Pascal:
Understanding

Programming and

Prob}em Solving

SECOND EDITION

Douglas W. Nance

CENTRAL MICHIGAN UNIVERSITY

WEST PUBLISHING COMPANY

ST.PAUL NEW YORK LOS ANGELES SAN FRANCISCO

To Helen

Copyeditor and Indexer: Janet Hunter

Interior design: Paula Schlosser and Lucy Lesiak
Illustrations: Christine Dettner and Rolin Graphics
Composition: Carlisle Communications

COPYRIGHT ©1984 By WEST PUBLISHING COMPANY
COPYRIGHT ©1989 By WEST PUBLISHING COMPANY
50 W. Kellogg Boulevard
P.O. Box 64526
St. Paul, MN 55164—1003

All rights reserved

Printed in the United States of America
96 95 94 93 92 91 90 89 876543210

Library of Congress Cataloging-in-Publication Data

Nance, Douglas W.
Pascal: understanding programming and problem solving / Douglas
W. Nance.—2nd ed.
p. cm.
Includes index.
ISBN 0-314-43051-2
1. Pascal (Computer program language) I. Title.
QA76.73.P2N35 1989
005.13’3—dc19 88-29307
CIP

Contents

cuapter 1 mComputer Science, Computer
Architecture, and Computer Languages

1.1 Computer Science: A Preview 1

1.2 Computer Architecture 4
A Note of Interest: Microprocessors 8

1.3 Computer Languages 9
A Note of Interest: Why Learn Pascal? 12
Summary 13

cuapTER 2w Writing Your First Programs

14

2.1 Program Development—Top-Down Design 15
A Note of Interest: Software Engineering 21
2.2 Writing Programs 22
A Note of Interest: Blaise Pascal 32
2.3 Data Types and Output 33
Style Tip - 37
Style Tip 42
Summary 45
Programming Problems 46

CHAPTER 3 m®Arithmetic, Variables, Input, Constants,
and Standard Functions

47

3.1 Arithmetic in Pascal 47
3.2 Using Variables 52
3.3 Input 59

vi Contents

3.4

3.5

Using Constants 68

A Note of Interest: Defined Constants and Space
Shuttle Computing 69

Standard Functions 71

A Note of Interest: Herman Hollerith 74

Style Tip 78

Summary 78

Programming Problems 80

cuApTER 4 ®Designing and Writing Complete
Programs

82

4.1

4.2

4.3

4.4

4.5

Writing Code 82 :

A Note of Interest: Documentation Employment 91
Procedures for Output 96

Style Tip 103

Beginners’ Errors 111

Making a Program Run 120

Style Tip 121

A Note of Interest: Debugging 123

Writing a Complete Pascal Program 128

A Note of Interest: Debugging or Sleuthing? 130
Summary 136

A Note of Interest: Debugging or Sleuthing: Answers
Programming Problems 138

CHAPTER 9 ®(Conditional Statements

137

145

5.1
5.2
5.3
5.4

5.5

5.6

Boolean Expressions 145

A Note of Interest: George Boole 153
IF ... THEN Statements 156

IF ... THEN... ELSE Statements 164
Nested IF Statements 169

Style Tip 173

CASE Statements 180

Style Tip 182

A Note of Interest: “Cross-Over” Scholars 185
Assertions (Optional) 188

Focus on Programming 189

Running and Debugging Tips 194
Summary 195

Programming Problems 196

cHAPTER O™ Looping Statements

203

6.1

Fixed Repetition Loops 203
Style Tip 211
A Note of Interest: Ada Augusta Byron 212

6.2
6.3

6.4
6.5

6.6

Contents Vii

Pretest Loops 214

A Note of Interest: Debugging Space Flight Programs 222
Posttest Loops 228

A Note of Interest: Charles Babbage 231

Comparison of Loops 235

Nested Loops 239

Style Tip 241

Loops with Conditionals 247

A Note of Interest: A Digital Matter of Life and Death 249
Focus on Programming 253

Running and Debugging Tips 258

Summary 258

Programming Problems 261

CHAPTER 7 mFunctions and Procedures 264

71

7.2
7.3

7.4
7.5

7.6

Program Design 264

A Note of Interest: Structured Programming 265
Functions 265

Procedures 273

A Note of Interest: Ada 283

Scope of Identifiers 287

Using Subprograms 297

A Note of Interest: Niklaus Wirth: Pascal to Modula-2 300
Forward Reference and Nesting 307

Style Tip 308

Focus on Programming 314

Running and Debugging Tips 319

Summary 319

Programming Problems 322

cuapTER @ mText Files and User-Defined Data Types 324

8.1
8.2

8.3

8.4

Text Files 324

TYPE Definitions in Pascal 335

A Note of Interest: The Software System Life Cycle 339
Subrange as a Data Type 341

Style Tip 344

Operations on Ordinal Data Types 346

A Note of Interest: There’s a Virus in My Software! 348
Focus on Programming 351

Running and Debugging Tips 355

Summary 355

Programming Problems 357

viii Contents

CHAPTER 9®One-Dimensional Arrays 360

9.1 Basic Ideas and Notation 360

9.2

9.3

9.4
9.5

Style Tip 364

A Note of Interest: Monolithic Idea: Invention of the Integrated
Circuit 368

Using Arrays 370

Style Tip 376

Selection Sort 379

A Note of Interest: Transition to a Computer System 380
Arrays and Subprograms 385

Packed Arrays 393

A Note of Interest: Data Abstraction 398

Searching Algorithms 403

Focus on Programming 408

Running and Debugging Tips 414

Summary 415

Programming Problems 417

cHapTER 1(0)® Arrays of More Than One Dimension 422

10.1

10.2
10.3

104

Two-Dimensional Arrays 422

Style Tip 424

A Note of Interest: Telesecurity 433
Arrays of String Variables 436

Parallel Arrays (Optional) 440

Style Tip 440

A Note of Interest: Software Destruction 442
Higher-Dimensional Arrays 447

A Note of Interest: Computer Security 450
Focus on Programming 452

Running and Debugging Tips 460
Summary 460

Programming Problems 462

capteR 171 ®mRecords 469

111

11.2

11.3

11.4

Record Definitions 469

Style Tip 473

A Note of Interest: Computer Industry Growth 473
Using Records 478

A Note of Interest: Using Key Fields in Records 486
Data Structures with Records 490

A Note of Interest: Neural Nets Catch the ABCs of DNA 493
Record Variants 501

Focus on Programming 506

Running and Debugging Tips 512

Summary 512

Programming Problems 514

Contents iX

cHAPTER 12 mFiles 518

12.1 File Definition 518
12.2 Working with Files 521
A Note of Interest: Relational Databases 528
12.3 Files with Structured Components 532
A Note of Interest: Backup and Recovery 537
Focus on Programming 539
Running and Debugging Tips 547
Summary 548
Programming Problems 550

cuaptER 13 ®Recursion, Sorting, and Merging 554

13.1 Recursion 554
13.2 Sorting Algorithms 564
A Note of Interest: Sex Differences in the Association between
Secondary School Students’ Attitudes toward Mathematics and
toward Computers 566
13.3 Merging Algorithms 574
Running and Debugging Tips 578
Summary 578
Suggestions For Further Reading 579
Programming Problems 579

cHAPTER 14 mSets 581

14.1 Declarations and Terms 581
A Note of Interest: Developing Educational Software 583
14.2 Set Operations and Relational Operators 585
14.3 Using Sets 588
Style Tip 589
A Note of Interest: Time Is Cure for Computerphobia 592
Focus on Programming 593
Running and Debugging Tips 597
Summary 598
Programming Problems 599

CHAPTER 13 ®Dynamic Variables and Data Structures 603

15.1 Pointer Variables 604
Style Tip 606
15.2 Linked Lists 610
Style Tip 610
15.3 Working with Linked Lists 617
Style Tip 617
A Note of Interest: Using Pointers 627

X Contents

15.4 Other Dynamic Data Structures 630
Running and Debugging Tips 641
Summary 642
Suggestions for Further Reading 645
Programming Problems 645 .

= Appendixes

Al

Appendix 1: Reserved Words A.2

Appendix 2: Standard Identifiers A.3
Appendix 3: Syntax Diagrams A.5
Appendix 4: Character Sets A.16

Appendix 5: Compiler Error Messages A.18
Appendix 6: Turbo Pascal Notes A.21
Appendix 7: GOTO Statements A.27

® Glossary

G1

®m Answers to Selected Exercises

AN.1

®ndex

I1

Overview and
Organization

Preface

Those who teach entry-level courses in computer science are fa-
miliar with the problems that beginning students encounter. Ini-
tially, students can get so involved in learning a language that they may
fail to grasp the significance of using the language to solve problems.
Conversely, it is possible to emphasize problem solving to the extent that
using a particular language to solve problems becomes almost incidental.
The intent of this text is to provide a happy medium between these ap-
proaches. Students should understand language concepts and subse-
quently be able to use them to solve problems.

As with the first edition, the material in Chapters 1-4 is presented at a
deliberate pace. If students in the class have already had some program-
ming experience, these chapters may be covered rapidly. However, stu-
dents must be able to solve problems using top-down design with stepwise
refinement. Using this approach, students will be exposed to the concept
and to restricted use of subprograms very early in the course. If this is
overlooked, students will have difficulty designing solutions to more com-
plex problems later.

Throughout the text, I have attempted to explain and develop concepts
carefully. These are illustrated by frequent examples and diagrams. New
concepts are then used in complete programs to show how they aid in
solving problems. An early and consistent emphasis has been placed on
good writing habits and on producing neat, attractive output. I firmly
believe program documentation and readability are important. Thus, I
frequently discuss them in the text, and I offer style tips where appropriate.

This text should provide a complete one-semester course in Pascal.

There are at least three general scenarios for which this text would be
appropriate.

1. A deliberately paced, thorough presentation of concepts would al-
low you to get through records and/or files in a one-semester
course.

Xii Preface

Features

2. An accelerated pace with students who have previous computing
experience would allow you to get into Chapter 15 in a one-
semester course.

3. A deliberate pace with a thorough presentation would allow you
to present the material in Chapters 1-15 in a two-quarter
sequence.

Subprograms have been treated in a manner slightly different from other
presentations. Procedures for headings only (no parameters) are intro-
duced in Chapter 4. Formal development of procedures is then delayed
until Chapter 7 after conditional statements and loops have been dis-
cussed. At this stage, students are better able to understand the use of
parameters. All subsequent work utilizes subprograms in problem solution
and program design.

In this edition, Chapter 8 presents text files as well as user-defined data
types. Since larger data sets are typically used with arrays and files, it is
assumed that most data will be read from data files (rather than entered
interactively) after this chapter.

Chapters 9 and 10 develop arrays. Due to the significance of this con-
cept, these chapters contain numerous examples, illustrations, and ap-
plications. A selection sort has been used to sort array elements. However,
a bubble sort and an insertion sort have been developed in Chapter 13,
and either could be used in place of the sorting algorithm presented in
Section 9.3. Records and files are discussed in Chapters 11 and 12, re-
spectively. Their placement there is traditional. These chapters, combined
with Chapters 9 and 10, present a detailed treatment of static data structures.

Chapter 13 is an optional chapter that discusses recursion, sorting, and
merging. Recursion has been moved to this chapter so that an expanded
presentation would be more appropriately placed. This also allows the
quick sort to be developed. For advanced classes, material in this chapter
could be used to motivate additional work with data structures. It is
possible to use this material with preceding chapters. For example, sorting
could be discussed in conjunction with Chapter 9, and merging with
Chapter 12.

Chapter 14, Sets, could be presented any time after Chapter 8. Although
a full chapter has been devoted to this topic, a working knowledge could
be given to students in one or two days. Dynamic variables and data
structures are introduced in Chapter 15. A reasonable discussion and
development of pointers, linked lists, and binary trees is included. How-
ever, a full development of these concepts would have to come from a
second course with a different text.

Pascal statements in this text conform to standard Pascal. Due to the
increasing use of Turbo Pascal with personal computers, Turbo Pascal
references are included in the margins to indicate where Turbo differs
from standard Pascal. Both interactive and batch mode examples are used
in this text. Interactive examples are indicated by a logo in the left margin,
as shown here.

This text has a number of noteworthy pedagogical features.

= Objectives—a concise list of topics and learning objectives in each
section

Preface Xiil

o Style tips—suggestions for programming style, intended to enhance
readability

o Exercises—short-answer questions at the end of each section

= Programming problems—starting with Chapter 4, lengthy lists of sug-
gestions for complete programs given at ends of chapters

a Notes of Interest—tidbits of information intended to create awareness
of and interest in various aspects of computer science

o Suggestions for test programs—ideas included in exercises that en-
courage the student to use the computer to determine answers to
questions and to see how to implement concepts in short programs

Focus on Programming—when appropriate, a complete program at
the end of the chapter that illustrates utilization of concepts devel-
oped within the chapter

o Running and debugging hints preceding each summary and program-
ming problems set at the ends of chapters

New terms are italicized when first introduced

In the back of the book there is a complete glossary, as well as appen-
dixes on reserved words, standard identifiers, syntax diagrams, character
sets, compiler error messages, Turbo Pascal references, and the GOTO
statement. The final section of back matter provides answers to selected
exercises. '

Changes for the Second Edition

The first edition of this text carefully presented and illustrated new con-
cepts. It was assumed that users had little or no experience in computer,
science; hence, a deliberate approach emphasizing language constructs
was used.

This edition was prepared using slightly different assumptions. First,
it is now rare for a student to enter a collegiate-level computer science
course with no programming or microcomputer use background. Second,
computer science is evolving as a discipline. Although Pascal is still the
language most used in entry-level courses, many concepts are presented
in a language-independent manner. Thus, learning a language for the sake
of learning the language is frequently deemphasized in favor of empha-
sizing concepts and problem-solving skills. Finally, there is an increasing
need for students to see both interactive and batch mode programs. These
environments, coupled with popular nonstandard versions of Pascal (Turbo,
for example), dictate greater flexibility in text preparation.

As a result, the following are new features of this edition.

Increased emphasis on the design of solutions to problems.

s Use of module specifications for program modules.

o Use of structure charts to reflect modular development. These include
use of data flow arrows to emphasize transmission of data to and/or
from each module. This sets the stage for understanding use of value
and variable parameters when procedures are introduced.

A section on procedural abstraction.

More discussion and use of robust examples.

Optional section on assertions.

Elaborate Notes of Interest on Software Engineering, The Software
System Life Cycle, and Data Abstraction.

XiV Preface

Ancillaries

s A mix of interactive and batch mode examples in the first half of the
text. This allows for greater flexibility in student use.

s Turbo Pascal references have been included whenever Turbo differs
from standard Pascal. A logo in the left margin, shown here, is used
in the text to indicate a reference to the Turbo Appendix. Comments
about Turbo Pascal are appropriate for Versions 3.0, 4.0, and 5.0.

= More mathematical examples. ’

= Eleven of thirty-five new Notes of Interest which reflect the changing
scene of computer use and growth.

Ancillary material consists of a Student’s Solutions Manual, an Instructor’s
Manual, a set of transparency masters, software with machine readable
programming problem solutions, and a computerized test bank. The Stu-
dent’s Solutions Manual contains solutions to all the exercises at the end
of each section. Explanation and development is given for appropriate
problems. Starting with Chapter 4, complete solutions for two program-
ming problems are included for each chapter in the Solutions Manual.
The Instructor's Manual contains the following for each chapter:

1. Outline

2. Teaching test questions

3. Chapter test questions

4. Answers to chapter test questions

Furthermore, beginning in Chapter 4 of the Instructor’s Manual, a com-
plete program is included with each chapter. Thus, a total of more than
50 complete programs are available in the combined materials.

More than 75 transparency masters are available to adopters of the text
through West Publishing Company. These include figures, tables, and se-
lected other material from the text. Additionally, software is available with
four complete programming problem solutions in each chapter and the
complete Focus on Programming Section programs. This software will run
on IBM-PCs and compatibles, Apple MacIntoshes and DEC Vaxes. Finally,
adopters of this edition will receive a computerized test generation system
from West Publishing Company. This provides a test bank system that
allows you to edit, add, or delete as you wish.

West Publishing Company recognizes the growing need for an integrated
full-year textbook for computer science students. Consequently, this text
has been used as the basis for the first part of Introduction to Computer
Science: Programming, Problem Solving, and Data Structures co-authored
by myself, Tom Naps, and Baghat Singh. The full-year text would be
appropriate for a two-semester or three-quarter course (with generic titles
of CS1 and CS2) which presents Pascal as the programming language in
the first term. Contact West Publishing Company for examination copies.

Each program and program segment in the text and all ancillaries have
been compiled and run. Hence, original versions were all working. Un-
fortunately, the publication process does allow errors in code to occur
after a program has been run. Every effort has been made to produce an
error-free text, although this is virtually impossible. I assume full respon-
sibility for all errors and omissions. If you detect any, please be tolerant
and notify me or West Publishing Company so they can be corrected in
subsequent printings and editions.

Acknowledg-
ments

Preface XV

I would like to take this opportunity to thank those who in some way
contributed to the completion of this text. Several reviewers contributed
significant constructive comments during various phases of manuscript

development for this second edition. They include:

Robert B. Anderson

University of Houston—University
Park

Helen Casey .

Sam Houston State University
Thomas Cheatham

Western Kentucky University
Richard G. Christensen

Kearney State College

Robert Christiansen

University of Iowa

Dan Everett

University of Georgia

June D. Fordham

Prince George’s Community College
Charles E. Frank

Northern Kentucky University
George Friedman

University of Illinois at Urbana-
Champaign

Hugh Garraway

Doris K. Lidtke
Towson State University

Anne Liu

San Bernardino Valley College
Ronald Mann

University of Louisville
Andrea Martin

Louisiana State University
John McGregor

Murray State University
David Meredith

San Francisco State University
Robert Raymond

College of St. Thomas
Lawrence L. Rose

University of Pittsburgh

Tom Scharnberg

Tarrant County Jr. College
Vijay K. Vaishnavi

Georgia State University
Trudy Weyzen

University of Southern Mississippi

Barent C. Johnson
University of Wisconsin—QOshkosh

Charles B. Koontz
Ball State University

Three people deserve special mention because, without their expertise,
this book would not exist. They are:

Janet Hunter, copyeditor. This is my third book with Janet. She willingly
rearranged her schedule to accommodate our deadlines. She is an out-
standing copyeditor, but more importantly, she is a nice person with an
excellent sense of humor.

Deanna Quinn, production coordinator. I have had the good fortune of
working with Deanna before. She is one of the best in the business. Her
helpful suggestions, attention to detail, adherence to deadlines, and gen-
eral positive nature make it delightful to work with her.

Jerry Westby, acquisitions editor. This is our third book together, and
my respect for Jerry keeps increasing. He has an excellent sense for what
makes a book useful. Most of the special features of this text are the result
of Jerry’s suggestions. He has offered constant support and invaluable -
suggestions.

My family and friends deserve special mention for their support and
patience. Most of my recent spare time and energy have been devoted to
this project. This would not have been possible without their encourage-
ment and understanding.

Ohlone College

xvi

Preface

Finally, there is one person without whose help this project would not
have been possible. Helen, who was a student in my first Pascal class, has
been of tremendous assistance since the inception of this effort. She pre-
pared every part of the manuscript on her word processor. She served as
an “in-house” copyeditor and made many helpful suggestions regarding
presentation of the material.

This is the third text for which she has done all of the above. Her
unfailing patience and support were remarkable. Fortunately for me, she
has been my wife and best friend for more than thirty years.

Douglas W. Nance

o

B 1.1
Computer
Science: A
Preview

Computer Science,
Computer
Architecture, and

Computer Languages

This chapter provides a quick introduction to computer science,
computer architecture, and computer languages. Section 1.1 pro-
vides a preview of the study of computer science. Section 1.2 examines
the structure and parts of a computer. Section 1.3 analyzes how computer
languages are used to make a computer run.

As you read this chapter, do not be overly concerned about the intro-
duction and early use of terminology. All terms will be subsequently
developed. A good approach to an introductory chapter like this is to
reread it periodically. This will help you maintain a good perspective as
to how new concepts and techniques fit in the broader picture of using
computers. Finally, remember that learning a language that will make a
computer work can be exciting; being able to control such a machine can
lead to quite a sense of power.

Computer science is a very young discipline. Electronic computers were
initially developed in the 1940s. Those who worked with computers in
the 1940s and 1950s often did so by teaching themselves about computers;
most schools did not then offer any instruction in computer science.
However, as these early pioneers in computers learned more about the
machines they were using, a collection of principles began to evolve into
the discipline we now call computer science. Because it emerged from
the efforts of people using computers in a variety of disciplines, the in-
fluence of these disciplines can often be seen in computer science. With

1

2 COMPUTER SCIENCE, COMPUTER ARCHITECTURE, AND COMPUTER LANGUAGES

that in mind, in the next sections I will briefly define what computer
science is (and what it is not).

Computer Science Is Not Computer Literacy

With the use of personal computers becoming increasingly widespread,
a common mistake is to confuse computer science with computer literacy.
In the 1980s and 1990s, computer literate people will know how to use
a variety of computer software to make their professional lives and home
lives more productive and easier. This software includes, for instance,
word processors for writing and data-base management systems for storing
every conceivable form of information (from address lists to recipes).
However, knowing how to use specific pieces of computer software is not
the same as acquiring an understanding of computer science, just as being
able to drive a car does not qualify you as an expert mechanic. The user
of computer software must merely be able to follow instructions about
how to use the software. On the other hand, the modern computer scientist
must, more than anything else, be a skillful problem-solver. The collection
of problems that computer science encompasses and the techniques used
to solve those problems are the real substance of this rapidly expanding
discipline. :

Computer Science Is Mathematics and Logic

The problem-solving emphasis of computer science borrows heavily from
the areas of mathematics and logic. Faced with a problem, computer sci-
entists must first formulate a solution. This method of solution, or algo-
rithm as it is often called in computer science, must be thoroughly under-
stood before the computer scientists make any attempt to implement the
solution on the computer. Thus, at the early stages of problem solution,
computer scientists work solely with their minds and do not rely upon
the machine in any way. Once the solution is understood, computer sci-
entists must then state the solution to this problem in a formal language
called a programming language. This parallels the fashion in which math-
ematicians or logicians must develop a proof or argument in the formal
language of mathematics. This formal solution as stated in a programming
language must then be evaluated in terms of its correctness, style, and
efficiency. Part of this evaluation process involves entering the formally
stated algorithm as a programmed series of steps for the computer to
follow. Another part of the evaluation process is distinctly separate from
a consideration of whether or not the computer produces the “right an-
swer” when the program is executed. Indeed, one of the main areas of
emphasis throughout this book is in developing well-designed solutions
to problems and in recognizing the difference between such solutions and
ones that work, but inelegantly. True computer scientists seek not just
solutions to problems, but the best possible solutions.

Computer Science Is Science

Perhaps nothing is as intrinsic to the scientific method as the formulation
of hypotheses to explain phenomena and the careful testing of these hy-
potheses to prove them right or wrong. This same process plays an integral
role in the way computer scientists work. Upon observing a problem, such

1.1 Computer Science: A Preview 3

as a long list of names that we would like arranged in alphabetical order,
computer scientists formulate a hypothesis in the form of an algorithm
that they believe will effectively solve the problem. Using mathematical
techniques, they can make predictions about how such a proposed al-
gorithm will solve the problem. But because the problems facing computer
scientists arise from the world of real applications, predictive techniques
relying solely upon mathematical theory are not sufficient to prove an
algorithm correct. Ultimately, computer scientists must implement their
solutions on computers and test them in the complex situations that orig-
inally gave rise to the problems. Only after such thorough testing can the
hypothetical solutions be declared right or wrong. Moreover, just as many
scientific principles are not 100 percent right or wrong, the hypothetical
solutions posed by computer scientists are often subject to limitations.
An understanding of those limitations—of when the method is appropriate
and when it is not—is a crucial part of the knowledge that computer
scientists must have. This is analogous to the way in which any scientist
must be aware of the particular limitations of a scientific theory in ex-
plaining a given set of phenomena.

Do not forget the experimental nature of computer science as you study
this book. You must participate in computer science to truly learn it.
Although a good book can help, you must solve the problems, implement
those solutions on the computer, and then test the results. View each of
the problems you are assigned as an experiment for which you are to
propose a solution and then verify the correctness of your solution by
testing it on the computer. If the solution does not work exactly as you
hypothesized, do not become discouraged. Instead, ask yourself why it
did not work; by doing so you will acquire a deeper understanding of the
problem and your solution. In this sense, the computer represents the
experimental tool of the computer scientist. Do not be afraid to use it for
exploration.

Computer Science Is Engineering

Whatever the area of specialization, an engineer must neatly combine a
firm grasp of scientific principles with implementation techniques. With-
out knowledge of the principles, the engineer’s ability to creatively design
models for a problem’s solution is severely limited. Such model-building
is crucial to the engineering design process. The ultimate design of a
bridge, for instance, is the result of the engineer’s considering many pos-
sible models of the bridge and then selecting the best one. The transfor-
mation of abstract ideas into models of a problem’s solution is thus central
to the engineering design process. The ability to generate a variety of
models that can be explored is the hallmark of creative engineering. Sim-
ilarly, the computer scientist is a model-builder. Faced with a problem,
the computer scientist must construct models for its solution. Such models
take the form of an information structure to hold the data pertinent to the
problem and the algorithmic method to manipulate that information struc-
ture to actually solve the problem. Just as an engineer must have an in-
depth understanding of scientific principles to build a model, so must a
computer scientist. With these principles, the computer scientist may
conceive of models that are elegant, efficient, and appropriate to the prob-
lem at hand. '

4 COMPUTER SCIENCE, COMPUTER ARCHITECTURE, AND COMPUTER LANGUAGES

1.2
Computer
Architecture

An understanding of principles alone is not sufficient for either the
engineer or the computer scientist. Experience in the actual implemen-
tation of hypothetical models is also necessary. Without such experience,
you can have only very limited intuition about what is feasible and how
a large-scale project should be organized to reach a successful conclusion.
Ultimately, computers are used to solve problems in the real world. There,
you will need to design programs that come in on time, that are within
(if not under) the budget, and that solve all aspects of the original problem.
The experience you acquire in designing problem solutions and then
implementing them is vital to your being a complete computer scientist.
Hence, remember that you cannot actually study computer science with-
out actively doing it. To merely read about computer science techniques
will leave you with an unrealistic perspective of what is possible.

Computer Science Is Interdisciplinary

The problems solved by computer scientists come from a variety of dis-
ciplines—mathematics, physics, chemistry, biology, geology, economics,
business, engineering, linguistics, and psychology, to name a few. As a
computer scientist working on a problem in one of these areas, you must
be a quasi-expert in that discipline as well as in computer science. For
instance, you cannot write a program to manage the checking account
system of a bank unless you thoroughly understand how banks work and
how that bank runs its checking accounts. At minimum, you must be
literate enough in other disciplines to converse with the people for whom
you are writing programs and to learn precisely what it is they want the
computer to do for them. Since such people are often very naive about
the computer and its capabilities, you will have to possess considerable
communication skills as well as a knowledge of that other discipline.

Are you beginning to think that a computer scientist must be knowl-
edgeable about much more than just the computer? If so, you are correct.
Too often, computer scientists are viewed as technicians, tucked away in
their own little worlds and not thinking or caring about anything other
than computers. Nothing could be further from the truth. The successful
computer scientist must be able to communicate, to learn new ideas quickly,
and to adapt to ever-changing conditions. Computer science is emerging
from its early dark ages into a mature process, one that I hope you will
find rewarding and exciting. In studying computer science, you will be
developing many talents; this text can get you started on the road to that
development process.

This section is intended to provide you with a brief overview of what
computers are and how they are used. Although there are various sizes,
makes, and models of computers, you will see that they all operate in
basically the same straightforward manner. Whether you work on a per-
sonal computer that costs a few hundred dollars or on a mainframe that
costs in the millions, the principles of making the machine work are
essentially the same.

Modern Computers

The search for aids to perform calculations is almost as old as number
systems. Early devices include the abacus, Napier’s bones, the slide rule,

1.2 Computer Architecture 5

and mechanical adding machines. More recently, calculators have changed
the nature of personal computing as a result of their availability, low cost,
and high speed.

The last few decades have seen the most significant change in com-
puting machines in the world’s history as a result of improvements that
have led to modern computers. As recently as the 1960s, a computer
required several rooms because of its size. However, the advent of silicon
chips has reduced the size and increased the availability of computers so
that parents are able to purchase personal computers as presents for their
children. These computers are more powerful than the early behemoths.

What is a computer? According to Webster's New World Dictionary of
the American Language (2nd College Edition), a computer is ““an electronic
machine which, by means of stored instructions and information, per-
forms rapid, often complex calculations or compiles, correlates, and se-
lects data.” Basically, a computer can be thought of as a machine that
manipulates information in the form of numbers and characters. This
information is referred to as data. What makes computers remarkable is
the extreme speed and precision with which they can store, retrieve, and
manipulate data.

Several types of computers currently are available. An oversimplifi-
cation is to categorize computers as mainframe, minicomputer, or micro-
computer. In this grouping, mainframe computers are the large machines
used by major companies, government agencies, and universities. They
have the capability of being used by as many as 100 or more people at
the same time and can cost millions of dollars. Minicomputers, in a sense,
are smaller versions of large computers. They can be used by several
people at once but have less storage capacity and cost far less. Microcom-
puters are frequently referred to as personal computers. They have limited
storage capacity (in a relative sense), are generally used by one person at
a time, and can be purchased for as little as a few hundred dollars.

As you begin your work with computers, you will hear people talking
about hardware and software. Hardware refers to the actual machine and
its support devices. Software refers to programs that make the machine
do something. Many software packages exist for today’s computers. They
include word processing, data-base programs, spreadsheets, games, op-
erating systems, and compilers. You can (and will!) learn to create your
own software. In fact, that is what this book is all about.

A program can be thought of as a set of instructions that tells the
machine what to do. When you have written a program, the computer
will behave exactly as you have instructed it. It will do no more or no
less than what is contained in your specific instructions. For example,

PROGRAM ComputeBAv (input, output);

VAR
A, B, C : integer;
Average : real;

BEGIN
read (A, B, C);
Average := (A + B + C) 7/ 3;

writeln (Average:20:3)
END.

6 COMPUTER SCIENCE, COMPUTER ARCHITECTURE, AND COMPUTER LANGUAGES

FIGURE 1.1
Computer compo-
nents

is a Pascal program that causes a computer to get three integers (the data)
from an input device, compute their average, and then print the result.
Do not be concerned about specific parts of this program. It is intended
only to illustrate the idea of a set of instructions. Very soon, you will be
able to write significantly more sophisticated programs.

Learning to write programs requires two skills.

1. You need to be able to use specific terminology and punctuation
that can be understood by the machine: you need to learn a pro-
gramming language.

2. You need to be able to develop a plan for solving a particular
problem. Such a plan is often referred to as an algorithm. This is
a sequence of steps that, when followed, will lead to a solution of
the problem.

Initially, you may think that learning a language is the more difficult task
because your problems will have relatively easy solutions. Nothing could
be further from the truth! The single most important thing you can do as
a student of computer science is to develop the skill to solve problems.
Once you have this skill, you can learn to write programs in several
different languages.

Computer Hardware

Let’s take another look at the question: What is a computer? Our previous
answer indicated it is a machine. Although there are several forms, names,
and brands of computers, each consists of a central unit that is somehow
hooked to an input device and an output device (see Figure 1.1).

. Input’. ~ Output.
" device “~device ;-
1. Keyboard 1. Printer
2. Tape 2. Screen
3. Disk 3. Disk

4. Mouse 4, Plotter

The central unit can be thought of as containing two parts: a central
processing unit (CPU), which is the “brain” of the computer, and main
(primary) memory. The CPU contains an arithmetic/logic unit (ALU), which
is capable of performing arithmetic operations and evaluating expressions
to see if they are true or false, and the control unit, which controls the
action of remaining components so your program can be followed step-
by-step, or executed.

Main memory can be thought of as mailboxes in a post office. It is a
sequence of locations where information representing instructions, num-
bers, characters, and so on can be stored. If additional memory is needed,
secondary (peripheral) memory devices are used. On small computers,
these secondary memory devices could be floppy disks, hard disks, or
magnetic tapes; on larger computers, hard disks or magnetic tapes. Main

FIGURE 1.2
Main memory

FIGURE 1.3
Central unit

1.2 Computer Architecture 7

memory is usable while the computer is turned on. It is where the program
being executed is stored along with data it is manipulating. Other programs
and data waiting to be executed are kept “waiting in the wings” in sec-
ondary memory.

As you develop a greater appreciation of how the computer works, you
might wonder: How are data stored in memory? Each memory location
has an address and is capable of holding a sequence of binary (0 or 1)
digits, which are commonly referred to as bits. Instructions, symbols, let-
ters, numbers, and so on are translated into an appropriate pattern of
binary digits and then stored in various memory locations. These are
retrieved, used, and changed according to instructions in your program.
In fact, the program itself is similarly translated and stored in part of main
memory. Main memory can be envisioned as in Figure 1.2, and the central
unit can be envisioned as in Figure 1.3.

¢ Program

* Data

Input devices are necessary to give information to the computer. A
typical keyboard, floppy disk drive, and microcomputer with hard disk
are shown in Figure 1.4. Whatever device you use, your program will be
entered through it, and the program statements will be translated and
stored as previously indicated. Output devices are necessary to show the

8 COMPUTER SCIENCE, COMPUTER ARCHITECTURE, AND COMPUTER LANGUAGES

FIGURE 1.4

(a) Keyboard, (b) disk
drive, and (c) micro-
computer with hard

disk tc]

results of your programs. These are normally in the form of a terminal
screen, line printer, serial printer, or laser printer (Figure 1.5). Input and
output devices are frequently referred to as I/0 devices.

In summary, a simple computer system consists of an input device, a
central unit, and an output device. A schematic representation of their

A NOTE OF INTEREST

Microprocessors

The microprocessor and its silicon companion,
the memory chip, are the cause of the computer
revolution. This revolution started in the 1970s
and is far from over. By the mid-1990s, the term
microcomputer will be almost synonymous with
computer, and all but a very few super-computers
will have silicon chips as their central process-
ing units. There will be nothing small about these
microcomputers, however, except their physical
size; in computing power they will be as pow-

erful as today’s mainframes. And in manufac-
turing cost, they may be as inexpensive as to-
day’s video games.

Since the development of the von Neumann
architecture in the late 1940s, every computer
has had a central processing unit, or CPU. The
CPU pulls information out of a computer’s mem-
ory, alters it—for example, by adding another
number to it—and puts it back into memory.

(c)

FIGURE 1.5

(a) Terminal screen,
(b) line printer
(mainframe), (c) se-
rial printer (micro-
computer), and (d)
laser printer

® 1.3
Computer
Languages

1.3 Computer Languages 9

relationship is given in Figure 1.6. A more complete illustration, indi-
cating the range of peripheral devices together with the nature of infor-
mation transmission, is provided in Figure 1.7.

What is a computer language? All data transmission, manipulation, stor-
age, and retrieval is actually done by the machine using electrical pulses
generated by sequences of binary digits. If eight-digit binary codes are
used, there are 256 numbered instructions from 00000000 to 11111111.
Instructions for adding two numbers would consist of a sequence of these
eight-digit codes.

Instructions written in this form are referred to as machine language.
It is possible to write an entire program in machine language. However,
this is very time consuming and difficult to read and understand. :

Therefore, the next level of computer language allows words and sym-
bols to be used in an unsophisticated manner to accomplish simple tasks.
For example, the previous machine code for adding two integers is re-
placed by

10 COMPUTER SCIENCE, COMPUTER ARCHITECTURE, AND COMPUTER LANGUAGES

FIGURE 1.6
Input-output device
relationship with
computer

FIGURE 1.7
Complete computer
installation

LOAD A
ADD B
STORE C

This causes the number in A to be added to the number in B and the
result to be stored for later use in C. This computer language is an assembly
language, which is generally referred to as a low-level language. What
actually happens is that words and symbols are translated into appropriate
binary digits and the machine uses the translated form.

Although assembly language is an improvement on machine language
for readability and program development, it is still a bit cumbersome.
Consequently, many high-level languages have been developed; these in-
clude Pascal, PL/I, FORTRAN, BASIC, COBOL, C, Ada, Modula-2, Logo,

1.3 Computer Languages 11

and others. These languages simplify even further the terminology and
symbolism necessary for directing the machine to perform various ma-
nipulations of data. For example, the task of adding two integers would
be written as

C:=A + B; (Pascal)
C=A+B; (PL/T)
C=A+8B (FORTRAN)
C=A+8B (BASIC)
ADD A,B GIVING C (COBOL)
C=A+B; (Q)

C:=A + B; (Ada)
C:=A + B; (Modula-2)
MAKE “C:A + B (Logo)

A high-level language makes it easier to read, write, and understand a
program. This book develops the concepts, symbolism, and terminology
necessary for using Pascal as a programming language for solving prob-
lems. After you have become proficient in using Pascal, you should find
it relatively easy to learn the nuances of other high-level languages.

For a moment, let’s consider how an instruction such as

C:= A + B;

gets translated into machine code. The actual bit pattern for this code
varies according to the machine and software version, but it could be as
follows:

010000110011101000111101010000010010101101000010

In order for this to happen, a special program called a compiler “reads”
the high-level instructions and translates them into machine code. This
compiled version is then run using some appropriate data. The results
are then presented through some form of output device. The special pro-
grams that activate the compiler, run the machine-code version, and cause
output to be printed are system programs. The program you write is a
source program, and the machine-code version is an object program (also
referred to as object code).

As you will soon see, the compiler does more than just translate in-
structions into machine code. It also detects certain errors in your source
program and prints appropriate messages. For example, if you write the
instruction

C:=(A+B;

where a parenthesis is missing, when the compiler attempts to translate
this line into machine code, it will detect that “)” is needed to close the
parenthetical expression. It will then give you an error message such as

ERROR IN VARIABLE

You will then need to correct the error (and any others) and recompile
your source program before running it with the data.

Before leaving this introductory chapter, let’s consider the question:
Why study Pascal? Various languages have differing strengths and weak-
nesses. Pascal’s strong features include the following:

12 COMPUTER SCIENCE, COMPUTER ARCHITECTURE, AND COMPUTER LANGUAGES

A NOTE OF INTEREST .~ 5

Why Learn Pascal?

From the point of view of many potential users,
Pascal’s major drawback is that it is a compiled
rather than an interpreted language. This means
that developing and testing a small Pascal pro-
gram can take a lot longer and involve many
more steps than it would with an interpreted
language like BASIC. The effect of this drawback
has been lessened recently with the develop-
ment of interpreter programs for Pascal. Even so,
most programs written by users of personal com-
puters are small ones designed for quick solu-
tions to particular problems, and the use of Pas-
cal for such programs may be a form of overkill.

Ironically, the characteristics of Pascal that
make it relatively unsuited for small programs
are a direct consequence of its strengths as a
programming language. The discipline imposed
by the language makes it easier to understand
large programs, but it may be more than a small
program demands. For serious development of
large programs or for the creation of tools that
will be used over and over again (and require
modifications from time to time), Pascal is clearly
superior.

Experts generally consider Pascal an impor-
tant language for people who are planning to
study computer science or to learn program-
ming. Indeed, the College Entrance Examination
Board has recently designated Pascal as the re-
quired language for advanced-placement courses
in computer science for high school students.
While it is true that an experienced programmer
can write clearly structured programs in any lan-
guage, learning the principles of structured pro-
gramming is much easier in Pascal.

Is Pascal difficult to learn? We don’t think so,
but the question is relative and may depend on
which language you learn first. Programmers be-
come accustomed to the first language they learn,
making it the standard by which all others are
judged. Even the poor features of the familiar
language come to be seen as necessities, and a
new language seems inferior. Don't let such sub-
jective evaluations bar your way to learning Pas-
cal, a powerful and elegant programming
language.

1. It incorporates program structure in a reasonable approximation of

English. For example, if a certain process is to be repeated until
some condition is met, this could be written in the program as

REPEAT

(process here)

UNTIL (condition here)

2. It allows the use of descriptive words for variables and data types.
Thus, programs for computing payrolls could use words like
HoursWorked, StateTax, FICA, TotalDeductions, and GrossPay.

3. It facilitates good problem-solving habits; in fact, many people
consider this to be Pascal’s main strength. As previously noted,

developing the skill to solve a problem using a computer program
is the most important trait to develop as a beginning programmer.
Pascal is structured in such a manner that it encourages—indeed,
almost requires—good problem-solving skills.

You are now ready to begin a detailed study of Pascal. I hope you find
the time spent and frustrations encountered will result in an exciting and
rewarding learning experience. Good luck.

H Summary

Key Terms

algorithm

arithmetic/logic unit
(ALU)

assembly language

binary digits

bits

central processing unit
(CPU)

central unit

compiler

control unit

data

executed

hardware

high-level language
input device

VO devices

low-level language
machine language
mainframe

main (primary) memory
microcomputer

Summary 13

minicomputer

object code

object program

output device

program

programming language

secondary (peripheral)
memory

software

source program

system program

14

Writing Your First
Programs

Chapter 1 presented an overview of computers and computer lan-
guages. We are now ready to examine problems that computers
can solve. First we need to know how to solve a problem and then we
need to learn how to use a programming language to implement our so-
lution on the computer.

Before looking at problem solving and writing programs for the com-
puter, we should consider some psychological aspects of working in com-
puter science. Studying computer science can cause a significant amount
of frustration because

1. Successful problem solving and programming require extreme
precision. Generally, concepts in computer science are not diffi-
cult; however, implementation of these concepts allows no room
for error. For example, one misplaced semicolon in a 1,000-line
program could prevent the program from working.

2. Time is a major problem. Writing programs is not like completing
other assignments. You cannot expect to complete a programming
assignment by staying up late the night before it is due. You must
begin early and expect to make several revisions before your final
version will be ready.

3. Planning is a critical issue. You must plan to develop instructions
to solve your problem and translate those instructions into code
before you sit down at the keyboard. You should not attempt to
type in code “off the top of your head.”

In other words, you must be prepared to plan well, start early, be patient,
handle frustration, and work hard to succeed in computer science. If you
cannot do this, you will probably neither enjoy computer science nor be
successful at it.

@ 2.1

Program Devel-
opment—Top-
Down Design

» to understand what
an algorithm is

= to understand what
top-down design is

@ to understand what
stepwise refinement
is

@ to understand what
modularity is

B to be able to de-
velop algorithms

2.1 Program Development—Top-Down Design 195

The key to writing a successful program is planning. Good programs do
not just happen; they are the result of careful design and patience. Just
as an artist commissioned to paint a portrait would not start out by shading
in the lips and eyes, a good computer programmer would not attack a
problem by immediately trying to write code for a program to solve the
problem. Writing a program is like writing an essay: an overall theme is
envisioned, an outline of major ideas is developed, each major idea is
subdivided into several parts, and each part is developed using individual
sentences.

Five Steps to Good Programming Habits

In developing a program to solve a problem, five steps should be followed:
understand the problem, develop an algorithm, write code for the program,
run the program, and test the results. These steps will help develop good
problem-solving habits and, in turn, solve programming problems cor-
rectly. A brief discussion of each of these steps follows:

Step 1. Understand the Problem. This is not a trivial task. Before you can
do anything, you must know exactly what it is you are to do. You must
be able to formulate a clear and precise statement of what is to be done.
You should understand completely what data are available and what may
be assumed. You should also know exactly what output is desired and
the form it should take.

Step. 2. Develop an Algorithm. An algorithm is a finite sequence of ef-
fective statements that, when applied to the problem, will solve it. An
effective statement is a clear, unambiguous instruction that can be carried
out. Each algorithm you develop should have a specific beginning; at the
completion of one step, have the next step uniquely determined; and have
an ending that is reached in a reasonable amount of time.

Step 3. Write Code for the Program. When the algorithm correctly solves
the problem, you can think about translating your algorithm into a high-
level language. An effective algorithm will significantly reduce the time
you need to complete this step.

Step 4. Run the Program. After writing the code, you are ready to run
the program. This means that using an editor, you type the program code
into the computer, compile the program, and run the program. At this
point, you may discover errors that can be as simple as typing errors or
that may require a reevaluation of all or parts of your algorithm. The
probability of having to make some corrections or changes is quite high.

Step 5. Test the Results. After your program has run, you need to be sure
that the results are correct, that they are in a form you like, and that your
program produces the correct solution in all cases. To be sure the results
are correct, you must look at them and compare them with what you
expect. In the case of using a program with arithmetic operations, this
means checking some results with pencil and paper.

16 WRITING YOUR FIRST PROGRAMS

Developing Algorithms

Algorithms for solving a problem can be developed by stating the problem
and then subdividing the problem into major subtasks. Each subtask can
then be subdivided into smaller tasks. This process is repeated until each
remaining task is one that is easily solved. This process is known as top-
down design, and each successive subdivision is referred to as a stepwise
refinement. Tasks identified at each stage of this process are called modules.
Graphically, this can be represented as shown in Figure 2.1. More spe-
cifically, this can be illustrated by designing a solution to the problem of
updating a checkbook after a transaction has been made. A first-level
development is shown in Figure 2.2.

FIGURE 2.1 " Mai
Ilustration of top- tasa]l(n
down design I
| ' I
FIGURE 2.2

First-level refinement

N B A

Perfc - Print
computations results

‘information

An arrow pointing into a module means information is needed before the
task can be performed. An arrow pointing out of a module means the
module task has been completed and information required for subsequent
work is available. Each of these modules could be further developed as
shown in Figure 2.3. Finally, one of the last modules could be developed
as shown in Figure 2.4. The complete top-down design could then be
envisioned as illustrated in Figure 2.5. Notice that each remaining task
can be accomplished in a very direct manner.

As a further aid to understanding how data are transmitted, module
specifications will be listed for each main (first-level) module. Each mod-

FIGURE 2.3
Second-level
refinement

2.1 Program Development—Top-Down Design 17

b v

FIGURE 2.4
Third-level
refinement

ule specification includes a description of data received, information re-
turned, and logic used in the module. The module specification for the
previous module is

Get Information Module
Data received: None
Information returned: Starting balance
Transaction type
Transaction amount
Logic: Have the user enter information from the keyboard.

For the checkbook problem, complete module specifications are

1. Get Information Module
Data received: None
Information returned: Starting balance
Transaction type
Transaction amount
Logic: Have the user enter information from the keyboard.

2. Perform Computations Module
Data received: Transaction amount
Transaction type
Starting balance
Information returned: Ending balance
Logic: If transaction is a deposit, add it to the starting balance;
otherwise, subtract it.

FIGURE 2.5 —
Top-down design Update
checkbook

. * starting
. balanee.

- Get .
fransaction
- ainount

Get
starting

balance

" print Pt

2.1 Program Development—Top-Down Design 19

3. Print Results Module
Data received: Starting balance
Transaction type
Transaction amount
Ending balance
Information returned: None
Logic: Print results in a readable form.

At least two comments should be made about top-down design. First,
different people can (and probably will) have different designs for the
solution of a problem. However, each good design will have well-defined
modules with functional subtasks. Second, the graphic method just used
helps to formulate general logic for solving a problem but is somewhat
awkward for translating to code. Thus, we will use a stylized, half-English,
half-code method called pseudocode to illustrate stepwise refinement in
such a design. This will be written in English, but the sentence structure
and indentations will suggest Pascal code. Major tasks will be numbered
with whole numbers and subtasks with decimal numbers. First-level
pseudocode for the checkbook-balancing problem is

1. Get information
2. Perform computations
3. Print results

A second-level pseudocode development produces

1. Get information
1.1 get starting balance
1.2 get transaction type
1.3 get transaction amount
2. Perform computations
2.1 IF deposit THEN
add to balance
ELSE
subtract from balance
3. Print results
3.1 print starting balance
3.2 print transaction
3.3 print ending balance

Finally, step 3.2 of the pseudocode is subdivided as previously indicated
into

3.2 print transaction
3.2.1 print transaction type
3.2.2 print transaction amount

Two final comments are in order. First, each module developed should
be tested with data for that module. Once you are sure each module does
what you want, the whole program should work when the modules are
used together. Second, the process of dividing a task into subtasks is
especially suitable for writing programs in Pascal.

20 WRITING YOUR FIRST PROGRAMS

A Pascal program for this problem follows:

PROGRAM Checkbook (input, output);

VAR

StartingBalance,
EndingBalance,
TransAmount : real;
TransType : char;

BEGIN { Main Program }

{ Module for getting the data D
write ('Enter the starting balance and press <RETURN>. ');
readln (StartingBalance);
writeln ('Enter the transaction type (D) deposit or (W) withdrawal ');
write ('and press <RETURN>. L I
readln (TransType);
write ('Enter the transaction amount and press <RETURN>. !');
readln (TransAmount); J
{ Module for performing computations 1} 3
IF TransType = 'D' THEN >
EndingBalance := StartingBalance + TransAmount
ELSE
EndingBalance := StartingBalance - TransAmount; J
{ Module for printing results } N
writeln; writeln;
writeln ('Starting Balance $', StartingBalance:8:2); \
writeln ('Transaction $', TransAmount:8:2, TransType:Zd);
writeln ('----ee—— ':33);
writeln ('Ending Balance $', EndingBalance:8:2)
END. { of main program } W,

Notice how sections of the program correspond to module specifica-

tions. Sample runs of the program produce the output

3

Enter the starting balance and press <RETURN>. 235.16
Enter the transaction type (D) deposit or (W) withdrawal
and press <RETURN>. D

Enter the transaction amount and press <RETURN>. ?5.00
Starting Balance $ 235.16

Transaction 3 ?5.00 D

Ending Balance $ 310.16

Enter the starting balance and press <RETURN>. 310.16
Enter the transaction type (D) deposit or (W) withdrawal
and press <RETURN>. W

Enter the transaction amount and press <RETURN>. 6£5.75
Starting Balance $ 310.16

Transaction 3 E5.7?5 W

Ending Balance $ 244.41

*These numbers refer to the modules previously developed with module specifications.

2.1 Program Development—Top-Down Design 21

" A NOTE OF INTEREST

Software Engineering

In the article ‘A Computer Science Perspective
on Bridge Design” (Communications of the ACM,
April 1986), Alfred Spector and David Gifford
interviewed bridge designer Gerald Fox to de-
termine parallels between the design process fol-
lowed by a professional engineer who is building
a bridge and a software designer who is devel-
oping a complex program. Not surprisingly, many
similarities are found. Included among them are

Engineers designing a bridge view it first as
a hierarchy of substructures. This decompo-
sition process continues on the substruc-
tures themselves until a level of very funda-
mental objects (such as beams and plates)
ultimately is reached. This decomposition
technique is similar to the stepwise refine-
ment technique used by software designers,
who break a complex problem down into a
hierarchy of subproblems each of which ul-
timately can be solved by a relatively sim-
ple algorithm.

Engineers build conceptual models before
actually constructing a bridge. This model-
building allows them to evaluate various
design alternatives in a way which eventu-
ally leads to the best possible design for the
application being considered. This process
is analogous to the way in which a skilled
software designer builds models of a soft-
ware system using structure charts and first-
level pseudocode descriptions of modules.
The designer then studies these conceptual
models and eventually chooses the most
elegant and efficient model for the applica-
tion.

By the fashion in which engineers initially
break down the bridge design, they insure
that different aspects of the design can be
addressed by different subordinate groups
of design engineers working in a relatively

independent fashion. This is similar to the
goal of a software designer who oversees a
program development team. The design of
the software system must insure that indi-
vidual components may be developed si-
multaneously by separate groups whose
work will not have harmful side effects
when the components are finally pulled
together.

Reliability and maintainability are of crucial
importance to both the engineer who de-
signs a bridge and the software system de-
signer. The users of a bridge do not expect
to be taking a risk with their lives when
they use the bridge. Similarly, the users of a
software package do not expect to be taking
a risk with their valuable information when
using a program that manipulates their in-
formation. Hence bridge and software de-
signers must be concerned with methods of
thoroughly testing their products before
they are put into use and then insuring that
the system can be altered with relative ease
to meet the changing needs of the future.

One of the reasons that increasing attention
is being given to similarities between the design
techniques used by an engineer and a software
developer is the hope that elements of the very
structured development process that has been
employed for years in the engineering profession
may influence the very haphazard way in which
computer software has often been developed. As
we come to better understand the similarities
and differences between the disciplines of en-
gineering and computer science, we may well
enter a new age of software engineering in which
the productivity of software developers and the
reliability of their programs reach previously un-
attained heights.

You probably would not use the power of a computer for something as
simple as this program. You could just press a few calculator keys instead.
However, as you will see, the language supports development of subpro-
grams for specific subtasks. You will, for example, soon be able to enhance
this program to check for overdrafts, save the new balance for later use,
and repeat the process for several transactions. Learning to think in terms
of modular development now will aid you not just in creating algorithms
to solve problems, but it will aid you in writing programs to solve problems.

22 WRITING YOUR FIRST PROGRAMS

Exercises 2.1

B 22
Writing
Programs

BJECTIVES

to be able to recog-
nize reserved words
and predefined stan-
dard identifiers

Objectives continued.

@

. Which of the following statements are effective? Why or why not?

a. Pay the cashier $9.15.

b. Water the plants a day before they die.

c. Determine all positive prime numbers less than 1,000,000.

d. Choose X to be the smallest positive fraction. ‘
e. Invest your money in a stock that will increase in value.

What assumptions need to be made to understand each of the following
problems?

a. Find the largest number of a set of numbers.
b. Alphabetize a list of names.
c. Compute charges for a telephone bill.

Outline the main tasks for solving each of the following problems.

Write a good term paper.

Take a vacation.

Choose a college.

. Get a summer job.

Compute the semester average for a student in a computer science course
and print all pertinent data.’

pange

Refine the main tasks in each part of Exercise 3 into a sufficient number of
levels so that the problem can be solved in a well-defined manner.

Use pseudocode to write a solution for each of the following problems. Indi-
cate each stage of your development.

a. Compute the wages for two employees of a company. The input informa-
tion will consist of the hourly wage and the number of hours worked in
one week. The output should contain a list of all deductions, gross pay,
and net pay. For this problem, assume deductions are made for federal
withholding taxes, state withholding taxes, social security, and union
dues. ’

b. Compute the average test score for five students iiT a class. Input for this
problem will consist of five scores. Output should include each score and
the average of these scores.

. Develop an algorithm to find the total, average, and largest number in a

given list of 25 numbers.

. Draw a structure chart and write module specifications for each of the fol-

lowing exercises.

a. Exercise 5a.
b. Exercise 5b.
c. Exercise 6.

Words in Pascal

Consider the following complete Pascal program.

PROGRAM Example (input, output);
CONST

Skip = ¢+ ';
VAR

Jd, X, Sum : integer;

Average : real;

a to be able to recog-
nize and declare
valid identifiers

o to know the three
basic components of
a program

@ to understand the
basic structure of a
Pascal program

TABLE 2.1
Reserved words

2.2 Writing Programs 23

BEGIN
Sum := 0O;
FOR J := 1 TO 30 DO
BEGIN
read (X);
Sum := Sum + X
END;
Average := Sum / 30;

writeln; writeln;

writeln (Skip:10,

writeln;

writeln (Skip:10,
END.

'The average is', Average:8:2);

'The number of scores is!', 30:3)

This program—and most every programming language—requires the use
of words when writing code. In Pascal, words that have a predefined
meaning that cannot be changed are called reserved words. Some other
predefined words (standard identifiers) can have their meanings changed
if the programmer has strong reasons for doing so. In this text, reserved
words are capitalized and in bold type; standard identifiers are lowercase
and in bold type. When used in programs, reserved words are capitalized
and standard identifiers are lowercase. Other words (identifiers) must be
created according to a well-defined set of rules, but can have any meaning,
subject to those rules.

Reserved Words

In Pascal, reserved words are predefined and cannot be used in a program
for anything other than the purpose for which they are reserved. Some
examples are AND, OR, NOT, BEGIN, END, IF, and FOR. As you continue
in Pascal, you will learn where and how these words are used. At this
time, however, you need only become familiar with the reserved words
in Table 2.1; they are also listed in Appendix 1.

AND ELSE IF OR THEN
ARRAY END IN PACKED TO
BEGIN FILE LABEL PROCEDURE TYPE
CASE FOR MOD PROGRAM UNTIL
CONST FORWARD NIL RECORD VAR
DIv FUNCTION NOT REPEAT WHILE
DO GOTO OF SET WITH
DOWNTO

Standard Identifiers

A second set of predefined words, standard identifiers, can have their
meanings changed by the programmer. For example, if you could develop
a better algorithm for the trigonometric function sin, you could then sub-
stitute it in the program. However, these words should not be used for
anything other than their intended use. This list will vary somewhat from
computer to computer, so you should obtain a list of standard identifiers
used in your local implementation of Pascal. Some standard identifiers
are listed in Table 2.2 and in Appendix 2. The term keywords is used to

24 WRITING YOUR FIRST PROGRAMS

g&g {d‘fr?i? dentifiers Data Types Constants Functions Procedures Files
boolean false abs dispose input
char maxint arctan get output
integer true chr new
real cos pack
text eof page

eoln put
exp read

In readln
odd reset
ord rewrite
pred unpack
round write
sin writeln
sqr

sqrt

succ

trunc

refer to both reserved words and predefined identifiers in subsequent
discussions.

Syntax and Syntax Diagrams

Syntax refers to the rules governing construction of valid statements. This
includes the order in which statements occur, together with appropriate
punctuation. Syntax diagramming is a method to describe formally the
legal syntax of language structures. Syntax diagrams show the permissible
alternatives for each part of each kind of sentence and where the parts
may appear. The symbolism we use is shown in Figure 2.6. A combined

FIGURE 2.6
Symbols used in
syntax diagrams

Reserved words or terms that cannot be
further defined

Items that are defined by another
diagram

Any form of a separator

listing of syntax diagrams is contained in Appendix 3. Arrows are used
to indicate possible alternatives. To illustrate, a syntax diagram for forming
words in the English language is

TABLE 2.3
Valid and invalid
identifiers

2.2 Writing Programs 29

If the word has to start with a vowel, the diagram is

where vowel and letter are defined in a manner consistent with the English
alphabet. Syntax diagrams are used throughout the text to illustrate formal
constructs. You are encouraged to become familiar with them.

Identifiers

Reserved words and standard identifiers are restricted in their use; other
words used in a program are identifiers, and most Pascal programs require
their use. The more complicated the program, the more identifiers needed.
A valid identifier must start with a letter of the alphabet and must consist
only of letters and digits. A syntax diagram for forming identifiers is

Y

Table 2.3 gives some valid and invalid identifiers along with the reasons
for those that are invalid. A valid identifier can be of any length. However,
some versions of Pascal recognize only the first part of a long identifier,
for example, the first eight or the first ten characters. Therefore, identifiers
such as MathTestScorel and MathTestScore2 might be the same identifier
to a computer and could not be used as different identifiers in a program.
Thus, you should learn what restrictions are imposed by your compiler.

Identifier Valid If Invalid, Reason

Sum Yes

X+Y No “+" is not allowed
Average Yes

Text1 Yes

1stNum No Must start with a letter
X Yes

K mart No Spaces are not allowed
ThisIsaLongOne Yes

The most common use of identifiers is to name the variables to be used
in a program. Recall from algebra that variables such as x, y, and z are
frequently used in functional relationships; these could also be used as
identifiers in a Pascal program. However, we should generally use names
that are more descriptive. A detailed explanation of the use of variables
is given in Chapter 3.

26 WRITING YOUR FIRST PROGRAMS

Another use of identifiers is to name symbolic constants to be used in
a program; for example, to identify a certain name or date to be used
repeatedly. A third use of identifiers is to name the program. Every program
requires a name, and the name must be a valid identifier. Identifiers are
also needed to name new data types and subprograms, but don’t worry;
we’ll get to that in later chapters.

It is important to develop the habit of using appropriate descriptive
identifiers in your programs. For example, if you are using scores in a
program, identifiers like Score1, Score2, and Score3 are better than X, Y,
and Z. Similarly, use descriptive identifiers like Sum, Average, Balance,
or Hours when appropriate. Initially, you may not think this important,
but as programs get longer and more complex, you will appreciate the
fact that descriptive identifiers make a program easier to read.

Basic Program Components

A program in Pascal consists of three components: a program heading, an
optional declaration section, and an executable section. These three com-
ponents are illustrated in the program shown in Figure 2.7. The syntax
diagram for a program is

identifier L@-» file list

déél;’ﬂ*ﬁtibns J‘ » body [)

Figure 2.8 illustrates the program components of the sample program
(PROGRAM Example) that started this section.

The program heading is the first statement of any Pascal program. It is
usually one line and must contain the reserved word PROGRAM; the
program name, which must be a valid identifier; a list of files used; and
a semicolon at the end. The respective parts of a program heading are

PROGRAM name (file list);

In standard Pascal, file list must include the files input and/or output.
Some other versions, for example Turbo Pascal, do not have this require-
ment. Note: The symbol [T| appears in the margin to alert you to cases in
which Turbo differs from standard Pascal. These differences are explained
in Appendix 6.

The template or fill-in-the-blanks form above is used throughout this
book. Reserved words and standard identifiers are shown. You must use
identifiers to replace the words in lowercase letters.

Examples of program headings include

PROGRAM FirstOne (output); '

PROGRAM Rookie (input, output);

PROGRAM FindSum (input, output);

PROGRAM Checkbook (input, output);
PROGRAM Numberl (output);

FIGURE 2.7
Components of a
program

FIGURE 2.8
Components of PRO-
GRAM Example

Program heading —» [PROGRAM Example (input, output);

Declaration |

. —>»>
section
Executable

© —
section

2.2 Writing Programs 27

Program .
heading —>» [PROGRAM name (file list);
[~ CONST N
list of constants
TYPE (Here we must
list of data types list each
. > identifier we
Declaration use and how it
section —> is to be used.)
(optional) VAR
list of variables
. J
list of subprograms (Here we must
list any
subprograms.)
— BEGIN (Here is the source
body of program program version
Executable . of the
section algorithm: the
instructions
| END. that tell the

writeln (Skip:10,

L. END.

[~ CONST
Skip = ' '
VAR .
J, X, Sum : integer;
L Average : real;
[~ BEGIN
Sum := 0O;
FOR J := 1 TO 30 DO
‘BEGIN
read (X);
sSum := Sum + X
END;
Average := Sum / 30;
writeln; writeln;
writeln (Skip:10, 'The average is',
writeln;

'The number of scores is?',

computer what
to do.)

Average:8:2);

30:3)

28

WRITING YOUR FIRST PROGRAMS

You need not be concerned about input and output files in the file list at
this point. Merely be aware that, if a program is producing some output
(and what program wouldn’t?), output may be required. If data are to be
read into a program, input (or a similar file) may also be required. Any
list has its parts separated by commas. However, many current versions
of Pascal (Apple, Turbo, and UCSD, for example) do not require such a
list.
A syntax diagram for a program heading follows:

B vide_nﬁﬁ,er

The remainder of the program is sometimes referred to as the main
block; major divisions are the declaration section and the executable sec-
tion. The declaration section is used to declare (name) all symbolic con-
stants, data types, variables, and subprograms that are necessary to the
program. All constants named in the declaration section are normally
referred to as being defined. Thus, we generally say constants are defined
and variables are declared.

When constants are defined, they appear in the constant definition
portion of the declaration section after the reserved word CONST. The
form for defining a constant is

CONST
identifier 1 = value 1;
identifier 2 = value 2;

identifier n = value n;

The syntax diagram for this part is

value

Values of constant identifiers cannot be changed during program execution.
If a value is a string of characters, it must be enclosed in single quotation
marks (apostrophes). For example,

CONST
Date = 'July 4, 17?7?&';

Any number of constants may be defined in this section. Maximum read-
ability is achieved when the constants are listed consecutively and aligned
down the page. A typical constant definition portion of the declaration
section could be

2.2 Writing Programs 29

CONST
Skip = ' ;3
Name = 'George Washington';
Date = 'July 4, 17?7b!';
Splats = Vseokokskokokokokokoskkokodokskokokokokokkkokokkokorok | g
Line = ! LI
ClassSize = 35;
SpeedLimit 6S;

CmToInches = 0.3937;

The TYPE portion of the declaration section will be explained in Section
8.1. The variable declaration portion of the declaration section should be
listed after the TYPE portion, if present, and must begin with the reserved
word VAR. This section must contain all identifiers for variables to be
used in the program; if a variable is used that has not been declared, a
syntax error will occur when the program is compiled. As with constants,
variables must be valid identifiers and are usually listed down the page
to enhance readability.

The form required for declaring variables is somewhat different from
that used for defining constants: it requires a colon instead of an equal
sign and specific data types. The simplest correct form is

VAR
identifier 1 : data type 1;

identifier n : data type »n;

The syntax diagram is

‘identifier

Since data types are not discussed until later in this chapter, assume for
now that real, integer, and char are valid data types. The reserved word
VAR may appear only once in a program (exceptions will be noted when
subprograms are developed). If no variables are to be used, a variable
declaration section is not needed; however, this seldom happens. A typical
variable declaration section could look like this:

VAR
Sum : integer;
Average : real;
I, J, K : integer;
Ch : char;

Four other examples of permissible methods of writing this declaration
section are

30 WRITING YOUR FIRST PROGRAMS

VAR
I : integer;
J : integer;
K : integer;
Sum : integer;
Ch : char;
Average : real;

VAR

I, J, K, Sum : integer;

Ch : char;

Average : real;
VAR

I,

Jy

K,

Sum : integer;

Ch : char;

Average : real;
VAR

i, J,

K, Sum : integer;

Ch : char;

Average : real;

The third basic program component is the executable section. This section
contains the statements that cause the computer to do something. It must
start with the reserved word BEGIN and conclude with the reserved word
END. Also, a period must follow the last END in the executable section.
The syntax diagram is

| statement

5

Writing Code in Pascal

We are now ready to examine the use of the executable section of a pro-
gram. In Pascal, the basic unit of grammar is an executable statement, which
consists of valid identifiers, standard identifiers, reserved words, numbers,
and/or characters together with appropriate punctuation.

One of the main rules for writing code in Pascal is that a semicolon is
used to separate executable statements. For example, if the statement

writeln ('The results are'!:20, Sum:8, ' and', Aver:b:2)
were to be used in a program, it would (almost always) require a semicolon
between it and the next executable statement. Thus, it should be

writeln ('The results are':20, Sum:8, ' and', Aver:6:2);
One instance exists where an executable statement does not need a fol-
lowing semicolon. When a statement is followed by a reserved word END,
END is not a statement by itself, but part of a BEGIN . . . END pair; therefore

a semicolon is not required. However, as you will see in Section 2.3, if
one is included, it will not affect the program.

FIGURE 2.9
Executable section

2.2 Writing Programs 31

[~ BEGIN
Statement 1;
Statement 2;

Executable
section

Statement n - 1;

Statement n
__ END

Although you are not currently familiar with many executable state-
ments, you can visualize the executable section as shown in Figure 2.9.
Two comments are now in order. First, Pascal does not require that
each statement be on a separate line. Actually, you could write a program
as one long line (which would wrap around to fit the screen) if you wish;
however, it would be very difficult to read. Compare, for example, the
readability of the following two programs.
PROGRAM ReadCheck (output); CONST Name = !'George’';
Age = 2b; VAR J, Sum : integer; BEGIN Sum := 0;
FOR J := 1 TO 1D DO Sum := Sum + J; writeln
('My name is ':28, Name); writeln ('My age 1is ':27, Age);
writeln; writeln ('The sum is ':28, Sum) END.

PROGRAM ReadCheck (output);

CONST
Name = 'George!;
Age = 2b;
VAR .
J, Sum : integer;
BEGIN
Sum := 0O;
FOR J := 1 TO 10 DO
Sum := Sum + J;

writeln ('My name is ':28, Name);

writeln ('My age is ':27, Age);

writeln;

writeln ('The sum is ':28, Sum)

END.
You are not expected to know what the statements mean at this point, but
it should be obvious that the second program is much more readable than
the first. In addition, it is easier to change if corrections are necessary.
Second, Pascal ignores extra spaces and line boundaries. This explains

why the two programs are identical. For example, in a program heading,
the following are equivalent:

PROGRAM ExtraBlanks (output);
PROGRAM ExtraBlanks(output);

PROGRAM ExtraBlanks (output);

A good principle to follow is to use spacing to enhance readability.
Decide on a style you like (and your instructor can tolerate) and use it
consistently. Most programmers, however, include a space before a left

32 WRITING YOUR FIRST PROGRAMS

Blaise Pascal

Blaise Pascal was born in 1623 in France. He was
acutely ill most of his life and died in 1662 at
the age of 39. Mathematics was excluded from
his early life for fear that he would overstrain
himself by using his head. However, after a be-
lated introduction, he became fascinated with
the subject and devoted most of the rest of his
life to its study. His major contribution was the
development (with Pierre de Fermat) of the the-

In 1641, at the age of 18, he invented the first
calculating machine in history. This machine op-
erated using ten gears (base 10). Values were car-
ried by one gear activating the gear for the next
decimal place. Pascal’s machine was opposed by
tax clerks of the era who viewed it as a threat to
their jobs. Pascal presented his machine to Queen
Christina of Sweden in 1650; it is not known
what she did with it.

ory of probability.

parenthesis and after a right parenthesis when appropriate but no spaces
immediately inside parentheses; for example.

PROGRAM LooksNice (input, output);

Exercises 2.2 1. List the rules for forming valid identifiers.

2. Which of the following are valid identifiers? Give an explanation for those
that are invalid.

a. ?0p
Payroll
Roomzaad
Name List
A

A}

1A
Time&Place
CONST

XxY
ListOfEmployees
Lima,Ohio

mFET IR SO RN T

3. Which of the following are valid program headings? Give an explanation for
those that are invalid.

a. PROGRAM Rookie (output)

b. PROGRAM Pro (input, output);
TestProgram (input, output);
PROGRAM (output);

PROGRAM GettingBetter (output);
PROGRAM Have Fun (input, output);
PROGRAM 2ndOne (output);

® me o

Lo

Name the three main sections of a Pascal program.

5. Write constant definition statements for the following:

a. your name

b. your age

c. your birth date
d. your birthplace

2.3 Data Types and Output 33

6. Find all errors in the following definitions and declarations:

a. CONST
Company : 'General Motors!';
VAR
Salary : real;
b. VAR
Age = 25;
c. VAR
Days : integer;
Ch : char;
CONST
Name = 'John Smith';
d. CONST
Car : 'Cadillac’!;
e. CONST
Score : integer;
f. VAR
X, ¥, Z : real;
Score,
Num : integer;

7. Discuss the significance of a semicolon in writing Pascal statements.

|23 Type integer

Data Types and Numbers in some form will be used in computer programs and the kind

Output of numbers used is referred to as its data type. We will first look at numbers

of type integer, which are integers that are positive, negative, or zero.
Some rules that must be observed when using integers are

= to understand and

be able to use the 1. Plus “+” signs do not have to be written before a positive integer.
data types integer, _For example, +283 and 283 have the same value and both are
real, and char allowed. . :

= to understand the 2. Minus “—" signs must be written when using a negative number.
difference between 3. Leading zeros are ignored. For example, 00073 +073, 0073, and

floating-point form
and fixed-point
form of decimal

73 all have the same value.
4. Decimal points cannot be used when writing integers. Although

riumbers 14 and 14.0 have the same value, 14.0 is not of type integer.
= to understand the 5. Commas cannot be used when writing integers. 271,362 is not al-
syntax for and use lowed; it must be written as 271362.
of write and writeln
for output The syntax diagram for an integer is
m to be able to format
output

There is a limit on the largest and the smallest integer constant. The largest
such constant is maxint and the smallest is usually —maxint or
(—maxint—1). maxint and —maxint are recognized by every version of
Pascal; however, different machines have different values for them. This
section ends with a program that enables you to discover the value of

34 WRITING YOUR FIRST PROGRAMS

TABLE 2.4
Forms for equivalent
numbers

maxint on your computer. Operations with integers will be examined in
the next section and integer variables will be discussed in Chapter 3.

Type real

Working with reals is more complicated than working with integers. When
using decimal notation, numbers of type real must be written with a
decimal point “.”” with at least one digit on each side of the decimal. Thus,
.2 is not a valid real but 0.2 is.

Plus “+ " and minus “ — " signs for data of type real are treated exactly
as with integers. When working with reals, however, both leading and
trailing zeros are ignored. Thus, +23.45, 23.45, 023.45, 23.450, and
0023.45000 have the same value.

All reals seen thus far have been in fixed-point form. The computer will
also accept reals in floating-point or exponential form. Floating-point form
is an equivalent method for writing numbers in scientific notation to
accommodate numbers that may have very large or very small values. The
difference is, instead of writing the base decimal times some power of 10,
the base decimal is followed by E and the appropriate power of 10. For
example, 231.6 in scientific notation would be 2.316 x 102 and in floating-
point form would be 2.316E2. Table 2.4 sets forth several fixed-point

Fixed-point Scientific Notation Floating-point
46.345 4.6345% 10 4.6345E1
59214.3 5.92143 X 104 5.92143E4
0.00042 4.2x10-4 4.2E~-4
36000000000.0 3.6 X100 3.6E10
0.000000005 5.0X10-9 5.0E—9
—341000.0 —~3.41X 108 —3.41E5

decimal numbers with the equivalent scientific notation and floating-point
form. Floating-point form for real numbers does not require exactly one
digit on the left of the decimal point. In fact, it can be used with no
decimal points written. To illustrate, 4.16E1, 41.6, 416.0E-1, and 416E-1
have the same value and all are permissible. However, it is not a good
habit to use floating-point form for decimal numbers unless exactly one
digit appears on the left of the decimal. In most other cases, fixed-point
form is preferable.
The syntax diagram for a real number is

~ When using reals in a program, you may use either fixed-point or floating-
point form. But the computer prints out reals in floating-point form unless
you specify otherwise. Formatting output is discussed later in this section.

2.3 Data Types and Output 35

Type char

Another data type available in Pascal is char, which is used to represent
character data. In standard Pascal, data of type char can be only a single
character. These characters come from an available character set that dif-
fers somewhat from computer to computer, but always includes the letters
of the alphabet; the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9; and special symbols
such as #, &, !, +, —, *, /, and so on. Two common character sets are
given in Appendix 4.

Character constants of type char must be enclosed in single quotation
marks when used in a program. Otherwise, they will be treated as variables
and subsequent use will cause a compilation error. Thus, to use the letter
A as a constant, you would type ‘A’ The use of digits and standard op-
eration symbols as characters is also permitted; for example, ‘7’ would be
considered a character, but 7 is an integer.

If a word of one or more characters is used as a constant in a program,
it is referred to as a string constant. String constants, generally called
strings, may be defined in the CONST portion of the declaration section.
The entire string must be enclosed in single quotation marks. A string is
not a standard Pascal data type. Some sample definitions are

CONST
Name = 'John Q. Public!';
Date = ‘July 4, 1776';
Splats = Yrckkokkokkkdkokkkokkkokkokdkok kKK !]

Students with experience in using BASIC usually expect the equivalent
of a string variable for storing names, and other information. Standard
Pascal does not have such a feature. However, an analogous feature, packed
arrays of characters, is presented in Section 9.5.

When a single quotation mark is needed within a string, it is represented
by two single quotation marks. For example, if the name desired was
O’Malley, it would be represented by

'O''MALLEY!'

When a single quotation mark is needed as a single character, it can be
represented by placing two single quotation marks within single quotation
marks. When typed, this appears as ””. Note that these are all single
quotation marks; use of the double quotation mark character here will not
produce the desired result.

Output

The goal of most programs is to print something. What gets printed (either
on paper or on a screen) is referred to as output. The two program state-
ments that produce output are write and writeln (pronounced “write
line”). They are usually followed by character strings, numbers, or nu-
merical expressions enclosed in parentheses. The general form is

write (expression 1, expression 2, ..., expression n)
or

writeln (expression 1, expression 2, . .., expression n)

36 WRITING YOUR FIRST PROGRAMS

A syntax diagram for write (applicable also for writeln) is

‘expression

An exception to this is that
writeln;

is a complete statement; it causes a blank line to be printed.

The write statement causes subsequent output to be on the same line;
writeln causes the next output to be on the next line. This is because
writeln is actually a write statement followed by a line feed. To illustrate,

write ('This is a test.t!);
writeln ('How many lines are printed?');

causes the output
This is a test.How many lines are printed?
whereas,

writeln ('This is a test.!');
writeln ('How many lines are printed?!');

causes the output

This is a test.
How many lines are printed?

Note:

1. Some printers reserve the first column for carriage control. Thus,
the first character in a string on the left side of a page would not
be printed.

2. Some implementations use a buffer to gather output from write
statements and then print the gathered line when a writeln is
encountered.

You should check with your instructor concerning these features.

As indicated, character strings can be printed by enclosing the string
in single quotation marks within the parentheses. Numerical data can be
printed by including the desired number or numbers within the paren-
theses. Thus,

writeln (100)

produces
100
and
writeln (100, a7, 9S)
produces
100 av 95

The spaces at the beginning of a line and between numbers are caused
by a default field width. Many implementations of Pascal use a predeter-
mined field width for output. This predetermined default width will be

EXAMPLE 2.1

2.3 Data Types and Output 37

used unless output is controlled by the programmer. Methods for con-
trolling field width of output will be examined shortly.

Write a complete Pascal program to print the address
1403 South Drive

Apartment 3B
Pittsburgh, PA 15238

A complete program to print this is
PROGRAM Address (output);

BEGIN
writeln ('21403 South Drive!');
writeln ('Apartment 3B');
writeln ('Pittsburgh, PAR', 15238)
END.

When this program is run on a computer, you may get

3403 South Drive
Apartment 3B
Pittsburgh, PA 15238 i

You can also use writeln to produce blank lines in output. When writeln
is used without a following expression, it causes the printer (or cursor in
your monitor) to advance to the beginning of the next line. This technique
is frequently used to produce more readable output.

STYLE TIP

. EXAMPLE 2.2

i ‘:'ng*and end of the exécutable séction will sep-

arate desired outpixt from other messages or directions. Thus, the previdiis.
program for printing an- address could have been: -

PROGRAM Adﬁmgss (:o.ut.gut):.‘,:

Let’s now combine various methods of using writeln to write a complete Pascal
program that may produce the following output:

COMPUTER SCIENCE 150

TEST SCORES:
100 a8 Q93
a9 e 76
73 b4

38 WRITING YOUR FIRST PROGRAMS

The program would be
PROGRAM PrintScores (output);

BEGIN
writeln; writeln;
writeln ('COMPUTER SCIENCE 150!');
writeln (! "
writeln;
writeln ('TEST SCORES:');
writeln (200, 94, 93);
writeln (&89, 82, 7?6);
writeln (7?3, b&4);
writeln; writeln
END.]

When designing a program to solve a problem, you should constantly
be aware of how the output should appear. The spacing of output on a
line can be controlled by formatting expressions in write and writeln
statements.

Formatting Integers

If the programmer does not control the output, each integer will be printed
in a predetermined field width (unless the integer exceeds the field width).
This is referred to as a default field width. This width depends on the
machine and version of Pascal being used. In this text, we will assume a
width of ten spaces. Negative signs occupy one position in the field and
plus signs are not printed. Spacing of output on a page will frequently be
denoted by an underscore for each blank space. Some writeln statements
and their output with a default field width of ten follow.

Program Statement Output

writeln (223); = e _ 123
writeln (+5062); W ommaeeo 5062
writeln (-12); = = e -12
writeln (0); @ e 0

A complete Pascal program to illustrate the field width for these integers
is
PROGRAM PrintInteger (output);

BEGIN
writeln; writeln;
writeln (123);
writeln (+5062);
writeln (-12);
writeln (0);
writeln; writeln

END.

Controlling output is referred to as formatting. It is relatively easy to
format output for integers. Using a writeln statement, the desired field
width is designated by placing a colon “:” after the integer and then an
integer specifying the field width. The integer printed will be right justified
in the specified field. The general form for formatting integers is

writeln (integer:n);

2.3 Data Types and Output

Some illustrations for formatting integer output are

Program Statement Output
writeln (123:6); —--223
writeln (1S, 1D:S5); ________ 15___10
writeln (-2&3:7, 22:3); ————263_21
writeln (+5062:5); —-5062
writeln (65221:3); L5221

39

Note that, in line five, an attempt is made to specify a field width smaller
than the number of digits contained in the integer. Most versions of Pascal
will automatically print the entire integer; however, some versions will
print only in the specified width. The following program will enable you
to find out exactly what your machine will do.

PROGRAM FieldWidth (output);

BEGIN
writeln; writeln;

writeln ('This program will check field width');

writeln (!
writeln;
writeln (123:5, 12345:3, 1,
writeln; writeln

END.

')

-678942:4);

When this program is run on a Control Data Cyber 174, the output is
This program will check field width

12312345 1-678942

Formatting Reals

As with data of type integer, data of type real can be used in writeln
statements. If no formatting is used, the output will be in floating-point
form. Different machines and different versions of Pascal produce a variety
of default field widths. For example, some use a standard field width of
16 and some use a standard width of 22. Assuming a field width of 22,

the program

PROGRAM UnformattedReals (output);

BEGIN
writeln; writeln;
writeln (231.45);
writeln (0.0045k);
writeln (4.0);
writeln (-526£.1ES);
writeln (0.91E-8);
writeln; writeln

END.

produces

40 WRITING YOUR FIRST PROGRAMS

_-2.3145000000000E+002

—_4.5L00000000000E-003

_-4.0000000000000E+000

--5.2610000000000E+007

--9.1000000000000E-009

Most programs using data of type real require a neater method of ex-
pressing the output. This can be accomplished by formatting. To format
reals you must specify both the field width and the number of decimal
places to the right of the decimal. This is done by writing the real, followed
by a colon ““:”, followed by an integer, followed by a colon and another
integer. For example, if you are writing a program that prints wages of
workers, you could get a field width of eight with two places to the right
of the decimal as follows:

writeln (231.4S5:8:2);

231.45 is the computed wage, 8 specifies the field width, and 2 specifies
how many digits appear to the right of the decimal. The output for this
statement is

——231.45
The general form for formatting reals is

writeln (real:in1:n2);

Use of this formatting procedure causes the following to happen:

1. The decimal uses one position in the specified field width.

2. Leading zeros are not printed.

3. Trailing zeros are printed to the specified number of positions to
the right of the decimal.

4, Leading plus “+" signs are omitted.

5. Leading minus ““—" signs are printed and use one position of the
specified field.

6. Digits appearing to the right of the decimal have been rounded
rather than truncated.

As with integers, if a field width is specified that is too small, most versions
of Pascal will default to the minimum width required to present all digits
to the left of the decimal as well as the specified digits to the right of the
decimal. The following table illustrates how output using data of type
real can be formatted.

Program Statement Output
writeln (7?65.432:10:3) ——-7ES5.432
writeln (023.24:20:2) = _____ 23.14
writeln (65.50:10:2) = 0o 655.50
writeln (+342.2:10:2) --—-341.20
writeln (-341.2:10:2) ————341.20
writeln (1&.458:10:2) = _____ 16.46
writeln (0.00456:1D:4) ———-D.0D46

Reals in floating-point form can also be used in a formatted writeln state-
ment. Output from the following complete program

2.3 Data Types and Output 41

PROGRAM FormatReals (output);

BEGIN
writeln; writeln;
writeln (1.234E2:10:2);
writeln (~?23.4E-3:10:5);
writeln (-723.4E-3:10:3);
writeln (6.435E2:10:2, 2.314SE2:10:2);
writeln; writeln

END.

is

—-——-123.40

-—=0.72340

————=0.720

————b43.50____231.45

Formatting Strings

Strings and string constants can be formatted using a single colon “:”
followed by a positive integer “n” to specify field width. The general form
for formatting strings is

writeln (‘string’:n);

The string will be right justified in the field. The following program il-
lustrates such formatting.

PROGRAM StringFormat (output);

CONST
Indent

=|l;
BEGIN
writeln; writeln;
writeln (Indent:4, 'Note the strings below
writeln (Indent:4, !

)3

writeln;
writeln ('This is a sample string.!':35);
writeln ('This is a sample string.!':30);
writeln ('This is a sample string.':2S);
writeln ('This is a sample string.':20);
writeln; writeln

END.

The output from this program would be

Test Programs

Note the strings below.

This is a sample string.
This is a sample string.
This is a sample string.
This is a sample string.

Programmers should develop the habit of using test programs to improve
their knowledge and programming skills. Test programs should be rela-
tively short and written to provide an answer to a specific question. For

42 WRITING YOUR FIRST PROGRAMS

STYLE TIP
EEENEEED

. Note the: use of the constant. indent in the last prbgram This is used to
. control indented output. Smce Pascal doés not have a tabbing or spacmg
command ‘you mlght want: to' aIso deﬁne somethmg like:

Skip ="' '3 _

.. in the CONST secuon Thus you:

' CONST LR

Inﬁent P '; hE
Skip = ¢ 13

~. You couid then use .

: "'Indent v

for indenting and
5kip -

bl‘.:“for spamng on a hne. '

example, maxint was discussed earlier in this section. It was mentioned

_ that the value of maxint depended upon the machine being used. You
could use a test program to discover what your computer uses for maxint.
A complete program that accomplishes this is

PROGRRM TextMax (output);

BEGIN
writeln ('Maxint is ', maxint)
END.

Notice that a brief message, 'Maxint is ’, is included to explain the output.
Such a message or “output label” is almost always desirable.

Test programs allow you to play with the computer. You can answer
“What if ... ” questions by adopting a “try it and see” attitude. This is
an excellent way to become comfortable with your computer and the
programming language you are using. For example, you might change the
previous test program to

PROGRAM TextMax (output);
BEGIN

writeln ('Maxint is !, maxint);
writeln ('TooMuch is ', maxint + 1)

END.
Exercises 2.3 1. Which of the following are valid integers? Explain why the others are

invalid.
a. 521 e. +65

. b. —32.0 f. 6521492183

‘c. 5,621 g -0
d. +00784

2. Which of the following are valid reals? Explain why the others are invalid.

a. 26.3 f. 43E2
b. +181.0 g. —0.2E-3
c. —.14 h. 43,162.3E5
d. 492. i. —176.52E+1
e. +017.400 j. 1.43000E+2

2.3 Data Types and Output 43

. Change the following fixed-point decimals to floating-point decimals with

exactly one nonzero digit to the left of the decimal.

a. 173.0 -d. +014.768
b. 743927000000.0 e. —52
c. —0.000000023

. Change the following floating-point decimals to fixed-point decimals.

a. —1.0046E+3 - d. —4.615230E3
b. 4.2E-8 e. —8.02E-3
c. 9.020E10
. Indicate the data type for each of the following:
a. —720 e. ‘150’
b. —720.0 f. ‘23.4E2’
c. 150E3 g 23.4E-2
d. 150

. Write and run test programs for each of the following:

a. Examine the output for a decimal number without field width specified;
for example,

writeln (2.31)

b. Try to print a message without using quotation marks for a character
string; for example,

writeln (Hello);

. For each of the following, write a program that would produce the indi-

cated output.

a. Score b. Price
(215 $ 19.94
ac $3100.00
79 $ 58.95
where “S” is in column 10. where “P” is in column 50.

. Assume the hourly wages of five student employees are

3.65
4.10
2.89
5.00
4.50

Write a program that will produce this output.

Employee Hourly Wage

3.6S
4.10
2.689
5.00
4.50

nNwnmue
Nl

What is the output from the following segment of code on your printer or
terminal?

writeln ('My test average is', 87.5);

writeln ('My test average is':20, 87.5:10);
writeln ('My test average is':25, &7.5:1D:2);
writeln ('My test average is':25, 87.5:6:2);

44

WRITING YOUR FIRST PROGRAMS

10.

11.

12.

13.

14.

15.

Write a program that will produce the following output. Start Student in
column 20 and Test in Column 40.

Student Name Test Score
Rdams, Mike 73
Conley, Theresa 86
Samson, Ron Q2
O'Malley, Colleen a1

The Great Lakes Shipping Company is going to use a computer program to
generate billing statements for their customers. The heading of each bill is
to be

GREAT LAKES SHIPPING COMPANY
SAULT STE. MARIE, MICHIGAN

Thank you for doing business with our company.
The information listed below was used to
determine your total cargo fee. We hope you
were satisfied with our service.

CARGO TONNAGE RATE/TON TOTAL DUE
Write a complete Pascal program that will produce this heading.

What output is produced by each of the following statements or sequence
of statements when executed by the computer?

a. writeln (1234, 1234:8, 1234:bL);
b. writeln (12:4, -2l:4, 120:4);
c. writeln ('FIGURE AREA PERIMETER'
writeln (! '
writeln;
writeln ('SQUARE', 1k:5, 16:12);
writeln;
writeln ('RECT ', 24:5, 20:12);

)i
)3

Write a complete program that will produce the following table:

WIDTH LENGTH AREA
s 2 8
21 5 105

What output is produced when each of the following is executed?

a. writeln (2.134:15:2);

writeln (423.73:5:2);

writeln (—-42.1:8:3);

writeln (-4.21E3:6:2);

writeln (10.2S);

writeln (1.2S, 1.25:6:2, %.25:b:1);

me oo @

Write a complete program that produces the following output:

Hourly Wage Hours Worked Total
5.0 c0.0 100.00
?.50 15.25 114.375

BEE D

B Summary

Key Terms

constant definition
data type
declaration section
effective statement
executable section
executable statement
fixed point

floating point
formatting

Keywords

BEGIN
char
CONST
END
input

Key Concepts

identifier
keyword
module

module specifications

program heading
pseudocode
reserved word
standard identifier
stepwise refinement

integer
maxint
output
PROGRAM

Summary 45

string

string constant
syntax

syntax diagram
syntax error

test program
top-down design
variable declaration

real
VAR
write
writeln

Five steps in problem solving include: understand the problem, develop an
algorithm, write code for the program, run the program, and test the results
against answers manually computed with paper and pencil.

Top-down design is a process of dividing tasks into subtasks until each sub-
task can be readily accomplished.

o Stepwise refinement refers to refinements of tasks into subtasks.

0O o a8

Valid identifiers must begin with a letter and they can contain only letters
and digits.

The three components of a Pascal program are program heading, declaration
section, and executable section.

Semicolons are used to separate executable statements.

Extra spaces and blank lines are ignored in Pascal.

Output is generated by using write or writeln.

Strings are formatted using a single colon followed by a positive integer that
specifies the total field width, for example

writeln ('Tﬁis is a string,':30);

The following table summarizes the use of the data types integer, real, and
char.

Data Type Permissible Data Formatting
integer numeric one colon; for example
writeln (25:B);
real numeric two colons; for example
writeln (1234.5:8:2);
char character one colon; for example
writeln ('A':b);

46 WRITING YOUR FIRST PROGRAMS

8 Programming Write and run a short program for each of the following:

Problems 1. A program to print your initials in block letters. Your output could
look like
JJaag A cc
J A A c c
J A A c
J ARAAR c
J J A A c c
JJ A 2 cc

2. Design a simple picture and print it out using writeln statements. If
you plan the picture using a sheet of graph paper, keeping track of
spacing will be easier.

3. A program to print out your mailing address.

® 3.1
Arithmetic in
Pascal

Arithmetic, Variables,
Input, Constants, and
Standard Functions

In this chapter we will discuss arithmetic operations, using data

. OBJECTIVES: = |

a to be able to evalu-
ate arithmetic
expressions using
data of type integer

= to be able to evalu-
ate arithmetic
expressions using
data of type real

a to understand the
order of operations
for evaluating
expressions

= to be able to iden-
tify mixed-mode
expressions

to be able to distin-
guish between valid
and invalid mixed-
mode expressions

o to be able to evalu-
ate mixed-mode
expressions

in a program, obtaining input, and using constants and variables.
We will also discuss the use of functions to perform standard operations
such as finding the square root or absolute value of a number.

Basic Operations for Integers

Integer arithmetic in Pascal allows the operations of addition, subtraction,
and multiplication to be performed. The notation for these operations is

Symbol Operation Example Value
+ Addition 3 +5S 8
- Subtraction 43 - 2§ 18
* Multiplication 4 % 7 28

Noticeably absent from this list is a division operation. This is because
integer arithmetic operations are expected to produce integer answers.
Since division problems might not produce integers, Pascal provides two
operations, MOD and DIV, to produce integer answers.

In a standard division problem, there is a quotient and remainder.
In Pascal, DIV produces the quotient and MOD produces the remainder.
For example, in the problem 17 divided by 3, 17 DIV 3 produces 5,
and 17 MOD 3 produces 2. Avoid using DIV 0 (zero) and MOD 0 (zero).
Several integer expressions and their values are shown in Table 3.1.
Notice that when 3 is multiplied by —2, the expression is written as
3 * (—2) rather than 3 * —2. This is because consecutive operators

47

48 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

TABLE 3.1

Values of integer Expression Value
expressions -3 + 2 -1
2 -3 -1
-3 % 2 -6
3 % (-2) -6
-3 x (-2) 6
17 DIV 3 5
17 MOD 3 2
1?7 DIV (-3) -5
17 MOD (-3) 2
-17 DIV 3 -5
-17 MOD 3 -2
-3? DIV (-3) 5
-17 MOD (-3) -2
cannot appear in an arithmetic expression. However, this expression
could be written as —2 * 3.
Order of Operations for Integers
Expressions involving more than one operation are frequently used when
writing programs. When this happens, it is important to know the order
in which these operations are performed. The priorities for these are
1. All expressions within a set of parentheses are evaluated first. If
there are parentheses within parentheses (the parentheses are
nested), the innermost expressions are evaluated first.
2. The operations *, MOD, and DIV are evaluated next in order from
left to right.
3. The operations + and — are evaluated last from left to right.
These operations are the operations of algebra and are summarized in
Table 3.2.
To illustrate how expressions are evaluated, consider the values of the
expressions listed in Table 3.3.
;?;zf :;i::hmetic Expression or Operation Priority
priority () 1. Evaluate from inside out
*, MOD, DIV 2. Evaluate from left to right
+, - 3. Evaluate from left to right
TABLE 3.3 .
Priority of operations Expression Value
3-4x%5 -17
3 - (4 % 5) -17
(3 - 4) x5 -5
3 x 4 - § 7
3 % (4 - 5) -3
1? - 10 - 3 4
1?7 - (10 - 3) 10
(37 - 30) - 3 4

-42 + 50 MOD 17 —26

TABLE 3.4
Real arithmetic

priority

3.1 Arithmetic in Pascal 49

As expressions get more elaborate, it can be helpful to list partial evalu-
ations in a manner similar to the order in which the computer performs
the evaluations. For example, suppose the expression

(3 - 4) + 8 DIV S + @

is to be evaluated. If we consider the order in which subexpressions are
evaluated, we get

(3 - 4) + 18 DIV S + 2
1
-1 + 18 DIV S + 2

1
ot + 3 + 2

-

= + 2
l
Y2

Basic Operations for Reals

The operations of addition, subtraction, and multiplication are the same
for data of type real as for integers. Additionally, division is now per-
mitted. Since MOD and DIV are restricted to data of type integer, the
symbol for division of data of type real is *“/. The real arithmetic operations
are as follows:

Symbol Operation Example Value
+ Addition 4.2 + 19.36 23.56
- Subtraction 19.36 - 4.2 15.16
* Multiplication 3.1 % 2.0 6.2
/ Division S4.6 / 2.0 27.3

Division is given the same priority as multiplication when arithmetic
expressions are evaluated by the computer. The rules for order of operation
are the same as those for evaluating integer arithmetic expressions. A
summary of these operations is shown in Table 3.4.

Expression or Operation Priority
() 1. Evaluate from inside out
*, / 2. Evaluate from left to right
+, - 3. Evaluate from left to right

Some example calculations using data of type real are

Expression Value
3.5 x 2.0 - 1.0 6.0
2.0 * (1.2 - 4.3) -6.2
2.0 * 1.2 - 4.3 -1.9
-12.6 / 3.0 + 3.0 -1.2
-12.6 / (3.0 + 3.0) -21

As with integers, consecutive operation signs are not allowed. Thus, if
you want to multiply 4.3 by —2.0, you can use —2.0 * 4.3 or 4.3 * (—2.0),

50 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

but you cannot use 4.3 * — 2.0. As expressions get a bit more complicated,
it is again helpful to write out the expression and evaluate it step by step.
For example,

4.3 % (10.1 + (?2.3 / 3.0 - 4.5)) + 18.2
!

-4.3 * (10.3 + (24.1 - 4.5)) + 18.&2

-4.3 * (0.1 + qub) + 18.a

=4.3 % qu? + k8.2

—LE;.?L + 18.2
—ID;.SI

Overflow and Underflow

Arithmetic operations with computers have some limitations. One of these
is the problem of overflow. Integer overflow occurs when an integer expres-
sion exceeds the value of maxint. Real overflow occurs when the absolute
value of a real is too large to fit into a memory location (discussed further
in Section 3.2). Ideally, an error message should be given when overflow
occurs. Unfortunately, that is not always the case. Most systems just assign
a meaningless value and keep on computing. You should be sure to check
limitations for your system.

A second problem occurs when working with reals. If a real number is
too small to be represented, it is replaced by zero. This is called underflow.
Thus, your computations may produce a real of the magnitude 1.0 * 101,
but your system could replace this with a zero.

In general, underflow is less of a problem than overflow. You should,
however, always guard against both possibilities when performing nu-
merical computations.

Mixed Expressions

We have seen examples of arithmetic expressions using data of types
integer and real. What happens if both integer and real data types are
used in the same expression?

It is possible for some expressions to contain data of both types. These
are called mixed-mode expressions. All of the operations studied thus far
except MOD and DIV will allow operands of both types. However, when
any operand in a simple arithmetic expression is of type real, the value
of the expression will be given as a real and not as an integer. For example,
4 + 3.0 will be the real 7.0 rather than the integer 7. It is permissible to
use data of type integer with the real number operation, division “/”;
when this happens, the answer is given as a real number. For example,
6 / 3 will be the real 2.0 rather than the integer 2. However, when data of
type real is used with either MOD or DIV, an error message will occur.
Several examples of valid and invalid mixed-mode expressions are shown
in Table 3.5.

Evaluation of mixed-mode expressions is similar to evaluating either
real or integer arithmetic expressions. If an expression is valid, the order
of operations for evaluating the expression is the same as that used for

TABLE 3.5
Mixed-mode arith-
metic priority

3.1 Arithmetic in Pascal 51

Expression Valid Data Type
-2.0 % 17 Yes real
13.1 - 22 Yes real
15 /7 7 Yes real
14 / 7.0 Yes real
0.0 MOD @ No
0 MOD 2.0 No
-3S5 DIV 3 Yes integer
-5 DIV 3.0 No
32.0 DIV 4.0 No
7+ 5.0 Yes real

the data type of the value of the expression. As an example, consider the
evaluation of the expression (—4.2 + 17 DIV 3 * 2.1) / 2. Within the pa-
rentheses, 17 DIV 3 has first priority, hence the operation is valid. The
sequential evaluation is given by

(-4.2 + 17 DIV 3 x 2.2) /7 ¢&
!

(4.2 + s * 2.1) / @
I
(4.2 + 10.5) /2
T
6.3 /2
v
3.15

Mixed-mode expressions can be used in writeln statements. The pro-
grammer must be careful, however, when formatting output. Only data of
type real can be formatted using two colons (:8:3). If this method of for-
matting is used on other data types, an error will result. However, reals
can be formatted with a single colon. For example,

writeln (18.5:8);
is a valid statement. This produces 18.5 in floating-point form in a total
field width of eight columns, as 1.850E + 1. However, this is usually not

a desirable practice.
Some valid and invalid statements using formatted output are

Statement Valid Output
writeln (14.0/7(-2):8:2) Yes ~——-7.00
writeln (17*(3+8):6) Yes —-=187
writeln (17*(3+8):6:2) No
writeln (-27/3:8) Yes --9.0E4+0
writeln (-27/3:6:2) Yes --9.00
writeln (-5%1b:8:3) No

Now that you have some degree of familiarity with mixed-mode expres-
sions, you should know that, if possible, you should avoid them. There
are at least three good reasons for not using them: invalid expressions
may be obtained (10 MOD 2.0); improper formatting could result; and
improper assignment statements could result (see Section 3.2).

52 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

Exercises 3.1

3.2
Using Variables

OBJECTIVES

o to understand utili-
zation of storage
area

Objectives continued.

1. Find the value of each of the following expressions:
1?7 - 3 x 2

-15 * 3 + 4

123 MOD S

123 DIV 5

S % 123 DIV S + 123 MOD S
-21 % 3 * (-1)

14 * (3 + 18 DIV 4) - SO
100 - (4 * (3 + 2)) * (-2)
-56 MOD 3

14 *x 8 MOD S - 23 DIV (-4)

TR Mme RN T

2. Find the value of each of the following expressions:
. 3.2 + 5.02 - 6.}

6.0 7/ 2.0 x 3.0

£.0 / (2.0 + 3.0)

-20.5 x (2.2 + 2.0)

-2.0 * ((56.8 / 4.0 + 0.8) + 5.0)
1.04E2 = 0.02E3

a00.0E-2 / 4.0 + 15.3

®me A Ew

3. Which of the following are valid expressions? For those that are, indicate
whether they are of type integer or real.

a. 18 - (S5 * 2) £ 28 7 7
b. (18 — 5) * 2 g. 28.0 / 4

c. 18 - S * 2.0 h. -5.23 + 16

d. 25 * (14 MOD 7.0) i, 2 DIV & / 3
e. 1.4E3 * 5 j. 24 DIV (b / 3)

4. Evaluate each of the valid expressions in Exercise 3.

5. What is the output produced by the following program?
PROGRAM MixedMode (output);

BEGIN
writeln; writeln;
writeln (! Expression Value!');
writeln (')
writeln;
writeln (! 0 /7 S' , 10/5:12:3);
writeln (! 2.04?7%(=-2)', 2.0 + ? * (-1));
writeln; writeln

END.

6. Find all errors in the following Pascal statements:
writeln (-20 DIV 4.0 :8:3);
writeln (-20 DIV 4 :8:3);
writeln (-20 DIV 4 :8);
writeln (8 - 3.0 *x 5 :6);
writeln (7 * & DIV 3 / 2 :b:2
writeln (-37?.3 + 5 * 20.0 :8:

meo a0 T

)s
3);
BEEE B

Memory Locations

It is frequently necessary to store values for later use. This is done by
putting the value into a memory location by using a symbolic name to
refer to this location. If the contents of the location are to be changed
during a program, the symbolic name is referred to as a variable; if the
contents are not to be changed, it is referred to as a constant.

a to distinguish be-
tween name of a
memory location
and value in a
memory location

a to be able to use
variables in assign-
ment statements,
expressions, and
output statements

3.2 Using Variables 53

A graphic way to think about memory locations is to envision them as
boxes; each box is named and a value is stored inside. For example,
suppose a program is written to add a sequence of numbers. If we name
the memory location to be used Sum, initially we have

L]

Sum

which depicts a memory location that has been reserved and can be ac-
cessed by a reference to Sum. If we then add the integers 10, 20, and 30
and store them in Sum, we have

Sum

It is important to distinguish between the name of a memory location
(Sum) and the value or contents of a memory location (60). The name
does not change during a program, but the contents can be changed as
often as necessary. (Contents of memory locations which are referred to
by constants cannot be changed.) If 30 were added to the contents in the
previous example, the new value stored in Sum could be depicted as

Sum

Those symbolic names representing memory locations whose values
will be changing must be declared in the VAR section of the program (as
indicated in Section 2.2); for example,

VAR

Sum : integer;
Those that represent memory locations whose values will not be changing
must be declared in the CONST section.

Assignment Statements

Let’s now examine how the contents of variables are manipulated. A value
may be put into a memory location with an assignment statement in the
form of

Variable name : = value (or expression);

where ‘““variable name” is the name of the memory location. For example,
if Sum had no value, then

Sum := 30;
changes

I ? ' to | 30 |

Sum Sum

The syntax diagram for this is

—»flariable_‘ : expressmn >

54 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

Some important rules concerning assignment statements are

1. The assignment is always made from right to left («).

2. The syntax for assigning requires a colon followed immediately
by an equal sign (:=).

3. Only one variable can be on the left of the assignment symbol.

4. Constants cannot be on the left of the assignment symbol.

5. The expression may be a constant, a constant expression, a vari-
able, or a combination of variables and constants.

6. Values on the right side of the assignment symbol are not changed
by the assignment.

7. The variable and expression must match in data type.

Two common errors that beginners make are trying to assign from left to
right and forgetting the colon when using an assignment statement.

Repeated assignments can be made. For example, if Sum is an integer
variable, the statements

Sum := 50;

Sum := 70;

Sum := 100;

produce first 50, then 70, and finally 100 as shown.

50 26 100
Sum

In this sense, memory is destructive in that it retains only the last value
assigned.

Data types must match when using assignment statements: reals must
be assigned to real variables, integers to integer variables, and characters
to char variables. The only exception is that ap integer can be assigned
to a real variable; however, the integer is then converted to a real. If, for
example, Average is a real variable and the assignment statement

Average := 21;
is made, the value is stored as the real 21.0.

Assignments to a character variable require that the constant be en-
closed in single quotation marks. For example, if Letter is of type char
and you want to store the letter C in Letter, use the assignment statement

Letter := 'C!';

This could be pictured as

Letter

Furthermore, only one character can be assigned or stored in a character
variable at a time.
To illustrate working with assignment statements, assume that the vari-
able declaration portion of the program is
VAR
Sum : integer;

Average : real;
Letter : char;

Examples of valid and invalid assignment statements using the variable
declarations just declared are shown in Table 3.6.

TABLE 3.6
Assignment
statements

3.2 Using Variables 55

Statement Valid If Invalid, Reason
Sum := 50; Yes
Sum := 10.5; No Data types do not match
Average := 15.6; Yes
Average := 33; Yes
Letter := 'A'; Yes
Letter := 'HI!'; No Not a single character
Letter := 20; No Data types do not match
Letter := '2'; Yes
Letter := B; ? Valid if A is a variable
or constant of type char
Sum := 7; Yes
Letter := 17!; Yes
Expressions

Actual use of variables in a program is usually more elaborate than what
we have just seen. Variables may be used in any manner that does not
violate their type declarations. This includes both arithmetic operations
and assignment statements. For example, if Scorel, Score2, Score3, and
Average are real variables,

Scorel := 72.3;
Scored := 89.4;
Score3d := 95.6;
Rverage := (Scorel + Score2d + Score3d) / 3.0;

is a valid fragment of code.
Let’s now consider the problem of accumulating a total. Assuming
NewScore and Total are integer variables, the following code is valid.

Total := 0O;

NewScore := S;

Total := Total + NewScore;
NewScore := 7;

Total := Total + NewScore;

As this code is executed, the values of memory locations for Total and
NewScore could be depicted as

Total := O; [o] []
Total NewScore
NewScore := 5; [o0] [5]
Total NewScore
Total := Total + NewScore; E lI‘
Total NewScore
NewScore := 7; E
Total NewScore
Total := Total + NewScore;

NewScore

g
-~
g

56 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

Output

Variables and variable expressions can be used when creating output.
When used in a writeln statement, they perform the same function as a
constant. For example, if the assignment statement

Age := §5;
has been made, these two statements

writeln (S);
writeln (Age);

produce the same output. If Age1, Age2, Age3, and Sum are integer vari-
ables and the assignments

Rgel := 21;

Age2 := 30;

Age3d := 12;

Sum := Agel + Aged + Aged;
are made,

writeln ('The sum is ', 21 + 30 + 12);

writeln ('The sum is ', Agel + Aged + RAged);

writeln ('The sum is ', Sum);
all produce the same output.

Formatting variables and variable expressions in writeln statements
follows the same rules that were presented in Chapter 2 for formatting
constants. The statements needed to write the sum of the problem we just
saw in a field width of four are

writeln ('The sum is ', (21 + 30 + 12):4);

writeln ('The sum is ', (Agel + Age2 + Ageld):4);
writeln ('The sum is ', Sum:4);

Suppose you want a program to print data about the cost of three textbooks and

the average price of the books. The variable declaration section could include:

VAR
MathText, BioText,
CompSciText,
Total, Average : real;

A portion of the program could be

MathText := 23.95;

BioText := 27.50;

CompSciText := 19.95;

Total := MathText + BioText + CompSciText;
Average := Total / 3;

The output could be created by

writeln; writeln;

writeln ('Text Price!');
writeln ('---- = ==——- L I
writeln;

writeln ('Math', MathText:14:2);
writeln ('Biology', BioText:11:2);
writeln ('CompSci', CompSciText:11:2);
writeln;

writeln ('Total', Total:13:2);
writeln;

writeln ('The average price is', Average:8:2);

Exercises 3.2

3.2 Using Variables 57

The output would be

1.

Text Price
Math 23.9s
Biology 27.50
CompSci 19.95
Total 71.40
The average price is <23.80 =

Assume the variable declaration section of a program is

VAR
Age, IQ : integer;
Income : real;
Indicate which of the following are valid assignment statements. Give the
reason for each that is invalid.
Age := 2k;
IQ := Age + 100;
IQ := 120.5;
Rge + IQ := 150;
Income := 22000;
Income := 300 * (Age + IQ);
Rge := IQ / 3;
IQ := 3 * Age;

FR oo R0 TR

. Write and run a test program to illustrate what happens when values of one

data type are assigned to variables of another type.

. Suppose A, B, and Temp have been declared as integer variables. Indicate

the contents of A and B at the end of each sequence of statements.

a. A := 5; c. A := 0O;
B := -2; B := 7;
A := A + B; A :=A + B MOD 2 * (-3);
B := B - A; B :=B + 4 x A;
b. A := 31; d. A := -8;
B := 2b; B := 3;
Temp := Aj; Temp := A + B;
A := B; A := 3 *x B;
B := Temp; B := A;
Temp := Temp + A + B;

. Suppose X and Y are real variables and the assignments

X := 121.3;
Y := 98.6;
have been made. What writeln statements would cause the following output?
a. The value of X is 1121.3
b. The sum of X and Y is 219.9
c. X = 122.3

Y = 98.6

Total = 219.9

58 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

5. Assume the variable declaration section of a program is

VAR
Rge, Height : integer;
Weight : real;
Sex : char;

What output would be created by the following program fragment?

Age := 23;

Height := 73;

Weight := 186.5;

Sex := 'M!';

writeln ('Sex!', Sex:13);

writeln ('Age', Age:14);

writeln ('Height', Height:11, ' inches');
writeln ('Weight', Weight:14:1, ' lbs');

6. Write a complete program that allows you to add five integers and then print

a. The integers.
b. Their sum.
¢. Their average.

7. Assume Ch and Age have been appropriately declared. What output is pro-
duced by the following?

Age := 2l;

WELteln (fkakskokokokokokokkokskok skok kokok sk kkokk ok ok kkkkok ! 140)
writeln ('*':31, 'x':29);

write ('*':11, 'Name':?, 'Age':9);

writeln ('Sex!':9, 'x':4);

writeln ('*':31, '———=1:7, 1——=1:9, ta__1:9Q, 1x1:4);
writeln; writeln;

write ('%x':12, 'Jones':8, RAge:8, Ch:9, 'x!':4);
writeln;

writeln ('*':1%, '%x':29);

Woiteln ("o kokkokokokokokokokdkokkoxokokokokokkx ' 140) ;

8. Assume the variable declaration section of a program is
VAR
Weightl, Weighte : integer;
AverageWeight : real;

and the following assignment statements have been made:

Weightl := 165;
Weighte := 174;
AverageWeight := (Weightl + Weight2) / 2;

a. What output would be produced by the following section of code?

writeln ('Weight!')
writeln ('-—————- ")
writeln;

writeln (Weightl);
writeln (Weightg);
writeln;

writeln ('The average weight is', (Weightl) + Weight2) / &);

3.3 Input 59

b. Write a segment of code to produce the following output (use

AverageWeight).
Weight
165
174
Total 339

The average weight is 169.5 pounds.
9. Assume the variable declaration section of a program is

VAR
Letter : char;

and the following assignment has been made;
Letter := 'At';
What output is produced from the following segment of code?

writeln ('This reviews string formatting,':40);
writeln ('When a letter', Letter, 'is used,');
writeln ('Oops!':14, 'I forgot to format.':20);
writeln ('When a letter':22, Letter:2, 'is used,':9);
writeln ('it is a string of length one.':38);

m 33 Earlier, “running a program” was subdivided into the three general cat-
egories of getting the data, manipulating it appropriately, and printing the
results. Our work thus far has centered on creating output and manipu-
lating data. We are now going to focus on how to get data for a program.

= to be able to use
read and readln to Input Statements
get data for a

Data for a program are usually obtained from an input device, which can

1y
» &Zg;:‘;;stand the be a keyboard, terminal, card reader, disk, or tape. When such data are
difference between | 1 | obtained, the standard file input must be included in the file list of the
interactive input program heading. (Some interactive systems use a different method. Check
and batch input with your instructor.) Your program heading will (probably) have the form

= to understand the
concept of end-of-
line markers

= to understand the

PROGRAM program name (input, output);

concept of end-of- The Pascal statements used to get data are read and readln; they are
file markers analogous to write and writeln for output. General forms for these input
statements are

read (variable name);

read (variable 1, variable 2, . .., variable n);

readln (variable name);

readln (variable 1, variable 2, . .., variable n);

readln;

A syntax diagram for read and readln statements is

60 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

When read or readln is used to get data, the value of the data item is
stored in the indicated memory location. Data read into a program must
match the type of variable in the variable list. To illustrate, if a variable
declaration section includes

VAR

Age : integer;
Wage : real;

and the data items are

el 5.a$8
then
read (Age, Wage);
results in
[5.25]
Age Wage

To illustrate the difference between read and readln, we must first learn
about a line of data. Whether from the terminal or from a text file, numeric
data items are entered on a line with blanks separating items. When you
are through creating a data line, you press “return” on the keyboard. This
causes the computer to create a special symbol it recognizes as an end-
of-line marker (eoln). If we use the symbol [} to represent this, two lines
of integer data could be shown by

When either read or readln is first used, a data pointer is positioned at
the beginning of the first (perhaps only) line.

89 93 78 line 1
1

Pointer here
95 84 100 68 line 2

As data items are read using read, the pointer moves to the first position
past the last data item read. Thus, if Scorel and Score2 are declared as
integer variables, the statement

read (Scorel, ScoreZ);
results in

line 1

T

line 2

Scorel Score2

3.3 Input 61

The readln statement works in the same manner, with an exception: after
it has read a value for each variable in its list, it causes the pointer to skip
over data items remaining on that line and go to the beginning of the next
line. Thus, if the pointer is at the beginning of line 1,

readln (Scorel, Scorecd);

results in

8993 78 line 1
95 84 100 68 line 2

1

Scorel Score2

Variables in the variable list of read and readln can be listed singly or
in any combination that does not result in a type conflict when data are
read. For example, for the data line

t
read (Scorel, Scorecd);
could be replaced by

read (Scorel);
read (Scorecd);

Interactive Input

If you are working on a system where input is expected from a keyboard—
interactive input—read or readln causes the program to halt and wait for
data items to be typed. When you press “return,” an end-of-line marker
is placed after the last data entered. The difference between read and
readln is that readln causes a line feed. This has two effects. First, all
remaining (unread) data items on a line are skipped. Second, output from
write or writeln statements will start on the next line rather than the same
line. For example, when working interactively, consider the statements
shown below:

read (RA);

write (R);

and

readln (RA);
write (R);

When these are executed and you enter the number 45 and press “‘return,”
the first may cause

4545
to appear on the screen and the second causes

45
45

if pressing “‘return” causes a line feed.

62 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

Consider the following program that will find the average of three
integers.

PROGRAM Average (input, output);

CONST
skip = ' ';

VAR

Numl, Num2, Num3 : integer;
Aver : real;

BEGIN
readln (Numl, Num2, Num3);
Aver := (Numl + Numé + Num3) / 3;
writeln;
writeln (Skip:10, 'The numbers are!, Numl:4, Num2:4, Num3:4);
writeln;
writeln (Skip:10, 'Their average is', Aver:8:2);
writeln; writeln

END.

When this program is run, execution will halt at the line
readln (Numl, Numé, Num3);

and a prompt may appear on the screen. At this point, you must enter at
least three integers and press “return” (or some sequence of integers and
“return” until at least three numbers are read in as data items). The re-
maining part of the program will then be executed and the output (using
20, —14, and 81 as input)

The numbers are 20 -14 81
Their average is <29.00

will be printed.

Normally, interactive programs require a prompting message to the user
so the user can know what to do when the prompt is on the screen. For
example, the previous example could be modified by the line

writeln ('Please enter 3 integers and press <RETURN>.!');
and when the program is run, the screen will display the message
Please enter 3 integers and press <RETURN>.

Clearly stated screen messages to the person running a program are
what make a program user-friendly. For long messages or several lines of
output, you can use

writeln ('Press <RETURN> to continue.');
readln;

as a complete statement to halt execution. When you press “return,” the
program will continue.

Note: Some users of this textbook will be working in an interactive
environment, others will not be. Consequently, both interactive and non-
interactive examples are included. A logo of a computer screen accom-
panies each interactive example.

3.3 Input 63

Pythagorean triples are sets of three integers that satisfy the Pythagorean theorem.
That is, integers q, b, and ¢ such thata? + b2 = ¢2. 3, 4, 5 is such a triple because
32 + 42 = 52, Formulas for generating Pythagorean triples are a = m? — n?,
b = 2mn, and ¢ = m? + n? where m and n are positive integers such that
m > n. The following interactive program allows the user to enter values for m
and » and then have the Pythagorean triple printed.

c— PROGRAM PythagoreanTriple (input, output);

VAR
M, N, A, B, C : integer;

BEGIN
write ('Enter a positive integer and press <RETURN>. ');
readln (N);
write ('Enter a positive integer greater than ', N);
write (' and press <RETURN>. !');
readln (M);
A := (M * M) - (N x N);
B :=2 * M x N;
C := (M M) + (N = N);

writeln;

writeln ('For M = ', M, ' and N = ', N);

writeln ('the Pythagorean triple is ', A:S5, B:5, C:5)
END. =

Sample runs of this program (using data 1,2 and 2,5) produce the following:

Enter a positive integer and press <RETURN>. 1
Enter a positive integer greater than 1 and press <RETURN>. @

For ¥ =2 and N = 1
the Pythagorean triple is 3 4 5

Enter a positive integer and press <RETURN>. @
Enter a positive integer greater than 2 and press <RETURN>. S

For M =5 and N =2
the Pythagorean triple is 2l 20 29

Batch Input

Batch processing is a technique for executing programs and data without
user interaction with the computer. If you are working on a system that
uses batch processing, input data will have been previously entered in a
file created by you or the instructor. Input in this form is referred to as
batch or stream input and can be envisioned by lines listed consecutively
separated by end-of-line markers. For example,

[93 84 9587 80 73 91]|

represents two lines of data with three integers on the first line and four
integers on the second line. When data are read from such an input file,
a pointer is moved as previously indicated. One additional feature should
be noted when using batch input. Since all data lines will have been
previously entered, a special marker is inserted by the machine to indicate
the end of the input file. This is referred to as an end-of-file marker (eof)
and is represented in this text by the symbol m. This is placed immediately

64 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

following the last end-of-line marker. Thus, the previous input file would
be illustrated by

(9384 95] 878073 01 m

Reading Numeric Data

Reading numeric data into a program is reasonably straightforward. At
least one blank must be used to separate items on each data line and,
since leading blanks are ignored, the statement

read (variable name);

will cause the next numeric value to be stored in the appropriate memory
location. An end-of-line marker will be read as a blank, so even if the next
item is on another line, it will be located and stored as desired. In each
case, the pointer will be advanced as before.

Some caution should be exercised when both reals and integers are in
the input file. As long as the variable data type matches the numeric data
type, there will be no problem. Thus, if the variable declaration section
is

VAR

A : integer;
X : real;

and a data line is

1

read (X, A) causes

X A

However, read (A, X) would result in an error because A is of type integer
and 97 is read into A. The pointer is then positioned at the decimal.

1

An attempt to read a value into X then results in a type mismatch error.

One exception to type mismatch errors is that an integer value can be
read into a variable of type real. However, it is then stored as a real and
must be used accordingly.

Reading Character Data

Reading characters is much different from reading numeric data. When
using standard Pascal, the following features apply to reading character
data from an input file.

1. Only one character can be read at a time.

2. Each blank is a separate character.

3. Each end-of-line marker is read as a blank.

4. If the pointer is positioned at a numeric data item and you read a
character variable, the digit indicated by the pointer will be read
as a character.

3.3 Input 65

5. After the character has been read, the pointer is advanced one
position.

To illustrate the features of reading character data, assume a variable
declaration of

VAR
Chl, Ch2, Ch3 : char;

and a stream input of

[WDN so|mjs s m
1

with the pointer positioned as indicated. Further, assume Ch1, Ch2, and
Ch3 have not been assigned values, nor have they had values read into
them. They can be visualized as

(N O N o

Ch1 Ch2 Ch3

If
read (Chl);
is executed, we have

w] [J L |

Ch1 Ch2 Ch3

(wpN soffMjs a4 m
t

If the line of code
read (Ch2, Ch3);
is then executed, we have

(w] [D] [N]
Ch1 Ch2 Ch3

(wpN sgjfMjs os [m
1

If the next read command in the program is
read (Chl, Che2, Ch3);
we obtain

] [&] [o]
Ch1 Ch2 Ch3

[wDN so[Mjs o4 [m
t

Since we are reading character variables, the blank is read as a character
and the number 89 is read as two characters, ‘8’ and ‘9’. Since these are
read as characters, you cannot perform arithmetic operations with them.

The pointer is now positioned at an end-of-line marker and you may
think that the three characters (MJS) can now be read by

read (Chl, Ch2, Ch3);

66 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

TABLE 3.7

Results of reading
data of varying types

However, this is incorrect because the end-of-line marker is read as a
blank and you actually obtain

L M| []

Ch1 Ch2 Ch3

[WDN s [Mjs sa [m
1

Some computers add a blank at the end of a data line in order to have an
even number of character positions. Thus, you may want to have a data
line be

but when you enter the line, it could be stored as

Check with your instructor regarding this feature of your machine.
When reading data from a stream input, you eventually get the pointer
positioned at the end-of-file marker. If you attempt to read more data, you
may get an error message such as
PROGRAM TERMINATED AT LINE S IN PROGRAM PRAC.

TRIED TO READ DATAGL41L PAST EOS/EOF.
-—— PRAC ——

A = UNDEF
When you see such a message, check your read statements to see if you
are trying to read past the end-of-file marker.
The material in Table 3.7 indicates what happens when an attempt is
made to read data into a variable location where the data type is different
from the data in the file.

Variable Type Attempt to Read Result
integer integer Will read as expected
real Will read integer portion of
real
character Error message (unless the
character is a blank)
real integer Will read the integer and
convert it to a real
real Will read as expected
character Error message (unless the

character is a blank)

char integer Will read one position as a
character and advance the
pointer one position

real Will read one position as a
character and advance the
pointer one position

character Will read as expected

Exercises 3.3

'Y

3.3 Input 67

. What must be included in the program heading in order to get data from an
input file?

. Write a test program that will enable you to determine whether or not your
computer adds a blank at the end of a data line in order to have an even
number of positions per line. (Hint: read and write characters from short
lines of data.}

. What is the difference between an end-of-line marker and an end-of-file
marker?

. Assume that a stream input is as illustrated
142.1F m

and the variable declaration section of the program is

VAR

B : integer;
X, Y : real;

: char;
What output would be produced from each of the following segments of
code? (Assume that the pointer is positioned at the beginning for each
problem.)

a. read (RA);

read (B, Ch);

writeln (A:S, B:5, Ch:5);
b. read (Ch);)

write (Ch:10);

readln (Ch);

writeln (Ch);

read (Ch);

writeln (Ch:310);

" ¢ read (A, B, Ch, X);

writeln (A, B, Ch, X);
writeln (A:S, B:S, Ch:5, X:10:2);
read (Ch);
writeln (Ch:S);
d. readln;
read (Ch, Ch);
readln (Y);
writeln (Ch:S, Y:10:2);

. Using the same stream input and variable declaration section as in Exercise
4, indicate the contents of each variable location and the position of the
pointer after each segment of code is executed. Assume that the pointer is
positioned at the beginning for each problem.

a. read (Ch, R);
b. readln (Ch, R);
c. readln;
d. readln;
readln;
e. readln (A, B, Ch, X);
read (A, B, Ch, X);
g. readln (A, Ch);
readln (Ch, Ch, B);
h. read (d, B, Ch, X, Ch);

™

68 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

3.4
Using
Constants

OBJECTIVES

o to be aware of ap-
propriate use of
constants

o to be able to use
constants in
programs

o to be able to format
constants

6. Using the same stream input and variable declaration section as in Exercise
4, indicate which of the following will produce an error. For those that do,
explain why an error occurs.

a. read (X, Y);

b. readln (R);
read (B);

c. readln (Ch);
readln (Ch);
readln (Ch);

d. read (X, &, Ch, B,

e. readln;
read (Ch, Ch, A, Ch, B);

Ch);

7. Write a complete program that will read your initials and five test scores.
Your program should then compute your test average and print out all infor-
mation in a reasonable form with suitable messages.

mmEM

The word ““constant” has several interpretations. In this section, it will
refer to values defined in the CONST definition subsection of a program.
Recall that a Pascal program consists of a program heading, a declaration
section, and an executable section. The declaration section contains a
variable declaration subsection, discussed in Section 3.2, and possibly a
constant definition subsection. When both are used, the CONST subsec-
tion must precede the VAR subsection. We will now examine uses for
constants defined in the CONST subsection.

Rationale for Uses

There are many reasons to use constants in a program. If a number is to
be used frequently, the programmer may wish to give it a descriptive name
in the CONST definition subsection and then use the descriptive name
in the executable section, thus making the program easier to read. For
example, if a program included a segment that computed a person’s state
income tax, and the state tax rate was 6.25 percent of taxable income, the
CONST section might include:
CONST
StateTaxRate = 0.0625;
This defines both the value and type for StateTaxRate. In the executable

portion of the program, the statement
StateTax := Income * StateTaxRate;

computes the state tax owed. Or suppose you wanted a program to com-
pute areas of circles. Depending upon the accuracy you desire, you could
define pi “w” as

CONST
Pi = 3.14159;

You could then have a statement in the executable section such as
Area := Pi * Radius x Radius;
where Area and Radius are appropriately declared variables.

3.4 Using Constants 69

A NOTE OF INTEREST. -

Defined Constants and Space Shuttle Computing

An excellent illustration of the utilization of de-
fined constants in a program was given by J. F.
(“Jack”) Clemons, manager of avionics flight
software development and verification for the
space shuttle on-board computers. In an inter-
view with David Gifford, editor for Communi-
cations of the ACM, Clemons was asked: “Have
you tried to restructure the software so that it
can be changed easily?”

His response was, ‘‘By changing certain data
constants, we can change relatively large por-

tions of the software on a mission-to-mission ba-
sis. For example, we've designed the software so
that characteristics like atmospheric conditions
on launch day or different lift-off weights can be
loaded as initial constants into the code. This is
important when there are postponements or last-
minute payload changes that invalidate the orig-
inal inputs.”

Another use of constants is for values that are currently fixed but subject
to change for subsequent runs of the program. If these are defined in the
CONST section, they can be used throughout the program. If the value
changes later, only one change need be made to keep the program current.
Some examples might be

CONST

MinimumWage = 3.35;
SpeedlLimit = E5;

Price = 0.75;
StateTaxRate = 0.0625;

Constants can also be used to name character strings that occur fre-
quently in program output. Suppose a program needs to print two different

company names. Instead of typing the names each time they are needed,
the following definition could be used.

CONST
Companyl = 'First National Bank of RAmericat!;
Company2 = 'Metropolitan Bank of New York!';

Company1 and Company2 could then be used in writeln statements.

Another situation could call for a constant defined for later repeated
use in making output more attractive. Included could be constants for
underlining and for separating sections of output. Some definitions could
be

CONST
OUnderline = ! L
SPLats = Vokokokokokokosk ok ok o ok ok ok ok ok sk ok ok ok ok Sk ok ok ok dk sk sk ok ok ok ok koK ok 1§

To separate the output with asterisks, the statement
writeln (Splats, Splats);

could be used. In a similar fashion
writeln (Underline);

could be used for underlining.

Formatting Constants

Formatting numerical constants is identical to formatting reals and inte-
gers as discussed in Section 2.3. If the constant definition section contains

70 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

CONST
Pi = 3.141589;
SpeedLimit = 55;

then

writeln ('Pi is used as', Pi:10:5);
writeln ('Speed limit is', SpeedLimit:4);

produces

Pi is used as 3.14159

Speed limit is 55

When character strings are defined as constants, a single positive integer
can be used for formatting. This integer establishes the field width for the
character string and right justifies the character string in the output field.
For example, suppose the constant definition section includes

CONST
Company} = 'First National Bank of America!;
. Company2 = 'Metropolitan Bank of New York!';
Underline = ! 's
SPlats = VkskokokokokokokokokkAok oKk ok ok ok sk ook ok ok kok kR sk ok k kk ok ok |

If the program contains the program fragment

writeln; writeln;
writeln (Splats:50);
writeln;

writeln (Companyl:45);
writeln (Underline:45);
writeln;

writeln (CompanyZ2:44);
writeln (Underline:4S);
writeln;

writeln (Splats:S0);

these statements produce the output

Sk 3K 2k 3k 2 3k K ok ok 3k ok ke 3k 3k ok ok e 3K 3 3k 3K ok ok o K ok K e ok A e A ke e K o Xk ok K K

First National Bank of America

Metropolitan Bank of New York

e 3 e o ok o e 2k 2k 2k 3K 3K 3k 3K K K 3k 3k K ok 2k 2K ok K 2k X K ok K 3k 3K 3K ok ok ok ok ok K K K

Exercises 3.4 1. One use of constants is for values that are used throughout a program but
are subject to change over time (minimum wage, speed limit, and so on).
List at least five items in this category that were not mentioned in this
section.

2. Assume the CONST definition section of a program is

CONST
CourseName = 'CPS 150!';
TotalPts = 100;
Underline = ! '

We want output as follows:
COURSE CPS 150 TEST #1

TOTAL POINTS 100

n 3.5
Standard
Functions

OBJECTIVES

o to understand rea-
sons for having
standard functions

o to be able to use
standard functions
in a program

o to be able to use ap-
propriate data types
for arguments of
standard functions

3.5 Standard Functions 71

Fill in the appropriate formatting positions in the following writeln
statements to produce the indicated output.

writeln ('COURSE:':7?, CourseName: s '"TEST #1':13);
writeln (Underline:)3

writeln;

writeln ('TOTAL POINTS':12, TotalPts:)i

3. Using the same CONST definition section as in Exercise 2, what output is
produced by the following segment of code?

writeln;

writeln (CourseName:10), 'TEST #2':20);
writeln (Underline:40);

writeln;

writeln (!'Total points':2k, TotalPts:15);
writeln ('My score':12, 83:19);

writeln ('Class average':1?, 82.3:14:1);

4. Use the constant definition section to define appropriate constants for the
following:

a. Your name.
b. Today's date.

c. Your social security number.
d. Your age. l(1.
e. The name of your school.
f. The number of students in your class. 1D
g. The average age of students in your class. Pl
h. The average hourly wage of steelworkers.) % .f { ¢
i. The price of a new car. y O
p Y
>
e
> o4

Some standard operations required by programmers are squaring numbers,
finding square roots of numbers, rounding numbers, and truncating num-
bers. Because these operations are so basic, Pascal provides standard (built-
in) functions for them. Different versions of Pascal and other programming
languages have differing standard functions available, so you should al-
ways check which functions can be used. Appendix 2 sets forth those
available in most versions of Pascal.
The standard form for invoking (or calling) a function is

function name (argument)

where argument is a value or variable with an assigned value. A function
is invoked by using it in a program statement. If, for example, you want
to square the integer 5,

sqr(s)

produces the desired result.
The syntax diagram for this is

—1 function name —>®—> argument: —>®—>

Many functions operate on numbers, starting with a given number and
returning some associated value. Table 3.8 shows five standard functions,

72 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

TABLE 3.8
Numeric function
calls and return
types

TABLE 3.9
Values of function
expressions

Argument Type of
Function Call Type Return Function Value
sqr(argument) real or Same as Returns the square
integer argument of the argument
sqrt(argument) real or real Returns the square
integer root of the
(nonnegative) argument
abs(argument) real or Same as Returns absolute
integer argument value of the
argument
round(argument) real integer Returns value
rounded to the
nearest integer
trunc(argument) real integer Returns value

truncated to an
integer

each with its argument type, data type of return, and an explanation of

the value returned.

Several examples of specific function expressions together with the
value returned by each expression are depicted in Table 3.9.

Using Functions

Expression Value
sqr(e) 4
sqr(c.0) 4.0
sqr(-3) 9
sqrt(es.0) 5.0
sqrt(es) 5.0
sqrt(0.0) 0.0
sqrt(-2.0) Not permissible
abs(5.2) 5.2
abs(-3.4) 34
abs(-5) 5
round(3.78) 4
round(&8.50) 9
round(-4.2) -4
trunc(3.78) 3
trunc(8.s) 8
trunc(-4.2) -4

When a function is invoked, it produces a value in much the same way
that 3 + 3 produces 6. Thus, use of a function should be treated similarly
to using constants or values of an expression. Since function calls are not

EXAMPLE 3.3

3.5 Standard Functions 73

complete Pascal statements, they must be used within some statement.
Typical uses are in assignment statements.

X := sqrt(16.0);
output statements,
writeln (abs(-8):20);
or arithmetic expressions
X := round(3.78) + trunc(-4.1);

Arguments of functions can be expressions, variables, or constants.
However, be sure the argument is always appropriate. For example,

A = 3.2;

X := sqrt(trunc(R));
is appropriate, but

A = -3.¢;

X := sqrt(trunc(d));

produces an error since trunc(—3.2) has the value —3 and sqrt(—3) is
not a valid expression.

The following example illustrates how functions can be used in
expressions.

Find the value of the following expression:
4.2 + round(trunc(e.0 * 3.1) + 5.3)
The solution is

4.2 + round(trunc(2.0 *x 3.1) + 5.3) sqrt(sqr(-4.1))
! l

4.2 + round(trunc(b.2) + 5.3) - sqrt(16.83)
! i

sqrt(sqr(-4.1));

4.2 + round(bt.0 + 5.3) - 4.1
1
4.2 + round(1:.3) - 4.1
i
4.2 + 11.0 - 4.2
!
15.2 - 4.1
l
11.1 =

Character Sets

In addition to the numeric functions just examined, other functions can
have characters as arguments. Some of these return a character when called
and some return an integer.

Before we look at functions manipulating characters, we need to ex-
amine the way in which character data are stored. In the char data type,
each character is associated with an integer. Thus, the sequence of char-
acters is associated with a sequence of integers. The particular sequence
used by a machine for this purpose is referred to as the collating sequence
for that character set. Two such sequences currently in use are

1. American Standard Code for Information Interchange (ASCII) and
2. Extended Binary Coded Decimal Interchange Code (EBCDIC).

74 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

! A NOTE OF INTEREST

Herman Hollerith

Herman Hollerith (1860-1929) was hired by the
United States Census Bureau in 1879 at the age
of 19. Since the 1880 census was predicted to
take a long time to complete (it actually took
until 1887), Hollerith was assigned the task of
developing a mechanical method of tabulating
census data. He introduced his census machine
in 1887. It consisted of four parts:

one-third the time required for the previous cen-
sus tabulation. This included working with data
for twelve million additional people.

Hollerith proceeded to form the Tabulating
Machine Company (1896), which supplied
equipment to census bureaus in the United States,
Canada, and western Europe. After a disagree-

1. a punched paper card that represented
data using a special code (Hollerith
code),

2. a card punch apparatus,

3. a tabulator that read the punched cards,

ment with the census director, Hollerith began
marketing his equipment in other commercial
areas. Hollerith sold his company in 1911. It was
later combined with twelve others to form the
Computing-Tabulating-Recording Company, a
direct ancestor of International Business Ma-
chines Corp.

and . -
compartments. ’ ’ gn

census machine. He then formed his own com-

The punched cards used by Hollerith were the pany, which subsequently became Remington
same size as cards still in use today.

Using Hollerith’s techniques and equipment,
the 1890 census tabulation was completed in

Rand and Sperry Univac.

TABLE 3.10
ASCII code

Each collating sequence contains an ordering of the characters in a char-
acter set and is listed in Appendix 4. For programs in this text, we use
the ASCII code. As shown in Table 3.10, fifty-two of these characters are
letters, ten are digits, and the rest are special characters.

B! #%3%&’()*x+, -./0123456 789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcde fghijkl mnopgrstuvwxyz

..

i<=>1@
(N =
{y ~

Note: Of the special characters, B is the symbol to denote a blank.

Character Functions

Ordering a character set requires associating an integer with each char-
acter. Data types ordered in some association with the integers are known
as ordinal data types. Each integer is the ordinal of its associated character.
Integers are therefore considered to be an ordinal data type. Character sets
are also considered to be an ordinal data type, as shown in Table 3.11. In
each case, the ordinal of the character appears to the left of the character.

Using ASCII, as shown in Table 3.11, the ordinal of a capital a (A) is
65, the ordinal of the arabic number one (1) is 49, the ordinal of a blank
(B) is 32, and the ordinal of a lowercase a (a) is 97.

Pascal provides several standard functions that have arguments of or-
dinal type. These are listed in Table 3.12 together with a related function
chr that returns a character when called.

TABLE 3.11
ASCII ordering of a
character set

TABLE 3.12
Function calls with
ordinal arguments or
character values

3.5 Standard Functions 75

Ordinal Character Ordinal Character Ordinal Character
32 b 64 @ 96
33 ! 65 A 97 a
34 ” 66 B 98 b
35 # 67 C 99 c
36 3 68 D 100 d
37 % 69 E 101 e
38 & 70 F 102 f
39 ' 71 G 103 g
40 (72 H 104 h
41) 73 I 105 i
42 * 74 J 106 j
43 + 75 K 107 k
44 76 L 108 1
45 77 M 109 m
46 . 78 N 110 n
47 / 79 (0] 111 0
48 0 80 P 112 p
49 1 81 Q 113 q
50 2 82 R 114 r
51 3 83 S 115 s
52 4 84 T 116 t
53 5 85 u 117 u
54 6 86 \Y 118 v
55 7 87 w 119 w
56 8 88 X 120 X
57 g 89 Y 121 y
58 : 80 zZ 122 z
59 ; 91 [123 {
60 < 92 \ 124 |
61 = 93 1 125 }
62 > 94 1 126 ~
63 ? a5 —_

Note: Codes 00—-31 and 127 are nonprintable control characters.

Argument Type of
Function Call Type Result Function Value
ord(argument) Any ordinal type integer Ordinal corresponding
to argument
pred(argument) Any ordinal type Same as Predecessor of the
argument argument
succ(argument) Any ordinal type Same as Successor of the
argument argument
chr(argument) integer char Character associated
with the ordinal of the
argument

Again using the ASCII collating sequence shown in Table 3.11, we can
determine the value of these functions as shown in Table 3.13.

76 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

TABLE 3.13
Values of character
functions

Exercises 3.5

Expression Value
ord('E') 69
ord('9!') 57
ord(9) 9
ord('»") 62
pred('N') M
pred('a') @
succ(' ("))
succ('!') ”
chr(?74)]
chr(32) b
chr(59) ;
chr(114) r

Variables and variable expressions can be used as arguments for func-
tions. For example, if Ch is a char variable and the assignment statement
Ch := 'D';
is made, then ord(Ch) has the value 68.

Let’'s now consider a short program that allows the use of standard
functions ord, pred, succ, and chr.

PROGRAM FunctionTest (output);

VAR

Ch : char;
BEGIN

Ch := 'C';

writeln ('0Ord of C ist', ord(Ch):5);

writeln ('Succ of C is', succ(Ch):4);

writeln ('Pred of C is', pred(Ch):4);

writeln ('Chr of &7 ist', chr(b?):4)
END.

When this program is run, the output is

0ord of C is 57
Succ of C is D
Pred of C is B
Chr of &7 1is o

You should obtain a complete list of characters available and their re-
spective ordinals for your local system. Note particular features such as
when using EBCDIC, succ(‘R’) is not ‘S’; and when using ASCII, chr(») is
nonprintable for n< 32 or n > 126.

1. Find the value of each of the following expressions:

a. abs(-11.2) + sqrt(round(15.52))
trunc(abs(-14.2))

4 x 11 MOD (trunc(trunc(8.9) / sqrt(it)))
sqr(1? DIV 5 *x 2)

-5.0 + sqrt(5 * S - 4 x b) / 2.0

3.1 x 0.2 - abs(-4.2 * 9.0 ./ 3.0)

me a0y

3.5 Standard Functions 77

2. Write a test program that illustrates what happens when an inappropriate
argument is used with a function. Be sure to include something like
ord(15.3). :

3. Two standard algebraic problems come from the Pythagorean theorem and
the quadratic formula. Assume variables a, b, and ¢ have been declared in a
program. Write Pascal expressions that allow you to evaluate

a. the length of the hypotenuse of a right triangle
(Vaz + b?)
b. one solution to a quadratic formula
~b + VBF = dac
2a

4. Indicate whether the following are valid or invalid expressions. Find the
value of those that are valid; explain why the others are invalid.

. =b MOD (sqrt(lbk))

8 DIV (trunc(sqrt(65)))
sqrt(63 MOD (-2))
abs(-sqrt(sqr(3) + 7))
sqrt(36 DIV (-3))
sqrt(sqr(-4))
round(14.38 * 10) / 10

W me &0 TR

5. The standard function round permits you to round to the nearest integer.
Write an expression that permits you to round the real number X to the
nearest tenth.

6. Using ASCII, find the values of each of the following expressions:

a., ord(13 + 4 MOD 3)
b. pred(succ('E'))
c. succ(pred('E'))
d. ord(S)

e. ord('s!t)

f. chr(ord('+'))

g. ord(chr(40))

7. Assume the variable declaration section of a program is

VAR
X : real;
A : integer;

Ch : char;
What output is produced by each of the following program fragments?
a. X := -4.3;)
writeln (X:b:2, abs(X):b:2, trunc(X):b, round(X):&t);
b. X := -4.3;
R := abs(round(X));
writeln (ord(R));
writeln (ord(t‘'aAt'));
c. Ch := chr(eb);
writeln (Ch:5, pred(Ch):S, succ(Ch):5);

EEEM
Writing styles and suggestions are gathered for quick reference in the

following style tip summary. These tips are intended to stimulate rather
than terminate your imagination.

78 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

STYLE TIP
EEEEDEEE

® Summary

1.

2.

Use descriptive identifiers. Words——Sum Score, Averege—ere easier tO/~ i

understand than letters—A, B, Cor X, Y, Z:
Constants can be used to create neat, attractive output. For example,

CONST ,
Splats = '******************************l'
“Underline = ! i '
Border = '=x *V3

. Use the constant definition sectionto- deﬁne an appropriately named

blank and use it to control lin spacing for outpuh Thus, you could’

and then output:statements: could be -

or

PROGRAM
5.

24.32
182.50 °
93.63

input}

writeln (Skip:20, message, Skip LD, message);

writeln (Indent:20, message, Skip 10, message),

4. As you write Pascal statements; use blanks fc
program. Spacing between words and expressmns should resemble
typical English usage. Thus,

PROGRAM EarlyBird (inpnt, output) $
is preferable to S
EarlyBird e

Output of a column of reals should have dec)mal points in-a line.

outﬁht y3

Output can be made more. attractlve by using columns, left and right
margins,’ underlining, and blank lines.
9. Extra writelns at the beginning and end of the executable section will
separate desired output from other messages.

line spacing within the i~

BEGIN
‘writeln; 'wr»i»teln‘--
. (program body hera]
~writeln; writéln
'END.
Key Terms
argument end-of-line marker ordinal data type

assignment statement

batch processing

batch (stream) input

character set

collating sequence:
ASCII, EBCDIC

constant

end-of-file marker (eof)

(eoln)
input
integer arithmetic
operations: +, —, *,
MOD, DIV
interactive input
invoke (call)
memory location
mixed-mode expression

overflow

prompt

real arithmetic
operations: +,

standard (built-in)
function

underflow

user-friendly

variable

_r*v/

Summary 79

Keywords

abs MOD round
chr ord sqr
DIV pred sqrt
eof read succ
eoln readln trunc
Key Concepts

» Operations and priorities for data of type integer and real are summarized as
follows:

Data Type Operations Priority
integer *, MOD, DIV 1. Evaluate in order from left to right
+, —, 2. Evaluate in order from left to right
real *, / 1. Evaluate in order from left to right
+, - 2. Evaluate in order from left to right

Mixed-mode expressions return values of type real.

Priority for order of operations on mixed-mode expressions is

1. *, /, MOD, DIV in order from left to right

2. +, ~ in order from left to right

w Overflow is caused by a value too large for computing on a particular
machine.

» Underflow is caused by a value too small (close to zero) for computing. These
numbers are automatically replaced by zero.

e« A memory location can have a name which can be used to refer to the con-
tents of the location.

u The name of a memory location is different from the contents of the memory
location.

= Assignment statements are used to assign values to memory locations, for

example

Sum := 30 + 60O;

= Variables and variable expressions can be used in output statements.
a read(In) is used to get data from an input file; correct form is

read(ln) (variable name);
read(ln) (variable 1, variable 2, . .., variable n);

= read (variable name) causes a value to be transferred to the variable location
and the input file pointer to be advanced to the first position following the
data item.

a readln is used similarly to read except that it causes the input file pointer to
advance to the beginning of the next line of data after data have been read.

a End-of-line markers are inserted at the end of each line of data (when “re-
turn” is pressed).

s An end-of-file marker is inserted after the end-of-line marker for the last line
of data.

a Interactive input expects data items to be entered from the keyboard at appro-
priate times during execution of the program.

« Batch input expects data to be read from a file previously created.

= Data types for variables in a read or readln statement should match data
items in the input file.

= Appropriate uses for constants in the CONST definition section include fre-
quently used numbers; current values subject to change over time, for exam-
ple, (MinimumWage = 3.50); and character strings for output.

80 ARITHMETIC, VARIABLES, INPUT, CONSTANTS, AND STANDARD FUNCTIONS

o Character strings are formatted using a single colon.
o Five standard numeric functions available in Pascal are sqr, sqrt, abs, round,
and trunc.
o Functions can be used in assignment statements, for example
X := sqrt(16.0);
in output statements
writeln (abs(-8):20);
and in arithmetic expressions
X := round(3.78) + trunc(-4.1);

o Four standard character functions available in Pascal are ord, pred, succ, and
chr.

B Programming Write a complete Pascal program for each of the following problems. Each

Problems program should use one or more read or readln statements to obtain
necessary values. For interactive programs, each read or readln should
be preceded by an appropriate prompting message.

1. Susan purchases a computer for $985. The sales tax on the pur-
chase is 5.5 percent. Compute and print the total purchase price.

2. Find and print the area and perimeter of a rectangle that is 4.5 feet
long and 2.3 feet wide. Print both rounded to the nearest tenth of a
foot.

3. Compute and print the number of minutes in a year.

4. Light travels as 3+108 meters per second. Compute and print the
distance that a light beam would travel in one year. (This is called
a light year.)

5. The 1927 New York Yankees won 110 games and lost 44. Compute
their winning percentage and print it rounded to three decimal
places.

6. A 10 kilogram object is traveling at 12 meters per second. Compute
and print its momentum (momentum is mass times velocity).

7. Convert 98.0 degrees Fahrenheit to degrees Celsius.
8. Given a positive number, print its square and square root.

9. The Golden Sales Company pays its salespeople $.27 for each item
they sell. Given the number of items sold by a salesperson, print
the amount of pay due.

10. Given the length and width of a rectangle, print its area and
perimeter.

11. The kinetic energy of a moving object is givén by the formula:
KE = (1/2)mv?

Given the mass (m) and the speed (v) of an object, find its kinetic
energy.

12. Miss Lovelace wants a program to enable her to balance her check-
book. She wishes to enter a beginning balance, five letters for an
abbreviation for the recipient of the check, and the amount of the
check. Given this information, write a program that will find the new
balance in her checkbook.

Programming Problems 81

13. A supermarket wants to install a computerized weighing system in

14.

15

its produce department. Input to this system will consist of a three-
letter identifier for the type of produce, the weight of the produce
purchase (in pounds), and the cost per pound of the produce. Print
a label showing the input information along with the cost of the
purchase. The label should appear as follows:

BRERZREERERREBERRERXEEXREREREEREERBREEEERELER

Penny Spender Supermarket
Produce Department

ITEM WEIGHT COST/1b COST
ABC 2.0 1b $1.98 $3.96
Thank you!

BRXRXBEEZEXZEREBREEEXBERLEREREEBEERERERETREREZ

The New-Wave Computer Company sells its product, the NW-PC for
$675. In addition, they sell memory expansion cards for $69.95, disk
drives for $198.50, and software for $34.98 each. Given the number
of memory cards, disk drives, and software packages desired by a
customer purchasing an NW-PC, print out a bill of sale that appears
as follows:

ok ok ok sk ok ke e ok ok ok ok o o o ok ok K 3K oK ok 3k ok o oK oK oK oK oK
New Wave Computers

ITEM COST

1 NW-PC $675.00
2 Memory card 139.90
1 Disk Drive 194.50
4 Software 139.92
TOTAL $1153.32

Write a test program that allows you to see the characters contained
within the character set of your computer. Given a positive integer,
you can use the chr function to determine the corresponding char-
acter. On most computers, only integers less than 255 are valid for
this. Also, remember that most character sets contain some unprint-
able characters such as ASCII values less than 32. Print your output
in the form:

Character number nn is x.

5 4.1

—

to be able to write
code from
pseudocode

o to be able to use
program comments

to be able to use in-
denting and blank
lines to enhance
readability

Writing Code

82

Designing and
Writing Complete
Programs

We are now at the stage where we can begin a thorough look at
writing more elaborate programs. Chapter 2 gave us the three basic
components of a program: program heading, declaration section, and ex-
ecutable section. Chapter 3 provided some additional tools for use in
constructing programs, specifically, the use of variables, input, constants,
and standard functions. Before using these ideas to write programs to
solve problems, however, we need to look at the method in which pro-
grams should be constructed. Oversimplified, but absolutely essential, the
idea is to design the program and write code for the program. You should
never start writing code to solve a problem until you have an adequately
designed solution. In this chapter, we will see how the writing of code
follows in a natural fashion from a carefully designed algorithm. We will
then look at typical errors, which include both mechanical errors (syntax,
declaration, assignment, and so on) and logic errors (why your program
doesn’t solve the problem).

Writing Code from Pseudocode

The process of writing statements that are part of a program to solve a
problem is referred to as writing code. This expression is commonly used
and we will use it throughout the text. To illustrate the idea of writing
actual code to solve a problem from an algorithm developed using pseu-
docode, consider the problem of computing your bowling score for an
evening. Assume you are to read in three integer scores, compute their
average, and print out the scores together with the average. A design for
this problem is shown in Figure 4.1.

FIGURE 4.1
Top-down design

4.1 Writing Code 83

Main Task
Getscores . =
Perform coimputations
Print results . -

I
b it i

Re‘ad.iiiiff," Perform..: - Print - -
- - scores , ‘computations Tesults
I l
Conu}ute: ‘Compute Print Print
‘total. - average scores average

Corresponding pseudocode is
1. Read in Score1, Score2, and Score3
2. Compute
2.1 let Sum = Scorel + Score2 + Score3
2.2 let Average = Sum divided by 3
3. Print results
3.1 print scores
3.2 print average

Assuming Scorel, Score2, and Score3 have been declared as integer vari-
ables, then

1. Read in Scorel, Score2, Score3
is coded as

read (Scorel, Score2, Score3);
Assuming Sum and Average have been declared as integer and real vari-
ables, respectively, then

2.1 let Sum = Scorel + Score2 + Score3
2.2 let Average = Sum divided by 3
is coded as

Sum := Scorel + Scored + Score3;
Average := Sum / 3.0;

The third line of pseudocode,
3. Print results

requires us to know the desired form for the output. For example, assume
we would like the following output produced:

Game Score
1 1S0
e 178
3 162
Your series total is 490

The average score is 163.33

84 DESIGNING AND WRITING COMPLETE PROGRAMS

Before writing code for this you need to be aware of the significance of
being able to produce attractive output. Many students feel that just getting
the desired information printed is a sufficient accomplishment. This is
not true! It is extremely important that you develop good habits with
respect to producing clear, attractive output. Some ideas to consider include:

1. Use writeln to produce blank lines where appropriate.

2. Use writeln (*-------- ') with the appropriate number of underscores
for underlining.

3. Move the output in from the left margin of the page.

4, Use appropriate left margins and columns for various sections of
the output.

5. Use descriptive headings and messages.

Consider the problem of writing code for the problem just described.
If the constant definition section includes

CONST
Skip =t ¢;

the output can be accomplished by using writeln statements as follows:

writeln (Skip:19, 'Game', Skip:&, 'Score');

writeln (Skip:29, '-=--=', Skip:b, '—=—— LB

writeln;

writeln (l:22, Scorel:1l);

writeln (2:22, Scorec:1l1);

writeln (3:22, Scored:1ll1);

writeln;

writeln (Skip:19, 'Your series total is', Sum:8);
writeln (Skip:19, 'The average score is', Average:8:2);
writeln;

Each line of pseudocode has now been translated into Pascal statements,
s0 we can write a complete program using five variables (Sum, Scorel,
Score2, Score3, and Average) to solve the problem. The program follows.

PROGRAM Bowling (input, output);

CONST
Skip = ' '3

VAR
Scorel, Scoreg, Scorel : integer;
Sum : integer;
Average : real;

BEGIN
read (Scorel, Scored, Scorel);
Sum := Scorel + Scored + Scoreil;
Average := Sum / 3.0;
writeln; writeln;

writeln (Skip:2d9, 'Game', Skip:&, 'Score!');
writeln (Skip:29, '-—--', SKkip:b, '---— LI
writeln;

writeln (3:22, Scorel:ll);
writeln (2:22, Scoreg:1ll);
writeln (3:22, Score3d:ll);
writeln;
writeln (Skip:129, 'Your series total is', Sum:8);
writeln (Skip:149, 'The average score is', Average:8:2);
writeln
END.

4.1 Writing Code 85

When this program is run on the computer, we obtain the following output.

Game Score
1 150
] 178
3 162
Your series total is 490

The average score is 163.33

Program Comments

Programming languages typically include some provision for putting com-
ments in a program. These comments are nonexecutable and are used to
document and explain various parts of the program. In Pascal, the form
for including comments in a program is either

{...comment...}
or
(% ...comment... %)

You should check with your instructor to see which form is preferred.
As you write more sophisticated and complex programs, you will see
the need for documentation and comments. Let’s now go back to PRO-
GRAM Bowling and see how comments could be used to enhance read-
ability of the program.
The line of code

writeln;

causes the printer to skip one line; a line comment could be used to explain
this. Thus, the line of code could be

writeln; { Skip one line }

Since comments are nonexecutable, the output is not affected but the
program is now more readable.

A second major use of comments is for program documentation. Sup-
pose your instructor would like you to include the following as part of a
program but not as part of the output.

Course number
Assignment number
Due date

Author

Instructor

This documentation is frequently included immediately after (or before)
the program heading and could be written as either a single comment or
a series of comments. A sample documentation section is

{ Course Number CPS 150 }
{ Assignment One }
{ Due Date Sept. 20 }
{ Author Mary Smith }
{ Instructor Dr. Jones }

These comments do not affect the output; they merely enhance readability.
You should try several ways to include comments within a program. You

86 ' DESIGNING AND WRITING COMPLETE PROGRAMS

are limited only by your imagination and your instructor’s wishes. Let’s
now rewrite PROGRAM Bowling using a documentation section and other
comments within the program.

PROGRAM Bowling (input, output);

{
{
{
{
{
c

ONST

Course Number CPS 150
Assignment One

Due Date Sept. 20
Author Mary Smith
Instructor Dr. Jones

W

Skip = ' ';

VAR

Scorel, Scoreg, Score3d : integer;

Sum

integer;

Average : real;

BEGIN

{ Main program }

read (Scorel, Score2, Scorel); { Get the scores }
:= Scorel + Scoreé + Score3;

Average := Sum / 3.0;

writeln; writeln;

sSum

writeln (Skip:19, 'Ganme', SKip:&, 'Score');
writeln (Skip:1d9, '-——-!', SKip:&, '——w-- LA

{ Print heading }

writeln;

writeln (1:22, Scorel:1l); { Print the results 1}
writeln (2:22, Scorecd:1l1);

writeln (3:22, Scored:il);

writeln;

writeln (Skip:19, 'Your series total is', Sum:8);

writeln (Skip:19, 'The average score 1is', Average:8:2);

writeln

END.

{

of main program }

Program Style

When writing a program, a major point to remember is to make your
program easy to read. Three commonly used methods for doing this are
indenting sections of code, using blank lines, and using program comments.

First, indenting is used to identify sections of code and should roughly
correspond to the indenting implied by pseudocode. No standard exists
regarding the number of spaces to use for indenting. However, we find
that one space makes programs difficult to read, and four or more spaces
sometimes does not leave sufficient space for complicated programs. All
sample programs in this text will use two spaces for indenting.

Many programmers use the leftmost column for the reserved words
PROGRAM, CONST, VAR, BEGIN, and END where BEGIN and END de-
note the start and finish of the executable portion of the program. Other
statements are indented at least two spaces. This does not affect the pro-
gram; it simply makes it easier to read.

A second stylistic technique is to use blank lines to separate sections
of code. The use of blank lines is not standardized; it depends on your
preference for readability. A note of caution, however; too many blank
lines can be distracting. To illustrate how blank lines may be used, con-
sider the following version of the previous program to compute bowling
scores.

PROGRAM Bowling (input, output);

4.1 Writing Code

87

{ Course Number CPS 150 }
{ Assignment One }
{ Due Date Sept. 20 }
{ Author Mary Smith }
{ Instructor Dr. Jones }
CONST

Skip = '
VAR

Scorel, Scored, Score3d : integer;

Sum : integer;

Average : real;
BEGIN { Main program 1}

read (Scorel, Score2, Scorel); { Get the scores 1}

Sum := Scorel + Scoree + Score3l;

Average := Sum / 3.0;

writeln; writeln;

writeln (Skip:19, 'Game', Skip:b, 'Score'); { Print heading }
writeln (Skip:19, '-——--t, Skip:6, '————- L

writeln;

writeln (1:22, Scorel:11); { Print the results 1}

writeln (2:22,
writeln (3:22,
writeln;
writeln (Skip:29, 'Your series total is!, Sum:8);
writeln (Skip:129, 'The average score is!', Average:8:2);
writeln i

END. {

Score2:11);
Score3d:11);

of main program }

Since this is such a short program, you may not see much difference in
readability between this and the version before it; but blank lines have
been used to separate all sections of the program and parts within the
executable section.

A third method for enhancing readability is the use of program com-
ments for program description, a variable dictionary, and section com-
ments. Let’s first consider the problem of describing the program. Each
program should contain some description of what the program does. The
program description generally follows the program heading. You will re-
alize the necessity for such descriptions as you accumulate a group of
programs. Using our bowling problem, a program description could be

-

This 1is one of our early complete Pascal
programs. It solves the problem of
listing bowling scores and computing the

}
{ }
{ }
{ total and average. In addition to this, }
{ the final version will contain an initial }
{ effort to develop a programming style }
{ using }
{ 1. Indenting }
{ 2. Blank lines }
{ 3. Program comments }

Another relatively standard use of program comments is to establish a
variable dictionary. In short programs, the need for this is not obvious;
however, it is essential for longer programs.

88 DESIGNING AND WRITING COMPLETE PROGRAMS

Several styles are used for describing variables. One method is to use
comments on the same line as the variables in the variable declaration
section. For example, for the bowling problem, you might use

VAR

Scorel, Scoreé, Scorel : integer; { Scores for games 1}
Sum : integer; { Sum of the scores }
Average : real; { Average of game scores }

A second method is to use a separate comment section preceding the
variable declaration section, such as

{ Variable Dictionary }
{ }
{ Average Average game score b
{ Scorel Score for game one }
R4 Score2 Score for game two }
{ Score3 Score for game three }
{ sum Sum of the scores }

You are encouraged to try both styles of describing variables as well as
any variation you might like.

Another use of program comments is to describe what a section of code
is to do. In PROGRAM Bowling, the executable section consists of three
sections: get data, perform computations, and produce output. A comment
block could be used to describe what happens in each portion of the
program.

{ Get the scores }

{ Perform the comfutations }

{ Print the heading 1}

-

{ Print the results }

At this stage, you may be thinking that developing a style for writing
programs was the subject of Shakespeare’s play Much Ado About Nothing
since none of these suggestions has anything to do with whether or not
a program runs. Not true. It is fairly easy to learn to write short programs.
As you continue your study of computer science, you will accumulate
programs that are progressively longer and more complex. Thus, you should
begin now to develop a concise, consistent style for writing programs.

Now we will incorporate all the previous suggestions for writing style
into PROGRAM Bowling.

PROGRAM Bowling (input, output);

L e N R)

Course Number CPS 1S5S0 }
Assignment One }
Due Date Sept. 20 }
Author Mary Smith }
Instructor Dr. Jones }

4.1 Writing Code

{ Program Comments

{

{ This is one of our early complete Pascal programs. It

{ solves the problem of 1listing bowling scores and

{ computing the total and average. 1In addition, the

{ final version contains an initial effort to develop a

{ programming style using

{

{ 3. Indenting

{ 2. Blank lines

{ 3. Program comments

CONST
Skip = ' '

VAR { Variable Dictionary
Scorel, Scored, Score3d : integer; { Scores for three games
Sum : integer; { Sum of the three scores
Average : real; { Average game score

BEGIN { Main program }
read (Scorel, Scored, Scored); { Get the scores

Sum := Scorel + Scored + Score3l;
Average := Sum / 3.0;

writeln (Skip:19, 'Game', Skip:k, 'Score'); { Print a heading
writeln (Skip:29, '—-———t, Skip:&, '=——— U

writeln;

writeln (2:22, Scorel:1l); { Print the results

writeln (2:22, Scorec:11);

writeln (3:22, Scorel:1l);

writeln;

writeln (Skip:19, !'Your series total is', Sum:8);
writeln (Skip:19, 'The average score is', Average:8:2);
writeln

END. { of main program 1}

When this program is run, the output is

Game Score
1 150
= 178
3 162
Your series total is 490

The average score is 163.33

EXAMPLE 41

employee of a company. The following questions will need to be answered:

1. Is the employee salaried or hourly?

2. What is the wage rate?

3. How many units (hours, weeks, and so on) in a pay period?
4. What deductions need to be taken from the total wage?

5. What information needs to be included as part of the output?

We will assume these questions are answered as follows:

1. Hourly
2. $12.75 per hour

89

Wt A e N e e

o e

Let’s conclude this section by writing a program to compute the wages for an

90 DESIGNING AND WRITING COMPLETE PROGRAMS

3. 40 hours

4. Union dues, social security (FICA), federal withholding tax, and state

withholding tax

5. Hours worked, wage rate, list of deductions, total deductions, gross pay,

and net pay

You cannot yet start solving this problem because you need to know more. What
are the union dues? What are the rates for the other three deductions? This in-

formation will be provided later. Typical output would be

Tite Packing Company

Employee name: Frederick Adamson

Hours worked: 40
Hourly wage: 128.75
Gross pay: 510.00
Deductions:
Union dues 6.50
FICA 25.50
Federal tax 86.70
State tax 21.4d3
Total deductions 140.63
Net pay $ 3e9.37

Algorithm Development

Now that the problem is sufficiently defined, we can develop an algorithm
for its solution. We will continue using pseudocode with stepwise re-
finement in developing our algorithms. An initial algorithm for this prob-

lem is

Get information from the company
Compute gross pay

Compute deductions

Compute net pay

Print check

G

Module specifications for the five main modules are

1. Get Data Module
Data received: None
Information returned: Hours worked
Hourly rate
Logic: Use read statements to get data.

2. Compute Gross Pay Module
Data received: Hours worked
Hourly rate
Information returned: Gross pay

Logic: Compute product of hours worked and hourly rate.

4.1 Writing Code

A NOTE OF INTEREST

Documentation Employment

The rapidly growing use of software and user-
friendly systems has created a new job market.
A need for user-friendly documentation has cre-
ated a group of specialists referred to as technical
writers or documentation teams. These writers
must have a good background in computer sci-
ence or management information systems as well

as the ability to write clearly and concisely. Their
responsibilities include writing instructions, de-
scriptions, and explanations for user’s manuals.

The need for these writers is growing because
of customer demands concerning usability of
products. Major companies that employ such
writers include IBM, DEC, and Bell Laboratories.

91

3. Compute Deductions Module

Data received: Gross pay
Deductions
Deduction rates
Information returned: Separate deductions
Total deductions
Logic: Use defined constants to compute deductions.
Sum deductions to get total.

. Compute Net Pay Module

Data received: Gross pay

Deduction total
Information returned: Net pay
Logic: Subtract deductions from gross pay.

. Print Check Module

Data received: Gross pay
All deductions
Total deductions
Net pay
Information returned: None
Logic: Use writeln statements to produce the desired output.

A structure chart for this problem is given in Figure 4.2.
A second-level pseudocode solution is

Get information from the company

1.
1.1 number of hours
1.2 hourly rate
2. Compute gross pay
3. Compute deductions
3.1 union dues
3.2 social security (FICA)
3.3 federal withholding tax
3.4 state withholding tax
3.5 get total deductions
4. Compute net pay
5. Print check

5.1
5.2
5.3
5.4

list gross pay

list deductions

list total deductions
list net pay

892 DESIGNING AND WRITING COMPLETE PROGRAMS

suopanpep

T moL

. ¢
-uononpe(l.

5019

“woruny || Apnoy || tequnN

ejer || smoyjo

}

op

)

ki

' /
_

wEp
199

'

urex8oxd
agepyandwo)

10y MeYD 3INoNNg
v TANO1d

4.1 Writing Code 93

We now need to decide if further refinement is needed. Since each
pseudocode line can be implemented in a relatively direct fashion, some
programmers might choose to make no further refinements. However, we
will further refine step 5.2 to obtain

5.2 list deductions
5.2.1 union dues
5.2.2 social security (FICA)
5.2.3 federal withholding tax
5.2.4 state withholding tax

The data for this problem are

Number of hours = 40
Hourly rate = $12.75
Union dues = $6.50
Social security rate (FICA) = 5%
Federal withholding rate = 17%
State withholding rate = 4.3%

The pseudocode is translated into lines of code by

1. Get information from company
readln (NumHours, HourlyRate);

2. Compute gross pay

GrossPay := NumHours * HourlyRate;
3. Compute deductions

UnionDues := b.50;

FICR := GrossPay * 0.05;

FederalTax := GrossPay * 0.17;

StateTax := GrossPay * 0.043;

TotalDeduc := UnionDues + FICA + FederalTax + StateTax;

4. Compute net pay

NetPay := GrossPay - TotalDeduc;

5. Print Check

Several writeln statements, with suitable formatting, go here.

A program to solve this problem can now be written incorporating
previous suggestions of writing style.

PROGRAM ComputeWage (input, output);

{ This program is designed to compute the wage for an hourly 1}
{ worker. Information for the enployee is obtained, 1}
{ deductions are computed and totaled, the net pay is 1}
{ computed, and all information is printed 1in a reasonable 1}
{ manner. H
CONST

CompanyName = 'Tite Packing Company!';

EmployeeName = 'Frederick Adamson!;

Underline = '—————————— LI

Indent = ' ';

UnionDues = £.50;

FICARate = 0.05;

StateTaxRate = 0.043;

FedTaxRate = 0.17;

94 DESIGNING AND WRITING COMPLETE PROGRAMS

VAR
FederalTax, { Withholding for federal tax
FICA, { Withholding for social security
GrossPay, { Pay before deductions
HourlyRate, { Hourly wage rate
NetPay, { Amount due employee
StateTax, { Withholding for state tax
TotalDeduc : real; { Sum of deductions
NumHours : integer; { Hours worked by employee

BEGIN { Main program }
{ Get data }

writeln ('Please enter hours worked and hourly rate.');
writeln ('Press <RETURN> when finished.');
readln (NumHours, HourlyRate);

{ Compute gross pay }
GrossPay := NumHours * HourlyRate;
{ Compute deductions }

FICA := GrossPay * FICARate;

FederalTax := GrossPay * FedTaxRate;

StateTax := GrossPay x StateTaxRate;

TotalDeduc := UnionDues + FICA + FederalTax + StateTax;

{ Compute net pay }
NetPay := GrossPay - Totalbeduc;
{ Now print all information }

writeln; writeln;
writeln (Indent:30, CompanyName);
writeln (Indent:30, Underline, Underline);
writeln;
writeln (Indent:19, 'Employee name:', EmployeeName:20);
writeln;
writeln (Indent:19, 'Hours worked:', NumHours:17);
writeln (Indent:19, 'Hourly wage:', HourlyRate:2l:2);
writeln;
writeln (Indent:19, 'Gross pay:', GrossPay:33:2);
writeln;
writeln (Indent:19, !'Deductions:');
writeln;
writeln (Indent:21, 'Union dues', UnionDues:2l:2);
writeln (Indent:2%, 'FICA', FICA:27:2);
writeln (Indent:21, 'Federal tax', FederalTax:20:2);
writeln (Indent:21, 'State tax', StateTax:22:2);
writeln ('—-————- 1:52);
writeln;
writeln (Indent:21, 'Total deductions', TotalDeduc:15:2);
writeln;
writeln (Indent:19, 'Net pay', '$':28, NetPay:8:2);
writeln ('-—————- ':b2)

END. { of main program }

-

W e e e e

4.1 Writing Code 95

Output from this program is

Please enter hours worked and hourly rate.
Press <RETURN> when finished.

40 12.75
Tite Packing Company
Employee name: Frederick Adamson
Hours worked: 40
Hourly wage: 12.7§8
Gross pay: S10.00
Deductions:
Union dues 6.50
FICR 25.50
Federal tax 46.70
State tax 21.93
Total deductions 140.63
Net pay $ 369.37
Exercises 4.1 1. Assume that each of the following are lines of pseudocode. Write Pascal

statements for each.

. Add the scores from Test1, Test2, Test3, and Test4

Let Average = Total divided by 4

Let Totalincome = Salary plus Tips

. Let Time = Distance divided by Rate

Let Grade = TotalPoints divided by 6

Write out your name, TotalPoints, and Grade

Write out NumberAttending, TicketPrice, and TotalReceipts

me D o

®

2. Assume the output for a program to compute parking lot fees is to contain

a. Vehicle type (car or truck) d. Total time
b. Time in e. Parking fee
c. Time out

Use writeln statements to produce a suitable heading for this output.

3. Given the following algorithm in pseudocode form, write a complete pro-
gram that will compute the volume of a box.

1. Assign dimensions
2. Compute volume
3. Print results
3.1 dimensions
3.2 volume

4. List four uses for program comments.

5. Discuss variations in program writing styles for each of the following:

a. Using blank lines.
b. Using program comments.
c. Writing variable dictionaries.

96 DESIGNING AND WRITING COMPLETE PROGRAMS

4.2
Procedures for
Output

OBJECTIVES

@ to understand the
idea of a
subprogram

to be aware of some
uses for procedures

a to be aware of dif-
ferences in
procedures

o to understand the
form for a
procedure

o to be able to use a
procedure in a
program

6. Use program comments to create a program description section that might be
used to solve the problem of computing semester grades for a class.

7. Which of the following are valid forms for program comments?

a. { message here }
b. (% *)
(* message here *)
(* *)
C. (%
message here

*)

* message here *)

€. Ltk ok ok ok sk e ke ke ke ok ok e e ke ok sk ok ok o ok ok ok ok sk ok ok ok
* *

* message here *

* *
sk ok o ok o 3k ok ok ok ok oK o e e ok ok ok ok ok ok ok ok ok ok kK koK T

f. (= *
(* message here *
(* *)

g (x *)
* *)

* message here *)

* *)

* *)

I st ook ok ok ok o ok ok ke ok ok o o 3k ok ke ok ok ok ok ok ok ok ok ok ok ok b
{* *}
{* message here *}
{* *}

4 oK ok ok ok ok ok ok o ok o K K oK o o ok o o ok ok ok sk ok ke ok ok)

This section is a slight departure from most other presentations of material
for a Pascal course. Some texts discuss the complete use of subprograms
relatively late in the text because using subprograms is somewhat ad-
vanced. Disadvantages of such placement include: (1) a major concept
must be assimilated and used in a short period of time; and (2) some early
problems that could be readily solved using subprograms use different
solutions instead. In an attempt to avoid these disadvantages, some texts
include material on subprograms very early in the sequence of topics.
This, however, presents some new problems since a complete presentation
involves sophisticated use of variables and can be a stumbling block for
some students.

We will avoid some of the problems in early and late introductions to
subprograms by examining a limited use of them in this chapter to help
make you comfortable with the basic ideas of their design and use. In
Chapter 7 we will expand our understanding of subprograms with a com-
plete discussion of their uses in problem solving and program design.

Concept of a Subprogram

The idea of a subprogram is not difficult to understand. It is a program
within a program and is provided by most programming languages. Each

4.2 Procedures for Output 97

subprogram should perform some task; the nature of that task can range
from simple to complex. You could have a subprogram that prints only a
line of data, or you could write an entire program as a subprogram. The
main idea is that a subprogram is used to perform some task. At present,
we will use them only for relatively small tasks.

Pascal provides for two kinds of subprograms: functions and proce-
dures. You already used some built-in functions in Chapter 3 and in
Chapter 7 you will learn how to write your own functions. Therefore, for
now, we will discuss a limited use of procedures.

Uses for Procedures

A procedure can be used as a subprogram in a variety of ways. Two
significant uses are to facilitate the top-down design philosophy of prob-
lem solving and to avoid having to write repeated segments of code.

Procedures facilitate problem solving. For instance, if the pseudocode
solution to a problem is

1. Get the data
2. Process the data
3. Print the results

a procedure can be written for each of these tasks and the program can
then call each procedure as needed. The idea of using a procedure to
implement a line of pseudocode is very important and, as you develop
more programming skills, will become an integral part of how you write
a program.

The second use of procedures is for the repeated use of several lines
of code throughout a program. A procedure can be written using those
several lines of code, and whenever that task is needed, a single call to
the procedure suffices. We will see examples of this type of procedure
later in this section.

Kinds of Procedures

Generally, procedures can be categorized into two types: those that use
parameters and those that do not. There are several variations of proce-
dures that use parameters, and we will discuss them in Chapter 7. At this
point, we will examine only procedures that do not use parameters. This
is a very restricted use of procedures, for our procedures will not use
variables or variable values. But you will at least be familiar with pro-
cedures before the presentation in Chapter 7.

Form for a Procedure

Let’s now see how a procedure is written. Basically, a procedure is a
program and, as such, it has the same divisions as a complete program.

Procedure heading — [

Declaration section — [
(optional)

Executable section — [

98 DESIGNING AND WRITING COMPLETE PROGRAMS

The procedure heading must contain the reserved word PROCEDURE
followed by the procedure name, which can be any valid identifier. Since
no parameters are used at this point, the form for a procedure heading is

PROCEDURE procedure name;

It is important to develop the habit of using descriptive names for
procedures. For example, if you are going to write a procedure to print a
heading for the output, PrintHeader might be a good choice. This allows
you to recognize the task the procedure is supposed to accomplish and
makes the program more readable. Each of the following would be a
reasonable, descriptive procedure heading.

PROCEDURE PrintHeader;

PROCEDURE GetData;

PROCEDURE ComputeTax;

PROCEDURE TotalPoints;

PROCEDURE PrintScores;

PROCEDURE PrintCourselInfo;

The declaration section of a procedure is identical to the declaration
section of a program containing CONST and VAR subsections..

The executable section of a procedure resembles the executable section
of a program in that it must start with the reserved word BEGIN, but it
differs in a significant way: the END of a procedure is followed by a
semicolon instead of a period. Thus, a procedure will have the following
basic form:

PROCEDURE procedure name;

CONST
(list of constants)

VAR
(list of variables)

BEGIN
(body of procedure)
END;
The syntax diagram for this is

declarahonp o “."jibody —»@——»

Constants and variables declared in a procedure can only be used within
that procedure and are said to be local to that procedure (see Chapter 7).

Let’s look at one quick procedure before our next example. What will
the following procedure do?

PROCEDURE Skip3;

BEGIN
writeln; writeln; writeln
END;

The procedure skips three lines in the output.

4.2 Procedures for Output

Let’s write a procedure that prints a heading for each statement as follows:
1117777177177 7477777770777077007177077777777

NN NNN N

/

(1177077770777 07071000077107000777048777777177

Oour Lady of Mercy Hospital

1306 Central City

/
/
/
/
/
Phone (41L) 333-555S /
/
/

The procedure that will do this is

{34 3 e ok e ok ok 3k ok 3 3k 3K 3K 5K 3K Sk e 3k 3k ok ok 3k 3K 36 ok oK 3k ok 3 ok 5K ok ok b 3 sk ok ok 3K oK ok ok sk ok ok o ok 3 ok sk ok ok oK ok ok ok ok K ok ok sk ok ok }

PROCEDURE StatementHeading;

CONST
Marks =
Edge
Skip

BEGIN
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln

END;

VIT1777777770000702700000077707777777177777);

v/

LI B
’

;s writeln;
(Skip:10,
(Skip:10,
(Skip:10,
(Skip:10,
(Skip:10,
(Skip:10,
(Skip:10,
(Skip:10,
(Skip:10,

; writeln

/v
Marks);
Edge);
‘7', Skip:7?, 'Our Lady of Mercy Hospital!', Skip:6,
'v/v, Skip:7?, ! ', Skip:&,
Edge);

'/, Skip:11, '1306 Central City', Skip:1lk, '/');
'/', Skip:1D0, 'Phone (43&) 333-5555', Skip:9, '/!
Edge);
Marks);

of PROCEDURE StatementHeading }

ok s sk ke ok ok Sk Sk 3k ok Sk e ok Sk 3k ok ke sk Sk S ok Sk 3 3k 3 3k ok ok sk ke 3 Sl 3k o ke 3K 3K e Sk Sk 3K sk ok sk sk ke Sk e ok 3k sk Sk o ok 3k ok ok 3 ok kK ok)

Placement in a Program

)i

99

Suppose you are writing a program for Our Lady of Mercy Hospital. The program
is to print a billing statement for each patient as the patient leaves the hospital.

l/');
l/');

Procedures are placed in the declaration section after the variable dec-
laration subsection in a program. Thus, a full program with a procedure
would have the following form:

PROGRAM program name (output);

CONST

VAR

PROCEDURE procedure name;

CONST
VAR
BEGIN { PROCEDURE }

. (body of procedure)

END; { of PROCEDURE 1}

100 DESIGNING AND WRITING COMPLETE PROGRAMS

BEGIN { Main program }

. (body of program)

END. { of main program }

Using procedures in a program can make a program harder to read
unless you enhance the readability by using comments, blank lines, and
indenting. You should develop a style with which you are comfortable.
Most examples in this text will use the following style:

1. Procedures will be preceded and followed by a row of asterisks.

2. A comment section separated by blank lines will follow the pro-
cedure heading.

3. Except for the procedure heading, the procedure code will be
indented.

Therefore, our general form for putting a procedure in a program will be
PROGRAM program name (output);

CONST

VAR

{ **}
PROCEDURE procedure name;

{ 1A brief description of the procedure }

CONST

VAR

BEGIN

: (body of procedure)

ENﬁ; { of PROCEDURE procedure name }
(**}
{ Now start the main program }

BEGIN { Main program 1}

: (body of main program)

END. { of main program 1}

Calling a Procedure

Now that you know how to write a procedure and where it belongs in a
program, you need to know how to call the procedure from the main
program. Since no parameters will be used in procedures at this point, a
procedure name as a statement in the main program will cause the pro-
cedure to be executed by the computer. For example, if PrintHeader is the
name of a procedure,

4.2 Procedures for Output 101

BEGIN { Main program }
PrintHeader;
. (remainder of program)

END. { of main program }

will cause the procedure PrintHeader to be executed first in the main
program.

When a procedure name is encountered as a program statement, control
of execution is transferred to the progedure. At that time, the procedure
is run as a separate program and when the procedure is complete, control
returns to the next statement in):he main program following the call to
the procedure. The following short program to call a procedure illustrates
this control.

PROGRAM FirstProcedure (output);
{***}
PROCEDURE PrintMessage;

BEGIN
writeln ('This is ‘written from the procedure.!':43)
END; { of PROCEDURE PrintMessage }

{***}

BEGIN { Main program 1}
writeln; writeln;
writeln ('This is written from the main program.':456);
writeln;
PrintMessage;
writeln; writeln
END. { of main program }

The output from this program is

This is written from the main program.

This is written from the procedure.

"EXAMPLE 4.3 As another example, let’s construct a short program that calls a procedure several
times and have the procedure print the message

This is written by a procedure.
Now return to the main program.

Furthermore, let us have the main program print a message that includes a count
of how often the procedure is called. A pseudocode design could be

Initialize counter
Print message

Call procedure
Increment counter
Print message
Call procedure
Increment counter
Print message

Call procedure

=

PPN U A BN

102 DESIGNING AND WRITING COMPLETE PROGRAMS

The program for this design is

PROGRAM ProcedurePractice (output);

This program illustrates multiple calls to a procedure }

{
{ for printing a message.
CONST
Indent = ' '3
VAR
Count : integer;

ke sk ok sk ke 5k 3k 3K ok 3 3K 3k 3k ok ke o s 3k ok 3 sk S 3k k3 o o ok k3 Sk S 3 ke 3 Sk i ke e ok ok ok e ok 3k Sk ke e ok ok 3k 3 ok ok ok ok ok ok ok ok ok ok }

PROCEDURE PrintMessage;

{ This procedure prints a two-line message every time it i

{ 1is called.

BEGIN
writeln;

writeln (Indent:20,
writeln (Indent:20,

writeln
END; {

of PROCEDURE

PrintMessage

}

'This is written by a procedure.
'Now return to the main progranm.

')
');

{3k ke 3¢ 36 o ke ok o ok o ok ok sk oK ok e ke ok ok 3k 3k oK ok ok ok kS 3K 3K Sk 3 3 oK ok Sk 3 3K 3K ok 3 ok oK ok ok 3 oK 3K Sk ok 3¢ o Sk ke e o ok ok ok ok ok ok }

{

BEGIN

END. ({

Now start the main program }

Main progranm

Count := 1;

writeln (Indent:10,
writeln (Indent:10,
PrintMessage;

.-
"=

Count Count + 1;
writeln (Indent:10,
writeln (Indent:10,
PrintMessage;

Count := Count + 1;
writeln (Indent:10,
writeln (Indent:10,
PrintMessage

}

'This is written from the main program.');

'It is call #!',

Count:3,

to the procedure.');

'This is written from the main program.');

'It is call #¢,

Count:3,

to the procedure.');

'This is written from the main program.');

It is call #!',

of main program }

The output from this program is

Count:3,

to the procedure.!);

This is written from the main program.

It is call # 1 to the procedure.

This is written by a procedure.
Now return to the main program.

This is written from the main program.

It is call # 2 to the procedure.

This is written by a procedure.
Now return to the main progran.

4.2 Procedures for Output 103

This is written from the main program.
It is call # 3 to the procedure.

This is written by a procedure.
Now return to the main program. EE]

STYLE TIP

BEDEEB

If a constant is going to be used in several procedures, it could be declared
in the constant definition section of the main program and then used by
each subprogram. For example,

CONST
Indent = ' *;

Multiple Procedures

You should now be able to write a procedure with no parameters, know
where it belongs in a program, and be able to call it from the main body
of the program. The next step is to use more than one procedure in a
program. Each procedure is developed separately and listed sequentially
after the variable declaration subsection of the main program. Thus, the
basic program with multiple procedures appears as follows:

PROGRAM program name (output);
CONST

VAR

PROCEDURE procedure name 1;

PROCEDURE procedure name 2;

PROCEDURE procedure name n;

BEGIN { Main program 1}

.
.

END. { of main program }

These procedures can be called in any order and as often as needed.
Just remember that when a procedure is called from the main program,
control is transferred to the procedure, the procedure is executed, and
control then returns to the next program statement. The following program
illustrates the use of multiple procedures.

PROGRAM MultipleProcedures (output);

CONST

Indent = ' !;

104 DESIGNING AND WRITING COMPLETE PROGRAMS

{***}
PROCEDURE Messagel;
{ This 1is procedure one }

BEGIN

writeln;

writeln (Indent:10, 'This is from Procedure #1!')
END; { of PROCEDURE Messagel 1}

(***}
PROCEDURE Messagecd;
{ This is procedure two 1}

BEGIN

writeln;

writeln (Indent:10, 'This is from Procedure #2')
END; { of PROCEDURE Messagez2 }

{***}
PROCEDURE Message3;
{ This is procedure three 1}
BEGIN
writeln;
writeln (Indent:10, 'This is from Procedure #3')

END; { of PROCEDURE Messageld }
{***}
{ VNow begin the main program }

BEGIN { Main program 1}

Messagel;

Messagecd;

Message3d;

MessageZ;

Messagel;

writeln; writeln
END. { of main program }

The output from this program is
This is from Procedure #1

This is from Procedure #2
This is from Procedure #3
This is from Procedure #g2
This is from Procedure #1
Examples of Using Procedures for Output

We close this section with some examples using procedures to produce
output. By learning how to write and use procedures in this very limited

4.2 Procedures for Output 105

fashion, you should be better able to work with them when they become
more complicated.

EXAMPLE 4.4 Your computer science instructor wants course and program information included
— : as part of the output of a program. Consequently, you are to write a procedure
that can be used to print this information. Sample output is

3 2K kK 3 3 3K 3K kK 3 K kK 3K K e 3k Sk e e e e o e e b A A K kA Ak R ok ok A ok oK kK

* *
* Author: Mary Smith *
* Course: CPs-150 *
* Assignment: Program #3 *
* Due Date: September 18 *
* Instructor: Mr. Samson *
* *

ke 3 2k e 3k ok 3k 3k vk 3k 3k ok Kk 3k ok Sk 3k 3k 3k e 3k ke S Sk s ol 3 ke 3k ok ok ok K ok ok ok ok ok

The procedure to do this is
PROCEDURE PrintInfo;

CONST
Indent = ' '3

BEGIN
writeln (Indent:30, !*¥¥kkkkkkkoiiiodkdokkkdooRordorooRrdorkoxorskrsk 1)

’
writeln (Indent:30, '=* *1);
writeln (Indent:30, '=* Author: Mary Smith *t);
writeln (Indent:30, '* Course: CPS-150 *t),
writeln (Indent:30, '* Assignment: Program #3 *1);
writenl (Indent:30, '* Due Date: September 18 *1);
writeln (Indent:30, '* Instructor: Mr. Samson *1)s
writeln (Indent:30, '* *1);
writeln (Indent:aﬂ, ‘**************************************l)
END; { of PROCEDURE PrintInfo } [|

As part of a program that computes and prints grades for each student in your
class, you have been asked to write a procedure that produces a heading for each
student report. Assuming the columns in which the various headings should be
are as follows:

the border for the class name starts in column 30
Student Name starts in column 20

B Test Average starts in column 40

Grade starts in column 55

the heading should appear as
3K 5K 3K 3k k¢ 3 3 3K 3k 3K 3K oK 3K 3k oK oK ok ok 3 o 3K K 3 oK K

* *
* CPS 150 Pascal *
* *

K¢ 2k ke o 3 ok ke K 3k Sk 3 A ok A ok ok ok ok ok ok 3K & Xk

Student Name Test Average Grade

A descriptive name for this procedure could be PrintHeader. With this information,
the procedure could be written as follows:

106 DESIGNING AND WRITING COMPLETE PROGRAMS

PROCEDURE PrintHeader;

CONST
Skip = ' '

BEGIN
writeln;
writeln
writeln
writeln
writeln
writeln
writeln;
write (Skip:19,
writeln (Skip:8,

writeln;
(Skip:29,
(Skip:29,
(Skip:29,
(Skip:29,
(Skip:29,

write (Skip:19, '——
writeln (Skip:8, '——

writeln; writeln

END; A

EXAMPLE 4.6

of PROCEDURE PrintHeader

¥ e sk ok oK oK 3k ok 3k 3K oK ok ok ok koK ok ok ok kk ok k ok ok !)
'k
L
LR
¥ ok sk ok 3 ok 3k 3K ok 3K oK ok 3K oK o ok k ok ok ok ok kkokok 1) 5

*1)
*1)
*1)

CPS 150 Pascal

Student Name');
'Test Average',

————————— BE

Skip:3, 'Grade');

The Greater Metro Airport has hired you to write a program that will print a ticket
for each parking lot customer. The parking lot authorities want each ticket to

contain a suitable message and the amount to be paid upon leaving the parking
lot. A pseudocode design for this problem is

1. For each customer
1.1 assign amount due
1.2 print heading
1.3 print amount due
1.4 print closing message

We will write procedures for steps 1.2 and 1.4 of this design.
Each ticket will have the following heading.

Greater Metro Airport

Parking Lot
April 1S

Each ticket will contain the following message concerning the charge for parking:

Your charge is $XX.XX

Each ticket will contain the following closing message.

Thank you for using the
Greater Metro Airport

Please drive carefully

A procedure to print the heading is

PROCEDURE PrintHeader;

{ This procedure prints a ticket heading 1}

CONST
Date = 'April 15';
BEGIN
writeln;
writeln (Indent:20,
writeln;
writeln (Indent:2S,
writeln (Indent:27,
writeln

END; { of PROCEDURE

tGreater Metro Airport');

'Parking Lot!');
Date);

PrintHeader 1}

4.2 Procedures for Output 107

A procedure to print the closing message is

PROCEDURE PrintMessage;
{ Thils procedure prints a closing message }

BEGIN
writeln;
writeln (Indent:20, 'Thank you for using the!);
writeln (Indent:21, 'Greater Metro Rirport!);
writeln;
writeln (Indent:20, 'Please drive carefully');
writeln (Indent:15, ! ');
writeln; writeln
END; { of PROCEDURE PrintMessage }

A complete interactive program that can be used for two customers follows.
This can be modified later to accommodate several customers.

PROGRAM ParkingLot (input, output);

CONST
Indent = t !;

VAR
Fee : real;

{***}

PROCEDURE PrintHeader;
{ This procedure prints a ticket heading 1}

CONST
Date = 'April 1S?';

BEGIN
writeln;
writeln (Indent:20, 'Greater Metro Airport!');
writeln;
writeln (Indent:25, 'Parking Lot!');
writeln (Indent:27, Date);
writeln
END; { of PROCEDURE PrintHeader }

{***}
PROCEDURE PrintMessage;
{ This procedure prints a closing message }

BEGIN
writeln;
writeln (Indent:20, 'Thank you for using the');
writeln (Indent:21, 'Greater Metro Airport');
writeln;
writeln (Indent:20, 'Please drive carefully');
writeln (Indent:15, ! - LD
writeln; writeln
END; { of PROCEDURE PrintMessage 1}

{***}

108 DESIGNING AND WRITING COMPLETE PROGRAMS

{ Now begin the main program 1}
BEGIN { Main program }
{ Process customer one }
write ('Enter amount due and press <RETURN>. !');
readln (Fee);
PrintHeader;
writeln (Indent:20, 'Your charge is $', Fee:b:2);
PrintMessage;
{ Process customer two }
write ('Enter amount due and press <RETURN>. L
readln (Fee);
PrintHeader;
writeln (Indent:20, 'Your charge is $', Fee:b:2);
PrintMessage
END. { of main program }
The output from this program for each of two customers is
Enter amount due and press <RETURN>. 5.75
Greater Metro ARirport

Parking Lot
April 1S

Your charge is $ 5.7S

Thank you for using the
Greater Metro Airport

Please drive carefully

Enter amount due and press <RETURN>. &.00
Greater Metro Airport

Parking Lot
April 15

Your charge is $ a.00

Thank you for using the
Greater Metro Airport

Please drive carefully

Exercises 4.2 1. Explain the difference between a procedure and a program.

2. What output will be produced when the following procedure is called from

the main program?

4.2 Procedures for Output 109

PROCEDURE ExerciseTIwo;

CONST
Splats
Line
Skip

BEGIN
writeln (Skip:24, Splats);
writeln (Skip:9, '*!', Skip:19' 1x1);
write (Skip:9, 'x!', ' Sample Output');
writeln ('*!':5);
writeln (Skip:9, '*', Line:15, '%':5);
writeln (Skip:9, '*', Skip:19, 'x');
writeln (Skip:24, Splats)

END;

= '******************************';
' l;
'

3. Write a procedure that will produce the following:

2k 3 2k 3 2 2k o ok e ok sk ok e sk 3k ok ok 3K e ok ok K 3k ok ook ok ok ok

* *
* your name here *
* today's date here *
* *

e o o Ok 3 3k o 3 ok K 3k ok sk K kK kK ok 3k sk sk ok ok ok ok ok K
4. Write a program that calls the procedure in Exercise 3 five times.

5. Several commercial establishments use computers to print bills for their
customers. For each of the following businesses, create a suitable message
for the heading of the billing statements and write a procedure that will
print the heading when called from the main program.

a. R & R Produce Company
b. Atlas Athletic Equipment

c. Sleep E-Z-E Motel
d. Pump-Your-Own Service Station

6. Consider the output

1177707070170 7777100707770777777177

/ /
/ Special Olympics /
/ /

1171717777 771777770700177777¢2777

11100777 7770177777077707110177777

/ /
/ Special Olympics /
/ /

L1171 77777770777777701777777777

L1717 07077777777777701777777777

/ /
/ Special Olympics /
/ /

1177777771 7717777770777777227177

a. Write a program that produces this output without using procedures.
b. Write a program that produces this output using a procedure.

110 DESIGNING AND WRITING COMPLETE PROGRAMS

7. Consider the following program:
PROGRAM ExerciseSeven (output);

CONST
Splats = 1 sk ok ok ok 3k ok ok oK ok ok ok ok 3 ok 3k ok ok ok ok koK okokok Y)
Edge = 'x *1
Skip = ' ';

VAR

Interest : real;

BEGIN { Main program }
writeln; writeln;
writeln (Skip:15, Splats);
writeln (Skip:15, Edge);
writeln (Skip:15, 'x* Federal Savings * !
writeln (Skip:15, '* Monthly Report *
writeln (Skip:1S, Edge);
writeln (Skip:15, Splats);
writeln;
Interest := 114.53;
writeln (Skip:10, 'Thank you for banking with Federal Savings.');
writeln (Skip:10, 'Your current interest payment is below.');
writeln ('$':20, Interest:8:2);
writeln;
Interest := 87.93;
writeln (Skip:10, 'Thank you for banking with Federal Savings.');
writeln (Skip:10, 'Your current interest payment is below.');
writeln ('$':20, Interest:8:2);
writeln; writeln

END. { of main program }

and its output.

3 ok ok 3 2k 3 vk e ok ok 3k K oK sk ok ok 3k ok ok ok ok ok kK

* *
* Federal Savings *
* Monthly Report *
* *

sk 3k 3K 3K 3 2k 3k ok 3k 3K 3k %K o ok oK 3k 3 ok 3k % 3k ¥k %k kK

Thank you for banking with Federal Savings.
Your current interest payment is below.
$ 114.53

Thank you for banking with Federal Savings.
Your current interest payment is below.

$ 847.493
Rewrite this program using

a. a procedure for the heading.
b. a procedure for the customer message.

8. What is the output from the following program?
PROGRAM ExerciseEight (output);

CONST
Skip = ' ';

PROCEDURE Numberl;
BEGIN
writeln (Skip:10, 'She loves me.');
END; { of PROCEDURE Numberl 1}

4.3
Beginners’
Errors

to be aware of typi-
cal errors caused by
incorrect syntax

to be aware of errors
made in the declara-
tion section of a
program

to be aware of typi-
cal errors made
when using assign-
ment statements

to be aware of typi-
cal errors made
when using writeln
to produce output

: 4.3 Beginners’ Errors 111

PROCEDURE Numbere;
BEGIN
writeln (Skip:1.0, 'She loves me not.');
END; { of PROCEDURE NumberZ 1}

BEGIN {
Numberl;
Numbere;
Numberl;
Number2;
Numberl

END. «

9. Rewrite the following program using indenting, blank lines, comments, and
comment sections to enhance readability.

PROGRAM Plain (output);
VAR

Scorel, Score? :
Average : real;
PROCEDURE PrintHeader;

BEGIN

writeln; writeln;

writeln ('Your test results are below.':3b);
writeln;

writeln ('Keep up the good work!':3D0);

Main program }

of main program }

integer;

writeln; writeln
END;

BEGIN
PrintHeader;
Scorel := 89;
Score2 := 95;

Average := (Scorel + Score2) / 2.0;

writeln ('Scorel':20, Scorel:b);

writeln ('Scored':20, Score2:b);

writeln;

writeln ('Your average is':23, Average:8:2)
END.

BEHE

What you learn in this chapter will help you avoid problems when first
working with Pascal. You are now aware of the significance of carefully
designing an algorithm to solve a problem before you attempt to write a
program. Also, you are now able to write code to implement a simple
algorithm via a Pascal program. Therefore, to help you avoid frustration,
we will examine some typical errors made when writing code.

In an ideal situation, you would submit your program to the computer
and it would run with no errors and produce exactly what you desire for
output on the first attempt. Since this probably will not happen, you need
to be aware of the kinds of errors that can occur. These fall into three
general categories: compilation errors, run-time errors, and design errors.

Compilation errors are errors detected when the program is being com-
piled. These include syntax errors, which are errors in spelling, punctua-
tion, or placement of certain key symbols in a program. Run-time errors
are errors that are detected during execution of the program. Design errors
are errors that occur in the design of the algorithm or in coding the program
that implements the algorithm. These are also referred to as logic errors.

112 DESIGNING AND WRITING COMPLETE PROGRAMS

TABLE 4.1
Ilustration of using
semicolons

Syntax

In Section 2.2, it was stated that syntax refers to the rules governing
construction of valid statements. This includes spelling, punctuation, and
placement of certain key symbols. Errors made by improper use of syntax
are usually easy to identify and correct.

First, let’s examine uses of the semicolon. This is the fundamental
punctuation mark in Pascal: it is used to separate statements. It first ap-
pears after the program heading statement and then between complete
statements throughout the program. It may appear that semicolons are
used at the end of each line. This is not true. In particular, certain keywords
appear on a line but are not complete statements. Also, semicolons are
not required between a statement and END.

To see how semicolons are needed, consider the example given in Table
4.1. The program to the left in this table has no semicolons; the one on

Incorrect Program Correct Program
PROGRAM CheckSemi (output) |1. | PROGRAM CheckSemi (output);
VAR VAR

A, B : real 2. A, B : real;
BEGIN BEGIN

A := 3.0 3. A := 3.0;

B :=¢2 *x R 4. B :=¢2 x A;

writeln (A:S:2, B:5:2) writeln (R:S:2, B:5:2)
END. END.

the right has the minimum number of semicolons required to make the
program run: four. These are explained as follows:

1. A semicolon must appear after the program heading.
PROGRAM CheckSemi (output);

2. A semicolon must appear after each declaration list in the vari-
able declaration section.

A,B:

3. and 4. A semicolon must appear between complete statements in
the executable portion of the program.
A := 3.0;
B : 2 % Aj;

Two comments are in order. First, since Pascal ignores extra blanks and
line boundaries, the semicolons do not have to be written directly after
the statements. Second, as we’ve seen before, the semicolon at the end of
the last statement preceding the reserved word END is unnecessary.

A second syntax error results from using the symbol for equality “="
instead of the symbol for an assignment statement ““:=". This is com-
pounded by the fact that several programming languages use the equal
sign to assign values to variables, and the equal sign is used to define
values in the CONST section.

A third type of syntax error occurs when writing program comments.
Most of these occur when a comment begins with “(+” and ends with

real;

4.3 Beginners’ Errors 113

“x)". As comments get longer and you attempt to produce attractive read-
able programs, you may produce some of the following errors.

1. Improper beginning
(instead of (x or {
2. Improper ending
) instead of =) or }
* instead of %)
$) instead of %)
3. Extra blanks
(# comment =)instead of (x comment %)
4. No close for a long comment (no ending parenthesis or brace)

ke sk ke ke Sk k¢ 3k k¢ ke ok ok e Sk 3k Sk 3¢ o 3k ke Sk ok k¢ Sk ok K ok ok ok 3k ok oK ok ok

* %
* This 1s a long comment with *
* improper closing punctuation. =
* *

3k e 2k e ok e ok e 3k ok o ok 3k Ok e e sk sk e ok ok Sk 3k Sk ok e 3k 3k K Sk K Sk ok ok

A fourth type of syntax error results from omitting the period after END
at the end of the executable portion of the program. This error will be
detected by the compiler.

A fifth type of error that some computer programmers consider a syntax
error is misspelling keywords. Table 4.2 sets forth a program with seven

TABLE 4.2

Spelling keywords Incorrect Spelling Correct Spelling
and identifiers PROGRM Spelling (output); PROGRAM
VR VAR
Wage : reale; real
Inital : chr; char
Scre : interger; integer
BEGN BEGIN

Wage := 5.0;
Inital := 'D!';

Scre := 75,
writln (Wage:1D0:2, Inital:3, Scre:S) writeln
END.

misspelled keywords. You may think the identifiers Inital and Scre are
also misspelled keywords. But remember: they are not keywords and can
be used as spelled in the program. It is not good practice to use identifiers
like this, however, since you could easily spell them differently through-
out the program and they would not be recognized as variables by the
compiler.

Declarations

Errors sometimes made when defining constants in the CONST section
include:

114 DESIGNING AND WRITING COMPLETE PROGRAMS

TABLE 4.3
Errors in declaration
sections

1. Using an assignment statement rather than an equal sign

Correct
CONST
MaxScore = 100;

Incorrect
CONST
MaxScore := 100;

2. Omitting single quotation marks from string constants
Incorrect Correct
CONST CONST
Name = Mary Smith; Name = 'Mary Smith!;
Letter = 2; Letter = '2';

3. Using single quotation marks around numerical constants

Incorrect Correct
CONST CONST
MaxScore = '300'; MaxScore = 100;

The declaration
MaxScore = '100';

will not result in an error during compilation. Technically, it is
not an error. However, this declaration makes MaxScore a string
rather than the integer constant 100. Consequently, you could not
assign MaxScore to an integer variable or use it in arithmetic
computations.

More errors are usually made in the variable declaration section than
in the constant definition section. Several illustrations of incorrect vari-
able declarations and the corrected versions are shown in Table 4.3.

Incorrect

Correct

VAR
A; B; C : real

VAR
Age ; integer;

VAR
A, B, C : real;

VAR
Age : integer;

VAR VAR

Initial = char; Initial : char;
VAR VAR

Wage : real; Wage : real;
Score Score,

Hours : integer; Hours : integer;

Assignment Statements

In Section 3.2 you learned to assign a value to a variable with a statement
such as

Score := &7;
Some common mistakes in assignment statements are

1. Trying to put more than one variable on the left of an assignment

statement

Incorrect Correct

X +Y := 2, Z : =X + Y3
A + 3 := B; B := A + 3;

2.

3.

4.

4.3 Beginners’ Errors 115

Trying to make an assignment from left to right

Incorrect Correct

87 := Score; Score := 87;

Trying to assign the value of one identifier (A) to another identi-
fier (B) from left to right

Incorrect Correct

:= B; B := A;
(This statement will not be detected as an error during compila-
tion; thus, your program will run, but you will probably get incor-
rect results.) ‘
Attempting to assign a value of one data type to a variable of an-
other data type. If, for example, Score had been declared as an in-
teger variable, each of the following would produce an error.

a. Score := 77.3;
b. Score := 150 / 3;
c. A := 18.6;

Score := A;

There is an exception to this rule. The value of an integer data
type can be assigned to a variable of type real. For example, if Av-
erage is a real, .

Average := 43;

is a valid assignment statement. However, 43 is then stored as the
real 43.0 rather than the integer 43.

. Attempting to use undeclared variables and constants. This error

often results from listing the variables used in the program in the
variable declarations section after the program has been written,
and inadvertently omitting some variable from the list. During the
compilation, you will get an error message something like “Identi-
fier not declared” when the variable first appears in a line of
code. This is easily corrected by adding the variable to the VAR
section.

This same error results from misspelling identifiers. For exam-
ple, if the VAR section has

VAR
Initial : char;

and you use the statement
Inital := 'D';
in the executable section, you will get an error message. The error
message will be the same as that for an undeclared identifier be-
cause the compiler did not find Inital in its list of previously de-
clared identifiers. Misspellings are not obvious and are difficult to
detect. This is another reason for using descriptive identifiers;
they are common words and you are less likely to misspell them.
This is one of the advantages of Pascal as a programming lan-
guage. Since you cannot use variables unless you declare them,
misspelled variables are detected at compilation time. In some
other languages (BASIC, for example), if you misspell a variable,
create one unintentionally, or initialize one to zero, for example,
the problem may not be discovered until after a sample run has
been made.

116 DESIGNING AND WRITING COMPLETE PROGRAMS

Using writeln

The last general category of errors concerns statements used to create
output. Section 2.3 discussed the use of writeln for creating a line of
output. We have subsequently used this as part of executable statements
in several examples. In an attempt to help you avoid making certain errors,
we will examine common incorrect uses of writeln.

1. Format errors. When using format control with writeln statements,

2.

three errors are typical.
a. Attempting to format an integer as a real

Incorrect Correct
writeln (Score:20:2); writeln (Score:20);

b. Attempting to use a noninteger as a format control number

Incorrect Correct
writeln (Average:20:2.0); writeln (Average:20:2);

(where Average is a real variable).

c. Attempting to format a real as an integer. This will not cause a
compilation error; your program will run, but you will get un-
expected output. For example, suppose Average is a real vari-
able whose value is 83.42 and you want a line of output to be

The average score is: 83.42

If you use the statement

writeln ('The average score is:':30, Average:10);
the output is

The average score is: 4.3E+001

Floating-point form is used for the real but the total field width
is controlled by the use of ““:10”. This statement should be
written

writeln (!'The average score is:':30, Average:10:2);

Inappropriate use of quotation marks. Errors of this type result
from omitting needed single quotation marks or putting quotation
marks where they are not needed. Remember that character
strings must be enclosed in single quotation marks. For example,
assume you want the output Hello.

Incorrect Correct
writeln (Hello:20); writeln ('Hello!':20);

A more subtle problem arises when constants and variables have
been declared in the CONST and VAR declaration sections. To il-
lustrate, assume these sections are as follows:

CONST
Name = 'Mary Smith!';
Age = 18;

VAR
R : integer;

and consider the following program fragments.

Exercises 4.3

4.3 Beginners’ Errors

a. writeln ('My name is':20, Name:1S);
This is correct and produces
My name is Mary Smith
b. writeln ('My name is':20, ‘Name':15);
This format is also correct but produces
My nane is Nanme
This program runs, but you get incorrect output.
C. writeln ('My age is':20, Age:4);
This is correct and produces
My age is 148

B

and consider
writeln ('A':5, A:S);
This produces

A 1D

117

Assume the assignment A := 10 has been made in the program

Note that using ‘A’ creates a character string of one character,
but using A causes the contents of A to be printed. This sug-

gests a method of obtaining descriptive output. If you want
both the name of a variable and the value of a variable, you
could use

writeln ('A =*:5, A:S5);
to obtain
A= 10

Attempting to have an executable statement within the
parentheses.

Incorrect Correct

writeln (A := B + C); A :=B + C;
writeln (RA);
or

writeln (B + C);

Attempts to do this probably result from the fact that expressions

can be used in a writeln statement. Assuming suitable declara-
tions of variables, each of the following is correct.
writeln (A + B:15);

writeln ('Her IQ is':10, Age + 100:5);
writeln ('The total is':20, Average * l2:6:2);

In summary, you should now be aware of some errors you may make
at some time during your programming career. They are easily corrected
and you will make fewer of them as you write more programs.

1. Find two syntax errors in the following program fragment.

X
Y

=3 x Y
= 4 - 2 % 2Z;

writeln (X, Y);

2. Write a test program to illustrate what happens when extra semicolons are
used in a program.

118 DESIGNING AND WRITING COMPLETE PROGRAMS

3. Add the minimum number of semicolons required to make the following
program syntactically correct.

PROGRAM ExerciseThree (output)

CONST
Name = 'Jim Jones'!
Age = 18

VAR
Score : integer

BEGIN
Score := 93
writeln ('Name':13, Name:15)
writeln ('ARge':1l2, BAge:lb)
writeln ('Score!:14, Score:l4)
END.

4. Find all incorrect uses of “=" and *:="" in the following program.
PROGRAM ExerciseFour (output);

CONST
Name := !'Jim Jones!;
Age := 18;

VAR

Score = integer;

BEGIN

Score = 93;

writeln (Name:10, Age:10, Score:10)
END.

5. Find and correct all misspelled keywords in the following program.
PROGRRAM ExercseFiv (output);

VAR
X, Y : reals;
Nam : chr;
Scor : interger;

BEGIN

Y:4:2, Nam:3, Scor:4)

6. Assume the variable declaration section of a program is

VAR
A, Score : integer;
X : real;
Init : char;

Indicate which of the following assignment statements are valid and which
are invalid. Give a reason for each that is invalid.

a. A := 4 % (=-3); f. A := X + A;
b. Score := 1 * 2.0; g. Init := 'M1;
c. A := Score MOD 8; h. Init := A;
d. X := Score / b; i. Init := 'A';
e. X := X + A; j. X := Init;

4.3 Beginners' Errors 119

7. Assume the declaration section of a program is

CONST
Name = 'John Harrist';

VAR
A, B : integer;
Wages : real;
CourseName : char;

Indicate which of the following statements are valid and which are invalid.
Explain those that are invalid.

A := A + B;
A+ B := A;
C := R - 2;

Hage := 5.75;
CourseName := 'C!';
Wages := Hours * b6.0;
CourseName := Name;
Name := 'John Harris!';
A := 2 x Hages;

re Mo AN T

8. Assume the declaration section of a program is the same as in Exercise 7.
Label each of the following as valid or invalid. Correct those that are invalid.

writeln (Name);

writeln (Name:20);

writeln ('Name':20);

writeln (A, B);

writeln ('A', 'B!');

writeln ('A = ', RA);

writeln ('A = ':10, A:3, B = :10, B:3);
writeln ('A = ':20, 'A':3);

writeln (Wages, ' are wages');

writeln (' Wages are!, Wages);

e a0 TR

9. Find all errors in the following program.
PROGRAM Errors (output};

(**)

(* *)
(* There are thirteen errors.)
(* *)

(***************************************v

VAR
Day : char;
Percent : reals

A, B J ixt;
BEGIN (< Main program
Day = 'M';
Percentage := 7?2 / 10;
A := 5;

B := A x 3.2;

writin (A, B:20);

writeln (Day:10:2);

writeln (A + B:8, Percent:8)/}
END,

BEEE

120 DESIGNING AND WRITING COMPLETE PROGRAMS

4.4
Making a Pro-
gram Run

OBJECTIVES

a to be able to under-
stand the difference
between compila-
tion errors, run-time
errors, and design
errors

@ to be able to use the
following error-cor-
recting techniques:
debugging, program
walk-throughs, echo
checking, short pro-
grams, and design
error checking

Now that we have examined some typical errors, you may think all pro-
grams will run on the first try. Unfortunately, this is not true. All pro-
grammers eventually encounter problems when trying to make a program
run. Although some short programs may run the first time and produce
the desired output, you should always plan time for correcting your pro-
gram. This is a normal part of a programmer’s life and you should not get
discouraged when you have to rework a program.

Compilation Errors

Compilation errors are errors detected when the program is being com-
piled; the printed error messages usually are sufficient to enable you to
correct your program. As you gain experience, you will make fewer errors
of this type. Your program will not run until all compilation errors are
removed, so you must develop the ability to correct these errors.

Run-Time Errors

Run-time errors occur after your program has all compilation errors cor-
rected, but when you run your program, you get error messages instead

" of output. A run-time error occurs in the following incorrect program.

PROGRAM RunError (output);

VAR
A, B : integer;

BEGIN
A := 3;
B := 0;
AR := R DIV B;
writeln (A, B)
END.

The compiler will not detect any errors, but when this is run, you will
get a message something like the following (depending on your computer
and version of Pascal).

Program terminated
Division by zero.

at line 9 in program RunError.

RunError
A= 3 B = 0

Another example of a run-time error is trying to read the value of a
variable that has been declared as an integer, but is entered as the value
of a different type (for example, real or char). As you develop more
programming skills, you may encounter run-time errors involving the
logical flow of your program that are generally more difficult to locate and
correct.

Design or Logic Errors

Design (logic) errors occur after you have eliminated both compilation
errors and run-time errors. At this stage, your program runs and produces
output; however, when you examine the output, it is not what you want.
The problems can include having columns incorrectly lined up, having
incorrect values for the output, or not getting all of the output.

4.4 Making a Program Run 121

PROGRAM DesignError (output);

VAR
Score : integer;

BEGIN
writeln; writeln;
writeln ('Scores':20);
writeln ('-————- 1:29);
Score := 87;
writeln (Score);
Score := 92;
writeln (Score);
writeln; writeln

END.

produces the output

Scores
a?
92
instead of
Scores
87
CE]

Therefore, the program should be modified as follows:
PROGRAM DesignError (output);

CONST
LabelWidth = 20;

VAR
Score : integer;

BEGIN
writeln; writeln;
writeln ('Scores!':LabelWidth);

writeln ('e==——- ':LabelWidth);
writeln;

Score := 87;

writeln (Score:18);

Score := 9¢;

writeln (Score:18);
writeln; writeln
END.

STYLE TIP We have been using constantsvSki'p and Indent to control spacing of output.
If some strings are to be. right justified (abutting the right-hand margin), we
can define a constant—as in PROGRAM DesignError—

CONST
LabelWidth = 20;

and use it to format strings. For example,

writeln ('Score!:LabelWidth);
writeln ('—=--- t :LabelWidth);

122 DESIGNING AND WRITING COMPLETE PROGRAMS

The remainder of this section covers techniques to help you detect and
correct program errors. Programmers use many different techniques for
doing this. We will examine some of the more common, helpful practices,
which include program walk-throughs (traces), echo checking, and writing
short programs.

Debugging Techniques

Debugging is a term loosely used to refer to the process of eliminating
errors or “bugs” from a program. When trying to debug a program, you
can do several things. First, carefully reading the code will help you
identify and eliminate many of the errors mentioned in the previous sec-
tion, such as syntax errors, invalid identifiers, incorrect spelling, and
incorrect use of writeln statements. This technique requires patience and
thoroughness, but will save you time in the end by making your programs
run soner.

A second debugging technique is to use compiler error messages to help
you correct errors you missed during your careful reading of code. Since
these messages vary from machine to machine (they are implementation
dependent), you will have to learn to interpret the messages printed by
your machine. A list of typical messages is included in Appendix 5.

Errors causing compiler error messages are not always easy to find.
Sometimes an error message on one line is the result of a previous error
several lines earlier. For example, the program

PROGRAM CompileError (output);
{ This will detect a compilation error §

CONST
Name = 'Mary Smith!;
Indent = ' !;

VAR
Age : integer;
BEGIN
Age := 18;
writeln (Indent:10,
writeln (Indent:30,
END.

'My name is', Name:1S);
'My age is', Age:3)

when compiled, may produce

x% Incomplete program.
Compiler error message(s).

This can be corrected by changing the comment line
{ This will detect a compilation error $
to

{ This will detect a compilation error 1}

Once you remove the syntax error ($), you should have an error-free com-
pilation and be ready to run the program.

A third debugging technique can be utilized after you get an error-free
compilation. Run the program and get a list of run-time error messages.

4.4 Making a Program Run 123

(If you have been very careful, you may not have any run-time errors.)
Consider the program

PROGRAM RunTimeError (output);

Var
A, B : integer;
Average : real;

BEGIN

A := 10;

Average := (A + B) / 2.0;

writeln ('The average is':20, Average:10:2)
END.

There are no compilation errors in the program, but the output is some-
thing equivalent to

Program terminated at line 9 in program RunTimeErr.
Integer larger than maxint.
-—— RunTimeErr —--
Average = Undef A= 10
B = Undef

and not the desired output because B has not been assigned a value.

Use these messages to analyze and correct your program. Remember,
these messages are implementation dependent and it will take time before
you can understand them.

Program Walk-Through

Program walk-through, sometimes referred to as a trace, is used to describe
the process of carefully following, using pencil and paper, steps the com-
puter uses to solve the problem given in your program. Two types of walk-
throughs are used by programmers. First, you follow the logical flow of
your program. During this check, you are not looking for syntax errors;
you are merely making sure that the order in which things are done is
correct. This type of checking will be more efficient after you have written
more programs. A second type of program walk-through (sometimes called
hand execution) is to keep track of values of the variables on paper. The
following example illustrates this idea.

A NOTE OF INTEREST

Debugging

Do you wonder why the term debugging is used
when referring to the process of eliminating er-
rors from a program? In 1945, computer scien-
tists were working on the Mark II. Suddenly,
something went wrong with the machine. During

a check of the machine, someone found that a
moth had been caught in one of the relays. It was
removed and the first computer had been de-
bugged. The term caught on and is now used in
a somewhat broader sense.

124 DESIGNING AND WRITING COMPLETE PROGRAMS

"EXAMPLE 4.7 Let’s walk through the following program.

PROGRAM WalkThru (output);

VAR
A, B : integer;

BEGIN
A :
B :
A :
B :
B :
writeln (R:S, B:5)

END.

nwniu

]
-}

To walk through this program, we will list the variables and then proceed through
the program one line at a time.

Statement Value of A Value of B
A :=5; 5 Undefined
B := R + 4; 5 9
A :=B - @; 7 9
B := R % 5; 7 35
B := B DIV 3; 7 11
At the end of the program, A has the value 7 and B has the value 11.

Echo Checking

Echo checking is a technique whereby you let the computer check the
values of your variables and the data used in your program. When reading
values or changing the value of a variable, you could use a writeln state-
ment to immediately print out the new value with a short, descriptive
message. To illustrate, consider the short PROGRAM WalkThru in Ex-
ample 4.7. An echo check could be implemented by inserting writeln
statements as follows:

PROGRAM WalkThru (output);

VAR
A, B : integer;
BEGIN
A := 5;
writeln ('A =', A:3);
B := R + 4;

writeln ('B =', B:3);

A := B - 2;

writeln ('A =', A:3);

B := AR * §;

writeln ('B =', B:3);

B := B DIV 3;

writeln ('B =', B:3);

writeln (A:5, B:S5)
END.

"EXAMPLE 48

4.4 Making a Program Run 125

The output for this program is

5

q

?
35
11
711

You can echo check input data similarly. For example, if an input

statement is

read (A, B, C);
the values can be checked by inserting an output statement such as
writeln ('A =', R, ' B =, B, ' C =', C);

You probably will not want to print each variable value in the final
program. Therefore, once your program produces the desired output, re-
move the writeln statements used for checking and you have a working
program.

Wwrwe
o

Short Programs

Using short test programs is another technique for error checking. It is
particularly effective on longer, more complex programs, but to illustrate,
we will consider the following short example.

Suppose you are writing a program and you want to exchange the values of
variables A and B. You think this could be accomplished by

A := B;
B := A;

You could write a short program to check this as follows:
PROGRAM ExchangeCheck (output);

VAR
A, B : integer;

BEGIN
A := 5;
B := 10;

writeln ('Aa =', A:3, ' B =', B:3);

{ ©Now exchange }

A := B;
B := A;
writeln ('A =', A:3, ' B =', B:3)
END.
When you run this short program, the output
A= 5 B =10
A =10 B = 10

indicates your method of exchanging values did not work and you have to redesign
your program. The exchange could be accomplished by declaring a third variable
Temp and then using the code:

Temp := R;

A := B;

B := Tenmp;]

126 DESIGNING AND WRITING COMPLETE PROGRAMS

Exercises 4.4

The example given is quite simple, but as you start writing programs

to solve complex problems, you will find that using short programs is a
very effective technique.

1. Perform a program walk-through for the following program segment to deter-

mine the values of A, B, and C at the end of the segment.

33;
_e;

+
u wn

) T T I I 1}

OO0 > WD
“e se e0 es es s we we
>ty >

-e

+ 1
2 W
+
5

. Write test programs to illustrate what error messages appear for each of the

following:

a. division by zero.
b. printing a variable that has not been assigned a value.
c. using a variable that has not been assigned a value.

. Correct all compilation errors for the following programs. Check your results

by running each program exactly as it is written here and examining the
compilation error messages.

a. PROGRAM CompileErrors (output);

CONST
Max = 100.0 : real;

VAR
R, Sum : integer

BEGIN
A := 8b.0;
Sum := A + 0;
A + Sum := Sum
writeln (Sum:15:2)
END.

b. PROGRAM Compile Errors (output);

VAR
A : integer;
Ch : char;
BEGIN
Ch := "M';
A := 83;
B := A - 10;

writeln (' The value of A is:20, A:b);
writeln (Ch:20)
END.

4. Suppose the output from a program is as follows:

NamedJohn JohnsAge 18
Test Scores

73 e 15

Indicate a more desirable form for the output and describe what changes
could be made in the program to achieve those desired results.

4.4 Making a Program Run 127

5. Consider the program
PROGRAM Donations (output);

VAR
Amountl, Amountea,
Amount3d, Amounts4,
Sum : real;

BEGIN
Amountl := 100.0;
Amounte := 150.0;
Amount3d := ?5.0;

Amount4 := 200.50;
Sum := Amountl + AmountZ2 + Amount3d + Amount4;
writeln ('Donations':29);
writeln (Rmountl:28:2);
writeln (Amount2:28:2);
writeln (Amount3:28:2);
writeln (Amount4:28:2);
writeln ('-——-=—- '1:28);
writeln (Sum:28:2)
END.

The output for this program is

Donations
x00.00
150.00

?5.00
200.50

525.50
Change the program so the output would be
Donations

®

Total 525.50

6. The following program has no compilation errors. However, there are some
run-time errors. Find them and indicate what could be done to correct them.

PROGRAM RunErrors (output);

: integer;
: real;

128 DESIGNING AND WRITING COMPLETE PROGRAMS

4.5

Writing a Com-
plete Pascal
Program

OBJECTIVE

a to be able to write a
complete Pascal
program to solve a
problem

7. List three types of errors made by computer programmers. Discuss their
differences and what methods may be used to correct them.

8. Use writeln statements in the following program to echo check the values of
each of the variables. Indicate what the output would be when you run the
echo-check version.

PROGRAM EchoCheck (output);

VAR
Sum, Score, Count : integer;
Average : real;

BEGIN

Score := 86;

Sum := Sum + Score;

Count := Count + 1;

Score := 89;

Sum := Sum + Score;

Count := Count + 1;

Average := Sum / Count;

writeln; writeln;

writeln ('There were':20, Count:3, ' scores.!');

writeln;

writeln ('The average is':24, Average:b:2)
END

By now you should be able to implement the five steps in problem solving.
You should also be able to write complete programs that include the
following features:

a procedure for the output heading

clear program documentation and writing style
the ability to get data from a data file

neat, attractive output

By way of example, we end this chapter with one complete program in
which problem solving and these design features are demonstrated. Once
you are comfortable that you can use these skills as illustrated, you can
easily add new programming skills to your repertoire.

Dr. Lae Z. Programmer, teacher of computer science, wants a program
that will allow him to give an individual progress report to each student
in his computer science class. The report for each student should include
the student’s initials, three test scores, test average, five quiz scores,
weighted quiz total, and final percentage. We will develop a program for
this problem and test it by running it for two students. In Chapter 6, we
will see how this program could be conveniently used for the entire class.

The first step in problem solving is to understand the problem. For this
particular problem, we need to know what the stream input will look like,
how quizzes are to be weighted, how final percentage is to be computed,
and what form is desired for the output. Let us assume these questions
have been asked and answered as follows:

1.

4.5 Writing a Complete Pascal Program 129

Each line of data in the stream input will start with a student’s
initials followed by three test scores and then five quiz scores.
Scores will be integers and will be separated by blanks. The test
scores are based on 100 points each and the quiz scores are based
on 10 points each. Thus, the data file for two students will look
like

[MjSe187798 10109 7[[JHj 9385 891098 10 7|

The quizzes are to be counted as the equivalent of one 100-point

test. Thus, their total should be multiplied by two when comput-
ing the weighted total.

Final percentage is to be computed based on a total of 400 points:
100 for each test and 100 for the quiz total.

Each student’s interim report should look like

3K 3k 3k 5K 3k K 2k 3k 3K 3k 3k ok ke ok e ok ok R ok kK
* *
* Interim Report x*
* *
£ 3 *
2k 3k 3k 3 Sk ok 3k 3K 3k 3k ok sk ok ok ok ok ok ok ok ok kK

Class: Computer Science
Date: October 15
Instructor: Dr. Lae Z. Programmer

Test Test Quiz Quiz
Initials Scores Average Scores Total
MJs 91 87 79 85.67 4 10 0 9 7 aa
Final percentage = 8b.25

The second step in problem solving is to develop an algorithm. This
will be done using stepwise refinement. As a first level of pseudocode,

we have

1. Get data for first student

2. Perform computations

3. Print student report

4. Get data for second student

5. Perform computations

6. Print student report

Module specifications for the modules corresponding to steps 1, 2, and
3 are

1. Get Data Module

Data received: None

Information returned: Three initials
Five quiz scores
Three test scores

Logic: Use read statements to get data.

130 DESIGNING AND WRITING COMPLETE PROGRAMS

1. “When a programmer used his new com-

Debugging or Sleuthing?

Investigating why programs don’t work as ex- 2. A banking system had worked for quite
pected requires ingenuity. The reason can be quite some time, but halted the first time it
bizarre. To illustrate, consider two situations re- was used on international data. Program-
ported by Jon Bentley in Communications of the mers spent days scouring the code, but
ACM. they couldn’t find any stray command

that would return control to the operat-

puter terminal, all was fine when he was ing system.”

sitting down, but he couldn’t log in to What do you think are possible solutions? The
the system when he was standing up. answers are set forth just before the program-
That behavior was 100 percent repeat- ming problems for this chapter.

able: he could always log in when sitting
and never when standing.”

2.

Perform Computations Module
Data received: Five quiz scores
Three test scores
Information returned: Test average
Weighted quiz total
Final percentage
Logic: Divide total of test scores by three.
Multiply quiz total by two for weighting.
Sum totals and divide by four for final average.

Print Student Report Module
Data received: All input data
Test average
Quiz total
Final percentage
Information returned: None
Logic: Use writeln statements to print information in desired format.

Since steps 4, 5, and 6 are repetitions of steps 1, 2, and 3, we will refine
only the first three.

1.

Get data for first student
1.1 get initials

1.2 get test scores

1.3 get quiz scores

Each of these lines could be refined further. For example, step 1.1 could
be subdivided into

1.1 get initials
1.1.1 get first initial
1.1.2 get second initial
1.1.3 get third initial

At some stage, you have to decide what is a sufficient refinement when
developing an algorithm. This will vary according to students and in-

4.5 Writing a Complete Pascal Program 131

structors. In general, when you have a clearly defined statement that can
be accomplished by a single line of code, there is no need for subsequent
refinement. In fact, a single line of pseudocode may require several lines
of written code in a program. The important thing to remember is that
algorithm development via pseudocode is only a step in helping solve a
problem:; it is not the solution itself.

Refining step 2, we could have

2. Perform computations
2.1 compute test average
2.2 compute quiz total
2.3 compute final percentage

This can be further refined to

2. Perform computations

2.1 compute test average
2.1.1 add test scores
2.1.2 divide by three

2.2 compute quiz total
2.2.1 add quiz scores
2.2.2 multiply by two

2.3 compute final percentage
2.3.1 add test totals to quiz total
2.3.2 divide by four

A structure chart for one student with the second module developed
through three levels is given in Figure 4.3.

Refining step 3 might result in

3. Print student report
3.1 print report heading
3.2 print student information

This can be further refined to

3. Print student report
3.1 print report heading
3.1.1 print title
3.1.2 print class information
3.1.3 print column headings
3.2 print student information
3.2.1 print initials
3.2.2 print test scores
3.2.3 ' print test average
3.2.4 print quiz scores
3.2.5 print quiz total
3.2.6 print final percentage

Since a similar report is required for the second student, steps 4, 5, and
6 will be repetitions of steps 1, 2, and 3. Thus, the complete algorithm
will be

FIGURE 4.3

Structure chart for

one student

!

Get]

Ctest
‘scores.

Ak

Ak

'

'

- Add
scores

|| Divide .

by three

. 'Addl .

 scores

Multlply

by two

Add test

total and | |

quiz total

SINVHO0Ud ALATdNOD ONILIIM ANV ONINDISEA ZET

4.5 Writing a Complete Pascal Program

Get data for first student

11

1.2
1.3

get initials

1.1.1 get first initial
1.1.2 get second initial
1.1.3 get third initial
get test scores

get quiz scores

Perform computations

2.1

2.2

2.3

compute test average

2.1.1 add test scores

2.1.2 divide by three

compute quiz total

2.2.1 add quiz scores

2.2.2 multiply by two

compute final percentage

2.3.1 add test totals to quiz total
2.3.2 divide by four

Print student report

31

3.2

print report heading

3.1.1 print title

3.1.2 print class information
3.1.3 print column headings
print student information
3.2.1 print initials

3.2.2 print test scores

3.2.3 print test average

3.2.4 print quiz scores

3.2.5 print quiz total

3.2.6 print final percentage

Get data for second student

4.1

4.2
4.3

get initials

4.1.1 get first initial
4.1.2 get second initial
4.1.3 get third initial
get test scores

get quiz scores

Perform computations

5.1

5.2

5.3

compute test average

5.1.1 add test scores

5.1.2 divide by three

compute quiz total

5.2.1 add quiz scores

5.2.2 multiply by two

compute final percentage

5.3.1 add test totals to quiz total
5.3.2 divide by four

Print student report

6.1

print report heading

6.1.1 print title

6.1.2 print class information
6.1.3 print column headings

133

134 DESIGNING AND WRITING COMPLETE PROGRAMS

6.2 print student information
6.2.1 print initials
6.2.2 print test scores
6.2.3 print test average
6.2.4 print quiz scores
6.2.5 print quiz total
6.2.6 print final percentage

You may now write code for the algorithm. In the following version,
an attempt to create presentable output has included boxed descriptions
of headings, centering on the page when appropriate, underlining, skip-
ping lines, and carefully created columns.

PROGRAM StudentReport (input, output);

{ This program is written for Dr. Lae Z. Programmer. It }
{ produces an interim progress report for two students. }
{ The following features have been included. }
{ H
{ 1. Program documentation }
{ 2. Writing style }
{ 3. Procedure for a heading b
{ 4. Using a stream input }
{ S. Descriptive variables }
{ b. Neat, attractive output }
CONST

Splats = Vksokokokokkkdkdkkkokkkkkkkkkk ! ;

Edge = LS *1;

Line = ! '

Skip = '
VAR

FinalPercent : real; { Final class percentage 1}

Initl, Init2, Init3 : char; { Initials for one student 1}

Quizl, Quiz2, Quiz3,

Quiz4, Quiz5 : integer; { Quiz scores for one student 1}

QuizTotal : integer; { Sum of five quizzes }

Testl, Test2, Test3d : integer; { Test scores for one student }

TestAverage : real; { Average of three tests 1}

TestTotal : integer; { Sum of three test scores }

3k 3k o ke ke o 3k 3k 2k ok ok ok 3 Sk oK 3 K 2k ok ok ok oK ok ok ok 3 3k ok ok ok ok ok ok ok e ke 3k Sk ok 3 k ok ok ok ok ok ok sk ke ok kR Kok ok kok ok kB
PROCEDURE PrintHeading;
{ This procedure prints a heading for each student report 1}
BEGIN
{ Print the title }

writeln; writeln;

writeln (Skip:30, Splats);

writeln (Skip:30, Edge);

writeln (Skip:30, '=* Interim Report x');
writeln (Skip:30, 'x *1);
writeln (Skip:30, Edge);

writeln (Skip:30, Splats);

4.5 Writing a Complete Pascal Program 135

{ Print the class information }

writeln;

writeln (Skip:15, 'Class: Computer Science!);
writeln (Skip:15, 'Date: October 15');

writeln (Skip:1S, 'Instructor: Dr. Lae Z. Programmer');
writeln;

{ Print the column headings }
writeln (Skip:27, 'Test', 'Test':10, 'Quiz':13, 'Quiz':14);
writeln (Skip:15, 'Initials', 'Scores':d9, 'Average':1ll,
'Scores':12, 'Total':13);
writeln (Skip:15, Line)
END; { of PROCEDURE PrintHeading 1}

Lok sk ok ok ok o ok ok ok o o ok e ke ok o ke 3 e ok oK ke 3 3K o e K e kK 3K e o oK 3k ke ok ok ok ok sk sk o ok sk ok ok ok ok KRR KR kKRR KK T

{ Now begin the main program 1}

BEGIN { Main program 1}

{ Get data for the first student })
read (Initl, Init2, Init3d); y 1
read (Testl, Test2, Test3);
readln (Quizld, Quiz2, Quiz3, Quiz4, Quizs); J

3

{ Perform necessary computations }

TestTotal := Testl + Teste + Test3; [o
TestAverage := TestTotal / 3.0;

QuizTotal := (Quizl + Quiz2 + Quiz3 + Quiz4 + QuizS5) * 2;
FinalPercent := (TestTotal + QuizTotal) / 4.0;)

{ Print the heading 1} N
PrintHeading;

{ Print the student information 1}
write (Initl:18, Init2, Init3); F 3
write (Testl:?, Test2:3, Test3:3);
write (TestAverage:d:2);
write (Quizl:?, Quize2:3, Quiz3:3, Quiz4:3, QuizS:3);
writeln (QuizTotal:7);
writeln; writeln;
writeln (Skip:1S, 'Final percentage = !, FinalPercent:7:2);
writeln (Skip:15, !) J

3

{ Repeat process for the second student }
read (Initl, Init2, Init3d); > 1
read (Testl, Teste, Test3);
readln (Quizl, Quiza, Quiz3, Quiz4, Quizs); J

4

{ Perform necessary computations }

TestTotal := Testl + TestZe + Test3; L 5
TestAverage := TestTotal / 3.0;

QuizTotal := (Quizl + Quize + Quiz3 + Quiz4 + QuizS) x 2;
FinalPercent := (TestTotal + QuizTotal) / 4.0; J

136 DESIGNING AND WRITING COMPLETE PROGRAMS

{ Print the heading } 3
PrintHeading;

{ Print the student information 1}

write
write
write
write

writeln (QuizTotal:7?);

(Initl:18, Init2, Init3d);
(Testl:?, Test2:3, Test3:3); >3
(TestAverage:8:2);

(Quizd:?, Quiz2:3, Quiz3:3, Quiz4:3, QuizS:3);

writeln;)
writeln (Skip:1S, 'Final percentage = ', FinalPercent:?:2);
writeln (Skip:1S5, ' ') J
writeln; writeln

END.

® Summary

{ of main program }
Key Terms
comment echo checking run-time error
compilation error local syntax error
debugging procedure variable dictionary
design (logic) error program walk-through

(trace)
Keyword
PROCEDURE
Key Concepts

a It is not sufficient to produce correct output; your output should also be

clear, neat, and attractive.

Attractive output is produced by using blank lines as appropriate, underlin-
ing, right- and left-hand margins, columns, and descriptive headings and
messages.

Program comments are nonexecutable statements that can be included in a
program using the form

(* ...comment... *)
or)
{ ...comment... }

Program readability is enhanced by indenting, using blank lines, and using
program comments.

Programs should be documented by using a comment section to describe the
program and a variable dictionary.

A subprogram is a program within a program; procedures and functions are
subprograms.

= Subprograms are generally written to accomplish specific tasks.

A typical procedure heading that could be used when writing a procedure to
produce the heading for the output is

PROCEDURE PrintHeader;

Summary 137

e A procedure is called, or invoked, from the main program by a reference to
the procedure name.

BEGIN { Main program 1}
PrintHeader
END. { of main program }

a Procedures are placed in a program after the variable declaration section and
before the start of the main program.

PROGRAM Practice (input, output);

VAR
PROCEDURE PrintTitle;
BEGIN
. placement of
. procedure

END; { of PROCEDURE PrintTitle }

BEGIN { Main program }

.

END. { of main program 1}

o Common syntax errors result from inappropriate use of the semicolon, using
“*=" for assigning rather than “:=", incorrectly starting or ending comments,
forgetting the period “.” at the end of the program, or misspelling keywords.

a Other sources of errors for beginners include errors made in declarations, or
assignment statements, or in using writeln.

e Program errors can be detected and eliminated by debugging, program walk-
throughs, echo checking, using short programs, and design error checking.

a When writing a complete program, make sure you have answered all ques-
tions concerning input, processing, and output before you attempt to design
the solution.

o After all questions are answered, design a solution to the problem; refine
steps in the solution until you can easily write code for the program.

o When writing the program, use a neat, consistent, readable writing style.
Your style should include documentation, including a program description
section, a variable dictionary, and, when appropriate, comment sections and
line comments. You should use consistent indenting, blank lines to separate
code, and a procedure for the heading.

The output for your program should be neat and readable; features should
include use of the middle of the output page, appropriate titles and headings,
columns where appropriate, blank lines, and underlining.

A NOTE OF INTEREST

Debugging or Sleuthing: Answers

1. “The problem was in the terminal’s key- 2, “When [the programmers] observed the

board: the tops of two keys were
switched. When the programmer was
seated, he was a touch-typist and the
problem went unnoticed, but when he
stood, he was led astray by hunting and
pecking.”

behavior more closely, they found that
the problem occurred as they entered
data for the country of Ecuador: when
the user typed the name of the capital
city (Quito), the program interpreted that
as a request to quit the run!”

138 DESIGNING AND WRITING COMPLETE PROGRAMS

® Programming Before going on, you should test your knowledge of the material by writing
a complete program for some of the following problems. Each will require
an input file.

Problems

1.

Name

Weber
Fazio
Martin
Patterson

Team

Team

2.

The Roll-Em Lanes bowling team would like to have a computer
program to print the team results for one series of games. The team
consists of four members whose names are Weber, Fazio, Martin, and
Patterson. Each person on the team bowls three games during the se-
ries; thus, the input will contain three lines, each with four integer
scores. Your output should include all input data, individual series
totals, game average for each member, team series, and team average.
Sample output is

Game 1 Game & Game 3 Total Average

Total:

Average:

The Natural Pine Furniture Company has recently hired you to help
them convert their antiquated payroll system to a computer-based
model. They know you are still learning, so all they want right now
is a program that will print a one-week pay report for three employ-
ees. You should use the constant definition section for the following:

a. Federal withholding tax rate 18%

b. State withholding tax rate 4.5%
c. Hospitalization $25.65
d. Union dues $7.85

Each line of input will contain
a. Employee’s initials

b. Number of hours worked

¢. Hourly rate

Your output should include a report for each employee and a sum-
mary report for the company files. A sample employee form follows:

Employee: JTM
Hours Worked: 40.00
Hourly Rate: q9.7?5

Total Wages:

Deductions:
Federal Withholding
State Withholding
Hospitalization
Union Dues
Total Deductions

Net Pay

Programming Problems 139

Output for a summary report could be:

Natural Pine Furniture Company
Weekly Summary

Gross Wages:

Deductions:
Federal Withholding
State Withholding
Hospitalization
Union Dues
Total Deductions

Net Wages:

3. The Child-Growth Encyclopedia Company wants a computer pro-
gram that will print a monthly sales chart. Products produced by the
company, prices, and sales commissions for each are

a. Basic encyclopedia $325.00 22%
b. Child educational supplement $127.50 15%
c. Annual update book $ 18.95 20%

Write a program that will get the monthly sales data for two sales
regions and produce the desired company chart. Each line of data
will contain a two-letter code for the region followed by three inte-
gers representing number of products a, b, and c sold, respectively.
The prices may vary from month to month and should be defined in
the constant definition section. The commissions are not subject to
change.

Sample data lines are

[MI 150 120 105 [TX 225 200 150 m

Typical output could be:
REGION SALES

(Encyclopedia) (Supplement) (Update)

MI 150 120 10s
X 22s 200 150

Total Sales:

Total Commission:

4. The Village Variety Store is having its annual Christmas sale. They
would like you to write a program to produce a daily report for the
store. Each item sold is identified by a code consisting of one letter
followed by one digit. Your report should include data for three
items. Each of the three lines of data will include item code, number
of items sold, original item price, and reduction percentage. Your re-
port should include a chart with the input data, sale price per item,
and total amount of sales per item. You should also print a daily
summary. ‘

Sample data lines are

[A1135.95 15][A2 24 7.95 20)[A3 80 3.95 50| m

140 DESIGNING AND WRITING COMPLETE PROGRAMS

Typical output form could be:
Ttem Code # Sold Original Price Reductions Sale Price Incone

Al 13 $5.9S 15% $5.06 $65.78

Daily Summary

Gross Income: A

5. The Holiday-Out Motel Company, Inc., wants a program that will
print a statement for each overnight customer. Each line of input
will contain room number (integer), number of nights (integer), room
rate (real), telephone charges (real), and restaurant charges (real).
You should use the constant definition section for the date and cur-
rent tax rate. Each customer statement should include all input data,
the date, tax rate and amount, total due, appropriate heading, and
appropriate closing message. Test your program by running it for
two customers. The tax rate applies only to the room cost.

A typical data line is

[135 3 39.95 3.75 57.50 [m

A customer statement form is
Holiday-Out Motel Company, Inc.

Date: XX-XX-XX

Room # 135
Room Rate: $39.49S
Number of Nights: 3
Room Cost: $119.45
Tax: XXX% 4.79
Subtotal: $124 .64
Telephone: 3.75
Meals: S7.50
TOTAL DUE $185.489

Thank you for staying at Holiday-Out
Drive safely
Please come again
6. As a part-time job this semester, you are working for the Family
Budget Assistance Center. Your boss has asked you to write and exe-
cute a program that will analyze data for a family. Input for each
family will consist of

Family ID number (integer)
Number in family (integer)
Income (real)
Total debts (real)

Your program should output the following:

a. An appropriate header.

b. The family’s identification number, number in family, income,
and total debts.

Programming Problems 141

c. Predicted family living expenses ($3000 times the size of the
family).

d. The monthly payment necessary to pay off the debt in one year
(Debt / 12).

e. The amount the family should save (the family size times 2 per-
cent of the income minus debt—FamSize * 0.02 (income —
debt)).

f. Your service fee (.5 percent of the income).

Run your program for the following two families:

Identification Number Size Income Debt
51 4 18000.00 2000.00
72 7 26000.00 4800.00

Output for the first family could be:

Family Budget Assistance Center
March 1989
Telephone: (800)555-1234

Identification number S1

Family size 4

Annual income $ 18000.00
Total debt $ <2000.00
Expected living expenses $ 12000.00
Monthly payment 3 166.67
Savings $ 1280.00
Service fee $ q90.00

. The Caswell Catering and Convention Service has asked you to write
a computer program to produce customers’ bills. The program
should read in the following data.

a. The number of adults to be served.

b. The number of children to be served.

c. The cost per adult meal.

d. The cost per child’s meal (60 percent of the cost of the adult’s
meal).

e. The cost for dessert (same for adults and children).

f. The room fee (no room fee if catered at the person’s home).

g. A percentage for tip and tax (not applied to the room fee).

h. Any deposit should be deducted from the bill.

The following is sample data for this problem.

Child Adult Adult Dessert Room Tip/
Data Count Count Cost Cost Rate Tax Deposit

1 7 23 12.75 1.00 45.00 18% 50.00
2 3 54 13.50 1.25 65.00 19% 40.00
3 15 24 12.00 0.00 45.00 18% 75.00
4 2 71 11.15 1.50 0.00 6% 0.00

142 DESIGNING AND WRITING COMPLETE PROGRAMS

Data set 1 was used to produce the following sample output.
Caswell Catering and Convention Service

Final Bill

Number of adults:
Number of children:

Cost per adult without dessert:
Cost per child without dessert:

Cost per dessert:
Roonm fee:
Tip and tax rate:

Total cost for adult meals:
Total cost for child meals:
Total cost for dessert:
Total food cost:

Plus tip and tax:

Plus room fee:

Less deposit:

Balance due:

LR]

ANANAR L

$

23

?
12.7S
7.65
3.00
45.00
0.18

293.a5
53.55
30.00
376.80
b?.82
45.00
s0.00

439.62

Write a program and test it using data sets 2, 3, and 4.
8. The Maripot Carpet Store has asked you to write a computer pro-
gram to calculate the amount a customer should be charged. The
president of the company has given you the following information
to help in writing the program.
a. The carpet charge is equal to the number of square yards pur-

chased times the labor cost per square yard.

b. The labor cost is equal to the number of square yards purchased
times the cost per square yard. A fixed fee for floor preparation

is added to some customers’ bills.

c. Large volume customers are given a percentage discount but the
discount applies only to the carpet charge, not the labor costs.
d. All customers are charged 4 percent sales tax on the carpet;

The following is sample data for this problem.

there is no sales tax on the labor cost.

Sq. Cost per Labor per Prep.
Customer yds. sq. yd. sq. yd. Cost Discount
1 17 18.50 3.50 38.50 0.02
2 40 24.95 2.95 0.00 0.14
3 23 16.80 3.25 57.95 0.00
4 26 21.25 0.00 80.00 0.00

The data for customer 1 were used to produce the following sample

output.

Square yards purchasead: 37
Cost per square yard: 3 18.50
Labor per square yard: § 3.580
Floor preparation cost: § 38.50
Cost for carpet: §$§ 314.50
Cost for labor: § 948.00
Discount on carpet: § b.29
Tax on carpet: $ 1e.33

Charge to customer: $ 418.54

Write a program and test it for customers 2, 3, and 4.

Programming Problems 143

9. The manager of the Croswell Carpet Store has asked you to write a
program to print customers’ bills. The manager has given you the
following information.

a. The store expresses the length and width of a room in terms of
feet and tenths of a foot. For example, the length might be re-
ported as 16.7 feet.

b. The amount of carpet purchased is expressed as square yards. It
is found by dividing the area of the room (in square feet) by
nine.

c. The store does not sell a fraction of a square yard. Thus, square
yards must always be rounded up.

d. The carpet charge is equal to the number of square yards pur-
chased times the carpet cost per square yard. Sales tax equal to
4 percent of the carpet cost must be added to the bill.

e. All customers are sold a carpet pad at $2.25 per square yard.
Sales tax equal to 4 percent of the pad cost must be added to the
bill.

f. The labor cost is equal to the number of square yards purchased
times $2.40, which is the labor cost per square yard. No tax is.
charged on labor.

g. Large volume customers may be given a discount. The discount
may apply only to the carpet cost (before sales tax is added),
only to the pad cost (before sales tax is added), only to the labor
cost, or to any combination of the three charges.

h. Each customer is identified by a five-digit number and that
number should appear on the bill.

The sample output follows:

Croswell Carpet Store

Invoice
Customer number: 26817
Carpet : 574.20
Pad : 81.00
Labor : 86.40
Subtotal : 743 .60
Less discount : 65.52
Subtotal : 676.08
Plus tax : £23.59
Total : 699.67

Write the program and test it for the following three customers.

a. Mr. Wilson (customer 81429) ordered carpet for his family room,
which measures 25 feet long and 18 feet wide. The carpet sells
for $12.95 per square yard and the manager agreed to give him a
discount of 8 percent on the carpet and 6 percent on the labor.

b. Mr. and Mrs. Adams (customer 04246) ordered carpet for their
bedroom, which measures 16.5 feet by 15.4 feet. The carpet sells
for $18.90 per square yard and the manager granted a discount
of 12 percent of everything.

c. Ms. Logan (customer 39050) ordered carpet that cost $8.95 per
square yard for her daughter’s bedroom. The room measures
13.1 by 12.5 feet. No discounts were given.

144 DESIGNING AND WRITING COMPLETE PROGRAMS

10. Each week Abduhl’s Flying Carpets pays its salespeople a base sal-
ary plus a bonus for each carpet they sell. In addition, they pay a
commission of 10 percent of the total sales by each salesperson.

Write a program to compute a salesperson’s salary for the month
by inputting Base, Bonus, Quantity, and Sales, and making the nec-
essary calculations. Use the following test data:

Salesperson Base Bonus Quantity Commission Sales

1 250.00 15.00 20 10% 1543.69
2 280.00 19.50 36 10% 2375.80

The commission figure is 10 percent. Be sure you can change this
easily if necessary. Sample output follows:

Salesperson : 1
Base : 250.00
Bonus : 15.00
Quantity : 20
Total Bonus : 300.00
Commission : 10%
Sales : 1543.69

Total Commission 154.37
Pay : 704.37

5.1
Boolean
Expressions

OBJECTIVES

to be able to use the
data type boolean
to be able to use
eoln and eof as
functions

to be able to use re-
lational operators

to understand the
hierarchy for simple
Boolean expressions
to be able to use the
logical connectives
AND, OR, and NOT
to be able to use
compound Boolean
expressions

to understand the
hierarchy for com-
pound Boolean
expressions

Conditional
Statements

The previous four chapters set the stage for using computers to
solve problems. You have seen how programs in Pascal can be
used to get data, perform computations, and print results. You should be
able to write complete, short programs, so it is now time to examine other
aspects of programming.

A major feature of a computer is its ability to make decisions. For
example, a condition is examined and a decision is made as to which
program statement is next executed. Statements that permit a computer
to make decisions are called conditional statements. Conditional state-
ments are examples of control structures because they allow the program-
mer to control the flow of execution of program statements.

Before looking at decision making, we need to examine the logical con-
structs in Pascal, which include a new data type called boolean. This data
type allows you to represent something as true or false. Although this
sounds relatively simple (and it is), this is a very significant feature of
computers.

The boolean Data Type

Thus far we have used only the three data types integer, real, and char;
a fourth data type is boolean. A typical declaration of a Boolean variable
is

VAR

Flag : boolean;

In general, Boolean variables are declared by

145

146 CONDITIONAL STATEMENTS

VAR
variable 1,
variable 2,

variable # : boolean;

There are only two values for variables of the boolean data type: true
and false. These are both constant standard identifiers and can only be
used as Boolean values. When these assignments are made, the contents
of the designated memory locations will be the assigned values. For ex-
ample, if the declaration

VAR :
Flagl, Flag2 : boolean;

is made,
Flagl := true;
Flage := false;
produces
Flagl Flag2

As with other data types, if two variables are of type boolean, the value
of one variable can be assigned to another variable as

Flagl := true;
Flag2 := Flagl;

and can be envisioned as

Flagl Flag2

Note that quotation marks are not used when assigning the values true or
false since these are Boolean constants, not strings.

Output of boolean

In standard Pascal, Boolean variables can be used as arguments for write
and writeln. Thus,

Flag := true;
writeln (Flag);

produces
true

However, some versions will not support output of Boolean variables.

The field width for Boolean output varies with the machine being used.
It can be controlled by formatting with a colon followed by a positive
integer to designate the field width. The Boolean value will appear right
justified in the field. To illustrate, if Flag is a Boolean variable with the
value false, the segment of code

writeln (Flag:b);
writeln (Flag:8);

5.1 Boplean Expressions 147

produces the output

~false

---false

Boolean constants true and false can also be used in writeln statements.
For example,

writeln (true);

writeln (false);
writeln (true:&, false:b);

executed on a machine using a default field width of ten columns produces

——true_false

Although Boolean variables and constants can be assigned and used in
output statements, they cannot be used in input statements in standard
Pascal. Thus, if Flag is a Boolean variable, a statement such as

read (Flag);

produces an error. Instead, one would typically read some value and then
use this value to assign an appropriate Boolean value to a Boolean variable.
This technique will be illustrated later.

The Standard Identifiers eoln and eof as Functions

Section 3.3 introduced the concepts of end-of-line and end-of-file. These
were presented as markers that were put in a stream input to separate
lines and designate the end of a data file. Both eoln and eof are built-in
Boolean functions that are used to indicate when the pointer is positioned
at one of these markers. If the data pointer is positioned at an end-of-line
marker, then eoln is true; otherwise, eoln is false. Similarly, if the pointer
is positioned at the end-of-file marker, eof is true; otherwise, eof is false.
An exception to the eoln value being false when the pointer is not at end-
of-line marker is when the pointer is at an end-of-file marker. In this case,
eoln may have the value true.

Since eoln and eof are built-in functions, they can be used in assignment
statements. To illustrate, assume we have the data file

1

with the pointer positioned at the beginning of the file. Furthermore,
assume the variable declaration section of a program includes

VAR
R, B : integer;
Chl, Che : char;
EolnFlag, EofFlag : boolean;

If no previous assignments have been made, we have

N o N o N o NN O N O

A B Ch1 Ch2 EolnFlag EofFlag

148 CONDITIONAL STATEMENTS

The assignments

EolnFlag := eoln;
EofFlag := eof;

might be envisioned as

11] [[faise] [false]

A B Chi Ch2 EolnFlag EofFlag

If the line of code
read (Chl, Ch2);
is executed, the data pointer is

1

and the assignment statements
EolnFlag := eoln;

EofFlag := eof;
result in
C 1] [1] [tue| [false]
A B Ch1 Ch2 EolnFlag EofFlag
If the next three lines of code are
readln (A);
EolnFlag := eoln;

EofFlag := eof;
this produces

1

[22 | | | [H] | 1 | [false]| |[false|
A B Chi Ch2 EolnFlag EofFlag
Then
read (A, B);
EolnFlag := eoln;
EofFlag := eof;
produces

Hilf22]]13 -4s m

1

[13 | | -48] [H | [1] [true | [false]
A B Ch1 Ch2 EolnFlag EofFlag
And finally
read (Chl);
EolnFlag := eoln;
EofFlag := eof;

produces

5.1 Boolean Expressions 149

(2213 —4sl m

T
[13 | [-48] [B | [1] [true] [true]
A B Ch1 Ch2 EolnFlag EofFlag

Both eoln and eof can also be used in output statements. For example,

writeln (eoln, eof);

write (eoln:&, eof:b);
are appropriate statements.

The following example illustrates the use of eoln and eof in output
statements and how their values change according to the data pointer for
a stream input. (This example assumes input from a data file; interactive
input would produce a different result.)

"EXAMPLE 51 Let’s write a short program that allows us to examine a line of data and the
o respective values of eoln and eof. Suppose the data file is

ABJ 12l m

1

and you want to produce a chart that indicates the values after each character is
read. The chart heading should include the character read, eoln value, and eof
value. The code needed to produce one line of the chart is

read (Ch);

writeln (Ch:1S, eoln:20, eof:20);
Since we can read four characters and two end-of-line markers from this data file,
this segment of code needs to be executed six times. An attempt to read (Ch)
seven times would produce an error since you would be trying to read past the
end-of-file marker. The complete program for this example follows.

PROGRAM ReadCheck (input, output);

CONST
Indent = ' ';

VAR
Ch : char;

3k sk 3k e ke ke oK oK 3K 3K ke K oK oK 3 ok oK oK o ok K 3K oK ok ok ok ok ok ok ok sk ke ok oK Sk sk s ek kK oK ok o o ok ok ok ok ok ok ok ok ok kK ok
PROCEDURE PrintHeading;
{ This procedure prints a heading for the output 1}
BEGIN
writeln; writeln;
writeln (Indent:10, 'Character read', 'eoln value':17, 'eof value':19);
writeln (Indent:10, '----——--——e—— Vy Ve 'V:13?, Ve ':29);
writeln
END; { of PROCEDURE PrintHeading 1}

ok 3k 3k ke ok 3k 3 ok ke ok oK ok K ok ok sk e ok ok o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok k ok ok ok ok e ok ok ok ok o ok ok ok ok ok ok ok Kk Kk sk ok }

150 CONDITIONAL STATEMENTS

BEGIN { Main program }

PrintHeading;

{ Now read the data file }

read (Ch);

writeln (Indent:1S, Ch, eoln:22, eof:20);

read (Ch);

writeln (Indent:15, Ch, eoln:22, eof:20);

read (Ch);

writeln (Indent:15, Ch, eoln:22, eof:20);

read (Ch);

writeln (Indent:1S, Ch, eoln:22, eof:20);

read (Ch);

writeln (Indent:15, Ch, eoln:22, eof:20);

read (Ch);

writeln (Indent:15, Ch, eoln:22, eof:20);
writeln; writeln
END. { of main program }

TABLE 5.1
Relational operators

The output from this program is

Character read eoln value eof value
): false false
B true false
false false
1 false false
e true false
true true B

Relational Operators and Simple Boolean Expressions

In arithmetic, integers and reals can be compared using equalities (=) and
inequalities (<, >, #, and so on). Pascal also provides for the comparison
of numbers or values of variables. The operators used for comparison are
called relational operators and there are six of them. Their arithmetic
notation, Pascal notation, and meaning are given in Table 5.1.

Arithmetic Relational
Operation Operator Meaning

Is equal to

Is less than

Is greater than

Is less than or equal to

Is greater than or equal to
> Is not equal to

“NVRAVAL

<
>
<

The previous section indicated how Boolean values could be generated
using the built-in functions eoln and eof when reading data. Let’s now
examine some other methods of generating Boolean values. This is nec-
essary so we can control selection in a program.

When two numbers or variable values are compared using a single
relational operator, the expression is referred to as a simple Boolean expres-
sion. Each simple Boolean expression has the Boolean value true or false

TABLE 5.2
Values of simple
Boolean expressions

5.1 Boolean Expressions 151

according to the arithmetic validity of the expression. In general, only
data of the same type can be compared; thus, integers must be compared
to integers, reals must be compared to reals, and characters must be com-
pared to characters. The usual exception can be applied here; that is, reals
can be compared to integers.

Table 5.2 sets forth several Boolean expressions and their respective
Boolean values, assuming the assignment statements A := 3 and B := 4
have been made.

Simple Boolean Expression Boolean Value
7=7 true
-3.0 = 0.0 false
4.2>3.7 true
-18< -15 true
13 < 100 true
13 <= 100 true
13 <= 13 true
0.012 > 0.013 false
—-17.32 <> —17.32 false
A<=B true
B>A true

Arithmetic expressions can also be used in simple Boolean expressions.
Thus,

4 ¢ (3 + 2)
has the value true. When the computer evaluates this expression, the
parentheses dictate that (3 + 2) be evaluated first and then the relational
operator. Sequentially, this becomes

4 € (3 + 2)
4 < 5
true

What if the parentheses had not been used? Could the expression be
evaluated? This type of expression necessitates a priority level for the
relational operators and the arithmetic operators. A summary for the prior-
ity of these operations is

Expression Priority
*, /, MOD, DIV 1
+, - 2
=,<,>,<=,>=, <> 3

Thus, we see that the relational operators are evaluated last. As with
arithmetic operators, these are evaluated in order from left to right. Thus,
the expression

4¢3 +2
could be evaluated without parentheses and would have the same Boolean
value.

The following example illustrates the evaluation of a somewhat more
complex Boolean expression.

152 CONDITIONAL STATEMENTS

EXAMPLE 5.2

Indicate the successive steps in the evaluation of the Boolean expression
20 MOD 4 * 3 - 8 <= 18 + 30 DIV 4 - 20
The steps in this evaluation are

10 MOD 4 * 3 — 8 <= 18 + 30 DIV 4
I

ca

2 * 3 — 8 <= 18 + 30 DIV 4 - 20 first pass
!
& - 8 <= 38 + 30 DIV 4 - 20
)
5 - 8 <= 18 + ? - 20
! 1 second pass
- 2 <= 25 - 20
{
- 2 «= 5 } third pass
4
true [

As shown in Example 5.2, even though parentheses are not required
when using arithmetic expressions with relational operators, it is usually
a good idea to use them to enhance the readability of the expression and
to avoid using an incorrect expression.

Logical Operators and Compound Boolean Expressions

Boolean values may also be generated by using logical operators with
simple Boolean expressions. The logical operators used by Pascal are AND,
OR, and NOT. AND and OR are used to connect two Boolean expressions.
NOT is used to negate the Boolean value of an expression; hence, it is
sometimes referred to as negation. When these connectives or negation
are used to generate Boolean values, the complete expression is referred
to as a compound Boolean expression.

If AND is used to join two simple Boolean expressions, the resulting
compound expression is true only when both simple expressions are true.
If OR is used, the result is true if either or both of the expressions are
true. This is summarized as follows:

Expression 1 Expression 2
(E1) (E2) E1 AND E2 E1 OR E2
true true true true
true false false true
false true false true
false false false false

As previously indicated, NOT merely produces the logical negation of
an expression as follows:

Expression
(E) NOTE
true false
false true

When using these operators with relational expressions, parentheses
are required because logical operators are evaluated before relational op-

5.1 Boolean Expressions

A NOTE. OF INTEREST

George Boole

George Boole was a self-taught mathematician
who knew only hard work and deprivation dur-
ing his early years. He was born in England in
1815 and until 1849, when he was appointed
professor of mathematics at Queen’s College in
Cork, Ireland, a major portion of his time was
spent teaching so he could support his parents.
After the appointment, he could devote more

time to mathematics and subsequently pub-
lished “An Investigation of the Laws of Thought,
on which are founded the Mathematical Theo-
ries of Logic and Probabilities” at the relatively
advanced age of thirty-nine. The data type, Bool-
ean, is named in honor of George Boole because
he is credited with laying the foundation for what
is currently studied as formal logic.

153

erators. Illustrations of the Boolean values generated using logical oper-
ators are given in Table 5.3.

TABLE 5.3

Values of compound Boolean Value

Expression

Boolean expressions (4.2 >= 5.0) AND (8 = (3 + 5)) false
(4.2 >= 5.000R (8 = (3 + 5)) true
(—2 < 0) AND (18 >= 10) true
(—2 < 0)OR (18 >= 10) true
(3 > 5) AND (14.1 = 0.0) false
(3 > 5) OR (14.1 = 0.0) false
NOT (18 = (10 + 8)) false
NOT (- 4 > 0) true

Complex Boolean expressions can be generated by using several logical
operators in an expression. The priority for evaluating these operators is

Operator Priority
NOT 1
AND 2
OR 3

When complex expressions are being evaluated, the logical operators,
arithmetic expressions, and relational operators are evaluated during suc-
cessive passes through the expression. The priority list is now complete
as follows:

Expression or Operation
()

Priority

1. Evaluate from inside out

NOT 2. Evaluate from left to right
*, /, MOD, DIV, AND 3. Evaluate from left to right
+, -, 0OR 4. Evaluate from left to right
<, <=,>,>=, =, <> 5. Evaluate from left to right

Thus, an expression like
D <X AND X ¢ 2

154 CONDITIONAL STATEMENTS

produceé an error. It must be written as
(D < X) AND (X < 2)
The following examples illustrate evaluation of some complex Boolean

expressions.
. EXAMPLE 5.3 (3 < S5) OR (21 <> 18) AND (-81 > 0)
—
true OR (22 <> 18) AND (-831 > 0O) first pass
T (parentheses first)
true OR true AND (-81 > O)
true OR true AND false } second pass
!
true OR false
¢ third pass
true
EXAMPLE 54 NOT ((-5.0 >= -L.2) OR ((? <> 3) AND (b = (3 + 3))))
1 T T
NOT (true OR (true AND (b = b DD
{
NOT (true OR (__true AND true))
l
NOT ¢ true OR true)
[}
NOT true
l
false &
*EXAMPLE 55 Assume X and Y are real variables, Flag is a Boolean variable, and the assignment
statements
X = 12.5;
Y := -100;

Flag := true;

have been made. (X <> 7 / 3) OR NOT ((X > = 4) AND (NOT Flag)) can be
evaluated as:

(X <> ?7/3) OR NOT ((X >= 4) AND (NOT Flag))
AL
true OR NOT ((X >= 4) AND (NOT Flag))
==

true OR NOT (true AND (NOT Flag))
—_—

true OR NOT (true AND false)
true OR NOT faise
true OR t;ue
t;ue &

Extra care should be taken with the syntax of Boolean expressions. For
example, the expression

3 < 4 AND 2100 > a0

Exercises 5.1

5.1 Boolean Expressions 155

in a program produces an error. Since relational expressions are evaluated
last, the first pass through this expression would attempt to evaluate

4 AND 100
This is not valid because logical operators can only operate on Boolean
values true and false.

If an expression produces a Boolean value and is evaluated before a
connective, then that expression would not have to be in parentheses. For
example,

(3 < S) AND NOT (O >= -2)
is a valid expression, evaluated as follows:

(3 < S5) AND NOT (O >= -2)
SCEMLY

true AND NOT (0 >= -@2)
true AND NOT true
—_—
true AND false
faise

1. Assume the variable declaration section of a program is

VAR
Flagl, Flage : boolean;

What output is produced by the following segments of code?

Flagl := true;

Flage := false;

writeln (Flagl, true:kL, Flag2:8);
Flagl := Flagc;

writeln (Flag2:20);

/e. Write a test program that illustrates what happens when Boolean

expressions are not enclosed in parentheses. For example,
3 ¢S AND 8.0 <> 4 x 3
3. Assume the variable declaration section of a program is

VAR
Ch : char;
Flag : boolean;

Indicate if the following assignment statements are valid or invalid.

a. Flag := 'true'; d. Ch := Flag;
b. Flag := T; e. Ch := true;
c. Flag := true; f. Ch := 'T!';

4. Can eoln and eof be true at the same time? Explain.

5. Indicate for each of the following simple Boolean expressions whether it is
true, false, or invalid.

a. -3.01 <= -3.0031
b. -3.0 = -3

€. 85 - 10 ¢> 3 * §

d. 42 MOD & < 42 DIV S

e. =5 % (3 + 2) > 2 % (-10)

£ 10 /5 <1+ 1

g 3 + 8 MOD 5 >= b6 — 12 MOD 2

156 CONDITIONAL STATEMENTS

N 6. Evaluate each of the following expressions:

5.2
IF ... THEN
Statements

OBJECTIVES

to learn the form
and syntax required
for usingan IF ...
THEN statement

to understand the
flow of control
when using an IF

. . . THEN statement
to be able to use an
IF ... THEN state-
ment in a program
to understand why
compound state-
ments are needed

Objectives continued.

a. (3 > 7) AND (2 € O) OR (b = 3 + 3)
b. ((3 > ?) AND (2 < D)) OR (b = 3 + 3)
c. (3 > 7) AND ((2 < D) OR (b = 3 + 3))
d. NOT ((-4.2 <> 3.0) BND (10 < 20))
e. (NOT (-4.2 <> 3.0)) OR (NOT (1D < 20))
Assume the variable declaration section of a program is
VAR
Intl, Int2 : integer;
R11, Rle : real;

Flagl, Flag2 : boolean;

and the values of the variables are

[o] [8] [-15.2 [-200 [false| {true]
Int1 Int2 Rl1 R12 Flagi Flag2

Evaluate each of the following expressions:

(Intl <= Int2) OR NOT (R1l2 =
NOT (Flagl) OR NOT (Flag2)
NOT (Flagl AND Flage)
((R11-R12) < 100/Int2) AND ((Intl < 1) AND NOT (Flag2))
NOT ((IntZ2 - 36 DIV 2) = Intd) AND Flagld

8. Indicate for each of the following expressions whether it is valid or invalid.
Evaluate those that are valid.

a.3 € 4 OR 5 <> b e.
b. NOT 3.0 =6 / ¢

c. NOT (true OR false)
d. NOT true OR false

R11)

a0 T

NOT true OR NOT false
f. NOT (18 < 25) AND OR (-3 < 0O)
g. 8 x 3 ¢ 20 + 10

EEE S

The first decision-making statement we will examine is the IF ... THEN
statement. IF ... THEN is used to make a program do something only
when certain conditions are used. The form and syntax foran IF . . . THEN
statement are

IF Boolean expression THEN
statement;

The Boolean expression can be any valid expression that is either true
or false at the time of evaluation. If it is true, the statement following the
reserved word THEN is executed. If it is false, control is transferred to
the first program statement following the complete IF . . . THEN statement.
In general, code would have the form

statement 1;

IF Boolean expression THEN
statement 2;

statement 3;

as illustrated in Figure 5.1.

5.2 IF ... THEN Statements 157

o to understand how FIGURE 5.1 i
BEGIN...ENDare IF ... THEN flow l
used to write com- diagram
pound statements Statement 1

B to be able to use

correct syntax in
writing a compound
statement

o to be able to design

programs using IF v true
Boolean

... THE ; ' .

stateme:t‘s exprey Statement 2

false |«
Y

Statement 3

'

As a further illustration of how an IF ... THEN statement works, con-
sider the program fragment

Sum := 0.0;

read (Num);

IF Num > 0.0 THEN

Sum := Sum + Num;

writeln (Sum:10:2);
If the value read is 75.85, prior to execution of the IF . . . THEN statement,
the contents of Num and Sum are

Num Sum

The Boolean expression Num > 0.0 is now evaluated and, since it is true,
the statement

sum := Sum + Num;
is executed and we have
75.85] [75.85]

Num Sum

The next program statement is executed and produces the output
75.85
However, if the value read is — 25.5, the variable values are

[-25.5] [0.0 |

Num Sum

The Boolean expression Num > 0.0 is false and control is transferred to
the line

writeln (Sum);
Thus, the output is
0.00

158 CONDITIONAL STATEMENTS

Now, let’s suppose you want a program in which one objective is to
count the number of zeroes in the stream input. Assuming suitable initial-
ization and declaration, a program fragment for this task could be

readln (Num);

IF Num = O THEN

ZeroCount := ZeroCount + 1;

One writing style for using an IF . . . THEN statement calls for indenting
the program statement to be executed if the Boolean expression is true.
This, of course, is not required.

IF Num = 0O THEN
ZeroCount := ZeroCount + 1;

could be written
IF Num = 0 THEN ZeroCount := Zerocount + 1;

However, the indenting style for simple IF ... THEN statements is con-
sistent with the style used with more elaborate conditional statements.

Compound Statements

The last concept needed before looking further at selection in Pascal is a
compound statement. Simple statements are single commands separated
by semicolons. Thus,

readln (A, B);

A := 3 * B;

writeln (RA);
are three simple statements.

In some instances, it is necessary to perform several simple statements
when some condition is true. For example, you may want the program to
do certain things if a condition is true. In this situation, several simple
statements that can be written as a single compound statement would be
helpful. In general, there are several Pascal constructs that require com-
pound statements. A compound statement is created by using the reserved
words BEGIN and END at the beginning and end of a sequence of simple
statements. Correct syntax for a compound statement is

BEGIN
statement 1:
statement 2;

statement n
END;

Statements within a compound statement are separated by semicolons.
The last statement before END does not require a semicolon, but if a
semicolon is used here, it will not affect the program.

When a compound statement is executed within a program, the entire
segment of code between BEGIN and END is treated as a single statement.
This is referred to as a BEGIN ... END block. 1t is important that you
develop a consistent, acceptable writing style for writing compound state-
ments. What you use will vary according to your instructor’s wishes and

. EXAMPLE 56 - -

5.2 IF ... THEN Statements 159

your personal preferences. Examples in this text will indent each simple
statement within a compound statement two spaces. Thus,

BEGIN
read (A, B);
A := 3 % B;
writeln (AR)
END;

is a compound statement in a program; what it does is easily identified.

Some examples of compound statements follow. Although the concept,
syntax, and writing style do not appear to be difficult at this point, one
of the most frequent errors for beginning programmers is incorrect use of
compound statements.

Let’s write a compound statement that allows you to read a real, print the real,
and add it to a total. Assuming variables have been suitably declared and initial-
ized, a compound statement to do this is

BEGIN
write ('Enter a real number and press <RETURN>. LB
readln (Num);
writeln (Num:8:2);
Total := Total + Num
END; 7]

Suppose you are writing a program to enable your instructor to compute grades
for your class. For gach student you need to read three scores from a line of data,
add the scores, compute the average score, print the scores, and print the test
average. Again, assuming variables have been suitably declared, a compound state-
ment for this could be

BEGIN
write ('Enter three scores and press <RETURN>. ');
readln (Scorel, Scoree, Scorel);
Total := Scorel + Scored + Score3;
Average := Total / 3.0;
write (Scorel:L, Score2:b, Score3d:&t);
writeln (Average:l2:2)
END; [*]

Using Compound Statements

As you might expect, compound statements can be (and frequently are)
used as part of an IF ... THEN statement. The form and syntax for this
are

IF Boolean expression THEN
BEGIN
statement 1;
statement 2;

statement n
END;

160 CONDITIONAL STATEMENTS

Program control is exactly as before depending on the value of the
Boolean expression. For example, suppose you want to determine how
many positive numbers are in a data file and also compute their sum. This
can be partially accomplished by the program fragment

read (Num);
IF Num > D.0 THEN
BEGIN
Sum := Sum + Num;
Count := Count + 1
END; { of IF...THEN 1}

The next example designs a program to solve a problem using an IF
... THEN statement.

EXAMPLE 5.8 Let’s write a program that reads two integers and prints them in the order larger

first, smaller second. The first-level pseudocode solution is

1. Read numbers
2. Determine larger
3. Print a heading
4. Print results

Step 1 is a single line of code, a procedure is used for step 3, and step 4 will be
some writeln statements. However, step 2 requires some refinement. A second-
level solution could be

1. Read numbers
2. Determine larger
2.1 IF Num1 < Num 2 THEN exchange numbers
3. Print a heading
4. Print results
4.1 print Num1 (larger)
4.2 print Num2 (smaller)

Step 2.1 is further refined to produce

2.1 IF Numl < Num2 THEN exchange numbers
2.1.1 Temp gets Num1
2.1.2 Num1 gets Num2
2.1.3 Num2 gets Temp

We can now write code for the program to solve this problem. The procedure
PrintHeading will be included in the complete program.

write ('Enter two integers and press <RETURN>. ');
readln (Numl, Nume);
IF Numl < Nume THEN

BEGIN
Temp := Numl;
Numl := Nume;
Nume := Temp

END; { of IF...THEN }
PrintHeading; { PROCEDURE }
writeln (Numl:15, Nume:15);

A complete program for this example follows.

5.2 IF ... THEN Statements 161

PROGRAM UseIFTHEN (input, output);

{ This program illustrates using an IF ... THEN statement. }
{ Two numbers are read and then printed in order, larger }
{ first. }
CONST
Skip = ' *;
VAR
Numl, { First number }
Nume, { Second number }
Temp : integer; { Temporary variable 1}

3k 3k 5k 3k sk 3k 3k 3k ok ok 3k ok 3 ok ok 3k Sk 3k ok 3k oK 3K ok 3k 3k e k¢ ok ok ok ok ok 2k ok ok 3k ok ok ok ok 3k ok K oK ok A e ok ok s ok ok ok ok ok ok ok ok ok ok ok ok ok }

PROCEDURE PrintHeading;
{ This procedure prints a heading }

BEGIN
writeln; writeln;
writeln ('Larger numbert!, Skip:10, 'Smaller number');
writeln (! ', Skip:10, ! cm1) 3
writeln

END; { of PROCEDURE PrintHeading 1}

o sk ok ke ok sk e ok ke o ok 3k ok 3K 3k ok 3K ok 3 3K ok 3 3K ok 3 sk 3¢ ok 3 Sk ke oK ok 3 ok o ok ok e 3k ok ok ok oK 3k o 3k ok 3K ok ok 3k ok 3K ok ok ok ok ok ok ok ok ok)

{ Now start the main program 1}
BEGIN Main program }

write ('Enter two integers and press <RETURN>. !');
readln (Numl, Num2);

PrintHeading;
IF Numl < NumZ2 THEN
BEGIN
Temp := Numkl;
Numl := Numc;
Num2 := Temp
END;
writeln (Numl:?, Num2:23);
writeln

END. { of main program }
A sample run of this program produces

Enter two integers and press <RETURN>. 18 30

Larger number Smaller number

30 18 B

162 CONDITIONAL STATEMENTS

Exercises 5.2 1. What is the output from each of the following program fragments? Assume
" the following assignment statements precede each fragment: '
R := luf ’
B := S;
a. IF A <= B THEN e. IF (R < B) OR (B - A < D) THEN
B := B; 4 BEGIN '
writeln (A, B); A := R + B;
N b. IF A <= B THEN B :=B - 1; .
' BEGIN writeln (A, B)
B := R; END;
writeln (A, B) writeln (A, B);
END; , f IF (A < B) AND (B.— A < O) THEN
c. IF A ¢ B THEN BEGIN)
Temp := A; ' A := A + B;
A := B; ‘ B := B - 1;
B := Tenp; writeln (A, B)
writeln (R, B); END;
d. IF R < B THEN writeln (A, B);
BEGIN B
Temp := A; B
A := B;
B := Temp
END;
writeln (A, B); | S

|

2. Write a test program to illustrate what happens when a semicolon is inad-
vertently inserted after THEN in an IF ... THEN statement. For example,

IF A > O THEN;
Sum := Sum + A;

3. Find and explain the errors in each of the following program fragments.
You may assume all variables have been suitably declared.

a. IF A := 10 THEN c. Count := D;
writeln (A); Sum := 0;
b. X := 73 A := S0;
IF 3 ¢ X < 10 THEN . IF A > 0 THEN
BEGIN Count := Count + 1;
X := X + 1; Sum := Sum + A;
writeln (X) d. read (Ch); s
END; IF Ch = 'A' OR 'B! THEN

writeln (Ch:10);

4. What is the output from each of the following program fragments? Assume
variables have been suitably declared.

a. Jd := 18;
IF J MOD 5 = 0 THEN
writeln (J);

b. A := 5;
B := 90;
B := B DIV AR - S;
IF B > A THEN

B := A % 30;
writeln (A, B);

5. Can a simple statement be written using a BEGIN . . . END block? Write a
short program that allows you to verily your answer.

~

5.2 IF ... THEN Statements 163

6. Discuss the differences in the following programs. Predict the output for
each program using sample values for Num.

a. PROGRAM Exerciseba (input, output).;

VAR ,
Num : integer;

BEGIN .
write ('Enter an integer and press <RETURN>. ');
readln (Num);
IF Num >fu/THEN

writeln;/writeln;
writeln ‘('The number is':22, Num:bk);
writeln;

writeln ('The number squared is':30, Num * Num:6);
writeln ('The number cubed is':28, Num * Num * Num:b);
writeln; writeln
END.
b. PROGRAM Exercisebb (input, output);

VAR
Num : integer;

BEGIN { Main program }
write ('Enter an integer and press <RETUORN>. ');
readln (Num);
IF Num > O THEN
BEGIN { Start output 1}
writeln; writeln;
writeln ('The number is':22, Num:G);
writeln;
writeln ('The number squared is':30, Num * Num:b);
writeln ('The number cubed is':28, Num x Num x
Num:6);
writeln; writeln
END { output for one number }
END.

7. Discuss writing style and readability of compound statements.

8. Find all errors in the following compound statements.

a. BEGIN
read (A)
writeln (R)
END;
b. BEGIN
Sum := Sum + Num’
END;
c. BEGIN
read (Sizel, Size2);
writeln (Sizel:8, Size2:8)
END.
d. BEGIN
readln (Age, Weight);
TotalAge := TotalAge + Age;
TotalWeight := TotalWeight + Weight;
writeln (RAge:8, Weight:8)

P

164 CONDITIONAL STATEMENTS

5.3

IF ... THEN
... ELSE
Statements

OBJECTIVES

o to learn the form
and syntax required
for usingan IF ...
THEN ... ELSE
statement

o to understand the
flow of control
when using an IF
... THEN ... ELSE
statement

o to be able to use an
IF...THEN...
ELSE statement in a
program

to be able to design
programs using IF
... THEN ... ELSE
statements

9. Write a single compound statement that will:

Read three integers from a data file.
Add them to a previous total.

Print the numbers on one line.

. Skip a line (output).

Print the new total.

s o TP

10. Write a program fragment that reads three reals from a data file, counts the
number of positive reals, and accumulates the sum of positive reals.

11. Write a program fragment that reads three characters from a data file and
then prints them only if they have been read in alphabetical order (for ex-
ample, print “boy” but do not print “dog”).

12. Given two integers, A and B, A is a divisor of B if BMOD A = 0. Write a
complete program that reads two positive integers A and B and then, if A is
a divisor of B,
a. Print A,
b. Print B.
c. Print the result of B divided by A.

For example, the output could be

A is 14
B is 4@
B divided by A is 3

Form and Syntax

The previous section discussed the one-way control statement IF . . . THEN.
The second conditional control statement we will examine is the two-
way control statement IF ... THEN ... ELSE. Correct form and syntax
for IF ... THEN ... ELSE are

IF Boolean expression THEN
statement

ELSE
statement;

Flow of control when using an IF ... THEN ... ELSE statement is as
follows:

1. The Boolean expression is evaluated.

2. If the Boolean expression is true, the statement following THEN is
executed and control is transferred to the first program statement
following the complete IF ... THEN ... ELSE statement.

3. If the Boolean expression is false, the statement following ELSE is
executed and control is transferred to the first program statement
following the IF ... THEN ... ELSE statement.

A flow diagram is given in Figure 5.2.

To illustrate this flow of control, let us consider the problem of printing
the larger of two numbers using an IF ... THEN ... ELSE statement in
the following code.

FIGURE 5.2
IF...THEN...
ELSE flow diagram

5.3 IF... THEN...ELSE Statements 165

l

statement

xHEN23,
" statement -

ELSE

"Booi
statement b

_ Sub’séquent‘ B
| statement [T

l

read (Numd}, NumcZ);
IF Numl > NumZ2 THEN
writeln (Numl)
ELSE
writeln (Num2);
writeln ('All done!');

If the values read are

Numl Num2

the B