writeln;
writeln ('The number is':52, Num:t>);
writeln;
writeln ('The number squared is' :3D/ Num * Numrt);
writeln ('The number cubed is' :2fl/ Num * Num * Num:t);
writeln; writeln

END.

b. PROGRAM Exercisetib (input, output);

VAR

Num : integer;

BEGIN < Main program >
write ('Enter an integer and press <RETORN>. ');
readln (Num);
IF Num > □ THEN

BEGIN { Start output >
writeln; writeln;
writeln ('The number is' :52, Numrt);
writeln;
writeln ('The number squared is' :3D, Num * Numife);
writeln ('The number cubed is' :2a, Num * Num *

Num:k);
writeln; writeln

END < output for one number >
END.

7. Discuss writing style and readability of compound statements.

8. Find all errors in the following compound statements.
a. BEGIN

read (A) ,
writeln (A)

END;
b. BEGIN

Sum := Sum + Num '

END;
c. BEGIN

read (Sizel, Size2);
writeln (Sizel:a, Size2:a)

END.

d. BEGIN

readln (Age, Weight);
TotalAge := TotalAge + Age;
TotalHeight := TotalHeight + Height;
writeln (Age:a, Weight:a)

164 CONDITIONAL STATEMENTS

9. Write a single compound statement that will:

a. Read three integers from a data file.
b. Add them to a previous total.
c. Print the numbers on one line.

d. Skip a line (output).
e. Print the new total.

10. Write a program fragment that reads three reals from a data file, counts the
number of positive reals, and accumulates the sum of positive reals.

11. Write a program fragment that reads three characters from a data file and
then prints them only if they have been read in alphabetical order (for ex
ample, print "boy" but do not print "dog").

12. Given two integers, A and B, A is a divisor of B if B MOO A = 0. Write a
complete program that reads two positive integers A and B and then, if A is
a divisor of B,

a. Print A.

b. Print B.

c. Print the result of B divided by A.

For example, the output could be

A Is lA

B is AE

B divided by A is 3

^ EH

H 5.3

IF ... THEN

.. . ELSE

Statements

OBJECTIVES

D to learn the form

and syntax required
fot using an IF ...
THEN ... ELSE

statement

□ to understand the
flow of control
when using an IF
... THEN ... ELSE

statement

a to be able to use an
IF ... THEN ...

ELSE statement in a
program

B to be able to design
programs using IF
... THEN ... ELSE

statements

Form and Syntax

The previous section discussed the one-way control statement IF . . . THEN.
The second conditional control statement we will examine is the two-
way control statement IF . .. THEN ... ELSE. Correct form and syntax
for IF .. . THEN ... ELSE are

IF Boolean expression THEN
statement

ELSE
statement;

Flow of control when using an IF
follows:

THEN ELSE statement is as

1. The Boolean expression is evaluated.
2. If the Boolean expression is true, the statement following THEN is

executed and control is transferred to the first program statement
following the complete IF .. . THEN . .. ELSE statement.

3. If the Boolean expression is false, the statement following ELSE is
executed and control is transferred to the first program statement
following the IF ... THEN . .. ELSE statement.

A flow diagram is given in Figure 5.2.
To illustrate this flow of control, let us consider the problem of printing

the larger of two numbers using an IF . , . THEN . .. ELSE statement in
the following code.

5.3 IF . . . THEN . . . ELSE Statements 165

FIGURE 5.2

IF ... THEN ...

ELSE flow diagram

ELSE

statement

f

Prior '

st^lement

1 r

IF

Boolean THEN

statement

Subsequent
statement

read (Numl/ NumE);

IF Nural > NumE THEN

writeln (Nural)
ELSE

writeln (NumE);
writeln ('All done');

If the values read are

80 15

Numl Num2

the Boolean expression Numl > Num2 is true and the statement

writeln (Nural)

is executed to produce

&□

Control is then transferred to the next program statement,
writeln ('All done');

and the output is
60

All done

However, if the values read are

10 75

Numl Num2

the Boolean expression Numl > Num2 is false, control is transferred to
writeln (NuraE);

and the output is
75
All done

166 CONDITIONAL STATEMENTS

EXAMPLE 5,9

EXAMPLE 5.10

with the 75 printed from the ELSE option of the IF ... THEN ... ELSE
statement.

A few points to remember concerning IF... THEN... ELSE statements
are:

1. The Boolean expression can be any valid expression having a
value of true or false at the time it is evaluated.

2. The complete IF ... THEN ... ELSE statement is one program
statement and is separated from other complete statements by a
semicolon whenever appropriate.

3. There is no semicolon preceding the reserved word ELSE. A semi
colon preceding the reserved word ELSE causes the compiler to
treat the IF ... THEN portion as a complete program statement
and the ELSE portion as a separate statement. This produces an
error message indicating that ELSE is being used without an IF
... THEN.

4. Writing style should include indenting within the ELSE option in
a manner consistent with indenting in the IF ... THEN option.

Let's write a program fragment to keep separate counts of the negative and non-
negative numbers entered as data. Assuming all variables have been suitably de
clared, an IF ... THEN ... ELSE statement could be used as follows:

write ("Please enter a number and press <RETORN>. •);
readln (Num);

IF Num < □ THEN
NegCount := NegCount + 1

ELSE
NonNegCount := NonNegCount +1; Iffil

Using Compound Statements

Program statements in both the IF ... THEN option and the ELSE option
can be compound statements. When using compound statements in these
options, you should use a consistent, readable indenting style; remember
to use BEGIN . .. END for each compound statement; and do not put a
semicolon before ELSE.

Suppose you want a program to read a number, count it as negative or nonnegative,
and print it in either a column of nonnegative numbers or a column of negative
numbers. Assuming all variables have been suitably declared and initialized, the
fragment might be

write ("Please enter a number and press <RETORN>
readln (Num);
IF Num < □ THEN

BEGIN

NegCount := NegCount + 1;
writeln (Num:15)

END <. of IF...THEN option }
ELSE

BEGIN

NonNegCount := NonNegCount + 1;
writeln (Num:3D)

END; i. of ELSE option >

);

We conclude this section with an example of a program fragment that
requires the use of compound statements within an IF... THEN. . . ELSE
statement.

EXAMPLE 5.11

5.3 IF . . . THEN . .. ELSE Statements 167

Let's write a program fragment that computes gross wages for an employee of the
Florida OJ Canning Company. A data line consists of three initials, the total hours
worked, and the hourly rate. Thus a typical data line is

JHA 44.5 12.751

Overtime (more than 40 hours) is computed as time-and-a-half. The output should
include all input data and the gross wages. A first-level pseudocode for this prob
lem could be

1. Get the data

2. Perform computation
3. Print results

Step 1 can be accomplished by a single readln statement. Step 2 can be refined to

2. Perform computation
2.1 IF Hours < = 40.0 THEN

compute regular time
ELSE

compute time-and-a-half

Step 2.1 can be written as

IF Hours <= AQ.Q THEN

TotalWage := Hours * PayRate
ELSE

BEGIN

Overtime := 1.5 * (Hours -<□.□) * PayRate;
TotalWage := AD * PayRate + Overtime

END;

Step 3 could be refined to

3. Print results
3.1 print initials
3.2 print Hours and PayRate
3.3 print TotalWage

The program fragment for this problem is

readln (Initl/ InitS/ InitB, Hours, PayRate);
IF Hours <= .^D.a THEN

TotalWage := Hours * PayRate
ELSE

BEGIN

Overtime := 1.5 * (Hours - 40.□) * PayRate;
TotalWage := AD * PayRate + Overtime

END;
write (Initl:5, InitP, InitB);
write (Hours:10:5, PayRate;1D;E);
writeln ('S'.-ID, TotalWage:? :5);

If this fragment is run on the data line given at the beginning of this example, we
get

JHA AA.SD IE.75 $ 5Rb.Db HI

Robust Programs '

If a program is completely protected against all possible crashes from bad
data and unexpected values, it is said to herobust. The preceding examples
have all assumed that desired data would be accurately entered from the
keyboard. In actual practice, this is seldom the case. IF . .. THEN . . .

168 CONDITIONAL STATEMENTS

ELSE statements can be used to guard against bad data entries. For ex
ample, if a program is designed to use positive numbers, you could guard
against negatives and zero by

j^l write ('Enter a positive number and press <RETURN>. •)
readln (Number);
IF Number <= □ THEN

writeln ('You entered a nonpositive number. ');
ELSE

(code for expected action here)

This program protection can be used anywhere in a program. For example,
if you are finding square roots of numbers, you could avoid a program
crash by

IF Num < □ THEN

writeln ('The number Num/ ' is negative. ')
ELSE

(rest of action here)

In actual practice, students need to balance robustness against amount of
code and efficiency. An overemphasis on making a program robust can
detract from time spent learning new programming concepts. You should
discuss this with your instructor and decide what is best for your situation.
For most programs and examples in this text, it is assumed that valid data
are entered when requested.

Exercises 5.3 What output is produced from each of the following program fragments? As
sume all variables have been suitably declared.
a. A := -lA; c. Temp := D;

B := □; A := 10;
IF A < B THEN B := 5;

writeln (A, abs(A)) IF A > B THEN
ELSE writeln (A, B)

writeln (A * B); ELSE
b. A := 50; Temp := A;

B := B5; A := B;
Count := 0; B := Temp;
Sum := 0; writeln (A, B);
IF A = B THEN

writeln (R, B)
ELSE

BEGIN

Count := Count + 1;
Sum := Sum + A + B;
writeln (R, B)

END;
writeln (Count, Sura);

2. Write a test program that illustrates what error message occurs when a semi
colon precedes ELSE in an IF . . . THEN . . . ELSE statement. For example,
PROGRAM SyntaxError (output);

VAR

A, B : integer;

5.4 Nested IF Statements 169

BEGIN

A := ID;

B := S;

IF A < B THEN

writeln (A);
ELSE

writeln (B)
END.

Find all errors in the following program fragments.

a. IF Ch <> » . ' THEN

CharCount := CharCount + 1;

writeln (Ch)

ELSE

PeriodCount := Period Count + 1;
b. IF Age < SU THEN

BEGIN

YoungCount := YoungCount + 1;

YoungAge := YoungAge + Age
END;

ELSE

BEGIN

OldCount := OldCount + 1;

OldAge := OldAge + Age

END;

c. IF Age < SD THEN

BEGIN

YoungCount := YoungCount + 1;

YoungAge := YoungAge + Age
END

ELSE

OldCount := OldCount + 1;

OldAge := OldAge + Age;

4. Write a program to balance your checkbook. Your program should read an
entry from the data file, keep track of the number of deposits and checks,
and keep a running balance. Each data file entry consists of a character, D
(deposit) or C (check), followed by an amount.

B S g| S

m 5.4

Nested IF

Statements

OBlfEGTIVES

a to learn the form

and syntax required
for using nested IF
statements

D to know when to

use nested IF

statements

Objectives continued.

Multiway Selection

Sections 5.2 and 5.3 examined one-way (IF ... THEN) and two-way (IF
... THEN ... ELSE) selection. Since each of these is a single Pascal state
ment, either can be used as part of a selection statement to achieve multiple
selection. In this case, the multiple selection statement is referred to as a
nested IF statement. These nested statements can be any combination of
IF ... THEN or IF ... THEN ... ELSE statements.

To illustrate, let's write a program fragment to issue interim progress
reports for students in a class. If a student's score is below 50, the student
is failing. If the score is between 50 and 69 inclusive, the progress is
unsatisfactory. If the score is 70 or above, the progress is satisfactory. The
first decision to be made is based on whether the score is below 50 or not;
the design is

170 CONDITIONAL STATEMENTS

to be able to trace

the logic when us
ing nested IF
statements

to develop a con
sistent wnriting style
when using nested
IF statements

IF Score >= 50 THEN

(progress report here)

ELSE

writeln ("You are currently failing 34);

We now use a nested IF ... THEN ... ELSE statement for the progress
report for students who are not failing. The complete fragment is

IF Score >= 50 THEN

IF Score > bS THEN

writeln ('Your progress is satisfactory 3fl)
ELSE

writeln ('Your progress is unsatisfactory 40)
ELSE

writeln ('You are currently failing 34);

This fragment could be designed differently and the decisions could
be made in the following order.

IF Score > LR THEN

writeln ('Your progress is satisfactory 33)
ELSE

IF Score >= 50 THEN

writeln ('Your progress is unsatisfactory :4D)
ELSE

writeln ('You are currently failing 34) ;

If you trace through both fragments with scores of 40, 60, and 80, you
will see they produce identical output.

Another method of writing the nested fragment is to use sequential
conditional statements as follows:

IF Score > bR THEN

writeln ('Your progress is satisfactory.':3a);
IF (Score <= bR) AND (Score >= 50) THEN

writeln ('Your progress is unsatisfactory.':4D);
IF Score < 50 THEN

writeln ('You are currently failing.':34);

However, this is less efficient because each IF ... THEN statement is
executed each time through the program. You should generally avoid using
sequential IF ... THEN statements if a nested statement can be used; this
reduces execution time for a program.

Tracing the flow of logic through nested IF statements can be tedious.
However, it is essential that you develop this ability. For practice, let's
trace through the following example.

EXAMPLE 5il2 Consider the nested statement

IF A > □ THEN
IF A MOD a = □ THEN

Suml := Suml + A
ELSE

SumE := SuraE + A
ELSE

IF A = □ THEN
writeln ('A is zero' :IB)

ELSE
NegSum := NegSum + A;

writeln ('All done' :!?);

5.4 Nested IF Statements 171

We will trace through this statement and discover what action is taken when A
is assigned 20, 15, 0, and -30, respectively. For A := 20, the statement A > 0 is
true, hence

A MOD a = □

is evaluated. This is true, so
Sural := Suinl + A

is executed and control is transferred to
writeln ('All done• :17);

For A := 15, A > 0 is true and

A MOD S = □

is evaluated. This is false, so
SuraS := Suma + A

is executed and control is again transferred out of the nested statement to
writeln ('All done':17);

For A := 0, A > 0 is false, thus
A = □

is evaluated. Since this is true, the statement
writeln ('A is zero' rlfl)

is executed and control is transferred to

writeln ('All done':17);
Finally, for A : = - 30, A > 0 is false, thus

A = □

is evaluated. This is false, so
NegSum := NegSum + A

is executed and then control is transferred to

writeln ('All done' :17);

Note that this example traces through all possibilities involved in the
nested statement. This is essential to guarantee your statement is properly
constructed. Our next example illustrates several layers of nesting.

5.13 write a program fragment that allows you to assign letter grades based on
' students' semester averages. Grades are to be assigned according to the scale

IDD >= X >= qo A
RD > X >= ao B
ao > X >= 70 c
70 > X >= 55 D
55 > X E

Nested IPs can be used to accomplish this as follows:

IF Average >= RD THEN
Grade := 'A'

ELSE
IF Average >= aO THEN

Grade := 'B'
ELSE

IF Average >= 70 THEN
Grade := 'C

ELSE
IF Average >= 55 THEN

Grade := 'D'
ELSE

Grade := 'E' ;

172 CONDITIONAL STATEMENTS

Since any Average over 100 or less than zero would be a sign of some data or
program error, this example could be protected with a statement as follows;

IF (Rverage <= IDD) AND (Average >= □) THEN

. (compute letter grade)

ELSE
writeln ('There is an error. Average is' :3a/ Average:a:5); B

Protecting parts of a program in this manner will help you avoid unex
pected results or program crashes. It also allows you to identify the source
of an error.

Form and Sjmtax

The rule for matching ELSEs in nested selection statements is
When an ELSE is encountered, it is matched with the most recent
THEN that has not yet been matched.

Matching IF . . . THENs with ELSEs is a common source of errors. When
designing programs, you should be very careful to match them correctly.
To illustrate, suppose you want to write a program fragment that reads
two numbers, X and Y. If X is less than zero, you want to examine Y. If
Y is less than zero, you want to increment a negative counter. If X is not
less than zero, you want to increment a positive counter. The design is

IF X < 0 THEN

(examine Y)
(increment negative counter)

ELSE
(increment positive counter).

The code for "examine Y" could be
IF Y < □ THEN

NegCount := NegCount + 1

At this stage, you may naively write the incorrect fragment
IF X < □ THEN

IF Y < □ THEN
NegCount := NegCount + 1

ELSE
PosCount := PosCount + 1;

Although you want the ELSE to be matched with the statement
IF X < □ THEN

the computer will match it with the most recent THEN, which is
If Y < □ THEN

Thus, the fragment is really
IF X < 0 THEN

IF Y < □ THEN
NegCount := NegCount + 1

ELSE
PosCount := PosCount + 1;

5.4 Nested IF Statements 173

which is not the correct fragment to solve the problem. You may resolve
this in one of two ways. First, you could use an ELSE option with an
empty (null) statement. Thus, you would have

IF X < □ THEN

IF Y < □ THEN

NegCount := NegCount + 1
ELSE i empty statement—do nothing }

ELSE

PosCount := PosCount + 1;

Or you could redesign the fragment as follows:
IF X >= □ THEN

PosCount := PosCount + 1
ELSE

If Y < □ THEN

NegCount := NegCount + 1

Let's look at another example to review the importance of proper
indenting.

STYLE TIP

9 Ei
It is very important to use a consistent, readable writing style when using
nested IF statements. The style used here is to indent each nested statement
two spaces. Also, each ELSE of an IF ... THEN ... ELSE statement is in
the same column as the IF of that statement. This allows you to see at a
glance where the ELSEs match with the IF ,.. THENs. For exampire,
IF.-.THEN

IF...THEN
IF...THEN

IF...THEN
ELSE

ELSE
ELSE

ELSE

EXAMPLE 5.14 What output will be produced when the following fragment of code is executed?
A := 15;
IF A > □ THEN

IF A MOD 5=0 THEN

writeln (A + 100)
ELSE

writeln (A - 100);

This fragment results in the output

-as

The indenting of this fragment is misleading. Since an ELSE is matched with
the last IF ... THEN, it should be written as

A := 15;
IF A > □ THEN

IF A MOD 5=0 THEN

writeln (A + IDG)
ELSE

writeln (A - 100);

174 CONDITIONAL STATEMENTS

EXAMPLE S.15

If you want the design to be consistent with the originally written form, you
could rewrite the fragment as

A := 15;

IF A <= □ THEN
writeln (A -

ELSE

IF A MOD E =
writeln (A

lOD)

□ THEN

+ IDO);

Using semicolons before ELSEs becomes more of a problem as you nest
to several layers and use compound statements within the nesting. In
some cases, it may be wise to redesign a complex, deeply nested fragment
to enhance readability.

We conclude this section with an example that uses a complete program
with nested IF statements.

Write a program that computes the gross pay for an employee of the Clean Products
Corporation of America. The corporation produces three products: A, B, and C.
Supervisors earn a commission of 7 percent of sales and representatives earn 5
percent. Bonuses of $100 are paid to supervisors whose commission exceeds $300
and to representatives whose commission exceeds $200. Each line of data is in
the form

S 18 15 lof

where the first position contains an 'S' or 'R' for supervisor or representative,
respectively. The next three integers include the number of units of each of the
products sold. Since product prices may vary over time, the constant definition
section will be used to indicate the current prices. The section for this problem
will be

CONST
SuperRate =
RepRate = □.□5;
APrice = 13.55;
BPrice = 17.55;
CPrice = S5.55;

A first-level pseudocode development for this problem might be
1. Get a line of data
2. Process the data
3. Print a heading
4. Print a summary

A structure chart for this is shown in Figure 5.3

FIGURE 5.3

Structure chart for
the Clean Products
Corporation of Amer
ica problem

Print
heading

Print
results

Compute
earnings

Get
data

Main task

5.4 Nested IF Statements 175

Step 1 will be a single readln statement. Step 2 is further developed as

2. Process the data

2.1 IF employee is supervisor THEN

compute supervisor's earnings
ELSE

compute representative's earnings

where "compute supervisor's earnings" is refined to

2.1.1 compute commission from sales of A
2.1.2 compute commission from sales of B
2.1.3 compute commission from sales of C
2.1.4 compute total commission
2.1.5 compute supervisor's bonus

2.1.5.1 IF total commission > 300 THEN

bonus is 100.00

ELSE

bonus is 0.00

A similar development follows for computing a representative's earnings. Step 3
will be an appropriate procedure to print a heading. Step 4 will contain whatever
you feel is appropriate for output. It should include at least the number of sales,
amount of sales, commissions, bonuses, and total compensation.
A complete pseudocode solution to this problem is

1. Get a line of data

2. Process the data

2.1 IF employee is a supervisor THEN
2.1.1 compute commission from sales of A
2.1.2 compute commission from sales of B
2.1.3 compute commission hom sales of C
2.1.4 compute total commission
2.1.5 compute supervisor's bonus

2.1.5.1 IF total commission > 300 THEN

bonus is 100.00

ELSE

bonus is 0.00

ELSE

2.1.6 compute commission from sales of A
2.1.7 compute commission from sales of B
2.1.8 compute commission from sales of C
2.1.9 compute total commission
2.1.10 compute representative's bonus

2.1.10.1 IF total commission > 200 THEN

bonus is 100.00

ELSE

bonus is 0.00

3. Print a heading (use a procedure here)
4. Print a summary

4.1 print input data
4.2 print sales data
4.3 print commission

4.4 print bonus
4.5 print total earnings

A complete program to solve this problem follows.

176 CONDITIONAL STATEMENTS

PROGRAM ComputeWage (input, output);

< This program uses nested selection to determine total >
i. compensation for an employee of Clean Pripducts Corporation >
{ of America. ^

CONST

CompanyName = 'Clean Products Corporation of America';
Line = '

SuperRate =
RepRate = D.DS;
APrice = 13. *=15;

BPrice = 17.95;

CPrice = 29.95;

Month = 'June';

Skip = ' ';

integer;

VAR

ASaleS/

BSales,

CSales

AComm,

BComm,

CComm,

TotalCoram,

Bonus : real;
Classification

{

■(

{

<
<

char; {

Sales count for product A
Sales count for product B
Sales count for product C
Commission for sales of product A
Commission for sales of product B
Commission for sales of product C
Commission total for all sales
Bonus pay for sales level
Employee classification (S or R)

■{*♦»*******♦*****»»******************************♦**************>

PROCEDURE PrintHeading;

{ This procedure prints a heading >

BEGIN

writeln; writeln;
writeln (Skip:ID, CompanyName);
writeln (SkiprlG, Line);
writeln;
writeln (Skip:ID, 'Sales Report for'. Month:ID);
writeln;

END; { of PROCEDURE PrintHeading }

{ Now begin the main program >

BEGIN ■{ Main program >

< Get the data }

writeln ('Enter S or R for classification, ASales, BSales, CSales. ');
writeln ('Press <RETURN> when finished. ');
readln (Classification, ASales, BSales, CSales);

5.4 Nested IF Statements 177

i Now compute compensation due >

* SuperRate;
* SuperRate;
* SuperRate;

IF Classification = 'S' THEN

BEGIN

ftComm := ASales * RPrice

BComm := BSales * BPrice

CComm := CSales * CPrice

TotalComm := AComm + BComm + CComm;
IF TotalComm > 3DD.D THEN

Bonus := 100.□
ELSE

Bonus :=

END •(of IF...THEN statement >
ELSE

BEGIN

AComm

BComm

CComm

= ASales * APrice *
= BSales * BPrice *
= CSales * CPrice *

RepRate;
RepRate;
RepRate;

< Supervisor >

TotalComm := AComm + BComm
IF TotalComm > EOD.D THEN

Bonus :=
ELSE

Bonus :=
END; < of ELSE option >

PrintHeading;

+ CComm;

i Representative >

•C Now print the results }

write (Skip:lD/ 'Classification');
IF Classification = 'S' THEN

writeln (Skip:lE/ 'Supervisor')
ELSE

writeln (SkiprlE, 'Representative')
writeln;

Product Sales Commission');

'A'

'B'

'C

writeln (Skip:ia,
writeln (SkipclE/
writeln;
writeln (Skip:15/
writeln (Skip:15/
writeln (Skip:15/
writeln;
writeln (' Subtotal' :31
writeln ('Your bonus is: ' :31/
writeln (' ' :43);
writeln;
writeln ('Total Due' :31/ '$' :3/ (TotalComm + Bonus) .*5:5);
writeln; writeln

ASales:11/ AComm:lb:E);
BSales:11/ BComm:lb:E);
CSales:11/ CComm:lb:E);

$' :3/ TotalComm:5:E);
$ ' :3/ Bonus :E)

END. < of main program >

If this is run with the data line

S 18 15 101
the output is

Enter S or R for classification/ ASales/ BSales/ CSales.
Press <RETURN> when finished.
S Ifi 15 ED

178 CONDITIONAL STATEMENTS

Clean Products Corporation of America

Sales Report for

Classification

Product Sales

16

15

5D

g

Subtotal

Your bonus is:

June

Supervisor

Commission

17.56

16.65

<1.53

Total Due $

76.35

76.35

Exercises 5.4 1. Consider the program fragment

IF X >= □.□ THEN
IF X < IDDD.DO THEN

BEGIN
Y := a * X;
IF X <= 500 THEN

X := X / 10
END

ELSE
Y := 3 * X

ELSE

Y := abs(X);

Indicate the values of X and Y after this fragment is executed for each of the
following initial values of X.
a. X := 361.5; c. X := bOO.O;
b. X := -21.□; d. X := 300G.D;

2. Write a test program that illustrates the checking of all branches of nested IF
... THEN ... ELSE statements.

3. Rewrite each of the following fragments using nested IPs without compound
conditions. (You may assume the values for Ch will be M or F.)
a. IF (Ch = 'M') AND (Sura > lOGD) THEN

X := X + 1

AND (Sum <= IGGO) THENIF (Ch = 'M'

AND (Sura > IGGG) THEN

AND (Sum <= IGGG) THEN

X := X + 2

IF (Ch = 'F'
X := X + 3

IF (Ch = 'F«
X := X + <

b. read (Num) ;
IF (Num > 0) AND (Num <= IGGGG) THEN

BEGIN

Count := Count + 1;
Sum := Sum + Num

END

ELSE

writeln ("Value out of range" :27);

5.4 Nested IF Statements 179

c. IF (A > □) AND (B > D) THEN
writeln ('Both positive• :25)

ELSE

writeln ('Some negative• :55);
d. IF ((A > □) AND (B > □)) OR (C > □) THEN

writeln ('Option one':lR)
ELSE

writeln ('Option two' rlR);

4. Consider each of the following program fragments.

a. IF A < □ THEN

IF B < □ THEN

A := B

ELSE

A := B + ID;
writeln (A, B);

b. IF A < □ THEN

BEGIN

IF B < □ THEN

A := B

END

ELSE

A := B + ID;
writeln (A, B);

Indicate the output of each fragment for each of the following assignment
statements.

c. IF A >= □ THEN

A := B + ID

ELSE

IF B < □ THEN

A := B;
writeln (A, B);

d. IF A >= □ THEN

A := B + 10;
IF B < □ THEN

A := B;
writeln (A, B);

i. A
B

ii. A
B

iii. A
B

iv. A
B

= -5;
= 5;
= -5;
= -3;
= ID;
= a;
= ID;
= -4;

5. Look back to Example 5.13, in which we assigned grades to students, and
rewrite the grade assignment fragment using a different nesting. Could you
rewrite it without using any nesting? Should you?

6. Many nationally based tests report scores and indicate in which quartile the
score lies. Assuming the following quartile designation.

Score

100-75

74-50

49-25

24-0

Quartile

write a program fragment to read a score from a data file and report in which
quartile the score lies.

180 CONDITIONAL STATEMENTS

7. What are the values of A, B, and C after the following program fragment is
executed?

A := -fl;

B := El;

C := A + B;

IF A > B THEN

BEGIN

A : = B;

C : = A *

END

ELSE

IF R < □ THEN

BEGIN
A ;= abs(A);
B := B - A;
C := A * B

END

ELSE

C := □;

■ 5.5
CASE
Statements

/QBIECTIVES"

■ to know the form
and syntax required
for using CASE
statements

■ to understand how
CASE statements

can be used as an
alternate method for
multiway selection

■ to be able to use
CASE statements in

designing programs
to solve problems

Thus far, this chapter has examined one-way selection, two-way selection,
and multiway selection. Section 5.4 illustrated how multiple selection
can be achieved using nested IF statements. Since multiple selection can
sometimes be difficult to follow, Pascal provides an alternative method of
handling this concept, the CASE statement.

Form and Syntax

CASE statements can often be used when there are several options that
depend on the value of a variable or expression. The general structure for
a CASE statement is

CASE selector OF
label list 1 : statement 1;
label list 2 : statement 2;

label list n
END;

statement n

and is shown graphically in Figure 5.4.
The selector can be any variable or expression whose value is any data

type we have studied previously except for real (only ordinal data types
can be used). Values of the selector constitute the label list. Thus, if Age
is a variable whose values are restricted to 18,19, and 20, we could have

CASE Age OF
Ifl : statement 1;
IR : statement E;
ED : statement 3

END;

5.5 CASE Statements 181

FIGURE 5.4

CASE flow diagram

CASE selector

value in
label list 1

CASE selector

value in

label list 2

CASE selector
value in

label list n

Si^tement 2.1

1 r

Statement 2.n

('I just became a legal voter.');
('This is my second year to vote.
('I am almost twenty-one.')

)

When this program statement is executed, the value of Age will determine
to which statement control is transferred. More specifically, the program
fragment

Age := IR;
CASE Age OF

Ifi : writeln

IR : writeln

ED : writeln

END;

produces the output

This is my second year to vote.

Before considering more examples, several comments are in order.

1. The flow of logic within a CASE statement is as follows:
a. The value of the selector is determined

b. The value is found in the label list

c. The statement following the value in the list is executed
d. Control is transferred to the first program statement following

the CASE statement END

2. The selector can have a value of any type previously studied ex
cept real. Only ordinal data types may be used.

3. Several values, separated by commas, may appear on one line. For
example, if Age could have any integer value from 15 to 25 inclu
sive, the CASE statement could appear as

182 CONDITIONAL STATEMENTS

4.

CASE Age OF
15/ It/ 17 : statement 1;

Ifl/ 15/ 20/ 21 : statement 2;

22/ 23/ 24 : statement 3;

55 : statement 4

END;

All possible values of the CASE selector do not have to be listed.
However, if a value that is not listed is used, most versions of Pas
cal produce an error message and execution is terminated. Conse
quently, it is preferable to list all values of the CASE selector. If
certain values require no action, list them on the same option
with a null statement; for example.

CASE

Ifl

15

2D

END;

Age OF
: statement i;

statement 2

5. Values for the selector can appear only once in the list. Thus,

CASE Age OF
Ifl : statement 1;

Ifl/ 15 : statement 2;

2D : statement 3

END;

produces an error since it is not clear which statement should be
executed when the value of Age is 18.

6. Proper syntax for using CASE statements includes
a. a colon separates each label from its respective statement;
b. a semicolon follows each statement option except the state

ment preceding END;
c. commas are placed between labels on the same option.

7. END is used without a BEGIN. This is our first instance of this

happening. An appropriate program comment should indicate the
end of a CASE statement. Therefore, our examples will include

END •C of CASE

8. Statements for each option can be compound; if they are, they
must be in a BEGIN ... END block.

At this stage, let's consider several examples that illustrate various uses
of CASE statements. Since our purpose is for illustration, the examples
will be somewhat contrived. Later examples will serve to illustrate how
these statements are used in solving problems.

STYLE TIP Writing style for a CASE statement should be consistent with your previously
developed style. The lines containing options should be indented, the colons
should be lined up, and END should start in the same column as CASE.
Thus, a t]^ical CASE statement is

CASE Score OF

ia/5/fl : writeln ('Excellent');
7/E>/5 : writeln ('Fair');
4/3/2/1/D : writeln ('Failing')

END; { of CASE Score >

5.5 CASE Statements 183

EXAMElSiilS- The selector can have a value of type char, and the ordinal of the character de
termines the option. Thus, the label list must contain the appropriate characters
in single quotation marks. If Grade has values 'A', *B', 'C, 'D', or 'E', a CASE
statement could be

CASE Grade OF

•A'

• C

'D'

• E '

END;

Points :=

Points :=

Points :=

Points :=

Points :=

of CASE

A.O;

3.0;

a.O;

Grade

:EX AM[]pI#E> ̂5^17 To avoid inappropriate values for the CASE selector, the entire CASE statement
may be protected by using an IF ... THEN ... ELSE statement. For example,
suppose you are using a CASE statement for number of days worked. You expect
the values to be 1, 2, 3, 4, or 5, so you could protect the statement by

IF (NumDays > □) AND
CASE NumDays OF

statement
statement
statement

statement

statement
{ of Case NumDays

(Num

1

E

3
A

S

END

Days < L) THEN

ELSE

writeln (•Value of NumDays', NumDays, 'is out of range.');

A good debugging technique is to print the value of the selector in your ELSE
statement. ■

EXAMPLE S,18 Compound statements can be used with any or all of the options in the following
form.

CASE Age OF
Id : BEGIN

IR

END;
BEGIN

ao

END;
BEGIN

END

END; -C of CASE Age

OTHERWISE Option

Some versions of Pascal provide an additional reserved word and option,
OTHERWISE, which can be used with CASE statements. The general
structure for this option is

184 CONDITIONAL STATEMENTS

CASE selector OF

label 1 : statement 1;

label n : statement n

OTHERWISE

statement 1;

statement 2;

statement n

END; { of CASE }

This option can be used if the same action is to be taken for several values
of the CASE selector. It can also he used to protect against a CASE selector
that is out of range. Note that the statements following OTHERWISE are
executed sequentially and do not have to be in a BEGIN ... END block.
You should check your version of Pascal to see if this option is available
to you.

Equivalent of Nested IPs

As previously indicated, CASE statements can sometimes (ordinal data
types) be used instead of nested IPs when multiple selection is required
for solving a problem. Program readability is usually enhanced by listing
possible values of the selector together with the action to be taken for the
respective values. The following example illustrates how CASE statements
are related to nested IPs.

EXAMPLE 5.19 rewrite the following program fragment using a CASE statement.
IF (Score =10) OR (Score = R) THEN

Grade := 'A'

ELSE

IF (Score = fl) OR (Score = 7) THEN

Grade := 'B'

ELSE

IF (Score = t) OR (Score = 5) THEN
Grade := 'C

ELSE

Grade := •E';

If we assume Score is an integer variable with values 0, 1, 2, ... , 10, we could
use a CASE statement as follows:

CASE Score OF

ID, q : Grade := 'A'

a, ? : Grade := 'B'

L, 5 : Grade := 'C

3, E, 1, □ : Grade := 'E'
END; i of CASE Score } ■

Use in Problems

CASE statements should not be used for relational tests involving large
ranges of values. For example, if one wanted to examine a range from 0

5.5 CASE Statements 185

A l^OTE OF INTEREST

"Cross-Over" Scholars

Some scholars prefer to "build their own" ma
terials from scratch because they are hackers.
And some wind up crossing over, becoming
computer people as much as or more than they
are purely humanists. One good example of such
a hacker is classicist David Packard who has built

Ibycus, a microcomputer for use in scholarly
analysis of ancient languages. Ibycus has become
the ultimate found object for scholars in Clas
sical Studies. The machine allows word pro
cessing in a variety of ancient languages: Ancient
Greek, Hebrew, and Coptic are built in. Ibycus
also contains a variety of programs for sorting,
concording, and comparing text.

Packard first became involved with com

puters in 1965 in the course of his doctoral stud
ies at Harvard. He began with programming an
IBM 7094. "I learned that a serious computer
project can demand an intense involvement with
technical matters having little relevance to phi
lology." Packard was, at the time, working on a
computer with Latin, Greek, and Minoan. "Per
haps because this combination of interests
seemed unusual at the time, I received a post
doctoral fellowship with IBM." During that fel
lowship, he used the computer to produce a

concordance to the works of the Roman histo

rian, Livy.

In 1974, Packard, now at the University of
North Carolina, Chapel Hill, built the first of a
series of systems especially designed for philo
logical work: the system, called Minotaur, used
an HP 21 MX. Later machines, called Ibycus,
used an HP 1000 series processor. The latest of
the series is the Ibycus SC, built by Packard on
a 68000 series processor and designed to work
with a compact disk (CD ROM) containing the
TLG database.

As Packard configured or built the machines,
he wrote programs for them: first, CAI exercises
to accompany Greek courses, and then programs
that permitted rapid searching and manipulation
of text files. But he soon realized that the system
would still be limited unless he incorporated a
high-level language. He invented Ibyx, a struc
tured language especially designed to make text
manipulation easy. In the course of his efforts to
help others do research in classics, Packard went
from being a scholar using the services of com
puter centers to a computer designer who built
the machine he needed.

to 100 to determine test scores, nested selection would be better than a
CASE statement. We close this section with some examples that illustrate
how CASE statements can be used in solving problems.

EXAMPLE S.20 Suppose you are writing a program for a gasoline station owner who sells four
grades of gasoline: regular, premium, unleaded, and super unleaded. Your program
reads a character (R, P, U, S) that designates which kind of gasoline was pmchased
and then takes subsequent action. The outline for this fragment is

readln (GasType);
CASE GasType OF

' R ' : action for regular;
' P ' : action for premium;
' U ' : action for unleaded;

' S • : action for super unleaded
END; -C of CASE GasType > ■

EXAMPLE 5.21 An alternative method of assigning letter grades based on integer scores between
0 and 100 inclusive is to divide the score by 10 and assign grades according to
some scale. This idea could be used in conjunction with a CASE statement as
follows:

186 CONDITIONAL STATEMENTS

NewScore := Score DIV

CASE NewScore OF

10

ID, q : Grade := 'A'

a : Grade := 'B'

7 : Grade := 'C

b. 5 : Grade := 'D'

3, 2, 1, D : Grade := IE'

END; (of CASE NewScore }

Exercises 5.5 1. Discuss the need for program protection when using a CASE statement.

2. Write a test program to see whether or not the OTHERWISE option is avail
able on your system.

3. Show how the following CASE statement could be protected against unex
pected values.

ID OF

writeln

writeln

writeln

writeln

CASE Age

4. Find all errors in the following statements,

a. CASE A OF

CASE Age DIV
lD/q,fl,7 :

:

3,2 :

1 :

END: i of

('These are retirement years' :<□);
('These are middle age years' :<□);
('These are mobile years' :<□);
('These are school years' :<□)

>

b.

d.

1

2

3

END;
CASE

5

b,
7,

END;
CASE

15,

Id,
21

END;
CASE

A :

B :

C :

D :

E :

END;
CASE

5

<

3

2,
CASE

1 :

2 :

3 :

END;

5; b :
{ of

Num OF

A : =

A : =

A : =

Case

: Num := Num

7 ; Num := Num
a, q, ID : Num := Num

< of CASE Num }

Age OF
It, 17 : YCount

writeln

iq, 20 : MCount
: writeln

{ of CASE Age
Ch OF

= Y

5;
b;
ID

Count -I- 1;
(Age, YCount)
= MCount + 1;
(Age)

Points

Points

Points

Points

Points

{ of Case

Score OF

: Grade

: Grade

: Grade

Grade

ID OF

= Num

= Num

= Num

CASE

A

1, D
Num /

Num

Num

Num

< of

.O

3.D

2.D

l.D

D.D

Ch

'A' ;
'B' ;
'C ;
'E' ;

-I- 1

+ 2

+ 3

Num

5.5 CASE Statements 187

What is the output from each of the following program fragments?

a. A : = 5:

b.

Power := 3;

CASE Power

□

1

2

3

END;
writeln

GasType

OF

1;
A;
A *

A *

A;
A * A

of CASE Power >

(A/ Power, B);
:= -S" ;

write ('You have purchased
CASE GasType OF

)

•R' :
ipi ;

•U' :

'S' :

END; <
writeln

A := t;
B := -3;
CASE A OF

ID, q, a

wr

7/ t, 5

ite (•Regular');
write ('Premium');
write ('Unleaded');
write ('Super Unleaded
of CASE GasType }

(' gasoline');

of

(A,
■= • — •

END; i
writeln

d. Symbol
A := 5;
B := ID;
CASE Symbol OF

'+' : Num :=

'-' : Num :=

'*' : Num :=

END; i
writeln

of CA

CASE B OF

-3, -4,
0, -1,

END;
CASE B OF

-5, :

-3, -5 :
-1, □ :

END

CASE A }

B);

-5

-2

:= A

:= A

B;
B

:= A *

:= A +

;= A -

B;
B;
B

B;
B;
B

SE Symbol
(A, B, Num);

6. Rewrite each of the following program fragments using a CASE statement.
IF Power

Num : =

IF Power

Num : =

IF Power

Num : =

= 1 THEN b. Assume Score is an integer between 0 and 10.

THEN

A;
THEN

A * A:

IF Score < 9 THEN

IF Score < a THEN
IF Score < 7 THEN

IF Score < 5 THEN
Grade := 'E'

ELSE

Grade := 'D'
ELSE

Grade := 'C

ELSE

Grade := 'B'

ELSE
Grade := 'A' ;

188 CONDITIONAL STATEMENTS

c. Assume Measurement is either M or N.

7.

IF Measurement

BEGIN

writeln

writeln (•

Length :=

END

ELSE

BEGIN

writeln (•

writeln ('

Length :=

END;

Show how a CASE

college tuition fees,
undergraduates (U)
students (S).

= 'M' THEN

This is a metric measurement :37);

It will be converted to nonmetric.');
Num * CMToInches

This is a nonmetric measurement.•:4D);

It will be converted to metric.• rBR);

Num * InchesToCM

statement could be used in a program to compute
. Assume there are different fee rates for each of

, graduates (G), foreign students (F), and special

8. Use nested CASE statements to design a program fragment to compute
postage for domestic (nonforeign) mail. The design should provide for
four weight categories only for both letters and packages. Each can be
sent first, second, third, or fourth class.

■ 5.6

Assertions

(Optional)

'OBTECTlVEil V 1

■ to know how to use

assertions as

preconditions
■ to know how to use

assertions as

postconditions

Special comments, called assertions, can be used with selection to make
programs easier to read. As comments, they add nothing to the execution
of the program. However, when properly formed and placed, they can aid
you in developing the program and make the logic of the program easier
to follow. Simply put, an assertion states what you expect to happen and
when certain conditions will hold. Consider the Pascal selection statement

IF Numl < NumE THEN

BEGIN

Temp := Numl;
Numl := NumS;

NumE := Temp

END;

The intent of this code is to have the value of Numl be greater than or
equal to Num2. We can make an assertion as follows:

IF Numl < NumE THEN

BEGIN

Temp := Numl;
Numl := NumE;

NumE := Temp
END;

•(Assertion: Numl >= NumE >

Assertions written before particular statements are preconditions; those
written after are postconditions. For example, in the previous statement,
if Numl and Num2 are both intended to be positive, we can write

i Assertion: Numl >= □ AND NumE >= D I Precondition

IF NUMl < NumE THEN
BEGIN

Temp := Numl;
Numl := NumE;
NumE := Temp

END;

Assertion: Numl >= NumE Postcondition

5.6 Assertions (Optional) 189

In practice, you may choose to label preconditions and postconditions as
the following comments illustrate.

< Precondition: Nural >= 0 and NumS >= □ >

IF Nural < Nuraa THEN

BEGIN

Terap := Nural;
Nural := NuraE;
NuraS := Terap

END;

{ Postcondition: Nural >= NuraE >

As a second example, consider a CASE statement used to assign grades
based on quiz scores.

CASE Score OF

ID : Grade := • A«

q,fl : Grade := •B'

7,b : Grade := • c

: Grade := 'D'

3,E,1,D :: Grade := • E'

END; < of CASE Score >

Assertions can be used as preconditions and postconditions in the fol
lowing manner.

■{ Precondition: Score is an integer between □ and ID
inclusively >

CASE Score OF
ID : Grade := 'A' ;
q/fl : Grade := 'B' ;

: Grade := 'C;
5,A : Grade := 'D' ;
3,E/1,0 : Grade := 'E'

END; { of CASE Score >

■{ Postcondition: Grade has been assigned a letter grade
according to the scale

- AID

fl /q
y,7
</5
D,1,E,3 - E

^ B

^ C
^ D

F.OCUS ;ON The Gas-N-Clean Service Station sells gasoline and has a car wash. Fees
for the car wash are $1.25 with a gasoline purchase of $10.00 or more and
$3.00 otherwise. Three kinds of gasoline are available: regular at $0,959,
unleaded at $0,979, and super unleaded at $1,099 per gallon. Write a
program that prints a statement for a customer. Input consists of number
of gallons purchased, kind of gasoline purchased (R, U, S, or, for no pur
chase, N), and car wash desired (Y or N). Use the constant definition
section for gasoline prices. Your output should include appropriate mes
sages. Sample output for this data is

Enter gallons q.7
Enter gas type <R>/ <U>/ <S>, or <N> U
Enter wash option <y> or <N> Y

190 CONDITIONAL STATEMENTS

:4c3fc;(c4c:|c:«c:(e:tc:|e;tc:4c:((:tc:te:4c:|c>|c;tC9tc9K9|'*3tc3|c;tc:|c3|c3(cj|c:|c:tc:((:te:tc:|c:4c^:(c:4c

* *

* Gas-N-Clean Service Station *

* *

* July 25, IRaq *
* *

Amount of gasoline purchased
Price per gallon
Total gasoline cost
Car wash cost

Total due

q.70D Gallons

□ .R7R
R.5D

B.QD

$ 12.50

Thank you for stopping

Please come again

Remember to buckle up and drive safely

A first-level pseudocode development is

1. Get data
2. Compute charges
3. Print results

A structure chart for this problem is given in Figure 5.5.
Module specifications for the main modules are

1. Get Data Module
Data received: None
Information returned: Number of gallons purchased

Type of gasoline
A choice as to whether or not a car wash is

desired
Logic: Get information interactively from the keyboard.

FIGURE 5.5

Structure chart for
the Gas-N-Clean Ser
vice Station problem

Compute
car wash
charge

Compute
total

Compute
gasoline
charge

Compute
charges

Get
data

Print
results

Main
task

5.6 Assertions (Optional) 191

2. Compute Charges Module
Data received: NumCallons

GasType
WashOption

Information returned: GasCost

WashCost

TotalCost

Logic: Use a CASE statement to compute the GasCost.
Use nested selection to determine the WashCost.

Sum GasCost and WashCost to get TotalCost.

3. Print Results Module
Data received: NumGallons

GasType
WashOption
GasCost

WashCost

TotalCost

Information retiu-ned: None

Logic: Use a procedure for the heading.
Use several writeln statements for the line items.

Further refinement of these modules produces

1. Get data

1.1 read number of gallons
1.2 read kind of gas purchased
1.3 read car wash option

2. Compute charges
2.1 compute gasoline charge
2.2 compute car wash charge
2.3 compute total

3. Print results

3.1 print heading
3.2 print information in transaction
3.3 print closing message

Module 2, Compute Charges, consists of three subtasks. A refined pseu
docode development of this module is

2. Compute charges
2.1 compute gasoline charge

2.1.1 CASE GasType OF
'R'

'U'

'S'

'N'

2.2 compute car wash charge
2.2.1 IF WashOption is yes THEN

compute charge
ELSE

charge is 0.0
2.3 compute total

2.3.1 Total is GasCost plus WashCost

192 CONDITIONAL STATEMENTS

A Pascal program for this problem follows.

PROGRRM GasNClean (input, output);

This program prints a statement for customers of
Gas-N-Clean Service Station. It computes the amount due
for gasoline and car wash. Features used include:

1. Defined constants

E. Procedures for headings
3. CASE statements

A. Nested selection (IF...THEN ELSE)

CONST

Skip = ' ';
Date = 'July 55, 1565•;
RegularPrice = 0.555;
UnleadedPrice = 0.575;

SuperUnleadedPrice = 1.055;

VRR

GasType, i Type of gasoline purchased (R-O-S-N)
WashOption : char; i Character designating wash option (Y-N)
NumGallons, i Number of gallons purchased
GasCost, { Computed cost for gasoline
WashCost, < Cost of car wash

Total : real; i Total amount due

PROCEDURE PrintHeading;

< This procedure prints a heading for the customer ticket >

BEGIN

writeln; writeln;

writeln (SkipcEO, ***
writeln (Skip:50, •* *'
writeln (Skip:50, •* Gas-N-Clean Service Station *'
writeln (Skip:50, '* *•
writeln (Skip:50, Skip:15, Date, Skip:15, •*'
writeln (Skip:50, '* *'
writeln (Skip:50, '********♦♦**************♦**************•
writeln; writeln

END; { of PROCEDURE PrintHeading >

PROCEDURE PrintMessage;

< This procedure prints a closing message >

BEGIN

writeln; writeln;
writeln (Skip:56, 'Thank you for stopping');
writeln;
writeln (Skip:30, 'Please come again');
writeln;
writeln (Skip:50, 'Remember to buckle up and drive safely');
writeln; writeln

END; < of PROCEDURE PrintMessage >

5.6 Assertions (Optional) 193

<. Now begin the main program >

BEGIN i Main program >

< Get the data >

write ('Enter gallons ');
readln (NumGallons);
write ('Enter gas type <R>/ <0>, <S>/ or <N> ');
readln (GasType);
write ('Enter wash option <Y> or <N> ');
readln (NashOption);

■C Compute gas cost >

CASE GasType OF
'R'

'U'

'S'
'N'

GasCost := NumGallons * RegularPrice;
GasCost := NumGallons * UnleadedPrice;
GasCost := NumGallons * SuperUnleadedPrice;
GasCost :=

END; ■£ of CASE GasType >

i Compute car wash cost >

IF WashOption = 'Y' THEN
IF GasCost >= THEN

WashCost := 1.55
ELSE

WashCost := 3.D
ELSE

WashCost :=

Total := GasCost + WashCost;

< Now print the results >

PrintHeading;
writeln (SkipilD/ 'Amount of gasoline purchased'/ Skip:ia/

NumGallons:L:3/ ' Gallons');
write (SkiprlD/ 'Price per gallon', Skip:aa, '$');
CASE GasType OF

'R' : writeln (RegularPrice:7:3);
'D' : writeln (UnleadedPrice:?:3);
'S' : writeln (SuperUnleadedPrice:?:3);
'N' : writeln (□.□:?:3)

END; { of CASE GasType >
writeln (Skip:lD/ 'Total gasoline cost', Skip:15, GasCost: t .*5) ;
writeln (Skip:lD/ 'Car wash cost', Skip:a5, '$', WashCost:t:5);
writeln (Skip:50, ' ');
writeln (Skip.*55, 'Total due', Skip:l^, '$', Total:b:a);
PrintMessage

END. { of main program >

Output for a customer who purchased 9.7 gallons of unleaded gasoline
and wanted a car wash is

Enter gallons 5.?
Enter gas type <R>, <U>, <S>, or <N> U
Enter wash option <Y> or <N> Y

194 CONDITIONAL STATEMENTS

***************#**»♦******************♦

* *

* Gas-N-Clean Service Station *
* *

* July 55/ *
* *

Amount of gasoline purchased
Price per gallon
Total gasoline cost
Car wash cost

Total due

q.7D0 Gallons
$ 0.575
$ 5.50
$ S.GO

$ 15.50

Thank you for stopping

Please come again

Remember to buckle up and drive safely

RUNNING AND
DEBUGGING TIPS

■it* 'rf4 k

+

1. IF ... THEN . .. ELSE is a single statement in Pascal. Thus, a semicolon before
the ELSE creates an IF ... THEN statement and ELSE appears incorrectly as a
reserved word.

2. A misplaced semicolon used with an IF ... THEN statement can also be a
problem. For example,

Incorrect

IF A > 0 THEN;
writeln (A);

Correct
IF A > 0 THEN

writeln (A);

3. Be careful with compound statements as options in an IF
statement. They must be in a BEGIN . .. END block.

THEN . . . ELSE

Incorrect

IF A >= 0 THEN

writeln (A);
A := A + 10

ELSE

writeln ('A is negative')

Correct

IF A >= 0 THEN
BEGIN

writeln (A);
A := A + 10

END

ELSE

writeln ('A is negative');

In the correct form, writeln (A) is always executed.
4. Your test data should include values that will check both options of an IF ...

THEN ... ELSE statement.
5. IF... THEN ELSE can be used to check for other program errors. In particular,

a. Check for bad data by
read (data);
IF (bad data) THEN

(error message)

ELSE

(proceed with program)

Summary 195

b. Check for reasonable computed values by
IF (unreasonable values) THEN

. (error message)

ELSE

(proceed with program)

For example, if you were computing a student's test average, you could
have

IF (TestAverage > 100) OR (TestAverage < 0) THEN

. (error message)

ELSE

. (proceed with program)

6. Be careful with Boolean expressions. You should always keep expressions
reasonably simple, use parentheses, and minimize use of NOT.

7. Be careful to properly match ELSEs with IFs in nested IF ... THEN ... ELSE
statements. Indenting levels for writing code are very helpful.
IF condition 1 THEN

IF condition 2 THEN

. (action here)

ELSE

. (action here)

ELSE

. (action here)

Summary Key Terms

BEGIN ... END block

compound Boolean
expression

compound statement
conditional statement

Key Terms (optional)

assertion

control structure

empty (null) statement
logical operators: AND,

OR, NOT

negation

postcondition

nested IF statement

relational operator
robust

simple Boolean
expression

precondition

Ke3rwords

AND

boolean

CASE

ELSE

false

IF

NOT

OF

OR

OTHERWISE (non-

standard)
THEN

true

196 CONDITIONAL STATEMENTS

Key Concepts

■ Relational operators are =,>,<,> = ,< = , <>.
■ Priority for evaluating relational operators is last.
■ Logical operators AND, OR, and NOT are used as operators on Boolean

expressions.
■ Variables of type boolean may only have values true or false.
■ A complete priority listing of arithmetic operators, relational operators, and

logical operators is

Expression or Operation Priority

() 1. Evaluate from inside out
NOT 2. Evaluate from left to right
♦, /, MOD, DIV, AND 3. Evaluate from left to right
+, -, OR 4. Evaluate from left to right
<,< = ,>,> = , =, <> 5. Evaluate from left to right

Q A conditional statement is a program statement that transfers control to var
ious branches of the program.

■ A compound statement is sometimes referred to as a BEGIN ... END block;
when it is executed, the entire segment of code between the BEGIN and END
is treated like a single statement.

■ IF ... THEN ... ELSE is a two-way conditional statement.
B A semicolon should not precede the ELSE portion of an IF ... THEN ...
ELSE statement.

D If the Boolean expression in an IF ... THEN ... ELSE statement is true, the
command following THEN is executed; if the expression is false, the com
mand following ELSE is executed.

B Multiple selections can be achieved by using decision statements within de
cision statements; this is termed multiway selection. Program protection can
be achieved by using selection statements to guard against unexpected
results.

B CASE statements sometimes can be used as alternatives to multiple selection.
B CASE statements use an END without any BEGIN.
B OTHERWISE, a reserved word in some versions of Pascal, can be used to

handle values not listed in the CASE statement.

■ Programming The following programming problems will be run on a very limited set
Problems of data. In later chapters, as we build our programming skills, we will run

these problems with larger data bases and subprograms for various parts.
Since these problems will be referred to and used repeatedly, carefully
choose which ones you work on and then develop them completely.

1. The Gas well Catering and Convention Service has decided to revise
its billing practices and is in need of a new program to prepare
bills. The changes Caswell wishes to make follow.
a. For adults, the deluxe meals will cost $15.80 per person and the

standard meals will cost $11.75 per person, dessert included.
Children's meals will cost 60 percent of adult meals. Everyone
within a given party must be served the same meal type.

b. There are five banquet halls. Room A rents for $55.00, room B
rents for $75.00, room C rents for $85.00, room D rents for
$100.00, and room E rents for $130.00. The Caswells are consid
ering increasing the room fees in about six months and this
should be taken into account.

Programming Problems 197

c. A surcharge, currently 7 percent, is added to the total bill if the
catering is to be done on the weekend (Friday, Saturday, or
Sunday).

d. All customers will be charged the same rate for tip and tax, cur
rently 18 percent. It is applied only to the cost of food.

e. To induce customers to pay promptly, a discount is offered if
payment is made within ten days. This discount depends on the
amount of the total bill. If the bill is less than $100.00, the dis

count is .5 percent; if the bill is at least $100.00 but less than
$200.00, the discount is 1.5 percent; if the bill is at least $200.00
but less than $400.00, the discount is 3 percent; if the bill is at
least $400.00 but less than $800.00, the discount is 4 percent;
and, if the bill is at least $800.00, the discount is 5 percent.

Test your program on each of the following three customers.
Customer A: this customer is using room C on Hiesday night.
The party includes 80 adults and 6 children. The standard meal
is being served. The customer paid a $60.00 deposit.
Customer B: this customer is using room A on Saturday night.
Deluxe meals are being served to 15 adults. A deposit of $50.00
was paid.
Customer C: this customer is using room D on Sunday afternoon.
The party includes 30 children and 2 adults, all of whom are
served the standard meal.

Output should be in the same form as that for Problem 7, Chapter 4.

2. State University charges $90.00 for each semester hour of credit,
$200.00 per semester for a regular room, $250.00 per semester for
an air-conditioned room, and $400.00 per semester for food. All
students are charged a $30.00 matriculation fee. Graduating stu
dents must also pay a $35.00 diploma fee. Write a program to com
pute the fees that must be paid by a student. Your program should
include an appropriate warning message if a student in taking more
than 21 credit hours or fewer than 12 credit hours. A typical line of
data for one student would include room type (R or A), student
number (in four digits), credit hours, and graduating (T or F).

3. Write a program to determine the day of the week a person was
born given his or her birth date. Following are the steps you should
use to find the day of the week corresponding to any date in this
century.

a. Divide the last two digits of the birth year by 4. Put the quotient
(ignoring the remainder) in Total. For example, if the person was
born in 1983, divide 83 by 4 and store 20 in Total.

b. Add the last two digits of the birth year to Total.
c. Add the last two digits of the birth date to Total.
d. Using the following table, find the "month number" and add it

to Total.

January = 1 July = 0
February = 4 August = 3
March = 4 September = 6
April = 0 October = 1
May = 2 November = 4
June = 5 December = 6

198 CONDITIONAL STATEMENTS

e. If the year is a leap year and, if the month you are working with
is either January or February, then subtract 1 from the Total.

f. Find the remainder when Total is divided by 7. Look up the" re
mainder in the following table to determine the day of the week
the person was born. Note that you should not use this proce
dure if the person's year of birth is earlier than 1900.
1 = Sunday 5 = Thursday
2 = Monday 6 = Friday
3 = Hiesday 0 = Saturday
4 = Wednesday

A typical line of data is

5-15 78|

where the first entry (5 — 15) represents the birthdate (May 15) and
the second entry (78) represents the birth year. An appropriate error
message should be printed if a person's year of birth is before 1900.

4. Community Hospital needs a program to compute and print a state
ment for each patient. Charges for each day are as follows:
a. room charges

i. private room—$125.00
ii. semiprivate room—$95.00
hi. ward—$75.00

b. telephone charge—$1.75
c. television charge—$3.50
Write a program to get a line of data from a data file, compute the
patient's bill, and print an appropriate statement. A typical line of
data is

5PNY|

where "5" indicates the number of days spent in the hospital, "P"
represents the room type (P, S, or W), "N" represents the telephone
option (Y or N), and "Y" represents the television option (Y or N).
A statement for the data given follows.

Community Hospital

Patient Billing Statement

Number of days in hospital: 5
Type of room: Private

Room charge $LS5.C0
Telephone charge $
Television charge $ 17.50

TOTAL DUE $t<2.5D

5. Write a program that converts degrees Fahrenheit to degrees Celsius
and degrees Celsius to degrees Fahrenheit. In a typical data line,
the temperature is followed by a designator (F or C) indicating
whether the given temperature is Fahrenheit or Celsius.

6. The city of Mt. Pleasant bills its residents for sewage, water, and
sanitation every three months. The sewer and water charge is fig-

Programming Problems 199

ured according to how much water is used by the resident. The
scale is

Amount (gallons) Rate (per gallon)

Less than 1,000 $0.03

1,000 to 2,000 $30 + $0.02 for each gallon over 1,000
Greater than 2,000 $50 + $0,015 for each gallon over 2,000

The sanitation charge is $7.50 per month.
Write a program to read the number of months for which a resi

dent is being billed (1, 2, or 3), how much water was used, and
print out a statement with appropriate charges and messages. Use
the constant definition section for all rates and include an error

check for incorrect number of months. A typical line of data is

3 21751

7. A1 Derrick, owner of the Lucky Wildcat Well Corporation, wants a
program to help him decide whether or not a well is making
money. Data for a well are on one or two lines in the data file. The
first line contains a single character (D for a dry well, O for oil
found, and G for gas found) followed by a real number for the cost
of the well. If an "O" or "G" is detected, the cost will be followed

by an integer indicating the volume of oil or gas found. In this
case, there will also be a second line containing an "N" or "S" in
dicating whether or not sulfur is present. If there is sulfur, the "S"
will be followed by the percentage of sulfur present in the oil or
gas.

Unit prices are $5.50 for oil and $2.20 for gas. These should be
defined as constants. Your program should compute the total reve
nue for a well (reduce output for sulfur present) and print out all
pertinent information with an appropriate message to Mr. Derrick.
A gusher is defined as a well with profit in excess of $50,000. A
typical input file is

G 8000.00 200001

S 0.151

8. The Mathematical Association of America hosts an annual summer
meeting. Each state sends one official delegate to the section offi
cer's meeting at this summer session. The national organization
reimburses the official state delegates according to the following
scale:

Round-trip Mileage Rate

Up to 500 miles 15 cents per mile
500 to 1,000 miles $75.00 plus 12 cents for each mile over 500
1,000 to 1,500 miles $135.00 plus 10 cents for each mile over 1,000
1,500 to 2,000 miles $185.00 plus 8 cents for each mile over 1,500
2,000 to 3,000 miles $225.00 plus 6 cents for each mile over 2,000
Over 3,000 miles $285.00 plus 5 cents for each mile over 3,000

200 CONDITIONAL STATEMENTS

Write a program that will accept as input the number of round-trip
miles for a delegate and compute the amount of reimbursement.

9. Dr. Lae Z. Programmer wants you to write a program to compute
and print out the grade for a student in his class. The grade is
based on three examinations (worth a possible 100 points each),
five quizzes (10 points each), and a 200-point final examination.
Your output should include all scores, the percentage grade, and
the letter grade. The grading scale is

so <= average <= A

an <= average < RD B

70 <= average <80 C

LD <= average <70 D

□ <= average < bD E

A typical input file is

80 93 85 [{examination scores)

|9 10 8 7 loB (quiz scores)

[l75 [(final examination)

10. Dr. Lae Z. Programmer now wants you to modify Problem 9 by add
ing a check for bad data. Any time an unexpected score occurs, you
are to print an appropriate error message and terminate the
program.

11. A quadratic equation is one of the form
ax^ + bx + c = 0

where a 5^ 0. Solutions to this equation are given by
—b ± — 4ac

X
2a

where the quantity [b^ — 4ac) is referred to as the discriminant of
the equation. Write a program to read three integers as the respec
tive coefficients [a, b, and c), compute the discriminant, and print
out the solutions. Use the following rules:
a. discriminant = 0 single root.
b. discriminant < 0 —> no real number solution.
c. discriminant > 0 ^ two distinct real solutions.

12. Write an interactive program that gets as input the lengths of three
sides of a triangle. Output should first identify the triangle as sca
lene, isosceles, or equilateral. The program should use the Pythago
rean theorem to determine whether or not scalene or isoceles trian
gles are right triangles. An appropriate message should be part of
the output.

13. The sign on the attendant's booth at the Pentagon parking lot is
PENTAGON VISITOR PARKING

Cars:
First 2 hours Free
Next 3 hours 0.50/hour
Next 10 hours 0.25/hour

Programming Problems 201

Trucks:

First 1 hour Free

Next 2 hours 1.00/hour

Next 12 hours 0.75/hour

Senior Citizens: no charge

Write a program that will accept as input a one-character designa
tor (C, T, or S) followed by the number of minutes a vehicle has
been in the lot. The program should then compute the appropriate
charge and print a ticket for the customer. Any part of an hour is to
be counted as a full hour.

14. Milt Walker, the chief of advertising for the Isabella Potato Industry,
wants you to write a program to compute an itemized bill and total
cost of his "This Spud's for You!" ad campaign. The standard black
and white full-page ads have base prices as follows:

Drillers' News (code N) $ 400
Playperson (code P) $2,000
Outdoors (code O) $ 900
Independent News (code I) $1,200

Each ad is allowed 15 lines of print with a rate of $20.00 for each
line in excess of 15 lines. Each ad is either black and white (code
B) and subject to the base prices, or is in color (code C] and subject
to the following rates:

Three color (code T) 40 percent increase over base
Full color (code F) 60 percent increase over base

Write a program to input Milt's choice of magazine (N, P, O, or I),
the number of lines of print (integer), and either black and white
(Bj or color (C) with a choice of three colors (T) or full color (F).
Output should include an appropriate title, all the information and
costs used to compute the price of an ad, the total price of the ad,
and finally the total price of all ads.

15. Write a program that will add, subtract, multiply, and divide frac
tions. Input will consist of a single line representing a fraction
arithmetic problem as follows:

integer/integer operation integer/integer

For example, a line of input might be

a/3 + i/a

Your program should
a. check for division by zero.
b. check for proper operation symbols.
c. print the problem in its original form.
d. print the answer.
e. print all fractions in horizontal form.

Your answer need not be in lowest terms.

For the sample input
a/3 + i/e

sample output is
a 1 7

3 a ~ t

202 CONDITIONAL STATEMENTS

16. Write an interactive program that permits the user to print various
recipes. Write a procedure for each recipe. After the user enters a
one-letter identifier for the desired recipe, a CASE statement should
be used to call the appropriate procedure. Part of the code could be
readln (Selection);
CASE Selection OF

' J'

• S'

ITI

Jambalaya;
Spaghetti;
Tacos

END; i of CASE Selection >

17. The force of gravity is different for each of the nine planets in our
solar system. For example, on Mercury it is only 0.38 times as
strong as on Earth. Thus, if you weigh 100 pounds (on Earth), you
would weigh only 38 pounds on Mercury. Write an interactive pro
gram that allows you to enter your (Earth) weight and your choice
of planet to which you would like your weight converted. Output
should be your weight on the desired planet together with the
planet name. The screen message for input should include a menu
for planet choice. Use a CASE statement in the program for compu
tation and output. The relative forces of gravity are

Earth 1.00

Jupiter 2.65

Mars 0.39

Mercury 0.38

Neptune 1.23

Pluto 0.05

Saturn 1.17

Uranus 1.05

Venus 0.78

■
M

M

a

Lo
op

in
g

St
at

em
en

ts

Th
e

pr
ev

io
us

 c
ha

pt
er

 o
n

se
le

ct
io

n
in

tro
du

ce
d

yo
u

to
 a

 p
ro

gr
am

m
in

g
co

nc
ep

t t
ha

t t
ak

es
 a

dv
an

ta
ge

 o
f a

 c
om

pu
te

r's
 a

bi
lit

y
to

 s
ele

ct.
A

 s
ec

on
d

m
aj

or
 c

on
ce

pt
 u

til
iz

in
g

th
e

sp
ee

d
of

 a
 c

om
pu

te
r

is
re

pe
tit

io
n.

M
an

y
pr

ob
le

m
s

re
qu

ire
 a

 p
ro

ce
ss

 t
o

be
 r

ep
ea

te
d.

 W
he

n
th

is
 is

 th
e

ca
se

,
so

m
e

fo
rm

 o
f c

on
tro

lle
d

re
pe

tit
io

n
is

 n
ee

de
d.

Th
is

ch
ap

te
r

ex
am

in
es

 th
e

di
ffe

re
nt

 m
et

ho
ds

 P
as

ca
l p

er
m

its
 fo

r
pe

r
fo

rm
in

g
so

m
e

pr
oc

es
s

re
pe

at
ed

ly.
 F

or
 e

xa
m

pl
e,

 a
s

ye
t w

e
ca

nn
ot

 c
on

ve
ni

en
tly

 w
rit

e
a

pr
og

ra
m

 t
ha

t
so

lve
s

th
e

si
m

pl
e

pr
ob

le
m

 o
f

ad
di

ng
 th

e
in

te
ge

rs
 fr

om
 1

 to
 1

00
 o

r p
ro

ce
ss

in
g

th
e

gr
ad

es
 o

f 3
0

st
ud

en
ts

 in
 a

 c
las

s.
By

 th
e

en
d

of
 th

is
 c

ha
pt

er
, y

ou
 w

ill
 b

e
ab

le
 to

 s
ol

ve
 th

es
e

pr
ob

le
m

s
th

re
e

di
ffe

re
nt

 w
ay

s.
 T

he
 th

re
e

fo
rm

s
of

 re
pe

tit
io

n
(lo

op
s)

 a
re

1.

F
O

R
 .
..
 T

O
 .
..
 D

O
2.

W

H
IL

E
 .
..
 D

O
3.

R

E
P

E
A

T
 .

.
.
U

N
T

IL

FO
R

..
.

TO
 .
..

 D
O

 is
 a

 fi
xe

d
re

pe
tit

io
n

lo
op

: i
t c

au
se

s
a

fra
gm

en
t o

f c
od

e
to

 b
e

ex
ec

ut
ed

 a
 p

re
de

te
rm

in
ed

 n
um

be
r

of
 t

im
es

.
W

H
IL

E
 .

..
 D

O
 i

s
a

pr
et

es
t l

oo
p:

 it
 e

xa
m

in
es

 a
 B

oo
le

an
 e

xp
re

ss
io

n
be

fo
re

 c
au

sin
g

a
fra

gm
en

t
to

 b
e

ex
ec

ut
ed

. R
EP

EA
T

..
. U

N
TI

L
is

a
po

st
te

st
 lo

op
: i

t e
xa

m
in

es
 a

 B
oo

le
an

 e
xp

re
ss

io
n

af
te

r
ca

us
in

g
a

fra
gm

en
t t

o
be

 e
xe

cu
te

d.
Ea

ch
 o

f
th

es
e

th
re

e
fo

rm
s

of
 r

ep
et

iti
on

 i
n

Pa
sc

al
 c

on
ta

in
s

fo
ur

 b
as

ic
lo

op
in

g
co

ns
tru

ct
s:

 lo
op

 v
ar

ia
bl

e,
 in

iti
al

 v
al

ue
, i

nc
re

m
en

t v
al

ue
, a

nd
 fi

na
l

or
 te

st
 v

al
ue

.
As

 w
e

ex
am

in
e

ea
ch

 lo
op

in
g

st
at

em
en

t,
no

tic
e

ho
w

 th
es

e
co

n
st

ru
ct

s
ar

e
in

c
lu

d
e

d
.

■

6
.1

Fi
xe

d
R

ep
et

i
tio

n
 L

oo
ps

O
B

JE
C

T
IV

E
S

B
to

 u
n

d
e

rs
ta

n
d

 w
h

e
n

fix
ed

 r
ep

et
iti

on
O

bj
ec

tiv
es

 c
on

tin
ue

d.

Fi
xe

d
re

pe
tit

io
n

(it
er

at
ed

)
lo

op
s

ar
e

us
ed

 w
he

n
it

ca
n

be
 d

et
er

m
in

ed
 i

n
ad

va
nc

e
ho

w
 o

fte
n

a
se

gm
en

t o
f c

od
e

ne
ed

s
to

 b
e

re
pe

at
ed

. F
or

 in
st

an
ce

,
yo

u
m

ig
ht

 h
av

e
a

pr
ed

et
er

m
in

ed
 n

um
be

r
of

 re
pe

tit
io

ns
 o

f a
 s

eg
m

en
t o

f
co

de
 fo

r:
(1

)
a

pr
og

ra
m

 to
 a

dd
 th

e
in

te
ge

rs
 fr

om
 1

 to
 1

00
;

(2
)

pr
og

ra
m

s
us

in
g

a
fix

ed
 n

um
be

r o
f d

at
a

lin
es

, f
or

 e
xa

m
pl

e,
 g

am
e

st
at

is
tic

s
fo

r a
 te

am
of

 1
2

ba
sk

et
ba

ll
pl

ay
er

s;
 o

r (
3)

 d
es

ig
ni

ng
 a

ttr
ac

tiv
e

ou
tp

ut
, s

uc
h

as
 a

 d
ia

m
o

n
d

 o
f

as
te

ris
ks

.

2
0

3

204 LOOPING STATEMENTS

loops should be
used in a program
to understand how

the loop control
variable is used in a

loop

to understand the

flow of control

when using a fixed
repetition loop in a
program

to be able to use a

FOR ... TO ... DO

loop in a program
to be able to use a

FOR ... DOWNTO

... DO loop in a
program

*

* *

* *

* *

* *

* *

* *

* +

*

The number of repetitions need not be constant. For example, a user might
enter information during execution of an interactive program that would
determine bow often a segment should be repeated.

FOR ... TO ... DO ... Loops

Fixed repetition of a segment of code in Pascal is accomplished by using
a FOR .., TO ... DO loop. The form necessary for using such a loop is

FOR index : = initial value TO final value DO

statement

or

FOR index : = initial value TO final value DO

BEGIN

statement 1;

statement 2;

statement n

END

A FOR ... TO ... DO loop is considered to be a single executable state
ment. The actions performed in the loop are referred to as the body of the
loop. The internal logic of a FOR ... TO ... DO loop is

1. The index is assigned the initial value.
2. The index value is compared to the final value.
3. If the index value is less than or equal to the final value

a. the body of the loop is executed,
b. the index value is incremented by one, and
c. another check with the final value is made.

4. If the index value exceeds the final value
a. the index may revert to an unassigned status, and
b. control of the program is transferred to the first statement fol

lowing the loop.

A flow diagram is given in Figure 6.1.

The problem of adding the integers from 1 to 100 needs only one statement
in the body of the loop. This problem can be solved by

Sura := □;
FOR LCV := 1 TO IDD

Sura := Sura + LCV;
DO

For another example using this type of loop, assume you are writing a
program that requires 30 test scores to be read from an input file where

6.1 Fixed Repetition Loops 205

FIGURE 6.1

FOR ... TO ... DO

flow diagram

FOR J : = initial value TO final value DO

InitiaLvalue

IncFement J

. Body of
loop

false

1 f

• 'Statemeht ̂
" after loop

r

each score is on a separate line. Furthermore, pach score is to be printed
and added to Total. The code for this is

Total := □;
FOR J ;= 1 TO 3D DO

BEGIN

readln (Score);
writeln (Score:50);
Total := Total + Score

END;

. TO ... DO

[I

Some comments concerning the syntax and form of FOR .
loops are now necessary.

The words FOR, TO, and DO are reserved and must be used only
in the order FOR ... TO .. . DO.
The index must be declared as a variable. Although it can be any
ordinal data type, we will use mostly integer examples.
The index variable can be any valid identifier.
The index can be used within the loop just as any other variable
except that the value of the index variable cannot be changed by
the statements in the body of the loop.
The initial and final values may be constants or variable expres
sions with appropriate values.
The loop will be repeated for each value of the index in the range
indicated by the initial and final values.
The index may not retain the last value it had during the last time
through the loop. When the loop is finished, the index variable
may revert to a state of having no assigned value.

At this point you might try writing some test programs to see what
happens if you don't follow these rules. Then consider the following
examples, which illustrate the features of FOR ... TO ... DO loops.

1.

2.

3.

4.

5.

6.

7.

206 LOOPING STATEMENTS

EXAMPLE 6.1 Write a segment of code to list the integers from 1 to 10 together with their squares
and cubes. This can be done by

FOR J := 1 TO 10 DO

writeln (J, J * J,

This segment produces

J * J * J);

1 1 1

E A a

3 R E7

A lb b4

5 E5 1E5

b 3b Elb

7 <R 3^3

a b< 51E

R ai 7SR

IG IGG IGGG

EXAMPLE 6.2 Write a segment of code that allows you to examine the value of the index variable
before a loop, during each execution of the loop, and after the loop. Assume the
index variable is J and that no value has been previously assigned to it. The
following segment of code

J = J);

is'

/ J);

writeln ('Before the loop/
writeln;

FOR J := 5 TO ID DO

writeln ('The value of J
writeln;

writeln ('After the loop/ J =

will, on certain machines, produce the output

Before the loop J = —5fiflE3G37L!L!LfiGEtiOL3

The value of J is 5

The value of J is t

The value of J is 7

The value of J is fl

The value of J is R

The value of J is IG

After the loop J = -57b<bG7SE3G3<E3<a7

EXAMPLE 6.3 Construct a FOR ... TO ... DO loop that shows what happens when the initial
value is greater than the final value.

writeln ('This is before the loop.');
writeln;

FOR J := IG TO 1 DO

writeln (J);

writeln ('This is after the loop.');

This segment of code produces the output

This is before the loop.

This is after the loop.

Because the initial value of the index exceeded the ending value originally, control
of the program was transferred to the first executable statement following the loop.

6.1 Fixed Repetition Loops 207

Use FOR ... TO ... DO loops to produce the following design.

* *

* *

* *

* *

* *

This problem requires a bit of development. A first-level pseudocode development
could be

1. Produce the top line
2. Produce the center lines

3. Produce the bottom line

and second-level development

2, Produce the center lines

2.1 FOR J := 1 TO 5 DO

produce a middle line

We could now code the algorithm as follows:

PROGRAM DesignBox (output);

CONST

Splats = '******************************• j
Edge = '* *•;
Skip = • ';

VAR

J : integer;

BEGIN

writeln (Skip:lD, Splats);
FOR J := 1 TO 5 DO

writeln (Skip:lD/ Edge);
writeln (Skip:10/ Splats)

END. ■

The index of a loop can also be used for formatting. This is particularly
useful when the output is in the form of a design. The next example
illustrates this.

Write a FOR ... TO ... DO loop to produce the following design.

**

* *

* *

* *

Assuming the first asterisk is in column 20, the following loop will produce the
desired result. Note carefully how the output is formatted.

FOR J := 1 TO 5 DO

writeln (•*':51-J, •*';a*J-l); ■

208 LOOPING STATEMENTS

EXi^MPLE 6.6 Use a FOR ... TO ... DO loop to print the letters of the alphabet on a diagonal.
Since char is an ordinal data type, this can be accomplished by

Indent := 1;

FOR Ch := »R' to 'Z' DO

BEGIN

writeln (Ch:Indent);
Indent := Indent + 1

END;

which produces

A

B

C

D

E

F

G

H

I

J

K

L

H

N

0

P

Q
B

S

T

U

7

W

EXAMPLE 6.7 When computing compound interest, it is necessary to evaluate the quantity
(1 + R]^ where R is the interest rate for one time period and N is the number of
time periods. A FOR... TO ... DO loop can be used to perform this computation.
If we declare a variable Base, this can be solved by

Base := 1;

FOR J := 1 TO N DO

Base := Base * (1 + R);

FOR .. . DOWNTO ... DO Loops

A second fixed repetition loop is the FOR... DOWNTO ... DO loop. This
loop does exactly what you expect; it is identical to a FOR... TO ... DO
loop except the index variable is decreased by one instead of increased
by one each time through the loop. The test is index value > = final value.
The loop terminates when the index value is less than the final value.
Proper form and syntax for a loop of this type are

6.1 Fixed Repetition Loops 209

or

FOR index : = initial value DOWNTO final value DO

statement

FOR index : = initial value DOWNTO final value DO

BEGIN

statement 1;

statement 2;

statement n

END

The conditions for FOR ... DOWNTO ... DO loops are the same as FOR
... TO ... DO loops. We will now consider some examples of FOR ...
DOWNTO... DO loops.

EXAMPLE. 6.8 Illustrate the index values of a FOR ... DOWNTO ... DO loop by writing the
index value dining each pass through the loop. The segment of code for this could
be

FOR K := EO DOWNTO 15 DO

writeln ('K ='/ K:^);

and the output is

K =

K =

K =

K =

K =

K =

EO

15

16

17

15

EXAMPLE 6.9 Use a FOR ... DOWNTO ... DO loop to produce the design

**»

If we assume the first line of output ends in column 20, the code for this is

FOR J ;= EO DOWNTO It DO

writeln (•***':J);

EXAMPLE 6.10 Determine the output from the following fi-agment of code.
Sum := 0;

FOR J := 3 DOWNTO -E DO

BEGIN

Sura := Sura + J;

writeln ('*':10+abs(J))

END;

writeln (Sura;15);

210 LOOPING STATEMENTS

Before printing the output, let's trace through the variable values.

J Sum 10 + abs(J)

Unassigned
3

2

1

0

-1

-2

Undefined

13

12

11

10

11

12

The output is

♦ *— column 13

From this point on, both FOR ... TO ... DO and FOR ... DOWNTO
... DO loops will be referred to as FOR loops. The form intended should
be clear from the context.

Writing Style for Loops

As you can see, writing style is an important consideration when writing
code using loops. There are three features to consider. First, the body of
the loop should be indented. Compare the following:

FOR J := 1 TO 10 DO

BEGIN

read (Num, Amt);

Totall := Totall + Amt;

TotalE := Totals + Num;

writeln ('The number is'/ Numrb)
END;

writeln ('The total amount is', Totall:fl:S);
Average := Totals / 10;

FOR J := 1 TO ID DO

BEGIN

read (Num/ Amt);

Totall := Totall + Amt;

Totals := Totals + Num;

writeln ('The number is'/ Numrt)
END;

writeln ('The total amount is'/ Totall:a:S);
Average := Totals / 10;

The indenting in the first segment makes it easier to determine what is
contained in the body of the loop than it is in the second segment, without
any indenting.

Second, blank lines can be used before and after a loop for better read
ability. Compare the following:

6.1 Fixed Repetition Loops 211

readln (X/ Y);
writeln Y:t:5);
writein;

FOR J := -3 TO 5 DO

writeln (J:3/

Sura := Sum + X;

writeln (Sura:lD:E);

readln (X/ Y);
writeln (X:t:5, Y:b:E);
writeln;

FOR J := -3 TO 5 DO

writeln (J:3,
Sura := Sura + X;

writeln (Sura:lD:5);

Again, the first segment is a bit more clear because it emphasizes that the
entire loop is a single executable statement and makes it easy to locate
the loop.

STYLE TIP There are three features you may wish to incorporate as you worjk with^OR
loops. FirsClo^p limitsxan be defined as constants ordedared' as vanahles
and then have assigned^ values. Thus, you could have

CONST

LoopLimit = 50;

Second, the loop control variable could be declared as , -. .

vaR

LCV : integer;

The loop could then be written as

FOR LCV := 1 TO LoopLimit DO

. (body of the loop here)

Third, a loop limit could be declared as a variable and then
have the user enter a value during execution.

VAR

LoopLimit : integer;

write (•How many entries? •);
readln (LoopLimit);
FOR LCV := i TO LoopLimit DO

Third, comments within loops make them more readable. In particular,
a comment should always accompany the END of a compound statement
that is the body of a loop. The general form for this is

212 LOOPING STATEMENTS

EXAMPLE 6.11

< Get a test score >

FOR J := 1 TO 50 DO

BEGIN

. (body of the loop)

END; i Of FOR loop >

We close this section with an example that uses a FOR loop to solve a
problem.

Suppose you have been asked to write a segment of code to compute the test
average for each of 30 students in a class and the overall class average. If each
line of data has the form

THS 87 94 85 931

and a first-level pseudocode development is

1. Print a heading
2. Initialize Total

3. Process data for each of 30 students

4. Compute class average
5. Print a summary

a FOR loop could be used to implement step 3. The step could first be refined to

3. Process data for each of 30 students

3.1 get data for a student
3.2 compute average

3.3 add to Total

3.4 print student data

The code for this step is

FOR LCV := 1 TO ClassSize DO

BEGIN

writeln {'Enter three initials and press <RETDRN>.');
readln (Initl/ InitS/ Init3);
writeln ('Enter four test scores and press <RETURN>.');
readln (Scorel, Score2, Score3, Scored);
Average := (Scorel + ScoreE + Score3 + Scored) / A;
Total := Total + Average;
writeln;

write (Initl:^; InitS/ Init3);
write (Scorel:b/ ScoreSrt/ Score3:L/ Scored:t);
writeln (Average:10:5)

END; M

A NOTE OF INTEREST

Ada Augusta Byron

Ada Augusta Byron (1815—1852), Countess of
Lovelace, daughter of the poet. Lord Byron, be
came familiar with the work of Charles Babhage
when she was translating a paper from French
to English. Eventually, she became a full collab
orator with Babhage, who was the first to propose
the concept on which today's computers are
based. Her most significant contribution was the
concept of a loop. She noted that a single cal

culation could be performed by a repetition of a
sequence of instructions. By using a conditional
jump, her method could perform calculations
with a fraction of the effort previously required.

Because of her work, she is recognized as the
first programmer. In honor of her work, a state-
of-the-art programming language (Ada) has been
named after her.

6.1 Fixed Repetition Loops 213

Ex6rciSGS 6.1 l. What is the output from each of the following segments of code?

a. FOR K := 3 TO a DO

writeln ('*•:K);

b. FOR J := 1 TO 10 DO

writeln (J:</ • (10-J):S);

c. A := 2;

FOR J := (3 * 5 - 4) TO ID * A DO

writeln ('*♦', J:4);
d. FOR J := 5D DOWNTO 30 DO

writeln (51 - J:5);

2. Write a test program that illustrates what happens when the loop control
variable is assigned a value inside the loop.

3. Write segments of code using FOR ... TO ... DO or FOR ... DOWNTO ...
DO loops to produce the following designs.
a. * c. *

* * *

» * *

* * *

b. ♦** **** ****

4c:|e:(c

9|e9|c4(

*** d. *********

*** *******

*** *****

*** ***

*

4. Which of the following segments of code do you think accomplish their in
tended task? For those that do not, what changes would you suggest?
a. FOR K := 1 TO 5 DO;

writeln (K);
b. Sura := 0;

FOR J := 1 TO ID DO

read (A);
Sura := Sura + A;

writeln (Sum:15);
c. Sura := D;

FOR J = -3 TO 3 DO

Sum := Sura + J;
d. A := D;

FOR K := 1 TO ID DO

BEGIN

A := A + K;
writeln (K:5, A:5, A + K:5)

END;
writeln (K:5, A:5, A + K:5);

5. Produce each of the following outputs using both a FOR ... TO ... DO
loop and a FOR ... DOWNTO ... DO loop.
a. 1 5 3 < 5

b. *

*

*

*

*

214 LOOPING STATEMENTS

DOWNTO ... DO6. Rewrite the following segment of code using a FOR
loop to produce the same result.

Sura := □;
FOR K := 1 TO < DO

BEGIN
writeln (•*' :51+K);
Sum := Sura + K

END;

7. Rewrite the following segment of code using a FOR ... TO . .. DO loop to
produce the same result.
FOR J := ID DOWNTO 2 DO

writeln (J:J);

8. Write a complete program that produces a table showing the temperature
equivalents in degrees Fahrenheit and degrees Celsius. If you write this as
an interactive program, let the user enter the starting and ending values.
Otherwise, list values between 0° C and 100® C. (In either case, use the
formula CelsTemp = 5/9 * (FarenTemp — 32.)

9. Write a complete program that produces a chart consisting of the multiples
of 5 from - 50 to 50 together with the squares and cubes of these numbers.
Use a procedure to print a suitable heading.

10. The formula A = P(1 + i?)'^ can be used to compute the amount due (A)
when a principal (P) has been borrowed at a monthly rate (R) for a period
of N months. Write a complete program that will read in the principal,
annual interest rate (divide by 12 for monthly rate), and number of months
and then produce a chart that shows how much will be due at the end of
each month.

@ HI m ^

M 6.2

Pretest Loops

OBJECTIVES

la to understand what
is meant by a pre
test loop

□ to understand the
difference between
pretest loops and
fixed repetition
loops

□ to understand the
flow of control
when using a pre
test loop

□ to be able to use
counters in a loop

D> to be able to use
pretest loops in a
program

In Section 6.1, FOR loops, loops in which the body of the loop is repeated
a fixed number of times, were presented. There are problems in which
this loop is inappropriate, since a segment of code may need to be repeated
an unknown number of times. For example, if you have an input file with
an unknown number of items, you will need to continue reading data
until you reach the end-of-file marker. In this instance, the condition
controlling the loop must be a variable rather than a constant. Pascal
provides two looping statements with variable control conditions, one
with a pretest condition and one with a posttest condition.

Pretest Condition

The first type of variable control loop we will examine is a pretest or
entrance controlled loop. This type of loop uses a condition that controls
whether or not the body of the loop is executed before going through the
loop. This is called a pretest condition. If the condition is true, the body
of the loop is executed. If the condition is false, the program skips to the
first line of code following the loop.

Variable condition loops are needed to solve problems where conditions
change within the body of the loop. These conditions involve end-of-line
markers, end-of-file markers, sentinel values. Boolean flags, or arithmetic
expressions with changing values. A variable condition loop is a control
feature that provides more power than what is available in many old
languages such as BASIC and FORTRAN.

6.2 Pretest Loops 215

FIGURE 6.2

WHILE ... DO flow

diagram

WHILE ... DO Loops

The pretest loop in Pascal is a WHILE ... DO loop. The condition con
trolling the loop is a Boolean expression written between the reserved
words WHILE and DO. Correct form and sjmtax for such a loop are

WHILE Boolean expression DO
statement;

WHILE Boolean expression DO
BEGIN

statement 1;

statement 2;

statement n

END;

The flow diagram for a WHILE ... DO loop is given in Figure 6.2.

WHILE Boolean expression DO

Boolean
expression

false

Statement
■ after loop;

1 f

Program control when using a WHILE... DO loop is in order as follows:

1. The loop condition is examined.
2. If the loop condition is true, the entire body of the loop is exe

cuted before another check is made.

3. If the loop condition is false, control is transferred to the first line
following the loop. For example,

A := 1;

WHILE A < □ DO
BEGIN

Num := 5;
writeln (Num);
A := A + ID

END;
writeln (A);

216 LOOPING STATEMENTS

produces the single line of output

1

Before analyzing the components of the WHILE ... DO statement, let's
consider two short examples.

This example allows you to print values from an input hie as long as the values
are positive (assuming there is a nonpositive value in the hie).

read (A);
WHILE A > □ DO

BEGIN
writeln (A);
read (A)

END; B

EXAiSiBtE 6.13 ^ example prints some powers of two.
Powers := 1;
WHILE Powers < DO

BEGIN
writeln (Powers);
Powers := Powers * S

END;

The output from this segment of code is

1
S

a
lb

3S

With these examples in mind, let's examine the general form for using
a WHILE ... DO loop.

1. The Boolean expression can be any expression that has Boolean
values. Standard examples include relational operators and Bool
ean variables; thus, each of the following would be appropriate.

WHILE J < ID DO
WHILE A OB DO
WHILE Flag = true DO
WHILE Flag DO
WHILE NOT eoln DO
WHILE NOT eof DO

2. The Boolean expression must have a value prior to entering the
loop.

3. The body of the loop can be a single statement or a compound
statement.

4. Provision must be made for appropriately changing the loop con
trol condition in the body of the loop. If no such changes are
made, the following could happen.

6.2 Pretest Loops 217

a. If the loop condition is true and no changes are made, a condi
tion called an infinite loop is caused. For example,

A := 1;

WHILE A > □ DO

BEGIN

Num := 5;
writeln (Num)

END;
writeln (A);

The condition A > 0 is true, the body is executed, and the
condition is retested. However, since the condition is not
changed within the loop body, it will always be true and will
cause an infinite loop. It will not produce a compilation error,
but when you run the program, the output will be a list of 5s.

b. If the loop condition is true and changes are made, but the
condition never becomes false, you again have an infinite loop.
An example of this is
Power3 := 1;
WHILE Power3 <> DO

BEGIN

writeln (Power3);
Power3 := Power3 ♦ 3

END;

Since the variable Powers never is assigned the value 100, the
condition Powers <> 100 is always true and you never get out
of the loop.

If you are already familiar with other computer languages,
you may have a tendency to overuse the FOR loop. You should
consider a WHILE loop when deciding which structure to use.

Sentinel Values

The Boolean expression of a variable control loop is frequently controlled
by a sentinel value. For example, an interactive program mi^t want the
user to enter numeric data. When there are no more data, the user will
be instructed to enter a special (sentinel) value. This then signifies the
end of the process. Example 6.14 illustrates the use of such a sentinel.

EXAMPLE 6.14 Let's write a segment of code that could be used interactively to allow the user
— to enter a set of test scores and then print the average score.

i NumScores := □;
Sum := □;
write ('Enter a score and press <RETORN>, -RRR to quit. •);
readln (Score);
WHILE Score <> -333 DO

BEGIN
NumScores := NumScores + 1;
Sum := Sum + Score;
write ('Enter a score and press <RETaRN>, -333 to quit. ');
readln (Score)

END;
IF NumScores > □ THEN

Average := Sura / NumScores;
writeln;
writeln ('The average of NumScores ' scores is '/ Average:L:S); ■

218 LOOPING STATEMENTS

Writing Style

Writing style for WHILE ... DO loops should be similar to that adopted
for FOR loops; that is, indenting, skipping lines, and comments should
all be used to enhance readability.

Using Counters

Since WHILE ... DO loops may be repeated a variable number of times,
it is a common practice to count the number of times the loop body is
executed. This is accomplished by declaring an appropriately named in
teger variable, initializing it to zero before the loop, and then incrementing
it by one each time through the loop. For example, if you use Count for
yoiu variable name. Example 6.13 (in which we printed some powers of
two) could be modified to

Count := □;
Powera := 1;

WHILE Powera < DO
BEGIN

writeln (Powera);
Powera := Powera ♦ a;
Count := Count + 1

END; < of WHILE...DO >

writeln ('There are'/ Count ' powers of a less than lOD. ');

The output from this segment of code is

1

a

a

IL

aa

There are 7 powers of a less than !□□.

Although the process is tedious, it is instructive to trace the values of
variables through a loop where & counter is used. Therefore, let us consider
the segment of code we have just seen. Before the loop is entered, we have

Count Power2

The loop control is Power2 < 100 (1 < 100). Since this is true, the loop
body is executed and the new values become

Count Power2

Prior to each successive time through the loop, the condition Power2 < 100
is checked. Thus, the loop produces the sequence of values

6.2 Pretest Loops 219

Count PowerZ

1 2

2 4

3 8

4 16

5 32

6 64

7 128

Although Power2 is 128, the remainder of the loop is executed before
checking the loop condition. Once a loop is entered, it is executed com
pletely before the loop control condition is reexamined. Since 128 < 100
is false, control is transferred to the statement following the loop.

WHILE NOT eoln

A standard problem encountered when getting data from an input file is
Prl reading the data until an end-of-line marker is encountered. Since eoln

is a Boolean function that returns the value true only when the data pointer
is positioned at the end-of-line or end-of-file marker, a WHILE ... DO
loop can be used with eoln to solve such problems. To illustrate this use
of eoln with WHILE ... DO, consider the problem of reading and printing
a line of data, character by character.
A first-level pseudocode development for solving this problem is

1. Set left margin
2. Get a line of data

A second-level development is

1. Start in column 10

2. Get a line of data

WHILE NOT eoln DO

2.1 get a character
2.2 print a character

This is sufficient development from which to write code. Some imple
mentations require a file name as an argument when using eoln and eof.
Thus, you would have to write eoln (input) or some equivalent statement.
A segment of code to solve this problem is

write (' ':q);

{ Now get a data line >

WHILE NOT eoln DO

BEGIN

read (Oh);
write (Ch)

END;

If this segment is executed for the data file and the pointer is as indicated,

¥tEVE smith 93 84 891 ANN JONES 92 86 901 ■
t

the output is

220 LOOPING STATEMENTS

STEVE SMITH 13 &A fli

and the data file and pointer are

EXAMPLE 6.15

STEVE SMITH 93 84 891 ANN JONES 92 86 901 ■
t

Now eoln is true; thus, NOT eoln is false and the loop is finished. As our
next example, let's use a version of the same problem but count the number
of characters (including blanks) in the line.

Write a segment of code to allow you to examine a data line. Your output should
include the data line and the number of positions in the line. A first-level pseu
docode development is

Initialize counter

Set left margin
Get a line of data

Print the message

A second-level development is

1. Initialize counter

2. Set left margin
3. Get a line of data

WHILE NOT eoln DO

3.1 get a character
3.2 print the character
3.3 increment counter

4. Print the message

We can now write the code.

1.

2.

3.

4.

Count := □; <
write (' ' :1);

Initialize counter
< Set margin >

•{ Now get a data line }

WHILE NOT eoln DO
BEGIN

read (Ch);
write (Ch);
Count := Count + 1

END; < of WHILE...DO >

{ Now print a message >

writeln;
writeln('There are'. Count:4, ' positions in the line. ');

EXAMPLE 6.16 Suppose you are asked to write a program to find the average of some numbers
that are on one line of data. As a first-level pseudocode we have

1. Initialize variables
2. Get numbers from the data line
3. Compute average
4. Print the results

A refinement of this is

1. Initialize variables
1.1

1.2

Count

Sum

6.2 Pretest Loops 221

2. Get numbers from the data line

WHILE NOT eoln DO

2.1 get a number
2.2 add to Sum

2.3 increment counter

3. Compute average

4. Print the results

4.1 print how many numbers
4.2 print the average

We can now write the following code.

{ Initialize >

Count := □;
Sum := □;

■{ Get one line of data >

WHILE NOT eoln DO
BEGIN

read (Num);
Sum := Sura + Num;
Count := Count + 1

END; < of WHILE...DO >

i Now compute average >

Average := Sum / Count;

i Now print results >

writeln;
writeln ('There were'rlR, Count ' numbers in the line.');
writeln;
writeln ('Their average is':25, Average:fl:2); @

Note that this example does not work for implementations that add blanks
to the end of data lines because the data pointer may not he at the end-
of-line marker after the last number is read.

WHILE NOT eof

Another problem encountered in getting information from an input file
is that of knowing when the end-of-file marker has been encountered.
Since eof is a Boolean function, it can he used with a WHILE ... DO loop
in a manner similar to using eoln. For example, suppose a data file had
one real number per line and you wanted to examine the file. The segment
of code is then

WHILE NOT eof DO
BEGIN

readln (X);
writeln (X:10:2)

END;

If the data file is

14.731121.4510.021 -141.11

222 LOOPING STATEMENTS

A NOTE OF INTEREST

Debugging Space Flight Programs

J. F. ("Jack") demons, manager of avionics flight
software development and verification for the
space shuttle on-board computers, was recently
interviewed by Alfred Spector, editor for Com
munications of the ACM. In response to a ques
tion about checking software, demons stated:
"One of the abort simulations they chose to test
is called a 'TransAtlantic abort,' which supposes
that the crew can neither return to the launch

site nor go into orbit. The objective is to land in
Spain after dumping some fuel. The crew was
about to go into this dump sequence when all
foiu- of our flight computer machines locked up
and went 'catatonic.' Had this been the real thing,
the shuttle would probably have had difficulty
landing. This kind of scenario could only occur
under a very specific and unlikely combination
of physical and aerodynamic conditions; but
there it was: Our machines all stopped. Our
greatest fear had materialized—a generic soft
ware problem.
"We pulled four or five of our best people

together, and they spent two days trying to un
derstand what had happened. It was a very sub
tle problem.
"We started outside the module with the bad

branch and worked our way backward until we

found the code that was responsible. The mod
ule at fault was a multipurpose piece of code
that could be used to dump fuel at several points
of the trajectory. In this particular case, it had
been invoked the first time during ascent, had
gone through part of its process, and was then
stopped by the crew. It had stopped properly.
Later on, it was invoked again from a different
point in the software, when it was supposed to
open the tanks and dump some additional fuel.
There were some counters in the code, however,
that had not been reinitialized. The module re

started, thinking it was on its first pass. One vari
able that was not reinitialized was a counter that

was being used as the basis for a GOTO. The code
was expecting this counter to have a value be
tween 1 and X, say, but because the counter was
not reinitialized, it started out with a high value.
Eventually the code encountered a value beyond
the expected range, say x + 1, which caused it
to branch out of its logic. It was an 'uncomputed'
GOTO. Until we realized that the code had been

called a second time, we couldn't figure out how
the counter could return a value so high."

the output from this segment is

1^.73

151.AS

0.05

-lAl.lO

Many programming problems require the same manipulations and out
put for each line of data. In these situations, a programmer develops code
for operating on one line of data and then uses that code until the end-
of-file is encountered. Problems of this type require careful attention,
especially with respect to two items.

1. The data lines must be correctly formatted.
2. A readln should be used to advance the pointer. There are meth

ods to avoid using readln for this purpose, but this is the easiest
way to advance the pointer to the beginning of the next data line.
If the pointer is not advanced, the eof condition will not be recog
nized appropriately.

The next example illustrates the use of WHILE
condition.

DO with the eof

ERASiRLE 6,17 Write a segment of code to compute the wages for several employees. Assume
each line of data consists of information about one employee. It will contain three

6.2 Pretest Loops 223

initials, the hourly rate (real), and the number of hours worked (integer). There
are blanks before each number; thus, the data hie could be

MTM 14.60 40|BRL 13.95 42lHMN 10.50 201MJB 21.0 351
T

To get the data from one line of the hie, the code could be

read (Initl, InitS/ InitB);
read (HourRate);

readln (Hours);

or

readln (Initl, InitS/ InitR, HourRate/ Hours);

or other equivalent forms. Gross wages can be computed by

GrossHage := HourRate * Hours;

If output is to be in the form of a chart, a line of output could be generated by

writeln (InitlrS/ InitS/ InitB/ HourRate:15:5/
Hours:15/ GrossWage:15:5);

The segment of code that produces the information desired for each employee is

WHILE NOT eof DO

BEGIN

readln (Initl/ InitS/ InitB/ HourRate/ Hours);
GrossHage := HourRate * Hours;
writeln (Initl:5/ InitS/ InitB/ HourRate:15:E/

Hours:15/ GrossHage:15:E)
END; < of HHILE...DO > H

Let US now consider the design and implementation of a complete
program to solve the problem of computing wages for employees. We will
assume the input file has the same format and the output consists of a
reasonably formatted chart. A first-level pseudocode development for the
problem is

1. Print a chart heading (procedure)
2. Process each data line

A second-level development is

1. Print a chart heading (procedure)
2. Process each data line

WHILE NOT eof DO

2.1 get a line of data
2.2 compute the wage
2.3 print the information

We are now ready to write code for this problem. Note that a procedure
is used to print the chart heading. The complete program is

PROGRAM CoraputeHages (input/ output);

i This program computes wages for several employees of a }
{ company. The significant new feature is the use of a >
{ HHILE...DO loop with eof as a Boolean loop control. >

CONST

Marks = •//////////////////////////////';
Edge = '/ /';
Skip = « ';

224 LOOPING STATEMENTS

VAR

GrossHager
HourRate : real;

Hours : integer;
Initl, Inita, Init3 : char;

{ Wages before deductions >
{ Hourly rate of pay >
< Number of hours worked >

< Initials for employee >

PROCEDURE PrintHeading;

< Print a heading for the payroll report >

BEGIN

writeln; writeln;
writeln (Skip:1b/ Marks);
writeln (Skip:1b/ Edge);
writeln (Skip:1b/ •/ Hi-Speed Bicycle Company /•);
writeln (Skip:lb/ Edge);
writeln (Skip:1b/ '/ Payroll Report /•);
writeln (Skip:lb/ Edge);
writeln (Skip:1b/ Marks);
writeln;

writeln (Skip:S/ 'Employee'/•Pay Rate•:14/'Hours Worked':50/'Gross':fi);
writeln (Skip:R/ ' ')!
writeln

END; < of PROCEDURE PrintHeading >

BEGIN { Main program >

PrintHeading;

< Now start the loop to process a line of data >

WHILE NOT eof DO

BEGIN

readln (Initl/ InitS/ InitB/ HourRate/ Hours);
GrossWage := HourRate * Hours;
write (Skip:ll/ Initl/ Inita/ Init3);
writeln (HourRate:lb:a/ Hours:15/ GrossWage:1^:a)

END; { of WHILE...DO loop >

writeln; writeln

END. -C of main program >

If the data file is as indicated in Example 6.17, the output is

////////////////////////////.

Hi-Speed Bicycle Company

Payroll Report

////////////////////////////,

Employee Pay Rate Hours Worked Gross

MTM

BRL

HMN

MJB

1^ .bD

13.55

10.50

ai.oo

<0

4a

ao

35

554.00

555.50

aio.oo

735.00

6.2 Pretest Loops 225

Compound Conditions

All previous examples and illustrations of WHILE... DO loops have used
simple Boolean expressions. However, since any Boolean expression can
be used as a loop control condition, compound Boolean expressions can
also be used. For example,

read (A/ B);
WHILE (A > □) AND (B > □) DO

BEGIN

wrlteln (A/ B);
A := A - 5;
B := B - 3

END;

will go through the body of the loop only when the Boolean expression
(A > 0) AND (B > 0) is true. Thus, if the values of A and B are obtained
from the data file

178| ■

the output from this segment of code is
17

12

?

Compound Boolean expressions can be as complex as you wish to make
them. However, if several conditions are involved, the program can be
come difficult to read and debug; therefore, you may wish to redesign
your solution to avoid this problem.

Exercises 6.2 1. Compare and contrast FOR loops with WHILE ... DO loops.

2. Write a test program that illustrates what happens when you have an infi
nite loop.

3. What is the output from each of the following segments of code?

a. K := 1;
WHILE K <= 10 DO

BEGIN

wrlteln (K);
K := K + 1

END;
b. A := 1;

WHILE 1? MOD A <> 5 DO

BEGIN

wrlteln (A, 1? MOD A);
A := A + 1

END;
c. A : = 2;

B := 50;
WHILE A < B DO

A := A * 3;
wrlteln (k, B) ;

226 LOOPING STATEMENTS

d. Count := 0;

Sum := D;

HHILE Count < 5 DO

BEGIN

Count := Count + 1;

Sum := Sura + Count;

writeln ('The partial sum is'. Sum:-?)

END;

writeln ('The count is'. Counted);

e. X := 3.D;

Y := 5.D;

WHILE X * Y < IDD DO

X := X * Y;

writeln (X:1D:S, Y:1Q:5);

4. Indicate which of the following are infinite loops and explain why they are
infinite.

a. J ; = 1;

WHILE J < ID DO

writeln (J);

J := J + 1;

b. A := a;

WHILE A < EG DO

BEGIN

writeln (A);

A := A * 5

END;

c. A := E;

WHILE A <> EG DO

BEGIN

writeln (A);

A := A * E

END;

d. B := 15;

WHILE B DIV 3 = 5 DO

BEGIN

writeln (B, B DIV 5);
B := B - 1

END;

5. Assume the variable declaration section of a program is

VAR

Chi, ChE : char;

Age : integer;
Num : real;

the data file is

A18 -14.3B|C 21 IO.ODIE 19 -11.5F| ■

and the pointer is positioned at the beginning of the file for each segment.
What is the output for each of the following segments of code?

6.2 Pretest Loops 227

a. WHILE NOT eoln DO

BEGIN

read (Chi) ;

write (Chi)

END;

writeln;

b. WHILE NOT eof DO

BEGIN

read (Chi);

write (Chi)

END;

writeln;

c. WHILE NOT eoln AND NOT eof DO

BEGIN

read (Chi);

write (Chi)

END;

writeln;

d. WHILE NOT eoln OR NOT eof DO

BEGIN

read (Chi);

write (Chi)

END;

writeln;

e. WHILE NOT eof DO

BEGIN

readln (Chi, Age, Num, ChS);

writeln (Chl:3, Age:3, Num:L:E, ChB:B)

END;

6. Assume the data file and variables are as stated in Exercise 5. Is there any
thing wrong with the following WHILE ... DO loop?

WHILE NOT eoln DO

BEGIN

readln (Chi, Age, Num, Ch5);
writeln (Chl:3, Age:3, NumrtiB, ChB:3)

END;

7. Assume Ch is a character variable and a data file is

XYZ 131 ABC 211MNO 251
t

What is the output from the following WHILE ... DO loop?

WHILE NOT eof DO

BEGIN

read (Ch);

write ('Ch is':10, Ch:3);
write ('eoln is':ID, eoln:7);
writeln ('eof is':lG, eof:7)

END;

8. Write a segment of code that allows you to find how many lines are in a
data file.

9. Write a segment of code that reads a positive integer and prints a list of
powers of the integer that are less than 10,000.

228 LOOPING STATEMENTS

10. Modify the program to compute employee wages (PROGRAM

ComputeWages) by incorporating the following:

a. a counter to count the number of employees
b. a computation for the total hours worked by all employees
c. a computation for the total wages paid to all employees
d. a computation for the average wage of all employees
e. a printed summary of the extra information

S 6.3

Posttest Loops

B to understand what

is meant by a post-
test loop

° to understand the

flow of control us

ing a posttest loop

° to be able to use

posttest loops in a
program

a to be able to use

posttest loops with
multiple conditions

The previous two sections have discussed two kinds of repetition. We
looked at fixed repetition using FOR loops and variable repetition using
WHILE... DO loops. Pascal provides a second form of variable repetition,
a REPEAT ... UNTIL loop. The basic difference between the two forms
of variable repetitions is that the WHILE ... DO loop is a pretest or
entrance controlled loop and the REPEAT ... UNTIL loop is a posttest or
exit controlled loop. We will now examine the REPEAT ... UNTIL loop.

REPEAT ... UNTIL Loops

The basic form and syntax for a REPEAT ... UNTIL loop is

REPEAT

statement 1;

statement 2;

statement n

UNTIL Boolean expression;

A flow diagram for a REPEAT ... UNTIL loop is given in Figure 6.3.
Prior to examining this form, let us consider the fragment of code

Count := □;
REPEAT

Count := Count + 1;
writeln (Count)

UNTIL Count = 5;
writeln ('All done' ilD);

The output for this fragment is
1

s
3

5

All done

With this example in mind, the following comments concerning the
use of a REPEAT . .. UNTIL loop are in order.

1. The program statements between REPEAT and UNTIL are exe
cuted in order as they appear. Thus, a BEGIN ... END block is
not necessary.

2. A semicolon is not required between the last statement in the
body of the loop and the reserved word UNTIL.

FIGURE 6.3

REPEAT ... UNTIL

flow diagram

6.3 Posttest Loops 229

REPEAT...UNT1L Boolean expression

f

: ibdy bf
loop.

1

BoolBian ■ false

true

1 f

i^tatemeUt
.a^eri^op

1 f

3. The loop must be entered at least once because the Boolean
expression is not evaluated until after the loop body has been
executed.

4. When the Boolean expression is evaluated, if it is false, control is
transferred back to the top of the loop; if it is true, control is
transferred to the next program statement.

5. Provision must be made for changing values inside the loop so
that the Boolean expression used to control the loop will eventu
ally be true. If this is not done, you will have an infinite loop, as
shown.

J := □;
REPEAT

J := J + 2;
writeln (J)

UNTIL J = 5;

6. Writing style for using REPEAT ... UNTIL loops should be con
sistent with your style for using other loop structures.

There are two important differences between WHILE ... DO and RE
PEAT .. . UNTIL loops. First, a REPEAT. . . UNTIL loop must be executed
at least once, but a WHILE ... DO loop can be skipped if the initial value
of the Boolean expression is false. Because of this, REPEAT . . . UNTIL
loops are generally used less frequently than WHILE . .. DO loops. For
example, if you use a REPEAT... UNTIL loop to attempt to read an empty
file, a run-time error will occur.

The second difference is that a REPEAT . .. UNTIL loop is repeated
until the Boolean expression becomes true; in a WHILE . . . DO loop,
repetition continues until the Boolean expression becomes false.

230 LOOPING STATEMENTS

EXAMPLE 6.18 An early method of approximating square roots was the Newton-Raphson method.
This method consisted of starting with an approximation and then getting suc
cessively better approximations until the desired degree of accuracy was achieved.

Writing code for this method, each NewGuess is defined to be

NewGuess := 1/E * (OldGuess + Number / OldGuess)

Thus, if the number entered was 34 and the first approximation was 5, the second
approximation would be

1/5 * (5 + 34 / 5) (S.R)

and the third approximation would he

1/5 * (S.q -1- 34 / S.R) (5.031355=13)

Let's see how a REPEAT ... UNTIL loop can be used to obtain successively better
approximations until a desired degree of accuracy is reached.

Assume Number contains the number whose square root we wish to approx
imate, OldGuess contains a first approximation, and DesiredAccuracy is a defined
constant. A loop used in the solution of this problem is

writeln (NewGuess:15:0);

REPEAT

OldGuess := NewGuess;

NewGuess := 1/5 * (OldGuess + Number / OldGuess);
writeln (NewGuess:15:fl)

UNTIL abs (NewGuess - OldGuess) < DesiredAccuracy;

If DesiredAccuracy is 0.0001, Number is 34, and NewGuess is originally
5, the output from this segment is

5.□□□□□□□□

5.qaoDDDDQ
5.63135593

5.63Dq5191

5.63095169 M

EXAMPLE 6.19 Interactive programming frequently requires the use of a menu to give the user a
choice of options. For example, suppose you want a menu to be

Which of the following recipes do you wish to see?

(T)acos
(J)ambalaya
(G)umbo
(Q)uit

Enter the first letter and press <RETURN>.

This screen message could then be written as a procedure menu and the main
program could use a REPEAT . . . UNTIL loop as follows:

REPEAT
Menu;
readln (Selection);
CASE Selection OF

IT' : Tacos;
•J' : Jambalaya;
'G' : Gumbo;
•Q' : GoodbyeMessage

END < of CASE Selection }
UNTIL Selection = 'Q' ;

where Tacos, Jambalaya, Gumbo, and GoodbyeMessage are each separate proce
dures with appropriate messages. H

6.3 Posttest Loops 231

A NOTE OF INTEilEST

Charles Babbage

Charles Babbage (1791—1871) was a mathema
tician intrigued with the idea of building a ma
chine that could compute properties of numbers
accurate to 20 digits. His first machine was a
difference engine; however, technology pre
vented him from making a good working model.
Discouraged by this, he worked on a general pur
pose problem-solving machine called the ana-
Ijdical engine. His design for this is considered
to be the forerunner of modern computers. It
consisted of four components:

1. a "mill" for manipulating and computing
2. a "store" for storing data
3. an "operator" for carrying out

instructions

4. a device for receiving information and
entering data

After several years designing variations and im
provements for his analytical engine, he received
assistance from Countess Ada Augusta Byron.

Compound Conditions

The Boolean expression used with a REPEAT ... UNTIL loop can be as
complex as you choose to make it. However, as with WHILE... DO loops,
if the expression gets too complicated, you might enhance program read
ability and design by redesigning the algorithm to use simpler expressions.

Suppose a data file consists of one real number per line and you want
to print the numbers until either a negative number is encountered or the
end-of-file condition is true. A loop for this is

REPEAT i Start loop >
readln (Num);
writeln (Num:E0:2)

UNTIL (Num < □) OR eof;

The data file

14.3 B 87.2 B 56.9 B - 999 B 46.8 B 97.31

produces

1A.3D

87 .5D
5b.SO

-qqq.DD

Variable condition loops can be used to make programs more robust.
In particular, suppose you are writing an interactive program that expects
positive integers to be entered from the keyboard, with a sentinel value
of - 999 to be entered when you wish to quit. You can guard against bad
data by using the following:

REPEAT

write ('Enter a positive integer, <-qqq> to quit,
readln (Num)

UNTIL (Num > □) OR (Num = -559);

) ;

232 LOOPING STATEMENTS

Loop Invariants
(optional)

Assertions can also be used with any of the loops presented in this text.
In addition to preconditions and postconditions, assertions can be used
to state cin invariant expression or a loop goal expression.
An invariant expression is true before the loop and true after each

iteration of the loop. It is typically placed at the top of a WHILE ... DO
or FOR loop and at the bottom of a REPEAT ... UNTIL loop. Assertions
of this type should be informative, clear statements of your intent. To
illustrate, consider the loop whose task is to add all positive multiples of
5 less than or equal to 100.

Sum := □;
J := □;
WHILE J <= IS DO

BEGIN
J := J + 1;
Sum := Sum + 5 * J

END; i of WHILE...DO >

An invariant expression could be a statement about the purpose of Sum.
For example.

Assertion; Sura is the sum of the first J multiples of 5. >

As an assertion in the loop, this becomes
Sum := □;
J := □;
WHILE J <= IS DO
{ Sum is the sura of the first J multiples of 5. }

BEGIN
J := J + 1;
Sura := Sura + 5 * J

END; i of WHILE...DO >

Note that this assertion is true before the loop and after each execution
of the loop. However, it is not true at the point in the loop after

J := J + 1;

has been executed but

Sum := Sura + 5 ♦ J

has not been executed. This holds for all properly stated invariant
assertions.

A loop goal expression is a clear statement of the purpose of the loop.
It must be true immediately after the loop has been completed. To illus
trate, in the previous code segment we have

Sura := □;
J := □;
WHILE J <= IS DO
•(Sum is the sura of the first

J multiples of 5. > Invariant expression
BEGIN

J := J + 1;
Sura := Sura + 5 * J

END; -C of WHILE. . .DO >

■{ Sura is the sura of the first
ED positive multiples of 5 > <- Loop goal expression

6.3 Posttest Loops 233

Formulating assertions of these types for loops may seem like a lot
of extra effort at this time. However, the long-range benefits of such
statements include a direct focus on the problem to be solved, precisely
stated goals to follow for the loop design, and loops that are correctly
designed.
We conclude this discussion with a final code segment.

ACount := 0;

Sum := □;
read (Score);
IF Score >= D THEN

REPEAT

•{ Score >= □ }
IF Score >= qo THEN

ACount := ACount + 1;
t Scores of qo or more result in ACount

being incremented by 1 >

Sum := Sum + Score;
read (Score)

i Sum contains the total of positive scores
read and ACount contains the number of
scores read that are >= qo >

UNTIL Score < □;

{ Assertion: 1 - Sum contains the total of positive scores
2 - ACount contains the number of scores >= qo
3 - A negative sentinel value has been reached in

the input file >

Exercises 6.3 l. Explain the difference between a pretest loop and a posttest loop.

2. Write a test program that illustrates what happens when the initial condi
tion for a REPEAT ... UNTIL loop is false. Compare this with a similar
condition for a WHILE ... DO loop.

3. Indicate what the output will be from each of the following.

a. A :=D; c. J :=l;
B := ID; REPEAT
REPEAT writeln (J);

A :=A+1; J :=J+1
B := B - 1; UNTIL J > ID;
writeln (A, B) d. A := 1;

UNTIL A > B; REPEAT
b. Power := 1; writeln (A, 1? MOD A);

REPEAT A := A + 1
Power := Power * 2; UNTIL 17 MOD A = 5;
writeln (Power)

UNTIL Power > IDD;

234 LOOPING STATEMENTS

4. Indicate which of the following are infinite loops and explain why.

a. J : = 1; c. A : = E ;

REPEAT REPEAT

writeln (J) writeln (A);

UNTIL J > ID; A := A ♦ E
J := J + 1; UNTIL A = EG;

b. A := E; d. B := IS;

REPEAT REPEAT

writeln (A); writeln (B/ B DIV 5);

A :=A*E B :=B-1

UNTIL A > EG; UNTIL B DIV 3 <> S;

5. Assume the variable declaration section of a program is

VAR

Chi/ ChE : char;

Age : integer;
Num : real;

the data hie is

A 18 -1.3B|C 21 10.0D|3 19 -11.5F|IT

and the pointer is positioned at the beginning of the hie. What is the output
for each of the following segments of code?

a. REPEAT

read (Chi);

write (Chi)

UNTIL eoln;

writeln;

b. REPEAT

read (Chi);

write (Chi)

UNTIL eof;

writeln;

c. REPEAT

read (Chi);

write (Chi)

UNTIL eoln OR eof;

writeln;

d. REPEAT

read (Chi);

write (Chi)

UNTIL eoln AND eof;

writeln;

e. REPEAT

readln (Chi/ Age/ Num/ ChE);

writeln (Chl:3/ Age:3/ NuraiLcE/ ChE:3)

UNTIL eof;

6. Write a complete program that uses the menu idea presented in Example
6.19.

7. Write a segment of code that will read an integer (you may assume greater
than 1) and then use a REPEAT ... UNTIL loop to print a list of powers of
the integer that are less than 10,000.

8. Why is a "prompting read" needed before a WHILE ... DO loop that is
used to get data?

10.

11.

6.4 Comparison of Loops 235

Give an example of a situation that would require a predetermined number
of repetitions.

In mathematics and science, many applications require a certain level or
degree of accuracy obtained by successive approximations. Explain how the
process of reaching the desired level of accuracy would relate to loops in
Pascal.

Write an interactive program that utilizes the algorithm for approximating a
square root as shown in Example 6.18. Let the defined accuracy be 0.0001.
Input should consist of a number whose square root is desired. Your pro
gram should guard against bad data entries (negatives and zero). Output
should include a list of approximations and a check of your final
approximation.

^ ̂ ̂ ̂

m 6.4

Comparison of
Loops

OBJEGTIVES

□ to understand the
similarities and dif
ferences between
any two types of
loops

Q to understand why
variable loops can
not, in general, be
converted to fixed
loops

Q to be able to convert
(when possible)
from one tjrpe of
loop to another

The last three sections have presented three types of loops used in Pascal,
one fixed loop (FOR ... TO . . . DO), and two variable loops (WfflLE .. .
DO and REPEAT ... UNTIL). It is natural to wonder if any of these can
replace any other. As you will see in this section, we could get by with
only one type of loop. However, program design and personal preference
make it convenient to have all three loops available. This section will
examine the similarities and differences among loops and show how some
of the loops can be rewritten as another type of loop.

Similarities and Differences

You probably have noticed by now that the three types of loops have some
similarities and differences; for easy reference, these are summarized in
Table 6.1.

Conversion of Loops

It is an interesting exercise to rewrite a loop using a different type of loop.
In some cases, this can always be done; in others, it can only be accom
plished when certain conditions are present. There are six possibilities
for such rewriting; we will examine four and leave two for the Exercises
at the end of this section.

Let us first rewrite a FOR loop as a WHILE.. . DO loop. Both are pretest
loops, but the WHILE ... DO structure is a form of variable repetition.

TABLE 6.1

Comparing and
contrasting loops

FOR .. .TO... WHILE .. . REPEAT . . .
Traits of Loops DO Loop DO Loop UNTIL Loop

Pretest loop yes yes no

Posttest loop no no yes
BEGIN ... END for

compound statements required required not required
Repetition fixed variable variable
Loop index yes no no

Index automatically
incremented yes no no

Boolean expression used no yes yes

236 LOOPING STATEMENTS

To accomplish our objective, we must use a counter in the WHBLE ...
DO loop in a manner similar to the index in a FOR loop. Thus, we will
initialize the counter outside the loop and change it accordingly inside
the loop. The Boolean expression in the WHILE.,. DO loop will be written
so that the last index value produces the final time through the loop.

EXAMPLE fez® Rewrite the following FOR loop using a WHILE ... DO loop.

EXAMPLE^

Sum := □;
FOR K := S TO ID DO

BEGIN
Sum := Sum + K;
writeln (K)

END;
writeln (Sum);

The initialization must correspond to K := 5 and the Boolean expression that
causes the loop to be exited must correspond to K > 10. With these requirements
in mind, the revision becomes

K := 5;
Sum := □;
WHILE K < 11 DO

BEGIN

Sura := Sura + K;
writeln (K);
K := K + 1

END;
writeln (Sum);

The changes illustrated in this example can always be made; any
FOR loop can be rewritten as a WHILE ... DO loop. The only other type
of loop that can always be rewritten as another type is a REPEAT . . .
UNTIL loop; it can always be converted to a WHILE . .. DO loop. In this
revision, the Boolean expression of the WHILE . . . DO loop will be the
logical complement (opposite) of that used in the REPEAT ... UNTIL
loop. A revision of this type is illustrated in the following example.

Rewrite the REPEAT ... UNTIL loop using a WHILE ... DO loop.
read (A);
REPEAT

writeln (A);
A := A * A

UNTIL A > 100;

The Boolean expression A > ICQ will be replaced by A < = ICQ in the new loop.
read (A);
writeln (A);
A := A * A;
WHILE A <= 100 DO

BEGIN
writeln (A);
A := A * A

END; ^

As demonstrated by the last two examples, Pascal programmers could
use only the WHILE ... DO loop structure. However, since there are cases
in which one of the other two may be preferred, beginning courses in
Pascal typically present and use all three types of loops.

6.4 Comparison of Loops 237

Some conversions require special circumstances to be true before the
conversions can be made. Let us consider the problem of rewriting a
WHILE ... DO loop as a FOR loop. Since a WHILE ... DO loop is a
variable repetition loop and uses a Boolean expression for loop control,
both of these must be suitable for conversion before the loop can be
rewritten as an index loop. For example,

K := 1;

WHILE K < ID DO

BEGIN

writeln (K);
K := K + 1

END;

can be rewritten as

FOR K := 1 TO q DO

writeln (K);

This form requires less code and is certainly preferable. On the other
hand, consider the loop

WHILE NOT eoln DO

BEGIN

read (Ch);
write (Ch)

END;

Since the number of characters in the data line is imknown, this cannot
be conveniently rewritten as a FOR loop.

Let us now consider the problem of rewriting a WHILE ... DO loop as
a REPEAT ... UNTIL loop. Since both loops use Boolean expressions for
loop control, logical complements can be used for the transition. However,
WHILE... DO is a pretest loop and REPEAT... UNTIL is a posttest loop.
Since a posttest loop must be executed at least once before the exit con
dition is checked, a pretest loop that is not entered cannot be written as
a posttest loop. Thus,

R := ID;

WHILE R < 5 DO

BEGIN

writeln (R);
R := R * a

END;

cannot be rewritten as a REPEAT... UNTIL loop. However, if the WHILE
... DO loop is executed at least once, it can be revised into a REPEAT
... UNTIL loop. The next example illustrates this.

EXAMPLE 6.22 . Rewrite the following using a REPEAT ... UNTIL loop.
R := 1;

Power := 3;
WHILE R < IDD DO

BEGIN

writeln (R);

R := R * Power

END;

The Boolean expression for a REPEAT ... UNTIL loop becomes A > = 100 and
the revision is

238 LOOPING STATEMENTS

Exercises 6.4

A := 1;

Power := 3;

REPEAT

writeln (A);

A := A * Power

UNTIL A >= 100;

When considering the remaining loop conversions in the Exercises,
carefully note fixed repetition versus variable repetition and pretest versus
posttest conditions.

1. Compare and contrast the three looping structures discussed in this section.

2. Indicate whether or not each of the following can be converted as indicated.

a. Sum := □;
FOR K := 1 TO DO

Sura := Sura + K;

i. convert to REPEAT ... UNTIL?
ii. convert to WHILE ... DO?

b. Count := 0;
Sum := □;
WHILE NOT eof DO

BEGIN

readln (A);
Sura := Sura + A;
Count := Count + 1

END;
Average := Sura / Count;

i. convert to REPEAT ... UNTIL?
ii. convert to FOR ... TO?
iii. convert to FOR ... DOWNTO?

c. X := 0.0;
REPEAT

writeln (X:aO:E);
X := X + 0.5

UNTIL X = 4.0;

convert to WHILE ... DO?
convert to FOR ... TO?

iii. convert to FOR ... DOWNTO?

3. For each of the conversions you indicated were possible in Exercise 2, write
the revised loop.

4. Explain completely the problems encountered when trying to make the fol
lowing loop conversions.

a. FOR to REPEAT ... UNTIL
b. REPEAT ... UNTIL to FOR

5. Explain why the following cannot be rewritten as a REPEAT .. . UNTIL
loop.

WHILE t < 5 DO
BEGIN

(loop body)

END;

6.5 Nested Loops 239

a 6.5

Nested Loops

OBjiECyiVES

a to be able to use

nested loops
a to understand the

flow of control

when using nested
loops

□ to be able to use a
consistent writing
style when using
nested loops

In this chapter, we have examined three loop structures. Each of them has
been discussed with respect to syntax, semantics, form, writing style, and
use in programs. But remember that each loop is treated as a single Pascal
statement. In this sense, it is possible to have a loop as one of the statements
in the body of another loop. When this happens, the loops are said to be
nested.

Loops can be nested to any depth. That is, a loop within a loop within
a loop, and so on. Also, any of the three types of loops can be nested
within any loop. However, a programmer should be careful not to design
a program with nesting that is too complex. If program logic becomes too
difficult to follow, you might better redesign the program.

Flow of Control

As a first example of using a loop within a loop, consider
FOR K := 1 TO 5 DO

FOR J := 1 TO 3 DO
writeln (K + J);

When this fragment is executed, the following happens:
1. K is assigned a value.
2. For each value of K, the following loop is executed.

FOR J := 1 TO 3 DO
writeln (K + J);

Thus, for K := 1, the "inside" or nested loop produces the output
s

3
4

At this point, K : = 2 and the next portion of the output produced by the
nested loop is

3

5

The complete output from these nested loops is

from K := 1

from K : = 2

from K : = 3

from K := 4

from K : = 5

As you can see, for each value assigned to the index of the outside loop,
the inside loop is executed completely. Suppose you want the output to
be printed in the form of a chart as follows:

240 LOOPING STATEMENTS

E 3 <

3 4 5

< 5 L

S t. ?

t, ? a

The pseudocode design to produce this output is

1. F0RK:=1T0 5D0

produce a line

A refinement of this is

1. F0RK:=1T0 5D0

1.1 print on one line
1.2 advance the printer

The Pascal code for this development becomes

FOR K := 1 TO 5 DO

BEGIN

FOR J := 1 TO 3 DO

write ((K + J):<);
writeln

END;

Om next example shows how nested loops can be used to produce a
design.

0 23 Use nested FOR loops to produce the output
*

where the left asterisks are in column 10.

The first-level pseudocode to solve this problem could be

1. FORK:=lT0 5DO

produce a line

A refinement of this could be

1. FORK:= 1 TO 5 DO

1.1 print on one line
1.2 advance the printer

Step 1.1 is not yet sufficiently refined, so our next level could be

1. FORK:=lT0 5DO

1.1 print on one line
1.1.1 put a blank in column 9
1.1.2 print K asterisks

1.2 advance the printer

We can now write a program fragment to produce the desired output as follows:
FOR K := 1 TO 5 DO

BEGIN

write (' ' : •=!);

FOR J := 1 TO K DO

write ('*');

writeln

END; < of outer loop >

A significant feature has been added to this program fragment. Note that the loop
control for the inner loop is the index of the outer loop. ■

6.5 Nested Loops 241

STYLE TIP

■ ■ ■ ■ ■

VVhen working with nested loops, use line opnimeidtsr^td, indicate ̂ e effect
of'each loop xontrdl variahle. For example^

Pb? K TO 5 DO-' "C Each ^alue produces a line i

jrQE .11 -T]b,iKv,r?bd ■ ihlss smoy.ejs nfh^oss' one,.'line >

ENB^ i of otfter loop >

Thus far, nested loops have been used only with FOR loops, but any
of the loop structures may be used in nesting. Our next example illustrates
a REPEAT ... UNTIL loop nested within a WHILE ... DO loop.

Trace the flow of control and indicate the output for the following program fragment.

R := ID;

B := □;
WHILE A > B DO

BEGIN
wrlteln (A:5);
REPEAT

wrlteln (A:5, B:5/ (A + B):5);
A := A - 5

UNTIL A <= b;
B ;= B + 5

END; < of WHILE...DO >
wrlteln;
wrlteln ("All done' :SD);

The assignment statements produce

10

and A > B is true; thus, the WHILE ... DO loop is entered. The first time through
this loop the REPEAT ... UNTIL loop is used. Output for the first pass is

10
ID □ ID

and the values for A and B are

8 0

A B

The Boolean expression A < = 6 is false and the REPEAT
executed again to produce the next line of output

6 0 8

and the values for A and B become

UNTIL loop is

A B

At this point, A < = 6 is true and control transfers to the line of code

B := B + S;

242 LOOPING STATEMENTS

Thus, the variable values are

and the Boolean expression A > B is true. This means the WHILE ... DO loop
will be repeated. The output for the second time through this loop is

L

L S a

The inner loop is exited and the values for the variables become

4

A B

Now A > B is false and control is transferred to the line following the WHILE
DO loop. Output for the complete fragment is

ID

ID

a

L

L

ID

a

EJCAM^LE 6,25

All done U

Example 6.24 is a bit contrived and tracing the flow of control somewhat
tedious. However, it is important for you to be able to follow the logic
involved in using nested loops.

Our next example is much more standard. Be sure you understand it
thoroughly, for you will need to be able to use it as part of subsequent
programs.

Use nested loops to reproduce an unknown data file. The first-level pseudocode
design for the solution to this problem could be

1. WHILE NOT eof DO

reproduce a line of data

A second-level development could be

1. WHILE NOT eof DO

1.1 set a left margin
1.2 reproduce a data line
1.3 advance the input data pointer
1.4 advance the output pointer

Step 1.2 could then be refined to
1.2 reproduce a data line

1.2.1 WHILE NOT eoln DO

1.2.1.1 read a character

1.2.1.2 write a character

The complete algorithm for this fragment is now

1. WHILE NOT eof DO

1.1 set a left margin
reproduce a data line
1.2.1 WHILE NOT eoln DO

1.2.1.1 read a character

1.2.1.2 write a character

advance the input data pointer
advance the output pointer

1.2

1.3

1.4

6.5 Nested Loops 243

We can now write code for this algorithm as follows:

WHILE NOT eof DO ■(Process one line >
BEGIN

write (' ' :!□);
WHILE NOT eoln DO i Process one character >

BEGIN

read (Ch);
write (Ch)

END;
readln;
writeln

END;

If this program fragment is run using the data fi le

BRL 268-36-0729 M 38|HBT 231-48-2136 F 18|LMN 133-24-0966 F 211
t

the output is

BRL Et.fl-3E.-D75R M 3fl
HBT E31-<a-213t F Ifl
LMN 133-E4-0qbE, F El @

Being able to examine a data file is essential for beginning programmers.
Consequently, in the Exercises for this section, you will be asked to write
a complete program to examine a data file. You should use Example 6.25
for the basis of your program and then keep your program and run it to
excunine data files for subsequent programs.

Writing Style

As usual, you should be aware of the significance of using a consistent,
readable style of writing when using nested loops. There are at least three
features you should consider.

1. Indenting. Each loop should have its own level of indenting. This
makes it easier to identify the body of the loop. If the loop body
consists of a compound statement, the BEGIN and END should
start in the same column. Using our previous indenting style, a
typical nesting might be
FOR K := 1 TO ID DO

BEGIN
WHILE A > □ DO

BEGIN

REPEAT

UNTIL condition; < end of REPEAT loop >
statement

END; { of WHILE.. .DO loop >
statement

END; i of FOR loop >

If the body of a loop becomes very long, it is sometimes diffi
cult to match the BEGINs with the proper ENDs. In this case, you
should either redesign the program or be especially careful.

2. Using comments. Comments can precede a loop and explain what
the loop will do, or they can be used with statements inside the loop

244 LOOPING STATEMENTS

to explain what the statement does. They should be used to indicate
the end of a loop where the loop body is a compound statement.

3. Skipping lines. This is an effective way of isolating loops within a
program and making nested loops easier to identify.

A note of caution is in order with respect to writing style. Program doc
umentation is important; however, excessive use of comments and skipped
lines can detract from readability. You should develop a happy medium.
We close this section with two more examples of nested loops. The first

one analyzes a program fragment with nested loops, and the second asks
you to write a program to produce a certain output.

Let's find the output produced by the following program fragment of nested loops.
Assume A and B have been declared as integer variables and the data file is

4 7| ■

The fragment

read (A, B);
REPEAT < Produce one block of output

FOR K := A TO B DO

BEGIN

Num := A;

•t Print one line >

WHILE Num <= B DO

BEGIN

write (Num:<);

Num := Num + 1

END; -C of WHILE. .
writeln

END; < of FOR loop >

DO loop >

A := A + 1;

writeln

UNTIL A = B;

produces the output

< end of REPEAT...UNTIL loop }

Write a complete program whose output is the multiplication table from 1 x 1 to
10 X 10. A suitable heading should be part of the output. A program to do this
is as follows:

PROGRAM MultTable (output);

CONST

Indent = ' •;

VAR

J/ integer;

6.5 Nested Loops 245

PROCEDURE PrlntHeadlng;

BEGIN

writeln; writeln;

writeln (Indent:17, 'Multiplication Table');
writeln (Indent:17, ' ');
writeln (Indent:10r '(Generated by nested FOR loops)');
writeln;

writeln (Indentrll, ' 1 E 3 < 5 b 7 fl 3 ID');
writeln (Indent: fl, ' ! •)

END; { of PROCEDURE PrintHeading >

BEGIN < Main program >

PrintHeading;

{ Now start the loop >

FOR K := 1 TO 10 DO

BEGIN

write (K:1G, ' !');

FOR J := 1 TO ID DO

write (K *);
writeln;

writeln (Indent:ll, '!')
END; ■{ of each row >

writeln; writeln
END. i of main program >

Print one row

The output from this program is

Multiplication Table

(Generated by nested FOR loops)

1 B 3 A 5 b 7 a q ID

1 1 B 3 A 5 b 7 a q ID

3 5 A b a ID IB lA lb la BD

3 3 b q IB 15 la El EA B7 3D

A A a IB 3j t BD EA Ba 3B 3b AO

5 5 ID 15 BD B5 3G 35 AO AS 5D

b b IB la EA 3D 3b AE A& SA bD

7 7 lA B1 Ba 35 AE A^ 5b b3 7D

a a lb EA 3B AO Aa 5b b< 7B aD

q q la B7 3b AS 5A b3 7B ai qD

ID ID BD 3D An 5D bD 7D aD qD IDD

246 LOOPING STATEMENTS

Exercises 6.5 1. Write a complete program that allows you to examine a data hie (see Exam
ple 6.25). Run your program using each of the following data files.

a.

b.

c.

d.

This is a one liner.

bb|

87|93|76|92|80| -999|

2. What is the output from each of the following fragments?

a. FOR K := E TO t DO

BEGIN

FOR J := 5 TO IQ DO

write (K + J);

writeln

END;

b. FOR K := E TO t DO

BEGIN

FOR J := 5 TO ID DO

write (K * J);

writeln

END;

c. Sum : = □;
ft := 7;
WHILE ft < ID DO

BEGIN

FOR K := ft TO ID DO
Sum := Sum + K;

ft := ft + 1

END;
writeln (Sura);

d. Sum := 0;
FOR K := 1 TO ID DO

FOR J := (lD*K-q) TO (1D*K) DO
Sum := Sum + J;

writeln (Sum);

e. ft ssurae the data file is

12 3|l0 3|83|

WHILE NOT eof DO
BEGIN

readln (Length/ Width);
LineCount := 1;
REPEftT

write (• ' :=l/ Length);
FOR K := 1 TO Length DO

write (•*');
writeln;
LineCount := LineCount + 1

UNTIL LineCount = Width;
writeln; writeln

END; -C of WHILE NOT eof >

6.6 Loops with Conditionals 247

3. Write a program fragment that uses nested loops to produce each of the fol
lowing designs.

a. *****

**

*

b.

He****

*

4. Write a program fragment that uses nested loops to produce the output

s A L 6 ID

3 L q 12 15

A 12 It. 2D

5 ID 15 20 25

5. What output is produced from the following segment of code?

A :=

B := 7;

REPEAT <

FOR K :=

BEGIN

Num

Produce one block of output
A TO B DO

:= A;

Print one line >

WHILE Num <= B DO

BEGIN

write (Nura:<);
Num := Num + 1

END; -C of WHILE loop
writeln

■ 6.6

Loops with
Conditionals

END; < of FOR loop >

A := A + 1;

writeln; writeln

UNTIL A = B; <

■ ■ ■

end of REPEAT...UNTIL loop }

to be able to use a

conditional state

ment within the

body of a loop
to be able to use a

loop within an op
tion of a conditional

statement

In Chapter 5 we discussed the use of conditional statements. In this chap
ter we have discussed the use of three different types of loops. It is now
time to see how they are used together. We will first examine conditional
statements contained within the body of a loop and then loops within
conditional statements.

Conditionals Within Loops

Write a program fragment that counts all the blanks in a line of data. The loop
control for this problem will be the end-of-line function, A first-level pseudocode
solution is

1. Initialize variables

2. WHILE NOT eoln DO

2.1 process a character

248 LOOPING STATEMENTS

This can be refined to

1. Initialize variables

2. WHILE NOT eoln DO

2.1 process a character
2.1.1 read a character

2.1.2 IF Ch = " THEN

2.1.2.1 add 1 to BlankCount

The code for this fragment is

BlankCount := □;
WHILE NOT eoln DO

BEGIN

read (Ch);
IF Ch = • ' THEN

BlankCount := BlankCount + 1
END; -C of WHILE. . -DO > II

Just as IF ... THEN statements can be used with loops, IF ... THEN .. .
ELSE statements can be similarly used. The next example illustrates such
a use.

1 Write a program fragment that computes gross wages for employees of the Florida
OJ Canning Company. A data line consists of three initials, the total hours worked,
and the hourly rate. Thus, a typical data line is

JHA44.5 12.751 ■

Overtime (more than 40 hours) is computed as time-and-a-half. The output should
include all input data and a column of gross wages.

A first-level pseudocode development for this program is
1. WHILE NOT eof DO

1.1 process a line of data
1.2 print results

This could be refined to
1. WHILE NOT eof DO

1.1 process a line of data
1.1.1 get data
1.1.2 compute wage

1.2 print results

Step 1.1.2 can be refined to
1.1.2 compute wage

1.1.2.1 IF Hours <= 40.0 THEN
compute regular time

ELSE
compute time-and-a-half

and the final algorithm for the fragment is
1. WHILE NOT eof DO

1.1 process a line of data
1.1.1 get data
1.1.2 compute wage

1.1.2.1 IF Hours <= 40.0 THEN
compute regular time

ELSE
compute time-and-a-half

1.2 print results

6.6 Loops with Conditionals 249

A 01^ INTEREST

A Digital Matter of Life and Death
The radiation-therapy machine, a Therac 25 lin
ear accelerator, was designed to send a pene
trating X-ray or electron beam deep into a cancer
patient's body to destroy embedded tumors
without injming skin tissue. But in three sepa
rate instances in 1985 and 1986, the machine

failed. Instead of delivering a safe level of ra
diation, the Therac 25 administered a dose that
was more than 100 times larger than the typical
treatment dose. Two patients died and a third
was severely burned.

The malfunction was caused by an error in
the computer program controlling the machine.
It was a subtle error that no one had picked up
during the extensive testing the machine had
undergone. The error surfaced only when a tech
nician happened to use a specific, unusual com
bination of keystrokes to instruct the machine.

The Therac incidents and other cases of med

ical device failures caused by computer errors
have focused attention on the increasingly im
portant role played by computers in medical ap
plications. Computers or machines with built-in
microprocessors perform functions that range
from keeping track of patients to diagnosing ail
ments and providing treatments.

"The impact of computers on medical care
and the medical community is the most signif
icant factor that we have to face," says Frank E.
Samuel Jr., president of the Health Industry Man
ufacturers Association (HIMA), based in Wash
ington, D.C. "Health care will change more dra
matically in the next 10 years because of software-
driven products than for any other single cause."
Samuel made his remarks at a recent HIMA-

sponsored conference on the regulation of med
ical software.

At the same time, reports of medical devices
with computer-related problems are appearing
more and more frequently. In 1985, the Food and
Drug Administration (FDA) reported that recalls
of medical devices because of computer faults
had roughly doubled over the previous five years.
Since then, the number of such complaints has
risen further.

The FDA, in its mandated role as guardian of
public health and safety, is now preparing to
regulate the software component of medical de
vices. The agency's effort has already raised
questions about what kinds of products, software
and information systems should be regulated.

The code for this fragment is

WHILE NOT eof DO

BEGIN

read (Initl/ Init5/ InltB);
readln (Hours/ PayRate);

IF Hours <= AD.a THEN

TotalWage := Hours * PayRate
ELSE

BEGIN

Overtime := 1.5 * (Hours - AD.D) * PayRate;
TotalWage := AD * Payrate -i- Overtime

END; { of ELSE option >
write (Initl:5/ InitS, InitB);
write (Hours:lD:5, PayRate:ID:E);
writeln ('$• :!□, TotalWage:?:E)

END; { of WHILE...DO loop >
If the data fi le is

JHA 44.5 12.751 RET 40.0 9.8|SML 37.5 11.501

the output from this fragment is

JHA
RBT
SML

AA.SD

37 .50

IE.75
5.AG

11.50

$ 5qL.DL
$ 3RE.DD
$ <31.E5

250 looping statements

Loops Within Conditionals

The next example illustrates the use of a loop within an IF ... THEN
statement.

Write a program hagment that allows you to read an integer from the data file. If
the integer is between 0 and 50, you are to print a chart containing all positive
integers less than the integer, their squares and cubes. Thus, if 4 is read, the chart
is

1 1 1

S 4 a

3 q 57

The design for this problem has a first-level pseudocode development of

1. read Num

2. IF (Num > 0) AND (Num < 50) THEN
2.1 print the chart

Step 2.1 can be refined to
2.1 print the chart

2.1.1 FOR K : = 1 TO Num - 1 DO

2.1.1.1 print each line

We can now write the code for this fragment as follows:

read (Num);
IF (Num > □) AND (Num < 50) THEN

FOR K := 1 TO Num - 1 DO
wrlteln (K, K * K, K * K * K); H

To close this section, let's consider the design of a slightly more com
plex problem.

Design a solution and write a program fragment that will do the following:
1. Check the first character of each line of a data file.
2. If the character read is a "Y," process the line. ("Processing a line consists

of counting the number of occurrences of the letter A contained in the
line.)

3. If the character read is not a "Y," skip the line.
4. Count the total number of lines.
5. Count the number of lines processed.
6. Assume there are an unknovm number of data lines.
7. Print the total number of lines, the number of lines processed, and the

number of occurrences of the letter A in the lines processed.

A first-level pseudocode development for this problem is
1. Initialize counter
2. WHILE NOT eof DO

check each line of data
3. Print results

A second-level development is

1. Initialize counter
1.1 initialize TotalLines
1.2 initialize ProcessedLines
1.3 initialize ACount

6.6 Loops with Conditionals 251

2. WHILE NOT eof DO

2.1 read Ch

2.2 IF Ch = 'Y' THEN

process the line
2.3 increment TotalLines

3. Print results

3.1 print TotalLines
3.2 print ProcessedLines
3.3 print ACount

Step 2.2 could be developed to

2.2 IF Ch = 'Y' THEN

2.2.1 increment ProcessedLines

2.2.2 WHILE NOT eoln DO

count the A's

2.2.3 advance pointer

and finally, 2.2.2 becomes

2.2.2 WHILE NOT eoln DO

2.2.2.1 read Ch

2.2.2.2 IF Ch = 'A' THEN

increment ACount

A complete development of step 2 is thus

2. WHILE NOT eof DO

2.1 read Ch

2.2 IF Ch = 'Y' THEN

2.2.1 increment ProcessedLines

2.2.2 WHILE NOT eoln DO

2.2.2.1 read Ch

2.2.2.2 IF Ch = 'A' THEN

increment ACount

2.2.3 advance pointer
2.3 increment TotalLines

The code for this part of the program is

WHILE NOT eof DO

BEGIN

read (Ch);
IF Ch = 'Y' THEN

BEGIN

ProcessedLines := ProcessedLines + 1;
WHILE NOT eoln DO

BEGIN

read (Ch);
IF Ch = 'fl' THEN

ACount := ACount + 1

END; { of WHILE NOT eoln >

readln { Advance pointer }
END; •(of processing one line }

TotalLines := TotalLines + 1

END; < of WHILE NOT eof 1

252 LOOPING STATEMENTS

ExerciS6S 6.6 l. Find and explain the errors in each of the following program fragments. You
may assume all variables have been suitably declared.

a. A := E5;

Flag := true;

WHILE Flag = true DO

IF A >= IDD THEN

BEGIN

writeln (A);

Flag := false

END;

b. FOR K := 1 TO ID DO

writeln (K/ K ♦ K);
IF K MOD 3=0 THEN

BEGIN

write (K);

writeln (' is a multiple of three')

END;

2. What is the output from each of the following program fragments? Assume
variables have been suitably declared.

a. FOR K := 1 TO IGG DO

IF K MOD 5 = G THEN

writeln (K);

b. J := EG;

IF J MOD 5 = G THEN

FOR K := 1 TO IGG DO

writeln (K);

c. A := 5;

B := RD;

REPEAT

B := B DIV A - 5;

IF B > A THEN

B := A + 3G

ONTIL B < 0;

writeln (A/ B);

d. Count := G;

FOR K := -5 TO 5 DO

IF K MOD 3 = G THEN

BEGIN

WHILE Count < 10 DO

BEGIN

Count := Count -t- 1;

writeln (Count)

END;

Count := G

END;

e. A : = 5 D ;

B := E5;

IF A < B THEN

FOR K := A TO B DO

writeln (K)

ELSE

FOR K := A DOWNTO B DO

writeln (K);

6.6 Loops with Conditionals 253

f. FOR K := -5 TO 5 DO

BEGIN

A := K;

IF K < □ THEN

REPEAT

wrlteln (-5 * A);
A := A + 1

UNTIL A > D

ELSE

WHILE (A MOD 5=0) DO
BEGIN

writeln (A);
A := A + 1

END

END;

3. Write a program fragment that reads reals from a data file, counts the num
ber of positive reals, and accumulates their sum.

4. Write a program that counts all the periods in a data fi le.

5. Write a program that reproduces a data fi le omitting all blanks.

6. Given two integers, A and J5, A is a divisor of B if S MOD A = 0. Write a
complete program that reads a positive integer B from a data file and then
prints all the positive divisors of B.

m B m m

,9^ r- This problem illustrates the combined use of repetition and selection.I&ramMIKG Specifically, the problem is to write a program that accepts a positive
integer as input and then prints all primes less than or equal to the integer
read. Thus, if the number read is 17, typical output would be

The number is 17. The prime numbers
less than or equal to 17 are:

2

3
5
7

11
13

17

Input is from a data file, so a WHILE NOT eof DO loop is used as the
main loop for the body of the program.

You should note the mathematical property that a number K is prime
if it has no divisors (other than 1) less than its square root. Thus, when
we check for divisors, it is only necessary to check up to sqrt(K). Also
note that, by definition, 1 is not prime.

254 LOOPING STATEMENTS

A first-level pseudocode development of this problem is

WHILE NOT eof DO

1. Get a number

2. IF Number is 1 THEN

2.1 print message for 1
ELSE

2.2 process the number

A structure chart for this problem is given in Figure 6.4.

FIGURE 6.4

Structure chart for

PROGRAM

ListPrimes

IF K is prime
THEN print K

Print
message

FOR K ; = 2 TO
number DO

Process the
number

Print

message

Get a

number

.IF number = i THEN
jprint message

ELSE

process the number

WHILE NOT

eof DO

Module specifications for the main modules are

1. Get Data Module

Data received: None

Information returned: A positive integer
Logic: Read an integer from the data file.

2. Examine the Number Module

Data received: The integer read
Information returned: None

6.6 Loops with Conditionals 255

Logic: IF the number is 1 then print a message.
ELSE Print a message.
FOR K : = 2 TO Number DO

Check K for a prime number.
IF K is prime, THEN print it.

Further pseudocode development of this problem produces

WHILE NOT eof DO

1. Get a number

2. IF Number is 1 THEN

2.1 print a message for 1
ELSE

2.2 process the number

Step 2.2 can be refined to

2.2 process the number
2.2.1 print message
2.2.2 check for primes less than or equal to number

Step 2.2.2 is then refined to

2.2.2 FOR K : = 2 TO Number DO

2.2.2.1 check to see if K is prime
2.2.2.2 IF K is prime THEN

print K in list of primes

A complete pseudocode solution for this problem is

WHILE NOT eof DO

1. Get a number

2. IF Number is 1 THEN

2.1 print a message for 1
ELSE

2.2 process the number
2.2.1 print message
2.2.2 FOR K := 2 TO Number DO

2.2.2.1 check to see if K is prime
2.2.2.2 IF K is prime THEN

print K in list of primes

A complete program for this problem follows. This has been run on
the input file

10|l7|l|25|2| ■"

PROGRAM ListPrimes (input/ output);

■(This program reads positive integers from an input file >
i. and then lists prime numbers less than or equal to each >
■C number read. Note how loops are featured. >

CONST

Skip = ' ' ;
Dashes = •

256 LOOPING STATEMENTS

VAR

Candidate, < Possible divisors of a number >
K, < Loop index variable }
Number : integer; -t Integer read from input }
Prime : boolean; i Boolean variable used in prime check }

■{+*****************♦*************************♦***+**+***********>

PROCEDURE PrintOneMessage;

< Print a message for #1 >

BEGIN
writeln;
writeln (Skip:ID, Dashes);
writeln;
writeln (Skip:2G, '1 is not prime by definition. ')

END; i of PROCEDURE PrintOneMessage >

■{******«*********♦*»***************************************»****}

BEGIN { Main program >
WHILE NOT eof DO

BEGIN
readln (Number);
IF Number = 1 THEN

PrintOneMessage
ELSE

BEGIN

•(Print a message >

writeln;
writeln (SkipzlG, Dashes);
writeln;
writeln (SkiprEG, 'The number is', NumberrS,

' . The prime numbers');
writeln (Skip:EG, 'less than or equal to'. Number:5, ' are:');
writeln;

■{ Check each positive integer less than or equal to number >

FOR K := E TO Number DO
BEGIN

Prime := true;
Candidate := E;
WHILE (Candidate <= sqrt(K)) AND Prime DO

BEGIN
IF K MOD Candidate = G THEN

Prime := false < K has a divisor >
ELSE

Candidate := Candidate + 1
END; -C of WHILE DO > < prime check >

IF Prime THEN < Print in list of primes >
writeln (K:3S)

END i of FOR K loop >
END ■{ of ELSE option >

END i Of WHILE NOT eof loop >
END. < Of main program >

> 2

6.6 Loops with Conditionals 257

The output for this program is as follows:

The number is ID. The prime numbers
less than or equal to ID are:

E

3

S

7

The number is 17. The prime numbers
less than or equal to 17 are:

E

3

5

7

11

13

17

1 is not prime by definition,

The number is E5. The prime numbers
less than or equal to E5 are:

E

3

5

7

11

13

17

iq

E3

The number is E. The prime numbers
less than or equal to E are:

More efficient algorithms than what we used here do exist. However,
the purpose of this program was to see how loops can be used to solve a
problem.

258 LOOPING STATEMENTS

RUNNING AND

DEBUGGING TlPi

IfSP S
fa 1^ h
, IHE 1?

1. Most errors involving loops are not compilation errors. Thus, not until you try
to run the program will you be able to detect most errors.

2. A syntax error that will not be detected by the compiler is a semicolon after a
WHILE ... DO. The fragment

WHILE NOT eof DO;

BEGIN

readln (A);

writeln (A)

END;

is incorrect and will not get past

WHILE NOT eof DO;

Note that this is an infinite loop.
3. Carefully check your data hie when using loops to input data. Be sure that

your lines are carefully formatted, you have been careful with blanks at the
end of a line, and you have used eof and readln whenever possible.

4. Carefully check entry conditions for each loop.
5. Carefully check exit conditions for each loop. Make sure the loop is exited (not

infinite) and that you have the correct number of repetitions.
6. Loop entry, execution, and exit can be checked by

a. pencil and paper check on initial and final values
b. count of the number of repetitions
c. use of debugging writelns

i. Boolean condition prior to loop
ii. variables inside loop

iii. values of the counter in loop
iv. Boolean values inside the loop
V. values after loop is exited

Summary Key Terms

counter

fixed repetition
(iterated) loop

index

infinite loop
nested loop
posttest (exit controlled)

loop

pretest condition
pretest (entrance

controlled) loop
sentinel value

Key Terms (optional)

invariant expression loop goal expression

Keywords

DO

DOWNTO

FOR

TO

REPEAT

UNTIL

WHILE

Key Concepts

° The following table provides a comparison summary of the three repetition
structures discussed in this chapter.

Summary 259

FOR ...TO ... WfflLE ... REPEAT ...

Traits of Loops DO Loop DO Loop UNTIL Loop

Pretest loop yes yes no

Posttest loop no no yes

BEGIN ... END for

compound statements required required not required
Repetition fixed variable variable

Loop index yes no no

Index automatically
incremented yes no no

Boolean expression used no yes yes

A iixed repetition loop (FOR ... TO ... DO) is to be used when you know
exactly how many times something is to be repeated. The basic form for a
FOR ... TO ... DO loop is
FOR J := 1 TO 5 DO

program statement;

or

FOR J := 1 TO 5 DO

BEGIN

statement 1;

statement 2;

statement n

END;

After the loop is finished, the value of the index variable becomes unassigned
and program control is transferred to the first executable statement following
the loop.

□ A WHILE ... DO loop is a pretest loop that can have a variable loop control;
a typical loop is

WHILE NOT eof DO

BEGIN

readln (Score);
Sura ;= Sum + Score;
Count := Count + 1

END;

□ A counter is a variable whose purpose is to indicate how often the body of a
loop is executed.

□ An infinite WHILE ... DO loop is caused by having a true loop control con
dition that is never changed to false.

D WHILE NOT eoln DO is a typical Boolean condition used to detect when the
end of a data line is encountered.

□ WHILE NOT eof DO is a typical Boolean condition used to detect when the
end of a data fi le is encountered.

□ A posttest loop has a Boolean condition checked after the loop body has been
completed.

260 LOOPING STATEMENTS

Q A REPEAT ... UNTIL loop is a posttest loop; a typical loop is
REPEAT

readln (Hum);

Sum := Sum + Num;

Count ;= Count + 1

UNTIL eof;

B FOR loops can always be rewritten as equivalent REPEAT ... UNTIL or
WHILE ... DO loops.

■ REPEAT ... UNTIL loops can always be rewritten as WHILE ... DO loops.
B REPEAT ... UNTIL and WHILE ... DO are variable control loops; FOR is a

fixed control loop.
a WHILE ... DO and FOR are pretest loops; REPEAT ... UNTIL is a posttest

loop.
□ Any one of these loops can be nested within any other of the loops,
a Indenting each loop is important for program readability,
a Several levels of nesting make the logic of a program difficult to follow,
a Loops and conditionals are frequently used together. Careful program design

will facilitate writing code in which these concepts are integrated; typical
forms are
WHILE conditionl DO

BEGIN

IF condition2 THEN

ELSE

END; < of WHILE...DO >

and

IF conditional THEN
BEGIN

FOR J := valuel TO valueN DO
BEGIN

END; { of FOR loop >

END i of IF...THEN >

ELSE

Programming Problems 261

■ Programming l. The Gas well Catering and Convention Service (Problem 7,
Problems Chapter 4 and Problem 1, Chapter 5) wants you to upgrade their

program so they can use it for all of their customers. Modify it to
run using a data file with an unknown number of customers.

2. Modify your program for a service station owner (Focus on Pro
gramming, Chapter 5) so that it can be used for an unknown num
ber of customers. Your output should include the number of cus
tomers and all other pertinent items in a daily summary.

3. Modify the Community Hospital program (Problem 4, Chapter 5) so
that it can be run with a data file containing information for all pa
tients leaving the hospital in one day. Include appropriate bad data
checks and daily summary items.

4. The greatest common divisor (CCD) of two integers a and h is a
positive integer c such that c divides a, c divides b, and for any
other common divisor d of a and b, d is less than or equal to c. (For
example, the CCD of 18 and 45 is 9.) Write a program that will
read em unknown number of pairs of integers from a data file and
find and print the CCD of each pair.

5. In these days of increased awareness of automobile mileage, more
motorists are computing their miles per gallon (mpg) than ever be
fore. Write a program that will perform these computations for a
traveler. Data for the program will be entered on lines indicated by
the following table.

Gallons of Fuel

Odometer Reading Purchased

18828(start) —

19240 9.7

19616 10.2

19944 8.8

20329 10.1

20769(finish) 10.3

The program should compute the mpg for each tank and the cumu
lative mpg each time the tank is filled up. Your output should pro
duce a chart with the following headings:

Odometer Odometer Fuel Miles Fuel Miles Mpg Mpg
(begin) (end) (tank) (tank) (trip) (trip) (tank) (trip)

6. Parkside's Other Triangle is generated from two positive integers,
one for the size and one for the seed. For example.

Size 6, Seed 1 Size 5, Seed 3
124727 34694

35838 5715

6 9 4 9 8 2 6

15 1 3 7

6 2 8

3

262 LOOPING STATEMENTS

The size gives the number of columns. Seed specifies the starting
value for column 1. Column n contains n values. The successive

values me obtained by adding 1 to the previous value. When 9 is
reached, the next value becomes 1. Write a program that reads
pairs of positive integers from a data file and produces Parkside's
Other Triangle for each pair. The check for bad data should include
checking for seeds between 1 and 9 inclusive.

7. Modify the sewage, water, and sanitation problem (Problem 6,
Chapter 5) so that it can be used with a data file containing appro
priate information for all residents of the community.

8. Modify the program for the Lucky Wildcat Well Corporation (Prob
lem 7, Chapter 5) so that it can be nm on a data file containing
information about all of A1 Derrick's wells. The first line of the data

file consists of a positive integer that represents the total number of
wells drilled.

9. Modify the program concerning the Mathematical Association of
America (Problem 8, Chapter 5). There will be 50 official state dele
gates attending the next summer national meeting. The new data
file will contain the two-letter state abbreviation for each delegate.
Output should include one column with the state abbreviation and
another with the amount reimbursed.

10. In Fibonacci's sequence,

0, 1, 1, 2, 3, 5, 8, 13, ...

the first two terms are 0 and 1 and each successive term is formed

by adding the previous two terms. Write a program that will read
positive integers from a data file and then print the number of
terms indicated by each integer read. Be sure to test your program
with a data file that includes the integers 1 and 2.

11. Dr. Lae Z. Programmer is at it again. Now that you have written a
program to compute the grade for one student in his class (Problem
9, Chapter 5), he wants you to modify this program so it can be
used for the entire class. He will help you by making the first line
of data be a positive integer representing the number of students in
the class. Your new version should compute an overall class aver
age and the number of students receiving each letter grade.

12. Modify the Pentagon Parking Lot problem (Problem 13, Chapter 5)
so that it can be used for all customers in one day. In the new data
file, time should be entered in military style as a four-digit integer.
The lot opens at 0600 (6:00 a.m.) and closes at 2200 (10:00 p.m.).
Your program should include appropriate summary information.

13. The Natural Pine Furniture Company (Problem 2, Chapter 4) now
wants you to refine your program so that it will print a one-week
pay report for each employee. You do not know how many employ
ees there are, but you do know that all information for each em
ployee is on a separate line. Each line of input will contain the em
ployee's initials, the number of hours worked, and the hourly rate.
You are to use the constant definition section for the following:

federal withholding tax rate 18%
state withholding tax rate 4.5%

Programming Problems 263

hospitalization $25.65
union dues $ 7.85

Your output should include a report for each employee and a sum
mary report for the company files.

14. Orlando Tree Service, Incorporated, offers the following services
and rates to its customers:

a. tree removal $300 per tree
b. tree trimming $50 per hom
c. stump grinding $20 plus $2 per inch for each stump

whose diameter exceeds ten inches.
The $2 charge is only for the diame
ter inches in excess of ten.

Write a complete program to allow the manager, Mr. Sorwind, to
provide an estimate when he bids on a job. Your output should in
clude a listing of each separate charge and a total. A 10 percent
discount is given for any job whose total exceeds $1000. A typical
input file is

R7 T6.5 G8|8 1012 14 15 15 20 25l

where "R," "T," and "G" are codes for removal, trimming, and
grinding, respectively. The integer following "G" represents the
number of stumps to be ground. The next line of integers repre
sents the diameters of stumps to be ground.

15. A standard science experiment is to drop a ball and see how high
it bounces. Once the "bounciness" of the ball has been determined,
the ratio gives a bounciness index. For example, if a ball dropped
from a height of ten feet bounces six feet high, the index is 0.6.
Write a program that determines the total distance a ball travels in
50 bounces.

srr
■

rr
—

u

i ~ n n ■r
n ■1

4 j ■
n

J i
Z] ■
j■
1

% !_

—

_ __ _

Fimctions and
Procedures

This chapter could be entitled "All You Ever Wanted to Know
About Subprograms." We have already touched upon subpro

grams: we have worked with some standard functions and, in Chapter 4,
with a very restricted kind of procedme. We are now ready to expand our
knowledge and use. of these two types of subprograms.

■ 7.1

Program Design
Modularity

We have previously discussed and illustrated the process of solving a
problem by top-down design. Using this method, we divide the main task
into major subtasks, and then continue to divide the subtasks (stepwise
refinement) into smaller subtasks until all subtasks can be easily per
formed. Once an algorithm for solving a problem has been developed
using top-down design, the programmer then writes code to translate the
general solution into a Pascal program.

As you have seen, code written to perform one well-defined subtask is
referred to as a module. One should be able to design, code, and test each
module in a program independently from the rest of the program. In this
sense, a module is a subprogram containing all definitions and declara
tions needed to perform the indicated subtask. Ever5rthing required for
the subtask (but not needed in other parts of the program) can be created
in the subprogram. Consequently, the definitions and declarations have
meaning only when the module is being used.

A program that has been created using modules to perform various
tasks is said to possess modularity. In general, modular programs are easier
to test, debug, and correct than programs that are not modular because
each independent module can be tested by running it from a test driver.
Then, once the modules are running correctly, they can become part of a
longer program. This independent testing of modules is referred to as
bottom-up testing.

264

7.2 Functions 265

A NOTE OF IPITgREST

Structured Programming

From 1950 to the early 1970s programs were de
signed and written on a linear basis. A program
written and designed on such a basis can be called
an unstructured program. Structured program
ming, on the other band, organizes a program
around separate semi-independent modules that
are linked together by a single sequence of sim
ple commands.

In 1964, mathematicians Corrado Bohm and

Guiseppe Jacopini proved that any program logic,
regardless of complexity, can be expressed by
using sequence, selection, and iteration. This re
sult is termed the structure theorem. This result,

combined with the efforts of Edger W. Dijkstra,
led to a significant move toward structured pro
gramming and away from the use of GOTO
statements.

The first time structured programming con
cepts were applied to a large-scale data process
ing application was the IBM Corporation's "New
York Times Project" from 1969 to 1971. Using
these techniques, programmers posted produc
tivity figures from four to six times higher than
those of the average programmer. In addition, the
error rate was a phenomenally low 0.0004 per
line of coding.

Structured Programming

Structured programming is the process of developing a program where
emphasis is placed on the correspondence between independent modules.
Connections between these modules are specified in parameter lists and
are usually controlled by the main driver or program. Structured pro
gramming is especially suitable to large programs being worked on by
teams. By carefully designing the modules and specifying what infor
mation is to be received by and returned from the module, a team of
programmers can independently develop their module and then have it
connect to the complete program.

The remainder of this chapter is devoted to seeing how subprograms
can be written to accomplish specific tasks. There are two types of sub
programs in standard Pascal: functions and procedures. We first examine
the writing and use of functions.

H 7.2

Functions

OBJECTIVES i

I to be able to use the

correct form and

syntax for writing a
function

I to be able to call a

function from the

main program
to be able to write a

function to perform
a specific task
to understand the

difference between

formal parameters
and actual

parameters

You have seen some standard functions, specifically, sqr, sqrt, abs, round,
and trunc. To briefly review, some concepts to note when using these
functions are

1. An argument is required for each; thus, sqrt(Y) and abs(- 21) are
appropriate.

2. Standcud functions can be used in expressions and assignment
statements; for example,

X := sqrt(Y) + sqrt(Z);

3. Standard functions can be used in output statements; for example,
writeln (sqr(3):fl);

Need for User-Defined Functions

It is relatively easy to envision the need for functions that are not on the
list of standard functions available in Pascal. For example, if you must
frequently cube numbers, it would be convenient to have a function Cube
so you could make an assignment such as

266 FUNCTIONS AND PROCEDURES

X := Cube(Y);

Other examples from mathematics include an exponential function [x^,
computing a factorial (n!), computing a discriminant - 4ac), and
finding roots of a quadratic equation

—b ± — 4ac

2a

In business, a motel might like to have available a function to determine
a customer's bill given the number in the party, the length of stay, and
any telephone charges. Similarly, a hospital might like a function to com
pute the room charge for a patient given the type of room (private, ward,
and so on) and various other options, including telephone (yes or no) and
television (yes or no). Functions such as these are not standard functions.
However, in Pascal, we can create user-defined functions to perform these
tasks.

Form for User-Defined Functions

A user-defined function is a subprogram and has the components

Heading —»

Declaration

section

Executable

section —>

The general form for a function heading is

FUNCTION function name (parameter list) : return type;

A syntax diagram for this is

A function to compute the cube of an integer could therefore use the
following as a heading:

PONCTION Cube (X : integer) : integer;

Several comments on the general form for a function heading are now
in order.

1. FUNCTION is a reserved word and must be used only as
indicated.

7.2 Functions 267

2. "Function name" is any valid identifier.
a. The function name should be descriptive.
b. It serves as a variable with some restrictions.

c. Some value must be assigned to the function name in the exe
cutable section of the function. The last assigned value will be
the value returned to the main program; for example, in the
function Cube, we have

Cube := X * X » X;

d. The function name cannot be used on the right side of an
assignment statement within the function. For example.

Cube := Cube + 1;

and

writeln (Cube);

produce errors. (An exception to this rule involves recursion
and will be discussed in Chapter 13.)

e. In the calling program, the function name cannot be used on
the left of an assignment statement.

3. "Parameter list" is a list of formal parameters. Formal parameters
can be thought of as blanks in the heading of the function waiting
to receive values from actual parameters in a calling program. Ac
tual parameters are variables or values used in the calling pro
gram. The formal parameter list must match the number and cor
responding types of actual parameters used when the function is
called from the main program. Thus, if you are writing a function
to compute the area of a rectangle and you want to call the func
tion from the main program by

RectArea := Area(Hidth, Length);

the function Area might have

FUNCTION Area (H/ L : integer) : integer;

as a heading. The two formal parameters, W and L, correspond to
the actual parameters. Width and Length, assuming that Width
and Length are of type integer. In general, you should make sure
the formal parameter list and actual parameter list match up as
indicated.

(W, L : integer)
(Width, Length)

An exception to this is that an actual parameter of integer t5rpe
may be associated with a formal parameter of real type.

4. "Return type" declares the data type for the function name. This
indicates what type will be returned to the main program.

As in the main program, there does not have to be a declaration section
for a function, but when there is one, only variables needed in the function
are declared. Further, the section is usually not very elaborate because
the purpose of a function is normally a small, single task.

Finally, the executable section for a function must perform the desired
task, assign a value to the function name, terminate with a semicolon
rather than a period, and have the general form

268 FUNCTIONS AND PROCEDURES

BEGIN

. (work of function here)

END;

We will now illustrate user-defined functions with several examples.

Write a function to compute the cube of an integer. Since the actual parameter
from the main program will be of integer type, we could have

FUNCTION Cube (X : integer) : integer;
BEGIN

Cube := X * X * X

END;

A typical call to this function from the main program is

A := Cube(5); ■

Write a function to compute the average of three reals. We know the actual pa-
rameters will be three reals, so our function could be written as

FUNCTION Average (Nl, NE, N3 : real)
BEGIN

Average := (N1 + NS + N3) / 3
END;

and called from the main program by

X := Average(Numl, NumS, Num3);

real;

Given two positive integers, m and n, write a function to compute m" [m to the
power of n). Since there will be two actual parameters, the formal parameter list
will require two variables of type integer. The function will return an integer, so
the return type will be integer. The desired function is

FUNCTION Power (Base/ Exponent : integer) : integer;

VAR

Temp/ K : integer;

BEGIN

Temp := Base;
For K := E TO Exponent DO

Temp := Temp * Base;
Power := Temp

END; i of FUNCTION Power >

This could be called from the main program by

A := Power(3/ 5); ■

Since the function given in Example 7.3 is more elahorate than those we
have seen previously, we should examine it more closely. First, note that
we need additional variables. Temp and K. Next, let's trace what happens
to the various values and variables.

When Power (3,5) is encountered in the main program, control is trans
ferred to FUNCTION Power, and Base and Exponent receive their re
spective values. At this stage, the variables could be depicted as

7.2 Functions 269

Power Base Exponent Temp K

The first executable statement in the function causes

Power Base Exponent Temp K

The first pass through the loop produces

Power Base Exponent Temp K

At the completion of the loop, K becomes unassigned and Power is as
signed the final value of Temp to produce

243 1 3 5 243

Power Base Exponent Temp K

Each iteration multiplies Temp by an additional factor of Base. After the
final iteration, control is transferred back to the main program and the
value in Power is assigned accordingly. Thus

ft := Power (3/ 5)

yields

243

PrivateRate;

SemiprivateRate;
HardRate

Let's now write a function to compute the total charge for a hospital room. Actual
parameters will be the number of days (integer) and room type (char). We may
assume rates for private (P), semiprivate (S), and ward (W) have been defined in
the CONST definition section of the main program. A typical function is

FUNCTION RoomCharge (NDays : integer;
RmType : char) : real;

BEGIN

CftSE RmType OF
•P' : RoomCharge := NDays ♦
'S' : RoomCharge := NDays *
'W : RoomCharge := NDays *

END < of CftSE RmType >
END; {. of FUNCTION RoomCharge >

This function could be called from the main program by

Roomftmount := RoomCharge(NumDays, RoomType); m

Use in a Program

Now that you have seen several examples of user-defined functions, let's
consider their use in a program. Once they are written, they can be used
in the same manner as standard functions. This usually means in one of
the following forms.

1. Assignment statements

ft := 5;

B := Cube(ft) ;

270 FUNCTIONS AND PROCEDURES

2. Arithmetic expressions

A := 5;

B := 3 * Cube(A) + S;

3. Output statements

A := 5;

writeln (Cube(A):17);

4. Boolean expressions

IF Cube(A) < B THEN

Documenting Subprograms

Each subprogram (function or procedure) should contain documentation
sufficient to allow the reader to understand what information is given to
the subprogram, what task is to be performed, and what information is to
be returned to the calling program. This information aids in debugging
programs. In this text, the headings of subprograms in complete programs
will be followed by documentation in the form

{ Given: Statement of information sent to the program }
{ Task: Statement of task(s) to be performed }
i Return: Statement of values(s) to be returned >

When subprograms are separately developed and illustrated, this docu
mentation will not be included; instead, text development immediately
preceding the subprogram will serve the same purpose.

Position in a Program

All subprograms are placed after the variable declaration section for the
main program. Program execution begins with the first statement of the
main program. Execution of the function occurs only when it is called
from the main program or from some other subprogram. Writing style for
functions will be consistent with that used for procedures. We now il
lustrate this with a complete program that prints a chart of the integers 1 .
to 10 together with their squares and cubes. The function Cube will be
used as previously written.

PROGRAM Table (output);

VAR

J : integer;

PROCEDURE PrintHeading;

{ Given: Nothing >
i Task: Print a heading for the table >
< Return: Nothing >

BEGIN

writeln; writeln;
writeln (•Number•:Sfl, 'Number Squared*:1Q/ 'Number Cubed':1b);
writeln (' ':2fif ' ':lfl/ ' ':lfc);
writeln

END; i of PROCEDURE PrintHeading >

7.2 Functions 271

■{ 3|C 9|c >l« >|c XC 4c * 9|e 9|e 9K «>|e. 3|c ** :4c 3|C 9|e * 3|e 9K >|C 9K 3|e 3|c)|e i(t :4c ** Xc 9K 3|c 9|e 9|c >

FUNCTION Cube (X : integer) : integer;

< Given: ft n integer }
<. Task: Cube the integer >
i Return: The cube of the integer }

BEGIN

Cube := X ♦ X * X
END; < of FUNCTION Cube >

BEGIN { Main program >
PrintHeading;

FOR J := 1 TO 10 DO
writeln (J:a5/ sqr(J):l<, Cube(J):17);

writeln
END. i of main program >

The output from this program is
Number Number Squared Number

1 1 1
3 A a
3 q 27
4 lb bA
5 35 135
b 3t, 31b
7 <q 3A3
a bA 513
q ai 7Bq

ID IGG IGGG

A Power Function

Example 7.3 illustrated how an integer could be raised to a positive integer
power, but it would not allow you to compute S^-s. Now that you know
how to write a function, you can use the built-in functions In and exp to
write a power function. Before writing this, however, let's consider how
these functions can be used to produce the desired result.

First, exp and In are inverse functions in the sense that exp (ln(^) =
X for all positive X. Thus, we have 3^ s = exp(ln(32 s)). Using properties
of logarithms,

In(a*) = b * In(a)

Hence, exp(ln(32^)) = exp(2.5 * ln(3)). Since each of these operations can
be performed in standard Pascal, we can compute 3^-^ by

32.5 _ exp(2.5 * ln(3))

or more generally,

= exp(Ar * ln(A))

If we let Base denote the base A and Exponent denote the exponent X,
we can now write a function Power as

272 FUNCTIONS AND PROCEDURES

FUNCTION Power (Base, Exponent : real) : real;
BEGIN

Power := exp(Exponent * In(Base))
END; < of FUNCTION Power }

This can be called from the main program by

Base := 3;
Exponent := S.5;
Nura := Power(Base, Exponent);

Multiple Functions

Programs can contain more than one function. When several user-defined
functions are needed in a program, each one should be developed and
positioned in the program as previously indicated. For readability, be sure
to use blank lines and comment sections to separate each function.
When a program contains several functions, they can be called from

the main part of the program in any order. However, if one function con
tains a call to another function, the function being called must appear
before the function from which it is called. (We will examine an exception
to this when we consider forward reference in Section 7.6.)

Exercises 7.2 l. Explain the difference between actual parameters and formal parameters.

2. Write a test program to see what happens when the function name is used
on the right side of an assignment statement. For example,

FUNCTION Total (OldSura, NewNum : integer) : integer;
BEGIN

Total := OldSura;

Total := Total + NewNura

END;

3. Indicate which of the following are valid function headings. Explain what
is wrong with those that are invalid.

a. FUNCTION RoundTenth (X : real);

b. FUNCTION MakeChange (X, Y) : real;
c. FUNCTION Max (Ml, M5, M3 : integer) : integer;

d. FUNCTION Sign (Nura : real) : char;
e. FUNCTION Truth (Ch : char, Nura : real) : boolean;

4. Find all errors in each of the following functions.

a. FUNCTION MaxOf2 (Nl, N5 : integer) : integer;
BEGIN

IF Nl > NS THEN

MaxOf5 : = Nl

END;

b. FUNCTION avOf2 (Nl, N2 : integer) : integer;
BEGIN

RvOf2 := (Nl + N2) / 2

END;

c. FUNCTION Total (L : integer) : integer;
VRR

J : integer;

BEGIN

Total := □;
FOR J : = 1 TO L DO

Total : = Total + J

END;

7.3 Procedures 273

5. Write a function for each of the following:

a. Find the maximum of two reals.

b. Find the maximum of three reals.

c. Round a real to the nearest tenth.

d. Convert degrees Fahrenheit to degrees Celsius.
e. Determine the sign of a real number.
f. Examine an integer to see if it is a multiple of five; if so, return the bool

ean value true; if not, return the boolean value false.

g. Compute the charge for cars at a parking lot; the rate is 75 cents per
hour or fraction thereof.

6. Write a program that uses the function you wrote for Exercise 5g to print a
ticket for a customer who parks in the parking lot. Assume the input is in
minutes.

7. The factorial of a positive integer n is

n! = n * (n — 1) * ... * 2 * i.

Write a function (Factorial) that will compute and return n\.

8. Write a complete program using Cube and Factorial that will produce a ta
ble of the integers 1 to 10 together with their squares, cubes, and factorials.

9. Write a function (Arithmetic) that will receive a sign (-h or *) and two inte
gers (Nl, N2) and then compute and return either N1 + N2 or Nl * N2
depending on the sign received.

10. Write an interactive program that allows the user to enter a Base (a) and
Exponent (jc) and then have the program print the value of a*.

@ @

E 7.3

Procedures

OBJECTIVES

to be able to use

correct form and

syntax for writing a
procedure
to understand the

difference between

variable and value

parameters

to be able to use a

procedure in a
program

As indicated at the beginning of this chapter, Pascal provides two kinds
of subprograms: functions and procedures. One advantage of procedures
is that they are not limited to returning a single value to the main program.
In Chapter 4, procedures were used without variables to create headings
and similar output. In this section, we will see how they can be used to
change values of variables in the main program.

Form and Syntax

Procedures for headings were written in the following form.

PROCEDURE PrintHeading;
BEGIN

(statements for desired output)

END;

This procedure could be called from the main program by
PrintHeading;

Procedures of this type are very limited in that there is no data transmis
sion or changing of variables between the procedure and the main pro
gram. However, they were helpful in learning how procedures can be used

274 FUNCTIONS AND PROCEDURES

and where they are located in a program. We are now going to examine
procedures completely. The form for a procedure is

Heading

Declaration

section

Executable

section

PROCEDURE name (parameter list);

BEGIN

(subprogram statements)

END;

Paraiineters

The only significant change between this form and our previous use of
procedures for headings is the use of parameters. Parameters are used so
that values of variables may be transmitted, or passed, from the main
prngram to the procedure and from the procedure to the main program.
If values are to be passed only from the main program to the procedure,
the parameters are called value parameters. If values are to be returned to
the main program, the parameters are called variable parameters.
As was the case with functions, parameters contained in the procedure

are formal parameters. Parameters contained in the procedure call from
the main program are actual parameters.
When using parameters with procedures, the following should be noted:

1. The number and order of formal parameters in the parameter list
must match the number and order of actual parameters used
when calling the procedure from the main program.

2. The type of parameters must match the corresponding type of ac
tual parameters used when calling the procedure.

3. The parameter types are declared in the procedure heading.

To illustrate formal and actual parameters used with procedures, consider
the following complete program.

PROGRAM ProcDemol (output);

VAR

Numl, NumB : integer;

Nura3 : real;

{***}

PROCEDURE PrintNum (Nl, NB : integer;
N3 : real);

{ Given: Two integers and one real >
< Task: Print all values >
•t Return: Nothing ^

7.3 Procedures 275

BEGIN

writeln;

writeln ('Numl = Nl:3);
writeln ('NumS = NB:3);
writeln ('Nura3 = N3:t:2)

END; { of PROCEDURE PrintNura >

BEGIN •{ Main program >
Numl := 5;

NumB := fl;

Num3 := NumB / Numl;

PrintNura (Numl/ NumB, Nura3)
END. <. of main program >

When this program is run, the output is

Numl = 5

NumB = a

Nura3 = l.tD

In this program, Nl, N2, and N3 are formal parameters; Numl, Num2,
and Num3 are actual parameters. Let us now examine the relationship
between the parameter list in the procedure

PROCEDURE PrintNum (Nl, NB : integer;
N3 : real);

and the procedure call in the main program.

PrintNum (Numl, NumB, Num3)

In this case, Numl corresponds to Nl, Num2 corresponds to N2, and
Num3 corresponds to N3. Notice that both the number and type of vari
ables in the parameter list correspond with the number and type of vari
ables listed in the procedure call.

Value Parameters

The preceding procedure demonstrated the use of value parameters or of
one-way transmission of values. Different memory areas have been set
aside for the variables Numl, Num2, and Num3 and for Nl, N2, and N3.
Thus, initially we have

Main Program Procedure

Numl Nl

Num2 N2

Num3 N3

The assignment statements

Numl := 5;

NumB := fl;

Num3 := NumB / Numl;

produce

276 FUNCTIONS AND PROCEDURES

Main Program Procedure

Numl N1

8

Num2 N2

1.6

Num3 N3

When the procedure PrintNum is called from the main program by
PrintNum (Numl, Numa, Num3)

the values are transmitted to Nl, N2, and N3, respectively, as follows:

Main Program Procedure

Numl Nl

8

Num2 N2

1.6 1.6

Num3 N3

At this stage, the procedure PrintNum can use Nl, N2, and N3 in any
appropriate manner.

It is important to note that since the passing of values is from the main
program to the procedure only, we are using value parameters.

If the procedure changes the value of Nl, N2, or N3, the values of
Numl, Num2, and Num3 will not be changed. For example, suppose the
procedure is changed to

PROCEDURE PrintNum (Nl, N5 : integer;
N3 : real);

BEGIN

writeln; writeln;
writeln (N1:1D, N2:1D, N3:1D:2);
Nl := 2 * Nl;

N2 := 2 * N2;

N3 := 2 * N3;

writeln (N1:1D, N2:1D, N3:1D:2);
writeln; writeln

END; •(of PROCEDURE PrintNum >

Furthermore, suppose the main program is changed to

BEGIN < Main program >
Numl := 5;

Num2 := fl;

Num3 := Nura2 / Numl;

writeln; writeln;

writeln (Numl:lD, Num2:lQ, Num3:lQ:2);
PrintNum (Numl, Num2, Num3);
writeln (Numl:lD, Num2:lD, Num3:10:2);
writeln; writeln

END. { of main program >

7.3 Procedures 277

When this program is run, the output is

5 6 l.tD (from main program)
5 A l.tO (from procedure)
10 3.ED (from procedure)
5 6 l.tO (from main program)

The first line of this output is produced by the first

writeln (Numl:lG/ Num5:lD, Nura3:lD:E);

of the main program. The next two lines of output come from the pro
cedure. The last line of output is produced by the second

writeln (NumlrlD/ Num5:lG, Num3:lG:E);

of the main program. You should carefully note that after the procedure
changes the values of Nl, N2, and N3, the values of Numl, Num2, and
Num3 have not been changed. Thus, we have

Main Program Procedure

10

Numl Nl

8 16

Num2 N2

1.6 3.2

NumS N3

Before considering two-way passing of values (variable parameters), let
us look at another example of a procedure using value parameters by
writing a procedure that will find the average of three scores, print the
scores, and print the average. Since the procedure will receive three integer
values from the main program, a suitable procedure heading is

PROCEDURE FlndRverage (31/ SS, S3 : integer);

In this case, an additional variable must be used, so the declaration section
of the procedure could be

VfiR

Av : real;

and the complete procedure could be

PROCEDURE FindAverage (SI, SE/ S3 : integer);

CONST

Indent = ' •;

VAR

Av : real;

BEGIN

Av := (SI + SE + S3) / 3;

writeln; writeln;
writeln (Indent:R/ 'The scores are');
writeln;

writeln (31:15, SE:5, 33:5);
writeln;

writeln (Indent:^/ 'Their average is', Av:t:E)
END; i of PROCEDURE FindAverage }

278 FUNCTIONS AND PROCEDURES

Assume Scorel, Score2, and ScoreS are the corresponding variables in
the main program and that they can be read from a data file. If the data
file is

89 92 851 ̂

the statements from the main program

read (Scorel/ ScoreE/ Score3);
FindRverage (Scorel/ Scores/ Score3);

produce

The scores are

flq SE flS

Their average is 80.t?

Variable Parameters

You will frequently want a procedure to change several values in the main
program. This can be accomplished by using variable parameters in the
parameter list. Variable parameters are declared by using the reserved
word VAR to precede appropriate formal parameters in the procedure
heading. A separate VAR declaration is needed for each data type used
when listing variable parameters. The use of VAR in a parameter list is a
slightly different use than in the declaration of variables, yet it is the same
reserved word.

When variable parameters are declared, transmission of values appears
to be two-way rather than one-way. That is, values are sent from the main
program to the procedure and from the procedure to the main program.
Actually, when variable parameters are used, values are not transmitted
at all. Variable parameters in the procedure heading are merely aliases for
actual variables used in the main program. Thus, variables are said to be
passed by reference rather than by value. When variable parameters are
used, any change of values in the procedure produces a corresponding
change of values in the main program.
To illustrate the declaration of variable parameters, consider the pro

cedure heading

PROCEDURE PrintNum (VAR Nl/ NE : integer;
N3 : real);

In this case, Nl and N2 me variable parameters corresponding to integer
variables in the main program. N3 is a value parameter corresponding to
a real variable. This procedure can be called from the main program by

PrintNum (Nural/ NumE/ Nura3);

To illustrate the passing of values, assume the procedure is

PROCEDURE PrintNum (VAR Nl/ NE : integer;
N3 : real);

BEGIN

writeln (Nl/ NE/ N3:in:E);
Nl := E * Nl;

NE := E * NE;

N3 := E * N3;

writeln (Nl/ NE/ N3:10:E)

END; i of PROCEDURE PrintNum >

7.3 Procedures 279

If the corresponding variables in the main program are Numl, Num2, and
Num3, respectively, initially we have

Main Program

Num3

Procedure

Numl

N2

Num2

N3

Technically, Nl and N2 do not exist. There are no separate memory lo
cations for them. They are merely aliases for Numl and Num2. They access
the same memory locations as Numl and Num2 respectively. Thus, a
statement in the procedure such as

Nl := 5;

really causes the memory location reserved for Numl to receive the value
5. That is, it causes the net action

Numl := 5;

Thus, conat^nts cannot be used when calling a procedure with variable
parameters. For example,

PrintNum (3/ 5);

produces an error because 3 and 4 correspond to variable parameters. The
following explanation is designed to help you understand the difference
between value and variable parameters.

If the main program makes the assignment statements

Numl := 5;

NumS := fi;

Num3 := NumS / Numl;

we have

Main Program Procedure

Numl

N2

Num2

1.6

Num3 N3

When the procedure is called and the following statements from the
procedure

Nl := 2 * Nl

N2 := 5 * Na

N3 := a * N3

are executed, we have

280 FUNCTIONS AND PROCEDURES

Main Program Procedure

10 i N1

Numl

< N216

Num2

1.6 3.2

NumS N3

Notice that the variable parameters Nl and N2 produce changes in the
corresponding variables in the main program, but the value parameter N3
does not.

Let us now consider a short, complete program that illustrates the
difference between variable and value parameters.

PROGRAM ProcDemoB (output);

VAR

X, Y : real;

Ch : char;

PROCEDORE VarDemo (VAR XI : real;
Y1 : real;

VAR Chi : char);

{ Given: Two reals XI, Yl, and a character Chi >

{ Task: Print the values received, change the values, >
< and print the new values >
< Return: New values for XI and Chi }

BEGIN

writeln (Xl:lD:a, Yl:ia:B, Chl:5);
XI := a * XI;
Y1 := a * Yl;

Chi := •*';

writeln (Xl:lD:a, Yl:lQ:a, Chl:5)
END; < of PROCEDURE VarDerao >

'■*

BEGIN t Main program >
X := 3.b;
Y := 5.a;
Ch := 'A' ;
writeln (X:lD:a, Y:lD:a, Ch:5);
VarDemo (X, Y, Ch);
writeln (X:lQ:a, Y:lD:a, Ch:5)

END. { of main program >

The output from the program is
3. to 5.an A (from main program)
3.GO B.ao A (from procedure)
7.ao ID.AQ * (from procedure)
7.ao B.ao * (from main program)

The variables can be depicted as

7.3 Procedures 281

Main Program Procedure

< XI

X

Y1

■Chi

Ch

The assignment statements
X := 3.t;
Y := 5.5;
Ch := •A• ;

produce
Main Program Procedure

3.6 XI

5.2

Y1

■Chi
Ch

When the procedure is called by
VarDemo (X/ Y/ Ch);

the contents can be envisioned as

Main Program Procedure

3.6 XI

X

5.2 5.2

Y1

•Chi
Ch

When the procedure assignment statements
XI := a * XI;
Y1 := a * Yl;
Chi := •*• ;

are executed, the variables become
Main Program

7.2

Procedure

XI

X

5.2

Ch

10.4

Yl

■Chi

282 FUNCTIONS AND PROCEDURES

Notice that changes in the variable parameters XI and Chi produce cor
responding changes in X and Ch, but a change in the value parameter Yl
does not produce a change in Y.

Writing Style

As previously discussed, procedures are located in the declaration section
of a program.

Program heading

Declaration

section

Executable

section

CONST

VAR

(procedures here)

BEGIN

END.

There is no limit to the number of procedures that can be used in a
program. Within the procedure, consistent use of comments, blank lines,
and indenting should be maintained. A program containing three pro
cedures might be organized as follows:

PROGRAM ThreeProcs (input, output);

CONST

VAR

PROCEDURE one here

PROCEDURE two here

PROCEDURE three here

BEGIN { Main program }
Main program here

END. { of main program }

We close this section with a sample program using four procedures.
The program reads three reals from one line of a data file, computes their
average, and then prints the results. A first-level pseudocode development
for this program is

1. Print header

2. Get data

3. Process data

4. Print results

We can write a procedure for each of the pseudocode steps.

7.3 Procedures 283

A NOTE OF INTEREST

Ada

Of the many programming languages available
other than Pascal, Ada deserves special mention.
As you learned in an earlier Note of Interest, Ada
is not an acronym, but is named after Ada Au
gusta Byron.

Ada was developed in the 1970s and was
sponsored by the United States Department of
Defense. It was developed as a language to be
used in embedded applications, that is, appli
cations that use a computer as part of a larger
complex of electronics and mechanics. Gener
ally, this is the role of a control system. These

applications require reliability, complexity, and
host and target computers.

Ada's main features are the same as those of

Pascal. In addition, it has separate compilation
of modules, concurrent execution of several

modules, powerful features for error handling,
and provisions for machine-independent oper
ating system linkages. Because of these charac
teristics and the strong support of the Depart
ment of Defense, it is anticipated that Ada will
be the primary language used by professional
programmers by the year 2000.

1. Print header

becomes

PROCEDURE PrintHeader;

CONST

Indent = ' •;

BEGIN

writeln; writeln;

writeln (Indent:30, 'Scores');
writeln (Indent:30/ ' ');
writeln

END; { of PROCEDURE PrintHeader

2. Get data

becomes

PROCEDURE GetData (VftR SI, S5, S3 :

BEGIN

readln (SI, S5, S3)

END; { of PROCEDURE GetData }

real);

Note that this procedure uses variable parameters so that values from the
procedure are transmitted back to the program.

3. Process data

becomes

PROCEDURE FindAverage (SI, SE, S3 : real;
VAR Aver : real);

BEGIN

Aver := (SI + SE + S3) / 3
END; < of PROCEDURE FindAverage }

Note that Si, 82, and S3 are value parameters and Aver is a variable
parameter. When this procedure is called from the main program, it returns
the computed average (this could be a function).

284 FUNCTIONS AND PROCEDURES

4. Print results

becomes

PROCEDURE PrintResults (SI, SE, S3, Av : real);
BEGIN

writeln (SliBtrE);

writeln (SE;3t:E);
writeln (S3:3t:E);
writeln (' ' :3t) ;

writeln;

writeln (Av;3b:a)

END; { of PROCEDURE PrintResults >

The main part of the program is

BEGIN { Main program >
PrintHeader;

GetData (Scorel, Scores, Score3);

FindAverage (Scorel, ScoreB, Score3, Average);
PrintResults (Scorel, ScoreB, Score3, Average)

END. i of main program >

The complete program is

PROGRAM ProcDemo (input, output);

i This program demonstrates the use of procedures. Both }
{ value and variable parameters are featured. Notice how >
{ the main program consists only of calling appropriate >
•(procedures. >

VAR

Average : real; < The average of three reals >
Scorel, ScoreB, < Three scores to be read >

ScoreB : real;

-{*********************************»*♦****♦*******■***************>

PROCEDURE PrintHeader;

{ Given: Nothing >
{ Task: Print a heading >
■(Return: Nothing >

CONST
Indent = ' • ;

BEGIN
writeln; writeln;
writeln (Indent:3D, 'Scores');
writeln (Indent:3D, ' ');
writeln

END; { of PROCEDURE PrintHeader I

■(♦*********+*****♦******♦*******♦********+*****************++***}

PROCEDURE GetData (VAR SI, SB, S3 : real);

< Given: Nothing >
{ Task: Read three scores >
< Return: Scores read }

BEGIN
readln (SI, SB, S3)

END; -t of PROCEDURE GetData >

7.3 Procedures 285

PROCEDURE FindAverage (SI, SE, S3 : real;
VAR Aver : real);

■(Given: Three scores >
i Task: Find their average }
•(Return: The average score }

BEGIN

Aver := (SI + SE + S3) / 3
END; i of PROCEDURE FindAverage }

{:|c:|c3|c3|c3|e>|c9K>|c9|c9|citc>tc^9K9|c9|<3|(>|c3|()(e)|(9|c3|c3|c:|c^9K:K9|c>|c9K9K3|(H(3te4(it(^3|ei(e3|eitt4<^^3(c:|c:|c3f^^9|c3|c3|c:|c9|e>|(3|(>|c>|eH''K3|'}'

PROCEDURE PrintResults (SI, SE, S3, Av : real);

•(Given: Three scores and their average >
■(Task: Print the scores and their average >
■(Return: Nothing >

BEGIN

writeln (Sl:3Es:E);
writeln (SE:3t:E);
writeln (S3:3t:E);
writeln (• 'iBt);
writeln;
writeln (Av:3t:E)

END; < of PROCEDURE PrintResults >

BEGIN -{ Main program }
PrintHeader;
GetData (Scorel, ScoreE, Score3);
FindAverage (Scorel, ScoreE, Score3, Average);
PrintResults (Scorel, ScoreE, Score3, Average)

END. { of main program }

If the data file is

89.3 92.4 84.61

the output from the program will be
Scores

59.3D

RE.40
&A.LD

66.77

Exercises 7.3 1. Explain the difference between value parameters and variable parameters.

2. Write a test program to find what happens if the parameter lists do not
match when a procedure is called from the main program. Investigate each
of the following:
a. correct number of parameters, wrong order
b. incorrect number of parameters

286 FUNCTIONS AND PROCEDURES

3. Indicate which of the following parameters are value parameters and which
are variable parameters.

a. PROCEDURE Demol (VAR A, B : integer;

X : real);

b. PROCEDURE DeraoE (VAR A : integer;

B : integer;

VAR X : real;

Ch : char);

c. PROCEDURE DemoB (A/ B : integer;

VAR X, Y, Z : real;

Ch : char);

4. Indicate which of the following are appropriate procedure headings. Explain
the problem with those that are inappropriate.

a. PROCEDURE Pracl (A : integer : Y : real);

b. PROCEDURE Error? (Chi, ChE : char);
c. PROCEDURE PracE (A, VAR B : integer);

d. PROCEDURE PracB (A, B, C : integer
VAR X, Y : real

Ch : char

Flag : boolean);
e. PROCEDURE Prac< (VAR A : integer,

X : real);

5. Indicate how each of the following procedures would be called from the
main program.

a. PROCEDURE ProbB (A, B : integer;

Ch : char);

b. PROCEDURE PrintHeader;

c. PROCEDURE FindMax (Nl, NE : integer;

VAR NewMax : integer);
d. PROCEDURE Switch (VAR X, Y : real);
e. PROCEDURE SwitchAndTest (VAR X, Y : real;

VAR F1 : boolean);

6. Suppose a program contains the following procedure:

PROCEDURE Switch (VAR A, B : integer);

VAR

Temp : integer;

BEGIN

Temp := A;
A := B;

B := Temp

END; { of PROCEDURE Switch }

Indicate the output from each of the following fragments of code in the main
program.

a. Numl := 5; b. Numl := -3;

NumS := ID; NumE := E;

writeln (Numl, NumE); IF Numl > NumE THEN

Switch (Numl, NumS); Switch (Numl, NumE)

writeln (Numl, NumE); ELSE

Switch (Numl, NumE); Switch (NumS, Numl);

writeln (Numl, NumE); writeln (NumS, Numl);

N := 3;

M := 5D;

Switch (M, N);

writeln (M/ N) ;

Switch (N, M);

writeln (N/ M);

7.4 Scope of Identifiers 287

d. Count := □;
Max := ID;
WHILE Count < Max DO

BEGIN

Switch (Count/ Max);
writeln (Count/ Max);
Count := Count + 1

END; < of WHILE...DO }

7. Write a procedure for each of the following and indicate how it would be
called from the main program.
a. Print the heading for the output.

Acme National Electronics
Board of Directors

Annual Meeting

b. Find the maximum and average of three reals. Both values are to be
returned to the main program.

c. Count the number of occurrences of the letter A in a line of character
data. The coimt should be returned to the main program and the line of
data should be printed.

d. Convert Fahrenheit temperature to Celsius.
e. Find and print all divisors of a positive integer.

8. Assume a program contains the variable declaration section
VAR

Nural/ Num2 : integer;
X/ Y : real;
Chi/ ChE : char;

Furthermore, suppose the same program contains a procedure whose
heading is

PROCEDURE Demo (VAR Nl/ NE : integer;
XI : real;
Ch : char);

Indicate which of the following are appropriate calls to the procedure Demo.
Explain those that are inappropriate.
a. Demo (Numl/ NumE);
b. Demo (Numl/ NumE / X);
c. Demo (Numl/ NumE/ X/ Chl)
d. Demo (X/ Y/ Numl/ ChE) ;
e. Demo (NumE/ X/ Y/ Chl) ;
f. Demo (Numl/ NumE/ ChE);

g- Demo;
h. Demo (NumE/ Numl / Y/ Chl)

■ ■ ■

■ 7.4
Scope of
Identifiers

■ to understand what
is meant by local
variables

Objectives continued.

Local and Global Variables

Variables declared in the declaration section of a program can be used
throughout the entire program. For purposes of this section, we will think
of the program as a heading and a block and envision it as in Figme 7.1.
Furthermore, if XI is a variable in ShowScope, we will indicate this as
shown in Figure 7.2, where an area in memory has been set aside for XI.
When a program contains a subprogram, a separate memory area within
the memory area for the program is set aside for the subprogram. This is

288 FUNCTIONS AND PROCEDURES

to understand what

is meant by global
variables

to understand the

scope of an
identifier

to recognize appro

priate and inappro
priate uses for
global variables
to be able to use

appropriate names
for local and global
variables

sometimes referred to as a subblock or block for the subprogram. Thus, if
ShowScope contains a procedure named Subprogl, we can envision this
as shown in Figure 7.3. If Subprogl contains the variable X2, we have the
program shown in Figure 7.4. This could be indicated in the program by

PROGRAM ShowScope (input/ output);

VAR

XI : real;

PROCEDURE Subprogl (X2 : real);

We now must consider which variables are available to the various

parts of the program. When subprograms are used, each variable is avail
able to the block in which it is declared; this includes all subprograms

FIGURE 7.1

Program heading and
main block

PROGRAM Showscope

FIGURE 7.2

Variable location in

main block

PROGRAM Showscope

FIGURE 7.3

Illustration of a

subblock

PROGRAM Showscope

Subprogl

7.4 Scope of Identifiers 289

FIGURE 7.4

Variable location

within a subblock

PROGRAM Showscope

Subprogl

contained within its block. In addition, variables are not available outside
their blocks.

Variables that can be used by all subprograms in a program are called
global variables; variables that are restricted to use within a subblock are
called local variables. Variable XI in the previous illustration can be used
in the main program and in the procedure Subprogl; therefore it is a
global variable. On the other hand, X2 can only be used within the pro
cedure where it is declared; it is a local variable. Any attempt to reference
X2 outside the procedure will result in an error.
As you can see, global and local are relative terms. If a subprogram

contains a subprogram (see Section 7.6), as in Figure 7.5, with variables
XI, X2, and X3 as indicated, X2 is local with respect to the procedure
Outer but global with respect to the procedure Inner. There are, however.

FIGURE 7.5

Local and global
variables

PROGRAM Showscope

XI

PROCEDURE Outer

PR0GED[HR'EMn8r

""" xa"

290 FUNCTIONS AND PROCEDURES

two nonrelative uses of these terms: variables declared in the main pro
gram are always global and variables declared in the innermost subpro
gram are always local.
The scope of an identifier refers to the largest block in which the variable

is available. Hence, in the previous illustration, the scope of X3 is the
procedure Inner, the scope of X2 is the procedure Outer, and the scope
of XI is the program SbowScope.

Let us now examine an illustration of local and global variables. Con
sider the program and procedure declaration

PROGRAM ScopePrac (output);

VAR

A/ B : integer;

PROCEDURE Subprog (A1

VAR

X real;

integer);

Memory area for this program could then be envisioned as shown in Figure
7.6.

FIGURE 7.6

Relation of variables

for PROGRAM

ScopePrac

PROGRAM ScopePrac

■■ ■

6

PROCEDURE Subprog
■ -....A. ..^ , , ,

Since A and B are global, the statement

writeln (A, B, Al, X:1D:5);

could be used in the procedure Subprog although A and B have not been
specifically declared there. However,

writeln (A, B, Al, X:1D:E);

could not be used in the main program because Al and X are local to the
procedme Subprog.

Using Global Variables and Constants

In general, it is not good practice to refer to global variables within pro
cedures. Using locally defined variables helps to avoid unexpected side
effects and protects your programs. In addition, locally defined variables

7.4 Scope of Identifiers 291

facilitate debugging and top-down design and also enhance the portability
of procedures. This is especially important if a team is developing a pro
gram by having different people work on different procedures.

Using global constants is different. Since the values cannot be changed
by a procedure, it is preferred that constants be defined in the CONST
section of the main program and then be used whenever needed by any
subprogram. This is especially important if the constant is subject to
change over time, for example, StateTaxRate. When a change is necessary,
one change in the main program is all that is needed to make all subpro
grams current.

Name of Identifiers

Since separate areas in memory are set aside when subprograms are used,
it is possible to have identifiers with the same name in both the main
program and a subprogram. Thus

PROGRAM Demo (input, output);

VAR

Age : integer;

PROCEDURE Subprog (Age : integer);

can be envisioned as shown in Figure 7.7.

FIGURE 7.7

Using identifiers in
subprograms

PROGRAM Demo

PROCEDURE SifiiPmg

i

When the same name is used in this manner, any reference to this name
will result in action heing taken as locally as possible. Thus, the assign
ment statement

Age := 50;

made in the procedure Subprog assigns 20 to Age in the procedure but
not in the main program (see Figure 7.8).
Now that you know you can use the same name for an identifier in a

subprogram and the main program, the question is, "Should you?" There
are two schools of thought regarding this issue. If you use the same name
in the procedures, it facilitates matching parameter lists and independent
development of procedures. However, this practice can be confusing when

292 FUNCTIONS AND PROCEDURES

FIGURE 7.8

Assigning values in
subprograms

PROGRAM Demo

PRpGEPpEtE Subprog

you first start working with subprograms. Thus, some instructors prefer
using different, but related, identifiers. For example,

GetData (Scorel/*ScoreB);

in the main program could have a procedure heading of

PROCEDURE GetData (VAR Scl, ScB : integer);

In this case, the use of Scl and Sc2 is obvious. Although this may facilitate
better understanding in early work with subprograms, it is less conducive
to portability and independent development of procedures. Both styles
are used in this text.

Multiple Procedures

More than one procedure can be used in a program. When this occurs,
all the previous uses and restrictions of identifiers apply to each proce
dure. Blocks for multiple procedures can be depicted as shown in Figure
7.9. Identifiers in the main program can be accessed by each procedure.
However, local identifiers in the procedures cannot be accessed outside
their blocks.

The same names for identifiers can be used in different procedures.
Thus, if the main program uses variables Wage and Hours, and both of

FIGURE 7.9

Blocks for multiple
subprograms

PROCEDURE A

PROCEDURE B

PROCEDURE C

7.4 Scope of Identifiers 293

these are used as arguments in calls to different procedtu-es, you have the
situation shown in Figure 7.10. Using the same names for identifiers in
different procedures makes it easier to keep track of the relationship be
tween variables in the main program and their associated parameters in
each subprogram. For example, if Wage and Hours are used in the main
program, W and H can be used as corresponding parameters in all
procedures.

FIGURE 7.10

Identifiers in multi

ple subprograms

PROGRAM Practice

Wage

Hours

PROCEDURE A

PROCEDURE B

0
! ;

. ■ i'. i / ■ vi

Exercises 7.4 1. Explain the difference between local and global variables.

2. State the advantages of using local variables.

3. Discuss some appropriate uses for global variables. List several constants
that would be appropriate global definitions.

4. What is meant by the scope of an identifier?

5. Write a test program that will enable you to see

a. what happens when an attempt is made to access an identifier outside of
its scope; and

b. how the values change as a result of assignments in the subprogram and
the main program when the same identifier is used in the main program
and a procedure.

294 functions and procedures

6' Review the following program:

PROGRAM Practice (input, output);

VAR

A, B : integer;
X : real;

Ch : char;

PROCEDORE Subl (A1 : integer);
VAR

B1 : integer;
BEGIN

END; < of PROCEDURE Subl }

PROCEDORE SubS (A1 : integer;
VAR B1 : integer);

VAR

XI : real;

Chi : char;

BEGIN

END; < of PROCEDURE SubS >

a- List all global variables.
b. List all local variables.

c. Indicate the scope of each identifier.

7. Provide a schematic representation of the program and all subprograms and
variables in Exercise 6.

8. Using the program with variables and subprograms as depicted in Figure
7.11, state the scope of each identifier.

9* What is the output from the following program?

PROGRAM Exercised (output);

VAR

A : integer;

PROCEDURE Subl (A : integer);

BEGIN

A := ED;

writeln (A)

END; < of PROCEDURE Subl }

PROCEDURE SubE (VAR A : integer);
BEGIN

A := 30;

writeln (A)

END; < of PROCEDURE SubE }

BEGIN { Main program }
A := ID;

writeln (A);

Subl (A);
writeln (A);

SubE (A);
writeln (A)

END. < of main program >

7.4 Scope of Identifiers 295

FIGURE 7.11 PROGRAM Exercises

r: i'

«•' -i- -

_!.

B

FUNCMON

10. Assume the variable declaration section of a program is

VAR

Age/ Hours : integer;
Average : real;
Initial : char;

Furthermore, assume that procedure headings and declaration sections for
procedures in this program are as follows. Find all errors in each.

a. PROCEDURE Average (Agel/ Hrs : integer;
VAR Aver : real);

b. PROCEDURE Subl (Hours : integer;
VAR Average : real);

VAR

Age : integer;

Init : char;

c. PROCEDURE Compute (Hrs : integer;
VAR Aver : real);

VAR

Age : real;

11. Discuss the advantages and disadvantages of using the same names for
identifiers in a subprogram and the main program.

12. Write appropriate headings and declaration sections for the program and
subprograms illustrated in Figure 7.12.

296 FUNCTIONS AND PROCEDURES

FIGURE 7.12 PROGRAM Exercisel2

Score 1

Score 2

PROCEDURE Exchange

_ . . I

FUNCTION FindMax

m:3

13. Find all errors in the following program.

PROGRAM ExerciselB (output);

VAR

Xf Y : real;

PROCEDURE Subl (VAR XI : real);

BEGIN

writeln (X1:5D:E);

writeln (X:2D:5);

writeln (Y:ED:S)

END; < of PROCEDURE Subl >

BEGIN { Main program >
X :=

Y := 5 * X;

writeln (X:SD:5/ Y:5D:5);

Subl (X);
writeln (Xl:a0:5);

writeln (X:5D:E);

writeln (Y:EO:E)

END. { of main program }

M 7.5

Using
Subprograms

OBJECTiyES

□ to understand how
subprograms can be
used in designing
programs

□ to be able to use
procedures to get
data for programs

□ to be able to use
subprograms to per
form tasks required
in programs

□ to be able to use
procedures for
output

7.5 Using Subprograms 297

Program Design

Throughout this text you have seen examples of problems solved by the
development of a sequence of tasks. Tasks are stated in the order in which
they are to be performed and then each task is refined according to its
level of complexity. Now that you are capable of using procedures and
functions in a program, you should see how they can be used to design
a program for solving a problem. After the algorithm for solving the prob
lem has been developed in pseudocode, subprograms can be written for
the various tasks and then called from the main program as needed.

To illustrate, let us consider how a program could be designed using
subprograms. We will not write the subprograms at this point; we will
only indicate how they would be used in designing the program. Our
problem is to compute grades for a class. A first-level pseudocode devel
opment could be

1. Initialize variables
2. Print a heading
3. Process grades for each student
4. Print a summary

This could be refined to

1. Initialize variables
2. Print a heading
3. Process grades for each student

WHILE NOT eof DO
3.1 get a line of data
3.2 compute average
3.3 compute letter grade
3.4 print data
3.5 compute totals

4. Print a summary
4.1 print class average
4.2 Print number receiving each grade

Subprograms can be used to design a program consistent with this algo
rithm as illustrated in Table 7.1. Note that this particular choice of pro-

TABLE 7.1
Subprograms from
pseudocode

Pseudocode Statement Subprogram
1. Initialize variables PROCEDURE Initialize
2. Print a heading PROCEDURE PrintHeading
3. Process grades for each student

WHILE NOT eof DO
3.1 get a line of data PROCEDURE GetData
3.2 compute average FUNCTION Average
3.3 compute letter grade FUNCTION LetterGrade
3.4 print data PROCEDURE PrintData
3.5 compute totals PROCEDURE ComputeTotals

4. Print a summary
4.1 print class average PROCEDURE PrintAverage
4.2 print number receiving each PROCEDURE PrintNumGrades

grade

298 FUNCTIONS AND PROCEDURES

cedures and functions is not the only solution available to us; there are
many other ways to use subprograms in a program to solve our problem.
Now that we have identified procedures and functions for various tasks

in this problem, we can write the program design. Since we are relatively
early in the design state, we will not include parameters for the subpro
grams, but as we develop each subprogram, we will indicate appropriate
value and variable parameters.
The main program could be

BEGIN { Main program >
Initialize ();

PrintHeader;

WHILE NOT eof DO

BEGIN

GetData ();

Aver := Average ();
LetGrade := LetterGrade () ;

PrintData ();
CoraputeTotals {)

END;

PrintAverage () ;
PrintNumGrades ()

END. ■{ of main program >

Procedural Abstraction

The purpose of using procedures is to simplify reasoning. During the
design stage, as a problem is subdivided into tasks, the problem solver
(you) should have to consider only what a procedure is to do and not be
concerned about details of the procedure. Instead, the procedure name
and comments at the beginning of the procedure should be sufficient to
inform the user as to what the procedure does. Developing procedures in
this manner is referred to as procedural abstraction.

Procedural abstraction is the first step in designing and writing a pro
cedure. The list of parameters and comments about the action of the
procedure should precede writing the procedure body. This forces clarity
of thought and aids design. Using this method might perhaps cause you
to discover that your design is not sufficient to solve the task and that
redesigning is necessary. Therefore, you could reduce design errors and
save time when writing code.

Procedural abstraction becomes especially important when teams work
on a project. Each member of the writing team should be able to understand
the purpose and use of procedures written by other team members without
having to analyze the body of each procedure. This is analogous to the
situation in which you use a predefined function without really under
standing how the function works.

In summary, procedural abstraction means that, when writing or using
procedures, you should think of them as single, clearly understood units
that each accomplishes a specific task.

Procedures for Initializing Variables

Programs may require variables to be initialized at the beginning of the
program. This initialization can be done in the main program or in a
procedure; it is generally the first step in developing an algorithm. Thus,

7.5 Using Subprograms 299

1. Initialize variables

will frequently be listed as a line of pseudocode and, when a procedure
is written to implement this task, the program design becomes

BEGIN t Main program }
Initialize ();

Procedures for initializing require variable parameters because variables
in the main program will subsequently be used with the initial values
assigned in PROCEDURE Initialize.
The program for our grading problem will require initialization of vari

ables Count, ClassTotal, NumA, NumB, NumC, NumO, and NumE. Ap
propriate initialization can be accomplished by the following procedure.

PROCEDURE Initialize (VAR Count : integer;
VAR ClassTotal : real;
VAR NumA/ NumB/ NumC/ NumD/ NumE : integer);

BEGIN

Count := □;
ClassTotal :=
NumA := □;
NumB := □;
NumC := □;
NumD := □;
NumE := D

END; { of PROCEDURE Initialize >

This procedure can be called from the main program by
Initialize (Count/ ClassTotal/ NumA/ NumB/

NumC/ NumD/ NumE);

Procedures for Headers

We have been using procedures for headers since Chapter 4. Now we are
able to see how they relate to other subprograms and how they facilitate
program design. Unless you are using page numbers, inputting dates, or
some other heading change, no parameters are needed for this kind of
procedure. You should include such a procedure in all programs you write.

Procedures for Input
As noted earlier, a simplified pseudocode version of most programs is

1. Get the data
2. Process the data
3. Print results

Let's now take a closer look at procedures for input. Since the data ob
tained will be used in the program as well as the procedure, you will need
variable parameters declared in the procedure heading. Thus, if each line
of data contains three integer test scores, a reasonable procedure heading
is

PROCEDURE GetData (VAR Scorel/ ScoreP/ Score3 : integer);
The procedure could be called from the main program by

GetData (Scorel/ Score5/ Score3) ;

Note that the identifiers are selected so the program will be easier to read
and debug. The following example demonstrates a procedure to get data
for a program.

300 FUNCTIONS AND PROCEDURES

A NOTE OF INTEREST

Niklaus Wirth: Pascal to Modula-2

Niklaus Wirth began his work in the computing
field by taking a course in numerical analysis at
Laval University in Quebec, Canada. However,
the computer (Alvac III E) was frequently out of
order and the hexadecimal code programming
exercises went untested. He received his doc
torate from the University of California, Berke
ley, in 1963.

After other early experiences in program
ming, it became apparent to Wirth that com
puters of the future had to be more effectively
programmable. Consequently, he joined a re
search group that worked on developing a com
piler for an IBM 704. This language was NELIAC,
a dialect of ALGOL 58. In rapid succession, he
developed or contributed to the development of
Euler, ALGOL W, and PL360. In 1967, he re
turned to Switzerland and established a team of
three assistants with whom he developed and
implemented the language Pascal.

One of the main purposes of Pascal was its
use as a language for teaching. This was partic
ularly successful because it allowed the teacher
to focus on structures and concepts rather than
features and pecularities.
A decade later, Wirth's attention turned to

hardware design. In order to continue his work
and incorporate advances in technology, he de
veloped yet another language, Modula-2. This
was an offspring of Pascal and Modula. It was
developed for use with the Lilith, a computer
designed with all systems written in a single
language. Modula-2 compilers have been in use
since 1979. Recent versions are so efficient that

their code is approximately five thousand lines
long compared to Ada compilers of several
hundred thousand lines.

EXAMPLE 7.5 Write a procedure to get data for a program to print payroll checks for a company.
Each line of data contains one employee's initials, the hours worked (integer),
and the hourly rate (real). Thus, the data file could be depicted as

RJS 38 11.50|TRM42 9.85|JAH40 10.01

char;

A complete procedure for getting a line of data is

PROCEDURE GetData (VRR Initiall/ InitialE, Initial3
VAR Hours : integer;
VAR HourlyRate : real);

BEGIN

readln (Initl/ InitP, Init3, Hours, HourlyRate)
END; i of PROCEDURE GetData >

This procedure could be called from the main program by

GetData (Initiall, Initials, Initial3, Hours, HourlyRate);

Subprograms for Tasks

The second step in the problem solution

2. Process the data

can be quite complex. When an algorithm is developed to solve a problem,
this step usually requires several levels of refinement. When these levels
have been sufficiently refined, subprograms can be developed to imple
ment each level. Then the main program can call a major subprogram;
this subprogram in turn calls the appropriate subprograms as needed.
When writing procedures for various tasks, you need to be careful with

the use of value and variable parameters. If the main program needs a

7.5 Using Subprograms 301

different value of the variable for later use in the program, you must then
use a variable parameter. For instance, you would need a variable param
eter if a count is being made in a procedure or if a running total is being
kept. However, if the procedure merely performs some computation with
the values received, then the values may be passed with value parameters.
To illustrate, let's consider some of the tasks from our earlier problem

of computing grades for a class. One task was to print the data for one
student. The initials, three test scores, test average, and letter grade are
available for each student. Since the procedure only prints the data, all
values can be passed by value parameters. If typical output for one student
is the line

BRL flR S3 SS q2.33 R

the procedure could be as follows:

PROCEDURE PrintData (Initial!, InitialE, Initials : char;
Score!, Scores, ScoreB : integer;
Rver : real;

LetGrade : char);
BEGIN

write (Initial!:5D, Initials, InitialB);
write (Score!:!□, Scores:5, Scores:5);
writeln (Rver:!D:S, LetGrade:5)

END; { of PROCEDURE PrintData >

Another task from the same problem was to compute running totals for
the class. Therefore, we need to count the number of students, accumulate
averages so we can compute a class average, and count the number of
students receiving each letter grade. In this case, both value and variable
parameters will be needed. Formal variable parameters will be used for
the actual parameters

Count

ClassTotal
NumA, NumB, NumC, NumD, NumE

and formal value parameters will be used for the actual parameters
Aver

LetGrade

With the variables thus identified, the procedure could be
PROCEDURE ComputeTotals (Aver : real;

LetGrade : char;
VAR Count : integer;
VAR ClassTotal : real;
VAR NumA, NumB, NumC, NumD, NumE : integer);

BEGIN
Count := Count + !;
ClassTotal := ClassTotal + Aver;
CASE LetGrade OF

'A' : NumA ;= NumA + !
'B' : NumB := NumB + !
•C : NumC := NumC + !
•D' : NumD := NumD + !
'E' : NumE ;= NumE + !

END i of CASE LetGrade >
END; •{ of PROCEDURE ComputeTotals >

This procedure could be called from the main program by
ComputeTotals (Aver, LetGrade, Count, ClassTotal,

NumA, NumB, NumC, NumD, NumE);

302 FUNCTIONS AND PROCEDURES

Finally, let us consider the function Average. This function receives
three integer test scores, computes their average, and returns a real to the
main program. The function could be

FUNCTION Average (Scorel, ScoreP, Score3 : integer) : real;
BEGIN

Average := (Scorel + ScoreE + Score3) / 3
END; i of FUNCTION Average >

This could be called from the main program by

Aver := Average(Scorel, ScoreE, Score3);

Procedures for Output

A standard part of every program is to generate some output. Thus, when
designing a program, the general task

3. Print results

can either have a single procedure written for it or it can be refined into
subtasks and have a procedure written for each subtask. When writing
procedures for output, only value parameters are needed. Since you are
only printing results, it is not necessary to pass values back to the main
program.

Writing procedures for output can be tedious because of the need for
neat, attractive output. Be careful to use columns when appropriate, the
center of the page, underlining, blank lines, spacing within a line (for
matting), and appropriate messages.

Using Stubs

As programs get longer and incorporate more subprograms, a technique
frequently used to get the program running is stub programming. A stub
program is a no-frills, simple version of what will be a final program. It
does not contain details of output and full algorithm development. It does
contain a rough version of each subprogram and all parameter lists. When
the stub version runs, you know your logic is correct and values are
appropriately being passed to and from subprograms. Then you can fill
in necessary details to get a complete program.

Using Drivers

The main program is sometimes referred to as the main driver. When
subprograms are used in a program, this driver can be modified to check
subprograms in a sequential fashion. For example, suppose a main driver
is

BEGIN i Main driver >

Initialize (Count, Sum);

WHILE NOT eof DO

GetData (Sum, Count);
PrintResults (Sum, Count)

END.

The first procedure could be checked by putting comment indicators around
the rest of the program and temporarily adding a statement to print values
of variables. Thus, you could run the following version:

7.5 Using Subprograms 303

EXAMPLE 7.6

Sum is', Sum);

BEGIN { Main driver >

Initialize (Count, Sum);
writeln ('Count is', Count;

< WHILE NOT eof DO

GetData (Sura, Count);
PrintResults (Sura, Count) >

END.

Once you are sure the first subprogram is running, you can remove the
comment indicators and continue through the main driver to check suc
cessive subprograms.
To conclude this section, let's consider the following example.

Positive integers are considered to be perfect if the sum of the proper divisors
equals the number. For example, 6, with proper divisors of 1, 2, and 3 is a perfect
number. If the sum is greater than the number, the positive integer is abundant.
If the sum is less than the number, the integer is deficient. Given these descriptions,
let's consider the development of an interactive program that will get a positive
integer as input, determine whether it is deficient, perfect, or abundant, and print
an appropriate message.
A first-level pseudocode development for this is

1. Get the number

2. Sum the divisors

3. Print the results

A structure chart for this problem is given in Figure 7.13.

FIGURE 7.13

Structure chart for

PROGRAM

PerfectNumbers

Qet a
number

Initialize
Data
check

Adddiyisors
to sum

Print the
results

Get the
number

Sum the
divisors

Main

task

Module specifications for the main modules follow. Here, and in the remainder
of the text, the module names are written as they would be in functions and
procedures in code.

1. GetNumber Module

Data received: None

Information returned: Positive integer
Logic: Get a number interactively.

Use a REPEAT loop to guarantee good data.

2. SumOivisors Module

Data received: Number

Information returned: SumOfDivisors

304 FUNCTIONS AND PROCEDURES

Logic: Initialize SumOfDivisors to zero.
Use a FOR loop to check for divisors.
In each case, add each divisor to SumOfDivisors.

3. PrintResults Module

Data received: Number

SumOfDivisors

Information returned: None

Logic: Use nested IF ... THEN ... ELSE to print appropriate message.

A second-level pseudocode development is

1. Get the number

1.1 get a number
1.2 check for good data

2. Sum the divisors

2.1 initialize sum of divisors to zero

2.2 FOR each divisor less than the number, add divisor to sum of divisor

3. Print the results

3.1 IF SumOfDivisors is less than Number THEN
deficient message

ELSE

IF SumOfDivisor equals Number THEN
perfect message

ELSE

abundant message

The main program for this would be

GetNumber (Number);
SuniDivisors (Number, SumOfDivisors);
PrintResults (Number, SumOfDivisors);

The complete program for this is

PROGRftM PerfectNumbers (input, output);

VftR

Number, < Number to be examined >
SumOfDivisors : integer; i Sura of divisors of number >

****************** ********»*♦****)•

PROCEDURE GetNumber (VAR Number : integer);

{ Given: Nothing >
{ Task: Read a positive integer entered from the keyboard >
■(Return: The number read >

BEGIN

REPEAT

write ("Enter a positive integer and press <RETURN>. ');
readln (Number)

UNTIL Number > 0
END; < of PROCEDURE GetNumber }

<**♦************************************♦*******♦♦♦**♦**********)■

PROCEDURE SumDivisors (Number : integer;
VAR SumOfDivisors : integer);

•{ Given: A positive integer. Number >
■C Task: Sum the divisors of Number >
{ Return: SumOfDivisors of Number >

7.5 Using Subprograms 305

VAR

Divisor : integer;

BEGIN

SuraOfDivisors := □;
FOR Divisor := 1 TO Number DIV 5 DO

IF Number MOD Divisor = □ THEN
SumOfDivisors := SumOfDivisors + Divisor

END; { of PROCEDURE SumDivisors >

PROCEDURE PrintResults (Number/ SuraOfDivisors : integer);

{ Given: Number and SumOfDivisors }
< Task: Print a message that indicates whether the integer}
•(read was deficient/ perfect/ or abundant >
< Return: Nothing >

BEGIN

writeln;
write ('The number '/ Number/ ' is ');
IF SumOfDivisors < Number THEN

writeln ('deficient. ')
ELSE

IF SumOfDivisors = Number THEN
writeln ('perfect. ')

ELSE

writeln ('abundant. ');
writeln; writeln

END; (of PROCEDURE PrintResults >

•f ***********»♦*»*♦*♦♦*****************♦******♦*******♦»***♦♦****}

BEGIN { Main program >
GetNumber (Number);
SumDivisors (Number/ SumOfDivisors);
PrintResults (Number/ SumOfDivisors)

END. ■{ of main program >

Sample runs of this program produce
Enter a positive integer and press <RETURN>.
Enter a positive integer and press <RETURN>. L

The number L is perfect.

Enter a positive integer and press <RETURN>. 100

The number IDO is abundant.

Enter a positive integer and press <RETURN>. 5fl

The number 5fl is perfect.

Enter a positive integer and press <RETURN>. SO

The number 50 is deficient.

Enter a positive integer and press <RETURN>. 35

The number 35 is deficient. ■

306 FUNCTIONS AND PROCEDURES

Exorcises 7.5 l. Discuss whether value parameters or variable parameters should be used in
a procedure to

a. initialize variables.

b. get data.
c. print results.

2. Write a test program that utilizes subprograms for solving the problem of
reading integers from a data file, computing their sum and average, and
printing results. The main program should be along the lines of

BEGIN

Initialize (Count, Total);
WHILE NOT eof DO

GetData (Count, Total);
Average := FindAverage (Count, Total);
PrintHeading;
PrintResults (Count, Total, Average)

END.

3. Suppose the pseudocode for solving a problem is

1. Initialize variables

2. Print a heading
3. WHILE Flag = true DO

3.1 get new data
3.2 perform computations
3.3 increment counter

3.4 check Flag condition
4. Print results

Show how subprograms could be used to design a program to implement
this algorithm.

4. Write a function for each of the following tasks.

a. Given positive integer a and any integer h (positive, negative, or zero),
compute

b. Given real numbers a, b, and c, compute the discriminant - 4ac).

5. You have been asked to write a program for the Sleep Cheap motel chain.
Each line of the data file contains information for one customer. This infor
mation consists of number of nights occupancy (integer), room rate (real),
and telephone charges (real). Your program should print a statement for each
customer and keep totals for the number of customers served, total room
charges, and total telephone charges.

Assume the pseudocode for solving this problem is

1. Initialize variables

2. WHILE NOT eof DO

2.1 get customer data
2.2 perform computations
2.3 print statement
2.4 add totals

3. Print summary

a. Design a program to implement this algorithm.
b. Write a procedure or function for each statement of the algorithm.

6. Write a complete program to solve the grading problem posed at the begin
ning of this section.

7. Modify the program of Example 7.6 to allow the user to check several num
bers without having to rerun the program each time.

7.6 Forward Reference and Nesting 307

HI 7.6

Forward

Reference and

Nesting

OBJECTIVES

a to be able to use for

ward reference for

multiple
subprograms

a to be able to use

multiple subpro
grams in a program

a to be able to use

nested subprograms
in a program

n to understand the

scope of identifiers
when using multi
ple and nested
subprograms

By now you should be familiar with the important concepts of procedures
and functions and relatively comfortable with using them for the modular
design of a program. As you examined material in the first five sections
of this chapter, you may have noticed that use of subprograms was re
stricted to the main program calling procedures or functions and proce
dures or functions calling previously declared subprograms. In this section
we will examine more sophisticated uses of subprograms, specifically,
forward reference and nesting.

Subprograms That Call Other Subprograms

Sections 7.2 and 7.3 included brief discussions concerning the use of
multiple functions and procedures. In review, suppose a pro^am has two
functions (FUNCTIGN A and FUNCTION B) and a procedure (PROCE
DURE C). Schematically, this could be envisioned as shown in Figure
7.14. Thus far we have been able to have a subprogram call only subpro
grams that have been previously declared. For example, in the schematic,
FUNCTION B could call FUNCTION A and PROCEDURE C could call
either FUNCTION A or FUNCTION B. Any other calls would result in
errors.

FIGURE 7.14

Multiple
subprograms

PROGRAM

FUNCnONA

■■■I
FUNCTION B

FROCEDUKEC

Forward Reference

These restrictions on function and procedure calls impose limitations on
program development. There may be times when it is either desirable or
necessary for a subprogram to call another subprogram that appears later
in the declaration section. This can be accomplished by a forward reference.

A forward reference is achieved by listing the function or procedure
heading with all parameters followed by the reserved word FORWARD.
If a function is to be forward referenced, the function type should be
included as part of the heading listed; for example,

FUNCTION B (X : real) : real; FORWARD;

When the function or procedure is declared later in the program, the
parameter list and function type are omitted. To illustrate, consider

308 FUNCTIONS AND PROCEDURES

FUNCTION B (X : real) : real; FORHftRD;

FUNCTION A (Ch : char) : char;
BEGIN

END;

FUNCTION B;

BEGIN

of FUNCTION A

END; -C of FUNCTION B >

In this case, FUNCTION A can call FUNCTION B because FUNCTION B
has been forward referenced. FUNCTION B c£in call FUNCTION A because
FUNCTION A is declared before FUNCTION B.

Forward reference is necessary to list subprograms in a particular order
to make a program more readable. A programmer may, for instance, choose
to list functions in order of complexity from least complex to most com
plex or from most complex to least complex. Either listing might neces
sitate a forward reference. Also, a program design may require a forward
reference for some subprograms. If FUNCTION A has an option that calls
FUNCTION B and FUNCTION B has an option that calls FUNCTION A,
one of them must have a forward reference.

In summary, when using forward reference, you should

1. List all parameters and function types when the forward reference
is made.

2. Use the reserved word FORWARD as a statement when the for
ward reference is made.

3. Omit the parameter list when the forward-referenced subprogram
is written.

4. Use a comment to indicate what the parameter list is for the
forweird-referenced subprogram.

STYLE TIP When using a forward reference, use a line comment to indicate parameters
when the subprogram is developed...

FUNCTION First (31/82/S3:integer):integer; FORWARD;

FUNCTION Second (parameter list)creturn type;
BEGIN

END; < of FUNCTION Second >

FUNCTION First; -C (SlrS2/S3:integer) rinteger >
-V— /

comment here ■

7.6 Forward Reference and Nesting 309

Nesting

Since a subprogram can contain the same sections as the main program,
the declaration section of a function or procedure can contain Unctions
or procedures. When this occurs, the subprograms are said to be nested.
Subprograms can be nested to any level desired by the programmer. How
ever, as we've seen, several levels of nesting tend to make programs dif
ficult to follow and debug. If the nesting is too complicated, you should
redesign the program.

Nested subprograms may be represented as shown in Figure 7.15.

FIGURE 7.15

Nested subprograms
PROGRAM

FROCEDUREA

■ ̂ 4;;

FimcnoNC

This schematic representation of nesting assists us in understanding
the scope of various identifiers. Recall, identifiers are restricted to the
block (and all subblocks) in which they are declared. To illustrate, suppose
variables are declared in a program as shown in Figure 7.16. X, which is
declared in the main program, can be accessed by any subprogram in
this program. In particular, even the nested function, FUNCTION B, could
use values in X from the main program. However, XI can only he used
by PROCEDURE A and FUNCTION B. The variables used in this illus
tration and their scope are shown in Table 7.2.

TABLE 7.2

Scope of variables
for nested

subprograms

Variable Scope (can be accessed by)

X main program

PROCEDURE A

FUNCTION B

PROCEDURE C

XI PROCEDURE A

FUNCTION B

X2 FUNCTION B

Y1 PROCEDURE C

310 FUNCTIONS AND PROCEDURES

FIGURE 7.16

Variables in nested

subprograms

PROGRAM

X

FROCEDGREA

FROflEDGREG

We conclude the discussion on nesting subprograms with an example
that illustrates only nested functions. However, the principles behind it
apply to any combination of nested subprograms and to any level of
nesting.

EXAMPLE 7.7 Write a function TotalCharge to compute the total charge for guests of a motel
chain. You may assume that RoomRate and TaxRate have been defined in a CONST
section of the main program and that NumNights has been assigned an appropriate
value. The function will be called by

AmountDue := TotalCharge(NumNights};

For purposes of this example, the tax will be computed by a nested function Tax.
Thus, we have

FUNCTION TotalCharge (NumNights : Integer) : real;

VAR

RoomCharge/ RoomTax real;

real) real;FUNCTION Tax (RoomCharge
BEGIN

TAX := RoomCharge » TaxRate
END; < of FUNCTION Tax >

BEGIN { TotalCharge }
RoomCharge := NumNights * RoomRate;
RoomTax := Tax(RoomCharge);
TotalCharge := RoomCharge + RoomTax

END; < of FUNCTION TotalCharge >

7.6 Forward Reference and Nesting 311

Figure 7.17 is a schematic representation of the constants, variables, and
functions used in Example 7.7.

FIGURE 7.17

Schematic for

Example 7.7

PROGRAM

RoomRate ^IhxRate

AmountOue >'KutnNights

^FUNCHON IbtalCharge

1

Exercises 7.6 1. Explain why forward reference could be necessary in a program.

2. Write a test program to illustrate what happens when one subprogram calls
another subprogram that is listed later and a forward reference is not made.

3. Discuss the scope of identifiers in nested subprograms.

4. Find emd correct all errors in each of the following program segments.

a. FUNCTION AddOne (A : integer) : integer;

BEGIN

AddOne := A + 1

END; -C of FUNCTION AddOne >

PROCEDURE AddTwo (VAR B : integer);

BEGIN

B := AddOne(B);

B := AddOne(B)

END; { of PROCEDURE AddTwo >

b. PROCEDURE AddTwo (VAR B : integer);

BEGIN

B := AddOne(B);

B := AddOne(B)

END; < of PROCEDURE AddTwo }

FUNCTION AddOne (A : integer) : integer;
BEGIN

AddOne : = A + 1

END; < of FUNCTION AddOne >

312 FUNCTIONS AND PROCEDURES

FUNCTION ftddOne (A : integer) : integer; FORHRRD;

PROCEDURE AddTwo (VAR B : integer);

BEGIN

B := AddOne(B);

B := AddOne(B)

END; -C of PROCEDURE AddTwo >

FUNCTION AddOne (A : integer) : integer;

BEGIN

AddOne := A + 1

END; < of FUNCTION AddOne }

FUNCTION AddOne (A : integer) : integer; FORWARD;

integer);PROCEDURE AddTwo (VAR B

BEGIN

B := AddOne(B);

B := AddOne(B)

END; i of PROCEDURE AddTwo

FUNCTION AddOne;

BEGIN

AddOne := A + 1

END; < of FUNCTION AddOne

FUNCTION AddOne (A : integer) integer; FORWARD;

PROCEDURE AddTwo (Var B : integer);

BEGIN

B := AddOne(B);

B := AddOne(B)

END; i of PROCEDURE AddTwo >

FUNCTION AddOne; < (A : integer) ; integer >

BEGIN

AddOne := A + 1

END; < of FUNCTION AddOne >

Give a schematic representation and indicate the scope of identifiers for the
following subprograms contained in PROGRAM ExerciseFive.

PROGRAM ExerciseFive (input, output);

VAR

X, Y : real;

Ch : char;

PROCEDURE A (VAR XI : real;
Chi : char);

VAR

J : integer;
FUNCTION Inner (M : integer;

Y1 : real) : real;

BEGIN

END; < of FUNCTION Inner >

BEGIN i PROCEDURE A >

END; < of PROCEDURE A >

PROCEDURE B (XI : real;
VAR Ch5 : char);

BEGIN i PROCEDURE B >

END; Of PROCEDURE B

7.6 Forward Reference and Nesting 313

6. Consider the block structure shown in Figure 7.18 for PROGRAM
ExerciseSix.

a. Indicate which subprograms can be called from the main program.
b. Indicate all appropriate calls from one subprogram to another

subprogram.
c. List three inappropriate calls and explain why they cannot be made.

FIGURE 7.18 PROGRAM ExerciseSix

PROCEDURE One

■■

PROCEDURE Four

DNIGgae

r'k■} ii;'' •''^ '■ •'• f.'i

°

FUNCTION IWo

7. Consider the following program.

PROGRAM ExerciseSeven (input, output);

VAR

A/ B, Num integer;

PnNCTION MaxPower (Al, 81 : integer) : integer;
VAR

Prod/ K : integer;

PROCEDURE Sort (VAR A5/ 85 :
VAR

Temp : integer;
BEGIN < PROCEDURE Sort]

IF 85 < A5 THEN
BEGIN

Temp := A5;
A5 := 85;
85 := Temp

END { Of IF...THEN
END; i of PROCEDURE Sort

integer);

314 FUNCTIONS AND PROCEDURES

BEGIN -C FUNCTION MaxPower I

Sort (Al, Bl);

Prod := Al;

FOR K := 1 to Bl - 1 DO

Prod ;= Prod * Al;

MaxPower := Prod

END; i of FUNCTION MaxPower >

BEGIN { Main program I
read (A/ B);

Nura := MaxPower (A/ B);
writeln (Num)

END. i of main program >

a. Give a schematic representation and indicate the scope of identifiers.
b. What is the output if the numbers read for A and B are 5 and 3,

respectively?
c. Explain what this program does for positive integers A and B.

EQCUS ON -pjiig chapter ending program is an updated version of the program from
gROORAMMINS Chapter 6. This version is interactive and includes

W, ■ a bad data check
■ a sentinel value for input
■ procedures to accomplish subtasks

Typical output for the integer 17 is

Enter a positive integer, <-qqq> to quit. 17

The number is 17. The prime numbers
less than or equal to 17 are:

E

3

5

7

11

13

17

Enter a positive integer, <-qqq> to quit, -qqq

A first-level pseudocode development for this problem is

1. Get a number

WHILE MoreData DO

2. Process the number

3. Get a number

A second-level development is

1. Get a number

1.1 Get entry from the keyboard
1.2 Check for valid entry

WHILE MoreData DO

7.6 Forward Reference and Nesting 315

2. Process the number

IF Number is 1 THEN

2.1 print a message for one
ELSE

2.1 print primes less than Number
3. Get a number

3.1 Get entry from keyboard
3.2 Check for valid entry

Step 2.1 can be refined to

2.1 print primes less than Number
2.1.1 print a message
2.1.2 check for primes less than or equal to Number

Step 2.1.2 can be further developed to

2.1.2 check for primes less than or equal to Number
FOR K : = 2 TO Number DO

2.1.2.1 check to see if K is prime
2.1.2.2 If K is prime THEN print K in list of primes

Thus, the complete pseudocode development is

1. Get a munber

1.1 Get entry from the keyboard
1.2 Check for valid entry

WHILE MoreData DO

2. Process the number

IF Number is 1 THEN

2.1 print a message for one
ELSE

2.1 print primes less than Number
2.1.1 print a message
2.1.2 check for primes less than or equal to Number

FOR K : = 2 TO Number DO

2.1.2.1 check to see if K is prime
2.1.2.2 IF K is prime THEN print K in list of primes

3. Get a number

3.1 Get entry from the keyboard
3.2 Check for valid entry

With this pseudocode development, the main program would be

BEGIN { Main program >
GetANumber (Num, MoreData);
WHILE MoreData DO

BEGIN

IF Num = 1 THEN

PrintOneMessage
ELSE

BEGIN

PrintMessage (Num);
LlstAllPrimes (Num)

END; { of ELSE option }
GetANumber (Num, MoreData)

END < of WHILE loop >
END; i of main program >

316 FUNCTIONS AND PROCEDURES

Procedures would be written for each of the following modules:

GetANumber

PrintOneMessage
PrintMessage
ListAllPrimes

Module specifications for these modules are

1. GetANumber Module

Data received: None

Information returned: Number

Boolean flag MoreData
Logic: Get an entry from the keyboard.

Make sure the entry is valid or the sentinel value for termi
nating the process.

If the entry is the sentinel value, set the boolean variable
MoreData to false.

2. PrintOneMessage Module
Data received: None

Information returned: None

Logic: Print a message about one.
3. PrintMessage Module

Data received: Number

Information returned: None

Logic: Print a heading for the list of primes.

4. ListAllPrimes Module

Data received: Number

Information returned: None

Logic: For each integer less than or equal to Number, check to see
if it is prime.

If it is prime, print it in a list of primes.

A complete program for this problem is

PROGRAM ListPrimes (input, output);

CONST

Skip = ' ';
Dashes = ' ' ;

VAR

Num : Integer;
MoreData : boolean;

PROCEDURE GetANumber (VAR Num : integer;
VAR MoreData : boolean);

< Given: Nothing ^
■(Task: Read an integer entered from the keyboard >
{ Return: The integer read >

BEGIN
REPEAT

write ('Enter a positive integer, <-«=lR'=l> to quit. ');
readln (Num);
MoreData := Num <>

UNTIL (Num > □) OR (Num = -RRS)
END; i of PROCEDURE GetANumber >

1

7.6 Forward Reference and Nesting 317

<♦**************♦****************************♦**»*♦»»******♦*♦**>

PROCEDURE PrintOneMessage;

•{ Given: Nothing >
< Task: Print a message for 1 >
i Return: Nothing >

BEGIN
writeln;
writeln {Skip:lD, Dashes);
writeln;
writeln (Skip:50/ '1 is not prime by definition.');
writeln

END; i of PROCEDURE PrintOneMessage >

{*♦*****♦**********************************♦******»*♦♦♦♦♦♦*♦♦♦♦»>

PROCEDURE PrintMessage (Num : integer);

< Given: The integer read
■{ Task: Print a heading for the output
{ Return: Nothing

BEGIN
writeln;
writeln (Skip:10/ Dashes);
writeln;
writeln (Skip:2D, 'The number is ', Num,' . The prime numbers')
writeln (Skip:20, 'less than or equal to ', Num, ' are:');
writeln

END; i of PROCEDURE PrintMessage }

{ 3|C 3|e * * 3t(it: :4c * ♦ * 3K * * ^ 4c 4c 4: ♦ sit * 4c * 4:4c ♦ * * * * * >

PROCEDURE ListftllPrimes (Num : integer);

> 3

•{ Given:

i. Task:
•[read
< Return: Nothing

The integer read >
List all primes less than or equal to the integer >

>

}

VAR

Prime : boolean;
Candidate, LCV : integer;

BEGIN
FOR LCV := 2 TO Num DO

BEGIN
Prime := true;
Candidate := 2;
WHILE (Candidate <= sqrt(LCV)) AND Prime DO

BEGIN

IF LCV MOD Candidate = □ THEN
Prime := false

ELSE
Candidate := Candidate + 1

END;
IF Prime THEN

writeln (LCV:35)
END; i of FOR loop >

writeln; writeln
END; < of PROCEDURE ListAllPrimes >

i LCV has a divisor

< of prime check

< print each prime

> 4

J

318 FUNCTIONS AND PROCEDURES

■{******»♦♦**♦♦******♦******♦*♦*♦****♦*♦****♦♦*******************>

BEGIN { Main program }
GetftNumber (Num, HoreData);
WHILE MoreData DO

BEGIN
IF Num = 1 THEN

PrlntOneHessage
ELSE

BEGIN

PrintHessage (Num);
ListAllPrlmes (Num)

END; < of ELSE option >
GetANumber (Num/ HoreData)

END < of WHILE loop >
END. < of main program >

Sample output for this program is
Enter a positive Integer, <-«=iqR> to quit. ID

The number is ID. The prime numbers
less than or equal to ID are:

E

3
5

7

Enter a positive integer, <-qqq> to quit. 17

The number is 17. The prime numbers
less than or equal to 17 are:

E

3

5
7

11
13

17

Enter a positive integer, <-qqq> to quit,

1 is not prime by definition.

Enter a positive integer, <-qqR> to quit. E5

The number is E5. The prime numbers
less than or equal to E5 are:

E
3

Summary 319

5

7

11

13

17

IR

53

Enter a positive integer, <-RRR> to quit. -3
Enter a positive integer, <-RRR> to quit. 5

The number is 5. The prime numbers
less than or equal to 5 are:

Enter a positive integer, <-RRR> to quit. -RRR

RUNNING AND

DEBUGGING TIPS

1. Each subprogram can be tested separately to see if it is producing the desired
result. This is accomplished by a main program that calls and tests only the
subprogram in question.

2. You can use related but not identical variable names in the parameter lists. For
example,

PROCED0RE Compute (Nl,

VAR

N5

Av

integer;
real);

or

PROCEDURE Compute (Numberl, Numbers : integer;
VAR Average : real);

could be called by

Compute (Numberl, Numbers, Average);

3. Be sine the t3rpe and order of actual parameters and formed parameters agree.
You can do this by listing them one below the other. For example,

PROCEDURE GetData (VAR Initl,InitS:char; Scrinteger);
GetData (Initiall, Initials, Score);

4. Carefully distinguish between value parameters and variable parameters. If a
value is to be returned to the main program, it must be passed through a variable
parameter. This means it must be declared with VAR in the procedure heading.

Summary Key Terms

actual parameter
bottom-up testing
by reference
formal parameter
forward reference

function

global variable

local variable

main driver

modularity
nested subprogram
procedural abstraction
procedure
scope of an identifier

structured programming
stub programming
subblock

user-defined function

value parameter
variable parameter

320 FUNCTIONS AND PROCEDURES

Kejrwords

FORWARD FUNCnON exp
In

Key Concepts

■ A user-defined function is a subprogram that performs a specific task.
■ The form for a user-defined function is

FUNCTION function name (parameter list) : return type;
VAR

BEGIN

. I (work of function here)
END;

■ A formal parameter is one listed in the function or procedure heading; it is
like a blank waiting to receive a value from the calling program.

formal parameters

/ i V
FUNCTION Arithmetic (Syrarchar; Nl, N5:integer) : integer;

■ An actual parameter is a variable listed in the function or procedure call in
the calling program.

actual parameters

/ i i
Arithmetic (Symbol/ Numl, NumE);

■ The formal parameter list in the function heading must match the number
and types of actual parameters used in the main program when the function
is called.

FUNCTION Arithmetic (Syrarchar; Nl, NSrinteger) : integer;
Arithmetic (Symbol/ Numl/ NumE);

■ An assignment must be made to the function name in the body of the
function.

■ Within the function, the function name cannot be used on the right of an as
signment statement.

■ The general form for a procedure heading is

PROCEDURE name (parameter list);

a Value parameters are used when values are passed only from the main pro
gram to the procedure; a typical parameter list is

PROCEDURE PrintData (Nl/ NE : integer;
X/ Y : real);

■ Variable parameters are used when values are to be returned to the main pro
gram; a typical parameter list is

PROCEDURE GetData (VAR Initl/ InitE : char;
VAR Nl : integer);

■ Global variables can be used by the main program and all subprograms.
■ Local variables are available only to the subprogram in which they are

declared.

■ Each variable is available to the block in which it is declared; this includes
all subprograms contained within the block.

Summary 321

D Variables are not available outside their blocks.

a The scope of an identifier refers to the blocks in which the identifier is
available.

a Understanding scope of identifiers is aided by graphic illustration of blocks
in a program; thus,

PROGRAM Practice (input, output);
VAR

X, Y/ Z : real;

PROCEDURE Subl (XI : real);
VAR

X2 : real;

BEGIN

END; of PROCEDURE Subl

PROCEDURE Sub2 (XI : real);
VAR

ZE : real;

can be visualized as shown in Figure 7.19.

FIGURE 7.19

PROGRAM Practice

1 ■■

X

PRdGEDURE Subl

.. _.. _. .

radCEDURESubZ

□ Subprograms can be utilized to perform specific tasks in a program. Proce
dures are often used to initialize variables (variable parameters), get data
(variable parameters], print headings (no variables needed], perform computa
tions (value and/or variable parameters], and print data (value parameters],

a Forward reference of a subprogram can be achieved by listing the function or
procedure heading with all parameters and following that with the reserved
word FORWARD, as

FUNCTION B (X : real) : real; FORWARD;

322 FUNCTIONS AND PROCEDURES

■ Programming in order to facilitate the use of subprograms in writing progreuns to solve
Problems problems, the programming problems for this chapter consist of rede

signing previous programs.

1. In Chapter 6 (Problem 1), you modified the program for the Caswell
Catering and Convention Service so that they could use it for all of
their customers. Now, revise the program so that you use a separate
procediure for each of the following:
a- compute meal cost.
b. compute room rate.
c. compute surcharge.
d. compute discount,
e* print a statement.

Use functions to compute the tax and tip.

2. A prime number is a positive integer that can be divided evenly
only by 1 and the number itself (for example, 17). Write a program
that will determine whether or not a given positive integer is prime.
[Hint: you only have to check for divisors less than or equal to the
square root of the number being tested. Thus, if 79 is the positive
integer being examined, the check of divisors would be 2, 3,..., 9.)
Write a function that returns a boolean value of true for a prime
number or false otherwise (a composite number).

3. Now that you have a "prime number checker," write a program that
reads an integer from a data file and prints all primes less than or
equal to the integer read. Include checks for negative integers, zero,
and one. Use one procedure to read and check the data and another
to print the primes. The second procedure should call the function
developed in Problem 2.

4. In Chapter 5 (Problem 4) and Chapter 6 (Problem 3) you wrote and
revised a program for the Community Hospital. Now, write functions
for each of the following:
a. compute room charge.
b. compute telephone charge.
c. compute television charge.

5- In Chapter 6 (Problem 5) you wrote a program to compute the miles
per gallon for each tank of gas used by a traveler and the cumulative
miles per gallon each time the tank was filled. Revise that program
by writing procedures to get a line of data and print a line of output.
Write functions to compute the mileage per tank and the total
mileage.

6. In Chapter 6 (Problem 6), you wrote a program that read pairs of
positive integers and produced Parkside's Other Triangle for each
pair. Write procedures for each of the following:
a- get the data.
b. check for bad data.
c. print the triangle.

7. Back in Chapter 5 you wrote a program for Dr. Lae Z. Programmer
(Problems 9 and 10). You revised that program in Chapter 6 (Prob
lem 11). Now it's time to revise it yet again. Write procedures to get
the data Dr. Lae Z. Programmer has requested (the overall class aver-

Programming Problems 323

age and the number of students receiving each letter grade) and to
print the results. Use a function to compute the grade.

8. Problem 12 in Chapter 6 asked that you revise the Pentagon Parking
Lot problem you worked on in Chapter 5 (Problem 13). Using that
program, write procedmes to get the data and print results. Develop
one function to compute the number of hours in the parking lot and
another to compute the parking fee.

JHAPTEF1

■* 7

■ ■ ■ I
m
1 !
■ 1
I ■ 1 1

■ 1
I 1
1 1
I 1

■ ■ ■ I
r.

Text Files and User-
Defined Data Tjrpes

In the earlier chapters on problem solving and program design, a
simplified version of designing a program to solve a problem was

presented as: get the data, do something with it, and print the results. We
then proceeded to develop skills that allow us to do something with
existing data. Now we are going to examine two features of Pascal that
allow us to work with larger data bases in a more sophisticated manner.
We will first examine the storage and retrieval of data. Then, we will take
a closer look at managing the type of data that can be used in a program.
Prior to now, we have worked exclusively with data of type real, char,
integer, or boolean. In this chapter, we will see how Pascal permits other
data types to be defined and subsequently used in a program.

B 8.1

Text Flies

OBJECTIVES

a to understand how
data can be stored
in text files

a to be able to read
from a text file

a to be able to write
to a text file

a to understand the
difference between
internal and exter
nal files

The implementation of concepts presented in this section depends on the
computer you are using; it is very system dependent. It is essential that
your instructor supplement this material with examples and explanations
suitable for your particular environment. At the very least, you should be
able to use the manual for your system for reference.

Consider the relatively simple problem of using a computer to compute
and print water bills for a community of 30,000 customers. If the data
needed consist of a customer name, address, and amount of water used,
you can imagine that entering this information interactively every billing
period would involve an enormous amount of time. In addition to saving
that time, it is often desirable to save information between runs of a
program for later use.

To avoid these problems, we can store data in some secondary storage
device, usually magnetic tapes or disks. Data can be created separately
from a program, stored on these devices, and then accessed by programs
when necesseiry. It is also possible to modify and save this information

324

8.1 Text Files 325

for other runs of the same program or for running another program using
this same data. For now we will store all data in text files (other kinds of
files are examined in Chapter 12).

Text files can be created by a text editor or by a program. Often the
editor you use to create your progreun can be used to create a text file.
The use of text editors varies significantly and you should consult your
instructor and/or manual to use this method. This, however, is how your
instructor may create data files for you to use with subsequent program
ming problems.

Data in a text file can be thought of as a sequence of characters stored
in a sequence of lines. As you've already seen, each line has an end-of-
line (eoln) marker (|) after it; each file has an end-of-file (eof) marker
(■) after the last end-of-line marker. For example, suppose a text file is
used to store data for students in a class. If each line consists of an iden
tification number for each student followed by three scores, a typical file
can be envisioned as

00723 85 93 1001

00131 78 91 851

00458 82 75 861 ■

Technically these lines are stored as one continuous stream with end-of-
line markers used to differentiate between lines and the end-of-file marker
to signify the end of one file.

00723 85 93 100100131 78 91 85100458 82 75 861

However, we frequently use separate lines to illustrate lines in a text file.
Both end-of-line and end-of-file markers are appropriately placed by the
computer at the time a file is created. When characters are read, eoln
markers are read as blanks.

When a text file in secondary storage is to be used by a program, a file
variable must be included in the file list along with the standard files
input and output as part of the program heading. Thus, if ClassList is the
file variable, a heading might be

PROGRAM ClassRecordBook (input, output, ClassList);

This file variable must be declared in the variable declaration section and
is of type text. Thus, the declaration section would be

VAR

ClassList : text;

Reading firom a Text File

Reading from a text file is very similar to getting input interactively or
reading from a standard input file. Standard procedures read and readln
are used with appropriate variables as argimients in either format as shown.

read (file variable, input list);
or

readln (file variable, input list);

326 TEXT FILES AND USER-DEFINED DATA TYPES

If the file variable is not specified, the standard file input is assumed.
Thus, data from one line of the file of student test scores, ClassList, can
be obtained by

readln (ClassList/ IDNumber/ Scorel/ ScoreS/ ScoreS);

Before data can be read from a file, the file must be opened for reading.
This is done by the statement

reset (file variable);

This statement moves a data pointer to the first position of the first line
of the data file to be read. Thus,

reset (ClassList);

positions the pointer as follows:

00723 85 93 100100131 78 91 85100458 82 75 861
t

pointer here

As data items are read using readln, values are stored in the designated
variables and the pointer is moved to the first position past the end-of-
line marker. Thus,

reset (ClassList);
readln (ClassList/ IDNumber/ Scorel/ ScoreS/ ScoreB);

results in

00723 85 93 100

IDNumber Scorel Score2 Score3

00723 85 93 100100131 78 91 85100458 82 75 861

painter

It is not necessary to read all values in a line of data. If only some values
are read, a readln statement still causes the pointer to move to the first
position past the end-of-line marker. Thus,

reset (ClassList);
readln (ClassList/ IDNumber/ Scorel);

results in

00723 85

IDNumber Scorel

00723 85 93 100100131 78 91 85100458 82 75 861

pointer

However, when data items are read using read, the pointer moves to the
first position past the last data item read. Thus, the statement

read (ClassList/ IDNumber, Scorel);

results in the following:

00723 85

IDNumber Scorel

8.1 Text Files 327

00723 85 93 100100131 78 91 85100458 82 75 861 ■
T

pointer

Variables in the variable list of read and readln can be listed one at a

time or in any combination that does not result in a type conflict. For
example,

readln (ClassLlst/ IDNumber/ Scorel);

can be replaced by

read (ClassLlst^ IDNumber);

readln (ClassLlst/ Scorel);

Only if the data pointer is at an end-of-line or end-of-file marker is the
boolean function eolnffile variable) true. Similarly, eofffile variable] is
true only when the data pointer is positioned at the end-of-file marker.
This allows both eoln(£ile variable) and eof(file variable) to be used as
boolean conditions when designing problem solutions. Thus, part of a
solution might be

WHILE NOT eof[file variable) DO

process a line of data

In this loop, data from one line of the text file would typically be read by
a readln statement. This allows the end-of-file condition to become true

after the last data line has been read.

Text files can contain any character available in the character set being
used. When numeric data are stored, the system converts a number to an
appropriate character representation. When this number is retrieved from
the file, another conversion takes place to change the character represen
tation to a number.

EXAMPLE 8.1 Let's now write a short program that uses the text file ClassLlst and the end-of-
file (eof) condition. If the problem is to print a listing of student identification
numbers, test scores, and test averages, a first-level pseudocode development is

1. Print a heading
2. WHILE NOT eof(file variable] DO

2.1 process a line of data

Step 2.1 can be refined to

2.1 process a line of data
2.1.1 get the data
2.1.2 compute test average

2.1.3 print the data

A short program to accomplish this task is

PROGRAM ClassRecordBook (Input/ output/ ClassLlst);

< This program uses data from a text file. Data for each }
•{ student are on a separate line in the file. Lines are I
-{ processed until there are no more lines. >

VAR

Scorel/ ScoreE/ ScoreB/

IDNumber : integer;
TestAverage : real;
ClassLlst : text;

< Test scores >

< Student number >

< Average of three tests >
{ External file }

328 text files and user-defined data types

FUNCTION Average (Scorel/ Scores/ Score3 : integer) : real;

{ Given: Three integers >
{ Task: Compute their average }
{ Return: The average of three integers }

BEGIN

Average := (Scorel + ScoreB + ScoreB) / 3;
END; < of FUNCTION Average >

PROCEDURE PrintHeading;

■(Given: Nothing >
< Task: Print the heading >
< Return: Nothing >

CONST

Skip = • ' ;

BEGIN
writeln; writeln;
writeln ('Identification Number'/ Skip:5/ 'Test Scores'/

Skip:5, 'Average');
writeln (' '/ Skip:5/ ' '/

Skip:5/ ' •);
writeln

END; ■(of PROCEDURE PrintHeading >

BEGIN { Main program >
reset (ClassList);
PrintHeading;
WHILE NOT eof(ClassList) DO

BEGIN
readln (ClassList/ IDNumber/ Scorel/ ScoreB/ ScoreB);
TestAverage := Average(Scorel/ ScoreB/ ScoreB);
writeln (IDNumber:ID/ Scorel:1R/ ScoreB:</ ScoreB:</

TestAverage:11:B)
END < of WHILE NOT eof DO loop >

END. < of main program >

When this program is run using the text file ClassList with values

00123 85 93 100100131 78 91 85100458 82 75 861

the output produced is
Identification Number Test Scores Average

IBB 05 RB IGD RB.b?
131 70 R1 05 O^.t?
<50 OB 75 OL 01.□□ II

A note of caution is in order. Any attempt to read beyond the end of
a file results in an error. To illustrate, if

read (ClassList/ IDNumber/ Scorel/ ScoreB/ ScoreB);

8.1 Text Files 329

had been used in the previous example instead of

readln (ClassList, IDNuraber, Scorel, ScoreS/ Score3);

an error would have occurred because, when read is used with the last
line of data, the data pointer is positioned as

00458 82 75 861
T

pointer

At this point, even though eoln (ClassList) is true, eof (ClassList) is still
false and the loop for processing a line of data would be entered one more
time. Using readln, however, positions the data pointer as

00458 82 75 861
t

pointer

and this causes the end-of-file condition to be true when expected.

Writing to a Text File

It is also possible to write to a text file. If you want the file saved for later
use, a file variable must be included in the file list as part of the program
heading just as is done when reading from files. The file variable must
also be declared to be of type text. Before writing to a file, it must be
opened for writing by

rewrite (file variable);

This standard procedure creates an empty file with the specified name.
If there were any values previously in the file, they are erased by this
statement. Data are then written to the file by using standard procedures
write and writeln. The general form is

write (file variable, list of values);
or

writeln (file variable, list of values);

These both cause the list of values to be written on one line in the file.
The difference is that writeln causes an end-of-line marker to be placed
after the last data item. Using write allows you to continue entering data
items on the same line with subsequent write or writeln statements. If
you wish,

writeln (file variable);

can be used to place an end-of-line marker at the end of a data line.
Formatting can be used to control spacing of data items in a line of

text. For example, since numeric items must be separated, you might
choose to put test scores in a file by

writeln (ClassList, Scorel:4, ScoreE:<, Score3:4);

If the scores are 85, 72, and 95, the line of data created is

85 72 95^

and each integer is allotted four columns. Let's now illustrate writing to
a file with an example.

330 text files and user-defined data types

EXAMPliE 8.2 write a program that allows you to create a text file containing data for
students in a class. Each line in the file is to contain a student identification

number followed by three test scores. A first-level pseudocode development is

1. Open the file
2. WHILE more data DO

2.1 process a line

Step 2.1 can be refined to

2.1 process a line
2.1.1 get data from keyboard
2.1.2 write data to text file

, A complete program for this is

a PROGRAM CreateFile (input/ output/ ClassList);

< This program creates a text file. Each line of the file >
<. contains data for one student. Data are entered inter- >

< actively from the keyboard and then written to the file. >

VAR

Scorel/ ScoreP/ Score3/ < Scores for three tests >
IDNumber : integer; < Student number >
Response : char; •(Indicator for continuation >
MoreData : boolean; ■(Loop control variable >
ClassList : text; .1 External text file >

•(***********♦**********♦********************♦♦»**♦♦*»♦*****♦***♦)■

PROCEDURE GetStudentData (VAR IDNumber/ Scorel/ Scores/
Score3 : integer);

< Given: Nothing >
{ Task: Get IDNumber and three test scores from the >
•(keyboard >
i Return: IDNumber/ Scorel/ ScoreE/ and Score3 >

BEGIN

write ('Please enter a student ID number');
writeln (' and three test scores.');
writeln ('Separate entries by a space. ');
writeln;
readln (IDNumber/ Scorel/ ScoreE, Score3)

END; < of PROCEDURE GetStudentData >

■{:(c:4c:|c:tc:|c:t::|c:t::tc4:4::tc4c:|c:|c:|c:|c:(c^:(c:tcj(c:|c^4e:|c:(e:(c;tc:4t:|c;(c:(c:fc:|c:|c3|c9|c^3tc34c:|e:|c:(e9|c9|c:|c^:(c:)c;|c;|c:|c4c;(c:|c:|(9|c4c4e:|e4c9^1

BEGIN i Main program >
rewrite (ClassList); i Open for writing >
MoreData := true;
WHILE MoreData DO

BEGIN
GetStudentData (IDNumber, Scorel, ScoreE, Score3);
writeln (ClassList, IDNumber, Scorel:^, ScoreE:<, Score3:<);

i Check for more data >

writeln;
writeln ('Any more students? Y or N');
readln (Response);
IF Response = 'N' THEN

MoreData := false
END { of WHILE...DO loop >

END. { Of main program I 1^

8.1 Text Files 331

External and Internal Files

Files used thus far have been extemaliiles, files that are stored in secondary
memory and are external to main memory. If a program is to use an external
file, a file variable must be included in the file list portion of the program
heading. The file variable must then be declared in the variable declaration
section as type text.
On some occasions, it is desirable to use a file only while the program

is running and it is not necessary to save the contents for later use. In this
case, an internal file can be created by declaring a file variable of type text
in the variable declaration section, but it should not be included in the
file list of the program heading. Internal files are frequently called tem
porary files. They are normally used during file processing when it is
desirable to temporarily save the contents of a file that is being altered.
Our next example illustrates use of an internal file.

EXAMPLE 8^ ® program that allows you to update the text file ClassList by adding
one more test score to each line of data. We need two text files in this program;
ClassList (external) and TempFile (internal). With these two files, we can create
new lines in TempFile by reading a line from ClassList and getting a score from
the keyboard. When all lines have been updated, we copy TempFile to ClassList.
A first-level pseudocode solution for this problem is

1. Open files (reset ClassList, rewrite TempFile)
2. WHILE NOT eof (ClassList) DO

2.1 read one line

2.2 get new score

2.3 write one line to TempFile
3. Open files (reset TempFile, rewrite ClassList)
4. Update file

WHILE NOT eof (TempFile) DO
4.1 read one line from TempFile
4.2 write one line to ClassList

A complete program for this problem is

PROGRAM UpdateClassList (input, output, ClassList);

i This program updates an existing text file. The process >
■f requires a second file. Contents of the external file are >
< copied to a temporary internal file and the external file >
< is then updated one line at a time. >

VAR

Scorel, Scores, < Scores for four tests >
Scores, Scored,
IDNumber : integer; ■(student number }
ClassList, TempFile : text; i Text files >

BEGIN < Main program >
reset (ClassList); < Open files >
rewrite (TempFile);
WHILE NOT eof (ClassList) DO •{ Copy to TempFile }

BEGIN

readln (ClassList, IDNumber, Scorel, Scores, ScoreS);
write ('Enter a new test score for student ', IDNumber, ' ')•
readln (Scored);
writeln (TempFile, IDNumber, Scorel:4, ScoreS:4,

Scores:4, Scored:4)
END; < of lines in ClassList >

332 TEXT FILES AND USER-DEFINED DATA TYPES

reset (TempFile); < Open files >
rewrite (ClassList); < Note: contents of old ClassList erased >
WHILE NOT eof(TempFile) DO < Copy to ClassList >
BEGIN

readln (TempFile, IDNumber, Scorel, Score2, ScoreB, Scored);
writeln (ClassList, IDNumber, Scorel:4, Scores ScoreB:^,

Scored:<)

END < of copying TempFile to ClassList >
END. i of main program >

EXAMPLE 8.4 ^ illustration of using eoln, let's write a program that replaces all blanks in
' a text file with asterisks. Output is directed to the monitor and a new text file is

created for the purpose of saving the altered form of the original text file.
A pseudocode development of this is

WHILE NOT eofiFileWithBlanks) DO
WHILE NOT eoln(FileWithBlanks) DO

1. Read a character

2. IF character is a blank THEN

2.1 replace with an asterisk
3. Write character to FileWithoutBlanks

4. Write character to the screen

A complete program for this is

PROGRAM DeleteBlanks (input, output, FileWithBlanks,
FileWithoutBlanks);

<. This program illustrates using eof and eoln with a text >
< file. It replaces blanks with asterisks. >

VAR

FileWithBlanks, < Existing text file >
FileWithoutBlanks : text; -l Altered text file >
Ch : char; < Used for reading characters >

BEGIN

reset (FileWithBlanks); <■ Open the files I
rewrite (FileWithoutBlanks);
WHILE NOT eof(FileWithBlanks) DO

begin < Process one line >
WHILE NOT eoln(FileWithBlanks) DO

BEGIN

read (FileWithBlanks, Ch);
IF Ch = • • THEN

Ch := '*• ;
write (FileWithoutBlanks, Ch);
write (Ch) < Write to the screen I

END; < of reading one line >
writeln (FileWithoutBlanks); i Insert end-of-line >
writeln;
readln (FileWithBlanks) < Advance the pointer >

END { of lines in text file >
END. { of main program >

When this is run using the text fi le
This is a text file with normal blanks.
After it has been processed by
PROGRAM DeleteBlanks, every blank will
be replaced with an asterisk

the output to the screen is

8.1 Text Files 333

Thls*is*a*text*file*wlth*normal*blanks.

Aftert^it^has^fbeen^processed^by
PROGRAM*DeleteBlanks,*every*blank*will
be*replaced*with*an*asterisk*"*ri,

The external text file FileWlthoutBlanks also contains the version shown as
output. H

The material in this section allows us to make a substantial change in
our approach to writing programs. We can now proceed assuming data
files exist for a program. This somewhat simplifies program design and
also allows us to design programs for large sets of data. Consequently,
most programs developed in the remainder of this text use text files for
input. If you wish to continue with interactive programs, you should he
able to make appropriate modifications.

Exercises 8.1 1. Explain the difference between an external file and an internal file. Give
appropriate uses for each.

2. Write a test program that allows you to print a line of text from a file to the
output file.

3. Explain what is wrong with using

writeln (ClassLlst^ Scorel^ Scorea, Score3);

if you want to write three scores to the text file ClassList.

4. Write a program that allows you to print a text file to the output file line by
line.

5. Assume that a text file, InFile, is as illustrated.

18|19M1 -14.31J0|142.1F1 ■

For each question, the pointer is positioned at the beginning of the file and
the variable declaration section of a program is

VAR

A/ B : integer:
X/ Y : real;

CH : char;

InFlle : text;

What output is produced from each segment of code?

a. read (InFile, A);

read (Infile, B, Ch);

writeln (A:5, B:5, Ch:S);
b. read (Infile, Ch);

write (ChrlD);

readln (InFile, Ch);

writeln (Ch);

read (InFile, Ch);

writeln (ChrlD);

c. read (InFile, A, B, Ch, X);
writeln (A, B, Ch, X);

writeln (A:5, B:5, ChrS, X:1D:E);
read (InFile, Ch);

writeln (Ch:5);

334 TEXT FILES AND USER-DEFINED DATA TYPES

d. readln (InFile);

read (InFilS/ Ch, Ch);
readln (InFile/ Y);

writeln (Ch:5/ Y:1D:2);

6. Using the same stream input and variable declaration section in Exercise 5,
indicate the contents of each variable location and the position of the
pointer after the segment of code is executed. Assume the pointer is posi
tioned at the beginning for each problem.

a. read (InFile/ Ch/ A);

b. readln (InFile/ Ch/ A);

c. readln (InFile);

d. readln (InFile);

readln (InFile);

e. readln (InFile/ A/ B/ Ch/ X);

f. read (InFile/ A/ B, Ch/ Y);

g. readln (InFile/ A/ Ch);

readln (Infile/ Ch/ Ch/ B);

h. read (InFile/ A/ B, Ch/ X/ Ch);

7. Again use the same stream input and variable declaration section as in Ex
ercise 5. For each of the following segments of code, indicate if the exercise
produces an error and, if so, explain why an error occurs.

a. read (InFile/ X/ Y);

b. readln (InFile/ A);

read (InFile/ B);
c. readln (InFile/ Ch);

readln (InFile/ Ch);

readln (InFile/ Ch);
d. read (InFile/ X/ A/ Ch/ B, Ch);

e. readln (InFile);

read (InFile/ Ch/ Ch/ A/ Ch/ B);

B. Write a complete Pascal program that reads your (three) initials and live
test scores from a text file. Your program should then compute your test
average and print out all information in a reasonable form with suitable
messages.

9. Write a program that allows you to create a text file that contains your
name, address, social security number, and age. reset the file and have the
information printed as output. Save the file in secondary storage for later
use.

10. Show what output is produced from the following program. Also indicate
the contents of each file after the program is run.

PROGRAM ExerciselO (input/ output/ FS);

VAR

Ch : char;

Fl/ F2 : text;

BEGIN

rewrite (Fl);
rewrite (FS);

writeln (Fl/ 'This is a test.');
writeln (Fl/ 'This is another line.');
reset (Fl);

8.2 TYPE Definitions in Pascal 335

WHILE NOT eof(Fl) DO

BEGIN

WHILE NOT eoln(Fl) DO
BEGIN

read (Fl/ Ch);
IF Ch = ' • THEN

writeln ('*')
ELSE

write (Fa, Ch)
END;

readln (Fl)
END

END.

11. Write a program that deletes all blanks from a text file. Your program
should save the revised file for later use.

12. Write a program using a CASE statement to scramble a text file by replacing
all blanks with an asterisk (*), and interchanging all A's with U's and E's
with I's. Your program should print out the scrambled file and save it for
subsequent use.

13. Write a program to update a text file by numbering the lines consecutively
as 1, 2, 3,

14. Write a program to count the number of words in a text file. Assume that
each word is followed by a blank or a period.

15. Write a program to find the longest word in a text file. Output should
include the word and its length.

16. Write a program to compute the average length of words in a text file.

■ B ■ ■

B 8.2

TYPE

Definitions

in Pascal

pBjEcjriyiEg

■ to understana what

is meant by ordinal
data type

■ to be able to declare

user-defined data

types

■ to be able to use

user-defined data

types in a program

■ to understand why
user-defined data

tjrpes are of value in
writing programs

Ordinal Data Types

Of the four data types we have previously used, integer, char, and boolean
are called ordinal data types. This means the data are countable and they
can be ordered cuid compeu-ed. The real type is not an ordinal data type
because reals are not countable. Permissible values for data of these three
ordinal data types are as follows:

Data Tjrpe Values

integer -maxint to maxint

char Character set in a

collating sequence
boolean true, false

The four data types integer, char, boolean, and real used thus far are
standard data types. We are now ready to see how Pascal allows us to
define other data types called user-defined data types.

Simple User-Defined Data Types

The declaration section of a program may contain a TYPE definition sec
tion that can be used to define a data type. For example,

336 TEXT nLES AND USER-DEFINED DATA TYPES

TYPE

Weekday = (Mon/ Tues, Wed/ Thur/ Fri);

After such a definition has been made, the variable declaration section

can contain identifiers of the type Weekday. Thus, we could have

VAR

Day : Weekday;

Values in a user-defined data type can be any legal identifier. Several
comments are now in order concerning the TYPE definition.

1. Simple user-defined data types are frequently referred to as enu
merated types (structured user-defined data types are discussed
later).

2. This defined type will be an ordinal data type with the first de
fined constant having ordinal zero. Ordinal values increase by one
in order from left to right (succ, pred, and ord can be used).

3. Variables can be declared to be of the new type.
4. The values defined in the TYPE definition section are constants

that can be used in the program. These values must be valid
identifiers.

5. No identifier can belong to more than one user-defined data type.
6. Identifiers that are defined values cannot be used as operands in

arithmetic expressions.

Thus, given the previous TYPE definition of Weekday and the variable
declaration of Day, each of the following would be an appropriate program
statement.

a. Day := Tues;

b. Day := pred(Day);
C. IF Day = Mon THEN

ELSE

d. FOR Day := Men TO Fri DO
BEGIN

END;

Having seen an example of a user-defined data type and some typical
related program statements, let us look at a more formal method of defi
nition. In general, we have

TYPE

type identifier = (constantl, constant2, ... constantn);
VAR

identifier : tjrpe identifier;

8.2 TYPE Definitions in Pascal 337

The TYPE definition section is part of the declaration section of a program.
It follows the constant definition section (CONST) and precedes the vari
able declaration section (VAR) as shown in Figure 8.1.

FIGURE 8.1

Placement of TYPE

definition section

Heading

Declaration

section

IZ PROGRAM name (input, output);

CONST

TYPE

VAR

(subprograms here]

Executable

section

BEGIN { Main program }

_ END. { of main program }

The following short program illustrates the placement and use of user-
defined data types.

PROGRAM TypePrac (output);

CONST

Skip = • ';

TYPE

Weekday = (Mon, Tues, Wed/ Thur, Fri);

VAR

Day : Weekday;

BEGIN

Day := Wed;
IF Day < Fri THEN

wrlteln (SkiprSD/ 'Not near the weekend.')
ELSE

writeln (SkipiBD/ 'The weekend starts tomorrow.')
END.

The output from this program is

Not near the weekend.

338 TEXT FILES AND USER-DEFINED DATA TYPES

Reasons for Using Simple User-Defined Types

At first it may seem like a lot of trouble to define new types for use in a
Pascal program, but there are several reasons for using them. In fact, being
able to create user-defined types is one of the advantages of using Pascal
as a programming language. Why? With user-defined data types, you can
express clearly the logical structure of data, enhance the readability of
your program, provide program protection against bad data values, and
declare parameters in subprograms.

Suppose you are working on a program to count the number of days
in the month of a certain year. User-defined data types allow you to use
the following definition and subsequent declaration.

TYPE

AllMonths = (Jan/ Feb, March, April, May, June, July,
Aug, Sept, Oct, Nov, Dec);

VAR

Month : AllMonths;

With this definition it is easier to understand what the code does. It could
contain a statement such as

IF (Month = Feb) AND (Year MOD < = □) THEN
NuraDays := 2^;

This clearly indicates that you are counting the extra day in February for
a leap year. This is an over-simplification of checking for a leap year. (See
Exercise 7 at the end of this section.)

Simple user-defined data types may be used in CASE statements. For
example, movie ticket prices are frequently broken into three categories:
youth, adult, and senior citizen. If the following definition and declaration
were made,

TYPE
Categories = (Youth, Adult, Senior);

VAR
Patron : Categories;

a program statement could be something like
CASE Patron OF

Youth : Price := YouthPrice;
Adult : Price := AdultPrice;
Senior : Price := SeniorPrice

END; i of CASE Patron >

Once a user-defined data type has been defined at the global level, it
is available to all subprograms. Thus, if you have a function for counting
the days, a typical function heading might be

FUNCTION NumDays (Month : AllMonths;
Year : integer) : integer;

This aspect of user-defined data types will become more significant when
we examine structured data types, including arrays and records.

You need to be aware of a limitation imposed on variables that are of
a user-defined type: they are for internal use only; you cannot read or
write values of these variables. Thus, in the earlier example using months
of the year, you could have the following statement:

Month := June;

but not

writeln (Month);

8.2 TYPE Definitions in Pascal 339

AITOTEvGEWraREST

The Software System Life Cycle

The focus of this text has heen in two areas. First,
given a prohlem, design a solution to it. We have
done this through the use of modular structure
charts euid module specifications in pseudocode.
Second, once the design is finished, implement
the solution in the Pascal programming lan
guage. However, it is safe to say that, at this stage
of yom computer science career, you have not
yet been involved in the development of a real
istically large software system. Computer sci
entists realize that the development of such large
systems actually requires more than just a design
and Pascal coding. They identify three other
phases in the development of such a system.
Collectively, the five phases comprise what is
knovvm as the software system life cycle. Chrono
logically, these phases are ordered as follows:

1. Analysis phase
2. Design phase
3. Coding phase
4. Testing/verification phase
5. Maintenance phase

You might wonder how an3rthing could pre
cede the design phase. The key here is that, in
the design phase, we assume that the problem
is understood. This may seem self-evident to you,
hut remember that you have only developed pro
grams to solve small problems that were specif
ically stated. Outside of your course work, pro
grams are written not to complete an assignment,
but to satisfy the needs of computer users. Such
users are t)rpically very vague in describing what
they want the computer to do for them. During
the analysis phase, we must learn from the users
exactly what they want the computer to do. This
is not an easy task since many times users will
be very naive about what they expect from the
computer. A great deal of communication must
take place between the user and the systems an
alyst. The systems analyst specializes in trans
lating these vaguely stated needs into a formal
problem statement, which can then be passed on
to the design phase. The area of systems analysis
is so complex that it constitutes an entire field
of specialization within computer science. Even
if you do not go on to do further study in this
area, the fact that you have become computer
literate by taking an introductory course should
help you in your role as a user who eventually
may have to communicate with a systems analyst.

To understand the importance of the testing/
verification phase, consider the following ques

tion: "How many test runs of a program should
you make before you declare it reliable?" In an
introductory computer science course, students
typically make one or two test runs before hand
ing in an assignment. How would you feel if that
was the extent of testing undergone by software
to control the printing of your paycheck or the
possible launching of nuclear warheads? Clearly,
demonstrating the reliability of such complex
software is a monumental task—one that can
never be done to 100 percent certainty. Consid
ering the crucial role computers play in so many
sectors of society, it is not surprising that the
testing (and inevitable debugging) phase typi
cally requires around 50 percent of the time
scheduled for completion of large software
projects.

The maintenance phase of a softweire system
lasts throughout the remainder of its useful life.
During this phase, we are concerned with re
pairing problems that arise with the system after
it has been put into use. These problems are not
necessarily bugs introduced during the coding
phases. More often they are the result of user
needs that change over time. For instance, an
nual changes in the tax laws necessitate changes
in even the best pajrroll programs. Or, such prob
lems may be due to misinterpretation of user
needs dining the early analysis phase. Whatever
the reason, we must expect that a program will
have to undergo numerous changes during its
lifetime. During the maintenance phase, the time
spent documenting the original program will he
repaid many times over. One of the worst tasks
imaginable in software development is to be asked
to maintain an undocumented program. Even if
you were the program's original author, you will
find that undocumented code written several

months ago can become virtually unintelligible.
Indeed, one of the measures of a good program
is how well it stands up to the maintenance phase.

Of course, no matter how good a program may
be, it will eventually become obsolete. At that
time, the system life cycle starts all over again
with the development of a new system to replace
the obsolete one. Hence, the system life cycle is
a never-ending one, being itself part of a larger
repetitive pattern that continues to evolve with
changing user needs and more powerful tech
nology.

340 text files and user-defined data types

However, use of a CASE statement allows translation procedures to be
written with relative ease.

We close this section with some t5npical definitions for user-defined
data types. These are intended to improve program readability. You are
encouraged to incorporate user-defined data types in your subsequent
programs. In general, you are limited only by your imagination.

TYPE

SoftDrinks = (Pepsi/ Coke/ SevenUp/ Orange/ RootBeer);
Seasons = (Winter/ Spring/ Summer/ Fall);
Colors = (Red/ Orange/ Yellow/ Green/ Blue/ Indigo/ Violet);
ClassStanding = (Freshman/ Sophomore/ Junior/ Senior);
Ranks = (Sarg/ Lieut/ CptU/ Major/ Corp);
Fruits = (Apple/ Orange/ Banana);
Vegetables = (Corn, Peas, Broccoli, Spinach);

With these type definitions, each of the following would be a reasonable
variable declaration:

VAR

Pop, Soda : SoftDrinks;
Season : Seasons;

Hue : Colors;

Class : ClassStanding;
Rank : Ranks;

Appetizer : Fruits;
SideDish : Vegetables;

ExerciS6S 8.2 l. Explain what is meant by ordinal data type.

2. Write a test program to see what happens when you try to write the value of
a variable that is a user-defined data type.

3. Find all errors in the following definitions.

a. TYPE

Names = (John, Joe, Mary, Jane);

People = (Henry, Sue, Jane, Bill);

b. TYPE

Colors = (Red, Blue, Red, Orange);

c. type

Letters = A, C, E;

4. Assume the TYPE definition

TYPE

Colors = (Red, Orange, Yellow, Blue, Green);

has been given. Indicate whether each of the following is true or false.

Orange < Blue
b. (Green <> Red) AND (Blue > Green)
c. (Yellow < Orange) OR (Blue >= Red)

5. Assume the TYPE definition and variable declaration

TYPE

AllDays = (Sun, Mon, Tues, Wed, Thur, Fri, Sat);
VAR

Day, Weekday, Weekend : AllDays;

have been given. Indicate which of the following are valid program
statements. For those that are not, give an explanation.

8.3 Subrange as a Data Type 341

a* Day := Tues;

b- Day := Tues + Wed;
c. Weekday := Sun;

d. IF Day = Sat THEN
writeln ('Clean the garage. 3D);

e. IP (Day < Sat) AND (Day > Sun) THEN

writeln ('It is a workday.':3G)

ELSE

writeln ('It is the weekend.';30);

f- FOR Day := Men TO Fri DO
writeln (Day);

g- read (Day);

IF Day < Sat THEN

Weekday := Day;
h. Wed := Tues + 1;

Assume the following definitions and declarations have been made in a
program.

TYPE

Cloth = (Flannel/ Cotton/ Rayon/ Orion);
VAR

Material : Cloth;

NumberOfYards/ Price : real;

What would be the output from the following segment of code?

Material := Cotton;

NumberOfYards := 3.5;

IF (Material = Rayon) OR (Material = Orion) THEN
Price := NumberOfYards * 4.5

ELSE

IF Material = Cotton THEN

Price := NumberOfYards *

ELSE

Price := NumberOfYards *

writeln (Price:3G:2);

7. Find the complete definition of a leap year in the Gregorian calendar. Define
appropriate data types and write a segment of code that would indicate
whether or not a given year was a leap year.

B B B 19

2.75

2.5;

■ 8.3

Subrange as a
Data Type

" to be able to define

a subrange as a data
type

" to be able to use

subrange data types
in a program

■ to understand com

patibility of data
types

Objectives continued.

Defining Subranges

In the previous section, we learned how to define new data types using
the TYPE definition section. Now we will investigate yet another way to
define new data types.
A subrange of an existing ordinal data type may be defined as a data

type by

TYPE

identifier = initial value .. final value;

For example, we could have a subrange of the integers defined by

TYPE

USYears = 177t..l5fi5;

342 text files and user-defined data types

■ to underst^d why When defining a subrange, the following items should be noted,
subrange data types

are used in a 1. The original data type must be an ordinal type,
program 2. Any valid identifier may be used for the name of the type.

3. The initial and final values must be of the original data type.
4. Since the underlying data type is ordinal, it is ordered. In this or

dering, the initial value of a defined subrange must occur before
the final value.

5. Only values in the indicated subrange (endpoints included) may
be assigned to a variable of the type defined by the subrange.

6. The same value may appear in different subranges.

We illustrate some of these points in the following example.

EXAiVtPLE Consider the subreinges Weekdays and Midweek of the user-defined ordinal Days.
TYPE

Days = (Sun/ Mon, TueS/ Wed/ Thur/ Fri/ Sat); < User-defined >
Weekdays = Mon..Fri; { Subrange }
Midweek = Tues..Thur; < Subrange }

VRR

SchoolDay : Weekdays;
Workday : Midweek;

In this case, Days is defined first and we can then define appropriate subranges.
With the variable SchoolDay declared as of type Weekdays, you can use any of
the values Mon, "Hies, Wed, Thur, or Fri with SchoolDay. However, you cannot
assign either Sat or Sun to SchoolDay.

Notice that Hies, Wed, and Thur are values that appear in different type defi
nitions. However, since they appear in subranges, this will not produce an error.
Furthermore,

Workday := Tues;
SchoolDay := Workday;

are both acceptable statements. GO

Some other subrange definitions are

TYPE

Grades = •A'..'E';

Alphabet = 'A'..'Z';
ScoreRange =

Months = (Jan, Feb/ Mar, Apr/ May/ June/ July/ Aug/ Sept/
Oct/ Nov/ Dec);

Year = Jan..Dec;

Summer = June..Aug;

Months is not a subrange here. However, once defined, an appropriate
subrange such as Summer may be defined. With these subranges defined,
each of the following declarations would be appropriate.

VAR

FlnalGrade : Grades;

Letter : Alphabet;
TestScore : ScoreRange;
SumMonth : Summer;

Compatible and Identical Types

Now that we know how to define subranges of existing ordinal data types,
we need to look carefully at compatibility of variables. Variables are of
compatible type if they have the same base type. Thus, in

8.3 Subrange as a Data Tjrpe 343

TYPE

AgeRange = □..110;
VAR

Age : AgeRange;
Year : integer;

the variables Age and Year are compatible because they both have integer
as the base type (AgeRange is a subrange of integers). If variables are
compatible, assignments may be made between them or they may be
manipulated in any manner that variables of that base type may be
manipulated.

Even when variables are compatible, you should exercise caution when
making assignment statements. To illustrate, using Age and Year as pre
viously declared, consider the statements

Age := Year;
Year := Age;

Since Age is of t5pe AgeRange and AgeRange is a subrange of integer, any
value in Age is acceptable as a value that can be assigned to Year. Thus,

Year := Age;

is permissible. However, since values for Age are restricted to the defined
subrange, it is possible that

Age := Year;

will produce a run-time error. Since they are compatible, there will not
be a compilation error, but consider

Year := 15D;
Age := Year;

Since 150 is not in the subrange for Age, execution would be halted and
an error message printed.

Two variables are said to be of identical type if—and only if—^they are
declared with the same type identifier. It is important to distinguish be
tween compatible and identical t5rpes for variables when using subpro
grams. A value parameter and its argument must be of compatible type;
a variable parameter and its argument must be of identical type. A type
compatibility error will be generated if these rules are not followed. To
illustrate, consider

TYPE
GoodScore = tiD..lDD;

VAR

Scorel, ScoreE : GoodScore;
PROCEDORE Compute (HSl : integer;

VAR HSa : GoodScore);

This procedure may be called by
Compute (Scorel/ ScoreE);

Note that HSl is a value parameter and need only be compatible with
Scorel. HS2 is a variable parameter and must be identical in type to
Score2.

When used as data types for parameters, TYPE definitions must be
defined in the main program since they cannot be defined in a subprogram
heading. Of comse, nested subprograms would allow appropriate corre
sponding definition.

344 TEXT FILES AND USER-DEFINED DATA TYPES

[1

Using Subranges

There are several good reasons for using subrange, in particular, for batch
programs. Although they require extra time and thought when you are
writing a program, the long-range benefits far outweigh these minor in
conveniences. One of the more obvious benefits is program protection. By
carefully defining subranges, you avoid the possibility of working with
bad data or data out of the expected range. Although such data will not
be detected during compilation, an inappropriate assignment will halt
execution in most versions of Pascal. This makes it easier to locate the

source of an error. It also avoids the possibility of producing incorrect
results. If, for example, a keypunch operator inadvertently types in 400
rather than 40 for the hours worked by an employee, a definition and
declaration such as

TYPE

TotalHours =

VAR

Hours : TotalHours;

would cause execution to be stopped with the statement

read (Hours);

since 400 is not in the defined subrange. This is not necessarily the best
way to avoid bad data with an interactive program. Another alternative
for interactive programs is to use a conditional IF ... THEN ... ELSE or
a REPEAT... UNTIL loop to guarantee that the data are in the appropriate
range. This approach prevents program crashes and makes a program more
user-friendly. For example, if you wanted to guarantee the number of hours
entered is between 0 and 60, you could have

REPEAT

write ('Enter hours worked <□..£,□> or to quit>. ');
readln (Hours)

UNTIL (Hours >= □) AND (Hours <= tO) OR (Hours = -RRR);

If you had a longer interactive example where the user could choose
whether or not to repeat some process you could use

Continue ;= true;
REPEAT

STYLE TIP

(action here)

write ('Do you wish to continue? <Y> or <N>
readln (Ch);
Continue := (Ch = 'Y') OR (Ch = 'y')

UNTIL NOT Continue;

);

The CONST and TYPE definition sections can be used together to enhance
readability and facilitate program design. For example, rather than use the
subrange
TYPE

USYears - 177t,.iqaq;

you could define an ending constant and then use it as indicated.
CONST

CurrentYear = IRBFI;
TYPE

USYears = i77t-.CurrentYear;

8.3 Subrange as a Data Type 345

Another benefit of using subranges is increased program readability.
Descriptive identifiers with clearly stated subranges make it easier to fol
low a program. For example, if a chemical reaction normally occurs around
180 degrees Fahrenheit, you could have

TYPE

ReactRange = 15D..E1D;
VftR

ReactTemp : ReactRange;

Exercises 8.3 l. indicate whether the following type definitions, subsequent declarations,
and uses are valid or invalid. Explain what is wrong with those that are
invalid.

a. TYPE

Reverse = ID..1;

b. TYPE

Bases = (Home/ First/ Second/ Third);
Double = Home..Second;

Score = Second..Home;

c. TYPE

Colors = (Red/ White/ Blue);
Stripes = Red..White;

VRR

Hue : Stripes;

BEGIN

Hue := Blue;

d. TYPE

Weekdays = Mon..Fri;

Days = (Sun/ Men/ Tues/ Wed/ Thur/ Fri/ Sat);
e. TYPE

ScoreRange =

HighScores = 7G..1DD;

Midscores = 5D..70;

LowScores = PG..t,D;

VAR

Scorel : Midscores;

Scores : HighScores;

BEGIN

Scorel := bG;

Scores := Scorel + 5;

2. Write a test program to see what happens when you try to use (assign, read,
and so on) a value for a variable that is not in the defined subrange.

3. Explain why each of the following subrange definitions might be used in a
program.

a. Dependents = G..SG; c. QuizScores = G..1G;
b. HoursWorked = G..bG; d. TotalPoints = G..7GG;

4. Indicate reasonable subranges for each of the following. Explain your
answers.

a. TwentiethCentury =

b. Digits =

c. JuneTerap =

d. WinterRange =

e. Colors = (Black/ Brown/ Red/ Pink/ Yellow/ White);
LightColors =

346 TEXT FILES AND USER-DEFINED DATA TYPES

5. Assume the declaration section of a program contains

TYPE

ChessPleces = (Pawn, Knight/ Blshop/ Rook/ King/ Queen);
Expendable = Pawn..Rook;
Valuable = King..Queen;
LowRange = □..50;
Midrange = <0..flD;

VRR

Piecel
Pieces
Pieces

Scorel

Scores
Scores

Valuable;
Expendable;
ChessPieces;
LowRange;
Midrange;
integer;

Indicate which of the following pairs of variables are of compatible type.
a. Piecel and Pieces

b. Pieces and Pieces

c. Pieces and Scorel

d. Scorel and Scores

e. Scorel and Scores

f. Pieces and Scores

6. Assume the declaration section of a program contains the following:

TYPE
PointRange = ^□D..7DD;
FlowerList = (Rose/ IriS/ Tulip/ Begonia);
Sublist = Rose..Tulip;

VAR

TotalPts : PointRange;
Total : integer;
Flower : Sublist;
OldFlower : FlowerList;

The procedure heading is

PROCEDURE TypePrac (A : PointRange;
VAR B : integer;
F1 : Sublist);

Indicate which of the following are valid calls to this procedure.
a. TypePrac (TotalPts, Total, Flower);
b. TypePrac (Total, TotalPts, Flower);
c. TypePrac (TotalPts, Total, OldFlower);
d. TypePrac (Total, Total, Flower);
e. TypePrac (Total, Total, OldFlower);

S3 Q [g] @

a 8.4

Operations on
Ordinal Data
Types

^jdWECTlVES
■ to be able to use

functions ord, pred,
and succ with user-
defined data types

Objectives continued.

Functions for Ordinal Data Types

Earlier we discussed the meaning of ordinal data types as follows: they
are countable, can be ordered, and can be compared. Of the standard data
types, only real is not ordinal. The user-defined data types defined thus
far are all ordinal. The functions ord, pred, and succ may also be used
on user-defined ordinal data types. Thus, if we have the definition

TYPE
Days = (Sun, Men, Tues, Wed, Thur, Fri, Sat);
Weekdays = Men. .Fri;

the following function calls have the indicated values.

8.4 Operations on Ordinal Data Types 347

B to be able to use or

dinal data types in
Boolean expressions

a to be able to use or

dinal data types in
CASE statements

H to be able to use or

dinal data types as
loop indices

Function Call Value

ord(Sun) 0

ord(Wed) 3

pred(Thur) Wed

succ(Fri) Sat

ord(pred(Fri)) 4

When using functions on user-defined ordinals, the following should be
noted.

1. The first-listed identifier has ordinal zero.

2. Successive ordinals are determined by the order in which identi
fiers are listed.

3. You cannot use pred on the first identifier or succ on the final
identifier.

4. If a subrange data type is defined, the functions return values con
sistent with the underlying base type; for example, ord(Wed) = 3.

Using Ordinal Values of User-Defined Ordinals

Now that you have some familiarity with ordinal data types and functions
that use them as arguments, let us consider some ways they could be
incorporated into programs. One typical use is in Boolean expressions.
Suppose you are writing a program to compute the payroll for a company
that pays time-and-a-half for working on Saturday. Assume the definition
and declaration

TYPE

Workdays = (Mou/ Tues/ Wed/ Thur/ Fri/ Sat);
VAR

Day : Workdays;

have been made. A typical segment of code is

Day := SomeValue;
IF Day = Sat THEN

ComputeOvertime (
ELSE

CoraputeRegularPay

)

(.)

A second use is with CASE statements. As previously explained, one
limitation of user-defined ordinals is that they have no external represen
tation (that is, you cannot read or write their values). However, you can
circumvent this limitation by appropriate use of a CASE statement. For
example, suppose we have the definition and declaration

TYPE

Colors = (Red/

VAR

Hue : Colors;

White/. Blue);

If you wish to print the value of Hue, you could do so by

CASE Hue OF

Red : writeln ('Red':5D);
White : writeln ('White':20);

Blue : writeln ('Blue':20)
END; < of CASE Hue >

since most versions of Pascal do not permit

348 TEXT FILES AND USER-DEFINED DATA TYPES

wrlteln (Hue:EO);

A third use is as a loop index. For example, consider

TYPE

AllDays = (Sun/ Moh/ Tues/ Wed/ Thur/ Frl/ Sat);
VAR

Day : AllDays;

Each of the following would be an appropriate loop.

1. FOR Day := Mon TO Fri DO

BEGIN

END;

2. Day := Mon;

WHILE Day < Sat DO

BEGIN

Day := succ(Day);

END;

3. Day := Sun;

REPEAT

Day := succ(Day);

UNTIL Day = Fri;

A NOTE QF INTERE^ST

There's a Virus in My Software!

Tiny programs that deliberately cause mischief
are epidemic among computers and causing ner
vousness among those who monitor them. Since
the first tests of the notion in 1983 that machines

can catch and spread "information diseases," the
computer world has reached the point at which
as many as 30 instances of "computer virus"
have been reported in the past year, affecting tens
of thousands of U.S. computers alone.

Written by malicious programmers, the vi
ruses are sneaked into computer systems by pig
gybacking them on legitimate programs and mes
sages. There, they may be passed along or
intructed to wait until a prearranged moment to
burst forth and destroy data.

At NASA headquarters in Washington, sev
eral hundred computers had to be resuscitated

after being infected. NASA officials have taken
extra precautions and reminded their machines*
users to follow routine computer hygiene: Don't
trust foreign data or strange machines.

Viruses have the eerie ability to perch dis
guised among legitimate data just as biological
viruses hide among genes in human cells, then
spring out unexpectedly, multiplying and caus
ing damage. Experts say that even when they try
to study viruses in controlled conditions, the
programs can get out of control and erase every
thing in a computer. The viruses can be virtually
impossible to stop if their creators are deter
mined enough.
"The only way to protect every body against

them is to do something much worse than the
viruses: Stop talking to one another with com-

Continued

8.4 Operations on Ordinal Data Types 349

puters," say William H. Murray, an information-
security specialist at Ernst and Whinney finan
cial consultants in Hartford, Conn.

Hundreds of programs and files have been de
stroyed by the viruses, and thousands of hours
of repair or prevention time have been logged.
Programmers have quickly produced antidote
programs with such titles as "Vaccine," "Flu
Shot," "Data Physician" and "Sjrringe."

Experts say known damage is minimal com-
peired with the huge, destructive potential. They
express the hope that the attacks will persuade
computer users to minimize access to program
ming and data.

Viruses are the newest of evolving methods
of computer mayhem, says Donn B. Parker, a con
sultant at SRI International, a computer research
firm in Menlo Park, Calif. One is the "Trojan
horse," a program that looks and acts like a nor
mal program but contains hidden commands that
eventually take effect, ordering mischief. Others
include the "time bomb," which explodes at a
set time, and the "logic bomb," which goes off
when the computer arrives at a certain result
during normal computation. The "salami attack"
executes barely noticeable small acts, such as
shaving a penny from thousands of accounts.

The computer virus has the capability to com
mand the computer to make copies of the virus
and spread them. A virus typically is written as
perhaps only a few hundred characters in a pro
gram containing tens of thousands of characters.
When the computer reads legitimate instruc
tions, it encounters the virus, which instructs
the computer to suspend normal operations for
a fraction of a second.

During that time, the virus instructs the com
puter to check for other copies of itself and, if
none is found, to make and hide copies. Instruc
tion to commit damage may be included.

Demonstrations have shown that viruses can

invade the screens of those with the highest se
curity classification, according to Fred Cohen of
Cincinnati, a researcher who coined the term
"computer viruses." A standard computer-
protection device at intelligence agencies, he says,
denies reading access by a person at one security
level to files of anyone at a higher level and al
lows reading but not writing in files of anyone
lower.

This, however, "allows the least trusted user
to write a program that can be used by everyone"
and is very dangerous," he says.

Computers "are all at risk," says Cohen, "and
will continue to be ... not just from computer
viruses. But the viruses represent a new level of
threat because of their subtleness and

persistence."

Is Your Machine at Risk?

1. Computer "viruses" are actually minia
ture computer programs. Most were writ
ten by malicious programmers intent on
destroying information in computers for
fun.

2. Those who write virus programs often
conceal them on floppy disks that are in
serted in the computer. The disks con
tain all programs needed to run the ma
chine, such as word processing
programs, drawing programs or spread
sheet programs.

3. A malicious programmer makes the disk
available to others, saying it contains a
useful program or game. These programs
can be lent to others or put onto comput
erized "bulletin boards" where anyone
can copy them for personal use.

4. A computer receiving the programs will
"read" the disk and the tiny virus pro
gram at the same time. The virus may
then order the computer to do a number
of things:
■ Tell it to read the virus and follow

instructions.

" Tell it to make a copy of the virus and
place it on any disk inserted in the
machine today.

■ Tell it to check the computer's clock,
and on a certain date destroy all infor
mation that tells where data is stored

on any disk: if an operator has no way
of retrieving information, it is
destroyed.

■ Tell it not to list the virus programs
when the computer is asked for an in
dex of programs.

5. In this way, the computer will copy the
virus onto many disks—^perhaps all or
nearly all the disks used in the infected
machine. The virus may also be passed
over the telephone, when one computer
sends or receives data from another.

6. Ultimately hundreds or thousands of
people may have infected disks and po
tential time bonds in their systems.

350 TEXT FILES AND USER-DEFINED DATA TYPES

The loop control in a FOR loop is based on the ordinals of the values of
the loop index. Thus, the statement

FOR Day := Mon TO Fri DO

is treated like the statement

FOR J := 1 TO 5 DO

because ord(Mon) is 1 and ord(Fri) is 5.
In the WHILE ... DO and REPEAT... UNTIL loops, you must be sure

to increment—^increase the ordinal of—^the variable. One method of doing
this is to use the function succ.

Exercises 8.4 l. Suppose the following TYPE definition is given.

TYPE

Trees = (Oak/ Ash/ Maple/ Pine);
SlackType = (Denim/ Cotton/ Polyester);

Give the value of each of the following expressions. Indicate any expression
that is invalid.

a. pred(Ash) e. ord(succ(Haple))
b. succ (Denim) f, succ(Polyester)

c. ord (Polyester) g. ord(pred(succ(Oak)))
d. ord(pred(Oak))

2. Write a test program that lists the ordinals of values in a subrange of a user-
defined data tjqje.

3. The character set for some computers is such that ord('A') = 1 and
ord('Z') = 26. Assuming such a sequence, what is the value of each of the
following? Indicate any expressions that are invalid.

a. chr(ord(' D ')) d. ord(chr(10 MOD R) + chr(EQ))
b. ord(chr(lD)) e. ord(pred(' K*) + 3)
c. chr(3 *ord('E')) f. succ(chr(ord(■ Z ') - 1))

4. Write a program that will list the letters of the alphabet and their respective
ordinals for the character set used with your machine.

5. Assume the TYPE definition emd variable declaration

TYPE

AllDays = (Sun/ Men/ Tues/ Wed/ Thur/ Frl/ Sat);
VAR

Day : AllDays;

are made.

a. What would be the output from the following REPEAT ... UNTIL loop?

Day := Sun;
REPEAT

CASE Day OF

Sat/ Sun : wrlteln ('Weekend*:E0);
Mon/ TueS/ Wed/ Thur/ Frl : wrlteln (•Weekday•:ED)

END; < of CASE Day >
Day := succ(Day)

UNTIL Day = Sat;

b. Rewrite the previous loop as both a WHILE ... DO loop and a FOR loop.
c. Find another method to control the loop variable (for example, replace

Day := succ(Day)

£md make any other necessary changes).

d. Revise the loop so that all seven days are considered.

8.4 Operations on Ordinal Data Types 351

6. A standard programming problem is to convert an integer character to its
corresponding numerical value, for example, the character '2' to the number
2. Since the digits are listed sequentially in every character set, this could be
accomplished by

ord('S') - ord(;

a. Write a function to convert a single character digit ('0', '1' '9') to its
corresponding numerical value.

b. Write a function to convert a two-digit number read as consecutive char
acters into the corresponding numerical value.

7. Suppose you are working with a program that reads an integer representing
a month of the year (Jan = 1). Write a function to convert the integer into
the appropriate month.

m a a m

^FQCUS DN

^KaG«A?MiMl!has
The summary program for this chapter computes the number of days in
your birth year from your birthday to the end of the year. Sample input
(if you were born on March 16, 1969) would be

3 It. tR

We want the output to be

During your birth year*
you were alive 5^1 days.

Features of this program include user-defined data types and subranges.
In particular, note the data type

RllMonths = April, May, June,(Jan, Feb, March,
Get, Nov, Dec);July, Aug, Sept,

A reasonable first-level pseudocode design for this program is

1. Get data

2. Assign month
3. Compute days
4. Print results

A structure chart for this is given in Figure 8.2.

FIGURE 8.2

Structure chart for

PROGRAM Birthday

Pnnt
(^ta

Compute

Find numb er of

352 TEXT FILES AND USER-DEFINED DATA TYPES

Module specifications for this problem are

1. GetPata Module

Data received: None

Information returned: Day
Month

Year of birth

Logic: Have the user enter his/her birth date.

2. AssignMonth Module
Data received: A numerical equivalent of the birth month
Information returned: The name of the birth month

Logic: A CASE statement assigns the name of the birth month to
BirthMonth, which is a user-defined data type.

3. ComputeDays Module
Data received: Month

Day
Year of birth

Information returned: The number of days alive during the year of
birth

Logic: Compute the number of days alive during the month of birth.
Compute the number of days in the remaining months.

4. PrintResults Module
Data received: Number of days alive during the birth month
Information returned: None

Logic: Use write(In) statements to print the results in a readable
form.

CetData merely consists of a readln statement; AssignMonth is a procedure
using a CASE statement (a function could be used here instead), and
PrintResults prints the information in a readable form. A function for
computing the number of days is further developed as

3. Compute days
3.1 compute days alive during birth month
3.2 compute total of days in remaining months

This could be refined to

3. Compute days
3.1 compute days alive during birth month

3.1.1 compute for months with 31 days
3.1.2 compute for months with 30 days
3.1.3 compute for February

IF leap year THEN use 29 days
ELSE use 28 days

3.2 compute total of days in remaining months
IF not December THEN

FOR rest of months DO
add number of days in month

The complete program to solve this problem is

PROGRRM Birthday (input, output);

< This program determines how many days you were alive during >
i your birth year. Input is your birth date. Later, you >

8.4 Operations on Ordinal Data Types 353

{ can use this program as the basis for a biorhythra program. >
{ Pay special attention to the use of user-defined data types >
t and subranges. >

TYPE

AllMonths = (Jan/ Feb/ March/ April/ May/ June/
July/ Aug/ Sept/ Oct/ Nov/ Dec);

DayRange = 1..31;
MonthRange = 1..12;
YearRange = □. .SR;

VAR

BirthMonth : AllMonths; i
DayNum : DayRange; {
Month : MonthRange; <
TotalDays : integer; i
Year : YearRange; -i

Literal form of birth month
The day you were born
Birth month

Days alive in birth year
Representation of birth year

PROCEDURE GetData (VAR Month : MonthRange;
VAR Day : DayRange;
VAR Year : YearRange);

{ Given: Nothing
< Task: Enter your birthdate in the form 3 lb bR
{ Return: Month/ day/ and year of birth

BEGIN

writeln ('Please enter your birth date in the form 3 lb bR. ');
writeln ('Press <RETORN> when finished.');
readln (Month/ Day/ Year)

END; < of PROCEDURE GetData >

PROCEDURE AssignMonth (Month : MonthRange;
VAR BirthMonth : AllMonths);

i Given: A numerical equivalent of the birth month
•t Task: Convert to literal BirthMonth
< Return: Literal BirthMonth

BEGIN
CASE Month OF

1

2
3
A

5
b

7
a
q

ID
11
12

END
END;

BirthMonth
BirthMonth
BirthMonth
BirthMonth

BirthMonth
BirthMonth
BirthMonth
BirthMonth
BirthMonth
BirthMonth
BirthMonth
BirthMonth

= Jan;
= Feb;
= March;
= April;
= May;
= June;
= July;
= Aug;
= Sept;
= Oct;
= Nov;
= Dec

< of CASE Month >
of PROCEDURE AssignMonth

354 TEXT FILES AND USER-DEFINED DATA TYPES

FUNCTION ComputeDays (BirthMonth : ailMonths;
DayNuni : DayRange;
Year : YearRange) : integer;

< Given: The month, day, and year of birth }
■{ Task: Compute the days alive during the year of birth }
i Return: Number of days alive during the year of birth >

VAR

Days : integer;
Mon : AllHonths;

BEGIN

< Compute days alive in birth month >

CASE BirthMonth OF
Jan, March, May, July, Aug, Oct, Dec : Days := 31-DayNura+l;
April, June, Sept, Nov : Days := 3D-DayNura+l;
Feb : IF Year MOD A = 0 THEN

Days := aR-DayNura-l-1
ELSE

Days := afl-DayNura+1
END; < of CASE BirthMonth >

i Now compute days in remaining months >

IF BirthMonth <> Dec THEN
FOR Mon := succ(BirthMonth) TO Dec DO

CASE Mon OF
Jan, March, May, July, Aug, Oct, Dec : Days := Days-(-31;
April, June, Sept, Nov : Days := Days+3D;
Feb ; IF Year MOD A = Q THEN

Days := Days+SS
ELSE

Days := Days+Sa
END; { of CASE Mon >

{ Assign total days to functions name >

ComputeDays := Days

END; { of FUNCTION ComputeDays >

PROCEDURE PrintResults (TotalDays : integer;
Year : YearRange);

Birth year and total days alive during that year
Print a message indicating the year of birth and
number of days alive during that year

< Given;
-(Task:

<
•C Return: Nothing

BEGIN

writeln;
writeln ('During your birth year, • :4E, (Year+1=1DD) : L, ' , ');
writeln ('you were alive' :33, TotalDays:5, ' days. ');
writeln

END; < of PROCEDURE PrintResults >

355

BEGIN -{ Main program >
GetData (Month/ DayNum/ Year);
AssignMonth (Month/ BirthMonth);
TotalDays := ComputeDays (BirthMonth/ DayNum/ Year);
PrintResults (TotalDays/ Year)

END. < of main program >

A sample run of this program produces

Please enter your birthdate in the form 3 It tq
Press (RETURN) when finished.

3 It tq

During your birth year, iqtR/
you were alive BRl days.

RUNNING AND

DEBUGGING TIPS
1. An end-of-Iine marker is read as a blank. When reading numeric data, this is

not a problem. However, when reading data of type char, you may forget to
advance the pointer to the next line.

2. Permanent text files must be listed in the program heading file list as well as
in the variable declaration section.

3. Be aware of the possibility of extra blanks at the beginning or end of lines in
a text file. Some implementations cause these to be inserted when creating a
text file.

4. The end-of-line marker is read as a blank. Thus, when working with character
data in a text file, it may appear that extra blanks are in the file. However, the
eoln function still returns true when the pointer is positioned at an end-of-
line marker.

5. Subranges should be used if the bounds of a variable are known.
6. User-defined data types should be used to enhance readability.
7. Be careful not to use pred on the first element in a list or succ on the last

element.

8. Make sure parameters passed to subprograms are of identical type. For example,
using the following declaration

TYPE

Weekdays = (Mou/ Tues/ Wed/ Thur/ Fri);
VAR

Day : Weekdays;

if a procedure call was

PrintChart (Day);

a procedure heading could be

PROCEDURE PrintChart (Wkday : Weekdays);

Summary Key Terms

compatible type
enumerated type
external file

identical type

internal file

opened for reading
opened for writing
ordinal data type

subrange
text file

user-defined data type

Keywords

reset

rewrite

text

TYPE

356 TEXT FILES AND USER-DEFINED DATA TYPES

Key Concepts

■ Text files can be used to store data between runs of a program.
■ A text file can be declared by

VftR

file name : text;

■ An external file exists outside the program block in secondary storage. When
used, it must be included in the file list as part of the program heading.

■ An internal file exists within the program block. Values stored there will be
lost when the program is no longer running.

■ Text files must be opened before they can be written to or read from. Before
reading from a file, it can be opened by

reset (file variable);
Before writing to a file, it can be opened by
rewrite (file variable);

■ Reading from a text file can be accomplished by

read (file variable, list of variables);
or

readln (file varible, list of variables);

■ Writing to a text file can be accomplished by

write (file variable, list of values);
or

writeln (file variable, list of values);

a A data type is ordinal if data of that type are countable and can be ordered
and compared.

B Simple user-defined data types can be defined by using the TYPE definition
section; typical syntax and form are

TYPE

Weekdays = (Men/ Tue/ Wed, Thur, Fri);

a When a simple user-defined data type has been defined,
1. The newly defined type will be an ordinal data type.
2. Variables can be declared to be of the new type.
3. The identifiers declared in the TYPE definition section are constants that

can be used in the program.
4. No identifier can belong to more than one data type.
5. Identifiers that are defined values cannot be used as operands in

expressions.

B You cannot read or write values of a user-defined data type.
B A subrange of an existing ordinal data type can be defined by

TYPE

identifier = initial value .. final value;

For example:

TYPE

ScoreRange =
Alphabet = 'A'..'Z';

B Type compatible variables have the same base type,
a Type identical variables must have the same type identifier.
B Two significant reasons for using subranges are program protection and pro
gram readability.

B The functions pred, succ, and ord can be used on user-defined data types
and subranges of existing ordinal data types.

Programming Problems 357

When one of the functions pred, succ, or ord is used with an argument
whose value is in a subrange, reference is to the base data type, not the sub
range; thus, in

TYPE

Letters = 'J'..'0';

ord('J') does not have the value 0. Rather, it yields the appropriate ordinal for
the collating sequence being used. In the ASCII collating sequence, ord(7')
yields 74 and in EBCDIC it yields 209.

■ Programming l. Write a program to compute the payroll for a company. Data for
Problems employee will be on two lines. Line 1 contains an employee

number followed by the hourly wage rate. Line 2 contains seven
integer entries indicating the homs worked each day. Wages are to
be computed at time-and-a-half for anything over eight hours on a
weekday and double time for any weekend work. Deductions
should be withheld as follows:

a. state income tax 4.6%
b. federal income tax 21.0%
c. social security (PICA) 6.8%

Employee numbers are the subrange 0001 .. 9999. You should de
fine and use a data type for the days of the week.

2. The Caswell Catering and Convention Service (Problem 7, Chapter
4; Problem 1, Chapter 5; Problem 1, Chapter 6; and Problem 1,
Chapter 7) wants to upgrade their existing computer program. Use
the TYPE definition section for each of the following and revise the
program you developed previously as appropriate.
a. The room names have been changed to a color-coded scheme as

follows:

Room A RedRoom

Room B BlueRoom

Room C YellowRoom

Room D GreenRoom

Room E BrownRoom

b. Use a subrange for the room rents.
c. Use defined constants for the low value and high value of the

room rents.

3. State University (Problem 2, Chapter 5) wants you to upgrade their
computer program by using the TYPE definition section for each of
the following:
a. The room types will be Regular or AirConditioned.
b. Students' numbers will be between 0001 and 9999 (use CONST

for end values).
c. Credit hours taken must be between 1 and 25.
d. The GoodRange for credit hours is 12 to 21.

Your new version should be able to be used on a data file with sev

eral students' information.

4. A1 Derrick (Problem 7, Chapter 5, and Problem 8, Chapter 6) wants
you to revise his program by using the TYPE definition section to

358 TEXT FILES AND USER-DEFINED DATA TYPES

enhance readability and ensure protection against bad data. Your
new version should run for several wells and include: tjrpes of
wells (Dry, Oil, and Gas), volume for gas (between 10,000 and
100,000), and volume for oil (between 2,000 and 50,000).

5. Dr. Lae Z. Programmer is relentless. He wants you to modify your
latest version of the grading program (Problem 9 or 10, Chapter 5;
Problem 11, Chapter 6; or Problem 7, Chapter 7) by using the TYPE
definition section. Your new version should include a range for test
scores (from 0 to 100), a range for quiz scores (from 0 to 10), and a
range for the final examination (from 0 to 200).

6. Upgrade your most recent version of the Pentagon Parking Lot pro
gram (Problem 13, Chapter 5; Problem 12, Chapter 6; or Problem 8,
Chapter 7) by using the TYPE definition section. Time in and time
out will be between 0600 and 2200 (6:00 a.m. and 10:00 p.m.). Vehi
cle type should be denoted by Car, Truck, or Senior.

7. Read a text file containing a paragraph of text. Count the number of
words in the paragraph. Assume that consecutive words are sepa
rated by at least one blank.

8. Write a program to print the contents of a text file omitting any oc
currences of the letter "e" from the output.

9. A text file contains a list of integers in order from lowest to high
est. Write a program to read and print the text file with all duplica
tions eliminated.

10. Mr. John Napier, Professor of Lancaster Community College, wants
a program to compute grade point averages. Each line of a text file
contains three initials followed by an unknown number of letter
grades. These grades are A, B, C, D, or E. Write a program that
reads the file and prints a list of the students' initials and their
grade point averages. (Assume an A is 4 points, a B is 3 points, and
so on.) Print an asterisk next to emy grade point average that is
greater than 3.75.

11. An amortization table shows the rate at which a loan is paid off. It
contains monthly entries showing the interest paid that month, the
principal paid, and the remaining balance. Given the amount of
money borrowed (the principal), the annual interest rate, and the
amount the person wishes to repay each month, print an amortiza
tion table. (The payment desired must be larger than the first
month's interest.) Your table should stop when the loan is paid off,
and should be printed with the following heads:

MONTH NUMBER INTEREST PRID PRINCIPftL PAID BALANCE

Create a user-defined data type for the month number. Limit this to
require that the loan be paid back within 60 months.

12. In 1626, the Dutch settlers purchased Manhattan Island from the
Indians. According to legend, the purchase price was $24. Suppose
the Indians had invested this amount at 3 percent annual interest
compounded quarterly. If the money had earned interest from the
start of 1626 to the end of last year, how much money would the
Indians have in the bank today? [Hint: Use nested loops for the

Programming Problems 359

compounding.) Create a user-defined data type for the range of
years (1626 to last year) that will be used.

13. Mr. Christian uses a 90 percent, 80 percent, 70 percent, 60 percent
grading scale on his tests. Given a list of test scores, print the num
ber of A's, B's, C's, D's, and E's on the test. Terminate the list of

scores with a sentinel value. Use a subrange of the integers for the
input grades.

14. Write a program to print the perimeter and area of rectangles using
all combinations of lengths and widths running from 1 foot to 10
feet in increments of 1 foot. Print the output in headed columns.
Use a subrange to restrict the lengths and widths from 1 to 10.

CHAPTER

One-Dimensional

Arrays

This chapter begins a significant new stage of programming. Prior
to now, we have been unable to manipulate and store large amounts

of data in a convenient way. For example, if we wanted to work with a
long list of numbers or names, we had to declare a separate variable for
each number or name. Fortunately, Pascal (and all other programming
languages) provides several structured variables to facilitate solving prob
lems that require working with large amounts of data. Simply put, a struc
tured variable uses one identifier to reserve a large amount of memory.
This memory is capable of holding several individual values. Structured
variables included in this text are arrays, records, files, and sets.

Arrays, the topic of this chapter, are designed to handle large amounts
of data of the same type in an organized manner. Using arrays permits us
to set aside a group of memory locations that we can then manipulate as
a single entity or have direct access to any component. Some very standard
applications for array variables include creating tabular output (tables),
alphabetizing a list of names, analyzing a list of test scores, manipulating
character data, and keeping an inventory.

B 9.1

Basic Ideas and

Notation

OBJECTIVES

a to understand the

basic concept of an
array

Objectives continued.

As previously mentioned, there are many instances in which several vari
ables of the same data type are required. Let us at this point work with a
list of five integers: 18,17, 21,18, and 19. Prior to this chapter, we would
have declared five variables—A, B, C, D, and E—and assigned them ap
propriate values, or read them from an input file. This would have pro
duced five values in memory each accessed by a separate identifier.

18 17 21 18 19

A B C D E

360

9.1 Basic Ideas and Notation 361

to use correct nota

tion for airays
to be able to declare

arrays with both
variable declara

tions and type
definitions

to be able to use ar

ray components

with appropriate
arithmetic

operations

to be able to use ar

ray components

with appropriate
read and write

statements

If the list was very long, this would be an inefficient way to work with
these data; an alternative is to use an array. In Pascal, we declare a variable
as an array variable using either of the following methods:

1. VAR

List : ARRAY [1..5] OF integer;
2. TYPE

Numbers = ARRAY [1..51 OF integer;
VAR

List : Numbers;

With either of these declarations, we now have five integer variables with
which to work. They are denoted by

List[l] List[2] List[3] List[4] List[5]

and each is referred to as a component or [element) of the array. A good
method of visualizing these variables is to assume that memory locations
are aligned in a column on top of each other and the name of the column
is List. If we then assign the five values of our list to these five variables,
we have the following in memory.

List

18 List[l]

17 List[2]

21 List[3]

18 List[4]

19 List[5]

The components of an array are referred to by their relative position
in the array. This relative position is called the index or subscript of the
component. In the array of our five values, the component List[3] has an
index of 3 and value of 21. It is important to remember that each array
component is a variable and can be treated exactly as any other declared
variable of that base type in the program.

Declaring an Array

An array can be declared by reference to a user-defined type or by defining
the type in the variable declaration section. An earlier declaration was
given as

VAR

List ARRAY [1 5] OF integer;

Let us now examine this declaration more closely. Several comments are
in order.

1. "List" can be any valid identifier. As always, it is good practice to
use descriptive names to enhance readability.

2. "ARRAY" is a reserved word and is used to indicate that an array
variable is being declared.

3. "[1 .. 5]" is the syntax that indicates the array consists of five
memory locations accessed by specifying each of the numbers, 1,
2, 3, 4, and 5. We frequently say the array is of length five. The
information inside the brackets is the index type and is used to

362 ONE-DIMENSIONAL ARRAYS

refer to components of an array. This index tj^e can be any ordi
nal data tjrpe that specifies a beginning value and an ending
value. However, subranges of integer data type are the most easily
read and frequently used index types.

4. The reserved word OF refers to the data type for the components
of the array.

5. The key word integer indicates the data type for the components.
This can, of course, be any valid data type.

The general form for declaring an array in the variable declaration
section is

VAR

name : ARRAY [index type] OF component type;

where "name" is any valid identifier, "index t5rpe" is any ordinal data
tjrpe that specifies both an initial value and a final value, and "component
type" is any predefined or user-defined data type (except files). The sjmtax
diagram for this is

mdex typeARRAY
component

) ̂ type

The following example illustrates another declaration of an array
variable.

EXAMPLE 9.1 Suppose you want to create a list of ten integer variables for the hours worked by
ten employees as follows:

Employee Hours

Number Worked

1 35

2 40

3 20

4 38

5 25

6 40

7 25

8 40

9 20

10 45

Declare an array that has ten components of type integer and show how it c«m be
visualized. A descriptive name could be Hours. There are ten items, so we will
use ARRAY [1 .. 10] in the declaration. Since the data consist of integers, the
component type will be integer. An appropriate declaration could be

VftR

Hours : ARRAY [1..10] OF integer;

At this stage, the components can be visualized as

9.1 Basic Ideas and Notation 363

Hours

Hours[l]

Hours[2]

Hours[3]

Hours[4]

Hours[5]

Hours[6]

Hours[7]

Hours [8]

Hours[9]

Hours[10]

After making appropriate assignment statements, Hours can be visualized as

Hours

35 Hours[l]

40 Hours[2]

20 Hours[3]

38 Hours[4]

25 Hours[5]

40 Hours[6]

25 Hours[7]

40 Hours[8]

20 Hours[9]

45 Hours[10]

Other Indices and Data Types

The previous two arrays used index types that were subranges of the
integer data type. Although this is a common method of specifying the
index to an array, one could use subranges of any ordinal type for this
declaration. The following examples illustrate some array declarations
with other indices and data types.

EXAMPLE 9.2 Declare an array to allow you to store the hourly price for a share of IBM stock.
A descriptive name could be StockPrice. A price is quoted at each hour from 9:00
A.M. to 3:00 P.M., so we will use ARRAY [9 .. 15] in the declaration section. Since
the data consists of reals, the data type must be real. A possible declaration could
be

VftR

StockPrice : ARRay OF real;

This would then allow us to store the 9:00 a.m. price in StockPrice[9], the 1:00
P.M. price in StockPrice[13], and so on. @

EXAMPLE 9.3 The declaration

VAR

Alpha : ARRAY [-5..3] OF char;

will reserve components, which can be depicted as

364 ONE-DIMENSIONAL ARRAYS

Alpha

Alpha[— 2]
AIpha[-l]

Alpha[0]

Alpha[l]

Alpha[2]

Alpha[3]
I

Each component is a character variable.

E^AMPLE^.4 The declaration

VftR

Grade : RRRAY ['R'..'E'] OF real;

will reserve components, which can he depicted as

Grade

Grade[*A']

Gradel'B'l

Gradel'C'l

Grade['D']

Gradel'E']

Components of this array are real variables. a

EXAMPlE The declaration

VAR

Flag : ARRAY 11..Al OF boolean;

will produce an array whose components are boolean variables. m

It is important to note that in each example, the array components will
have no values assigned until the program specifically makes some kind
of assignment. Declaring an array does not assign values to any of the
components.

Declarations like those just illustrated are sufficient for the student who
is trying to understand the concept of an array. However, there are at least
two good reasons to use the TYPE definition section when declaring arrays.

1. Several arrays may have the same data type.
2. Passing arrays to procedures and functions requires a TYPE

definition.

STYLE TIP

B H B ■ ■
Descriptive constants and'tjih® identifiersisbtbuldh^e utilized when working
with arrays.-For example, if ybu ̂ 4 working with-an array of test scores for
a class of 35 students, you^doulb-have -

CONST .'f-:
ClassSize = 35;

TYPE .yy
TestScores = Ol.lBb.t:
ScoreList = ARRAr^^^i^

VAR

Score ScoreList";-^!

..ClassSi.ze'a ' OF TestScores;

9.1 Basic Ideas and Notation 365

Two additional array declarations follow.

1. TYPE

Days = (Mon, Tues, Wed/ Thur/ Fri, Sat, Sun);
Workdays = ARRAY [Mon..Fri] OF real;

VAR

HoursWorked : Workdays;

2. TYPE

ListSO = ARRAY [1..SD] OF real;
ListSS = ARRAY [1..55] OF integer;
StringED = ARRAY [1..5D] OF char;

VAR

PhoneCharge : ListSD;
Score : ListEB;

Word : StringED;
A/ B/ C/ D I ListSD;

A more efficient method of manipulating character data than the strings
just used will be presented in Section 9.5 when we discuss packed arrays.

Assignment Statements

Suppose we have declared an array

A : ARRAY [1..5] OF integer;

and we want to put the values 1, 4, 9, 16, and 25 into the respective
components. We can accomplish this with the assignment statements

ACl] = 1;
ACE] = <;
AC3] = =1;
AC^] = lb;

ACS] = as;

If variables B and C of type integer are declared in the program, then the
following are also appropriate assignment statements.

AC3] := B;
C := AIE];

AtE] := AtS]

If you want to interchange values of two components (for example, ex
change A[2] with A[3]), you could use a third integer variable.

B ;= ACEl;

ACE] := At3];

AC3] := B:

This exchange is frequently used in sorting algorithms, so let us examine
it more closely. Assume B contains no previously assigned value, and A[2]
and A[3] contain 4 and 9, respectively.

AI2I

A[3]

The assignment statement

B := ACEl;

produces

366 ONE-DIMENSIONAL ARRAYS

B

AI21

A[3]

The assignment statement

AIEl := AI3];

produces

B

A[2]

A[3]

and finally the assignment statement

AC3] := B;

produces

■ ■ A[2]

A[3]

B

The next example illustrates the use of a TYPE definition and a sub
sequent assignment statement.

EXAMPLE 9.6
TYPE

Seasons = (Fall/ Winter/ Spring/ Summer);
TemperatureList = ARRAY [Seasons] OF real;

VAR

AvTerap : TemperatureList;

An assignment statement such as

AvTempIFall] := 53.S;

would be appropriate. The array would then be

AvTemp

53.2 Fall

Winter

Spring

Smnmer

Arithmetic

Array variables can also be used in any appropriate arithmetic operation.
For example, suppose A is the array of integers

A

1 A[l]

4 A[2]

g A[3]

16 AI4]

25 A[5]

9.1 Basic Ideas and Notation 367

and the values of the components of the array are to be added. This could
be accomplished by the statement

Sum ;= Mil + ftCE] + AC31 + MAI + fttS];

Each of the following would also be a valid use of an array variable

B ;= 3 * ACE];
C := A[<] MOD 3;
D := ACE] ♦ ACS] ;

For the array A given, these assignment statements produce

55 12 100

Sum B C D

Some invalid assignment statements and the reasons they are invalid
follow.

A C 0] : = 7 ; (0 is not a valid subscript.)
ACE] : = 3.5; (Component A[2] is not of type real.)
ACE.Q] :=3; (A subscript of type real is not allowed.)

Reading and Writing

Since array components are names for variables, they can be used with
read, readln, write, and writeln. For example, if Score is an array of five
integers and you want to input the scores 65, 43, 98, 75, and 83 from a
data file, you could use the code

readln (Scored], ScoreCE]. ScoreC3], ScoreC4], ScoreCS]);

This would produce the array

Score

65 Scorefl]

43 Score [2]

98 Score[3]

75 Score [4]

83 Score[5]

If you want to print the scores above 80, you could use the code

writeln (ScoreC3]:1D, ScoreCS]:1D);

to produce

sa 33

It is important to note that you cannot read or write values into or from
an entire array by a reference to the array name (an exception will be
explained in Section 9.5). Statements such as

read(A)/ writeln(A)

are invalid if A is an array.
Be careful to avoid out-of-range array references. For example, if the

array A has index values 1 .. 5, a reference to A[6] or A[0] would then
produce an error. This becomes more of a problem when you start pro
cessing arrays with loops in the next section.

368 ONE-DIMENSIONAL ARRAYS

A NOTE OF INTEREST

Monolithic Idea: Invention of the Integrated Circuit

One of the most significant breakthroughs in the
history of technology occurred in the late 1950s.
Prior to 1958, computer circuitry was limited
because transistors, diodes, resistors and capac
itors were separate units that had to be wired
together and soldered by hand. Although de
signers could design intricate computer super-
circuits using 500,000 transistors, they were al
most impossible to build because of the extensive
handwork involved. For example, a circuit with
100,000 components could require over
1,000,000 soldered connections. It was virtually
impossible to assemble that many components
without human error. Thus, the electronics in

dustry was faced with an apparently insur
mountable limit.

About this time. Jack St. Clair Kilby devel
oped what has come to be known as the Mon
olithic Idea. He decided you could put the com
ponents of an entire circuit in a monolithic block
of silicon. The idea, together with Robert Noyce's
work on interconnecting" circuits, allowed elec
tronics engineers to overcome the obstacle pre
sented by separate components. Kilby and
Noyce's work resulted in the integrated circuit,
the most important new product in the history
of electronics. For their efforts, both men were

awarded the National Medal of Science.

Exercises 9.1 1. Using descriptive names, declare an array variable for each of the following:

a. A list of 35 test scores

b. The prices of 20 automobiles
c. The answers to 50 true or false questions
d. A list of letter grades for the classes you eire taking this semester

2. Write a test program in which you declare an array of three components,
read values into each component, sum the components, and print out the
sum and value of each component.

3. Find all errors in the following declarations of array variables.

a. VAR

Time : ARRAY [1..12] OF Hours;

b. VAR

Scores : ARRAY [1..3D] OF integer;

c. VAR

Alphabet : ARRAY OF char;

d. VAR

List : ARRAY 11 TO IDl OF real;

e. VAR

Answers : ARRAY COF boolean];

f. VAR

X : ARRAY [1...5] OF real;

4. Assume the array List is declared as

TYPE

Scores = ARRAY [1..10D] OF integer;

VAR

List : Scores;

and that all other variables have been appropriately declared. Label the
following as valid or invalid. Include an explanation for any that are invalid.

a. read (Listt3]);

b. A := List[3] + Listen];

c. writeln (List);

d. ListllD] := 3.2;

e. Max := ListlSQ];

f. Average := (Listtl] + ListCfl]) / 2;

9.1 Basic Ideas and Notation 369

g. write (ListCSS, 5D, 75, !□□]);
h. write ((ListClQ] + ListESQ]):55);
i. FOR J := 1 TO DO

read (List);
j. List[3t] := ListElDS];
k. Scores[<7] := RS;
1. ListE^O] := ListE^l] / 2;

5. Change each of the following so that the TYPE definition section is used to
define the array type.

a. VAB
LetterList : ARRAY E1..100] OF 'A'-. ^Z';

b. VAR
CompanyName : ARRAY E1..3Q] OF char;

c. VAR
ScoreList : ARRAY E3D..5R1 OF real;

6. Consider the array declared by

VAR

WaistSize : ARRAY El..5] OF integer;

a. Sketch how the array should be envisioned in memory.
b. After assignments

HaistSizeEll := 3A;
HaistSizeE31 := 3b;
WaistSizeES] := 32;
ffaistSizeE2] := 2 * 15;
WaistSizeE^] := (WaistSizeEl] + WaistSizeE3]) DIV 2;

have been made, sketch the array and indicate the contents of each
component.

7. Let the array Money be declared by

TYPE
List3 = ARRAY El..3] OF real;

VAR
Honey : List3;

Let Temp, X, and Y be real variables and assume Money has the indicated
values

Money

19.26 Money[l]
10.04 Money [2]
17.32 Money[3]

Assuming Money contains the values indicated before each segment is exe
cuted, indicate what the array would contain after each section of code.

a. Temp := 173.21;
X := Temp + MoneyE2];
MoneyEl] := X;

b. IF MoneyE2] < MoneyEl] THEN
BEGIN

Temp ;= MoneyE2]; 4
MoneyE2] := MoneyEl];
MoneyEl] := Temp

END;
c. MoneyE3] := 20 - MoneyE3];

370 ONE-DIMENSIONAL ARRAYS

■ 9.2

Using Arrays

pppeTiVES

B to be able to use
loops to read data
into an array from
an input file

a to be able to use
loops to write data
from an array

a to be able to assign
array values by ag-
gpregate assignment

and by component
assignment

a to be able to use
loops with arrays to
solve programming
problems

8. Let the array List be declared by

TYPE

Scores = ARRAY [1..51 OF real;

VAR

List : Scores;

Write a program segment to initialize all components of List to 0.0.

Loops for Input and Output

One advantage of using arrays is the small amount of code needed when
loops are used to manipulate array components. For example, suppose a
list of 100 scores stored in a data file is to be used in a program. If an
array is declared by

TYPE

ListlDO = ARRAY [1..1DD] OF integer;
VAR

Score : ListlQQ;

the data file can be read into the array using a FOR loop as follows:

FOR J := 1 TO DO

read (ScoretJI);

Remember, a statement such as read (Score) is invalid. You may only read
data into individual components of the array.

Loops can be similarly used to produce output of array components.
For example, if the array of test scores just given is to be printed in a
column,

FOR J := 1 TO IDD DO

writeln (ScorelJI);

will accomplish this. If the components of Score contain the values

Score

78

93

Score[l]

Score [2]

82 Score[100]

the loop for writing produces
7fl

aa

Note that you cannot cause the array components to be printed by a
statement such as write (Score) or writeln (Score). These are invalid. You
must refer to the individual components.

Loops for output are seldom this simple. Usually we are required to
format the output in some manner. For example, suppose the array Score
is as declared and we wish to print these scores ten to a line, each with

9.2 Using Arrays 371

a field width of five spaces. The following segment of code would accom
plish this.

FOR J := 1 TO DO

BEGIN

write (ScoreCJ]:5);

IF J MOD ID = □ THEN

writeln

END;

Loops for Assigning

Loops can also be used to assign values to array components. In certain
instances, you might wish to have an array contain values that are not
read from an input file. The following examples show how loops can be
used to solve such instances.

Recall the array A in Section 9.1 in which we made the following assignments.

ACl] = 1;
Aca] =

AC3] =

AC<] = 1£>;
ACS] = 25;

These assignments could have been made with the loop

FOR J := 1 TO 5 DO
A[J] := J ♦ J;

example 9.8 Suppose an array is needed whose components contain the letters of the alphabet
in order from A to Z. The desired array could be declared by

TYPE
Letters = ARRAY [1..5L] OF char;

VAR
Alphabet : Letters;

The array Alphabet could then be assigned the desired characters by the statement

FOR J := 1 TO at DO
AlphabetCJ] := chr(J-l + ord('A'));

If

J := 1;

we have

AlphabetCl] := chr(ora(•A•));

Thus,

AlphabetCl] := 'A' ;

Similarly, for

J := a;

we have

Alphabetta] := chr(l + ordCA'));

372 ONE-DIMENSIONAL ARRAYS

Eventually we obtain

Alphabet

Alphabet [1]

Alphabet[2]

Alphabet [3]

A'

•B'

•c

'Z' Alphabet[26]

Assignment of values from components of one array to corresponding
components of another array is a frequently encountered problem. For
example, suppose the arrays A and B are declared as

TYPE

ListSD = ftRRAY 11..50] OF real;

VRR

A/ B : ListSD;

If B has been assigned values and you want to put the contents of B into
A component by component, you could use the loop

FOR J := 1 TO SD DO

AIJ] := BIJ];

However, for problems of this type, Pascal allows the entire array to be
assigned by

A := B;

This aggregate assignment actually causes 50 assignments to be made at
the component level. The arrays must be of the same type to do this.

Processing with Loops

Loops are especially suitable for reading, writing, and assigning array
components, and can be used in conjunction with arrays to process data.
For example, suppose A and B are declared as

TYPE

ListlGG = ARRAY [1..1GG] OF real;

VAR

A, B : ListlGG;

and you want to add the values of components of B to the respective
values of components of A. You could use the loop

FOR J := 1 TO IGG DO

A[J] := AIJ] + BIJ];

It would appear that since

A := B;

is valid,

A := A + B;

would accomplish this. Not true. Pascal does not allow the aggregate
addition of A + B where A and B are arrays.
The following examples illustrate additional uses of loops for process

ing data contained in array variables.

EXAMPLEV9.9

EXAMPLE 9£m

9.2 Using Arrays 373

Recall the problem earlier in this section in which we read 100 test scores into
an array. Assume the scores have been read and you now wish to find the average
score and the largest score. Assume variables Sum, Max, and Average have been
appropriately declared. The following segment will compute the average.

Sura := □;
FOR J := 1 TO DO

Sura := Sum + SecretJ];
Average := Sura /

The maximum score can be found by using the following segment of code.
Max := Secret 1];
FOR J := 2 TO IGD DO

IF SecretJ] > Max THEN
Max := SecretJ]; B

Write a segment of code to find the smallest value of array A and the index of the
smallest value. Assume the variables have been declared as

TYPE
CclumnlOD = ARRAY tl..lDO] OF real;

VAR

A : CclumnlOD;
Min : real;
Index : integer;

and the values have been read into components of A. The following algorithm
will solve the problem.

1. Assign 1 to Index
2. FOR J := 2 TO 100 DO

IF A[J] < A[Index] THEN assign J to Index
3. Assign A[Index] to Min

The segment of code is

Index := 1;
FOR J := 2 TO 100 DO

IF AtJ] < Atlndexl THEN

Index := J;
Min := A[Index]; ■

Suppose arrays A, B, and C have been declared as

TYPE

ListlOO = ARRAY tl..lGG] OF real;
ListBG = ARRAY tl..5Gl OF real;

VAR

A : ListlGG;
B, C : ListSG;

and we want to assign B to the top half of A, and C to the bottom half. The loop

FOR J := 1 TO 50 DO
ACJ] := ECJ];

will accomplish the first part of the task. To assign C to the bottom half of A we
could use these 50 assignment statements:

AC51] := CCl];
AC52] := CC2];

ACIGQ] := CC5G];

374 ONE-DIMENSIONAL ARRAYS

However, by examining the indices, we see this can be done more efficiently by

FOR J := 1 TO SO DO

ftC5D+J] := C[J];

These two assignment loops can be visualized as

A[l]

A[2]

A[50l

A[51]

A[52]

A[100]

B

B[l]

B[2]

B[50]

C[ll

C[2]

C[50]

The next example illustrates a very standard problem encountered when
working with arrays: What do you do when you don't know exactly how
many components of an array will be needed?

Suppose an input file contains an unknown number of dollar amounts from per
sonal checks. Write a segment of code to read them into an array and output the
number of checks. Since the data are in dollars, we use real components and the
identifier Check.

TYPE

List = ftRRAY [l..?l OF real;

VAR

Check : List;

At this stage, we must decide some upper limit for the length of the array (that
is, the number of checks). A standard procedure is to declare a reasonable limit,
keeping two points in mind.

1. The length must he sufficient to store all the data.
2. The amount of storage space must not be excessive; do not set aside ex

cessive amounts of space that will not be used.

If we know there are fewer than 50 checks, we could define a constant by

CONST

MaxChecks = 50;

and then define List by

List = ARRAY Cl..MaxChecks] OF real;

The data could then be accessed using a WHILE ... DO loop.

J := □;
WHILE NOT eof AND (J < MaxChecks) DO

BEGIN
J ;= J -h 1;
readln (Check!J])

END;

9.2 Using Arrays 375

IF NOT eof THEN

writeln ('Too much data');

The value of the index at the end of the loop is the number of checks in the list,
so we can preserve it for later use by adding the line

NumberOfChecks := j;

to the code. We then have

J := □;
WHILE NOT eof AND (J < MaxChecks) DO

BEGIN
J := J + 1;
readln (CheckCJl)

END;
IF NOT eof THEN

writeln ('Too much data');
NumberOfChecks := J;

Now we have the data in the array, we know the number of data items, and
NumberOfChecks can be used as a loop limit. Then the loop

FOR J := 1 TO NumberOfChecks DO
BEGIN

writeln;
writeln ('Check number' :5D, J:Af '$' :5/ ChecksCJ]:7:E)

END;

will print the checks on every other line. I

EXAMPLE :9i3l3 close this section with a final example using more elaborate TYPE definitions,
• loops, and arra3rs.

PROGRAM Economy (input/ output);

■{ This program illustrates the use of TYPE definitions/ loops/ and >
■(arrays. Values are read into an array and the maximum is found. >
i The array contents and maximum are then printed. >

CONST
StartYear = 1R7D;
LastYear = l'=ia7;

TYPE
RecentYears = StartYear..LastYear;
Econlndicator = ARRAY [RecentYears] OF real;

VAR
GrossNatlProd : Econlndicator; < Array of gross national product >
Max : real; < Maximum value from the array >
Year : RecentYears; { Variable for years from StartYear to LastYear >

BEGIN •{ Main program >

i Get the data }

FOR Year := StartYear TO LastYear DO
read (GrossNatlProdCYear]);

■(Find maximum >

Max := GrossNatlProd[StartYear]; < Get initial value >
FOR Year := StartYear + 1 TO LastYear DO

IF GrossNatlProdCYear] > Max THEN < Check for larger value >
Max := GrossNatlProdCYear];

376 ONE-DIMENSIONAL ARRAYS

i Now print all data >

writeln ('Year'iSD/ 'Gross National Product':3D);
writeln (' 'rSD/ • ':3D);
writeln;

FOR Year := StartYear TO LastYear DO

writeln (Year:ED/ GrossNatlProdCYear];55:5);

< Now print the maximum >

writeln;

writeln {'The greatest GNP in recent years was'r^D, Max:5D:2);
writeln; writeln

END. { of main program >

The output for this program is

Year Gross National Product

iqyo b7DDaD0DaDD0.0D

1571 b75aD0D0D000.aa

1572 baaDDDDDOQQO.DD

1573 b5oaoDDDDDaa.Da

1574 7DaDD0DDDD0D.DD

1575 7DbDDDDDDDaD.DD

157b 71DDaaDDD0aD.0D

1577 72aaaaDQQ0DD.0D

157a 724aDD0aDDDa.D0

1575 7344DDQDDDDD.DD

1560 75b00Q0D0DDQ.DD

15ai aiDOOODQQDOD.Oa

1562 67b7Qaaaoaaa.oa

1563 667QoaDaaaDa.oo

1564 5i2oaooDDDDa.aa

1565 560D0DDaDDDD.DD

156b i23aDDDaaaaDa.aD

1567 i755DDDoaaoaD.aa

The greatest GNP in recent years was 17'R500000DD0D.

STYLE TIP Indices with semantic meaning can be useful when working with arrays.
For examp|le, suppose you are writing^a program that includes the inventory
for shoe styles in a shoe store. If the styles are loafer, wing tip, docksider,
high pump, low pump, and plain tie, yoii would define

TYPE

Style = (Loafer/ WingTip, Docksider, HighPump,
LowPump, PlalnTie);

Shoelnventory =; aRRAY ILoafer..PlalnTie3 OF
integer;

VAR

Stock : Shoelnventory;
ShoeType : Style;

A tj^ical program statement could be

StockCWingTipI := 25;
StocklLoafer] ;= Stock(Loafer3 - 3;
FOR ShoeType := Lbafer TO PlalnTie DO

writeln (StockCShoeTypel);

9.2 Using Arrays 377

ExerciSBS 9.2 l. Assume the following array declarations.

VAR

List/ Score : ARRAY [1..5] OF Integer;
Answer : ARRAY [1..10] OF boolean;

Name : ARRAY 11..SQ1 OF char;

Indicate the contents of the arrays after each segment of code.

a. FOR J := 1 TO 5 DO

ListCJl := J DIV 3;

b. FOR J := E TO t DO

BEGIN

ListCJ-1] := J + 3;

Score[J-ll := ListCJ-1] DIV 3

END;

c. FOR J := 1 TO ID DO

IF J MOD S = G THEN

AnswertJ] ;= true

ELSE

AnswerCJ] := false;

d. for j := 1 to so do

NametJ] := chr(J + t>A);

2. Write a test program to illustrate what happens when you try to use an in
dex that is not in the defined subrange for an array: for example, try to use
the loop

FOR J := 1 TO ID DO

read (ACJi);

when A has been declared as

VAR

A : ARRAYC1..5] OF integer;

3. Let the array Best be declared by

TYPE

List3D = ARRAY [1..3D] OF integer;
VAR

Best : List3D;

and assume that test scores have been read into Best. What does the

following section of code do?

Count := D;

FOR J := 1 TO 3D DO

IF BestCJ] > =JD THEN

Count := Count + 1;

4. Declare an array and write a segment of code to

a. Read 20 integer test scores into the array.
b. Count the number of scores greater than or equal to 55.

5. Declare an array using the TYPE definition section and write a section of
code to read a name of 20 characters from a line of input.

6. Let the array List be declared by

TYPE

Numbers = ARRAY [11..171 OF integer;
VAR

List : Numbers;

and assume the components have values of

378 ONE-DIMENSIONAL ARRAYS

List

-2 List[ll]

3 List[12]

0 List[13]

-8 List[14]

20 List[15]

14 List[16]

-121 List[17]

Show what the array components would be after the following program
segment is executed.

FOR J := 11 TO 17 DO

IF ListCJ] < □ THEN
ListCJ] := □;

7- Assume the array A is declared as

TYPE

ListlOO = ARRAY [1..1DD] OF real;
VAR

A : ListlDD;

Write a segment of code that uses a loop to initialize all components to
zero.

The following can be used to input the values in Example 9.12. Discuss
how it is different.

FOR J := 1 TO 50 DO
IF NOT eof THEN

readln (ChecklJI);

9* Let the array N be declared as
TYPE

StringlD = ARRAY [1..1D] OF char;
VAR

N : StringlD;

and assume the array components have been assigned the values

J 0 H N S M I T H

Nil] N[2] N[3] N[4] N[5] N[6] N[7] N[8] N[9] N[10]

What output is produced by the following?
a- FOR J := 1 TO ID DO

write (NtJI);
writeln;

b. FOR J := 1 TO 5 DO
write (NCJ+5]);

write (•, •);
FOR J := 1 TO 4 DO

write (N[J]);
writeln;

c. FOR J := ID DOWNTO 1 DO

writeln (N[J]);
10. Let arrays A, B, and C be declared as

TYPE

FirstList = ARRAY [E1. ,4D] OF real;
SecondList = ARRAY t-4..15] OF real;

VAR

A/ B : FirstList;
C : SecondList;

9.3 Selection Sort 379

Indicate if the following are valid or invalid. Include an explanation for
those that are invalid.

a. FOR J := 51 TO AD DO

ACJ] := CCJ-aSl;

b. A := B;

c. A := C;

d. FOR J := 1 TO 10 DO

ECJ+aO] := CCJ-51;

e. FOR J := 11 TO 50 DO

BCJ+aO] := ACJ+aO];

11. Assume an array has been declared as

50] OF integer;C1

TYPE

ListSD = ARRAY

VAR

TestScore : ListSD;

Write a segment of code to print a suitable heading (assume this is a list of
test scores) and then output a numbered list of the array components.

12. Write a program segment to read 100 real numbers from a data file,
compute the average, and find both the largest and smallest values.

m 9.3

Selection Sort

OBJECTIVE

D to be able to sort an

array using the se
lection sort

A common problem involving arrays is sorting the components of the
array in either ascending or descending order. Several sorting algorithms
are given in Chapter 13, but let us now consider one of the easier methods,
the selection sort.

Selection Sort

Suppose we have an array A of five integers that we wish to sort from
smallest to largest. The values currently in A are as depicted on the left;
we wish to end up with values as on the right.

A A

6 A[l] 1 Ml]

4 A[2] 4 A[2]

8 A[3] 6 A[3]

10 A[4] 8 A[41

1 A[5] 10 A[5]

The basic idea of a selection sort is

1. Find the smallest number in the array and exchange it with A[l].
2. Find the smallest number among A[2] through A[5] and exchange

it with A[2].
3. Continue this process until the array is sorted.

The first step produces

A A

6
\ if

1

4 \ / 4

8 X 8

10 10

1 / ̂ 6

380 ONE-DIMENSIONAL ARRAYS

A NOTE OF INTEREST

Transition to a Computer System

Many individuals and businesses acquire a com
puter to take over some aspect of their lives or
their activities. They "computerize" something.
And as soon as the computer is up and nmning,
they abandon—often irrevocably abandon—^the
old technology, the old method.

Don't.

I believe that it is absolutely essential not only
to keep the technology of the old method as long
as possible—but actually to continue using the
old method, alongside the new—^for a minimum
of three months.

As soon as the computer does its first little
thing correctly, there is an overwhelming, almost
irresistible tendency to embrace it totally, to
switch eversdhing over onto the computer as
quickly as possible.

Untold grief has been experienced by indi
viduals and businesses that have fallen into this

trap. The new computer works wonderfully for
a few hours, a few days, even a few weeks. So
out with the old horse-and-buggy methods and
machinery. Throw out the kerosene lamps when
the electric power arrives (and break your neck
stumbling in the dark with the first power fail

ure). Dispose of your wind-up watch when you
get your digital model (and find yourself trying
to meet a tight schedule in a distant city when
your battery dies and you can't find a store that
sells your size). Put all your addresses and phone
numbers into a home record-keeping program,
and toss out your dog-eared address book. (And
then here comes Christmas, and you can't find
your main disk, and your back-up disk was sit
ting on the refrigerator and got erased by
magnetism).

Keeping the old and the new going side by
side can be trivial in some cases—^storing the
kerosene lamps, keeping a wind-up watch in your
luggage, hanging onto the old address book—or
it can be extremely complicated and expensive.
Even when it is the latter, it is still well worth
doing.

To paraphrase Pascal talking about belief in
God, if you do keep the back-up system going
and never need it, you've spent a little extra time
and money, but haven't really suffered. But if
you don't keep the old system going, and you do
need it, you're in big, big trouble.

The second step produces

1 1

4 4

8 8

10 10

6 6

Notice that since the second smallest number was already in place, we
do not exchange anjrthing. The third step produces

1010

9.3 Selection Sort 381

The fourth and final step yields the sorted list.

A A

1 1

4 4

6 6

10 8

8 10

Before writing the algorithm for this sorting procedure, note the following:

1. If the array is of length n, we need n — 1 steps.
2. We must be able to find the smallest number.

3. We need to exchange appropriate array components.

If two or more values in the list are equal, an exchange would not be made
when finding the smallest number. Thus, rather than find the smallest
numbers, we must be able to find one of the remaining smallest numbers.
When the code is written for this sort, note that strict inequality (<)

rather than weak inequality (< =) is used when looking for the smallest
remaining value. The algorithm to sort by selection is

1. FORJ:= 1 TON - 1
1.1 find the smallest value among AQ], AQ+ll,... A[N]
1.2 store the index of the smallest value in Index
1.3 exchange the values of A[J] and A[Index]

In Section 9.2 (Example 9.10) we saw a segment of code required to
find the smallest value of array A. With suitable changes, we will incor
porate this in the segment of code for a selection sort.
Index := 1;

FOR J := 5 TO ArrayLength DO
IF A[J] < Atlndex] THEN

Index := J;

Let A be an array of length n and assume all variables have been appro
priately declared. Then the following will sort A from low to high.

FOR J := 1 TO N-1 DO ■(Find the minimum N-1 times >
BEGIN

Index := J;
FOR K := J + 1 TO N DO

IF A[K] < Atlndexl THEN
Index := K; i Find index of smallest number >

Temp := ACIndexl;
ACIndex] := ACJ1; < Exchange smallest number >
ACJ] := Temp

END; < of one pass >

Let US now trace this sort for the five integers in the array we sorted
in the beginning of this section.

A

6 A[l]
4 A[2]
8 AI3]

10 A[4]
1 A[5]

382 ONE-DIMENSIONAL ARRAYS

For J := 1, Index := 1, and this produces

Index

For the loop FOR K := 2 TO 5, we get successive assignments

K

The statements

Temp := Atlndex];
ACIndex] := AtJ];

AtJ] := Temp;

produce the partially sorted array

A

1 A[l]

4 A[2]

8 A[3]

10 A[4]

6 A[5]

Index

Each successive J value continues to partially sort the array until J
This pass produces a completely sorted array.

= 4.

EXAMPLE 9.14 Our concluding example

1. Inputs real numbers from an input file.
2. Echo prints the numbers in a column of width six with two places to the

right of the decimal (:6:2).
3. Sorts the array from low to high.
4. Prints the sorted array using he same output format.

An expanded pseudocode development for this is

1. Print header—prints a suitable explanation of the program and includes a
heading for the unsorted list

2. Get data (echo print)—uses a FOR loop to read the data and print it in the
same order in which it is read

3. Sort list—^uses the selection sort to sort the array from low to high
4. Output sorted list—uses a FOR loop to output the sorted list

PROGRAM ArraySample (input, output);

i This program illustrates the use of a sorting algorithm }
•(with an array of reals. Output includes data in both an }
< unsorted and a sorted list. The data are formatted and }

•{ numbered to enhance readability. }

CONST

Skip = • •;
ListMax = SO;

TYPE

NuraList = ARRAY [l..ListMaxl OF real;

9.3 Selection Sort 383

VAR

Index : Integer; -C Stores position of an element >
J, K : integer; <. Indices }
Temp : real; < Temporary storage for array elements >
List : NumList; < Array of reals >

PROCEDURE PrintHeading;

< Given: Nothing >
< Task: Print a heading for the output > >
•{ Return: Nothing >

BEGIN

writeln; writeln;

writeln (Skip:lD/ 'This sample program does the following:');
writeln;

writeln (Skip:15/ '<1> Gets ListMax reals from a data file.');
writeln (Skip:lB/ ' Echo prints the data.');
writeln (Skip:ia/ '<3> Sorts the data from low to high.');
writeln (Skip:15/ '<<> Prints a sorted list of the data.');
writeln

END; i of PROCEDURE PrintHeading }

BEGIN < Main program >

{ Print the heading >

PrintHeading;

< Get the data and echo print it >

writeln (Skip:ID/ 'The original data are as follows:');
writeln;

J := □;
WHILE NOT eof AND (J < ListMax) DO

BEGIN

J := J + 1;
readln (ListCJl);
writeln (Skip:15/ '<'/ J:5/ '>'/ ListtJl:t:5)

END; -C of WHILE NOT loop >
IF NOT eof THEN

writeln ('Too much data. ');

i Now sort the list }

IF eof AND (J < ListMax) THEN
writeln ('Not enough data. ')

ELSE
BEGIN

FOR J := 1 TO ListMax-1 DO
BEGIN

Index := J;
FOR K := J+1 TO ListMax DO

IF ListCK] < Listdndex] THEN
Index := K;

Temp := ListCIndex];
List[Index] := List[J];
List[J] := Temp

END {. of FOR loop (selection sort) >
END; { of ELSE statement }

384 ONE-DIMENSIONAL ARRAYS

i Now print the sorted list >

writeln

writeln (Skip:10/ 'The sorted list is as follows:');
writeln;

FOR J := 1 TO ListMax DO

writeln (SkipilE, '<' J:S, '>', ListlJJrtiE)

END. < of main program >

The output for this program is

This sample program does the following:

<1> Gets ListMax reals from a data file.

<5> Echo prints the data.
<3> Sorts the data from low to high.
<A> Prints a sorted list of the data.

The original data are as follows:

< 1> 3A.St,

< E> 7fl.51

< 3> 23.3Q

< A> flR.RD

< 5> A3.0Q

< L> SL.fiD

< 7> 39.Dl

< a> <5.St.

< 9> 3A.AQ

<!□> <5.10
<11> 93.20

<12> 5.L0
<13> a.00
<1A> A3.DO
<15> 99.00

<1L> 5L.7a

<17> 5Ei.7a

<ia> <5.00

The sorted list is as follows:

< li> 5.L0
< 2> a.00

< 3> 23.30
< A> 3A.AQ

< 5> 3<.5b
< b> 39.01
< 7> <5.00
< a> <5.00

< 9> <5.00
<10> <5.10
<11> <5.5L
<12> St.7a
<13> 5t.7a
<i<> st.ao

<15> 73.21
<lt> 39.90
<17> 93.20
<ia> 99.00

Exercises 9.3

9.4 Arrays and Subprograms 385

1. Assume the array Column is to be sorted from low to high using the selec-
tion sort.

Column

-20

10

0

10

8

30

-2

a. Sketch the contents of the array after each of the first two passes.
b. How many exchanges are made during the sort?

2. Write a test program that prints the partially sorted arrays after each pass
during a selection sort.

3. Change the code for the selection sort so it sorts an array from high to low.

4. Write a complete program to

a. Read ten reals into an array from an input hie.
b. If the first real is positive, sort the array from high to low; if it is negative,

sort the array from low to high.
c. Print a numbered column containing the sorted reals with the format

:10:2.

■ 9.4

Arrays and
Subprograms

OBTECTIVE

■ to be able to use ar

rays correctly with
subprograms

Procedures and functions should be used with arrays to maintain the
structured design philosophy. Before we look at specific examples, let us
examine the method and syntax necessary for passing an array to a pro
cedure. Recall that to pass either a value or variable parameter to a pro
cedure, we must declare a variable of exactly the same type as the param
eter in the procedure heading. In addition, if more than one parameter is
passed, there must be a one-for-one ordered matching of the parameters
with the variables in the heading of the procedme. Consider, for example,
the following program. It reads two integer test scores, computes their
average in a procedure called CalcMean, and outputs the results.

EXAMPLE 9.19

PR06R2VM RverageOfTwo (input, output);

integer;
VRR

Numl, NumS

Rve : real;

<*******♦*********************♦*********************♦♦****♦*****}

PROCEDURE CalcMean (Numl, NuraS : integer;
VRR Rve : real);

< Given: Two integers
{ Task: Compute their average
i Return: Rverage of the two integers

386 ONE-DIMENSIONAL ARRAYS

VAR

Sura : Integer;

BEGIN

Sum := Nural + NumE;

Ave := Sura / 2.D

END; { of PROCEDORE CalcMean >

BEGIN -I Main program >
readln (Nural, NuraE);

CalcMean (Nural, NuraE, Ave);

writeln ('The average of ', Numl:5, ' and ', NuraE:5, • is ',
Ave:L:E)

END. i of main program >

The procedure call

CalcMean (Nural, NuraE, Ave);

and the procedure heading

PROCEDURE CalcMean (Nural, NuraE : integer;
VAR Ave : real);

have the desired matching of variables. ®

Let us now modify the program so it will determine the average of 100
test scores in the array Scores. The procedure call in the program will be

CalcMean (Scores, Ave);

and the procedure heading will have to match these variables. If Scores
also is the variable name to be used in the procedure heading, we have

PROCEDURE CalcMean (Scores : ???;
VAR Ave : real);

Pascal requires that a TYPE definition be given. For example, if we have

CONST

MaxLength = 100;
TYPE

List = ARRAY [1..MaxLength1 OF integer;
VAR

Scores : List;

the procedure heading could be

PROCEDURE CalcMean (Scores : List;
VAR Ave : real);

This is consistent with allowing only identifiers of identical or compatible
types to be associated. A common mistake is to attempt to build a data
type inside the procedure heading. This will not work. The statement

PROCEDURE CalcMean (Scores : ARRAY [1..MaxLength] OF integer;
VAR Ave : real);

produces an error message because Pascal compilers check for name equiv
alence rather than structure equivalence. To illustrate, you could have
two arrays

Position : ARRAY tl..3] OF real;
Nutrition : ARRAY [1..3] OF real;

where Position is used to represent coordinates of a point in space and
Nutrition is used to represent the volume, weight, and caloric content of

9.4 Arrays and Subprograms 387

a serving of food. Although Position and Nutrition have the same structure,
they have significantly different meanings. Thus, by insisting on name
equivalence, the chances of inadvertent or meaningless uses of structured
variables are decreased. Also, compiler implementation of name equiv
alence is easier than compiler implementation of structure equivalence.
We can now write a revised version of the program in Example 9.15 to

find the average and include a procedure that requires passing an array
variable.

9.16

PROGRAM Average (input, output);

CONST

HaxLength = IQD;

TYPE

List = ARRAY [1..MaxLength] OF integer;

VAR

Scores : List;

Ave : real;

J, Length : integer;

-{***♦*♦*******)•

PROCEDURE CalcMean (Scores : List;
VAR Ave : real;
Length : integer);

{ Given: An array of scores and number of scores in the >
{ array >
<. Task: Compute the average of scores in the array >
< Return: The average score >

VAR

J, Sum : integer;

BEGIN

Sura := □;
FOR J := 1 TO Length DO

Sum := Sura + ScoresCJ];
Ave := Sum / Length

END; i. of PROCEDURE CalcMean >

•{ ♦****♦***»*******************»*************************♦*******>

BEGIN < Main program >
Length := □;
WHILE NOT eof AND (Length < MaxLength) DO

BEGIN

Length := Length + 1;
readln (Scores[Length])

END; < of WHILE NOT eof >
CalcMean (Scores, Ave, Length);
writeln ('The average of:50);
writeln;
FOR J := 1 TO Length DO

writeln (Scores[J]:12);
writeln;
writeln ('is' :lD, Ave:a:2)

END. { of main program > ■

388 ONE-DIMENSIONAL ARRAYS

Before we consider more procedures with arrays, we restate a rule: To
pass an array to a procedure or function, the array must be declared with
an identifier that uses a TYPE identifier; the matching variable in the
procedure must use the same TYPE identifier.
Now that we know how to pass an array, let's rewrite our last example

using a completely modular development. In this version, CalcMean is a
function instead of a procedure. The first-level pseudocode development
is

1. Get the scores (PROCEDURE GetData)
2. Compute the average (FUNCTION CalcMean)
3. Print a header (PROCEDURE PrintHeader)
4. Print the results (PROCEDURE PrintResults)

The procedure to get the scores requires a VAR declaration in the pro
cedure heading for the array. If List is defined as a data type, we have

PROCEDURE GetData (VAR Scores : List;
VAR Length : integer;

BEGIN

Length := □;
WHILE NOT eof AND (Length < MaxLength) DO

BEGIN

Length := Length + 1;
readln (Scores!Length])

END;

END; i. of PROCEDURE GetData >

The average score could be computed by the function CalcMean.
FUNCTION CalcMean (Scores : List;

Length : integer) : real;
VAR

J, Sum : integer;
BEGIN

Sura := □;
FOR J := 1 TO Length DO

Sum := Sura + ScoresIJ];
CalcMean := Sum / Length

END; { of FUNCTION CalcMean >

A procedure to print a heading would be written in a manner similar
to that we have used previously. If we want the output to be

Test Scores

qq

qa

q?

qb
qs

The average score on this test was qv.DD

the procedure for the heading could be
PROCEDURE PrintHeader;

BEGIN
writeln;
writeln ('Test Scores');
writeln (' ') ;
writeln

END; < of PROCEDURE PrintHeader >

{ (Hq.5usx SBjoos jo Abjjv :ujnq.aa }
{ AbJJC UB Oq.UT BIT? BX-BP B UlOaj SBJOOS pBBH :3{SBX >
{ SujqtiON :u0AT0 >

i(aB6ex.UT : qq.6uai aVA
fqsTT : sBJtoos HVA) B^Baqso aaoaaooad

^ *** >

X UBBMOTTBD NOIIDNOa ?0 > iQNa
qq.SuB'i / inns =• ubbwoTBD

ttf]S9aoos + uins =: mns

oa qqSuBi OX T =: r aoa
;□ =: inns

Nioaa

laBBequT : inns T
HVA

{ Bjoos aSBjeAB aqi rujnqaa >
{ Bjoos bSbjbab aqq ©qnduiOD :3(sbi >
■{ saaoos 30 qsTT « :ubat9 >

IXBsa : (asBequx : qqBuBi
IqsTT : sbjoos) ubbwoXBD NOIXDNOI

X *** >

laeBaqux : qqBuax
1XB9J : 9Aq

fqsxi : SBJOOS
HVA

iaaBaquT ao [qqfiueiXBW'Tl iqaav = ^STT
aaix

iDDX = qqBuBiXBM
XSNOO

I (q.ndqno 'qndux) saaoosqsax WVaooad

')U8mdo|aAap stqi loj mBjSojd a)a|duio3 b si afduiBxa 3aiMO||oj aqx XI'O 'gflgW VXH

l(qq5uBi 's3Joos)uBaMOXB3 =: BAq

Aq punoj si aAy ajaqAA
ICqqBua'i 'BAq 'saaoos) sqxi»saaquxxd

Aq paqeo aq ppoo ampaDoid siqj.
X sqxnsaaquTJd aanaaoGHd 50 } laaa

'E:9:9Aq
iSB/i qsaq sxqq uo axoos aSaaaAB aqxi) uxsqi^*

!uxsqi^A
i (a: crisaaoos) uxs^T^ia
oa qqBuai OX T =: P HOd

Nioas
iaaBaqux : r

aVA
(jaBaqux : qqBuai

fXTsaa : aAq
IqsxT : saaoos) sqxnsaaquT^d aaoaaooad

aq pjnoo sqnsai aip juud o; ainpaaoid y

0gg sniBjSojdqns pus sAnxiy ^*6

390 ONE-DIMENSIONAL ARRAYS

BEGIN

Length := □;
WHILE NOT eof AND (Length < MaxLength) DO

BEGIN

Length := Length + 1;
readln (ScoresCLength])

END
END; i of PROCEDURE GetData >

PROCEDURE PrlntHeader;

•I Given: Nothing >
{ Task: Print a heading for the output >
{ Return: Nothing }

BEGIN

writeln; writeln;
writeln (' Test Scores' : E'=l);
writeln (' ' :ER);
writeln

END; i of PROCEDURE PrintHeader >

<*********♦♦**>

PROCEDURE PrintResults (Scores : List;
Ave : real;
Length : integer);

{ Given: Array of scores and average score >
{ Task: Print the scores in a list and print the average }
{ score >
■I Return: Nothing >

VAR
J : integer;

BEGIN

FOR J := 1 TO Length DO
writeln (Scores!J]:B5);

writeln;
writeln ("The average score on this test was' :^3, Ave:L:E/

END; < of PROCEDURE PrintResults >

■{ *******************+***>

BEGIN < Main program }
GetData (Scores, Length);
Ave := CalcMean (Scores, Length);
PrintHeader;
PrintResults (Scores, Ave, Length)

END. { of main program > ^

As previously mentioned, sorting arrays is a standard problem for pro
grammers. Now that we can pass arrays to procedures and functions, let
us consider a problem in which an unknown number of reals are to be
read from an input file and a sorted list (high to low) is to be printed as
output. A first-level pseudocode design is

1. Get data (PROCEDURE GetData)
2. Sort list (PROCEDURE Sort)

9.4 Arrays and Subprograms 391

3. Print header (PROCEDURE PrintHeader)
4. Print sorted list (PROCEDURE PrintData)

Since the number of data items is unknown, we will have to declare em
array that is of sufficient length to store all the data but that does not use
an unreasonable amount of memory. The nature of the problem will pro
vide sufficient information for this declaration. For now, assume we know
there are at most 50 data items. Then the-following declaration will he
sufficient.

CONST

MaxLength = SO;

TYPE

NuraList = ARRRY [1..MaxLength] OF real;
VRR

List : NuraList;

Length : integer;

The procedure to sort the array uses a version of the selection sort from
Section 9.3. Both the array and the number of data items need to be passed
to the procedure. An appropriate procedure is

PROCEDURE Sort (VRR List : NuraList;
Length : integer);

VRR

J/ K/ Index : integer;
Terap : real;

BEGIN

FOR J := 1 TO Length - 1 DO
BEGIN

Index := J;

FOR K := J + 1 TO Length DO
IF List[K] > ListCIndex] THEN

Index := K;

Terap := ListCIndex];
ListCIndex] := ListCJ];

ListCJ] ;= Terap
END { of FOR J loop >

END; { of PROCEDURE Sort >

This procedme could be called by the statement

Sort (List/ Length);

After suitable procedures are written for getting the data, printing a header
and printing the data, the main body of the program could be

BEGIN < Main Program >
GetData (List/ Length);
Sort (List/ Length);
PrintHeader;

PrintData (List/ Length)
END. •{ of main program >

To close this section, let's now reconsider the issue of value parameters
and variable parameters used with arrays. Because value parameters re
quire separate memory of approximately the same size as that used by
actual parameters in the main program, value parameters that are array
types can require a great deal of memory..Thus, many programmers use
only variable parameters when they work with arrays. This saves memory
and speeds execution. Since most of your programs are relatively short
and process small data files, this will not be a major problem. However,
as data bases become larger and you use more elaborate structures, you

392 ONE-DIMENSIONAL ARRAYS

may wish to consider using variable parameters even when changes are
not made in the variables.

Exercises 9.4 l. Assume the following declarations have been made in a program.

TYPE

Row = ARRAY [1..1D] OF integer;
Column = ARRAY II..3D] OF real;

StringaO = ARRAY 11..501 OF char;
Week = (Sun, Mon, Tues, Wed, Thur, Fri, Sat);

VAR

Listl, Lists : Row;
Aray : Column;
Namel, NameS : StringSD;

, Day : Week;
A, B : ARRAY tl..lG] OF integer;

Indicate which of the following are valid PROCEDURE declarations. Write
an appropriate line of code that will call each of those that are valid. Include
an explanation for those that are invalid.

a. PROCEDURE NewList (X : Row; Y : Column);

b. PROCEDURE NewList (VAR X : Row : VAR Y : Column);
C. PROCEDURE NewList (X : ARRAY 11..ID] OF integer);
d. PROCEDURE NewList (VAR X, Y : Row);
e. PROCEDURE NewList (VAR Column : Column);

f. PROCEDURE Workweek (Days : ARRAY [Mon..Fri] OF Week);
g. PROCEDURE Surname (X : Name);

h. PROCEDURE Surnames (X, Y : StringSD);

i. PROCEDURE GetData (X ; Week; VAR Y : Name);
j. PROCEDURE Table (VAR X : Row; VAR Y : Row);

2. Write a test program that illustrates what happens when you define an array
structure in a procedure heading. For example,

PROCEDURE Sort (List : ARRAY 11..SD] OF real);

3. When possible, use the TYPE and VAR declaration sections of Exercise 1 to
write PROCEDURE declarations so that each of the following statements in
the main program is an appropriate call to a procedure. Explain any inap
propriate calls.

a. oldList (Listl, Aray);

b. ChangeList (Listl, Namel, Day);
c. Scores (A, B);

d. Surname (StringSD);

4. Write an appropriate PROCEDURE declaration and a line of code to call the
procedure for each of the following.

a. A procedure to read 20 test scores into an array and save them for later
use.

b. A procedure to count the number of occurrences of the letter A in an ar
ray of 50 characters.

c. A procedure to take two arrays of 10 integers each and produce a sorted
array of 20 integers for later use.

d. A procedure to read integer test scores from a data file, count the number
of scores, count the number of scores greater than or equal to 90, and save
this information for later use.

9.5 Packed Arrays 393

5. Assume the following declarations have been made.

TYPE

ColumnlD : ftBRAY [1..1D] OF integer;
VRR

Listl/ Lists : ColumnlD;
K : integer;

Indicate the contents of each array after the call to the corresponding
procedure.

a. PROCEDURE Sample (VAR Listl : ColumnlD;

Lists : ColumnlD);
VAR

J : integer;

BEGIN

FOR J := 1 TO ID DO

BEGIN

Listl [J] I— J «7;

ListStJ] := ListCJl MOD S

END

END; t of PROCEDURE Sample >

BEGIN < Main program >

FOR K := 1 TO ID DO

BEGIN

ListltKJ := D;

ListSCK) := D

END;

Sample (Listl/ ListS);

b. Replace the procedure call with

Sample (Lists, Listl);

c. Replace the procedure call with consecutive calls

Sample (Listl, ListS);
Sample (ListS, Listl);

6. For the following, declare appropriate variables, write the indicated
procedures, and call the procedmes from the main program.

a. read a line of text from an input file that contains 30 characters.
b. Count the number of blanks in the line of text.
c. Print the line of text in reverse order and print the number of blanks.

7. Write a procedure to examine an array of integers and then return the maxi
mum value, minimum value, and number of negative values to the main
program.

S @

■I 9.5
Packed Arrays

OBJECTIVES

■ to be able to use
correct notation for
packed arrays

Objectives continued.

Basic Idea and Notation

Arrays, as you recall, are useful for handling large amounts of data. One
of the disadvantages of using arrays, however, is that they require large [J]
amounts of memory. In particular, arrays of character data use much more
memory than is necessary. To illustrate, let us take a closer look at an
array declared by

VAR

Examine ARRAY [1. .53 OF char;

394 ONE-DIMENSIONAL ARRAYS

to understand the

advantages and dis
advantages of
packed arrays
to use string

variables

to use built-in pro
cedures pack and
unpack

When this structured variable is declared, the following variables are
reserved.

Examine

Examine[l]

Examine[2]

ExaminefS]

Examine[4]

Examine[5]

Each component of the array Examine is one word in memory and each
word consists of several bytes. Let us consider the array Examine in which
each word consists of four bytes. The array would be pictured as

Examine

byte

Examine[l]

Examine [2]

Examine[3]

Examine[4]

Examine[5]

one word

We could assign the word "HELLO" to the array Examine by either
Examined] = 'H';

Examine!E] = 'E' ;

Examine!3] = 'L' ;

Examine!^] = 'L' ;

Examine!5] = '0' ;

or

Examine := 'HELLO'

depending on which version of Pascal is being used. In either case, after
the assignment, the array would look like

Examine

H

E

L

L

O

Examine[l]

Examine[2]

Examine[3]

Examine[4]

Examine[5]

because a byte is the unit of storage necessary for storing a character
variable.

As you can see, 20 bytes of storage have been reserved, but only 5 have
been used. Pascal provides a more efficient way of defining arrays that
does not use unnecessary eunounts of storage space. Instead of declaring
a variable as an array, we can declare a variable as a packed array. With
this declaration, the computer then packs the data in consecutive bytes.

Packed arrays can be used with any data type (char, real, integer, boo
lean, and so on). However, it is not always wise to do so because it takes
longer to access individual components of a packed array than it does to
access individual components of an array that has not been declared as
packed. Storage space is saved, but time is lost.

9.5 Packed Arrays 395

Let us now consider the declaration

TYPE

strings = PACKED ARRAY [1..5] OF char;
VAR

Examine : Strings;

and the assignment of the word "HELLO" as before. Using a packed array,
we then have the following in memory.

Examine

H L L O

Notice that less than two words (5 bytes) are used to store what previously
required five words (20 b5des). We can still access the individual com
ponents as before. For example,

writeln (ExamineCSl);

produces

E

as a line of output.

Character Strings

Every programming language needs to be able to handle character data.
Names, words, phrases, and sentences are frequently used as part of some
information that must be analyzed. In standard Pascal, character strings
are formed by declaring packed arrays of character variables. For example,
if the first 20 spaces of an input line are reserved for a customer's name,
an appropriate character string could be declared by

TYPE

StringED = PACKED ARRAY [1..BD] OF char;
VAR

Name : StringED;

If the line of input is

Smith John A.

t

position 21

we could read the name into the packed array by the code
FOR J := 1 TO ED DO

read (NameCJ]);

Now when we refer to the array Name, we can envision the string

• Smith John A.'

But since we declared a fixed length string, the actual string is

•Smith John A. '

There are at least three important uses for string variables.

1. String variables of the same length can be compared (Boolean val
ues); this permits alphabetizing.

2. String variables can be written using a single write or writeln
statement; they cannot be read using a single read statement.

3. A single assignment statement can assign text to a string variable.

Let's examine each use individually.

396 ONE-DIMENSIONAL ARRAYS

Comparing String Variables. Strings of the same length can be compared
using the standard relational operators: " = , <, >, <>, < = , and > = .'*
For example, if 'Smith' and 'Jones' are strings, then 'Smith' < 'Jones',
'Smith' <> 'Jones', and so on are all valid Boolean expressions. The
Boolean value is determined by the collating sequence. Using the collating
sequence for the ASCII character set, the following comparisons yield the
indicated values.

Comparison Boolean Value

'Smith' < 'Jones' false

'Jake' < 'John' true

'ABC = 'ABA' false

'Smith Doug' < 'Smith John' true

What would happen if you wanted to evaluate 'William Joe' < 'Williams
Bo'? Since a character-by-character comparison is implemented by the
computer, no decision is made until the blank following the m of William
is compared to the s of Williams. Using the full ASCII character code, this
Boolean expression is true, which is how these strings are alphabetized.

Writing String Variables. Recall the declaration

TYPE

StringSD = PfiCKED RRRftY [l.-SQ] OF char;
VftR

Name : StringED;

When data were read from an input file, a loop was used to get the data
one character at a time.

FOR J := 1 TO ED DO

read (NamelJl);

If we now wish to write the string Name, we could use a similar loop and
write it one character at a time.

FOR J := 1 TO ED DO

write (NaraeUJ);

However, Pascal provides a more convenient method for writing strings.
The write loop could be replaced by

write (Name);

Assigning Text to a String. The third feature of string variables is that a
single assignment can be used to assign text to a string. If Name is a string
of length 20, then

Name := 'Smith John A. •;

is a valid statement. Note that there must be exactly 20 characters in the
text string in order for this assignment to be valid. The statements

Name := 'Smith John A.';

Name := 'Theodore Allen Washington';

are both invalid because the text strings are not exactly 20 characters long.
There are some standard problems that will be encountered when trying

to read data into a packed array. First, assume we have to read a line of

9.5 Packed Arrays 397

data that consists of a company name. Furthermore, assume we do not
know the length of the name. The input line could be

Prudent Investors Company

or

Com Mfg. Co.

If we know the company name will be no more than 30 characters, we
can declare a fixed length array in the following manner.

type

String3D = PACKED ARRAY [1..3D] OF char;
VAR

CompanyName : Strlng30;

and then read the name with the segment of code

FOR J := 1 TO 3D DO

IF NOT eoln THEN

read (CompanyNametJ])
ELSE

CompanyNameCJ] := ' ';
readln; t Advance the pointer >

This will read the name as desired and then fill the array with blanks to
the desired length. Applied to the two data lines just mentioned, this
segment of code would produce the following character strings.

•Prudent Investors Company '
'Com Mfg. Co. •

Second, we may want to read data from an input file in which a field
of fixed length is used for some character data. For example, suppose the
first 30 columns of an input line are reserved for the company name and
then some other information is on the same line. We could have

Prudent Investors Company 1905 South Drive

t

column 31

This data could be accessed by the loop

FOR J := 1 TO 3D DO

read (CompanyNaraeCJ]);

Although the second format for an input file is easier to use, it is sometimes
difficult to obtain data in such a precise format. Hence, we must be able
to read data both ways.
We are now ready to write a short program using packed arrays. Suppose

the problem is to get two names from a data file, arrange them alphabet
ically, and then print the alphabetized list. Assume the names are in a
field of fixed length 25 or two adjacent lines. A first-level pseudocode
development is

1. Get the data (PROCEDURE GetData)
2. Arrange alphabetically (PROCEDURE Alphabetize)
3. Print the data (PROCEDURE PrintOata)

398 ONE-DIMENSIONAL ARRAYS

A NOTE OF INTEREST

Data Abstraction

In Pascal, arrays provide examples of structured
data types. (As you'll see later, records, files, and
sets are also structured data types.) In a struc
tured data type, the relationship between the ele
ments of the data t3rpe is as important as the
individual components themselves. For in
stance, in a one-dimensional array of integers,
we completely define the structure by giving its
values and by specifying the positions of these
values relative to other elements in the list of
integers. For example, we say that 19 is the first
value in the list, 89 is the second, 12 is the third,
and so. on.

There are two implicit conclusions to be drawn
from wh^t we have just said. First, in a data
structure such as a list, we specify the structure
by defining the relationships between items as
well as the values of individual items. Second,
we can then implement that conceptually de
fined structure in our programs using a tool from
Pascal; for example, a Pascal array is used to
implement the concept of a list. It is important
to note the distinction between the conceptual
data structure that we define and its implemen
tation in Pascal. In the case of a list, this dis

tinction may seem relatively minor because Pas
cal provides a one-dimensional array as an
obvious means of implementing a conceptual list.
However, there is no guarantee that there will
always be such a straightforward link between
a conceptual data Structure and its implemen
tation in Pascal.

Consider, for instance, the structure charts that
we have used to specify the relationships be
tween modules in a Pascal program. Such a
structure chart could itself be considered a data

structure. As such, it is clearly a more complex
structure thanja list. In this data structure, the

data items are the module names; their relation
ship is that Module 2 is directly subordinate to
Module 1 if Module 1 calls Module 2 in per

forming its logic. The relationship between data
items in this structure is hierarchical. This hi

erarchical relationship constitutes the basis for
a conceptual data structure known as a tree. We
will not study trees in detail here. For one reason,
Pascal provides no direct implementation for
trees. The syntax of Pascal does not include a
structured type that completely reflects the hi
erarchical relationship between items in a tree.

Does this mean that one cannot write a Pascal

program that manipulates a tree data structure?
No, the representation of trees is typically cov
ered in a second course in computer science.
However, the separation between the conceptual
definition of a data structure and its eventual

implementation in a particular computer lan
guage is an important one to keep in mind. This
separation is often called data abstraction. The
value of data abstraction is that it allows us to

think in terms of data structures without being
shackled by the syntactical constraints of a pro
gramming language—^similar to what pseudo
code allows us to do in describing an algorithm's
logic. Once the data structure and the algorithms
that manipulate it are understood at this con
ceptual level, we can then turn our attention to
ways of implementing the structure in Pascal or
other languages. Some newer languages, such as
Ada and Modula-2, emphasize this data abstrac
tion theme to a greater degree than Pascal. They
allow the programmer to write packages of rou
tines with implementations for such abstract data
types; these may then be called from any pro
gram that works with data of that abstract type.
In effect, these languages allow the programmer
to extend the data typing capacity of the lan
guage to emphasize the separation of the data
structure's definition from its implementation.
This approach to using and studying data struc
tures seems certain to have a profound effect on
computer science in the coming years.

A procedure to get one line of data is
PROCEDURE GetData (VAR Name : StringES);

VAR

J : integer;

BEGIN

FOR J := 1 to 55 DO

read (NaraelJl);
readln i Advance the pointer }

END; < of PROCEDURE GetData >

{***).

{ aanaaooHd 50 > iaaa
•{ JBq-UTod aiii. eouBAp^ > uippej

l([ri9UIBN) PB0J

oa 55 01 T =: r aoa

Nioaa

laeBaq-uj : r

aVA

< (saeq.opjBqo 55 jo Bufaq-s) euiBU auQ :uanq.©a >
{ 9TTJ b-^bp sq:^ inoaj auiBU B pBsa :3(sbi >

i 6uTqq.ON :ueAT0 >

KssButj^s : suiBii 'avA) B:^Ba^90 aanaaooaa

iBBBuxaq-s : BaciBN "tamBU

aVA

!aBqo JO [55*'T] iVaa? QaHDad = 5a6uTJ:^S

adA£

I I I = <3t21S
ISNGO

I(q.nd^no 'q.nduT) saiUBNSTduiBS M\fa0Oad

•mBiSojd ajafdraoo aq; a^iJAA aaou ubo ay\/v

{ B^Ba:^uTJd aanaaooad jo y laaa

(B0U1BN DBrdT^is) uisq-TJ*
f(T:9iinBij DErdfJIS) uieq-TJA

fuxaq-iraM luiaq-jaM
I(, — j 'DT::dT5(s) uiaq.Ta«

:(i-woxaq ST qsTT pazT^sq^qdiB aqi, 'QTrd-pilS) uiaqxTW

luia^T^A luxaqxTft

NI0a9

i(5a6uTa:^s : aamaK 'TamBii) Bq-BQ^uTTd aanaaooad

SI sii{) op o; ampaooid
V 'sauii OAAi Suiddpjs jajjB saoeds ua^ pa^napm aip juiid uaip pire

•MOiaq ST TSTI pazTTsqBMdTB sqi

Abs o) ;ubaa noA asoddns *a|duiBxa 10^ saiuBu aqj p Suiipinioj amos
puB lapBaq auios apnpui ppoqs auiBU aip Suijuiid loj ampaooid aqx

i. azTqaqBqdia aanoaooad JO > Jaaa

< Nani ••• ai JO } ana

duiax =: bsuibn
129119M =: taiHBN

ItauiBN =: dmai
< AjBSsaoau uaqM aBaaqoxa > NI0aa

NaHX T9U3BN > BauiBN dl

Nioas

iSBBuTiJS : dmax

aVA

i(556tiTajs •• asuiBN 'T9I29H avA) azTJsqBqditf aanaaooad

Aq A|poi;aqBqdp paSuBiiB
aq ppoo Aaqi 'a|g jndui aqx uioij paai uaaq aABq sauiBu oaaj aqj la^jy

66£ sAbjjv pa^IOBj 9*6

aUIBlsp|B(J

loj Aiouiam paAiasai aABij mou ayw

iDtABav : amBH^iBdun
Iax6uTJ^S : amBNMBd

HVA

laaqo lo [Df'T] i«aH^ = DlABa?
iJBqo dO [DT-'T] i«aa¥ aaMDVd = DTfiUTJ^S

adAx

•suopaiBpap 8uimo||oj aip japisuoa 'aidxirexa joj 'sdooi
juamuSissB Suisn Aq (pa5[0Bd pu aiB pq; sAbub) sKvjuv ps^ovdun puB
paqoBd q;iAv SupfiOM apiqiOBj o; apissod si q •s^uauoduioo pnpiAipui
ssaoDB 01 auiii aiom jnq Aiouiaui ssa^ aiinbai sAbub paqoBd pqi si sAbiib
paqoBd puB sAbjib ipiM SupjiOM uaaMiaq jjo-apBi; oiSBq aqi qpoai noA sy

SuiqDBdUQ pUB SUI?I3B(]

< fflBjBoad UTBia 3.0 > "asa
(aamEN "tsuiBN) Bq-Baq-Uf^d

!(2amBN 'TaiiBN) azfq-sqBqdxv
I(2emBii) Bq-Boq-SO

l(T9UiBii) Bq-Boq-SQ
i uiBa5oad ufBu > Nisaa

< Bq-Boq^uT^id aanaaDoad 30 > laNa
(aauiBN 'oardT^lS)
KTSUIBH *D5''^T^S) uieq-TJA

;uis:iT^« luiaq-TJA
; (i , ' □«[: dT3{S) uiat^T^CH
i(,-AOi©q ST q.STT pazTq-sqBqdiB aqi, 'QTidT^lS) uiaqTJA

luxaqT^A luxaqT^i
Nisas

{ SuTqq-ON rujnqsH }
{ sauiBU aqq. quTTd :2{Sbi >
< aapjo XBOxq-aqBqdiB ut saraBN :uaAT9 >

i(sa6BT-iq^s : astuBii 'tsutbij) BqBQq-uTJd aanaaooad

^***>

i az-pqaqBqdiif aanaaDOHd JO > iQlia
■C NaHI* • 'dl 30 > QNa

dmai =: aauiBN
IS9IIIBK =: tQIQtbN

IXSUiBN =: duiax
{ AjBSsaoau uaqw aBuBqoxa } 111939

Nam TQui^N > asuiBN ai
Ni9ag

iBSBufJq-S : dmai
HVA

^ japjo paqjos uj sauiBU aqi luanqaa >
{ AxxBOX39qBqdiB sauiBU aqq qjos :3{SBX >
^ safflBU OMi :uaA-F9 >

i(5s6BTJtqs : ssiibn 't9U3bn a\iA) aziq-sq^qdiif aaoaaooad

SAvaav ivNOiSNai^a-aNO oofr

9.5 Packed Arrays 401

and

UnpakName

UnpakName[l]

UnpakName[2]

UnpakName[3]

UnpakName[4]

UnpakName[5]

UnpakName [6]

UnpakName[7]

UnpakName[8]

UnpakName[9]

UnpakName[10]

Now suppose that UnpakName contains the name 'John Smith'.

UnpakName

T

'h'

'S'

m

't'

*h'

and we wish to put the characters into a packed array for storage, sorting,
or writing. This could be accomplished by

FOR J := 1 TO !□ DO

PakNametJ] := UnpakNaraeCJ];

and would produce the following:

PakName

7' •o' 'h' 'n* « f 'S' 'm' T r 'h'

This string can still be accessed as one packed array variable.
A FOR loop could also be used to transfer elements from a packed array

to an unpacked array, but Pascal does provide standard procedures for
both of these processes. An array can be packed by

pack (UnpackedArray, J, Packedfirray);

This fills all of PackedArray with elements of UnpackedArray, starting
with UnpackedArray [J]. An array can be unpacked by

unpack (PackedArray/ UnpackedArray, K);

This copies all elements of PackedArray into UnpackedArray, putting the
first element in UnpackedArray [K]. For these procedures, PackedArray
and UnpackedArray do not have to be of the same length and K may be
a constant or expression. Unfortunately, pack and unpack are difficult to
use. Therefore, since FOR loops can accomplish the same results and are
about as efficient, you would do well to use them if you wish to transfer
between packed and unpacked arrays.

402 ONE-DIMENSIONAL ARRAYS

Ex6rciS6S 9.5 l. indicate which of the following string comparisons are valid. For those that
are, indicate whether they are true or false using the full ASCII character set.

a. 'Mathematics' <> 'CompScience'

b. 'Jefferson' < 'Jeffersonian'

c. 'Smith Karen' < 'Smithsonian'

d. ''<5' <= '$45'

e. 'Hoof in mouth' = 'Foot in door'
f. '453D1E' > 'SODODD'

2. Write a test program that allows you to examine the Boolean expression

'William Joe' < 'Williams Bo'

3. Suppose Message is declared as

TYPE

String75 = PACKED ARRAY C1..751 OF char;
VAR

Message : String75;

and the input file consists of the line

To err is human. To forgive is not the province of the
computer.

What output is produced by each of the following segments?

a. FOR J := 1 TO 75 DO

IF NOT eoln THEN

read (Message IJ])

ELSE

MessagelJ] ;

writeln (Message);

b. FOR J := 1 TO 75 DO
IF NOT eoln THEN

read (Message!Jl)

ELSE

MessagelJ] ;

Count := □;
FOR J := 1 TO 75 DO

IF MessagelJ] := ' ' THEN
Count := Count + 1;

writeln (Message);
writeln ('There are', Count:3, 'blanks,':6);

c. FOR J := 1 TO 3D DO
read (Message!E+J]);

FOR J := 31 TO bO DO
Message!J] := ' ';

FOR J := bl TO 75 DO
Message!J]

writeln (Message);
d. FOR J := 1 TO 75 DO

IF NOT eoln THEN
read (Message!J])

ELSE

Message!J] := ' ' ;
writeln (Message);
FOR J := 75 DOWNTO 1 DO

write (MessagelJ]);

9.6 Searching Algorithms 403

ID]

ED]

OF

OF

4. Assume the following declarations.

TYPE I

StringlD = PACKED ARRAY [1.
StringED = PACKED ARRAY [1.

VAR

A/ B : StringlD;
C : StringED;

a. Indicate whether the following are valid or invalid

char;

char;

1.

ii.

iii.

A := B

C := A

FOR J

CC J]

FOR J

IF J

AC J] :

ELSE

BCJ-ID]

+ B;
= 1 TO ED

:= ACJ] +

= 1 TO ED

<= ID THEN

= CCJ]

DO

BCJ]

DO

:= CCJ];

b. Write a segment of code that will make the string C consist of the strings
A and B where the lesser (alphabetically) of A and B is the first half of C.

5. Assume a packed array Message of length 100 has been declared and data
have been read into it from an input file. Write a segment of the code to
count the number of occurrences of the letter M in the string Message.

6. Write a test program to see what happens if you try to read in an entire
packed array with one read or readln statement.

■ 9.6

Searching
Algorithms

OBTECTI^ES

D to be able to use a

sequential search to
find the first occur

rence of a value

n to be able to use a

sequential search to
find all occurrences

of a value

E> to be able to use a

binary search to
find a value

B to understand the

relative efficiency of
a binary search
compared to a se
quential search

The need to search an array for a value is a common problem. For example,
you might wish to replace a test score for a student, delete a name from
a directory or mailing list, or upgrade the pay scale for certain employees.
These and other problems require you to be able to examine elements in
some list until the desired value is located. When it is found, some action
is taken. The lists, of course, could be either arrays or files.

Sequential Search

The first searching algorithm we will examine is the most common method,
a sequential search. This process is accomplished by examining the first
element in some list and then proceeding to examine the elements in the
order they appear until a match is found. Variations of this basic process
include searching a sorted list for the first occurrence of a value, searching
a sorted list for all occurrences of a value, and searching an unsorted list
for the first occurrence of a value.

To illustrate a sequential search, suppose you have an array A of integers
and you want to find the first occurrence of some particular value (Num).
As you search the array, if the desired value is located, you want to print
its position. If the value is not in the array, an appropriate message should
be printed. The code for such a search is

Index := 1;
WHILE (Num <> ACIndex]) AND (Index < Length) DO
Index := Index + 1;

404 ONE-DIMENSIONAL ARRAYS

A reasonable message for output is

IF Num = Rllndexl THEN

writeln (Nutti, ' is in position'. Indexes)
ELSE

writeln (Num, • is not in the list.')

Let's now consider some variations of this problem. Our code works for
both a sorted and an unsorted list. However, if we are searching a sorted
list, the algorithm can be improved. For example, if the array components
are sorted from low to high, we need to continue the search only until
the value in an array component exceeds the value of Num. At that point,
there is no need to examine the remaining components. The only change
required in the loop for searching is to replace

Num <> ftllndex]

with

Num < ACIndexl

Thus, we have

Index := 1;

WHILE (Num < Allndex]) AND (Index < Length) DO
Index := Index + 1;

A relatively easy modification of the sequential search is to examine a
list for all occurrences of some value. If searching an array, you would
generally print the positions and values when a match is found. To il
lustrate, if A is an array of integers and Num has an integer value, we can
search A for the number of occurrences of Num by

Count := 0;

FOR Index := 1 TO Length DO
BEGIN

IF Num = Allndex] THEN

BEGIN

Count := Count + 1;

writeln (Num, ' is in position', IndexrS)
END

END;

This code works for an unsorted list. A modification of the code for work

ing with a sorted list is included as an exercise.

Binary Search

Searching relatively small lists sequentially does not require much com
puter time. However, when the lists get longer (as, for example, telephone
directories and lists of credit card customers), sequential searches are
inefficient. In a sense, they correspond to looking up a word in the dic
tionary by starting at the first word and proceeding word-by-word until
the desired word is found. Since extra computer time means considerably
extra expense for most companies where large amounts of data must be
frequently searched, a more efficient way of searching is needed.

If the list to be searched has been sorted, it can be searched for a
particular value by a method referred to as a binary search. Essentially, a
binary search consists of examining a middle value of an array to see
which half contains the desired value. The middle value of this half is
then examined to see which half of the half contains the value in question.
This halving process is continued until the value is located or it is de-

9.6 Searching Algorithms 405

termined that the value is not in the list. (Remember, however, in order
to use a binary search, the list must be sorted and the sorting process has
its own costs which should be evaluated, but this subject is outside the
scope of this text.)
The code for this process is relatively short. If A is the array to be

searched for Num, and First, Mid, and Last are integer variables such that
First contains the index of the first possible position to be searched and
Last contains the index of the last possible position, the code for a list in
ascending order is

Found := false;

WHILE NOT Found AND (First <= Last) DO
BEGIN

Mid := (First + Last) DIV E;
IF Num < ACMidl THEN

Last := Mid - 1

ELSE

IF Num > AtMid] THEN

First := Mid + 1

ELSE

Found := true

END;

When this loop is executed, it is exited when the value is located or it
is determined that the value is not in the list. Depending on what you
want done with the value being looked for, you can modify action at the
bottom of the loop or use the values in Found and Mid outside the loop.
For example, if you just want to know where the value is, you can change

Found := true

to

BEGIN

Found := true;

writeln (Num, ' is in position'/ Mid:5)
END

Before continuing, let's walk through this search to better understand
how it works. Assume A is the array

4 7 19 25 36 37 50 100 101 205 220 271 306 321

A[l] A[14]

with values as indicated. Furthermore, assume Num contains the value
25. Then initially. First, Last, and Num have the values

1 14 25

First Last Num

A listing of values by each pass through the loop produces

First Last Mid A[Mid] Found

Before loop 1 14 Undefined Undefined false

After first pass 1 6 7 50 false

After second pass 4 6 3 19 false

After third pass 4 4 5 36 false

After fourth pass 4 4 4 25 true

406 ONE-DIMENSIONAL ARRAYS

To illustrate what happens when the value being looked for is not in the
array, suppose Num contains 210. The listing of values then produces

First Last Mid A[Mid] Found

Before loop 1 14 Undefined Undefined false

After first pass 8 14 7 50 false

After second pass 8 10 11 220 false

After third pass 10 10 9 101 false

After fourth pass 11 10 10 205 false

At this stage, First > Last and the loop is exited.

Relative Efficiency of Searches

Let's now examine briefly the efficiency of a binary search compared to
a sequential search. For purposes of this discussion, assume a sequential
search on a list of 15 items requires at most 15 microseconds. The nature
of a sequential search is such that every time you double the list length,
the maximum searching time is also doubled; Figure 9.1 illustrates this
increase.

FIGURE 9.1

Sequential search

I
u
CD
CO
0
h
U

1
cS
CO

I 60H

15-

T 1 1 1 1 1 1 1 1 1 ' \/ '—
15 30 45 60 75 90 105 120 135 150 175 190 ... 240

List length

Next, assume a list of 15 items requires a maximum of 60 microseconds
when searched by a binary search. Since this process consists of succes
sively halving the list, at most four passes will be required to locate the
value. This means each pass uses 15 microseconds. When the list length
is doubled, it requires only one more pass. Thus, a list of 30 items requires
75 microseconds and a list of 60 items requires 90 microseconds. This is
shown graphically in Figure 9.2. The comparison of these two searches
is shown on the same graph in Figure 9.3.

9.6 Searching Algorithms 407

FIGURE 9.2

Binary search

•a

g
u
0}

60

15

15

—r-

30 45

-T"

60

I

75

I

90

—I 1 1 1 1 r

105 120 135 150 175 190

—I—

240

List length

FIGURE 9.3

Sequential search
versus binary search

•a
R
O
u
CD
00

s
u

60 -

15 -

-T—

15 30

I

45 60 75

—1—

90

—I—

105

—I 1 1 r-

120 135 150 175 240

List length

Exercises 9.6 1. Modify the sequential search in the heginning of this section to locate and
print all occurrences of the same value.

2. Write a procedure for the sequential search and show how it can be called
from the main program.

3. Modify the sequential search by putting a counter in the loop to count how
many p£isses are made when searching a sorted array for a value. Write and
run a program that uses this version on lists of length 15, 30, 60, 120, and
240. In each case, search for a value as follows and plot your results on a
graph.

a. In the first half

b. In the second half

c. That is not there

4. Repeat Exercise 3 for a binary search.

408 ONE-DIMENSIONAL ARRAYS

5. Suppose the array A is

18 25 37 92 104

A[ll A[5]
Trace the values using a binary search to look for

a. 18

b. 92

c. 76

6. Write a procedure to search a sorted list and remove all duplicates.

7. Suppose a sorted list of social security numbers is in secondary storage in a
file named StudentNum.

a. Show how this file can be searched for a certain number using a sequen
tial search.

b. Show how this file can be searched for a certain number using a binary
search.

c. Show how a binary search can be used to indicate where a new number
can be inserted in proper order.

d. Show how a number can be deleted from the file.

8. Write a procedure to read text from an input file and determine the number
of occurrences of each vowel.

9. Using a binary search on an array of length 35, what is the maximum num
ber of passes through the loop that can be made when searching for a
value?

10.

11.

Using worst-case possibilities of 3 microseconds for a sequential search of a
list of ten items and 25 microseconds for a binary search of the same list,
construct a graph illustrating relative efficiency for these two methods ap
plied to lists of longer lengths.

Modify the sequential search that you developed in Exercise 1 to list all
occurrences of a value so that it can be used on a sorted list. That is, have

it stop after the desired value has been passed in the list.

The sample program for this chapter features the use of arrays and sub
programs. Since sorting an array is a common practice, it has been in
cluded as part of the program. Specifically, suppose the Home Sales Realty
Company, Inc. wants to print a list containing the amount of all sales for
a month. Each sale amount is recorded on a separate line of input and
the number of homes sold is less than 20. Write a program to do the
following:

1. Read the data from the input file.
2. Print the data in the order in which it is read with a suitable

header and format.

3. Print a sorted list (high to low) of sales with a suitable header and
format.

4. Print the total number of sales for the month, the total amount of
sciles, the average sale price, and the company commission (7
percent).

9.6 Searching Algorithms 409

Sample input would be

bSDOO

qSlDD

7a5DD

1D175D

5£>70a

where each line represents the sale price of a home. Typical output would
include an unsorted list of sales, a sorted list of sales, and appropriate
smnmary data.
A first-level pseudocode development is

1. Get data (PROCEDURE GetData)
2. Print header (PROCEDURE PrintHl)
3. Print unsorted list (PROCEDURE PrintList)
4. Sort list (PROCEDURE Sort)
5. Print header (PROCEDURE PrintH2)
6. Print sorted list (PROCEDURE Prin^ist)
7. Compute data (FUNCTION Total and PROCEDURE Compute)
8. Print results (PROCEDURE PrintResults)

Notice that PROCEDURE PrintList is called twice and PROCEDURE

PrintResults includes output for number of sales, total of sales, average
sale price, and company commission. These are printed with suitable
headings.
A structure chart for this is given in Figure 9.4.

FIGURE 9.4

Print

list
Compjute Print

results
Print
heading!

Get

data

Sort

list

Main

task

Module specifications for the main modules are

1. GetData Module

Data received: None

Information returned: Sales for a month

Number of sales

Logic: Use a WHILE loop to read entries into an array.

2. PrintHeadingl Module

Data received: None

Information returned: None

Logic: Use writeln statements to print a suitable heading for an
unsorted list.

410 ONE-DIMENSIONAL ARRAYS

3. PrintList Module

Data received: Array of sales with number of sales
Information returned: None

Logic: Use a FOR loop with the array length as a loop control vari
able to print the list of sales for a month.

4. Sort Module

Data received: Unsorted array of sales
Number of sales

Information returned: Sorted array of sales
Logic: Use a selection sort to sort the array.

5. PrintHeading2 Module

Data received: None

Information returned: None

Logic: Use writeln statements to print a suitable heading for the
sorted list.

6. Compute Module

Data received: Array of sales with number of sales
Information returned: Total sales

Average sale
Company commission

Logic: Use a function to compute the total sales.
Use a procedure to compute the average sale.
Compute company commission by using a defined constant,

CommissionRate.

7. PrintResults Module

Data received: Number of sales

Total sales

Average sales
Company commission

Information returned: None

Logic: Use writeln statements to print a summary report.

The main program is

BEGIN < Main program >
GetData (JuneSales/ Length);
PrintHeadingl;
PrintList (JuneSales, Length);
Sort (JuneSales, Length);
PrintHeadingE;
PrintList (JuneSales, Length);
Compute (TotalSales, AverageSale, CorapanyCom, JuneSales, Length);
PrintResults (TotalSales, AverageSale, CompanyCora, Length)

END. { of main program >

The complete program for this problem is

PROGRAM MonthlyList (input, output);

< This program illustrates the use of arrays with procedures >
< and functions. Note the use of both value and variable }

< parameters. Also note that a procedure is used to sort }
< the array. >

9.6 Searching Algorithms 411

CONST

Skip = • ';
CoramissionRate =

NaxLength = ED;

TYPE

List = ARRAY [1..MaxLength] OF real;

VAR

JuneSales : List;

TotalSales/

AverageSale/
CorapanyCora : real;
Length : integer;

■{ Number of June sales
{ Total of June sales
< Amount of average sale
< Commission for the company
< Array length of values

PROCEDURE GetData (VAR JuneSales : List;
VAR Length : integer);

•{ Given: Nothing
-{ Task: Read selling prices into array JuneSales
< Return: Array of JuneSales and array length

BEGIN

Length := □;
WHILE NOT eof AND (Length < MaxLength) DO

BEGIN

Length := Length + 1;
readln (JuneSalesCLength])

END -C of WHILE NOT eof >
END; < of PROCEDURE GetData >

PROCEDURE PrintHeadingl;

< Given: Nothing
< Task: Print a heading for the unsorted list of sales
•(Return: Nothing

BEGIN
writeln; writeln;
writeln (Skip:10/ 'An unsorted list of sales for the');
writeln (Skip:lG/ 'month of June is as follows: ');
writeln (Skip:lG/ ' ');
writeln; writeln

END; i of PROCEDURE PrintHeadingl >

PROCEDURE PrintList (JuneSales : List;
Length : integer);

■(Given: An unsorted array (with length) of Sales for June >
•{ Task: Print the list >
{ Return: Nothing >

VAR

J integer;

BEGIN
FOR J := 1 TO Length DO

writeln (Skip:l<, '<', J:E,
END; < of PROCEDURE PrintList

• > •

y

'$':E, JuneSalesCJ]:ll:a)

412 ONE-DIMENSIONAL ARRAYS

•{ale**#********}

PROCEDURE Sort (VAR JuneSales : List;
Length : integer);

{ Given: An unsorted array (with length) of sales for June >
{ Task: Use a selection sort to sort the list >

{ Return: A sorted list of sales for June >

VAR

J, K, Index : integer;
Temp : real;

BEGIN

FOR J := 1 TO Length - 1 DO
BEGIN

Index := J;

FOR K := J + 1 TO Length DO
IF JuneSalesCK] > JuneSales[Index] THEN

Index := K;

Temp := JuneSales[Index];
JuneSalesIIndex] := JuneSalesIJ];

JuneSalesCJ] := Temp
END i of FOR J loop >

END; { of PROCEDURE Sort > ^

•>

PROCEDURE PrintHeadingE;

(Given: Nothing >
< Task: Print a heading for the sorted list of sales >
< Return: Nothing >

y 5
BEGIN

writeln; writeln;

writeln (Skip:lD, 'Sales for the month of June');
writeln (Skip:lD, 'sorted from high to low are:');
writeln (Skip:lD, ' ')

END; { of PROCEDURE PrintHeadingE } ^

>

FUNCTION Total (JuneSales : List;
Length : integer) : real;

< Given: An array (with length) of June sales }
•{ Task: Sum the array components }

■C Return: Total of sales for June }

VAR

J : integer; 6
Sum : real;

BEGIN
Sura := □;
FOR J := 1 TO Length DO

Sum := Sura + JuneSales!J];
Total := Sura

END; (of FUNCTION Total >
J

9.6 Searching Algorithms 413

PROCEDURE Compute (VAR TotalSales/ AverageSale, CompanyCom : real; ^
VAR JuneSales : List;

Length : integer);

i Given: An array (with length) of June sales >
< Task: Compute TotalSales/ AverageSale, and CompanyCom >
{ for the month of June >

{ Return: TotalSales, AverageSale, and CompanyCom } ^6

BEGIN

TotalSales := Total(JuneSales, Length);
AverageSale := TotalSales / Length;
CompanyCom := TotalSales * CommissionRate

END; { of PROCEDURE Compute >

■(**♦***♦****♦********>

PROCEDURE PrintResults (TotalSales, AverageSale, CompanyCom : real;
Length : integer);

{ Given: TotalSales, AverageSale, CompanyCom, and number >
{ of sales (Length) for June >
i. Task: Print summary information for the month >
i Return: Nothing >

BEGIN

writeln; writeln;
writeln (Skip:lD, 'There were', Length:3 ' sales during June.');
writeln;
writeln (Skip:lD 'The total sales were', '$' :a, TotalSales:lS:S);
writeln;
writeln (Skip:lD, 'The average sale was', '$' :E, AverageSale:ia:E);
writeln;
writeln (Skip:lD, 'The company commission was', '$' :a,

CompanyCom:11:5);
writeln

END; •{ of PROCEDURE PrintResults >

BEGIN < Main program >
GetData (JuneSales, Length);
PrintHeadingl;
PrintList (JuneSales, Length);
Sort (JuneSales, Length);
PrintHeadingS;
PrintList (JuneSales, Length);
Compute (TotalSales, AverageSale, CompanyCom, JuneSales, Length);
PrintResults (TotalSales, AverageSale, CompanyCom, Length)

END. { of main program >

The output for this program is
An unsorted list of sales for the
month of June is as follows:

► 7

< 1> $ LEDOD.OO
< 5> $ 5aE3<.DD
< 3> $ qElDD.OO
< A> $ 7flaDD.aD
< S> $ 1D175D.DD
< L> $ 5t70D.D0

414 ONE-DIMENSIONAL ARRAYS

Sales for the month of June

sorted from high to low are;

1> $

E> $

3> $

<> $

5> $

y> $

1D175D.DD

qSlDD-DO

TflSDD.OO

t5aOD.DD

5t7D0.DD

5LE3<.DD

There were t sales during June.

The total sales were $ <S2qa<.0D

The average sale was $ 75^97.33

The company commission was $ 31703.flfl

RUNNING AND

DEBUGGING TIPS

i ■
njwis 4 ■

mi PRI ■

1. Be careful not to misuse type identifiers. For example, in

ID] OF char;

TYPE

String = PACKED ARRAY [1.
VAR

Word : String;

String is a data type; hence, a reference such as String: = 'First name' is incorrect.
2. Do not attempt to use a subscript that is out of range. Suppose we have

VAR

List : ARRAY I1..b] OF integer;

An inadvertent reference such as

FOR J := 1 TO ID DO

writeln (ListlJl);

may produce an error message indicating that the subscript is out of range.
3. Counters are frequently used with loops and arrays. Be careful to make the

final value the correct value. For example.

Count := 1;

WHILE NOT eof DO

BEGIN

readln (AtCountl);
Count := Count l

END;

used on the data hie

islailssT

will have a value of 4 in Count when this loop is exited. This could be corrected
by rewriting the segment as

Count := □;
WHILE NOT eof DO

BEGIN
Count := Count + 1;
readln (AtCountl)

END;

Summary 415

4. Comparing array components to each other can lead to errors in using sub
scripts. Two common misuses are shown.
a. Attempting to compare A[J] to A[J + 1]. If this does not stop at array

length - 1, then J + 1 will be out of range.
b. Attempting to compare A[J - 1] to A[J]. This presents the same problem at

the beginning of an array. Remember, J - 1 cannot have a value less than
the initial index value.

5. Make sure the array index is correctly initialized. For example,

J := 0;

HHILE NOT eof DO

BEGIN

J := J -I- 1;

readln (ACJ])
END;

Note that the first value is then read into A[l].
6. After using a sequential search, make sure you check to see if the value has

been found. For example, if Num contains the value 3 and A is the array

1 4 5 10

the search

Index := 1;

WHILE (Num <> Atlndexl) AND (Index < Length) DO
Index := Index + 1;

yields values

3 4 10

Niun Index A[Index]

Depending on program use, you should check for Num = A [Index] or use a
Boolean flag to indicate if a match has been found.

Summary Key Tenns

array

binary search
byte
component (element) of

an array

index (subscript)
index type
packed array
selection sort

sequential search
unpacked array
word

Kejrwords

ARRAY

pack
PACKED unpack

Key Concepts

■ An array is a structured variable; a single declaration can reserve several
variables.

■ It is good practice to define array types in the TYPE declaration section and
then declare a variable of that type; for example.

416 ONE-DIMENSIONAL ARRAYS

TYPE

ListlD = ARRRY II..ID] OF real;
VRR

X : ListlG;

Arrays can be visualized as lists; thus, the previous array could be envisioned
as

X

X[l]

X[2]

X[3]

X[4]

X[51

X[6]

X[7]

X[8]

X[9]

X(10]

Each component of an array is a variable of the declared tjrpe and can be
used the same as any other variable of that type.
Loops can be used to read data into arrays; for example,

J := □;
WHILE NOT eof AND (J < MaxLength) DO

BEGIN
J := J + 1;
readln (ListlJl)

END;

Loops can be used to print data from arrays; for example, if Score is an array
of 20 test scores, they can be printed by

FOR J := 1 TO EG DO
writeln (ScoreIJ]);

Manipulating components of an array is generally accomplished by using the
index as a loop variable; for example, assuming the previous Score, to find
the smallest value in the array we can use

Small := Scorell];
FOR J := B TO EG DO

IF ScoreCJ] < Small THEN
Small := ScorelJ];

A selection sort is one method of sorting elements in an array from high to
low or low to high; for example, if A is an array of length n, a low-to-high
sort is

FOR J := 1 TO N - 1 DO
BEGIN

Index := J;
FOR K := J + 1 TO N DO

IF AIR] < Atlndex] THEN
Index := K;

Temp := Allndex];
AIIndex] := AIJ];
AIJ] := Temp

END; •{ of selection sort >

When arrays are to be passed to subprograms, the type should be defined in
the TYPE section; thus, we could have

Programming Problems 417

TYPE

ListeOD = ARRAY [1..5DD] OF real;

PROCEDURE Practice (X : List2DD);

■ If the array being passed is a variable parameter, it should be declared ac
cordingly; for example,

PROCEDURE GetData (VAR X : ListEDD);

■ Sorting arrays is conveniently done using procedures; such procedures facili
tate program design.

o Packed arrays are used for character strings to reduce memory required for
string storage and manipulation; a typical packed array declaration is

TYPE

StringED = PACKED ARRAY [1..ED] OF char;
VAR

Name : StringED;

B Character strings (packed arrays of characters) can be compared; this facili
tates alphabetizing a list of names.

B Character strings can be printed using a single write or writeln statement;
thus, if Name is a packed array of characters, it can be printed by

writeln (Name:3G);

a Packed arrays of characters must still be read one character at a time.
B A single assignment statement can be used to assign a string to a packed ar
ray of the same length; for example.

Name := 'Smith John';

B The procedures pack and unpack are built-in; pack transfers values from ar
rays to packed arrays, unpack does the converse.

B A sequential search of a list consists of examining the first item in a list and
then proceeding through the list in sequence until the desired value is found
or the end of the list is reached; code for this search is

Index := 1;

WHILE (Num <> Atlndex] AND (Index < Length) DO
Index := Index + 1;

□ A binary search of a list consists of deciding which half of the list contains
the value in question and then which half of that half, and so on; code for
this search is

Found := false;
WHILE NOT Found AND (First <= Last) DO

BEGIN
Mid := (First + Last) DIV E;
IF Num < AtMid] THEN

Last := Mid - 1
ELSE

IF Num > ACMidl THEN
First := Mid + 1

ELSE

Found := true
END;

■ Programming ^ Write a program to read an unknown number of integer test scores
Problems from an input file (assume at most 150 scores). Print out the origi

nal list of scores, the scores sorted from low to high, the scores
sorted from high to low, the highest score, the lowest score, and the
average score.

418 ONE-DIMENSIONAL ARRAYS

2. Write a program to help you balance your checkbook. The input
consists of the beginning balance and then a sequence of transac
tions, each followed by a transaction code. Deposits are followed
by a "D" and withdrawals are followed by a "W." The output
should consist of a list of transactions, a running balance, an end
ing balance, the number of withdrawals, and the number of depos
its. Include an appropriate message for overdrawn accounts.

3. Write a program to read a line of text as input. Print out the origi
nal line of text, the line of text in reverse order, and the number of
vowels contained in the line.

4. Write a program that sorts data of type real as it is read from the
input file. Do this by putting the first data item in the first compo
nent of an array and then inserting each subsequent number in the
array in order from high to low. Print out the sorted array. Assume
there are at most 25 numbers.

5. A palindrome is a word that is spelled the same forwards and
backwards. Write a program to read several lines of text as input.
Inspect each word to see if it is a palindrome. The output should
list all palindromes and a count of the number of palindromes in
the message.

6. One of the problems faced by designers of word processors is that
of printing text without separating a word at the end of a line.
Write a program to read several lines of text as input. Then print
the message with each line starting in column 10 and no line ex
ceeding column 70. No word should be separated at the end of a
line.

7. Your local state university has to raise funds for an art center. As a
first step, they are going to approach 20 previously identified do
nors and ask for additional donations. Because the donors wish to

remain anonymous, only the respective totals of their previous do
nations are listed in a data file. After they are contacted, the addi
tional donations are listed at the end of the data file in the same

order as the first 20 entries. Write a computer program to read the
first 20 entries into one array and the second 20 entries into a sec
ond array. Compute the previous total donations and the new dona
tions for the art center. Print the following:

a. The list of previous donations
b. The list of new donations

c. An unsorted list of total donations

d. A sorted list of total donations

e. Total donations before the fund drive

h Total donations for the art center

g. The maximum donation for the art center

8. Write a program that can be used as a text analyzer. Your program
should be capable of reading an input file and keeping track of the
frequency of occurrence of each letter of the alphabet. There should
also be a count of all characters (including blanks) encountered
that are not in the alphabet. Your output should be the data file
printed line-by-line followed by a histogram reflecting the fre-

Programming Problems 419

quency of occurrence of each letter in the alphabet. For example,
the following histogram indicates five occurrences of a, two of b,
and three of c.

a

Letter b

c

**

5 10

Frequency

9. The Third Interdenominational Church has on file a list of all of its
benefactors (a maximum of 20 names, each up to 30 characters)
along with an unknown number of amounts that each has donated
to the church. You have been asked to write a program that does
the following:
a. Print the name of each donor and the amount (in descending or

der) of any donations given by each.
b. Print the total amounts in ascending order.
c. Print the grand total of all donations.
d. Print the largest single amount donated and the name of the

benefactor who made this donation.

10. Read in a list of 50 integers from the data file NumberList. Place
the even numbers into an array called Even, the odd numbers into
an array called Odd, and the negatives into an array called Nega
tive. Print all three arrays after all numbers have been read.

11. Read in 300 real numbers. Print the average of the numbers fol
lowed by all the numbers that are greater than the average.

12. Read in the names of five candidates in a class election and the
number of votes received by each. Print the list of candidates, the
number of votes they received, and the percentage of the total vote
they received sorted into order from the winner to the person with
the fewest votes. You may assume that all names are 20 characters
in length.

13. In many sports events, contestants are rated by judges with an aver
age score being determined by discarding the highest and lowest
scores and averaging the remaining scores. Write a program in
which eight scores are entered, computing the average score for the
contestant.

14. Given a list of 20 test scores (integers), print the score that is near
est to the average.

15. The Game of Nim is played with three piles of stones. There are
three stones in the first pile, five stones in the second, and eight
stones in the third. Two players alternate taking as many stones as
they like from any one pile. Play continues until someone is forced
to take the last stone. The person taking the last stone loses. Write
a program which permits two people to play the game of Nim us
ing an array to keep track of the number of stones in each pile.

16. There is an effective strategy that can virtually guarantee victory in
the game of Nim. Devise a strategy and modify the program in
Problem 15 so that the computer plays against a person. Your pro-

420 ONE-DIMENSIONAL ARRAYS

gram should be virtually unbeatable if the proper strategy is
developed.

17. The median of a set of numbers is the value in the middle of the

set if the set is arranged in order. Given a list of 21 numbers, print
the median of the list.

18. Rewrite Problem 17 to permit the use of any length list of numbers.

19. The standard deviation is a statistic frequently used in education
measurement. Write a program that, given a list of test scores, will
find and print the standard deviation of the numbers. The standard
deviation formula can be found in most statistics books.

20. Revise Problem 19 so that after the standard deviation is printed,
you can print a list of test scores that are more than one standard
deviation below the average and a list of the scores more than one
standard deviation above the average.

21. The z-score is defined as the score earned on a test divided by the
standard deviation. Given a data file containing an unknown num
ber of test scores (maximum of 100), print a list showing each test
score (from highest to lowest) and the corresponding z-score.

22. Salespeople for the Wellsville Wholesale Company earn a commis
sion based on their sales. The commission rates are as follows:

Sales Commission

$0-1000 3%

1001-5000 4.5%

5001-10000 5.25%

over 10000 6%

In addition, any salesperson who sells above the average of all
salespeople receive a $50 bonus, and the top salesperson receives
an addition $75 bonus.

Given the names and amounts sold by each of 20 salespeople,
write a program that prints a table showing the salesperson's name,
the amount sold, the commission rate, and the total amount earned.

The average sales should also be printed.

23. Ms. Alicia Citizen, your school's Student Government advisor, has
come to you for help. She wants a program to total votes -for the
next Student Government election. Fifteen candidates will be in

the election with five positions to be filled. Each person can vote
for up to five candidates. The five highest vote getters will be the
winners.

A data file called VoteList contains a list of candidates (by candi
date number) voted for by each student. Any line of the file may
contain up to five numbers, but if it contains more than five num
bers, it is discarded as a void ballot. Write a program to read the
file and print a list of the total votes received by each candidate.
Also, print the five highest vote getters in order from highest to
lowest vote totals.

Programming Problems 421

24. The data file InstructorList contains a list of the instructors in your
school along with the room number to which each is assigned.
Write a program that, given the name of the instructor, does a lin
ear search to find and print the room to which the instructor is
assigned.

25. Rewrite Problem 24 so that when given a room number, the name
of the instructor assigned to that room is found using a binary
search. Assume the file is arranged in order of room numbers.

26. Write a language translation program that permits the entry of a
word in English, with the corresponding word of another language
being printed. The dictionary words can be stored in parallel ar
rays, with the English array being sorted into alphabetical order
prior to the first entry of a word. Your program should first sort the
dictionary words.

CHAPTER

il 11
■i ■ i

I ■
1 ■
1
■ s

iir
■

Ji ■ 1
■ I

Arrays of
More Than One
Dimension

Chapter 9 illustrated the significance and uses of one-dimensional
arrays. There are, however, several kinds of problems that require

arrays of more than one dimension. For example, if you want to work
with a table that has both rows and columns, a one-dimensional array
will not suffice. Other programming problems require the use of a list of
names; these are not conveniently written as one-dimensional arrays. Such
problems can be solved using arrays of more than one dimension.

H 10.1

Two-Dimen-
sional Arrays

^OBJECTIVES

a to be able to declare
two-dimensional
arrays

a to be able to use
correct notation for
two-dimensional
arrays

B to be able to create
tabular output using
two-dimensional
arrays

B to be able to read
and write with two-
dimensional arrays

Objectives continued.

Basic Idea and Notation

One-dimensional arrays are very useful when working with a row or
column of numbers. However, suppose we want to print the table

1 2 3 4

2 4 6 8

3 6 g 12

To do this, it is convenient to access both the row and the column. Fur
thermore, some data are naturally arranged in two dimensions. Pascal
accomplishes this by using two-dimensional arrays where the row sub
range always precedes the column subrange and they are separated by
commas. This table could be produced by either of the following
declarations.

1. VftR
Table : RRRRY [1..3, 1..41 OF integer;

2. TYPE
Matrix = ARRAY [1..3/ 1. .4] OF integer;

VAR
Table : Matrix;

422

10.1 Two-Dimensional Arrays 423

° to be able to manip
ulate components of
two-dimensional

arrays

° to be able to use

two-dimensional ar

rays with
procedures

It is the index—[1 .. 3,1 .. 4]—of each of these declarations that differs
from one-dimensional arrays. These declarations reserve memory that can
be visualized as three rows, each of which holds four variables. Thus, 12
variable locations have been reserved as shown.

Table

As a second illustration of the use of two-dimensional arrays, suppose
we want to print the batting statistics for a softball team of 15 players. If
the statistics consist of at bats (AB), hits (H), runs (R), and runs batted in
(RBI) for each player, we naturally choose to work with a 15 x 4 table.
Hence, a reasonable variable declaration is

TYPE

TablelSX^ = ARRAY [1..15, 1..<1 OF integer;
VAR

Stats : Tablel5X<;

The reserved memory area can be visualized as

Stats

with 60 variable locations reserved.

Before proceeding further, let's examine another method of declaring
two-dimensional arrays. Our 3x4 table could be thought of as three
arrays each of length four, as follows:

Hence, we have a list of arrays and we could have declared the table by
TYPE

Row = ARRAY [!..<] OF integer;
Matrix = ARRAY El..3] OF Row;

VAR

Table : Matrix;

424 ARRAYS OF MORE THAN ONE DIMENSION

The Softball statistics could be declared by

CONST

NumberOfStats = A;

BosterSlze = 15;

TYPE

PlayerStats = ARRAY [1..NumberOfStatsl OF integer;
TeamTable = ARRAY [1..RosterSizel OF PlayerStats;

VAR

Stats : TeamTable;

Semantic indices could be utilized by

TYPE

Stat = (AtBat, Hits, Runs, RBI);
StatChart = ARRAY [1..15, Stat] OF integer;

VAR

Player : StatChart;

In this case, a typical entry is

PlayerlB, Hitsl := 2;

In general, a two-dimensional array can be defined by

ARRAY [row index, colunin index] OF element type;

or

TYPE

RowType = ARRAY [column index] OF element type;
Table = ARRAY [row index] OF RowType;

Whichever method of declaration is used, the problem now becomes one
of accessing individual components of the two-dimensional array. For
example, in the table

1 2

2 4

3 6

3 4

6 8

9 12

STYLE TIP When working with charts or tables of a fixed grid size (say 15 x 4), de
scriptive identifiers could be

Chartl5X4

or

Tablel5X4

If the niunber of rows and columns vary for different runs of the program
(for example, the number of players on a team could vary from year to
year), you could define a tj^e by

CONST

NumRows =15;
NumColumns = A;

TYPE

RowRange = 1..NumRows;
ColumnRange = 1..NumColumns;
TableMXN = ARRAY [RowRange, ColumnRange] OF integer;

VAR

Stats ; TableMXN;

10.1 Two-Dimensional Arrays 425

the "8" is in row two and column four. Note that both the row and column
position of an element must be indicated. Therefore, in order to put an
"8" in this position, we can use an assignment statement such as

Tablets,<] := fl;

This assignment statement would be used for either of the declaration
forms mentioned eeirlier.

Next let's assign the values just given to the appropriate variables in
Table by 12 assignment statements as follows;

TableCl/l]

TableCl,5]

Table[1,3]

Tablet!,<]

Tablets,!]

TabletS,S]

Tablets,3]

Table tS,^:]

Tablets,!]

Tablets,S]

Tablets,3]

Tablets,<]

!

S

3

A

S

A

b

a

3

b

q

15;

As you can see, this is extremely tedious. Instead, we can note the rela
tionship between the indices and the assigned values and make the row
index Row and the column index Column. The values to be assigned are
then Row * Column and we can use nested loops to perform these as
signments as follows:

FOR Row := ! TO 3 DO

FOR Column := 1 TO A DO

TabletRow, Column] := Row » Column;

Since two-dimensional arrays frequently require working with nested
loops, let us examine more closely what this segment of code does. When
Row := 1, the loop

FOR Column := 1 TO A DO

Tablet!, Column] := ! » Column;

is executed. This performs the four assignments

Tablet!,!] :=!*!;
Tablet!,5] := ! * S;
Tablet!,3] := ! * 3;
Tablet!,4] := 1 * A;

and we have the memory area

Table

Similar results hold for Row : = 2 and Row

dimensional array that can be visualized as

Table

= 3 and we produce a two-

1 2 3 4

2 4 6 8

3 6 9 12

426 ARRAYS OF MORE THAN ONE DIMENSION

The following examples will help you leam to work with and imder-
stand the notation for two-dimensional arrays.

10.1^

5/ l..<] OF integer;

Assume the declaration

TYPE

Table5X< = RRRRY 11

VRR

Table : TableSX^;

has been made and consider the segment of code

FOR Row := 1 TO 5 DO

FOR Column := 1 TO A DO

TablelRow/ Column] := Row DIV Column;

When Row := 1, the loop

FOR Column := 1 TO A DO

Tabled/ Column] := 1 DIV Column;

is executed. This causes the assignment statements

Tabled/1] := 1 DIV 1;
Tabletl/5] := 1 DIV e;
Tabletl/3] := 1 DIV 3;
Tabled/4] := 1 DIV

The contents of the memory area after that first pass through the loop are

Table

1 0 0 0

When Row :== 2, the assignments are

Table[2/1]

TablelE/S]

TableCE/3]

Tablet 5/4]

= 5 DIV 1;

= 5 DIV 5;
= 5 DIV 3;

= 5 DIV A;

Table now has values as follows:

Table

1 0 0 0

2 1 0 0

The contents of Table after the entire outside loop has been executed are

Table

1 0 0 0

2 1 0 0

3 1 1 0

4 2 1 1

5 2 1 1

10.1 Two-Dimensional Arrays 427

EXAMPLE 10.2 Declare a two-dimensional array and write a segment of code to produce the
memory area and contents depicted as follows:

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

An appropriate definition is

TYPE

Table^X? : ARRAY 11..A, 1..?] OF integer;

or

TYPE

Table<X7 : ARRAY [!..<] OF

ARRAY [1..?] OF integer;
VAR

Table : Table^X?;

and a segment of code to produce the desired contents is

FOR Row := 1 TO < DO

FOR Column := 1 TO 7 DO

TableCRow, Column] := Row -I- Column;

Reading and Writing

Most problems using two-dimensional arrays require reading data from
an input file into the array emd writing values from the array to create
some tabular form of output. For example, suppose we have our two-
dimensional array for Softball statistics.

TYPE

TablelSX/; = ARRAY C1

VAR

Stats : TablelSX^;

15/ l..<] OF integer;

If the data file consists of 15 lines and each line contains statistics for one
player as follows,

AB H R RBI

4 2 1 1 I (player #1)

3 1 0 1 [(player #2)

0 0 0 0 B (player #15)

we can get the data from the file by reading it one line at a time for 15
lines. This is done using nested loops as follows:

FOR Row := 1 TO 15 DO

BEGIN

FOR Column := 1 TO 4 DO

read (Stats tRow, Column]);
readln

END;

428 ARRAYS OF MORE THAN ONE DIMENSION

When Row := 1, the loop

FOR Column := 1 TO 4 DO

read (StatstRoW/ Column]);

reads the first line of data. In a similar manner, as Row assumes the values
2 through 15, the lines 2 through 15 would be read. After reading the data
into an array, some operations and/or updating will be performed and we
will output the data in tabular form. For example, suppose we want to
print the softball statistics in the 15 x 4 table using only three spaces for
each column. We note the following:

1. Three spaces per column can be controlled by formatting the
output.

2. One line of output can be generated by a FOR loop containing a
write statement; for example,

FOR Column := 1 TO 4 DO

write (StatsIRow, Column]:3);

3. The output buffer will be dumped to the printer after each write
loop by using writeln.

4. We do this for 15 lines by another loop

FOR Row := 1 TO 15 DO

BEGIN

FOR Column := 1 TO 4 DO

write (Stats[Row, Column]:3);
writeln

END;

This last segment of code produces the desired output.
In actual practice, we will also be concerned with headings for our

tables and controlling where the data occm on the page. For example,
suppose we want to identify the columns of softball statistics as AB, H,
R, and RBI; underline the headings; and start the output (AB) in column
25. The following segment of code accomplishes our objectives.

writeln (Skip:24,'flB H R RBI');
writeln (Skip:24/' ');
writeln;

FOR Row := 1 TO 15 DO

BEGIN

write (Skip:22); ■(Set the left margin >
FOR Column := 1 TO 4 DO

write (Stats[Row, Column]:3);
writeln { Advance to next line >

END;

The data file used earlier for our ballplayers causes an output of
AB H R RBI

4 2 1 1
3 1 □ □

10.1 Two-Dimensional Arrays 429

Manipulating Two-Dimensional Array Components

Often we want to work with some but not all of the components of an
array. For example, suppose we have a two-dimensional array of test scores
for students in a class. If there are 20 students with five scores each, an
appropriate two-dimensional array could be declared as

TYPE

TableSDXS = ARRAY tl

VAR

Score : TableEDXB;

ED/ 1..51 OF integer;

After scores have been read into the array Score, we can envision the
memory area as follows:

Score

98 86 100 76 95

72 68 65 74 81

85 81 91 84 83

76 81 72 87 80

(student #1)

(student #2)

(student #3)

When printing a table with test scores, one would normally compute
several items, including total points for each student, percentage grade
for each student, and average score for each test. Let's examine what is
required for each of these computations. First, to get the total points for
each student, we declare a one-dimensional array to store these values,
so assume the declaration

TYPE

ListSG = ARRAY [l.-EG] OF Integer;
VAR

TotalPoints : ListSG;

Since the first student's test scores are in the first row, we could write

TotalPointstl] := Scoretl/1] + Score[l/E] +

Secret 1/3] + Scoretl/^] +

Score[1,5];

To compute this total for each student, we could use the loop

430 ARRAYS OF MORE THAN ONE DIMENSION

FOR Student := 1 TO 50 DO

TotalPointsI Student] := ScoretStudent/ 1] +

ScorelStudent, 51 +

ScoretStudent, 3] +

ScoretStudent, Al +

ScoretStudent, 5];

and this would produce the array of totals

TotalPoints

TotalPoints[l]

TotalPoints [2]

TotalPoints[3]

455

360

424

396 TotalPoints[20]

If the two-dimensional array has several columns, we can use a loop to
sum an array of numbers. We can, for instance, write a loop to sum the
five test scores for the first student in our table.

TotalPointstil := □;
FOR Test := 1 TO 5 DO

TotalPoints!1] := TotalPoints!1] + Score!l, Test];

To do this for each student, we use a second loop.
FOR student := 1 TO 50 DO

BEGIN
TotalPoints!Student] := □;
FOR Test := 1 TO 5 DO

TotalPoints!Student] := TotalPoints!Student] +
Score!Student, Test]

END;

The second task in our problem is to compute the percentage grade for
each student. If we want to save these percentages, we can declare an
array as follows:

TYPE
ColuranED = ARRAY !1..5D] OF real;

VAR

Percent : ColumnSD;

and include a segment of code
FOR student := 1 TO 50 DO

Percent!Student] := TotalPoints!Student] / 5;

The third task is to find the average score for each test. To find these
numbers, we need to add all 20 scores for each test and divide the re
spective total by 20. We first have to find the sum of each column and we
need to declare an array in which to store the averages. The declaration
could be

TYPE
Lists = ARRAY !1..5] OF real;

VAR

TestAv : Lists;

We now need a loop to find the total of each column. Assuming we have
an integer variable Sum declared, we can sum column one by

Sum := □;
FOR Student := 1 TO 50 DO

Sura := Sum + Score!Student, 1];

10.1 Two-Dimensional Arrays 431

TestAv[l] can now be found by

TestAvCll := Sum / 5D;

To do this for each column, we use a second loop as follows:

FOR Test := 1 TO 5 DO < Test is the column subscript >
BEGIN

Sum := □;
FOR Student := 1 TO SD DO { Student is the row subscript >

Sum := Sura + Secret Student, Test];
TestAvCTest] := Sum / 50

END;

As a concluding example of manipulating elements of two-dimensional
arrays, consider the following.

Assume we have the declarations

CONST

NumRows = ED;
NumColumns = 50;

TYPE

TableSize = ARRAY [1..NumRows,
1..NumColumns] OF integer;

List = ARRAY [1..NumRows] OF integer;
VAR

Table : TableSize;
Max : List;

and values have been read into the two-dimensional array from an input fi le. Let's
write a segment of code to find the maximum value in each row and then store
this value in the array Max. To find the maximum of row one, we can write

Maxtl] := Tabled,!];
FOR Column := S TO NumColumns DO

IF Tabled, Column] > MaxCl] THEN
MaxCl] := Tabled, Column];

To do this for each of the rows, we use a second loop as follows:
FOR Row := 1 TO NumRows DO

BEGIN

MaxCRow] := TableCRow, !];
FOR Column := S TO NumColumns DO

IF TableCRow, Column] > MaxCRow] THEN
MaxCRow] := TableCRow, Column]

END; B

Procedures and Two-Dimensional Arrays
When we start writing programs with two-dimensional arrays, we will
use procedures as before to maintain the top-down design philosophy. As
with one-dimensional arrays, there are three relatively standard uses of
procedures in most problems: to get the data, to manipulate the data, and
to output the data. All arrays to be passed to a procedure must be declared
in the TYPE definition section.

Western Jeans, Inc., wants a program to help them keep track of their inventory
of jeans. The jeans are coded by waist size and inseam. The waist sizes are the
integer values from 24 to 46 and the inseams are the integer values from 26 to 40.
Thus, there are 23 waist sizes and 15 inseams for each waist size. The first 23
lines of the data fi le contain the starting inventory. Each line corresponds to a
waist size and contains 15 integers, one for each inseam. The next 23 lines of the

432 ARRAYS OF MORE THAN ONE DIMENSION

data file contain the sales information for a day. Let's write a program to find and
print the closing inventory.
A first-level pseudocode development for this program is

1. Get starting inventory

2. Get new sales

3. Update inventory
4. Print heading
5. Print closing inventory

Each of these steps uses a procedure.
Since there are 23 waist sizes and 15 inseams, we use definitions as follows:

CONST

FirstWaist = 54;

LastWaist =

Firstlnseam = Bb;

Lastlnseam = AO;

TYPE

HalstSizes = FirstWaist..LastWaist;

InseamSizes = Firstlnseam..Lastlnseam;

Table = ARRAY [WaistSizes/ InseamSizesl OF integer;

We use variables declared as follows:

VAR

Inventory : Table;
Sales : Table;

Assuming variables have been declared as needed, let's now write a procedure
to get the starting inventory.

PROCEDORE GetData (VAR Matrix : Table);
VAR

ROW/ Column : integer;
BEGIN

FOR Row := FirstWaist TO LastWaist DO

BEGIN

FOR Column := Firstlnseam TO Lastlnseam DO

read (MatrixtRow, Column]);
readln

END

END;

Note that VAR is used because the new data will be needed later in the program.
This procedure will be called from the main program by

GetData (Inventory);

The next task is to get the sales for a day. Since this merely requires reading
the next 23 lines from the data file, we do not need to write a new procedure. We
call GetData again by

GetData (Sales);

We now need a procedure to update the starting inventory. This updating can
be accomplished by sending both two-dimensional arrays to a procedure and then
finding the respective differences of components.

PROCEDURE Update (VAR Inventory : Table;
VAR Sales : Table);

VAR

ROW/ Column : integer;

BEGIN

FOR Row := FirstWaist TO LastWaist DO

FOR Column := Firstlnseam TO Lastlnseam DO
Inventory[ROW/ Column] := Inventory[RoW/ Column] - SalestRow, Column]

END;

10.1 Two-Dimensional Arrays 433

A Qg l^TEltiST

Telesecurity

Increasing use of telecommunication raises the financial institutions, among others. Sometimes
potential for security violations of computer sys- the perpetrators are just trying to "beat the sys
tems. Through ingenious approaches, it is pos- tem." Other times, there is a clear, criminal in-
sible to gain access to major computer systems tent. In any case, security of computer systems
for the purposes of making free telephone calls, that can be accessed by telephone is a problem
charging purchases to someone else's credit card which many experts are working to solve,
number, and transferring funds to accounts in

This is called by the statement

Update (Inventory/ Sales);

The procedure for the heading is as before, so we need not write it here. Let's
assume the arrays have been assigned the necessary values. The output procedure
will be

PROCEDURE PrintData (VAR Inventory : Table);
CONST

Mark = ' !';

VAR

ROW/ Column : integer;
BEGIN

FOR J := FirstWaist TO LastHalst DO

BEGIN

write (Row:b/ Mark);
FOR Column := Firstlnseara TO Lastlnseam DO

write (Inventory[ROW/ Column!:^);
writeln;

writeln (Mark:b)
END < of printing one row >

END;

This procedure could be called from the main program by

PrintData (Inventory);

Once these procedures have been written, the main program becomes

BEGIN

GetData (Inventory);
GetData (Sales);
Update (Inventory, Sales);
PrintHeading;
PrintData (Inventory)

END. { of main program > g

ExGrciS6S 10.1 l. Declare a two-dimensional array for each of the following using both the
ARRAY I] and ARRAY [..] OF ARRAY [. .] forms.

a. A table with real number entries that shows the prices for four different
drugs charged by five drug stores.

b. A table with character entries that shows the grades earned by 20 stu
dents in six courses.

c. A table with integer entries that shows the 12 quiz scores earned by 30
students in a class.

2. Write a test program to read integers into a 3 x 5 array and then print out
the array components together with each row sum and each column sum.

434 ARRAYS OF MORE THAN ONE DIMENSION

3. For each of the following declarations, sketch what is reserved in memory.
In each case, state how many variables are available to the programmer.

a. VftR

ShippingCost : ARRIVY Cl-.IQ] OF
ARRAY [1..41 OF real;

GradeBook : ARRAY [1..35/ l..t] OF integer;

b. VAR

A : ARRAY [1..3, 2..t] OF integer;

c. TYPE

Weekdays = (Mon, Tues, Wed/ Thur/ Fri);
Chores = (Wash/ Iron/ Clean/ Mow/ Sweep);

VAR

Schedule : ARRAY [Weekdays/ Chores] OF boolean;

d. TYPE

Questions = 1..5D;

Answers = 1..5;

Table = ARRAY [Questions/ Answers] OF char;

VAR

AnswerSheet : Table;

4. Assume the array A has been declared as

VAR

A : ARRAY [1..3/ 1..5] OF integer;

Indicate the array contents produced by each of the following:

c. FOR K := 1 TO 5 DO

FOR J := 1 TO 3 DO

A[J/K] := J;

d. FOR J := 3 DOWNTO 1 DO

FOR K := 1 TO S DO

A[J/K] := J MOD K;

a. FOR J := 1 TO 3 DO

FOR K := 1 TO 5 DO

A[J/K] := J - K;

b. FOR J := 1 TO 3 DO

FOR K := 1 TO 5 DO

A[J/K] := J;

5. Let the two-dimensional array A be declared by

VAR

A : ARRAY [1..3/ l..t] OF integer;

Write nested loops that causes the following values to be stored in A:

a. A

3 4 5 6 7 8

5 6 7 8 9 10

7 8 9 10 11 12

A

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

A

2 2 2 2 2 2

4 4 4 4 4 4

6 6 6 6 6 6

6. Declare a two-dimensional array and write a segment of code that reads the
following input file into the array.

13.2 15.1 10.3 8.2

37.2 25.6 34.1 17.0 15.2^

10.1 Two-Dimensional Arrays 435

7.

9.

10.

11.

Suppose an input file contains 50 lines of data and the first 20 spaces of
each line are reserved for a customer's name. The rest of the line contains
other information. Declare a two-dimensional array to hold the names and
write a segment of code to read the names into the array. A sample line of
input is

Smith John O 268-14-180ll
t

position 21

Assume the declaration

TYPE

Table^XS = ARRRY II..A, 1..5] OF real;
VAR

Table : Table4X5;

has heen made and values have been read into Table as follows:

Table

-2.0 3.0 0.0 8.0 10.0

0.0 -4.0 3.0 1.0 2.0

1.0 2.0 3.0 8.0 -6.0

-4.0 1.0 4.0 6.0 82.0

b.

c.

Indicate what the components of Table would be after each of the following
segments of code is executed,

a. FOR J := 1 TO < DO

FOR K := 1 TO 5 DO

IF J HOD K = □ THEN

A[J,K] := □
ELSE

A[J,K] := -1;
For J := 1 TO < DO

IF A[J,11 <> □ THEN
FOR K := 1 TO 5 DO

A[J,K1 := A[J/K1 / AtJ,l];
FOR K := 1 TO 5 DO

IF A[J,K] = □ THEN
FOR J := 1 TO 4 DO

A[J,K1 := □;

Let the two-dimensional array Table be declared as in Exercise 8. Declare
additional arrays as needed and write segments of code for each of the
following:
a. Find and save the minimum of each row.
b. Find and save the maximum of each column.
c. Find the total of all the components.
Example 10.4 illustrates the use of procedures with two-dimensional ar
rays. For actual use, you would also need a list indicating what to order to
maintain the inventory. Write a procedure (assuming all declarations have
been made) to print a table indicating which sizes of jeans have a supply
fewer than four. Do this by putting an in the cell if the supply is low or
a ' ' if the supply is adequate.
Suppose you want to work with a table that has three rows and eight col
umns of integers.
a. Declare an appropriate two-dimensional array that can be used with

procedures.
b. Write a procedure to replace all negative numbers with zero.
c. Show what is needed to call this procedure from the main program.

436 ARRAYS OF MORE THAN ONE DIMENSION

12. If A and B are matrices of size m x n, their sum A + B is defined by
A + B = [a + b]if, where a and b are corresponding components in A and
B. Write a program to

a. Read values into two matrices of size m x n.

b. Compute the sum.
c. Print out the matrices together with the sum.

13. If A and B are matrices of sizes m x n and n x p, their product is defined
to be the m x p matrix AB where

n

~ ̂ik ~ 2 ^jk
i=i

Write a program that will

a. Read values into two matrices whose product is defined.
b. Compute their product.
c. Print out the matrices together with their product.

a 10.2

Arrays of
String Variables

; pBJEjCTiVES

B to understand that

an array of string
variables is a two-

dimensional array

a to be able to declare

an array of string
variables

B to be able to read

data into an array of
string variables

a to be able to alpha
betize a list of

Basic Idea and Notation

Recall from Section 9.5 that we defined string variables as packed arrays
of characters. At that time, we learned that strings of the same length can
be compared and strings can be printed using a single write or writeln
command. A typical declaration for a name 20 characters in length is

TYPE

StringSD = PACKED ARRAY [1..PD1 OF char;
VAR

Name : StringSO;

Thus, Name could be envisioned as

Name

It is a natural extension to next consider the problem of working with an
array of strings. For example, if we need a data structure for 50 names,
this can be declared by

TYPE

StringPO = PACKED ARRAY 11..2D] OF Char;
NaraeList = ARRAY 11..501 OF StringEG;

VAR

Name : NameLlst;

Name can then be envisioned as

Name

Name[l]

Name[2]

Name[3]

Name[50]

where each component of Name is a packed array.

10.2 Arrays of String Variables 437

Alphabetizing a List of Names

One standard problem faced by programmers is that of alphabetizing a
list of names. For example, programs that work with class lists, bank
statements, magazine subscriptions, names in a telephone book, credit
card customers, and so on require alphabetizing. As indicated, Pascal
provides the facility for using an array of packed arrays as a data structure
for such lists.

Problems that require alphabetizing names contain at least three main
tasks: get the data, alphabetize the list, and print the list. Prior to writing
procedures for each of these tasks, let's consider some associated prob
lems. When getting the data, you will usually encounter one of two for
mats. First, data may be entered with a constant field width for each name.
Each name would typically be followed by some additional data item.
Thus, if each name uses 20 character positions and position 21 contains
the start of numeric data, the input file might be

Smith John 18 [Jones Harriet 19 B
t t

position 21 position 21

In this case, the name Ccm be read into the appropriate component by a
fixed loop. The first name can be accessed by

FOR K := 1 TO 2D DO

read (Natnetl^K]) ;

and the second name by

FOR K := 1 TO 20 DO

read (Name[2/K]);

A second form for entering data is to use some symbol to indicate the end
of a name. When the data are in this form, you must be able to recognize
the symbol and fill the remaining positions with blanks. Thus, the data
file could be

Smith John*181 Jones Harriet*19 B

In this case, the first name can be obtained by

K := □;
read (Ch);
WHILE (Ch <> •*') AND (K < 2D) DO

BEGIN

K := K + 1;
NaraetlfK] := Ch;
read (Ch)

END;
FOR J := K + 1 TO 2D DO

NaraeCl/J] ;

This process will fill the remaining positions in the name with blanks.
Thus, Name[l] would be

s m i t h J o h n

Name [1]

The second name in the data file would be similarly read. The only change
is from Name[l,K] to Name[2,K].

438 ARRAYS OF MORE THAN ONE DIMENSION

The next problem in getting data is determining how many lines are
available. If the number of lines is known, you can use a FOR loop. More
realistically, however, there will be an unknown number of lines and you
will need the eof condition in a variable control loop and a counter to
determine the number of names. To illustrate, assume there are an un
known number of data lines where each line contains a name in the first

20 positions. If the declaration section of a program is

TYPE

StringSO = PACKED ARRAY [1..2D] OF char;
NaraeList = ARRAY [1..SD] OF StringSD;

VAR

Name : NameLlst;

Length : integer;

a procedure to get the data is

PROCEDURE GetData (VAR Name : NameLlst;

VAR Length : integer);
VAR

K : integer;
BEGIN

Length := □;
WHILE NOT eof AND (Length < 50) DO

BEGIN

Length := Length + 1;
FOR K := 1 TO 20 DO

read (NametLength/ Kl);
readln

END;
IF NOT eof THEN

writeln ('There are more data. '
END; i of PROCEDURE GetData >

Increment counter

Get a name
Advance the pointer

This procedure is called from the main program by
GetData (Name/ Length);

Let's now consider the problem of alphabetizing a list of names. If we
assume the same data structure we've just seen and let Length represent
the number of names, a procedure to sort the list alphabetically (using
the selection sort discussed in Section 9.3) is

PROCEDURE Sort (VAR Name : NameLlst;
Length : integer);

VAR

J/ K/ Index : integer;
Temp : String2D;

BEGIN

FOR J := 1 TO Length - 1 DO
BEGIN

Index := J;
FOR K := J + 1 TO Length DO

IF NameCK] < NameCIndexI THEN
Index := K;

Temp := NameCIndexI;
Namellndexl := NameCJI;
NamelJ] := Temp

END { of sort >
END; < of PROCEDURE Sort >

This procedure could be called from the main program by
Sort (Name/ Length);

10.2 Arrays of String Variables 439

Once the list of names has been sorted, you usually want to print the
sorted list, A procedure to do this is

PROCEDORE PrintData (VAR Name : NaraeList;
Length : integer);

VAR

J : integer;
BEGIN

FOR J := 1 TO Length DO
writeln (Name[Jl:5D)

END; <. of PROCEDURE PrintData >

This could be called from the main program by

PrintData (Name, Length);

We can now use the procedures in a simple program that gets the names,
sorts them, and prints them as follows:

BEGIN < Main program }
GetData (Name/ Length);
Sort (Name/ Length);
PrintData (Name/ Length)

END. t of main program >

Exercises 10.2 l. Assume the declarations and definitions

TYPE

StringSD = PACKED ARRAY [1..5D] OF char;
StateList = ARRAY [1..5D] OF StringEQ;

VAR

State : StateList;

have been made and an alphabetical listing of the 50 states of the United
States of America is contained in the data structure State. Furthermore,

assume that each state name begins in position one of each component.
Indicate the output for each of the following:

a. FOR J := 1 TO 50 DO

IF StatefJ/1] = THEN

writeln (State!J]:35);

b. FOR J := 50 DOWNTO 1 DO

IF J MOD 5=0 THEN

writeln (State!J1:35);

c. FOR J := 1 TO 50 DO

writeln (State!J/1]:!□/ StatetJ/El);
d. CountA := □;

FOR J := 1 TO 50 DO

FOR K := 1 TO ED DO

IF State!J/K] = 'A' THEN
CountA := CountA + 1;

writeln (CountArEO);

2. Assume you have a sorted list of names. Write a fragment of code to inspect
the list of names and print the full name of each Smith on the list.

3. The procedure in this section to get names from a data fi le assumed the
names in the data fi le were of fixed length and that there were an unknown
number of data lines. Modify the procedure for each of the following
situations.

a. Variable length names followed by an and a known number of data
lines

440 ARRAYS OF MORE THAN ONE DIMENSION

b. Variable length names followed by an and an unknown number of data
lines

c. Fixed length names (20 characters) and a known number of data lines
d. Names are entered in the form first name, space, last name and you want

to sort by last name.

4. If each line of a data file contains a name followed by an age, for example.

Smith John 181

position 21

the data will be put into two arrays, one for the names and one for the ages.
Show how the sorting procedure can be modified so that the array of ages
will keep the same order as the array of names.

Write a complete program to read ten names from an input file (where each
line contains one name of 20 characters), sort the names in reverse alphabet
ical order, and print the sorted list.

■ 10.3

Parallel Arrays
(Optional)

OBJECTiyiS#

■ to understand when

parallel arrays
should be used to

solve a problem
■ to be able to use

parallel arrays to
solve a problem

There are many practical situations in which more than one type of array
is required to handle the data. For example, you may wish to keep a record
of names of people and their donations to a charitable organization. You
could accomplish this by using a packed array of names and an equal
length array of donations—of real or integer. Programs for these situations
can use parallel arrays, a term used for arrays of the same length in parallel
arrays, where elements in each array must be in the same relative posi
tions. These arrays have the same index type. However, most uses of
parallel arrays have the added condition of different data types for the
array components. Otherwise, a two-dimensional array would suffice.
Generally, situations that call for two or more arrays of the same length
but of different data types are situations in which parallel arrays can be
used. Later we will see that this situation can also be handled as a single
array of records.

Using Parallel Arrays

Let's look at a typical problem that requires working with both a list of
names and a list of numbers. Suppose the input file consists of 30 lines
and each line contains a name in the first 20 spaces and an integer starting
in space 21 that is the amount of a donation. We are to read all data into
appropriate arrays, alphabetize the names, print the alphabetized list with
the amount of each donation, and find the total of all donations.

STYLE TIP Since parallel arrays use the same index type, deiimtiohs coiild have the
form

.CONST
NumberOfDonors = 30;

TYPE

StrlngEO: = PACKED ARRAY [1..BC11 OF char;
IndexType = 1..NumberOfDonors;
NameList = ARRAY CIndexTypei OF StringHD;
AmountEist = ARRAY CIndexTypei OF integer;

10.3 Parallel Arrays (Optional] 441

This problem can be solved using parallel arrays for the list of names
and the list of donations. Appropriate declarations are

CONST

NumberOfDonors = 3D;

TYPE

Stringao = PACKED ARRAY [1..2G] OF char;
IndexType = 1..NumberOfDonors;
NaraeList = ARRAY [IndexType] OF StringSG;
AmountList = ARRAY [IndexType] OF integer;

VAR

Donor : NameList;

Amount : AmountList;

A procedure to read the data from an input file is

NameList;

AmountList);
PROCEDURE GetData (VAR Donor

VAR Amount

VAR

J, K : integer;
BEGIN

FOR J := 1 TO NumberOfDonors DO

BEGIN

FOR K := 1 TO EG DO

read (Donor[J/K]);

readln (Amount[J])

END

END; < of PROCEDURE GetData >

This procedure could be called by

GetData (Donor/ Amount);

After this procedure has been called from the main program, the parallel
arrays could be envisioned as

Donor Amount

Donor[l] Smith John ICQ Amount[l]

Donor[2] Jones Jerry 250 Amount [21

• • •

Donor[30] Generous George 525 Amount[30]

The next task is to alphabetize the names. However, we must be careful
to keep the amount donated with the name of the donor. This can be
accomplished by passing both the list of names and the list of donations
to the sorting procedure and modifying the code to include exchemging
the amount of donation whenever the names are exchanged. Since
NumberOfDonors is defined in the constant section, a Length argument
is not needed. Using the procedure heading

PROCEDURE Sort (VAR Donor :

VAR Amount

NameList;

AmountList);

the code for sorting would be changed in order to interchange both a name
and an amount. Thus,

Temp := Donor[Index];
Donor[Index] := Donor[J];

Donor[J] := Temp;

would become

442 ARRAYS OF MORE THAN ONE DIMENSION

Software Destruction

One type of computer crime is that of destroying of destruction, management should discover if
software being used by a company. In a number employees are disgruntled and, if they are, im-
of instances, frustrated employees who felt plement measures to remove the frustration. This
cheated or improperly rewarded for their roles type of crime is an unexpected but real problem
in program development have sabotaged their that must be faced by management,
companies' software. In order to stop this form

Temp := Donorllndex];
TempAmount := amountllndex];
Donorllndex] := Donor!J];

Amount[Index] := Amount!J];

Donor!J] := Temp;
Amount!J] := TerapAraount;

The procedure for sorting the list of names and rearranging the list of
donations accordingly is called by

Sort (Donor, Amount);

Our next task is to print the alphabetized list together with the donations.
If Donor and Amount have been sorted appropriately, we can use the
following procedure to produce the desired output.

PROCEDURE PrintData (VAR Donor : NameList;
VAR Amount : AraountList);

VAR

J : integer;

BEGIN

FOR J := 1 TO NuraberOfDonors DO

BEGIN

write (Donor!J]:40);

writeln ('$':3/ Araount!J]:5)

END

END; < of PROCEDURE PrintData >

This would be called by

PrintData (Donor, Amount);

The last task this program requires is to find the total of all donations.
The following function could perform this task.

FUNCTION Total (Amount : AmountList) : integer;
VAR

Sura, J : integer;
BEGIN

Sum := □;
FOR J ;= 1 TO NuraberOfDonors DO

Sura := Sum + Amount!J];
Total := Sura

END; < of FUNCTION Total >

This function could be called by
TotalDonations := Total(Amount);

where TotalDonations has been declared as an integer variable. A complete
program for this problem could be written as follows:

10.3 Parallel Arrays (Optional) 443

PROGRAM Donations (input/ output);

This program reads data from an input file where each line
consists of a donor name followed by the amount donated.
Output consists of an alphabetically sorted list together
with the amount of each donation. This is accomplished by
using parallel arrays. The total amount donated is also
listed.

CONST

NuraberOfDonors = 3D;

TYPE

StringSG = PACKED ARRAY [1..EG] OF char;
IndexType = 1..NumberOfDonors;
NameList = ARRAY [IndexType] OF StringEO;
AraountList = ARRAY [IndexType] OF integer;

VAR

Amount : AmountList; < An array for amounts donated >
Donor : NameList; < An array for donor names >
TotalDonations : integer; ■[Total amount donated >

PROCEDURE GetData (VAR Donor ; NameList;
VAR Amount : AmountList);

< Given: Nothing y
■{ Task: Read names and donations into respective arrays }
< Return: Parallel arrays of names and donations >

VAR

J/ K : integer;

BEGIN

FOR J := 1 TO NumberOfDonors DO
BEGIN

FOR K := 1 TO EG DO
read (Donor[J/Kl);

readln (Amount[J])
END

END; < Of PROCEDURE GetData >

PROCEDURE Sort (VAR Donor : NameList;
VAR Amount : AmountList);

{ Given: Unsorted parallel arrays of names and donations }
{ Task: Sort alphabetically >
< Return: An alphabetically sorted list of names with >
< respective donations >

VAR

TempDonor : StringEG;
TerapAmount : integer;
J/ K/ Index : integer;

444 ARRAYS OF MORE THAN ONE DIMENSION

BEGIN

FOR J := 1 TO NumberOfDonors - 1 DO

BEGIN

Index := J;

FOR K := J + 1 TO NumberOfDonors DO

IF DonorIK] < TempDonor THEN
Index := K;

TempDonor := Donorllndex];
TerapAmount := AmountCIndexl;
Donorllndex] := DonorCJ];

Rmountllndex] := Amount!J];

DonorCJ] := TempDonor;
Amounted] := TempAmount

END < of FOR J loop I
END; { of PROCEDURE Sort >

PROCEDURE PrintData (VAR Donor : NameList;
VAR Amount : AmountList;

TotalDonations : integer);

■! Given: Parallel arrays of names and donations and total
< donations
< Task: Print a list of names and amounts donated; end
i with the total of all donations
< Return: Nothing

VAR

J : integer;

BEGIN

FOR J := 1 TO NumberOfDonors DO
BEGIN

write (Donor[J]:<□);
writeln AmountCJ]:5)

END; { of FOR J loop >
writeln (•
writeln ('Total' :^D, •$' :3, TotalDonations:5) ;
writeln; writeln

END; i. of PROCEDURE PrintData >

PROCEDURE PrintHeading;

{ Given: Nothing }
■! Task: Print a heading for the output >
{ Return: Nothing >

BEGIN

writeln; writeln;
writeln ('Donor Name' :33/ 'Donation':17);
writeln (' ' : 33, ' ' : 17) ;
writeln

END; i of PROCEDURE PrintHeading >

{****♦**>

10.3 P^allel Arrays (Optional) 445

FUNCTION Total (amount : amountLlst) : integer;

i Given: An array of amounts >
{ Task: Sum the components of the array >
{ Return: The total of array components >

VAR

Sura, J : integer;

BEGIN

SUM := □;
FOR J := 1 TO NumberOfDonors DO

Sum := Sum + Amount!J];
Total := Sum

END; < of FUNCTION Total }

•(****♦♦»♦*♦♦*******♦♦****************♦♦*********♦♦♦******♦****♦*>

BEGIN i Main program >
GetData (Donor, Amount);
Sort (Donor, Amount);
TotalDonations := Total(Amount);
PrintHeading;
PrintData (Donor, Amount, TotalDonations)

END. i of main program >

Output created from an input file of 30 lines is
Donor Name Donation

Alexander Candy $ 3Q0

Anderson Tony $ 375

Banks Harj $ 375

Born Patty $ IDD

Brown Ron $ EQD

Darnell Linda $ 575

Erickson Thomas $ 100

Fox William $ 300

Francis Denise $ 35D

Generous George $ 555

Gillette Mike $ 350

Hancock Kirk $ 5DD

Biggins Sam $ 300

Janson Kevin $ 500
Johnson Ed $ 350

Johnson Martha $ ADO
Jones Jerry $ 550

Kelly Marvin $ A7S

Kneff Susan $ 3D0

Lasher John $ 175

Lyon Elizabeth $ 455

Moore Robert $
Muller Marjorie $ 550
Smith John $
Trost Frostie $ 50

Trudo Rosemary $ 500
Weber Sharon $ 150
Williams Art $ 350
Williams Jane $ 175

Wilson Mary $ 575

Total $ 6575

446 arrays of more than one dimension

Exercises 10.3 !• Which of the following are appropriate declarations for parallel arrays?
Explain.

a. type

StringlS = PACKED ARRAY [1..15] OF char;
ListlS = ARRAY [1..15] OF real;

VAR

Names : ARRAY [1..10] OF StringlS;

Amounts : ListlS;

b. type

Chart = ARRAY [1..15/ 1..1D] OF integer;

StringlD = PACKED ARRAY [1..1D] OF char;
List = ARRAY [l..ia] OF StringlD;

VAR

Table : Chart;

Names : List;

2. Write a test program to read names and amounts from a data file. Your pro
gram should print out both lists and the total of the amounts. Assume each
line of data is similar to

Jones Mary 7-351

position 21

3. In this section you were asked to sort a list of names alphabetically and then
write the sorted list together with student grades. Write a procedure to count
the number of occurrences of each grade.

4. Declare appropriate arrays and write a procedure to read data from an input
file where there are an unknown number of lines (but less than 100) and
each line contains a name (20 spaces), an age (integer), a marital status
(character), and an income (real). A typical data line is

Smith John 35M 28502.161

5- Modify the code of Exercise 4 to accommodate data entered in the data file
in the following format:

20 positions

Name Age|

Marital Status Income |

Name Age|

Marital Status Income |

6* Write a procedure to sort the arrays of Exercise 4 according to income.

■ 10.4

Higher-Dimen
sional Arrays

■ to understand when

arrays of dimen
sions greater than
two are needed in a

program

■ to be able to define

and declare data

structures for

higher-dimensional
arrays

■ to be able to use

higher-dimensional
arrays in a program

10.4 Higher-Dimensional Arrays 447

Thus far we have worked with arrays of one and two dimensions. Arrays
of three, four, or higher dimensions can also be declared and used. Pascal
places no limitation on the number of dimensions of an array.

Declarations of Higher-Dimensional Arrays

Declarations of higher-dimensional arrays usually assume one of two basic
forms. First, a three-dimensional array can be declared using the form

ARRAY [1 .. 3, 1 . . 4, 1 .. 5] OF data type;

Each dimension can vary in any of the ways used for arrays of one or two
dimensions and the data type can be any standard or user-defined ordinal
data type. Second, a three-dimensional array can be declared as an array
of two-dimensional arrays using the form

ARRAY [1 .. 3] OF ARRAY [1 .. 4, 1 .. 5] OF integer

Each of these declarations will reserve 60 locations in memory. This can
be visualized as shown in Figure 10.1.

FIGURE 10.1

Three-dimensional

array

•

; ■

, 73 1

Jt -ft i.

-

>

A[1,2,4]

A[3.3.5]

An array of dimension n can be defined by

ARRAY [1 .. aj, 1 .. ̂2 1 .. a„] OF data type;

which would reserve * ̂2 * • • • * locations in memory. A general
definition is

ARRAY [fli.. fci, ̂ 2.. ̂2. b„] OF data type

where a,- < h,- for 1 < i ̂
Declarations and uses of higher-dimensional arrays are usually facili

tated by descriptive names and user-defined data types. For example,
suppose we want to decleire a three-dimensional array to hold the contents
of a book of tables. If there are 50 pages and each page contains a table
of 15 rows and 10 colmnns, a reasonable declaration is

448 ARRAYS OF MORE THAN ONE DIMENSION

TYPE

Page = 1..50;
Row = 1..15;

Column = 1..ID;

Book = ARRAY [Page, Row, Column] OF integer;
VAR

Item : Book;

When this declaration is compared to

TYPE

Book = ARRAY [1..5D, 1..15, 1..10] OF integer;
VAR

Item : Book;

we realize that both arrays are identical in structure, but, in the first
declaration, it is easier to see what the dimensions represent.

Accessing Components

Elements in higher-dimensional arrays are accessed and used in a manner
similar to two-dimensional arrays. The difference is that in a three-
dimensional array, each element needs three indices for reference. A sim
ilar result holds for other dimensions. To illustrate using this notation,
recall the declaration

TYPE

Page = 1..50;
Row = 1..15;

Column = 1. . ID;

Book = ARRAY [Page, Row, Column] OF integer;
VAR

Item : Book;

If you want to assign a ten to the item on page three, row five, column
seven, the statement

Itemt3,5,7] := ID;

accomplishes this. Similarly, this item can be printed by

write {IteraI3,5,7]);

Using this same declaration, we can
1. Print the fourth row of page 21 with the following segment of

code.

FOR K := 1 TO ID DO

write (Itemt21,<,K]:5);
writeln;

2. Print the top row of every page with

FOR I := 1 TO 5D DO

BEGIN

FOR K := 1 TO ID DO

write (Item[I,l,K]:5);
writeln

END;

3. Print page 35 with

FOR J := 1 TO 15 DO

BEGIN

FOR K := 1 TO ID DO

write (ItemC35,J,K]:5);
writeln; writeln

END;

10.4 Higher-Oimensional Arrays 449

4. Print every page that does not have a zero in the first row and the
first column with

FOR I := 1 TO 50 DO

IF Item[I,1,1] <> □ THEN
FOR J := 1 TO IS DO

BEGIN

FOR K := 1 TO ID DO
write (ItemCI,J,K]:5);

writeln; writeln
END;

As another illustration of the use of higher-dimensional arrays, consider
the situation where the manager of a high-rise office complex wants a
program to assist in keeping track of the tenants in each office. Suppose
there are 20 floors, each with the floor plan shown in Figure 10.2. Each
wing contains five rooms.

FIGURE 10.2
High-rise floor plan

Awing

D wing B wing

C wing

Let's first declare an appropriate array where the tenant's name can be
stored (assume each name consists of 20 characters). This can be accom
plished by

TYPE
Floors = 1,.50;
Wings = 'R' .. 'D' ;
Offices = 1.-5;
Name = PRCKED ARRAY [l..aO] OF char;
Occupant = ARRAY [Floors, Wings, Offices] OF Name;

VAR

Tenant : Occupant;
Floor : Floors;
Wing : Wings;
Office : Offices;

Note that this is really a four-dimensional array, since the data type Name
is PACKED ARRAY.

Now let's write a segment of code to print a list of names of all tenants
on the top floor. To get the names of all tenants of the twentieth floor, we
need to print the names for each office in each wing. Assuming a field
width of 30 columns, the following code completes the desired task.

450 ARRAYS OF MORE THAN ONE DIMENSION

FOR Wing := 'A' TO 'D' DO
FOR Office := 1 TO 5 DO

writeln (Tenant[5D/ Wing/ Office]:3D);

How would we write a segment of code to read the name of the new
tenant on the third floor, B wing, room 5 from the data file? Recall that
character strings must be read one character at a time. Tenant [3,'B',5] is
the variable name. Since this is a packed array, the code for reading is

FOR L := 1 TO BD DO

read (Tenant[3 B•/5/L]);

Assume the string 'Unoccupied ' has been entered for each vacant
office and we are to write a segment of code to list all vacant offices. This
problem requires us to examine every name and print the location of the
unoccupied offices.

Hence, when we encounter the name 'Unoccupied ', we want
to print the respective indices. This is accomplished by

FOR Floor := 1 TO BD DO

FOR Wing := 'A' TO 'D' DO
FOR Office := 1 TO 5 DO

IF Tenant[Floor/ Wing/ Office! = 'Unoccupied '
THEN writeln (Floor:5/ WingiS/ Office:5);

As you can see, working with higher-dimensional arrays requires very
careful handling of the indices. Nested loops are frequently used for pro
cessing array elements and proper formatting of output is critical.

.A NOTE. OK m3rEllEST.w . .

Computer Security

Computer security is a very important aspect of
managing computer systems. In fact, computer
crime and other types of intentional computer
abuse (for example, unauthorized access, hard
ware destruction, and software duplication) have
probably received as much press coverage as any
other issue surrounding computers. Ranging from
stories of high school hackers accessing corpo
rate and government data bases to the embez
zlement of over $20 million from Wells Fargo
Bank, intentional computer abuse is particularly
noteworthy because of the motivations behind
the abuses and the potential for huge financial
losses.

Typically, only a small percentage (estimated
at only 30 to 50 percent) of intentional computer
abuses are uncovered, a significant proportion
of which (up to 50 percent) are discovered solely
by accident. More importantly, even when the

abuse,and its perpetrator are identified, only 5
to 10 percent of the incidents are prosecuted
through legal channels. However, the conviction
rate of prosecutions seems to be quite high (one
study reported 70 percent convictions in cases
prosecuted), certainly due in part to audit trails
provided by sound backup procedures.

To cope with the threat of abuse, many or
ganizations have created positions specifically
aimed at developing and monitoring computer
security. These positions are frequently titled
"Security Administrator," "Data Security Ad
ministrator," or "Computer Security Officer." As
these security administrators continue to de
velop better detection techniques, including bet
ter audit trails, more focused detective activities,

and increased user awareness, the likelihood of

"getting away with the crime" will continue to
decrease.

10.4 Higher-Dimensional Arrays 451

Exercises 10.4 l. How many memory locations are reserved in each of the following
declarations?

a. VAR

A : ARRAY C1..B, 1..3, 1..10] OF char;

b. VAR

A : ARRAY [-5..3] OF ARRAY [2..-^,

3. .t] OF real;
c. TYPE

Color = (Red/ Black/ White);

Size = (Small/ Large);

Year = iqSD..iqbO;

VAR

A : ARRAY [Color/ Size/ Year];
d. type

StringlB = PACKED ARRAY [1..15] OF char;

ListlD = ARRAY [1..1D] OF StringlS;

VAR

A : ARRAY [1..^] OF ListlD;

2. Write a test program to read values into an array of size 3X4X5. Assum
ing this represents three pages, each of which contains a 4 x 5 table, print
out the table for each page together with a page number.

3. Declare a three-dimensional array that a hospital could use to keep track of
the t5rpes of rooms available: private (P), semiprivate (S), and ward (W). The
hospital has four floors, five wings, and 20 rooms in each wing.

4. Consider the declaration

TYPE

Pages = 1..50;
Rows = 1..15;

Columns = 1..ID;

Book = ARRAY [PageS/ Rows/ Columns] OF integer;
VAR

Page : Pages;

Row : Rows;

Column : Columns;

Item : Book;

a. Write a segment of code to do each of the following:
»• Print the fourth column of page 3.

ii> Print the top seven rows of page 46.
iii- Create a new page 30 by adding the corresponding elements of page

31 to page 30.

b. What is a general description of the output produced by the following
segments of code?
i. FOR Page := 1 TO 15 DO

BEGIN

FOR Column := 1 TO ID DO

write (ItemtPage/ Page/ Column]:<);
writeln

END;

ii. For Page := 1 TO 5D DO
FOR Column := 1 TO ID DO

writeln (ItemtPage/ Column/ Column]:(Column+4));

452 ARRAYS OF MORE THAN ONE DIMENSION

FOCUS ON

PROGRAMMING
This program simulates the solution to a problem that could be posed by
a small airline. Mountain-Air Commuters, Inc., is a small airline commuter
service. Each of their planes is a 30-passenger plane with a floor plan as
follows:

Front

1

2

3

4

5

6

7

8

9

10

A

1

s

I

e

Nonsmoking

— > Smoking

Rear

Write a program that assigns seats to passengers on a first-come, first-
served basis according to the following rules:

1. Smoking and nonsmoking requests must he honored; if seats in
the requested sections are all full, the customer's name should go
on a waiting list for the next flight.

2. Specific seat requests should be honored next; if a requested seat
is occupied, the person should be placed in the same row, if
possible.

3. If a requested row is filled, the passenger should be seated as far
forward as possible.

4. If all seats are filled, the passenger's name is put on a waiting list
for the next flight.

Output should include a seating chart with passenger names appropriately
printed and a waiting list for the next flight. Each data line (input) contains
the passenger's name, smoking (S) or nonsmoking (N) designation, and
seat request indicating the row and column desired.
A typical line of data would be

I Smith John N3 2l

where N represents a nonsmoking choice, 3 is a request for row three,
and 2 represents the preferred seat.
A first-level pseudocode development for this problem is

1. Initialize variables

2. WHILE NOT eof DO process a name
3. Print a seating chart
4. IF there is a waiting list THEN print the list

A complete structure chart for this problem is given in Figure 10.3.
Module specifications for the main modules are

1. Initialize Module

Data received: None

Information returned: Value for WaitCount

Value for EmptyWaitingList
Value for SeatPlan

FIGURE 10.3

Structure chart for

Mountain-Air Com

muters, Inc. problem

•'.v.;..----

■ ■

■' " ■'■ ' .ta
■ ■. ■

Initialize
vaziable^

WHILEl^Oy: spating IF WaltingList THEN
printlist

t t i t ̂ t 1 1
Wait-^
Count

Enapty-
Waiting-
List

Seat-
Plan -

Get ;
data '

,Set '•
flag

Seat if
posisibla

iFNpT.
'Seated

THEN ,
save data

Heading Nbn-. ■
smoking Heading Smoking Heading Pa'ssenger

list

\ t
M IF sppt

. assi^ seat
ELSE search fotiseat ^

t i t
Assign " ■ ■'Set":-- ; , Search
seat . flag for seat

454 arrays of more than one dimension

Logic: Assign beginning values to the parameters.
Use nested loops to initialize the array SeatPlan.

2- ProcessAName Module

Data received: None

Information returned: A seating chart
A boolean value for extra passengers
A waiting list for the next flight

Logic; Get a name, smoking preference, and seat choice.
Search to see if a seat can be found.

If yes, then ticket.
If no, then save relevant information.

3. PrintSeatingChart Module
Data received: A two-dimensional array of names of ticketed

passengers.

Information retmned: None

Logic: Print the seating plan indicating row, seat, and smoking choice
for each passenger.

4. PrintWaitingList Module

Data received: Parallel arrays for the passenger's name, smoking
choice, and seat preference

Information returned: None

Logic: Use a loop to print an appropriately titled list of passengers
for the next flight.

A further development of the pseudocode is

1. Initialize variables

1.1 initialize WaitCount

1.2 initialize EmptyWaitingList
1.3 initialize SeatPlan

2. WHILE NOT eof DO process a name
2.1 get passenger information
2.2 set boolean flag Seated for false
2.3 seat if possible
2.4 IF NOT seated THEN save relevant information

3. Print a seating chart
3.1 print a heading
3.2 print the nonsmoking section
3.3 print a heading
3.4 print the smoking section

4. IF there is a waiting list THEN print the list
4.1 print a heading
4.2 print passenger list with four columns

Step 2.3 needs some additional refinement. Further development yields

2.3 seat if possible
2.3.1 set Seated to false

2.3.2 IF requested seat is available THEN
2.3.2.1 assign seat
2.3.2.2 set Seated to true

ELSE

2.3.2.3 search for another seat

10.4 Higher-Dimensional Arrays 455

A complete program for this is

PROGRAM SeatingPlan (input, output);

This program prints a seating plan for an airline.
Passengers are assigned seats on a first-corae, first-
served basis. Requests for smoking or nonsmoking must be
honored. If all seats are filled in a section, the

passenger's name and seat preference are placed on a waiting
list for the next flight. Features of this program include

a. defined constants

b. user-defined data types
c. multidimensional arrays
d. subprograms for modular development

CONST

NumRows = 10;

NumColumns = 3;
MaxLength = 50;
NonsmokingBegin = 1;
NonsmokingEnd = 7;
SmokingBegin = Q;
SmokingEnd = 10;
EmptyString = ' • ;
Skip = ' ';

TYPE

StringSD = PACKED ARRAY El..ED] OF char;
SeatingPlan = ARRAY El..NumRows, 1..NumColumns3 OF StringED;
NotSeatedList = ARRAY E1..MaxLength3 OF StringED;
SmokeOptionList = ARRAY E1..MaxLength3 OF char;
SeatChoiceList = ARRAY El..MaxLength, 1..E3 OF integer;

VAR

Seated : boolean; < Indicator for seat found >

WaitingList : NotSeatedList; -E Name list for next flight >
WaitCount ; integer; -E Counter for waiting list >
EmptyWaitingList : boolean; <. Indicator for empty list >
Seat : SeatingPlan; i E-dim array of seats >
Name : StringED; -E String for names >
SmokingChoice : char; ■£ Smoking or nonsmoking }
RowChoice, ColumnChoice : integer; i Seat preference }
SraokeOption : SmokeOptionList; < Array of smoking options >
SeatChoice : SeatChoiceList; < Array of seat choices >

PROCEDURE Initialize (VAR Seat : SeatingPlan);

< Given: A two-dimensional array of strings >
•E Task: Initialize all cells to an empty string >
•E Return: An initialized two-dimensional array >

VAR
J, K : integer; I ^

BEGIN
FOR J := 1 TO NumRows DO

FOR K := 1 TO NumColumns DO
SeatEJ,K3 := EmptyString

END; < of PROCEDURE Initialize >

456 ARRAYS OF MORE THAN ONE DIMENSION

<********+***********************♦♦*******♦*******»♦**********♦*♦)■

PROCEDURE GetAName (VRR Name : StringSD;
VRR SmokingChoice : char;
VRR RowChoice/
ColuranChoice : integer);

{ Given: Nothing >
< Task: Read a name/ smoking option, and seat preference >
{ from the input file >
i Return: Passenger name, smoking and seat preference >

VRR

J integer;

BEGIN

FOR J := 1 TO ED DO
read (NameCJl);

readln (SmokingChoice, RowChoice, ColumnChoice)
END; i of PROCEDURE GetRName >

< **)■

PROCEDURE SeatlfPossible (Name : StringED;
VRR Seat : SeatingPlan;
RowChoice,
ColumnChoice : integer;
SmokingChoice : char;
VRR Seated : boolean);

Given:
Task:

Return:

Passenger name, smoking and seat preference
If requested seat is available, assign seat
If not available, use Search to check for an

alternate seat
Seat assignment if one has been made
Boolean flag to indicate if seat was found

PROCEDURE Search (Name : StringED;
VRR Seat : SeatingPlan;
VRR Seated : boolean;
FirstRow,
LastRow : integer);

< Given: Passenger name, current seating chart, row }
{ designators for smoking and nonsmoking >
i sections
•{ Task: Search indicated rows to see if an alternate seat}
i is available; if yes, assign passenger to it}
{ Return: Updated seating plan and Boolean flag indicating }
{ whether or not a seat was found }

VRR

Row, Column integer;

BEGIN < PROCEDURE Search }
Seated := false;
Row := FirstRow;
REPEAT

Column := 1;
REPEAT

{ Start searching rows }
{ Search one row }

IF SeatCRow, Column] = EmptyString THEN

10.4 Higher-Dimensional Arrays 457

BEGIN

SeatCEow/ Column] := Name;
Seated := true

END

ELSE

Column := Column + 1

UNTIL Seated OR (Column > NuraColumns);
Row := Row +1 { Search next row >

UNTIL Seated OR (Row > LastRow)
END; <. of PROCEDURE Search >

BEGIN i PROCEDURE SeatifPossible >

Seated := false;
IF SeatCRowChoice, ColumnChoice] = EmptyString THEN

BEGIN

SeatCRowCholce/ ColumnChoice] := Name;
Seated := true

END

ELSE

CASE SmokingChoice OF
•S' : Search (Name, Seat, Seated,

SmokingBegin, SmokingEnd);
'N' : Search (Name, Seat, Seated,

NonsmokingBegin, NonsmokingEnd)
END i of CASE SmokingChoice >

END; < of PROCEDURE SeatlfPossible >

{************»♦♦♦***♦***********************************♦********>

PROCEDURE PrintSeatingChart (VARSeat : SeatingPlan);

i Given: The seating chart, a two-dimensional array of
< names
i Task: Print the passenger names in rows and columns
{ according to their assigned seats
{ Return: Nothing

VAR

J, K : integer;

BEGIN

writeln; writeln;
writeln (Skip:10, 'MOUNTAIN-AIR COMMUTERS');
writeln (Skip:15, 'Seating Chart');
writeln; writeln;
writeln ('Nonsmoking section');
writeln (' ') ;
writeln; writeln;
FOR J := 1 TO NonsmokingEnd DO

BEGIN
FOR K := 1 TO NumColumns DO ' ^

write (SeatCJ,K1:EH);
writeln

END; < of FOR J loop >
writeln;
writeln ('Smoking section');
writeln (• ');
writeln; writeln;
FOR J := SmokingBegin TO SmokingEnd DO

458 arrays of more than one dimension

BEGIN

FOR K := 1 TO NumColurans DO

write (Seat[J/Kl:2E);
writeln

END; < of FOR K loop >
writeln; writeln

END; < of PROCEDURE PrintSeatingChart >

■(**********************************»************»*♦************♦*

PROCEDURE PrintWaitingList (VftR WaitingList : NotSeatedList;
VfiR SraokeOption : SmokeOptionList;
VRR SeatChoice : SeatChoiceList;

WaitCount : integer);

{ Given: Rn array of names of passengers not seated/ the >
i smoking choice and seat preference for each }
<. Task: Print a waiting list for the next flight }
< Return: Nothing >

VRR
J : integer;

BEGIN
writeln; writeln;
writeln (Skip:10/ 'Waiting list for next flight');
writeln;
writeln ('NRME' :ID, 'SMOKING CHOICE' :57,

'ROW NUMBER' :15/ 'COLUMN NUMBER' :15);
write (' ') ;
writeln (' ') ;
writeln;
FOR J := 1 TO WaitCount DO

writeln ('<'/ J:a/ '>'/ WaitingList!JI:5E/ SmokeOptionCJ] #
SeatChoiceCJ/1]:15/ SeatChoice!J/El:15)

END; { of PROCEDURE PrintWaitingList >

■{ ********♦♦♦******************************♦♦*********************}

BEGIN < Main program >
WaitCount := □;
EmptyWaitingList := true;
Initialize (Seat);
WHILE NOT eof DO

BEGIN
GetRName (Name, SraokingChoice, RowChoice, ColumnChoice);
Seated := false;
SeatlfPossible (Name, Seat/ RowChoice/ ColumnChoice/

SmokingChoice/ Seated);
IF NOT Seated THEN < Save information for waiting list }

BEGIN

WaitCount := WaitCount + 1;
WaitingList!WaitCount] := Name;
SmokeOption!WaitCount] := SmokingChoice;
SeatChoice!WaitCount/ 11 := RowChoice;
SeatChoice!WaitCount/ E] := ColumnChoice;
EmptyWaitingList := false

END •! of IF NOT Seated }
END; { of WHILE NOT eof >

PrintSeatingChart (Seat);
IF NOT EmptyWaitingList THEN

PrintWaitingList (WaitingList/ SraokeOption/ SeatChoice/
WaitCount)

END. < of main program >

4

Using the data file

10.4 Higher-Dimensional Arrays 459

Smith John

Alexander Joe

Allen Darcy
Jones Mary
Humphrey H
Johnson M

Eastman Ken

Hlnston Sam

Smythe Susan
Henderson J B

Hanson Cynthia
Zoranson Steve

Radamacher Joe

Borack Bill

Seracki Don

Henry John
Steveson Enghart
Johansen Mary
Smith Martha

Jones Martha

Rinehart Jim

Rinehart Jane

Swenson Cecil

Swenson Carol

Byes Nikoline
Byes Jennifer
Harris John

Harris Judy
Hartman F G

Hartman D T

Lakes William

Lampton George
Hayes Woodrow
Champion M G
Thomas Lynda
Sisler Susan

Stowers Steve

Banks M J

Banks H W

Brown Susan

Haywood Ann
Haywood Mark

N 3 3

S R 3

N 3 3

S fl 1

S & 3

N 3 1

N 1 1

S a 3

S R 1

S R 3

S R 3

S ID 1

s ID 3

s ID 5

s R 3

N 1 3

N 1 3

N S 1

N 5 3

N 3 3

N 3 3

N 3 3

N 4 1

N 4 3

N 3

N 5 3

N 5 3

N 5 1

N L 1

N L 3

N L 3

N 7 1

N ? 3

N 7 3

N a 1

N a 3

N a 3

N 5 3

N 5 3

N 3 1

S a 3

S a 1

sample output is

MOONTAIN-AIR COMMDTERS
Seating Chart

Nonsmoking section

Allen Darcy
Steveson Enghart
Johnson M

Rinehart Jim

Swenson Carol

Harris John

Hartman D T

Eastman Ken

Johansen Mary
Smith John

Rinehart Jane

Byes Nikoline

Harris Judy
Lakes William

Henry John
Smith Martha

Jones Martha

Swenson Cecil

Byes Jennifer

Hartman F G

Lampton George

460 ARRAYS OF MORE THAN ONE DIMENSION

Smoking section

Jones Mary

Smythe Susan
Hanson Cynthia

Humphrey H
Henderson J B

Zoranson Steve

Winston Sam

Alexander Joe

Radamacher Joe

Waiting list for next flight

NAME SMOKING CHOICE ROW NUMBER COLUMN

< 1> Borack Bill S ID 2

< 5> Seracki Don S q 2

< 3> Hayes Woodrow N 7 2

< A> Champion M G N 7 3

< 5> Thomas Lynda N a 1

< b> Slsler Susan N a 2

< 7> Stowers Steve N a 3

< a> Banks M J N 5 3

< 5> Banks H W N 5 2

<!□> Brown Susan N 3 1

<11> Haywood Ann S a 2

<12> Haywood Mark S a 1

RUNNING AND
DEBUGGING TIPS

1. Use subrange types with descriptive identifiers for specifying index ranges. For
example,

TYPE
Page = 1..50;
Row = 1..15;
Column = 1..ID;
Book = ARRAY [Page/ Row, Column] OF real;

2.

5.

6.

Develop and maintain a systematic method of processing nested loops. For
example, students with mathematical backgrounds will often use I, J, and K as
index variables for three-dimensional arrays.
Be careful to properly subscript multidimensional array components.
When using an array of packed arrays as a list of strings, remember that in
standard Pascal, strings must be read in one character at a time. However, strings
can be written by a single wrlteln command.
When sorting one array in a program that uses parallel arrays, remember to
make similar component exchanges in all arrays.
Define all data structures in the TYPE definition section.

Summary Key Terms

higher-dimensiona 1
array

parallel array two-dimensional array

Key Concepts
■ Two-dimensional arrays can be declared in several ways; one descriptive

method is

TYPE
Chart^Xt = ARRAY 11..A, l..t] OF real;

VAR
Table : Chart^Xb;

Summary 461

a Nested loops are frequently used to read and write values in two-dimen
sional arrays; for example, data can be read by

FOR Row := 1 TO A DO

FOR Column := 1 TO t DO

read (Table[Row, Column]);

Q When processing the components of a single row or single column, leave the
appropriate row or column index fixed and let the other index vary as a loop
index; for example, to sum row 3, use

Sura := □;
FOR Column := 1 TO NumOfColumns DO

Sum := Sum + ACS, Column];

To sum column 3, use

Sum ;= □;
FOR Row := 1 TO NumOfRows DO

Sum := Sura + ACRow, 3];

D An array of strings in Pascal is a special case of a two-dimensional array; the
data structure is an array of packed arrays and can be declared by

TYPE

Stringeo = PACKED ARRAY [1..5D] OF char;
NameList = ARRAY tl..5D] OF StringaO;

VAR

Name : NameList;

■ Arrays of strings (packed arrays of characters) can be alphabetized by using
the selection sort.

a Three standard procedures used in programs that work with arrays of strings
are (1) get the data, (2) alphabetize the array, and (3) print the alphabetized
list.

a Parallel arrays may be used to solve problems that require arrays of the same
index type but of different data types,

o A typical problem in which one would use parallel arrays involves working
with a list of names and an associated list of numbers (for example, test
scores). In the next chapter, we will see that this can also be done with a
single array of records.

B A typical data structure declaration for using names and scores is

TYPE

StringSD = PACKED ARRAY [l..aD] OF char;
NameList = ARRAY [1..3D] OF StrlngED;
ScoreLlst = ARRAY [1..3D] OF integer;

VAR

Name : NameList;
Score : ScoreLlst;

B Data structures for solving problems can require arrays of three or more
dimensions.

B A typical declaration for an array of three dimensions is

TYPE

Diral = 1..10;
DimE = 1..ED;
Dira3 = 1..30;
Block = ARRAY [Dlml, DlmE, Dim3] OF real;

VAR

Item : Block;

In this array, a typical component is accessed by
IteratI,J,K]

462 ARRAYS OF MORE THAN ONE DIMENSION

■ Nested loops are frequently used when working with higher-dimensional ar
rays; for example, all values on the first level of array Item as just declared
can be printed by

FOR J := 1 TO 2D DO

BEGIN

FOR K := 1 TO 30 DO

BEGIN

write (Iterall/J/Kl:5:2);
writeln

END; < of 1 line >
writeln

END; < of 20 lines >

■ Programming 1. The local high school sports hoosters are conducting a fund drive
Problems to h®lp money for the athletic program. As each donation is

received, the person's name and eimount of donation are entered on
one line in a data file. Write a program to
a. Print an alphabetized list of all donors together with their corre

sponding donation.
b. Print a list of donations from high to low together with the do

nors' names.

c. Compute and print the average and total of all donations.

2. Due to not meeting the original goal, your local high school sports
boosters (Problem 1) are at it again. For their second effort, each
donor's name and donation are added as a separate line at the end
of the previously sorted list. Write a program to produce lists, sum,
and average as in Problem 1. No donor's name should appear more
than once in a list.

3. Dr. Lae Z. Programmer (Problem 5, Chapter 8) now expects you to
write a program to do all record keeping for the class. For each stu
dent, consecutive lines of the data file contain the student's name,
ten quiz scores, six program scores, and three examination scores.
Your output should include
a. An alphabetized list together with

i. quiz total
ii. program total
ill. examination total
iv. total points
V. percentage grade
vi. letter grade

b. The overall class average
c. A histogram depicting the grade distribution

4. The All Metro Basketball Conference consists of ten teams. The
conference commissioner has created a data file in which each line
contains one school's name, location, and nickname for the school
team. You eire to write a program to read this data and then pro
duce three lists, each of which contains all information about the
school. All lists are to be sorted alphabetically, the first by school
name, the second by school location, and the third by nickname.

Programming Problems 463

5. Upgrade the program for Mountain-Air Commuters, Inc. (Focus on
Programming) so it can be used for each of five daily flights. Pas
sengers on a waiting list must be processed first. Print a seating
chart for each flight.

6. Add yet another upgrade to the Mountain-Air Commuters, Inc. pro
gram. Write an interactive version to consider the possibility of
seating passengers who wish to be seated together in the same row.
If no such seating is possible, they should then be given a choice of
alternate seating (if possible) or taking a later flight.

7. Salespersons at McHenry Tool Corporation are given a monthly
commission check. The commission is computed by multiplying
the salesperson's gross monthly sales by the person's commission
rate.

Write a program to compute a salesperson's monthly commis
sion computed to the nearest penny. The program should prepare
a list of all salespersons in descending order based on monthly
commission earned (the person earning the highest commission on
top). Each salesperson's commission should be printed next to his
or her name. At the bottom of the list, indicate the total monthly
commission (summed across all salespersons) and the average
commission per salesperson. McHenry never employs more than
60 salespersons.
Any names of persons who have invalid data should be printed

out separately. Data are invalid if the commission rate is not be
tween 0.01 and 0.50, or if the gross monthly sales figure is
negative.

8. In order to reduce their costs, the McHenry Tool Corporation (Prob
lem 7) is switching from monthly to biannual commission checks.
The commission is now computed by multiplying a person's com
mission rate by the sum of his or her gross monthly sales for a six-
month period.
The McHenry Tool Corporation has asked that you develop the

necessary computer program. The program should differ from Prob
lem 7 in the following ways:
a. Each name on the output should be followed by the six figures

for gross monthly sales. The columns should be labeled "Janu
ary" through "June." Total six-month gross sales should be given
next, followed by rate of commission, and amount of six-month
commission check to the nearest penny.

b. Commission rates are based on gross six-month sales. If sales are
less than $20,000, the commission rate is 3 percent. If sales are
at least $20,000 but less than $40,000, the commission rate is 5
percent. If sales are at least $40,000 but less than $60,000, the
commission rate is 5.5 percent. If sales are at least $60,000 but
less than $80,000, the commission rate is 6 percent. If sales are
at least $80,000 but less than $90,000, the commission rate is
6.5 percent. If sales are at least $90,000, the commission rate is
8 percent.

c. At the bottom of each column, the program should provide the
total and the mean for that column (the column for commission
rates does not require a total, only a mean).

464 ARRAYS OF MORE THAN ONE DIMENSION

9. The dean of a small undergraduate college (enrollment less than
2,000) has asked you to write a program to figure grade point aver
age for an unknown number of students.
The output should be an alphabetized roster showing the sex,

identification number (social security number), grade point average
(rounded to three decimal places), and class status (freshman,
sophomore, junior, or senior) for each student.
The data provide the name, sex (M or F), social security number

(ID), and number of semesters completed. Also provided are the
number of courses taken and the letter grade and number of credits
for each course. The possible letter grades are A (4 points), B (3
points), C (2 points), D (1 point), and E (0 points).
Class status is determined by the number of credits as follows:
1-25 credits Freshman

26-55 credits Sophomore
56-85 credits Junior
86 or more credits Senior

10. You have just started work for the Michigan Association of Auto
mobile Manufacturers and have been asked to analyze sales data on
five subcompact cars for the last six months. Your analysis should
be in table form and should include the name of each make and
model, a model's sales volume for each month, a model's total and
average sales volume for six months, a model's total sales revenue
for six months, and the total and average sales volume for each
month. In addition, your output should include the total and aver
age sales volume of all models for the entire six months and the
make and model name of the car with the largest total sales reve
nue and the amount of that revenue.

11. You have been asked to write a program to assist with the inven
tory and ordering for Tite-Jeans, Inc. They manufacture three styles:
straight, flair, and peg. In each style, waist sizes vary by integer val
ues from 24 to 46 and inseams vary by integer values from 26 to
40. Write a program to
a. Read in the starting inventory.
b. Read in daily sales.
c. Print the ending inventory for each style.
d. Print order charts for each style that is low in stock (fewer than

three).
e. Print an emergency order list for those that are out of stock.

12. Thomas H. Holmes and R. H. Rabe developed a Social Readjust
ment Rating Scale of 43 items that they feel measure the effect of
stress on mental and physical health. Of those people with over
300 life-change units for the past year, almost 80 percent get sick in
the near future; with 150 to 299 units, about 50 percent get sick in
the near future; and with fewer than 150 units, only about 30 per
cent get sick in the near future.

Using the following model, write an interactive program to read
data for an individual and produce a table listing the Life Event,
Mean Value, and Personal Value (Sum of Mean Values) for that per
son. Your program should use parallel arrays to store the life event
chart and associated mean values. After a user responds yes ('Y' or

Programming Problems 465

'y') or no ('N' or 'n') to each event, appropriate results should be
printed.

Life Event Mean Value

1. Death of spouse 100

2. Divorce 73

3. Marital separation 65

4. Jail term 63

5. Death of close family member 63

6. Personal injury or illness 53

7. Marriage 50

8. Fired at work 47

9. Marital reconciliation 45

10. Retirement 45

11. Change in health of family member 44

12. Pregnancy 40

13. Sex difficulties 39

14. Gain of new family member 39

15. Business readjustment 39

16. Change in financial state 38

17. Death of close friend 37

18. Change to different line of work 36

19. Change in number of arguments with spouse 35

20. Mortgage over $10,000 31

21. Foreclosiue of mortgage or loan 30

22. Change in responsibilities at work. 29

23. Son or daughter leaving home 29

24. Trouble with in-laws 29

25. Outstanding personal achievement 28

26. Spouse begins or stops work 26

27. Begin or end school 26

28. Change in living conditions 25

29. Revision of personal habits 24

30. Trouble with boss 23

31. Change in work hours or conditions 20

32. Change in residence 20

33. Change in schools 20

34. Change in recreation 19

35. Change in church activities 19

36. Change in social activities 18

37. Mortgage or lien less than $10,000 17

38. Change in sleeping habits 16

39. Change in number of family get-togethers 15

40. Change in eating habits 15

41. Vacation 13

42. Christmas 12

43. Minor violations of the law 11

Reproduced by permission of Thomas H. Holmes, M.D., Professor of
Psychiatry and Behavioral Sciences, University of Washington, Seattle, and
P^rgamon Press, Inc., in whose Journal of Psychosomatic Research the scale
was first published.

13. A few members (total unknown, but no more than 25) at Oakland
Mountain Country Club want to computerize their golf scores. Each

466 ARRAYS OF MORE THAN ONE DIMENSION

14.

15.

member plays 20 games, some 18 holes and some 9 holes. Each
member's name (no more than 20 characters) is written on a data
card, followed on a second card by the 20 scores. Each score is im
mediately followed by an 'E' or an 'N*, indicating 18 or 9 holes,
respectively.

Write a program to read all the names and scores into two paral
lel two-dimensional arrays. Calculate everyone's 18-hole average.
(Double the 9-hole scores before you store them in the array and
treat as 18-hole scores.) Calculate how much each average is over
or under par (par is 72 and should be declared as a constant). Out
put should be each name, average, difference from par, and scores.

Write a program to keep statistics for a basketball team consisting
of 15 players. Statistics for each player should include shots at
tempted, shots made, and shooting percentage; free throws at
tempted, free throws made, and free throw percentage; offensive re
bounds and defensive rebounds; assists; turnovers; and total points.
Appropriate team totals should he listed as part of the output.

A magic square is a square array of positive integers such that the
sum of each row, column, and diagonal is the same constant. For
example.

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

is a magic square whose constant is 34.
Write a program to have as input four lines of fom positive inte

gers. The program should then determine whether or not the square
is a magic square.

16. Pascal's Triangle can be used to recognize coefficients of a quantity
raised to a power. The rules for forming this triangle of integers are
such that each row must start and end with a 1, and each entry in
a row is the sum of the two values diagonally above the new entry.
Thus, four rows of Pascal's Triangle are

This triangle can be used as a convenient way to get the coeffi
cients of a quantity of two terms raised to a power (binomial coeffi
cients). For example,

[a + by = 1 x + 3ab^ + 1 x b^

where the coefficients 1, 3, 3, and 1 come from the fourth row of
Pascal's Triangle.

Write a complete program to print out Pascal's Triangle for ten
rows.

Programming Problems 467

17. Your former high school principal has come to you for help. He
wants you to develop a program to maintain a list of the 20 stu
dents in the school with the highest scores on the SAT test. Input
is from a text file containing the name (20 characters), and the total
SAT score (verbal plus mathematical). Write a program that, when
all data have been read, prints out a list of the 20 highest scores
from highest to lowest, and the students' names. You may assume
that no two students have the same score.

18. The transpose of a matrix (table) is a new matrix with the row and
column positions reversed. That is, the transpose of matrix A, an M
by N matrix is an W by M matrix, with each element, A[m,n] stored
in B[n,m]. Given a 3 x 5 matrix of integers, create a matrix that is
its transpose. Print both the original matrix and the new matrix.

19. Mr. Laven, a mathematics instructor at your college, wants you to
write a program to help him keep his students' grades. He wants to
keep track of up to 30 grades for each of up to 35 students. Your
program should read grades and names from a text file, and then
print the following:
a. A table showing the names in alphabetical order and grades re

ceived by each student.
b. An alphabetical list of students with their total points and aver

age score.

c. A list of averages from highest to lowest with corresponding stu
dents' names.

20. Write a program in which a person can enter data into a 5 x 7 ma
trix. Print the original matrix along with the average of each row
and column.

21. Matrix M is symmetric if it has the same number of rows as col
umns, and if each element M[x,y] is equal to M[y,x]. Write a pro
gram to check a matrix entered by the user to see if it is symmetric
or not.

22. The following table shows the total sales for salespeople of the Fal
con Manufacturing Company.

Salesperson Week 1 Week 2 Week 3 Week 4

Anna, Michael 30 25 45 18

Henderson, Marge 22 30 32 35

Johnson, Fred 12 17 19 15

Striker, Nancy 32 30 33 31

Ryan, Renee 22 17 28 16

The price of the product being sold is $1,985.95. Write a program
that permits the input of the previous data, and prints both a rep
lica of the original table and a table showing the dollar value of
sales for each individual during each week along with their total
sales. Also, print the total sales for each week and the total sales
for the company.

23. The computer science office wants a computerized system for find
ing telephone numbers of students. The program should read a list

468 ARRAYS OF MORE THAN ONE DIMENSION

of up to 20 students and their telephone numbers from a text file. It
should permit the entry of a student's name, and then print the
name and telephone number. (A binary search could he used for
this.) If the name is not found, an appropriate message should he
printed.

24. Write a program to permit two people to play the game of Battle
ship. Your program should record the ship positions, hits, misses,
and ship sinkings for each player.

25. Rewrite the Battleship program (Problem 24) to have a person play
against the computer.

CHAPTER
■ nni

-

-

1■ ~ii
B w
B ii

n
B 11
B «
E IB
B ■

i■ ■ MMmj

Records

The previous two chapters dealt extensively with the concept of
a structured data type: arrays. Recall that when you declare an

array, you reserve a predetermined number of variables. Each of these
variables is of the same base type and can be accessed by reference to the
index of an array element.

All components of an array must be of the same data type; this is a
serious limitation since there are many situations in which this is not
possible. For example, a bank may wish to keep a record of the name,
address, telephone number, marital status, social security number, annual
salary, total assets, and total liabilities of each customer. Fortunately, Pascal
provides another structured data type, record, which allows heterogeneous
information to be stored, accessed, and manipulated. A record contains
fields, which can be of different data types. This chapter shows you how
to declare records, how to access the various fields within a record, and
how to work with arrays of records.

H 11,1

Record

Definitions

OBTECTIVES

° to understand the

basic idea of record

as a structured data

type

a to be able to declare

a record

■3 to be able to use
fields of a record

Record as a Structured Data Type

A record is a collection of iields that may be treated as a whole or indi
vidually. To illustrate, a record that contains fields for a customer's name,
age, and annual income could be visualized as shown in Figure 11.1. This
schematic representation may help you understand why a record is con
sidered a structured data type and familiarize you with the idea of using
fields in a record.

Declaring a RECORD

Let's now consider our first example of a formally declared record. Assume
we want a record to contain a customer's name, age, and annual income.
The following declaration can be made.

469

470 RECORDS

FIGURE 11.1

Fields in a record

Customer

Name

Aimuallncome

VAR

Customer : RECORD

Name : PACKED ARRAY [1..3a] OF char;

Age : integer;
Annuallncome : real

END; < of RECORD Customer >

Another method of declaring a record is to use the TYPE definition section
to define an appropriate record type. This form is preferable because it
facilitates use with subprograms. Thus, we can have

TYPE

Customerlnfo = RECORD

Name : PACKED ARRAY [1..3D] OF char;

Age : integer;
Annuallncome : real

END; { of RECORD Customerlnfo }

VAR

Customer : Customerlnfo;

Components of a record are called fields and each field has an associated
data type. The general form for defining a record data type using the TYPE
definition section is

TYPE

Type identifier = RECORD

field identifier 1 : data type 1;
field identifier 2 : data type 2;

field identifier n : data type n
END; { of RECORD definition }

The syntax diagram for this is

ENDRECORD datatypeidentifier

11.1 Record Definitions 471

The following comments are in order concerning this form.

1. The type identifier can be any valid identifier. It should be de
scriptive to enhance program readability.

2. The reserved word RECORD must precede the field identifiers.
3. Each field identifier within a record must be unique. However,

field identifiers in different records may use the same name. Thus,

FirstRecord = RECORD

Name : PACKED ARRAY [1..3D] OF char;

Age : integer
END; < of RECORD FlrstRecord >

and

SecondRecord = RECORD

Name : PACKED ARRAY [1..3D] OF char;
Age : integer;
IQ : integer

END; •[of RECORD SecondRecord >

can both be defined in the same program.
4. Data types for fields can be user-defined. Thus, our earlier defini

tions could have been

TYPE

String3D = PACKED ARRAY [1..3D] OF char;
Customerlnfo = RECORD

Name : String3D;
Age : integer;
Annuallncome : real

END; { of RECORD Customerlnfo >

VAR

Customer : Customerlnfo;

5. END; is required to signify the end of a RECORD definition. This
is the second instance (remember CASE?) in which END is used
without a BEGIN.

6. Fields of the same base type can be declared together. Thus,

Info = RECORD

Name : String3D;
Age, IQ : integer

END; i of RECORD Info >

is appropriate. However, you are encouraged to list each field sep
arately to enhance readability and reinforce the concept of fields
in a record.

EXAMEIiE 11.1 Let's now define another record. Suppose you want to keep a record for a college
' student; the record is to contain a field for each of the following: student's name

(Smith Jane), social security number (111-22-3333), class status (Fr, So, Jr, or Sr),
previous credit hours earned (56), credit hours being taken (17), and grade point
average (3.27). We can define a record and declare an appropriate variable as
follows:

TYPE

String3D = PACKED ARRAY [1..3D] OF char;
Stringll = PACKED ARRAY [1..11] OF Char;
Class = (Fr, So, Jr, Sr);

472 RECORDS

Studentlnfo = RECORD

Name : StringBD;
SSN : Stringll;
Status : Class;

HoursEarned : O..RRS;

HoursTaking : □..3D;
CPA : real

END; { of RECORD Studentlnfo >
VAR

Student : Studentlnfo; H

Fields in a Record

Now that you know how to define a record, you need to examine how to
access fields in a record. For our discussion, let us consider a record
defined by

TYPE
String3G = PACKED ARRAY [1..3D] OF char;
Employee = RECORD

Name : String3D;
Age : integer;
MaritalStatus : char;
Wage : real

END; -C of RECORD Employee }
VAR

Programmer : Employee;

Programmer can he visualized as pictured in Figure 11.2.

FIGURE 11.2
Defined fields in
Programmer

Programmer

Name

MaritalStatus

Each field within a record is a variable and can be uniquely identified by

record name.field name

Thus, the four field variables are
Programmer.Name
Programmer.Age
Programmer.MaritalStatus
Programmer.Wage

Each of these variables may be used in any manner consistent with the
defined base type. To illustrate, suppose Programmer.Name and Program
mer. Age have been assigned values and you wish to print the names of
those employees under 30 years of age. You could have a fragment of code
such as

11.1 Record Definitions 473

A NOTE OF INTEREST

Computer Industry Growth

In an article discussing growth of the computer
industry, Joseph J. Kroger, president of Computer
Systems Division of Sperry Corporation, stated:
"Today we accept as commonplace reports of
office and factory managers who respond to cru
cial problems uncovered by a computer pro
grammed to read printed material with an op
tical scanner that picks out key words and phrases
demanding immediate attention. Or of doctors
who turn to computers that not only diagnose
diseases with incredible accuracy but also pre
scribe treatment. Or of geologists who use com
puters to locate the exact site of valuable oil and
mineral deposits.

"But exciting as those applications are, there's
little doubt that the best is yet to come. Expert

systems—programs that perform at the level of
human experts—utilize a process known as
knowledge engineering to combine textbook
learning with the insights that come only from
experience, then set about working tirelessly to
sort through thousands of 'if, then* rules of thumb
and form a reasoned judgment. The implications
for problem solving in such diverse fields as
mathematics, science, and engineering are
staggering.

"Combine these systems with mechanical
creatures that operate independently—^robots—
and you've added a whole new dimension to the
workplace."

IF Programmer.ftge < 3D THEN
writeln (Programmer.Naraer^O);

If you wish to compute gross salary, you might have

read (Hours);

Gross := Hours * Programmer.Wage;

Other Fields

Thus far, our fields have been declared in a relatively direct fashion. This
is not always the case. Sometimes, when establishing the structure of a

STYLE TIP

H @ 1^
Use descriptive field names, appropriate subranges, and a descriptive vari
able name when defining records. For example, if you want a record with
fields for a student's n^p, age, sex, and class status, you can use

TYPE

StringSD = PACKED ARRAY 11..20] pF char;
StudentRecord - RECORD

Name : StringBD;
Age : D..BR;
Sex : (Hale/ Female);
ClassStatus : (Fr, So, Jr, Sr)

- END; { of RECORD StudentRecord >

VAR

Student ; StudentRecord;

The fields would then be

Student.Name

Student.Age
Student.Sex

Student.ClassStatus

and you can use program-statements such as

IF Student.Sex = Hale THEN

■or

IF Student.Age <21 THEN

474 RECORDS

record, the data type of a field needs more development. For example,
suppose you wish to declare a record for each student in a class and the
record is to contain student name, class name, four test scores, ten quiz
scores, final average, and letter grade. This can be visualized as shown in
Figure 11.3.

FIGURE 11.3

Fields in Student

Student

Name

Average

In this case. Test and Quiz are both arrays. Thus, a subsequent devel
opment is shown in Figure 11.4.

FIGURE 11.4

Arrays as fields in a
record

Student

Name

Average

LetGrade

This record can now be formally defined by

TYPE

String3D =
StringlD =
TestScores

QuizScores

PfiCKED ARRAY [1..3D] OF char;

PACKED ARRAY [1..1D] OF Char;

= ARRAY tl..4] OF integer;
= ARRAY [1..1D] OF integer;

Studentlnfo = RECORD

11.1 Record Definitions 475

vaR

Student

Name : StringSD;
Class : StringlD;
Test : TestScores;

Quiz : QuizScores;

Average : real;

LetGrade : char

END; { of RECORD Studentlnfo

Studentlnfo;

If the student associated with this record earned an 89 on the first test

and a 9 (out of 10) on the first quiz, this information could be entered by
reading the values or by assigning them appropriately. Thus, either of the
following would suffice.

read (Student.TestCl], Student.Quiz[1]);

or

student.TestCl1 := flR;

Student.QulzCl] := R;

Exercises 11.1 1. Explain why records are structured data types.

2. Write a test program to

a. Define a RECORD tjrpe in which the record contains fields for your name
and your age.

b. Declare a record variable to be of this type.
c. Read in your name and age from a data file.
d. Print out your name and age.

3. Discuss the similarities and differences between arrays and records as struc
tured data tjrpes.

Use the TYPE definition section to define a record for each record illustrated

in Figure 11.5(a), (b), and (c), respectively (see next page). In each case, also
declare a record variable to be of the defined type.

a. TeamMember

b. Book

c. Student

FIGURE 11.5

Records with fields

illustrated

I a) TeamMember

Name

Weight

ScormgAverage

476 RECORDS

b) Book

Author

PublicatioiiDate

c) Student

Name

Average

5. Draw a schematic representation of each of the following record definitions.

a. TYPE

StringBD = PACKED ARRAY [1..3D] OF char;
Stringll = PACKED ARRAY [1..11] OF char;
Eraployeelnfo = RECORD

Name : Strlng30;

SSN : Stringll;

NumOfDep : integer;

HourlyWage : real

END;

VAR

Employee : Employeelnfo;

b. TYPE

Houselnfo = RECORD

Location : PACKED ARRAY [1..PD]

OF char;

Age : integer;

NumRooms : integer;

NumBaths : integer;

BuildingType : (Brick/ Frame);

11.1 Record Definitions 477

Taxes : real;

Price : real

END;

VRR

House : Houselnfo;

c. TYPE

StringHO = PACKED ARRAY [l..aD] OF char;

StringRD = PACKED ARRAY [1.-3D] OF char;

Stringfl = PACKED ARRAY OF char;

PhoneBook = RECORD

Name : StringBD;

Address : ARRAY 11.,Al

OF StringaO;

PhoneNura : Stringfl

END;

VAR

PhoneListing : PhoneBook;

6. Use the TYPE definition section to define an appropriate RECORD type for
each of the following. In each case, also declare an appropriate record
variable.

a. Families in your former school district: each record should contain the
last name, parents' first and last names, address, number of children, and
the ages of children.

b. Students in a school system: each record should contain the student's
name, identification number, classification (Fr, So, Jr, or Sr), courses being
taken (at most six), and grade point average.

7. Find all errors in each of the following definitions or declarations.

a. TYPE

Info : RECORD

Name = PACKED ARRAY [1..3D] OF char;

Age : □..
END;

b. TYPE

Member = RECORD

Age : integer;
IQ : Integer

END;
VAR

Member : Member;
c. VAR

Member = RECORD

Name : PACKED ARRAY [1..3D] OF char;
Age : 0.. ;
IQ = 50..aoo

END;

8. Given the record defined by

TYPE
String3D = PACKED ARRAY [1..3D] OF char;
Weekdays = (Men, Tues, Wed, Thur, Fri);
ListOfScores = ARRAY [1. .5] OF integer;
Info = RECORD

Name : String3D;
Day : Weekdays;
Score : ListOfScores;
Average : real

END;

478 RECORDS

VAR

Contestant : Info;

Sum : integer;

assume values have been assigned as indicated in Figure 11.6. Indicate
which of the following are valid and, if invalid, explain why.

Day := Wed;

Contestant.Day := Wed;

Score := 70;

ScoreCS] := ?D;

Contestant.Score[3] := 70;

Contestant[3].Score := 70;

FOR J := 1 TO 5 DO

Sum := Sum + Contestant.Score[J];

Contestant.Score[3] := ScoreCSl;

Contestant.Score[3] := Contestant.ScoreCS] + 3;

Average := (ScoreEll + ScoreES] + ScoreE31) / 3;

IF Contestant.Day < Wed THEN

Contestant.Average := Contestant.ScoreEll +

Contestant.Score EE];

writeln (Contestant.Name:<0/ Contestant.Average:ID:a);

FIGURE 11.6

Values in fields of

Contestant

Contestant

Name

Score

Day

Average

m 11.2

Using Records

OBJECTIVES

D to be able to use

WITH ... DO when

using records in a

program

Objectives continued.

The previous section introduced you to the concept of RECORD as a
structured data type. At this stage, you should be comfortable with this
concept and be able to use the TYPE definition section to define such a
data type. In this section, we will examine methods of working with
records.

WITH . . . DO Using Records

Let's consider a record that contains fields for a student's name, three test
scores, and test average. It could be defined by

to be able to copy
complete records
to be able to use a

procedure to read
data into a record

to be able to use a

procedure to print
data from a record

11.2 Using Records 479

TYPE

StringSD = PACKED ARRAY [1..201 OF char;
Lista = ARRAY [1..3] OF integer;
StudentRecord = RECORD

Name : StringSD;
Score : List3;

Average : real
END; ■{ of RECORD StudentRecord >

VAR

Student : StudentRecord;

and envisioned as shown in Figure 11.7.

FIGURE 11.7

Fields in Student
Student

Name

Ayeiege

To use this record, we need to assign or read data into appropriate fields.
Therefore, assume a line of data is

Washington Joe 79 83 94^

T| This data can be read by the fragment of code
FOR J := 1 TO SO DO

read (Student.NametJ]);
FOR J := 1 TO 3 DO

read (Student.ScorelJ]);
readln;

The average can be computed by
student.Average := (Student. Scored] +

Student.ScoreCS] +
Student.Score[3]) /

Notice that each field identifier includes the record name. Fortunately,
when working with fields of a record, Pascal provides a more convenient
method of referring to these fields: a WITH ... DO statement. Using this
option, the previous fragment can be rewritten as

WITH student DO
BEGIN

FOR J
read

FOR J :
read

readln;
Average := (Scored]

END; < of WITH...DO

:= 1 TO SO DO

(NameCJ]);
:= 1 TO 3 DO

(ScoretJ]);

ScoreiS] + Score[3]) / 3

Formally, a WITH . .. DO statement has the form

480 RECORDS

WITH record name DO

BEGIN

statement 1;

statement 2;

statement n

END;

where the statements used may refer to the field identifiers but do not
include the record name as part of the field identifier. This eliminates use
of the period following the record name. Thus, instead of Student.Score[J],
you can use Score[J].
As a second illustration, suppose you have a record defined as

TYPE

Stringao = PACKED ARRAY [1..E01 OF char;
Patientlnfo = RECORD

Name : StringEO;
Age : Integer;
Height : integer;
Height : integer;
Sex : char

END; { of RECORD Patientlnfo >

VAR

Patient : Patientlnfo;

Values can be assigned to the various fields specifically by

Patient.Name := 'Jones Connie ';

Patient.Age := IR;
Patient.Height := ;
Patient.Weight := 125;
Patient.Sex := 'P';

or by

WITH Patient DO

BEGIN

Name := 'Jones Connie ';

Age := IR;
Height := t7;
Weight := 125;
Sex := 'F'

END; i of WITH...DO }

A single WITH... DO statement can be used with more than one record.
For example, using the previous two record definitions, it is possible to
write

WITH student. Patient DO

BEGIN

Average := (ScoreCll + ScoreCEl + ScoreCBl) / 3;
Age := IR

END; { of WITH...DO >

However, when using more than one record in a single WITH ... DO
statement, each field identifier should have a unique reference to exactly
one of the listed records. If a field identifier is used in more than one of

the records, the reference may be ambiguous and a logic error may result.
Thus, in the preceding two records.

11.2 Using Records 481

WITH Student/ Patient DO

writeln (Name);

is incorrect and could produce a result different from what you expect;
it is not clear whether the reference is to Student.Name or Patient.Name.

In some versions of Pascal, this is a compilation error. In others, it is a
logic error and does not produce either a run-time error or a compilation
error. Thus, while you might want to print Student.Name, you would
print Patient.Name instead. This is because successive identifiers used as
we just have are treated as if they are nested.

Copying Records

How can information contained in one record be transferred to another
record? We need to do this when, for example, we want to sort an array
of records. To illustrate how records can be copied, consider the following
definitions and declarations.

TYPE

InfoA = RECORD

Fieldl : integer;
Fields : real;

Fields : char

END; -C of RECORD InfoA >
InfoB = RECORD

Fieldl : integer;
Fields : real;

Fields : char

END; < of RECORD InfoB >
VAR

Reel/ RecS : InfoA;

RecS : InfoB;

The three records declared can be envisioned as shown in Figure 11.8.
Now, suppose data have been assigned to Reel by

WITH Red DO

BEGIN

Fieldl := S5;

Fields := flq.S;

Fields := 'M'

END; { of WITH...DO >

These data can be copied to the corresponding fields of Rec2 by

RecS := Reel;

This single assignment statement accomplishes all the following:

RecS.Fieldl := Reel.Fieldl;

RecS.Fields := Reel.Fields;

RecS.Fields := Reel.Fields;

It is important to note that such an assignment can only be made when
the records are of identical type. For example, notice that InfoA and InfoB
have the same structure but have been defined as different types. In this
case, if you wish to assign the values in the fields of Reel to the corre
sponding fields of RecS, the statement

RecS := Reel;

produces a compilation error. Although Reel and RecS have the same
structure, they are not of identical type. In this case, the information can
be transferred by

482 RECORDS

FIGURE 11.8

Copying records
Reel

Fieldit

Fieias

Pield2

Rec2

\'-r

Fi^

R-V. -'-
^ —-T-> ■- -

'S . . 1

Mda

i ' .
Helda

Rec3

Fieldl

Fields^

. _ ■ ■ ■■ "!

Fidld2

WITH Rec3 DO
BEGIN

Fieldl := Reel.Fieldl;
Fields := Recl.FieldE;
Field3 := Recl.Field3

END; < of WITH...DO }

Reading Data into a Record

Once a record has been defined for a program, one task is to get data into
the record. This is usually accomplished by reading from a data file. To
illustrate, assume we have a record defined by

TYPE
StringSD = PACKED ARRAY [l..aD] OF char;
Patientlnfo = RECORD

Name : StringSD;
Age : integer;
Height : integer;
Weight : integer;
Sex : char

END; { of RECORD Patientlnfo }
VAR

Patient : Patientlnfo;

11.2 Using Records 483

and a line of data is

Smith Mary 21 67 125F1

One method of getting the data is to use a WITH ... DO statement in the
main body of a program such as

Pr] BEGIN t Main program >
WITH Patient DO

BEGIN

FOR J := 1 TO SO DO

read (NameCJ]);
readln (Age, Height/ Weight/ Sex)

END; < of WITH..-DO >

However, good program design would have us use a procedure for this
task. Therefore, in order to use a procedure, we must be careful to use the
user-defined data type Patientlnfo and a variable parameter in the pro
cedure heading. With these two considerations, an appropriate procedure
is

pr] PROCEDURE GetData (VAR Patient : Patientlnfo);
VAR

J : integer;

BEGIN

WITH Patient DO

BEGIN

FOR J := 1 TO 20 DO

read (NameCJ]);
readln (Age, Height/ Weight/ Sex)

END < of WITH ... DO >

END; < of PROCEDURE GetData >

This is called from the main program by

GetData (Patient);

As a second example of getting data for a record, suppose you are
writing a program to be used to compute grades of students in a class. As
part of the program, a record type can be declared as

TYPE

StringSD = PACKED ARRAY [1..SD] OF char;
QuizList = ARRAY [1..1D] OF integer;
TestList = ARRAY [1..4] OF integer;
StudentRecord = RECORD

Name : StringaO;
Quiz : QuizList;
Test : TestList;

QuizTotal : integer;
TestAverage : real;
LetterGrade : 'A'..'E'

END; < of RECORD StudentRecord >

VAR

Student : StudentRecord;

If each line of data contains a student's name, ten quiz scores, and four
test scores and looks like

Smith Mary J. 9 8 10 7 10 9 8 10 9 4 89 92 85 97^

Name Quiz scores Test scores

484 RECORDS

A procedure to get this data could be

PBOCEDDBE GetData (VRB Student : StudentBecord);
VAB

J : Integer;

BEGIN

WITH Student DO

BEGIN

FOB J := 1 TO 50 DO

read (NaraetJ]);
FOB J := 1 TO ID DO

read (QuizCJ1);
FOB J := 1 TO < DO

read (TestCJl)
END; < of WITH...DO >

readln

END; < of PBOCEDUBE GetData }

It would be called from the main program by

GetData (Student);

Let's now continue this example by writing a function to compute the
test average for a student. Since this average is found by using the four
test scores in the record, such a function could be

FUNCTION Testftv (Test : TestList) : real;

VRB

J : integer;

Sura : integer;
BEGIN

Sura := □;
FOB J := 1 TO < DO

Sura := Sura + TesttJ];
TestRv := Sum / ^.G

END; -C of FUNCTION TestRv }

Since the array of test scores was the only parameter sent to the function
and the average would normally be stored in the field TestAverage, this
function could be called by

student.TestRverage := TestRv(Student.Test);

Printing Data from a Record

After information has been assigned or read from a data file and appro
priate calculations have been made, you will want to print information
from the record. Since this is frequently done in a procedure, let us assume
the previous record for a student has the values illustrated in Figure 11.9.
If you want the output for a student to be

Name: Smith Mary J.
Quiz Scores: fl ID 7 ID R 6 10 R 10
Quiz Total: "ID
Test Scores: fl «R R5 65 R?
Test Average: RD.75
Letter Grade: R

a procedure for producing this is
PBOCEDUBE PrintData (Student : StudentBecord);

CONST

Skip = • ' ;
VRB

J : integer;

11.2 Using Records 485

FIGURE 11.9

Fields with values

Student

Name

Bi !

fe'" "-1

1 ̂" ;
Klilpal

j
1

1

1

C ... J
w . .. !
Quiz

Ihst

I mm. 1
ThstAverage

A

LetterGrade

SO,

Quintal

BEGIN

writeln; writeln;
WITH Student DO

BEGIN

writeln (SkipilO/ 'Name:'/ Naraera^);
write (Skip:10r 'Quiz Scores:');
FOR J := 1 TO ID DO

write (Qui2[J]:3);
writeln;

writeln (Skip:ID * 'Quiz Total:', QuizTotal:5);
write (Skip:ID, 'Test Scores:');
FOR J := 1 TO < DO

write (Test[J]:<);
writeln;

writeln (Skip:lG, 'Test Average:', TestAverage:t:5);
writeln (Skip:ID, 'Letter Grade:', LetterGrade:2)

END < of WITH...DO >

END; i of PROCEDURE PrintData >

This procedure would be called from the main program by

PrintData (Student);

EXAMPLE 11.2 As a concluding example, let's consider a short interactive program that uses
records and procedures to perform the arithmetic operation of multiplying two
fractions. The fractions should be entered in the form

1/2

The program declares a record for each fraction and uses procedures to get the
data, multiply the fractions, and print the results.

Before writing this program, let's examine appropriate record definitions and
a procedure for computing the product. A definition is

486 RECORDS

A NOTE OF INTEREST

Using Key Fields in Records

The need to search records by certain key fields
is a basic and very important process. To illus
trate, consider how Ted Celentino, director of
PARS applications for the on-line reservation
system of TWA, responded to the question: "How
are reservations indexed?" He said: "By the pas
senger's name, flight number, and departure date.

All three are needed. If a passenger forgets his
or her flight number, the agent can try to find a
record of it by looking through all flights to the
appropriate destination at that particular travel
time. It's rare that a passenger doesn't know at
least a couple of pieces of information that lead
to his or her record."

TYPE

RationalNumber = RECORD

Numerator : integer;
Denominator : integer

END; { of RECORD RationalNumber

VAR

X, Y, Product : RationalNumber;

A procedure for computing the product is

PROCEDURE ComputeProduct (X, Y : RationalNumber;
VAR Product : RationalNumber);

BEGIN

WITH Product DO

BEGIN

Numerator := X.Numerator * Y.Numerator;

Denominator := X.Denominator * Y.Denominator

END < of WITH...DO >

EN'D; < of PROCEDURE ComputeProduct }

This procedure is called from the main program by

ComputeProduct (X/ Y/ Product);

A complete program for this problem follows.

PROGRAM Fractions (input, output);

This program illustrates the use of records with procedures.
In particular, procedures are used to

1. get the data
5. perform computations
3. print the results

The specific task is to compute the product of two rational
numbers.

TYPE

RationalNumber = RECORD

Numerator : integer;

Denominator : integer
END; { of RECORD RationalNumber >

VAR

X, Y, Product : RationalNumber;

MoreData : boolean;

Response : char;

11.2 Using Records 487

PROCEDURE GetData (VAR X/ Y : RatlonalNumber);

i Given: Nothing
< Task: Have entered from the keyboard the numerator and
{ denominator of two fractions

•{ Return: Two records/ each containing a field for the
< numerator and denominator of a fraction

VAR

Slash : char;

BEGIN

WITH X DO

BEGIN

write ('Enter a fraction in the form a/b. •);
readln (Numerator/ Slash/ Denominator)

END; { of WITH X DO >

WITH Y DO

BEGIN

write ('Enter a fraction in the form a/b. ');
readln (Numerator/ Slash/ Denominator)

END { of WITH Y DO >

END; < of PROCEDURE GetData >

PROCEDURE ComputeProduct (X/ Y : RationalNumber;
VAR Product : RationalNumber);

{ Given: Records for two fractions >

i Task: Compute the product and store result }
i Return: Product of the fraction ' >

BEGIN

WITH Product DO

BEGIN

Numerator := X.Numerator * Y.Numerator;

Denominator := X.Denominator * Y.Denominator

END; i of WITH...DO >

END; i of PROCEDURE ComputeProduct >

■{ *********************************♦*******************♦*********>

PROCEDURE PrintResults (X/ Y, Product : RationalNumber);

Given: Records for each of two given fractions and their
product

Task: Print an equation stating the problem and answer;
standard fraction form should be used as
output

Return: Nothing

BEGIN
writeln; writeln;
writeln (X.Nuraerator:13/ Y.Numerator:t/ Product.Numerator:^);
writeln (' * = ':55);
writeln (X.Denominator:13/ Y.Denominator:t/ Product.Denominator:^);
writeln; writeln

END; { of PROCEDURE PrintResults }

488 RECORDS

BEGIN < Main program >
HoreData := true;

WHILE MoreData DO

BEGIN

GetData (X/ Y);

ComputeProduct (X, Y, Product);
PrintResults (X/ Y, Product);
write ('Do you wish to see another problem? <Y> or <N> ');
readln (Response);
Moredata := (Response = 'Y') OR (Response = 'y');
writeln

END < of WHILE...DO >

END. i Of main program >

With input from the keyboard of

3/A 1/5

3/a 7/lD

a/3 A/S

sample output is

Enter a fraction in the form a/b. 3/A

Enter a fraction in the form a/b. 1/a

3 1 3

A 5 &

Do you wish to see another problem? <Y> or <N> Y

Enter a fraction in the form a/b. 3/a

Enter a fraction in the form a/b. 7/lD

3 7 ai

a ID ao

Do you wish to see another problem? <Y> or <N> Y

Enter a fraction in the form a/b. a/3

Enter a fraction in the form a/b. A/S

5 A &

3 5 15

Do you wish to see another problem? <Y> or <N> N 11

Exercises 11.2 l. Assume a program contains the following TYPE definition and VAR declara
tion sections.

TYPE

Infol = RECORD

Initial : char;
Rge : integer

END;

11.2 Using Records 489

Info5 = RECORD

Initial : char;
Age : integer

END;

VAR

Custl/ CustE : Infol;

CustB/ Cust4 : InfoS;

Indicate which of the following statements are valid. Give an explanation for
those that are invalid.

a. Custl := CustE;

b. CustE := Cust3;

c. Cust3 := Cust<;

d. WITH Custl DO

BEGIN

Initial := •»•;

Age := El

END;

e. WITH Custl, CustE DO

BEGIN

Initial := 'W';

Age := El

END;

2. Write a test program to see what happens when two different records with
the same field name are used in a single WITH ... DO statement. Use the
declarations and TYPE definitions in Exercise 1. For example,

WITH Studentl, StudentE DO

Age := El;

writeln (Studentl.Age);
writeln (StudentE.Age);

3. Assume the TYPE and VAR sections of a program include

TYPE

Stringll = PACKED ARRAY [1..11] OF char;
StringED = PACKED ARRAY I1..ED] OF char;
Info = RECORD

Name : StringED;
SSN : Stringll;
Age : integer;
HourlyWage : real;
HoursWorked : real;
Volunteer : boolean

END;

VAR

Employeel, EraployeeE : Info;

a. Show three different methods of transferring all information from the re
cord for Employeel to the record for Employee2.

b. Suppose you wished to transfer all information from the record for
Employeel to the record for Employee2 except HoursWorked. Discuss dif
ferent methods for doing this. Which do you feel is the most efficient?

4. Assume the TYPE and VAR sections of a program are the same as in Exer
cise 3. Write a procedure to be used to read information into such a record
from a data file. A typical line of data is

Smith Jane M. 111-22-3333 25 10.50 41.5Y |

where 'Y' indicates the worker is a volunteer (true) and 'N' indicates the
worker is not a volunteer (false).

490 RECORDS

5. Assume a record has been declared by

TYPE

StringSD = PACKED ARRAY [1..E0] OF char;
Studentlnfo = RECORD

Name : StringED;
TotalPts : □. .5DD;
LetterGrade : char

END;
VAR

Student : Studentlnfo;

Write a function to compute the student's letter grade based on cutoff levels
of 90 percent, 80 percent, 70 percent, and 60 percent. Show how this
function is used in a program to assign the appropriate letter grade to the
appropriate field of a student's record.

6. Review Example 11.2, in which two fractions were multiplied. In a similar
fashion, write procedures for
a. Dividing two fractions (watch out for zero).
b. Adding two fractions.
c. Subtracting two fractions.

7. Some instructors throw out the lowest test score when computing the test
average. Assume a record Student of type StudentRecord has been declared
and data have been read into appropriate fields.

a. Write a function to compute the test average using the best three scores.
b. Show how a constant in the CONST section can be used to generalize

this to finding the best n - 1 of n scores.
c. Rewrite the function using a sort to sort the array of scores from high to

low and then add the first three from the array.
d. Must the entire array be sorted in order to find the three highest scores?

Explain.

8. Show how the program Fractions in Example 11.2 can be modified to check
for nonzero denominators.

m ^ 1^

H 11.3

Data Structures
with Records

OBJECTIVES

B to be able to declare
a nested record

a to be able to use
nested records in a
program

□ to be able to declare
an array of records

□ to be able to use an
array of records in a
program

Objectives continued.

Nested Records

The first concept to be examined in this section is that of nested record.
A nested record is a record which is a field in another record. For example,
suppose you are working on a program to be used by a biology department
and part of your work is to declare a record for a faculty member. This
record is to contain fields for the person's name, office number, telephone
number, and supply order. Let us assume that the supply order information
is to contain the company name, a description of the item ordered, its
price, and the quantity ordered. The record for each faculty member, with
SupplyOrder as a record within a record, can be visualized as shown in
Figure 11.10.

Let's now look at how such a record can be declared. One possible
method is

TYPE
StringED = PACKED ARRAY [1..EG] OF char;
StringlE = PACKED ARRAY [1..1E] OF char;

11.3 Data Structures with Records 491

a to be able to sort an

array of records by a
field

a to be able to use

procedures for
working with an ar
ray of records

Orderlnfo = RECORD

CompanyName : String2D;
Item : StringEO;
IteraPrice : real;

Quantity : integer
END; i of RECORD Orderlnfo >

Facultylnfo = RECORD
Name : StringEO;
Office : integer;
Phone : StringlE;
SupplyOrder : Orderlnfo

END; < of RECORD Facultylnfo }
VAR

Faculty : Facultylnfo;

FIGURE 11.10

Illustration of a

nested record

Faculty

-f --

^ ■ "7^7";

lEKaneT

: -

Room

SupplyOMer

n

^ :

- ■

.

■ ■ I

■ ■ ■■— ■■■■ ■

i

We must now consider how to access fields in the nested record. We do
this by continuing our notation for field designators. Thus,

Faculty-Name
Faculty.Office
Faculty.Phone

refer to the first three fields of Faculty, and
Faculty.SupplyOrder.CompanyName
Faculty.SupplyOrder.Item
Faculty.SupplyOrder.ItemPrice
Faculty.SupplyOrder.Quantity

are used to access fields of the nested record

Faculty.SupplyOrder

Using WITH . . . DO

As expected, WITH . .. DO can be used with nested records. Let us con
sider the problem of assigning data to the various fields of Faculty as

492 RECORDS

previously declared. If we wish to have values assigned as in Figure 11.11,
we can use the following assignment statements.

FIGURE 11.11

Values in fields of a

nested record

Faculty

Name Office

1.

Phone

- - ■—

... ■. - - s

■■ '

; v:J'5. ' ..j

WITH Faculty DO
BEGIN

Name := 'Bland Roy R. • ;
Office := 327;
Phone := 'flOD-SSB-lElB' ;
SupplyOrder.CompanyName := 'BioSupplies ' ;
SupplyOrder.Item := 'Frog ' ;
SupplyOrder.ItemPrice := 4.17;
SupplyOrder.Quantity := 35

END;

Note that the last four assignment statements all used fields in the record
SupplyOrder. Thus, a WITH. .. DO statement can be used there as follows:

WITH Faculty DO
BEGIN

Name := 'Bland Roy R. ' ;
Office := 327;
Phone ;= 'ODD-SSS-IEIE' ;
WITH SupplyOrder DO

BEGIN
CompanyName := 'BioSupplies ' ;
Item := 'Frog ' ;
ItemPrice := 4.17;
Quantity := 35

END < of WITH SupplyOrder DO >
END; < of WITH Faculty DO >

There is yet a third way to accomplish our task. WITH ... DO can be
used with both the main record name and the nested record name as
follows:

11,3 Data Structures with Records 493

A NOTE OF INTEREST

Neural Nets Catch the ABCs of DNA

Today's computers are exemplary number
crunchers. But when it comes to performing some
of the brain's repertoire of feats—such as rec
ognizing patterns or extracting a general rule from
a set of examples—computers are sadly lacking.

To make computer thinking more like human
thinking, scientists are developing "neural net
works," or highly interconnected webs of pro
cessing units (SN: 6/6/87, p. 362; 7/4/87, p. 14)—
a design loosely based on how scientists suspect
arrays of nerve cells interact in the brain. In an
ticipation of the day when electronic versions of
such arrays are built as hardware, most research
ers are presently miming neural-net simulations
on conventional computers in order to sketch
the range of problems that neural nets might be
able to solve in the future.

But researchers at Los Alamos (N.M.) Na
tional Laboratory are not content to merely flex
the neural-net muscle. They've put it to work.
Physicist Alan Lapedes says he and computer
scientist Robert Farber recently used a super
computer to demonstrate that "there are prob
lems relevant to the real world that neural nets
can attack now without waiting for chips [to be
made]." In particular, the researchers applied one
kind of neural-net simulation, a learning edgo-
rithm called back propagation, to problems in
genetics and signal processing. In each case, says
Lapedes, "the neural net beat the conventional
approach."

WITH Faculty, SupplyOrder DO
BEGIN

Name := 'Bland Roy R. •;
Office := 3S7;
Phone := 'aDD-555-iai5';
CorapanyName := 'BioSupplies •;
Item := 'Frog ' ;
ItemPrice ;= 4.17;
Quantity := 35

END; < WITH...DO >

Since SupplyOrder is nested within Faculty, each reference is distinctly
identified and the fragment accomplishes our objective. When using nested
records, you must be careful to identify fields distinctly. To illustrate,
suppose Facultyl and Faculty2 are of tjnpe Facultylnfo. Then each of the
following is valid.

Facultyl.Name := FacultyE.Name;
Facultyl.SupplyOrder.Item := FacultyE.SupplyOrder.Item;
Facultyl.SupplyOrder := FacultyE.SupplyOrder;

Note that in the third statement, you are transferring the contents of an
entire record. This statement is valid because both records are of type
Orderlnfo.

To illustrate some attempts to use inappropriate designators, assume
Faculty, Facultyl, and Faculty2 are of type Facultylnfo. Consider the fol
lowing inappropriate references.

Faculty.Item := 'Frog ';

In this designator, the intermediate descriptor is missing. Thus, something
like

Faculty.SupplyOrder.Item

is needed. In

494 records

SupplyOrder.Quantity := 35;

no reference is made to which record is being accessed. A record name
must he stated, such as

Faculty1.SupplyOrder.Quantity

In

WITH Facultyl, Faculty2 DO
Faculty.Office := Office;

Office is a field in both Facultyl and Faculty2. To correct this, something
like

WITH Facultyl DO
Faculty.Office ;= Office;

is needed.

As our final example of working with nested records, let's write a
procedure to get data from a data file for a record of type Facultylnfo with
the following definitions and declarations.

TYPE

StringSO = PACKED ARRAY [1..2D1 OF char;
StringlP = PACKED ARRAY [1..1E] OF char;
Orderlnfo = RECORD

CorapanyNarae : StringED;
Item : StringED;
ItemPrice : real;

Quantity : integer
END; < of RECORD Orderlnfo >

Facultylnfo = RECORD
Name : StringED;
Office : lDD..3qq;

Phone : StringlE;
SupplyOrder : Orderlnfo

END; i of RECORD Facultylnfo }
VAR

Faculty : Facultylnfo;

If we assume the data for a faculty member are on two lines of the data
file as

(line 1) Island Roy R. 327 800-555-12121

(line 2) BioSupplies Frog 4.17 35 B

a procedure to obtain this data is

PROCEDURE GetData (VAR Faculty : Facultylnfo);
VAR

J : integer;

Blank : char;

BEGIN

WITH Faculty, SupplyOrder DO
BEGIN

FOR J := 1 TO ED DO

read (NameEJi);

read (Office);
read (Blank); < Move the pointer >
FOR J := 1 TO IE DO

read (PhoneEJ]);
readln; i Go to beginning of the next line }

11,3 Data Structures with Records 495

< Now read the second line }

FOB J := 1 TO 50 DO

read (CompanyNameCJ]);
FOR J := 1 TO SO DO

read (IteraCJ]);

readln (IteraPrice, Quantity)
END •{ of WITH Faculty/ SupplyOrder DO

END; [of PROCEDURE GetData }

This procedure is called from the main program by

GetData (Faculty);

FIGURE 11.12

Fields in Donor

Array of Records

Next we will use structured data types to look at an array of records. It is
easy to imagine needing to make a list of information about several people,
events, or items. Furthermore, it is not unusual for the information about

a particular person, event, or item to consist of several different data items.
When this situation occurs, a record can be defined for each person, event,
or item and an array of these records can be used to achieve the desired
result. In such situations, you can frequently use an array of records rather
than a parallel array.

For example, suppose the local high school sports boosters want you
to write a program to enable them to keep track of the names and donations
of its members. Assume there is a maximum of 50 members making a
donation. This problem was solved in Chapter 10 using parallel arrays;
it can now be solved by using an array of records. Each record will have
two fields: the donor's name and the amount donated. The record could
be visualized as shown in Figure 11.12. We will now declare an array of

Donor

Ambunt

these records to produce the arrangement shown in Figure 11.13. The
definitions and declarations needed are

CONST

ClubSize = 50;

TYPE

StringEG = PACKED ARRAY
Memberlnfo = RECORD

Name : StringEG;
Amount ; real

END; { of RECORD

DonorList = ARRAY Cl..ClubSize]

VAR

Donor : DonorList;

TerapDonor : Memberlnfo;
Count : integer;

[1..EG] OF char;

Memberlnfo >

OF Memberlnfo;

496 RECORDS

FIGURE 11.13

Illustration of an ar

ray of records

Haine'

Name

Amount

Name

i^nbunt

Donor[l]

Donor[2]

Donor[50]

Before proceeding, note the following:

1. Structures are built in the TYPE definition section to facilitate

later work with procedures and functions.
2. Each record is now an array element and can be accessed by a

reference to the index. Thus, if the third member's name is Tom
Jones and he donates $100.00, you can write

Donor[3].Name := 'Jones Tom

Donorta].Amount :=

Better still, you can use WITH ... DO to get

WITH Donor[3] DO

BEGIN

Name := 'Jones Tom ';

Amount := IDD.D

END; < of WITH...DO >

3. Since all records in an array are of identical type, contents of two
records can be interchanged by

TempDonor := DonorCJ];
DonorCJl := DonorCK];

DonorCK] := TempDonor;

This is needed if records are to be sorted according to one of their
fields.

11.3 Data Structures with Records 497

4. Be careful with syntax when using an array of records or an array
as a field within a record. For example, be able to distinguish be
tween StudentU].Average, Student.Score[K], and Student[J].Score
[K].

Let's now return to the problem posed by the sports boosters. A first-level
pseudocode design is

1. Get the data

2. Sort alphabetically by name
3. Print the sorted list

If we assume each line of the data file is of the form

Jones Tom 100.0 B

a procedure to get the data is not difficult. We have to remember, however,
to count the actual number of donors read. Such a procedure is

PROCEDURE GetData (VAR Donor : DonorList;
VAR Count : integer);

VAR

J : Integer;
BEGIN

Count := □;
NHILE NOT eof AND (Count < ClubSize) DO

BEGIN

Count := Count + 1;
WITH DonorCCount] DO

BEGIN

FOR J := 1 TO 20 DO
read (NameCJ]);

readln (Amount)
END •{ of WITH DonorCCount] DO >

END < of WHILE NOT eof }
END; < of PROCEDURE GetData >

This procedure is called from the main program by
GetData (Donor/ Count);

and Count will contain the actual number of donors after the procedure
is called.

The next procedure in this problem will require a sort. Recall the se
lection sort from Chapter 9 as follows:

FOR J := 1 TO N-1 DO •(Find the minimum N-1 times >
BEGIN

Index := J;
FOR K := J + 1 TO N DO

IF ACK] < ACIndex] THEN <. Find smallest number >
Index := K;

Temp := ACIndex]; -C Exchange smallest number >
ACIndex] := ACJ];
ACJ] := Temp

END; < of one pass >

With suitable changes, the array of records can be sorted alphabetically
by

PROCEDURE Sort (VAR Donor : DonorList;
Count : integer);

498 records

VAR

J, K/ Index : integer;
Temp : Memberlnfo;

BEGIN

FOR J := 1 TO Count-1 DO

BEGIN •

Index := J;

FOR K := J + 1 TO Count DO

IF DonorCK].Name < DcnorCIndex].Name THEN

Index := K;

Temp := DcnorCIndex];
DcnorCIndex] := DonorCJ];

DonorCJ] := Temp

END < of FOR loop }

END; { of PROCEDURE Sort >

This procedure would be called from the main program by

Sort (Donor, Count);

In this procedure, note that the sort is by only one field in the record,
specifically, the donor's name

IF DonorCK].Name < Temp.Name THEN

However, when the names are to be exchanged, contents of the entire
record are exchanged by

Temp := DcnorCIndex];

We conclude this example by writing a procedure to print the results.
If we want the output to he

Local Sports Boosters
Donation List

Name Amount

Anerice Sue 150.□□
Compton John 125.□□

a procedure to produce this is
PROCEDURE PrintList (VAR Donor : DonorList;

Count : integer);
CONST

Skip = ' ' ;
VAR

J ; integer;
BEGIN

writeln;
writeln (Skip:20/ 'Local Sports Boosters');
writeln (Skip:24, 'Donation List');
writeln (SkipilD, ' ');
writeln;
writeln (Skip:13, 'Name', Skip:27, 'Amount');
writeln (Skip:13, ' ', Skip:27, ' ');
writeln;

< Now print the list >

11.3 Data Structures with Records 499

FOR J := 1 TO Count DO

WITH DonortJ] DO

wrlteln (SkiprlO, Name, Araount:5Q:E);
writeln; wrlteln

END; < of PROCEDURE PrintList >

With these three procedures available, the main program is then
BEGIN •(Main program >

GetData (Donor, Count);
Sort (Donor, Count);
PrintList (Donor, Count)

END. < of main program >

This example is less involved than many of your problems will be, but
it does illustrate an array of records, appropriate notation for fields in an
array of records, sorting an array of records by using one field of the
records, and using procedures with an array of records.

ExercisGS 11.3 l. Consider the declaration

TYPE

B = RECORD

C : real;

D : integer
END;

A = RECORD

E : boolean;

F : B

END;

VAR

G : A;

a. Give a schematic representation of the record G.
b. Indicate which of the following are valid references.

i. G.E

ii. G.C.

iii. G.F.D.

iv. F. D

V. G.A

vi. A.F.C

vii. A.E

viii. WITH G DO

ix. WITH G, F DO

X. G.F.C.

c. Why would it be incorrect to define record A before record B?

2. Write a test program that illustrates the difference between an array of rec
ords and a record with an array component.

3. Give an appropriate definition and declaration for a record that will contain
fields for a person's name, address, social security number, annual income,
and family information. Address is a record with fields for street address,
city, state abbreviation, and zip code. Family information is a record with
fields for marital status (S, M, W, or D) and number of children.

4. Consider the following definitions and subsequent declarations.

TYPE

StringEO = PACKED ARRAY [l.-ED] OF char;
Mood = (Quiet, Bright, Surly);
CurrentHealth = (Poor, Average, Good);

500 RECORDS

Patientlnfo = RECORD

Name : StrlngED;
Status = RECORD

Hental : Mood;

Physical : CurrentHealth
END; { of RECORD Status >

PastDue : boolean

END; { of RECORD Patientlnfo }

VRR

Patientl/ Patients : Patientlnfo;

a. Give a schematic representation for Patientl.
b. Show how a single letter (Q, B, S) can be read from a data hie and then

have the appropriate value assigned to Patientl.Status.Mental.
c. Write a procedirre to read a line of data and assign (if necessary) appro

priate values to the various fields. A typical data line is

Smith Sue BAF^^

and indicates that Sue Smith's mood is bright, her health is average, and
her account is not past due.

5. Declare an array of records to be used for 15 players on a basketball team.
The following information is needed for each player: name, age, height,
weight, scoring average, and rebounding average.

6. Declare an array of records to be used for students in a classroom (at most
40 students). Each record should contain fields for a student's name, social
security number, ten quiz scores, three test scores, overall average, and letter
grade.

7. Consider the following declaration of an array of records.

CONST

ClassSize = 35;

TYPE

StringSO = PACKED ARRAY [1..HD] OF char;
Attendance = (Excellent/ Average/ Poor);
T^stList = ARRAY [1..4] OF integer;
Studentlnfo = RECORD

Name : StringSO;
Atten : Attendance;

Test : TestList;

Aver : real

END;

StudentList = ARRAY [1..ClassSize] OF Studentlnfo;

VAR

Student : StudentList;

a. Give a schematic representation for Student.
b. Explain what the following function accomplishes and how it would be

called.

FUNCTION GuessWhat (A : Studentlnfo) : real;

VAR

K/ Sum : integer;

BEGIN

Sum := □;
FOR K := 1 TO 4 DO

Sum := Sura + A.TestCK];
GuessHhat := Sum / 4

END;

11.4 Record Variants 501

c. Write a procedure to print out the information for one student. In this
procedure, the entire word describing attendance is to be printed.

8. Reconsider the problem in this section that kept a record of the name and
amount donated for each member of the local high school boosters club. Ex
panding on that problem, write a procedure or function for each of the
following.

a. Find the maximum donation and print out the amount together with the
donor's name.

b. Find the sum of all donations.

c. Find the average of all donations.
d. Sort the array according to size of the donation, largest first.

■ 11.4

Record

Variants

ob;ec!fii^ ;

I to be able to define

a record with a vari

ant part

I to be able to use a

record that contains

a variant part

You should have noticed by now that when records are defined, each
record has certain fixed fields. Since it is sometimes desirable to use a
record structure in which the number and type of fields vary, Pascal
allows records to be defined with a variant part. For example, a real estate
company might want the records for their customers to contain different
information depending on whether the property for sale is a house or a
business. For houses, the number of bechrooms, bathrooms, and whether
or not there is a fireplace could be indicated; for businesses, the number
of offices and amount of possible rental income could be listed.

Defining a Variant Part

In order to define the variant part of a record, we use a form of the CASE
statement to specify which fields should be included. Then, depending
on the value of the identifier in the CASE part of the definition, the desired
fields are listed. In the real estate example, we could have

TYPE

PropertyType = (House/ Business);
Listing = RECORD

CASE Kind

House

OF

; integer;
PropertyType
(NumBedrms :

integer;
: boolean);
: integer;

integer)

NumBaths :

Fireplace :
Business : (NumOffices :

Rentallncome

END; i of RECORD Listing >
VAR

Property : Listing;

Now Property is a record with a variant part. Kind is not a reserved word
and is called the tag field. Depending on the value assigned to Kind, the
appropriate fields are available. If the assignment

Property.Kind := House;

is made, the record can be envisioned as shown in Figure 11.14(a). If the
assignment

Property.Kind := Business;

is made, we have the record illustrated in Figure 11.14(b).

502 RECORDS

FIGURE 11.14

Fields in a variant

record

a) Property

Kind NumBedroms

NumBaths Fireplace

(b) Property

Kind NumOffices

wm

Rentallncome

In actual practice, records with variant parts usually have fixed parts also.
Suppose the address and price of each property listed for sale should be
included. Since fields for these would be defined for every record, these
fields would be referred to as the fixed part, A complete definition is as
follows:

TYPE

PropertyType = (House, Business);
StringBD = PACKED ARRAY [1..3D] OF char;
Listing = RECORD

Address : String3D;

Price : integer;
CASE Kind : PropertyType OF

House : (NumBedrms
NumBaths

Fireplace
Business : (NumOffices :

Rentallncome

of RECORD Listing >

i

VAR

Property

END;

: Listing;

nteger;
integer;
boolean);

; integer;
integer)^

hxed

part

variant

part

The following points concerning variant parts should now be made.

1. The variant part of a record must be listed after the fixed part.
2. Only one variant part can be defined in a record.
3. The data type for the tag field must be ordinal.
4. Only one END is used to terminate the definition. This terminates

both CASE and RECORD.

11.4 Record Variants 503

Records with variant parts are defined by a form as follows:

record name = RECORD

field 1 : type; '

field 2 : type;

fixed
►

part

field « : type; j
CASE tag field tag type OF ^

value 1 : (field list);
value 2 : (field list);

variant

part

value m : (field list)
END;

It is possible to completely avoid the use of variant parts of a record.
One can list all possible fields in the fixed peirt and then use them ap
propriately. However, this usually means that more storage is required.
To illustrate, let's consider how memory is allocated. For each field in the
fixed part of the previous example, an area in memory is reserved as
follows:

Address Price

For the variant part of the record, a single area is reserved that will
subsequently be utilized by whichever fields are determined by the value
of the tag field. In this sense, they overlap as indicated.

Address
A-/

Price Kind

i
NumBedrms NumBaths Fireplace

NumOffices Rentallncome

Fixed part Variant part

We close this section with an example that illustrates a definition and
subsequent use of a record with a variant part.

EXAMPLE 11.3 Define a record to be used when working with plane geometric figures. The record
should have fixed fields for the type of figure (a single character designator) and
area. The variant part should have fields for information needed to compute the
area. After the record is defined, write a procedure to get data from a line of the
data file. Then write a function that can be used to compute the area of the plane
figxire.

To complete the definition of the record, let's assume we are working with at
most the geometric figures circle, square, and triangle (C, S, and T, respectively).
An appropriate definition is

504 E?ECORDS

TYPE

FigureShape = (Circle, Square, Triangle);
Figurelnfo = RECORD

Object : char;
Area : real;

CASE Shape
Circle

Square

Triangle

FigureShape OF
(Radius : real);
(Side : real);
(Base, Height : real)

END; { of RECORD Figurelnfo >

VAR

Figure Figurelnfo;

Each data line has a single character designating the kind of figure followed
by appropriate information needed to compute the area. For example,

T6.0 8.01

represents a triangle with base 6.0 and height 8.0. A procedure to get a line of
data is

PROCEDURE GetData (VAR Figure : Figurelnfo);
BEGIN

WITH Figure DO
BEGIN

read (Object);
CASE Object OF
'C : BEGIN

Shape := Circle;
readln (Radius)

END;

•S' : BEGIN

Shape := Square;
readln (Side)

END;

•T' : BEGIN

Shape := Triangle;
readln (Base, Height)

END

END { of CASE Object >
END < of WITH...DO >

END; < of PROCEDURE GetData >

This is called from the main program by

GetData (Figure);

Finally, a function to compute the area is

Figurelnfo) real;FUNCTION Area (Figure

CONST

Pi = 3.1415^;

BEGIN

WITH Figure DO
BEGIN

CASE Shape OF
Circle : Area := Pi * Radius * Radius;
Square : Area := Side * Side;
Triangle : Area := □

END < of CASE Shape
END { of WITH...DO >

END; { of FUNCTION Area >

This function is called by

Figure.Area := Area (Figure);

* Base * Height

11.4 Record Variants 505

Exercises 11.4 l. Explain how memory may be saved when records with variant parts are
declared.

2. Assume a record is defined by

TYPE

TagType = (One# Two);
Info = RECORD

Fixed : integer;
CASE Tag ; TagType OF

One : (A, B : integer);
Two : (X : real;

Ch : char)

END;

and the variable declaration section of a program includes

VAR

RecordCheclc ; Info;

What is the output from the following fragment of code?

WITH RecordCheck DO

BEGIN

Fixed := !□□□;
Tag := One;
A := lOD;
B := SOD;
writeln (Fixed:15/ A:15/ B:15);
Tag := Two;
X := ID.5;
Ch := 'Y' ;
writeln (Fixed:15, X:15:5/ Ch:15);
writeln (A:15/ B:15, X:15:5, Ch:lS)

END;

3. Find all errors in the following definitions.
a. TYPE

Info = RECORD

A : real;
CASE Tag : TagType OF

B : (X/ Y : real);
C : (Z : boolean)

END;
b. TYPE

TagType = (A, B, C);
Info = RECORD

D : integer;
Flag : boolean;
CASE Tag : TagType OF

A : (X/ Y : real);
B : (Z : real)

END;
c. TYPE

TagType = (A, B/ C);
Info = RECORD

D : integer;
Flag : boolean
CASE Tag OF

A : (X : real);
B : (Y : real);
C : (Z : real)

END;

506 RECORDS

TYPE

TagType = (A, B, C);

Info = RECORD

D : integer;

CASE Tagl : TagType OF

A

B

C

END;

CASE

A

B

C

END;

(X

(Y

(Z

•C

Tag2

(XI

(Y1

(Z1

of

: real);

: real);

: real)

of CASE >

: TagType

: real);

: real);

: real)

RECORD Info

OF

4, Redefine the following record without using a variant part.

Triangle)

Shapes OF
(Radius : real);
(Side : real);
(Base/ Height : real)

TYPE

Shapes = (Circle/ Square,
Figurelnfo = RECORD

Object : char;
Area : real;

CASE Shape
Circle

Square

Triangle
END;

VAR

Figure : Figurelnfo;

5. Using the record defined in Exercise 4, indicate the names of the fields
available and provide an illustration of these fields after each of the
following assignments is made.

a. Shape := Circle;
b. Shape := Square;

c. Shape := Triangle;

6. Redefine the record defined in Exercise 4 to include rectangles and
parallelograms.

7. Define a record with a variant part to be used for working with various pub
lications. For each record, there should be fields for the author, title, and

date. If the publication is a book, there should be fields for the publisher and
city. If the publication is an article, there should be fields for the journal
name and volume number.

g S ̂ S

FOGUS ON

PROGRAMMING
The sample program for this chapter features working with an array of
records. The array is first sorted using the field containing a name. It is
then sorted using the field containing a real.

Let's write a program to help your local high school sports boosters
keep records of donors and amounts donated. The data file consists of a
name (first 20 positions) and an amount donated (starting in position 21)
on each line. For example,

Jones Jerry 2501

11.4 Record Variants 507

Your program should get the data from the data file and read it into a
record for each donor. Output should consist of two lists as follows:

1. an alphabetical listing together with the amount donated.
2. a listing sorted according to the amount donated.

A first-level pseudocode development for this problem is

1. Get the data

2. Sort by name
3. Print the first list

4. Sort by amount
5. Print the second list

Module specifications for the main modules are

1. GetPata Module
Data received: None

Information returned: Array of records containing names, amounts,
and array length

Logic: Use a WHILE NOT eof loop with a coimter to read the data
file.

2. SortByName Module
Data received: Unsorted array of records containing names and

amounts with the list length
Information returned: An alphabetized list of names with associ

ated amounts

Logic: Use a selection sort to sort the array of records.

3. PrintList Module
Data received: Array of records

Array length
Information returned: None

Logic: Call procedure PrintHeading.
Use a loop to print the names and amounts.

4. SortByAmount Module
Data received: Array of records sorted alphabetically

List length
Information returned: Array of records sorted by size of donation
Logic: Use a selection sort to sort the list of donations.

A refinement of the pseudocode yields

1. Get the data

WHILE NOT eof DO

1.1 get a name

1.2 get the amount
2. Sort by name (use selection sort)
3. Print the first list

3.1 print a heading
3.2 print the names and amounts

4. Sort by amount (use selection sort)
5. Print the second list

5.1 print a heading
5.2 print the names and amounts

508 RECORDS

FIGURE 11.15

Structure chart for

boosters problem

Print

nhmes an^..
iaanounts

Print, r
heading

Get a
name

Priitt seqbnd
list -V

Get the data J
WHILE NOT

eof DO

Sort lay
^^me.

A complete structure chart is given in Figure 11.15.
The main driver for the program is

BEGIN ■{ Main program }
GetData (Donor, Count);
SortByName (Donor, Count);
PrintList (Donor, Count);
SortByRmount (Donor, Count);
PrintList (Donor, Count)

END. •{ of main program }

A complete program for this problem is

PROGRAM Boosters (input, output. Data);

■{ This program uses an array of records to process information >
{ for donors to the local high school sports boosters. Output >
{ includes two lists, one sorted by name and one sorted by >
■{ amount donated. Information is stored in the text file data. >

CONST

ClubSize = 50;

TYPE

StringPO = PACKED ARRAY [1..BD] OF char;
Memberlnfo = RECORD

Name : StringBD;
Amount : real

END; i of RECORD Memberlnfo >
DonorList = ARRAY [1..ClubSize] OF Memberlnfo;

VAR

Count : integer;
Donor : DonorList;
Data : text;

i Counter for number of donors >
{ Array of records, one for each donor >
{ Data file of names and amounts >

11.4 Record Variants 509

PROCEDURE GetData (VRR Donor : DonorLlst;

VAR Count : integer);

< Given: Nothing }
< Task: Read donor names and amounts from the text file, }

{ Data, into an array of records }
{ Return: An array of records and number of donors }

VAR

J : integer;

BEGIN

reset (Data); ^ 1
Count := □;
WHILE NOT eof(Data) AND (Count < ClubSize) DO

BEGIN

Count := Count + 1;
WITH DonoriCount] DO

BEGIN

FOR J := 1 TO ED DO

read (Data, NameCJ]);
readln (Data, Amount)

END < of WITH...DO }
END; i of WHILE NOT eof >
IF NOT eof(Data) THEN

writeln ('Not all data read. ')
END; < of PROCEDURE GetData > ^

PROCEDURE SortByName (VAR Donor : DonorList;
Count : integer);

■{ Given: An array of records and number of records >
•(Task: Sort alphabetically by the field DonorC J] .Name >
< Return: An alphabetized array of records >

VAR
J, K, Index : integer;
Temp : Memberlnfo;

BEGIN y 2
FOR J := 1 TO Count - 1 DO

BEGIN

Index := J;
FOR K := J + 1 TO Count DO

IF DonoriK].Name < DonorCIndex].Name THEN
Index := K;

Temp := DonorCIndex];
DonorCIndex] := DonorCJ];
DonorCJ] := Temp

END < of FOR J loop >
END; •{ of PROCEDURE SortByName > J

'{3|c3|c9tC3|c:(c:tC!te:tc:tc:tC9|c:(c:(c:|c:tc:tc:tc3|c9|c9|c:|c4c9|c:(c:|c:(c:tc:tc4c4c:|c4e:tc:4e:lc:tc4c4e:|«:tc:(c:|c:4c^4c:tc3(c:tc3(c9|c9K4(*^*:|e^3K3K^*4c9|c}'

PROCEDURE SortByAmount (VAR Donor : DonorList; ^
Count : integer);

{ Given: An array of records and number of records >
{ Task: Sort by amount donated. DonorCJ].Amount >
{ Return: An array of records sorted by amount donated >

510 RECORDS

> 4

VRR

J/ K, Index : integer;

Temp : Memberlnfo;

BEGIN

FOR J := 1 TO Count - 1 DO

BEGIN

Index := J;

FOR K := J + 1 TO Count DO

IF DonorCK].Amount > Donor[Index].Amount THEN

Index := K;

Temp := DonorEIndex];
DonorEIndex] := DonorCJ];

DonorCJ] := Temp
END < of FOR J loop }

END; { of PROCEDURE SortByAmount >

J

PROCEDURE PrintHeading;

{. Given: Nothing >
< Task: Print a heading for the output >
< Return: Nothing >

CONST

Skip = ' ' ;

BEGIN

writeln;

writeln (Skip:50, 'Local Sports Boosters');
writeln (Skip:5^, 'Donation List');
writeln (Skip:lD, ' ')
writeln;

writeln (Skip:13r 'Name', Skip:51, 'Amount');
writeln (Skip:13, ' ', Skip:21, ' ');
writeln

END; { of PROCEDURE PrintHeading }

PROCEDURE PrintList (VAR Donor : DonorList;

Count : integer);

•t Given: An array of records and number of records >
{ Task: Print a list containing one column for the name >
< and one column for the amount donated >

< Return: Nothing }

CONST

Skip = ' ' ;

VAR

J : integer;

BEGIN

PrintHeading;
FOR J := 1 TO Count DO

WITH DonorCJ] DO

writeln (Skip:lD, Name, Amount:l<:a);
writeln; writeln

END; { of PROCEDURE PrintList }

> 3

11.4 Record Variants 511

BEGIN { Main program }
GetData (Donor/ Count);

SortByName (Donor# Count);
PrintList (Donor# Count);

SortByAmount (Donor# Count);
PrintList (Donor# Count)

END. < of main program >

The output from this program is

Local Sports Boosters
Donation List

Name Amount

Alexander Candy 3UD.

Anderson Tony 375,

Banks Marj 375.

Born Patty
Brown Ron 5DD.

Darnell Linda 575.

Erickson Thomas IDQ.

Fox William 300.

Francis Denise 350.

Generous George 555.

Gillette Mike 35D.

Hancock Kirk 500.

Higgins Sam 3DD.

Janson Kevin 5aa.

Johnson Ed 350.

Johnson Martha 4aa.

Jones Jerry 550..00

Kelly Marvin 475.

Kneff Susan 3aa.

Lasher John 175.

Lyon Elizabeth 455.

Moore Robert

Muller Marjorie 550.

Smith John lOD.

Trost Frostie 50.

Trudo Rosemary 500.

Weber Sharon 150.

Williams Art 350.

Williams Jane 175.

Wilson Mary 575.

Local Sports Boosters
Donation List

Name Amount

Generous George
Hancock Kirk

Kelly Marvin
Lyon Elizabeth

555.□□
500.□□
475.00
455.00

(List continued
on next page)

512 RECORDS

Johnson Martha

Anderson Tony 375,

Banks Marj 375,

Francis Denise 35D.

Gillette Mike 350.

Johnson Ed 350.

Williams Art 35D.

Higgins Sam 3DD.

Alexander Candy 30D.

Kneff Susan 3Da.

Fox William 3Q0.

Darnell Linda 275,

Wilson Mary 275,

Muller Marjorie 25D.

Jones Jerry 25D.

Trudo Rosemary 2DD.

Brown Ron 2DD.

Janson Kevin EQD.

Lasher John 175.

Williams Jane 175.

Weber Sharon 15D.

Erickson Thomas IQD.

Born Patty IDO.

Smith John IDD,

Moore Robert IDD.

Trost Frostie 50,

RUNNING AND

DEBUGGING TIPS
1. Be sure to use the full field name when working with fields in a record. You

may only leave off the record name when using WITH ... DO.
2. Terminate each record definition with an END. This is an instance when END

is used without a BEGIN.

3. Although field names in different record tj^es can be the same, you are en
couraged to use distinct names. This enhances readability and reduces the
chances of making errors.

4. Be careful with syntax when using an array of records or an array as a
field within a record. For example, be able to distinguish between
Student[K].Average, Student.Score[J], and Student[K].Score[J].

Summary Key Terms

array of records
field

fixed part

nested records

record

tag field
variant part

Keywords

RECORD WITH

Key Concepts

a A RECORD is a structured data type that is a collection of fields; the fields
may be treated as a whole or individually.

□ Fields in a record can be of different data types.

Summary 513

a Records can be declared or defined by

record name = RECORD

field identifier 1 ; data tsrpe 1;
field identifier 2 : data type 2;

field identifier n : data type n
END; { of RECORD definition }

□ Fields can be accessed as variables by

record name.field identifier

□ Records can be schematically represented as in Figure 11.16.

FIGURE 11.16

Fields in a record
record name

fiield;ideii0er 1 field identifier 2

lieMlidbnMi^'h'

□ WITH record name DO can be used instead of a specific reference to the re
cord name with each field of a record; thus, you could have

WITH Student DO
BEGIN

Name := 'Smith John
Average := R3.<;
Grade := 'A'

END;

instead of

Student.Name := 'Smith John ' ;
Student.Average := 93.
Student.Grade := 'A' ;

B If two records, A and B, are of identical type, contents of all fields of one
may be assigned to corresponding fields of the other by a single assignment
statement such as

A := B;

a Either entire records or fields within a record can be passed to appropriate
subprograms,

a A record may be used as a field in another record.
a A WITH .. . DO statement may be used to access fields of nested records.
a Records may be used as components of an array.
B An array of records may be sorted by one of the fields in each record.
B Records with variant parts list all fixed fields (if any) first and then list the

variant fields using a CASE statement; for example.

514 RECORDS

TYPE

MaritalStatus = (Married/ Single/ Divorced);
StringSD = PACKED ARRAY [1..SD] OF char;
Info = RECORD

Name : StringED;
CASE Status : MaritalStatus OF

Married : (SpouseName : StringSD;
NumKids : integer);

Single ; (Sex : char;
Age : integer);

Divorced : (NumKids : integer;
Age : integer;
Sex : char;

LivesAlone : boolean)

END; < of RECORD Info >

VAR

Customer : Info;

□ After a value has been assigned to a tag field, the remaining record fields are
the ones listed in the CASE part of the definition;^for example, if we use the
previous definition and we have
Customer.Status := Divorced;

the record fields are as shown in Figure 11.17.

FIGURE 11.17

Value of a tag field
Customer

Hfivorced

Name Status

Nummds Age

Slew l4vesAl(me

■ Programming
Problems

1. Write a program to be used by the registrar of a university. The pro
gram should get information from a data file and the data for each
student should include student name, student number, classifica
tion (1 for freshman, 2 for sophomore, 3 for junior, 4 for senior, or 7
for special student), hours completed, hours taking, and grade
point average.

Output should include an alphabetical listing of all students, an
alphabetical listing of students in each class, and a listing of all
students ordered by grade point average.

2. Robert Day, basketball coach at Indiana College, wants you to write
a program to help him analyze information about his basketball
team. He wants a record for each player containing the player's
name, position played, high school graduated from, height, scoring
average, rebounding average, grade point average, and seasons of el
igibility remaining.

Programming Problems 515

The program should read the information for each player from a
data file. The output should include an alphabetized list of names
together with other pertinent information, a list sorted according to
scoring average, an alphabetized list of all players with a grade
point average above 3.0, and an alphabetized list of high schools
together with an alphabetized list of players who graduated from
each school.

3. Final grades in Dr. Lae Z. Programmer's computer science class are
to be computed using the following course requirements.

Requirement Possible Points

5.

Quiz scores (ten points each and the
best 10 out of 12 are counted]
Two hourly tests
Eight programming assignments (25
points each)
Test program assignments (two at 50
points each)
Final examination

Total

100 points

200 points

200 points

100 points

100 points

700 points

Cutoff percentages for the grades of A, B, C, D, and E are 90 per
cent, 80 percent, 70 percent, and 55 percent, respectively.

Write a program to keep a record of each student's name, social
security number, quiz scores (all 12), hourly examination scores,
programming assignment scores, test program scores, and final ex
amination score.

Your program should read data from a data file, compute total
points for each student, calculate the letter grade, and output re
sults. The output should be sorted by total points from high to low
and include all raw data, the ten best quiz scores, total points and
percentage score, and letter grade. Use procedures and functions
where appropriate.

4. Write a program to input an unknown number of pairs of fractions
with an operation (either +, or /) between the fractions. The
program should perform the operation on the fractions or indicate
that the operation is impossible. Answers should be reduced to
lowest terms.

Sample Input Sample Output Sample Input Sample Output

3 b IR 4 7

3/< + 5/E. + 4/3 + ?/□ + = Impossible
< t. la 3 □

< 1 5 b ED a

- 1/b = b/5 * aD/3 ;|c =

la 5 3 1

□
</5 / D/S / = Impossible

5 5

516 records

5. Complex numbers are numbers of the form a + bi where a and b
are real and i represents V —1. Complex number arithmetic is de
fined by

Sum

Difference

Product

Quotient

[a + bi) -I- (c -I- di) = {a + c) + [b + d)i
[a + bi) - (c + di) = [a - c) + {b - d)i
[a + bi)[c+ di) = {ac - bd) + {ad + bc)i

, ac + bd
[a + bt)/{c + di) =

be - ad .
+ — -I

+ d^

Write a program to be used to perform these calculations on two
complex numbers. Each line of data consists of a single character
designator (S, D, P, or Q) followed by four reals representing two
complex numbers. For example, (2 + 3f) + (5 — 2i) are represented
by

82 3 5 -2f

A record should be used for each complex number. The output
should be in the form a + bi.

6. The Readmore Public Library wants a program to keep track of the
books checked out. Information for each book should be kept in a
record and the fields should include the author's name, a nonfic-
tion designator (boolean), the title, the library catalog number, and
the copyright date. Each customer can check out at most ten books.

Your program should read information from a data file and print
two lists alphabetized by author name, one for nonfiction and the
other for fiction. A typical data line is

Kldder Tracy T Soul of a New Machine 81.6044 19821

T T
position 21 position 52

7. Modify Problem 6 so that a daily printout is available that contains
a summary of the day's transactions at the Readmore Public Li
brary. You will need a record for each customer containing the cus
tomer's name emd library card number. Be sure to make provision
for books that are returned.

8. Write a program to be used to keep track of bank accounts. Define a
record that includes each customer's name, account number, start
ing balance, transaction record, and ending balance.

The transaction record should list all deposits and withdrawals.
A special message should be printed whenever there are insuffi
cient funds for a withdrawal. When a name is read from the data

file, all previous records should be searched to see if you are pro
cessing a new account. The final output for each customer should
look like a typical bank statement.

9. Write a program that uses records to analyze poker hands. Each
hand consists of five records (cards). Each record should have one
field for the suit and one for the value. Rankings for the hands from
high to low are

Programming Problems 517

straight flush
four of a kind

full house

flush

straight
three of a kind

two pair
one pair
none of the above

Your program should read data for five cards from a data file, eval
uate the hand, and print out the hand together with a message indi
cating its value.

10. Problem 9 can be modified several ways. A first modification is to
compare two different hands using only the ranking indicated. A
second (more difficult) modification is to also compare hands that
have the same ranking. For example, a pair of 8s is better than a
pair of 7s. Extend Problem 9 to incorporate some of these
modifications.

11. Divers at the Olympics are judged by seven judges. Points for each
dive are awarded according to the following procedure.
a. Each judge assigns a score between 0.0 and 10.0 inclusive.
b. The high score and low score are eliminated.
c. The five remaining scores are summed and this total is multi

plied by 0.6. This result is then multiplied by the degree of diffi
culty of the dive (0.0 to 3.0).

The first level of competition consists of 24 divers each making ten
dives. Divers with the 12 highest totals advance to the finals.

Write a program to keep a record for each diver. Each record
should contain information for all ten dives, the diver's name, and
the total score. One round of competition consists of each diver
making one dive. A typical line of data consists of the diver's
name, degree of difficulty for the dive, and seven judges' scores.
Part of your output should include a list of divers who advance to
the finals.

12. The University Biology Department has a Conservation Club that
works with the state Department of Natural Resources. Their proj
ect for the semester is to help capture and tag migratory birds. You
have been asked to write a computer program to help them store
information. In general, the program must have information for
each bird tagged entered interactively into an array of records and
then stored in a text file for subsequent use. For each bird tagged,
you need a field for the tag number, tagging site, sex, bird type,
date, and name of the DNR officer doing the tagging. After all data
have been entered, the program should print one list sorted by tag
number and one sorted by bird type.

C
H
A
P
T
E
R

■
 ■

■
-

M
W'
V

1
-
-

'
 M

-4f
-

"
1

-H-H
i
C
C
C
l
C
D
Z
C
L
L
i

F
i
l
e
s

Chapter 8
 introduced the concept of text files which are used to

provide data for a program, and to store data between runs of a
program. All data in a text file are stored as a sequence of characters of
type char. W

e
 are n

o
w
 ready to examine these files in more detail.

B
u
t
 first, a

 note of caution is in order. File manipulation is extremely
system dependent. This is especially true with microcomputers. Since it
is likely that your system has s

o
m
e
 differences from standard Pascal, you

are encouraged to consult your system manual.

m

1
2
.
1

F
i
l
e
 D
e
f
i
n
i
t
i
o
n

O
B
J
J
g
G
T
l
V
E
S

Q

t
o
 u
n
d
e
r
s
t
a
n
d
 t
h
e

b
a
s
i
c
 i
d
e
a
 o
f
 a
 fil

e

i
n
 P
a
s
c
a
l

□
to

 be able to
 d

e
fin

e
a file type

□
to

 u
n

d
e

rsta
n

d
 th

e
concept of a buffer

a
to

 u
n

d
e

rsta
n

d
 th

e
d

iffe
re

n
ce

s b
e

tw
e

e
n

files and arrays as
stru

ctu
re

d
 d

a
ta

typ
e

s

B
a

sic Id
e

a
 a

n
d

 N
o

ta
tio

n

You can save inform
ation betw

een runs of a program
 by using secondary

storage devices such as tapes or disks (personal com
puters use floppy or

hard disks). As a beginning program
m

er, you need not norm
ally be con

cerned w
ith the actual physical construct of these storage devices, but

you do need to know how to work w
ith them

. To oversim
plify, you need

to be able to get data into a program
, m

anipulate these data, and save the
data (and results) for later use. For exam

ple, if you w
rite a program

 that
com

putes grades for students in a class, you need to periodically enter
data for processing. Pascal solves this problem

 w
ith a structured data type

FILE. A
 file is a data structure that consists of a sequence of com

ponents
all of the sam

e type. A
 FILE data type is defined by

T
Y

P
E

file identifier =
 FILE

 O
F data type;

V
A

Rfile
 nam

e : file
 id

e
n

tifie
r;

Thus, if you w
ish to w

ork w
ith a file of integers, you define

T
Y

P
E

F
ile

O
fIn

t
=

F

IL
E

O

F
in

te
g

e
r;

V
ftRF

ile
l

:
F

ile
O

fIn
t;

5
1

8

12.1 File Definition 519

In this case, Filel is the desired file. Several comments are now in order.

1. Data entries in a file are called components of the file.
2. All components of a file must be of the same data type.
3. The only data tjrpe not permitted as a component of a file is an

other file type. This differs from arrays in that

ARRAY [] OF ARRAY [] OF data type;

is permitted, but

FILE OF FILE OF data type;

is not permitted.

Each of the following is a valid definition of a file type.

TYPE

Identifier! = FILE OF real;
IdentifierE = FILE OF ftRRAY [1..ED] OF integer;
Identifiers = FILE OF boolean;

Files of records are frequently used in programs. Thus, to keep a record
for each student in a class, you could have the definition

TYPE

StringED = PACKED ARRAY [l.-EQ] OF char;
ExamScores = ARRAY [!..<] OF integer;
QuizScores = ARRAY [!..!□] OF integer;
Studentlnfo = RECORD

Name : StringED;
IDNumber : D..qqq;
Exam : ExamScores;
Quiz : QuizScores;
Average : real;
Grade : char

END; { of RECORD Studentlnfo }
StudentFile = FILE OF Studentlnfo;

VAR

Student : StudentFile;

Comparison to Arrays
Files and one-dimensional arrays have some similarities: both are struc
tured data types and components must be of the same type. There are,
however, some important differences.

1. Files permit you to store and retrieve information between runs of
a program.

2. Only one component of a file is available at a time.
3. In standard versions of Pascal, files must be sequentially accessed;

that is, when working with fi les, you start at the beginning and
process the components in sequence. It is not possible (as with
arrays) to access some component directly without first having
somehow moved through the previous components.

4. Files do not have a defined length. Once a file has been defined,
the number of components is limited only by the amount of stor
age available. However, this is usually so large you could think of
it as unbounded.

520 FILES

File Window and Buffer Variables

Before we get to specific work with files, we need to examine the concepts
of a file window and a buffer variable. A file can be visualized as a sequence
of components as follows:

Components

/JU\
Filel

Only one of these components can be "seen" at a time. An imaginary
window is associated with a file and values can be transferred to (or from)
a component of the file only through this window. Thus, the window must
be properly positioned before attempting to transmit data to or from a
component.

This imaginary window, which is called a file window, has no name
in Pascal. However, there is a related concept, called a buffer variable,
that is the actual vehicle through which values are passed to or from the
file component. When a file is declared in a program, a buffer variable is
automatically declared and therefore available to the programmer. To il
lustrate, given the following declaration of FileA,

TYPE

Filelnfo = FILE OF integer;
VftR

FileA : Filelnfo;

the buffer variable (FileAt) can be used in the program. The buffer variable
is always the file name followed by an up arrow or, in some implemen
tations, a caret (the symbol * above 6 on a computer's keyboard), but it
is never declared in the variable declaration section. In general, we have

Declaration Bu£fer Variable

VAR

file name : FILE OF data type; file name t

The buffer variable is of the same data type as one component of the file.
Although its use is intended for passing values to and from a file, it can
be used very much like a regularly declared variable of that type. Spe
cifically, from FileA, FileAt is a variable of type integer and statements
such as

FileAt := 51;

Age := FileAt;
GetData (FileAt) ; (where GetData is a procedure)

are appropriate.

Ex6rciS6S 12.1 l. Discuss the similarities between arrays and files.

2. Discuss the differences between arrays and files.

3. Indicate which of the following are valid declarations of files. Give an expla
nation for those that are invalid. State what the component type is for those
that are valid.

12.2 Working with Files 521

fa 12.2

Working with
Files

dBJRCTIVES

□ to understand the
concept of opening
a file

Objectives continued.

a. TYPE

FileOfAges = FILE OF □..lED;
VRR

RgeFile : FileOfRges;
h. TYPE

StringED = PACKED ARRAY [1..5D] OF Char;
FileOfNames = ARRAY [1..1DD] OF StringED;

VAR

NameFile : FileOfNames;
c. TYPE

FileA = FILE OF real;
FileB = FILE OF FileA;

VAR

RealFile : FileB;
d. TYPE

FileOfInt = FILE [l.,iaO] OF integer;
VAR

Filel ; FileOfInt;
e. TYPE

IntFile = FILE OF integer;
VAR

OldFile, NewFiler TempFile : IntFile;

4. Assume a program contains definition and declaration sections as listed.
State which buffer variables are available and the data type of each.
TYPE

FileOfRges = FILE OF □..lED;
IntFile = FILE OF integer;
RealFile = FILE OF real;
TruthFile = FILE OF boolean;
ListED = ARRAY [1..ED] OF real;
ListFile = FILE OF ListED;
Studentlnfo = RECORD

Name :

Age :
END;
FILE OF

PACKED

□. .lEO
ARRAY [1..EG] of char;

Studentlnfo;StudentFile =
VAR

Filel, FileE : FileOfRges;
OldFile : StudentFile;
NewFile : ListFile;
TempFile : RealFile;
TransFile : TruthFile;
A, B, C : IntFile;

5. Define a file type and then declare a fi le to be used with records of patients
for a physician. Information should include the name, address, height,
weight, age, sex, and insurance company of each patient.

@ @ El @

Now that we have examined the concepts of fi les, file windows, and buffer
variables, we need to see how values are transmitted to and from file
components. Let's first examine the process of putting data into a file.

Creating a File

Once a file has been declared in a program, entering data to the file is
referred to as writing to the file. Before writing to a file, the file window

522 FILES

° to be able to put
data into a file using
write or put

° to be able to retrieve

data from a file us

ing read or get
° to understand the

difference between

internal and exter

nal files

° to be able to use

procedures when
working with files

H]

must be positioned at the beginning of the file, by using the standard
procedure rewrite. This is referred to as opening a file. Thus, if FileA is
declared by

H

TYPE

IntFile = FILE OF integer;

VAR

FileA : IntFile;

then

rewrite (FileA);

opens FileA for receiving values of type integer. At this stage, the window
is positioned at the beginning of FileA; FileA is ready to have any previous
information overwritten, thus any previous values in FileA are no longer
available; and values may now be stored in successive components of
FileA (each value transferred is appended to the previous list of values).

Most versions of Pascal allow values to be transferred (written) to a file
by assigning the desired value to the buffer variable and using the standard
procedure put with the buffer variable as an argument. We can, for in
stance, store the values 10, 20, and 30 in FileA by

rewrite (FileA); •(Open for writing >
FileAt := ID;

put (FileA);
FileAt := BG;

put (FileA);
FileAt := 3D;

put (FileA);

The put procedure has the effect of transferring the value of the buffer
variable to the component in the window and then advancing the window
to the next component. After put is called, the buffer variable becomes
unassigned; this sequence is illustrated in Table 12.1.

Standard Pascal also allows values to be written to a file using the
procedure write. When this is used, the arguments for write are the file
name followed by one argument. Thus, the previous fragment could be

rewrite (FileA);
write (FileAp ID);
write (FileA, ED);
write (FileA, 3D);

■{ Open for writing >

The procedure writeln can only be used with files of type text.

The Standard Function eof

The Boolean function eof can be used on all files much the same as it is
used on text files. When a file is opened for writing, an end-of-file marker
is placed at the beginning of the file. This can be thought of as the window
being positioned at the end-of-file marker. When a value is transferred by
put or write, the end-of-file marker is advanced to the same component
position to which the window moves. The reason for this is relatively
obvious. When retrieving data from a file, we need to know when we have
reached the end of the file. The function eof is used with the fi le name
for an argument. As expected, eof (file name) is true when the window
is positioned at the end-of-file meirker. When writing to a file, eof (file
name) is always true.

12.2 Working with Files 523

TABLE 12.1

Using put to write to

a file

Pascal Statement

rewrite (FileA);

FileAl := 10;

put (FileA):

FileA T := 20;

put (FileA);

FileA T := 30;

put (FileA);

Buffer Effect

FileA T

20

FileA T

FileA T

30

FileA T

FileA t

window

FileA t

FileA t FileA

window

10

FileA

window

10

FileA

window

10

FileA

window

10 20

FileA

window

10 20

FileA

window

10 20 30

FileA

Retrieving File Data

In order to retrieve data from a file, you must first open the file for reading.
This is accomplished by using the standard procedure

reset (file name);

This has the effect of repositioning the window at the beginning of the
file. Furthermore, when a file is open for reading, the value of the file
component in the window is automatically assigned to the buffer variable.
The window can be advanced to the next file component by a call to the
standard procedure

get (file name);

Using the previous example of FileA with values as depicted

10 20 30

FileA

we could transfer values to the main program by

reset (FileA);
N1 := FlleAt;

get (FileA);
N2 := FileAt;

get (FileA);
N3 := FileAT;

524 FILES

Positioning of the window and transferring of values for this segment of
code is illustrated in Table 12.2.

TABLE 12.2

Using get to read
from a file

Pascal Statement

reset (FileA);

N1 := FileAt;

get (FileA);

N2 := FileAt;

Buffer Effect

window

10 20 30 ■

FileA

FileAt N1

window

N2

FileA

FileAt N1 N2

window

FileA

FileAt N1 N2

window

FileA

FileAt N1 N2

10

N3

10 20 30 ■

10 10

N3

10 20 30 ■

20 10

N3

10 20 30 ■

20 10 20

N3

get (FileA);

window

10 20 30 ■

FileA

FileAt N1 N2

30 10 20

N3

N3 := FileAt;

window

10 20 30 ■

FileA

FileAt N1 N2

30 10 20 30

N3

This example of retrieving data is a bit contrived since we know there
are exactly three components before the end-of-file marker. A more real
istic retrieval would use the eof function; for example,

12.2 Working with Files 525

reset (FileA);
WHILE NOT eof(FileA) DO
BEGIN

(process FileA t)

get (FileA)
END;

The Standard procedure read can also be used to transfer data from a
file. After the file has been opened for reading, read can be used with the
file name and variable names as arguments. Thus, either of the following
could replace the previous code fragment.

reset (FileA);
read (FileA, Nl);

read (FileA, N5);

read (FileA, N3);

Opening Files

A file cannot be opened for writing and reading at the same time. When
a file is opened for writing, it remains open for receiving values that will
be appended to the file until the window is repositioned by rewrite or
reset, or until the program is terminated. Thus, you may create a file and
then, later in the program, add to the file without reopening it. In a similar
fashion, before you first read from a file, it must be opened by reset (file
name). You can then transfer values from the file using either read or get.

Let's now consider a short example in which we do something with
each component of a file.

EX AMPLE 12.1 Suppose we have a file of reals and we want to create another file by subtracting
"" 5.0 from each component. Assume the following definitions and declarations.

TYPE

RealFile = FILE OF real;

VAR

OldFile : RealFile;

NewFlle : RealFile;

We can accomplish our objective by

reset (OldFile); ■(Open OldFile }
rewrite (NewFile); t Open NewFile }
WHILE NOT eof(OldFile) DO

BEGIN

NewFilet ;= OldFilet - 5.D;
put (NewFile);
get (OldFile)

END; le

Procedures and Files

Much of the work of processing files is accomplished by using procedures.
Thus, you should continue using the TYPE definition section for defining
file types. Files can be used as arguments in a procedure call, but in the
procedure heading, files must be listed as variable parameters. This re
quirement is implicit in the fact that you cannot assign a file variable all
at once (as you can a value parameter).

526 FILES

EXAMPLE 12.2 write a procedxire to accomplish the task of Example 12.1.
PROCEDURE Subtracts (VftR OldFile, NewFile : RealFile);

BEGIN

reset (OldFile);
rewrite (NewFile);
HHILE NOT eof(OldFile) DO

BEGIN

NewFilet := OldFilet - S.D;

put (NewFile);
get (OldFile)

END { of HHILE...DO }

END; { of PROCEDURE Subtracts }

This procedure is called from the main program by

Subtracts (OldFile, NewFile);

Note that even though no changes are made in OldFile, it is passed as a variable
parameter.

Internal and External Files

Recall from Chapter 8, files used to store data in secondary storage between
runs of a program are called external files, and files that are used for
processing only and are not saved in secondary storage are internal files.
External files must be listed in the program heading in the following form:

PROGRAM name (input, output, external file name);

They are declared in the variable declaration section. Internal files are not
listed in the program heading but are declared in the variable declaration
section.

Typically, a programming problem has some external file in secondary
storage that is to be updated in some form. This requires some temporary
internal files to be declared for use in the program. When the program is
exited, all external files are saved in secondary storage while the internal
files are no longer available.

Processing Files

Before looking at a specific problem for processing files, let's consider the
general problem of updating an external file. Since we eventually will
rewrite the external file, we must be careful not to erase the original
contents before they have been saved and/or processed in some temporary
internal file.

To close this section we consider a relatively short example of updating
a file of test scores for students in a class. In the last section of this chapter,
we will see a detailed treatment of processing files.

EXAMPLE 12.3 Assume we have an external file consisting of total points for each student in a
class. Furthermore, assume the data file (input) contains test scores that are to be
added (in the same order) to the previous totals to obtain new totals. A first-level
pseudocode solution to this problem is

1. Copy the totals to a temporary file from the external file
2. Process the temporary file
3. Copy the temporary file to the external file

12.2 Working with Files 527

Assume the program heading is

PROGRAM Grades (input, output, TotalPts);

and the definitions and declarations are

TYPE

IntFlle = FILE OF integer;
VAR

TotalPts : IntFile;

TeraplFile : IntFile;
TempSFile : IntFile;

A procedure to copy the contents from one file to another is

PROCEDURE Copy (VAR OldFile, NewFile : IntFile);
BEGIN

reset (OldFile);
rewrite (NewFile);
WHILE NOT eof(OldFile) DO
BEGIN

NewFilet :=01dFilet;
put (NewFile);
get (OldFile)

END < of WHILE...DO >

END; < of PROCEDURE Copy }

This is called from the meiin program by

Copy (TotalPts, TemplFile);

We can now process TemplFile by adding corresponding scores from the data file.
A procedure for this is

PROCEDURE AddScores (VAR OldFile, NewFile : IntFile);
VAR

NewScore : integer;
BEGIN

reset (OldFile);
rewrite (NewFile);
WHILE NOT eof(OldFile) DO
BEGIN

read (NewScore); < Get score from data file >
NewFilet := NewScore + OldFilet;
put (NewFile);
get (OldFile)

END < of WHILE...DO >

END; { of PROCEDURE AddScores >

This procedme could be called from the main program by

AddScores (TemplFile, TempEFile);

At this stage, the updated scores are in Temp2File and they need to be stored in
the external file TotalPts before the program is exited. This is done by another
call to Copy in the main program. Thus,

Copy (TempEFile, TotalPts);

achieves the desired results. The main program is then

BEGIN { Main program }
Copy (TotalPts, TemplFile);
AddScores (TemplFile, TempEFile);
Copy (TempEFile, TotalPts)

END. ■{ of main program > u

This example obviously overlooks some significant points; for example,
how do we know the scores match up, that each student's new score is

528 FILES

NOTE OF INTERE

Relational Databases
What's different about relational technology?

The history of data management is full of tech
nologies proclaimed to solve everyone's prob
lems, only to be found wanting later. Hierarchi
cal systems provide one example. And yet the
advances of the past, as painstaking as they were,
have made the maintenance and access of infor

mation easier. Each step in the long chain of
technical improvements has increased the usa
bility of your computing environment.

Originally, there were only singular "flat" files.
Each department, and often each program, had
its own file to capture data. If the same infor
mation was captured by another department,
there were two redundant files. Any field changes
(for example, the length of a person's last name)
would require changes in every program that re
corded this information. This often produced a
"domino effect" on the maintainability of the
system. And if you needed information from both
the registrar's office and the bursar's office, your
only option was to match information from two
distinct files by hand.

Next, the concept of a database was adopted
by the industry. This technology, the basis of all
futiure improvements, allows programs to be in
dependent of the physical structure of the in
formation and to sheire common information re

quirements. Relationships between information
(such as a person's identification number and
the associated mailing address) can be main
tained within the structure of the database. As

the amount of redundancy declines, simple
questions can be answered. But the real benefit
of a database is the improvement in maintain
ability.
Now technology has made another leap into

the future with the advent of relational technol

ogy. The benefits of each of the earlier database
systems were carefully extracted and blended
with mathematics. The outcome is a system that
makes it easy for the user to picture the infor
mation and to retrieve the answers to important
questions.

EXAMPLE 12.4

added to that student's previous total? We will address these issues later
in the chapter.

Let's see how one file can be appended to an existing file. Assume the files are
named OldFile and NewFile and the task is to append NewFile to OldFile. We
will use a temporary file, TempFile, for completing this task. A first-level pseu
docode development for this problem is

1.

2.

3.

5.

Reset OldFile and NewFile

Open TempFile for writing
WHILE NOT eof (OldFile) DO
3.1 write elements to TempFile
WHILE NOT eof (NewFile) DO
4.1 write elements to TempFile
Copy TempFile to OldFile

Step 3 can be refined to

3. WHILE NOT eof (OldFile) DO
3.1 write elements to TempFile

3.1.1 assign OldFile buffer value to TempFile buffer
3.1.2 write value to TempFile
3.1.3 advance window of OldFile

The code for this step is

12.2 Working with Files 529

WHILE NOT eof(OldFile) DO

BEGIN

TerapFilet := OldFilet;
put (TempFile);
get (OldFile)

END; < of WHILE NOT eof >

The complete code for this example is left as an exercise.

Exercises 12.2 1. Review the difference between internal files and external files.

2. Write test programs that illustrate the following.

a. What happens when you try to write to a file that has not been opened
for writing.

b. What happens when you try to get data from a file that has not been
reset.

c. What happens when a procedure uses a file as a value parameter.

3. Declare an appropriate file and store the positive multiples of 7 that are
less than 100.

4. Explain how the file of Exercise 3 can be saved for another program to use.

5. Consider the file with integer components as shown.

0 5 10 15 ■

FivesFile

Write a segment of code that would assign the values respectively to vari
ables A, B, C, and D.

6. Consider the following file with component values as illustrated.

TYPE

RealFile = FILE OF real;
VAR

Prices : RealFile;

15.95 17.99 21.95 19.99 ■

Prices

a. Declare a new file and put values in the components that are 15 percent
less than the values in components of Prices.

b. Update the values in Prices so that each value is increased by 10
percent.

7. Discuss the difference between reset and rewrite.

8. You have been asked to write a program to examine a file of integers and
replace every negative number with zero. Assume IntFile has been appro
priately declared and contains five integer values. Why will the following
segment of code not work?

rewrite (IntFile);
FOR J := 1 TO 5 DO

BEGIN

get (IntFile);
IF IntFilet < 0 THEN

IntFilet := □;
put (IntFile)

END;

530 files

g. Consider the files declared by

TYPE

FileOfInt = FILE OF integer;

VftR

Filel/ FileB : FileOfInt;

Find all errors in each of the following.

a. reset (Filel);
FOR J := 1 TO 5 DO

BEGIN

Filelt := 10 * J;

put (Filel)
END;

b. rewrite (Filel);
FOR J := 1 TO 5 DO

BEGIN

Filelt := 10 * J;

put (Filel)

END;

c. rewrite (Filel);
FOR J := 1 TO 5 DO

BEGIN

Filel := ID * J;

put (Filel)
END;

d. rewrite (Filel);

FOR J := 1 TO 5 DO

Filelt := J * 10;

e. reset (FileB);
WHILE NOT eof(Filel) DO

BEGIN

FileBt := Filelt;

put (FileB);

get (Filel)

END;

f. reset (FileB);

rewrite (Filel);

WHILE NOT eof(FileB) DO

BEGIN

Filelt := FileBt;

put (Filel);

get (FileB)

END;

10. Assume the files OldFile and NewFile are declared as

TYPE

IntFile = FILE OF integer;
VAR

OldFile, NewFile : IntFile;

Furthermore, for each of the following, assume OldFile has component
values as illustrated.

-2-1012

OldFile

Indicate the values in components of both OldFile and NewFile after each
of the following segments of code.

12.2 Working with Files 531

a. reset (OldFile);

rewrite (NewFile);

WHILE NOT eof(OldFile) DO

BEGIN

IF OldFilet > 0 THEN

BEGIN

NewFilelt := OldFilet;

put (NewFile)

END;

get (OldFile)

END;

b. rewrite (OldFile);

rewrite (NewFile);

WHILE NOT eof(OldFile) DO

BEGIN

IF OldFilet > □ THEN

BEGIN

NewFilet := OldFilet;
put (NewFile)

END

END;
c. reset (OldFile);

rewrite (NewFile);
WHILE NOT eof(OldFile) DO

BEGIN

NewFilet := abs(01dFilet);
put (NewFile);
get (OldFile)

END;
rewrite (OldFile);
reset (NewFile);
WHILE NOT eof(NewFile) DO

BEGIN

OldFilet := NewFilet;
put (OldFile);
get (NewFile)

END;

11. Assume OldFile and NewFile are as declared in Exercise 10. Furthermore,
assume OldFile contains the values

8 -17 0 -4 21 ■

OldFile

Indicate the output from the following segment of code and the values of
the components in OldFile and NewFile.

reset (OldFile);
rewrite (NewFile);
WHILE NOT eof(OldFile) DO

BEGIN
NewFilet ;= OldFilet;
IF NewFilet < □ THEN

writeln (NewFilet)
ELSE

put (NewFile);
get (OldFile)

END;

532 FILES

12. Assume you have declared three files (Filel, File2, and File3) in a program
such that the component type for each file is real. Furthermore, assume
that both Filel and File2 contain an unknown number of values. Write a

segment of code to transfer the corresponding sum of components from
Filel and File2 into File3. Since Filel and File2 may have a different
number of components, after one end-of-file is reached, you should add
zeros until the next end-of-file is reached. Thus, yoiu: segment produces

1

b o 2.5
10.0
B

Filel

6.1
3.8
0.7-
B

File2

2.1
3.8
8.1-10.0
B

Files

13. Write a complete program that finishes the work started in Example 12.4.
Your program should print out the contents of each file used and of the
final file.

B 12.3

Files with

Structured

Components

dBTECTtV^S

a to be able to declare

files whose compo
nents are records or

arrays

a to understand why
files with structured

components are

used

a to be able to create

a file of records

from a text file

a to be able to manip

ulate files with

structured

components

In actual practice, components of files are frequently some structmed data
type. A program might use a file of arrays or a file of records and when
such a file is desired, you declare it as an external file and then create
components from a text file. Once the data have been thus converted, you
Ccm access an entire array or record rather than accessing individual fields
or components. The data are also saved in structured form between runs
of a program. When data have been stored in structured components, it
is relatively easy to update and work with these files. For example, a
doctor might have a file of records for patients and wish to insert or delete
records of the patients, choose to examine the individual fields of each
record, print an alphabetical list, or print a list of patients with unpaid
bills.

Let's now examine a typical declciration. Suppose you are writing a
program to use a file of records. Each record contains information about
a student in a computer science class: in particular, the student's name,
three test scores (in an array), identification number, and test average. A
declaration for such a file could he

TYPE

StringED = PRCKED ARRAY [1..SD] OF char;
Scores = ARRAY [1..3] OF D..1DD;

Studentlnfo = RECORD

Name : StringED;
Score : Scores;

IDNumber : □..RSR;
Average : real

END; i of RECORD Studentlnfo >
StudentFlle = FILE OF Studentlnfo;

VAR

Student : StudentFlle;

Student is a file of records that can be illustrated as shown in Figure 12.1.
After Student has been properly opened for reading by reset (Student),

the statement

12.3 Files with Structured Components 533

FIGURE 12.1

File Student

NaiiiiB

:.-. . ::-J

SGpi^et

Average

iDNumber

■ '?T^'-v .-^ -r.vrr^r~"-

Name

! ■ ""'-7;

Score

Average

IDNiiml^r

Student

get (Student);

causes the contents of a record to be transferred to Student t. The field

identifiers are

student!.Name

Studentt.IDNuraber

Studentt.Score

Studentt.Average

Studentt .Score is an array. Components of this array are

Studentt.Score[l]

Studentt.Score[E]

Studentt.Score[3]

If you wish to compute the average for a student whose record is in the
buffer, you can write

Sura := □;
WITH Studentt DO

BEGIN

FOR J := 1 TO 3 DO

Sum := Sum + SecretJl;
Average := Sum / 3

END;

At this stage, you may want to save this computed average for later use.
Unfortunately, put (Student) will not work because the file is open for
reading rather than writing. We will solve this and other problems in the
remainder of this section as we investigate methods of manipulating files.

Creating a File of Records

One of the first problems to be solved when working with files whose
components are structured variables is to transfer data from some text file
(usually input) into the appropriate file of structured components. Once
the new file with structured components has been created, it can be saved
in secondary storage by declaring it as an external file. To illustrate the
process of creating a file of records, let's continue the example of records
for students in a computer science class. Recall the definitions and sub
sequent declaration

534 FILES

FIGURE 12.2

File Student with

values

TYPE

StringBD = PACKED ARRAY OF char;
Scores = ARRAY [1..3] OF

Studentlnfo = RECORD

Name : StringBD;
IDNuraber : □..RRR;
Score : Scores;
Average : real

END; { of RECORD Studentlnfo >
StudentFile = FILE OF Studentlnfo;

VAR
Student ; StudentFile;

Before we can create the file of records, we need to know how data were
entered in the text file (assume input). For purposes of this example,
assume data for each student are contained on a single line, 20 positions
are used for the name, and an identification number is followed by three
test scores. Thus, the data file could he

Smith John 065 89 92 76 [Jones Mar^ 021 93 97 85 I B

A procedure to create the file of records is
PROCEDURE CreateFile (VAR Student : StudentFile);

VAR
J : integer;

BEGIN
rewrite (Student); i Open for writing }
WHILE NOT eof(input) DO

BEGIN { Get data for one record >
WITH Studentt DO

BEGIN

FOR J := 1 TO BO DO
read (NameCJ]);

read (IDNumber);
readln (ScoreCl]/ Score!B]/ Score[3])

END;
put (Student) t Put buffer contents in file

END

END; < of PROCEDURE CreateFile >

This procedure is called from the main program by
CreateFile (Student);

After it is executed, we have the records shown in Figure 12.2.

i ■ ■ ■ I

NainS; Name

-.l

'I Average

Score

IDNumfier

t :«]5i

■iDNiimber

Student

12.3 Files with Structured Components 535

File Manipulation

Several problems are typically involved with manipulating files and file
components. Generally, a program starts with cm existing file, revises it
in some fashion, and then saves the revised file. Because files in standard

Pascal must be accessed sequentially, this usually necessitates copying
the existing external file to a temporary internal file, revising the temporary
file, and copying the revised file to the external file. The existing external
file is often referred to as the master file. The file containing changes to
be made in the master file is called the transaction file.
To illustrate a simple update problem, let's consider again the problem

using the file containing records for students in a computer science class.
Assume that the external file has been named Student. Now suppose we
wish to delete a record from Student (master file) because some student
moved to Australia. This problem can be solved by searching Student
sequentially for the record in question. As the name in each record is
examined, if the record is to be kept, it is put in a temporary file. The
desired record is not transferred, thus accomplishing the update. Finally,
Student is rewritten by copying the contents of the temporary file to
Student.

A first-level pseudocode development is

1. Get the name to be deleted

2. Search Student for a match copying each nonmatch to TempFile
3. Copy the remainder of Student to TempFile
4. Copy TempFile to Student

Using the previous declarations and assuming that the name of the student
whose record is to be deleted has been read into MovedAway, step 2 can
be solved by

reset (Student); < Open the files >
rewrite (TempFile);
Found := false;

WHILE NOT eof(Student) AND NOT Found DO
BEGIN

IF Studentt.Name = MovedAway THEN
Found := true

ELSE

BEGIN

TerapFileT := Studentt;
put (TempFile)

END;

get (Student)
END; { of search for a student name >

■{ Now copy the rest of student file }

WHILE NOT eof(Student) DO
BEGIN

TempFilet := Studentt;
put (TempFile);
get (Student)

END;

We now need to copy TempFile to Student so that the revised master
file is saved as an external file. A procedure for this was developed in
Section 12.2; it is called from the main program by

536 FILES

FIGURE 12.3

Merging files

Copy (TempFile/ Student);

As a second illustration of file manipulation, let's consider the standard
problem of merging two sorted files. For example, suppose the master file
is a file of records and each record contains a field for the name of a

customer. Furthermore, assume this file has been sorted alphabetically by
name. Now suppose an alphabetical listing of new customers is to be
merged with the old file to produce a current file containing records for
all customers sorted alphabetically by name.

As before, we use a temporary file to hold the full sorted list and then
copy the temporary file to the master file. This can be envisioned as
illustrated in Figure 12.3.

MasterList

TfempFile

NewList

An algorithm for the merge is not too difficult. All files are first opened.
Then the initial records from MasterList and NewList are compared. The
record containing the name that comes first alphabetically is transferred
to TempFile and the next record is obtained from the file containing the
record that was transferred. This process continues until the end of one
file is reached. At that time, the remainder of the other file is copied into
TempFile.

Assuming that each record has a field identified by Name, which is of
type StringSO, and that FileType has been defined as the type for files
being used, a procedure for merging is

PROCEDURE Merge (VRR Master, NewFile : FileType);
VRR

TempFile : FileType;
BEGIN

reset (Master);
reset (NewFile);

rewrite (TempFile);

< Compare top records until an eof of one of the
input files is reached >

WHILE NOT eof(Master) AND NOT eof(NewFile) DO
BEGIN

IF Mastert.Name < NewFilet.Name THEN

BEGIN

TempFilet := MasterT;
get (Master)

END

ELSE

BEGIN

TempFileT := NewFilet;
get (NewFile)

END;

put (TempFile)
END;

12.3 Files with Structured Components 537

Backup and Recovery

The need for organizational backup and recovery
procedures is due to two types of events in par
ticular: natural disasters and simple human er
rors. Natural disasters, although infrequent, are
typically large-scale emergencies that can com
pletely shut down, if not ruin, an organization's
computer facilities. Examples are such poten
tially catastrophic events as fires, floods, and
earthquakes. Human errors, on the other hand,
are the most frequent cause of computer prob
lems (has anyone NEVER erased the wrong file
by mistake?), but may not be as crippling as nat
ural disasters. Although they may not result in
catastrophic loss, human errors are, at the least,
a nuisance to affected individuals.

Organizations have developed a variety of
backup and recovery procedures to cope with
system failures and to reduce resultant losses.
To reduce losses from natural disasters, some

organizations have prepared contingency plans
covering backup computer locations, off-site
program and data storage, and emergency staff
ing requirements. These contingency plans can
usually be put into effect quickly and with min
imal disruption of computer services. To mini
mize human errors (accidents can never be elim
inated), organizations typically try to provide
sound user-training programs and user-based
physical backup measures.

{ Now copy the remaining names >

WHILE NOT eof(Master) DO

BEGIN

TempFileT := MasterT;
put (TerapFile);
get (Master)

END;

WHILE NOT eof(NewFile) DO
BEGIN

TempFileT := NewFilet;
put (TerapFile);
get (NewFile)

END;

< Now copy back to Master >

rewrite (Master);

reset (TerapFile);
WHILE NOT eof(TerapFile) DO
BEGIN

MasterT := TempFileT;
put (Master);

get (TerapFile)
END

END; < of PBOCEDDRE Merge >

This procedure can be called from the main program by

Merge (Master, NewFile);

A final comment is in order. It is frequently necessary to work with
files of records that have been sorted according to a field of the record.
Since you might want to work with the records sorted by some other field,
you must first be able to sort an unsorted file. In general, this is done by
transferring the file components to array components, sorting the array,
and transferring the sorted array components back to the file. This means

538 FILES

that you must have some idea of how many components are in the file
and declare the array length accordingly. The physical setting of a problem
usually provides this information. For example, physicians will have some
idea of how many patients (100, 200, or 1,000) they see.

Exercises 12.3 !• Declare appropriate files for each of the following. Fields for each record are
indicated.

Patient records for a physician; include name, age, height, weight, insur
ance carrier, and amount owed.

Flight information for an airplane; include flight number, airline, arrival
time, arriving from, departure time, and destination,

c- Bookstore inventory; include author, title, stock number, price, and
quantity.

d« Records for a magazine subscription agency; include name and address,
indicating street number, street name, city, state, and zip code.

2* Write a test program that allows you to declare a file of records, read data
into the file, and print information from selected records according to the
value in some key field.

2* Suppose an input text file contains information for students in a class. Each
student's information will use three data lines as illustrated.

Name Student Number Ten Quiz Scores Four Test Scores

111 IJones John

T
position 21

Declare a file of records to be used to store this data.

Write a procedure to create a file of records containing appropriate infor
mation from the text file.

Write a procedure to sort the file alphabetically.

Illustrate the values of components and fields in Student and Studentt dur
ing the first pass through the loop in PROCEDURE CreateFile.

Consider the file Student declared by

TYPE

String2D = PACKED ARRAY [1..50] OF char;

Scores = ARRAY [1..3] OF

Studentlnfo = RECORD

Name : StringED;
IDNuraber : □..qqq;
Score : Scores;
Average : real

END;
StudentFile = FILE OF Studentlnfo;

VAR

Student : Studentlnfo;

Write a procedure for each of the following tasks. In each case, show how
the procedure is called from the main program. (You may assume the fi le
has been alphabetized.)

Add one record in alphabetical order.
Add one record to the bottom of the fi le.
Update the record of 'Smith Jane ' by changing her score on the
second test from an 82 to an 89.

12.3 Files with Structured Components 539

d. The scores from test three are in a data hie. Each line contains an identi-

hcation number followed by three integer scores. Update Student to in
clude these scores (the hrst two scores have already been entered).

e. Assume all test scores have been entered. Update Student by computing
the test average for each student.

f. Print a list containing each student's name and test average; the list
should be sorted by test average from high to low.

FOCUS QN The chapter summary program for this chapter is an elementary version
PROGRAMMING that could be expanded to a comprehensive programming project. Suppose

the registrar at your institution wants a program to allow updating a file
of student records. A MasterFile of student records currently exists; it is
sorted alphabetically. Each record contains a field for the student's name,
ID number, grade point average, and total hours completed. This file is to
be updated by information contained in a transaction file. Each line in
the transaction file contains a student number, letter grade for a course
taken, and number of credit hours for the course. A typical data line would
be

333112040A 3l
T

grade

For each data line in the transaction file, your program should search the
contents of the MasterFile for a match. If a match is found, appropriate
changes should be made in grade point average and total hours completed.
If no match is found, the information should be printed in an Exception
Report. After all transactions are completed, an alphabetized list should
be printed and the MasterFile should be updated.
A first-level pseudocode development for this is

1. Open the files
2. Copy contents of MasterFile to an array
3. Update the records
4. Print the list

5. Update the MasterFile

A complete structure diagram for this program is given in Figure 12.4.
Module specifications for the main modules are

1. OpenFiles Module
Data received: None

Information returned: None

Logic: Use reset to prepare files for reading.

2. LoadArray Module
Data received: File of records

Information returned: Array of records
Number of records

Logic: Copy contents of each record in MasterFile to a record in
Student.

Count the number of records in the array.

540 files

FIGURE 12.4

Structure chart for

the file update
program

Print

heading
WHILE NOT
eof DO

Search
for
match '

Print
listarray

IF match THEN
update record

ELSE

print as exception

3. UpdateRecords Module

Data received: An array of records
Length of the array
A transaction file

Information returned: An updated array of records
Logic: For each data line in TransactionPile, search for a match in

the array.
IF a match is found, THEN
update the record

ELSE

print out an Exception Report

4. PrintList Module

Data received: A sorted array of records
Length of the array

Information returned: None

Logic: Print a heading.
Print contents of each record.

5. UpdateMasterFile Module

Data received: An array of records
Length of the array
MasterFile of records

Information returned: An updated MasterFile
Logic: For each record in Student, copy contents into a record in

MasterFile

12.3 Files with Structured Components 541

Further pseudocode development is

1. Open the files
1.1 reset MasterFile

1.2 reset TransactionFile

2. Copy contents of MasterFile to an array
2.1 set counter to zero

2.2 REPEAT

2.2.1 increment counter

2.2.2 copy contents of one record
UNTIL eof (MasterFile)

3. Update the records
3.1 print Exception Report heading
3.2 WHILE NOT eof (TransactionFile) DO

3.2.1 search for a match

3.2.2 IF NOT Found THEN

print as part of Exception Report
ELSE

update the record
4. Print the list

4.1 print a heading
4.2 print an alphabetized list

5. Update the MasterFile
5.1 rewrite MasterFile

5.2 FOR each record in the array DO
copy contents to a record in MasterFile

Step 3.2.1 is a sequential search of the array. If a match is found, the array
position is returned. If not, a zero is returned. The portion of step 3.2.2
designed to update the record consists of incrementing the grade point
average. A CASE statement is used to direct action for grades of 'A', 'B',
*C', 'D', *E', 'W', T. This program assumes valid data are contained in
TransactionFile. A complete program for this problem is

PROGRAM FileDpdate (input, output, MasterFile, TransactionFile);

i This program updates a file of student records. Transactions }
{ are stored in the text file TransactionFile. Each line >
< consists of a student number, grade for a course taken, and >
< credit hours for the course. The file of records is copied >
< to an array of records for processing. This facilitates >
< searching for matches of student numbers. It is assumed the >
< master file is alphabetized. If it is not, one could add a }
•{ procedure to sort the array before rewriting the master file.}

CONST

MaxLength = 5D0;

TYPE

StringR = PACKED ARRAY [l..q] OF char;
StringPD = PACKED ARRAY [1..P0] OF char;
StudentRecord = RECORD

Name : StringPD;
IDNumber : Strings;
GPA : real;

Hours : integer

END; i of RECORD StudentRecord }

542 FILES

StudentList = ARRAY t1..MaxLength] OF StudentRecord;
RecordsFile = FILE OF StudentRecord;

VAR

NumberOfRecords : integer; •(Number of records read }
Student : StudentList; < Array of student records }
MasterFile : RecordsFile; < Master file of student records >
TransactionFile : text; ■(Transaction file for updating }

PROCEDURE OpenFiles (VAR MasterFile : RecordsFile;
VAR TransactionFile : text);

< Given: Nothing >
i Task: Open the files for reading }
{ Return: MasterFile and TransactionFile ready to be read >

BEGIN

reset (MasterFile);
reset (TransactionFile)

END; { of PROCEDURE OpenFiles >

{**********************♦**}

1

PROCEDURE LoadArray (VAR MasterFile : RecordsFile; ^
VAR Student : StudentList;
VAR NumberOfRecords : integer);

i Given: Master file containing data for each student }
{ Task: Create an array of student records from MasterFile }
•I Return: Array of student records and number of records }

BEGIN
NumberOfRecords := □;
REPEAT

NumberOfRecords := NumberOfRecords + 1;
Student[NumberOfRecords] := MasterFilet;
get (MasterFile)

UNTIL eof(MasterFile) OR (NumberOfRecords = MaxLength);
IF NOT eof(MasterFile) THEN

writeln ('There are more data. ')
END; < of PROCEDURE LoadArray >

•{ ******♦************************************»♦********************>

FUNCTION NewGPA (Hours, CourseHours : integer;
GPA, HonorPoints : real) : real;

•(Given: Total hours accumulated, credit hours for the
< course completed, current GPA, HonorPoints
< corresponding to the letter grade received
{ Task: Compute the new grade point average
{ Return: New grade point average

VAR

OldHours : integer;

BEGIN

OldHours := Hours;
Hours := Hours + CourseHours;
NewGPA := (OldHours * GPA + CourseHours * HonorPoints) / Hours

END; <. of FUNCTION NewGPA }

} 2

12.3 Files with Structured Components 543

FUNCTION SeqSearch (Student : StudentList;
IDNumber : String^;
NuraberOfRecords : integer) integer;

{ Given: An array of student records/ a student ID number/
i and the number of records

•(Task: Sequentially search the array to find a match for
■{ the ID number

< Return: The index of the record where a match was found;
{ return 0 if not match

VAR

Found : boolean;
LCV : integer;

BEGIN
SeqSearch := □;
Found := false;
LCV := 0;
WHILE (LCV < NumberOfRecords) AND (NOT Found) DO

BEGIN
LCV := LCV + 1;
IF Student[LCV].IDNumber = IDNumber THEN

BEGIN

SeqSearch := LCV;
Found := true

END < of IF...THEN >
END < of WHILE loop }

END; i of FUNCTION SeqSearch >

PROCEDURE UpdateRecords (VAR TransactionFile : text;
VAR Student : StudentList;
NumberOfRecords : integer);

Given: A transaction file for updating records/ an array
of student records/ and the number of student
records

Task: Read a line from the transaction file; search array
Student for a match of IDNumber; IF match THEN
update hours and GPA; ELSE print as part of
Exception Report

Return: An updated array of student records

CONST
Skip = • • ;

VAR

J/ Index/ CourseHours : integer;
IDNumber : StringR;
Grade : char;
MatchFound : boolean;

BEGIN

< Print heading for the Exception Report >

writeln ("EXCEPTION REPORT' :35);
writeln ("ID NUMBER" :5D/ "GRADE" :15/ "HOURS" :10);

> 3

544 FILES

writeln (Skip:ID, ' ');
writeln;

i Now read the transaction file >

WHILE NOT eof(TransactionFile) DO

BEGIN

FOR J := 1 TO q DO

read (TransactionFile, IDNuraberlJ]);
readln (TransactionFile, Grade, CourseHours);
Index := SeqSearch(Student, IDNumber, NumberOfRecords);
MatchFound := Index <> □;
IF MatchFound THEN -C Update student record >

WITH Studentllndex] DO
CASE Grade OF

'R' : BEGIN

GPR := NewGPR(Hours, CourseHours, GPA, 4.0);
Hours := Hours + CourseHours

END;
•B' : BEGIN

GPR := NewGPR(Hours, Coursehours, GPR, 3.G);
Hours := Hours + CourseHours

END;
•C : BEGIN

GPR := NewGPR(Hours, CourseHours, GPR, 5.D);
Hours := Hours + CourseHours

END;
•D> : BEGIN

GPR := NewGPR(Hours, CourseHours, GPR, l.D);
Hours := Hours + CourseHours

END;
•E' : BEGIN

GPR := NewGPR(Hours, CourseHours, GPR, □.□);
Hours := Hours + CourseHours

END;
•W', 'I' : •{ do nothing }

END { of CRSE Grade >
ELSE < Print as part of Exception Report }

writeln (IDNumber:2D, GraderlD, CourseHours:ID)
END { of WHILE NOT eof (TransactionFile) >

END; { of PROCEDURE UpdateRecords }

PROCEDURE PrintList (VRR Student: StudentList;
NumberOfRecords : integer);

{ Given: Rn array of student records and number of records >
< Task: Print a list of records with appropriate heading >
•t Return: Nothing >

VRR

J : integer;

BEGIN

•{ Print a heading for the revised list > ^4

writeln; writeln;
writeln ('UPDRTED REPORT' :3D);
writeln ('STUDENT FILE LISTING' :3<);
writeln;

12.3 Files with Structured Components 545

writeln 'ID NUMBER':a5, 'GPA'rfi, •CREDITS ID);

writeln (' ');
writeln;

{ Now print the list >

FOR J := 1 TO NuraberOfRecords DO

WITH StudentCJ] DO

writeln (Name:ED/ IDNuraber:15/ GPA:fl:2/ Hourstfl)
END; { of PROCEDURE PrintList > ^

•{********♦***♦*****#>

PROCEDURE UpdateMasterFile (VAR MasterFile : RecordsFile;
VAR Student : StudentList;
NuinberOfRecords : integer);

i Given: An array of student records and the array length >
< Task: Copy the records into MasterFile for storage >
< Return: A file of student records >

VAR
J : integer;

BEGIN
rewrite (MasterFile);
FOR J := 1 TO NumberOfRecords DO

BEGIN
MasterFilet := StudenttJ];
put (MasterFile)

END < of FOR loop >
END; < of PROCEDURE UpdateMasterFile >

■{**********♦♦******************»*♦*******♦**************»*******>

BEGIN < Main program >
OpenFiles (MasterFile, TransactionFile);
LoadArray (MasterFile, Student, NumberOfRecords);
UpdateRecords (TransactionFile, Student, NumberOfRecords);
PrintList (Student, NumberOfRecords);
UpdateMasterFile (MasterFile, Student, NumberOfRecords)

END. < of main program >

> 5

If you use data in MasterFile as
BARRETT RODA 3/:5t?aqGi 3.b7 E3

BORGNINE ERNIST 3bq3asat3 A,IS lA

CADABRA ABRA lS3<5GSfl7 3.33 S3

DJIKSTRA EDGAR 3<5RRa7b5 3.qG 33

GARZELONI RANDY E.EG la

GLUTZ AGATHA 3EGt7aE3G 3.GG EE

HOLBRUCK HALL 3ElSGa7t5 3.5G Eq

HUNTER MICHAEL E3<G3ailE E.5G EE

JOHNSON ROSALYN 3<51E3LRG 3.E5 EG

LOCKLEAR HEATHER 3Lq<ELl>L3 <.GG 3G

MCHANN ABAGAIL 33311EG<G 3.q7 A2,

MILDEW MORRIS E3<aiEG57 3.b7 3A

MORSE SAMUEL 33<55a77a 3.GG Ea

NOVAK JAMES E^asE^sqa 1.5G 13

OHERLAHE TERRY 333LE,EEEE E.75 El

RACKHAM HORACE 3AS&7&f=A3 A.00 3G

SNYDER JUDITH 35Lqi35aG E.75 SA

VANDERSYS RALPH 3t71EGqa7 3.E3 EE

nLES

VAUGHN SARAH 23a<qfl7tS 3.DD 24

WIDGET WENDELL 444113333 1.25 ID

WILSON PHILIP 3457iqt42 3.DD 25

WITWERTH JANUARY 3t713a3D2 2.ID 2D

WORDEN JACK 355241234 3.33 25

WOURTHY CONSTANCE 342052034 3.50 32

and data in TransactionFile as

333112D4DA 3

333112D4DA 4

33311204DA 4

444113333A 3

444113333A 4

444113333A 3

444113333A 2

23fl45a7t5A 3

23a45a7tD5A 3

23a45a7t5A 4

23a45a7LLA 4

3b53252L3A 3

3b53252t3A 3

3L53252L3A 4

3t53252t3C 4

32DL7a23DA 5

32Dt,7a23DA 3

32Dt7a23DA 3

32DL7a23DA 4

44422LLtLA 3

44422LLLLA 4

44422(>LbLA 3

44422febt7A 4

3b713a3D2A 3

3L713a3D2A 3

3L713a3D2A 3

3L713a3D2B 3

3t712D5a7A 4

3b712D5a7A 4

3L712D5a7A 3

3t712D5a7I 3

3L712D5a7A 3

3L542L1L3A 4

3t542LlL3A 3

345t7a5DlA 3

345t7a5DlA 4

■ 345t7a5DlA 3

345b7a5DDA 4

12345D5a7A 3

12345D5a7A 3

12345D5a7A 4

12345D5a7E 3

234D5ail2A 3

234D5ail2A 3

44422LLLLD 3

3L713a3D2D 3

12345D5a7C 4

12345D5a7D 3

12345D5a7A 2

333112D4DD 4

333112D4DA 3

444113333D 4

444113333A 3

3L52352L3D 4

3b52352t3A 3

12.3 Files with Structured Components 547

3a0t76EBDD 3

3E0t7QE3DD A

3E0t7aE3aH 3

33<EEqQE3D 4

output for this program is

EXCEPTION REPORT

ID NUMBER GRADE HOURS

NAME

E3a4qa7LL A A

444EEE>bb7 A A

345b7flqDD A A

3bRE35EL3 D A

3tqE35EL3 A 3

334EEqOE3 D A

UPDATED REPORT

STUDENT FILE LISTING

ID NUMBER 1CPA CREDITS

BARRETT RODA 345t7aqDl 3.77 33

BORGNINE ERNIST 3tq3a5at,3 3.77 aa

CADABRA ABRA ia345Dqa7 3.01 45

DJIKSTRA EDGAR 345qqa7t5 3.qD 33

GARZELONI RANDY 444aaLbLL a.bb 31

GLUTZ AGATHA 3aab7aa3a 3.Da 44

HOLBRUCK HALL 3aiqDa7ts 3.so eq

HUNTER MICHAEL a34Dqaiia a.aa aa

JOHNSON ROSALYN 345ia3LqD 3.as ao

LOCKLEAR HEATHER 3Lq4aLlL3 4.DO 37

MCMANN ABAGAIL 3331ia040 3.7a 5q

MILDEH MORRIS a34aiaD57 3.b7 34

MORSE SAMUEL 33455a77a 3.DD aa

NOVAK JAMES 34a5a45qa 1.50 13

OHERLAHE TERRY 333LLaaaa a.75 ai

RACKHAM HORACE 345a7at43 4 30

SNYDER JUDITH 35Lqi35aO a.75 34

VANDERSYS RALPH 3L7iaDqa7 3.53 3b

VAUGHN SARAH a3a4qa7fcs 3.aq 34

HIDGET WENDELL 444113333 a.b4 aq

WILSON PHILIP 3457iqb4a 3.DD 35

WITWERTH JANUARY 3b713a3Da a.53 33

WORDEN JACK 35qa4ia34 3.33 a5

WOURTHY CONSTANCE 34aDqea34 3.50 33

RUNNING AND

DEBUGGING TIPS
1. Be sure all files (except input and output) are properly opened for reading and

writing. Remember, you must reset before reading from a file and rewrite before
writing to a file.

2. Don't try to read past the end-of-file marker. This is a common error that occurs
when trying to read without a sufficient check for eof.

3. Be careful to use file names as arguments correctly when using read, readln,
write, writeln, eof, and eoln.

4. List all external files in the program heading and then be sure to declare them
in the variable declaration section.

548 FILES

5. All files listed in a procedure heading must be variable parameters.
6. Protect against working with empty files or empty lines of a text file.
7. Remember, the file buffer is undefined when eof (file name) is true.

Summary Key Terms

buffer variable

component of a file
file

file window

master file

opening a file
transaction file

writing to a file

Keywords

FILE

get

put

Key Concepts

B A file is a sequence of components all of the same data type; a typical decla
ration is

TYPE

RealFile = FILE OF real;

VAR

FileA : RealFile;

B In standard implementations of Pascal, files must be accessed sequentially.
B File window is a phrase commonly used to describe which component of the

file is available for having data passed to or from it.
B A buffer variable is an undeclared variable that is used to transfer data to or

from a file component; if the file name is FileA, then the identifier for the
buffer variable is FileA T.

B Before transferring values to a file—^writing to a file—the file must be opened
for writing by rewrite (file name); values can then be transferred from the file
buffer using put or write (file name, value); for example,

rewrite (NewFile);
NewFllet := ID;

put (NewFile);

rewrite (NewFile);
write (NewFile, ID);

Before transferring values from a file—reading from a file—^the file must be
opened for reading by reset (file name); values can then be transferred from
the file by assignments from the file buffer and by using get (file name) or
read (file name, variable name); for example,

reset (NewFile);
A := NewFileT;

get (NewFile);

or

reset (NewFile);
read (NewFile, A);

An end-of-file marker is automatically placed at the end of the file—eof (file
name)—^when a file is created.
A file cannot be opened for reading and writing at the same time.
When a file is declared as a parameter in a procedure heading, it must be
listed as a variable parameter; for example,

PROCEDURE Update (VAR OldFile, NewFile : file type);

Summary 549

B Components of a file can be arrays; the declaration

VRR

F : FILE OF ARRAY [1..1D] OF real;

can be depicted as shown in Figure 12.5, where Ft is an array and array
components are denoted by FtJ].

FIGURE 12.5

File of arrays - ■■ ;V,- ■- ■ '•I

K i • , - ■ t V'v L, '■

ji""!-"
'

- ■ .1'
;■ LJJi

.. ■ : ■- 1 j-

' ■"' . c- ■
.... J ..

^^5

FIGURE 12.6

File of records

o File components can also be records and can be declared by
TYPE

RecType = RECORD
Name : PACKED ARRAY [1. .ED] OF char;
Age : □..lED;
Sex : char

END; < of RECORD RecType >
VAR

F : FILE OF RecType;

and depicted as shown in Figure 12.6. In this case, the buffer variable Ft is a
record and fields can be denoted by

Ft.Name

Ft.Age
Ft.Sex

Name Name

550 FILES

■ Files with structured components frequently have to be processed and/or up
dated; for a file of records, you might insert or delete a record, sort the file by
a field, merge two files, update each record, or produce a printed list accord
ing to some field.

■ When updating or otherwise processing a file, changes are normally made in
a transaction (temporary) file and then copied back into the master (perma
nent) file.

■ Since input data are generally in a text file, you need to create a file of struc
tured components from the text file; you can then use get and put to transfer
entire structures at one time.

■ Programming 1. The Pentagon is a mathematics magazine published by Kappa Mu
Problems Epsilon, a mathematics honorary society. Write a program to be

used by the business manager for the purpose of generating mailing
labels. The subscribers' information should be read into a file of

records. Each record should contain the subscriber's name; address,
including street and street number, apartment number (if any), city,
two-letter abbreviation for the state, and the zip code; expiration
information, including month and year.

Your program should create an alphabetically sorted master file,
print an alphabetical list for the office, print a mailing list sorted by
zip code for bulk mailing, and denote all last issues by a special
symbol.

2. Dr. Lae Z. Programmer now wants you to create a file of records for
students in his computer science course. You should provide fields
for the student's name, ten quiz scores, six program scores, and
three examination scores. Your program should
a. Read in the names from a text (input) file.
b. Include procedures for updating quiz scores, program scores,

and examination scores.

c. Be able to update the file by adding or deleting a record.
d. Print an alphabetized list of the data base at any given time.

3. Write a program to do part of the work of a word processor. Your
program should read a text (input) file and print it in paragraph
form. The left margin should be in column 10 and the right margin
in colunm 72. In the input file, periods will designate the end of
sentences and the symbol will denote a new paragraph. No
word should be split between lines. Your program should save the
edited file in a file of type text.

4. Slow-pitch Softball is rapidly becoming a popular summer pastime.
Assume your local community is to have a new ladies' league this
year consisting of eight teams, with 15 players each. This league
gets the field one night per week for four games. They will play a
double round-robin (each team plays every other team twice, re
sulting in 14 games). Write a program to
a. Create a file of records (one record for each team) in which the

team name is included.

b. Print a schedule.

c. List the teams alphabetically by team name.
d. Print a list of players for each team.

FIGURE 12.7

Typical values for
fields in a record

Programming Problems 551

5. The registrar at State University wants you to write an interactive
program to assist with record keeping. Your program should create
a file of records. The record for each student should contain the

student's name, identification number, credit hours completed, the
number of credit hours in which currently enrolled, and grade
point average. Your program should also contain a procedure for
each of the following updates.
a. Semester-end data of hours completed and grade point average

for the semester.

b. Insert a record.
c. Delete a record.

d. Print a list sorted alphabetically.
e. Print a list sorted by grade point average.

6. The local high school sports boosters (Problems 1 and 2, Chapter
10) need more help. They want you to write a program to create a
file of records in which each record contains the parents' names,
the children's first names (at most ten children), and the names of
the sports in which the children participated.
A typical record is shown in Figure 12.7. Your program should

create a file from input and save it for later use, print an alphabeti
cal list of parents' names, and print a list of the names of parents of
football players.

__ *Solf ■

7. A popular use of text files is for teachers to create a bank of test
items and then use them to generate quizzes using some form of
random generation. Write a program to allow you to create files of
type text that contain questions for each of three chapters. Second,
generate two quizzes of three questions for each of the three
chapters.

8. Public service departments must always be on the lookout for those
who try to abuse the system by accepting assistance from similar
agencies in different geographic areas. Write a program to compare
names from one county with those from another county and print
all names that are on both lists.

9' Write a program to be used by flight agents at an airport (see Exer
cise lb. Section 12.3). Your program should use a file of records
where the record for each flight contains flight number, airline, ar-

552 FILES

rival time, arriving from, departure time, and destination. Your pro
gram should list incoming flights sorted by time, list departing
flights sorted by time, add flights, and delete flights.

10. Congratulations! You have just been asked to write a program that
will assign dates for the Valentine's Day dance. Each student record
will contain the student's name, age, sex (M or F), and the names
of three date preferences (ranked). Your program should
a. Create a master file from the input file.
b. Create and save alphabetically sorted files of males and females.
c. Print a list of couples for the dance. The sexes must be opposite

and the age difference may be no more than three years. Dating
preferences should be in the following form.

CAN'T MISS!

First request Matches First request

GOOD BET!

First request Matches Second request
Second request Matches First request

GOOD LUCK!

Any other matches

OUT OF LUCK!

You are not on any list

It's obvious (isn't it?) that a person can have at most one date for the
dance.

11. A data file consists of an unknown number of real numbers. Write

a program to read the file and print the highest value, lowest value,
and average of the numbers in the file.

12. The Falcon Manufacturing Company wants you to write an inven
tory file program. The file should contain a 30-character part name,
an integer part number, the quantity on hand, and the price of an
item. The program should permit the entry of new items into the
file and the deletion of existing items. The items to be changed will
be entered from the keyboard.

13. Write a program for the Falcon Manufacturing Company (Problem
12) to allow a secretary to enter an item number and a quantity,
and whether it is to be added to or deleted from the stock. The pro
gram should prepare a new data file with the updated information.
If the user requests to remove more items than are on hand, an ap
propriate warning message should be issued.

14. Write a program to read the inventory file of the Falcon Manufac
turing Company (Problems 12 and 13) and then print a listing of
the inventory. The program should print an asterisk (*) next to the
quantity of any item of which there are fewer than 50 on hand.

15. A data file contains an alphabetized list of the secondary students
in your high school, and another contains an alphabetized list of
the elementary students. Write a program to merge these two files
and print an alphabetized list of all students in your former school.

16. The Andover Telephone Company (whose motto is "We send your
messages of Andover.") want a computerized directory information

Programming Problems 553

system. The data file should contain the customer names and tele
phone numbers. Your program should permit:
a. The entry of new customers' names and telephone numbers.
b. The deletion of existing customers' names and telephone

numbers.

c. The printing of all customers' names and their telephone
numbers.

d. The entry from the keyboard of a customer's name with the pro
gram then printing the telephone number (if found).

Whenever customers' names and numbers are to be added or de
leted, the file should be updated accordingly. You may assume
there are no more than 50 customers.

17. Revise the program written to keep the grades of Mr. Laven's stu
dents (Problem 18, Chapter 10) to read the grades entered previ
ously from a file and, when the program is complete, print the up
dated list of grades.

18. Revise Problem 21 from Chapter 10 to permit the sales figures to be
read from a file. Also revise the program so that the information on
the total dollar amount of sales for each product by each salesper
son is written to a file for later use.

19. Write a program to read the total dollars sales file from Problem 18
for last month and the corresponding file for this month and print
out a table showing the total sales by each salesperson for each
product during the two-month period.

20. Recognizing your talents as a programmer, the principal of the local
high school wants you to write a program to work with a data file
containing the names of the students who were absent at the start
of the school day. These names are kept as 30-character packed ar
rays. The program should permit the principal to enter the name of
a student later in the day to check to see if the student was absent
at the start of the day.

C
H
A
P
T
E
R

R
e
c
u
r
s
i
o
n
,
 Sorting,

a
n
d
 M
e
r
g
i
n
g

■

1
3
.
1

R
e
c
u
r
s
i
o
n

O
B
J
E
G
T
I
V
E
S

I t
o
 u
n
d
e
r
s
t
a
n
d
 h
o
w

r
e
c
m
s
i
o
n
 c
a
n
 b
e

u
s
e
d
 t
o
 s
o
l
v
e
 a

p
r
o
b
l
e
m

■
t
o
 b
e
 a
b
l
e
 t
o
 u
s
e
 r
e

c
u
r
s
i
o
n
 t
o
 s
o
l
v
e
 a

p
r
o
b
l
e
m

3 t
o
 u
n
d
e
r
s
t
a
n
d
 w
h
a
t

h
a
p
p
e
n
s
 i
n
 m
e
m
o
r
y

w
h
e
n
 r
e
c
u
r
s
i
o
n
 is

u
s
e
d

The previous four chapters have presented techniques for working
with structured variables. In particular, y

o
u
 have seen h

o
w
 to sort

lists in either ascending or descending order, search lists for s
o
m
e
 specific

value, and merge lists that m
a
y
 or m

a
y
 not be sorted. In this chapter, w

e
will examine several additional techniques for working with structured
variables. However, before examining s

o
m
e
 specific techniques, w

e
 will

look at recursion, a powerful process available in Pascal. In subsequent
chapters, w

e
 will use recursion to implement more sophisticated algo

rithms. These algorithms should make you aware of the problems asso
ciated with sorting a

n
d
 merging.

Unfortunately, this chapter cannot answer all of the questions associ
ated with recursion, sorting, and merging. This text—as with most begin
ning courses—defers more extensive treatment and examination of other
methods and their relative efficiency to later programming courses. A

 list
of suggestions for further reading is included at the end of this chapter.

In your previous work with subprograms, you have seen instances in
which one subprogram calls another subprogram. Let's n

o
w
 consider the

situation in w
h
i
c
h
 a
 subprogram calls itself.

R
e
c
u
r
s
i
v
e
 P
r
o
c
e
s
s
e
s

M
a
n
y
 problems can be solved by having a subtask call itself as part of the

solution. This process is called recursion; subprograms that call t
h
e
m

selves are recursive subprograms. Recursion is frequently used in m
a
t
h

ematics. Consider, for example, the definition of n! [n factorial) for a
nonnegative integer n. This is defined b

y

0
!
 =
 1

1
!
 =
 1

for M
 >
 1
,
 n
!
 =
 n
*
 [
n

—

1)!

5
5
4

13.1 Recursion 555

Thus, 6! = 6 * 5!
= 6*5*4!

= 6*5*4*3!

= 6*5*4*3*2!

= 6*5*4*3*2*1

Another well-known mathematical example is the Fibonacci sequence. In
this sequence, the first term is 1, the second term is 1, and each successive
term is defined to he the sum of the previous two. More precisely, the
Fibonacci sequence

Q-l, CL2t ^3> • • • , Cl-n

is defined by

ai = 1

az = 1

a„ = a„_i + a„_2 for n > 2

This generates the sequence

1, 1, 2, 3, 5, 8, 13, 21, .. .

In both examples, note that the general term was defined by using the
previous term or terms.
What applications does recursion have for computing? In many in

stances, a procedure or function can be written to accomplish a recursive
task. If the language allows a subprogram to call itself (Pascal does,
FORTRAN does not), it is sometimes easier to solve a problem by this
process.

EXAMPLE 131 As an example of a recursive function, consider the sigma function—denoted by
*■' ' ' ' n

y i—^which is used to compute the sum of integers from 1 to n.
i=t

FDNCTION Sigma (N : integer) : integer;
BEGIN

IF N <= 1 THEN
Sigma := N

ELSE

Sigma := N + Sigma(N-l)
END; { of FUNCTION Sigma >

To illustrate how this recursive function works, suppose it is called from the main
program by a statement such as

Sura := Sigma(5);

In the ELSE portion of the function, we first have

Sigma := 5 + Sigma(^)

At this stage, note that Sigma(4) must be computed. This call produces
Sigma := A -h Sigma(3)

If we envision these recursive calls as occurring on levels, we have
1. Sigma := 5 + Sigma(4)

2. Sigma := A + Sigma(3)
3. Sigma := 3 + Sigma(a)

4. Sigma := 5 + Sigma(l)
5. Sigma := 1

556 RECURSION, SORTING, AND MERGING

Now the end of the recursion has been reached and the steps are reversed for
assigning values. Thus, we have

5. Sigma := 1

4. Sigma := B + 1
3. Sigma := 3 + 3

2. Sigma := < + t
1. Sigma := 5 + ID ®

Before analyzing what happens in memory when recursive subpro
grams are used, some comments about recursion are in order.

1. The recursive process must have a well-defined termination. This
termination is referred to as a stopping state. In Example 13.1, the
stopping state was

IF N <= 1 THEN

Sigma := N

2. The recursive process must have well-defined steps that lead to
the stopping state. These steps are usually called recursive steps.
In Example 13.1, these steps were

Sigma := N + Sigma(N-l)

What Really Happens?

What really happens when a subprogram calls itself? First, we need to
examine the idea of a stack. Imagine a stack as a pile of cafeteria trays:
the last one put on the stack is the first one taken off the stack. This is
what occurs in memory when a recursive subprogram is used. Each call
to the subprogram can be thought of as adding a tray to the stack. In the
previous fimction, the first call creates a level of recursion that contains
the partially complete assignment statement

Sigma := 5 + Sigma(4)

This corresponds to the first tray in the stack. In reality, this is an area in
memory waiting to receive a value for 5 + Sigma(4). At this level, op
eration is temporarily suspended until a value is returned for Sigma(4).
However, the call Sigma(4l produces

Sigma := 4 + Sigma(3)

This corresponds to the second tray on the stack. As before, operation is
temporarily suspended until Sigma(3) is computed. This process is re
peated until finally the last call, Sigma(l), returns a value.

At this stage, the stack may be envisioned as illustrated in Figure 13.1.
Since different areas of memory are used for each successive call to Sigma,
each variable Sigma represents a different memory location.
The levels of recursion that have been temporarily suspended can now

be completed in reverse order. Thus, since the assignment

Sigma(l) := 1

has been made, then

Sigma(B) := B + Sigraa(l)

becomes

Sigraa(B) := B + 1

FIGURE 13.1

Stack for FUNCTION

Sigma

13.1 Recursion 557

j .-.j..

Si^a5;

h—^.L

Sigma

Level 5

Level 4

Level 3

Level 2

Level 1

EXAMPLE 13.2

This then permits

Slgina(3) := 3 + Sigina(E)

to become

Sigma(3) := 3 + 3

Continuing until the first level of recursion has been reached, we obtain
Sigma := 5 + ID

This "unstacking" is illustrated in Figure 13.2.

Let's now consider a second example of recursion. In this example, a procedure
is used recursively to print a line of text in reverse order. Assume the line of text
has only one period {and this is at the end of the line); the stopping state is when
the character read is a period. Using the data line

This is a short sentence, f

a complete program is

558 RECURSION, SORTING. AND MERGING

FIGURE 13.2

"Unstacking" FUNC
TION Sigma

i I
I

/ Sigma N

Sigma, >y

I
I
I

/f
/ Sigmar

/ jSigmal^

Sigma N

Sigma,^;/

\ J_.

Sigma

' Sigma ̂

/ Sigma''

PROGRAM LinelnReverse (input/ output. Data);

i This program uses a procedure recursively to print a line I
< of text in reverse. >

VAR

Data : text;

{***♦********♦»********************************♦*********»******)■

PROCEDORE StackltUp;

i Given: Nothing >
i Task: Read one character; if a period, print it; if not, >
{ call this same procedure >
•(Return: Nothing >

VAR
OneChar : char;

13.1 Recursion
559

BEGIN

read (Data, OneChar);
IF OneChar <> '.' THEN

StackltUp;
write (OneChar)

END; { of PROCEDURE StackltUp }

BEGIN i Nain program }
reset (Data);

StackltUp;
writeln

END. -{ of main program >

Output from this program is

.ecnetnes trohs a si sihT

In this program, as each character is read, it is placed on a stack until the period
is encountered. At that time, the period is printed and then, as each level in the
stack is passed through in reverse order, the character on that level is printed.
The stack created while this program is running is illustrated in Figure 13.3.

FIGURE 13.3
Stack created by
PROCEDURE

StackltUp

560 RECURSION. SORTING. AND MERGING

EXAMPLE 13 3 consider another example of a recursive function. Recall, the factorial
—— qJ ̂ nonnegative integer, n, is defined to be

l!tc2*3*...*(w — 1] * n

and is denoted by n!. Thus,

4! = 1*2*3*4

For the sake of completing this definition, l! = 1 and 0! = 1. A recursive function
to compute n! is

FUNCTION Factorial (N : integer) : integer;
BEGIN

IF N = □ THEN
Factorial := 1

ELSE
Factorial := N * Factorial(N-1)

END; { of FUNCTION Factorial >

If this function is called from the main program by a statement such as
Product := Factorial(^);

we envision the levels of recursion as

1. Factorial := 4 * Factorial(3)
2. Factorial := 3 * Factorial!5)

3. Factorial := E » Factorial!1)
4. Factorial := 1 * Factorial!0)

5. Factorial!□) "= 1

Successive values would then be assigned in reverse order to produce
5. Factorial!□) 1

4. Factorial := 1 * 1
3. Factorial := S * 1

2. Factorial := 3 * B
1. Factorial := 4 * t ■

Why Use Recursion?

You may have noticed that the previous recursive functions Sigma and
Factorial could have been written using iteration rather than recursion.
For example, we could write

FUNCTION IterSigma !N : integer) : integer;

VRR
J, Sura : integer;

BEGIN
Sura := □;
FOR J := 1 TO N DO

Sura := Sura + J;
IterSigraa := Sum

END; < of FUNCTION IterSigma >

It is not coincidental that the recursive function Sigma can be rewritten
using the iterative function IterSigma. In fact, any recursive subprogram
can be rewritten in a nonrecursive manner. Furthermore, recursion gen
erally requires more memory than equivalent iteration and is usually
difficult for beginning programmers to comprehend. Why then do we use
recursion? There are several reasons. First, a recursive thought process
may be the best way to think about solving the problem. If so, it naturally

13.1 Recursion 561

leads to using recursion in a program. A classical example of this is the
Towers of Hanoi problem, which requires a sequence of moving disks on
pegs. This problem is fully developed as our next example.

Second, some recursive solutions can be very short compared to iter
ative solutions. In some instances, use of a recursive algorithm can be
very simple, and some programmers consider recursive solutions elegant
because of this simplicity.

Third and finally, subsequent work in Pascal can be aided by recursion.
For example, one of the fastest sorting algorithms available, the quick sort,
uses recursion (see Section 13.2). Also, you must be able to use recursion
when working with dynamic data structures (Chapter 15).

In summary, recursion is a powerful and necessary programming tech
nique. You should therefore become familiar with using recursive sub
programs, be able to recognize when a recursive algorithm is appropriate,
and be able to implement a recursive subprogram.

EXAMPLE 13.4 A classic problem called the Towers of Hanoi problem involves three pegs and
disks as depicted in Figure 13.4. The object is to move the disks from peg A to
peg C. The rules are that only one disk may be moved at a time and a larger disk
can never be placed on a smaller disk. (Legend has it that this problem—^but with
64 disks—^was given to monks in an ancient monastery. The world was to come
to an end when all 64 disks were in order on peg C.)

FIGURE 13.4

Towers of Hanoi

problem

C
r
C

A

To see how this problem can be solved, let's start with a one-disk problem. In
this case, merely move the disk from peg A to peg C. The two-disk problem is
almost as easy. Move disk 1 to peg B, disk 2 to peg C, and use the solution to the
one-disk problem to move disk 1 to peg C. (Note the reference to the previous
solution.)

Things get a little more interesting with a three-disk problem. First, use the
two-disk solution to get the top two disks in order on peg B. Then move disk 3
to peg C. Finally, use a two-disk solution to move the two disks from peg B to peg
C. Again, notice how a reference was made to the previous solution. By now you
should begin to see the pattern for solving the problem. However, before gener
alizing, let's first look at the four-disk problem. As expected, the solution is to

1. use the three-disk solution to move three disks to peg B.
2. move disk four to peg C.
3. use the three-disk solution to move the three disks from peg B to peg C.

This process can be generalized as a solution to the problem for n disks.

1. use the [n - l)-disk solution to move (n -1) disks to peg B.
2. move disk n to peg C.
3. use the [n — l)-disk solution to move (n — 1) disks from peg B to peg C.

This general solution is recursive in nature because each particular solution de
pends on a solution for the previous number of disks. This process continues until

562 RECURSION, SORTING, AND MERGING

there is only one disk to move. This corresponds to the stopping state when a
recursive program is written to solve the problem. A complete interactive program
that prints out each step in the solution to this problem is

PROGRAM TowersOfHanoi (input, output);

t This program uses recursion to solve the classic Towers }
i of Hanoi problem. >

VRR

NumDisks : integer;

■{*********************♦**************+************************** !■

PROCEDURE ListTheMove (NumDisks : integer;
StartPeg, LastPeg, SparePeg : char);

{ Given: The number of disks to move, the initial peg
i FirstPeg, the working peg SparePeg, and
i, the destination peg LastPeg
{ Task: Move NumDisks from FirstPeg to LastPeg using
< SparePeg; involves recursive calls
{ Return: Nothing

BEGIN
IF NumDisks = 1 THEN

writeln ('Move a disk from ', StartPeg, ' to ', LastPeg)
ELSE

BEGIN
ListTheMove (NumDisks-1, StartPeg, SparePeg, LastPeg);
writeln ('Move a disk from ', StartPeg, ' to ', LastPeg);
ListTheMove (NumDisks-1, SparePeg, LastPeg, StartPeg)

END i of ELSE option >
END; i of PROCEDURE ListTheMove >

<***♦*******>

BEGIN -t Main program >
write ('How many disks in this game? ');
readln (NumDisks);
writeln;
writeln ('Start with ', NumDisks, ' disks on Peg R');
writeln;
writeln ('Then proceed as follows: ');
writeln;
ListTheMove (NumDisks, 'R', 'C, 'B')

END. < of main program >

Sample runs for three-disk and four-disk problems produce the following:
How many disks in this game? 3

Start with 3 disks on Peg R

Then proceed as follows:

Move a disk from R to C
Move a disk from R to B
Move a disk from C to B
Move a disk from R to C
Move a disk from B to R
Move a disk from B to C
Move a disk from R to c

13.1 Recursion 563

How many disks in this game?

Start with < disks on Peg A

Then proceed as :follows:

Move a disk from A to B

Move a disk from A to C

Move a disk from B to C

Move a disk from A to B

Move a disk from C to A

Move a disk from C to B

Move a disk from A to B

Move a disk from A to C

Move a disk from B to C

Move a disk from B to A

Move a disk from C to A

Move a disk from B to C

Move a disk from A to B

Move a disk from A to C

Move a disk from B to C

Exercises 13.1 l. Explain what is wrong with the following recursive function:

FONCTION Recur (X : real) : real;
BEGIN

Recur := Recur(X / 5)

END;

2. Write a recursive function that reverses the digits of a positive integer. If the
integer used as input is 1234, output should be 4321.

3. Consider the following recursive function:

FONCTION A (X : real;
N : integer) : real;

BEGIN

IF N = □ THEN

A := l.D

ELSE

A := X * A(X, N-1)
END; i of FONCTION A >

a. What would the value of Y be for each of
i. Y := A(3.D, E);

ii. Y := A(5.0/ 3) ;
iii. Y ;= A(<.G, A);
iv. Y := A(1.0, t) ;

b. Explain what standard computation is performed by FUNCTION A.
c. Rewrite FUNCTION A using iteration rather than recursion.

4. Recall the Fibonacci sequence
1, 1, 2. 3, 5, 8, 13, 21, . . .
where for n > 2 the nth term is the sum of the previous two. Write a recur
sive function to compute the nth term in the Fibonacci sequence.

5. Write a function that uses iteration to compute n!.

g] g| SI SI

564 RECURSION. SORTING, AND MERGING

H 13.2

Sorting
Algorithms

OBJECTIVES

<3 to understand the

algorithm for an in
sertion sort

■3 to be able to use an
insertion sort in a
program

ci to understand the
algorithm for a bub
ble sort

a to be able to use a
bubble sort in a
program

<3 to understand the
algorithm for a
quick sort

E> to be able to use a
quick sort in a
program

Several algorithms are available for sorting elements in arrays and files.
We have worked with the selection sort since Chapter 9. Three other
sorting methods commonly used in programming texts are the insertion
sort, the bubble sort, and the quick sort. All of these sorts work relatively
well for sorting small lists of elements.

However, when large data bases need to be sorted, a direct application
of an elementary sorting process usually requires a great deal of computer
time. Thus, some other sorting method is needed. This might involve
using a different algorithm or dividing the lists into smaller parts, sorting
these parts, and then merging the lists back together. In more advanced
courses, you will examine the relative efficiency of sorts and methods for
handling large data bases. For now, let's consider these three sorting
methods.

Insertion Sort

The purpose of a sort is to produce an array of elements sorted in either
ascending or descending order. Normally, these elements will come from
an input file or be in an unsorted tray. Basically, in an insertion sort, you
start with an empty array and insert elements one at a time in their proper
order; the first element goes in the first position; the second element is
inserted either before or after the first; and, in general, each remaining
element is inserted in the proper order. If there are ten elements already
in order emd the next element belongs in the third position, each of the
last eight elements will be moved down one position.

Before writing the code for this sort, let's see how this algorithm works
on the array of integers

15

If B is to contain the sorted list, successive stages (each insertion) produce

B B B B B

4 0 0 0 0

4 4 4 2

8 8 4

15 8

15

A[l] A[2] A[3] A[4] A[5]Insert

Some comments are in order before we can write a procedure for this
sort. First, we must know the length of the unsorted array. Second, the
array to contain the sorted list must be declared in such a manner that it
can be passed to a procedure and have sufficient length to store values
from the unsorted array.

The procedure can be called from the main program by
InsertSort (DnsortedList, SortedLlst/ Length);

If the declaration section of a program contains

13.2 Sorting Algorithms 565

CONST

ListLength = value;
TYPE

List = ARRAY [1..ListLength] OF integer;
VAR

DnsortedList/ SortedList : List;
Length : 1..ListLength;

the insertion sort procedure is

PROCEDURE InsertSort (VAR A : List;
VAR B : List;

L : integer);

VAR

J, N/ Index/ NewLength : integer;
Found : boolean;

BEGIN

NewLength := □;
FOR J := 1 TO L DO

BEGIN

Index := 1;
Found := false;
WHILE NOT Found AND (Index <= NewLength) DO

IF A[J] < BCIndex] THEN
Found := true

ELSE

Index := Index + 1;
FOR N := NewLength DOWNTO Index DO

BCN+l] := BCN];
BCIndex] := ACJ];
NewLength := NewLength + 1

END < of FOR loop >
END; { of PROCEDURE InsertSort >

As expected, records can be sorted by examining some key field and
then assigning the entire record accordingly. Thus, if an array type is

TYPE

Studentlnfo = RECORD
Name : StringED;
Score : integer

END; { of RECORD Studentlnfo >
List = ARRAY Cl..ListLength] OF Studentlnfo;

and the array is to be sorted according to student scores, the field com
parison in PROCEDURE InsertSort could be

IF ACJ].Score < BCIndex].Score

Bubble Sort

The sorting algorithm commonly referred to as a bubble sort also rear
ranges the elements of an array until they are in either ascending or
descending order. Like the selection sort, an extra array is not used. Ba
sically, a bubble sort starts at the top of an array and compares two con
secutive elements of the array. If they are in the correct order, the next
pair is compared. If they are not in the correct order, they are switched

566 RECURSION, SORTING, AND MERGING

and the next pair compared. When this is done for the entire array, one
pass has been made and the correct element is in the last position.

Starting at the top each time, successive passes through the array are
made until the array is sorted. Two items should be noted here.

1. A flag is needed to indicate whether or not an exchange was made
during the pass through the array. If none was made, the array is
sorted.

2. Since each pass filters the largest (or smallest) element to the bot
tom, the length of what remains to be sorted can be decreased by
one after each pass.

To illustrate how this algorithm works, assume the array is

A

The first pass through the array produces

X
12

12

12

12

12

A NOTE OF INTEREST

Sex Differences in the Association Between Secondary
School Students' Attitudes Toward Mathematics and

Toward Computers

Sex differences in secondary school students*
attitudes toward mathematics are well docu

mented (Fennema, 1980], with female students
consistently displaying less positive attitudes
than male students (Fennema & Sherman, 1977).
Because attitude is related to participation and
achievement in mathematics (Armstrong & Price,
1982), many intervention strategies have as their
aim the development of more positive attitudes
toward mathematics among young women (Fox,
1980; Sells, 1980).

The same types of sex differences that are
associated with secondary students and their at
titudes toward mathematics are now being seen
with regard to computer studies in secondary
school (Lockheed, 1985; Lockheed & Frakt, 1984).
Many educators believe that special attention
should be given to the development of ap
proaches to computer use in secondary school
that might increase the interest level or moti

vation of young women (Sanders, 1985). Some re
searchers claim that the association of computer
studies with mathematics is one of the factors un

derlying the relatively negative attitudes that ad
olescent women are displaying toward computers
(Lockheed & Frakt, 1984; Ramierez, 1983). How
ever, others believe that the use of computers within
the context of mathematics instruction can en

hance interest in mathematics—^for both men and

women (Glass, 1984; Kelman et al., 1983). Thus
there seems to be a variety of opinions regarding
effective procedures to enhance women's atti
tudes toward either mathematics or computers and
regarding the appropriateness of incorporating
computer experiences into mathematics instruc
tion. The purpose of this study was to explore the
general question of sex differences in the associ
ation between secondary school students' atti
tudes toward computers and toward mathematics
by considering the following questions:

13.2 Sorting Algorithms 567

Since an exchange was made, we need to make at least one more pass
through the array. However, the length is decreased by one because there
is no need to compare the last two elements. A second pass produces

0 n

3 3

2 2

8 8

12 12

><

0 0

2 2

3 3

8 8

12 12

At this stage, the array is sorted, but since an exchange was made, the
length is decreased by one and another pass is made. Since no exchange
is made during this third pass, the sorting process is terminated.

The algorithm for a bubble sort can be coded in a procedure as follows:

PROCEDURE BubbleSort (VftR ListName : List;
Length : integer);

VAR

ExchangeMade : boolean;
J, Temp : integer;

1. Is there a relationship between second
ary school students' attitudes toward
mathematics and their attitudes toward-

computers? Is there a sex difference in
the relationship?

2. Is there a relationship between use of
computers within a mathematics course
and attitudes toward computers? Is there
a sex difference in the relationship?

A significant association between secondary
school students' attitudes toward mathematics

and their attitudes toward computers was shown
in the study. Sex differences in the nature of this
association suggested that female secondary
school students are more likely than male stu
dents to associate negative attitudes toward
mathematics with generally negative opinions
about computer use and with stereotypes about
computer users. The common practices of in
serting computer components into junior sec
ondary school mathematics classes, staffing
computer studies and computer science courses

with mathematics teachers, and developing such
courses around mathematics-related examples
and topics (Lockheed & Frakt, 1984) may pro
duce a negative predisposition toward the com
puter activities for female students. Because at
titude, participation, and achievement are
frequently interrelated for secondary school stu
dents (Armstrong, 1979; Armstrong & Price,
1982], the repercussions of the transfer of atti
tudes toward mathematics to the new construct

of attitudes toward computers would seem to be
deleterious for many female students. There are
many important applications of computers, such
as word processing and information retrieval,
that are nonmathematical in nature. It has been

suggested that secondary school computer ex
periences should be delivered around such top
ics to reduce the impact of a negative
mathematics-computer association for female
students (Lockheed & Frakt, 1984; Sanders, 1985).
The results of the present study support the value
of this suggestion.

568 RECURSION, SORTING, AND MERGING

BEGIN

ExchangeMade := true;
Length := Length - 1;
WHILE ExchangeMade DO
BEGIN

ExchangeMade := false;
FOR J := 1 TO Length DO
IF A[J] > RIJ+1] THEN

BEGIN { Exchange values >
Temp := R[J];
ft[J] := R[J+1];
fi[J+l] := Temp;
ExchangeMade := true

END;

Length := Length - 1 •(Decrement length }
END < of WHILE...DO }

END; { of PROCEDURE BubbleSort >

This procedure is called from the main program by

BubbleSort (ListName/ Length);

where ListName is the name of the array to be sorted and Length is the
number of elements in the array.

Quick Sort

One of the fastest sorting techniques available is the quick sort. It uses
recursion and is based on the idea of separating a list of numbers into
two parts. One part contains the numbers smaller than some number in
the list and the other contains numbers larger than the number. Thus, if
an unsorted array originally contains

14 3 2 11 5 8 0 2 9 4 20

AID A[2] A[6] A[ll]

we would select the element in the middle position, A[61, and then pivot
on the value in A[6], which is 8 in our illustration. Our process would
then put all values less than 8 on the left side and all values greater than
8 on the right side. This first subdividing produces

Pivot

i

4 3 2 2 5 0 8 11 9 14 20

A[l] A[ll]

Now, each sublist is subdivided in the same manner. This process con
tinues until all sublists are in order. The array is then sorted. This is a
recursive process.

Before writing a procedure for this sort, let's examine how it works.
First, why do we choose the value in the middle position? Ideally, we
would like to pivot on the median of the list. However, it is not efficient
to find this value first, so we choose the value in the middle as a com
promise. The index of this value is found by (First + Last) DIV 2 where
First and Last are the indices of the initial and final array elements. We
then identify a LeftArrow and RightArrow on the far left and far right
respectively. This can be envisioned as

13.2 Sorting Algorithms 569

Pivot

i

14 3 2 11 5 8 0 2 9 4 20

T
LeftArrow

t
RightArrow

where LeftArrow and RightArrow represent the respective indices of the
array components. Starting on the right, the RightArrow is moved left
until a value less than or equal to the pivot is encountered. This produces

Pivot

14 3 2 11 5 8 0 2 9 4 20

LeftArrow
t

RightArrow

In a similar manner, LeftArrow is moved right until a value greater than
or equal to the pivot is encountered. This is the situation just encountered.
Now the contents of the two array components are switched to produce

Pivot

i

4 3 2 11 5 8 0 2 9 14 20

t
LeftArrow RightArrow

We continue by moving RightArrow left to produce

Pivot

4 3 2 11 5 8 0 2 9 14 20

t T
LeftArrow RightArrow

arid moving LeftArrow right yields

Pivot

i

4 3 2 11 5 8 0 2 9 14 20

LeftArrow RightArrow

These values are exchanged to produce

Pivot

i

4 3 2 2 5 8 0 11 9 14 20

t

LeftArrow RightArrow

This process stops when LeftArrow > RightArrow is true. Since this is
still false at this point, the next RightArrow move produces

Pivot

4 3 2 2 5 8 0 11 9 14 20

T T

LeftArrow RightArrow

570 RECURSION, SORTING, AND MERGING

and the LeftArrow move to the right yields

Pivot

i

4 3 2 2 5 8 0 11 9 14 20

T T
LeftArrow RightArrow

Since LeftArrow < Pivot is false, LeftArrow stops moving and an exchange
is made to produce

Pivot

4 3 2 2 5 0 8 11 9 14 20

T t
LeftArrow RightArrow

Notice that the pivot, 8, has been exchanged to occupy a new position.
This is acceptable because Pivot is the value of the component, not the
index. As before, RightArrow is moved left and Left Arrow is moved right
to produce

Pivot

4 3 2 2 5 0 8 11 9 14 20

T t
RightArrow LeftArrow

Since RightArrow < LeftArrow is true, the first subdividing is complete.
At this stage, numbers smaller than Pivot are on the left side and numbers
larger than Pivot are on the right side. This produces two sublists that
can be envisioned as

Pivot

11 9 14 20

smaller numbers larger numbers

Each sublist can now he sorted by the same procedure. This would require
a recursive call to the sorting procedure. In each case, the array is passed
as a variable parameter together with the right and left indices for the
appropriate suhlist. A procedure for this sort is

PROCEDURE Quicksort (VftR Num : List;
Left, Right : integer);

VAR

Pivot, Temp, LeftArrow, RightArrow : integer;

BEGIN

LeftArrow := Left;

RightArrow := Right;
Pivot := Nurat(Left + Right) DIV El;
REPEAT

WHILE NuraCRightArrow] > Pivot DO
RightArrow := RightArrow - 1;

WHILE NumCLeftArrow] < Pivot DO

LeftArrow := LeftArrow + 1;

IF LeftArrow <= RightArrow THEN

13.2 Sorting Algorithms 571

BEGIN

Temp := NumCLeftArrow];
NuraCLeftArrow] := NuraCRlghtArrow];
NumlRightArrow] := Temp;
LeftArrow := LeftArrow + 1;

RightArrow := RightArrow - 1
END < of switching elements and then moving arrows >

UNTIL RightArrow < LeftArrow;
IF Left < RightArrow THEN

Quicksort (Num, Left, RightArrow);
IF LeftArrow < Right THEN

Quicksort (Num, LeftArrow, Right)
END; i of PROCEDURE Quicksort >

A complete interactive program to illustrate the use of quick sort follows.
The design for this program is

1. Fill the array
2. Sort the numbers

3. Print the list

The complete program is

PROGRAM UseQuickSort (input, output);

< This program illustrates the quick sort as a sorting }
< algorithm. The array elements are successively subdivided >
•{ into "smaller" and "larger" elements in parts of the array. >
t Recursive calls are made to the PROCEDURE Quicksort. >

CONST

MaxLength = 30;

TYPE

List = ARRAY [1..MaxLength] OF integer;

VAR

Num : List;

First, Last, Length : integer;

PROCEDURE FillArray (VAR Num : List;
VAR Length : integer);

<. Given: Nothing

{ Task: Read numbers entered from the keyboard into the
•(array Num

i Return: An array of numbers, Num, and number of elements
■{ in the array

VAR

Index : integer;

BEGIN
Index := □;
REPEAT

Index := Index + 1;
write ("Enter an integer, -nq to quit. ');
readln (Numllndexl)

UNTIL Numllndex] = -qqq;
Length := Index - 1

END; < of PROCEDURE FillArray >

572 RECURSION. SORTING, AND MERGING

PROCEDURE Quicksort (VAR Nura : List;
Leftr Right : integer);

■{ Given: An unsorted array of integers and array length >
{ Task: Sort the array }
{ Return: A sorted array of integers }

VAR

Pivot/ Teinp/ LeftArroW/ RightArrow : integer;

BEGIN
LeftArrow := Left;
RightArrow := Right;
Pivot := Nuin[(Left + Right) DIV SI;
REPEAT

WHILE Nura[RightArrow] > Pivot DO
RightArrow := RightArrow - 1;

WHILE Nura[LeftArrow] < Pivot DO
LeftArrow := LeftArrow + 1;

IF LeftArrow <= RightArrow THEN
BEGIN

Terap := Nura[LeftArrow];
Nura[LeftArrow] := Nura[RightArrow];
Nura[RightArrow] := Terap;
LeftArrow := LeftArrow + 1;
RightArrow := RightArrow - 1

END { of IP.. .THEN >
UNTIL RightArrow < LeftArrow;
IF Left < RightArrow THEN

Quicksort (Nura, Left/ RightArrow);
IF LeftArrow < Right THEN

Quicksort (Nura/ LeftArroW/ Right)
END; (of PROCEDURE Quicksort >

PROCEDURE Printlist (VAR Num : List;
Length : integer);

{ Given: A sorted array of nurabers and array length >
i Task: Print the nurabers >
{ Return: Nothing >

VAR
Index : integer;

BEGIN

writeln; writeln;
writeln ('The sorted list is: ');
writeln;
FOR Index := 1 TO Length DO

writeln (Nura[Index])
END; < of PROCEDURE PrintList >

BEGIN ■[Main program }
FillArray (NuiH/ Length);
Quicksort (Num/ 1, Length);
PrintList (Nuni/ Length)

END. < of main program >

13.2 Sorting Algorithms 573

sample run of this program using the previous

Enter an integer/ to quit. 14

Enter an integer. to quit. 3

Enter an integer. to quit. 2

Enter an integer. to quit. 11

Enter an integer. to quit. 5

Enter an integer. -RRq to quit. B

Enter an integer. to quit. □

Enter an integer. -qqq to quit. 2

Enter an integer. to quit. q

Enter an integer. to quit. 4

Enter an integer. -qqq to quit. 20

Enter an integer. to quit. -qqq

The sorted list is

□

2

2

3

4

5

fi

R
11

lA

20

Exercises 13.2 1. Modify the insertion sort so that it sorts numbers from an input file rather
than from an array. Explain why PROCEDURE InsertSort inserts the first
element of the unsorted list into the first position of the sorted list.

2. The array

17

requires five exchanges of elements when sorted using a bubble sort. Since
each exchange requires 3 assignment statements, there are 15 assignments
for elements in the array. Sort the same array using the insertion sort and
determine the number of assignments made.

3. Modify the insertion sort by including a counter that counts the number of
assignments of array elements made during a sort.

4. Using the modification in Exercise 3, sort lists of differing lengths that con
tain randomly generated numbers. Display the results of how many assign
ments were made for each sort on a graph similar to Figure 13.5. (Use lists
whose lengths are multiples of ten.)

5. Modify both the bubble sort and selection sort to include counters for the
number of assignments made during a sort.

6. Use the modified version of all three sorts to examine their relative effi
ciency; that is, run them on arrays of varying lengths and plot the results
on a graph. What are your conclusions?

574 RECURSION, SORTING, AND MERGING

FIGURE 13.5

Array length
a

o §
f- a0) s
-Q a

2 ffl

50 ICQ

Array length

7. Write a short program to read numbers into an array, sort the array, print
the sorted numbers, and save the sorted list for later use by some other
program.

8. Modify all sorts to sort from high to low rather than low to high.

9. Sorting parallel arrays is a common practice (for example, an array of
names and a corresponding array of scores on a test). Modify the insertion
sort, bubble sort, and quick sort so that you can sort a list of names and test
scores.

10. Write a procedure Exchange for the bubble sort to exchange the values of
array components. Then rewrite the bubble sort using PROCEDURE
Exchange.

11. Suppose you are using a program that contains an array of records in
which each record is defined by

TYPE

Customerlnfo = RECORD

Name : StringPD;
AmountDue : real

END;

a. Use the bubble sort to sort (and then print) the records alphabetically.
b. Re-sort the array by the field AmountDue. Print a list ordered by

AmountDue where anyone with an amount due of more than $100 will
be designated with a triple asterisk ♦***'.

12. Explain how an array of records with a key field, Name, can be sorted us
ing a quick sort.

13. Modify PROCEDURE Quicksort to use the first element in an array as the
pivot rather than the middle element.

15 [g] {S] @

la 13.3

Merging
Algorithms

OBJECTIVES

□ to be able to merge
two sorted files

a to be able to merge
two sorted arrays

Objectives continued.

Two-Way Merge

It is often necessary to merge two sorted files or arrays to produce a single
fi le or array. For example, you may wish to update a mailing list that has
been sorted by customer name with names to be added to the list. If the
names to be added are sorted alphabetically in a file, you need to merge
two sorted files. One specific instance of using such a merge was given
in Section 12.3 when a new file was merged with a master fi le to produce
an updated master file. We now examine some more general versions of
merging.

to be able to sort

large files or arrays
by a sort-merge
to be able to update
an existing sorted
file by sorting a new
file and then merg
ing it with the exist
ing file

13.3 Merging Algorithms 575

The process of merging two sorted lists is referred to as a two-way merge
and requires a third data structure (a file or an array). Assume we are to
merge two files of integers—^the previously sorted files Filel and File2—
and produce the merged file FinalFile. The idea of this merge is not too
difficult. Essentially, you compare elements at the top of each file and
assign the higher (or the lower, if you are sorting from low to high) to
FinalFile. You then compare the nonassigned element to the next element
in the other file and repeat the process. You continue in this manner until
the end of one file is reached. Then you sequentially assign all elements
remaining in the other file to FinalFile.
A pseudocode development for this is

Open all files appropriately
WHILE NOT at end of either file DO
2.1 IF Filel element > File2 element THEN

2.1.1

2.1.2

ELSE

2.1.3

2.1.4

assign Filel element to FinalFile
move pointer to next element in Filel

3.

4.

assign File2 element to FinalFile
move pointer to next element in File2

Assign remainder of Filel
Assign remainder of File2

If we now assume Filel, File2, and FinalFile are files of integers and
Filel and File2 are sorted, the code for a two-way merge is

reset (Filel);
reset (FileE);
rewrite (FinalFile);
WHILE NOT eof(Filel) RND NOT eof(FileE) DO
BEGIN

IF FilelT > FileEt THEN

BEGIN

FinalFileT := Filelt;

get (Filel)
END

ELSE

BEGIN

FinalFileT := FileEt;

get (FileE)
END;

put (FinalFile)
END;

•t Now assign the rest of the unused file. Only one
of the following will actually be executed. >

WHILE NOT eof(Filel) DO
BEGIN

FinalFileT := FilelT;

put (FinalFile);
get (Filel)

END;

WHILE NOT eof(FileE) DO
BEGIN

FinalFileT :=FileET;

put (FinalFile);
get (FileE)

END;

576 RECURSION, SORTING, AND MERGING

Sort-Merge

Large files or arrays present special problems when they need to he sorted.
The algorithms we have studied thus far are relatively inefficient when it
comes to sorting a long list. To illustrate how the inefficiency increases
as lists get longer, consider a worst-case situation in an array of compo
nents that is to he sorted high to low using a huhhle sort. This worst-case
scenario means they are ordered from low to high as illustrated.

This array will he sorted using (8 * 7) / 2 or 28 comparisons, which is the
maximum required for an array of length 8. If the array to he sorted was of
length 16, the maximum number of comparisons would he (16 * 15) / 2
or 120.

Since the number of comparisons increases so rapidly for progressively
longer lists, a preferred method of sorting is to subdivide the list, sort the
shorter lists, emd then merge to get a single sorted list. To illustrate, let's
continue the example of sorting an array with 16 elements. As shown, a
huhhle sort applied to the array requires at most 120 comparisons. Now,
if we divide the array in half, sorting each half will require at most 28
comparisons. These two arrays can then he merged using at most 16
(8 + 8) comparisons. Thus, by subdividing, sorting, and then merging,
an array of length 16 can he sorted using at most 72 comparisons rather
than 120.

For longer arrays, the problem is even more critical. For example, using
an array of length 1,000, a huhhle sort requires (1000 * 999) / 2, or 499,500
comparisons. If this is halved, each half sorted, and the sorted results
merged, it requires at most (500 * 499) / 2 + (500 * 499) / 2 + 1000, or
250,500 comparisons.

It is easy to see that this process of divide-and-conquer can he extended
to each of the smaller arrays. To illustrate the efficiency of successively
dividing lists to he sorted, suppose we originally have an array containing
1,024 items. If we subdivide until we get 128 lists of 8 items each, sort
each list of 8 items, and then merge pairs of lists until we get a single
sorted list, this process would require a maximum of 10,752 comparisons.
A huhhle sort on the original list would require a maximum of
(1024 * 1023) / 2, or 523,776 comparisons.

The process of repeatedly subdividing a long list, sorting shorter lists,
and then merging to obtain a single sorted list is referred to as sort-merge,
A sort-merge can he done by recursion. In this form, subdivisions are
performed until each list contains one element. These single-element lists
are then merged to achieve the desired result.
To illustrate this recursive sort-merge, let's write a procedure Merge to

merge two parts of a global array A. The parts must he consecutive in the

13.3 Merging Algorithms 577

array and each part must already be sorted. This procedure is called by
sending the index of the initial value and the index of the final value for
each of the two portions that are to be merged. Our procedure merges
them to form a single sorted portion of the array. Such a procedure is

PROCEDURE Merge (flinit, AFinal, BInit, BPinal : integer);

VAR

I, J/ K/ L : integer;
NewList : ArrayType;

BEGIN

L := AInit;
J := AInit;

K := BInit;

WHILE (J <= AFinal) AND (K <= BFinal) DO
BEGIN

IF ACJ] < AIR] THEN

BEGIN

NewListIL] := A[J];

J := J + 1

END

ELSE

BEGIN

NewListCLl := ACR];

R := R + 1

END;

L := L + 1

END;

< Now merge remainder of array >

FOR I := J TO AFinal DO

BEGIN

NewListCL] := ACIl;

L := L + 1

END;

FOR I := R TO BFinal DO

BEGIN

NewListCL] := ACI];

L := L + 1

END;

FOR I := AInit TO BFinal DO

ACI] := NewListCI];

With this procedure available, a recursive version of a sort-merge is

PROCEDURE SortMerge (First/ Last : integer);

VAR

Mid : integer;

BEGIN

IF Last - First > □ THEN
BEGIN

Mid := (First + Last) DIV 5;
SortMerge (First/ Mid);
SortMerge (Mid •+• 1, Last);
Merge (First/ Mid/ Mid+1/ Last)

END

END; < of PROCEDURE SortMerge >

This is a relatively elegant version of a sort-merge. Unfortunately, it is not
recommended for practical use. For long lists, several recursive calls to

578 RECURSION, SORTING, AND MERGING

SortMerge are inefficient. A more practical method is to write a nonre-
cursive version and stop subdividing lists at some predetermined length.
A specific example using a length of eight is left as an exercise.

Sort-Merge with Files

We close this section with a discussion of a problem encountered by
programmers who work with files. Large data bases (mailing lists, for
example) are frequently stored in a file of records where the records are
sorted according to some key field. As previously noted, this file is often
referred to as the MasterFile or OldFile.

Periodically, this original file needs to be updated by adding more rec
ords. It is not unusual for these additional records to be entered into a

new file (NewFile) in a random order. The problem of updating the master
file is solved by sorting NewFile and merging it with the original to form
a new MasterFile. This process is so standard that many programmers
automatically think this is what is meant by the phrase "sort-merge."
However, the phrase is not well defined and the process is also known
by other names, for example, sequential update.

Exercises 13.3 Verify the worst-case possibility for sorting an array of 16 integers using a
bubble sort. The array is in reverse order of the way it is to be sorted. Use a
counter to count the number of comparisons.

Using the same array as in Exercise 1, sort each half with a bubble sort and
then merge the two halves to get a sorted list. Again, use counters to count
the number of comparisons made in both sorts and the merge. Compare your
results with the results from Exercise 1.

Write a test program to implement the two-way merge for two arrays.

Using the procedure Merge of this section, write a program to implement the
recursive procedure SortMerge.

Write a nonrecursive sort-merge to subdivide an array into subarrays of
length eight, sort each subarray, and then merge the sorted subarrays to get a
single sorted array.

g] @ B @

RUNNING AND

nKRfTGGTMf: TIPS

1. When using recursion, make sure the recursive process will reach the stopping
state.

2. Sorting large files or long arrays can be very time consuming. Depending on
the number of elements to be processed, use some form of divide-and-conquer;
that is, divide the list, sort the elements, and then merge them. Very large data
bases may require several subdivisions and subsequent merges.

3. When sorting records using a key field, be careful to compare only the key field
and then exchange the entire record accordingly.

Summary Key Terms

bubble sort

insertion sort

quick sort
recursion

recursive step

recursive subprogram
sort-merge

stack

stopping state

two-way merge

Programming Problems 579

Key Concepts

□ Recursion is a process whereby a subprogram calls itself.
□ A recursive subprogram must have a well-defined stopping state.
□ Reciursive solutions are usually elegant and short, but generally require more

memory than iterative solutions.
□ An insertion sort creates a sorted array from an unsorted array by starting

with an empty array and inserting elements one at a time in their respective
order.

□ A bubble sort sorts an array by comparing consecutive elements in the array
and exchanging them if they are out of order; several passes through the array
are made until the list is sorted.

□ A quick sort is one of the fastest sorting techniques available. It uses recur
sion and is based on the idea of separating a list into two parts.

□ A two-way merge is used to merge two sorted lists to form a single sorted
list.

□ A sort-merge is a process whereby a long unsorted list is subdivided, the
parts are sorted, and these are merged to form a sorted list.

■ Suggestions
for Further
Reading

Recmsion, sorting, and merging are subjects of numerous articles and books. This
chapter provided some samples of each. For variations and improvements on what
is included here as well as other techniques, the interested reader is referred to
the following materials.

Baase, Sara. "Sorting." Chapter 2 in Computer Algorithms: Introduction to Design
and Analysis. Reading, Mass.: Addison-Wesley Publishing Co., 1978.

Gear, William. Applications and Algorithms in Engineering and Science. Chicago:
Science Research Associates, 1978.

Horowitz, Ellis, and Sartaz Sahmi. "Divide and Conquer." Chapter 3 in Funda
mentals of Computer Algorithms. Potomac, Md.: Computer Science Press, 1978.

Knuth, Donald. The Art of Computer Programming. Vol. 3, Sorting and Searching.
Reading, Mass.: Addison-Wesley Publishing Co., 1975.

■ Programming
Problems

1. Write a program to update a mailing list. Assume you have a sorted
master file of records where each record contains a customer's name,
address, and expiration code. Your program should input a file of
new customers, sort the file, and merge the file with the master file
to produce a new master.

2. Assume that Readmore Public Library (Programming Problems 6 and
7, Chapter 11) has information about books on their shelves stored
in a file of records named OldFile. Information about a new ship
ment of books is contained in the input file. Both files are sorted al
phabetically by book title. Write a program to be used to update
OldFile. For each book in the input file, your program should search
the existing file to see if the additional book is a duplicate. If it is,
change a field in the record to indicate that an additional copy has
been obtained. If it is not a duplicate, insert the record in sequence
in the file.

3. The Bakerville Manufacturing Company has to lay off all employees
who started working Eifter a certain date. Write a program to
a. Input a termination date.
b. Search an alphabetical fi le of employee records to determine who

will get a layoff notice.

\
580 RECURSION. SORTING. AND MERGING

c. Create a file of employee records for those who are being laid off.
d. Update the master file to contain only records of current

employees.
e. Produce two lists of those being laid off, one alphabetical and one

by hiring date.

4. The Bakerville Manufacturing Company (Problem 3) has achieved
new prosperity and can rehire ten employees who were recently laid
off. Write a program to
a. Search the file of previously terminated employees to find the ten

with the most seniority.

b. Delete those ten records from the file of employees who were laid
off.

c. Insert the ten records alphabetically into the file of current
employees.

d. Print four lists as follows:
i. an alphabetical list of current employees.
ii. a seniority list of current employees.
iii. an alphabetical list of employees who were laid off.
iv. a seniority list of employees who were laid off.

5. The Shepherd Lions Club sponsors an annual cross-country race for
area schools. Write a program to
a. Create an array of records for the runners; each record should

contain the runner's name, school, identification number, and
time (in a seven-character string, such as 15:17:3).

b. Print an alphabetical listing of all runners.
c. Print a list of schools entered in the race.
d. Print a list of runners in the race ordered by school name.
e. Print the final finish order by sorting the records according to the

order of finish and printing a numbered list according to the or
der of finish.

6. The greatest common divisor of two positive integers a and b,
GCD(a,fo), is the largest positive integer that divides both a and b.
Thus, GCD(102, 30) = 6. This can be found using the division algo
rithm as follows:

102 = 30 * 3 + 12

30 = 12 * 2 + 6

12 =6*2 + 0

Note that

GCD(102, 30) = GCD(30, 12)
= GCD(12, 6)
= 6

In each case, the remainder is used for the next step. The process
terminates when a remainder of zero is obtained. Write a recursive
function that returns the GCD of two positive integers.

CHAPTER

M

inUi: !.

-_H_i m

1

Sets

We have thus far investigated the structured variables arrays, rec
ords, and files. These are structured because, when declared, a

certain structure is reserved to subsequently hold values. In an array,
a predetermined number of elements all of the same type can be held. A
record contains a predetermined number of fields that can hold elements
of different types. A file is somewhat like an array but the length is not
predetermined and elements must be accessed sequentially.

Another structured data type available in Pascal is a set. Since the
implementation of sets varies greatly from system to system, you need to
check statements and examples in this chapter on your system.

m 14.1

Declarations

and Terms

"^JECTIVES
B to be able to define

a set as a data type
B to understand and

be able to use the

associated terms:

element of a set,

universal set, sub

set, and empty set
□ to be able to make

an assignment to a
set variable

B to understand what
is meant by a set
constant

Basic Idea and Notation

A set in Pascal is a structured data type consisting of a collection of distinct
elements from an indicated base type (which must be ordinal type). Sets
in Pascal are defined and used in a manner consistent with the use of sets
in mathematics. A set type is defined by

TYPE
type name = SET OF base type;

A set variable is then declared by

VAR

variable name : type name;

In a program working with characters of the alphabet, you might have
TYPE

Alphabet = SET OF •A'.. 'Z' ;
VAR

VowelS/ Consonants : Alphabet;

581

582 SETS

In a similar fashion, if your program analyzes digits and arithmetic S5mi-
bols, you might have

TYPE

Onits = SET OF □..R;
Symbols = SET OF < Rrithmetic symbols >

VRR

Digits : Units;
ArithSym : Symbols;

In these examples, Alphabet, Units, and Symbols eire set types. Vowels,
Consonants, Digits, and ArithSym are set variables.

A set can contain elements; these elements must be of the defined base
type, which must be an ordinal data type. Most implementations of Pascal
limit the maximum size of the base type of a set. This limit is such that
a base type of integer is not allowed. Often the limit is at least 128 so base
types of char and subranges of integer within 0. .127 can usually be used.

Assignments to Sets

Once a set variable has been declared, it is undefined until an assignment
of values is made. The syntax for assigning is

set name := (values);

For example, we can have
Vowels := ['fi', 'E', •!'/ '0', 'U'l;
Consonants := 'F^ .-'H', 'J' -. 'N', 'P'..'T'/

'V» .. 'Z'];
Digits := tD-.R];
ArithSym := •-•/ •*', '/'I;

Notice that the assigned values must be included in brackets and must
be of the defined base type. Appropriate values depend on the character
set being used. Also, subranges of the base type can be used; thus.

Consonants := ['B'..'D'];

is the same as

Consonants := ['B', 'C, 'D'l;

It is also possible to have set constants. Just as 4, 'H', and -56.20 are
constants, [2,4,6] is a constant. In the previous example, this could have
been caused by

Digits := t];

As mentioned, sets are structured data types because, in a sense, they
can be thought of as containing a list of elements. However, in listing the
elements, note that each element can be listed only once and order makes
no difference; thus, [2,4,6] is the same as [4,2,6].

Other Terminology

Once a value of the base type has been assigned to a set, it is an element
of the set. Thus, if we have

Digits := ;

2, 4, and 6 are elements of Digits.

14.1 Declarations and Terms 583

A NOTE OF INTEREST

Developing Educational Software

Dr. Richard B. Otte, senior research associate for
the National Institute of Education, contends that:

"Thousands of computer software programs are
available to support educational applications.
They are available from a number of educational
textbook publishers, reference centers, computer
manufacturers, and individual entrepreneiurs.
Unfortunately, there is little assurance from the

suppliers as to the quality of the software items,
and the probability they will help the instructor
accomplish desired learning objectives.
"The problem that educational users of com

puters are facing is that microcomputers are pro
liferating in the schools, but there is a paucity
of suitable educational applications programs
available to support these would-be users."

As in mathematics, any set that contains all possible values of the base
type is called the universal set. In

Digits := [□..qi;

Digits is a universal set. It is also possible to consider a set constant as a
universal set. Thus, ['A' . . 'Z'] is a universal set if the TYPE definition
section contains

type name = SET OF

If A and B have been declared as sets of the same type and all of the
elements of A are also contained in B, A is a subset of B. If we have

VftR
A, B : Units;

and the assignments
A := [1,2,3/4/5];
B := [□..[,];

have been made, A is a subset of B. Note, however, that B is not a subset
of A since B contains two elements (0 and 6) that are not contained in A.

The empty set, or null set, is the set containing no elements. It is denoted
by [1.

Note that these definitions allow for set theory results of mathematics
to hold in Pascal. Some, of these follow.

1. The empty set is a subset of every set.
2. If A is a subset of B and B is a subset of C, then A is a subset of

C.
3. Every set (of the base type) is a subset of the universal set.

Exercises 14.1 1. Find all errors in the following definitions and declarations. Explain yovu-
answers.

a. TYPE

Numbers = SET OF real;
b. TYPE

Numbers = SET OF Integer;
c. Type

Alphabet : SET OF 'A' .. 'Z' ;
d. TYPE

Alphabet = SET OF [•A' -.'Z'];

584 SETS

e. TYPE

Conditions = (Sunny/ Mild/ Rainy/ Windy);

Weather = SET OF Conditions;

VAR

TodaysWeather : Weather;

2. Write a test program to

a. Discover if char is a permissible base type for a set.
b. Determine the limitation on the size of the base type for a set.

3. Suppose a set A is declared by

TYPE

Letters = SET OF

VAR

A : Letters;

a. Show how A can be made to contain the letters of your name.
b. Assign the letters of the word PASCAL to A.
c. Assuming the assignment

A := ['T'/ '0'/ •Y'];

list all elements and subsets of A.

4. Let the sets A, B, and U be declared by

TYPE

Alphabet = SET OF 'A'-.'Z';
VAR

A/ B/ U : Alphabet;

and the assignments

A := ['B' / 'F'/ 'J'..'T'];

B := ['0'..'S'];

U := [•A'..'Z ');

be made. Indicate whether each of the following is true or false.

a. [] is a subset of B e. 'B' is a subset of A
b. B is an element of A f. A is a subset of U

c. B is a subset of A g. 'O' is an element of A
d. 'B' is an element of A

5. Assume A, B, and U are declared as in Exercise 4. Find and explain all er
rors in the following assignment statements.

a. A := 'J'-.'O'; d. A := C'E'/ 'I'/ 'E'/ «I'/ 'OM;

b. 0 := []; e. [] := ['D'];

c. B := [A..Z]; f. B := ['A'..'T'/ 'SM;

6. Let A be a set declared by

TYPE

NumRange = D..1DD;
VAR

A : SET OF NumRange;

M/ N : integer;

Indicate if the following are valid or invalid. For those that are valid, list the
elements of A. For those that are invalid, explain why.

a. A : = ciq]

b. A : = 1^;

c. M : = fiO;

N : = 4D;

A : = [M + M MOD N/ M DIV N]

14.2 Set Operations and Relational Operators 585

d. M := ID;

N := B;

a := [M, M * N, M / N1;

7. Define a set type and declare a set variable to be used for each of the
following.

a. Set values consist of colors of the rainbow.

b. Set values consist of class in school (Freshman, Sophomore, Junior, or
Senior).

c. Set values consist of fruits.

d. Set values consist of grades for a class.

8. Explain why SET is not an enumerated type.

d 14.2

Set Operations
and Relational

Operators

OBJECTIVES

□ to understand the
set operations
union, intersection,
and difference

□ to be able to use
sets with relational
operators

Set Operations

Pascal provides for the set operations union, intersection, and difference
where, in each case, two sets are combined to produce a single set. If A
and B are sets of the same type, these operations are defined as follows:
D The union of A and B is A + B where A + B contains any element that

is in A or that is in B.
o The intersection of A and B is A * B where A * B contains the elements

that are in both A and B.
Q The difference of A and B is A - B where A - B contains the elements

that are in A but not in B.

To illustrate, suppose A and B are sets that contain integer values and the
assignment statements

A := [1.
B := [3.

5];
=1];

are made. The values produced by set operations follow.

Set Operation Values

A + B

A * B
A - B

[1..qj

11,52

Multiple operations can be performed with sets and, when such an expres
sion is encountered, the same operator priority exists as with priorities
for evaluating arithmetic expressions. Thus, if A and B contain the values
indicated,

A + B - A * B

produces
[1..5] + [3. .qi - [1..53 * [3. .q]

1

[1. .53 + [3..q] - [3,4,53

[1..53 [3,4,53
I

[1,B,t..53

586 SETS

Relational Operators

Relational operators can also be used with sets in Pascal. These operators
correspond to the normal set operators equal, not equal, subset, and su
perset. In each case, a Boolean value is produced. If A and B are sets,
these operators are defined as shown in Table 14.1.

TABLE 14.1

Set operations
Operator

Relational

Expression Definition

(Equal)

A = B A equals B; that is, every element in A is
contained in B and every element in B is
contained in A.

<>

(Not equal)
A <> B A does not equal B; that is, either A or B contains

an element that is not contained in the other set.

< =

(Subset)

A<= B A is a subset of B; that is, every element of A is
also contained in B.

> =

(Superset)

A>= B A is a superset of B (B is a subset of A); that is,
every element of B is contained in A.

Boolean values associated with some set expressions follow.

Set Expression Boolean Value

<= [□..ID]

[□..ID] <= C1#S,3]
[□..ID] = [D..5/ t..ID]
r] = {Clf2] - CD..ID])
[1. .51 <> [1. .3/ A, 5]

true

false
true

true

false

Set Membership
Membership in a set is indicated in Pascal by the reserved word IN. The
general form is

element IN set

This returns a value of true if the element is in the set and a value of false
if it is not. To illustrate, suppose A and B are sets and the assignments

A := [D..5D];
B := CS..ID];

are made. The values of expressions using IN follow.

Expression Boolean Value

ID IN A true

5 IN (A - B) false

ED IN B false

7 IN (A * B) true

fl D DIV ED IN A * B 7

14.2 Set Operations and Relational Operators 587

Note that the last expression cannot be evaluated until priorities are as
signed to the operators. Fortunately, these priorities are identical to those
used for arithmetic expressions with IN on the same level as relational
operators. They are shown in Table 14.2.

TABLE 14.2

Operator priorities
including set
operations

Priority Level Operators

1 NOT

2 *, /, MOD, DIV, AND
3 + , OR
4 <, >, < = , > = , =, <>, IN

Operations at each level are performed in order from left to right as
they appear in an expression. Thus, the expression

&D DIV an IN A * B

produces

flp DIV an IN ft * B

I

A IN A » B

i

A IN [5..ID]

false

Exercises 14.2 1. When using sets in Pascal, is > = the logical complement of < = ? Give an
example to illustrate your answer.

2. Let A and B be sets defined such that A := [0 .. 10] and B := [2,4,6,8,10]
are valid. Write a test program to show that

a. A + B = A

b. A » B = B

c. A - B = [0,1,3,5,7,9]

3. For each of the following sets A and B, find A + B, A ♦ B, A - B, and
B - A.

a. A := [-3. .2,8,10], B := [0. .4, 7. .10]
b. A := [0,1,5. .10,20], B := [2,4,6,7. .11]
c. A := [], B := [1. .15]
d. A := [0. .5, 10, 14. .20], B := [3,10,15]

4. Given the following sets

A := [0,2,4,6,8,10];
B := [1,3,5,7,9];

C := [0 .. 5];

indicate the values in each of the following sets.

a. A * B - C

b. A * (B - C)
c. A » (B + C)
d. A*B-I-A*C

e. A - B * C

f. A - (B - (A - B))
g. A * (B * C)
h. (A ♦ B) * C

588 SETS

5. Using sets A, B, and C with values assigned as in Exercise 4, indicate
whether each of the following is true or false.

a. A * B = [] d. A + B <> C
b. C<= A + B e. A - B >= []

c. [5] <= B f. (A + B = C) OR ([] <= B - C)

6. In mathematics, when X is an element of a set A, this is denoted by X G A.
If X is not in A, we write XGA. Let B be a set declared by

VftR

B : SET OF

Examine the following for validity and decide how Pascal handles the
concept of not-an-element-of.

a. 4 NOT IN B d. NOT (< IN B)

b. ^ NOT (IN B) e. < IN NOT B
c. NOT 4 in B f. 4 IN (NOT B)

7. Write a short program to count the number of uppercase vowels in a text
file. Your program should include the set type

TYPE

ftlphaOppercase = SET OF

and set variable VowelsUppercase declared by

VAR

VowelsUppercase : AlphaUppercase;

S 14.3

Using Sets

OBJECTIVES

) to understand how

sets can be used in

a program

I to be able to use

sets in a program

) to understand the

limitations of using
sets with functions

1 to be able to use

sets with

procedures

Uses for Sets

Now that we know how to declare sets, assign values to sets, and operate
with sets, we need to examine some uses of sets in programs. First, how
ever, we need to note an important limitation of sets: as with other struc
tured variables, sets cannot he read or written directly. However, the two
processes—generating a set and printing the elements of a set—are not
difficult to code. To illustrate generating a set, suppose you wish to create
a set and have it contain all the characters in the alphabet in a line of text.
(For this example we assume that the text file does not contain lowercase
letters.) You can declare this set with

TYPE

AlphaSymbols = •A'-.'Z';
Symbols = SET OF AlphaSymbols;

VAR

Alphabet : Symbols;
SentenceChar : Symbols;

Ch : char;

Code to generate the set SentenceChar is
Alphabet := ['A" . . 'ZM ;
SentenceChar := C];

writeln ('Enter a sentence.');
WHILE NOT eoln DO

BEGIN

read (Ch);

IF Ch IN Alphabet THEN
SentenceChar := SentenceChar + CChl

END;

14.3 Using Sets 589

For many examples we assume the text file does not contain lowercase
letters. As you will see in the Focus on Programming section, a slight
modification can be made to accommodate both uppercase and lowercase
letters. For example, you could use both uppercase and lowercase letters
by changing the set definitions to

TYPE

Symbols = SET OF char;
VAR

UppercaseAlphabet : Symbols;
LowercaseAlphabet : Symbols;
Alphabet: Symbols;

Alphabet could then be formed in the program by

UppercaseAlphabet := [•A'.-'Z'l;
LowercaseAlphabet := C'a'..'z'];
Alphabet := UppercaseAlphabet + LowercaseAlphabet;

or

'z']Alphabet := [•A»..«Z'/ 'a

The general procedure of getting values into a set is to initialize the set
by assigning the empty set and use set union to add elements to the set.
The process of printing values of elements in a set is equally short.

Assuming you know the data type of elements in the set, a loop can be
used where the loop control variable ranges over values of this data type.
Whenever a value is in the set, it is printed. To illustrate, assume the set
SentenceChar now contains all the alphabetical characters from a line of
text and you wish to print these characters. Since we know the data type
for elements of SentenceChar will be characters in 'A'.. 'Z', we can print
the contained values by

FOR Ch := 'A' TO 'Z' DO

IF Ch IN SentenceChar THEN

write (Ch:E);
writeln;

STYLE TIP

9 IS 19 B
Sets with appropriate names are particularly useful for checking data. For
example, a tjrpical problem when w;orking with dynamic variables (which
are discussed in Chapter 15) is to ̂examine an arithmetic expression for
correct form. Thus, 3 + 4 is a validiexpression but 3 + * 4 is not. As part
of a pro^pram that analyzes such expressions, you might choose to define the
following sets.

TYPE

ValidDigits = SET OF 'O'i-'q';
Symbols = SET OF char;

VAR

Digits : ValidDigits;
ValidOperator : Symbols;
LeftSymbol, RightSymbol : Symbols;

These sets can now be assigned values such as

Digits := t'0'..iq'];
ValidOperator [•+•/ i_i, •/•];
LeftSymbol := C • (• , ' f» , ' •{ "1;
RightSymbol :=[•)•, •]»/ »>•];

590 SETS

If these two fragments of code are applied to the line of text
THIS LINE (OBVIODSLY MADE UP!) DOESN'T MAKE MUCH SENSE,

the output is

ABCDEHIKLMNOPSTOVY

Now that you are familiar with how to generate elements in a set and
subsequently print contents of a set, let's examine some uses for sets in
programs. Specifically, let's look at using sets to replace complex Boolean
expressions, protect a program against had data, protect against invalid
CASE statements, and aid in interactive programming.

Suppose you are writing a program to analyze responses to questions
on a standard machine-scored form. If you want a certain action to take
place for every response of A, B, or C, instead of
IF (Response='A') OR (Response='B') OR (Response='C') THEN

you could have

IF Response IN ['A'/ 'B'/ 'C'l THEN

To demonstrate protecting a program against bad data, suppose you are
writing a program to use a relatively large data file. Furthermore, suppose
that the data are entered by operators in such a fashion that the first entry
on the first line for each customer is a single-digit code. This is followed
by appropriate data for the customer. To make sure the code is properly
entered, you can define a set ValidSym and assign it all appropriate sym
bols. Your program design can be

read (Sym);
IF Sym IN ValidSym THEN

BEGIN

(action here)

END

ELSE

(error message here)

Specifically, a program for printing mailing labels might require a 3, 4, or
5 to indicate the number of lines for the name and address that follow. If
you are writing a program that also partially edits the data file, you can
have

read (NumLlnes);
IF NumLlnes IN 13,A,SI THEN

BEGIN

(process number of lines)

END

ELSE

(error message here)

The third use of sets is to protect against invalid CASE statements. This
is especially appropriate for implementations that do not have an
OTHERWISE option (as discussed in Section 5.5). To illustrate, suppose

V'

14.3 Using Sets 59 j

you are working with a program that uses a CASE statement where the
selector is a letter grade assigned to students. Without sets, the statement
is

CASE LetGrade OF

•A'

• B'

•C

•D'

• E '

END; < of CASE LetGrade >

To protect against the possibility of LetGrade being assigned a value not
in the CASE selector list, sets can be used as follows:

IF LetGrade IN ['A'

CASE LetGrade OF

•A'

IB'

'C

•D«

• E'

END {

ELSE

Of CASE Le

'E'] THEN

tGrade

(error message here)

A fourth use of sets is as an aid in writing interactive programs. Fre
quently a user will be asked to respond by pressing a certain key or keys.
For example, a message such as the following may be given:

Do you wish to continue? <y> or <N> and press <BETORN>.

In such cases, two problems may occur. First, the user might use uppercase
or lowercase letters for a correct response. Second, the user might inad
vertently strike the wrong key. To make this part of the program correct
and guard against bad data, you could have a set declared and initialized
as

GoodResponse := ['Y', 'yS 'N', 'n'];

and then use a REPEAT ... UNTIL loop as follows:

REPEAT

write ('Do you wish to continue?
readln (Response)

UNTIL Response IN GoodResponse;

<Y> or <N> and press <RETDRN>

You could then use a boolean variable Continue by first assigning it a
value false and then follow the REPEAT ... UNTIL loop with

Continue := Response IN C'Y', 'y'];

Sets with Functions

Sets can be used with subprograms. In general, set types can be used as
parameters in much the same way that arrays, records, and files are used.
However, when working with functions, sets cannot he returned as values
of a function because functions cannot return structured types.
To illustrate using sets with functions, let's consider two examples.

592 SETS

A NOTE OE INTEREST

Time Is Cure for Computerphobia

what can make an otherwise stalwart manager
hreak into a cold sweat, reel with dizziness, and
suffer waves of nausea? The answer is not the
latest version of the flu. It's the computer! As
reported in a recent issue of Executive Action
Series, published by the Bureau of Business Prac
tice, Waterford, Connecticut, a surprising num
ber of managers fear, distrust, and even hate the
computer, some in phobic proportions.

Is there a cure for this phobia that has such
a destructive effect on productivity? Time is the

answer, say the experts. It takes time to overcome
computerphobia. A gradual introduction to com
puter technology is essential. Companies that
provide both private instruction to managers and
the time to master simple programming have more
personnel regularly using their terminals. Con
fidence and motivation grow as managers suc
cessfully master simple computer tasks.

EXAMPLE 14.1 Let's write a function to determine the cardinality (size or number of elements)
of a set. Assuming appropriate TYPE definitions, such a function can be

FUNCTION Cardinality (S : set type) : integer;
VAR

Ct : integer;
X : base type for set;

BEGIN

Ct := □;
FOR X := initial value TO final value DO

IF X IN S THEN
Ct := Ct + 1;

Cardinality := Ct
END;

This is called from the main program by

SetSize := Cardinality (set name); ■

EXAMPLE 14.2 For our second example, let's consider a function to find the maximum element
of a set. This would typically be applied to a set whose elements are in some
subrange of the integers. If not, however, you can easily modify the function by
considering the ordinals of set elements.

FUNCTION MaxElement (S : set type) : base type;
VAR

Temp : base type;
X : base type;

BEGIN
IF S = [] THEN

writeln ('You are working with an empty set! ' :<D)
ELSE

BEGIN
Temp := initial value;
FOR X := initial value

IF (X IN S) AND (X >
Temp := X

END; -C of ELSE option >
MaxElement := Temp

END; •{ of FUNCTION MaxElement

This is called from the main program by
Largest := MaxElement (set name);

TO final value
Temp) THEN

DO

14.3 Using Sets 593

Sets with Procedures

As you recall, sets cannot be returned as values of a function. However,
when a program requires a set to be returned from a subprogram, the set
can be used as a variable parameter with a procedure. In this manner, sets
can either be generated or modified with subprograms. The Focus on
Programming section at the end of this chapter illustrates such a use.

Exercises 14.3 1. Modify the function MaxElement used in Example 14.2 to find the character
in a line of text that is latest in the alphabet. Use this function with the Fo
cus on Programming code presented at the end of this chapter.

2. Write a test program to create a set containing all the consonants from a line
of text. Your program should also print all elements in the set.

3. Write a short program to reproduce a text file where every vowel is replaced
by an asterisk.

4. Modify the code used to find all the alphabet characters in a line of text so
that a complete text file can be analyzed rather than just one line.

5. Write a program to simulate arithmetic indicated in a text file. The arithme
tic expression should always be of the form digit-sjnnbol-digit (9 + 8) where
all digits and symbols are given as data of type char. Your program should
protect against bad operation symbols, bad digits (actually nondigits), and
division by zero.

6. To illustrate how sets can be u^ed to protect against invalid values for CASE
selectors, write a short program that uses a CASE statement. Run it with an
invalid CASE selector value. Change the program so the CASE statement is
protected by using a set. Rerun the program with the same invalid selector.

7. Write a Boolean function to analyze an integer between — 9,999 and 9,999
and return the value true if the integer contains only odd digits (1,731) and
false otherwise.

8. Write a function that returns the length of a string passed to the function as
a packed array. Punctuation marks and internal blanks should add to the
string length. Blanks at the beginning or end should not.

FOCUS ON

FROGRAMMING
The sample program for this chapter illustrates a use of sets. In particular,
a set is used as a variable parameter in a procedure. The specific problem
is to write a program to determine the alphabetical characters used in a
line of text. Output from the program is an echo print of the text line, a
list of letters in the text, and the number of distinct letters used in the
line.

A first-level pseudocode development for this problem is

1. Get the characters

2. Print the characters

3. Determine the cardinality of the set
4. Print a closing message

A structure chart for this program is given is Figure 14.1.

594 SETS

FIGURE 14.1

Structure chart for

PROGRAM

SjunbolCheck

WHILE NOT

eolki DO
ptpcess; a

Initialize!

Print a final
hiessige

Print characters
Jroin the-set

Main:
task

Module specifications for the main modules are

1. GetLetters Module

Data received: None

Information returned: A set of letters from a sentence

Logic: Initialize the set.
Add (union) distinct letters from a line of text.

2. PrintSet Module

Data received: A set of letters

Information returned: None

Logic: Use a FOR loop to scan the alphabet and print the letters
contained in the set.

3. Cardinality Module
Data received: A set of letters
Information returned: The cardinality of the set
Logic: Use a function to count the number of distinct elements in

a set.

4. PrintMessage Module
Data received: Cardinality of the set
Information returned: None

Logic: Print a message indicating the set size.

A refinement of the pseudocode produces

1. Get the characters

1.1 initialize set

1.2 WHILE NOT eoln DO

1.2.1 process a character
2. Print the characters

2.1 FORCh:= A TO 'z'DQ

IF Ch is in the set THEN

print Ch

14.3 Using Sets 595

3. Determine the cardinality of the set
3.1 initialize counter to 0

3.2 FOR Ch : = A'TO z' DO

IF Ch is in the set THEN

increment counter

3.3 assign count to function name
4. Print a closing message

Step 1.2.1 could be refined to

1.2.1 process a character
1.2.1.1 read a character

1.2.1.2 write a character (echo print)
1.2.1.3 IF character is in the alphabet THEN

add it to the set of characters

The main program is

BEGIN { Main program >
GetLetters (SentenceChar);

PrintSet (SentenceChar);

SetSize := Cardinality (SentenceChar);
PrintHessage (SetSize)

END. •(Of main program >

A complete program for this is

PROGRAM SymbolCheck (input, output. Data);

< This program illustrates working with sets. It reads a line >
< of text and determines the number of distinct letters in >

< that line. Output includes the distinct letters and the >
< set cardinality. Information for this program is stored in }
< the text file Data. >

CONST

Skip = • •;

TYPE

AlphaSymbols = SET OF 'A'..'z';

VAR

SentenceChar : AlphaSymbols; i Set of possible letters >
SetSize : integer; •(Cardinality of the set >
Data : text; i Data file }

PROCEDURE GetLetters (VAR SentenceChar : AlphaSymbols);

■(Given: Nothing
< Task: Read characters from the text file. Data; echo
< print them; store the alphabetical
{ characters in a set
i Return: The set of letters contained in the line of
<. text

VRE ^ 1
Ch : char;
Alphabet : AlphaSymbols;

596 SETS

BEGIN

reset (Data);
SentenceChar := [];

Alphabet := [•R'..'Z'l + ['a'..'z'];
writeln (Skip:ID/ 'The line of text is below:');
writeln; write (Skip:10);
WHILE NOT eoln(Data) DO
BEGIN

read (Data/ Ch);
write (Ch); < echo print >
IF Ch IN Alphabet THEN

SentenceChar := SentenceChar + [Chi

END; i of WHILE NOT eoln(Data) > < of one line }
writeln

END; i of PROCEDURE GetLetters >

•{***#♦♦*»*********♦*********♦♦**********************************

PROCEDURE PrintSet (SentenceChar : AlphaSyrabols);

■(Given: A set of characters >
<. Task: Print all characters in the set >
< Return: Nothing >

VAR

Ch : char;

BEGIN
writeln (Skip:10/ 'The letters in this line are: ');
writeln; write (Skip:ID);
FOR Ch := 'A' TO 'z' DO

IF Ch IN SentenceChar THEN
write (Ch:5);

writeln
END; { of PROCEDURE PrintSet >

{»******************♦*♦***}

FUNCTION Cardinality (SentenceChar : AlphaSymbols) : integer;

{ Given: A set of characters >
{ Task: Determine the number of characters in the set }
< Return: The set size (cardinality) >

VAR

Ct : integer;
X : char; 3

BEGIN

Ct := D;
FOR X := 'A' TO 'Z' DO

IF X IN SentenceChar THEN
Ct := Ct + 1;

Cardinality := Ct
END; i of FUNCTION Cardinality > J

•{********♦**********♦*****************♦*******♦♦**+*************)■

PROCEDURE PrintMessage (SetSize : integer);

<. Given: The cardinality of the set }
i Task: Print a closing message '")• 4
■C Return: Nothing >

14.3 Using Sets 597

BEGIN

writeln;

writeln ('There are', SetSize:3, ' letters in this sentence.')
END; { of PROCEDURE PrintMessage >

BEGIN ■(Main program >
GetLetters (SentenceChar);
PrintSet (SentenceChar);
SetSize := Cardinality(SentenceChar);
PrintMessage (SetSize)

END. < of main program }

When this program is run on the line of text
The numbers -2, 5, 2D and symbols '?', '

The output is
The line of text is below:

should be ignored

The numbers -2, 5, 20 and symbols ': ' should be ignored.

The letters in this line are:

Tabdeghilmnorsuy

There are lb letters in this sentence.

RUNNING AND
DEBUGGING TIPS

1. When defining a set type, do not use brackets in the definition; thus, the
following is incorrect
TYPE

Alphabet = SET OF ['A' ..'Z"];
The correct form is

TYPE
Alphabet = SET OF 'A' .. 'Z' ;

2. Remember to initialize a set before using it in the program. Declaring a set does
not give it a value. If your declaration is
VAR

Vowels : Alphabet;

the program should contain
Vowels := ['A', 'E', 'I', '0', 'U'];

3. Attempting to add an element to a set rather than a set to a set is a common
error. If you wish to add 'D' to the set ['A', 'B', 'C'], you should write
['A', 'B', 'C'l + ['D']

rather than

[' A' , 'B' , 'C] + 'D'

This is especially a problem when the value of a variable is to be added to a
set.

[' A', 'B' , 'C] + Ch;

should be

[' A', 'B' , 'C] + [Ch];

4. Avoid confusing arrays and array notation with sets and set notation.
5. Certain operators (+, -, and *) have different meanings when used with sets.

598 SETS

Summary Key Tenns

difference intersection union

element of a set set universal set

empty (null) set subset

Keywords

IN SET

Key Concepts

n A SET in Pascal is a structured data type that consists of distinct elements
from an indicated base type; sets can be declared by

TYPE

TwentiethCentury = SET OF 1S0D..1R«RS;

VRR

Seventies/ Eighties : TwentiethCentury;

In this definition and declaration, TwentiethCentury is a set type and
Seventies and Eighties are set variables.

□ Values must be assigned to a set; thus, we could have

Seventies := [1'=I70. .];
Eighties := [ISOD. .naq];

a When listing elements in a set, order makes no difference and each element
may be listed only once.

□ Standard set operations in PUscal are defined to be consistent with set opera
tions of mathematics; to illustrate, if

A := [l/S/3,<];

and

B := [3/4/5];

the union, intersection, and difference of these sets are as follows:

Tenn Expression Value

Union A -1- B [1..5]

Intersection A * B C3/4]
Difference A - B [1/S]

B - A [5]

Set membership is denoted by using the reserved word IN. Such an expres
sion returns a Boolean value; thus, if

A := [l/S/3/4];

we have

Expression Value

5 IN A true

t IN A false

Programming Problems 599

° The relational operators (< =, > =, <>, and =) can be used with sets form
ing Boolean expressions and retiuming values consistent with expected subset
and set equality relationships; to illustrate, if

A := [1,2,3];

B := [□..5];
C := C2,4];

we have

Expression Value

A <= B true

B <= C false

CJ

II
A

n

true

A = B false
B <> C true

a Priority levels for set operations are consistent with those used for arithmetic
expressions; they are

Priority Level Operation

1 NOT
2 *, /, MOD, DIV, AND
3 +, -,OR
4 <,>,< = ,> = , <>, =, IN

° Sets cannot be used with read or write; however, you can generate a set by
initializing the set, assigning the empty set, and using set union to add ele
ments to the set. For example, a set of characters in a text line can be gener
ated by

S := [] ;
WHILE NOT eoln DO

BEGIN

read (Ch);
S := S + [Ch]

END;

This set can be printed by

FOR Ch := initial value TO final value DO
IF Ch IN S THEN

write (ChrE);

° Four uses for sets in programs are to replace complex Boolean expressions, to
protect a program (or segment) from bad data, to protect against invalid CASE
statements, and to aid in interactive programming.

° Sets can be used as parameters with subprograms.
El Sets cannot be retimied as the value of a function.
° Sets can be generated or modified through subprograms by using variable pa

rameters with procedures.

■ Programming Each of the following programming problems can be solved with a program
Problems using sets. Hints are provided to indicate some of the uses; you may, of

course, find others.

1. Write a program to be used to simulate a medical diagnosis. As
sume the following symptoms are coded as indicated.

600 SETS

Symptom Code

Headache 1

Fever 2

Sore throat 3

Cough 4

Sneeze 5

Stomach pain 6

Heart pain 7

Muscle pain 8

Nausea 9

Back pain 10

Exhaustion 11

Jaundice 12

High blood pressure 13

Furthermore, assume each of the following diseases is character
ized by the symptoms as indicated.

Disease Symptoms

Cold 1,2.3,4,5

Flu 1,2,6,8,9

Migraine 1,9

Mononucleosis 2,3,11,12

Ulcer 6,9

Arteriosclerosis 7,10,11,13

Appendicitis 2,6

Your program should accept as input a person's name and symp
toms (coded) and provide a preliminary diagnosis. Sets can be used
for

a. Bad data check

b. Sjrmptoms = 1 .. 13;
Disease = SET OF Symptoms;

c. Cold, Flu, Migraine, Mononucleosis, Ulcer, Arteriosclerosis, Ap
pendicitis : Disease;

2. Write a program to serve as a simple text analyzer. Input is any text
file. Output should be three histograms: one each for vowel fre
quency, consonant frequency, and other sjnnbol frequency. Your
program should use a set for vowels, one for consonants, and a
third for other symbols.

3. Typists often complain that the standard QWERTY keyboard

QWERTYUIOP

ASDFGHJKL;
ZXCVBNM, . /

space bar

is not efficient. As you can see, many frequently used letters (E, T,
N, R, and I) are not on the middle row. A new keyboard, the Mal-
tron keyboard, has been proposed. Its design is

Programming Problems 601

QPYCBVMUZL

ANISFEDTHOR;:.
JGWKX

space bar

Write a program to analyze a text file to see how many jumps are
required by each keyboard. For purposes of this program, a jump
will be any valid symbol not on the middle row. Output should in
clude the number of valid symbols read and the number of jumps
for each keyboard.

4. Write a program to serve as a simple compiler for a Pascal program.
Your compiler should work on a program that uses only single-
letter identifiers. Your compiler should create a set of identifiers,
make sure identifiers are not declared twice, make sure all identi

fiers on the left of an assignment are declared, and make sure there
are no type mismatch errors. For purposes of your compiler pro
gram, assume as follows:

a. Variables are declared between VAR and BEGIN; for example,

VRR

X/ Y : real;

A/ B, C : integer;
M : char;

BEGIN

b. Each program line is a complete Pascal statement.
c. The only assignments are of the form X : = Y;. Output should in

clude the program line number and an appropriate error mes
sage for each error. Run your compiler with several short Pascal
programs as text files. Compare your error list with that given in
Appendix 5.

5. A number in exponential notation preceded by a plus or minus
sign may have the form

Sign Positive Positive Sign Exponent

integer Decimal integer E (three digits)
I II I • I I i II I

For example, -45.302E + 002 is the number —4530.2. If the num
ber is in standard form, it will have exactly one digit on the left
side of the decimal (—4.5302E + 003).

Write a program to read numbers in exponential form from a text
file, one number per line. Your program should check to see if each
number is in proper form. For those that are, print out the number
as given and the number in standard form.

Write a program to analyze a text file for words of differing length.
Your program should keep a list of all words of length one, two,
..., ten. It should also count the number of words whose length
exceeds ten.

A word ends when one alphabetical character is followed by a
character not in the alphabet or when an end-of-line is reached. All
words start with letters (7UP is not a word). Your output should be
an alphabetized list for each word length. It should also include
the number of words whose length exceeds ten cheiracters. An
apostrophe does not add to the length of a word.

602 SETS

7. The Falcon Manufacturing Company wants a computerized system
to check if a customer is approved for credit. A customer number
should be entered from the keyboard, with the program printing
the credit limit for the customer if credit has been approved, and
"No credit" if it has not. Each line of a text file contains a customer

number and the credit limit. Valid customer numbers range from
ICQ to 999, and credit limits are $100, $300, $500, $1000, and un
limited credit.

8. Write a program in which you read a text file and print out the
number of times a character in the file matches a character in your
name.

9. The Court Survey Corporation wishes to conduct a poll by sending
questionnaires to men and women between 25 and 30 years of age
living in your state or any state adjacent to it. A text file containing
names, street addresses, cities, states, zip codes, and ages is to be
read, with the program printing the names and addresses of those
persons matching the criteria.

10. Write a program to test your ESP and that of a friend. Each of you
should secretly enter ten integers between 1 and 100. Have the pro
gram check each list and print the values that are in both lists and
the number of values that are in both lists.

11. Modify Problem 22 from Chapter 9 (the Wellsville Wholesale Com
pany commission problem) to define the sales ranges as sets. Use
these sets to verify input and determine the proper commission
rate.

12. The Ohio Programmers' Association offices are in a large building
with five wings lettered A through E. The office numbers in the
wings are as follows:

Wing Rooms

A 100-150 and 281-300

B 151-190 and 205-220

C 10- 50 and 191-204

D 1- 9 and 51- 99

E 221-280 and 301-319

Write a program for the receptionist. Miss Lovelace, so that she can
enter an office number from the keyboard and then have the com
puter print the wing in which the office is located.

CHAPTER
■■jiBH) innni

-

IBJBI 1 1
■

!
IB JHI
IB 1 1 "Hi

! lit"T"P~

3ili0m

Djniamic Variables
and Data Structures

Material in the previous fourteen chapters has focused almost
exclusively on static variables, characteristics of which include:

1. Their size (array length, for example) is fixed at compilation time.
2. A certain memory location is reserved for each variable and these

locations are retained for the declared variables as long as the pro
gram or subprogram in which the variable is defined is active.

3. They are declared in a variable declaration section.
4. The structure or existence of a variable cannot he changed during

a run of the program (two exceptions are the length of a file and
records with variant parts).

A disadvantage of using only static variables and data structures is that
the number of variables needed in a program must be predetermined.
Thus, if you are working with an array and you anticipate needing a
thousand locations, you would define

Name = ARRAY [1..1DDD] OF base type;

This creates two problems. You may overestimate the length of the array
and use only part of it; therefore memory is wasted. Or you may under
estimate the necessary array length and be unable to process all the data
until the program is modified.

Fortunately, Pascal solves these problems with the use of dynamic vari
ables. Some of their characteristics follow.

1. Dynamic variable types are defined in the TYPE section, but vari
ables of these types are not declared in the VAR section.

2. Memory for dynamic variables is created as needed and returned
when not needed during the execution of a program; therefore,
unneeded memory is not wasted and you are limited only by the
available memory.

603

604 DYNAMIC VARIABLES AND DATA STRUCTURES

m 15.1

Pointer

Variables

OBJECTIVES

i to understand the

difference between

the address of a

memory location
and the value of a

memory location
I to be able to define

a pointer t3rpe

I to understand how

a pointer variable is
used to access a

memory location

to be able to use a

pointer variable to
manipulate data in
a dynamic variable
to be able to create

and destroy dy
namic variables dur

ing the execution of
a program

to understand the

difference between

a pointer variable
and the dynamic
variable to which it

refers

to be able to use

NIL with pointer
variables

3. A new (and significant] technique must be developed to form a
list of dynamic variables; these lists are referred to as dynamic
structures.

4. In some instances, working with dynamic structures can be
slower than working with static structures; in particular, direct ac
cess of an array element has no analogue.

5. A significantly different method of accessing values stored in dy
namic variables must be developed since memory locations are
not predetermined.

A complete development of dynamic variables and data structures is left
to other courses in computer science. However, when finished with this
chapter, you should have a reasonable understanding of dynamic variables
and data structures, and be able to use them in a program. We carefully
develop one type of dynamic data structure (linked list) and then introduce
three others: stack, queue, and binary tree.

You may find this material somewhat difficult. If so, do not get dis
couraged. Two reasons for the increased level of difficulty are that some
of the work is not intuitive, and the level of abstraction is different from
that of previous material. Therefore, as you work through this chapter,
you are encouraged to draw several diagrams and write several short
programs to help you understand concepts. Also you may need to reread
the chapter or particular sections to grasp the mechanics of working with
dynamic variables.

Computer Memory

Computer memory can be envisioned as a sequence of memory locations
depicted as in Figure 15.1. An area where a value can be stored is called
a memory location. When a variable is declared in the variable declaration
section of a program, a memory location is reserved during execution of
that program block. This memory location can be accessed by a reference
to the variable name and only data of the declared type can be stored
there. Thus, if the declaration section is

VftR

Sum : integer;

you can envision it as shown in Figure 15.2. If the assignment

Sura := St;

is made, we have the arrangement shown in Figure 15.3.
Each memory location has an address. This is an integer value that the

computer must use as a reference to the memory location. When static
variables (such as Sum) are used, the address of a memory location is
used indirectly by the underlying machine instruction. However, when
dynamic variables are used, the address is used directly as a reference or
pointer to the memory location.
The value that is the address of a memory location must be stored

somewhere in memory. In Pascal, this is stored in a pointer variable. A
pointer variable (frequently denoted as Ptr) is a variable of a predefined
type that is used to contain the address of a memory location. To illustrate,
assume Ptr has been declared as a pointer variable. If 56 is stored in a
memory location whose address is 11640, we can envision it as shown
in Figure 15.4.

15.1 Pointer Variables 605

FIGURE 15.1

Computer Memory
Address Memory locations

0

11640

FIGURE 15.2

Variable location in

memory

Address Memory locations

0

11640 Location

reserved
for sum

FIGURE 15.3

Value in variable

Sum

Address Memory locations

0

11640 56 Sum

FIGURE 15.4

Relationship between
pointer and memory
location

Address Memory locations

0

Ptr-»-11640 56

606 DYNAMIC VARIABLES AND DATA STRUCTURES

Working with Pointer and Dynamic Variables

It] Pointer variables are declared by using an up arrow (t) or caret (*) in
front of the tjrpe name. Thus,

TYPE

Ages

VAR

Ptr

= D..150;

rAges;

declares Ptr as a pointer variable. Ptr cannot be assigned values of type
Ages; Ptr can only contain addresses of locations whose values are of type
Ages.
Once this declaration has been made, a dynamic variable can be created.

A dynamic variable, designated as Ptr t, is a variable accessed by a pointer
variable; a dynamic variable is not declared in the declaration section of
a program. Using the standard procedure new with a pointer variable as

new (Ptr); < This initializes a value for Ptr I

creates the dynamic variable Ptrt. This can be illustrated by

Ptr

I I Ptrt

The pointer variable followed by an up arrow (or caret) is always the
identifier for a dynamic variable. We usually read Ptrt as the object (vari
able) pointed to by Ptr.
To illustrate the relationship between pointer variables and dynamic

variables, assume the previous declaration and the code

new (Ptr);

Ptrt := St.;

This stage can be envisioned as

Ptr

I 56 I Ptrt

where Ptr contains the address of Ptr t.

Dynamic variables can be destroyed by using the standard procedure
dispose. Thus, if you no longer need the value of a dynamic variable Ptrt,
then

dispose (Ptr);

causes the pointer variable Ptr to no longer contain the address for Ptrt.
In that sense, Ptr t does not exist because nothing is pointing to it. This
location has been returned to the computer for subsequent use.

Since pointer variables contain only addresses of memory locations,
they have limited use in a program. Pointer variables of the same type
can be used only for assignments and comparison for equality. They cannot

STYLE TIP

g] IS S 9 S
Ptr or some identifier contaiiung Ptr (for example, DataPtr) is frequently
used when declaring pointer variables. This reinforces the difference be
tween working vdth a pointer variabl^^ (Ptr) and a dynamic variable (Ptrt).

15.1 Pointer Variables 607

be used with read, write, or any arithmetic operation. To illustrate, assume
we have the definition and declaration

TYPE

Ages = □..120;
VAR

Ptrl, PtrE : TAges;

Then

new (Ptrl);
new (Ptr2);

create the dynamic variables Ptrl t and Ptr21. If the assignments
PtrlT := SD;
PtrEt := 21;

are made, we can envision this as

50

Ptrl Ptrl T

21

Ptr2 Ptr21

The expression Ptrl = Ptr2 is then false and Ptrl <> Ptr2 is true. If the
assignment

Ptrl := Ptr2;

is made, we can envision

Ptrl

21

50

Ptr2 Ptr2T,Ptrlt

Then Ptrl = Ptr2 is true and Ptrl <> Ptr2 is false.
Notice that in this last illustration, 50 no longer has anything pointing

to it. Thus, there is now no way to access this value. Since we did not
use dispose, the location has not been returned for subsequent reuse.
Therefore, you should be careful to use dispose when necessary or you
could eventually run out of memory.

Dynamic variables can be used in any context used by static variables
of the same type. To illustrate, assume the previous declarations for Ptrl
and Ptr2. If appropriate values (50 and 21) are in a data file, the segment

new (Ptrl);
new (Ptr2);
read (Ptrlt/ Ptr2t);
writeln ('The average of, PtrltrS, ' and', Ptr2T:5,

• is', (Ptrlt + Ptr2t) / 2:t:2);

produces
The average of 5Q and 21 is 35.5D

Defining and Declaring Pointer Variables

The previous definition and declarations of pointer types and pointer
variables are relatively uncomphcated; however, in actual practice, pointer
types and variables are a bit more complex. For example, in the next
section we will define a dynamic variable as a record type where one of

608 DYNAMIC VARIABLES AND DATA STRUCTURES

the fields in the record type is a pointer of the same type. Thus, you can
have

TYPE

StringSD = PRCKED ARRAY [1..2D] OF char;
DataPtr = tstudentlnfo;

Studentlnfo = RECORD

Name : StringSD;
Next : DataPtr

END; < of RECORD Studentlnfo >

VAR

Student : DataPtr;

Notice that DataPtr makes a reference to Studentlnfo before Studentlnfo

is defined. Studentlnfo then contains a field of type DataPtr. In this in
stance, Pascal makes an exception to the rule that forbids using something
before it is defined. Specifically, the following exception is permitted:
Pointer type definitions may precede definitions of their reference types.
The reverse is not true. That is, a structure may not contain a field or
component of a pointer type that has not yet been defined. You will
frequently want each record to point to another record. Using a record
definition with one field for a pointer permits this.

Another note about working with pointers should be mentioned here.
The reserved word NIL can be assigned to a pointer variable. Thus, you
could have

new (Student);

Studentt.Next ;= NIL;

This allows pointer variables to be used in Boolean expressions and is
needed in later work. For example, if you are forming a list of dynamic
variables where each dynamic variable contains a pointer variable for
pointing to the next one, you can use NIL as a way to know when you
are at the end of a list. This idea and that of pointer type definitions are
fully developed in the next section.

Exercises 15.1 l. Discuss the difference between static and dynamic variables.

2. Write a test program to declare a single pointer variable whose associated
dynamic variable can have values in the subrange 0 .. 50 and then

a. Create a djmamic variable, assign the value 25, and print the value.
b. Create another dynamic variable, assign the value 40, and print the value.

At this stage of your program, where is the value 25 stored?

3. Illustrate the relationship between pointer variables and dynamic variables
produced by

TYPE

Ptr = (Red/ Yellow/ Blue/ Green);
VAR

Ptrl/ PtrS : TPtr;

BEGIN

new (Ptrl);

new (PtrS);
Ptrlt := Blue;
PtrSt := Red

END.

15.1 Pointer Variables 609

4. Assume the TYPE and VAR sections are given as in Exercise 3. Find all
errors in the following.

a. new (Ptrlt);

b. new (PtrP);

PtrP := Yellow;

c. new (Ptrl);

new (Ptr2);

Ptrlt := Red;

PtrBt := Ptrlt;

d. new (Ptrl);

new (PtrE);

Ptrlt := Red;

Ptrlt := PtrSt;

e. new (Ptrl);

new (PtrB);

Ptrlt := Red;

PtrBt := Ptrl;

5. Assume pointer variables are declared in the variable declaration section as

VftR

RealPtrl/ RealPtrB : treal;

IntPtrl/ IntPtrB : tinteger;
BoolPtrl/ BoolPtrB : tboolean;

Indicate if the following are valid or invalid references. Give an explanation
for each invalid reference.

a. IntPtrl := IntPtrl + 1;

b. writeln (RealPtrB:3D:B);

c. writeln (BoolPtrlt:15, IntPtrltrlB, RealPtrlt:15:B);

d. IF IntPtrl < IntPtrB THEN

writeln ('fill done');

e. IF BoolPtr NOT NIL THEN

new (BoolPtrB);

f. IF RealPtrl <> RealPtrB THEN

writeln (RealPtrlt:15:B, RealPtrBt:15:B);

g. IF BoolPtrB THEN

new (BoolPtrl);

h. IF BoolPtrBt THEN

new (BoolPtrl);

6. Assume the declarations of Exercise 5. What is the output from the follow
ing fragment of code?

new (IntPtrl);

new (IntPtrB);
new (RealPtrl);
new (BoolPtrl);
IntPtrlt := 55;

IntPtrBt := 55;

RealPtrlt := (IntPtrlt + IntPtrBt) / B;
BoolPtrlt := true;

WHILE BoolPtrlt DO

BEGIN

writeln (RealPtrlt:BO:B);
RealPtrlt := RealPtrlt - 5;

IF RealPtrlt < □ THEN
BoolPtrlt := false

END;

H B S IS

610 DYNAMIC VARIABLES AND DATA STRUCTURES

■ 15.2

Linked Lists

OBJECTIVES

■ to understand why
a linked list is a dy
namic data structure

■ to be able to create

a linked list

■ to understand how

pointers are used to
form a linked list

■ to be able to print

data from a linked

list

A linked list can be implemented as a dynamic data structure and can be
thought of as a list of data items where each item is linked to the next
one by means of a pointer. Such a list can be envisioned as follows:

Start

End of list

Items in a linked list are called components or nodes. These lists are used
like arrays; that is, data of the same type can be stored in each node. As
shown in the previous illustration, each node of a linked list can store
certain data as well as point to the next node. Consequently, a record is
used for each node where one field of the record is reserved for the pointer.
If names of students are to be stored in such a list, we can use the record
definition from Section 15.1 as follows:

TYPE

StringSD = PACKED ARRAY
DataPtr = TStudentlnfo;

Studentlnfo = RECORD

Name :

Next

END; i

[1..50] OF char;

StringSG;
DataPtr

of RECORD Studentlnfo

Thus, we can envision a list of names as

Start

1 1

Name Next »-

End of list

Name Next ■- Name Next ■- Name ■

Creating a Linked List

When creating a linked list, you need to be able to identify the first node,
the relationship (pointer) between successive nodes, and the last node.
Pointers are used to point to both the first and last node. An auxiliary
pointer is also used to point to the newest node. The pointer to the first
node (Start) is not changed unless a new node is added to the beginning
of the list. The other pointers change as the linked list grows. When you
have created such a list, the last node is usually designated by assigning
NIL to the pointer. To illustrate, let's see how a linked list to hold five
names can be formed. Using the TYPE definition section

TYPE
StringEG = PACKED ARRAY [l..aG] OF char;
DataPtr = tStudentlnfo;
Studentlnfo = RECORD

Name : StringEG;
Next : DataPtr

END; { of RECORD Studentlnfo >

STYLE TIP

B ■ ■ ■ ■
Vi^en working with hiike^d^ hsts, the idenUfier Next is hequently hsed as
the: name of the field JiX ithe 'iecoid that isuthe -ppinter VOTiahle' T is to
remind you that you are pointiUg to' the next reGordi It m^eshodh s^

more meaningful.

15.2 Linked Lists 611

and the variable declaration section

VRR

Start/ Last/ Ptr : DataPtr;

we can generate the desired list by

BEGIN

new (Start);

Ptr := Start; ■(Pointer to first node >
FOR J := 1 TO 4 DO

BEGIN

new (Last);
Ptrt.Next := Last;
Ptr := Last

END;
Ptrt.Next := NIL;

Let's now examine what happens when this segment of code is executed.

new (Start);

causes

Start

Startt

Ptr := Start;

produces

Start Ptr

StartT
Ptrt

Now that we have started our list, the first pass through the FOR loop
produces results as shown in Table 15.1. In a similar fashion, the second
time through the loop causes the list to grow as shown in Table 15.2. As
you can see, each pass through the body of the FOR loop adds one element
to the linked list and causes both Ptr and Last to point to the last node
of the list. After the loop has been executed four times, we have the
following list:

Start Ptr Last

Lastt
Ptrt

At this Stage, the loop is exited and

Ptrt.Next := NIL;

612 DYNAMIC VARIABLES AND DATA STRUCTURES

TABLE 15.1

Adding a second
node to a linked list

Code

Ptrt.Next := Last;

Ptr := Last;

Start T

PtrT

Start

Start t

Ptrt

Start

Start t

Result

Lastt

Ptr Last

Lastt

Ptr Last

Lastt
Ptrt

Code
TABLE 15.2

Adding a third node
to a linked list new (Last);

Ptrt.Next := Last;

Ptr := Last;

Start

Result

Ptr Last

Start t Ptrt Lastt

Start Ptr Last

Start t Ptrt Lastt

Start Ptr Last

m

Start t Lastt

Ptrt

15.2 Linked Lists 613

produces

Start Ptr Last

NIL

Start t
Lastt

Ptrt

Now when we process the list, we can check the field name Next to
determine when the end of the list has been reached. In this sense, NIL
is used in a manner similar to eof with files.

EXAMPLE 15.1 Let's now create a linked list that can be used to simulate a deck of playing cards.
We need 52 nodes, each of which is a record with a field for the suit (club, diamond,
heart, or spade); a field for the number (1 to 13); and a field for the pointer. Such
a record can be defined as

TYPE

Pointer = tCard;

Suits = (Club, Diamond, Heart, Spade);
Card = RECORD

Suit

Num :

Next

END; {

Suits;

1..13;

Pointer

of RECORD Card

As before, we need three pointer variables; they can be declared as

VAR

Start, Last, Ptr : Pointer;

If an ace is represented by the number 1, we can start our list by

BEGIN

new (Start);

Startt.Suit := Club;

Startt.Nura := 1;

Ptr := Start;

Last := Start;

This beginning is illustrated by

Start Ptr Last

' >•

Club 1 ■

Start!

PtrT

Last!

We can then generate the rest of the deck by

FOR J := E TO 5S DO

BEGIN

new (Last);

IF PtrT.Num = 13 THEN

BEGIN

Lastt.Suit := succ(PtrT.Suit);

Lastt.Num := 1

END

ELSE < Same suit, next number >

Start a new suit

614 DYNAMIC VARIABLES AND DATA STRUCTURES

BEGIN

Lastt.Sult := PtrT.Suit;
Lastt.Num := Ptrt.Num + 1

END;

Ptrt.Next := Last;

Ptr := Last

END;

Ptrt.Next := NIL;

The first time through this loop we have

Start Ptr Last

ClubClub

Start t Lastt
Ptrt

This loop is processed all 51 times and then exited so that when

Ptrt.Next := NIL;

is executed, we have the list shown in Figure 15.5.

FIGURE 15.5

A linked list simulat

ing a deck of cards

Start Start t

Club

Club 2 T

•

Club 13 T

Diamond 1 ■

•

Diamond 13 ■

Heart 1 ■

•

Heart 13 T
i

Spade 1 1 f

Spade 13 NIL

Printing from a Linked List

Thus far, we have seen how to create a dynamic structure and assign data
to components of such a structure. We conclude this section with a look
at how to print data from a linked list.

15.2 Linked Lists 615

The general idea is to start with the first component in the list, print
the desired information, and then move sequentially through the list until
the last component (NIL) is reached. There are two aspects of this algo
rithm that need to be examined. First, the loop control depends on ex
amining the current record for the value of NIL in the pointer field. If P
is used to denote this field, we have

WHILE P <> NIL DO

BEGIN

END;

Second, the loop increment is to assign the pointer (?) used as a loop
control variable the value of the Next field of the current record. To il
lustrate, assume we have the definitions and declarations used previously
to form a list of student names. If we declare the variable P by

vaR

P : DataPtr;

we can then print the names by

BEGIN < Print names in list >

P := Start;

WHILE P <> NIL DO

BEGIN

writeln (Pf.Narae:<0);
P := Pt.Next

END

END; ■{ of printing names >

In general, printing from a linked list is done with a procedure. When
a procedure is used, only the external pointer (Start, in our examples)
needs to be used as a parameter. An additional loop control variable (P)
needs to be declared. To illugtrate, a procedure to print the previous list
of names is

PROCEDDRE PrintNames (Start : DataPtr);
VAR

P : DataPtr;
BEGIN

P := Start;
WHILE P <> NILjDO

BEGIN

writeln (Pt.Name:4D);
P := Pt.Next

END
END; ■(of PROCEDURE PrintNames >

This would be called from the main program by
PrintNames (Start);

Exercises 15.2 l. Discuss the differences and similarities between arrays and linked lists.
2. Write a test program to transfer an unknown number of integers from a data

file into a linked list and then print the integers from the linked list.

3, Write a procedure to be used with the test program in Exercise 2 to print the
integers.

616 DYNAMIC VARIABLES AND DATA STRUCTURES

4. Explain why a linked list is preferable when you are getting an unknown
number of data items from a data file.

5. Suppose you are going to create a linked list of records where each record in
the list should contain the following information about a student: name, four
test scores, ten quiz scores, average, and letter grade.

a. Define a record to be used for this purpose.
b. What pointer type(s) and pointer variable(s) are needed?
c. Assume the data for each student is on one line in the data hie as

Smith Mary 97 98 85 90 9 8 7 10 6 9 10 8 9 71

i. Show how to get the data for the first student into the hrst component
of a linked list.

ii. Show how to get the data for the second student into the second
component.

6. Why are three pointers (Start, Last, Ptr) used when creating a linked list?

7. Consider the dehnitions and declarations

TYPE

P = TNode;

Node = RECORD

Num : integer;
Next : P

END;

VRR

R/ B, C : P;

a. Show how the schematic

A B C

2 « ■— 3 NIL

would be changed by each of the following:
1. R := Rt .Next;

ii. B := R;
iii. C := Rt .Next;
iv. ST.Num := Ct.Num;
V. Rt.Num := Bt .Nextt .Num;

vi. Ct .Next := R;

b. Write one statement to change

A

NIL

to

NIL

B

15.3 Working with Linked Lists 617

8. Assume the definitions and declarations in Exercise 7. Indicate the output
for each of the following:

a. new (A)

b.

new (B)

AT.Num

BT.Num

B := A;

At.Num

writeln

new (C)

Ct.Num

new (B)

Bt.Num

new (A)

At.Num

writeln

new (A)

new (B)

At.Num

At.Next

= ID;

= EG;

= 5

(At Num/ Bt.Num)

= IDG

= Ct.Num MOD fl

= Bt.Num + Ct.Num;

(At.Num/ Bt.Num/ Ct.Num)

9.

= ID;

:= B;

At.Nextt.Num := IDD;

writeln (At.Num/ Bt.Num);

Write a function Sum to sum the integers in a linked list of integers. Show
how it is called from the main program.

@ [9 ̂

BO 15.3

Working with
Linked Lists

OBJECTIVES

□ to be able to insert
an element into a
linked list

m to be able to delete
an element from a
linked list

□ to be able to update
an ordered linked
list

□ to be able to search
a linked list for an
element

In this section, we examine some of the basic operations required when
working with linked lists. Working with a list of integers, we see how to
create a sorted list. We then update a linked list by searching it for a
certain value and deleting tl^t element from the list.

The following TYPE definition is used for most of this section.
TYPE

DataPtr = tNode;
Node = RECORD

Num : integer;
Next : DataPtr

END;

Since most of the operations we examine will be used later, procedures
are written for them.

Inserting an Element

The dynamic nature of a linked list implies that we are able to insert an
element into a list. The three cases considered are inserting an element
at the beginning, in the middle, and at the end.

STYLE TIP

IS s @ @ m
When working with linked lists of records. Node is frequently used as the
record identifier. This facilitates readability of program comments. Thus,
comments such as "Get new node," "Insert a node," and "Delete a node -
are meaningful.

618 dynamic variables and data structures

FIGURE 15.6

An assigned value in
a new node

The procedure for inserting at the beginning of a list is commonly called
push. Before writing code for this procedure, let's examine what should
he done with the nodes and pointers. If the list is illustrated by

Start Last

5
_

10 15 20 NIL

and we wish to insert

at the beginning, we need to get a new node by

new (P);

assign the appropriate value to Num

Pt.Num := 3;

and reassign the pointers to produce the desired result. After the first two
steps, we have the list shown in Figure 15.6.

Start

10

Pt

Pt.Next := Start;

yields the list shown in Figure 15.7.

15

Last

1 1

20 NIL

FIGURE 15.7

Assigning a pointer
to the first node of a

linked list

Start Last

5 10 15 20 NIL

P Pt

Then

start := P;

yields the following, in which the Push is now complete.

Start Last

3 5 10 15 20 NIL

A procedure for this can now he written as

15.3 Working with Linked Lists 619

PROCEDURE Push (VfiR Start : DataPtr;

NewNum : integer);
VRR

P : DataPtr;

BEGIN

new (P); <
PT.Num := NewNum; <

PT.Next := Start; <

Start := P t

END;

Get another node }

Assign the data value >
Point to the first node >

Point to new first node >

This procedure can be called from the main program by

Push (Start/ 3);

A note of caution is in order. This procedure is written assuming there is
an existing list with NIL assigned to the pointer in the final node. If this
is used as the first step in creating a new list, the assignment

start := NIL;

must be previously made.
The basic idea for inserting a node somewhere in a linked list other

than at the beginning or end is: get a new node, find where it belongs,
and put it in the list. In order to do this, we must start at the beginning
of a list and search it sequentially until we find where the new node
belongs. When we next change pointers to include the new node, we must
know between which pair of elements in the linked list the new node is
to be inserted. Thus, if

12

is to be inserted in an ordered linked list such as

Start Last

15

1 1

20 NIL

we need to know that the link

is in the list. Once this pair has been identified, the pointers will be
changed to produce

10 15

12

so that the new list with the new node inserted will be

Start Last

12 15

1 1

20 NIL

Let's now see how this can be done. We can get a new node by

new (P);

PT.Num := NewNum;

620 DYNAMIC VARIABLES AND DATA STRUCTURES

In order to find where it belongs, we need two pointer variables to keep
track of successive pairs of elements as we traverse the list. Assume Before
and Ptr have been appropriately declared. Then

WHILE Ptrt.Num < NewNum DO

BEGIN

Before ;= Ptr;

Ptr := Ptrt.Next

END;

will search the list for the desired pair. (This assumes the node to be
inserted is not at the end of the list.) Using the previous numbers, when
this loop is completed we have the arrangement shown in Figure 15.8.

FIGURE 15.8

Getting ready to in
sert a node

Start Last

Before t

Before Ptr

5 10 15 20 NIL

Pt

12 ? 1 1 1 1

We can put the new node in the list by reassigning the pointers

Pt.Next := Ptr;

Beforet.Next := P;

The list can then be envisioned as shown in Figure 15.9.

FIGURE 15.9

A new node has

been inserted

Start Last

5 10 12 15 20 NIL

Before Ptr

When this code is written together, we have

PROCEDURE InsertMiddle (Start : DataPtr;
NewNum ; Integer);

VRR

P, Ptr/ Before : DataPtr;

BEGIN

•{ Get a new node >

New (P);

Pt.Num := NewNum;

{ Find where it belongs; assume not at end >

15.3 Working with Linked Lists 621

Ptr := Start;

WHILE Ptrt.Num < NewNum DO

BEGIN

Before := Ptr;

Ptr := Ptrt.Next

END;

< Insert the new node }

Pt.Next := Ptr;

Beforet.Next := P

END; i of PROCEDURE InsertMiddle }

It can be called from the main program by

InsertMiddle (Start, 15);

The next problem to consider when inserting a node is how to insert
it at the end of the list. In the previous code, when Ptr is NIL, a reference
to Ptrt causes an error and thus cannot be used for inserting at the end.
This problem can be solved by using a Boolean variable, Looking, ini
tializing it to true, and changing the loop control to

WHILE (Ptr <> NIL) AND Looking DO

The body of the loop then becomes the IF ... THEN ... ELSE statement

IF Ptrt.Num > NewNum THEN

Looking := false
ELSE

BEGIN

Before := Ptr;

Ptr := Ptrt.Next

END;

The loop is followed by the statement

Pt.Next := Ptr;

Thus, we have

new (P);

Pt.Num := NewNum;

Ptr := Start;

Looking := true;
WHILE (Ptr <> NIL) AND Looking DO
IF Ptrt.Num > NewNum THEN

Looking := false
ELSE

BEGIN

Before := Ptr;

Ptr := Ptrt.Next

END;

Pt.Next := Ptr;

Beforet.Next := P;

Last := P;

To see how this permits insertion at the end of a list, suppose NewNum
is 30 and the list is

Start Last

10 20 25 NIL

622 DYNAMIC VARIABLES AND DATA STRUCTURES

The initialization produces the list illustrated in Figure 15.10. Since
Ptr <> NIL and Looking is true, the loop would be entered.
PtrT .Num > NewNum (10 > 30) is false, so the ELSE option is exercised
to produce the list shown in Figiue 15.11. At this stage, Ptr <> NIL and
Looking is still true, so the loop is entered again. Ptr t .Num > NewNum
(20 > 30) is false, so the ELSE option produces the list illustrated in Figure
15.12. Since Ptr is not yet NIL, Ptr <> NIL and Looking is true, the loop
is entered, Ptrt.Num > NewNum is false, so the ELSE option produces
the list shown in Figure 15.13. Now the condition Ptr <> NIL is false, so
control is transferred to

Pt .Next := Ptr;

When this and the two lines of code following it are executed, we get the
arrangement shown in Figure 15.14.

FIGURE 15.10

Getting a new node
for a linked list

Pt

30

Start

10

Last

20
_

25 NIL

Ptr

FIGURE 15.11

Positioning Before
and Ptr

PT

30

Start

Before Ptr

Last

10 20 25 NIL

t
1 1 1

FIGURE 15.12

Moving Before and
Ptr

Pt

30

Start Last

10 20 25 NIL

Before Ptr

FIGURE 15.13

Before and Ptr ready
for insertion

Pt

30

Start Last

10 20 25 NIL

Before

NIL

Ptr

15.3 Working with Linked Lists 623

FIGURE 15.14

Insertion at end of

linked list is

complete

Start Last

10 20 25 30 NIL

NIL

Before Ptr

One final comment is in order. A slight modification of this procedure
accommodates inserting at the beginning of a list. You may choose to
reserve Push for this purpose. However, if you want a single procedure
that will insert anywhere in a linked list, it is

PROCEDURE Insert (VAR Start, Last : DataPtr;
NewNura : integer);

VAR

P, Ptr, Before : DataPtr;

Looking : boolean;
BEGIN

{ Initialize >

new (P);

Pl.Nura := NewNum;

Before := NIL;

Ptr := Start;

Looking := true;

< Check for empty list }
IF Start = NIL THEN

BEGIN

Pt.Next := Start;

Start := P

END

ELSE

BEGIN < Now Start the loop >
WHILE (Ptr <> NIL) and Looking DO
IF Ptrt.Nura > NewNura THEN

Looking := false
ELSE

BEGIN

Before := Ptr;

Ptr := PtrT.Next

END;

PT-Next := Ptr;

Beforet.Next := P;

IF Before = Last THEN

Last := P

END

END; < of PROCEDURE Insert >

EXAMPLE 1S.2 To illustrate how PROCEDURE Insert can be used to create a linked list of integers
sorted from high to low, let's develop a short program to read integers from a data
file, create a linked list sorted from high to low, and print contents of components
in the linked list. A first-level pseudocode development of this is

1. Create the list

2. Print the list

624 DYNAMIC VARIABLES AND DATA STRUCTURES

Step 1 can be reiined to

1. Create the list

1.1 create the first node

1.2 WHILE NOT eof DO

insert in the list

Using procedures for inserting an element and printing the list, a program is

PROGRAM LinkListPrac (input, output);

< This program is a first illustration of using linked lists.
•{ It creates a sorted linked list from an unsorted data file

•(and then prints the contents of the list. Procedures are
{ used to

<

< (1) insert into the list
{ (2) print the list

TYPE

DataPtr = TNode;

Node = RECORD

Num : integer;
Next : DataPtr

END; <. of RECORD Node >

VAR

Number : integer; < Number to be inserted >
Start/ ■{ Pointer for the beginning of the list >
Finish : DataPtr; < Pointer for the end of the list >

PROCEDURE Insert (VAR Start, Finish : DataPtr;
Number : integer);

< Given: A linked list and number to be inserted in order >
•(Task: Insert the number in numerical order in the >
< linked list >
< Return: Nothing >

VAR

P, Ptr, Before : DataPtr;
Looking : boolean;

BEGIN

{ Initialize >

new (P);
Pt.Num := Number;
Before := NIL;
Ptr := Start;
Looking := true;

•(Now start the loop >

WHILE (Ptr <> NIL) AND Looking DO
IF Ptrt.Nura > Number THEN

Looking := false
ELSE

BEGIN
Before := Ptr;
Ptr := PtrT.Next

END; < of ELSE option >

15.3 Working with Linked Lists 625

i Now move the pointers }■

IF Looking THEN
Finish := Ptr;

Pt.Next := Ptr;

< Check for insert at beginning }

IF Before = NIL THEN
Start := P

ELSE

Beforet.Next := P
END; < of PROCEDURE Insert >

PROCEDURE PrintList (Start : DataPtr);

{ Given: A pointer to the start of a linked list }
■t Task: Print numbers from nodes of the linked list }
{ Return: Nothing y

VAR

P : DataPtr;

BEGIN
writeln; writeln;
P := Start;
WHILE P <> NIL DO

BEGIN

writeln (Pf.Num);
P := Pt.Next

END i of WHILE loop >
END; i of PROCEDURE PrintList }

BEGIN < Main program >

{ Start the list >

new (Start);
readln (Number);
StartT.Num := Number;
Startt.Next := NIL;
new (Finish);
Finish := Start;

{ Now create the remainder of the list >

WHILE NOT eof DO
BEGIN

readln (Number);
Insert (Start# Finish, Number)

END; { of WHILE NOT eof >
PrintList (Start)

END. ■{ of main program >

When this program is run on the data file

42l2| -10|0|45ll00|52|78|9l|99l86|

the output is

626 DYNAMIC VARIABLES AND DATA STRUCTURES

-ID

□

E
4a

45
5E

7fl

at,
qi

qq

IGG

Deleting a Node

A second standard operation when working with linked lists is that of
deleting a node. Let's first consider the problem of deleting the first node
in a list. This process is commonly called pop. Before writing code for
this procedure, however, let's examine what should he done with the
pointers.

Deleting the first node essentially requires a reversal of the steps used
when inserting a node at the beginning of a list. If the list is

Start Last

10 20 ■ ̂ 30 40 NIL

and you wish to produce a list as in
Start Last

20 30 40 NIL

you might think that
start := Startt.Next;

would accomplish this. Not true. There are two problems with this method.
First, you may—and probably will—^want the value of some data fields
returned to the main program. Thus, the appropriate fields need their
values assigned to variable parameters. A second problem with this method
is that the first node has not been returned to the computer for subsequent
reuse. Since one of the advantages of using dynamic variables is not
wasting unused storage, the procedure dispose should be used with this
node.

We can now write a procedure to delete the first node. Assuming the
data value is to be returned to the main program, the procedure is

PROCEDURE Pop (VAR Start : DataPtr;
VAR Number : integer);

VAR
P : DataPtr;

BEGIN
P := Start; <
Number := PT.Nura; <
Start := Startt.Next; ■(
dispose (P) <

Use a temporary pointer >
Return value to main program >
Move start to next node >
Return Pt for later use >

END; i of PROCEDURE Pop >

15.3 Working with Linked Lists 627

A NP^TE PE INTIREST

Using Pointers

Caution must be exercised when using pointers.
Unless they are carefully described, it is easy to
make a program hard to follow. Speaking to this
point, Nazim H. Madhavji states: "It is often nec
essary to traverse deeply into the structure in
order to access the required data, as can be seen
in the following example, using pointers Pi and
P2:

Such 'spaghetti-like' directions get more cum
bersome as SomeType gets more complex. Often,
access paths of this kind are diagrammatically
represented with no absolute certainty of their
correctness." He then continues, saying: "By
raising the level of description of dynamic data
structures, the visibility of these structures in
programmed text can be increased."

PI := PSt.IDTypet.ElementTypet.Fields

The next kind of deletion we examine is when the list is searched for
a certain key value and the node containing this value is to be removed
from the linked list. For example, if the list contains records for customers
of a company, you might want to update the list when a former customer
moves away. To illustrate the process, suppose the list is

Start Last

10 20 30 40 NIL

and you wish to delete

30

The new list is

Start Last

10 20 1 1 30 40 NIL

and the node deleted can he returned using dispose to produce
Start Last

10 ■—^ 20 ■-h 40 NIL

Our method of doing this uses two temporary pointers. One pointer searches
the list for the specified data value and, once it is located, the second
pointer points to it so we can use dispose to return it for subsequent use.
If Before and P are the temporary pointers, the code is

BEGIN

Before := Start;
WHILE Beforet.Nextt.Nura <> NewNum DO

Before := Beforet.Next;
P := Beforet.Next;
Beforet.Next := Pt.Next;
dispose (P)

END;

628 DYNAMIC VARIABLES AND DATA STRUCTURES

Let's now see how this deletes

30

from the previous list.

Before := Start ;

yields a list as illustrated in Figure 15.15. At this stage, NewNum is 30
and Before!.Nextt.Num is 20. Since these are not equal, the pointer
Before is moved by

Before := Beforet.Next;

Thus, we have the list in Figure 15.16. Now Beforet .Next t.Num =
NewNum (30); so the WHILE loop is exited.

P := Beforet.Next;

produces the list shown in Figure 15.17.

Beforet.Next := Pt.Next;

yields the list in Figure 15.18. Finally, dispose (P); returns the node, so
we have

Start Last

10 —1 20 40 NIL

FIGURE 15.15

Initializing Before

FIGURE 15.16

Positioning Before

Start

Before

Start

10

Before

Last

10 20 30 40 NIL

Last

20 30 40 NIL

FIGURE 15.17

Positioning P
Start Last

10 20 30 40 NIL

Before

15.3 Working with Linked Lists 629

FIGURE 15.18

Reassigning a pointer
Start

10 20

Last

30 40 NIL

Before

This process can be combined with deleting the first node to produce
the following procedure.

PROCEDURE Delete (VAR Start : DataPtr;

Number : integer);

VAR

Before/ P ; DataPtr;

BEGIN

IF Number = StartT.Nura THEN

Pop (Start/ Number)
ELSE

BEGIN

Before := Start;

WHILE Before!.Nextt.Num <> Number DO

Before := Beforet.Next;

P := Beforet.Next;

Beforet.Next := Pt.Next;

dispose (P)
END

END; i of PROCEDURE Delete >

This procedure can now be used to delete any node from a linked list.
However, it will produce an error if no match is found. A modification to
protect against this possibility is left as an exercise.

Exercises 15.3 1. Illustrate how PROCEDURE Insert works when inserting a node in the mid
dle of a linked list.

2. Write a test program to see what happens when Ptr is NIL and a reference is
made to Ptr t.

3. Revise PROCEDURE Insert so that it calls PROCEDURE Push if a node is to

be inserted at the beginning of a list.

4. Modify PROCEDURE Delete to protect against the possibility of not finding a
match when the list is searched.

5. Modify PROCEDURE Pop so that no data value is returned when Pop is
called.

6. Write a complete program to allow you to

a. Create a linked list of records where each record contains a person's
name and an amount of money donated to a local fund-raising group; the
list should be sorted alphabetically.

b. Use the linked list to print the donor names and amounts.
c. Read a name that is to be deleted and then delete the appropriate record

from the list.

d. Print the revised list.

630 DYNAMIC VARIABLES AND DATA STRUCTURES

7. Modify PROCEDURE Delete to delete the nth node rather than a node with a
particular data value. For exeunple, you might be asked to delete the fifth
node.

8. Write a procedure to copy the integers in a linked list of integers into a file
of integers.

9. Write a complete program that uses a linked list to sort a file of integers.
Your program should create a sorted list, print the list, and save the sorted
list for later use.

■ 15.4

Other Djmamic
Data Structures

n to understand why
a stack is a dynamic
data structure

a to understand how

to use a stack in a

program

■ to understand why
a queue is a dy
namic data structure

■ to understand how

to use a queue in a
program

■ to understand why

a binary tree is a
dynamic data
structure

a to be able to create

a binary search tree
B to be able to search

a binary search tree

In this final section, we briefly examine some additional dynamic data
structures: stacks, queues, and binary trees. The concepts behind them
and their elementary use are emphasized. This section should serve as
an introduction to these dynamic data structures. A suggested reading list
is included for those wishing a more detailed development.

Stacks

A stack can be implemented as a d5aiamic data structure in which access
can be made from only one end. You can think of a stack as paper in a
copying machine or trays at a cafeteria (as mentioned in the discussion
on recursion in Chapter 13). In both cases, the last one in will be the first
one out; that is, you put items in, one at a time, at the top and you remove
them, one at a time, from the top. This last-in, first-out order is referred
to as LIFO; stacks are therefore often termed LIFO structures.
A stack can be envisioned as follows:

In this illustration, item E is considered the top element in the stack.
The two basic operations needed for working with a stack are inserting

an element to create a new stack top (Push) and removing an element
from the top of the stack (Pop). If a stack is represented by a linked list.
Push and Pop are merely "insert at the beginning" and "delete from the
beginning" as developed in Section 15.3.
To illustrate the use of a stack in a program, let's consider a program

that will check an arithmetic expression to make sure that parentheses
are correctly matched (nested). Our program considers

(3 + A * (5 MOD 3))

to make sure that the number of left parentheses matches the number of
right parentheses. A first-level pseudocode for this problem is

1. Read a character

2. IF it is a "(" THEN
Push it onto the stack

3. IF it is a ")" THEN
Pop the previous "("

4. Check for an empty stack

15.4 Other Dynamic Data Structures 631

The growing and shrinking of the stack can be illustrated as shown in
Table 15.3.

TABLE 15.3

Using a stack
Stack

Before

Read Character Read

*3b+b4b*b

5bMODb3

Stack

After

Character

Processed

'Stack top

Stack top

Stack top

Stack top

'Stack top

'Stack top

*b represents a blank space.

Two points need to be made concerning this program. First, since the
stack is represented by a linked list, the illustration could have been

Stack

NIL

Second, before Pop is used on a stack, a check must be made to make
sure the stack is not already empty. Thus, the previous procedure Pop
will be replaced by PopAndCheck in which a suitable error message will
appear if we try to pop an empty stack.

Let's now prepare code for the previous problem. The following defi
nitions are used

TYPE

DataPtr = TNode;

Node = RECORD

Sym : char;
Next : DataPtr

END;

VAR

Stack : DataPtr;

632 DYNAMIC VARIABLES AND DATA STRUCTURES

PROCEDURE Push is

PROCEDURE Push (VRR Stack : DataPtr;
Symbol : char);

VAR

P : DataPtr;

BEGIN

new (P);

PT.Syra := Symbol;
Pt.Next := Stack;

Stack := P

END; < of PROCEDURE Push >

PROCEDURE PopAndCheck is

PROCEDURE PopAndCheck (VAR Stack : DataPtr);
VAR

P ; DataPtr;

BEGIN

IF Stack = NIL THEN i Check for empty stack >
writeln ('The parentheses are not correct.•:^D)

ELSE

BEGIN -C Pop the stack >
P := Stack;

Stack := Stackt.Next;

dispose (P)

END

END; i of PROCEDURE PopAndCheck >

With these two procedures, the main body of a program that examines an
expression for correct use of parentheses is

BEGIN < Main program >
Stack := NIL;

WHILE NOT eoln DO

BEGIN

read (Symbol);
IF Symbol = •(• THEN

Push (Stack/ Symbol);
IF Symbol = ')' THEN

PopAndCheck (Stack)
END;

< Now check for an empty stack >

IF Stack <> NIL THEN

writeln ('The parentheses are not correct.':)

END. < of main program >

Several modifications of this short program are available and are suggested
in the exercises at the end of this section.

Queues

A queue can be implemented as a dynamic data structure in which access
can be made from both ends. Elements are entered from one end (the rear)
and removed from the other end (the front). This first-in, first-out order
is referred to as FIFO; queues are termed FIFO structures. A queue is like
a waiting line. Think of people standing in line to purchase tickets: each
new customer enters at the rear of the line and exits from the front. A

queue implemented as a linked list can be illustrated as

15.4 Other Dynamic Data Structures 633

Front Rear

NIL

Basic operations needed for working with queues are remove an ele
ment from the front of the list and insert an element at the rear of the list.
If we use the definitions

TYPE

DataPtr = tNode;

Node = RECORD

Nuin : integer;
Next : DataPtr

END;

we can use variables declared by

VRR

Front, Rear : DataPtr;

when working with such a structure.
Removing an element from the front of a queue is similar to PROCE

DURE PopAndCheck used with a stack. The only difference is that after
an element has been removed, if the queue is empty, Rear must be assigned
the value NIL. A procedure for removing from the front of a queue follows.
Here it is assumed that the value of the element removed is to be returned
to the main program via a variable parameter.

PROCEDURE Remove (VftR Front, Rear : DataPtr;
VftR Number : Integer);

VAR

P : DataPtr;

BEGIN

IF Front = NIL THEN < Check for empty queue }
writeln ('The queue is empty.':40)

ELSE

BEGIN i Pop the queue >
P := Front;

Front := Frontt.Next;

Number := PT.Num;

dispose (P)
END;

IF Front = NIL THEN -C Set pointers for empty queue >
Rear := NIL

END; { of PROCEDURE Remove >

This procedure is called from the main program by

Remove (Front, Rear, Number);

A procedure to insert an element at the rear of a queue (assuming there
is at least one element in the queue) is similar to the procedure given in
the previous section for inserting at the end of a linked list. You are asked
to write the code as an exercise.

Trees

A tree can be implemented as a dynamic data structure consisting of a
special node called a root that points to zero or more other nodes, each
of which points to zero or more other nodes, and so on. In general, a tree

634 DYNAMIC VARIABLES AND DATA STRUCTURES

can be visualized as illustrated in Figure 15.19. The root of a tree is its
first, or top node. Children are nodes pointed to by an element, a parent
is the node that is pointing to its children, and a leaf is a node that has
no children.

FIGURE 15.19

The general structure
of a tree

o o

o o O Q
Applications for trees include compiler programs, artificial intelligence,

and game-playing programs. In general, trees can be applied in programs
that call for information to be stored such that it can be retrieved rapidly.
As illustrated in Figure 15.19, pointers are especially appropriate for im
plementing a tree as a d3niamic data structure. An external pointer is used
to point to the root and each parent uses pointers to point to its children.
A more detailed tree is illustrated in Figure 15.20.

FIGURE 15.20

Using pointers to
create a tree

Root

y / /

t

NIL NIL

15.4 Other Dynamic Data Structures 635

FIGURE 15.21

A binary tree

Binary Trees. From this point on, we restrict our discussion of trees to
binary trees. A binary tree is a tree such that each node can point to at
most two children. A binary tree is illustrated in Figure 15.21.

If a binary tree is used to store integer values, a reasonable definition
for the pointer type is

TYPE

Pointer = TTreeNode;

TreeNode = RECORD

Info ; integer;
RightChild : Pointer;
LeftChild : Pointer

END;

A particularly important kind of binary tree is a binary search tree. A
binary search tree is a binary tree formed according to the following rules:

1.

2.

The information in the key field of any node is greater than the
information in the key field of any node of its left child and any
children of the left child.

The information in the key field of any node is less than the infor
mation in the key field of any node of its right child and any chil
dren of the right child. Figure 15.22 illustrates a binary search
tree.

FIGURE 15.22

A binary search tree

The reference to "search" is used because such trees are particularly
efficient when semching for a value. To illustrate, suppose we wish to see
whether or not 30 is in the tree. At each node, we check to see if the
desired value has been found. If not, 'we determine on which side to
continue looking until either a match is found or the value NIL is en-

636 DYNAMIC VARIABLES AND DATA STRUCTURES

countered. If a match is not found, we are at the appropriate node for
adding the new value (creating a child). As we search for 30, we traverse
the tree via the path indicated by heavier arrows. Notice that after only
two comparisons (<46, >23), the desired value has been located, as il
lustrated in Figure 15.23.

FIGURE 15.23

Searching a tree for
the value 30

Suppose we now search the tree for the value 65. The path (again
indicated by heavier arrows) is shown in Figure 15.24. At this stage, the
right child is NIL and the value has not been located. It is now relatively
easy to add the new value to the tree.

FIGURE 15.24

Searching a tree for
the value 65

46

15 .20

Binary search trees can be used to store any data that can be ordered.
For example, the registrar of a university might want to quickly access
the record of a particular student. If the records are stored alphabetically
by student name in a binary search tree, quick retrieval is possible.

Implementing Binary Trees. We conclude this chapter with a relatively
basic implementation of binary search trees: a program to create a binary
search tree from integers in a data file. We print the integers in order using
a variation of the general procedure for searching a tree. The operations
of inserting and deleting nodes are left as exercises.

Before developing algorithms and writing code for these implementa
tions, we need to discuss the recursive nature of trees. (You may wish to
reread Section 13.1 at this time.) When you move from one node to a right
or left child, you are (in a sense) at the root of a subtree. Thus, the process
of transversing a tree is

15.4 Other Dynamic Data Structures 637

1. IF LeftChild <> NIL THEN

transverse left branch

2. Take desired action

3. IF RightChild <> NIL THEN
transverse right branch

Steps 1 and 3 are recursive; each return to them saves values associated
with the current stage together with any pending action. If the desired
action is to print the values of nodes in a binary search tree, step 2 is

2. Print the value

and when this procedure is called, the result is to print an ordered list of
values contained in the tree. If we use the previous definitions

TYPE

Pointer = tTreeNode;

TreeNode = RECORD

Info : integer;
RightChild : Pointer;
LeftChild : Pointer

END;

a procedure for printing is

PROCEDURE PrintTree (T : Pointer);
BEGIN

IF T = NIL THEN

< do nothing >
ELSE

BEGIN

PrintTree (TT.LeftChild);
writeln (Tl.Info);

PrintTree (TT.RightChild)
END

END < of PROCEDURE PrintTree >

This procedure is called from the main program by

PrintTree (Root);

Notice how the recursive nature of this procedure provides a simple,
efficient way to inspect the nodes of a binary search tree.
The process of creating a binary search tree is only slightly longer than

that for printing. A first-level pseudocode is

1. Initialize root to NIL

2. WHILE NOT eof DO

2.1 get a number
2.2 add a node

A recursive procedure can be used to add a node. An algorithm for this
is

2.2 add a node

2.2.1 if the current node is NIL, store the value and stop
2.2.2 if the new value is less than the current value, point

to the left child and add the node to the left subtree

2.2.3 if the new value is greater than the current value, point
to the right child and add the node to the right subtree

Note that the recursive procedure to add a node adds only nodes con
taining distinct values. A slight modification—left as an exercise—allows

638 DYNAMIC VARIABLES AND DATA STRUCTURES

duplicate values to be included. A procedure for adding a node to a bineury
search tree is

PROCEDORE AddNode (VAR Node : Pointer;
Number : integer);

BEGIN

IF Node = NIL THEN < Add a new node >

BEGIN

new (Node);
Nodet.Info := Number;

NodeT.LeftChild := NIL;

NodeT.RightChild := NIL
END

ELSE •(Hove down the tree >

IF Number < Nodet.Info THEN

AddNode (Nodet.LeftChild/ Number)
ELSE

AddNode (Nodet.RightChild/ Number)
END; i of PROCEDURE AddNode >

A complete program to read unordered integers from a data file, create a
binary search tree, and then print an ordered list is as follows:

PROGRAM TreePrac (input/ output);

< This program illustrates working with a binary tree. Note >
-C the recursion used in AddNode and PrintTree. Input is an >
■(unordered list of integers. Output is a sorted list of }
< integers that is printed from a binary search tree. }

TYPE

Pointer = tTreeNode;
TreeNode = RECORD

Info : integer;
RightChild : Pointer;
LeftChild : Pointer

END; < of RECORD TreeNode >

VAR

Root : Pointer; i Pointer to indicate the tree root >
Number : integer; i Integer read from the data file >

PROCEDURE AddNode (VAR Node : Pointer;
Number : integer);

{ Given: The root of a binary tree and a number >
i Task: Insert the number in the binary tree >
< Return: Nothing >

BEGIN

IF Node = NIL THEN i Add a new node >
BEGIN

new (Node);
Nodet.Info := Number;
Nodet.LeftChild := NIL;
Nodet.RightChild := NIL

END
ELSE •(Move down the tree >

IF Number < Nodet.Info THEN
AddNode (Nodet.LeftChild/ Number)

ELSE

AddNode (Nodet.RightChild/ Number)
END; i of PROCEDURE AddNode >

15.4 Other Dynamic Data Structures 639

PROCEDURE PrintTree (Node : Pointer);

< Given: The root of a binary tree
•{ Task: Print numbers in order from nodes of the binary
< tree

{ Return: Nothing

BEGIN

IF NodeT.LeftChild <> NIL THEN

PrintTree (NodeT.LeftChild);
writeln (NodeT.Info);
IF NodeT.RightChild <> NIL THEN
PrintTree (NodeT.RightChild)

END; < of PROCEDURE PrintTree >

■{:|c4c4c9|c9|c>tc>K3lc3K>te>(e>iC3tC3|e4:3|c:|e:|c*34c:4t4c3|c:4c:|c:4c:tc:4c:4c:4c4c4c4c4c3tc:(c:|e:4e:(c4e4t4c:|c^:«c3tc:(c3(E:is4::4<:4e:|e:<e:tc:(c:(c:|e4c:|c4e4c3|c}

BEGIN < Main program >
new (Root);
Root := NIL;
WHILE NOT eof DO

BEGIN
readln (Number);
AddNode (Root, Number)

END; { of WHILE NOT eof >
PrintTree (Root)

END. { of main program >

When this is run on the data file

16|8|-5|20|30|l0l|0|l0|l8|

the output is
-5
□

fi

10
IL

la
20

30

101

Exercises 15.4 1. Using the program for checking parentheses (at the beginning of this sec
tion), illustrate how the stack grows and shrinks when the following
expression is examined.

(S / (3 - a * (4 + 3) - (a DIV 2)))

2. Write a test program to check an arithmetic expression for correct nesting
of parentheses.

3. Modify the program in Exercise 2 so that several expressions may be
examined; then give more descriptive error messages. Finally, include a
SET for the parentheses symbols "(" and ")".

4. Write a program that utilizes a stack to print a line of text in reverse order.

640 DYNAMIC VARIABLES AND DATA STRUCTURES

5. Stacks and queues can also be implemented using arrays rather than linked
lists. With this in mind,

a. Give appropriate definitions and declarations for using arrays for these
data structures.

b. Rewrite all procedmes using array notation.

6. Write a procedure for inserting an element at the rear of a queue. Illustrate
changes made in the linked list when such a procedure is executed.

7. Write a program that uses a stack to check an arithmetic expression for cor
rect use of parentheses "(),'* brackets "[]," and braces "{ }."

8. Indicate which of the following are binary search trees. Explain what is
wrong with those that are not.

15.4 Other Djmamic Data Structures 641

9. Modify PROCEDURE AddNode to include the possibility of having nodes
equal in value.

10. Write a procedure to allow you to insert a node in a binary search tree.

11. Write a function to search a binary search tree for a given value. The func
tion should return true if the value is found and false if it is not found.

12. Write a procedure to allow you to delete a node from a binary search tree.

13. Illustrate what binary search tree is created when PROGRAM TreePrac is
run using the data file

25|l4| -3ll45|0|98|8l|73|85|92|56|2l| ■"

@ g|

RUNNING AND

DEBUGGING TIPS
1. Be careful to distinguish between a pointer and its associated dynamic variable.

Thus, if Ptr is a pointer, the variable is PtrT.
2. When a dynamic variable is no longer needed in a program, use dispose so

that the memory location can be reallocated.
3. After using dispose with a pointer, its referenced variable is no longer available.

If you use dispose (Ptr), then Ptrt does not exist.
4. Be careful not to access the referenced variable of a pointer that is NIL. Thus,

if the assignment

Ptr := NIL;

is made, a reference to Ptrt.Info results in an error.
5. When using pointers with subprograms, be careful to pass the pointer, not the

referenced variable, to the subprogram.
6. When creating dynamic data structures, be careful to initialize properly by

assigning NIL where appropriate and keep track of pointers as your structures
grow and shrink.

7. Operations with pointers require that they be of the same type. Thus, exercise
caution when comparing or assigning them.

8. Values may be lost when pointers are inadvertently or prematurely reassigned.
To avoid this, use as many auxiliary pointers as you wish. This is better than
trying to use one pointer for two purposes.

642 DYNAMIC VARIABLES AND DATA STRUCTURES

Summary Key Terms

address (of a memory FIFO push
location) leaf queue

binary search tree LIFO root
binary tree linked list static variable
children node tree

component parent value (of a memory
dynamic structure pointer variable location)
dynamic variable pop

Keywords

dispose new NIL

Key Concepts

■ Values are stored in memory locations; each memory location has an address.
■ A pointer variable is one that contains the address of a memory location;

pointer variables are declared by

TYPE

ftgeRange = □. .HR;
VAR

Ptr : tAgeRange;

where the up arrow (T) or caret (*) is used before the predefined data type.
■ A djmamic variable is a variable that is referenced through a pointer variable;

dynamic variables can be used in the same context as any other variable of
that type, and they are not declared in the variable declaration section. In the
declaration

TYPE

AgeRange = D. -RR;
VAR

Ptr : TAgeRange;

the dynamic variable is Ptrt and is available after new (Ptr) is executed.
■ Dynamic variables are created by

new (Ptr);

and destroyed (memory area made available for subsequent reuse) by
dispose (Ptr);

■ Assuming the definition

TYPE
AgeRange = □. .RR;

VAR

Ptr : TAgeRange;

the relationship between a pointer and its associated dynamic variable is
illustrated by the code

new (Ptr);
PtrT := El;

which can be envisioned as

21

Ptr Ptr T

■ The only legal operations on pointer variables are assignments and compari
son for equality.

n NIL can be assigned to a pointer variable; this is used in a Boolean expres
sion to detect the end of a list.

Summary 643

Dynamic data structures differ from static data structures in that they are
modified during the execution of the program.
A linked list is a dynamic data structme formed by having each component
contain a pointer that points to the next component; generally, each compo
nent is a record with one field reserved for the pointer.
A node is a component of a linked list.
When creating a linked list, extra pointers are needed to keep track of the
first, last, and newest component.
When creating a linked list, the final component should have NIL assigned to
its pointer field.
Printing from a linked list is accomplished by starting with the first compo
nent in the list and proceeding sequentially through the list imtil the leist
component is reached; a typical procedure for printing from a linked list is

PROCEDURE Print (First : DataPtr);
VAR

P : DataPtr;

BEGIN

P := First;

WHILE P <> NIL DO

BEGIN

writeln (Pt.field name);
P := Pt.Next

END

END; < of PROCEDURE Print >

Inserting a node in a linked list should consider three cases: insert at the be
ginning, insert in the middle, and insert at the end.
Inserting at the beginning of a linked list is used frequently and is referred to
as Push; one version of this is

PROCEDURE Push (VAR Start : DataPtr;

NewNura : integer);
VAR

P : DataPtr;

BEGIN

new(P);

Pt.New := NewNum;

PT.Next := Start;

Start := P

END; { of PROCEDURE Push }

Searching an ordered linked list to see where a new node should be inserted
is accomplished by

Ptr := Start;

WHILE Ptrt.Num < NewNura DO

BEGIN

Before := Ptr;

Ptr := PtrT.Next

END;

In deleting a node from a linked list, one should be able to delete the first
node or search for a particular node and then delete it.
Deleting the first node is referred to as Pop; one version is

PROCEDURE Pop (VAR Start : DataPtr;
VAR NewNura : integer);

VAR

P : DataPtr;

BEGIN

P := Start;

NewNura := Pt.Num;

Start := Startt.Next;

dispose (P)
END; { of PROCEDURE Pop >

644 DYNAMIC VARIABLES AND DATA STRUCTURES

■ When a node is deleted from a linked list, it should be returned for subse

quent use; this is done by using the standard procedure dispose.
■ A stack is a dynamic data structure where access can be made from only one
end; stacks are referred to as LIFO (last-in, first-out) structures.

a A queue is a dynamic data structure where access can be made from both
ends; queues are referred to as FIFO (first-in, first-out) structures.

a A tree is a dynamic data structure consisting of a special node (called a root)
that points to zero or more other nodes, each of which points to zero or more
other nodes, and so on. Trees are represented sjrmbolically as

A root is the first or top node of a tree.
Trees are particularly useful in programs that use data that can be ordered
and that need to be retrieved quickly.
Binary trees are trees where each node points to at most two other nodes;
parent, right child, and left child are terms frequently used when working
with binary trees. An illustration of a binary tree is

Binary search trees are binary trees in which the information in any node is
greater than the information in any node of its left child and any children of
the left child and the information in any node is less than the information in
any node of its right child and any children of the right child. An illustration
of a typical binary search tree is

Programming Problems 645

Recursive procedures can be used when working with trees; to illustrate, the
values in the nodes of a binary search tree can he printed (sequentially) with
the following procedure:

PROCEDURE PrintTree (Node : Pointer);
BEGIN

IF Nodet.LeftChild <> NIL THEN

PrintTree (Nodet.LeftChild);
writeln (Nodet.Info);

IF Nodet.RightChild <> NIL THEN
PrintTree (Nodet.RightChild)

END; < of PROCEDURE PrintTree >

■ Suggestions
for Further

Reading

Nance, Douglas W., and Thomas L. Naps Introduction to Computer Science: Pro
gramming, Problem Solving, and Data Structures. St. Paul, MN: West Publishing
Company, 1989.

Naps, Thomas L., and Bhagat Singh. Program Design with Pascal: Principles, Al
gorithms, and Data Structures. St. Paul, MN: West Publishing Company, 1988.

Naps, Thomas L., Nance, Douglas W., and Bhagat Singh. Introduction to Computer
Science: Programming, Problem Solving, and Data Structures, Alternate edition.
St. Paul, MN: West Publishing Company, 1989.

Singh, Bhagat, and Thomas L. Naps. Introduction to Data Structures. St. Paul, MN:
West Publishing Company, 1985.

Tenenbaum, Aaron M., and MosheJ. Augenstein. Data Structures Using Pascal.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

Programming l. Creating an index for a textbook can be accomplished by a Pascal
Problems program that uses dynamic data structures and works with a text

file. Assume that input for a program is a list of words to be in
cluded in an index. Write a program that scans the text and pro
duces a list of page numbers indicating where each word is used in
the text.

2. One of the problems faced by businesses is how best to memage their
lines of customers. One method is to have a separate line for each
cashier or station. Another is to have one feeder line where all cus

tomers wait and the customer at the front of the line goes to the first
open station. Write a program to help a manager decide which
method to use by simulating both options. Your program should al
low for customers arriving at VEirious intervals. The manager wants
to know the average wait in each system, average line length in each
system (because of its psychological effect on customers), and the
longest wait required.

3. Write a program to keep track of computer transactions on a main
frame computer. The computer can process only one job at a time.
Each line of input contains a user's identification number, a starting
time, and a sequence of integers representing the duration of each
job.

Assume all jobs are run on a first-come, first-served basis. Your
output should include a list of identification numbers, the starting
and finishing times for each job, and the average waiting time for a
transaction.

4. Several previous programming problems have involved keeping
records and computing grades for students in some class. If linked

646 DYNAMIC VARIABLES AND DATA STRUCTURES

lists are used for the students' records, such a program can be used
for a class of 20 students or a class of 200 students. Write a record-

keeping program that utilizes linked lists. Input is from an unsorted
data file. Each student's information consists of the student's name,
ten quiz scores, six program scores, and three examination scores.
Output should include:
a. A list, alphabetized by student name, incorporating each stu

dent's quiz, program, and examination totals; total points; per
centage grade; and letter grade.

b. Overall class average.
c. A histogram depicting the class average.

5. Modify the program you developed for Readmore Public Library
(Problem 6, Chapter 11 and Problem 2, Chapter 13) to incorporate a
djmamic data structure. Use a linked list to solve the same problem.

6. Mailing lists are frequently kept in a data file sorted alphabetically
by customer name. However, when they are used to generate mailing
labels for a bulk mailing, they must be sorted by zip code. Write a
program to input an alphabetically sorted file and produce a list of
labels sorted by zip code. The data for each customer are
a. Name.

b. Address, including street (plus number), city, two-letter abbrevia
tion for the state, and zip code.

c. Expiration information, including the month and year.

Use a binary tree to sort by zip code. Yom labels should include
some special symbol for all expiring subscriptions. (See Problem 1,
Chapter 13.)

Appendixes

1 Reserved Words

2 Standard Identifiers

3 Sjmtax Diagrams

4 Character Sets

5 Compiler Error Messages

6 Hirbo Pascal Notes

7 GOTD Statement

A.l

Appendix 1
Reserved Words

The following words have predefined meanings in standard Pascal and cannot be
changed. Each of these, except GOTO and LABEL, have been developed in the
text. These statements are discussed in Appendix 7.

AND END MOD REPEAT

ARRAY FILE NIL SET

BEGIN FOR NOT THEN

CASE FORWARD OF TO

CONST FUNCTION OR TYPE

DIV GOTO PACKED UNTIL

DO IF PROCEDURE VAR

DOWNTO IN PROGRAM WHILE

ELSE LABEL RECORD WITH

Appendix 2
Standard Identifiers

The standard identifiers for constants, types, files, functions, and procedures are
set forth in this appendix. All have predefined meanings that could (but probably
should not) he changed in a program. Summary descriptions are given for the
functions and procedures.

Constants

false

maxint

true

Types
boolean

char

integer
real

text

Files

input
output

Functions

Parameter Result Value
Function Type Type Returned

abs(x) integer integer Absolute value of x
real real

arctan(jc) integer real Arctangent of x
real (radians)

chr(a) integer char Chsuacter with ordinal a
cos(x) integer real Cosine of x (radians)

real

eoffF) file boolean End-of-file test for F
eoln(F) file boolean End-of-line test for F
exp(x) integer real e*

ln(x) integer real Natural logeirithm of x
real

odd(a) integer boolean Tests for a an odd integer
ord(x) nonreal scalar integer Ordinal number of x
pred(x) nonreal scalar same as x Predecessor of x
round(x) real integer Rounds off X

/ . .3

A.4 Appendix 2 Standard Identifiers

Parameter Result Value

Function Type Type Returned

sin(x) integer real Sine of x

real

sqr(x) integer integer Square of x
real real

sqrtfx) integer real Square root of x
real

succ(x) nonreal scalar same as x Successor of x

truncfx) real integer Truncated value of x

Procedures

Procedure Call Purpose of Procedure

dispose (Ptr)

get (F)

new (Ptr)

pack (U, J, P)

page (F)

put (F)

read (F, variable list)

readln (F, variable list)

reset (F)

rewrite (F)

unpack (P, U, J)

write (F, parameter list)

writeln (F, parameter list)

Returns variable referenced by Ptr to
available space list
Advances the file pointer for the file F
and assigns the new value to F t
Creates a variable of the type referenced
by Ptr and stores a pointer to the new
variable in Ptr

Copies unpacked array elements from U
into the packed array P; copying starts
withUQ] := P[l]
Starts printing the next line of text F at
the top of a new page
Appends the current value of F to the
fileF

Reads values from file F into indicated

variables; if F is not specified, input is
assumed

Executes the seune as read and then

advances the file pointer to the first
position following the next end-of-line
marker

Resets the pointer in file F to the
beginning for the purpose of reading
from F

Resets the pointer in file F to the
beginning for the purpose of writing to F
Copies packed array elements from P into
the unpacked array U; copying starts with
P[1]:=U[J]
Writes values specified by parameter list
to the text file F; if F is not specified,
output is assumed
Executes the same as write and then

places an end-of-line marker in F

Appendix 3
Syntax Diagrams

Program

body

file listidentifier

declarations

identifier
>• letter

T

letter

digit

File List

identifier

A.5

A.6 Appendix 3 Syntax Diagrams

Declarations and Definitions

coNS-r

type defiBition

variable! declatation

r
pii^aiedurie^;^^

I
function deolaratidn

Label Declaration

T Unsigned.mteger

Constant Definition

^ idraitifier M \ cpnatant) ̂

Type Definition

>■ identifiep type

Appendix 3 S)mtax Diagrams A. 7

Variable Declaration

Procedure and/or Function Declaration

FUNCTION

PROCEDURE.

identifier

formal parameter list

forin^ parameter list

Formal Parameter List

^VAR. typeidentifier

A. 8 Appendix 3 Syntax Diagrams

Statement

J assignment
A ^

read or readln

;prdqeduie

IF

CASE

WHitE

REPEAT

FOR

compound

GOTO

empty

Compound Statement

END

Body

*<BBiaN^ siatenient

compound statement

Appendix 3 Sjmtax Diagrams A.9

Type
j ty^e^iHent^er

L:®

eet^type);

Scalar TVpe

mi

Subrange Type

C

Pointer Type

Array Type

Record Type

-H

ideptlRerr

I

) * ■>1 [

» X-

3

■H)

, tlfpaiiden^fr;/ *

OF

► field'list

type

File Type

Set Type
"H SET

A. 10 Appendix 3 Syntax Diagrams

Field List

T
fixed part 7" variantpart^tOT 7^

Fixed Part

identifier
f c*

o

type definition

tjrpe name

o

Variant Part

tag field identifier type name

constant
A

o

variant description <i> T

Variant Description

Appendix 3 Sjmtax Diagrams A. 11

Assignment Statement

variable ei^resdi^

fimcfidiiidi^tifier

read or readln

N /(yai^iapie' T

file variable

readln

file variable

write or writeln

file variable

file variable

Procedure

procedure identifier expressionI / ' \ <I>

A. 12 Appendix 3 Syntax Diagrams

IF Statement

) ̂

atatement

WHILE Statement

WHILES

FOR Statement

CASE Statement

eimi^ssion

{S^alaBel stamm^t

Appendix 3 Syntax Diagrams A. 13

REPEAT Statement

►nSBPEAT)—T*-

r
statement

O
expression

WITH Statement

GOTO Statement

yatiable stetement

statement label

Empty

Case Label
constant

Factor

constant

variable

function identifier expression

expression

factor

set vsliife

A. 14 Appendix 3 Syntax Diagrams

Term

MOD) (and

factor

factor

Simple Expression

boolean expression

term s

Boolean Expression

<>

set value

>le expression) expression

Appendix 3 Syntax Diagrams A. 15

Variable

fielididentifier

fieldidentifier

variable identifier

expression

Set Value

expression

expression

Appendix 4
Character Sets

The American Stan

dard Code for Infor

mation Interchange
(ASCII)

The two tables included here show the ordering of two common character sets.
Note that only printable characters are shown for each set. Ordinals without char
acter representations either do not have standard representation, or they are as
sociated with unprintable control characters. In each list, the blank is denoted by
"h".

Left

Digit(s)

Right Digit

0 1 2 3 4 5 6 7 8 9

3 b ! # $ % & •

4 ()
*

+ , - . / 0 1

5 2 3 4 5 6 7 8 9 >

6 < = > ? @ A B C D E

7 F G H I J K L M N 0

8 P Q R S T U V W X Y

9 Z [\ 1 t -

a b c

10 d e f g h i) k 1 m

11 n o P q r s t u V w

12 X y z { 1 }

^Codes less than 32 or greater than 126 are nonprintable.

A.16

Appendix 4 Character Sets A. 17

The Extended Binary
Coded Decimal Inter

change Code
(EBCDIC)

Right Digit

Digit(s) 0 1 2 3 4 5 6 7 8 9

6 b

7 0 . < (+ 1
8 &

9 ! $
*

) ; n - /

10 f %

11 > ?

12 : # @ ' =
tf

a

13 h c d e f g h i

14 j k 1 m n

15 o P q r

16 s t u V w X y z

17 \ { }
18 []
19 A B C D E F G

20 H I J
21 K L M N O P Q R

22 S T U V

23 W X Y Z

24 0 1 2 3 4 5 6 7 8 9

^Codes not listed in this table are nonprintable.

Appendix 5
Compiler Error
Messages

The following are typical error messages used by a compiler to identify compilation
errors. Such errors will be identified by number with appropriate messages pro
duced at the bottom of a compilation listing. Different compilers produce different
error messages.

1 ERROR IN SIMPLE TYPE.

5 IDENTIFIER EXPECTED.

3 'PROGRAM' EXPECTED.

')' EXPECTED.

5 ' ' EXPECTED.

L UNEXPECTED SYMBOL.

7 ERROR IN PARAMETER LIST,

a 'OF' EXPECTED,

q '(' EXPECTED.

ID ERROR IN TYPE.

11 '[' EXPECTED.

15 ']' EXPECTED.

13 'END' EXPECTED.

1/; ';' EXPECTED.

15 INTEGER CONSTANT EXPECTED.

It '=' EXPECTED.

17 'BEGIN' EXPECTED,

la ERROR IN DECLARATION PART,

iq ERROR IN FIELD-LIST.

ED ',' EXPECTED.

51 '..' EXPECTED.

<D VALUE PART ALLOWED ONLY IN MAIN PROGRAM.

41 TOO FEW VALUES SPECIFIED.

45 TOO MANY VALUES SPECIFIED.

43 VARIABLE INITIALIZED TWICE.

44 TYPE IS NEITHER ARRAY NOR RECORD.

45 REPETITION FACTOR MUST BE GREATER THAN ZERO.

A.18

Appendix 5 Compiler Error Messages A.19

50 ERROR IN CONSTANT.

51 • =' EXPECTED.

55 'THEN' EXPECTED.

53 'UNTIL' EXPECTED.

5A 'DO' EXPECTED.

55 'TO' OR 'DOWNTO' EXPECTED.

57 'FILE' EXPECTED.

5a ERROR IN FACTOR.

5S ERROR IN VARIABLE.

to FILE TYPE IDENTIFIER EXPECTED.

IDl IDENTIFIER DECLARED TWICE.

105 LOWBOUND EXCEEDS HIGHBOUND.

103 IDENTIFIER IS NOT OF APPROPRIATE CLASS.

lOA IDENTIFIER NOT DECLARED.

1D5 SIGN NOT ALLOWED.

lOL NUMBER EXPECTED.

10? INCOMPATIBLE SUBRANGE TYPES.

lOa FILE NOT ALLOWED HERE.

lOq TYPE MUST NOT BE REAL.

110 TAGFIELD TYPE MUST BE SCALAR OR SUBRANGE.

111 INCOMPATIBLE WITH TAGFIELD TYPE.

115 INDEX TYPE MUST NOT BE REAL.

113 INDEX TYPE MUST BE SCALAR OR SUBRANGE.

IIA BASE TYPE MUST NOT BE REAL.

115 BASE TYPE MUST BE SCALAR OR SUBRANGE.

lit ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER.

117 UNSATISFIED FORWARD REFERENCE.

liq FORWARD DECLARED; REPETITION OF PARAMETER LIST NOT ALLOWED

150 FUNCTION RESULT TYPE MUST BE SCALAR, SUBRANGE, OR POINTER.

151 FILE VALUE PARAMETER NOT ALLOWED.

155 FORWARD DECLARED FUNCTION; REPETITION OF RESULT TYPE NOT

ALLOWED.

153 MISSING RESULT TYPE IN FUNCTION DECLARATION.

ISA FIXED-POINT FORMATTING ALLOWED FOR REALS ONLY.

155 ERROR IN TYPE OF STANDARD FUNCTION PARAMETER.

15t NUMBER OF PARAMETERS DOES NOT AGREE WITH DECLARATION.

157 INVALID PARAMETER SUBSTITUTION.

155 PARAMETER PROCEDURE/FUNCTION IS NOT COMPATIBLE WITH

DECLARATION.

ISq TYPE CONFLICT OF OPERANDS.

130 EXPRESSION IS NOT OF SET TYPE.

131 TESTS ON EQUALITY ALLOWED ONLY.

135 '<' AND '>' NOT ALLOWED FOR SET OPERANDS.

133 FILE COMPARISON NOT ALLOWED.

13A INVALID TYPE OF OPERAND(S).

135 TYPE OF OPERAND MUST BE BOOLEAN.

13L SET ELEMENT MUST BE SCALAR OR SUBRANGE.

137 SET ELEMENT TYPES NOT COMPATIBLE.

13a TYPE OF VARIABLE IS NOT ARRAY.

13q INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION.

IAD TYPE OF VARIABLE IS NOT RECORD.

lAl TYPE OF VARIABLE MUST BE FILE OR POINTER.

IAS INVALID PARAMETER SUBSTITUTION.

1A3 INVALID TYPE OF LOOP CONTROL VARIABLE.

lAA INVALID TYPE OF EXPRESSION.

1^5 TYPE CONFLICT.

14t ASSIGNMENT OF FILES NOT ALLOWED.

1^7 LABEL TYPE INCOMPATIBLE WITH SELECTING EXPRESSION.

lAa SUBRANGE BOUNDS MUST BE SCALAR.

l^q INDEX TYPE MUST NOT BE INTEGER.

15D ASSIGNMENT TO THIS FUNCTION IS NOT ALLOWED.

151 ASSIGNMENT TO FORMAL FUNCTION IS NOT ALLOWED.

A.20 Appendix 5 Compiler Error Messages

15E NO SUCH FIELD IN THIS RECORD.

155 CONTROL VARIABLE MOST NOT BE DECLARED ON AN INTERMEDIATE

LEVEL.

15ti MDLTIDEFINED CASE LABEL.

157 RANGE OF CASE LABELS IS TOO LARGE.

15fl MISSING CORRESPONDING VARIANT DECLARATION.

155 REAL OR STRING TAGFIELDS NOT ALLOWED.

ILD PREVIOUS DECLARATION WAS NOT FORWARD.

ILl MULTIPLE FORWARD DECLARATION.

It^ SUBSTITUTION OF STANDARD PROCEDURE/FUNCTION NOT ALLOWED.

Ib5 MULTIDEFINED LABEL.

ILL MULTIDECLARED LABEL.

1L7 UNDECLARED LABEL.

ILfl UNDEFINED LABEL IN THE PREVIOUS BLOCK.

1L5 ERROR IN BASE SET.

170 VALUE PARAMETER EXPECTED.

172 UNDECLARED EXTERNAL FILE.

173 FORTRAN PROCEDURE OR FUNCTION EXPECTED.

17^:; PASCAL PROCEDURE OR FUNCTION EXPECTED.

175 MISSING FILE "INPUT" IN PROGRAM HEADING.

17L MISSING FILE "OUTPUT" IN PROGRAM HEADING.

177 ASSIGNMENT TO FUNCTION ALLOWED ONLY IN FUNCTION BODY.

173 MULTIDEFINED RECORD VARIANT.

175 X-OPTION OF ACTUAL PROCEDURE/FUNCTION DOES NOT MATCH

FORMAL DECLARATION.

laO CONTROL VARIABLE MUST NOT BE FORMAL.

Ifll ARRAY SUBSCRIPT CALCULATION TOO COMPLICATED.

132 MAGNITUDE OF CASE LABEL IS TOO LARGE.

133 SUBRANGE OF TYPE REAL IS NOT ALLOWED.

153 ALTERNATE INPUT NOT FOUND.

155 ONLY ONE ALTERNATE INPUT MAY BE ACTIVE.

201 ERROR IN REAL CONSTANT DIGIT EXPECTED.

202 STRING CONSTANT MUST BE CONTAINED ON A SINGLE LINE.

2D3 INTEGER CONSTANT EXCEEDS RANGE.

204 3 OR 5 IN OCTAL NUMBER.

205 STRINGS OF LENGTH ZERO ARE NOT ALLOWED.

20L INTEGER PART OF REAL CONSTANT EXCEEDS RANGE.

207 REAL CONSTANT EXCEEDS RANGE.

250 TOO MANY NESTED SCOPES OF IDENTIFIERS.

251 TOO MANY NESTED PROCEDURES AND/OR FUNCTIONS.

255 TOO MANY ERRORS ON THIS SOURCE LINE.

25t TOO MANY EXTERNAL REFERENCES.

255 EXPRESSION TOO COMPLICATED.

2tD TOO MANY EXIT LABELS.

2bl TOO MANY LARGE VARIABLES.

2b2 NODE TO BE ALLOCATED IS TOO LARGE.

2b3 TOO MANY PROCEDURE/FUNCTION PARAMETERS.

2b4 TOO MANY PROCEDURES AND FUNCTIONS.

3DQ DIVISION BY ZERO.

302 INDEX EXPRESSION OUT OF BOUNDS.

303 VALUE TO BE ASSIGNED IS OUT OF BOUNDS.

304 ELEMENT EXPRESSION OUT OF RANGE.

350 ONLY THE LAST DIMENSION MAY BE PACKED.

351 ARRAY TYPE IDENTIFIER EXPECTED.

352 ARRAY VARIABLE EXPECTED.

353 POSITIVE INTEGER CONSTANT EXPECTED.

357 PACK AND UNPACK ARE NOT IMPLEMENTED FOR DYNAMIC ARRAYS.

353 IMPLEMENTATION RESTRICTION.

Appendix 6
Turbo Pascal Notes

This text is written using standard Pascal. The decision to use standard Pascal
rather than some other version was made for three reasons.

1. Standard Pascal is still frequently used at many colleges and universities.
2. Although many different versions of Pascal are available, no single one is

dominant.

3. Standard Pascal is the easiest version from which to adapt if some other
version is being used.

Recently, however, TXirbo Pascal has begun to grow rapidly in popularity. Hn-
bo's popularity is a function of the increasing use of personal computers, good
compiler programs, and Hirbo's relatively low cost.

The second edition of this text has responded to the increasing use of Thrbo
Pascal by including this appendix on Thrbo Pascal. Here, reference is made to peirts
of the text where specific differences occur between standard and Thrbo Pascal.
These differences are explained in some detail.

Using Turbo Pascal

Using a properly formatted disk containing "Rirbo Pascal, boot the system. When
the prompt appears, enter TURBO' and press <RETURN>. Next enter 'Y' or 'N'
for error messages. At this stage, several options are available. Enter 'W* and you
will be asked to enter a work file name. Enter 'Pracl' and press <RETURN>. Then
enter 'E' and you will be in the edit mode ready to write a program.

To see how the compiler works, input the following sample program. Enter this
program exactly as written—complete with the error!

PROGRAM Practice;
VAR

A, B, Sura : integer;
BEGIN

A ;= 50

B := 30;

Sura := A + B;

writeln ('Sura is', Sum:5)
END.

A.21

A.22 Appendix 6 Hirbo Pascal Notes

Exit the edit mode by pressing Ctrl-K-D. Enter *C' to compile the program. The
error message

"Error flS: expected. Press <Esc>"

appears. Press <Esc> and you will be returned to the program in the edit mode
with the cursor under the *B' of B := 30;. Move the cursor to where the missing
semicolon belongs (after 20), enter the semicolon, and press Ctrl-K-D to exit. Com
pile again by entering 'C. You now have an error-free program and can run it by
entering 'R'.

You can save the program by entering 'S'. It will be saved as PRACl.PAS. You
can then exit by pressing 'Q'. Pracl is now a permanent file. If you need to use it
again, enter 'TURBO' and type in 'Pracl' vyhen a work file name is requested.

Version 5.0 has a significantly different environment. After leaving the edit
mode, menus are available for running and compiling. You run and/or compile a
program by selecting the appropriate menu choice. A little practice with these
menus should make you comfortable with their use.

The remainder of this appendix consists of specific page references. Page num
bers are listed in bold type. Appropriate comments follow them. Hirbo logos,
shown to the left, are used throughout the text to indicate a reference to this
appendix.

Tlirbo Notes

PUge 26: 'I\u:bo does not require a file list with the program heading.

PROGRAM name;

is sufficient.

Page 33: maxint is 32767.
Ffage 35: string data types may be defined. For an explanation and illustration of
declaring and using strings, see the comment for page 393.
Page 35: Default output is to the monitor. Output can be directed to the printer by
using 1st (short for list) within a writein statement. Thus,

writeln (•Hello');

goes to the screen and

writeln (1st, 'Hello');

outputs to the printer.
Page 36: There is no default field width. Thus

writeln (!□□, 67, 95);

produces

1DD6795

Page 37: The last line of output for Example 2.1 is
Pittsburgh, PA15E3a

Page 40: The same table is produced using Hirbo.

Page 50:

writeln (maxint + 1);

produces

-3E7ba

Page 59: The standard file input is not required as part of the heading. When
omitted, the default input fi le is the keyboard.
Page 60: Interactive programs should use readln rather than read. In order for read
to be used in an interactive program, a compiler directive ({$B-}) should be used.
This, however, restricts editing.

Appendix 6 Hirbo Pascal Notes A. 2 3

Page 61: See the IXirbo note for page 60.
Page 64: Reading character data using readin presents no problems. However, if
characters are mixed with numbers, each number must be followed by a blank,
tab, or carriage retirni. Thus,

23-A

is not allowed. It should be entered as

E3 A

If you wish to symbolically enter the fraction 2/3, it would have to be 2 /3 or 2 / 3,
Page 120: The error message is

Run-time error OA, PC=5CEA

Program aborted

Page 122: The Ihrbo compiler is especially helpful for debugging. After listing an
error message (see the previous note), it continues with directions for subsequent
action. For example, the full screen message for division by zero of the previous
note is

Run-time error OA, PC=2CEA

Program aborted

Searching
7 lines

Run-time error position found. Press <Esc>

When the <Esc> key is pressed, the editor is automatically reentered and the
cursor is located at the position where execution was halted.
Page 123: No error message is produced. The default value for variables is zero.
Thus, A + B has the value 10 + 0 and the Average is 5.0.
Page 146: Output in Ihrbo is true.
Page 147: eoln and eof should be used only when reading from text files (see Ihrbo
note for page 324). Both functions work if the file is a logical device, eoln is true
if the character read is a <RETURN> or if eof is true, eof is true if the character

read is a Ctrl-Z. However, when getting input interactively, it is preferable to use
Boolean flags other than eoln and eof.
Page 183: Ihrbo Pascal does not include an OTHERWISE option for a CASE state
ment. However, an equivalent ELSE option is available. Syntax for the ELSE option
is

CASE selector OF

label 1 : statement 1;

label 2 : statement rt

ELSE

BEGIN

statement 1;

statement m

END { of ELSE option
END { of CASE statement

A. 24 Appendix 6 Hirbo Pascal Notes

Page 205: All variables are initialized to zero as a default setting. When a loop has
been exited, the loop index retains the last assigned value.
Page 206: See Hirbo note for page 205.
Page 219: See Iturbo note for page 147.
Page 221: See Hirbo note for page 147.
Page 324: Text files are written using the Hirbo editor. You can create a data disk
by using the Hirbo editor in the same way as you would write a program. However,
instead of program lines, you enter appropriate lines of data. When finished, you
exit the editor and save the file on the disk by entering 'S'.
When this is saved on the disk, it would be listed in the directory as DATAl.PAS

(unless some other designator is specified). You can then use the data file by de
claring a file of type text in the variable declaration section. The file name does
not have to be listed in the program heading. Thus, you could have

PROGRAM UseData;

VAR

DataFile : text;

Within the program you must then assign the file name on the directory to the
declared file. This can be accomplished by

assign (DataFile, 'DATA.PAS');
reset (DataFile);

Notice that DataFile is reset to guarantee the pointer is at the beginning of the file.
At this stage, you can use read or readin to get input from the text file DataFile.
You can accomplish this by including the file name in the read or readin command.
Thus, you might have

WHILE NOT eof(DataFile) DO

BEGIN

readin (DataFile, Num);
writeln (Num)

END;

When you finish reading from a text file, you should close it with a close command.
In the previous example, this would be

close (DataFile);

eoln and eof can be used with text files. The text file must be included as an

argument. Thus, you might have statements such as

WHILE NOT eof(Data);

or

WHILE NOT eoln(Data);

When reading from a text file, you must include the file name as an argument.
Typical statements are

read (Data, variables here);
or

readin (Data, variables here);

Page 344: Subrange limits may be ignored. Assignment of a value outside the
specified range will not cause a compilation error. However, since you cannot
predict what value will be stored, you should not use subranges as a form of
program protection. This can lead to program crashes caused by inappropriate
values.

Page 393: A string data type is available in Hirbo Pascal. Correct syntax is

VAR

Name : stringin);

Appendix 6 IXirbo Pascal Notes A.25

where n specifies the string length (from 1 through 255). Strings do not have a
default length; the length must always be specified. With this declaration, you
could have a statement such as

readln (Data/ Score/ Name);

as part of a program.
Page 394: All variables are automatically packed in Hirbo. Thus, packed arrays
need not be declared and procedures pack and unpack have no effect. (For a
discussion of pack and unpack, see page 400.
Page 400: See Hirbo note for page 393.
Page 436: Since string is a data type available in Thrbo Pascal, packed arrays of
characters are not needed. An array of strings can be thought of as a one-dimen
sional array.
Page 479: Loops are not needed for reading names when using a string data type.
The code on this page could be replaced by

WITH Student DO

BEGIN

read (Data/ Name);
FOR J := 1 TO 3 DO

read (Data/ ScoreCJ];
readln (Data);
Average := (Scored] + Secret?] -t- ScoretB] / 3

END;

Page 518: File names are not required as part of a program heading. If information
is stored in a file named DATA, it is listed in the directory as DATA.PAS. Assuming
such a file of integers exists, the following program illustrates how the data can
be accessed.

PROGRAH UseData;

VAR

DataFile : text;

Nura : integer;
BEGIN

assign (DataFile/ 'DATA.PAS');
reset (DataFile);

WHILE NOT eof(DataFile) DO
BEGIN

readln (DataFile/ Num);
writeln (Num)

END;

close (DataFile)
END.

The effect of this program is to print the integers in DATA.PAS to the screen.
Ihrbo Pascal permits random access of files. Using the procedure seek, a par

ticular file component can be located by

seek (file name/ position - 1);

The component can then be obtained by

read (file name/ component);

Random access files can be opened for reading and writeing at the same time.
Thus, if you are updating a file, after processing a component, you reposition the
pointer by

seek (file name/ position - 1);

and then write the updated component to the file by

write (file name/ component):

A.26 Appendix 6 Hirbo Pascal Notes

When you are finished, you should close the file by

close (file name);

Page 522: get and put are not used in Ihrbo Pascal. All files are accessed using
read, readln, write, or writeln. This simplifies working with files since you no
longer must work with file windows and buffer variables.
Page 526: There are no internal files in Hu-bo Pascal.
Page 582: The maximum number of elements in a set is 256, and the ordinal values
of the base tj^e must be within the range 0 through 255.
Page 606: Hirbo Pascal uses a caret (") rather than an up arrow (t) for pointer
variables.

Appendix 7
GOTO Statement

In your work with computers, you may have heard of a GOTD statement. It is
another statement in Pascal that allows a programmer to transfer control within a
program. The GOTO statement has the effect of an immediate unconditional trans
fer to an indicated designation. You should not use GOTO statements in a Pascal
program, but for the sake of completeness, you should be aware of their existence
and how they work.

Early programming languages needed a branching statement; therefore, both
FORTRAN and BASIC were designed using a GOTO statement for branching. Sub
sequent languages, particularly Pascal, included more sophisticated branching and
looping statements. These statements led to an emphasis on structured program
ming, which is easier to design and read. If you are a beginning programmer and
have not used the GOTO statement in another language, you should continue to
develop your skills without including this statement. If you have already written
programs in a language that uses GOTO statements, you should still attempt to
write all Pascal programs without GOTO statements.
One instance in which GOTO statements might be appropriate is in making a

quick exit from some part of the program. For example, if you are getting data from
somewhere within a program and you have a check for valid data, your design
could include a program segment such as

read data

IF (bad data) THEN
BEGIN

write error message;

GOTO end of program
END

ELSE

process data

With the previous admonitions against using GOTO statements in mind, we will
now briefly examine the form, syntax, and flow of control for these statements.
GOTO statements require the use of numerically labeled statements. Thus, your

program could contain

A.27

A.28 Appendix 7 GOTO Statement

LABEL

label 1/

label E;

GOTO IDD;

IDO: program statement;

All labels must be declared in a label declaration section that precedes the constant
definition section in a program. Each label can only be used for a single program
statement. The form for the label declaration section is

LABEL

label 1,

label 2,

label n;

Correct form for a GOTO statement is

GOTO numerical label;

where numerical label is an integer from 1 to 9999 inclusive. Declared labels are
then used with appropriate statements in a program. Proper syntax for labeling a
statement is

label: program statement;

Consider the fragment

BEGIN

read (Num);
IF Num < □ THEN

GOTO
ELSE

Sum := Sum + Num;

wrlteln ('Data include a negative number/ ■ :<□)
END.

In this instance, when a negative number is encountered as a data item, an appro
priate message is printed and the program is terminated.

GOTO statements permit you to immediately transfer out of any control struc
ture. As stated, we recommend you avoid the use of this statement whenever
possible. However, if you must use it, use it only for an immediate exit from some
point in the program; never use it to construct a loop in Pascal.

Glossary

actual parameter A variable or expression con
tained in a procedure or function call and passed
to that procedure or function. See also formal
parameter.

address Often called address of a memory location,
this is an integer value that the computer can use
to reference a location. See also value,

algorithm A finite sequence of effective statements
that, when applied to the problem, will solve it.

argument A value or expression passed in a func
tion or procedure call,

arithmetic/logic unit (ALU) The part of the central
processing unit (CPU) that performs arithmetic
operations and evaluates expressions,

array A structured variable designed to handle data
of the same type,

array index The relative position of the compo
nents of an array,

array of records An array whose component type
is a record.

ASCII collating sequence The American Standard
Code for Information Interchange ordering for a
character set.

assembly language A computer language that al
lows words and sjnnbols to be used in an unso
phisticated manner to accomplish simple tasks,

assertion Special comments used with selection
and repetition that state what you expect to hap
pen and when certain conditions will hold,

assignment statement A method of putting values
into memory locations,

batch input Input for a program being run in batch
mode. Also referred to as stream input,

batch processing A technique of executing the pro
gram and data from a file that has been created.
User interaction with the computer is not re

quired during execution. Also referred to as
stream input.

BEGIN ... END block The segment of code be
tween BEGIN and END that, when a compound
statement is executed within a program, is treated
as a single statement,

binary digit A digit, either 0 or 1, in the binary
number system. Program instructions are stored
in memory using a sequence of binary digits. Bi
nary digits are called bits,

binary search The process of examining a middle
value of a sorted array to see which half contains
the value in question and halving until the value
is located.

binary search tree A binary tree such that (1) the
information in the key field of any node is greater
than the information in the key field of any node
of its left child and any of its children and (2)
the information in the key field of any node is
less than the information in the key field of any
node of its right child and any of its children,

binary tree A tree such that each node can point to
at most two children,

bit See binary digit.
block A program in Pascal can be thought of as a

heading and a block. The block contains an op
tional declaration part and a compound state
ment. The block structure for a subprogram is a
subblock. See also subblock.

Boolean expression An expression whose value is
either true or false. See also compound Boolean
expression and simple Boolean expression,

bottom-up testing Independent testing of modules,
bubble sort Rearranges elements of an array until

they are in either ascending or descending order.
Consecutive elements are compared to move

G.l

G.2 Glossary

(bubble) the elements to the top or bottom ac
cordingly during each pass. See also insertion
sort, selection sort, and quick sort,

buffer variable The actual vehicle through which
values are passed to or from a file component,

built-in fimction See standard function.

b3rte A sequence of bits used to encode a character
in memory. See also word,

call Any reference to a subprogram by an execut
able statement. Also referred to as invoke,

central processing unit (CPU) A major hardware
component that consists of the arithmetic/logic
unit (ALU) and the control unit,

central unit A computer's central unit contains the
central processing unit and the main memory; it
is hooked to an input device and an output device,

character set The list of characters available for data

and program statements. See also collating
sequence.

children Nodes pointed to by an element in a tree,
code (writing) The process of writing executable

statements that are part of a program to solve a
problem.

collating sequence The particular order sequence
for a character set used by a machine. See also
ASCII and EBCDIC,

comment A nonexecutable statement used to make

a program more readable,
compatible (type) Variables that have the same base

type. A value parameter and its argument must
be of compatible type. See also identical (t3rpe).

compilation error An error detected when the pro
gram is being compiled. A complete list of com
pilation error messages is set forth in Appendix
5. See also design error, logic error, run-time er
ror, and syntax error,

compiler A computer program that automatically
converts instructions in a high-level language to
machine language,

component of a file One element of the file data
type.

component of a linked list See node,
component of an array One element of the array

data type.
compound Boolean expression Refers to the com

plete expression when logical connectives and
negation are used to generate Boolean values. See
also Boolean expression and simple Boolean
expression.

compound statement Uses the reserved words BE
GIN and END to make several simple statements
into a single compound statement,

conditional statement A control statement that se

lects some particular logical path based on the
value of an expression.

constant The contents of a memory location whose
contents cannot be changed,

constant definition section The section where pro
gram constants are defined for subsequent use.

control structure A structure that controls the flow

of execution of program statements,
control unit The part of the central processing unit
(CPU) that controls the operation of the rest of
the computer,

counter A variable used to count the number of

times some process is completed,
data The particular characters that are used to rep

resent information in a form suitable for storage,
processing, and communication,

data tjrpe A formal description of the set of values
that a variable can have,

debugging The process of eliminating errors or
"bugs" from a program,

declaration section The section used to declare

(name) all symbolic constants, data types, vari
ables, and subprograms that are necessary to the
program.

design error An error such that a program runs, but
unexpected results are produced. Also referred
to as a logic error. See also compilation error,
run-time error, and syntax error,

difference The difference of set A and set B is

A — B where A — B contains the elements that

are in A but not in B. See also intersection, sub

set, and union,

dynamic structure A data structure that may ex
pand or contract during execution of a program,

dynamic variable Frequently designed as Ptrt or
Ptr", a dynamic variable is a variable accessed by
a pointer variable.

EBCDIC collating sequence The Extended Binary
Coded Decimal Interchange Code ordering for a
character set.

echo checking A technique whereby the computer
prints out values of variables and data used in a
program.

effective statement A clear, unambiguous instruc
tion that can be carried out.

element of an array See component of an array,
element of a set A value that has been assigned to

a set.

empty set A set containing no elements. Also called
a null set.

empty statement A semicolon used to indicate that
no action is to be taken. Also referred to as a null

statement.

end-of-file marker (eof) A special marker inserted
by the machine to indicate the end of the data
file. In this text it is represented by a black square

(■)■

Glossary G.3

end-of-line marker (eoln) A special marker in
serted by the machine to indicate the end of a
line in the data. In this text it is represented by
a black column (|).

entrance controlled loop See pretest loop,
enumerated type See user-defined data type,
error See compilation error, design error, logic er

ror, run-time error, and S3mtax error,
executable section Contains the statements that

cause the computer to do something. Starts with
the reserved word BEGIN and concludes with

the reserved word END.

executable statement The basic unit of grammar in
Pascal consisting of valid identifiers, standard
identifiers, reserved words, numbers, and/or

characters, together with appropriate punctua
tion.

execute To perform a program step-by-step,
exit controlled loop See postttest loop,
exponential form See floating point,
external file A file used to store data in secondary

storage between runs of a program. See also in
ternal file.

field width The phrase used to describe the num
ber of columns used for various output. See also
formatting,

field A component of a record.
FIFO See queue.
file A data structure that consists of a sequence of

components all of the same type,
file window A term used in this book, though not

designated by Pascal, to indicate an imaginary
window through which values of a file compo
nent can be transferred,

fixed repetition loop A loop used if the number of
times a segment of code needs to be repeated is
known in advance. FOR... TO ... DO is a fixed

repetition loop. Also referred to as an iterated
loop.

fixed parts Fields in a record that exist for all rec
ords of a particular type. See also variant part,

fixed point A method of writing decimal numbers
where the decimal is placed where it belongs in
the number. See also floating point,

floating point A method for writing numbers in sci
entific notation to accommodate numbers that

may have very large or very small values. Exactly
one nonzero digit must appear on the left of the
decimal. See also fixed point.

FOR loop A fixed repetition loop causing a frag
ment of code to be executed a predetermined
number of times. FOR ... TO ... DO and FOR

... DOWNTO ... DO are FOR loops,
formal parameter A variable, declared and used in

a procedure or function declaration, that is re

placed by an actual parameter when the proce
dure or function is called,

formatting Designating the desired field width
when printing integers, reals, Boolean values, and
character strings. See also field width,

forward reference A method by which a subpro
gram can call another subprogram that appears
later in the declaration section,

function See standard function and user-defined

function.

global variable A variable that can be used by the
main program and all subprograms in a program,

hardware The actual computing machine and its
support devices,

high-level language Any programming language
that uses words and symbols to make it relatively
easy to read and write a program. See also assem
bly language and machine language,

higher-dimensional array An array of more than
two dimensions,

identical (type) Variables that are declared with the
same type identifier. A variable parameter and
its argument must be of identical type,

identifiers Words that must be created according to
a well-defined set of rules but can have any
meaning subject to these rules. See also standard
identifiers,

index See array index or loop index,
index type The data type used for specifying the

range for the index of an array. The index type
can be any ordinal data type that specifies an
initial and final value,

infinite loop A loop in which the controlling con
dition is not changed in such a manner to allow
the loop to terminate,

input Data obtained by a program during its exe
cution. See also hatch input and interactive input,

input device A device that provides information to
the computer. Typical devices are keyboards, disk
drives, card readers, and tape drives. See also I/O
device and output device,

insertion sort Sorts an array of elements in either
ascending or descending order. Starts with an
empty array and inserts elements one at a time
in their proper order. See also bubble sort, quick
sort, and selection sort,

integer arithmetic operations Operations allowed
on data of type integer. This includes the oper
ations of addition, subtraction, multiplication,
MOD, and DIV to produce integer answers,

interactive input A method of getting data into the
program from the keyboard. User interaction is
required during execution,

internal file A file used for processing only and not
saved in secondary storage. See also external file.

G.4 Glossary

intersection The intersection of set A and set B is

A * B where A « B contains the elements that are

in both A and B. See also difiference, subset, and
union.

invariant expression An assertion that is true be
fore the loop and after each iteration of the loop,

invoke See call.

I/O device Any device that allows information to
be transmitted to or from a computer. See also
input device and output device,

iteration See loops.
keywords Either reserved words or predefined

identifiers.

leaf In a tree, a node that has no children,

length (of an array) The number of components of
an array.

LIFO See stack.

linked list A list of data items where each item is

linked to the next one by means of a pointer,
local variable A variable that is restricted to use

within a subblock of a program,
logic error See design error,
logical operator Either logical connective (AND,
OR) or negation (NOT),

loop goal expression See invariant expression,
loop index Variable used for control values in a
FOR loop.

loops Program statements that cause a process to
be repeated. See also FOR loop, REPEAT... UN
TIL loop, and WHILE ... DO loop,

low-level language See assembly language,
machine language This language is used directly

by the computer in all its calculations and
processing,

main driver See executable section,

main memory Memory contained in the computer.
See also memory and secondary memory,

mainframe Large computers typically used by ma
jor companies and universities. See also micro
computer and minicomputer,

master file An existing external file,
maxint The largest integer constant available to a

particular system,
memory The ordered sequence of storage cells that

can be accessed by address. Instructions and
variables of an executing program are temporar
ily held here. See also main memory and sec
ondary memory,

memory location A storage cell that can be ac
cessed by address. See also memory,

merge The process of combining lists. Typically
refers to files or arrays,

microcomputer A personal computer with rela
tively limited memory. Generally used by one
person at a time. See also mainframe and
minicomputer.

minicomputer A small version of a mainframe
computer. It can be used by several people at
once. See also mainframe and microcomputer,

mixed-mode Expressions containing data of both
integer and real types; the value will be given
as a real and not as an integer,

modular development The process of developing
an algorithm using modules. See also module,

modularity The property possessed by a program
which is written using modules,

module An independent unit that is part of a larger
development. Usually a procedure or function.
See also modular development,

module specifications A description of data re
ceived, information returned, emd logic used in
the module.

negation The use of the logical operator NOT to
negate the Boolean value of an expression,

nested IF statement A selection statement used

within another selection statement,

nested loop A loop as one of the statements in the
body of another loop,

nested record A record as a field in another record,

nested selection Any combination of selection
statements within selection statements. See also

selection statement,

nested subprograms Functions or procedures
within functions or procedures,

node One data item in a linked list,

null set See empty set.
null statement See empty statement,
object code See object program,
object program The machine code version of the

source program,

opened for reading Positions a pointer at the be
ginning of a file for the purpose of reading from
the file.

opened for writing Positions a pointer at the be
ginning of a file for the purpose of writing to the
file.

opening a file Positions a pointer at the beginning
of a file. See also opened for reading, opened for
writing.

ordinal data type A data type ordered in some as
sociation with the integers; each integer is the
ordinal of its associated character,

output Information that is produced by a program,
output device A device that allows you to see the

results of a program. Tjqiically it is a monitor or
printer. See input device and I/O device,

overflow In arithmetic operations, a value may be
too large for the computer's memory location. A
meaningless value may be assigned or an error
message may result. See also underflow,

packed array An array that has had data placed in
consecutive bytes.

Glossary G.5

parallel arrays Arrays of the same length but with
different component data types,

parameter See argument.
parameter list A list of parameters. An actual pa

rameter list is contained in the procedure or
function call. A formal parameter list is con
tained in the procedure or function heading,

parent In a tree, the node that is pointing to its
children.

passed by reference When variable parameters are
used in subprograms,

peripheral memory See secondary memory and
memory.

pointer variable Frequently designated as Ptr, a
pointer variable is a variable that contains the
address of a memory location. See also address
and dynamic variable,

pop A procedure to delete a node from a linked
list.

postcondition An assertion written after a segment
of code.

posttest loop A loop where the control condition
is tested after the loop is executed. REPEAT ...
UNTIL is a posttest loop. Also referred to as an
exit controlled loop,

precondition An assertion written before a partic
ular statement,

pretest condition A condition that controls whether
the body of the loop is executed before going
through the loop,

pretest loop A loop where the control condition is
tested before the loop is executed. WHILE ...
DO is a pretest loop. Also referred to as an en
trance controlled loop,

primary memory See main memory and memory,
procedural abstraction The process of considering

only what a procedure is to do rather than details
of the procedure,

procedure A subprogram designed to perform a
specific task as part of a larger program. Proce
dures are not limited to retiuming a single value
to the main program,

program A set of instructions that tells the ma
chine (the hardware) what to do.

program heading The first statement of any Pascal
program: it must contain the reserved word
PROGRAM.

programming language Formal language that com
puter scientists use to give instructions to the
computer.

program protection A method of using selection
statements to guard against unexpected results,

program walk-through The process of carefully
following, using pencil and paper, steps the com
puter uses to solve the problem given in a pro
gram. Also referred to as trace.

prompt A marker on the terminal screen that re
quests input data,

protection See program protection,
pseudocode A stylized half-English, half-code lan

guage written in English but suggesting Pascal
code.

push A procedure for adding a node to the begin
ning of a linked list,

queue A d3mamic data structure where elements
are entered from one end and removed from the

other end. Referred to as a FIFO (first-in, first-
out) structure,

quick sort A relatively fast sorting technique that
uses recursion. See also bubble sort, insertion

sort, and selection sort,

real arithmetic operations Operations allowed on
data of type real. This includes addition, sub
traction, multiplication, and division,

record A data structure that is a collection of fields

that may be treated as a whole or that will allow
you to work with individual fields,

recursion The process of a subprogram calling it
self. A clearly defined stopping state must exist.
Any recursive subprogram can be rewritten us
ing iteration,

recursive step A well-defined step that leads to the
stopping state in the recursive process,

recursive subprogram See recursion,
relational operator An operator used for compar

ison of data items of the same type.
REPEAT ... UNTIL loop A posttest loop examin

ing a Boolean expression after causing a frag
ment to be executed. See also FOR loop, loops,
and WHILE ... DO loop,

repetition See loops.
reserved words Words with have predefined mean

ings that cannot be changed. They are high
lighted in text by capital boldface print; a list of
Pascal reserved words is set forth in Appendix 1.

return type The data type for a function name,
robust The state in which a program is completely

protected against all possible crashes from bad
data and unexpected values,

root The first or top node in a tree,
run-time error Error detected when, after compi

lation is completed, an error message results in
stead of the correct output. See also compilation
error, design error, logic error, and syntax error,

scope of identifier The largest block in which the
identifier is available,

secondary memory Memory contained in a pe
ripheral device, usually a disk or magnetic tape.
See also main memory and memory,

selection sort A sorting algorithm that sorts the
components of an array in either ascending or
descending order. This process puts the smallest

G.6 Glossary

or largest element in the top position and repeats
the process on the remaining array components.
See also bubble sort, insertion sort, and quick
sort.

selection statement The process of executing pos
sible altetnate segments of code. Pascal selection
statements are IF ... THEN, IF ... THEN ...

ELSE, and CASE,

sentinel value A special value that indicates the
end of a set of data or of a process,

sequential algorithm See straight-line algorithm,
sequential search The process of examining the first

element in a list and proceeding to examine the
elements in order until a match is found,

set A structured data type that consists of a col
lection of distinct elements from an indicated

base type (which must be ordinal),
simple Boolean expression An expression where

two numbers or variable values are compared
using a single relational operator. See aba Boo
lean expression and compound Boolean
expression.

software Programs that make the machine (the
hardware) do something, such as word process
ing, data-base management, or games,

sort-merge The process of repeatedly subdividing
a long list, sorting shorter lists, and then merging
to obtain a single sorted list,

source program A program written by a program
mer. See aba system program,

stack A dynamic data structure where access can
be made from only one end. Referred to as a LIFO
(last-in, first-out) structure,

standard function A built-in function available in

most versions of Pascal,

standard identifiers Predefined words whose

meanings can be changed if needed. Standard
identifiers are highlighted in text by lowercase
boldface print; a list of Pascal standard identi
fiers is set forth in Appendix 2.

static variable A variable whose size (for example,
array length) is fixed at compilation time. A cer
tain memory area is reserved for each variable,
and these locations are retained for the declared

variables as long as the program or subprogram
in which the variable is defined is active,

stepwise refinement The process of repeatedly
subdividing tasks into subtasks until each sub-
task is easily accomplished. See aba structured
progranuning and top-down design,

stopping state The well-defined termination of a
recursive process,

straight-line algorithm Also called sequential al
gorithm, this algorithm consists of a sequence of
simple tasks.

stream input See batch input.
string An abbreviated name for a string constant.
string constant One or more characters used as a

constant in a program,
structured programming Programming that par

allels a solution to a problem achieved by top-
down design. See aba stepwise refinement and
top-down design,

stub programming A no-frills, simple version of a
final program,

subblock A block structure for a subprogram. See
aba block.

subprogram. A program within a program. Proce
dures and functions are subprograms,

subrange The defined subset of values of an exist
ing ordinal data tjrpe.

subscript See array index or loop index,
subset Set A is a subset of set B if all the elements

in A are also in B. See aba difference, intersec

tion, and union,

sjmtax The formal rules governing construction of
valid statements,

syntax diagramming A method to formally de
scribe the legal sjmtax of language structures;
syntax diagrams are set forth in Appendix 3.

syntax error An error in spelling, punctuation, or
placement of certain key symbols in a program.
See aba compilation error, design error, logic
error, and run-time error,

system program A special program used by the
computer to activate the compiler, run the ma
chine code version, and cause output to be gen
erated. See also source program,

tag field A field used in defining variant records.
Values of the tag field determine the variant re
cord structure,

test program A short program written to provide
an answer to a specific question,

text file A file of characters that is divided into

lines.

top-down design A design methodology for solving
a problem whereby you first state the problem
and then proceed to subdivide the main task into
major subtasks. Each subtask is then subdivided
into smaller subtasks. This process is repeated
until each remaining subtask is easily solved. See
abo stepwise refinement and structured
progranuning.

trace See program walk-through,
transaction file A file containing changes to be made

in a master file,

tree A dynamic data structure consisting of a spe
cial node (a root) that points to zero or more other
nodes, each of which point to zero or more other
nodes, and so on.

Glossary G.7

two-dimensional array An array in which each
element is accessed by a reference to a pair of
indices.

two-way merge The process of merging two sorted
lists.

type See data type.
underflow If a value is too small to be represented

by a computer, the value is automatically re
placed by zero. See also overflow,

union The union of set A and set B is A + B where

A + B contains any element that is in A or that
is in B. See also difference, intersection, and

subset.

universal set Any set that contains all possible val
ues of the base t5rpe.

unpacked array An array in which data are not in
consecutive bjrtes.

user-defined data type A data type that is defined
in the TYPE definition section by the program
mer. Also referred to as enumerated type,

user-defined fimction A subprogram (function)
written by the programmer to perform a specific
task. Functions retium one value when called,

user-friendly A phrase used to describe an inter
active program with clear, easy-to-follow mes
sages for the user.

value Often called value of a memory location. Re
fers to the value of the contents of a memory
location. See also address,

value parameter A formal parameter that is local
to a subprogram. Values of these parameters are
not returned to the calling program,

variable A memory location, referenced by an
identifier, whose value can be changed during a
program.

variable declaration section The section of the

declaration section where program variables are
declared for subsequent use.

variable dictionary A listing of the meaning of
variables used in a program,

variable parameter A formal parameter that is not
local to a subprogram. Values of these parameters
are returned to the calling program,

variant part The part of a record structure in which
the number and type of fields can vary. See also
fixed part.

WHILE ... DO loop A pretest loop examining a
Boolean expression before causing a fragment to
be executed. ^

word A unit of memory consisting of one or more
b3rtes. Words can be addressed,

writing to a file The process of entering data to a
file.

Answers to

Selected Exercises

This section contains answers to se

lected exercises from the exercise sets

at the end of each section. In general,
answers to odd-numbered problems
are given.

CHAPTER 2

Section 2.1

1. a. and c. are effective statements.

b. is not effective because you

cannot determine when to per
form the action.

d. is not effective because there is

no smallest positive fraction.

e. is not effective because you
cannot determine in advance

which stocks will increase in

value.

3. a. 1. Select a topic
2. Research the topic
3. Outline the paper
4. Refine the outline

5. Write the rough draft
6. Read and revise the rough

draft

7. Write the final paper

c. 1. Get a list of colleges
2. Examine criteria (pro

grams, distance, money,
and so on)

3. Screen to a manageable
number

4. Obtain fiuiher information

5. Make a decision

5. a. First-level development

1. Get information for first

employee
2. Perform computations for

first employee
3. Print results for first em

ployee
4. ^

repeat for second em
ployee

6- .

Second-level development

1. Get information for first

employee
1.1 get hourly wage
1.2 get number of hours

worked

2. Perform computations for

first employee
2.1 compute gross pay

2.2 compute deductions
2.3 compute net pay

3. Print results for first em

ployee
3.1 print input data
3.2 print gross pay

3.3 print deductions
3.4 print net pay

15. I repeat for second em-
I ployee

6. J

Third-level development

1. Get information for first

employee
1.1 get hourly wage
1.2 get number of hours

worked

2. Perform computations for
first employee
2.1 compute gross pay
2.2 compute deductions

2.2.1 federal with

holding
2.2.2 state withhold

ing

2.2.3 social security
2.2.4 union dues

2.2.5 compute total

deductions

2.3 compute net pay

2.3.1 subtract total de

ductions from

gross

3. Print results for first em

ployee
3.1 print input data

3.1.1 print hours

worked

3.1.2 print hourly
wage

3.2 print gross pay
3.3 print deductions

3.3.1 print federal

withholding
3.3.2 print state with

holding

AN.l

AN.2 Answers to Selected Exercises

3.3.3 print social se
curity

3.3.4 print union dues
3.3.5 print total de

ductions

3.4 print net pay

repeat for second em
ployee

6j

Section 2.2

3. a., b., and e. are valid; however, a
semicolon must be used between

the heading in a. and the next line
of code.

c. does not begin with the re
served word PROGRAM.

d. is missing an identifier for the
program name.

f. and g. use improper identifiers
for the program name.

5. A typical constant definition
statement is

CONST

Name = 'Julie Adams';

Age = Ifl;
BirthDate = 'November 10/ 1'170';

Birthplace = 'Carson City, MI';

Section 2.3

1. a., d., e.« and g. are valid.

b. has a decimal.

c. has a comma.

f. is probably larger than maxint

3. a. 1.73E2

b. 7.43927E11

c. -2.3E-8

d. 1.4768E1

e. -5.2EO

5. a. and d. are integers,

b., c., and g. are reals.

e. and f. are string constants.

7. a. writeln (' Score ':!<);

writeln ('
writeln (Qti: 13) ;

writeln (aE:13);

writeln (7S:13);

CHAPTER 3

Section 3.1

1. a. 11

b. -41

c. 3

d. 24

e. 126

f. 63

g. 48

h. 140

i. -2

). 7

3. a. and b. are valid, type integer.

c., e., f., g., h., and i. are valid,
type real.

d. and j. are invalid.

5. Output will vary according to lo
cal implementation.

Section 3.2

1. a., b., e., f., and h. are valid as

signment statements.

c. is invalid. A real cannot be as

signed to an integer variable.

d. is invalid. An operand cannot
be on the left of an assignment
statement.

g. is invalid. IQ/3 is a real.

a. 3 -5

A B

b. 26 31

A B

c. -3 -5

A 1

5. Sex

Age
Height
Weight

7. column 11

* *

* Name Age Sex *

M

53

73 inches

lfib.5 lbs

* Jones 51 M *

* *

Answers to Selected Exercises AN.3

9. column 10

i

This reviews string formatting.
When a letterAis used^

Oops! I forgot to format.
When a letter A is used/
it is a string of length one.

Section 3.3

1. The file name input.

5. a. '1' 8 18B19M B -14.3 B JO B 142.1F B ■
Ch A t

b. '1' 8 18Bi9MB -14.3 B JO B 142.1F B ■
Ch A t

c. All variables unassigned 18Bi9MB -14.3BJOBi42.1FB ■
t

d. All variables unassigned 18Bi9MB -14.3BJOBi42.1FB ■
X

e. 18 19 •M' -14.3

A B Ch X

18Bi9MB -14.3BJOBi42.1FB ■
t

f. 18 19 'M' -14.3

A B Ch Y

118 19MI -14.31 JO 1142.1F 1 ■

18 4 'l*

Ch

18B19MI -14.3 B JO 1142.1F B M

18 19 < ' -14.3

Ch

18B19M B -14.3 B JO 1142.1F 1 ■"

Section 3.4

3.

CPS 150

Total points
My score
Class average

TEST #2

qa

05.3

Section 3.5

1. a. 15.2

b. 14

c. 0

d. 36

8. -4.5

f. -11.98

3. a. sqrt(A*A+B*B)

b. (-B + sqrt(B*B-'^*A*C)) / (5 * A)

5. (round(lD*X)) / ID.D

7. a. -4.30 4.30 -4 -4

b. 4 (depends on character
set—65 in ASCH)

c. Depends on character set

AN.4 Answers to Selected Exercises

CHAPTER 4

Section 4.1

1. a. Total := Testl + TestE + Test3 + Test<;

b. Average := Total / A;

c. Totallncorae := Salary + Tips;

d. Time := Distance / Rate;

e. Grade := TotalPoints / t;

f. writeln (Name:ED, TotalPoints:ID, GradeiS);

g. writeln (NumberAttending:5, TicketPrice:lG:E,
TotalReceipts:ID:E);

3. PROGRAM BoxVolume (output);
CONST

Skip = • ';
VAR

Length, Width, Height, Volume : integer;
BEGIN

Length := fl;
Width := 3;

Height := E;
Volume := Length * Width * Height;
writeln (SkiprlD, 'Length =', LengthrlD);
writeln (SkiprlD, 'Width =', WidthrlD);
writeln (SkiprlD, 'Height =', HeightrlD);
writeln;

writeln (SkiprlD, 'Volume =', VolumerlD)
END.

7. a., b., c., e., and h. are acceptable,

d. is not correctly stated.

f. is valid but should have con

sistent comment closings.

g. should have consistent com
ment starts.

Section 4.2

1. A procedure is a subprogram. As such it is contained within a complete
program. It is headed by the reserved word PROCEDURE and has a semi
colon after the last END rather than a period. A program is headed by the
reserved word PROGRAM and has a period after the last END.

3. PROCEDURE PrintHeading;
CONST

SplabS — ' if:>|e>|e ^^ ilc3|t3|c3|t3|c>|c ^ ^4 ' ;
Edge = '» *•;
Name = 'John J. Smith';

Date = 'September 15, 1905';
BEGIN

writeln (Skip:ED, Splats);
writeln (SkiprED, Edge);
writeln (SkiprED '*', SkiprB, Name, SkiprlD, •*')
writeln (SkiprED '*', SkiprS, Date, SkiprS, '*');
writeln (SkiprED, Edge);
writeln (SkiprED, Splats)

END; < of PROCEDURE PrintHeading >

Answers to Selected Exercises AN.5

5. a. Suppose you want the heading to be

R & R Produce Company

Items Purchased Price per Item Total per Item

R Produce Company');
I);

A procedure for this is

PROCEDURE PrintHeading;
CONST

Skip = ' ';
BEGIN

writeln; writeln;

writeln (Skip:20, 'R
writeln (SkiprEO/ '
writeln;
write (Skip:5/ 'Items Purchased');
write (Skip:5/ 'Price per Item');
writeln (Skip:5, 'Total per Item')
write (Skip:5r '
write (Skip:5/ '
writeln (Skip:Sr '—
writeln

END;

Section 4.3

1. There should be a semicolon

after Y in the first line. ' = '

should be replaced by '
in the second line. The cor

rect code is

-•);

•);

X := 3 * Y;

Y := 4 - a * Z;

writeln (X/ Y);

3. The added semicolons are circled
for your convenience. '

PROGRAM ExerciseThree (output)(])

CONST

Name = 'Jim Jones'©
Age = Ifl©

VAR

Score : integer©

BEGIN

Score := S3©
writeln ('Name':13/ Name:15XX)
writeln ('Age':12, Age:It)©
writeln ('Score':14/ Score:14)

END.

7, Statements a. and e. are valid. The

reasons the others are invalid fol

low.

b. The operand (+) is on the left
of an assignment statement.

c. C has not been declared.

d. Wage should be spelled Wages.

f. Hours has not been declared.

g. CourseName can only be as
signed a single character.

h. A value cannot be assigned to
a constant.

i. A real cannot be assigned to an
integer.

5. The misspelled keywords (with
the correct spelling) follow.

PROGRRAM

reals

chr

interger
writln

(should be PROGRAM)

(should be real)
(should be char)
(should be integer)
(should be writeln)

AN.6 Answers to Selected Exercises

9. Errors are circled.

PROGRAM Errors (output(J); should be)

(* *)
(* There are thirteen errors. (S)) should be*
(♦ *)
(:4c:|c:4c4c4e:|c4(3|e3|e:|e:|c:(c:tc:(c4e3tc3ie •) miSSiUg

VAR

Day : char;
Percent : realO
A, B (Dgn^;

BEGIN C(Main program))
Day © "M" ;
Percent^Lg^ := 75 / ID;
A ;= 5;

A * 3 .5 j)

iyr it In') (Ay B;5D
writeln (Day :CbD:g);
writeln (A+Brfl, Percent:ia)

endO

Section 4.4

; missmg

; should be : emd int should be integer

() should be { }
should be : =

should be Percent

B is of type integer
should be writeln

incorrect formatting

. missing

Value of A Value of B Value of C

33 undefined undefined

33 -2 undefined

28 -2 undefined

28 28 undefined

28 28 30

28 28 30

28 28 1

29 28 1

Code with Errors Corrected Code

Max = 100.0 : real; Max = 100.0;

A/ Sura : integer A/ Sum : integer
A := at.O; A := fib;

A + Sura := Sum Sum := A + Sura;

writeln (Sura:1S:5) writeln (Sura:15)

Code with Errors

PROGRAM Compile Errors (output);
B := A - 10;

writeln ('The value of A is : 50/ Ait);

Corrected Code

PROGRAM CompileErrors (output);
A :=A-10: (Bis not declared)
writeln ('The value of A is':50/ A:L);

5. The following changes would be
needed.

a. underline Donations.

b. skip a line before 100.00.

c. print dollar signs.

d. skip a line before total.

e. print Total.

Answers to Selected Exercises AN.7

CHAPTER 5

Section 5.1

1. true true false

false

3. Only c. and f. are valid.

5. a., b., d., and g. are true.

c., e., and f. (which compare as
reals) are false.

7. a., b., and c. are true.

d. and e. are false.

Section 5.2

1. a. 10 5

b. no output

c. 5 B has no value

d. ID 5

e. 15

15

f. ID

3. a. should be

IF A = ID THEN ...

b. 3 < X < ID

cannot be evaluated. This should

be

(3 < X) AND (X < ID)

c. This expression needs a BE
GIN ... END to be consistent

with indenting. It should be

IF A > D THEN

BEGIN

Count := Count + 1;

Sura := Sura + A

END;

d. IF Ch = 'A' OR 'B' THEN

should be

IF (Ch = 'A') OR (Ch = 'B') THEN

5. Yes.

9. BEGIN

readln (Nural/ NuraE/ Nura3);
Total := Total + Nural + NumS +

wrlteln (Nural/ NuraE/ Nura3);

writeln;

writeln (Total)

END;

11. read (Chi, ChE, Ch3);
IF (Chi <= ChE) AND (ChE <= Ch3)

writeln (Chi, ChE, Ch3);

This can also be written as

read (Chi, ChE, Ch3);
IF Chi <= ChE THEN

IF ChE <= Ch3 THEN

writeln (Chi, ChE, Ch3);

Section 5.3

-lA lA

5D E5

1 75

ID 5

5 D

3. a. Since the intent appears to be

a statement that counts char

acters other than periods, a
BEGIN... END block should

be included in the IF ...

THEN option.

IF Ch <> '.• THEN

BEGIN

CharCount := CharCount + 1;

writeln (Ch)

END

ELSE

PeriodCount := PeriodCount + 1;

b. The semicolon between END

and ELSE should be omitted.

c. Technically this fragment will
run. However, since it ap-.

pears that OldAge : = OldAge
+ Age is to be included in
the ELSE option, the pro
grammer probably meant

ELSE

BEGIN

OldCount := OldCount + 1;
OldAge := OldAge + Age

END;

Section 5.4

X Y

1. a. 3a. 15

b. -Sl.D

c. LDD.D

d. 3DDD.D

7b3.D

El.D

lEDD.D

5DDD.D

3. a. IF Ch = 'M' THEN

Nura3; IF Sum > IDDD THEN
X := X + 1

ELSE

X := X + E

ELSE

IF Sura > IDDD THEN

X := X + 3

THEN ELSE

X := X + <;

AN.8 Answers to Selected Exercises

b. read (Nuin);
IF Nura > □ THEN

IF Nura <= IDDOO THEN

BEGIN

Count := Count + 1;
Sum := Sura + Nura

END

ELSE
writeln ('Value out of range' :E7)

ELSE

writeln ('Value out of range' :E7);

c. IF It > □ THEN

IF B > □ THEN
writeln ('Both positive' :55)

ELSE

writeln ('Sorae negative' :55)
ELSE

writeln ('Some negative':EE);

d. IF C <= D THEN
IF A > □ THEN

IF B > □ THEN

writeln ('Option one'ill)
ELSE

writeln ('Option two'ilR)
ELSE

writeln ('Option two' :IS)
ELSE

writeln ('Option one' :IS);

5. IF Average < SO THEN
IF Average < fl O THEN

IF Average < 70 THEN
IF Average < 55 THEN

Grade := 'E'
ELSE Grade := 'D'

ELSE Grade := 'C
ELSE Grade := 'B'

ELSE Grade := 'A' ;

This could be written using sequential IF ... THEN statements. For ex
ample,

IF (Average <= IGG) AND (Average >= SG) THEN
Grade := 'A' ;

IF (Average < SG) AND (Average >= fi G) THEN
Grade := 'B' ;

The disadvantage of this method is that each Boolean expression of each
statement will always be evaluated. This is relatively inefficient.

8 13 104

A B

Section 5.5

3. IF ((Age DIV IG) > IG) OR ((Age DIV IG) < 1) THEN
writeln ('Value of age is'. Age)

ELSE

. (CASE statement here)

Answers to Selected Exercises AN.9

5. a. 5 3

b. You have purchased

c. 3 -3

d. 5 ID

1E5

Super Unleaded gasoline

-5

7. Assume there is a v£iriable

ClassType. The design of the frag
ment to compute fees is

read (ClassType);
CASE ClassType OF

•U'

•G'

I p I

•S«

END; <

(list options here)

of CASE

CHAPTER 6

Section 6.1

1. a. ̂

b. 1 5

E &

3 7

A b

5 5

b A

7 3

& E

5 1

IG G

c. ** E

** 3

*♦ A
*♦ 5
*♦ b
** 7

a
** 5
** IG
** 11
** IE
** 13
** lA
** 15
** lb
** 17
** la
** 15
** EG

d. 1
E

3

A

5

b
7

6

ID

11

IE
13

lA

15

lb

17

la

15

EG
El

a. FOR J := 1 TO 4 DO
writeln (•*»:1D);

b. FOR J := 1 TO fl DO
writeln (•*»*':J+5);

c. writeln (' * ' : ID);
FOR J := 1 TO 3 DO

writeln ('*':1G-J, •*' :E*J;
writeln ('****
FOR J := 1 TO E DO

writeln ('* *':11);
writeln (•***':11);

d. This is a "look ahead" problem that can be solved by a loop within a
loop. This idea is developed in Section 6.5.

FOR J := 5 DOHNTO 1 DO

BEGIN
write (• 'rCb-J); < Indent a line >
FOR K := 1 TO (E*J-1) DO i Print a line >

write ('+');
writeln

END;

AN.IO Answers to Selected Exercises

5. a. FOR J := 1 TO 5 DO

write (J:3);

FOR J := 5 DOWNTO 1 DO

write (t-J:3);

b. FOR J := 1 TO 5 DO

writeln ('*':J);
FOR J := 5 DOWNTO 1 DO

writeln ('*':(b-J));

7. FOR J : E TO ID DO

writeln (ia-J:lE-J);

9. The key loop in this program will

be something like

FOR J := -ID TO ID DO

BEGIN

Num := 5*J;

writeln (Num:lG, Num * NumilG/ Num * Num * NumilG)

END; < of printing the chart >

Section 6.2

3. a. 1

a

3

<

5

b

7

6

q

IG

b. 1 G

a 1

3 a

A 1

5 a

c. SA SG

d. The partial sum is 1

5. a.

The partial sum is 3

The partial sum is b

The partial sum is IG

The partial sum is 15

The count is 5

9b.GG a.GG

A 16 -1A.3B

A 16 -1A.3B c ai IG.GD E

c. same as b.

d. same as a.

e. A 16 -1A.3 B

C ai IG.G D

E m -11.5 F

Answers to Selected Exercises AN.ll

7. Ch is X eoln is false eof is false

Ch is Y eoln is false eof is false

Ch is Z eoln is false eof is false

Ch is b eoln is false eof is false

Ch is 1 eoln is false eof is false

Ch is 3 eoln is true eof is false

Ch is b eoln is false eof is false

Ch is A eoln is false eof is false

Ch is B eoln is false eof is false

Ch is C eoln is false eof is false

Ch is b eoln is false eof is false

Ch is s eoln is false eof is false

Ch is 1 eoln is false eof is false

Ch is b eoln is true eof is false

Ch is M eoln is false eof is false

Ch is N eoln is false eof is false

Ch is 0 eoln is false eof is false

Ch is b eoln is false eof is false

Ch is s eoln is false eof is false

Ch is 5 eoln is true eof is false

Ch is b eoln is true eof is true

9. read (Num);
IF Num < IDDDD THEN

PowerOfNum := Num;

WHILE PowerOfNum < !□□□□ DO
BEGIN

writeln (PowerOfNum);
PowerOfNum ;= PowerOfNum * Num

END;

Section 6.3

1. A pretest loop tests the Boolean
expression before executing the
loop. A posttest loop tests the
Boolean expression after the loop
has been executed.

d. 1
E

3

5

3. a. 1
5

3

5

L

b. 5

6

IL

3S

laa

1

a

3
A

S

7

a

s
10

C SI ID.DD 3 iq -11.5F

a. A la -1A.3B

b. A la -14.3B

c. Same as a.

d. Same as b.

e. A la -14.3
C SI 10.0 D
3 iq -11.5

7. read (Num);
IF Num < IDDDD THEN

BEGIN

PowerOfNum := Num;
REPEAT

writeln (PowerOfNum);
PowerOfNum := PowerOfNum

DNTIL PowerOfNum > IDDDD
END;

Section 6.4

* Num

3. The loop in Exercise 2c. can
be rewritten in each of the
following ways.

AN. 12 Answers to Selected Exercises

i. WHILE X < 4.0 DO 3

BEGIN

writeln (X:5G:2);
X := X + 0.5

END;

ii. FOR J ;= 1 TO a DO

BEGIN

writeln (X:EG:2);

X := X + G.5

END;

ill. FOR J := a DOWNTO 1 DO

BEGIN

writeln (X:BG:2); j
X := X + G.5

END;

5. Since the condition 6 < 5 is false,
the loop will not be entered. In a
REPEAT... UNTIL loop, the loop
body is always executed at least
once before the Boolean expres
sion controlling the loop is eval
uated.

Section 6.5

3. a. FOR K := 1 TO 5 DO

BEGIN

write (• •:K);

FOR J := K TO 5 DO

write ('*•);

writeln

END;

c. FOR K := 1 TO 7 DO

IF K < 5 THEN

BEGIN

FOR J := 1 TO 3 DO

write ('*');
writeln

END

ELSE

BEGIN

FOR J := 1 TO 5 DO

write ('*');
writeln

END;

Section 6.6

1. a. This is an inhnite loop.

b. The loop control variable,
K, is unassigned once the
FOR ... TO loop is ex
ited. Thus, the attempt to

use K in the expression K
MOD 3 = 0 may result

in an error.

Count := G;

Sum := G.G;

WHILE NOT eof DO

BEGIN

readln (Num);
IF Num > G.G THEN

BEGIN

Count := Count + 1;

Sura := Sum + Num

END

END; < Of WHILE...DO loop >

The program fragment necessary
for this task is a modification of

Example 6.25.

WHILE NOT eof DO i Process one line }

BEGIN

write (• • :1G);

WHILE NOT eoln DO •(Process 1 character

BEGIN

read (Ch);

IF Ch <> ' • THEN

write (Ch)

END;

readln; •(Advance the pointer >
writeln

END; < of WHILE NOT eof }

CHAPTER 7

Section 7.2

3. c. and d. are valid.

a. is invalid. The data type for
what will be returned to the call

ing program must be listed.

FUNCTION RoundTenth (X real) : real;

b. is invalid. Data types must be
listed for X and Y.

e. is invalid. The comma follow

ing char should be a semicolon.

5. a. FUNCTION MaxOfTwo (X, Y : real)
BEGIN

IF X > Y THEN

MaxOfTwo := X

ELSE

MaxOfTwo := Y

END;

f. FUNCTION MultOfS (A
BEGIN

IF A MOD 5 = G THEN

MultOfS := true

ELSE

MultOfS = false

END;

integer)

real;

: boolean;

Answers to Selected Exercises AN. 13

7.FUNCTION Factorial (N : integer) : integer;
VAR

Fact, J : integer;
BEGIN

Fact := 1;

FOR J := 1 TO N DO

Fact := Fact * J;

Factorial := Fact

END;

g. There are several reasonably short
methods of writing such a func
tion. If we assume the main pro
gram checks for a valid symbol,
one such function is

FUNCTION Arithmetic (Operand : char;
Nl, NE : integer) : integer;

BEGIN

IF Operand = •+• THEN
Arithmetic := Nl + NE

ELSE

Arithmetic := Nl * NE

END; < of FUNCTION Arithmetic >

Section 7.3

3. a. A and B are variable partime-
ters. X is a value parameter.

b. A and X are variable parame
ters. B and Ch are value pa
rameters.

0. X, Y, and Z are variable param
eters. A, B, and Ch are value

parameters.

5. a. ProbS (Numl, NumE, Letter);

b. PrintHeader;

c. FindHax (Numl, NumE, Max);

d. Switch (Numl, NumE);

e. SwitchAndTest (Numl, NumE, Flag);

7. b. PROCEDURE MaxAndAver (X, Y, Z : real;

VAR Max, Aver : real);
BEGIN

Max := X;

IF y > Max THEN

Max := Y;

IF Z > Max THEN

Max := Z;

Aver := (X + Y -H Z) / 3.D

END;

AN.14 Answers to Selected Exercises

Section 7.4

7. Identifiers for this program are
represented schematically by the
figure at right.

9. ID

ED

ID

3D

3D

13. The main program is trying to
access an identifier that is not

available. The line

writeln (Xl:aD:E);

in the main program is inappro
priate because the scope of XI
is PROCEDURE Subl.

Section 7.5

1. a. variable parameters

b. variable parameters

c. value parameters

3. The pseudocode design indicates
procedures could be written for

1. Initialize variables

2. Print a heading
3.1 get new data

4. Print results

Ini

PROGRAM Practice

A

j

B

X • Ch

PROCEDURE Subl

■Ar

PROCEDURE Sub2

m

tialize (Parameter list) ;
PrintHeading;

GetData (Parameter list) ;
PrintResults (Parameter list) ;

Until more is known about the
problem, step 3.2 (perform com
putations) cannot be determined.
However, if we assume a function
(Compute] is written for this, a
main program could be

BEGIN < Main program >
Initialize (variable list);
PrintHeading;
Flag := true;
Count := □;
WHILE Flag = true DO

BEGIN

GetData (variable list) ;
NewValue := Compute (variable list) ;
Count := Count -h 1;
IF (check condition) THEN

Flag := false
END; < of WHILE...DO >

PrintResults (variable list)
END. ■{ of main program >

Answers to Selected Exercises AN. 15

Section 7.6

5. A schematic representation is
shown at right.

X, Y, and Ch can be used in all

subblocks of ExerciseFive.

XI, Chi, and J declared in PRO

CEDURE A can be used in all sub-

blocks of PROCEDURE A but

cannot be used in PROCEDURE

B or ExerciseFive.

M and Y1 can be used only in
FUNCTION Inner.

XI and Ch2, declared in PRO

CEDURE B, can be used only in
PROCEDURE B.

PROGRAM ExerciseFive

X

PROCEDURE A

Ch

J

m chi

FUNCilON hmer

; :

M " Yl "

PROCEDUREB

XI Ch2

7. a. A schematic representation is

A, B, and Num are available to

all blocks. Al, Bl, Prod and K

are available to MaxPower and

Sort. A2, B2, and Temp are
available only to Sort.

b. 243

c. This function performs the task
of computing A to the power
of B (A®) where A is the smaller

of the two positive integers A
and B.

PROGRAM ExerciseSeven

B

FUNCTION MaxPower

Num

r"™

L':.L.

— JS-TTJ

1 ■ [T? ; \

Al Bl

PROCEDURE Sort

Prod k

1 ■ ■ ■; ,

..

t 1 ij;"!/I ,

li.L

' -m. : B2'

AN.16 Answers to Selected Exercises

{ Open for writing >

CHAPTER 8

Section 8.1

3. The variables should be format

ted so the integers will be sep
arated by blanks.

You should check yom answers
to Exercises 5—7 on your com
puter due to possible differ
ences in reading text files.

11,PROGRAM DeleteBlanks (input/ output/ NoBlank);
VAR

NoBlank : text;

Ch : char;

BEGIN

rewrite (NoBlank);
WHILE NOT eof DO

BEGIN

WHILE NOT eoln

BEGIN

read (Ch);

IF Ch <> •

write (NoBlank/ Ch)
END; i. of WHILE NOT eoln

readln;

writeln (NoBlank)
END { of WHILE NOT

END. < of main program

Section 8.2

3. a. Jane is listed in both types
Names and People.

b. Red is listed twice in type
Colors.

c. Parentheses are needed around

the values. Thus, it should be

DO

THEN

eof

}

(A/ C, E);

TYPE

Letters =

5. a., d., and e. Me valid.

b. is invalid; TXies + Wed is not

defined.

c. is valid (but a poor choice).

f. is invalid; you cannot write
user-defined values.

g. is invalid; you cannot read
user-defined ordinals.

h. is invalid; the operation "Hies
+ 1 is not defined.

Section 8.3

1. a. The definition is invalid; 10 . .

1 is not a subrange of an ex
isting ordinal data type.

b. Bases and Double are valid.

Score is invalid because Sec

ond .. Home is not a subrange.

c. All definitions and declara

tions are valid. However,

Hue := Blue

is an invalid use because Blue

is not in the subrange defined
for Stripes.

d. The definitions are invalid be

cause the type Days must be
defined before the subrange
Weekdays.

e. All definitions and declara

tions are valid, but

Scores := Scorel + 5

will produce a run-time error
because the intended value

(65) is not in the defined sub

range.

3. a. Dependents usually refers to
the number of single-family
dependents for tax purposes.
Twenty is a reasonable maxi
mum.

b. Assuming hours worked in one
week, 0 to 60 is a reasonable

range.

c. The subrange was chosen for
a maximum score of ten. This

would vary for other maxi
mum scores.

d. The subrange could be used if
the total points were a maxi
mum of 700. This might be
used in some grading pro
grams.

5. a. and b. are compatible. The base
type is ChessPieces.

c. and f. are incompatible.

d. and e. are compatible. The base
type is integer.

Section 8.4

1. a. Oak

b. Cotton

c. 2

d. Invalid

e. 3

f. Invalid

8- 0

3. a. 'D'

b. 10

c. '0'

Answers to Selected Exercises AN. 17

d. Invalid; addition of characters

is not defined.

e. Invalid; pred('K') is a charac
ter; thus, the operation,' +', is

not defined.

f. 'Z'

FUNCTION Month (MonthNura)
BEGIN

CASE MonthNum OF

1 : Month := Jan;

5 : Month := Feb.;

MonthName;

5. a. Weekend

Weekday
Weekday
Weekday
Weekday

Weekday

h. For a WHILE loop, you could
use the Boolean expression
WHILE Day < Sat DO.

Day := Sun;
WHILE Day < Sat DO
BEGIN

(body of loop here)

END;

A FOR loop could be con
trolled by the Boolean expres
sion

FOR Day := Sun TO Fri DO
BEGIN

(body of loop here)

END;

c. This can be accomplished by
using ordinal values. For ex
ample, if OrdValue has been
declared, the loop could be

OrdValue ;= □;
REPEAT

CASE OrdValue OF
□ : (action here)

3,^,5 :
END; •{ of CASE OrdValue
OrdValue := OrdValue + 1

UNTIL OrdValue = t;

d. The last value (Sat) is not being
considered. This could be al
tered by using a FOR loop and
including Sat or using a vari
able control loop and adding
a writein statement such as

writeln ('Weekend' :SO);

outside the loop.

7. Assume variables MonthNum and
Month have been appropriately
declared. A function could be

15 : Month := Dec

END { of CASE MonthNum >
END; < of FUNCTION Month >

CHAPTER 9

Section 9.1

1. a. Score : ARRAY [1..35] OF integer;

b. CarCost : ARRAY [l..aDl OF real;

c. Answer : ARRAY [1..5D] OF boolean;

d. Grade : ARRAY Cl..b] OF char;

3. a. There is no error if Hours has
been declared as a data type.

b. No error.

c. No index range has been given
for the array.

d. The index range should be [1
. . 10] rather than [1 TO 10).

e. The index range is not appro
priate; something like ARRAY
[index range] OF boolean
should be used.

f. [1 . . . 5] should be [1 . . 5]

5. a. TYPE
List = ARRAY [1..1DD] OF 'A' .. »Z';

VAR

LetterList : List;

b. TYPE

Name = ARRAY [1..3Q] OF char;
VAR

CompanyName : Name;

c. TYPE

List = ARRAY [3D..53] OF real;
VAR

ScoreList : List;

AN.18 Answers to Selected Exercises

7. a. Money b. Money c. Money

183.25

10.04

17.32

Money[l]

Money[2]

Money[3]

10.04

19.26

17.32

Section 9.2

1. a. List

Money[l]

Money[2]

Money(3]

c. Answer

19.26

10.04

2.68

Moneyjl]

Money[2]

Money[3]

b.

0 List[l]

0 List[2]

1 List[3]

1 List[4]

1 List[5]

List Score

5 List[l] 1 Score[l)

6 List[2] 2 Score[2l

7 List[3] 2 Score[3]

8 List[4] 2 Score(4l

9 List[5] 3 Score[5]

false Answer[l]

true Answer[2]

false Answer[3]

true Answer(4)

false Answer[5]

true Answer[6l

false Answer[7]

true Answer[8]

false Answer[9]

true Answer! 10]

d. The contents of this array de
pend on the character set
being used.

3. The section counts the number

of scores greater than 90.

5. TYPE

ListOfLetters = RRRRY [1..5D1 OF char;

VAR

Letter : ListOfLetters;

A FOR loop could be used as
follows:

FOR J := 1 TO 50 DO

read (LetterCJl);

7. FOR J := 1 TO DO

ACJ] :=

9. a. JOHN SMITH

b. SMITH/ JOHN

c. HTIMS NHOJ

11. writeln ('Test Number'/
writeln (• •/

writeln;

FOR J := 1 TO 50 DO

writeln ('<•:</ J:5, •>'/ TestScoreCJ]:11);

Score•:10);
. :!□);

Section 9.3

1. a. after one pass after two passes

-20 -20

10 -2

0 0

10 10

8 8

30 30

-2 10

b. Three exchanges are made.

3. A high to low sort is achieved by
changing

IF ACK] < Aflndex] THEN

to

IF AtK] > Aflndex] THEN

Section 9.4

1. a. is valid; it can be called
by NewList (Listl/ Aray);

b. is invalid; a semicolon is
needed after Row.

c. is invalid; array declara
tion cannot be included in
the heading.

d. is valid; can be called by
NewList (Listl, ListS);

e. is invalid; Column cannot
be used as a variable name.

f. is invalid; array declara
tion cannot be included in
the heading.

g. is invalid; Name is not a
data type.

b. is valid; can be called by
Surnames (Namel/
NameE);

i. is invalid; Name is not a
data type.

j. is valid; can be called by Ta
ble (Listl/ ListE);

Answers to Selected Exercises AN.19

3. a. PROCEDURE GldList (X
Y

Row 5. a. Listl List2

b. PROCEDURE ChangeLlst

c. This call is inappropriate be
cause the data type for A and
B has not been defined in the

TYPE section.

d. This call is inappropriate be
cause the argument, String20,
is a data type rather than a

variable.

: Column); 1 0

(X : Row; 4 0

N : StringBD; 9 0

D : Week);
16 0

25 0

36 0

49 0

64 0

81 0

100 0

Section 9.5

1. a., c., d., and f are valid; true,

b. and e. are invalid.

3. a. To err is human. To forgive is not the province of the computer.

b. To err is human. To forgive is not the province of the computer.
There are Ifl blanks.

c. To err is human. To forgive is

d. To err is human. To forgive is not the province of the computer,
.retupmoc eht fo ecnivorp eht ton si evigrof oT .namuh si rre oT

5. MCount := D;

FOR J := 1 TO DO

IF Message [J] = 'M« THEN
MCount := MCount + 1;

Section 9.6

1. FOR J := 1 TO Length DO
IF Num = A[J] THEN

writeln (Num, ' is in position', J:5);

3. The value of Index in the loop
can be used as a counter.

5. a. Num = la

First Last Mid A[Mid] Found

Before loop 1 5
After first pass 1 2
After second pass 1 2

c. Num = 7t

Undefined

3

1

Undefined

37

18

false

false

true

First Last Mid A[Mid] Found

Before loop 1 5 Undefined Undefined false
After first pass 4 5 3 37 false
After second pass 4 3 4 92 false

Since First > Last, the loop will be exited and an appropriate message should be
printed.

AN.20 Answers to Selected Exercises

7. Algorithmic developments for
this problem follow.

a. 1. Copy file components into
an array

2. Get number to look for

3. Search sequentially for a
match

c. 1. Copy file components into
an array

2. Get new number

3. Use a binary search until
Last < First

CHAPTER 10

Section 10.1

1. a. DrugPrice : ARRAY fl.
DrugPrice : ARRAY Cl.

b. Grade : ARRAY C1..ED/

Grade : ARRAY [l..aO]

c. QuizScore : ARRAY fl.
QuizScore : ARRAY [1-

3. a. ShippingCost

4. Assign First to Position
5. Move array components

ahead one from Position to

the end of the list

FOR J := Length DOHNTO Position DO
ACJ + 1] := AtJ];

6. Assign new number to

A[Position;];

9. There will be a maximum of five

passes.

4, 1..5] OF real;

A] OF ARRAY [1..5] OF real;

1. .fc] OF char;

OF ARRAY [l..b] OF Char;

30/ 1..12] OF integer;
,30] OF ARRAY [1..1E] OF integer;

GradeBook

40 locations available

210 locations available

Answers to Selected Exercises AN.21

AnswerSheet

15 locations available

Schedule

25 locations available

250 locations available

a. FOR J := 1 TO 3 DO

FOR K := 1 TO t DO

R[J,K] := a * J + K;

b. FOR J := 1 TO 3 DO

FOR K := 1 TO t DO

acJ,K] := □;

FOR J := 1 TO 3 DO
FOR K := 1 TO t DO

a[J,K] := a * J;

AN.22 Answers to Selected Exercises

7. TYPE

StringaO = PACKED ARRAY [1..2D] OF char;
NameList = ARRAY [1..5D1 OF StringED;

VAR

Name: NameList;

FOR J := 1 TO 50 DO <■ Loop to get data >
BEGIN

FOR K := 1 TO SO DO i Read one line }
read (Name!J*K];

readln
END;

9. a. FOR J := 1 TO < DO
BEGIN

NinRowCJl := Table!J#!];
For K := E TO 5 DO

IF TableCJrK] < MinRowIJ] THEN
MinRowtJ] := Table [J/Kl

END;

c. Total := □;
FOR J := 1 TO < DO

FOR K := 1 TO 5 DO
Total := Total + TableCJ,K];

11. a. TYPE
Table = ARRAY [1..3, l.-fl] OF integer;

b. PROCEDURE Replace (VAR A : Table);
VAR

J, K : integer;
BEGIN

FOR J := 1 TO 3 DO
FOR K := 1 TO a DO

IF A[J,K1 < □ THEN
ACJ,K] := □

END; < of PROCEDURE Replace >
c. PROCEDURE Replace of b.

could be called by

Replace (Table3X5);

13. a. Reading values into A and B
depends on how data are ar
ranged in the data file.

b. FOR H := 1 TO M DO
FOR J := 1 TO P DO

BEGIN
Sura := D;
FOR K := 1 TO N DO

Sum := Sura + ACHrK] * B[K,J];
CCH/Jl := Sum

END;

Section 10.2

1. a. This prints an alphabetical c. This lists the first two letters
listing of the states whose first of each state,
letter is O. l-jjig counts all occurrences of

b. This prints every fifth state in the letter A in the names of the
reverse alphabetical order. states.

Answers to Selected Exercises AN.23

3. Assume the number of data lines

is in NumLines.

a. FOR J := 1 TO NumLines DO

BEGIN

read (NamefJ,!]);
K := 1;

WHILE Narae[J,K] <> DO

BEGIN

K := K + 1;

read (NamefJ^Kl)
END;

Length ;= K;
FOR K := Length TO 20 DO

NaraeCJ,K] ;

readln

END;

c. FOR J := 1 TO NumLines DO

BEGIN

FOR J := 1 TO 20 DO

read (Name[J,K]);
readln

END;

Section 10.3

1. a. These declarations are not

appropriate because Names
is an array of 10 ele
ments while Amounts is

an array of 15 elements.

b. These are appropriate be
cause both Table and

Names represent an array

of size 12 X 10.

3. Assume an array type is de
fined as

TYPE

GradeCount = ARRAY ['A'..'E'] OF integer;

If Count is a variable of type
GradeCount, the frequency of
each grade can be determined by

FOR Ch := 'A» TO >E' DO < Initialize >

CountfCh] := □;
FOR J := 1 TO ListLength DO

CASE GradefJ] OF
•A' : Countf 'A']
•B' : CountE 'B']
•C : Countf 'C']
•D" ; CountC'D']
•E' : CountC'E']

Countt • A'] -1- 1;
Countf'B'] + 1;
Countf 'C] -I- 1;
CountC'D'] + 1;
Countf'E'] + 1

END; < of CASE GradetJ] >

Section 10.4

1. a. 2 * 3 ID = to 3. TYPE

b. b * 3 » 4 = 72 Floor = l. .<;
Wing = 1. .5;

0. 3 * 2 * 11 = bb Room = 1..2G;
d. 4 * 10 * 15 = bOO FloorPlan = ARRAY [Floor, Wing, Room] OF char;

VAR

RoomType : FloorPlan;

AN.24 Answers to Selected Exercises

CHAPTER 11

Section 11.1

5. a. Employee

.... _ .

Name

NumOfDep

SSN

HourlyWage

b. House

1
- J

Location

■

. 1

NumRobms

!

Taxes

Age

NimiBaths BuildinglVpe

Price

c. FhoneLlsting

;
Name

iPhoneNum

Address

7. a. Info : RECORD

should be

Info = RECORD

and

Name = PACKED

should be

Name : PACKED

b. Member is used as both a vari

able and a data type.

c. IQ = 50. .20D

should be

IQ : 50..50Q

Section 11.2

1. a., c., and d. are valid.

b. is invalid; Cust2 and Cust3 are

not of identical type.

e. is valid but demonstrates a poor

practice. For better readability,
you should always determine
precisely which fields are being
used.

Answers to Selected Exercises AN.25

3. a. The three different methods

you could use are

(1) Employees := Eraployeel;

(2) WITfl Employees DO
BEGIN

Name := Employeel.Name;
SSN := Employeel.SSN;
Age := Employeel.Age;
HourlyWage := Eraployeel.HourlyWage;
Volunteer := Employeel.Volunteer

END; < of WITH...DO >

(3) WITH Employeel DO
BEGIN

Employees.Name := Name;
Employees.SSN := SSN;
Employees.Age := Age;
Employees.HourlyWage
Employees.Volunteer

END; f of WITH...DO

b. Did you consider

WITH Employees DO
BEGIN

Temp := HoursWorked;

Employees := Eraployeel;
HoursWorked := Temp

END;

:= HourlyWage;
= Volunteer

>

integer) : char;5. FUNCTION ComputeGrade (Pts
VAR

Percent : real;
BEGIN

Percent := Pts / 5; < Compute percent >
IF Percent < £>□ THEN

Grade := 'E'
ELSE

IF Percent < 70 THEN
Grade := 'D'

ELSE
IF Percent < fl O THEN

Grade := 'C
ELSE

IF Percent < RG THEN _
Grade := 'B'

ELSE

Grade := •A• ;

This can he called by

With Student DO
LetterGrade := ComputeGrade(TotalPts);

Section 11.3

1. a. See figure at right.

b. i, ill, iv, viii, ix and x
are valid references

F

N."'.;'.

ii, V, vi, and vii are in
valid references

: — ■ ■]

w
i Gi

1

AN.26 Answers to Selected Exercises

3. TYPE

StringaD = PftCKED ABRRY [l.-EQ] OF char;
Status =('SS 'M'/ 'W, 'D');
NumKlds = □..15;
FamilyRec = RECORD

MaritalStatus : Status;
Children : NumKlds

END; i of FamilyRec >
AddressRec = RECORD

Street : StringED;
City : StringED;
State : PACKED ARRAY [1. .E] OF char;
ZipCode : integer

END; { of AddressRec }
Customerlnfo = RECORD

Name : StringED;
Address : AddressRec;
SSN : PACKED ARRAY [1..11] OF char;
Annuallncome : real;
Familylnfo : FamilyRec

END; ■(of Customerlnfo >
VAR

Customer : Customerlnfo;

5. CONST
SguadSize = 15;

TYPE
StringED = PACKED ARRAYC1..ED] OF char;
AgeRange = 15..E5;
HeightRange = 7D..1DD;
WeightRange = 1DD..3DD;
Playerlnfo = RECORD

Name : StringED;
Age : AgeRange;
Height : HeightRange;
Weight : WeightRange;
ScoringAv : real;
ReboundAv : real

END; < of Playerlnfo }
PlayerList = ARRAY [1..SquadSizel OF Playerlnfo;

VAR

Player : PlayerList;

7. a. Student

Name Atten

!
Aver

Test

Name

r

Test

Atten

sa
Aver

Name Atten

Aver

Test

Student[l] Student[2] Student[ClassSize]

Answers to Selected Exercises AN.27

b. This function computes the
test average for one student. It
could be called by

WITH StudentCK] DO

Aver := GuessWhat(Test);

c. Format and headings will vary
according to personal prefer
ence. However, your proce

dure should include

WITH St DO

BEGIN

Printout for St

write ('Your attendance was ');
CASE Atten OF

Excellent : writeln ('excellent.');
Average : writeln ('average.');
Poor : writeln ('poor.')

END; < of CASE >

END; i of WITH...DO }

Section 11.4

3. a. The type TagType for the
tag field Tag has not been
defined.

b. There is no value listed

for the C of the tag field.

5. a. Figure

c. There is a syntax error. A
semicolon is needed be

tween boolean and CASE.

A type has not been
given for the tag field. It
should be

CASE Tag : TagType OF

d. Only one variant part can be
defined in a record

■

Radius

■ .

Area

b. Figure

Sidfe

.

,r ■

iitiisiiig

Area

AN.28 Answers to Selected Exercises

c. Figure

Object

Base

Area

7. PubType = (Book, Article);
DataRange = ljtOD..EDDQ;
Publicationlnfo = RECORD

Author StringBD;
Title : StringRD;
Date : DataRange;

CASE Pub : PubType OF
Book

Article

(Publisher : StringBD;
City : String3D);

(JournalName : String3D;
VolumeNuraber : integer)

END;

CHAPTER 12

Section 12.1

3. a. is valid; the component type is
an integer in the subrange 0 ..
120

b. is invalid; no file type has been
defined.

c. is invalid; component type for
a file cannot be another file.

d. is invalid; the expression
FILE[1 .. 100] has no meaning.

e. is valid; the component type is
integer.

5. TYPE

StringSD = PACKED ARRAY [1..5Q] OF char;
AddressType = ARRAY [1..3] OF StringED;
SexType = (M, F);

Patientlnfo = RECORD

Natne : StringED;

Address : AddressType;
Height : □..EGG;
Weight : G..3GG;
Age : G..lEG;
Sex : SexType;
InsuranceCo : StringED

END; < of Patientlnfo >
PatientFile = FILE OF Patientlnfo;

VAR
Patient : PatientFile;

Section 12.2

3. TYPE
FileType = FILE OF G..1GG;

VAR

SevenMult : FileType;

A fragment of code for this prob
lem is

rewrite (SevenMult); < Open the file >
Num := 1;
Sevens := 7;
WHILE Sevens < IGG DO

BEGIN
SevenMultt := Sevens;
put (SevenMult);
Num := Num + 1;
Sevens := 7 * Num

END; i of WHILE...DO >

Answers to Selected Exercises AN.29

5. reset (FivesFile);
A := FivesFilet

get (FivesFile)
B := FivesFilet

get (FivesFile)
C := FivesFilet

get (FivesFile)
D := FivesFilet

7. The reset procedure opens a file
so that values may be read from
the file. Contents of the file are

not altered by this command.
When reset(file name) is exe
cuted, the value of the first com

ponent is copied into the buffer
variable.

The rewrite procedure opens
a file so that values may be writ
ten to the file. When rewrite(file
name] is executed, any previous

contents are lost.

9. a. The reset procedure opens
the file for reading from the file,
and put is used to write to the
file. It appears that

reset(Filel);

should have been

rewrite(Filel);

b. No errors.

c. The buffer variable is not

properly written.

Filel := ID * J;

should be

Filelt := ID * J;

d. This loop will execute, but
nothing happens. In order to
put the values into Filel, the
loop should be

FOR J := 1 TO 5 DO

BEGIN

Filelt := J * ID;

put (Filel)
END;

e. The files are mixed up. It ap
pears that the intent is to copy
the contents of Filel into

File2.

f. No errors. This is a correct

version of a problem similar
to that posed in e.

11. The output is

-17

The files contain the following
values.

8 -17 0 -4 21 21

OldFile NewFile

Section 12.3

1. a. TYPE

StringSD = PACKED ARRAY [1..SD] OF char;
Patientlnfo = RECORD

Name : StringSD;
Age : D..lED;

Height : D..1DD;
Weight : D..35D;
InsCompany : StringSD;
AmtDue : real

END; { of RECORD Patientlnfo

PatientFile = FILE OF Patientlnfo;
VAR

Patient : PatientFile;

c. TYPE

StringSD = PACKED ARRAY 11..2D] OF char;
Booklnfo = RECORD

Author : String2D;
Title : String2D;
StockNumber : integer;
Price : real;

Quantity : D..5DD
END; { of RECORD Booklnfo >

BookFile = FILE OF Booklnfo;
VAR

Book : BookFile;

AN.30 Answers to Selected Exercises

3. a. TYPE

StringED = PACKED ARRAY [1..ED] OF char;
QuizList = ARRAY [1..1D1 OF

TestList = ARRAY [1..<1 OF □..100;
StudentRec = RECORD

Name : StringED;
Number : integer;
Quiz : QuizList;
Test : TestList

END; i of RECORD StudentREC >
StudentFile = FILE OF StudentRec;

VAR

Student : StudentFile;

b. PROCEDURE GetData (VAR St : StudentFile);
VAR

J : integer;
BEGIN

rewrite (St); •{ Open St for writing }
WHILE NOT eof(input) DO

BEGIN

WITH Stt DO < Get data for one student
BEGIN

FOR J := 1 TO ED DO
read (NametJl); < Get a name >

read (Number); i Get student ID >
FOR J := 1 TO ID DO

read (QuizCJl); <. Get quiz scores
FOR J := 1 TO 4 DO

read (TesttJl) <. Get test scores >
END; < of WITH..-DO >

readln;
put (St) ■{ Move data to file }

END { of WHILE NOT eof >
END; i of PROCEDURE GetData >

c. The basic design for this task
is to

(1) Transfer records to an ar
ray

(2) Sort the array
(3) Transfer records from the

array back to the file

Assuming suitable definitions
and declarations have been
made, a procedure for this is

PROCEDURE SortFile (VAR St : StudentFile);
VAR

Temp : StudentRec;
J/ K, Length/ Index : integer;
TempList : ARRAY [l..MaxSizel OF StudentRec;

BEGIN

reset (St);
J := D;
WHILE NOT eof(St) DO < Copy to array >

BEGIN

J := J + 1;
TempListfJ] := Stt;
get (St)

END;
Length := J;

i Now sort the array >

Answers to Selected Exercises AN.31

FOR J := 1 TO Length-1 DO
BEGIN

Index := J;

FOR K := J + 1 TO Length DO
IF TempListCK].Name < TempListtlndex].Name THEN
Index := K;

Temp := TempLlstCIndex];
TempListtlndex] := TerapListtJ];
TempListtJ] := Temp

END; < of one pass >

•(Now copy back to the file }

rewrite (St);

FOR J := 1 TO Length DO
BEGIN

StT := TempListtJ];
put (St)

END

END; -t of PROCEDURE SortFile >

CHAPTER 13

Section 13.1

1. There is no stopping state.

3. a. i. Y = R.D

ii. Y = fl.D

iii. Y = 55b. □
iv. Y = l.D

5. FUNCTION IterFactorial (N : integer) : integer;
VAR

PartialProduct/
NextFactor : integer;

BEGIN
PartialProduct := 1;
FOR NextFactor := 5 TO N DO

PartialProduct := PartialProduct * NextFactor;
IterFactorial := PartialProduct

END; < of FUNCTION IterFactorial }
Section 13.2

1. PROCEDURE InsertSort (VAR B : List);
VAR

Nura/ Index, N : integer;
Found : boolean;

BEGIN
NewLength := □;
WHILE NOT eof DO

BEGIN
Index := 1;
Found := false;
readln (Num);
WHILE NOT Found AND (Index <= NewLength) DO

IF Num < BCIndex] THEN
Found := true

ELSE .
Index := Index + 1;

FOR N := NewLength DOWNTO Index DO
BCN+1] := BCN];

Btlndex] := Num;
NewLength := NewLength + 1

END { of WHILE NOT eof }
END; •(of PROCEDURE InsertSort >

AN.32 Answers to Selected Exercises

3. Change

FOR N := NewLength DOWNTO Index DO
BlN+1] := BIN];

BCIndexl := ACJ];

to

FOR N := NewLength DOWNTO Index DO
BEGIN

B[N+1] := BIN];

Count := Count + 1

END;

BCIndex] := ACJ];
Count := Count + 1;

5. The bubble sort modification is

BEGIN { Exchange values >
Temp := ACJ];
ACJ] := ACJ+1];

ACJ+1] := Temp;
ExchangeHade := true;
Count := Count +3 < Counter here >

END;

9. Assume the arrays are A and B.

The bubble sort change is then

BEGIN < Exchange values >
TerapA := ACJ];
TerapB := BCJ];
ACJ] := ACJ+1];

BCJ] := BCJ+1];
ACJ+1] := TempA;
BCJ+1] ;= TempB;
ExchangeMade := true

END; < of exchanging values >

Section 13.3

1. Modify the code for a bub
ble sort by

FOR J := 1 TO Length DO
BEGIN

Count := Count +1; < Counter here
IF ACJ] > ACJ+1] THEN

BEGIN

END;

CHAPTER 14

Section 14.1

1. a. real is not an ordinal data type.

b. integer will exceed maximum
size for a set.

c. : should be =.

d. Brackets should not be used.

e. No errors.

Answers to Selected Exercises AN.33

3. a. ft := [• J« , 'I' , 'M«];

b. ft := I 'P' / 'ft' , 'S' , 'C , 'L'];

c. The elements are 'T', *0', and

'Y'. The eight subsets are (],
m,['0'].m.['r.'0'].[T',

*Y']. ['O'.'Y']. ['T', 'O', 'Y'l

5. a. Brackets are needed, as

ft := ['J'..]

b. No errors.

c. Single quotation marks are
needed, as

B := ['ft'..'Z'];

d. 'E' and '1' are listed more than

once.

e. [] is not a set variable.

f. Since 'S' is in the subrange 'A'
.. 'T', it is listed more than

once.

7. a. TYPE

Hues = (Red/ Orange/ Yellow/ Green/ Blue/ Indlgo/ Violet);
RalnbowSet = SET OF Hues;

VftR

Rainbow : RainbowSet;

c. TYPE

SomeFruits = (ftpple/ Orange/ Banana/ Grape/ Pear/ Peach/
Strawberry);

FruitSet = SET OF SomeFruits;

VftR

Fruit : FruitSet;

Section 14.2

1. No. When A = B, both A

> = B and A < = B are

true.

3. a. A + B = [-3..4, 7..10]

A * B = [0,1,2,8,101

A - B = [-3,-2,-1]

B - A = [3,4,7,9]

c. A B = B

A * B = A

A - B = A

B - A = B

5. All of these are true.

7. Code for this is

VowelsOpperCase := ['ft'/ 'E'/ 'I'/ '0'/ 'U'l;
VowelCount := □;
WHILE NOT eof DO

BEGIN

read(Ch);
IF Ch IN VowelsUpperCase THEN

VowelCount := VowelCount + 1
END;

AN.34 Answers to Selected Exercises

Section 14.3

3. Modify PROGRAM Delete-
Blanks presented in Section
8.1, Example 8.4, by chang
ing

IF Ch = • • THEN

Ch :=

to

IF Ch IN Vowels THEN

write •*•

ELSE

write (Ch);

7. FUNCTION AllOddDigits (Nura : integer) : boolean;

TYPE

Digits = SET of □..S;
VAR

EvenDigits : Digits;
NumDigitSf J, Digit : integer;

BEGIN

EvenDigits := CO/S/^/LrfirlO];
IF Nura DIV lODO = D THEN

IF Nura DIV IDD = □ THEN

IF Nura DIV 10 = □ THEN

NuraDigits := 1
ELSE NuraDigits := a

ELSE NuraDigits := 3
ELSE NuraDigits := A;
AllOddDigits := true;
FOR J := 1 TO NuraDigits DO

BEGIN

Digit := abs(Num MOD ID);
IF Digit IN EvenDigits THEN

AllOddDigits := false;
Nura := Nura DIV ID

END i Of FOR loop >
END; < of FUNCTION AllOddDigits >

CHAPTER 15

Section 15.1

3. Red

Ptrl Ptrl t Ptr2 Ptr2 T

5. c., f., and h. are valid.

a. is invalid; IntPtrl + 1 is not
allowed.

b. is invalid; pointers cannot be
used with writeln.

d. is invalid; < is not a valid com
parison for pointers.

e. is invalid;

BoolPtr NOT NIL

should be

BoolPtra <> NIL

g. is invalid; BoolPtr2 is not a Bool
ean expression.

Answers to Selected Exercises AN.35

DataPtr);

Section 15.2

3. Assume the file name is Num. A

procedure is then

PROCEDURE PrintNumbers (First
VAR

P : DataPtr;

BEGIN

P := First;

WHILE P <> NIL DO

BEGIN

writeln (Pt.Num);

P := PT.Next

END

END; { of PROCEDURE PrintNumbers }

and is called by

PrintNumbers (Start);

5. a. TYPE

StringEO = PACKED ARRAY [l..aD] OF char;
TestList = ARRAY [1..4] OF

QuizList = ARRAY [1..1D] OF □..10;
DataPtr = TStudentlnfo;
Studentlnfo = RECORD

Name : StringSG;
Test : TestList;
Quiz : QuizList;
Average : real;
Grade : char;
Next : DataPtr

END; < of RECORD Studentlnfo >
VAR

Student : DataPtr;

b. The pointer variable is Stu
dent. The pointer type is
DataPtr.

c. Assume Start, Ptr, and Last
have been declared to be of
type DataPtr. Data for the first
student can then be obtained
by

new (Last

new (Start);
Ptr := Start;
Last := Start;
WITH Startt DO

BEGIN
FOR J := 1 TO 20 DO

read (NaraefJl);
FOR J ;= 1 TO < DO

read (TestCJl);
FOR J := 1 TO 10 DO

read (QuizfJl);
Next := NIL

END;
readln;

Data for the second student can
be obtained by

);
PtrT.Next := Last;
Ptr := Last;
WITH Lastt DO

BEGIN
FOR J := 1 TO 20 DO

read (NameCJ1);
FOR J := 1 TO ^ DO

read (TestfJl);
FOR J := 1 TO 10 DO

read (QuiztJl)
END;

readln;
Ptrt.Next := NIL;

7. a. Working from the original
A B C

NIL

each time, we get

AN.36 Answers to Selected Exercises

Code Result

B

1 1 1 1

1 2 3 NIL

■ 1 1

1 2 3 NIL

NIL

T 1 1 1 1

1
1 3 3 NIL

NIL

NIL

b. AT.NextT.Next := B;

DataPtr) : integer;

9. Assume the linked list has been

declared and values read into the

held Num for each component of
the list. Furthermore, assume Start

is the pointer to the first node. A
function for summing is then

FUNCTION Sura (First :

VAR

Total : integer;

P : DataPtr;
BEGIN

Total := □;
P := First;
WHILE P <> NIL DO

BEGIN

Total := Total + Pt.Nura;
P := PT.Next

END;
Sura := Total

END; < of FUNCTION Sura >

Answers to Selected Exercises AN.37

Section 15.3

!• Assume the original list can
be envisioned as

Start

and you wish to insert 25 into the
list. The initialization produces

Start

10

1 1

20 30

Ptr

25 ■

1 1

Last

10 20 30 40 NIL

Last

1 1

40 1 NIL

I NIL I

Before

Since the loop is not empty, the
WHILE ... DO loop will be ex
ecuted until we have

Start

10

25 ■

1 1

20

1 1

30

Before Ptr

The pointers are then moved to
obtain

Start

10

Before P

3. The new code is

IF Before = NIL THEN

Push (Start/ NewNum)
ELSE

Beforet.Next := P;

5. The heading becomes

PROCEDURE Pop (VRR Start

and the line

NewNura := Pt.Num

should be deleted.

20 25

Last

40 NIL

false

Looking

Last

30 40 NIL

In A
Ptr

Call to Push

DataPtr);

AN.38 Answers to Selected Exercises

7. PROCEDURE Delete (VAR Start : DataPtr;
Position : integer);

VAR

Before, P : DataPtr;

BEGIN

IF Position = 1 THEN

Pop (Start, Startt.Num)
ELSE

BEGIN

Before := Start;
FOR J := 1 TO (Position - S) DO

Before ;= Beforet.Next;
P := Before!.Next;
Beforet.Next := Pt.Next;
dispose (P)

END < of ELSE option }
END; { of modified PROCEDURE Delete }

Section 15.4

1. Illustrating only the parenthe
ses, you get

'Stack top

Character Read New Stack

Answers to Selected Exercises AN.39

5. a. CONST

MaxStack = value;

TYPE

Stack = RECORD

Item : RRRRY [1..MaxStack] OF datatype;
Top : MaxStack

END;

VAR

S : Stack;

b. Push becomes

PROCEDURE Push (VAR S : Stack;
X : integer);

BEGIN

IF S.Top = MaxStack THEN
writeln ('Stack overflow')

ELSE

BEGIN

S.Top := S.Top + 1;
S.ItemCS.Top] := X

END

END; < of PROCEDURE Push >

FopAndCheck becomes

PROCEDURE PopAndCheck (VAR S : Stack;
VAR X : integer;
VAR Underflow : boolean);

BEGIN

IF Empty(S) THEN i Check for empty stack >
Underflow := true

ELSE

BEGIN

Underflow := false;

X := S.ItemCS.Top];
S.Top := S.Top - 1

END < of ELSE option >
END; { of PROCEDURE PopAndCheck >

9. Change the ELSE option to ,

ELSE

IF Num = Nodet.Info THEN

writeln (Num, ' is a duplicate value.')
ELSE

IF Num < Nodet.Info THEN

AddNode (Nodet.LeftChild, Num)
ELSE

AddNode (Nodet.RightChild, Num)

AN.40 Answers to Selected Exercises

FUNCTION Search (Node : Pointer;

NewNum : integer) : boolean;
VRR

Found : boolean;
Current : Pointer;

BEGIN

Current := Node;
Found := false;
WHILE (Current <> NIL) AND NOT Found DO
IF Currentt.Nura = NewNura THEN

Found := true

ELSE

IF Currentt.Num < NewNum THEN

Current := Currentt.RightChild
ELSE

Current := Currentt.LeftChild;
Search := Found

END; < of FUNCTION Search >

13.

[85

145

Index

abs function, 72, 265, A.3

Actual parameter. See parameter
Ada, 10-11, 212, 283, 300, 398

Address, 7, 604. See also Memory
ALGOL, 300

Algorithm, 2, 6,15, 82
developing, 16, 90-95,129—130,

298, 398

merging, 536

recursive, 561. See aba

'Recursion

searching, 403-407

sorting, 365, 379, 561. See aba
Sort

ALU. See Arithmetic/logic unit
American Standard Code for Infor

mation Interchange. See ASCII
AND operator. See Logical operator
Argument, 71-76, 265, 293, 347

Boolean variable for write and

writeln, 146

file as, 219, 522, 525

Arithmetic

expression, 73, 151,153, 214,

270

logic unit (ALU), 6, 7, 10
operation, 47—49, 55, 366-367

Array

ARRAY form, 361-362

component, 361, 362, 364, 367,

370-372,374,394, 469

declaration, 361-364, 391

disadvantage of, 393
element, 564. See aba Array,

component

versus file, 519—520, 581

length, 397, 538
multidimensional, 422-433, 440,

447-450

one-dimensional, 360-414

packed, 393-401, 436, 440
parallel, 440—445, 495
passing, 385, 388

record. See Record, array of
search, 403—407. See aba Search

sorted, 379, 382, 390-391, 408.

See aba Sort

string, 436—439

subprogram and, 385—392
uses for, 360-361, 422, 537

ASCII (American Standard Code for
Information Interchange), 73-

76, 396, A.16

Assembly language, 10
Assertion, 188-189, 232

Assignment statement, 53-55,

365-366, 394, 395, 425, 481,

A.11

eof and eoln in, 147

error in, 54,112, 114-115, 367

and functions, 73, 265, 267, 269

Babbage, Charles, 212, 231
Back-up system, 380, 537
BASIC, 10, 11, 12, 35, 115, A.27

Batch

processing, 63. See aba Input
program, 344

stream input, 63. See aba Input
BEG1N...END block, 158,182,184

Binary

digit, 7, 9
search, 404—406

search tree, 635-639

tree, 604, 635-639

Bit. See Binary digit
Blank

in data line, 66

line, 37, 79, 86, 210, 244, 272,

282

space, 31, 221

Block, 287-289, 292

Body of the loop, 204, 216, 247
Boole, George, 153
Boolean, 147, 327

data type, 145-146, 335, A.3
expression, 150-155, 216, 270,

A.14

flag, 214
value, generating, 150—152, 395
variable, 147, 591

and WHILE...DO, 203, 225. See

aba WHILE...DO

Bottom-up testing, 264

Brackets, 361, 582, 597

Bubble sort. 565-568, 576

Buffer, 36, 428, 548

variable, 520, 521

Built-in function. See standard

function

By reference, 278
Byron, Ada Augusta, 212, 231, 283

Byte, 394

Call, 71, 100-103, 272, 274

Caret. 520, 606

CASE statement, 180-186, A.12

invalid, 590, 591

OTHERWISE option and, 183-
184, 590

uses of, 182, 340, 347, 501

Central processing unit (CPU), 6,10
Central unit, 6, 7

Character

reading, 64
set, 73-74. See aba ASCII and

EBCDIC

I.l

I«2 Index

storage of, 73
string, 69-70, 365, 395-400. See

also Packed array and String
char data type, 35, 335, A.3. See

also Data type
Children, 634-636. See also Node

and Tree

chr function, 75, 76, A.3

Code

writing, 30-32, 82-95, 298. See

also Program, writing and
Punctuation

Collating sequence, 73, 396. See
also ASCII and EBCDIC

Colon, 29, 38, 51, 182

Comma

and CASE statement, 181—182

and integer type, 33

Comment, 85-86, 211, 218, 241,

243, 282, 308. See also

Assertion

form, 112-113

readability of, 272, 617. See also
Readability

Compatibilite type, 342-343
Compilation error. See Error,

compilation
Compile. See Program, compiling
Compiler. 11
Component of a hie, 519
Component of a linked list, 610.

See also Array, component and
Node

Compound
Boolean expression, 152-155
condition, 231

statement, 158-161, 166-167,

174, 183, A.8

Computer, 4-9

back-up system, 380
component, 6. See also Central

unit; Input device; and Out
put device

language. See Language
literacy, 2, 339, 592
security, 450. See also Program

protection
use of, 249, 283, 433, 473, 493,

537, 566-567, 634

virus, 348-349

Conditional statement, 145,170,

247-251, 344

CONST, 28, 344. See also Constant

definition section

Constant, 28-29, 53, 68. 113-114

definition section, 28, 35, 79,

103, 174, 337, 441, A.6

global, 291
set, 582, 583. See also Set

standard identifier, 146, A.3

use of, 68-69, 103, 205, 279, 336

Control

flow of, 164, 242

statement. See IF...THEN...ELSE

statement

structure, 145

system, 283

unit, 6, 7, 10

Counter, 218, 222, 236, 414, 438,

507

CPU (Central processing unit), 6,
10

Crash, 172, 344

Data, 5, 15

abstraction, 398

bad, 231, 590. See also Program
protection

line, 66

management, 528

pointer, 149, 222, 326, 610

storage, 7, 324

structure, 398, 437, 490-491,

561, 604, 610, 630-639. See

also Queue; Stack; and Tree
type, 12, 29, 33, 35, 145, 151,

324, 469. See also Ordinal

data type; Tjrpe; and User-
defined data type

Debugging, 122-123, 222, 270, 291,
299

Decimal, 34, 79

Declaration section, 26—29, 35, 68,

99, 267, 335, A.6

error in, 114

Default, 36

Design error. See Error, design
Dijkstra, Edger, 265
Disk, 6, 10. 59, 324, 518. See also

Input device; Output device;
and Storage

dispose procedure, 606, 607, 626,
627, 641, A.4

DIV operator, 47. See also Arithme
tic operation

Documentation, 85, 91. See also

Program documentation
Dynamic

data structure, 561, 604, 610

variable. See Variable, dynamic
Driver. See Main driver

EBCDIC (Extended Binary Coded
Decimal Interchange Code), 73,
76. A.17

Echo

checking, 122, 124—125

print, 593

Effectivp statement, 15
ELSE, 166. See also

IF...THEN...ELSE statement

Empty

hie, 229

set, 583, 589

stack, 631. See also Stack

statement, 173, 182

END. 86, 158, 502

semicolon and, 112, 158

without BEGIN, 182, 471, 512
End-of-hle marker (eof), 63, 66,

221-224, 325, 327, 438, 522,

A.3

in assignment statement, 147

in output statement, 149

End-of-line marker (eoln), 60, 66,
219-221, 325, 327, A.3

in assignment statement, 147

in output statement, 149

Entrance controlled loop. See Pre

test loop
Enumerated type. See User-dehned

data type
eof. See End-of-hle marker

eoln. See End-of-line marker

Equal sign, 29, 54, 112, 114
Error

in assignment statement, 114-

115, 582-583

compilation, 35, 111, 120, 122,

343, 481, A.18-A.20

in compound statement, 159
in dehning constants, 113-114

design. 111, 120, 298
detecting, 112-126
formatting, 51
and IF...THEN...ELSE, 172

logic. 111, 120, 480. See also Er
ror, design

message, 11, 66, 116,166, 631,

A.18-A.20

with read, 328-329

run-time, 111, 120, 229, 343, 481

syntax, 29, 111-113, 258

with writeln, 116-117

Executable

section, 26, 27, 28, 29—31, 79,

267

statement, 30, 204

Executing a program. See Program,
executing

Exit controlled loop, 203, 228-233.
See also REPEAT...UNTIL

exp, 271, A.3

Exponential form, 34, 266, 601
Extended Binary Coded Decimal

Interchange Code. See EBCDIC

External hie. See File, external

Factorial, 266, 273, 554, 560, 563

Fibonacci's sequence, 262, 555, 563
Field

Boolean output, 146

Index 1*3

identifier, 471, 481

key, 578, 635
list, syntax diagram, A.IQ
name, 473

in a record. See Record, field

tag, 501, 502

width. 36, 38, 40, 371, 437

FIFO (First-in, first-out), 632. See
also Queue

File, 219, 518-520, A.3, A.5, A.9

versus array, 519—520, 581

empty, 229

external, 331—333, 526, 532, 533,

535

internal, 331-333

master, 535, 574

opening, 522, 523, 525, 533

processing, 521—529, 533—538

temporary, 331

text, 325-330, 518

transaction, 535, 539

variable. See Variable, file

window, 520, 521, 522—524

writing to, 521, 533

First-in, first-out (FIFO), 632. See
also Queue

Fixed

part, 502

point, 34

repetition loop, 203, 204. See
also FOR loop

Flag, 214, 566
Floating point, 34, 40
FOR...DOWNTO...DO loop, 208-

212. See also FOR loop

FOR loop, 210, 217, 236, 350, 370,
401, 428, 438, A.12. See also
FOR...DOWNTO...DO and

FOR...TO...DO

Formal parameter. See parameter
Formatting, 38-39, 79. 222, 302,

329, 370, 399, 428, 450. See

also Blank; Comment; and

Right-justify
design, 207
errors in, 51

field width, 146, 371

numerical constant, 69

string, 41

variable, 56

FOR...TO...DO loop, 203, 204, 205,

208. See also FOR loop

FORTRAN, 10-11, 555, A.27

Forward reference, 272, 307—308

FORWARD statement, 307, 308

Function, 76. 267, 272, 307

built-in. See Function, standard

call, 72, 75

calling a, 71, 560
declaration, syntax diagram, A.7

FUNCTION form, 71, 266

recursive, 555, 560. See also

Recursion

set with, 591-592

standard. 71, 74, 76, 265, 271,

A.3-A.4

user-defined, 265—272

writing style and, 270

get procedure, 523—525, A.4
Global

constant, 291

variable, 287-292

GOTO statement, 222, 265, A.13,

A.27-A.28

Hardware, 5. See also Input device

and Output device
Heading, 97, 287, 299, 428. See also

Program heading
High-level language, 10-11
Hollerith, Herman, 74

Identical type. See type
Identifier, 23, 25-26, 29-30, 115,

267, 471, A.5. See also Re

served words and Standard

identifiers

descriptive, 79, 291—292, 299,
336

field and, 471, 501

local, 292

operand as, 336
scope of, 287-293

IF...THEN statement, 156-161, 183,

250

IF,..THEN...ELSE statement, 164-

168, 172, 344, A.12

Implementation dependent, 122,

518

Incrementing, 218, 350

Indenting in Pascal, 42, 86, 158,
166, 173, 210, 218, 243, 282.

See also Readability

Index, 204, 361, 450, 496, 570

for formatting, 207
as loop control, 240

type, 361, 440

value, 204, 577

as variable, 205

Infinite loop. See Loop, infinite
Initialize, 115, 218, 222, 236, 415,

622,641

a set, 589, 597

a variable, 298—299

IN operator, 586—587

Input, 59-66

batch. See Batch input

device, 6, 7,10, 59

interactive, 61, 325

statement, 59,147

stream. See Stream input

input, 28, 59, 325, 326, 533, A.3

Insertion sort, 564-565

Integer

arithmetic operation, 47-48
overflow, 50

integer data type, 33, 335, 363, 442,
582, A.3. See also Data type

Interactive input. See Input

Interactive program. See Program,
interactive

Internal file, 331-333

Invariant expression, 232

Invoke. See Call

I/O device, 8. See also Input device
and Output device

Iterated loop, 203, 204. See also
FOR loop

Iteration, 560—561. See also

Recursion

Keyboard, 59. See also Input device
Keyword, 23-24

LABEL declaration, A.28

Language, 2, 6, 9, 300, 398. See also
Ada; ALGOL; BASIC; FOR

TRAN; Modula-2; and Pascal

assembly, 10

compiled, 12
high-level, 10-11

interpreted, 12
low-level, 10

machine, 9, 11

Last-in, first-out (LIFO), 630. See

also Stack

Leaf, 634. See also Tree

LIFO (Last-in, first-out), 630. See

also Stack

Line feed, 61

Linked list, 604, 610-615, 617-629,

630, 631

List

end, 608, 621

search, 627

In, 271, A.3

Local, 98

identifier, 292

variable, 287—290

Logical
construct, 145

operator, 152-155

Logic error. See Error, logic

Loop. See also Fixed repetition
loop; Posttest loop; and Pretest

loop
body. See Body of the loop
compared, 235-238
conditional and, 250-251

construct, 203, A.27

control condition, 216, 225, 240,

350, 615

I»4 Index

control variable, 211, 241, 438,
589,615

entry condition, 258. See also

Pretest loop
exit condition, 258. See also Post-

test loop
goal expression, 232-233
inHnite, 217, 229, 258

for input, 370-371
invariant, 232

limit, 211

for output, 370-371
using, 253-257, 372-376, 400,

430, 589

variable, 203

writing style and, 210, 235-238,
243-244

Low-level language. See language,
low-level

Machine language, 9,11
Main

block, 28

driver, 265, 302-303

(primary) memory, 6, 7,10. See

also Memory
Mainframe, 5

maxint, 33, 42, 50, 335, A.3

Memory, 6, 7,10, 604-605

address, 604, 606

data storage, 7, 394, 503, 626
location, 7, 52-53, 60, 279, 447,

503, 556, 603, 604

with recursive subprogram, 556,
560

requirement, 391, 393, 400
Merge. 536, 554, 574-575

Microcomputer, 5

Minicomputer, 5

Mixed-mode expression, 50-51
MOD operation, 47. See also Arith

metic operation and Operation
Modular development, 21, 388
Modularity, 264-265
Modula-2,10-11, 300, 398

Module, 16,19, 264

specifications, 16-17, 90, 398

Negation, 152

Nested IF statement, 169-174,184,
185

Nested loops, 239-245
Nesting, 48, 185, 307, 309-310. See

also Nested IF statement; and

Record, nested

new procedure, 606-608, A.4

NIL, 610, 613

Node, 610, 617, 619, 621, 633-634,
635

adding, 617-626, 638
deleting, 626-629

Nonrecursive procedure, 578. See
also Recursion

NOT operator. See Logical operator
Null

set, 583

statement, 173,182

Object
code, 11

program, 11

One-way selection. See IF...THEN

statement

Opened for reading, 326
Opened for writing, 329
Operation

integer arithmetic, 47-48
linked list and, 617-629. See also

List, linked

order of, 48-49, 151

ordinal, 346-350

priority, 585, 587
real, 49

set, 585-586. See also Set

Operator

logical, 152-155
set, 586

relational. See Relational

operator

OR operator. See Logical operator
ord function, 75, 76, 336, 346, 347,

A.3

Ordinal data type, 74, 184, 335—
337, 342, 346-350, 363

and tag held, 502
OTHERWISE option, 183-185, 590
Output, 15, 35, 40, 56, 84. See also

Formatting

Boolean, 146

constant and, 69

device, 6, 7-10, 59

procedure for, 96-111, 302
statement, 73,149, 270

output, 28, 325, A.3

Overflow, 50

Packed array, 393-401, 436. See
also Array and String variable

pack procedure, 401, A.4

Parameter, 97, 274, 308, 338, 385,

615

actual, 267, 274-275, 301, 391

formal, 267, 274-275, 278, 301,

A.7

list, 265, 267, 274-275, 298, 307

set type as, 591, 593

value, 274, 275-278, 279, 282,

385, 391

variable, 274, 278-282, 300-301,

385, 391-392, 483, 525, 570

Parent, 634. See also Tree

Parentheses, 35, 48, 117, 152, 155

Parkside's Other Triangle, 261-262,
322

Pascal

advantages of, 115
Apple, 28
Blaise, 32

development of, 300
standard, versus "Rirbo, A.21-

A.26

syntax, 398

Triangle, 466
Thrbo. See Thrbo Pascal

UCSD, 28

Passed by reference. See by
reference

Period, 267

Peripheral memory, 6,10
Personal computer. See Computer
Pivot, 568-570

Plotter, 6. See also Output device
Pointer, 619, 627, 634. See also

Data pointer

external, 615

temporary, 627

type, 607-608

variable, 604-608, 620

pop procedure, 626, 630, 631
Portability, 291, 292
Postcondition, 188-189

Posttest loop, 203, 228-233. See
also REFEAT...UNTIL

Precondition, 188-189

Predehned identiher. See Standard

identiher

pred function, 75, 76, 336, 346,

347, A.3

Pretest

condition, 214

loop, 203, 214-225, 235. See also

WHILE...DO

Primary memory. See Main memory
Prime number, 253, 314, 322

Printer, 6, 8, 9,10. See also Output
device

Problem

solving, 14, 128-129
statement, 339

Procedural abstraction, 298

Procedure

calling a, 100-103, 274, 279
declaration, syntax diagram, A.7,

A.ll

and hie, 525-526

form for, 97-100, 274, 299-300,

564

and linked list, 615

multiple, 103, 292-293
output, 104-108, 302

parameter and, 97. See also

Parameter

PROCEDURE form. 97, 273

Index 1.5

recovery, 537

recursive, 637

set with, 593

standard, A.3-A.4

subprogram, 97, 265, 273-285
use for, 97, 431, 483

writing style and, 282-285, 298
Program, 5

batch, 344

block, 287-288

calling a, 267, 270
compiling, 15, 29,115, 634
component, 26-27. See also Dec

laration section; Executable

section; and Program
beading

crash, 172, 344

description, 87
design, 264-272, 297-298, 299,

333,344

development, 10,15
documentation, 85, 244, 270, 339

executing a, 6,15, 59, 63,120-

126,145, 270

execution time, 170, 391, 394, 400

beading, 26, 27, 287, 325, 526
interactive, 62, 217, 230, 333,

344,590,591

logic, 265
one-dimensional array and. See

Array, one-dimensional
PROGRAM statement, 26

protection, 338, 344, 442, 590

readability. See Readability
source, 11

style, 86-90, 100
syntax diagram, A.5
text file and, 325

two-dimensional array and, 422-
433, 440

walk-through, 122,123-124
writing, 6, 82, 128-136, 158, 431.

See also Code, writing; Mod
ular development; and
Readability

Programming language, 2. See Lan
guage

Prompt, 62

Pseudocode, 19

translating, 84,131

and writing code, 82-83, 90, 129,
398

Ptr, 604-608, 620

Punctuation, 30. See also Colon;

Comma; Period; Quotation
mark, single; and Semicolon

push procedure, 618, 630

put procedure, 522, 533, A.4

Queue, 604, 632-633

Quick sort. See Sort, quick

Quotation mark, single
for Boolean constants, 146

and char, 183

for character constants, 35

for string of characters, 28, 116
for string constants, 114

Readability, 31, 85-87,152, 184,
210, 231, 272, 344-345, 512.

See also Writing style
of comments, 617. See also

Comment

descriptive names for, 338, 340,
361

readln procedure, 59-60, 222, 325,
326, 367, A.4, A.ll

versus read, 61

statement, 61

read procedure, 59-60, 325, 328,
367, 395, 525, A.4, A.ll

versus readln, 61

with set, 599

Real

and decimal, 79

arithmetic operations, 49
formatting, 39-40, 51
operations on, 49

overflow, 50

real data type, 34, 39, 335, A.3. See
also Data type

Record, 338, 469, 473. See also

WITH...DO

array of, 481, 495-499, 506
copying, 481-482

data structure with. See Data

structure

declaration, 469, 608

field, 469-473, 479, 486, 490-

491, 493, 496, 499, 501, 506,

537, 581

file of, 519, 532, 533-534

fixed part, 501-502
identifier, 617

nested, 490-491, 493

versus parallel array, 495
printing data from, 484-488
reading data into, 482-484
searching, 486
updating, 539-547
using, 478—488

variant, 501-504

RECORD, 471, 502, A.9

Recursion, 267, 554—563. See also

Subprogram, recursive

versus iteration, 560-561

Recursive

call, 570

step, 556

subprogram. See Subprogram,
recursive

tree, 636-637. See also Tree

Relational operator, 150-152, 396,
586

REPEAT...UNTIL, 203, 228-230,

232, 236-237, 344, 350, 591,

A.13. See also Posttest loop
Repetition, 203, 253. See also Fixed

repetition loop and Pretest
loop

Reserved word, 23, 30, A.2

and compound statement, 158
and program style, 86

reset procedure, 325, 326, 532, 539,
A.4

Return type, 267

rewrite procedure, 329, 522, 525,
A.4

Right-justify, 38, 41, 70,121, 146
Robust, 167-168, 231

Root, 266, 633

round function, 72, 77, 265, A.3

Run-time error. See Error, run-time

Scientific notation, 34

Scope of an identifier, 287-293
Search, 404-407, 620

binary, 404—406, 636
sequential, 403-404, 541, 619

Secondary (peripheral] memory, 6,
10

Selection

assertion and, 188

multiple, 169-178, 184
nested, 185. See also Nested IF

statement

one-way. See IF...THEN statement

sort, 379-384, 391, 497, 507

statement, 172, 253

two-way. See IF...THEN...ELSE

statement

Semicolon, 30,112, 158,166,174,

182, 228, 258, 267

Sentinel value, 214, 217

Sequential
access, 519, 535

conditional statement, 170

IF...THEN statement versus

nested, 170

search, 403—404, 541

update, 578

Set, 581-597, A.9, A.15

assignment, 582—583

element of, 582, 589

empty, 583, 589

with function, 591-592

operation, 585-586

procedure with, 593
subprogram with, 591
universal, 583

uses for, 588-591

Silicon chip, 5, 368

1.6 Index

Simple Boolean expression, 150-
152

Simple statement, 158. See also
Compound statement

Software, 5. See also Language and
Program

development, 339
engineering, 20-21

system life cycle, 339
Sort, 554

bubble, 565-568, 576

insertion, 564—565

merge, 536, 576—578. See also
Merge

quick, 561, 564, 568-573
records, 496, 497

selection, 379-384, 391, 497, 507

unsorted file, 537

Source program, 11

Spacing, 79,121. See also Indent
ing in Pascal and Readability

sqr, 72, 265, A.4

sqrt, 72, 253, 265, A.4

Stack, 556-559, 604, 630-632

Standard

(built-in) function. See Function,

standard

data type, 335
identifier, 23-24,146-147, A.3

Statement

assignment. See Assignment
statement

CASE. See CASE statement

compound. See Compound
statement

FOR. See FOR loop
GOTO. See GOTO statement

IF...THEN, 156-161,183, 250

IF...THEN..ELSE, 164-168, 344,

A.12

REPEAr...UNTIL. See

REPEAT...UNTIL

separator. See Semicolon

WHILE...DO. See WHILE...DO

WITH...DO. See WITH...DO

Static variable. See Variable, static

Stepwise refinement, 16, 19, 20, 90,
129

Stopping state, 556, 578. See also

Recursion

Storage

secondary. 324, 325, 518, 533.
See also Data storage and
Memory

Stream input, 63, 66,128-129,149,

158, 325. See also Input
String, 28, 35, 41, 396

constant, 35, 41

fixed length, 395
variable, 35, 395, 396, 436-439

Structure

chart, 398

data, 604, 610

theorem, 265

Structured

component, 532—538

data type, 338, 398, 469, 495,
518, 519, 538, 581, 582

programming, 12, 265, A.27

variable. See Variable, structured

Stub programming, 302
Subblock. See Block

Subprogram, 96-97, 265, 266, 270,
287-291, 297, 300, 302, 307

and array, 385-391
calling subprogram, 554, 556
pointer with, 641. See also

Pointer

recursive, 554, 556, 560, 561

set with, 591

Subrange. 341-345, 363, 473, 582
Subscript, 361, 460
Subset, 583

succ function, 75, 76, 336, 346,

347, 350, A.4

Syntax, 24, 112, 497, 512

diagram, 24, A.5-A.15
error. See Error, syntax

System

dependent, 122, 518
program, 11

Systems analysis, 339

Tabbing. See Indenting in Pascal
Tag field, 501, 502
Test program, 41,122,125—126,

264

Text

editor, 325

file, 324-333, 518

text data type, 325, 331, A.3. See
also Data type

Top-down design, 16-19, 83, 97,
264,291, 431

Towers of Hanoi, 561-563

Trace, 122, 123-124

Tree, 633-639

binary, 635-639
searching, 636-637

trunc function, 72, 265, A.4

Turbo Pascal, 26, 28

versus standard Pascal, A.21-

A.26

Two-way merge, 574-575

Two-way selection. See
IF...THEN...ELSE statement

Type, A.3, A.6, A.9. See also boo
lean; char; integer; real; and

text

identical, 343, 496

standard, 335. See also User-

defined data type
TYPE definition section, 29, 335—

337, 386, 496, 525

with arrays, 364, 431
with CONST, 344

with record type, 470, 478

UCSD Pascal, 28

Underflow, 50

Unpacked array, 400
unpack procedure, 401, A.4
UNTIL, 228. See also

REPEAT...UNTIL

Up arrow, 520, 606

User-defined

data type, 335-338, 340, 346,
483

function. See Function, user-

defined

ordinal, 347

User-friendly, 62, 91, 344

Value (of a memory location), 604
Value parameter. See parameter
Value transmission, 275, 277, 278,

521

VAR, 29, 86, 278, 431

to declare variables, 29,146, 319,

388

Variable, 12, 25, 29, 53, 55, 56, 60,

76, A.15

buffer, 520, 521

character, 394, 395

compatability, 342
condition loop, 214, 231
declaration section, 29, 325, 331,

336, 337, 385, 526, A.6

dictionary, 87
dynamic, 589, 603, 604, 606, 607,

626

error in, 114

expression, 56, 76, 205

file, 325, 326, 329, 331

formatting, 56
global, 287-292
local, 287-290

name, 473

nested, 310. See also Nesting
packed array, 401. See also Array
parameter. See Parameter,

variable

pointer, 604-608, 620

repetition, 235. See also RE-

PEAT...UNTIL and

WHILE...DO

static, 603, 607

string. See String, variable
structured, 360, 387, 394, 533,

554

Variant

part, 501-504, A.IO

Virus, 348-349

WHILE...DO, 203, 215, 218, 350,

A.12. See also Pretest loop

Index 1.7

with eof and eoln, 219-224

versus FOR loop or R£-
PEAT...UNm, 236-237

Window. See File window

Wirth, Niklaus, 300

WITH...DO, 478-484, 491-492,

496, A.13. See also Record

Word, 394

write procedure, 35-36, 395, 428,
A.4

with array components, 367
with eof, 522

with set, 599

with strings, 436
writeln procedure, 35-36, 395,

428, 522, A.4

with array components, 367
formatting with, 38, 56, 79
incorrect uses of, 116-117

with strings, 436
Writing style. See Program, writing

and Readability

Credits

PHOTOS

Figures 1.4a. 1.4b, 1.4c, 1.5a, 1.5b and 1.5c: Courtesy of
IBM Corporation.

NOTES OF INTEREST

Page 8, Microprocessors:

From William Bates, The Computer Cookbook, New York,
Doubleday & Co., 1984-85, p. 165. Reprinted by permis
sion of William Bates.

Page 12, Why Learn Pascal?:
Reprinted with permission from "Pascal," by T. Woteki
and A. Freiden, published in the September 1983 issue
of Popular Computing magazine. © McGraw-Hill, Inc., New
York. All rights reserved.

Page 21, Software Engineering:
By Thomas L. Naps, Lawrence University, Appleton, WI,
March 1988.

Page 32, Blaise Pascal:

Adapted from E. T. Bell, Men of Mathematics. New York:
Simon & Schuster, 1937, pp. 73-89.

Page 69, Defined Constants and Space Shuttle Computing:
Communications of the ACM 27, no. 9 (September 1984):
880. Copyright 1984, Association for Computing Machin
ery, Inc. Reprinted by permission of Association for Com
puting Machinery.

Page 74, Herman Hollerith:

Reprinted by permission from Introduction to Computers
with BASIC, pp. 27-28, by Fred G. Harold. Copyright ©
1984 by West Publishing Company. All rights reserved.

Page 91, Documentation Employment:
Reprinted by permission from Introduction to Computers
with BASIC, p. 203, by Fred G. Harold. Copyright © 1984
by West Publishing Company. All rights reserved.

Page 123, Debugging:
Reprinted by permission from Introduction to Computers
with BASIC, p. 245, by Fred G. Harold. Copyright © 1984
by West Publishing Company. All rights reserved.

Page 130, Debugging or Sleuthing?
From J. Bentley, Communications of the ACM 28, no. 2
(February 1985): 139. Copjo'ight 1985, Association for

Computing Machinery, Inc. Reprinted by permission of
Association for Computing Machinery.

Page 137, Debugging or Sleuthing: Answers:
From J. Bentley, Communications of the ACM 28, no. 2

(February 1985): 139. Copyright 1985, Association for
Computing Machinery, Inc. Reprinted by permission of
Association for Computing Machinery.

Page 153, George Boole:
Adapted from E. T. Bell, Men of Mathematics, New York:
Simon & Schuster, 1937, pp. 433-447.

Page 185, "Cross-Over" Scholars:
From Eva M. Thury, "Scholars Working with "Found Ob
jects": Humanities Research Project, Academic Comput
ing, Dec. 1987/Jan. 1988. Reprinted by permission of Ac
ademic Computing.

Page 212, Ada Augusta Byron:

Reprinted by permission from Introduction to Computers
with BASIC, pp. 26-27, by Fred G. Harold. Copyright ©
1984 by West Publishing Company. All rights reserved.

Page 222, Debugging Space Flight Programs:
Communications of the ACM 27, no. 9 (September 1984):
886. Copyright 1984, Association for Computing Machin
ery, Inc. Reprinted by permission of Association for Com
puting Machinery.

Page 231, Charles Babbage:
Reprinted by permission from Introduction to Computers
with BASIC, pp. 24-26, by Fred G. Harold. Copyright ©
1984 by West Publishing Company. All rights reserved.

Page 249, A Digital Matter of Life and Death:
From Ivars Peterson, "A Digital Matter of Life and Death,"
Science News, March 12, 1988, Vol. 133. Reprinted with
permission from SCIENCE NEWS, the weekly newsma
gazine of science, copyright 1988 by Science Service, Inc.

Page 283, Ada:

Reprinted by permission from Introduction to Computers
with BASIC, pp. 246—249, by Fred G. Harold. Copyright
© 1984 by West Publishing Company. All rights reserved.

Page 300, Niklaus Wirth: Pascal to Modula-2:

Adapted from Niklaus Wirth, Programming Language De
sign to Computer Construction, 1984 Hiring Award Lec
ture, Communications ofthe ACM, February 1985, volume
28, no. 2.

1.8 Index

Page 339, The Software System Life Cycle:
By Thomas L. Naps, Lawrence University, Appleton, WI,
March 1988.

Page 348, There's a Virus in My Software!:
From Philip J. Hilts, The Washington Post National Weekly
Edition, May 23-29,1988, Science Lab. Reprinted by per
mission of The Washington Post.

Page 368, Monolithic Idea: Invention of the Integrated
Circuit:

Adapted from T. R. Reid, "The Chip," Science, February
1985, pp. 32-41.

Page 380, Transition to a Computer System:

Copyright 1983 by John Bear from Computer Wimp, Pub
lished by Ten Speed Press, Berkeley, CA. Reprinted by
permission of Ten Speed Press.

Page 398, Data Abstraction:
By Thomas L. Naps, Lawrence University. Appleton, WI,

March 1988.

Page 442, Software Destruction:

Reprinted by permission from Introduction to Computers
with BASIC, p. 343, by Fred G. Harold. Copyright © 1984
by West Publishing Company. All rights reserved.

Page 450, Computer Security:

William D. Nance, from "Uncovering and Disciplining
Computer Abuse: Organizational Responses and Op
tions." This paper was first published in Information Age,

Vol. 10. No. 3, July 1988, pp. 151-156.

P^ge 473, Computer Industry Growth:
From Joseph J. Kroger, "Our Growing Computer Industry,"
T.H.E. Journal 12, no. 4 (November 1984): 105. Reprinted
by permission from T.H.E. Journal.

Page 486, Using Key Fields in Records:
From David Gifford and Alfred Spector. "The TWA Res
ervations System: An Interview with Carl Flood and Ted
Celentio," Communications of the ACM 17, no. 7 (July
1984): 650-657. Copyright 1984, Association for Com

puting Machinery, Inc. Reprinted by permission of As
sociation for Computing Machinery.

Page 493, Neural Nets Catch the ABCs of DNA:

From Stefi Weisburd, "Neural Nets Catch the ABCs of

DNA," Science News, August 1,1987, Vol. 132. Reprinted
with permission from SCIENCE NEWS, the weekly news
magazine of science, copyright 1988 by Science Service,
Inc.

Page 528, Relational Databases:

From Nicole Melander, "Relational Database Technology:
An Overview," T.H.E. JOURNAL, Nov. 1987. Reprinted by
permission from T.H.E. JOURNAL.

Page 537, Backup and Recovery:
From William D. Nance, Management Information Sys
tems Reseeu-ch Center, Carlson Graduate School of Man

agement, Univ. of Minnesota, Minneapolis, 1988.

Ptige 566, Sex Differences in the Association between Sec

ondary School Students' Attitudes Toward Mathematics
and Toward Computers:
From Betty Collis, Sex Differences in the Association be
tween Secondary School Students' Attitudes Toward
Mathematics and Toward Computers, Journal of Research
in Mathematics Education Vol. 18, No. 5,1987. Reprinted
by permission of Journal of Research in Mathematics
Education.

Page 583, Developing Educational Software:
From Richard B. Otte, "Courseware for the '80s," T.H.E.

Journal 12, no. 3 (October 1984): 89. Reprinted by per
mission from T.H.E. Journal.

Page 592, Time Is Cure for Computerphobia:
Electronic Education, volume 4, no. 6, March/April, 1985,
"Around the Circuit—^Time Is Cure for Computerphobia."

Page 627, Using Pointers:

From Nazim H. Madhavji, "Visibility Aspects of Pro
grammed Dynamic Data Structures," Communications of
the ACM 27, no. 8 (August 1984): 766. Copyright 1984,
Association for Computing Machinery, Inc. Reprinted by
permission of Association for Computing Machinery.

Wi

Program Form

PROGRAM Demo (input, output);
CONST

Skip = ' ';
VAR

Count : integer;

Scorel, Scores : real;
Average : real;

BEGIN

Count := D;

readln (Scorel, Scores);
Average := (Scorel + Scores) / S;
Count := Count + 1;

writeln ('Average', Average:a:S)
END.

Conditional Statements

IF Num > □ THEN
BEGIN

PosCount := PosCount + 1;
X := sqrt(Nura)

" END;

IF Num >= □ THEN
BEGIN

NonNegCount := NonNegCount + 1;
X := sqrt(Num)

END

ELSE

> BEGIN
NegCount := NegCount + 1;
X := abs(Num)

END;

CASE GasType OF
'R' : writeln ('Regular');
'U' : writeln ('Unleaded');.
'S' : writeln ('SuperUnleaded')

END; i of CASE GasType >

Looping Statements
FOR J := 1 TO SO DO

writeln (J:5, J*J:5, J*J*J:5);

WHILE NOT eof DO
BEGIN

Count := Count + 1;
readln (Score);
Total := Total + Score

. END;

REPEAT
A := S * A;
B := sqrt(A)

UNTIL B > !□□□;

FunctionUSED
FUNCTION Cube (X : integer) : integer;

BEGIN

Cube := X * X * X
END; { of FUNCTION Cube >

call by Y : = Cube (X);
or

writeln (Cube (X));

■"1

Procedures

PROCEDURE GetData (VAR Amount : AmountList;
VAR Count : integer);

BEGIN

Count := □;
WHILE NOT eof DO

BEGIN
Count := Count + 1;
readln (AraountCCountJ)

END

END; < of PROCEDURE GetData >

call by GetData (Amount, Count);

Using Arrays
Total := □;
J := □;
WHILE NOT eof DO

BEGIN
J := J + 1;
readln (Donation!J]);
Total := Total + DonationCJ]

END;
Count := J;
Average := Total / Count;
FOR K := 1 TO Count DO

writeln ('$' :10, DonationCK]rflrS);
writeln;
writeln ('Average', Average:11:S);

Type Definitions

TYPE

Stringao = PACKED ARRAY [l..aO] OF char;
NaraeList = ARRAY [1..ClassSizeJ OF String2D;
AmountList = ARRAY [l..MaxSize] OF real;
CurrentYears = lR5D..5D0a;
HeatherType = (Cloudy, Sunny, Rain, Snow, Balmy)

Record Definition

TYPE

StringED = PACKED ARRAY [1

Patientlnfo = RECORD

ED] OF char;

Name : StringED;
Age : D..1DD;
Weight : D..3DD

END; { of RECORD Patientlnfo

PatientList = ARRAY [1..1DD] OF Patientlnfo;
VAR

Patient PatientList;

Using Records

FOR J := 1 TO NumPatients DO

BEGIN

WITH PatienttJl DO

BEGIN

writeln (Name:3D);
writeln (AgerlD, Weight:lD)

END;

writeln; writeln

END; i of FOR...TO loop >

File Definition

TYPE

StringED = PACKED ARRAY [1..ED] OF char;
Patientlnfo = RECORD

Name : StringED;
Age : D..IDD;

Weight : D..3DD
END; { of RECORD Patientlnfo >

PatientFile = FILE OF Patientlnfo;
VAR

Patient : PatientFile;
TerapRec : Patientlnfo;

Using Files

rewrite (Patient);
WHILE NOT eof(input) DO
BEGIN

GetData (Patient?);
Process (Patient?);

• put (Patient)
END;

Pascal: Understanding Programming
and Problem Solving, Second Edition
Douglas W. Nance

© 1989'West Publishing Company

