SOY2M Wied

£
Q
=

AT1I3™.0

The Insider’s Guide to Developing Applications
in JavaScript using the Palm Mojo™ Framework

O’REILLY" | Mitch Allen

Palm® webQS™

Palm® webQS™

Mitch Allen

O’REILLY*

Beijing + Cambridge - Farnham - Koln - Sebastopol - Taipei « Tokyo

Palm® web0S™
by Mitch Allen

Copyright © 2009 Palm, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Steven Weiss Production Services: Molly Sharp
Developmental Editor: Jeff Riley Indexer: Seth Maislin
Production Editor: Sumita Mukherji Cover Designer: Karen Montgomery
Copyeditor: Amy Thomson Interior Designer: David Futato
Proofreader: Teresa Barensfeld lllustrator: Robert Romano
Printing History:

August 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The image of a luna moth and related trade dress are trademarks of O’Reilly Media,
Inc.

Palm, Palm Pré, Palm webOS, Synergy, and Mojo are among the trademarks or registered trademarks
owned by or licensed to Palm, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

RepKover.
BERS = This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-15525-4
(M]
1248712173

“That it all matters.” He draws off his cigar and
lets it dribble out all over his face. “You know
every game starts with one pitch, and that pitch
determines everything else in the game. The first
pitch sets up the second, second the third. If Reyes
gets in a 2-0 hole he throws the pitch that Young
hits for a single. With a runner on first, he’ll throw
differently to German. And German will swing
differently with a runner on first.”

“And then the next time that Reyes sees Young,
he’ll choose his pitches based on the previous
at-bat, and the scouting report, and every at-bat
Young has ever had against Reyes. It all counts.”

“But as much as everything counts,” Jack says. “Is
that you can have the right pitch, and have it
knocked out. You can have the right swing and still
screw up. That’s the thing that makes this game
great, is that everything counts so much, that the
factors involved in that one pitch are almost
infinite. So anything can happen.”

—From the short story “Delay,” Parker Zane Allen

Table of Contents

Forewordooennneie xiii
Prefaceoovnniii Xvii
1. Overview of web0Sooiiiiiiiiiiiiiiiiiiiiiii 1
Application Model 2
Application Framework and OS 3
User Interface 3
Navigation 4
Launcher 4

Card View 5
Notifications and the Dashboard 7

User Interface Principles 10

Mojo Application Framework 12
Anatomy of a webOS Application 13

Ul Widgets 16
Services 18

Palm webOS Architecture 19
Application Environment 20

Core OS 21
Software Developer Kit 21
Development Tools 22

Mojo Framework and Sample Code 22
webOSdev 22
Summary 23

2. Application Basicsooviiiiiiiiiiiiii i e 25
Getting Started 26
Creating Your Application 26
Testing and Debugging 30

News 30
News Wireframes 31

vii

Creating the News Application 33
Customizing the Launcher Icon and Application ID 34
Adding the First Scene 35
Base Styles 40
Application Launch Lifecycle 43
Adding a Second Scene 44
Controllers 51
Controllers and Assistants 51
Scene Stack 52
Summary 53
R 11T T {3 55
All About Widgets 55
Declaring Widgets 56
Setting Up a Widget 56
Updating a Widget’s Data Model 57
Widget Event Handling 58
Using Widgets 58
Buttons and Selectors 59
Buttons 59
Selectors 61
Lists 64
List Widgets 65
More About Lists 84
Text Fields 86
Adding Text Fields to News 87
Password Field 91
Filter Field 91
Rich Text Edit 92
Events 92
Framework Event Types 92
Listening 93
stopListening 94
Using Events with Widgets 95
Summary 95
4, DialogsandMenusc.oovvuniiiniiiiiiiiiiiiiiiiieiiiiiiieinieenns 97
Dialogs 97
Error Dialog 98
Alert Dialog 99
Custom Dialogs 100
Menus 106
Menu Widgets 107

viii | Table of Contents

Submenus 123
Commander Chain 126
Summary 129
Advanced Widgetsccovvviiieiiiiiiiiiininennnnns Ceeereeiees 131
Indicators 131

Spinners 132

Progress Indicators 136
Scrollers 138

Back to the News: Adding a featured feed Scroller 139
Pickers 144

Simple Pickers 145

File Picker 147
Advanced Lists 148

Formatters 149

Dividers 150

Filter Lists 150
Viewers 156

WebView 156

Other Viewers 159
Summary 161
Data ... e 163
Working with Cookies 164

Back to the News: Adding a Cookie 164
Working with the Depot 166

Back to the News: Adding a Depot 167
HTML 5 Storage 170
Ajax 172

Ajax Request 173

Ajax Response 174

More Ajax 175
Summary 176
Advanced Stylescovvuiiiiiiiiii ittt i 177
Typography 178

Fonts 178

Truncation 180

Capitalization 181

Vertical Alignment 181
Images 183

Standard Image 183

Multistate Image 184

Table of Contents | ix

9-Tile Image 184

Touch 187
Maximize Your Touch Targets 187
Optimizing Touch Feedback 188
Passing Touches to the Target 189

Light and Dark Styles 189

Summary 191

8. Application SErviCesc.vvvriiniiiiiiiiiii ittt iii e eieaeas 193

Using Services 193
Service Overview 194
Application Manager 196
Cross-App Launch 197

Core Application Services 198
Web 198
Phone 199
Camera 200
Photos 200
Maps 201

Palm Synergy Services 201
Account Manager 201
Contacts and Calendar 203
People Picker 204
Email and Messaging 205

Viewers and Players 209
View File 209
Audio 209
Video 210

Other Applications 210

Summary 211

9. Systemand Cloud Servicesovviiiiriiiiienniinnrenieneennennss 213

System Services 214
Accelerometer 215
Alarms 218
Connection Manager 220
Location Services 221
Power Management 223
System Properties 224
System Services 225
System Sounds 225

Cloud Services 226

Summary 227

x | Table of Contents

10. Background Applicationsccouiiiiiiiiiiiiiiiii it 229

Stages 229
Creating New Stages 230

Using Existing Stages 231
Working with Stages 231
Notifications 232
Banner Notifications 233
Minimized Applications 235
Pop-up Notifications 235
Dashboards 240
Back to the News: Adding a Dashboard Stage 241
Handling Minimize, Maximize, and Tap Events 245
Advanced Applications 247
Back to the News: App Assistant 247
Handling Launch Requests 251
Sending and Considering Notifications 253

Back to the News: Creating Secondary Cards 254
Background Applications 256
Summary 260

11. Localization and Internationalizationooiiiiiii, 261
Locales 261
Character Sets and Fonts 263
Keyboards 263
Localization 264
Localized Application Structure 265
appinfo.json 266
JavaScript Text Strings 266
Localizable HTML 270
Internationalization 273
Back to the News: Multilingual Formatting 273
Summary 274

A. Palm webOS DeveloperProgramccviiiiiiiniiinnenneennenenns 275
B. Quick Reference—DeveloperGuidecovuviiiineiiineiiinnennenns 279
C. Quick Reference—StyleGuidecoovviiiiiiiiiiiiiiiiiiiiiinn, 341

Table of Contents | xi

Foreword

Many of us remember that special sense of accomplishment, even excitement, as we
got our very first program to run or web page to display. It was probably something
very simple like a classic “Hello, World!” program, or a simple (often gaudy) web page
using different styles and sizes of text. Steadily we learned and experimented more. In
a short time, we soon had something actually useful. It was probably something like a
tip calculator or a personal web page, or even a tip calculator on a web page. It was
exciting because we realized the huge potential for doing much more with our new-
found knowledge.

That first moment for me was more than 30 years ago. Like many others at that time,
it was the start of a hobby that soon became a career. Programming and web develop-
ment can be one of the most exciting and one of the most frustrating careers one can
have. Itis immensely rewarding to create something that benefits hundreds, thousands,
even millions of people. At the same time, the pace at which things change can really
wear one down. I've now seen, used, and discarded so many cool technologies it is rare
for any of them to get me really excited. Prior to Palm’s announcement of webOS, I can
only think of two times a new technology generated a similar visceral excitement as I
had when I first learned to program. (Forth and Delphi, if you are curious. Search for
those terms and my name to see what made them special.) webOS has rekindled those
feelings all over again.

I, like many other smartphone users and developers, was very curious to see what Palm
would show on January 8th, 2009, at the Consumer Electronics Show (CES) in Las
Vegas. Truthfully, I was not expecting much. I just wanted to give Palm one more
chance before switching from my Treo to another smartphone. However, that day the
Palm Pré became the star of CES. Nothing else introduced that week came close to
generating the buzz of the Pré. But while the Pré was nice, there were other smartphones
thatlooked cool, had a great UI, and even did multitasking. Even after the great demos,
for me the Pré was just a “take it or leave it” proposition. What got my interest was
webOS, the underlying technology that made those great demos possible. I had to learn
more, and the more I learned, the more excited I got.

For me, the best way to force myself to learn is to teach. About 15 years ago, when I
last got this excited, I started a user group for Delphi months before I actually had a

Xiii

copy of it (I was tight on funds at the time). Continuing the tradition, I started a Meetup
for webOS and the Pré on February 18th. I volunteered to be an organizer for
preDevCamp, a world-wide day for developers to share and learn about webOS. I also
volunteered to talk about webOS development at a regional CodeCamp. At the same
time, I started developing for webOS. All this was happening long before the webOS
software development kit (SDK) was even announced. Granted, there was little public
information, but everything I gleaned confirmed my initial feeling that webOS was
something to master.

How could I develop or talk about webOS when there wasn’t even an SDK? That is the
beauty of webOS. It is a very unique blend of existing technologies with some special
Mojo provided by Palm. It allows one to develop native-style applications like you
would find running on a traditional computer using web-based technologies such as
HTML, JavaScript, and CSS. My group started working on the JavaScript parts of our
applications that seemed be the most portable and incorporated new knowledge as it
became available. When you think about it, the Internet is so pervasive that most de-
velopers today already have considerable experience with these web-based technolo-
gies. Native webOS applications are launched via index.html. Sound familiar? Most
developers seem to come up to speed on webOS quickly. It helps that webOS does a
lot of the tricky stuff for you automatically.

Not long after I started my journey on the road to webOS, O’Reilly announced that a
Rough Cuts version of this webOS book was available. Rough Cuts is a great program
that allows you to read chapters of a book as it is being written. I immediately got
“copies” of the book for myself and my developers. As chapters became available, I
would print them out and study them. This period also saw the appearance of websites,
forums, and IRC channels that were dedicated to webOS. preDevCamp also had or-
ganizers in about 75 cities with close to 1,000 developers signed up to attend. I was by
no means alone in my desire for the webOS SDK and a Palm Pré to test my applications.
When Palm finally announced they were taking applications for the SDK beta, I re-
member Palm posting that they got about a gazillion applications in just a couple
of days.

Of course, 1 also applied and was fortunate enough to get accepted into the program
sooner than many. It was like getting a new bike for Christmas, only you couldn’t ride
it in public or tell anyone else about it. Fortunately, this book, the webOS SDK, and
Pré phones are all now readily available—you don’t have to wait. Since the SDK runs
on Linux, Mac OS X, and Windows, this means you can probably even use your existing
development environment for webOS development as well. There are also several plug-
ins to automate webOS development in popular IDEs.

So, what did I find so special about webOS? It is the almost elegant way in which it
solves a lot of issues surrounding the current direction of application development in
general—and mobile application development in particular—with its unique integra-
tion of native and web-based computing. Chapter 1, Overview of webOS, has a lot more
specifics. As I stated earlier, it smoothly leverages the latest in open technologies and

xiv | Foreword

standards like Linux, the WebKit engine, HTML 5, Javascript, and CSS3, to bring
mobile device development to all programmers. It has the potential to have the same
impact for mobile applications as Visual Basic and Delphi did for win32 applications.
The rapid appearance of homebrew applications shortly after the Palm Pré was released
demonstrates the relative ease of development. The richness of some the applications
in Palm’s Application Catalog demonstrates that webOS is fully capable of supporting
sophisticated software.

Another thing I like about webOS is that it tends to encapsulate best practices, such as
using the Model-View-Controller pattern as a natural part of webOS development. By
carefully exposing services and APIs, developers have ready access to powerful features
and yet still allow each application to play nicely with others. Although I expect more
low-level access in the future, the design of webOS is such that low level features can
easily be wrapped and exposed through webOS’s Mojo framework.

Developing applications is pointless if nobody wants to use them. The Mojo framework
provides a smart and polished user interface with lots of useful widgets. The card met-
aphor for switching between applications and the notification system is currently with-
out peer in the realm of smartphones. There is another advantage that webOS provides
users: the ability for applications to dynamically interact with each other and with
network services in a clean and consistent fashion. For example, contact information
is available to other applications, not just the contact application. Using Palm’s Syn-
ergy, Contact information can be automatically updated from a variety of sources over
the network just like web mashups are able to do. However, as a native application,
the latest information is still available, even if the network is not. Regardless of the
circumstances, webOS lets applications “just work” as the user expects.

Since webOS is a new platform, it has lots of room to grow. Palm emphases that the
Pré is/was just the first of many devices on which webOS can run. This means more
devices, more services, and more APIs are planned for the future. Each iteration will
spawn a need for new applications to exploit new features. webOS has the potential
for keeping developers very busy for many, many years.

I could go on, but Mitch already gives a fine introduction to webOS in the first chapter
of his book. Mitch is uniquely qualified to be the author of the first book on the topic.
He has been doing software development for a long time, especially on mobile plat-
forms. As software CTO at Palm, he has been the driving force for webOS. In writing
this book, he realizes that developers want more than an assortment of simple “Hello
World” examples—they want to be able to develop real working applications.

Mitch gradually introduces the reader to webOS while building a fully functional RSS
news reader. Each step of the development process is fully explained in tutorial fashion.
The reader also learns best practices for webOS development along the way. This book
does not try to pad itself with reference information readily available in the SDK. I also
like the fact that Mitch points out current limitations in webOS so developers can work
around them to provide a positive user experience.

Foreword | xv

Lastly, I would like to share how committed Palm is to developers. There have been
rough spots. The majority of my posts in the developer forums have been and will be
regarding issues I have with Palm and webOS. Even so, I'm actually amazed at how
open, helpful, and accessible Palm has been. Palm’s webOS team frequents the forums
and answers questions directly. They totally get that their success is intimately tied to
an active, prolific community of webOS developers.

That said, get this book, get the SDK, and start writing webOS applications. I hope you
enjoy it as much as my team and I do.

—Greg Stevenson
Sierra Blanco Systems
preDevCamp Global Organizer

xvi | Foreword

Preface

It would be difficult to miss the revolution in computing that is happening around us.
While the Internet has been a viable commercial environment for almost two decades
and mobile phones commonplace for years beyond that, the last two years have seen
incredible developments as these two movements have converged and begun to accel-
erate together forming the next generation of computing. Since the introduction of the
AppleiPhone, our expectations of what we should be able to do with a phone has grown
by magnitudes. There has been a rush to provide applications and services, operating
systems, and hardware in an attempt to fulfill these expectations.

The world of application development is in transition with web-based applications and
services becoming the dominant development model:

* Increasingly powerful web applications are now providing solutions previously
addressed only with embedded or desktop applications.

* Web developers have assumed the leadership in software application innovation.

* Mobile users have strong preferences toward web brands and aren’t willing to
accept equivalent solutions—only the authentic experience provided by the pre-

ferred brands will do.

* Web services are providing easy-to-use building blocks and tools to allow devel-
opers to leverage those web services through mashups and specialized applications.

* Web applications can be built faster and easier than embedded applications; they
are easier to deploy, update, and maintain, resulting in a lower development cost.

Where once the client operating systems provided the complete platform that appli-
cation developers leveraged to deliver their solutions, the Web itself is emerging as the
platform, and client operating systems are becoming a means to access the web plat-
form. Those who can deliver a superior user interface (UI) on highly optimized hard-
ware while leveraging web services and applications stand to gain.

xvii

Mobile Web Challenges

The challenge for client OS providers is far greater than simply delivering a fast, fully
featured web browser on a phone. The classic web browser navigation model works
poorly on a phone (in fact, some would argue that it’s poor even on a desktop
computer).

Mobile users are, well, mobile. They are usually in motion, walking, driving, or occu-
pied with something other than their phones. Launching a browser each time you want
something on the Web—wading through multiple pages to get to the right spot—is
tedious, distracting, and slow.

Web pages have their own Ul models, with navigation and controls separate from and
frequently inferior to those of the device they are displayed on. Often, the only option
is to walk links. Menus, selectors, text editors, and other Ul tools that enable rapid user
interaction in native applications on the same device can’t be used within the web
browser. Launching web pages from bookmarks or moving between web pages usually
involves a completely separate Ul model from that used to launch native applications
and generally requires invoking the browser before anything else, adding at least one
extra step to most actions.

In addition, web users are forced to initiate all interactions. They must make a request
and wait for it to be fulfilled. It is clearly more effective for applications to monitor
external events and prompt the user only when something of interest occurs. Ajax and
web applications have made a big improvement by handling user input on the client
and providing some level of dynamic user interface, but even these applications can’t
employ commonly used techniques such as background execution, user alerts, and
notifications.

The truth is that despite the hype, a phone with just a fast web browser is still not a
truly smart phone.

To fully realize the mobile Web, a new application model is needed, one that retains
the strengths of web development, but with the type of access and power that has been
available to native, mobile applications for years.

Palm web0S

Palm addresses these challenges with its next generation operating system,
Palm webOS. Palm webOS is based upon an innovative design that integrates a win-
dow-based modern operating system with a web technology runtime that allows you
to build applications using common web languages and tools, without the restriction
of working within a web browser. The application model is based on an integrated web
runtime and the Mojo framework, a JavaScript framework with powerful Ul services,
local storage, and methods to access application, cloud, and system services.

xviii | Preface

Applications are built using JavaScript, HTML, and CSS, and while similar to web
applications, webOS applications are actually native applications. This application
model allows you to use the same languages and tools to build powerful mobile appli-
cations that you use to build web content.

While Palm webOS is the first to provide this integrated model in a broadly available
computing platform, it’s not likely to be the last. There is growing interest in supporting
standard APIs within web platforms, such as those in the proposed HTML 5 standard.
It seems likely that in time there will be broad support for this development paradigm
across all types of hardware and systems.

The Mobile Web Is the Web

We are still in the early stages of application development on mobile devices. Until very
recently all mobile applications were designed to work alongside the PC. Some mobile
applications, like Palm’s classic PDA applications, were specifically created with the
PC in mind, and today’s most popular media solutions continue to rely on the PC for
content delivery and storage. Other applications are essentially desktop applications
ported to a phone, like many of the wireless email solutions. We are just beginning to
see applications that are completely designed and optimized for the wireless mobile
user.

Phones are far more personal than PCs; they are almost always with the user, even if
they’re not being engaged by the user. With phones, an event-driven model is more
appropriate, and mobile applications can best leverage web and device services in useful
mashups. Applications that notify users of upcoming calendar events or incoming
emails are common, but webOS applications can notify users of traffic on the route to
their next appointment, or monitors social network feeds. A movie guide allows users
to find movies within the immediate vicinity, purchase tickets, get directions, and set
a reminder for the movie time.

Applications designed for the mobile Web are different than applications built before
now, and they require a different type of platform. This book explores how Palm webOS
is providing that type of platform and shows you how to build those next generation
applications and with them, the new Web—the mobile Web.

About This Book

The book was conceived after the architecture and core design of Palm webOS and the
Mojo framework had been completed, but while the team was fully engaged with im-
plementation of the application runtime, the Mojo framework, and while many of the
core applications were still in prototype form. As a result, the book has been written
at the same time as the software, which makes it fresh but raw information.

Preface | xix

The project changed dramatically soon after it began. Originally, I saw my role more
as that of an editor. I expected to pull together the engineering and developer docu-
mentation and write a heavily annotated reference book that would provide a guided
tutorial to webOS and Mojo. After the first chapter, though, it became clear that I would
have to write a specific application that would use a significant portion of the API and
document my experience. I scaled back the outline from a reference book to more of
an application-centered guidebook focused on an RSS reader application called News.

This book is not a comprehensive reference, but more of a guided tutorial. It covers all
the basics for creating and building an application and for using UI widgets, storage,
and services. It includes specific chapters on building background applications, a huge
topic of its own, and on specialty topics of building localized applications and on styl-
ing. You will want to augment this book with SDK documentation or other reference
material as it becomes available.

You don’t need to be an expert, but you will need some basic knowledge of JavaScript,
HTML, and CSS to follow the examples presented here. This book is intended to pro-
vide an introduction to webOS and building webOS applications, but should not be
used as a guide to writing JavaScript code. In fact, I have to warn you that [wrote my
first JavaScript code as part of writing this book and it’s very likely that you will see
several examples of not-so-good JavaScript in here.

So please read this book to learn how to write great webOS applications, but look for
your JavaScript guidance in other sources such as Douglas Crockford’s outstanding
JavaScript: The Good Parts (O’Reilly) or the comprehensive JavaScript: The Definitive
Guide by David Flanagan (O’Reilly).

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, properties, and keywords.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

xx | Preface

W

i

. This icon signifies a tip, suggestion, or general note.

as
[N ™
. ﬂ &
This icon signifies a warning or caution.

Using Code Examples

The code in this book was written by an employee of Palm, Inc. and is Palm’s intellectual
property. If you are interested in using this code, it is important for you to review Palm’s
software development kit (SDK) license, which can be found at http://developer.palm
.com/termsofservice.html.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596155254
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http:/loreilly.com

Preface | xxi

Safari® Books Online

S «s» When you see a Safari® Books Online icon on the cover of your favorite
ararl technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com/.

Acknowledgments

Many people contributed to the subject of this book, and in several cases contributed
directly to the material that you are about to read. Projects like this are built upon a
foundation created by dozens if not hundreds of people; it is impossible to properly
acknowledge everyone’s contribution.

To start with: the entire webOS product team, particularly the Apps SW & Services,
System Software, and Product Engineering teams, have accomplished an incredible feat
with the release of the Palm Pré and webOS. This is the finest and most committed
group of people that I have ever worked with. The past year was one in which it seemed
there was a new development everyday that would leave me amazed, and over time it
was clear that the team was on the verge of something truly special.

Despite the incredible workload that everyone was under, everyone on the team gave
generously of his or her time. I am particularly grateful to Rob Tsuk, a principal webOS
architect and developer of critical parts of the Mojo framework, for all of his help
throughout this book project. Rob spent hours at some very inconvenient times, pa-
tiently answering questions and educating me on many aspects of web technology and
details of Palm webOS and the Mojo framework. And if that weren’t enough, Rob
reviewed every chapter in the book and did his best to keep me on track throughout.

Special thanks to Justin Tulloss, whose candid comments had a huge impact on the
structure and shape of the book and for keeping me honest with his very critical eye.
Without Daniel Shiplacoff there would not have been a Chapter 7 (nor would we have
a considerable part of the webOS UI); Daniel’s tutoring on styling and CSS was in-
valuable. Thanks also to Steven Feaster, who along with Justin and Rob, read every
page of the book and diligently corrected my all too frequent coding errors and technical
mistakes. And thanks to Craig Upson, for providing the original News prototype and
some valuable SDK and tools feedback very early on.

Many, many other people at Palm reviewed different parts of the book and made direct
contributions in big and small ways. It’s hard to acknowledge everyone, but among
those who provided direct assistance are Greg Simon, Matias Duarte, Michael Abbott,

xxii | Preface

Jesse Donaldson, Renchi Raju, Jon Rubinstein, Mike Bell, Paul Cousineau, Gray
Norton, Andy Grignon, Geoff Schuller, Rich Dellinger, Wesley Yun, Joe Paley, Rik
Sagar, Mindy Pereira, Charlie Won, Kiran Prasad, Mike Rizkalla, Jeremy Lyon, Neeta
Srivastava, Peter Conrad, Ed Wei, Doug Luftman, Mark Kahn, Susan Juhola, Melissa
Cha, Aaron Hyde and Edwin Hoogerbeets.

We had several early and passionate developers, but none more so than the team at
Pivotal Labs. Pivotal’s CTO, Ian McFarland, is the book’s technical reviewer and pro-
vided countless insightful and critical suggestions. I feel very fortunate to have had his
guidance and support. Also, a shout out to Christian Sepulveda, Davis Frank, Rajan
Agaskar, and the rest of the Pivots whose relentless encouragement and high expecta-
tions have made the Mojo SDK a far better product than it would have been otherwise.

The O’Reilly team has made me feel as if none of my demands or any of the numerous
schedule and scope changes caused them any trouble at all. I know that behind the
scenes they scrambled and adapted like mad to maintain that illusion for me and still
meet their obligations. Thanks in particular to Molly Sharp and Steve Weiss for
consistently going above and beyond, and to Sumita Mukherji, Jeff Riley, Amy
Thomson, and Rachel Monaghan for their support.

If there’s a failing here, it’s all mine. The material that I had to work with, and the
quality of the team and the support that they gave, is more than anyone could expect.

Preface | xxiii

CHAPTER 1
Overview of web0S

Palm webOS is Palm’s next generation operating system. Designed around an incred-
ibly fast and beautiful user experience and optimized for the multitasking user, webOS
integrates the power of a window-based operating system with the simplicity of a
browser. Applications are built using standard web technologies and languages, but
have access to device-based services and data.

Palm webOS is designed to run on a variety of hardware with different screen sizes,
resolutions, and orientations, with or without keyboards, and works best with a touch
panel, though it doesn’t require one. Because the user interface (UI) and application
model are built on a web browser runtime, the range of suitable hardware platforms is
quite wide, requiring only a CPU, some memory, a wireless data connection, a display,
and a means for interacting with the Ul and entering text.

You can think of webOS applications as native applications, but built from the same
standard HTML (Hypertext Markup Language), CSS (Cascading Style Sheets), and
JavaScript that you’d use to develop web applications. Palm has extended the standard
web development environment through a JavaScript framework that provides a toolkit
of UI widgets and access to selected device hardware and services.

The user experience is optimized for launching and managing multiple applications at
once. Palm webOS is designed around multitasking and makes it utterly simple to run
background applications, to switch between applications in a single step, and to easily
handle interruptions and events without losing context.

You will build webOS applications with common web development tools following
typical design and implementation practices for Ajax applications, but your webOS
applications will be installed and run directly on the device, just as you are used to
doing with native applications.

Application Model

As shown in Figure 1-1, the original Palm OS has a typical native application model,
as do many of the popular mobile operating systems. Under this model the application’s
data, logic, and Ul are integrated within an executable installed on the native operating
system, with direct access to the operating system’s services and data.

User Interface

Native (lassic Classic
Application Model Web Application Model Web Application Model

Figure 1-1. Native and web application models

Classic web applications are basic HTML-based applications that submit an HTTP
(Hypertext Transfer Protocol) request to a web server after every user action and wait
for a response before displaying an updated HTML page. More common in recent years
are Ajax applications, which handle many user interactions directly and make web
server requests asynchronously. Ajax applications are able to deliver a richer and more
responsive user experience. Some of the best examples of this richer experience are map
applications, which allow users to pan and zoom while asynchronously retrieving
needed tiles from the web server.

Web applications have some significant advantages over embedded applications. They
are easier to deploy and update using the same search and access techniques as web
pages use. Developing web applications is far easier, too: the simplicity of the languages
and tools, particularly for building connected applications, allows developers and de-
signers to be more productive. Connected applications, or applications that leverage
dynamic data or web services, are becoming the predominant form for modern
applications.

2 | Chapter1: Overview of web0S

The webOS application model combines the ease of development and maintenance
of a web application with the deep integration available to native applications,
significantly advancing the mobile user experience while keeping application develop-
ment simple.

Application Framework and 05

Through Palm’s application framework, applications can embed UI widgets with so-
phisticated editing, navigation, and display features, enabling more sophisticated ap-
plication UL The framework also includes event handling, notification services, and a
multitasking model. Applications can run in the background, managing data, events,
and services behind the scenes while engaging the user when needed.

You can create and manage your own persistent data using HTML 5 storage functions
and you can access data from some of the webOS core applications, such as Contacts
and Calendar. You also have access to some basic system services, most of which are
device-resident, such as Location services and Accelerometer data, along with some
web services, such as Publish and Subscribe.

Architecturally, Palm webOS is an embedded Linux operating system that hosts a cus-
tom UI System Manager anchored by the open source WebKit core. The System Man-
ager provides a full range of system UI features including navigation, application
launching and lifecycle management, event management and notifications, system sta-
tus, local and web searches, and renders application HTML/CSS/JavaScript code.

You don’t need to build a webOS application to make your web content accessible to
webOS devices. Palm webOS maintains a separate instance of WebKit, which supports
a browser application to handle standard web pages and browser-based web applica-
tions. While it’s expected that more and more web content and services will be delivered
as webOS applications, there are millions of legacy websites and other information
sources that will continue to be presented in ways best viewed with a classic web
browser. Palm webOS supports traditional web content very competitively.

Beyond the operating system, webOS includes a number of core applications: Contacts,
Calendar, Tasks, Memos, Phone, Web, Email, and Messaging. Other applications are
included in the initial release, such as a Camera, Photos, Music, Videos, and Maps, but
the full application suite for a given webOS device will vary depending on the model
and carrier configuration.

User Interface

Palm webOS is designed for mobile, battery-operated devices with limited but variable
screen sizes, and a touch-driven UL User interaction is centered on one application at
a time, though applications, once launched, continue to run until closed even when

User Interface | 3

moved out of the foreground view. There is a rich notification system enabling appli-
cations to subtly inform or directly engage the user at the application’s discretion.

Navigation

Navigation is based on a few simple gestures with optional extensions that create a rich
vocabulary of commands to drive powerful navigation and editing features. To start
with, though, all you need to know is:

tap (act on the indicated object)
Commonly in a view that contains clusters or lists of items, tapping reveals infor-
mation contained in an item. This can be thought of as an open function, which
changes the nature or context of the view to be about the selected item exclusively.
Alternately, a tap will change an object’s state such as setting a check box or se-
lecting an object.

back (the inverse of open)
This feature looks like the opposite of a tap: the item compresses down to its sum-
mary in the containing context where it belongs. Typically, it reverses a view tran-
sition, as going from a child view to a parent view.

scroll (flick and quick drags)
Used to quickly navigate lists and other views.

Beyond this, you can learn to pan, zoom, drag and drop, switch applications, switch
views, search, filter lists, and launch applications. But to begin with, only these three
gestures are needed to use a webOS device.

Launcher

When a user turns on a webOS device, the screen displays the selected wallpaper image
with the status bar across the top of the screen and, hovering near the bottom, the
Quick Launch bar. The Quick Launch bar is used to start up favorite applications or to
bring up the Launcher for access to all applications on the device. From this view, users
can initiate a search simply by typing the search string; searches can be performed on
contacts, installed applications, or to start a web search. Figure 1-2 shows both the
Quick Launch bar and the Launcher.

The launched application takes over the available screen becoming the foreground ap-
plication; the application’s view replaces the wallpaper image and the Quick Launch
bar is dismissed. The status bar remains and is always visible except in full screen mode,
which is available to applications such as the video player or others that request it. The
application launch sequence is fluid and smooth, as you will see with all webOS
transitions.

4 | Chapter1: Overview of weh0S

Launcher

Figure 1-2. Quick Launch bar and Launcher
Card View

Figure 1-3 shows an application’s main view, in this case the Email application’s folder
view. The main view includes UI elements that make up the basic email application.
The inbox view displays specific folders, which users can select to open a new card with
a detail view of the messages contained within the selected folder. At the bottom, float-
ing icons represent menu items. A tap to a menu icon will typically reveal another view
associated with that menu action, a submenu, or a dialog box.

Running one application at a time, or performing one activity at a time, can be terribly
restrictive and inefficient. Palm webOS makes it easy to work on more than one thing
at a time. Swiping up, from the bottom of the display, brings up a new view, the Card
view, an example of which is shown in Figure 1-4. From the Card view, users can switch
to another activity simply by scrolling to and tapping the card representing that activity.
Users can also launch another application from the Quick Launch bar.

User Interface | 5

iy

[e

Figure 1-3. Email application

The Card view was inspired by the way people handle a deck of cards. You can fan the
cards out to see which card is where, and within the deck of cards, you can select or
remove any single card with a simple gesture, or move it to a new location by slipping
it between adjacent cards. Users can manipulate the webOS Card view in similar ways
by scrolling through the cards, selecting and flicking cards off the top to remove them,
or selecting and dragging a card to a new location.

The term activity needs further explanation. In most applications, users will, by design,
work on one activity at a time. However, with some applications, it is more natural to
work on several activities in parallel. A common email activity is writing a new email
message, but in the middle of writing that message, the user may want to return to the
inbox to look up some information in another message or perhaps read an urgent mes-
sage that has just arrived.

6 | Chapter1: Overview of weh0S

Figure 1-4. Card view with email and other applications

With a webOS device, the draft email message has its own card, separate from the email
inbox card. In fact, users can have as many draft email messages as they need, each in
their own cards; each is considered a separate activity and is independently accessible.
Switching between email messages is as simple as switching between applications, and
the data is safe, as it is saved automatically by the Email application. Figure 1-5 shows
the Card view with the email application’s inbox card and a draft email compose card.

Notifications and the Dashboard

What happens to the foreground application when the user switches to a new appli-
cation? The previous application is not closed, but continues to run as a background
application. Background applications can get events, read and write data, access serv-
ices, repaint themselves, and are generally not restricted other than to run at a lower
priority than the foreground application.

User Interface | 7

“

¥ wa'ne
missing the cheese. Have you seen
| 4

Shaed e vy Padu Pag

Figure 1-5. Card view with email application and new email message draft

To allow background applications to communicate with the user, Palm provides a
notification system with two types of notifications:

Pop-up
Nonmodal dialog boxes that have a fixed height and include at least one button to
dismiss the dialog box. Pop-up notifications interrupt the user and are appropriate
for incoming phone calls, calendar alarms, navigation notifications, and other
time-sensitive or urgent messages. Users are forced to take action with pop-ups or
explicitly clear them, but since they are not modal, users are not required to respond
immediately.

Banner

A nonmodal icon and single unstyled string of text. Banner notifications are dis-
played along the bottom of the screen within the Notification bar, which sits just
below the application window in what is called negative space since it is outside of
the card’s window. After being displayed, banner notifications can leave a summary
icon in the Notification bar as a reminder to the user. Figure 1-6 shows an example
of a banner norification and the summary icons are shown in Figure 1-7, indicating
that the music player is active and that there is an upcoming calendar event and
new messages.

8 | Chapter1: Overview of web0S

Ermail

- Inbox
&“ GMAiL

@ GMAIL

L Inbox

ﬁ Outbox

@ [Gmat!}

Mary Dent: Hey, have you seen Josh?

Figure 1-6. Banner notification

At any time, the user can tap the Notification bar, which brings up the Dashboard
view, shown in Figure 1-8. Notifications that are not cleared should display their current
statuses within a dashboard summary.

A dashboard summary is more than just a history of a notification—it is a dynamic
view that allows any background application to display ambient information or status.
For example, the Calendar application always displays the next event on the calendar
even before the event notification has been issued. In Figure 1-8, the Music application
shows the current song along with playback controls that you can manipulate to pause
the music or change the selection.

Dashboard applications are those that can be completely served through the dashboard,
as their entire purpose is to monitor and present information. For example, a weather
application could display the current weather for a targeted location in a dashboard
without having a Card view at all.

The Notification bar and Dashboard view manage messages and events, keeping users
abreast of changes in information without interrupting their current activities. It may
help to think of the Dashboard view as an event-driven model, while the Card view

User Interface | 9

Figure 1-7. Summary icons

provides the user with task-oriented navigation tools. The combination enables the
user to quickly track and access the information he needs when he needs it.

User Interface Principles

There are some foundational principles or values that support the overall webOS user
experience. You can exploit these principles to more deeply integrate your application
into the overall user experience. You can rely on the framework to provide most of what
isrequired at an implementation level, but you should keep in mind these key principles
when designing your application:

* Physical metaphors are reinforced through direct interaction with application ob-
jects and features, instant response to actions, and smooth display and object tran-
sitions with physics-based scrolling and other movement. For example, users delete
objects by flicking them off the screen and they can edit in place without auxiliary
dialog boxes or scenes.

* Maintain a sense of place with repeatable actions, reversible actions, stable object

placement, and visnal transitions that take the nser from one place to the next.

10 | Chapter1: Overview of web0S

Figure 1-8. Dashboard

L]

Always display up-to-date data, which requires both pushing and pulling the latest
data to and from the device so that the user is never looking at stale data when
more recent data is available. This also means managing on-device caches so that
when the device is out of coverage or otherwise offline, the user has access to the
last data received.

Palm webOS is fast and simple to use. All features should be designed for instant
response, easy for novices to learn and efficient for experienced users.

Minimize the steps for all common functions. Put frequently executed commands
on the screen and less frequently executed commands in the menus. Avoid pref-
erences and settings where possible. If you must use them, keep them minimal.

Don’t block the user. Don’t use a modal control when the same function can be
carried out nonmodally.

Be consistent. Help users learn new tasks and features by leveraging what they have
already learned.

Palm applications have always been built around a direct interaction model, where the
user touches the screen to select, navigate, and edit. Palm webOS applications have a
significantly expanded vocabulary for interaction, but they start at the same place. Your

User Interface | 11

application design should be centered on direct interaction, with clear and distinguish-
able targets. The platform will provide physical metaphors through display and navi-
gation, but applications need to extend the metaphor with instantaneous response to
user actions, as well as smoothly transitioning display changes and object transitions.

You can find a lot more on the Ul guidelines and design information in the Palm Mojo
SDK. We'll touch on the principles and reference standard style guidelines in the next
few chapters, but will not be covering this topic in depth.

Mojo Application Framework

A webOS application is based on standard HTML, CSS, and JavaScript, but the appli-
cation model is not like the web application model. Applications are run within the Ul
System Manager. The Ul System Manager is an application runtime built on WebKit,
an open source web browser engine, to render the display, assist with events, and handle
JavaScript.

The webOS APIs (application programming interfaces) are delivered as a JavaScript
framework, called the Mojo framework. Mojo includes common application-level
functions, a suite of powerful UI widgets, access to local storage and various applica-
tion, and cloud and system services. To build full-featured webOS applications, many
developers will also leverage HTML 5 features such as video/audio tagging and data-
base functions. Although not formally part of the framework, the Prototype JavaScript
framework is bundled with Mojo to assist with event and DOM (Document Object
Model) handling among many other great features.

The framework provides a specific structure for applications that is based on the Model-
View-Controller (MVC) architectural pattern. This allows for better separation of busi-
ness logic, data, and presentation. Following the conventions reduces complexity; each
component of an application has a defined format and location that the framework
knows how to handle by default.

You will get a more extensive overview of Mojo in Chapter 2, and you’ll get details on
widgets, services, and styles starting in Chapter 3. For now, you should know that the
framework includes:

* Application structure, such as controllers, views, models, events, storage, notifica-
tions, and logging

* Ulwidgets, including simple single-function widgets, complex multifunction widg-
ets, and integrated media viewers

* Services, including access to application data and cross-app launching, location
services, cloud services, and accelerometer data

12 | Chapter1: Overview of weh0S

Anatomy of a webOS Application

Outside of the built-in applications, webOS applications are deployed over the Web.
They are located in Palm’s App Catalog, an application distribution service that is built
into all webOS devices and is available to all registered developers. The basic lifecycle
stages are illustrated in Figure 1-9.

>
=
=
&
—
o
S
*=1

App Removed

Launcher [K086

Install or Updaté!
Remove

Wakeup

Background
App

Figure 1-9. Application lifecycle stages

When you download an application to the device, it will be installed, provided it has
been validly signed. After installation the application will appear in the Launcher.

Users can launch other applications from the Launcher into the foreground and switch
them between the foreground and background. Each of these state changes (launch,
deactivate, activate, close) is indicated by one or more events. Applications are able to
post notifications and optionally maintain a dashboard while in the background.

Ifitis a dashboard application, a card is not required; the application uses a dashboard
and notifications to communicate with the user. Dashboard applications typically in-
clude a simple card-based preferences scene to initiate the application and configure
its settings. Every application requires at least one visible window at all times (either a

card or dashboard).

Mojo Application Framework | 13

Applications are updated periodically by the system. If running, the application is
closed, then the new version is installed and then launched. There isn’t an update event,
so the application needs to reconcile changes after installation, including data migration
or other compatibility needs.

The user can remove an application and its data from the device. When the user at-
tempts to delete an application, the system will stop the application if needed and
remove its components from the device. This includes removing it from the launcher
and any local application data, plus any data added to the Palm application databases
such as Contacts or Calendar data.

Stages and scenes

Palm’s user experience architecture provides for a greater degree of application scope
than is normally considered in a web application. To support this and specific functions
of the framework, Palm has introduced a structure for webOS applications built around
stages and scenes.

A stage is similar to a conventional HTML window or browser tab. Applications can
have one or more stages, but typically the primary stage will correspond to the appli-
cation’s card. Other stages might include a dashboard, a pop-up notification, or sec-
ondary cards for handling specific activities within the application. Refer to email as
an example of a multistage application, where the main card holds the account lists
and inbox, and displays the email contents, but new email messages are composed in
aseparate card to allow for switching between compose and other email activities. Each
card is a separate stage but still part of a single application.

Scenes are mutually exclusive views of the application within a stage. Most applications
will provide a number of different kinds of scenes within the same stage, but some very
simple applications (such as the Calculator) will have just a single scene. An application
must have at least one scene, supported by a controller, a JavaScript object referred to
as a scene assistant, and a scene view, which is a segment of HTML representing the
layout of the scene.

Most applications will have multiple scenes. You will need to specifically activate (or
push) the current scene into the view and pop a scene when it’s no longer needed.
Typically, a new scene is pushed after a user action, such as a tap on a Ul widget and
an old scene is popped when the user gestures back.

As the terms imply, scenes are managed like a stack with new scenes pushed onto and
off of the stack with the last scene on the stack visible in the view. Mojo manages the
scene stack, but you will need to direct the action through provided functions and
respond to Ul events that trigger scene transitions. Mojo has a number of stage con-
troller functions specifically designed to assist you, and are described in Chapter 2,
Application Basics, and Chapter 3, Widgets.

14 | Chapter1: Overview of web0S

Application lifecycle

Palm webOS applications are required to use directory and file structure conventions
to enable the framework to run the applications without complex configuration files.
At the top level the application must have an appinfo.json object, providing the frame-
work with the essential information needed to install and load the application. In ad-
dition, all applications will have an index.html file, an icon.png for the application’s
Launcher icon, and an app folder, which provides a directory structure for assistants
and views.

By convention, all of an application’s images, other JavaScript, and application-specific
CSS should be contained in folders named images, javascripts, and stylesheets, respec-
tively. This is not required, but makes it simpler to understand the application’s
structure.

Launching a webOS application starts with loading the index.html file and any refer-
enced stylesheets and JavaScript files, as would be done with any web application or
web page. However, the framework intervenes after the loading operations and invokes
the application, stage, and scene assistants to perform the application’s setup functions
and to activate the first scene. From this point, the application is driven either by user
actions or dynamic data.

Significantly, this organizational model makes it possible for you to build an application
that will manage multiple activities that will be in different states (active, monitoring,
and background) at the same time.

Applications can range from the simple to the complex:

* Single-scene applications, such as a Calculator, which the user can launch, interact
with, and then set aside or close.

* Dashboard applications, such as traffic alert application that only prompts with
notifications when there is a traffic event and whose settings are controlled by its

dashboard.

* Connected applications like a social networking application, which provides a card
for interaction or viewing and a dashboard to provide status.

* Complex multistage applications like email, which can have an inbox card, one or
more compose cards, and a dashboard showing email status. When all the cards
are closed, the email application will run in the background to continue to sync
email messages and post notifications as new messages arrive.

Events

Palm webOS supports the standard DOM Level 2 event model. For DOM events, you
can use conventional techniques to set up listeners for any of the supported events and
assign event handlers in your JavaScript code.

Mojo Application Framework | 15

There are a number of custom events for UI widgets. These are covered in more detail
in Chapter 3. For these events, you will need to use custom event functions provided
within the framework. Mojo events work within the DOM event model, but include
support for listening to and generating custom Mojo event types and are stricter with
parameters.

The webOS Services work a bit differently, with registered callbacks instead of DOM-
style events, and are covered starting in Chapter 8. The event-driven model isn’t con-
ventional to web development, but has been part of modern OS application design and
derives from that.

Storage

Mojo supports the HTML 5 database APIs directly and provides high-level functions
to support simple create, read, update, or delete (CRUD) operations on local databases.
Through these Cookie and Depot functions, you can use local storage for application
preferences or cache data for faster access on application launch or for use when the
device is disconnected.

Ul Widgets

Supporting webOS’s Ul are Ul widgets and a set of standard styles for use with the
widgets and within your scenes. Mojo defines default styles for scenes and for each of
the widgets. You get the styles simply by declaring and using the widgets, and you can
also override the styles either collectively or individually with custom CSS.

The List is the most important widget in the framework. The webOS user experience
was designed around a fast and powerful list widget, binding lists to dynamic data
sources with instantaneous filtering and embedding objects within lists including im-
ages, icons and other widgets.

There are some basic widgets, including buttons, selectors, and indicators. The Text
Field widget includes text entry and editing functions, including selection, cut/copy/
paste, and text filtering. A Text Field widget can be used singly, in groups, or in con-
junction with a list widget.

Menu widgets can be used within specified areas on the screen; at the top and bottom
are the View and Command menus, which are completely under your control. The
App menu is handled by the system, but you can provide functions to service the Help
and Preferences items or add custom items to the menu. Some view and command
menu types are shown in Figure 1-10.

16 | Chapter1: Overview of web0S

Use these buttons to see various
features:

Simple Buttons oo

=
(. Dividers / Flexible Spaces i

Lise oo ToggleBations =

Groups -

Misc Stuff

- Show/Hide = .|

Figure 1-10. View and command menu types

Pickers and viewers are more complex widgets. Pickers are for browsing and filtering
files or for selecting numbers, dates, or times. If you want users to play or view content
within your application, such as audio, video, or web content, then you need to include
the appropriate viewer.

Using widgets

You must declare widgets within your HTML as an empty div with an

x-mojo-element attribute. For example, the following declares a Toggle Button widget:
<div x-mojo-element="ToggleButton" id="my-toggle"></div>

The x-mojo-element attribute specifies the widget class used to fill out the div when the

HTML is added to the page. The id attribute must be unique and is required to reference
the widget from your JavaScript.

Mojo Application Framework | 17

Typically, you would declare the widget within a scene’s view file, then direct Mojo to
instantiate the widget during the corresponding scene assistant setup method using the
scene controller’s setupWidget () method:

/] Setup toggle widget and an observer for when it is changed.

// this.toggle attributes for the toggle widget, specifying the 'value’
// property to be set to the toggle's boolean value

// this.togglemodel model for toggle; includes 'value' property, and sets
/! 'disabled’ to false meaning the toggle is selectable

//

/] togglePressed Event handler for any changes to 'value' property

this.controller.setupWidget('my-toggle’,
this.toggle = { modelProperty : 'value' },
this.toggleModel = { value : true, disabled : false });

this.controller.listen('my-toggle', Mojo.Event.propertyChange,
this.togglePressed.bindAsEventListener(this));

This code directs the scene controller to set up my-toggle, which passes a set of attrib-
utes called this.toggle and a data model called this.toggleModel to use when instan-
tiating the widget and to register the togglePressed function for the widget’s
propertyChange event. The widget will be instantiated whenever this scene is pushed
onto the scene stack.

To override the default style for this widget, select #my-toggle in your CSS and apply
the desired styling (or use .sliding-toggle-container to override the styling for all
toggle buttons in your application). For example, the following will override the default

positioning of the toggle button to the right of its label so that it appears to the left of
the label:

#my-toggle { float:left;
}

There’s a lot more to come, so you shouldn’t expect to be able to use this to start
working with any of these widgets yet. Chapters 3, 4, and 5 describe each of the widgets
and styles in complete detail.

Services

Even if you limited yourself to just using the webOS System UL, application model, and
UI widgets, you would have some unique opportunities for building web applications,
particularly with notifications and the dashboard. But you’d be missing the access and
integration that comes with a native OS platform. The services functions complete the
webOS platform, fulfilling its mission to bridge the web and native app worlds.

Through the services APIs, you can access hardware features on webOS devices (such
as location services, the phone, and the camera) and you can leverage the core appli-
cation data and services that have always been a key part of a Palm OS device. Almost

18 | Chapter1: Overview of web0S

all of the core applications can be launched from within your application, and there
are CRUD functions for the calendar and contacts databases.

A service is an on-device server for any resource, data, or configuration that is exposed
through the framework for use within an application. The service can be performed by
the native OS (in the case of device services), an application, or by a server in the cloud.
The model is very powerful, as evidenced by the initial set of offered services.

The services differ from the rest of the framework because they are called through a
single function, Mojo.Service.Request (). The request passesa JSON (JavaScript Object
Notation) object specific to the called service, and specifies callbacks for success and
failure of the service request.

Starting with Chapter 8, you’ll find a full description of the general model and handling
techniques, as well as enumeration of all the services and the details for using each one.

Palm web0S Architecture

Palm webOS is based on the Linux 2.6 kernel, with a combination of open source and
Palm components providing user space services, referred to as the Core OS.

You won’t have any direct interaction with the Core OS, nor will the end users. Instead
your access is through Mojo and the various services. Users interact with applications
and the UI System Manager, which is responsible for the System UI. Collectively, this
is known as the application environment. Figure 1-11 shows a simplified view of the
webOS architecture.

Figure 1-11. Simplified webOS architecture

This overview is included as background to give you an idea of how webOS works—
this information is not needed to build applications, so you can skip it if you aren’t
interested.

Palm web0S Architecture | 19

Application Environment

The application runtime environment is managed by the UI System Manager, which
also presents the System UI that is manipulated by the user. The framework provides
access to the UI widgets and the Palm webOS services. Supporting this environment is
the Core OS environment, an embedded Linux OS with some custom subsystems han-
dling telephony, touch and keyboard input, power management, storage, and audio
routing. All these Core OS capabilities are managed by the application environment
and exposed to the end user as System UI and to the developer through Mojo APIs.

Taking a deeper look at the webOS architecture, Figure 1-12 shows the major compo-
nents within the application environment and the Core OS.

Applications
g1l 8
= =
A 3 -
E <& Window Manager Mojo Framework :
Window Server - Application Mgr:
s R 4 v
A
\ 4 §
i Browser
Wireless - Media - e ————
, - e «DotVieWer's‘
0S Services : 0S Middleware E
Kernel/User Space Boundary —————
Linux kernel l Filesystem ‘ TCPAP
o ey o o T

Bootie ‘ [] o Drivers : E

Figure 1-12. webOS system architecture

The application environment refers to the system user experience and the feature set
that is exposed to the application developer, as represented by the Mojo framework
and the Palm services. The Core OS covers everything else: from the Linux kernel and
drivers, up through the OS services, middleware, wireless, and media subsystems. Let’s
take a brief look at how this all works together.

The UI System Manager is responsible for almost everything in the system that is visible
to the user. The application runtime is provided by the application manager, built on

20 | Chapter1: Overview of web0S

top of an instance of WebKit, which loads the individual applications and hosts the
built-in framework and some special system applications, the status bar, and the
Launcher. The Application Manager runs in a single process, schedules and manages
each of the running applications, handles all rendering through interfaces to the graph-
ics subsystem, and handles on-device storage through interfaces to the database engine.

Applications rely on the framework for their UI feature sets and for access to services.
The Ul features are built into the framework and handled by the Application Manager
directly, but the service requests are routed over the Palm bus to the appropriate service
handler.

Core 0S

The Core OS is based on a version of the Linux 2.6 kernel with the standard driver
architecture managed by udev with a proprietary boot loader. It supports an ext3 file-
system for the internal (private) file partitions and FAT32 for the media file partition,
which can be externally mounted via USB (Universal Serial Bus) for transferring media
files to and from the device.

The Wireless Comms system at the highest level provides connection management that
automatically attaches to WAN (wide area network) and WiFi networks when availa-
ble, and switches connections dynamically, prioritizing WiFi connections when both
are available. EVDO or UMTS telephony and WAN data are supported depending
upon the particular device model. Palm webOS also supports most standard Bluetooth
profiles and provides simple pairing services. The Bluetooth subsystem is tightly inte-
grated with audio routing to dynamically handle audio paths based upon user prefer-
ences and peripheral availability.

The media server is based on gstreamer and includes support for numerous audio and
video codecs and all mainstream image formats, and supports image capture through
the built-in camera. Video and audio capture is not supported in the initial webOS
products, but is inherently supported by the architecture. Video and audio playback
supports both file- and stream-based playback.

Software Developer Kit

Of course, the best way to get started writing webOS applications is to continue reading
this book, but you should also go to Palm’s developer site, http://developer.palm.com,
and download the Mojo Software Developer Kit (SDK). The SDK includes the devel-
opment tools, sample code, and the Mojo Framework, along with access to tutorial
and reference documentation. Palm also hosts a webOS discussion forum for registered
developers, where they can share ideas and ask questions in an environment that is
monitored by Palm staff.

Software Developer Kit | 21

Development Tools

Palm makes the Mojo SDK and tools available for Linux, Windows (XP/Vista), and
Mac OS X. The tools allow you to create a new webOS application project using sample
code and framework defaults, search reference documentation, debug your application
in the emulator or an attached Palm device, and publish an application. Chapter 2
includes more details about the tools in the SDK and third-party tools, but you’ll find
a brief summary in Table 1-1.

Table 1-1. Palm developer tools

SDK installer Installs all webOS tools & SDK
Emulator Desktop-hosted device emulator
Command-linetools Create new project

Install and launch in desktop emulator or device

Package and sign application

The tools can be installed and accessed as command-line tools on every platform. They
include a plug-in to Eclipse as well as Aptana Studio, a popular JavaScript/HTML/CSS
editor for Eclipse.

Mojo Framework and Sample Code

The Mojo SDK includes the Mojo framework and sample code to help you design and
implement your application. Unlike most JavaScript frameworks, you won’t need to
include the Mojo framework with your application code, since Palm includes the
framework in every webOS device. The framework code included in the SDK is for
reference purposes to help you debug your applications.

The sample code is also for reference. There are samples for most of the significant
framework functions, including application lifecycle functions, Ul widgets, and each
of the services. Simple applications are included to get you started. You can review and
leverage these applications as you choose.

web0Sdev

Your main entry point to Palm’s developer program is http://developer.palm.com/,
which is where Palm hosts webOSdev, the developer web community. This site provides
everything that you might need to build webOS applications, including access to the
SDK, all development tools, and documentation and training materials, as well as de-
veloper forums and a blog specifically for the developer audience.

22 | Chapter1: Overview of web0S

webOSdev is also the source for your application signing services and access to the
Application Catalog. This is an application store that is published and promoted with
every webOS device through a built-in Application Catalog application. Applications
need to be signed for installation on a webOS device, and at webOSdev, you can get
all the information you need to use the signing tools and to upload your application to
the catalog, once they are made available.

You can find more information on the Palm developer program in Appendix A of this
book and online at http://developer.palm.com.

Summary

In this introductory chapter, you were introduced to webOS, Palm’s next generation
operating system. You should now have a basic understanding of the webOS architec-
ture and application model along with the basic services available in the SDK.

You'll find that it’s pretty easy to get started writing webOS applications. After all,
you’re simply building web applications using conventional web languages and tools.
You can port a very simple Ajax application by creating an appinfo.json file for your
application at the same level as your application’s index.html file. With as little as that,
your application can be published and made available for download to any webOS
device.

From there you can invest more deeply by building in the Mojo UI widgets to take
advantage of the fluid physics engine, gesture navigation, beautiful visual features, text
editing, and the powerful notification system. You can move beyond simple foreground
applications that rely on active user interaction, and adapt your application to run in
the background or even as a dashboard application. You can also create an application
that can open new windows for each new activity, allowing users to multitask within
a single application. There’s a whole new generation of applications possible on the
webOS platform, just waiting to be built.

Summary | 23

CHAPTER 2
Application Basics

Palm webOS provides a great environment for building applications. The use of
standard web development languages and tools, combined with access to native serv-
ices and local data gives you a powerful and productive platform. Even Java and
C/C++ developers will find that building applications using dynamic languages on
webOS is fun and exciting. And despite what you might have heard, you can build real
applications, not just web gadgets and spinners.

A browser-based web application is really just a set of complex web pages. They are
downloaded from a web server and present their Uls as HTML, often with JavaScript
as a client-side language to validate input, animate page elements, and make back-
ground Ajax calls back to the web server for additional interactivity.

If you are a developer writing these web applications, the Palm webOS development
environment will feel familiar. JavaScript library code generates the HTML Ul, interacts
with page elements, and issues Ajax calls to web servers. You can style the Ul with CSS,
either to make your application look and feel consistent with Palm’s style guidelines or
to make your own unique look.

The programming model is a little different. Since the HTML is not generated on a
server (say, using Java, PHP, or Ruby), there is no request/response lifecycle. Instead,
all of your application code is in JavaScript—even interactions with key webOS systems
(UI widgets, location services, and other applications) are made with JavaScript.

If you are a developer writing desktop or other native mobile phone applications in
Java or C++, the Palm webOS development environment will feel familiar as well. There
is a robust API for creating Ul elements, accessing local storage, and making system
calls. There is an application framework that makes it simple to do common tasks.

What is different for you is that the programming language is JavaScript and the Ul is
generated using HTML and styled using CSS. If you’re new to JavaScript, HTML, or
CSS, you may want to familiarize yourself with their fundamentals before tackling the
next few chapters. Even so, the material presented here is fairly basic, and you don’t
need to be a web development expert to build applications for webOS.

25

In this chapter, you’ll learn how to build a basic webOS application, starting with the
installation of the SDK. You’ll create a new application project, customize the critical
application components, and develop the first parts of the News application, which
will be used throughout the book as our sample application. We will also go into detail
on how to use the framework and apply the different APIs, widgets, and styles.

Getting Started

You’ll find everything you need to get started in developing Palm webOS applications
at webOSdev, the Palm developer site (http://developer.palm.com). You’ll need to sign
up as a Palm developer and download the SDK. There are options for Mac OS X,
Windows XP/Vista, and Linux, so download the SDK package that matches your de-
velopment platform and run the installer.

The installation will put a copy of the SDXK, including the Palm Mojo framework and
Palm development tools, into one of the project directories listed in Table 2-1.

Table 2-1. SDK installation directories

Mac 0S X /opt/PalmSDK/Current/
Windows XP/Vista C:\Program Files\Palm\SDK
Linux /opt/PalmSDK/Current

The installer will give you the option of installing different tool bundles. The tools
package includes a collection of command-line tools which can be run on all platforms.
In addition, the tools have been integrated into some popular IDEs and web develop-
ment editors. Check the developer portal for an up-to-date list of bundles and suppor-
ted editors.

The application samples in this book were all developed on a Mac with TextMate and
the command-line tools. The command-line option for the tools will be shown in the
examples and is the same on every platform. If you are using Eclipse/Aptana or another
tool bundle, there should generally be direct menu options for the commands used in
the book. In some cases, several commands may be combined into one menu option.

Creating Your Application

Palm webOS applications have a standard directory structure with naming conventions
and some required files. To help you get started quickly, the SDK includes palm-
generate, a command-line tool that takes an application or scene name as arguments
and creates the required directories and files. You can run this from the command line
mw$bﬁwcmmmm&hwpwumhmdﬂwddmﬂbumwwd&pmuﬁmmwmmmﬂﬁ

$ palm-generate AppName

26 | Chapter2: Application Basics

The command-line tools all work off of the current directory. You
should change the directory to a projects directory (or wherever your
s workspace is located) before running the tools.

The tool creates a functional application within a conventional webOS directory struc-
ture. Every webOS application should have a directory structure similar to the follow-
ing, and some parts of the structure are required:

AppName
-> app
-> assistants
-> first-assistant.js
-> second-assistant.js
>
-> views
-> first
-> first-scene.html
-> second
-> second-scene.html
-> ...
-> appinfo.json
-> icon.png
-> images
-> image_1.png
-> image_2.jpg
>
-> index.html
-> sources.json
-> stylesheets
-> AppName.css
-> .

You are free to choose any project directory name, but AppName should correspond to
the value of the id property in appinfo.json, discussed later in this section. An applica-
tion’s logic and presentation files reside in the app directory, which provides a directory
structure loosely based on the MVC pattern.

There are scene assistants in the assistants directory of your application. As discussed
earlier, a scene is a particular interactive screen in an application. Scene assistants are
delegates implemented in your application, and are used by the framework’s controllers
to customize an application’s behavior.

All layout files are located in the views directory of your application. A scene assistant
has one main HTML view file, which provides the structure and content of its presen-
tation page. It also includes optional HTML template view files that may be used to
display dynamic data, such as JavaScript object properties for UI controls. These files
are fragments of the UI that are combined together by the framework to produce the
final presentation of the scene.

Getting Started | 27

An application’s images are located in the images directory and the CSS files are placed
in the stylesheets directory. As with web applications, webOS applications use HTML
to structure the layout of a page and CSS to style the presentation. CSS files are used
to style your custom HTML, and you can also use CSS to override Mojo’s default styles.

The appinfo.json object gives the system the information it needs to load and launch
your application. Within appinfo. json there are both required and optional properties,
which are described in Table 2-2.

The palm-generate tool creates an appinfo.json file with a common set of properties set
to default values. The most important property is the id, which must be unique for
each application; it’s used in service calls to identify the caller and serves as a unique
application identifier.

Table 2-2. appinfo.json properties and values

title any Yes Name of application as it appears in Launcher and in application window

type web Yes Conventional application

main any Yes Application entry point

id any Yes Must be unique for each application

version Xy.Z Yes Application version number

vendor any Yes A string representing the maker of the application; it is used in launcher and
deviceinfo dialogs

vendorurl any No A string representing a URL that turns the vendor portion in deviceinfo dialogs to
hyperlinks

noWindow true/false No Background application; defaults to false

icon file path No Application’s launcher icon; defaults to icon.png

miniicon filepath No Notification icon; defaults to miniicon.png

A warning about syntax:
¢ Don’t include any comments in appinfo.json files (/* or //).

* Must use double quotes around properties—no single quotes!

* Strict JSON parser; this file must follow all the rules for correct
JSON.

The Application Manager is responsible for putting the application in the Launcher
using the icon.png as the icon for your application. Application icons should be 64 x
64 pixels, encoded as a PNG with 24 bit/pixel RGB and 8 bits alpha. The icon’s image
should be about 56 x 56 pixels within the PNG bounds.

28 | Chapter2: Application Basics

Refer to the webOS style guidelines found in the SDK documentation
for more information about icon design.

Following web standards, index.html is the first page loaded when a webOS application
is launched. There are no restrictions on what you put into the index.html, but you do
need to load the Mojo framework here. Include the following in the header section:
<script src="/usr/palm/frameworks/mojo/mojo.js"
type="text/javascript” x-mojo-version="1"></script>

This code loads the framework indicated by the x-mojo-version attribute; in this case
version 1. You should always specify the latest version of the framework that you know
is compatible with your application. If needed, Palm will include old versions of the
framework in webOS releases, so you don’t need to worry about your application
breaking when Palm updates the framework.

You can load your JavaScript using the sources tag in index.html, but this will load all
the JavaScript at application launch. To improve launch performance, it is recommen-
ded that you use sources.json to provide lazy loading of the JavaScript. The
palm-generate tool will create a template, and you can add the application specific files
as they are created.

The generated file includes only your stage assistant, but a typical sources.json includes
some scene assistants and perhaps an app assistant:

[

{
"source": "app/assistants/app-assistant.js"

1

{
"source": "app/assistants/stage-assistant.js"

b

{
"source": "app/assistants/first-assistant.js",
"scenes": "first"

b

{
"source": "app/models/data.js",
"scenes": ["first", "second"]

1

{
"source": "app/assistants/second-assistant.js",
"scenes": "second"

}

]

Getting Started | 29

The app-assistant file path comes first, followed by the stage-assistant and the
scenes file paths after that. The scene file paths can be in any order, but must include
both the source and scenes properties. Note the example where both the first and
second scenes with a dependency on the same file. HTML files are not included.

Applications can add other directories to the structure above. For example, you might
put common JavaScript libraries under a javascripts or library directory, or put test
libraries under tests. The required elements are:

* The app directory and everything within it
* appinfo.json

The rest of the structure and naming is recommended but not required.

Testing and Debugging

Most web applications can simply be loaded into a browser to run and debug them,
and webOS apps can also be tested and debugged that way. However, you’ll run into
difficulty if your application is using Mojo widgets or webOS services. And it’s difficult
to fully test your application without seeing it working within the webOS System Ul
and other applications.

For this reason, you’ll want to use the webOS Emulator with integrated JavaScript
debugger and DOM inspector. Unlike the other development tools, the emulator is a
full native application on every platform and will be found in the Applications directory
on MacOS X and Linux or in the Programs directory on Windows XP/Vista. First, you
can launch the emulator directly; it will bring up a window that looks like a Palm Preé.
Or, you can use command-line tools; use palm-package to package your application and
use palm-install to run it on the emulator.

You’ll also use the debugger for testing your applications after connecting any Palm
webOS device to your system using a USB cable. From the command line you can run
palm-package and palm-install to run your application on the device as well.

News

After the core webOS applications, one of the first applications built for webOS was
the News application. In August 2008, the webOS platform was far enough along that
the webOS Engineering team wanted to have someone completely unfamiliar with
webOS write a webOS application. An experienced JavaScript developer built a prim-
itive version of the News application and gave us feedback on the tools and documen-
tation. After a month, we ended the experiment, put the prototype into Subversion and
went on with the project.

Over a recent holiday, I started poking around at the application thinking that it would
be fun to get it updated to the latest framework and see what could be done with it.

30 | Chapter2: Application Basics

Within a few days, I had rewritten the application and had something useful; a week
or so later it was ready to post on the internal website. I was amazed at how much fun
I was having with it and felt guilty for continuing to work on it; it was addictive.

An RSS (Really Simple Syndication) reader is a useful application and although simple
to write, it uses a lot of the features of the framework, so it seemed like a good choice
for a sample application in this book. We’re going to build the application up bit by
bit throughout the book to explore how to write a webOS application and how to use
the different APIs, widgets, and styles. We won’t use every API or every widget or every
style, but there’ll be enough from each part of the framework that you can see how to
apply the examples to things that are not covered.

The News application manages a list of newsfeeds, periodically updating the feeds with
new stories. It has the following major features:

* Users can monitor the newsfeeds for unread stories, scroll through the stories
within a feed, and display individual stories.

* Feeds and stories are cached on the device for offline viewing.

* The original and full story can be viewed in the browser.

* Keyword searches are carried out over the entire feed database.

* Stories are shared through email or messaging.

* Feeds are updated in the background with optional notifications and a dashboard
summary.

* The application was localized for the Spanish language.

News Wireframes

It’s useful to block out the design for an application before you begin any coding or
detail design.A wireframe shows the layout of an application view and the UI flow from
one view to the next. A set of the News wireframes is shown in Figure 2-1.

This shows the main scene of the News application with a featured story in the top
third of the screen. This is a text scroller widget encapsulated with a base div style called
palm-group-title. Below the feature story area is the feed list widget, which serves as an
index of the selected feeds. At the top of the scene is a search field built with a filter-
list widget, which is hidden until some text is keyed, at which point the entered text
will be used in a keyword search of the entire feed database.

W
A
o None of the style or widget names will make much sense right now, so
") don’t worry about that, but note that the wireframe calls out these base
T Qi styles and the widgets that will be used.

News | 31

ﬁngt

| it

- " http/news.google.com

) hetpymwwinytimes.comiservivice..

Figure 2-1. Part of the News wireframes

The News application supports other scenes, which users can bring into view by tap-
ping different elements. Tapping a feed list entry will bring up a new scene called
storylist, which is a list of the stories in the feed. A scene of a specific story is viewed
by tapping the story in the list. You can also get to the storyView scene by tapping the
featured story. Tapping a story from storyView will go to the original story URL in yet
another scene, the webView scene.

A complete set of wireframes would include a diagram for each scene and for each
dialog box, such as the dialog box in this scene that adds new feeds to the list.

Chapter 1 includes an overview on style guidelines, and it’s at this wireframe design
stage that the guidelines are best applied. The News application uses physical meta-
phors of showing the feeds and stories in lists that can be tapped (to view), scrolled,
deleted, or rearranged. Users add new feeds by tapping on the end of the list. No menus
are needed; all the actions are directly applied to the elements on the screen.

The SDK includes a comprehensive set of style guidelines that you may find helpful. It
covers broad user-experience guidelines for designing webOS applications, and in-
cludes technical details that are essential for visual and interaction designers. The style
guidelines will help you design for the platform and not just a single device.

32 | Chapter2: Application Basics

Designing for Palm web0S

Palm webOS is initially available on the Palm Pre, but it is a platform that will be used
on other devices with different screen sizes and resolutions. Design your application so
that it works well on different devices by following these key guidelines:

* Total usable screen real estate will be at least 320 pixels wide in primary use mode,
but will often be larger. An application should gracefully handle different window
sizes, usually by having at least one section of the screen that can expand or
contract.

* The minimum hit target is 48 pixels.
¢ The minimum font size is 16 pixels for lowercase text and 14 pixels for all caps.
* Use Mojo.Environment.Devicelnfo to retrieve device specific property values.

You should refer to the style guidelines in the SDK for the complete and most up-to-
date information.

Creating the News Application

We'll start by repeating the steps covered in the previous section to create a new ap-
plication project. Using palm-generate, create a new application named News. You’ll see
an initial application structure (shown in Figure 2-2):

$ palm-generate News

« (i app Folder -
« [assistanits Folder -

3} stage-assistant.js Javasc... script 4 KB

v ([views Folder -

[appinfo json TextM...ment 4 KB

» [images Folder
[¥ index.htmi HTML...ument 4 KB
E} SOUrCes.json TextM...ment 4 KB
w [stylesheets Folder -
News.css (5SS st... sheet 4 KB

Figure 2-2. Creating a new Palm webOS application

News | 33

Running this app simply displays some text, which isn’t very interesting. We’ll add the
first scene and some actual application content, but first there’s some basic house-
keeping to do.

Start by cleaning up the index.html file. Remove all of the HTML code between the
<body> and </body> tags, and update the application title. In the following sample, the
application title has been left as News, but it has been formatted into title case:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>News</title>
<script src="/usr/lib/mojo/framework/mojo.js" type="text/javascript”
x-mojo-version="1"></script>

<!-- application stylesheet come in after the one loaded by the framework -->
<link href="stylesheets/News.css" media="screen" rel="stylesheet"
type="text/css" />
</head>
<body>
</body>
</html>

Customizing the Launcher Icon and Application ID

While not strictly necessary, each application should have a unique launcher icon. To
implement this, you will create a custom graphic and replace the generic icon.png in
the News directory. If you don’t want to draw a custom graphic you can repurpose
other graphics as long as they have close to a 1:1 aspect ratio (square, in other words)
by using resampling tools like the Preview application on the Macintosh. See the sidebar
“Designing for Palm webOS” on page 33 for more information on creating application
icons.

Next, we’ll open the appinfo.json file and update the id property. You should at least
replace the yourdomain string with your actual domain name (in this case we’ll use
palm) or some other unique string and add the vendor name. We’ll also modify the title
to put the application name in title case:

{
"title": "News",
"type": "web",
"main": "index.html",
"id": "com.palm.app.news",
"version": "1.0.0",
"vendor": "Palm",
"icon": "icon.png"

—

34 | Chapter2: Application Basics

The application doesn’t yet do anything more than before, but now it is uniquely the
News application. It’s time to add the first newsfeed features.

Adding the First Scene

The first scene will just display a story from one newsfeed, which will be hardcoded to
start with. This scene will use several of Mojo’s scene styles, including palm-page-
header, palm-page-header-wrapper, and title.

The scene view

As you learned earlier in the chapter, a scene is defined by an HTML view file and
controlled by a JavaScript assistant. Again, use palm-generate, this time to create a
scene:

$ palm-generate -t new_scene -p "name=storyView" News

This command creates a directory with the scene name, and within that directory, an
empty HTML file with the scene name followed by -scene.html. In this case, the file-
name will be views/storyView/storyView-scene.html. It also creates a JavaScript assis-
tant, assistants/storyView-assistant.js, with the same base scene name. The JavaScript
assistant will be discussed in the next section. The file structure is shown in Figure 2-3.

Narme Kyl
A4 % app Folder ——
% [assistants Folder s
3}3 stage-assistantjs JavaSc... script 4 KB
@ storyView-assistant.js Javasc... script 4 KB
v [views Folder ——
v [storyview Folder —
@ storyView-scene.html HTML...ument 4KB
[appinfo.json TextM...ment 4XB
[E] icon.png Porta... image 8 KB
» [images Folder -
[index.hmi HTML...ument 4 KB
[sources.json TextM...ment 4 KB
w [stylesheets Folder -
12 News.css €55 st... sheet 4 KB
[” ‘ B oo - . Taiwl g

Figure 2-3. A new scene view file

Custom Application Structures

If you find the conventional structure too constraining, you can customize it for your
application. Place your scene’s .html file where you want it under the app directory. For

News | 35

example, you can group several scenes into a separate directory called main within the
views directory, such as this scene, named front:

app/views/main/front/front-scene.html

In this case, we’ve added another directory between the views directory and the scene
directory. When pushing example-scene-one you will do it like so:

Mojo.Controller.stageController.pushScene({name:"front",
sceneTemplate: "main/front/front-scene"});

The call to push the scene tells the framework explicitly where to find the scene’s tem-
plate. This is useful for code organization purposes; particularly with large applications
or in cases when you might want to reuse code in different applications. It’s also a
technique that you can use to work around the naming convention between the scene’s
view file name and assistant. You can find some examples of this in the SDK
sample code.

Within the scene’s view file, you need to specify the complete HTML required by the
scene. The title and text will be inserted dynamically, so there are just div tags for the
title with an id storyViewTitle, and the story item with the id storyViewSummary, with
some template strings between the div tags for the dynamic data:
<div id='storyViewScene'>
<div class="palm-page-header multi-line">
<div class="palm-page-header-wrapper">
<div id="storyviewTitle" class="title left">
</div>
</div>
</div>
<div class="palm-text-wrapper">
<div id="storyViewSummary" class="palm-body-text">
</div>
</div>
</div>

You’ll notice that the storyViewTitle div is wrapped by two div tags, which each have
class names corresponding to Mojo scene styles. Scene styles are covered later in this
chapter, but for this example you should note that the scene styles are defined through
empty divs with class names corresponding to the scene style selected. Where multiple
elements can be included in the style, there will be an inner wrapper style for each
element. Occasionally, the styles will have modifiers; in the example above, the base
style is modified with multi-1ine, signifying some behavior to accommodate titles that
are longer than a single line.

In Mojo, CSS class names belong to the designers and are used for styling, whereas the
element IDs belong to the developer. This rule allowed the Mojo design and develop-
ment teams to work somewhat independently without conflicting. You always invoke
a Mojo style by assigning the appropriate style class name to the div. For scene styles,
the element will usually be an empty div, sometimes with some required nested div(s).

36 | Chapter2: Application Basics

The scene assistant

Mojo requires that the scene assistant’s name match the view name, so you should
notice that palm-generate created a scene assistant called storyView-assistant.js in the
News/applassistants directory. The assistant includes a function definition along with
the four standard methods:

* setup
* activate
* deactivate
* cleanup
The function naming is important; the assistant’s name should be the same as the

filename, with the removal of any delimiters and beginning with a capital letter, as in
this example:

/* StoryViewAssistant - NEWS
Copyright 2009 Palm, Inc. All rights reserved.
Passed a story element, displays that element in a full scene view.

Major components:
- StoryView; display story in main scene

*/
function StoryViewAssistant() {

}

/] setup
StoryViewAssistant.prototype.setup = function() {

// Update story title in header and summary
var storyViewTitleElement = this.controller.get("storyViewTitle");
var storyViewSummaryElement = this.controller.get("storyViewSummary");
storyViewTitleElement.innerHTML =
"Green Inc.: Cities Target Lending to Speed Energy Projects";
storyViewSummaryElement.innerHTML =
"A number of municipalities across the country are getting creative and
experimenting with incremental, neighborhood- or district-based lending
programs that help homeowners pay the up-front capital costs for efficiency
or renewable energy projects.";

};

// activate - called each time the scene is revealed
StoryViewAssistant.prototype.activate = function(event) {

};

// deactivate - called each time the scene is replaced by another scene
StoryViewAssistant.prototype.deactivate = function(event) {

News | 37

};

// cleanup - called once, after deactivate when scene is popped
StoryViewAssistant.prototype.cleanup = function(event) {

s

The setup method is invoked, and the story’s title and text are put into the div tags and
into the scene before the scene is activated. We use the Mojo controller method,
get(), to retrieve the storyViewTitle and storyViewSummary DOM elements from the
scene, and then insert the title and text items into the respective element’s innerHTML.

The get() method is functionally equivalent to the conventional getElement() or Pro-
totype’s $() functions, but is required when developing multistage and background

applications (see Chapter 10). It’s good practice to use it in even simple applications
like this.

The code sample shows empty activate, deactivate, and cleanup methods, which are
created by palm-generate when generating a new scene. Empty methods are okay, but
can be omitted. If any of the standard methods are omitted, the framework will just
skip over the call to that method.

Pushing the scene

To push the scene, modify stage-assistant.js to push the storyView scene:
function StageAssistant () {

}

StageAssistant.prototype.setup = function() {
this.controller.pushScene("storyView");
b

Notice that only the scene name is used here. You can see why the naming convention
is important; the framework uses the scene name to access the assistant, view directory,
and view file. Finally, add a reference into sources.json to load storyView-assistant.js:

[

{
"source": "app/assistants/stage-assistant.js"

)

{
"source": "app/assistants/storyView-assistant.js",
"scenes": "storyView"

}

]

Now run the application by packaging and installing the application. You’ll need to
first launch the emulator or attach a device to your desktop over USB. In either case,
first run palm-package and then palm-install:

38 | Chapter2: Application Basics

$ palm-package News
Creating package in /Users/Mitch/Documents/workspace/com.palm.app.news_1.0.0_all.ipk
$ palm-install --install com.palm.app.news_1.0.0 all.ipk

Figure 2-4 shows the first scene.

Figure 2-4. storyView scene

Styling the scene

The first scene was styled using standard framework styles. The story title is styled with
palm-page-header, palm-page-header-wrapper, title, and left, while the story text uses
palm-text-wrapper and palm-body-text. In many cases, the framework styles will be all
you need, but you can use the application’s stylesheet to override those styles or add
your own application-specific styles.

For example, we could override the palm-body-text style if we wanted to change the
text body style to enlarge text so that it’s easier to read. Add a rule to the News.css file,
and you will see a new version of the scene, as shown in Figure 2-5:

/* News CSS
App overrides of palm scene and widget styles.
*/

News | 39

.palm-body-text {
font-size: 16pt;
}

The style override is applied to the base style class palm-body-text, but this change will
affect every use of that style within your application. If you are just trying to change
this one instance of this style, you should add another class to the element you wish to
style and apply the rule to that class instead. Here we create a rule with a new class
name, news-large:

/* News CSS
App overrides of palm scene and widget styles.
*/

.news-large {
font-size: 16pt;
}

Then add this class name to the text element in view/storyView/storyView-
scene.html and you’ll again see the results shown in Figure 2-5:

<div class="palm-text-wrapper">
<div id="storyViewSummary" class="palm-body-text news-large">
</div>

</div>

With the base styles, it’s the class names that must be kept intact in order to retain the
base styling, but you can freely create custom styles to augment the base styles.

It may be necessary to override the base styles to get the right appearance
for your application, so don’t be afraid to dive into the CSS. Palm’s
* development tools help you see the styling rules applied to any given
* element to help you make the desired adjustments.

Base Styles

Applying styles is an important topic, so we’ll return to it again later. Chapter 7 is
devoted entirely to advanced styles, covering some general styling tips and techniques.
A lot of time can be spent getting the right pixels in the right places.

Mojo includes a sophisticated suite of base styles that are used heavily by the framework
and the core webOS applications. You should leverage them within your applications
where the base styles will make your application feel like a native webOS application,
and users will learn how to use your application more quickly, based on their experience
with other applications. That said, you have ultimate flexibility to change the appear-
ance of your application as needed, and you can override individual properties within
the styles to tailor them to your needs.

o atvloc and nravide came hacis
aSC SUyals and proviae sCIme 0asic

techniques that you can use. It’s beyond the scope of this book to describe the base

Thic cantinm wnill givrn o i Al A amorineer ~F ¢la L.NC L
11115 SCCGIH Wiu Zive a 0TIl OVETVIEW O1 tiil WEoU'S 0as

40 | Chapter2: Application Basics

A number of municdpalites
across the country are getting
creative and experimenting with
incremental, neighborhood- or
district-based lending pmgrams
that help homeowners pay the
up-front capital costs for
! effimency or renewable energy j 3
' ;pm}ects. e :

. .

Figure 2-5. Modified storyView scene

styles in detail. It’s a big topic and, given the central nature of the UI design to Palm
webQS, it’s also changing frequently. If you’re interested in an in-depth description of
webOS styling, you should check out the “Human Interface Guidelines,” and the
“Styles and CSS Reference” in the Palm SDK. In addition, Appendix C includes a ref-
erence to the base styles with more detail on the options for applying those styles.

Elements

Mojo defines base styling for key textual elements such as body, paragraph, input,
button, and others. If you want your application to have the look and feel of a webOS
application, you shouldn’t override these styles. These style definitions can be found
in the Mojo framework in stylesheets/global-base.css.

Scene styles

The most basic style elements are those used to present a scene template. These include
page headers, groups, labels, spacers, and dividers, along with background images.
Some of the styles that you will find are shown in Table 2-3; most of these styles are
found in the Mojo framework in stylesheets/global-lists.css and are described in more
detail in Appendix C.

News | 41

Table 2-3. Scene styles

pélm-page-he;der
palm-header
palm-header-spacer
palm-group
palm-group-title
palm-group unlabeled
palm-divider labeled

palm-divider collapsible

Scene style with header that adjusts to te

L
xt dimension; can be single line or multi-line
Scene style with pill at top; single line only

Keeps other scene elements from folding under the header

Container for lists, text fields, and/or widgets; internal to scene

Title for palm-group

Internal to scene; no title

Labeled divider

Collapsible divider

You can use each of these styles as-is or adjust the style properties in your CSS. These
are just a few of the scene styles available through the framework; the SDK includes a
much more extensive discussion of the styles available to you.

Widget styles

Each widget is designed with a base style. In the next three chapters, we’ll cover widgets
in detail, including the base styles and properties. Generally speaking, however, you
will be able to override the widget style in your application CSS, and you can refer to
the style definitions in the framework’s CSS files for guidance. Be careful though; the
widgets are tuned around the provided styles and you can easily break the widget’s
behavior by overriding the widget’s style. Table 2-4 cross-references the widget styles
with the framework’s CSS files.

Table 2-4. Widget style definitions and corresponding CSS files

Buttons

Dialogs
Drawers
Indicators
Lists

Menus
Notifications
TextFields
Pickers

global-buttons.css, global-buttons-dark.css
global.css, global-dark.css

global-lists.css, global-lists-dark.css
global.css, global-dark.css

global-lists.css, global-lists-dark.css
global-menus.css, global-menus-dark.css
global-notifications.css

global-textfields.css, global-textfields-dark.css
global-menus.css, global-menus-dark.css

42 | Chapter2: Application Basics

Application Launch Lifecycle

It’s helpful to understand what’s happening when an application is launched and the
first scene is pushed. When News is launched, the Mojo framework will first look for
an AppAssistant, an optional controller class. The AppAssistantis used to handle launch
arguments from the system and to set up stages if the application requires more than
the main Card view or has multiple stages, but it isn’t a required element. If the system
finds the AppAssistant, it will be called. Otherwise this step will be skipped.

In this minimal form, News doesn’t have an AppAssistant; many simple single stage
applications don’t. But as you’ll see in Chapter 10, the AppAssistant is important for
background applications and to applications with multiple stages.

W N

In Chapter 10 we’ll add the AppAssistant to News and explore its use
in detail.

The StageAssistant contains code that applies to all scenes in a stage and is used to push
the first scene onto the stage, which will create the initial view for the application. The
terms push and pop are used to refer to scenes being made visible in a window (push)
or removed from the window (pop), reinforcing the concept that scene navigation is
like managing a stack. The user opens new scenes with a tap and then uses the back
gesture to return to the previous scene (as if tracking along a stack of scenes).

The framework always creates a stage controller and if the application includes a de-
fined Stage Assistant, its constructor function is used to create a Stage Assistant and its
setup method is called.

If there isn’t a Stage Assistant, or if there is one but it doesn’t push an initial scene, the
framework will look for a scene named main to push as the first scene. If you provide
a Stage Assistant and push the first scene directly, you may call the scene whatever
you choose; otherwise, the first scene assistant must be named main, and
main-assistant.js must be included in your assistant’s directory.

Most of what happens within a webOS application occurs within a scene. Once the
initial scene is pushed, the framework will load the scene’s view file, then invoke first
the setup and then the activate methods of the Scene Assistant. The setup method sets
up widgets and event listeners, and performs other setup functions that persist across
the life of the scene. activate is always called before the scene is put into the view,
either because of a push or because a later scene was popped. setup is only called when
the scene is pushed.

When a scene is popped or covered up by the push of a new scene, the framework
invokes the deactivate method for the old scene before activating the new scene. The
naming conventions allow the framework to manage both the view and assistant meth-
ods of the scene without explicit configuration files. It may seem a little cumbersome

News | 43

at first, but it’s a simple and self-documenting technique. cleanup is called only when
the scene is popped.

All Palm applications will have at least one stage, with each stage supporting one or
more scenes. Applications can have multiple stages and the means to transition between
these stages. When creating applications that can support multiple activities, such as
an email application that supports both viewing a message list and composing multiple
email messages, you should structure the application stages around activities.

Adding a Second Scene

At this point, the application displays a single story within a single scene, which is very
limited. We can display more stories by adding some additional scenes, but first
we’ll create the core data model to store the newsfeeds and stories. Under News/app/
models, create feeds.js, an object that will include the global array of newsfeed objects,
each of which in turn includes an array of stories. Later we’ll add methods to the object
to perform common functions, such as updating and backing up the data. The following
code sample includes a breakdown of these data objects and expands the definition of
our sample newsfeed with four sample stories:

/* Feeds - the primary data model for the News app. Feeds includes the primary
data structure for the newsfeeds, which are structured as a list of lists:

Feeds.list entry is:

list[x].title String Title entered by user

list[x].url String Feed source URL in unescaped form
list[x].type String Feed type: either rdf, rss or atom
list[x].numUnRead Integer How many stories are still unread
list[x].newStoryCount Integer For each update, how many new stories
list[x].stories Array Each entry is a complete story

list.stories entry is:

stories[y].title String Story title or headline
stories[y].text String Story text
stories[y].summary String Story text, stripped of markup
stories[y].unreadStyle String Null when Read
stories(y].url String Story url

Methods:

initialize(test) - create default and test feed lists
getDefaultList() - returns the default feed list as an array
*/

var Feeds = Class.create ({
// Default Feeds.list
defaultList: [

title:"New York Times",
url:"http://www.nytimes.com/services/xml/rss/nyt/HomePage.xml",
Lype: "ss”,

numUnRead: 4,

44 | Chapter2: Application Basics

stories:[
{

title: "Obama Warns of Prospect for Trillion-Dollar Deficits”,

text: "Barack Obama delivered a stark assessment of the
economy, saying that his administration would be forced
to impose tighter discipline on government.",

unReadStyle: "unReadStyle",

url: "http://www.nytimes.com/2009/01/07/world/asia/
07india.html?_r=18partner=rss8emc=rss"

title: "Hundreds of Coal Ash Dumps Lack Regulation”,

text: "Most of the coal byproduct dumps across the United
States are unregulated, although they contain chemicals
considered as threats to human health.",

unReadStyle: "unReadStyle",

url: "http://www.nytimes.com/2009/01/06/world/asia/
06igbal.html?partner=rssdemc=rss"

title: "Gazprom Dispute Entangles Europe",

text: "Russia’s gas price dispute with Ukraine escalated,
disrupting deliveries to the European Union in the midst
of a bitter cold spell.”,

unReadStyle: "unReadStyle",

url: "http://www.nytimes.com/2009/01/07/world/europe/
o07gazprom.html?partner=rssdemc=rss"

title: "Green Inc.: Cities Target Lending to Speed Energy
Projects",

text: "A number of municipalities across the country are
getting creative and experimenting with incremental,
neighborhood- or district-based lending programs that help
homeowners pay the up-front capital costs for efficiency or
renewable energy projects.”,

unReadStyle: "unReadStyle",

url: "http://greeninc.blogs.nytimes.com/2009/01/06/cities-use-
creative-targeted-lending-to-speed-energy-projects/
?partner=rss&emc=rss"

]
s,

// initialize - Assign default data to the feedlist
initialize: function() {

this.list = this.getDefaultlList();
b

// getDefaultList - returns the default feed list as an array
getDefaultList: function() {
var returnList = [];
for (var i=0; i<this.defaultList.length; i++) {
returntist[i] = this.defaultlList[i];
}

News | 45

return returnList;

}
1);

The Feeds object is defined using Prototype’s Class.create() function, a convenient
way to build an object with class-like behavior. If you’re not familiar with this notation,
refer to http://www.prototypejs.org/api for more information about Prototype functions.

Feeds includes a single feed entry for the New York Times RSS feed and four stories.
Each feed entry includes a title, a URL, the feed type, and some other properties that
we’ll be using in the upcoming chapters. The stories array contains the individual sto-
ries, each of which has a title, the text body, a read/unread flag, and a stripped version
of the text.

The stage assistant is modified to create an instance of the Feeds object and then push
the storyView scene as before, but this time with some arguments identifying the source
feed (this.feeds.list[0]) and the index of the first story:

/* StageAssistant - NEWS
Responsible for app startup.
Major components:
- setup; app startup and initial load of feed data
from the Depot and setting alarms for periodic feed updates

Data structures:
- feeds; feed object used for main feedlist in feedList-assistant
- globals; set of persistant data used throughout app

// News namespace
News = {};

// Constants
News .unreadStory = "unReadStyle";

function StageAssistant () {
}

StageAssistant.prototype.setup = function() {
this.feeds = new Feeds(); // initialize the feeds model
// start with the first feed and the first story in the feed
this.controller.pushScene("storyView", this.feeds.list[0], 0);

};

In the StageAssistant setup method, arguments have been added to the pushScene
methaod call. Any number of arguments can be provided after the first required argu-
ment, which is the scene name.

46 | Chapter2: Application Basics

Globals

Global variables can be problematic when writing client-side JavaScript, and it’s gen-
erally a good idea to avoid them.

Each webQS application is its own document, so no application globals are visible to
any other application. Mojo uses only three globals itself, the Mojo prefix, $L, and
$LL, which are used for localization encapsulation.

You can use global variables more freely in webOS, though you may still want to avoid
them for other reasons (such as code portability and maintenance). If you do use them,
creating a global namespace for your application is a good practice.

The StoryViewAssistant is updated to handle the input arguments and the new data
structures. In the function invocation, the arguments are assigned to properties of the
scene assistant, making them available to each scene method. This is a common tech-
nique when handling input arguments to a scene so that the arguments can be used
throughout the scene assistant’s scope:

/* StoryViewAssistant - NEWS

Passed a story element, displays that element in a full scene view and
offers options for next story (right command menu button) and previous
story (left command menu button) Major components:

- StoryView; display story in main scene

- Next/Previous; command menu options to go to next or previous story

Arguments:
- storyFeed; Selected feed from which the stories are being viewed
- storyIndex; Index of selected story to be put into the view

*/

function StoryViewAssistant(storyFeed, storyIndex) {
// Save the passed arguments for use in the scene.
this.storyFeed = storyFeed;
this.storyIndex = storyIndex;

}

StoryViewAssistant.prototype.setup = function() {

if (this.storyIndex === 0) {
this.controller.get("previousStory").hide();
}

if (this.storyIndex == this.storyFeed.stories.length-1) {
this.controller.get("nextStory").hide();
}

this.nextStoryHandler = this.nextStory.bindAsEventListener(this);
this.previousStoryHandler = this.previousStory.bindAsEventlistener(this);
this.controller.listen("nextStory", Mojo.Event.tap, this.nextStoryHandler);
this.controller.listen("previousStory", Mojo.Event.tap,

News | 47

this.previousStoryHandler);

var storyViewTitleElement = this.controller.get("storyViewTitle");

var storyViewSummaryElement = this.controller.get("storyViewSummary");
storyViewTitleElement.innerHTML = this.storyFeed.stories[this.storyIndex].title;
storyViewSummaryElement.innerHTML = this.storyFeed.stories[this.storyIndex].text;

15

// activate - display selected story
StoryViewAssistant.prototype.activate = function(event) {

if (this.storyFeed.stories[this.storyIndex].unreadStyle == News.unreadStory) {
this.storyFeed.numUnRead--;

this.storyFeed.stories[this.storyIndex].unreadStyle = "";
}
b
StoryViewAssistant.prototype.deactivate = function(event) {
b

StoryViewAssistant.prototype.cleanup = function(event) {
this.controller.stopListening("nextStory", Mojo.Event.tap,
this.nextStoryHandler);
this.controller.stopListening("previousStory", Mojo.Event.tap,
this.previousStoryHandler);

15

StoryViewAssistant.prototype.previousStory = function(event) {
this.controller.stageController.pushScene("storyView", this.storyFeed,
this.storyIndex-1);

};

StoryViewAssistant.prototype.nextStory = function(event) {
this.controller.stageController.pushScene("storyView", this.storyFeed,
this.storyIndex+1);
b
In the setup method, listeners are set up for previousStory and nextStory. These are
button elements that, when tapped, will cause a new scene to be pushed with the ap-
propriate story. Notice that the listeners are removed in the cleanup method.

Remove all event listeners in the scene’s cleanup method. Failing to do
so is a common cause of memory leaks in webOS applications.

The nextStory and previousStory methods push a new scene with the new story. The
scene that is pushed is this same storyView scene, showing some of the flexibility of the
scene model.

48 | Chapter2: Application Basics

You may have noticed that we created properties of the scene assistant
for data used within the assistant scope. It’s a useful way to manage data
" a‘ that is limited to a particular instance of the assistant. To access the
assistant object and its properties in your event listeners, you need to
bind the assistant’s controller instance to the event listeners. The code
examples throughout the book use Prototype’s bindAsEventListener,
but you aren’t required to use that method.

The button elements are added to the end of storyView-scene.html:
<div id="previousStory" class="palm-button">Previous</div>
<div id="nextStory" class="palm-button">Next</div>
Although Mojo has button widgets, the framework does support all standard HTML

elements and has included a palm-button class for the button element that provides a
style for HTML buttons that is consistent with the widget styles.

Run this version of the application and push the buttons to go from one story to the
next and back again. You should see views similar to those shown in Figure 2-6.

Russia’s gas prfce dispuig with Ukrain
escalated, disrupting deliveries to the
Eumpean i)ﬂm in the m&smf

pffjmm {‘api;taf costs for fz{ﬁc;em:y or

renewsable energy projects. Previous

Previous

Figure 2-6. Additional scenes

News | 49

But there’s a problem with this solution. Since scenes are stacked when pushed, each
button press (whether next or previous) adds another scene to the stack—to no real
advantage. Try tapping next and previous a few times, then start using the back gesture.
You just unwind all the stories that you pushed on the stack.

pushScene is just is one of the StageController methods provided to help you manage
the scene stack efficiently. In our example, it would be better to use the swapScene
method. As its name implies, swapScene swaps the new scene for the old and doesn’t
increase the stack depth. It’s an easy change because swapScene uses the same syntax
as pushScene:

StoryViewAssistant.prototype.previousStory = function(event) {

this.controller.stageController.swapScene("storyView", this.storyFeed,
this.storyIndex-1);

|5

StoryViewAssistant.prototype.nextStory = function(event) {
this.controller.stageController.swapScene("storyView", this.storyFeed,
this.storyIndex+1);
b

Now when you tap through the stories, you are just swapping one story for another on
the stack. So when you swipe back you’ll find that you are already at the top of the
stack. It’s hard to see how important this is given that this is currently such a simple
application, but it will become more obvious as we go forward.

Both examples using pushScene() and swapScene() use the default transition animation
when changing scenes, which is zooming style. This is the recommended style for
moving up or down the scene stack, but not for a lateral transition. You can override
the default animations and in this case, we specify a cross-fade transition. The
swapScene() method calls below use a sceneArguments object, with name and
transition properties; you’ll use the sceneArguments object anytime you need to over-
ride the default arguments of a scene method:
StoryViewAssistant.prototype.previousStory = function(event) {
this.controller.stageController.swapScene(

{

transition: Mojo.Transition.crossFade,
name: "storyView"

1
this.storyFeed, this.storyIndex-1);

|5

StoryViewAssistant.prototype.nextStory = function(event) {
this.controller.stageController.swapScene(

transition: Mojo.Transition.crossFade,
name: "storyView"
}s
this storyFeed, this storyIndex+1);
7 z 7J s

};

50 | Chapter2: Application Basics

This is as much as we’re going to do with News in this chapter, so if you’re eager for
more hands-on information, you can skip to the next chapter at this point. The
remaining section of this chapter covers more advanced topics that will help you un-
derstand the underlying framework design, but they aren’t strictly needed to write
webOS applications. You can always come back to this topic later if you are interested
in learning more about it.

Controllers

So far we’ve used two controller classes (StageController and SceneController) and
referred to a third (AppController). All three classes are part of Mojo.Controller name-
space. The assistants that we’ve created are associated with their respective controller
classes and rely heavily on the methods in those classes.

AppController and the use of stages within an application will be covered in depth in
Chapter 10, when we cover notifications and background applications.

It is worth noting that an application has just one application controller
object and may optionally have a single application assistant to create
4» and manage stages.

Controllers and Assistants

An application can have multiple stage controller objects, and each stage controller can
have a stage assistant. A stage assistant is not an instance of StageController, but is
actually a delegate of the controller. The assistant has a controller property set to a
reference to the associated controller, which is used to directly call the controller’s
methods. The assistant defines its own methods as well.

Each stage controller has a stack of scene controllers. When a scene is pushed, a new
scene controller is created and pushed onto the stack. As with the stage, each scene
controller has a scene assistant delegate that, after initialization, will have its controller
property set to a reference of the scene controller it belongs to.

To illustrate this, let’s go back to our News application. Although it’s quite simple now
with only one stage and two scenes, it will, over time, grow to having multiple stages
to handle the dashboard along with the card stage that we are currently working in,
and there will be at least five scenes. The controller/assistant hierarchy is shown in
Figure 2-7.

Controllers | 51

StageController

6 e
ssista

o storyView
- Assistant -

~ webView | webliew
Controller | ~Assistant

- Controller

Figure 2-7. The News application controller/assistant hierarchy

Scene Stack

We’ve already looked at pushScene and popScene, but there are other methods that you
will use to manage the scene stack. Refer to the SDK documentation for a complete
and up-to-date list of available methods. Some of the more commonly used methods
include:

pushScene (sceneArguments)
Pushes a new scene, passing in the optional sceneArguments.

popScene(returnValue)
Removes a scene from the scene stack, passing the returnValue to the newly re-
vealed scene’s activate method.

popScenesTo (targetScene, returnvalue)
Removes scenes from the scene stack until the targetScene is reached or there are
no scenes remaining on the stack, passing the returnValue to the new scene’s
activate method.

swapScene (sceneArguments)
Pops the current scene and simultaneously pushes a new scene without activating
or deactivating any underlying scenes, passing in the optional sceneArguments.

52 | Chapter2: Application Basics

topScene()
Returns the topmost scene from this stage.

getScenes()
Returns an array of scene controllers currently on the stack.

activeScene()
Returns the currently active scene from this stage, if any.

sceneArguments and returnValue can be any number of arguments of any type. They
are simply passed through to the target scene.

Summary

We built the first version of News, the sample application we’ll be building throughout
the book. So far, News can display multiple stories from a hardcoded test feed, using
one scene recursively. We started with SDK installation and used the webOS toolset to
create a new project, and stepped through all the application basics to build the News
card and a couple of scenes. From these basics you should be able to build simple web
applications and style them.

With the webOS SDK and a handful of Mojo APIs, you can build a conventional web
application that can be downloaded, installed, and run on any webOS device. In the
next chapter, you’ll learn how to add widgets to your application and leverage the rich
Ul built into Palm webOS.

Summary | 53

CHAPTER 3
Widgets

The heart of the Mojo framework is the UI feature set, delivered in a collection of
dynamic widgets. Mojo widgets are configured with scene controller methods and cus-
tom CSS styles, and are managed through Mojo events, briefly introduced to you in
Chapter 1.

Widgets let you build static and dynamic lists or employ various button controls, se-
lectors, and text fields. You can choose from several kinds of menus and dialog boxes,
and employ sophisticated pickers and viewers, each of which specialize in handling
different types of data. There’s a common model for declaring, instantiating, and man-
aging your widgets, which makes it easy to learn and simple to code for your
applications.

A widget is declared within your HTML as an empty div with an x-mojo-element at-
tribute declaring the type of widget to display. Typically, you declare the widget within
a scene’s view file, then configure and set up the widget in the corresponding scene
assistant’s setup method. You listen for events associated with the widget to take ac-
tions dictated by the user through the widget or to update data associated with the
widget. The framework applies default styles to the widget; you can override those
styles in your CSS, but in many cases the default styles will work perfectly.

In this chapter, we will start with a design overview of Mojo widgets, then walk through
some basic widgets: buttons and selectors, lists, and text fields. We’ll use a number of
these widgets in the News application; at least one from each category to show you
how to apply them in your applications.

All About Widgets

Widgets are dynamic Ul controls that can be integrated within any application. They
can be tailored to the application, yet provide reusable, stylistically consistent UI func-
tions. The term “widgets” is widely used within web development, but Mojo widgets
are different than other widgets. Mojo widgets have a defined behavior and have many
options; they generate complex HTML and are easily styled with CSS.

55

It helps to understand the HTML that the widget generates. This is especially true for
widgets like List and Dialog, for which the application specifies HTML templates that
largely define the widget’s appearance.

Declaring Widgets
Widgets are declared in HTML as empty div tags:

<div id="my-toggle" x-mojo-element="ToggleButton"></div>
The x-mojo-element attribute specifies the widget type used to fill out the div when the
HTML is added to the page. This can happen in either of the following circumstances:
* When a scene is pushed and the scene’s view HTML includes widgets.
* When a widget is specified in an HTML template used by another widget.
* When the application inserts HTML which includes widgets, and makes a call to
explicitly instantiate them.

In the second case, for example, if your scene includes a List widget whose list items
include other widgets, a new set of the list item’s widgets are instantiated each time a
new item is added to the list.

Setting Up a Widget

Before a widget is inserted into the scene, it must be set up. You should do this
in the scene assistant’s setup method by calling the scene controller method,
setupWidget().You need to provide three arguments to this call (shown in Table 3-1).

Table 3-1. setupWidget arguments

WidgetID TheID or name of the div element in which the widget was declared

Attributes Object containing the widget's static properties, normally options or attributes of the widget

Model Object containing the widget's dynamic properties, usually data associated with the widget, but occasionally
including dynamic attributes

For example, a Toggle Button would be set up this way:

var toggleAttr = {trueValue: "on", trueLabel: "On",

falseValue: "off", falselLabel: "0ff"};
this.toggleModel = { value: "on", disabled: false };
this.controller.setupWidget("my-toggle", toggleAttr, this.toggleModel);

The my-toggle argument specifies the widget being set up. The argument can be either
the id or name of the widget’s div element. It’s usually fine to use id, but it won’t be
unique if your widget is instantiated more than once. This can happen if the widget is
declared in a template for a list item, or if your scene might be pushed multiple times
(without being popped). In these cases, use the name attribute instead.

56 | Chapter3: Widgets

The second argument specifies the attributes for the widget. These are properties that
affect the behavior and display of the widget, but are not tied to the actual data being
displayed or edited. Widget attributes cannot be changed after the widget is instanti-
ated. A toggle button is a simple binary selector; its attributes include truevalue, true
Label, falseValue, and falselabel, among others. The values allow you to toggle be-
tween on/off, left/right, up/down, in/out, and so on, while the labels can either track
those values or offer different terms for the user.

The last argument specifies the widget’s data model object. This is the actual user data
displayed by the widget. The contents of the model object will often change, each time
requiring the widget to be updated. In our example, the model includes the toggle’s
value and a disabled property, set to false.

The split between attributes and model objects was designed to allow you to use widgets
within list entries. The attributes represent the setup shared between list items, and the
model provides the per-item data. This will make more sense when you get to the
section “Lists” on page 64.

Updating a Widget's Data Model

When a widget model is changed outside of the widget, the widget will not automati-
cally update and reflect those changes. The application (usually the scene assistant) is
required to call the modelChanged() method on the widget’s scene controller, passing
the model object that changed. The scene controller will then notify all widgets using
that model, so they can properly display the current model data. For example, suppose
you disabled the toggle button in our example:

this.toggleModel.disabled = true;
this.controller.modelChanged(this.toggleModel, this);

The first argument to the modelChanged() method is the model object that has changed.
Model change notification uses the identity of the model object to determine which
widgets are using that model object and then notify them to update.

The second argument identifies which object has changed the model. This ensures that
objects are not notified of their own changes to the model.

Scene assistants (and widget assistants, where applicable) will usually simply pass the
keyword this. The argument is optional if called from something other than a widget
controller.

The modelChanged() method notifies widgets of changes to a model object; if you
need to directly change the model, you should use setWidgetModel() instead. While
setupWidget() applies to all widgets with the given HTML name attribute,
setiWidgetModel() only ever applies to a single widget instance. So you must pass the
widget’s ID or the actual widget DOM element.

All About Widgets | 57

Calling modelChanged() with an entirely new model object will not up-
@ date the model. Instead, there will be no change, since the specified
model will not be used by any existing widget; no notifications will be
generated or received. A common bug occurs when assigning a model
to another object then calling modelChanged() using that new object.

This will not work; you need to use the original model object for model
Changed() or use setWidgetModel() with the new object.

The following will change the model in our toggle button example:

// Use a new model object in place of the old one:
this.newToggleModel = {value: "off"};

// Set the widget to use the new model:
this.controller.setWidgetModel("my-toggle", this.newToggleModel);

Widget Event Handling

Each widget is supported by events. Where possible, the widget will use common
events, such as Mojo.Event.tap or Mojo.Event.propertyChange. Where that’s not
possible, widget-specific events are defined, such as Mojo.Event.listDelete or
Mojo.Event.listReorder for List widgets, or Mojo.Event.scrollStarting for the Scroller
widget.

You should set up event listeners in the scene assistant’s setup method when you set
up the widget, by adding the listeners to the div element that declares the widget. For
example, the toggle button sends a Mojo.Event.propertyChange when the widget is tog-
gled, meaning that the toggle button’s model changes value.

Using the example toggle button that we’ve been building on, you would set up a
listener with code like this:

This.controller.listen("my-toggle", Mojo.Event.propertyChange
this.handleSelectorChange.bindAsEventListener(this));

For more details on this, look at the section “Events” on page 15, which covers the
entire event model for more information, or consult the Mojo.Event API reference in
the Palm SDK.

Using Widgets

Now we’re going to start using and discussing the individual widgets in depth. Ta-
ble 3-2 summarizes the widgets included in Mojo version 1, though keep in mind that
new widgets will be added to the platform periodically. You should check the Palm
Developer site for the latest information.

58 | Chapter3: Widgets

Table 3-2. Mojo widgets
Collection =~ Widgets
Buttons & Selectors Button, Check Box, Radio Button, Toggle Button, List Selector, Slider
Lists List, Filter List
Dialogs & Containers Custom Dialog, Alert Dialog, Error Dialog, Drawer, Scroller

Text Fields Text Field, Filter Field, Password Field, Rich Text Edit
Menus App Menu, Command Menu, View Menu, SubMenu
Pickers Date Picker, File Picker, Integer Picker, Time Picker
Viewers Image View, Web View, Audio & Video Objects
Indicators Progress Bar, Progress Pill, Progress Slider, Spinner

We’ll add various widgets to the News application, and through those examples you’ll
learn how to use the Mojo widgets in your application.

Widgets are declared in the HTML scene. You set them up and instantiate them from
within the JavaScript assistant, and you can style them through CSS. You’ve seen that
all widgets have an attribute object that contains static properties applied at the time
the widget is instantiated, and a model object, which holds the dynamic values asso-
ciated with the widget.

In the remainder of this chapter and the two that follow, you’ll see how to use each of
the widgets in concrete examples. They each have their own unique capabilities and
there are some tips for using them that you might find helpful.

Buttons and Selectors

Buttons and selectors are the simplest Mojo widgets. Earlier in the chapter, you saw
how to use a toggle button; all the other buttons and selectors work in a very similar
way. In this section, we’ll work directly with the Button widget, adding one to the News
application, and we’ll touch on the other widgets in this group: Toggle Button, Check
Box, Radio Button, List Selector, and Slider.

Buttons

You can use simple HTML divs styled as button widgets; these will work quite well in
many cases. Button widgets, can behave dynamically, for example, displaying a spinner
to show activity. Figure 3-1 shows an example of the Button widget.

Buttons are the most basic Ul element, bounding an action to a region. When a user
pushes a button, the button can change state and then gracefully return to the previous
state, much like a doorbell. You can create unstyled buttons, or you can style them as
objects, and you can label them in some way with text or images. You can disable Mojo
buttons, and you can configure them to show activity indicators.

Buttons and Selectors | 59

Figure 3-1. A Button widget example

Use an HTML button for initiating actions, but use a Button widget when you are
combining an action initiation with an indicator, or for any asynchronous actions. As
we did in Chapter 2 for switching scenes, declare HTML buttons in your view file using
conventional HTML notation.

Assigning the button div’s class to palm-button means the button will display like a
Mojo Button widget. The framework applies the same style to HTML buttons of class
palm-button as it does to Mojo Button widgets.

If desired, you can override the style for either type of button in your CSS. The most
typical style modification is to adjust the button width, which, by default, is centered
across the width of the card’s window. There are additional styles when a button is
used as the primary or secondary choice, or to indicate dismissal, affirmative, or neg-
ative actions. Include any of these styles in your declaration, and the framework will
apply default styling.

Adding a button to News

Atthe end of Chapter 2, we added a scene to the News application using HTML buttons
and the back gesture. While it’s not really visible in the UI, we’re going to replace the
HTML buttons with Button widgets so you can see how to add a simple widget. If you
think you are already clear on how this works, you can skip ahead to the section on Lists.

The first change is simple: replace the button tags in storyView-scene.html with widget
declarations:

<div id="storyViewScene">
<div class="palm-page-header multi-line">
<div class="palm-page-header-wrapper">
<div id="storyViewTitle" class="title left">
</div>
</div>
</div>
<div class="palm-text-wrapper">
<div id="storyViewSummary" class="palm-body-text">
</div>
</div>

<div x-mojo-element="Button" id="previousStory"></div>
<div x-mojo-element="Button" id="nextStory"></div>

</div>

60 | Chapter3: Widgets

The next change is to the storyView-assistant.js; add the widget setup in front of the
listeners for the button taps. We’re not changing the button id in either case, so we
don’t have to change the listener setup functions at all:

StoryViewAssistant.prototype.setup = function() {

|5

this.nextModel = {disabled: false};
this.previousModel = {disabled: false};

if (this.storyIndex === 0) {
this.previousModel.disabled = true;
}

if (this.storyIndex == this.storyFeed.stories.length-1) {
this.nextModel.disabled = true;
}

this.controller.setupWidget("previousStory", {label: "Previous"},
this.previousModel);
this.controller.setupWidget("nextStory", {label: "Next"}, this.nextModel);

this.nextStoryHandler = this.nextStory.bindAsEventListener(this);

this.previousStoryHandler = this.previousStory.bindAsEventListener(this);

this.controller.listen("nextStory", Mojo.Event.tap,
this.nextStoryHandler);

this.controller.listen("previousStory", Mojo.Event.tap,
this.previousStoryHandler);

// Update story title in header and summary

var storyViewTitleElement = this.controller.get("storyviewTitle");

var storyViewSummaryElement = this.controller.get("storyViewSummary");
storyViewTitleElement.innerHTML = this.storyFeed.stories[this.storyIndex].title;
storyViewSummaryElement.innerHTML = this.storyFeed.stories[this.storyIndex].text;

The rest of the code stays the same. When you run this version of the application, it
behaves the same as the previous version even though it uses Button widgets instead
of the HTML button.

Selectors

The simple selectors will be used in other parts of the News application, shown in later
examples. For now, let’s look briefly at each of the selectors and how you can use them
in your application.

Check Box

A Check Box widget (Figure 3-2) controls and indicates a binary state value in one
element.

Buttons and Selectors | 61

Figure 3-2. A Check Box widget example

Tapping a check box on the screen will toggle its state, presenting or removing a check-
mark, depending on the previous state. The framework handles the display changes
and will manage the widget’s data model for you, toggling between two states that you
defined at setup time.

Toggle Button

The Toggle Button is another widget for displaying and controlling a binary state value.
As with a check box, a toggle button (Figure 3-3) will switch between two states each
time it is tapped.

Figure 3-3. A Toggle Button widget example

Radio Button

If you need a single widget to select from among multiple choices while also showing
selection status, then a Radio Button (Figure 3-4) is a good choice. Mojo provides a
classic radio button, which presents each button as a labeled selection option in a
horizontal array, where only one option can be selected at a time.

The number of options is variable, constrained only by the width of the display and the
minimum button size that can be pleasingly presented or selected. You can expect to
handle between two and five states, given the typical screen size for a webOS device,
but the framework won’t limit you.

Figure 3-4. A Radio Button widget example

62 | Chapter3: Widgets

List Selector

Even though you might expect to find the List Selector as one of the List widgets, it
behaves and is managed as a selector. It enables the selection of one of many options,
presented in a pop-up list in which there is no practical limit to the number of options
presented. It is similar to the Submenu widget’s behavior. Figure 3-5 shows an example
of the List Selector widget.

Figure 3-5. A List Selector widget example

The selection options are defined in a required choices array, which defines each se-
lection’s displayed label and a corresponding value. If the choices are static, meaning
they never change over the life of the scene, you define the array as a property in the
widget’s attributes. If the choices are subject to change, attach them as a model property
instead.

List Selectors in Forms

To group List Selectors as you might do in a form, use a div with the paln-group
unlabeled class followed by a div with the palm-1ist class, then individual selector divs
containing List Selector widgets with using the various palm-row classes. For example:

<div class="palm-group unlabeled">
<div class="palm-list">
<div class="palm-row first">
<div id="trainSelector" x-mojo-element="ListSelector"></div>
</div>
<div class="palm-row">
<div id="departureSelector" x-mojo-element="ListSelector"></div>
</div>
<div class="palm-row">
<div id="destinationSelector" x-mojo-element="ListSelector"></div>
</div>
<div class="palm-row last">
<div id="timeSelector" x-mojo-element="ListSelector"></div>
</div>
</div>
</div>

Buttons and Selectors | 63

A related tip with forms: you can combine the various models into single object, with
different properties for each widget, by specifying the modelProperty to a property name
in a shared object. Having one object simplifies the processing of the forms.

The List Selector is like the List widget in its styling. To have the webOS look and feel,
you’ll need to wrap your widget declaration with styling divs like those used with the
List widget, and you may need to style those List classes with your own CSS. See the
below section “Lists” for more information.

Slider

The last widget in this group of selectors is the Slider, which presents a range of selection
options in the form of a horizontal slider with a control knob that users can drag to the
desired location. You must specify minimum (leftmost) and maximum (rightmost)
values for the slider. Figure 3-6 shows an example of the Slider widget.

Figure 3-6. A Slider widget example

Lists

The design for Mojo began with the List. To validate the webOS architecture and the
concept of Mojo, the principle webOS architects were challenged to design a list widget
that would pull dynamic data from the Contacts database as the user flicked through
the list, without any perceptible delay or loss of data (on a low-end CPU, no less).
Needless to say, this was not a trivial challenge. However, the challenge was met and
the rest of the framework took shape around the resulting design.

The webOS user experience makes extensive use of lists in many applications. Given
the form factor and the navigation model, most applications will incorporate a List
widget in one way or another. To get the most out of Mojo you need to fully understand
the List widget.

Tha ~thar Lor vnides tho Biltor Ticr 3o dormivad fram the Tict wridoer T
1 08 CUiGlr 15T Wi 6"‘"’ e rLter LiSst, 15 QErived irom tn€ List Wid .1

same features as the List widget, but is designed around a more specialized use case.
Our sample application will make use of Filter List in Chapter 5.

64 | Chapter3: Widgets

List Widgets

Lists are rendered by inserting objects into the DOM using provided HTML templates
for both the list container and the individual list rows. Lists can be variable height and
include single and multi-line text, images, or other widgets. Some Lists are static,
meaning the list items are provided to the widget directly as an array. Other Lists are
dynamic, meaning the application provides items as needed for display. Lists can be
manipulated in place, with the framework handling deletion, reordering, and add item
functions for the application.

There are examples of the list in the core applications, including the Email inbox, the
Message chat view, the Contacts list, the Music library, and more. You can see that lists
are flexible, yet fast and very efficient.

Back to the News: Adding a Story List

We’re going to use a List widget in a few places in News. First, we’re going to convert
the sample newsfeed to a list, then hook it up to an Ajax call to get the live newsfeed
into the application. That should give us a basic news reader for one feed, but to handle
multiple feeds we’ll add another List widget as a list of feeds. The application will start
to take its basic shape in this section.

We'll create a list to hold the sample list that we’ve been working with. Using the
palm-generate tool, create a new scene for a list view, called storyList:

$ palm-generate -t new_scene -p "name=storyList”

In the view file, views/storyList/storyList-scene.html, declares a List widget under a
palm-header that includes some text to which we’ll later assign the list’s title. The
storylListWgt div is the List widget declaration:
<div id="feedTitle" class="palm-header center">
Feed Title
</div>
<div class="palm-header-spacer"></div>
<div id="storylistScene" class="storylListScene">
<div x-mojo-element="List" id="storylListWgt" ></div>
</div>

Next, create the list templates. These are two HTML files that you put into the views/

storyList directory; the container template storyList Template. html and the row template
storyRowTemplate.html.

All List widgets are all built using HTML templates to lay out and format the list con-
tainer and the individual rows. You normally include these templates as separate HTML
files in your scene’s view folder (where your scene view file is located), but you can also
specify each template’s pathname, which allows you to share templates between scenes
or organize them in other ways. Pathnames are specified with relative notation
scene-dir/template-file, where scene-dir is the directory for the current scene’s view
file. Within the template, you will reference properties from the list.

Lists | 65

In Mojo, pathnames are relative to the 'app' directory, not the location
of index.html.

The listTemplate is optional; it defines the path to an HTML template for the list’s
container, which, if missing, will simply put the list items into the scene enclosed in
div with the palm-1ist classname. If present, the listTemplate can have only one top
level element.

The itemTemplate is required; it is set to the path of an HTML template for the list
items. Use the notation #{property} to identify specific items properties for insertion
into the template.

The storyListTemplate includes a single line using the palm-1ist class to format the list
and a template entry for #{-1istElements}:

<div class="palm-list">#{-listElements}</div>

By default, Mojo will escape any HTML that is inserted into a template
to limit the risk of JavaScript insertion into views. You can add a leading
%k hyphen to any property reference to prevent HTML from being escaped
* on that property. This is required in list container templates for the list
widget to render properly.

The storyRowTemplate is a little more involved, using an outer div with the class
palm-row to format the row, then each list row has both a title entry and a text entry:
<div class="palm-row" x-mojo-touch-feedback="delayed">
<div class="palm-row-wrapper">
<div id="storyTitle" class="title truncating-text #{unreadStyle}">
#{title}
</div>
<div id="storySummary" class="news-subtitle truncating-text">
#{text}
</div>
</div>
</div>

Each entry uses the truncating-text class, which will cause the entry to be automati-
cally truncated at the list boundaries with ellipsis to indicate truncation. The templates
#{title} and #{text} refer to the list items properties of those names that are substi-
tuted into the template.

The #{unreadStyle} template references another list items property that indirectly
forces some styling specifically for the story titles that are not read. This demonstrates
that property substitution can be used with any HTML content. Further on, we will
apply some CSS styling to the classname used in the unreadStyle property.

66 | Chapter3: Widgets

Taken together, the scene’s view or HTML files wrap the List widget with some specific
styles to get the visual appearance shown in Figure 3—6. You should review the SDK’s
“User Interface Guidelines” for a complete discussion of Mojo styling, but to summa-
rize briefly, there are three levels of styles at work in the storyList scene:

palm-list
Isused in the listTemplate to drive spacing and the light separator rule that divides
the list entries.

palm-row
Wraps the div tag containing the list entry template to handle background styles
and styling for highlight, selection, swipes, and other dynamic behavior. It can be
modified with additional styles for first, last, single, and others (a complete list
is provided in Appendix C).

palm-row-wrapper
Also wraps the div tag containing the list entry template and adjusts spacing within
palm-row.

Back to the example, to implement the feed list handling, add the storyList-assistant.js:
/* StorylListAssistant - NEWS

Copyright 2009 Palm, Inc. All rights reserved.

Displays the feed's stories in a list, user taps display the
selected story in the storyView scene. Major components:
- Story View; push story scene when a story is tapped

Arguments:

- feedlist; Feeds.list array of all feeds

- selectedFeedIndex; Feed to be displayed
*/

function StorylListAssistant(feedlist, selectedFeedIndex) {
this.feedlist = feedlist;
this.feed = feedlist[selectedFeedIndex];
this.feedIndex = selectedFeedIndex;
Mojo.Log.info("StoryList entry = ", this.feedIndex);
Mojo.Log.info("StorylList feed = ", Object.toJSON(this.feed));

StorylListAssistant.prototype.setup = function() {

// Setup story list with standard news list templates.
this.controller.setupWidget("storyListhgt",

{
itemTemplate: "storyList/storyRowTemplate",
listTemplate: "storylList/storylListTemplate",
swipeToDelete: false,
renderLimit: 40,
reorderable: false

1

Lists | 67

this.storyModel = {
items: this.feed.stories
}

)s

this.readStoryHandler = this.readStory.bindAsEventListener(this);
this.controller.listen("storyListWgt", Mojo.Event.listTap,
this.readStoryHandler);

// Set title into header
$("feedTitle").innerHTML=this.feed.title;
IE

StoryListAssistant.prototype.activate = function() {
// Update list models
this.storyModel.items = this.feed.stories;
this.controller.modelChanged(this.storyModel);

b

StorylListAssistant.prototype.cleanup = function() {
// Remove event listeners
this.controller.stopListening("storyListWgt", Mojo.Event.listTap,
this.readStoryHandler);
};

// readStory - when user taps on displayed story, push storyView scene
StorylListAssistant.prototype.readStory = function(event) {
Mojo.Log.info("Display selected story = ", event.item.title,
"; Story index = ", event.index);
Mojo.Controller.stageController.pushScene("storyView", this.feed,
event.index);

|5

When the scene is instantiated with a call to the StorylListAssistant function, the
passed feed index assigns the selected feed to this.feed. The setup method is called
before the scene is pushed and sets up the List widget: the templates are assigned and
renderLimit is set to 40. You should use the default for your lists, but adjust it if nec-
essary after testing.

renderLimit

The number of list elements that the List widget will render into the DOM at any one
time is defined by renderLimit. You usually won’t need to specify this, but if your list
items are very short, the default of 20 might not be enough, as scrolling might overrun
the framework’s ability to fill the display list items.

For efficiency, the framework needs to limit the number of rendered list items to some-
thing reasonable. It can’t just render all items, or there will be an impact on both mem-
ory and system performance. On the other hand, there must be enough items rendered
to avoid having the list scroiling overrun the display iist.

68 | Chapter3: Widgets

The list’s model items are set to the input feed’s stories array for display in the list,
and setupWidget is called to instantiate the list. A listener is added for any taps on the
list, and the handler, readStory, will push the storyView scene with that selected story
entry.

In the setup() method, the list title is assigned to display in the header. You’ll notice
that we use the Prototype function $() to retrieve the header’s element ID. This is safe
to use in this context, but as you’ll see in Chapter 10, it’s not safe in multistage
applications.

In the activate() method, we provisionally update the list’s model in case reading the
selected story changed the story’s unreadStyle to read; we want to reflect changes in
status immediately.

Next we have to change the stage-assistant.js to push the storylList scene instead of the
storyView scene:
StageAssistant.prototype.setup = function() {

// initialize the feeds model and update the feeds
this.feeds = new Feeds();

// Push the first scene
this.controller.pushScene("storylist"”, this.feeds.list, 0);

b
For arguments, the storylList scene takes the feed list and an index value for the cur-
rently selected list. We’re still using a single default list for now, so the indexis set to 0.

Finally, add the new assistant to sources.json, then launch the application. The new
scene with all the stories from the sample feed is shown in Figure 3-7.

Back to the News: Ajax requests

Chapter 6 covers Ajax requests more completely, but we’ll look briefly at it here to
enable dynamic feed lists. Now that we have a list, we’re going to add the capability to
load the list and update it through Ajax requests to the feed source.

Ajax requests are a common way of referring to use of the XMLHttpRequest object to
make asynchronous HTTP transactions. The Prototype library builtinto Mojo provides
an Ajax.Request object, which simplifies the XMLHttpRequest handling for many
transactions.

These transactions provide a key part of building webOS applications by providing the
core data services needed to build connected applications. You don’t need to use the
Prototype Ajax functions if you’d prefer to use XMLHttpRequest directly.

Lists | 69

Figure 3-7. A storyList scene

Dynamic data is a very powerful and important capability that should be exploited by
most applications. With the capability to update your application’s data set, you are
enabling the user with the most current and accurate information. Without this, the
application loses value, as the degree of change is considerable over the course of hours,
or even minutes in some cases.

You can write your own Ajax interfaces, but one reason that webOS includes the Pro-
totype library is for its simple, powerful Ajax functions. We’ll add the Ajax request to
the feeds.js model, which will request feed data for our default New York Times feed.
While the Ajax request is fairly simple, we need to process the RSS and Atom data that
the application receives, and that’s a bit more complicated.

We just need to add a URL for the Ajax request and set up some callback functions.
See Chapter 6 for a full explanation of the arguments and properties used in
Ajax.Request. Add a new method to feeds.js:

// updateFeedRequest - function called to setup and make a feed request
updateFeedRequest: function(currentFeed) {

this.currentFeed = currentFeed;

Mojo.Log.info("URL Request: ", this.currentFeed.url);

var request = new Ajax.Request(currentFeed.url, {
method: "get",
eval]SON: "false",
onSuccess: this.updateFeedSuccess.bind(this),
onFailure: this.updateFeedFailure.bind(this)
b;
1

70 | Chapter3: Widgets

Ajax requests are asynchronous operations, with both success and error cases, and
you’ll need to create callback functions for each of these cases. The handler for the error
case simply logs the error. Ajax requests return an HT TP status message, which we will
convert to a readable format with Prototype’s Template function, and then log the
results:

// updateFeedFailure - Callback routine from a failed AJAX feed request;
/] post a simple failure error message with the http status code.
updateFeedFailure: function(transport) {
// Prototype template to generate a string from the return status.xs
var t = new Template("Status #{status} returned from newsfeed request.");
var m = t.evaluate(transport);

// Post error alert and log error
Mojo.Log.info("Invalid feed - http failure, check feed: ", m);
b

The handler for the successful case needs to process the feed before it can be used. In
this case, we confirm the successful load by logging the returned status message, again
using the Template function. Next, there’s some code to handle when the feed data is
returned as text-encoded XML; we can convert it to XML to enable processing.

The global function ProcessFeed is called to determine the feed format and extract the
components that we need for our feed list. We’ll cover this in a moment, but for now,
note that it is called and returns with an explicit error status that, if equal to error
None, means that the feed was processed successfully. We push the storylList scene
with the processed feed in that case:

// updateFeedSuccess - Successful AJAX feed request (feedRequest);
// uses this.feedIndex and this.list
updateFeedSuccess: function(transport) {

var t = new Template({key: "newsfeed.status",
value: "Status #{status} returned from newsfeed request."});
Mojo.Log.info("Feed Request Success: ", t.evaluate(transport));

// Work around due to occasional XML errors
if (transport.responseXML === null 8& transport.responseText !== null) {
Mojo.Log.info("Request not in XML format - manually converting");

// ** These next two lines are wrapped for book formatting only **
transport.responseXML = new DOMParser().
parseFromString(transport.responseText, "text/xml");

}

// Process the feed, passing in transport holding the updated feed data
var feedError = this.processFeed(transport, this.feedIndex);

/] If successful processFeed returns News.errorNone,

if (feedError !== News.errorNone) {
// There was a feed process error; unlikely, but could happen if the
// feed was changed by the feed service. Log the error.
if (feedError == News.invalidFeedError) {

Lists | 71

Mojo.Log.info("Feed ", this.nameModel.value,
" is not a supported feed type.");

}

News.feedListChanged = true;

// If NOT the last feed then update the feedsource and request next feed
this.feedIndex++;
if(this.feedIndex < this.list.length) {
this.currentFeed = this.list[this.feedIndex];
this.updateFeedRequest(this.currentFeed);
} else {
// Otherwise, this update is done. Reset index to 0 for next update
this.feedIndex = 0;
News.feedListUpdateInProgress = false;

}

this.processFeed() is included in Appendix D if you’re interested in how it works, but
it’s not shown here, since it doesn’t directly affect the Mojo functions being presented.
To summarize, this.processFeed() is passed an XML object and an index into the feed
list, where it will put the processed feed. If there’s no index argument, this.process
Feed() will add the new feed to the end of the list.

For each of the supported formats, the title, text, and URL are extracted for each of the
stories and the feed list is updated with the new feed data, the stories, and the unread
Count. If the feed isn’t a well-formed Atom, RSS 1 (RDF), or RSS 2 format, it will return
with an error, News.invalidFeedError.

We’ve added some logic to the end of updateFeedSuccess() to handle multiple feeds
and to flag that the feed list has been changed. We’ll come back to these in the next
section as we expand News to handle multiple feeds.

Initiate the update with a call from within the stage assistant’s setup method and add
the global definitions needed for feed updates:
et

// GLOBALS
Jl mmmmmm e e

// News namespace
News = {};

// Constants
News.unreadStory = "unReadStyle";
News.versionString = "1.0";

News.errorNone = "0"; // No error, success
News.invalidFeedError = "1"; // Not RSS2, RDF (RSS1), or ATOM
/1 Session Globals - not saved across app launches

News.feedListChanged = false; // Triggers update to db
News.feedListUpdateInProgress = false; // Feed update is in progress

72 | Chapter3: Widgets

StageAssistant.prototype.setup = function() {

// initialize the feeds model and update the feeds
this.feeds = new Feeds();

// Update the news feed list
this.feeds.updateFeedRequest(this.feeds.list[0]);

// Push the first scene
this.controller.pushScene("storyList", this.feeds.list, 0);

b

When the application is launched, it displays the default data in the top-level scene. If
you tap a story to go to the story view, you’ll see new stories, though. Popping the story
view with a back gesture restores the story list view, but now with the updated stories.
What’s happening here?

Since Ajax requests are asynchronous, the initial story list view is pushed before the
feed update is completed, but subsequent views are displayed after receiving the data.
The right way to fix this is to update the storylListWgt model after the feed update is
complete. You’ll learn one technique for that in the next section, and a better one in
Chapter 10, when we adapt the feed update process to a background application. The
new storyList scene, when updated with a longer list of stories, is shown in Figure 3-8.

Obama Offered Deal to Russia in Sec...
Moscow has mmw&mmmmwmhax e

U.S L&ely to Keep the Reins on Fann...
T?mpma&&yﬁnhnmgageghﬁsmzﬁmhi "

Gmss—Roals UpﬁsingAgamst mverD o

dsts, farners and fish

dea of Afghan Women’s Rights Start...
Afrer two years of abuse, Mmﬁedmdsmghha“

in Legal Memos, Clearer View of Po...
“The secretlegal opinions were ssued by Bush admini...

Reconciliation at the Citadel, Throug...
Pat Conroy, right, with his cousin Ed, coach of the Cita...

Ll‘_S—nL.-- Faatow Kool i fobinw "t ™y J

Figure 3-8. A storyList scene with updated stories

Lists | 73

Back to the News: Adding a feed list

A News reader that handles one newsfeed isn’t much use, so we’re going to expand
News to handle multiple feeds with another List widget. This one will present a list of
newsfeeds for the user to select from before pushing the storyList scene with the se-
lected list. We will also take advantage of the List widget’s capability to reorder and
delete list entries to enable some management of the newsfeeds.

We're still working from a default set of newsfeeds, but let’s expand our feeds model
by adding some popular news, sports, and technology feeds:

// Default Feeds.list
defaultlist: [

{
title:"Huffington Post",
url:"http://feeds.huffingtonpost.com/huffingtonpost/raw_feed",
type:"atom", numUnRead:0, newStoryCount:0, stories:[]

b
title:"Google",
url:"http://news.google.com/?output=atom",
type:"atom", numUnRead:0, newStoryCount:0, stories:[]

b
title:"New York Times",
url:"http://www.nytimes.com/services/xml/rss/nyt/HomePage.xml",
type:"rss", numUnRead:0, newStoryCount:0, stories:[]

b
title: "MSNBC",
url:"http://rss.msnbc.msn.com/id/3032091/device/rss/rss.xml",
type:"rss", numUnRead:0, newStoryCount:0, stories:[]

b
title:"National Public Radio",
url:"http://www.npr.org/rss/rss.php?id=1004",
type:"rss", numUnRead:0, newStoryCount:0, stories:[]

b
title:"Slashdot",
url:"http://rss.slashdot.org/Slashdot/slashdot”,
type:"rdf", numUnRead:0, newStoryCount:0, stories:[]

b
title:"Engadget”,
url:"http://www.engadget.com/rss.xml",
type:"rss", numUnRead:0, newStoryCount:0, stories:[]

b
title:"The Daily Dish",
url:"http://feeds.feedburner.com/andrewsullivan/rApM?format=xml",
type:"rss", numUnRead:0, newStoryCount:0, stories:[]

bi
title:"Guardian UK",
url:"http://feeds.guardian.co.uk/theguardian/rss",
type:"rss", numUnRead:0, newStoryCount:0, stories:[]

b
title:"Yahoo Sports”,
url:"http://sports.yahoo.com/top/rss.xml",
type:"rss", numunReaa:o, newStorylount:s, s

b
title:"ESPN",

74 | Chapter3: Widgets

url:"http://sports-ak.espn.go.com/espn/rss/news",
type:"rss", numUnRead:0, newStoryCount:0, stories:[]

b
title:"Ars Technica", .
url:"http://feeds.arstechnica.com/arstechnica/index?format=xml",
type:"rss", numUnRead:0, newStoryCount:0, stories:[]

1,

We have to adjust the Ajax requests to make requests serially for each feed. We’ll add
a new function, updateFeedList to the feeds model:

// updateFeedList(index) - called to cycle through feeds. This is called
// once per update cycle.
updateFeedList: function(index) {

Mojo.Log.info("Feed Update Start");

News.feedListUpdateInProgress = true;

// request fresh copies of all stories
this.currentFeed = this.list[this.feedIndex];
this.updateFeedRequest(this.currentFeed);

1

Next, we’ll create the feed list scene, which will display the list of feeds. Use
palm-generate to create the scene and in the feedList-scene.html file, add a header titled
‘Latest News’ and the List widget declaration for feedListWgt:

<div id="feedlListScene">
<div id="feedListMain">

<div id="feedlList_view_header" class="palm-header left">
Latest News

</div>

<div class="palm-header-spacer"></div>

<I-- Feed List -->
<div class="palm-list">

<div x-mojo-element="List" id="feedListWgt"></div>
</div>

</div>
</div>

To format the list, we need the list templates, which in this case are put into the views/
feedList directory. First the container template, feedListTemplate.htmi:

<div class="palm-list">#{-1listElements}</div>

and then feedRowTemplate.html to format the individual list entries:

<div class="palm-row" x-mojo-touch-feedback="delayed">
<div class="palm-row-wrapper textfield-group">
<div class="title">

<div class="palm-dashboard-icon-container feedlist-icon-container">
<div class="dashboard-newitem feedlist-newitem">
#{numUnRead}

Lists | 75

</div>
<div id="dashboard-icon" class="palm-dashboard-icon feedlist-icon">
</div>

</div>

<div class="feedlist-title truncating-text">#{title}</div>
<div class="feedlist-url truncating-text">#{-url}</div>

</div>
</div>
</div>

Create the feed list assistant (feedList-assistant.js), which primarily completes the
widget setup and adds event listeners in the file before calling the new updateFeed
List method. All this is done within the assistant’s setup method:

/* FeedListAssistant - NEWS
Copyright 2009 Palm, Inc. All rights reserved.

Main scene for News app. Includes AddDialog-assistant for handling
feed entry and then feedlist-assistant and supporting functions.

Major components:
- FeedlListAssistant; manages feedlists
- List Handlers - delete, reorder and add feeds

Arguments:
- feeds; Feeds object

// FeedListAssistant - main scene handler for news feedlists
/!
function FeedlListAssistant(feeds) {
this.feeds = feeds;
}

FeedListAssistant.prototype.setup = function() {

// Setup the feed list, but it's empty
this.controller.setupWidget("feedListigt",
{
itemTemplate:"feedList/feedRowTemplate",
listTemplate:"feedList/feedListTemplate",
swipeToDelete:true,
renderLimit: 40,
reorderable:true

b
this.feedWgtModel = {items: this.feeds.list});

// Setup event handlers: list selection, add, delete and reorder feed entry
this.showFeedHandler = this.showFeed.bindAsEventListener(this);

76 | Chapter3: Widgets

this.controller.listen("feedListWgt", Mojo.Event.listTap,
this.showFeedHandler);

this.listDeleteFeedHandler = this.listDeleteFeed.bindAsEventListener(this);

this.controller.listen("feedListWgt", Mojo.Event.listDelete,
this.listDeleteFeedHandler);

this.listReorderFeedHandler = this.listReorderFeed.bindAsEventListener(this);

this.controller.listen("feedListWgt", Mojo.Event.listReorder,
this.listReorderFeedHandler);

// Update the feed list
this.feeds.updateFeedList();
b

// cleanup - always remove event listeners
FeedListAssistant.prototype.cleanup = function() {
Mojo.Log.info("FeedList cleaning up");

// Remove event listeners
this.controller.stopListening("feedListWgt",
Mojo.Event.listTap, this.showFeedHandler);
this.controller.stopListening("feedListWgt",
Mojo.Event.listDelete, this.listDeleteFeedHandler);
this.controller.stopListening("feedListigt",
Mojo.Event.listReorder, this.listReorderFeedHandler);

};

You’ll see that we added both the reorderable and swipeToDelete properties to the
feedListWgt list widget. A tap-and-hold on a list item will allow the user to move it to
a new position in the list. A Mojo.Event.listReorder event is fired on the widget div,
which includes the item being moved, as well as the old and new indexes. The indexes
are passed as properties of the event object, event.toIndex and event.fromIndex.

Dragging items horizontally will invoke a special delete UL, allowing the user to confirm
or cancel the operation. If confirmed, a Mojo.Event.listDelete event is fired on the
widget div, which includes the item being removed, event.item, and its index,
event.index.

We added event listeners for the Mojo.Event.listDelete and Mojo.Event.listReorder,
and need to provide handlers for these events:

/] +

// List functions for Delete, Reorder and Add

//

// listDeleteFeed - triggered by deleting a feed from the list and updates

// the feedlist to reflect the deletion

//

FeedListAssistant.prototype.listDeleteFeed = function(event) {
Mojo.Log.info("News deleting ", event.item.title, ".");

var deleteIndex = this.feeds.list.indexOf(event.item);
this.feeds.list.splice(deleteIndex, 1);
News.feedListChanged = true;

15

Lists | 77

// listReorderfeed - triggered re-ordering feed list and updates the

// feedlist to reflect the changed order

FeedListAssistant.prototype.listReorderFeed = function(event) {
Mojo.Log.info("com.palm.app.news - News moving ", event.item.title, ".");

var fromIndex = this.feeds.list.indexOf(event.item);
var toIndex = event.toIndex;
this.feeds.list.splice(fromIndex, 1);
this.feeds.list.splice(toIndex, 0, event.item);
News.feedListChanged = true;

};

In both cases, the framework handles the on-screen changes, but you will need to reflect
those changes in the feed model itself. Add listeners to receive the delete and reorder
events, and you will receive the indexes for the changes through the event object. You
then use these indexes to make the corresponding changes in the feed model.

The lists we set up for News are not using them, but there are other list manipulation
options:

If the addItemLabel property is specified, an additional item is appended to the list.
Tapping it will cause a Mojo.Event.listAdd event to be fired on the widget div.

Deleted items that are unconfirmed have a deleted property set in the model. You
can specify the name of this property using the deletedProperty property, and
Mojo.Event.propertyChange events will be sent when it is updated. If unspecified,
the property deleted will be used. For dynamic lists, it is important for the appli-
cation implementation to persist this value in a database. Otherwise, swiped items
will be automatically undone when they are removed from the cache of loaded
items.

A better option than persisting the deleted property is using the
uniquenessProperty. This is the name of an item model property that can be used
to uniquely identify items. If specified, List will maintain a hash of swiped items
instead of setting a deleted property, preventing the app from having to persist the
deleted property.

If the dragDatatype property is specified, users will be able to drag items to other
lists with the same dragDatatype value. When this happens, the item’s old list
will receive a Mojo.Event.listDelete event, and the new list will get a
Mojo.Event.listAdd event. In this case, the Mojo.Event.listAdd event will have the
item and index properties specified, indicating that a specific item should be added
at a specific location.

The other event handler, showFeed(), pushes the storylist scene when a
Mojo.Event.listTap event is received, meaning that a feed has been tapped:

// showFeed - triggered by tapping a feed in the this.feeds.list.

78 | Chapter3: Widgets

FeedListAssistant.prototype.showFeed = function(event) {
Mojo.Controller.stageController.pushScene("storylList", this.feeds.list, event.index);
b

Before running the application, change the stage assistant to push the feedList scene:

// Push the first scene
this.controller.pushScene("feedList", this.feeds);

Change the stage controller to push the feedList scene, and when you run the appli-
cation now, you’ll see that it’s starting to take the basic structure of the envisioned
application. It has an initial scene that is a list of available feeds with a count of unread
messages, which users can tap to view individual feeds and messages. We’ve made a
lot of changes in this section, as the List widget has really opened up the application’s
feature set.

You’ll notice that the list entry style is not complete, but we’ll fix that with some CSS
in stylesheets/News.css:

/* feedList styles */

.feedlist-title {
line-height: 2.0em;
}

.feedlist-url {
font-size: 14px;
color: gray;
margin-top: -20px;
margin-bottom: -20px;
line-height: 16px;

}

.feedlist-icon-container {
height: 54px;
margin-top: 5px;

}

.feedlist-icon {
background: url(../images/list-icon-rssfeed.png) center no-repeat;
}

.feedlist-newitem {
line-height: 20px;
height: 26px;
min-width: 26px;
-webkit-border-image: url(../images/feedlist-newitem.png) 4 10 4 10
stretch stretch;
-webkit-box-sizing: border-box;
border-width: 4px 10px 4px 10px;

Lists | 79

A few of these styles (feedlist-icon-container, feedlist-icon, and feedlist-newi
tem) are modified versions of the framework’s standard dashboard styles. Those styles
set up the icon and new items badge to the left of each feed. The other styles refine the
positioning and appearance of the feed title and URL.

Now when you run the application the styling should look complete, but there is still
a problem. As we saw with the storylList scene in the last section, the feed updates
aren’t reflected in the displayed list view until you tap a feed then return to the feed
List scene.

We need to be able to update the list widget’s model as each feed is updated. First, add
activate and deactivate methods to the feedList scene:

// activate
FeedListAssistant.prototype.activate = function() {
this.feeds.registerListModel(this);

if (News.feedlListChanged === true) {
this.feedWgtModel.items = this.feeds.list;
this.controller.modelChanged(this.feedWgtModel, this);
}
b

// deactivate

FeedListAssistant.prototype.deactivate = function() {
Mojo.Log.info("FeedList deactivating");
this.feeds.removelistModel(this.feedWgtModel);

1

In the activate() method, call to register this assistant with the feeds object so that it
will update this.feedWgtModel when changes are made to the feed. Also add an update
to the model for any activation of this scene. In this way, unread count changes are
reflected whenever new stories are viewed in the storyView scene. In the
deactivate() method, remove the registration whenever the feedList scene is replaced
by another scene.

Then add these new methods to feeds.js, along with an updatelistModel() method that
will be called from within the feed update loop in updateFeedSuccess():

/] registerListModel(sceneAssistant) - called to register the list model for updates
// as the underlying data changes.
registerListModel: function(sceneAssistant) {

Mojo.Log.info("Model Registered");

this.listAssistant = sceneAssistant;

b

// removelistModel() - called to remove the list model from updates
/! as the underlying data changes.
removelistModel: function() {

Mojo.Log.info("Model Removed");

this.listAssistant = undefined;

b

80 | Chapter3: Widgets

// updatelistModel() - called to update the list.
updateListModel: function() {
Mojo.Log.info("Model Updated");
if (this.listAssistant !== undefined) {
this.listAssistant.feedWgtModel.items = this.list;
this.listAssistant.controller.modelChanged(this.listAssistant.feedWgtModel,
this); '
}
b

Now when you run the application, the feed list widget is updated as the feed data is
updated by the feeds object. You’ll see the unread count (shown in the white badge on
each feed) change to reflect the number of stories read in each feed and when fully
loaded a view like the one in Figure 3-9.

Note that modelChanged() causes a full rendering of the widget.
For small changes, it’'s better to use noticeAddedItems() or
%s noticeUpdatedItems() to render only the changed elements.

Latest News

Figure 3-9. The feedList scene

Lists | 81

We’ll make one more change. The application updates the feed when launched, but it
would be nicer to have the feeds update periodically. We’ll set up an alarm during the
stage assistant’s setup method to fire after 15 minutes has elapsed, using the JavaScript
setTimeout() method. We created a setWakeup() method to set the alarm and a handle
Wakeup () method as the callback when the alarm fires. The handleWakeup() method sets
the next alarm and calls this. feeds.updateFeedList() to refresh all of the feeds:

S N
// setup - all startup actions:

// - Setup globals

// - Initiate alarm for first feed update

StageAssistant.prototype.setup = function() {

// initialize the feeds model and update the feeds
this.feeds = new Feeds();

// Set up first timeout alarm
this.setWakeup();

// Push the first scene
this.controller.pushScene("feedList", this.feeds);

b
[== noolnooliioooiiooooooe-

// handleWakeup - called when wakeup timer fires; sets a new timer and calls
// for a feed update cycle
StageAssistant.prototype.handleWakeup = function() {

// Set next wakeup alarm
this.setWakeup();

// Update the feed list
Mojo.Log.info("Update FeedList");
this.feeds.updateFeedList();

};

e
// setWakeup - called to setup the wakeup alarm for background feed updates
// if preferences are not set for a manual update (value of 0)
StageAssistant.prototype.setWakeup = function() {

if (News.feedUpdateInterval !== 0) {
var interval = News.feedUpdateInterval;

News .wakeupTaskId =
this.controller.window.setTimeout(this.handleWakeup.bind(this),
interval);

Mojo.Log.info("Set Interval Timer:

, interval);

};

82 | Chapter3: Widgets

[=mmm e
// cleanup - clear the wakeup alarm for background feed updates if set
StageAssistant.prototype.cleanup = function() {
if (News.wakeupTaskId !== 0) {
News .wakeupTaskId = this.controller.window.clearTimeout (News.wakeupTaskId);
Mojo.Log.info("clear Interval Timer");

b

Define the global News . feedUpdateInterval at the beginning of the stage assistant; we’ll
use it later when we add a preferences option to change the update interval. Don’t forget
to clear the timeout when the stage is closed, which in this case happens when the
application is closed.

Using Widgets in Lists

You can define list entries to include other widgets, including other lists. The list’s
model is an object that includes an array of items, and each item entry may have prop-
erties that are referenced in the list’s itemTemplate. You can declare widgets within the
list’s itemTemplate, using a name attribute to identify the widgets. In your setup method,
you set up the list with a model object containing an array of objects for the list items.
Each of these objects is used as the model for the widgets in the corresponding list item.
After setting up the List widget itself, you should call setupWidget() once for each
widget declaration in the item template. However, it’s not necessary to specify the
model when doing this, since it comes from the list items array.

For example, to create a list in which each list item or row has a text label and a toggle
button, you define your list’s itemTemplate with a template for the text and a declaration
for the toggle button:

<div class="palm-row">
<div class="palm-row-wrapper">
#{text}
<div name="listToggle" x-mojo-element="ToggleButton"></div>
</div>
</div>

In the setup method, you define your list’s model to include the toggle models:

this.firstModel = {text: "First", value: true};
this.secondModel = {text: "Second", value: true};
this.thirdModel = {text: "Third", value: true};
this.fourthModel = {text: "Fourth", value: true;

this.listModel = {items:[this.firstModel, this.secondModel, this.thirdModel,
this.fourthModell};
this.controller.setupWidget("myList", this.listAttr, this.listModel);

Then set up the toggle once with only an attributes object, as the model will be pulled
from the list items above:

this.toggleAttr = { truelabel: "On", falselabel: "0ff"};
this.controller.setupWidget("listToggle", this.toggleAttr);

Lists | 83

Note that the widgets declared in the itemTemplate use a name attribute not an ID,
because the same name can be used for each instantiation of the widget and an ID must
be unique.

You can’t set up a listener to the toggle, but you can listen to Mojo.Event.property
Change on the list and have the model passed as an event property. For example:

this.controller.listen("myList", Mojo.Event.propertyChange,
this.toggleChange.bindAsEventListener(this));

In your event listener, you would reference the toggle model this way:

MyAssistant.prototype.ToggleChange = function(event) {
if (event.model.value === true) {

}else {

}

b
In cases like this, multiple widgets must share the same model. All widgets allow you
to specify modelProperty in their attributes to make it easier to use a shared model. For

example, Toggle Button and List Selector both have a modelProperty property in their
attributes.

The event handling is more complicated when the list items contain multiple subitems,
including widgets. To deal with this, List supports Mojo.Event.listTap and
Mojo.Event.listChange events. You can add event listeners to the widget div to listen
to these list events, then analyze the event to determine which element in the List item
is targeted by tracing the reference to the model object used for the particular list item
that was clicked/changed, or examine the event.target property to see which element
in the list item was affected. Also, you can add a propertyChange listener on the List div
to get all propertyChange events from any widget in the list; check the “property” in the
event to figure out what triggered it. The event also contains the model for the widget
that sent the event.

More About Lists

There are several major features included with lists that aren’t used with News lists,
and there is another list widget: Filter List. We’ll use Filter List in Chapter 5 to add a
search list to News, but the other features will be briefly touched on here.

Dynamic lists

The List attributes can optionally include a callback function for supplying list items
dynamically. You do not need to provide the items array objects at setup time; whenever
the framework needs to load items (speculatively or for display), it will call the callback
function itemsCallback (listWidget, offset, limit), with the arguments described
in Table 3-3.

84 | Chapter3: Widgets

Table 3-3. ItemsCallback arguments

. Argument Type - Description i
listWidget Object The DOM node for the list widget requesting the items
offset Integer Indexin the list of the first desired item model object (zero-based)
limit Integer The number of item model objects requested

It is understood that the requested data may not be immediately available. Once the
data is available, the given widget’s noticeUpdatedItems() method should be called to
update the list. It’s acceptable to call the noticeUpdatedItems() immediately, if desired,
or any amount of time later. Lengthy delays may cause various scrolling artifacts, how-
ever. Itshould be called as listWidget.mojo.noticeUpdatedItems (offset, items),using
the arguments shown in Table 3-4.

Table 3-4. noticeUpdatedItems arguments
“Argument - Type - ~Description ERNE -
offset Integer Indexinthelistofthefirstobjectin i tems;usually thesameasoffsetpassed tothe itemsCallback

items Array An array of the list item model objects that have been loaded for the list

Formatters and dividers

The formatters property is a simple hash of property names to formatter functions,
like this:

{timeValue: this.myTimeFormatter, dayOfWeek: this.dayIndexToString, ... }

Before rendering the relevant HTML templates, the formatters are applied to the objects
used for property substitution. The keys within the formatters hash are property names
to which the formatter functions should be applied. The original objects are not modi-
fied, and the formatted properties are given new modified names so that the unfor-
matted value is still accessible from inside the HTML template.

The divider function works similar to a data formatter function. It is called with the
item model as the sole argument during list rendering, and it returns a label string for
the divider. For example, the function dividerAlpha generates list dividers based on the
first letter of each item:

dividerAlpha = function(itemModel) {

return itemModel.data.toString()[0];

};
If you’re defining your own template, you should insert the property #{dividerLabel}
where you would want to have the label string inserted.

Lists | 85

Text Fields

There is a legacy of great text-centric applications on Palm devices. The original Palm
OS included a whole new writing system, Graffiti, to provide simple, effective tools for
entering and editing text, and one of the Tred’s hallmarks was a terrific “thumbable”
keyboard and a system optimized for messaging and email applications. So naturally,
Palm webOS has some powerful text features, including a simple text widget, to embed
text in your applications.

This section will start with the Text Field (shown in Figure 3-10), the base text widget
that supports all general text requirements: single-line or multi-line text entry, with
common styles for labels, titles, headings, body text, line items, and item details. The
editing tools include basic entry and deletion, symbol and alternate character sets, cur-
sor movement, selection, cut/copy/paste, and auto text correction.

F anc Wit Erter

Figure 3-10. A Text Field widget example

In most cases, TextField will address your text needs, but there are three specialized
widgets:
PasswordField
Handles passwords or other confidential text input.
FilterField
Supports type-down filters of an off-screen list or similar searchable data.

RichTextEdit
A multi-line text field that supports simple text styles (bold, italic, and underline).

In all of the text widgets, the framework will handle all user interactions with the text
field, returning the entered string when the field loses focus or the user keys Enter
(where enabled). Mojo text fields are smart text fields by default. Autocapitalization
and correction for common typing mistakes are performed on all fields unless explicitly

disabled.

1 Smart Text Features ‘

The Smart Text Engine (STE) refers to the automatic modification of user-entered text
to allow quicker text input. When typing on the small keyboards that are usually

86 | Chapter3: Widgets

characteristic of mobile devices, users are more likely to make certain spelling mistakes.

Furthermore, because text input for things like text messaging, notes, and contact in-

formation is often done in a hurry, users are more likely to forgo punctuation, forgo
[{32]

capitalization, and/or use common slang abbreviations (such as using “r” instead of
“are” and “u” instead of “you”).

The STE performs autocapitalization and autoreplacement. Auto capitalization
will, by default, assert a Shift key state when it detects a punctuation character
followed by a space during text entry, or can be set to force all caps or all lowercase.
Autoreplacement works by checking each word against a file of substitution pairs, and,
if found, a substitution is made.

Smart text is automatically enabled in all text fields except for password fields. If you
want to disable smart text, you can set the autoReplace property to false, or you can
set the textCase property to one of the following options:

Mojo.Widget.steModeSentenceCase (default)
Mojo.Widget.steModeTitleCase
Mojo.Widget.steModeLowerCase

Emoticons is another property, which will direct the STE to substitute bitmap images
in place of common emoticon text strings, such as ® for :) among many others.

There are a number of ways to style text fields, depending on whether you are grouping
fields together as you would for a form or using them singly or within other widgets.
Chapter 7 has more information on styling text fields as well as other advanced styling
topics.

Adding Text Fields to News

We only have one example of a text field in the News application: adding a newsfeed
requires text fields to enter the feed URL and name. The Text Fields will be put below
the list of feeds within the feedList scene and a Drawer widget will hide the Text Fields
until triggered by the Add Feed action on the feedListWgt widget.

Drawers are container widgets that can be open, allowing child content to be displayed
normally, or closed, keeping it out of view. The state of the drawer depends on a single
model property, although there are also exposed widget functions (toggleState, get0
penState, and setOpenState) available for opening and closing a drawer.

Add the Text Field declarations within a styled palm-group into the
feedList-scene.html file. We’re going to wrap the Text Fields with the Drawerand several
layers of styling div tags:
<div id='feedDrawer' x-mojo-element="Drawer">
<div id="add-feed-title" class="palm-dialog-title">
Add Feed
</div>

<div class="palm-1list">

Text Fields | 87

<div class="palm-row first">
<div class="palm-row-wrapper textfield-group"
x-mojo-focus-highlight="true">
<div class="title">
<div x-mojo-element="TextField" id="newFeedURL"></div>
</div>
</div>
</div>
<div class='palm-row last'>
<div class="palm-row-wrapper textfield-group”
x-mojo-focus-highlight="true">
<div class="title">
<div x-mojo-element="TextField" id="newFeedName"></div>
</div>
</div>
</div>
</div>
<div x-mojo-element="Button" id="okButton"></div>
<div x-mojo-element="Button" id="cancelButton"></div>
</div>

At the beginning of the file there is a style class to create the “Add Feed” title. The next
style class, palm-1ist, creates a list-style group with row dividers into which we’ll put
our text fields. We wrap each of the fields with palm-row and palm-row-wrapper classes
and add a div with the title class to complete the styling. The text field widgets are
declared within all those layers of styling classes. Button widgets are declared at the
bottom to approve the feed entry and submit it for addition to the list, or to cancel
the action and close the drawer.

Next, set up the Drawer, Text Fields, and Buttons in the setup method of the
feedList-assistant.js:

/! Setup Drawer for add Feed; closed to start
this.controller.setupWidget(' feedDrawer', {}, this.addDrawerModel={open: false});

// Set the add feed drawer title to Add Feed
var addFeedTitleElement = this.controller.get("add-feed-title");
addFeedTitleElement.innerHTML = "Add News Feed Source";

// Setup text field for the add new feed's URL
this.controller.setupWidget(
“newFeedURL",

{
hintText: "RSS or ATOM feed URL",
autoFocus: true,
autoReplace: false,
textCase: Mojo.Widget.steModeLowerCase,
enterSubmits: false

I8

this.urlModel = {value : ""});

// Setup text field for the new feed's name
this.controller.setuphWidget(
"newFeedName",

88 | Chapter3: Widgets

hintText: "Title (Optional)"”,
autoReplace: false,

textCase: Mojo.Widget.steModeTitleCase,
enterSubmits: false

1

this.nameModel = {value : ""});

// Setup OK & Cancel buttons

// OK button is an activity button which will be active

// while processing and adding feed. Cancel will just cancel the

// action and close the scene

this.okButtonModel = {label: "OK", disabled: false};

this.controller.setupWidget("okButton", {type: Mojo.Widget.activityButton},

this.okButtonModel);

this.okButtonActive = false;

this.okButton = this.controller.get("okButton");

this.checkFeedHandler = this.checkFeed.bindAsEventListener(this);

this.controller.listen("okButton", Mojo.Event.tap,
this.checkFeedHandler);

this.cancelButtonModel = {label: "Cancel", disabled: false};
this.controller.setupWidget("cancelButton", {type: Mojo.Widget.defaultButton},
this.cancelButtonModel);
this.closeAddFeedHandler = this.closeAddFeed.bindAsEventListener(this);
this.controller.listen("cancelButton", Mojo.Event.tap,
this.closeAddFeedHandler);

The first setupWidget call creates the Drawer, which is initially closed. The next setup
Widget creates the URL field with some hint text and setting focus to the field. The
name field is set up with the hint textindicating that the field is optional—if not entered,
we’ll use the name provided in the feed after it’s loaded.

The first button is set up with an OK label and declared as an activity button, which
will be used to show activity while we are checking and loading the feed. A second
button is set up to cancel the operation.

We still need a selector to open the Drawer. The List widget has an ideal feature to use
for that selector, the Add Item option, which generates a Mojo.Event.listAdd event
when tapped. Insert the addItemLabel property to the feedListWgt setup to enable a
selector to add a new feed. You will see that new property added to our previous setup
function, just below the renderLimit property:

this.controller.setupWidget("feedListiWgt",
this.feedWgtAttr = {

itemTemplate: "feedlList/feedRowTemplate",
listTemplate: "feedlList/feedListTemplate”,
swipeToDelete: true,
renderLimit: 40,
addItemLabel: "Add...",
reorderable: true

b
this.feedWgtModel = {items: feedlist});

TextFields | 89

Add a listener for the Mojo.Event.listAdd event and specify a handler to open the
Drawer:
// addNewFeed - triggered by "Add..." item in feed list
FeedListAssistant.prototype.addNewFeed = function() {
this.addDrawerModel.open = true;
this.controller.modelChanged(this.addDrawerModel);
}s
When the user taps the Add item at the end of the list, the 1istAdd event causes the
addNewFeed handler to open the Drawer. From there, the feed’s URL is entered, the Add
Feed button tapped to generate a tap event on the button, and the checkIt handler
called to process the feed. The drawer will stay open until a feed is completely added
or the user taps the Cancel button.

Since we’re demonstrating the Text Field widget, we haven’t included all the code for
this.checkIt, but you can refer to Appendix D, where the News application source is
reproduced in it’s entirety. Just know that the version of this.checkIt in Appendix D
is built for use within a dialog, which is eventually where this Add Feed function will
be handled. If you try to use it in this drawer case, you’ll need to remove the
sceneAssistant references for all the scene controller method calls.

The handlers will submit an Ajax request for the entered feed. If it’s a valid feed,
ProcessFeed will be called with the result and will add the processed feed to the end of
the feed list. The Drawer is closed at the end if the feed is added successfully. Fig-
ure 3-11 shows the new feedList scene with the Drawer in the open position and the
text fields.

Figure 3-11. A feedList scene with a text field

90 | Chapter3: Widgets

Password Field

If you need a text field that will be used for passwords or some other type of confidential
information, the Password Field provides many of the Text Field features, but masks
the display. Any entered text is displayed as a bullet (*) character. As with the Text
Field, the framework handles all of the editing logic within the field and generates a
Mojo.Event.propertyChange event when the field has been updated. Figure 3-12 shows
an example of a Password Field widget.

Figure 3-12. A Password Field widget example

Palm web0S Editing

The Palm Pré phone has a “slideout” keyboard, which was an incentive to include some
powerful editing features with webOS. In addition to the advantages of keyboarding
on thumbable keyboards, all text fields support trackball mode cursoring, smart dele-
tion, and text selection.

Trackball mode (which users access by holding the Alt or Orange key while swiping)
lets users use swipes to move the cursor across the text to the desired location, while
text selection (holding the Shift key while swiping), will highlight selected text for de-
letion, replacement, or cut/copy/paste operations.

Smart deletion (holding the Shift key while deleting) will delete whole words at a time
rather than one character at a time.

All this support comes with using Mojo’s text fields, along with the Smart Text features
discussed in this section.

Filter Field

If you require a text field to filter down the contents of an offline list, you can use the
Filter Field. It can be applied to any case where you want to process the field contents
and update on-screen elements based on the entered string.

Filter Field is hidden until displayed by the framework in response to the user entering
text when there isn’t focus on any text field. In other words, the filter field is given focus
for any text input on scene where it is present and another text field hasn’t been ex-
plicitly been given focus.

Text Fields | 91

Along with displaying the field, the framework will call a provided filter function to
handle the entered text after a specified delay. It’s up to you to respond appropriately,
but the framework will continue to display new text input and to call the filter function
until the field is closed.

Rich Text Edit

There is a simple Rich Text Edit widget (see Figure 3-13), which is similar to a multi-
line text field, but also supports applying bold, italic, and underline styles to arbitrary
runs of text within the field.

Figure 3-13. A Rich Text Edit widget example

To create support for this styling, enable the RichTextEditItems property in the Appli-
cation menu (see Chapter 4 for information on the Application menu). The user will
then be able to apply bold, italic, and underline style to the current text selection.

Events

The World Wide Web Consortium (W3C) HTML event model provides a way to re-
spond to user actions. In the model, which is part of the HTML DOM, user actions
can be associated with a DOM element. When an action occurs on the DOM element,
the browser generates an event and invokes the JavaScript code subscribed to the ele-
ment, for a particular event type. The W3C HTML event model defines standard event
types, such as load, mouseover, click, and resize, corresponding to user actions.

The framework implements an event model very similar to the W3C HTML event
model. One difference is that the framework defines event types at a higher level of
abstraction, representing actions meaningful to the Ul model and framework widgets.

Framework Event Types
Mojo defines unique event types supporting different parts of the UI system:
* System Ul events, such as drag, flick, and hold

* Widget events, including 1istTap, propertyChange, and more

92 | Chapter3: Widgets

* Application UI events, such as scrollStarting, stageActivate, and
stageDeactivate

You should refer to the API documentation, specifically Mojo.Event, for a complete
list with descriptions and references to the event object properties and related infor-
mation. For the System and Application Ul event types, the meaning of the event de-
pends on the context in which the event occurs, and you need to handle the event
accordingly.

The framework also provides a way to define custom events and propagate events to
an event handler through Mojo.Event.make and Mojo.Event.send.

Listening

When an event occurs, all code that is subscribed to handle the event is notified. You
can subscribe to events on any DOM element by calling one of the following methods:

* Mojo.Event.listen() or this.controller.listen()
* <DOM Element ID>.addEventListener()

* observe()

These methods are roughly equivalent, differing only in call semantics.
Mojo.Event.listen was created as a contingency for issues with either
addEventListener or Prototype’s observe method, but at this point, all work equally
well with Mojo.

There is an issue with referencing elements by DOM ID. The Prototype $ and
getElementById won’t work across Stage boundaries, so if you have a multistage appli-
cation, you will need to use this.controller.listen() if you pass an element by DOM
ID, or this.controller.get() when you want to retrieve an element by DOM ID.

As in the standard HTML model, events bubble up the DOM tree and the parent DOM
element receives the events that occur on any child elements. For controls, this implies
that you should observe events on the enclosing div element instead of on an element
that is part of the control implementation.

The following code snippets show how to subscribe to events using
this.controller.listen:

1. Define the HTML DOM element associated with an event and assign an ID to the
element:
<div id="thanksButton">Thank you</div>
2. Provide a JavaScript method to handle the event:

MySceneAssistant.prototype.handleThanks = function() {
this.sceneAssistant.outputDisplay.innerHTML = "Thanks";}

Events | 93

This is the handler specified when the user subscribes to the event. The method is
invoked by the browser when the event occurs. You should provide the event han-
dling logic appropriate for the event and application context.

3. Subscribe to the event, using the element ID and specifying the event handler
method:

this.controller.listen("thanksButton", Mojo.Event.tap,
this.handleThanks.bindAsEventListener(this));

You will typically need to use bind or bindAsEventListener onyourevent
listeners. The JavaScript this keyword will be set to either the window
4* or the DOM element when your event listener is called. You will want
" to use bind or bindAsEventListener to make sure that the this keyword

will point to the same scene assistant instance that registered the
handler.

stopListening
Use one of the following methods to remove your listener from events:

* Mojo.Event.stopListening() or this.controller.stopListening()
* <DOM Element ID>.removeEventListener()
* stopObserving()
You should use the method that corresponds to the method used to set up listening for

the event; in other words, use the same Mojo method to stop listening that you used
to initiate listening.

With any of these methods, you must use the exact handler reference used in the listen
method call. In the above example, the handler was specified as this.handle
Thanks.bindAsEventListener(this), which won’t work in the stopListening method.
Try this instead:

this.eventHandler = this.handleThanks.bindAsEventListener(this);
this.controller.listen("thanksButton", Mojo.Event.tap, this.eventHandler);

this.controller.stopListening("thanksButton", Mojo.Event.tap, this.eventHandler);

Note that if you include the useCapture argument when setting up your listener, you
must also include it with the stopListening call in exactly the same way.

94 | Chapter3: Widgets

There are two ways to leak memory in JavaScript. The first is to have a
: circular reference between the closure of an event handler and the node
that you call addEventListener on. Since the event won’t be unregistered

until the node is destroyed, and the node won’t be destroyed until the
JavaScript reference goes away, it causes a memory leak.

The second form of leaking is more straightforward, which is to have a
persistent reference to a closure (like setInterval or a Mojo service sub-
scription) that has a direct or indirect reference to a DOM node. Those
objects and nodes will also live forever.

Using Events with Widgets

Many widgets dispatch events. Applications can use these to better leverage the func-
tionality builtinto the controls. Events are generally dispatched to the widget’s element,
the div defined in the scene’s view HTML that has the x-mojo-element attribute. Ap-
pendix B enumerates all the specific events propagated by each widget in options tables
accompanying each widget’s description.

Summary

Widgets are signature components provided by Mojo that enable your applications
with a powerful Ul that has the look and feel of webOS. Using common techniques,
you can customize widget behavior and appearance around your specific needs by ma-
nipulating widget settings along with their corresponding events and styles.

In this chapter, we’ve looked at the widget design and covered the general methodology
for declaring, instantiating, rendering, and updating widgets. The News application
has been extended to include buttons, lists, and text fields, and we’ve covered each of
those widget types in detail. We’ve also covered event handling and style overrides,
and by now you should have a good idea how to use a widget within your application.

With these basic widgets, you can write some simple applications. But you will also
need menus and dialog boxes, which we’ll cover in the next chapter, to write mean-
ingful, Ul-complete applications. With what you’ve learned so far, however, it wouldn’t
hurt to write some sample applications to familiarize yourself with stages, scenes,
widgets, and event handling. These basics will be used throughout any webOS
application.

Summary | 95

CHAPTER 4
Dialogs and Menus

Familiar components in every Ul framework, dialog boxes and menus are used by
almostall applications. Mojo’s Dialog and Menu widgets provide the expected features,
but have some unique additions. With custom dialogs, you can include any web content
in a dialog box. Additionally, you can customize menus by scene and present them as
either conventional drop-down lists or floating elements.

Dialogs and menus are both fundamental widgets, though more complex than the basic
widgets covered in Chapter 3, and they are accessed and managed differently than other
widgets. Dialogs are instantiated through controller functions rather than through
setupWidget, and showDialog requires an assistant as one of its components.

Menus are instantiated by setupWidget, but use the Commander Chain to propagate
menu commands between stage assistants and scene assistants. The Commander Chain
is a model for propagating commands through the application, stage, and scene con-
trollers, and is described in detail near the end of this chapter.

As in Chapter 3, we’ll explore these widgets in the context of adding them into the
News application. This will be accompanied by a general description and some
screenshots.

Dialogs

You can use a Dialog widget to create a modal view for almost any purpose. A custom
dialog is a conventional dialog, but it requires a widget assistant and an HTML template
file. The Dialog widget is dynamically instantiated within a scene assistant, so there is
a bit of overhead in using it both for you as a developer and at runtime. For errors, you
should use the Error dialog. For presenting some simple options, use an Alert dialog.
The simple built-in dialogs will be presented first, followed by a discussion of how to
build custom dialogs with showDialog.

97

Error Dialog

You can post error messages in a modal dialog box with a fixed title of “Error,” a
customizable message, and a confirmation button. The Error dialog must be used only
with errors, since you can’t change the title; an example is shown in Figure 4-1.

You can post an Error dialog box with a single call:

Mojo.Controller.errorDialog(“Invalid Feed”, this.controller.window);

Figure 4-1. An Error dialog box

Logging Methods

Mojo includes logging methods to give you an efficient way to generate console output
without degrading the performance of your application or the system. There are three
log levels:

Mojo.Log.info(); // Mojo.Log.LOG_LEVEL_INFO = 20

Mojo.Log.warn(); // Mojo.Log.LOG_LEVEL WARNING = 10
Mojo.Log.error(); // Mojo.Log.LOG_LEVEL_ERROR = 0

Olliy messages at g below ihie cuirent IOggulg level are genei‘ated. The current 108EIIE
level is set as a configuration option in a new file, framework_config.json. To allow all
log levels, set the loglevel property to 99:

98 | Chapter4: Dialogsand Menus

{
"loglLevel": 99

For shipping code, do not set the limit above 0, as logging overhead will contribute to
slow performance on the application and the system.

Unlike console.log, the arguments to Mojo. Log are passed individually to the log func-
tions and only turned into strings if the message is actually printed to the console. Take
the following code, for example:

Mojo.Log.info("I have", 3, "eggs.");
This would output:
I have 3 eggs.

There is also support for a limited number of formatting characters and for adding log
methods to individual objects. Look at the following code:

var favoriteColor = 'blue';
Mojo.Log.info("My favorite color is %s.", favoriteColor);

The output would be:
My favorite color is blue.

You can use %s, %d, %f, %1, %o, and %j. The first four produce the same result; coercing
the appropriate parameter to a string for logging. %o converts the parameter to a string
using Prototype’s Object.inspect(), while %j converts it using Object.toJSON().

Alert Dialog

You can display a short message using an Alert dialog, with one or more HTML buttons
presenting the selection options. This is the best option if you have either a message
for the user, other than an error message, or want to present options that can be selected

in the form of button selections:

this.controller.showAlertDialog({
onChoose: function(value) {
this.outputDisplay.innerHTML = "Alert result = " + value;
b

title: "Filet Mignon",
message: "How would you like your steak done?”,
choices:[
{label: "Rare", value: "rare", type: "affirmative"},
{label: "Medium", value: "medium"},
{label: "Overcooked", value: "overcooked", type: "negative"},
{label: "Nevermind", value: "cancel", type: "dismiss"}

m;

This example presents four choices, as shown in Figure 4-2. Each button is labeled,
with an optional button type corresponding to a palm-button class, and returns a value

string.

Dialogs | 99

Figure 4-2. An Alert dialog box

Custom Dialogs

If the two simple dialogs don’t meet your needs, you can use the showDialog function,
which can display any type of content to the user in the form of a modal dialog box.
You can put anything into a custom dialog that you’d put into a scene, meaning almost
any web content or Mojo UI content.

Back to the News: Adding an Add Feed dialog

In the previous chapter, we added a Drawer in the FeedListAssistant to support the
Add Feed feature. It would be better to put this type of feature in a dialog; we will create
an Add Feed dialog with the showDialog function and move the code used in the Drawer
into the dialog.

Begin by replacing the addNewFeed method in feedlist-assistant.js with a call to
showDialog():
// addNewFeed - triggered by "Add..." item in feed list
FeedListAssistant.prototype.addNewFeed = function() {

this.controller.showDialog({

100 | Chapter4: Dialogs and Menus

template: 'feedlList/addFeed-dialog’,
assistant: new AddDialogAssistant(this, this.feeds)

1
b
The arguments specify the dialog template and a reference to the assistant that handles
the dialog. We create a new instance of the AddDialogAssistant, passing a reference to
the FeedListAssistant and this.feeds, the feed object, and pass that in along with a
reference to our addFeed-dialog.html template. The dialog template is simply an HTML
template, but you should make use of some of the standard dialog box styles such as
palm-dialog-content, palm-dialog-title, palm-dialog-separator, and palm-dialog-
buttons to format and style your dialog boxes to fit in with webOS UI guidelines.

Create the HTML for the addFeed-dialog template by moving the code used
in the previous chapter from feedList-scene.html to a new file, views/feedList/addFeed-
dialog.html:

<div id="palm-dialog-content" class="palm-dialog-content">

<div id="add-feed-title" class="palm-dialog-title">
Add Feed

</div>

<div class="palm-dialog-separator"></div>

<div class="textfield-group" x-mojo-focus-highlight="true">
<div class="title">
_ <div x-mojo-element="TextField" id="newFeedURL"></div>
</div>

</div>

<div class="textfield-group" x-mojo-focus-highlight="true">
<div class="title">

<div x-mojo-element="TextField" id="newFeedName"></div>

</div>

</div>

<div class="palm-dialog-buttons">
<div x-mojo-element="Button" id="okButton"></div>
<div x-mojo-element="Button" id="cancelButton"></div>
</div>
</div>

The changes from the HTML used previously include the removal of the Drawer and
the addition of the various palm-dialog styles and replacing the palm-1list styling with
the textfield-group.

The dialog assistant should be defined like a scene assistant with a creator function and
the standard scene methods: setup, activate, deactivate, and cleanup.

Within a dialog assistant, you can set up widgets, push scenes, and generally do any-
thing that you can do within a scene assistant. There is one major difference: the dialog
assistant’s controller is a widget controller so it doesn’t have direct access to scene
controller methods; instead the dialog assistant must use the calling scene assistant’s
scene controller methods such as setupWidget. To facilitate this, the assistant property

Dialogs | 101

in the showDialog argument object passes the keyword this as an argument when calling
the dialog’s creator function.

To create the AddDialogAssistant, we’ll move the code we used in the last chapter to
generate the small form in the Drawer widget. Here that code is presented with some
modifications in the AddDialogAssistant:

I
// AddDialogAssistant - simple controller for adding new feeds to the list
// when the "Add..." is selected on the feedlist. The dialog will

// allow the user to enter the feed's url and optionally a name. When

// the "Ok" button is tapped, the new feed will be loaded. If no errors
// are encountered, the dialog will close otherwise the error will be

// posted and the user encouraged to try again.

function AddDialogAssistant(sceneAssistant, feeds) {
this.feeds = feeds;
this.sceneAssistant = sceneAssistant;

this.title = "";

this.url = "";

this.feedIndex = null;

this.dialogTitle = "Add News Feed Source";

}

AddDialogAssistant.prototype.setup = function(widget) {
this.widget = widget;

// Set the dialog title to either Edit or Add Feed
// ** These next two lines are wrapped for book formatting only **
var addFeedTitleElement =
this.sceneAssistant.controller.get("add-feed-title");
addFeedTitleElement.innerHTML = this.dialogTitle;

// Setup text field for the new feed's URL
this.sceneAssistant.controller.setupWidget(
"newFeedURL",

{
hintText: "RSS or ATOM feed URL",
autoFocus: true,
autoReplace: false,
textCase: Mojo.Widget.steModelLowerCase,
enterSubmits: false

}

this.urlModel = {value : this.url});

// Setup text field for the new feed's name
this.sceneAssistant.controller.setuphWidget(
"newFeedName",

{
hintText: "Title (Optional)"”,
autoReplace: false,
textCase: Mojo.Widget.steModelltleCase,
enterSubmits: false

b

102 | Chapter4: Dialogs and Menus

this.nameModel = {value : this.title});

// Setup OK & Cancel buttons
// OK button is an activity button which will be active
// while processing and adding feed. Cancel will just
// close the scene
this.okButtonModel = {label: "OK", disabled: false};
this.sceneAssistant.controller.setupWidget("okButton",
{type: Mojo.Widget.activityButton},
this.okButtonModel);
this.okButtonActive = false;
this.okButton = this.sceneAssistant.controller.get("okButton");
this.checkFeedHandler = this.checkFeed.bindAsEventListener(this);
this.sceneAssistant.controller.listen("okButton", Mojo.Event.tap,
this.checkFeedHandler);

this.cancelButtonModel = {label: "Cancel", disabled: false};
this.sceneAssistant.controller.setupWidget("cancelButton",

{type: Mojo.Widget.defaultButton},

this.cancelButtonModel);
this.sceneAssistant.controller.listen("cancelButton", Mojo.Event.tap,

this.widget.mojo.close);

};

// checkFeed - called when OK button is clicked
AddDialogAssistant.prototype.checkFeed = function() {

if (this.okButtonActive === true) {
// Shouldn't happen, but log event if it does and exit
Mojo.Log.info("Multiple Check Feed requests");
return;

}

// Check entered URL and name to confirm that it is a valid feedlist
Mojo.Log.info("New Feed URL Request: ", this.urlModel.value);

// Check for "http://" on front or other legal prefix; any string of
// 1 to 5 alpha characters followed by ":" is ok, else
prepend "http://"
var url = this.urlModel.value;
if (/~[a-z]{1,5}:/.test(url) === false) {
// Strip any leading slashes
url = url.replace(/"\/{1,2}/,"");
url = "http://"+url;
}

// Update the entered URL & model
this.urlModel.value = url;
this.sceneAssistant.controller.modelChanged(this.urlModel);

this.okButton.mojo.activate();

this.okButtonActive = true;

this.okButtonModel.label = "Updating Feed";
this.okButtonModel.disabled = true;
this.sceneAssistant.controller.modelChanged(this.okButtonModel);

Dialogs | 103

var request = new Ajax.Request(url, {
method: "get",
evalJSON: "false",
onSuccess: this.checkSuccess.bind(this),
onFailure: this.checkFailure.bind(this)

};
|5

// checkSuccess - Ajax request failure
AddDialogAssistant.prototype.checkSuccess = function(transport) {
Mojo.Log.info("Valid URL - HTTP Status", transport.status);

// DEBUG - Work around due occasion Ajax XML error in response.
if (transport.responseXML === null 8& transport.responseText !== null) {
Mojo.Log.info("Request not in XML format - manually converting");
/] ** These next two lines are wrapped for book formatting only **
transport.responseXML = new DOMParser().
parseFromString(transport.responseText, "text/xml");

}

var feedError = News.errorNone;

// If a new feed, push the entered feed data on to the feedlist and
// call processFeed to evaluate it.
if (this.feedIndex === null) {
this.feeds.list.push({title:this.nameModel.value,
url:this.urlModel.value, type:"", value:false, numUnRead:0,
stories:[1});
// processFeed - index defaults to last entry
feedError = this.feeds.processFeed(transport);

}
else {
this.feeds.list[this.feedIndex] = {title:this.nameModel.value,
url:this.urlModel.value, type:"", value:false, numUnRead:0,
stories:[]};
feedError = this.feeds.processFeed(transport, this.feedIndex);
}

// If successful processFeed returns errorNone

if (feedError === News.errorNone) {
// update the widget, save the DB and exit
this.sceneAssistant.feedWgtModel.items = this.feeds.list;

/] ** These next two lines are wrapped for book formatting only **
this.sceneAssistant.controller.modelChanged(
this.sceneAssistant.feedWgtModel);

this.widget.mojo.close();

else {
// Feed can't be processed - remove it but keep the dialog open
this.feeds.list.pop();

if (feedError == News.invalidFeedError) {
Mojo.Log.warn("Feed ",
this.urlModel.value, " isn't a supported feed type.");

104 | Chapter4: Dialogs and Menus

var addFeedTitleElement = this.controller.get("add-feed-title");
addFeedTitleElement.innerHTML = "Invalid Feed Type - Please Retry";

}

this.okButton.mojo.deactivate();

this.okButtonActive = false;

this.okButtonModel.label = "OK";

this.okButtonModel.disabled = false;
this.sceneAssistant.controller.modelChanged(this.okButtonModel);

IS

// checkFailure - Ajax request failure
AddDialogAssistant.prototype.checkFailure = function(transport) {
// Log error and put message in status area
Mojo.Log.info("Invalid URL - HTTP Status", transport.status);
var addFeedTitleElement = this.controller.get("add-feed-title");
addFeedTitleElement.innerHTML = "Invalid Feed Type - Please Retry";

};

// cleanup - close Dialog
AddDialogAssistant.prototype.cleanup = function() {
// TODO - Cancel Ajax request or Feed operation if in progress
this.sceneAssistant.controller.stoplListening("okButton",
Mojo.Event.tap, this.checkFeedHandler);
this.sceneAssistant.controller.stoplListening("cancelButton",
Mojo.Event.tap, this.widget.mojo.close);
b
There were several changes made to the previous version with the Drawer widget to
create this version in a dialog:

Scene Assistant Methods
Change this.controller.* references to this.sceneAssistant.controller.* refer-
ences, because the AddDialogAssistant must use the passed reference to the scene
assistant for any scene controller methods.

Close
Add this.widget.mojo.close() after successfully adding the feed in checkOk. You
will have to directly close the dialog by calling the close() method on the dialog
widget. Notice that the widget element is passed as an argument to the dialog
assistant’s setup method.

TextField Cleanup
Remove the code that explicitly cleared the text fields on exit; it isn’t needed, as
the dialog scene is removed from the DOM entirely.

Swiping back in a default dialog box will close the dialog box, but a Cancel button is
recommended for most dialog boxes to help novice users who may be confused by its
absence. You can set the optional preventCancel to true in the showDialog call
arguments to stop the back gesture from canceling the dialog box; by defaul,

Dialogs | 105

preventCancel is set to false. Figure 4-3 shows the results of these changes and the Add
Feed dialog.

Cancel

Figure 4-3. An Add Feed dialog box

Menus

Mojo supports four types of menu widgets. Each is fairly unique, but they share some
common design elements and can be used in similar ways. You should review the User
Interface Guidelines to see how best to apply each menu type and for general informa-
tion on designing menus for your application.

Application menu
A conventional desktop-style menu that drops down from the top-left corner of
the screen when the user taps in that area.

View menu

Menus used across the top of the screen. They can be used as display headers or
action buttons, to pop up submenus, or to toggle settings.

106 | Chapter4: Dialogsand Menus

Command menu
Used to set menus or (more typically) buttons across the bottom of the screen for
actions, to pop up submenus, or to toggle settings.

Submenu
Can be used in conjunction with the other menu types to provide more options,
or can be attached to any element in the page.

Application, View, and Command menus are technically very similar: they use a single
model definition with a menu items array, and are configured through setupWidget().
Menu selections generate commands, which are propagated to registered command-
ers through the Commander Chain. We’ll cover these three widgets in the next section
on Menu widgets.

The Submenu shares many of the model properties with Menu widgets, but is instan-
tiated through a direct function call and is handled differently. The Submenu widget
will be addressed fully in its own section later in the chapter.

The System Ul includes another menu, called the Connection menu, which is similar to
the Application menu in appearance and is anchored to the top-right of the screen. It
is restricted for system use and is not available to applications.

Menu Widgets

Unlike all other widgets, Menu widgets are not declared in your scene view file, but are
simply instantiated and handled from within your assistant. From a design perspective,
Menu widgets float above other scene elements, attached to the scene’s window rather
than a point in the scene. Because of this, it wouldn’t work for their positions to be
determined within the HTML. They are in the DOM, so you can use CSS to style them,
but the framework determines their positions according to predefined constraints and
the individual menu’s attributes and model properties.

A Menu widget is instantiated by a call to setupWidget(), specifying the menu type,
attributes, and model. The menu types take the form Mojo.Menu.type, where type can
be one of appMenu, viewMenu, or commandMenu.

Menus have just a few attribute properties that differ between the Application menu
and the Command/View menus; they’ll be described in the following sections. The
model is primarily made up of the items array, which includes an object for each menu
item and optional properties. Other than the items array there is simply a visible
property to set the entire menu to invisible (false) or visible (true). If not present, the
menu defaults to visible.

The major options are in the items array. You can include selectable items and groups
at the top level of any menu, where groups allow you to specify a second level of se-
lectable items. Items can have a label and an icon. Icons can specify either an appli-
cation-supplied icon image (found at iconPath) or one of the framework’s icons (using
the icon property).

Menus | 107

Each item includes a command value, which is propagated through the Commander
Chain when the item is selected. This is a rather significant topic, which we’ll touch on
briefly here, but you should review the section “Commander Chain” on page 126 to
get a full description.

Application menu

The Application menu appears in the upper-left corner of the screen when the user taps
the left side of the status bar. It includes some system-defined and some application-
defined actions, and is intended to have an application-wide scope for the most part.
Figure 4-4 shows an example of an Application menu.

Figure 4-4. An Application menu

The Application menu contains a few required items: Edit (an item group including
Cut, Copy, and Paste), Preferences, and Help; the latter items are disabled by default.
You are free to add any other items to the menu, and to enable Preferences and/or Help
by including command handlers to take the appropriate actions within your
application.

Back to the News: Adding an Application menu

Now let’s add an Application menu to News, with an “About News” item. Unlike our
earlier example, we’ll declare the Application menu attributes and model as global

108 | Chapter4: Dialogsand Menus

variables, and add the handleCommand() method to the News stage assistant. This makes
the Application menu available to all of the News scene assistants:

// Setup App Menu for all scenes; all menu actions handled in
// StageAssistant.handleCommand()
News.MenuAttr = {omitDefaultItems: true};

News .MenuModel = {
visible: true,
items: [
{label: "About News...", command: "do-aboutNews"},
Mojo.Menu.editItem,
Mojo.Menu.prefsItem,
Mojo.Menu.helpItem

// handleCommand - called to handle app menu selections
//
StageAssistant.prototype.handleCommand = fu
if(event.type == Mojo.Event.command) {
switch(event.command) {

nction(event) {

case "do-aboutNews":
var currentScene = this.controller.activeScene();
currentScene. showAlertDialog({
onChoose: function(value) {},
// ** These next two lines are wrapped for book formatting only **
title: "News — vi#t{version}".interpolate({
version: News.versionString}),
message: "Copyright 2009, Palm Inc.",
choices:[
{label:"0K", value:""}

1);

break;

}
N

The following menu properties are unique to the Application menu:

richTextEditItems
Can be set to true when you include a Rich Text Edit widget in your scene, and it
will add the bold, italic, and underline styling items to the Edit menu.

omitDefaultItems
Must be set to true when you want to remove or reorder the default items: Edit,
Preferences, or Help.

By choosing omitDefaultItems, we must manually add back any of the default items in
the model definition if they are to be displayed in the menu. If you want to change some
but not allitems, you can use system constants to replace the items that aren’t changing.
In the News .MenuModel, the default items Mojo.Menu.editItem, Mojo.Menu.prefsItem, and

Menus | 109

Mojo.Menu.helpItem are all added back into the model to allow us to change the order
of the items.

The News.MenuAttr declares that this menu will override the default items. The
News .MenuModel puts the About News item at the top of the menu and by referencing
the default items keeps them in the menu with the framework still handling them.
Within the handleCommand method, the do-aboutNews command handler puts up an Alert
Dialog with the About News information.

When the Application menu commands are propagated, they are handled by the stage-
assistant, but the handlers need to be aware of the current scene. The local variable
currentScene is set to the active scene controller at the beginning of handleCommand.
From there, currentScene applies scene assistant functions, such as showAlertDialog,
to whichever scene is currently displayed.

All this work has been done in stage-assistant.js, but the Application menu is actually
displayed within the scenes. To configure and display the Menu widget, each scene
assistant’s setup method will include this setupWidget() call:

// Setup Application Menu
this.controller.setupWidget(Mojo.Menu.appMenu, News.MenuAttr, News.MenuModel);

You can override the application-wide behavior for a specific scene by defining scene-
specific application menu attributes or model before setting up the Application menu,
and including a handleCommand method in that scene to handle the Application menu
commands there. Don’t forget to call Mojo.Event.stopPropagation() if you use any of
the same commands used in your global Application menu. Figure 4-5 shows the Ap-
plication menu and the resulting About box.

| About News..,

Eclit

Figure 4-5. The News Application menu and About box

110 | Chapter4: Dialogsand Menus

Be sure that you do not call Mojo.Event.stopPropagation() or
event.stop() on events you do not handle. This is a common pitfall:
stopping all events in handleCommand. This breaks a parts of the system
Ul such as back gestures and character picker.

By consolidating the Application menu declaration and handler in the stage assistant,
it’s easy to provide a common set of menu options across all of the scenes. As an ex-
ample, let’s add a Preferences scene to News.

By default, the Application Menu disables Preferences and Help. If you

simply want to enable one or both commands, you can include a handler

s for Mojo.Event.commandEnable in the handleCommand method and call

" Mojo.Event.stopPropagation() for the command that you want to ena-
ble.

Back to the News: Adding preferences to News

In the previous chapter, we implemented the Ajax requests in feedlist-assistant.js, which
retrieves the initial feed data. Let’s extend that feature to periodically update the feeds,
and we’ll set the interval, the period between feed updates, in a preferences scene.

Create a Preferences scene using palm-generate:

palm-generate -t new_scene -p "name=preferences" com.palm.app.news

The scene’s view file, preferences-scene.html, would look like this:

<div class="palm-page-header">
<div class="palm-page-header-wrapper">
<div class="icon news-mini-icon"></div>
<div class="title">News Preferences</div>
</div>
</div>

<div class="palm-group">
<div class="palm-group-title">Feed Updates</div>
<div class="palm-list">
<div class="palm-row">
<div class="palm-row-wrapper">
<div x-mojo-element="ListSelector" id="feedCheckIntervallist">
</div>
</div>
</div>
</div>
</div>
</div>

Menus | 111

The header is one of the framework style classes, palm-page-header, used on most pref-
erences scenes. You'll also note the icon and the news-mini-icon styles, which allow us
to add some CSS to insert a small news icon in the header. The icon must be added to
the images directory at the News application’s root level:
/* Header Styles */
.icon.news-mini-icon {
background: url(../images/header-icon-news.png) no-repeat;
margin-top: 13px;
margin-left: 17px;
}
After the header styling, you can see some list style classes followed by a List Selector
widget declaration to pick the interval setting. The preferences-assistant.js will set up
the List Selector and add a listener for selections using that List Selector. The handler,
feedIntervalHandler, updates the global variable, feedUpdateInterval, after a selection
is made:

/* Preferences - NEWS
Copyright 2009 Palm, Inc. All rights reserved.
Preferences - Handles preferences scene, where the user can:
- select the interval for feed updates
App Menu is disabled in this scene.
*/
function PreferencesAssistant() {
}

PreferencesAssistant.prototype.setup = function() {

// Setup list selector for UPDATE INTERVAL
this.controller.setupWidget("feedCheckIntervallist",

{
label: "Interval",
choices: [
{label: "Manual Updates", value: 0},
{label: "5 Minutes", value: 300000},
{label: "15 Minutes", value: 900000},
{label: "1 Hour", value: 3600000},
{label: "4 Hours", value: 14400000},
{label: "1 Day", value: 86400000}
1
b

this.feedIntervalModel = {
value : News.feedUpdateInterval

1;

112 | Chapter4: Dialogs and Menus

this.changeFeedIntervalHandler = this.changeFeedInterval.bindAsEventListener(this);
this.controller.listen("feedCheckIntervallist",
Mojo.Event.propertyChange, this.changeFeedIntervalHandler);

15

/] Cleanup - remove listeners
PreferencesAssistant.prototype.cleanup = function() {
this.controller.stopListening("feedCheckIntervallist",
Mojo.Event.propertyChange, this.changeFeedIntervalHandler);
b

// changeFeedInterval - Handle changes to the feed update interval
PreferencesAssistant.prototype.changeFeedInterval = function(event) {
Mojo.Log.info("Preferences Feed Interval Handler; value = ",
this.feedIntervalModel.value);
News.feedUpdateInterval = this.feedIntervalModel.value;

15

The feedUpdateInterval is used by the stage assistant’s setWakup() method to set the
timer for the updates.

With the Preferences scene coded, we can hook it up by returning to the stage assistant
and changing the News .MenuModel to override the default Preferences command:

News .MenuModel = {
visible: true,
items: [
{label: "About News...", command: "do-aboutNews"},
Mojo.Menu.editItem,
{label: "Preferences...
Mojo.Menu.helpItem

, command: "do-newsPrefs"},

]
};
Next, we’ll add a handler for do-newsPrefs in the handleCommand method to push the
Preferences scene:
case "do-newsPrefs":

this.controller.pushScene("preferences");
break;

When you run the application now, you’ll see that the Preferences item is enabled and
when selected brings up the new scene. Figure 4-6 shows the Application menu and
the resulting Preferences scene.

Menus | 113

Figure 4-6. The News Application menu with a Preferences scene

You should also notice that we didn’t have to modify any of the scene assistants, yet
the Preferences option is available in every scene. This approach makes it simple to
consolidate common Application menu handling throughout your application.

Our final Application menu example will demonstrate the command enable feature of
the Commander Chain. We’ll add a manual feed update feature to the Application
menu by adding a new item to the News.MenuModel called “Update All Feeds”:
News .MenuModel = {
visible: true,
items: [
{1label: "About News...", command: "do-aboutNews"},
Mojo.Menu.editItem,
{label: "Update All Feeds", checkEnabled: true, command: "do-feedUpdate"},
{label: "Preferences...", command: "do-newsPrefs"},
Mojo.Menu.helpItem

};

Because this command should be disabled whenever a feed update is in progress, a new
property, checkEnabled, is set to true. This property will instruct the framework to

propagate a Mojo.Event_commandEnable event through the commander chain anytime

the menu is displayed. If any recipient calls event.preventDefault() in response, then
the menu item is disabled.

114 | Chapter4: Dialogs and Menus

Here’s how this is handled in the stage assistant’s handleCommand() method:
J] memmm e e e

// handleCommand - called to handle app menu selections

//
StageAssistant.prototype.handleCommand = function(event) {
if (event.type == Mojo.Event.commandEnable) {
if (News.feedListUpdateInProgress 8& (event.command == "do-feedUpdate")) {
event.preventDefault();
}

}

else {

if(event.type == Mojo.Event.command) {
switch(event.command) {

case "do-aboutNews":

var currentScene = this.controller.activeScene();

currentScene.showAlertDialog({
onChoose: function(value) {},

// ** These next two lines are wrapped for book formatting only **
title: "News — v#{version}".interpolate({
version: News.versionString}),
message: "Copyright 2009, Palm Inc.",
choices:[
{label:"0K", value:""}

]
1;

break;

case "do-newsPrefs":
this.controller.pushScene("preferences");
break;

case "do-feedUpdate":
this.feeds.updateFeedList();
break;

}
13
At the top, we check for the Mojo.Event.commandEnable event, and if it is tied to a
do-feedUpdate command and an update is in progress, we’ll inhibit the menu item by
calling event.preventDefault(). You can learn more about this in the section
“Commander Chain” on page 126.

View menu

The View menu presents items as variable-sized buttons, either singly or in groups
across the top of the scene. The items are rendered in a horizontal sequence starting
from the left of the screen to the right. The button widths can be adjusted using the
items width property, and the framework adjusts the space between the buttons

Menus | 115

automatically. Use dividers or empty list items to influence the spacing to get specific
layouts.

Typically, you would use the View menu for actionable buttons, buttons with an at-
tached submenu, or header displays. You can group buttons together or combine ac-
tionable buttons with header information, as in the example shown in Figure 4-7.

Preferences 50 e

Software Hardware

Figure 4-7. A View menu with buttons

Back to the News: Adding View menus

View menus allow us to style the storylList scene headers and to provide a simple way
to switch between story feeds. We’re going to change storyList-assistant.js to include a
View menu with both Next Feed and Previous Feed menu buttons, and methods to
push the new scene for either the next feed or previous feed when selected.

First, let’s add the View menu. In this next code sample, the this.feedMenuModel is set
up with three menu items that are all based on the feed that is displayed in this instance
of the storylist scene:

* FeedMenuPrev, alocal variable set to either the Previous menu item or an empty item
if the feed is the first feed in the feedlist, meaning that the selectedFeedIndex is zero

* FeedMenuNext, a local variable set to either the Next menu item or an empty item if
the feed is the last feed in the feedlist, meaning that the selectedFeedIndex is one
less than the length of the feedlist

* A literal that displays the feed’s title

The setup method starts with some conditional assignments to feedMenuPrev and
feedMenuNext to deal with the boundary cases of the first and last feeds, then the View
Menu widget is setup in a setupWidget() call.

Items that do not specify any visible attributes (such as label and icon), and are not
groups, are treated as dividers. During layout of the menu buttons, all extra space is
equally distributed to each of the dividers. If there are no dividers, any extra space is
placed between the menu items, with the first and last menu items always aligned to
the left and right of the scene. The boundary cases of the first feed and last feed will
create dividers in feedMenuPrev and feedMenuNext to maintain the header’s visual style
and format.

116 | Chapter4: Dialogsand Menus

Menu Icons

The Mojo framework includes a number of default icons that you can use on your View
and Command menu buttons, or you can provide your own. Look at the standard styles
prefixed with palm-menu-icon, which you can reference with the icon property, or define
your own in your images folder, referencing them with the iconPath property. The News
example uses one of each reference for illustration so you can see the two techniques.

Here are some guidelines for designing your own icons:

* Use PNG-24, which supports 8-bit alpha transparency.

* Menu icons are currently two frames in a 32 x 64 PNG, with the top frame as the
normal state and the bottom frame as the pressed state.

* Each icon is approximately 24 x 24 pixels within the 32 x 32 frame.
* You can start with a monochrome glyph and style it with some Photoshop layer
effects, although plain white would work.

You can look at the PNG files in the framework’s images directory to see some examples
of these icons.

/* StorylistAssistant - NEWS
Copyright 2009 Palm, Inc. All rights reserved.

Displays the feed's stories in a list, user taps display the
selected story in the storyView scene. Major components:

- Setup view menu to move to next or previous feed

- Story View; push story scene when a story is tapped

Arguments:

- feedlist; Feeds.list array of all feeds

- selectedFeedIndex; Feed to be displayed
*/

function StoryListAssistant(feedlist, selectedFeedIndex) {
this.feedlist = feedlist;
this.feed = feedlist[selectedFeedIndex];
this.feedIndex = selectedFeedIndex;
Mojo.Log.info("StoryList entry = ", this.feedIndex);
Mojo.Log.info("StoryList feed = " + Object.toJSON(this.feed));

StorylListAssistant.prototype.setup = function() {
// Setup scene header with feed title and next/previous feed buttons. If
// this is the first feed, suppress Previous menu; if last, suppress Next menu
var feedMenuPrev = {};
var feedMenuNext = {};

if (this.feedIndex > 0) {
feedMenuPrev = {
icon: "back",

Menus | 117

command: "do-feedPrevious"

b
} else {
// Push empty menu to force menu bar to draw on left (label is the force)

feedMenuPrev = {icon: "", command: "", label: " "};

}

if (this.feedIndex < this.feedlist.length-1) {
feedMenuNext = {
iconPath: "images/menu-icon-forward.png",
command: "do-feedNext"
b
} else {
// Push empty menu to force menu bar to draw on right (label is the force)
feedMenuNext = {icon: "", command: "", label: " "};

}

this.feedMenuModel = {
visible: true,
items: [{
items: [
feedMenuPrev,
{ label: this.feed.title, width: 200 },
feedMenuNext
1
H
b

this.controller.setupWidget(Mojo.Menu.viewMenu,
{ spacerHeight: 0, menuClass:"no-fade" }, this.feedMenuModel);

// Setup App Menu
this.controller.setupWidget(Mojo.Menu.appMenu, News.MenuAttr, News.MenuModel);

// Setup story list with standard news list templates.
this.controller.setupWidget("storyListwgt",

{
itemTemplate: "storylList/storyRowTemplate",
listTemplate: “storylist/storylListTemplate",
swipeToDelete: false,
renderLimit: 40,
reorderable: false

b

this.storyModel = {
items: this.feed.stories
}

)s

this.readStoryHandler = this.readStory.bindAsEventListener(this);
this.controller.listen("storyListWgt", Mojo.Event.listTap,
this.readStoryHandler);
b

Continuing on with our example, we’ll add the handleCommand() method after the
activate() and readStory() methods, which are unchanged:

118 | Chapter4: Dialogs and Menus

// handleCommand - handle next and previous commands
StoryListAssistant.prototype.handleCommand = function(event) {
if(event.type == Mojo.Event.command) {
switch(event.command) {
case "do-feedNext":
this.nextFeed();
break;
case "do-feedPrevious":
this.previousFeed();
break;

}
};

// nextFeed - Called when the user taps the next menu item
StorylListAssistant.prototype.nextFeed = function(event) {
Mojo.Controller.stageController.swapScene(

{
transition: Mojo.Transition.crossFade,
name: "storylist"

b
this.feedlist,
this.feedIndex+1);

s

// previousFeed - Called when the user taps the previous menu item
StorylListAssistant.prototype.previousFeed = function(event) {
Mojo.Controller.stageController.swapScene(

{
transition: Mojo.Transition.crossFade,
name: "storylist"

iais.feedlist,
this.feedIndex-1);
}
The handleCommand method is called for the Next and Previous commands and results
in a swapScene() call to push the next scene. We discussed in Chapter 2 that
swapScene() is similar to pushScene(), but rather than leaving the old scene on the scene
stack, swapScene() pops it as part of the operation.

Figure 4-8 shows the News application’s storyList with these changes.

Command menu

The Command menu items are presented at the bottom of the screen, but are similar
to the View menu in most other ways. Items will include variable-sized buttons that
you can combine into groups and in a horizontal layout from left to right. You can
override the default positioning by including dividers to force an item to the right or
the middle of the screen, or by including an item’s entry with the disable property set
to true. Typically, you would use the Command menu for actionable buttons, buttons
with dynamic behavior, or for attaching a submenu to a button to give further options.

Menus | 119

>4

R

ork Times

Figure 4-8. The News View menu and storyList scene

As with the View menu, you can adjust button widths from within the item’s property
width, and the framework adjusts the space between the buttons automatically (as
shown in Figure 4-9).

Whoa

Figure 4-9. A Command menu with buttons

You can also define toggle buttons or include buttons with other dynamic behavior
(Figurc 1-10).

120 | Chapter4: Dialogsand Menus

- vvamn vernaes

Figure 4-10. A Command menu with toggles

If you'd like to group several items together, include an items array and the
toggleCmd, which will be set by the framework to the command of the currently selected
items in the nested items array. You can group buttons together or combine actionable
buttons into a toggle group, as shown in Figure 4-11.

Pl SN VRIS e

Figure 4-11. A Command menu with groups

Back to the News: Adding Command menus

We’ve been using buttons within the Story view to go back and forth between stories
within a feed, but here we’ll replace those buttons with Command menus. It’s really
straightforward now that we’ve covered the basics with the Application and View
menus.

Change the storyView-assistant.js to include a command menu. Similar to the View
menu, the Next and Previous buttons normally are assigned to generate do-viewNext
or do-viewPrevious commands, except when the current story is the first or last story
in the feed. The first part of the setup method will create the items array with the correct
entries, then call setupWidget() to instantiate the menu. Since we’re replacing the but-
tons that were in the scene, remove the listeners from the setup method (and the button
declarations from the scene’s view file).

Notice that the items are put into a menu group so that they are styled together. We
use dividers on either side of the group to force the group to be centered in the scene.
Notice the visual difference from the Application menu’s grouping, where subitems are
combined into an expanding item. With View and Command menus, the button groups
are presented as an integrated view element:

/* StoryViewAssistant - NEWS

Copyright 2009 Palm, Inc. All rights reserved.

Menus | 121

Passed a story element, displays that element in a full scene view and offers
options for next story (right command menu button), and previous

story (left command menu button)

Major components:

- StoryView; display story in main scene

- Next/Previous; command menu options to go to next or previous story

Arguments:
- storyFeed; Selected feed from which the stories are being viewed
- storyIndex; Index of selected story to be put into the view

*/

function StoryViewAssistant(storyFeed, storyIndex) {
this.storyFeed = storyFeed;
this.storyIndex = storyIndex;

}

// setup - set up menus
StoryViewAssistant.prototype.setup = function() {
this.storyMenuModel = {
items: [

s

{items: [1},

{3

1%

if (this.storyIndex > 0) {
this.storyMenuModel.items[1].items.push({
icon: "back",
command: “"do-viewPrevious"

1
} else {
this.storyMenuModel.items[1].items.push({
icon: "", command: ""
label: " "
1

}

if (this.storyIndex < this.storyFeed.stories.length-1) {
this.storyMenuModel.items[1].items.push({
icon: "forward",
command: "do-viewNext"
b;
} else {
this.storyMenuModel.items[1].items.push({
icon: "", command: "",
label: " "

B

this.controller.setupWidget(Mojo.Menu.commandMenu,
undefined, this.storyMenuModel);

// Setup App Menu
this.controller.setupWidget(Mojo.Menu.appMenu, News.MenuAttr, News.MenuModel);

122 | Chapter4: Dialogs and Menus

// Update story title in header and summary

var storyViewTitleElement = this.controller.get("storyViewTitle");

var storyViewSummaryElement = this.controller.get("storyViewSummary");
storyViewTitleElement.innerHTML = this.storyFeed.stories[this.storyIndex].title;
storyViewSummaryElement.innerHTML = this.storyFeed.stories[this.storyIndex].text;

IH

The activate method is unchanged, but we replace the button handlers with command
handlers, as shown in this next code sample:

e
// Handlers to go to next and previous stories, display web view
// or share via messaging or email.
StoryViewAssistant.prototype.handleCommand = function(event) {
if(event.type == Mojo.Event.command) {
switch(event.command) {
case "do-viewNext":
Mojo.Controller.stageController.swapScene(
{
transition: Mojo.Transition.crossFade,
name: “"storyView"
3
this.storyFeed, this.storyIndex+1);
break;
case "do-viewPrevious":
Mojo.Controller.stageController.swapScene(
{
transition: Mojo.Transition.crossFade,
name: "storyView"
}
this.storyFeed, this.storyIndex-1);
break;

}
1
That’s it. Run the application and tap a feed and then a story to see the results (shown
in Figure 4-12).

Submenus

Pop-up submenus can offer a transient textual list of choices to the user, typically off
of another menu type or from a DOM element in the scene. Submenus accept standard
menu models and some unique properties, but unlike the other menu types, Submenu
does not use the Commander Chain for propagating selections. Instead, a callback is
used to handle selections.

A modal list will appear with the label choices presented. When the user taps one, the
onChoose callback function will be called (in the scope of the scene assistant) with the

Menus | 123

Figure 4-12. A News Command menu and storyView scene

command property of the chosen item as an argument. If the user taps outside the pop-
up menu, it’s still dismissed and the onChoose function is called with undefined instead.

Back to the News: Adding a submenu

We will use a submenu to present options when the users taps the info button on the
News feed list. For each feed, you can choose between Mark Read, Mark Unread, or
Edit Feed. The first two options mark all the stories as either read or unread based on
the selection, while the last option brings up the Add Feed dialog.

To bring up the submenu, we’ll add an icon called info, to each list entry in the feed
list, as shown in the feedList scene, to serve as an access point. The change is made in
feedRowTemplate.html just before the entries for the feedlist-title and feedlist-
url. The custom class will be used in News.css to load the icon’s image while the
framework classes will fix the position of the icon properly within the list row and align
it to the right:

<div class="feedlist-info icon right" id="info"></div>

<div class="feedlist-title truncating-text">#{title}</div>
<div class="feedlist-url truncating-iexi">#{-url}</div>

124 | Chapter4: Dialogsand Menus

Next, we’ll modify the showFeed() method of feedlist-assistant.js to detect taps on the
info icon. If it’s a tap anywhere else, the storyList scene will be pushed as before.

Otherwise, the Submenu will be created, with an arguments list starting with
onChoose, which specifies popupHandler to handle the user’s menu selection. The other
arguments include the placeNear property to locate the submenu near the tapped icon
and the array of menu items. You’ll notice that we save the event.index value by as-
signing it to this.popupIndex for use later in popupHandler. We'll need to reference the
tapped list entry when it comes time to apply the action indicated by the Submenu
selection:

[] mmmmm e o oo
// Show feed and popup menu handler
/1
// showFeed - triggered by tapping a feed in the this.feeds.list.
// Detects taps on the unReadCount icon; anywhere else,
// the scene for the list view is pushed. If the icon is tapped,
// put up a submenu for the feedlist options
FeedListAssistant.prototype.showFeed = function(event) {

var target = event.originalEvent.target.id;

if (target !== "info") {

Mojo.Controller.stageController.pushScene("storylList",
this.feeds.list, event.index);
}

else {
var myEvent = event;
var findPlace = myEvent.originalEvent.target;
this.popupIndex = event.index;
this.controller.popupSubmenu({
onChoose: this.popupHandler,
placeNear: findPlace,
items: [
{label: "All Unread", command: "feed-unread"},
{label: "All Read", command: "feed-read"},
{label: "Edit Feed", command: "feed-edit"}

]
;s
IH

The handler, popupHandler, uses a switch statement to invoke the appropriate command
handler. The command handlers for “All Unread” and “All Read” handle the actions
for marking all stories in the selected feed as unread or read, updating the feed’s
numUnRead, and calling modelChanged to update the scene’s displayed view. Once the
actions are complete, the handler exits and the framework cleans up the dlsplay by
removing the Submenu.

Targeting the submenu can sometimes be a little tricky. The framework will automat-
ically place the submenu in the center of the window, but you can override it by setting
placeNear to a specific DOM element. In our example, it’s placed near the info icon,
which was defined as the tap target for this submenu. It’s a good idea to use fixed targets
for menu placement:

Menus | 125

// popupHandler - choose function for feedPopup
FeedListAssistant.prototype.popupHandler = function(command) {
var popupFeed=this.feeds.list[this.popupIndex];

switch(command) {
case "feed-unread":
Mojo.Log.info("Popup - unread for feed:",
popupFeed.title);

for (var i=0; i<popupFeed.stories.length; i++) {
popupFeed.stories[i].unreadStyle = News.unreadStory;

popupFeed.numUnRead = popupFeed.stories.length;
this.controller.modelChanged(this.feedWgtModel);
break;

case "feed-read":
Mojo.Log.info("Popup - read for feed:",
popupFeed.title);
for (var j=0; j<popupFeed.stories.length; j++) {

popupFeed.stories[j].unreadStyle = "";

popupFeed.numUnRead = 0;
this.controller.modelChanged(this.feedWgtModel);
break;

case "feed-edit":
Mojo.Log.info("Popup edit for feed:",
popupFeed.title);

this.controller.showDialog({
template: "feedList/addFeed-dialog",
assistant: new AddDialogAssistant(this,

this.feeds, this.popupIndex)
};

break;

b

For the “Edit Feed” choice, the handler uses the AddDialogAssistant to display the
selected feed’s URL and name so that they can be changed. A new argument,
this.popupIndex, is added to the AddDialogAssistant call to enable the AddDialogAs
sistant and its methods, checkIt and checkOk, to look for an edit case. These changes
are not shown here because they are not directly related to the Submenu, but you can
look at the full News source in Appendix D to see where the changes were made.

Figure 4-13 shows a Submenu with these changes within the feedList scene.

Commander Chain

Mojo provides a model for propagating commands through the application, stage, and
scene controllers called the Commander Chain. The chain is an array of handlers,

126 | Chapter4: Dialogs and Menus

Figure 4-13. A News Submenu in a feedList scene

ordered like a stack. The handlers, or commanders, are put onto the chain in the order
that they register themselves, and commands are propagated according to this order.

Commanders are registered implicitly by declaring a handleCommand method as a stage-
assistant or scene-assistant method, or for dialogs, when instantiated. The framework
always adds the App-Assistants to the end of the Stage-Controller chain at instantiation.

Commanders can register explicitly by calling the pushCommander method from either
the stage controller or scene controller. The commander will be removed when the
scene assistant is popped or the application is closed.

The chain is really a tree of chains (see Figure 4-14). There is a chain for each stage
controller, and within each stage there is a chain for each scene controller. Commands
are propagated starting with the most recent commander registered in the active scene
controller’s chain. After all commanders in the scene have been called, propagation
continues with the most recent commander in the active stage controller chain through
the rest of the chain. There are chains for each of the inactive stage controllers and scene
controllers, but commands are not propagated to any inactive chains.

At any time, any commander can stop propagation by calling
event. stopPropagation(). For example, a scene puts up a modal dialog box, so it’s

Commander Chain | 127

Figure 4-14. A Commander Chain propagation example

implicitly added to the chain. It will have the opportunity to handle a back event and
stop propagation before it gets back to the scene that pushed the dialog. If not, the
stage controller would see the back gesture and pop the scene, which is not the desired
user experience.

Commanders can always remove themselves from the chain by calling the
removeCommander method of either StageController or SceneController. For example:

this.controller.removeCommander (this);
There are four types of events that propagate through the chain:
Mojo.Event.back
Indicates a back gesture.
Mojo.Event.forward
Indicates a forward gesture.
Mojo.Event.command
Is used for all menu commands.
Mojo.Event.commandEnable
Is used to enable a menu item dynamically.

128 | Chapter4: Dialogs and Menus

Command and Command Enable events are both discussed in the section “Menu
Widgets” on page 107. The former is used when a menu command is selected, and the
latter when a menu is created for any menu item that includes the property
commandEnable set to true. If any commander wants to inhibit the menu command, it
can call event.preventDefault() to do so. The framework uses this to inhibit the Edit
functions in the Application menu when anything other than a text field is in focus.

A common application of the Commander Chain is the consolidation of the setup and
handling of the Application menu into the stage controller. An example of this con-
solidation using the News application is shown in the section “Application
menu” on page 108.

Summary

Dialogs and menus round out the basic widgets that most applications require, and
with what you’ve learned so far, you should be able to write a meaningful application.
In this chapter we covered the three dialog functions and the four types of menus, and
used almost all of them in the News application as sample code.

The next chapter will cover the remainder of the widgets, but it would be good at this
point to build some sample code using widgets and the UI model. With just what’s
been covered so far, you can build full-featured applications, but more importantly,
the concepts learned here will be used throughout the rest of the book.

Summary | 129

CHAPTER 5
Advanced Widgets

This chapter completes the review of the Mojo widgets with a look at indicators, pickers
and viewers, the Filter List, and the Scroller. Not all applications will use these widgets,
because they are each designed for specific uses, but the widgets are just as simple to
work with as the widgets discussed in Chapters 3 and 4.

As with the two preceding chapters, each group will be reviewed in a summary form,
then a specific case will be used as an example with the News application. Where a
widget isn’t used in an example, there will be a description and references to where you
can find more information.

Indicators

Indicators are used to show that activity is taking place, even it it’s not visible, and in
some cases, to show some measure of the progress of the activity. Mojo has four indi-
cator widgets, but they belong to two types:

* Activity indicator, or Spinner, which spins without showing progress

* Progress indicator, which shows both activity and progress
The spinner is the only activity indicator, but there are three progress indicator widgets:

* Progress Pill, a wide pill that is styled to match the View menu and the palm-

header scene style

* Progress Bar, a narrow horizontal bar with a blue progress indicator

* Progress Slider, which is intended for streaming media playback applications
The Spinner widget is most appropriate when there isn’t much space in the layout for
an indicator or when the duration of the activity is hard to estimate. In other cases you

should use a progress indicator; it’s preferable because it gives the user a bounded sense
of duration.

31

Spinners

Use a spinner to show that an activity is taking place. The framework uses a spinner as
part of any activity button, and you’ll see it used in the core applications. There are two
sizes; the large spinner is 128 x 128 pixels, and the small spinner is 32 x 32 pixels. These
sizes are optimized for the Palm Pré screen and may vary on other devices, but the
spatial and visual characteristics will be maintained on other devices.

Back to the News: Adding a spinner for feed updates

There aren’t any long operations in News other than the feed updates, which are asyn-
chronous. We’ll add a spinner to the feed list whenever an update is in progress, dem-
onstrating a simple application of an indicator.

This will also demonstrate the technique for including widgets within a list entry, a
powerful Mojo feature introduced in Chapter 3. You already know that you can use
widgets to display dynamic data; by combining them into lists you can create complex
UI controls with the widgets as building blocks. You may want to review Chapter 3 if
you have questions after reading these next few paragraphs.

You can design list entries to include other widgets, including other lists, in almost the
same way that you use widgets outside of lists. The differences are that the list’s model
includes the widgets’ models, and that you declare widgets within the list’s
itemTemplate, using a name attribute to identify each widget.

In this example, a Spinner widget is included in each feedListWgt entry, which will be
activated when the corresponding news feed is updated through an Ajax request. Start
by adding the spinner declaration into the feedListWgt’s row template, views/feedList/
feedRowTemplate.html:

<div class="feedlist-info icon right" id="info"></div>

<div x-mojo-element="Spinner" class="right" name="feedSpinner"</div>

<div class="feedlist-title truncating-text">#{title}</div>

<div class="feedlist-url truncating-text">#{-url}</div>

The new line is the div with the name feedSpinner and is simply a declaration of the
Spinner widget. The syntax should start to seem familiar by now.

By including it into the feedListWgt list item’s template, we have implicitly directed the
List widget to insert a new spinner element in the DOM whenever it creates a new entry.
It’s the same as creating a spinner outside of a list, except in one major way: the spinner’s
model property must be part of the feedListWgt’s items array.

Westill have to set up the Spinner widget, which we do in the setup method of feedList-
assistant.js, but we don’t include a model in the call to setupWidget(), as thatis assumed
to be part of the feedListWgt’s items array:

// Setup the feed list, but it's empty
this.controller.setupWidget("feedListWgt",

itemTemplate:"feedList/feedRowTemplate",

132 | Chapter5: Advanced Widgets

listTemplate:"feedList/feedListTemplate",
addItemLabel:"Add...",
swipeToDelete:true,

renderLimit: 40,

reorderable:true

b
this.feedWgtModel = {items: this.feeds.list});

// Setup event handlers: list selection, add, delete and reorder feed entry

this.showFeedHandler = this.showFeed.bindAsEventlListener(this);

this.controller.listen("feedListWgt", Mojo.Event.listTap,
this.showFeedHandler);

this.addNewFeedHandler = this.addNewFeed.bindAsEventlListener(this);

this.controller.listen("feedListWgt", Mojo.Event.listAdd,
this.addNewFeedHandler);

this.listDeleteFeedHandler = this.listDeleteFeed.bindAsEventListener(this);

this.controller.listen("feedListWgt", Mojo.Event.listDelete,
this.listDeleteFeedHandler);

this.listReorderFeedHandler = this.listReorderFeed.bindAsEventListener(this);

this.controller.listen("feedListWgt", Mojo.Event.listReorder,
this.listReorderFeedHandler);

// Setup spinner for feedlist updates
this.controller.setupWidget("feedSpinner”, {property: "value"});

Most of the feedList assistant’s setup method is shown in this code sample; the only
addition is the last line of code (and preceding comment). It sets up the spinner, naming
the model property as value, but the model is not in the arguments list; the list’s model,
this.feedWgtModel, is used implicitly as the spinner’s model.

The feedList default data is defined at the beginning of the stage-assistant.js. Add the
value property to each default list entry, and set it to false. This is the spinner’s model,
and will start as false since there is no activity. You need to include this for every
feedList entry, as in this example:

title:"New York Times",
url:"http://www.nytimes.com/services/xml/rss/nyt/HomePage.xml",
type:"rss", value:false, numUnRead:0, newStoryCount:0, stories:[]

3

There’s one other place where a new feed list entry is created; in the checkOk method
of addDialog-assistant.js:

// If a new feed, push the entered feed data on to the feedlist and
// call processFeed to evaluate it.
if (this.feedIndex === null) {
this.feeds.list.push({title:this.nameModel.value,
url:this.urlModel.value, type:"", value:false, numUnRead:0,
stories:[1});
// processFeed - index defaults to last entry
feedError = this.feeds.processFeed(transport);
}
else {
this.feeds.list[this.feedIndex] = {title:this.nameModel.value,

Indicators | 133

url:this.urlModel.value, type:
stories:[]};
feedError = this.feeds.processFeed(transport, this.feedIndex);

, value:false, numUnRead:o0,

}

The spinner is set up and integrated into the list’s template and model. All that remains
is to activate and deactivate the spinner at the right times. Those times are just before
the Ajax request is made (spinner activated) and after the response is received (spinner
deactivated) whether the request was successful or not.

There are four changes to make, all in the feeds model:

updateFeedRequest
Activate before Ajax request

updateFeedFailure
Deactivate

updateFeedSuccess

Deactivate after processing new feed data, and activate before another feed update
request is made

The sample below shows the changes to updateFeedSuccess (), which includes both an
activate and a deactivate call:

// Process the feed, passing in transport holding the updated feed data
var feedError = this.processFeed(transport, this.feedIndex);

// 1f successful processFeed returns News.errorNone,
if (feedError !== News.errorNone) {
// There was a feed process error; unlikely, but could happen if the
/] feed was changed by the feed service. Log the error.
if (feedError == News.invalidFeedError) {
Mojo.Log.info("Feed ", this.nameModel.value,
" is not a supported feed type.");

}

News.feedListChanged = true;

// Change feed update indicator & update widget
var spinnerModel = this.list[this.feedIndex];
spinnerModel.value = false;
this.updatelistModel();

// If NOT the last feed then update the feedsource and request next feed
this.feedIndex++;
if(this.feedIndex < this.list.length) {

this.currentFeed = this.list[this.feedIndex];

// Request an update for the next feed but first
// change the feed update indicator & update widget
spinnerModel = this.list[this.feedIndex];

cninnarMadal ualua - +vnas
SpannCinlali.Vaaud Liul,

this.updatelListModel();

134 | Chapter5: Advanced Widgets

this.updateFeedRequest(this.currentFeed);
} else {

// Otherwise, this update is done. Reset index to 0 for next update
this.feedIndex = 0;
News .feedListUpdateInProgress = false;

In each case, we set the spinnerModel.value and call this.updatelistModel() to update
the model changing the state of the spinner. The spinner’s model is accessed by refer-
encing the this.feedIndex, the array index for the feed that is being updated, then
setting that entry’s value property to change just the spinner in that list entry.

Run the application, and the feeds will update one after another. If you wait for the
feed interval to pass, they will update again. You will see a spinner appear between the
feed title and the unread count badge on the left side, as shown in Figure 5-1, with
the spinner on the BBC News feed item.

Figure 5-1. Spinner on News feed updates

Indicators | 135

Spinners only take up space when they’re active. In some cases, if the feed title is long
enough, you’ll see the title truncated to accommodate the spinner, then resize to fill
the vacated space after the spinner is deactivated. Elegant integration of indicators is
the type of polish that makes an application appealing and easy to do with Mojo’s
widgets.

Progress Indicators

The progress pill is the most common progress indicator, and is styled to match the
Mojo button and header styles. The other two indicators, progress bars and progress
sliders, are more specialized, but are functionally derived from progress pills; you’ll
manage them in the same way.

Progress Pill

Use a Progress Pill widget (Figure 5-2) to show download progress when loading from
a database, or anytime you initiate a long-running operation and have a sense of the
duration.

Figure 5-2. A Progress Pill widget example

The indicator is designed to show a pill image that corresponds to the model’s value
property, where a value of 0 has no pill exposed and a value of 1 has the pill completely
filling the container. Initialize the indicator’s model value to 0, then progressively up-
date the model property until it has a value of 1.

It’s best to use an interval timer. At each interval callback, increase the progress indi-
cator’s value property and call the updateModel function. For example, start with the
progress pill’s value property set to 0 and set an interval timer for 600 ms. Assuming
the planned operation will take about 3 seconds, you would increase the value property
from 0 to 0.2 at the first update and again by 0.2 at each update thereafter:

if (this.progressCounter > 1) {

// This operation is complete!
this.completeProgress();

}

else {
this.pillModel. progress = this.pillModel.progress + 0.2;
R R ey Rpy |, [N allfhanondl+hic niTTMAAATY .
LHAD.LUIILLULLICTL . IIIUUCJ.\.IIG Iscu\ LilLOD IJ.I.).J.I |Vu\,.nl’

}

136 | Chapter5: Advanced Widgets

Progress Bar

The Progress Bar widget is exactly the same as the progress pill, except that you use x-
mojo-element="ProgressBar" in your scene file. Otherwise, you code it and manage it
just as you do the progress pill. Figure 5-3 shows a progress bar.

Figure 5-3. A Progress Bar widget example

In the default style, there isn’t room on the bar for a title or image, but the properties
are supported nonetheless.

Progress Slider

For media or other applications where you want to show progress as part of a tracking
slider, the Progress Slider widget is an ideal choice. Combining the Slider widget with
the progress pill, the behavior is fully integrated, but not all of the configuration options
are represented. Figure 5-4 shows a progress slider.

Figure 5-4. A Progress Slider widget example

All of the slider properties are represented, and you configure the progress slider just
as you would a Slider widget. You have a model property of value, which can be re-
named through the attributes property. You manage it exactly as you would the pro-
gress pill, by progressively increasing the value property from 0 to 1.

Dynamic Widgets

All of our examples start with declaring a widget within an HTML scene and doing
almost everything else in JavaScript. It is also possible to eliminate even the HTML
declaration and create widgets dynamically from within JavaScript.

For example, you can use the following:
this.controller.setupWidget("my-widget", Attr, this.widgetModel);
Later, the element is added to the DOM:

this.target = this.controller.get("an-element");

this.target.innerHTML = "<div id='my-widget' x-mojo-element='List'></div>";
Then you have to call this.controller.instantiateChildWidgets to parse and apply
the setup. Mojo provides a function that does this automatically, so you could instead
write this to instantiate the widget:

Indicators | 137

this.controller.update($("an-element"), "<div id="my-id' x-mojo-element='List'></div>")

You can even be completely dynamic and generate everything at runtime. Call setup
Widget() before generating the ID and injecting the widget’s node into the DOM.

Widgets inside of lists are a little tricky, since they are automatically instantiated with
the list. You can still create them dynamically by using the widget’s name attribute and
accommodating for their model as part of the list’s model.

Scrollers

The Scroller widget provides the scrolling behavior in Mojo. A scroller is installed au-
tomatically in every scene, and you can have any number of additional scrollers any-
where in the DOM.

You can disable the scroller in a scene by setting the disableSceneSc
roller property to true in the scene arguments to pushScene.

In the current release of Mojo, you can select one of six scrolling modes, specified in
the mode property of the widget’s attributes:

free
Allow scrolling along both the horizontal and vertical axes.

horizontal
Allow scrolling only along the horizontal axis.

vertical
Allow scrolling only along the vertical axis.

dominant
Allow scrolling along the horizontal or vertical axis, but not both at once. The
direction of the initial drag will determine the scrolling axis.

horizontal-snap
In this mode, scrolling is locked to the horizontal axis, but snaps to points deter-
mined by the position of the block elements found in the model’s snapElements
property. As the scroller scrolls from snap point to snap point it will send a
propertyChange event.

vertical-snap
This mode locks scrolling to the vertical axis, and snaps to points determined by
the elements in the snapElements property array.

Upon rendering, the widger targets its single child element for scrolling. If it has more

than one child element, it will create a single div to wrap the child elements. It will
never update this element, so if you replace the contents of a Scroller widget after it is

138 | Chapter5: Advanced Widgets

instantiated, scrolling might not work. Instead, put another block element inside the
scroller and update its contents as needed.

The size of the scroller’s target div, the child element, must be set in
CSS. By default, the div will expand to the size of the contents. You must
944" constrain the width, on a horizontal scroller, or the height, on a vertical
* scroller, within your CSS or the scroller will not function.

A Scroller widget will ignore any drag start event that doesn’t indicate a valid scroll
start for its mode setting, so you can nest scrollers if they don’t conflict. For example,
you can put a small horizontal scroller inside the default scene vertical scroller. This
configuration will pass horizontal swipes to the horizontal scroller, but vertical swipes
on the horizontal scroller, or any kinds of swipes outside the horizontal scroller, will
be passed to the scene scroller.

Back to the News: Adding a featured feed Scroller

In this example, a rotating feature story will be added to the News application. This
will present a title and story from the feed list for 5 seconds, after which time it will be
replaced by another story. This rotating feature story will be displayed in a fixed-size
area above the feedListWgt to allow for a stable view, but we’ll attach a vertical scroller
to allow users to read the full story if it is longer than the view, and we’ll enclose it all
in a drawer so that users can selectively enable or disable this view.

Start by modifying the feedList scene (feedList-scene.html) to add an icon to the palm-
header to serve as a tap target to open and close the drawer. We’re going to change the
image to match the state of the drawer by using two different classes, featureFeed-
close and featureFeed-open. We’ll start with the drawer closed.

The Scroller is declared and encloses featureStoryDiv, which will be fixed to a specific
height through CSS and filled by the story title and text. This is all placed above the
feedList widget in the scene’s layout.

Within the featureStoryDiv, define the splashScreen div to fill the space for the initial
launch case where there are no stories to display. The update-image style will insert the
News icon alongside a copyright notice for the application. We’ll hide this div when
there are stories to display; each story title and text will be inserted in the following
divs, identified as featureStoryTitle and featureStory:

<div id="feedlListScene">
<div id="feedListMain">

<l-- Rotating Feature Story -->
<div id="feedlList view header" class="palm-header left">
Latest News
<div id="featureDrawer" class="featureFeed-close"></div>
</div>

Scrollers | 139

<div class="palm-header-spacer"></div>
<div x-mojo-element="Drawer" id="featureFeedDrawer">
<div x-mojo-element="Scroller" id="featureScroller" >
<div id="featureStoryDiv" class="featureScroller">
<div id="splashScreen" class="splashScreen">
<div class="update-image"></div>
<div class="title">News v0.8#{version}
<div class="palm-body-text">
Copyright 2009, Palm®

</div>
</div>
</div>
<div id="featureStoryTitle" class="palm-body-title">
</div>
<div id="featureStory" class="palm-body-text">
</div>
</div>
</div>
</div>
<l-- Feed List -->

<div class="palm-list">
<div x-mojo-element="List" id="feedListWgt"></div>
</div>
</div>
</div>

Set up the Drawer and the Scroller in the feedList-assistant.js. Set up a listener for taps
to the new tap target in the header and then the Drawer widget with the state defined
by a new global, News.featureFeedEnable. In Chapter 6, we’ll add saved preferences
and we will retain the drawer’s state at that time.

The featureScrollerModel defines a single property, the scroller mode, in this case set
to vertical, and the Scroller is set up with just its ID and model as arguments. The
scroller simply responds to vertical swipes to scroll the content, and will generate
scrolling events if you want to receive them, although you don’t normally need to:

// Setup header, drawer, scroller and handler for feature feeds

this.featureDrawerHandler = this.toggleFeatureDrawer.bindAsEventListener(this);
this.controller.listen("featureDrawer", Mojo.Event.tap,
this.featureDrawerHandler);

this.controller.setupWidget("featureFeedDrawer”, {},
this.featureFeedDrawer = {open: News.featureFeedEnable});

this.featureScrollerModel = {
mode: "vertical”

}s

this.controller.setuphidget("featureScroller", this.featureScrollerModel);

this.readFeatureStoryHandler = this.readFeatureStory.bindAsEventListener(this);

this.controller.listen("featureStoryDiv", Mojo.Event.tap,
this.readFeatureStoryHandler);

140 | Chapter5: Advanced Widgets

// If feature story is enabled, then set the icon to open

if (this.featureFeedDrawer.open === true) {
this.controller.get("featureDrawer").className = "featureFeed-open";
} else {

this.controller.get("featureDrawer").className = "featureFeed-close";

}

A listener is set up to handle taps in the feature story div, but it is unrelated to the
Scroller. If users see a story they want to read further, they can scroll the story or tap it
to go to the storyView scene with that story. And we’ll finish by setting the feature
Drawer element’s className to match the state of the drawer; this is also a future pro-
vision for using saved preferences when the scene could be activated with the drawer
in the open state.

The CSS completes the implementation by fixing the size of the Scroller div and for-
matting the contents. The first two rules support the tap target, either open or closed,
and the drawer background. You’ll have to add the appropriate images to the images
folder of your application to reproduce this:

/* FeedList Header styles for feature drawer and selection */

.featureFeed-close {
float:right;
margin: 8px -12px Opx Opx;
height:35px;
width: 35px;
background: url(../images/details-open-arrow.png) no-repeat;

}

.featureFeed-open {
float:right;
margin: 8px -12px Opx OpX;
height:35px;
width: 35px;
background: url(../images/details-closed-arrow.png) no-repeat;

}

.palm-drawer-container {
border-width: 20px 1px 20px 1px;
-webkit-border-image: url(../images/palm-drawer-background-2.png)
20 1 20 1 repeat repeat;
-webkit-box-sizing: border-box;
overflow: visible;

}

.featureScroller {
height: 100px;
width: 280px;
margin-left: 20px;

}

The palm-drawer-container selector sets the drawer container’s dimensions and
applies a white background to contrast with the scene’s main background. The

Scrollers | 141

featureScroller style bounds the scroller’s height because we have a vertical scroller;
in the case of a horizontal scroller, we’d bound the width. If you aren’t careful with
your CSS, the scroller will not behave as expected.

The rest of the sample is related to handling the feature story. Create a new method,
toggleFeatureDrawer (), to open or close the drawer. If the drawer is open, the method
will close it by setting the drawer’s model to false, and setting the div class to feature
Feed-close. If the drawer is closed, the actions are reversed to open the drawer and
we’ll start the story rotation if it’s not already running. The controller’s
modelChanged() method is called to signal the model changes to the drawer widget:

// toggleFeatureDrawer - handles taps to the featureFeed drawer. Toggle
// drawer and icon class to reflect drawer state.
FeedListAssistant.prototype.toggleFeatureDrawer = function(event) {
var featureDrawer = this.controller.get("featureDrawer");
if (this.featureFeedDrawer.open === true) {
this.featureFeedDrawer.open = false;
News.featureFeedEnable = false;
featureDrawer.className = "featureFeed-close";
} else {
this.featureFeedDrawer.open = true;
News . featureFeedEnable = true;
featureDrawer.className = "featureFeed-open";

// If there's some stories in the feedlist, then start
// the story rotation even if the featureFeed is disabled as we'll use
// the rotation timer to update the DB
if(this.feeds.list[this.featureIndexFeed].stories.length > 0) {
var splashScreenElement = this.controller.get("splashScreen");
splashScreenElement.hide();
this.showFeatureStory();
}
}
this.controller.modelChanged(this.featureFeedDrawer);
b
Create the showFeed() method to present the feature story and set up the timer
for the next story. We set the timer default to 5 seconds (5000 milliseconds) in
News . featureStoryInterval, another new global variable, added to stage-assistant.js. If
the timer has been set, rotate the story by taking the next story in the current feed or
the first story in the next feed if it’s at the end of the current feed. We will also add
some logic to strip URLs and other HTML from the title and text:
[mmmm e e e

// Feature story functions

1

// showFeatureStory - simply rotate the stories within the

// featured feed, which the user can set in their preferences.
FeedListAssistant.prototype.showFeatureStory = function() {

/i IT timer is null, ei
// previous story..
if (News.featureStoryTimer === null) {

142 | Chapter5: Advanced Widgets

// ** These next two lines are wrapped for book formatting only **
News.featureStoryTimer = this.controller.window.setInterval(
this.showFeatureStory.bind(this), News.featureStoryInterval);

}

else {
this.featureIndexStory = this.featureIndexStory+1;
/] ** These next two lines are wrapped for book formatting only **
if(this.featureIndexStory >=
this.feeds.list[this.featureIndexFeed].stories.length) {
this.featureIndexStory = 0;
this.featureIndexFeed = this.featureIndexFeed+1;
if (this.featureIndexFeed >= this.feeds.list.length) {
this.featureIndexFeed = 0;
}

}

var summary = this.feeds.list[this.featureIndexFeed].stories|
this.featureIndexStory].text.replace(/(<([*>]+)>)/ig,"");

summary = summary.replace(/http:\S+/ig,"");

var featureStoryTitleElement = this.controller.get("featureStoryTitle");

/] ** These next two lines are wrapped for book formatting only **

featureStoryElement.innerHTML =

unescape(this.feeds.list[this.featureIndexFeed].stories|
this.featureIndexStory].title);
var featureStoryElement = this.controller.get("featureStory");
featureStoryElement.innerHTML = summary;

// Because this is periodic and not tied to a screen transition, use
// this to update the db when changes have been made

if (News.feedListChanged === true) {
News.feedListChanged = false;

this.feedWgtModel.items = this.feeds.list;
this.controller.modelChanged(this.feedWgtModel, this);

}
};

// readFeatureStory - handler when user taps on feature story;
// will push storyView with the current feature story.
FeedListAssistant.prototype.readFeatureStory = function() {
Mojo.Controller.stageController.pushScene("storyView",
this.feeds.list[this.featureIndexFeed],
this.featureIndexStory);

Y

Following showFeatureStory() is readFeatureStory(), which simply pushes the story
View scene with the current feature story.

When you run the application, you’ll see a different look, with the feature story now
filling the top third of the feedList scene, as shown in Figure 5-5.

Scrollers | 143

Eric Kuhn: IAVA Founder on Ning
and his Veterans Support
Campalgn

Paul Rieckhoff is the Founder and
Executive Director of Iraa and

Figure 5-5. News with scrolling feature feed

There’s still some cleanup needed. We must maintain this.featureIndexFeed during
list reordering, and delete. You can see the changes made to the listDeleteHandler()
and listReorderHandler() in the feedList-assistant.js in the News source listing in Ap-
pendix D.

Pickers

Pickers are used to present a common Ul for selecting inputs in a variety of application
scenarios. Mojo offers pickers for common objects such as a date, time, or number, or
to select files.

The next section covers the first three pickers, since they are conventional widgets and
are very similar to each other. After that, we will look at the File picker. It’s accessed
through function calls, and is actually implemented as a separate application wrapped
with a framework interface.

144 | Chapter5: Advanced Widgets

Simple Pickers

The models for the date, time, and integer pickers are very similar. The pickers are
declared within your scene’s view file and wrapped with styling divs as shown here:
<div class="palm-group unlabeled">
<div class="palm-list">
<div id="DatePkrId" x-mojo-element="DatePicker"></div>
</div>
</div>

This creates a picker that spans the width of the screen and is enclosed with an unlabeled
group frame (as shown in Figure 5-6).

oaTE| Mar || O

B

Figure 5-6. A Date Picker widget example

These pickers present choices as a linear sequence of values that wraps around; when
you scroll to the end of the sequence, they simply continue back at the beginning.
There’s no way to override this behavior.

Date pickers

As shown in Figure 5-6, a date picker allows selection of month, day, and year values.
The Date picker’s model has a single property, named date by default, which should
be assigned a JavaScript Date object. You can change the model property’s name
through the attributes modelProperty, and can assign an optional label that’s displayed
to the left of the picker. You can use the JavaScript functions GetMonth(), GetDate(), or
GetYear() to extract those parts of the Date object that you need.

Time pickers

A Time picker is similar to a date picker, focusing on the time fields of the Date object
and with an optional attributes property, minuteInterval, which defaults to the integer
5. As shown in Figure 5-7, a time picker allows selection of hours, minutes, and either
A.M. or P.M. for time selection. The picker will suppress the AM/PM capsule if the 24-
hour time format is selected in the user preferences or by the locale.

Figure 5-7. A Time picker widget example

Pickers | 145

You can use the JavaScript functions GetHours(), GetMinutes(), and GetSeconds() to
extract what you need from the Date object.

Integer pickers

A simple number picker is included as the integer picker. Shown in Figure 5-8, the
integer picker offers a selection between minimum and maximum integer values, both
of which are specified by required min and max widget properties.

Figure 5-8. An Integer picker widget example

The integer picker is similar to the date and time pickers in all ways, except that its
default model property is named value.

Back to the News: Adding an integer picker

News doesn’t have many opportunities to use a picker, but we can add a picker to the
Preferences scene to set the feed rotation period. There are arguably better options for
handling this UI, so this isn’t intended as a good Ul design example, but as a way of
demonstrating the coding for a Picker widget. By default, the interval is set to 5 seconds,
but with this picker, the user can customize to any period between 1 and 60 seconds.

The Integer picker declaration is added to preferences-scene.html in front of the list
selector widget for the update interval. Wrap it in a couple of divs with palm-group and
palm-list styles:
<div class="palm-group">
<div class="palm-group-title">Feature Feed</div>
<div class="palm-list">
<div x-mojo-element="IntegerPicker" id="featureFeedDelay">
</div>
</div>
</div>
</div>

The widget setup is included in the setup method of preferences-assistant.js, as shown
next. The widget is set up with a range from 1 to 20 seconds and initialized to the
current global interval, News . featureStoryInterval, which is in milliseconds. A listener
is added for Mojo.Event.propertyChange events:

// Setup Integer Picker to pick feature feed rotation interval
this.controller.setupWidget("featureFeedDelay",

label: "Rotation (in seconds)",
modelProperty: "value",

146 | Chapter5: Advanced Widgets

min: 1,
max: 20

b
this.featureDelayModel = {

value : News.featureStoryInterval/1000

1

this.changeFeatureDelayHandler = this.changeFeatureDelay.bindAsEventListener(this);
this.controller.listen("featureFeedDelay", Mojo.Event.propertyChange,
this.changeFeatureDelayHandler)

The handler is added to the bottom of the preferences assistant, updating the global
interval with the selected value, in milliseconds, and restarts the interval timer with the
new value. The interval timer would be set by the FeedListAssistant upon activation
or when the feed list is first updated:

// changeFeatureDelay - Handle changes to the feature feed interval
PreferencesAssistant.prototype.changeFeatureDelay = function(event) {

Mojo.Log.info("Preferences Feature Delay Handler; value = ",
this.featureDelayModel.value);

// Interval is in milliseconds
News.featureStoryInterval = this.featureDelayModel.value*1000;

// 1If timer is active, restart with new value

if(News.featureStoryTimer !== null) {
this.controller.window.clearInterval(News.featureStoryTimer);
News.featureStoryTimer = null;

}
|5

Figure 5-9 shows the new Preferences scene with the integer picker in place.

File Picker

WebOS devices have a media partition, a FAT32 file partition that is available to ap-
plications and is accessible to desktop operating systems, whether PC, Mac, or Linux,
when the device is attached through a USB cable. This access mechanism is called
USB mode.

The file picker presents a file browser that users can use to navigate the directory struc-
ture and optionally select a file. The file picker presents a flat listing of all files on disk,
regardless of directory structure, and allows filtering by file type (such as file, image,
audio, or video) Depending on the options provided by the calling application, the
selected file will either be opened in an appropriate viewer or have its reference returned.

The file picker behaves like a full-screen widget, but isn’t technically a widget. It is
actually an application that is pushed into the current scene, similar to a viewer, main-
taining the calling application’s context.

Pickers | 147

Figure 5-9. News with an integer picker

The presentation of the files will differ by file type. For example:
* Files: Name and icon
* Images: Thumbnail grid
* Audio and Video: Name and thumbnail

Figure 5-10 shows the file view, with the other view options presented as Command
menu items across the bottom of the scene.

Advanced Lists

Lists were introduced in Chapter 3 with several extensive examples. Even so, some
major list features weren’t touched on. We’ll take a look at some more advanced fea-
tures here.

With all list widgets, you can intervene in the middle of the list rendering to provide
some intermediate formatting to list items or to insert dividers between rows. After a
briet review ot those teatures, we will add a Filter List widget to News to implement a

148 | Chapter5: Advanced Widgets

Framework Libr...

[, PhotoDatabase

e om;fOfmfesWdid'eL“ ipk

Figure 5-10. A file picker example

search feature. This is a good example of a dynamic list, something you can use in many
different types of applications.

Formatters

The formatters property is a hash of property names to formatter functions, like this:
{timeValue: this.myTimeFormatter, dayOfWeek: this.dayIndexToString, ... }

Before rendering the relevant HTML templates, the formatter functions are applied to
the objects used for property substitution. The keys within the formatters hash are
property names to which the formatter functions should be applied.

The original objects are not modified, and the formatted properties are given modified
new names so that the unformatted value is still accessible from inside the HTML
template. Formatted values have the text “Formatted” appended to their names. In the
example above, the HTML template could refer to #{timeValueFormatted} in order to
render the output from the myTimeFormatter() function. Formatter functions receive
the relevant property value as the first argument, and the appropriate model object or
items element as the second.

Advanced Lists | 149

Dividers

You can add dividers to your lists; they are particularly useful for long lists. You will
specify the function name to the dividerFunction property and a template to divider
Template. If no template is specified, the framework will use the default, a single-letter
alpha divider (list-divider.html, styled with the palm-alpha-divider class).

The divider function works similar to a data formatter function. It is called with the

item model as the sole argument during list rendering, and it returns a label string for
the divider.

Filter Lists

Use a Filter List widget when your list is best navigated with a search field, particularly
one where you would like to instantly filter the list as each character is typed into the
field. Itis intended to display a variable length list of objects, built by a special callback
function.

The widget includes a text field displayed above a list, where the list is the result of
applying the contents of the text field through an application-specific callback function
against some off-screen data source. The text field is hidden when empty, but it is given
focus as soon as any key input is received. At the first keystroke, the field is displayed
with the key input (after a delay; specified via the delay attribute—default is 300ms),
and the framework calls the function specified by filterFunction.

The framework calls the filterFunction, which is similar to the itemsCallback function,
in the base List widget (see Chapter 3) when data is needed for displaying list entries.
You provide the filterFunction, with arguments for the list widget element, offset, and
count, similar to itemsCallback, plus an additional argument, filterString.

It is understood that the requested data may not be immediately available. Once the
data is available, the given widget’s noticeUpdatedItems() method should be called to
update the list. It’s acceptable to call the noticeUpdatedItems() immediately if desired,
or any amount of time later. Lengthy delays may cause various scrolling artifacts,
however.

The filter list will display a spinner in the text field while the list is being built, and it
is replaced with an entry count when done. To set the count properly, call the widget’s
setCount(totalSubsetSize), where totalSubsetSize is the number of entries in the list.
To set the list length, call setLength(totalSubsetSize); the length is a dependency of
some internal widget functions and needs to be set accurately.

Back to the News: Adding a search field

Search is one of the best applications for the Filter List widget. You can start typing on
the feedList scene and quickly search all feeds for a keyword, viewing the results in the
same list format used for the individual feed lists. It’s simple to access and powerful.

150 | Chapter5: Advanced Widgets

The Filter List is declared and set up conventionally, but requires a filter function called
to process the keyword entries and returns a list for display. In the News design, we’re
going to put the search results into a temporary list that is structured like the feed list.
We will display it using the storylList assistant.

Because the Filter List search field is going into the feedList view, it will be necessary
to hide the feed list and feature story when in search mode. Start by adding the Filter
List declaration at the top of feedList-scene.html and wrap the rest of the scene in a div
with feedListMain as its ID. This will be used later to hide the rest of the scene:
NES Search Field -->
<div id="searchFieldContainer">

<div x-mojo-element="FilterList" id="startSearchField"></div>
</div>

<div id="feedlListMain">
<!-- Rotating Feature Story -->

Now set up the widget in feedList-assistant.js, reusing the storylist templates, pre-
paring to format the search results in a storyList scene. Identify the filter function as
this.searchlist, and use a standard delay of 300 milliseconds. This is the default, so
this step can be omitted, but you may need to tune the behavior, so it’s not a bad idea
to add it at the beginning:

// Setup the search filterlist and handlers;
this.controller.setupWidget("startSearchField",

{
itemTemplate: "storyList/storyRowTemplate",
listTemplate: "storylList/storylListTemplate",
filterFunction: this.searchList.bind(this),
renderLimit: 70,
delay: 300

1

this.searchFieldModel = {
disabled: false
b;

this.viewSearchStoryHandler = this.viewSearchStory.bindAsEventListener(this);

this.controller.listen("startSearchField", Mojo.Event.listTap,
this.viewSearchStoryHandler);

this.searchFilterHandler = this.searchFilter.bindAsEventListener(this);

this.controller.listen("startSearchField", Mojo.Event.filter,
this.searchFilterHandler, true);

Add two listeners, one for the tap event and the other for a filter event. The filter event
is used on Filter Field and Filter List only. It is sent after the defined delay once the filter
field is activated, on the first character entry, and immediately when the field is cleared.
Listening for this event allows you to do some pre- and postprocessing with the widget
or the scene.

Advanced Lists | 151

With News, we want to hide the rest of the scene when the first character is typed, and
restore it when the field is cleared. To do this, add this new method in the feedList
assistant; it simply calls the Prototype methods hide() and show() of the div element,
feedListMain, in feedlist-scene.html:

// searchFilter - triggered by entry into search field. First entry will
// hide the main feedList scene - clearing the entry will restore the scene.
/1
FeedListAssistant.prototype.searchFilter = function(event) {
Mojo.Log.info("Got search filter: ", event.filterString);
var feedListMainElement = this.controller.get("feedListMain");
if (event.filterString !== "")
/l Hide rest of feedList scene to make room for search results
feedListMainElement.hide();
} else {
// Restore scene when search string is null
feedListMainElement.show();

IH

After the filter event is sent, the framework calls the function assigned to the filter
Function property in the Filter List widget’s attributes; in this case,
this.searchList(), which is added also to feedList-assistant.js and shown here:

// searchList - filter function called from search field widget to update the
// results list. This function will build results list by matching the
// filterstring to the story titles and text content, and then return the
// subset of the list based on offset and size requested by the widget.
/1
FeedListAssistant.prototype.searchList = function(filterString,
listWidget, offset, count) {

var subset = [];
var totalSubsetSize = 0;

this.filter = filterString;

// If search string is null, return empty list, otherwise build results list
if (filterString !== "")

// Search database for stories with the search string; push matches
var items = [];

// Comparison function for matching strings in next for loop
var hasString = function(query, s) {
if(s.text.toUpperCase().index0f(query.toUpperCase())>=0) {
return true;

if(s.title.toUpperCase().index0f(query.toUpperCase())>=0) {
return true;
}

return false;

|5

152 | Chapter5: Advanced Widgets

for (var i=0; i<this.feeds.list.length; i++) {
for (var j=0; j<this.feeds.list[i].stories.length; j++) {
if(hasString(filterString, this.feeds.list[i].stories[j])) {
var sty = this.feeds.list[i].stories[j];
items.push(sty);

}

this.entirelList = items;
Mojo.Log.info("Search list asked for items: filter=",
filterString, " offset=", offset, " limit=", count);

// Cut down list results to just the window asked for by the widget
var cursor = 0;
while (true) {
if (cursor >= this.entirelList.length) {
break;
}

if (subset.length < count 8& totalSubsetSize >= offset) {
subset.push(this.entirelist[cursor]);

totalSubsetSize++;
CUTSOT++;

}

// Update List
listWidget.mojo.noticeUpdatedItems(offset, subset);

// Update filter field count of items found
listWidget.mojo.setLength(totalSubsetSize);
listWidget.mojo.setCount(totalSubsetSize);

b
The function definition is filterFunction (filterString, listWidget, offset,

limit), using the arguments shown in Table 5-1.

Table 5-1. FilterFunction arguments

_-Argument - * Type . - Description i e
filterString String The contents of the filter field or the search string to be used
listWidget Object The DOM node for the list widget requesting the items
offset Integer Index in the list of the first desired item model object (zero-based)

limit Integer ~ Count of the number of item model objects requested

Assuming the filterString isn’t empty, which it shouldn’t be, the first part of the
method will do a primitive match against all the story titles and text content across all
feeds. The results are pushed into the items array and assigned to this.entireList when
complete.

Advanced Lists | 153

The list is cut down to just the portion of the list that was requested by the offset and
the count, and is assigned to subset, which is returned with the offset by calling
listWidget.mojo.noticeUpdatedItems(offset, items), using the arguments shown in
Table 5-2. This is a method of listWidget, an argument passed by the framework.

Table 5-2. NoticeUpdatedltems arguments

- Argument
offset Integer Indexin the list of the first object in i tems; usually the same as the offset passed to the itemsCall

back
items Array An array of the list item model objects that have been loaded for the list

Finish up with calls to listWidget.mojo.setlength(totalSubsetSize) and list
Widget.mojo.setCount(totalSubsetSize) to set the list length and the results count for
the counter displayed in the filter field.

With these changes, users can type at any time into the feedList scene to see the filter
field display and the results presented in list form below, similar to what is shown in
Figure 5-11.

Figure 5-11. News with a search filter list

154 | Chapter5: Advanced Widgets

By Jeff Mason WASHINGTON, March 7
{Reuters) - President Barack Obama
promised on Saturday lo do evecything

necassary 1o boost the economy out of recession and
warned, in an opening shot at critics of his budget proposals;

Figure 5-12. News with a search story view

After the list is built, the tap event indicates a user selection of a list entry, just as it does
for a conventional list. Since the search list is built as a stories array, News responds to
a tap by creating a temporary feed and pushing the storyView scene with that feed.
Here’s the viewSearchStory() method:

// viewSearchStory - triggered by tapping on an entry in the search
// results list will push the storyView scene with the tapped story.
/7
FeedListAssistant.prototype.viewSearchStory = function(event) {
var searchlist = {
title: "Search for: "+this.filter, stories: this.entirelist
};
var storyIndex = this.entirelist.indexOf(event.item);
Mojo.Log.info("Search display selected story with title = ",
searchList.title, "; Story index - ", storyIndex);
Mojo.Controller.stageController.pushScene("storyView",
searchList, storyIndex);

IH

As shown in Figure 5-12, as well as viewing the selected story, users can tap Next and
Previous to view each story in the results list.

Advanced Lists | 155

Viewers

With Mojo, you can embed rich media objects within your scenes. There are widgets
for a web object, a full screen image scroller, and partial support for HTML 5 audio
and video tags for inclusion of audio and video objects.

WebView

To embed a contained web object, declare and instantiate a WebView widget. You can
use it to render local markup or to load an external URL; as long as you can define the
source as a reachable URL, you can use a WebView to render that resource.

Back to the News: Adding a web view

Tapping on a story will push a web view scene and load the original story’s URL in that
scene. This example is a simple use of Web view, where we create a new scene for the
web page, but it’s still within the News application’s context.

Create a new scene, called webView, using palm-generate, then declare the widget in
your scene view and configure it in your scene assistant before calling setupWidget().
The storyWeb-scene.html is just one line:

<div id="storyWeb" x-mojo-element="WebView"></div>

And there’s not much more to the storyWeb-assistant.js to configure and set up the
WebView widget:

/* StoryWebAssistant - NEWS
Copyright 2009 Palm, Inc. All rights reserved.
Passed a story URL, displays that element in a full scene webview with
a load indicator and reload button. Handles link selections within the
view. User swipes back to return to the calling view.
Major components:
Arguments: i
- storyURL; Selected feed from which the stories are being viewed
*/
function StoryWebAssistant(storyURL) {
// Save the passed URL for inclusion in the webView setup

this.storyURL = storyURL;
}

StoryWebAssistant.prototype.setup = function() {

// Setup up the webView widget

156 | Chapter5: Advanced Widgets

this.controller.setupWidget("storyWeb", {url: this.storyURL},
this.storyViewModel = {});

// Setup handlers for any links selected.

this.linkClickedHandler = this.linkClicked.bindAsEventListener(this);

this.controller.listen("storyWeb", Mojo.Event.webViewLinkClicked,
this.linkClickedHandler);

// Setup App Menu
this.controller.setupWidget(Mojo.Menu.appMenu, News.MenuAttr, News.MenuModel);

};

StoryWebAssistant.prototype.cleanup = function(event) {
this.controller.stoplListening("storyWeb", Mojo.Event.webViewLinkClicked,
this.linkClickedHandler);

15

// linkClicked - handler for selected links, requesting new links to be opened
// in same view
StoryWebAssistant.prototype.linkClicked = function(event) {

Mojo.Log.info("Story Web linkClicked; event.url = ", event.url);

var link = this.controller.get("storyhWeb");

link.mojo.openURL(event.url);

};

There are more options than what’s shown here. You can set the virtual page used to
render through the attributes properties virtualpageheight and virtualpagewidth and
set the minFontSize. You can add listeners for many Mojo web events, including
webViewlLoadProgress, webViewLoadStarted, webViewlLoadStopped, and webViewlLoad
Failed to intervene during any web page load. There are even more events than that;
you can find a complete list of events and descriptions in the webOS SDK.

To get to the webView, storyView will be modified to add another command menu, this
time to present a button on the lower-left of the scene to launch the webView scene:

this.storyMenuModel = {
items: [
{iconPath: "images/url-icon.png", command: "do-webStory"},
{3
{items: []},
{1
{}
1%

if (this.storyIndex > 0) {
this.storyMenuModel.items[2].items.push({
icon: "back",
command: "do-viewPrevious"
}s
} else {
this.storyMenuModel.items[2].items.push({

icon: "", command: "",

Viewers | 157

label: " "

B
}

if (this.storyIndex < this.storyFeed.stories.length-1) {
this.storyMenuModel.items[2].items.push({
icon: "forward",
command: "do-viewNext"

b;
} else {
this.storyMenuModel.items[2].items.push({
icon: "", command: "",
label: " "
b;
}

this.controller.setupWidget(Mojo.Menu.commandMenu, undefined,
this.storyMenuModel);

Next, push the storyWeb scene in storyView-assistant.js by adding another command
handler in handleCommand() after those for do-viewNext and do-viewPrevious:

case "do-webStory":
Mojo.Log.info("View Story as a Web View Menu; url = ",
this.storyFeed.stories[this.storyIndex].url);
Mojo.Controller.stageController.pushScene("storyWeb",
this.storyFeed.stories[this.storyIndex].url);
break;

Load Indicator

Whether you’re using a full-screen web view or adding to the end of your scene, you
may want to use a loading indicator similar to the webOS browser. Even with a fast
browser, many pages take a few seconds to load, and it’s helpful to have some type of
indication for the user.

There is a detailed sample in the Palm SDK, but here’s a brief description of the design:

* Set up Command menu buttons for your indicator and Reload button; only one
will be displayed at a time, but you’ll switch them back and forth, so you need to
set up both of them.

* Add listeners for the loadStarted and loadStopped events to switch the menu but-
tons and update the Command menu model.

* The body of the indicator handling is in a listener for loadProgress, which calcu-
lates the percent complete, using the loadProgress event.progress value, and in-
vokes an update function to select the appropriate image based on the percent
complete.

* That image is inserted into the DOM to act as the indicator.

As shown in Figure 5-13, the WebView widget is put into its own scene. It can also be
declared within a scene so that a URL can be passed to it after it has been set up and

158 | Chapter5: Advanced Widgets

the scene is active. For example, an application such as Email, which might have to
present HTML content, can declare and set up a widget without the url property
defined:

this.controller.setupWidget("storyWeb", {}, this.storyViewModel = {});

And when the URL is available, call the widget’s openURL method:
var webview = this.controller.get("storyWeb");
webview.mojo.openURL(URL);

The web content will be displayed wherever the widget is declared within your scene;
you can use another property, topMargin, to automatically scroll part of the scene to
expose the top of the web view if that’s useful.

: @
fROG N wgg}«w‘ N i

Lxﬁ‘ Insusance From New
zz,k hire 1o Jearn mone

THE
HUFFINGTON
POST

MARIH 7. 3848

RS mm&&mnuw fdore in mﬂmﬂ Madott Victhr

oy R s o

w4 Michael J. Panzner Baio B oonsmi
Aytbac snd 25-year Wall Steet £ Bocome B Slotigers

Posted Marsh 7, 2008 (0357 pag B 1N Index
{£87)
Up Next: The Obama Bounce?
gesdeang
Read More: Barack Obama, Bear
Market, Great Depression, Housing Bubble, Housing
Crisis, S&P 500, Stock Market, Business News
- Search HuffPost
L s Show yoursupmnt. Al of g sudden, our J

Busg s aticle ap.

Figure 5-13. A WebView widget example

Other Viewers

There are other viewers that you can add to your application: image view, audio players,
and video players. ImageView is very similar to WebView, but the audio and video players
are quite different. None of these other viewers is presented in depth here, but each is
briefly described. There is a lot more information available in the webOS SDK.

Viewers | 159

Image view

Designed to view an image in full screen, with support for zooming and panning while
optionally paging between additional images, the ImageView widget is configured
much like the WebView widget. You can use an ImageView for displaying single im-
ages, but it is intended as a scrolling viewer, flicking left and right through a series of
images. The example in Figure 5-14 shows an implementation of the ImageView
widget, partially paged to the right.

Figure 5-14. An ImageView widget example

Audio and video objects

There are application services supporting playback through the core audio and video
applications, but for playback within your application, you can include audio and video
objects that are based on the HTML 5 media extensions. You should use these objects
when you want to maintain your application’s context or play content directly within
your scene. The application services, which are discussed in Chapter 8, are the best
options when you just want to play a music track or some video.

160 | Chapter5: Advanced Widgets

The Audio object provides playback of audio based on the HTML 5 audio element
definition. However, you must create the object using JavaScript in one of your
assistants, as Mojo doesn’t currently support creating objects directly through tags in
HTML.

Audio objects are created from the Audio constructor in your assistant’s setup method,
and to play the audio, you set the source and event handlers before calling the object’s
play method. You can set up multiple audio objects to minimize delays when playing
successive audio tracks.

Similarly, a Video object based on the HTML 5 video element definition provides video
playback. As with the Audio object, you will play video after creating the Video object,
setting the source and setting up event handlers.

Unlike audio, video playback requires coordination of the video sink through helper
functions to freezeVideo and activateVideo. When an application is not in the fore-
ground, it must release the video sink in case another active application needs to display
video.

The media objects support multiple sources; both file-based and streaming sources are
supported. You can learn more about the extent of the features and events supported
by reviewing the HTML 5 spec at www.whatwg.org/specs/web-apps/current-work/.

Summary

With this discussion of advanced widgets, you’ve now learned all about Mojo’s UI
features and how to build a range of applications from simple to complex. This chapter
covered indicators, widgets for showing activity and measuring progress; pickers and
viewers; specialized widgets providing sophisticated interaction with specific data
types; and a few advanced widgets, filter lists, and scrollers.

It’s time to move on to storage and services that can extend your applications beyond
Ul and other functional areas that are more like native applications than web applica-
tions. Even without going further, you can build some very compelling and unique
applications using Mojo’s web development model, but the services will give your ap-
plication some new and powerful options.

Summary | 161

CHAPTER 6
Data

Access to local data storage is a signature feature of native application models. Web
applications do not have access to local data storage other than browser cookies. Re-
cently, there has been an effort to address these needs, particularly with the proposed
HTML 5 APIs for structured client storage.

Palm webOS supports the HTML 5 Database APIs and provides two specific APIs for
simple data creation and access:

Depot
A wrapper on the HTML 5 APIs for simple object storage and retrieval.
Cookie

A simplified interface to browser cookies, this is a single object store for small
amounts of data.

You will have to evaluate your needs to determine which solution is the best.

* Cookies are best used for synchronous access to small amounts of data, such as
preferences, version numbers, and other state information.

* Both HTML 5 databases and Depot are intended to support caches for offline
access and to help with performance issues while accessing online data.

* Depot is recommended for storing simple objects without a schema design or
manual transaction and query handling; otherwise, use an HTML 5 database.

* For disconnected applications that require a data store, an HTML 5 database is
the best solution.

Whichever solution you select, it is critical that you provide some local caching for
offline use, as stale data is better than no data for most applications. Conversely, you
should provide a dynamic source for your data, as it’s best to update the source data
when the device is connected. Applications that can refresh their data or use online
storage instead of the device storage will be more flexible in the long run.

163

In this chapter, both depot- and cookie-based storage will be covered in depth, with
examples shown using the sample News application. The HTML 5 APIs will also be
summarized with guidelines on using these APIs and where to find more information.
Finally, we will revisit Prototype’s Ajax functions. Chapter 3 included an example using
the Ajax.Request method to update the news feeds. In this chapter, you will get some
information on each of the Ajax methods and response handling.

Working with Cookies

The cookie is a well-known browser feature, created early on to store state or session
information. Mojo cookies have a similar purpose, and are technically related to
browser cookies, but with an object interface to simplify use by webOS-applications.
Mojo cookies typically store small amounts of data that will preserve application state
and related information, such as preference settings.

Palm webOS creates a fake domain for running applications, based on each application
ID. Cookies created by the application code are associated with that domain, so unlike
browser cookies, they’ll never be present as part of web requests to other services; they
are strictly for local storage.

You should limit cookies to less than 4kB, but can have multiple cookies within an
application if needed. You can remove cookies if they are no longer needed and the
framework will delete an application’s cookies if the application is removed from the
device.

Mojo.Model.Cookie(id) opens the cookie that matches the ID argument or, if there is
no match, creates a new cookie with that ID. There are three methods:

get()
Retrieves the object stored in the cookie (if it exists) or returns undefined.

put()
Updates the value of the named cookie with an optional date/time after which the
object is deleted.

remove()
Removes the named cookie and deletes the associated data.

The Cookie function and all of its methods are synchronous, unlike Depot and the
database functions, making for a simpler calling interface and return handling.

Back to the News: Adding a Cookie

We’ll use a cookie object to save the News preferences. Beyond the basics of creating
the cookie and retrieving it on launch, we’ll also add code to update the cookie when

tha menfaramane shanos
ulil prélrlnees Cnaingc.

164 | Chapter6: Data

Since the preferences are used in a few different places in the News application, we’ll
create the specific News cookie functions in models/cookie.js. The News . Cookie will have
an initialize() function, which opens and gets the News cookie if it exists already, or
creates the News cookie if not. The cookie’s identifier doesn’t need to be unique outside
of this application:

/*

*/

Ne

Cookie - NEWS
Copyright 2009 Palm, Inc. All rights reserved.

Handler for cookieData, a stored version of News preferences.
Will load or create cookieData, migrate preferences and update cookieData
when called.

Functions:

initialize - loads or creates newsCookie; updates preferences with contents
of stored cookieData and migrates any preferences due version changes

store - updates stored cookieData with current global preferences

ws.Cookie = ({

initialize: function() {
// Update globals with preferences or create it.
this.cookieData = new Mojo.Model.Cookie("NewsPrefs");
var oldNewsPrefs = this.cookieData.get();
if (oldNewsPrefs) {
// If current version, just update globals & prefs
if (oldNewsPrefs.newsVersionString == News.versionString) {
News.featureIndexFeed = oldNewsPrefs.featureIndexFeed;
News.featureFeedEnable = oldNewsPrefs.featureFeedEnable;
News.featureStoryInterval = oldNewsPrefs.featureStoryInterval;
News . feedUpdateInterval = oldNewsPrefs.feedUpdateInterval;
News.versionString = oldNewsPrefs.newsVersionString;
News.notificationEnable = oldNewsPrefs.notificationEnable;
News . feedUpdateBackgroundEnable = oldNewsPrefs.feedUpdateBackgroundEnable;
} else {
// migrate old preferences here on updates of News app
}
}

this.storeCookie();

b

// store - function to update stored cookie with global values
storeCookie: function() {
this.cookieData.put({

featureIndexFeed: News.featureIndexFeed,
featureFeedEnable: News.featureFeedEnable,
feedUpdateInterval: News.feedUpdateInterval,
featureStoryInterval: News.featureStoryInterval,
newsVersionString: News.versionString,
notificationEnable: News.notificationEnable,

Working with Cookies | 165

feedUpdateBackgroundEnable: News.feedUpdateBackgroundEnable
D
}

1);

After creating the cookie in our sample, this.cookie.get() is called to retrieve it. If the
cookie exists, the global preferences are updated with the stored values.

The second function will update the stored cookie with the current values in the global
preferences. It’s called from the initialize() method in the case where the cookie was
first created and also as a future provision when preferences need to be migrated when
a new version of the application changes the preferences.

The cookie should be first retrieved at application launch:
StageAssistant.prototype.setup = function() {

// initialize the feeds model
this.feeds = new Feeds();
this.feeds.loadFeedDb();

// load preferences and globals from saved cookie
News.Cookie.initialize();

/] Set up first timeout alarm
this.setWakeup();

this.controller.pushScene("feedList", this.feeds);

}

The storeCookie() method is called anytime the preferences change. For example, the
deactivate() method in preferences-assistant.js will update the cookie when the Pref-
erences scene is popped:

// Deactivate - save News preferences and globals

PreferencesAssistant.prototype.deactivate = function() {
News .Cookie.storeCookie();
1

The cookie.remove() method is straightforward, but you may not have any reason to
use it at all. With News, the preferences are always retained unless the application is
deleted from the device, in which case the storage is recovered by the system. If you are
using cookies for temporary storage, you should remove them when they are no longer
needed.

Working with the Depot

If you are only interested in a simple object store without any database queries or
structure, Depot will likely meet your needs. You can store up to 1 MB of data in a

166 | Chapter6: Data

depot by default. Mojo provides a few simple functions that wrap the HTML 5 APIs to
create, read, update, or delete a database.

Mojo.Depot() opens the depot that matches the name argument. If there is no match,
it creates a new depot with that name. There are four methods:

get()
Calls the provided onSuccess handler with the retrieved object (or null if nothing
matches the key). onFailure is called if an error occurs in accessing the database.

discard()
Removes the data associated with the key from the database.

add()
Updates the value of the named object.

removeAll()
Removes all data in the database by dropping the tables.

The Depot is simple to use. As with Cookie, you call Depot’s constructor with a unique
name to create a new store or open an existing one. Unlike Cookie, Depot calls are
asynchronous, so you will do most of your handling in callback functions. Once
opened, you can save and retrieve any JavaScript object. To simplify your data handling,
the Depot function will flatten the object so that it can be stored using SQL.

You do need to keep this to simple objects, as Depot is not very efficient, and if you
extend it to complex objects it can impact application performance and memory. JSON
objects are recommended as the best-performing. Beyond that you’ll have to experi-
ment to see how the Depot performs with your application. Deep hierarchy, multiple
object layers, array and object datatypes, and large strings are all characteristics of
complex objects that may push the limits of the Depot capabilities.

Back to the News: Adding a Depot

The Depot will be used by News to store the feedlist for offline access of the stored
feeds, to retain the user’s feed choices, and to maintain the stories’ unread state. Storing
this state information will let us provide a better user experience at launch time and
allow us to present the stored feeds quickly, without having to wait for a full sync from
the various servers.

The Depot functions will be added to the Feeds data model through two new methods:

loadFeedDb()
Loads the feed database depot or creates one using the default feed list if there isn’t
an existing depot.

storeFeedDb()
Writes the contents of Feeds.1ist array to the database depot.

Working with the Depot | 167

The database will be loaded once, when the application is first launched, so the stage
assistant is modified:

StageAssistant.prototype.setup = function() {

// initialize the feeds model
this.feeds = new Feeds();
this.feeds.loadFeedDb();

The load method simply opens the depot or creates one if it doesn’t exist:

// loadFeedDb - loads feed db depot, or creates it with default list
// if depot doesn't already exist
loadFeedDb: function() {
// Open the database to get the most recent feed list
// DEBUG - replace is true to recreate db every time; false for release
this.db = new Mojo.Depot(
{name:"feedDB", version:1, estimatedSize: 100000, replace: false},
this.loadFeedDbOpenOk.bind(this),
function(result) {
Mojo.Log.warn("Can't open feed database:

, result);

)
b
Depot’s constructor first takes an object, which must include a name. This is a required
property that must be unique for this depot. The version indicates the desired database
version, but any version can be returned. The estimatedSize advises the system on the
potential size of the database in bytes, and the replace property indicates that if a depot
exists with this name, it should be opened. Should the replace property be set to true,
an existing depot will be replaced. The replace property is optional; if missing, it de-
faults to false.

The loadFeedDbOpen0Ok callback will handle both the case where the feedlist had been
previously saved and the case when a new database is created. The function literal is
used if there is a database error. The cause of such a failure could be either that the
database exists but failed to open, or that it didn’t exist and failed to be created.

In loadFeedDbOpenOk, attempt to retrieve the data with a call to the get() method. The
first argument is a key, which must match the key used when the data was saved. The
other two arguments are the success and failure callbacks.

If the request was successful, the callback function receives a single argument, an object
with the returned data. In the following example, the success callback is
loadFeedDbGetSuccess, which first tests the returned object, f1, for null. If f1 is a valid
object, it is assigned to feedlist and the update cycle is started to refresh the feeds:

// loadFeedDbOpenOk - Callback for successful db request in setup. Get stored
// db or fallback to using default list
loadFeedDbOpenOk: function() {
Mojo.Log.info("Database opened OK"):
this.db.simpleGet("feedList", this.loadFeedDbGetSuccess.bind(this),
this.loadFeedDbUseDefault.bind(this));

168 | Chapter6: Data

1

// loadFeedDbGetSuccess - successful retrieval of db. Call
// loadFeedDbUseDefault if the feedlist empty or null or initiate an update
// to the list by calling updateFeedlist.
loadFeedDbGetSuccess: function(fl) {
if (f1 === null) {
Mojo.Log.warn("Retrieved empty or null list from DB");
this.loadFeedDbUseDefault();

} else {
Mojo.Log.info("Retrieved feedlist from DB");
this.list = f1;

// If update, then convert from older versions

this.updateFeedList();
}
b

Should get() fail to retrieve any data, the sample code assumes that this is because
we’re creating a new database rather than opening an existing one, so we pass
loadFeedDbUseDefault as the second (failure case) callback. The default feedlist is as-
signed and, again, the feed update cycle is started with a call to this.updateFeedList():
// loadFeedDbUseDefault() - Callback for failed DB retrieval meaning no list
loadFeedDbUseDefault: function() {
// Couldn't get the list of feeds. Maybe its never been set up, so
// initialize it here to the default list and then initiate an update
// with this feed list
Mojo.Log.warn("Database has no feed list. Will use default.");
this.list = this.getDefaultlist();
this.updateFeedList();
b

If the call to open the database fails, there is a database error and the failure callback
is used. In this sample, a function literal is used to log the error. There should be some
proper error handling added to notify the user and advise on recovery actions, but that’s
not shown here.

The storeFeedDb() method is much less involved, but it is critical to keep the data
updated. The webOS application model and user experience rely on saving data as it
is entered or received, without explicit actions by the user. The News application has
several points at which the data needs to be saved, and each time, calling this method
will do it:
// storeFeedDb() - writes contents of Feeds.list array to feed database depot
storeFeedDb: function() {
Mojo.Log.info("FeedList save started");
this.db.add("feedList", this.list,

function() {Mojo.Log.info("FeedList saved 0K");},
this.storeFeedDbFailure);

|9

Working with the Depot | 169

// storeFeedDbFailure(transaction, result) - handles save failure, usually an

// out of memory error

storeFeedDbFailure: function(result) {
Mojo.Log.warn("Database save error:

, result);

2

The add() method accepts the "feedList" string as the depot key and writes
this.list as the stored object. The success callback is a function literal that logs the
transaction, but the failure callback is another method. This is where you’d want to
put recovery logic for memory full conditions, for example.

These calls can be implemented at these points in the FeedListAssistant:

AddDialogAssistant
A new feed has been added, so clearly an update is required to save that new feed
and its contents.

showFeatureStory()
This might seem odd, but since this is a periodic updater, a flag can be set indicating
that the data has changed (for example, from a feed update, or perhaps the unread
status has changed); performing the update here implements a lazy update of the
depot.

cleanup()
As a precaution, save the most recent version in case something has slipped through
during execution.

News never deletes its Depot object, but you can use the discard() method to remove
objects if needed. To be safe, you should only use this method after a successful open
or create transaction, and you may want to include success and failure callbacks as a
further precaution. The framework will remove an application’s Depot objects when
the application is deleted from the device.

HTML 5 Storage

Clearly, the Cookie and Depot objects are simplistic, and while attractive for casual
data storage and caching, they won’t fulfill the need for formal database support. To
address that need, Palm webOS includes support for the HTML 5 Database object to
create, update, and query an SQL database. Like the Depot, the HTML 5 database
interfaces are asynchronous, requiring you to use callbacks for much of your database
handling.

Creating Large Databases

By default, Palm webOS stores databases within a size-constrained local file store,
which is the reason that HTML 5 databases are restricted to 2 IMB maximum. The
bulk of the storage on the Palm Pré is in the mass storage partition or USB accessible
storage, reserved for media use.

170 | Chapter6: Data

You can store your HTML 5 database or Depot in the mass storage partition, where it
is not subject to a maximum size other than by the amount of available memory. To
do that, specify the database name with a prefix, as in:

openDatabase("ext:mydbname", ...);

The “ext:” will be mapped by the system to the mass media partition on the Palm Pré
and an appropriate mapping on future devices.

The HTML 5 specification includes extensions for structured client-side storage, in-
cluding support for the Storage and Database objects. Palm webOS does not support
the Storage object, a list of name/value pairs that grew out of Firefox’s DOM Storage
object, but it does support the Database object.

The openDatabase() method will create a new database or open an existing database,
returning a Database object:

this.db = openDatabase("myDB", 1, "My DB", 10000);

The arguments are as follows (see Table 6-1).

Table 6-1. openDatabase arguments

Property Required Description
Name Required Database name
version Optional ~ Target version, or undefined if any version is acceptable

displayName Optional Application defined, not used by web0S

estimatedSize Optional Informs webOS of intended size to prompt for any system constraints at creation rather
than during use

The database version property is meant to represent the schema version, enabling
smooth migration of the database forward through schema changes. If the application
specifies a database name and a version number, both need to match an existing data-
base for the database open to succeed; otherwise, a new database will be created.

Once the database is open, you can execute transactions against it, using either
transaction() for read/write transactions or readTransaction() for read-only transac-
tions. The transaction methods will specify one to three callbacks:

* Transaction callback

* Error callback

* Success callback
The transaction callback is the most important; it includes the transaction steps that

you wish to execute using an executeSQL () method, which accepts an SQL query string
as an argument along with success and error callbacks.

HTML 5Storage | 171

For example, the following code segment calls the transaction method with a literal
function that includes two executeSQL () methods, the last of which specifies a success
callback, this.successHandler(), and an error callback, this.errorHandler():

MyAssistant.prototype.activate = function() {

this.db.transaction((function (transaction) {
transaction.executeSql('A BUNCH OF SaL', [1);
transaction.executeSql('MORE SQL', [], this.successHandler.bind(this),
this.errorHandler.bind(this));
}).bind(this);

MyAssistant.prototype.successHandler = function(transaction, SQLResultSet) {
// Post processing with results

15

MyAssistant.prototype.errorHandler = function(transaction, error) {
Mojo.Log.Exror('An error occurred',error.message);

// Handle errors here

|5

The success handler is passed the transaction object plus an SQLResultSet object as an
argument. The attributes of the results object are described in Table 6-2.

Table 6-2. SQLResultSet object

insertID Row ID of the row that was inserted into the database, or the last of multiple rows, if any rows
were inserted

RowsAffected Number of rows affected by the SQL statement
SQLResultSetRowList Rows returned from query, if any

We've only touched on the basics of the HTML 5 database capabilities in this section.
As a draft standard, HTML 5 will continue to evolve. You should review the
formal SQL reference at http://dev.w3.org/html5/webstorage/#databases for more in-
depth information. There’s also a basic demo application at http://webkit.org/demos/
sticky-notes/index.html.

Ajax
In Chapter 3, we added an Ajax request to the News application, transforming the

application from a static data reader to a dynamic application serving up new stories
from multiple feeds in the background. There is a huge difference in user experience

172 | Chapter6: Data

when your application can let the user know that something new exists and present it
to her immediately.

You aren’t required to wuse the Prototype functions. You can use the
XMLHttpRequest object directly, and you will be required to if your data protocols are
SOAP-based or if they are anything other than simple XML, JSON, or text-based web
services. There are many references for XMLHttpRequest if you’d like to explore this
more directly. Any fundamental JavaScript reference will give you an overview, but for
more in-depth information, look for Ajax-specific references such as Anthony
Holdener’s Ajax: The Definitive Guide (O’Reilly). For a more basic introduction, you
can review the tutorial at https://developer.mozilla.org/en/’XMLHttpRequest, which,
while focused on Firefox, is nonetheless a good introduction to XMLHttpRequest.

The Ajax class functions, which are a basic feature of the Prototype JavaScript library,
are included with webOS because they encapsulate the lifecycle of an XMLHttpRequest
object and handlers into a few simple functions. The next few pages will explore these
functions to show you how Prototype can help you integrate dynamic data into your
application.

B

! Palm webOS applications are run from file:// URLs and thus aren’t re-
stricted by the single-origin policy that makes mixing services from dif-
% ferent websites difficult.

Ajax Request

Back in Chapter 3, we added an Ajax.Request object to News to sync the web feeds to
the device, but didn’t describe the object or the return handling in any detail.
Ajax.Request manages the complete Ajax lifecycle, with support for callbacks at various
points to allow you to insert processing within the lifecycle where you need to. In
Chapter 3, we used updateFeedRequest to initiate the Ajax request:

// updateFeedRequest - function called to setup and make a feed request

updateFeedRequest: function(currentFeed) {
Mojo.Log.info("URL Request: ", currentFeed.url);

var request = new Ajax.Request(currentFeed.url, {
method: "get",
evalJSON: "false",
onSuccess: this.updateFeedSuccess.bind(this),
onFailure: this.updateFeedFailure.bind(this)
b;
b

An Ajax.Request is created using the new operator, the only way that a request can be
generated, and initiates an XMLHttpRequest as soon as it is created. In this case, a
get request is initiated on the URL defined in currentFeed.url, and two callbacks are

Ajax | 173

defined for success or failure of the request. You can also make post requests and define
-other callbacks, which map to the request lifecycle shown in Table 6-3.

Table 6-3. Ajax.Request callbacks by lifecycle stage

onCreate Created

onUninitialized (reated

onLoading Initialized

onlLoaded Request Sent

onInteractive Response being received (per packet)

on#it#t, onSuccess, onFailure Response Received

onComplete Response Received

To clarify:

onCreate
Is available only to responders and is not available as a property of Ajax.Request.

on#t#
When specified (where ### is an HTTP status code, such as on 403), it is invoked
in place of onSuccess in the case of a success status, or onFailure in the case of a
failure status.

onComplete
Is called only after the previous potential callback—either onSuccess or
onFailure (if specified)—is called.

Ajax requests are asynchronous by default, one of the virtues of Ajax. While
Ajax.Request supports an override, the synchronous XMLHttpRequest has been disabled
in webOS. Since the Ul and applications run as part of a common process, this is
necessary to preserve Ul responsiveness. It may be supported in a later release when
there is concurrency support.

There are more Ajax.Request options available. Ajax.Request is covered thoroughly in
most Prototype references, including the Prototype 1.6 API reference available at hitp:
/lwww.prototypejs.org/api.

Ajax Response

An Ajax.Response object is passed as the first argument to any callback. In our sample,
we have used the HTTP status codes under the status property and the responseText
and responseXML properties. Table 6-4 provides a summary of the full list of properties.

174 | Chapter6: Data

Table 6-4. Ajax.Response properties

Property Type Description
readyState Integer Current lifecycle state:
0= Uninitialized
1= Initialized

2 = Request Sent

3= Intéractive

4 = Complete
status Integer HTTP status code for the request
statusText String HTTP status text corresponding to the code
responseText String Text body of the response

responseXML XML or Document If content type is application/xml, then XML body of the response; null otherwise

responseJSON Object If content type is application/json, then JSON body of the response; null otherwise

headerJSON Object Sometimes JSON is returned in the X-JSON header instead of response text; if not,
this property is null

request Object Original request object

transport Object Actual XMLHttpRequest object

We haven’t discussed JSON specifically, but it is an increasingly important tool for
developers. Prototype includes some powerful JSON tools in Ajax.Request, which sup-
ports automatic conversion of JSON data and headers. If you’re handling structured
data, you should look at JSON, particularly for data interchange.

More Ajax

Prototype includes some additional functions for consolidating listeners for Ajax call-
backs, called responders, and for updating DOM elements directly from an Ajax
request.

Ajax responders

If you’re doing multiple Ajax requests, you might find it useful to set up responders for
common callbacks rather than setting callbacks with each request. This is particularly
applicable to error handlers or activity indicators. The following example shows the
use of setup responders to manage a spinner during feed updates and to handle Ajax
request failures:
Ajax.Responders.register({
onCreate: function() {
spinnerModel.value = true;

this.controller.modelChanged(spinnerModel, this);
}.bind(this),

Ajax | 175

onSuccess: function(response) {
spinnerModel.value = false;
this.controller.modelChanged(spinnerModel, this);
this.process.Update(response);

}.bind(this),

onFailure: function(response) {
this.spinnerModel.value = false;
this.controller.modelChanged(spinnerModel, this);
var status = response.status;
Mojo.Log.info("Invalid URL - Status returned: ", status);
Mojo.Controller.errorDialog("Invalid feed - http failure: "+status);
}.bind(this)
D

In this sample code, each responder is defined using the callback property and a func-
tion literal. The first, onCreate, is available only to responders and not in an

Ajax.Request object. It starts the spinner, while the other two, onSuccess and
onFailure, stop it while performing some appropriate postprocessing.

Responders can be unregistered, but you would need to avoid using function literals
when you register them, as the previous example did. The responders would need to
be defined first, then registered and unregistered with a reference to that definition.

Ajax.Updater and Ajax.PeriodicalUpdater

Ajax.Updater and Ajax.PeriodicalUpdater each make an Ajax request and update the
contents of a DOM container or element with the response text. Ajax.Updater will
perform an update request once, while Ajax.PeriodicalUpdater will perform the re-
quests repeatedly, with a delay option to extend the interval between updates when
responses are unchanged. Note that Ajax.PeriodicalUpdater uses JavaScript timers and
won’t wake the device.

Summary

Dynamic data is an important part of any Palm webOS application to keep the user
connected and in touch, while local data is critical for offline access and a responsive
user experience. In this chapter, we’ve looked at both topics and used the Depot and
Cookie objects, along with Prototype’s Ajax functions and the HTML 5 database APIs.
Managing your data in an efficient way is as fundamental to a great user experience as
the powerful UI functions.

176 | Chapter6: Data

CHAPTER 7
Advanced Styles

Most of this book has been concerned with developing code, with some design topics
added in. That isn’t due to a lack of design sophistication in the platform or any limit
to the opportunity to design beautiful, effective applications, but is mostly a matter of
focus.

This chapter is all about styling your applications, a broad design topic. You will learn
advanced type-styling techniques, with additional background on the use of type and
text within your applications. Images will be deconstructed so that you can learn how
to position and size them within a scene’s layout, and integrate them with other content.
A well-designed application will integrate touches and gestures reliably; you’ll learn
how to optimize your application to handle touches elegantly within your visual design.

This is just a very small sample of the range of the design capabilities of webOS and
the opportunities it presents. There are extensive resources available to learn more
about styling or various visual and interaction design topics included in the SDK:

Human Interface guidelines
The SDK includes an extended set of guidelines for application designers on ev-
erything from designing a great webOS application to technical guidelines for
graphic designers.

Palm webOS Visual Style Guide

A thorough review of the webOS design philosophy and how to design visual ele-
ments for your applications.

Style Matters
An interactive sample application available in the SDK for learning and applying
styles on webOS.

In addition, there is the Quick Reference Style Guide (included as Appendix C in this
book). This guide will give you more detail on the topics in this chapter as well as
additional styling information.

177

Typography

You read about text widgets in Chapter 3, including the available styling options. Some
of these options are also available with any text element that you include in your scene’s
HTML. Plus, you can use Mojo’s standard text styles or override those styles within
your CSS. In this section, you'll see how to apply type styles as truncation and capital-
ization functions, as well as some basic alignment techniques.

Fonts

Prelude is the primary font family for webOS. Its warm and welcoming appearance
belies its underlying strength and readability. Prelude’s designer, David Berlow of the
Font Bureau, says of the typeface, “We wanted something that just disappears on the
device, becoming such an integral part of the Palm webOS design, you don’t notice.”

You have a choice of typestyles, as shown in Figure 7-1, which are built into the frame-
work so that you get them by default.

Figure 7-1. Prelude font family styles

178 | Chapter7: Advanced Styles

Use the optional classes condensed or oblique with most text classes to modify the base
class with a condensed or oblique font style.

Table 7-1 summarizes the available typestyles.

Table 7-1. Prelude typestyles

Typestyle Technique
Prelude Medium Provided with all text elements and classes by default
Prelude Medium Oblique Add oblique class to any text element or class

Prelude Medium Condensed ~ Add condensed class to any text element or class

Prelude Medium Bold Add (bold) or tags around any string or element

Body text can be styled with a few basic text classes; some examples are shown in
Figure 7-2.

Figure 7-2. Text styles

This scene is created with HTML using the classes described in Table 7-2. The following
excerpt shows the HTML for the title and text styles:

<div class="palm-text-wrapper">
<div class="palm-body-title">

Typography | 179

Example Marketing Copy
</div>

<div class="palm-body-text">
The new Palm Pre phone is always thinking ahead to make your life easier.
Pre pulls your different online calendars into one view, bringing you the
information you want without having to search for it.

</div>
</div>

Table 7-2. Text style classes

palm-text-wrapper Use this wrapper to contain multiple divs of styled text for proper padding
palm-body-title Title text

palm-body-text Body text
palm-info-text Caption text; commonly used with group boxes
Truncation

Text truncation is a standard feature of the Text Field widget, and an option for any
HTML text element. You can add the truncating-text class to a conventional div ele-
ment that contains a text string, and the string will be constrained to a single line and
properly terminated with ellipses, as shown in Figure 7-3.

Figure 7-3. Text truncation

180 | Chapter7: Advanced Styles

The leftmost example truncates a text string within a conventional div:

<div class="palm-list">
<div class="palm-row first" x-mojo-touch-feedback="delayed">
<div class="palm-row-wrapper">
<div class="label">Truncating text</div>
<div class="title truncating-text">
An example of text
which is so long you
could not possibly fit
it on a single line.
</div>
</div>
</div>
</div>

In the righthand example, there are two text fields, each using single-line truncation,
but within differently styled elements. The Text Field widget is composed of several
elements, which have the truncating-text class assigned to them. You don’t need to
specify the class within your HTML; it’s provided by default. If instead you want your
text to wrap and your text field to grow vertically, set the mulitline property to true.

(apitalization

Some widgets and styles shift text strings to uppercase or apply capitalization. Specific
framework styles will be capitalized by default. See Table 7-3 for a list of those styles.

Table 7-3. Classes with default capitalization

Class Description

capitalize Use to apply title-case capitalization to any text element
palm-page-header Page header text element

palm-dialog-title Errorand alert dialog boxes by default, or when used in HTML
palm-button Button label

Use the un-capitalize class to override autocapitalization in those styles.

The Text Field widget also performs capitalization by default, butitis controlled by the
textCase property in the widget’s attributes rather than through HTML class
assignments. By default, textCase is set to Mojo.Widget.steModeSentenceCase,
but you can set it to Mojo.Widget.steModeTitleCase for all caps, or to
Mojo.Widget.steModeLowerCase to disable autocapitalization.

Vertical Alignment

There are a few techniques for vertically aligning text or elements within a div that you
might find useful. For single lines of truncating text, set the text line-height equal to
the div’s height:

Typography | 181

.single-line {
margin: 15px O;
padding: 0 15px;
height: 50px;
background: grey;
line-height: 50px;

}

For multiple lines of text, specify equal amounts of padding to the div:
.multi-line {
margin: 15px O;
padding: 15px;
background: grey;
}

These two examples are shown in Figure 7-4; the top shaded box demonstrates the
single-line alignment and the lower shaded box shows the multi-line alignment.

Figure 7-4. Vertical alignment examples

To align images or blocks of layout vertically, use display: inline-block and vertical-
align: middle with your CSS rules for the specific div.

182 | Chapter7: Advanced Styles

Images

This section will show you how to use images within your application, whether you
want to reuse images provided with Mojo or create your own. There is a summary of
the types of images provided with Mojo, and general guidelines on how to incorporate
them into your application. You will need to refer to the SDK to see the individual
images referenced here; there are too many to include here, and new ones are added
with each SDK release.

You will also find design and technical guidelines here that will help you create your
own custom images.

There are dozens of images provided with the Mojo framework. Look in the framework/
images directory and you’ll see a long list of PNG images, which are used as back-
grounds, widget components, icons, and in various parts of the System UL You are free
to use any of the images in your application, but you should use them in a manner that
is consistent with their use in the System UI or Palm applications.

W 8

A key Ul principle is that consistency enhances ease of use. If your ap-
plication uses visual images differently than what the user expects, your
ais: application will be perceived as harder to use.

Images are structured according to the intended use case:

Standard image
A single image within a single file for conventional image use with img tags or similar
cases.

Multistate image
Multiple images within a single file used to combine multiple button states (e.g.,
pressed and unpressed states) or in a filmstrip animation sequence for activity in-
dicators or similar cases.

9-tile image
Usingwebkit-border-image, you can specify an image as the border of a div to create
visually rich containers, buttons, dividers, and other dynamic images.

Standard Image

For any image, you should use a 24-bit per pixel RGB png with 8-bit transparency and
1-bit alpha channel whenever possible. Size the images according to how they will be
rendered in the application. Image scaling is always a performance risk and will impact
the user experience; avoid scaling images if you can.

Images | 183

Multistate Image

When displaying an animation or multistate button as the background of a div, com-
bine your multiple states into a single image and change the background position to
display the appropriate frame as desired. This negates the need to preload, eliminates
flicker between the states, and conveniently keeps the assets together. Some examples
of multistate images are shown in Figure 7-5.

Figure 7-5. Multistate image examples

Multistate images are used for Push buttons, Menu buttons, Indicators, Toggle buttons,
and Check Boxes, among other elements. It will be used anywhere you have a single
image that needs to reflect state changes (e.g., unselected/highlighted/selected) or is
part of an animation sequence.

9-Tile Image

Create single styles (with small, optimized images) that can accommodate variable
length content and stretch horizontally to support any orientation or screen width using
webkit-border-image. You would use this selector to divide an image into nine com-
ponents (as shown in Figure 7-6) and use these components to render the border of the
box. You can stretch or repeat the images to fill the space required with your image.

There are numerous examples of 9-tile images in the Mojo framework, including head-
ers, borders, dividers, buttons, gradients, indicators, backgrounds, and icons. In the
example shown in Figure 7-7, the palm-group is enclosed with a 9-tile image.

This particular image is handled within the framework with the following CSS:

.palm-group {

margin: 7px 7px O 7px;

border-width: 40px 18px 18px 18px;

-webkit-border-image: url(../images/palm-group.png) 40 18 18 18 repeat repeat;
}

184 | Chapter7: Advanced Styles

Figure 7-6. Parts of a 9-tile image

The image bounds are set as top (40px), right (18px), bottom (18px) and left (18px),
followed by x- and y-transforms, usually repeat or stretch. It’s important to set the
border-width and the webkit-border-image bounds the same so that the image draws
within the div bounds instead of outside them. webkit-border-image is based on the
CSS 3 border-image standard, and you can find many resources for further information
on this standard on the Web, but you can start with www.css3.info/preview/border-
imagel/.

3-tileimage

A 3-tile image is a 9-tile image with a zero border in one vector. You use a 3-tile image
when you need an image that scales in one dimension only. Some examples are: radio
button strips, dashboard containers, view menus, and page headers.

Create a 3-tile image by creating a 9-tile image and setting one dimension to 0, as shown
below with the palm-slider-background:

.palm-slider-background {
width: 250px;
height: 7px;
border-width: Opx 4px Opx 4px;
/** These next two lines are wrapped for book formatting only **/
-webkit-border-image:
url(../images/slider-background-3tile.png) 0 4 0 4 repeat repeat;
margin: 6px Opx Opx 20px;

Images | 185

Gatile Ima

Figure 7-7. 9-tile image examples

Negative Margin
A div that functions as a container with a border image cannot use the space allocated
to the border image for any content. The framework uses a technique called negative

margin to reclaim that space so you can place content within the full width and height
of the container.

The basic technique is to define a second div and place the content there instead of in
the parent div that includes the border image. The child div has a wrapper class with a
negative margin equal to the border width used in the parent div.

The framework uses this technique in numerous ways. One example is the submenu
or list selector pop-up, where the container is defined using a webkit-border-image with
a 24-pixel border:

.palm-popup-container {
min-width: 180px;
margin: 5px 0 O O;
padding: 0;
z-index: 109500;
position: fixed;
top: 80px;
left: 20px;

186 | Chapter7: Advanced Styles

border-width: 24px;

-webkit-box-sizing: border-box;

-webkit-border-image: url(../images/palm-popup-background.png) 24 24
24 24 stretch stretch;
}

The border’s width is reclaimed in the wrapper class to allow you to use the full width
and height of the parent for content:

.palm-popup-wrapper {
margin: -24px;

}
You use these styles in your HTML in this way:

<div class="palm-popup-container’>
<div class="palm-popup-wrapper'>
<ememe content is placed here -------- >
</div>
</div>

Unsupported CSS properties

There are some properties common to Webkit that are not supported by Mojo, but
there are some ways that you can work around those exclusions.

webkit-border-radius
Instead of generating rounded corners dynamically, use webkit-border-image and
specify an image with rounded corners.

webkit-gradient
Instead of generating a gradient dynamically, create an image gradient and set it as
the background of your body or div.

Touch

Since touch is the primary indicator of action, it is critical to style scenes optimally for
touchability. Here are some strategies that you should consider for creating large,
gapless hit targets.

Maximize Your Touch Targets

The elements in your scene may appear to be small and separate from each other, but
their touch targets should be as large as possible. Touch targets in rows should be as
tall as the row itself. You should maximize the size of the touch targets and there should
be no gaps between targets.

Touch | 187

Visual elements can be smaller than touch elements, so you might wrap the image div
with a touch div. An example is the camera button, where the image is 80 x 60, but the
div’s width is set 20 pixels wider:

.capture-button {
width: 80px;
height: 80px;
background: url(../images/menu-capture.png) top left no-repeat;
position: absolute;
left: 120px;

}

You can see in Figure 7-8 that there is no visible indication of the larger touch target.

r N

A

Figure 7-8. Camera button and touch target

Optimizing Touch Feedback

Use the x-mojo-touch-feedback attribute to make all touch targets reflect touches (in
lien of HTMT. focus attributes). Using conventional focus would result in highlights
- while dragging or scrolling items on the screen, while x-mojo-touch-feedback adds a
delay on focus so that incidental touches won’t cause a highlight. For example, in

188 | Chapter7: Advanced Styles

the News application, we used a momentary tap highlight in views/feedList/feedRow-
Template.html:
<div class="palm-row" x-mojo-touch-feedback="delayed">
<div class="palm-row-wrapper">
<div class="icon right"><div class="unReadCount">#{numUnRead}</div></div>
<div x-mojo-element="Spinner" class='feedSpinner' name='feedSpinner'</div>
<div class="title truncating-text">#{title}</div>
</div>
</div>

For items within scrollable content, as in the News feedlist, use delayed feedback. For
fixed elements that don’t scroll, immediate feedback is an option. Only use
immediatePersistent or delayedPersistent if you require exacting control of when
feedback is removed. To summarize, the values supported by x-mojo-touch-feedback
are:

immediate
Shows feedback immediately, stops showing it on finger up; for use with static
items.

delayed
Shows feedback after a short delay unless another gesture comes in to cancel the
feedback; for use with scrollable items.
immediatePersistent
Shows feedback immediately; feedback is not automatically cleared unless the user
taps another item with x-mojo-touch-feedback; for use with static items.
delayedPersistent
Shows feedback after a short delay unless another gesture comes in to cancel the
feedback; feedback is not automatically cleared unless the user taps another item
with x-mojo-touch-feedback; for use with scrollable items.

Passing Touches to the Target

In some cases, you might want to include an element that ignores touches, passing them
through to a lower-level (in z-order) element. Mojo includes a custom CSS property:
-webkit-palm-target: ignore

This property will prevent an element from capturing touch events, allowing them to
pass through to underlying elements.

Light and Dark Styles

If your application uses a light-colored background with dark text and controls, the
default controls and text colors should work very well for you. If your application uses
a dark-colored background with light text and controls, use the palm-dark controls and

Light and Dark Styles | 189

text. Some of the applications that Palm ships on the phone use the palm-dark controls
(e.g., Music and Videos). Figure 7-9 shows an example of palm-1ight and palm-dark.

Figure 7-9. Light and dark styles

You can add the palm-dark class to your body element using JavaScript or add the
palm-dark class to specific elements on the page (e.g., a Drawer widget). To change the
body element, add the following within the main scene of your card stage:

var appController = Mojo.Controller.getAppController();

var stageController = appController.getStageController(MainStageName);
var bodyElement = stageController.document.getElementsByTagName('body");

bodyElement[0].addClassName('my-dark-backdrop');
bodyElement[0].addClassName('palm-dark');
bodyElement[0].removeClassName('palm-default');

To constrain the style change to an individual scene, you can define an encompassing
div with both palm-scene and palm-dark classes. You need to define the scene or body
element with the class because submenus, dialog boxes, and other z-stacked elements
will inherit the style from the scene.

If you don’t use the dark styles, you can reduce your application load time by declaring
that your application will use just the light styles. Do this by setting the theme property
in your appinfo.json file:

"theme": "light"

190 | Chapter7: Advanced Styles

Summary

This chapter highlights some of the widget and scene styles, and presents more infor-
mation on using and creating images for use within custom styles or to override frame-
work styles. Palm offers light and dark styles to distinguish the media applications from
the productivity applications.

The Palm Mojo framework includes numerous styling options that you can use within
your application. Many of these styles are provided automatically when you instantiate
widgets or choose named palm style classes within your scenes. Refer to Appendix C
for a complete list of available style classes and selectors, and for guidelines on how to
apply them when working with widgets and scenes.

Summary | 191

CHAPTER 8
Application Services

So far we’ve looked at UI elements and web service requests, but very little of what
we’ve done is anything you couldn’t do in a sufficiently capable web browser. What
makes Mojo particularly powerful is its access to services that encapsulate both low-
level hardware capabilities and higher-level data services that provide access to Palm
webOS Synergy features, cloud services, and more. It is this access to the device and its
services that lets developers build applications with the capabilities of a native
application.

Most intriguing are the cloud-based services—emerging web services from many pro-
viders, including Palm—that provide limitless potential for added capability.

The Web as expressed through cloud service APIs is a platform in itself, and the webOS
service architecture enables access to Palm cloud services. You can also access third-
party cloud services or your own services through Ajax calls or other direct service
interfaces, and build applications that integrate or mash up these services in unique
ways.

In this chapter and the next, we’ll explore a number of the available Mojo services. This
chapter introduces the service architecture and presents the calling conventions that
all Mojo services share. We will extend the News application to launch the web browser
and to allow users to share stories over email or text messaging.

In Chapter 9, we conclude our discussion of the service layer by delving into cloud
services and lower-level system services like Location services.

Using Services

All service calls are asynchronous operations. Each application service has a distinct
service name, and exposes one or more named methods. Most application services will
launch an application in its own card and will not return to the calling application.
Device and cloud services will typically return some data or result to the calling appli-
cation through a callback function defined by the calling application. Some services,

193

such as Location tracking, will return data in a series of calls to the callback function.
You need to design your applications with this asynchronous interface in mind.

There are additional constraints when you are using services in background applica-
tions; these will be covered in Chapter 10. Background applications must moderate
service use to conserve CPU and battery resources, plus with limited to no user inter-
action, the background application must handle service responses directly and use no-
tifications and the dashboard to communicate with the user.

In many cases, the application should limit or stop service requests when minimized
or in the background. For example, a game that takes accelerometer input should stop
tracking the accelerometer when minimized. Without any visible display, there is no
value in expending resources to collect that data.

Service Overview

Most services are Linux servers registered on the Palm bus, wrapped and accessed
through the Mojo. Service.Request object. Application services are all accessed through
a single service method, provided by the Application Manager, which routes the re-
quests either implicitly based on resource or file type, or explicitly using the passed
application ID. All other services are individually handled by the named service.

Use a Mojo.Service.Request() object for all service calls. For convenience, the service
Request() method is attached as a property to the scene controller, so a commonly used
alternativeis this.controller.serviceRequest(). The basic call includes a service name
and method, with a method-specific parameters object:

this.controller.serviceRequest("palm://com.palm.serviceName", {
method: "methodname™
parameters: {},
onSuccess: this.successHandler,
onFailure: this.failureHandler
}
)
Palm webOS uses the URI (Uniform Resource Identifier) scheme for identifying
services, similar to the way a standard web URI is used. The service name is typically
a string that begins with palm://com.palm, followed by a specific service name. The
method defines the service method to use for this specific call, and parameters is a
method-specific JSON object for passing arguments. For example, to get a GPS fix,
make the following request in a scene assistant:
this.controller.serviceRequest("palm://com.palm.location", {
method: "getCurrentPosition”,
parameters: {},

onSuccess: this.onSuccessHandler,

onFailure: this.onFailureHandler

1
J

s

194 | Chapter8: Application Services

The string palm://com.palm.location is the service name and getCurrentPosition is the
service method. There are optional parameters defined for this method, but this ex-
ample is simply using the default settings. In general, parameters will vary from service
method to service method.

Most service requests require callback functions to return results to the calling appli-
cation. The onSuccess function is called if the service call is successful and may be called
multiple times for service requests that result in a series of results, such as a request for
Location tracking data instead of just a single fix. The onFailure function is called if
the service call results in an error. Both callbacks include a single response object whose
properties are service method dependent.

There are some conventions for response handling. All callbacks will be passed a single
JSON object, and that will include some or all of the conventional properties described
in Table 8-1, plus method-specific properties where appropriate.

Table 8-1. Response properties

Name Description ' , Required
returnValue true onsuccessor false on failure of this request Required
errorCode The error code from the service when returnvalueisfalse Required
errorText Description of the failure when returnValue is false Required
subscribed Set to true if a subscription request was successful Optional

Mojo.Service.Request()

You can use this.controller.serviceRequest() within scenes where you would make
most service requests. However, if you need to make a service request within your
application assistant, you’ll need to create a service request object.

A common case is a call to the Alarm service to wake up the application after an interval:

this.alarm = new Mojo.Service.Request("palm://com.palm.power/timeout”, {
method: "set",
parameters: {
key: "com.palm.app.news.update”,
in: feedUpdatelnterval,
uri: "palm://com.palm.applicationManager/open”,
params: {
id: "com.palm.app.news",
params: {action: "updateFeed"}

b
onSuccess: this.onSuccessHandler,
onFailure: this.onFailureHandler

B

In this example, the new request object is created and a service request issued, with the
object stored as this.alarm.

Using Services | 195

The request references are managed by the scene when creating a service request using
this.controller.serviceRequest(), and are removed upon completion of the request,
unless the request has subscribe: true, in which case the requests are cleaned up when
the scene is popped.

All requests made with this.controller.serviceRequest() are cleaned up when the
scene is popped, meaning they are garbage collected and destroyed. If the subscription
request needs to be retained beyond the lifetime of the scene, you will also need to use
Mojo.Service.Request() to save the request object and manage the request yourself.

Remember that service requests are asynchronous, so they don’t complete when you
make the call; if there’s a chance they will not be completed by the time the scene is
popped, use Mojo.Service.Request().

Application Manager

The Application Manager is a specific service that provides functions related to finding
and launching applications. Applications launched through the Application Manager
will open and maximize a new window for the targeted application while minimizing
the current application window.

The Application Manager, through one or both of its service methods, provides access
to most of the application services:

open
Accepts a single argument, a formatted URI for a document you wish to display.
The mime type of the referenced document is used to identify the appropriate
application to handle the content indicated.

launch
Launches the application indicated by the application ID argument passing any
included parameters.

Open

Generally, the open method is used when you intend to display or process some targeted
content, but you don’t know the specific type of content or the best application avail-
able in the system to handle it. The Application Manager will use the content type to
find the appropriate application to use for that content:
this.controller.serviceRequest("palm://com.palm.applicationManager”, {
method: “open”,

parameters: {
target: "http://www.irs.gov/pub/irs-pdf/fwa.pdf"
b

onFailure: this.onFailureHandler
N;

196 | Chapter8: Application Services

The target includes a command, the string up to and including the colon and forward
slashes (://), and the resource. In this example, the command is http://, but before
launching the browser, the Application Manager will retrieve the HTTP header and
attempt to extract the resource type. Since the URI specifies a file target, the Application
Manager will try to match the file type to the resource list and find a match with
com.palm.app.pdfviewer. The file will be downloaded to /media/internal and the PDF
View application will be launched with a file reference to the downloaded file.

If there’s no header, the Application Manager will download the file anyway and try to
match the file extension in the resource list. If there is a match, the associated applica-
tion will be launched with the file reference as a launch parameter. If there’s no match
at this point, the Application Manager will exit and return an error code to the failure

callback.

The same process is used when streaming audio or video formats, but instead of down-
loading the content and then launching the application, the launch is done first and
the content URI is passed as an argument. The audio or video player handles the con-
nection and data streaming in these cases; the data is never actually stored on device.

If the command is file://, it’s a local file reference and the Application Manager will
use the file extension to launch the associated application (if there is one).

Launch

There are many cases in which you already know which application you’d like to handle
the request, and it’s inconvenient to force the parameters into a URI format. In these
cases, you'd want a command to launch a specific application and pass in parameters
in the form that the application has specified. Here is an example of launching the Maps
application to show a street address:
this.controller.serviceRequest("palm://com.palm.applicationManager”, {
method: "launch",
parameters: {
id: "com.palm.app.maps"”,
params: {
query: "950 W. Maude Ave, Sunnyvale,CA"}

}
s

The Command and Resource Table in Appendix B includes the full list of all supported
content types and the application resource handlers. This list is very likely to change,
so refer to the Palm Developer site for the most current information.

Cross-App Launch

In some cases, a Cross-App launch is used to keep the context of the calling application,
but with a faster transition. The target application’s scene is pushed directly in the
current application’s card stage, and when the target application is popped, it returns

Using Services | 197

results as arguments to the calling application’s activate() method. You canlearn more
about the Cross-App launch by referring to the Camera and People Pickers, both of
which use this technique and are covered later in this chapter.

Core Application Services

This first group of application services includes a core set of applications that provide
basic functions for web browsing, phone calls, maps, camera, and photos. The browser
will be used first, with an example using the News application, followed by brief de-
scriptions of the other applications and how you call them from within your
application.

Web

Earlier, a WebView widget was used to display the source URL for the News story, but
launching the web browser application in a new card gives more flexibility to News.
The browser application can be launched to its default launch view or to a specific URL.

Back to the News: Launching the browser

News will launch the browser to load a specified URL as a simple example of an ap-
plication service. The WebView widget in News is replaced with a call to the Applica-
tion Manager to launch the browser into a separate card. The command handler for
do-webStory in the storyView-assistant.js is replaced with a new version that includes a
single call to this.controller.serviceRequest, with the service name set to the Appli-
cation Manager, or palm://com.palm.applicationManager. All Application Manager
calls will start this way.

The second argument is an object literal that includes an open method and a
parameters object that includes the application id property set to
com.palm.app.browser, the browser’s application ID, and a params object. The params
object includes just the target URL retrieved from the story array entry. This is typical
of an Application Manager open call and is used with most applications that can accept
a URL parameter:
case "do-webStory":
this.controller.serviceRequest("palm://com.palm.applicationManager", {
method: "open",
parameters: {
id: "com.palm.app.browser”,

params: {
target: this.storyFeed.stories[this.storyIndex].url
}

198 | Chapter8: Application Services

This change means that when the user taps a new Command menu button in the
storyView scene, the browser will launch in a separate card with the contents of the
story’s originating URL displayed. You can find the code sample for the Command
menu button changes in the section “Email and Messaging” on page 205.

This also eliminates the storyleb scene, so you can remove the assistant and views from
the News project and from sources.json.

Phone

The user must tap the dial button to approve any phone call that is placed. Your ap-
plication can initiate the phone call by opening the Phone application, providing a dial
string (as shown in Figure 8-1). The phone will be launched to the dial scene, with or
without the dial string included:
this.controller.serviceRequest("palm://com.palm.applicationManager”, {
method: "open",

parameters: {
target: "tel://4085556666"

1

Figure 8-1. Phone application launched with prepopulated number

Core Application Services | 199

Camera

From within your application, you can turn on the camera and present a simple inter-
face to take pictures, with an option to save or delete the picture after it is captured.
When called from within another application, the camera application will only take a
single picture and will return a file reference to the calling application if the picture was
saved.

You must use a Cross-App launch to call the Camera from your application. This re-
quires that you call the pushScene() method just as with any scene push, but include
scene arguments that indicate an application launch is required:
this.someAssistant.stageController.pushScene(
{ appId : "com.palm.app.camera", name: "capture" },
{ sublaunch : true }
);
When the picture is taken or canceled, control will be returned back to your scene with
a call to the scene’s activate() method, just as with any scene pop. However, unlike
the typical scene lifecycle, there will be a response object passed as an argument to the
activate() method:
CameraAssistant.prototype.activate = function(response){
if (response) {
if (response.returnvalue) {
this.showDialogBox("Picture Taken", response.filename);

} else {
this.showDialogBox("No Picture"”, "");

}
} else {
Mojo.Log.info("Picture not requested");

|5

Photos

The Photos application is limited to launching the application to the default view, where
the user can choose between various albums and photos. All images stored on the device
will be indexed and viewed this way:
this.controller.serviceRequest("palm://com.palm.applicationManager"”, {
method: "launch",
parameters: {

id:"com.palm.app.photos",
params: {}

s

200 | Chapter8: Application Services

Maps

You can use the Maps application to display maps around specific locations defined
by street address, latitude/longitude, or through a location query. The map can op-
tionally include driving directions or additional local or business search results, and
there is a choice of map type and zoom level:
this.controller.serviceRequest("palm://com.palm.applicationManager”, {
method: "launch",
parameters: {
id: "com.palm.app.maps",
params: {
location: {lat: 37.759568992305134, lng: -122.39842414855957, acc: 1},
query: "Pizza",
}

}
b;

This example launches the Map application to show the pizza options around a section
of San Francisco with an accuracy of a meter. This is very powerful when used with the
Location service, which will be covered in the next chapter.

Palm Synergy Services

Palm Synergy integrates personal information from various sources on the Web and
presents it in a single view so that users can see all in one place. Yet the information is
maintained in such a way that users can keep things separate when they have to. The
integration is at the visual or presentation layer, while the separation is maintained at
the data layer.

The core Synergy applications are Contacts, Calendar, Email, and Messaging, but the
concept is general enough that you can expect other applications to be supported over
time. All Synergy applications can be launched through the Application Manager
service, and Email and Messaging can be used to send messages with the user’s appro-
val, similar to the way the Phone application is used.

The Contacts and Calendar application service interfaces can do a bit more, allowing
applications to add contacts or calendar events, distinguished by their own data
sources. These features are designed for occasional use, serving the needs of applica-
tions that want to add single records rather than fully scaled sync solutions.

Account Manager

All Synergy applications require an established account before any other operations
can take place. There is an implicit “Palm” account that all information created and
stored on the device belongs to, but any other information must be provided by an
application with an explicit account ID. The account determines all access permissions;

Palm Synergy Services | 201

data belonging to an account can only be accessed by the application that owns that
account.

The Account Manager includes methods to create, update, delete, or read accounts, as
well as a method to list accounts. Here is an account create example:
this.controller.serviceRequest("palm://com.palm.accounts/crud", {
method: "createAccount",
parameters: {
account: {
username: "myusername",
domain: "mydomain”,
displayName: "My Name",
icons: {
"32x32": Mojo.appPath + "images/accountIcon.png”,
"48x48": Mojo.appPath + "images/stampIcon.png"
b
dataTypes: ["CONTACTS", "CALENDAR"],
isDataReadOnly: false

}
b
onSuccess: this.accountCreated.bind(this);
onFailure: function(response) {
Mojo.Log.info("Account create failed; ", response.errorText}

1

This method uses the service name palm://com.palm.accounts/crud, and has parame-
ters that specify account properties. The dataTypes object declares the Synergy data sets
used by the account: CONTACTS and/or CALENDAR. The domain property allows a single
account to have different data sources within it. Domains are useful in limited cases,
such as when a single application wants to maintain multiple sync sources.

Accounts may be a lot of overhead if your application has only an occasional need to
add a contact or calendar event. In that case, you might choose to simply launch Con-
tacts or Calendar and have the user enter the data directly. Plus both Contacts and
Calendar support launch points to add or update individual records without creating
a new account.

The accountId is used for subsequent Account Manager methods, and for access meth-
ods in Contacts and Calendar. It’s also used in the other Account Manager methods.

R

The listAccounts method will list only accounts that belong to your
application. It cannot retrieve information about accounts belonging to
ls: other applications.

202 | Chapter8: Application Services

Contacts and Calendar

Both Contacts and Calendar will allow applications to add information that will be
merged into an integrated view. They don’t allow applications to read, delete, or update
any data that wasn’t created by the same application.

The Contacts application has methods to create, read, update, and delete contacts,
along with listing all contacts. In addition, there are methods to track changes to con-
tacts to support applications that wish to optimize updating their data sources with
changes made by the user on the device.

The following is an example of creating a contact entry:

this.controller.serviceRequest("palm://com.palm.contacts/crud", {
method: "createContact”,
parameters: {
accountId: this.accountld,
contact: {
firstName: "Harry",
lastName: "Truman",
companyName: "US Government",
nickname: "POTUS 33"
}
b
onSuccess: this.successEvent.bind(this),
onFailure: this.failureHandler.bind(this)

1

Notice the use of this.accountId. This is returned when you create the account and is
used for most of these Contacts or Calendar functions. The contact object defines the
contents of the contact entry, and has many more property options than the few that
are shown in the example.

Calendar requires that a new calendar is first created, and then entries for that calendar
are created within it. This example creates a calendar in the first function and then, on
success, creates an entry using the current date and time:

CalendarAssistant.prototype.createCalendar = function() {

this.currentMethod = "Calendar - Create";
this.controller.serviceRequest('palm://com.palm.calendar/crud’, {
method: 'createCalendar’,
parameters: {
accountId: this.accountId,
calendar: {
calendarId: "",
name: "My Events"

}
b
onSuccess: this.createEvent.bind(this),
onFailure: this.failureHandler.bind(this)
s
b

Palm Synergy Services | 203

CalendarAssistant.prototype.createEvent = function(response) {
if (response) {
Mojo.Log.info("Calendar Create ", Object.toJSON(response));
this.calendarId = response.calendarId;
}
this.currentMethod = "Event - Create";
var currentTime = new Date();
var startTime = currentTime.getTime();
this.controller.serviceRequest('palm://com.palm.calendar/crud’, {
method: 'createEvent',
parameters: {
calendarId: this.calendarld,
event: {
calendarld: this.calendarld,
subject: "Forecast",
startTimestamp: startTime,
endTimestamp: startTime + 3600000,
allDay: false,
note: "Cliff Notes",
location: "Bluff",
attendees: [],
alarm: "none"

}
b
onSuccess: this.successEvent.bind(this),
onFailure: this.failureHandler.bind(this)

1
b
As with Contacts, there are methods to track changes to calendar events or event
deletions.

People Picker

The People Picker is a special Contacts function that lets applications retrieve infor-
mation from any Contacts entry. It won’t allow direct access, but it will allow the user
to select a specific contact and approve the transfer of that contact’s details to the
requesting application.

The People Picker is called through a Cross-App launch. As mentioned earlier, this
technique pushes a scene from another application on your application’s scene stack.
This keeps your application context, meaning that the user won’t see any card switch.
To call the People Picker, use pushScene():
PeoplePickerAssistant.prototype.getContact = function(event){
this.contactRequest = true;
this.controller.stageController.pushScene(

{ appId : "com.palm.app.contacts", name: "list" },
{ mode: "picker", message: "headerMessage" }

)s

204 | Chapter8: Application Services

People Picker presents the Contacts list scene with the filter field activated. Just as in
the Contact’s details scene, typing will filter down the list and eventually the user would
either select a contact or cancel with a back gesture. After the user selects a contact, the
details are returned as an argument to calling the scene’s activate method:
PeoplePickerAssistant.prototype.activate = function(response){
if (response) {
if (response.personld) {
this.showDialogBox("Contact Received", response.personld);

} else {
this.showDialogBox("Contact Request Failed", "");

}
} else {
Mojo.Log.info("No Contact Requested");

b

An application might use this to get a contact’s address for use in planning a trip, for
example, or an IM address, or some other personal information; contact details are
returned in response.details. You can optionally exclude contacts from the list by
enumerating their contact IDs.

Email and Messaging

You can launch the Email and Messaging applications to their main views using the
Application Manager launch method, but most applications will generally use these
applications to send a message. For that, you will use the launch method to launch
either of these applications to a Compose view and optionally populate some or all of
the compose fields.

Back to the News: Sharing stories through email or messaging

News will be extended to share a story by either email or messaging to illustrate these
service calls. This is best hooked into the storyView scene, but we’ll start with the service
calls before looking at how they are integrated into the scene.

Email is called with a prepopulated subject field using the params.summary property,
and the shared URL in the message body, using params.text. You can also include one
or more email addresses for any of the address fields (To, CC, and BCC), but in this
example, the user would need to address the mail using the addressing widget in the
email application:

// shareHandler - choose function for share submenu
StoryViewAssistant.prototype.shareHandler = function(command) {
switch(command) {
case "do-emailStory":
this.controller.serviceRequest("palm://com.palm.applicationManager”, {
method: "open",
parameters: {
id: "com.palm.app.email”,

Palm Synergy Services | 205

params: {
summary: "Check out this News story...",
text: this.storyFeed.stories[this.storyIndex].url

}
}
1

break;

Messaging is very similar; for this example, the entire message is provided in
params.messageText:

case "do-messageStory":
this.controller.serviceRequest("palm://com.palm.applicationManager", {

method: "open”,

parameters: {
id: "com.palm.app.messaging",
params: {

// ** These next two lines are wrapped for book formatting only **
messageText: "Check this out: "
+this.storyFeed.stories[this.storyIndex].url

15

As with email, you can specify the recipient(s) as part of the call. See Appendix B for a
complete list of the calling arguments.

To hook these calls into the scene, add a Command menu button to the bottom of the
storyView scene, which creates a scene like that shown in Figure 8-2.

This sample code is used to generate the view shown in Figure 8-2:

// setup - set up menus
StoryViewAssistant.prototype.setup = function() {
this.storyMenuModel = {
items: [
{iconPath: "images/url-icon.png", command: "do-webStory"},

{1

{items: []1},

180

{icon: "send", command: "do-shareStory"}

1};

if (this.storyIndex > 0)
this.storyMenuModel.items[2].items.push({
icon: "back",
command: "do-viewPrevious"

1;
} else {
this.storyMenuModel.items[2].items.push({
icon: "", command: "",
label: " "
D;

206 | Chapter8: Application Services

}

if (this.storyIndex < this.storyFeed.stories.length-1) {
this.storyMenuModel.items[2].items.push({
icon: "forward",
command: "do-viewNext"

s
} else {
this.storyMenuModel.items[2].items.push({
icon: "",
command: "", label: " "
}s
}

this.controller.setupWidget (Mojo.Menu.commandMenu, undefined, this.storyMenuModel);

Figure 8-2. Story View with menu buttons for browser view and sharing

The Share button is the rightmost button and will present a pop-up when tapped. The
Next/Previous button group in the center was covered in Chapter 4; they are used to
navigate to the next and previous stories.

Palm Synergy Services | 207

There is already a command handler included in this scene, so just add handlers for
the new button and add a submenu to present the email and messaging options:

[=emmmmmemmnnenmmemen e mnne e e e e nnens
// Handlers to go to next and previous stories, display web view
// or share via messaging or email.
StoryViewAssistant.prototype.handleCommand = function(event) {
if(event.type == Mojo.Event.command) {
switch(event.command) {
case "do-viewNext":
Mojo.Controller.stageController.swapScene(

{
transition: Mojo.Transition.crossFade,
name: "storyView"
}
this.storyFeed, this.storyIndex+1);
break;

case "do-viewPrevious":
Mojo.Controller.stageController.swapScene(

{
transition: Mojo.Transition.crossFade,
name: "storyView"
1
this.storyFeed, this.storyIndex-1);
break;

case "do-shareStory":
var myEvent = event;
var findPlace = myEvent.originalEvent.target;
this.controller. popupSubmenu({
onChoose: this.shareHandler,
placeNear: findPlace,
items: [
{label: "Email", command: "do-emailStory"},
{label: "SMS/IM", command: "do-messageStory"}
]
1;
break;
case "do-webStory":
this.controller.serviceRequest("palm://com.palm.applicationManager”, {
method: "open",
parameters: {
id: "com.palm.app.browser”,
params: {
scene: "page",
target: this.storyFeed.stories[this.storyIndex].url

1

break;

};

208 | Chapter8: Application Services

The browser launch is handled directly in the command handler above. The service
calls for email and messaging are in shareHandler, the submenu’s callback, which is
where this section started.

Viewers and Players

The media applications can be used to play streaming or file-based audio or video
content. You can use the Application Manager’s open method to handle common file

types.

View File

There is no specific view file service; it’s just the general case of using the Application
Manager’s open method, where the content target is unknown. As shown in the section
“Application Manager” on page 196, simply call the Application Manager with a target
value that refers to either web-based or file-based content:
this.controller.serviceRequest("palm://com.palm.applicationManager”, {
method: "open",

parameters: {
target: "http:// crypto.stanford.edu/DRM2002/darknets.doc"
b

onFailure: this.onFailureHandler

s

Any supported file type will be passed to the appropriate application for viewing, ed-
iting, or other supported handling.

Audio

The Music player is used to play or stream a file or other web-based content encoded
in any supported audio format. Launch the Music player with the Application Man-
ager’s open method and a target property in the form rtsp://audio- file, where audio-
file is a well-formed URI targeting a file encoded in a supported audio format. The
target property can also point to a locally stored file, as shown in this example:
this.controller.serviceRequest("palm://com.palm.applicationManager”, {
method: "open",

parameters: {
target: "file:///media/internal/World.mp3"

s

Refer to the Command and Resource Handler table in Appendix B, which has a com-
plete list of all supported audio file and mime types.

Viewers and Players | 209

Video

The Video player is used to play or stream video content. Like the audio player, it can
just be invoked through the Application Manager’s open method and a target property
in the form rtsp://video-file, where video-file is a well-formed URI targeting a file
encoded in a supported video format.

There are some additional features when using the launch method, where you can
specify a title or a thumbnail that is displayed while the video is loading:
this.controller.serviceRequest("palm://com.palm.applicationManager”, {
method: "launch",
parameters: {
id: "com.palm.app.videoplayer",
params:{
target: "file: ///media/internal/Guitar.mp4”,
videoTitle: "0ld Guitar"

}
}
s

Refer to the Command and Resource Handler table in Appendix B, which has a com-
plete list of all supported video file and mime types.

Other Applications

The Application Manager service can launch any application, not just the core appli-
cations described in this chapter. However, it’s limited at this time; to launch another
application, you will need to know the application ID and the available parameters.
Currently, webOS does not include dynamic registration for resource handlers or any
broadcast services to allow you to determine which applications are available and which
services they offer at runtime.

You can launch News in its current form with this call:

this.controller.serviceRequest("palm://com.palm.applicationManager”, {
method: "open",
parameters: {
id: "com.palm.app.news",
params: {}

1

News is launched as if from the Launcher to the feedList scene. If it is already launched,
it will be maximized and put into the foreground view.

With the addition of an application assistant, an application is able to accept launch
arguments through an explicit entry point, the handleLaunch method. Chapter 10 covers
these topics in detail and explores the general use of launch requests.

210 | Chapter8: Application Services

Summary

Services extend the framework with access to the core applications, hardware-enabled
features, and cloud services. In this chapter, the application services were described,
including core applications, the Synergy applications, and the media players. Applica-
tion services are mostly accessed through the Application Manager, a general command
and resource handling service. System and cloud services will be covered in the next
chapter.

The service architecture is accessed through Mojo.Service.Request(), which accepts a
service name and a method name to route the request; service requests are always
asynchronous operations.

Summary | 211

CHAPTER 9

System and Cloud Services

System services are those that are enabled by hardware features or provided by the
Linux OS. Hardware-enabled services include access to accelerometer data, location
services, and connection status. The OS provides alarms, sounds, power management,

properties, and time services.

As described in Chapter 8, the Mojo framework provides access to the system services,
routing requests to the specified services and calling the application’s callback functions
with the service response. As shown in Figure 9-1, all system services are actually man-
aged by Linux-resident server processes. The servers receive service requests from the
application and send messages back. The messages are routed to the application
through the specified callback functions, whether fulfilling the request or providing a

failure indication.

App

App

Framework

Palm Bus

Server

Device
Library

Figure 9-1. High-level service architecture

213

Cloud services are a form of web services. The initial cloud service is Mojo Messaging,
an Extensible Messaging and Presence Prototocol (XMPP)-based messaging service for
publish/subscribe notifications. It allows applications to send or receive notifications
through the cloud to other collaborating clients and services. Over time there will be
other cloud services that applications can leverage, extending the webOS platform fur-
ther into the cloud.

System Services

This section describes each of the system services. Very few of the services apply to the
News application, so most of the code samples in this section are simple ones to illus-
trate the service calls and handlers.

The system services are accessed through Mojo.Service.Request(), or the equivalent
scene controller method this.controller.serviceRequest():

Mojo.Service.Requ