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PREFACE (1985)

Are we intelligent enough to understand intelligence? One approach to
answering this question is “artificial intelligence,” the field of computer sci-
ence that studies how machines can be made to act intelligently. This book is
intended to be a general introduction to artificial intelligence (AI). The sub-
jects for discussion are machines that can solve problems, play games, recog-
nize patterns, prove mathematical theorems, understand English, and even
demonstrate learning by changing their own behavior to perform such tasks
more successfully. In general this book is addressed to all persons who are
interested in studying the nature of thought, and hopefully much of it can be
read without previous formal exposure to computers.

In this book, I try to describe the major experiments that have already
been performed and to indicate some of the open questions that still need re-
search in the field of artificial intelligence. To this end, the exercises that
conclude each chapter were designed not only to give students some prac-
tice in the subjects discussed explicitly, but also to direct them toward other
subjects that, for want of space, could not be discussed. The exercises were
designed to flex the students’ own intelligence, as well as to help develop
machine intelligence. ‘

However, artificial intelligence can and should be studied in ways that
are not strictly technical. It is important for us to realize how this science is
rélated to the hopes (and fears) of humanity. To do this we must try to under-
stand people, not just machines. If artificial intelligence is to be developed
beneficially, it will have to become one of our most humanistic sciences.
Happily, there is a vast body of literature (mostly science fiction) that can
provide a sample of nontechnical thinking about AL There are also some
excellent motion pictures (especially the Star Wars series) that providé a
vision of what AI might someday produce.
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Xiv , PREFACE (1985)

Much progress has been made in the field of artificial intelligence since
this book was first published in 1974. The book as originally written, how-
ever, remains a good general introduction to Al since the foundations of the
field remain the same. Even so, this edition will be more useful because of
material I have added to summarize the decade’s progress and guide the
reader to further study. For simplicity, this supplementary material, includ-
ing its own bibliography, is added as a separate section immediately follow-
-ing this Preface.

In retrospect, the following people have to date made the greatest con-
tributions to my work, and so either directly or indirectly to this book: J. Mc-
Carthy, A. Samuel, N. Chapin, E. Deaton, B. Raphael, J. Munson,
R. Manuck, E. Feigenbaum, J. Lederberg, T. Rindfleisch, R. Scroggs,
M. Uren, L. Laasi, R. Champion, S. Sickel, I. Pohl, M. Cunningham,
H. Crafts, B. Chatterjee, J. A. Wheeler, W. Honig, D. Lenat, R. Schuet,
E. McGinnis, P. Roth, D. B. Pedersen, B. A. Bowman.

lam grateful to all of these people and have benefited from their advice.

It should be expressly noted that I alone am responsible for the content
of this book. Naturally, I hope the reader will find that its value greatly out-
weighs its errors, and I apologize for any errors it contains.

Finally, a special word of thanks goes to my parents, whose faith and
encouragement have made this effort possible.

PHILIP C. JACKSON, JR.




DEVELOPMENTS
1974-1984

This supplementary section presents material updating the text of the
first edition of Introduction to Artificial Intelligence, which has been kept in-
tact. The new material is organized to parallel the coverage of the original
chapters, and readers unfamiliar with the first edition may wish to read each
original chapter first, then turn to the supplementary section for that
chapter. »

In some cases, references are made to the original chapters by using just
chapter or page numbers. Parentheses enclose the year portion of references
to entries in the original Bibliography at the end of the book, while square
brackets are used in references to entries in the Supplementary Bibliography
at the end of this new section.

It should be emphasized that this new material is only an introduction
to Al research for the decade 1974-1984, just as the original text of this book
is only an introduction to Al research up to 1974. Because of space limita-
tions, the supplementary material cannot discuss the decade’s research in
thorough détail. Rather, it tries to summarize and give pointers to some of
the decade’s major research. Hopefully, the reader will follow these pointers
to gain greater knowledge of the entire field, including research not
cited.

1. INTRODUCTION

Much of the material in Chapter 1 needs very little updating. Recently,
however, several books have been published that contain material relevant

XV



Xvi INTRODUCTION TO ARTIFICIAL INTELLIGENCE

to the coverage in Chapter 1. Among these, the reader is referred to Albus
[1981], Boden [1977], Kent [1981], and Sagan [1977].

Also, it should be noted that since 1974 several books have been writ-
ten that are complete texts on artificial intelligence, with various levels of
coverage and emphasis. The reader is encouraged to study such texts, in-
cluding Banerji [1980], Barr, Cohen, and Feigenbaum [1981], Bellman
[1978], Nilsson [1980], Raphael [1976], and Winston {1977].-Other, more
specialized texts are cited below.

In general, the proceedings of conferences on artificial intelligence are
the major sources cited in these supplementary notes; the reader can find
detailed summaries of most published Al research in the Proceedings of the
American Association for Al and International Joint Conferences on Al,
which now run to 7,121 pages, spanning the years 1969 to 1983.

2. MATHEMATICS, PHENOMENA, MACHINES

The goal of Chapter 2 was to present some of the mathematical theory
underlying artificial intelligence and computer science in general. In partic-
ular I discussed whether there was any way in theory of proving mathemati-
cally that machines could or could not be intelligent. In addition, I pre- -
sented some practical limitations that affect computers because they are
real-world machines subject to the laws of physics. These results from math-
ematics and physics are useful in reasoning about computers and the limita-
tions of artificial intelligence, but not in themselves sufficient to prove or
disprove the attainability of true artificial intelligence. '

Naturally, scientists have continued to discuss this question, arguing
both for and against the ultimate achievability of true intelligence by com-
puters. And into this debate they have introduced considerations from other
sciences.

Regarding the general theoretical limitations of artificial intelligence,
Haugeland [MD; 1981] includes several papers arguing against the possibili-
ty of a truly complete artificial intelligence, one that could duplicate or sur-
pass human thought, as well as other papers that discuss Al methodology
but are not skeptical of its ultimate success. (The scope of this collection
makes it an important Al reference.) The arguments against Al (by Dreyfus,
Haugeland, Searle, Davidson, and others) draw on relevant issues in the
fields of psychology, philosophy, and biology. :

They argue that computers cannot duplicate the biochemistry of the
human brain, which prevents Al from duplicating moods, emotions, aware-
ness, feelings, and other phenomena important to human thought. Also,
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they argue that “understanding” concepts is fundamentally different from
symbol manipulation; that sensorimotor (and other) skills are not devel-
oped by thought processes such as those studied by Al and its sister field,
cognitive psychology; that human thought is “holistic” and cannot be divid-
ed into subprocesses in the way that Al approaches it that human thought
deals with infinite exceptions and ambiguities and thus is too complex for
computers. (I do not say that each of the authors listed above subscribes to
all of these claims.)

1 alluded to some of these concerns myself in Chapter 2, for example by
noting that the universe might contain phenomena which are not finitely
describable, and that the human brain is architecturally different from pres-
ent computers. Because of this I concluded that it is an open question
whether computers could ever duplicate all the abilities of human intelli-
gence, though it seems clear they can emulate some.

The argument that understanding is fundamentally different from sym-
bol manipulation, however, is particularly crucial to Al research, since a
major approach of AT has been to apply discrete symbol-manipulation tech-
niques (via digital computers) to tasks which in humans involve “under-
standing.” For example, Al programs have been written that “understand”
sentences in English and other natural languages (see Chapter 7 and its'sup-
plement, below).

Searle [1981] gives an especially clear argument that symbol manipula-
tion cannot be equivalent to human understanding, using a variation of
Turing’s test (see Chapterl). In essence, Searle argues that a human could
perform a computer’s symbol-manipulation procedures, and appear to un-
derstand a foreign language, without actually understanding the language at
all. Searle asks the reader to agree through introspection that symbol manip-
ulation is qualitatively different from true “understanding.”

Recent papers by McDermott [1983] and Woods [1983] counter this ar-
gument, basically by contending that understanding really is a process of
symbol manipulation: they contend in essence that understanding is a proc-
ess that deals symbolically with “meaning rules” which represent interpreta-
tions of other symbols. Sloman [1983] suggests that the built-in interpreta-
tions for truth, conditionality, numbers, etc., that are provided by the
machine languages of computers furnish a starting point for studying how
other machine architectures can provide interpretations of concepts.

I think these responses are adequate to show that computers can emu-
late understanding, i.e., at least behave as though they understand concepts
within some limitations of scope and complexity. This should be adequate
for Al systems to achieve useful results, so that the general public will collo-
quially say that Al systems “understand” some concepts, though scientists
should remain cautious in their comparisons.
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Whether computers can “really” understand concepts just as we do will
require more understanding of human intelligence to decide. Perhaps
human intelligence “internalizes” its symbolic manipulation at a lower level
of brain functioning to produce the sensations of human “understanding,”
“consciousness,” etc., and these sensations are not duplicated when humans
process symbols consciously, as in Searle’s variation of Turing’s test. This
seems to be the essence of the responses of Sloman, McDermott, and Woods
to Searle’s argument.

Even so, Dreyfus [1981] notes that Husserl and Heidegger encountered
an apparently endless task in their attempts to define human concepts sym-
bolically, and warns that Al confronts the same problem. Undaunted by
such problems, I have proposed a high-level initial design for a system that
would develop its own concepts to demonstrate general-purpose artificial |
intelligence in real-world environments (Jackson [1984]).

Regarding the physical limitations of real-world computers, the limits
described in Chapter 2 still apply, of course. Engineering progress has in-
creased memory sizes and reduced access and computation times, generally
by an order of magnitude over the “conventional” and “attainable” numbers
given in Chapter 2. This progress continues rapidly, so that specific numbers
cited at the time this is written would be obsolete by the time this reaches the
reader. What is important is simply that these finite limitations still apply,
constraining the computing power of machines. It should be noted that en-
gineers are still eons away from the “theoretical” limits to information pro-
cessing based on quantum theory, presented in Chapter 2. Also, the process-
ing rates predicted for “coherent optical logic” (Culver and Mehran, 1971)
are as yet unfulfilled.

Again, these limits in themselves do not answer the question of AI’s ulti-
mate attainability. However, one development deserves special attention:
the integrated-circuit “microcomputers” (mentioned on page 60) have
evolved spectacularly, so that rather complex systems now occupy very little
space. For example, up to 450,000 transistors can be placed on a Y%-inch-
square “chip” (Beyers et al. [1983]). The evolution of microcomputers holds
great promise for artificial intelligence, especially in parallel-processing sys-
tems. (Regarding developments in this field, see the supplement to Chapter
8, below.)

Finally, it should be noted that Hofstadter [1980] and Rucker [1982]
present exuberant, insightful introductions to subjects in mathematical
logic that underlie the field of artificial intelligence. In particular, they treat
Godel’s incompleteness theorem regarding unsolvable problems in mathe-
matical logic. The reader may wish to compare their expositions of this
topic, and its relation to Al to Chapter 2’s presentation of the Halting Prob-
lem, a related unsolvable problem that fundamentally limits the abilities of
machines. Again, such unsolvable logic problems do not limit machines any
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more than they limit people. It is interesting, however, that the recursive way
in which these problems are stated reminds us of the question, “Are we intel-
ligent enough to understand intelligence?”

Though Al has made enormous progress in the last decade, understand-
ing intelligence remains an unsolved challenge to our intelligence. The
progress in Al so far has also increased our awareness of how much we do not
know. Whether or not machines can ever be truly intelligent, however, Al re-
search has shown that even limited forms of machine intelligence have great
utility.

3. PROBLEM SOLVING

This chapter discusses concepts of “problem solving” that are central to
Al research. As would be expected, Al researchers have continued to develop
and explore these concepts, which retain their centrality.

One major concept for problem solving remains “heuristic search” in
the “state-space” paradigm. Nilsson [1980] and Barr et al. [1981] give thor-
ough presentations of this subject that complement the treatment given in
Chapter 3. Dechter and Pearl [1983] present recent theoretical results on the
Hart-Nilsson-Raphael (1968) heuristic search algorithm (known as the A*
algorithm) that further support the optimality of this search algorithm.
Pearl and Kim [1982] and Ghallab and Allard [1983] show the value of A*
variations that search for solutions that are “nearly” optimal instead of com-
pletely optimal.

Recently, Kumar and Kanal [1983] have shown that a variety of
problem-solving algorithms can be “unified” via representation with
context-free grammars as “composite decision processes.” (See Chapter 7 re-
garding context-free grammars.) Stockman [1979] and Berliner [1979] pre-
sent recent search algorithms for AND/OR trees, which Kumar and Kanal
have shown are closely related to the alpha-beta procedure described in
Chapter 4.

Heuristic search procedures require algorithms, called “heuristics,” for
estimating the values of nodes in the state space being searched. Valtorta
© [1983], Pearl [1982], and Gashnig [1979] have shown that heuristic-estimate
functions can be automatically derived by a search procedure that solves
“auxiliary” problems related to the original problem state space. However,
Valtorta also shows it is not efficient, in general, to use this method. The de-
velopment of good heuristic-estimate functions remains a key problem for
Al research: experience indicates that this is an area where the problem of
problem representation remains central (see Chapter 3). Al researchers are
still at the frontier of developing systems that can develop their own prob-
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lem representations. (See Amarel (1968), Lenat [1982], Lenat and Brown
[1983], and Jackson [1984].)

However, Al researchers have long recognized the centrality of the rep-
resentation problem, and in the decade 1974-1984 concentrated substan-
tially on machine representations of all forms of human knowledge (includ-
ing problems). “Knowledge representation” has become a major subdomain
of Al research. Among the multitude of papers on this subject, the reader
should certainly be pointed to Minsky [1982], Schank and Colby [1973],
Lenat [1979], and Lenat and Greiner [1980].

Lenat’s work in particular should be briefly described, because it dem-
onstrated major progress in the past decade. Lenat [1979] describes a com-
puter program called AM, which used a LISP-based representation to emu-
late discoveries of concepts in elementary mathematics. For example,
starting with LISP-structures to represent concepts of set theory (“set,”
“union,” etc.), AM used heuristics to develop LISP structures representing
higher-level concepts of elementary mathematics (“natural number,”
“prime,” etc.). AM could also discover conjectures (relations between con-
cepts), though it was not designed to prove theorems. For example, AM was
able to conjecture the unique factorization theorem, that any natural num-
ber can be uniquely factored into prime numbers. Lenat and Greiner [1980]
describe the evolution of this approach into “RLL,” a “representation-
language language” used for representing concepts in arbitrary domains be-
sides mathematics. Lenat and Brown [1983] give a recent analysis of this
research. ‘

Besides heuristics and the representation problem, the concepts of
planning, evolution vs. reason in problem solving, analogies, learning, and
“skilled” (or “expert”) problem solvers all remain central to Al Researchers
have continued to develop these topics, in many cases combining them (see,
for example, Rendell [1983], Subrahmanian [1983], Salzberg [1983],
Mostow [1983a], Carbonell [1983], Georgeff [1983], and Kim and
McDermott [1983]). “Learning” especially has been a major Al research
topic, with a recent book surveying the subject (Michalski, Carbonell, and
Mitchell [1983]). The link between learning and knowledge representation
is analyzed in a recent paper by Scott [1983]. Lebowitz [1983]illustrates this
topic in a system which generalizes representations of patent abstracts.
Burstein [1983] and Douglas and Moran [1983] present results on learning
by analogies.

Finally, Al has continued to make impressive progress in developing
“expert” systems that can demonstrate skill in performing tasks previously
requiring trained human intelligence. As a result, “expert systems” have be-
come another major subdomain of AI research. The main tools for con-
structing expert systems have been “knowledge-representation” systems,
typically using “production rules” and “backtracking” (Chapters 3, 4, 6) to
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control how knowledge is used by the expert system. A textbook edited by
Hayes-Roth, Waterman, and Lenat [1983] provides a standard reference on
theories and techniques for building expert systems. Benjamin and Harri-
son [1983] describe work on a system that can learn its expert behavior by
generalizing from examples of expert human behavior. The 1983 IJCAI and
AAAI Proceedings contain 55 papers explicitly on expert systems, with many
others indirectly related, which indicates the magnitude of research in this
area.

In particular, expert systems are envisioned as augmenting (and in
some cases supplanting) human intelligence in development of the “fifth
generation” of computers (Feigenbaum and McCorduck [1983]). In turn,
the fifth generation of computers should support even more advanced Al
processes, including expert systems. Lenat et al. [1983] describe one such
ambitious, long-range project, called Knoesphere: an expert system able to
represent, and intelligently explain, the knowledge of an encyclopedia.
Jackson [1984] presents a similarly ambitious, high-level design of a system
that would develop its own concepts, demonstrating general-purpose intelli-
gence in real-world environments.

4. GAME PLAYING

Game playing has remained a valuable subfield of Al research, and the
concepts presented in Chapter 4 have remained central to computer pro-
grams that play games. Games have been useful in, and have benefited from,
advances in other Al fields, such as knowledge representation and evolu-
tionary programs.

Zhang and Zhang [1983] discuss application of the statistical-inference
method to the A* heuristic search algorithm, claiming it results in a superior
game-search algorithm. Other important work on search algorithms is men-
tioned in the supplement to Chapter 3, above.

Chess has continued to be a major focus of Al research in game playing.
As of this writing, computers cannot yet consistently win against human

- grandmasters. Berliner [1981] discusses the use of brute-force search tech-
niques in Chess programs, which in conjunction with supercomputers are
presently the best Al Chess systems. Kaindl [1983] discusses a more in-
formed (relying less on brute force) Chess search for “quiescent” states of
the game. Simon and Gilmartin [1974] describe an earlier Chess program
which recognized some “patterns,” or related groups of Chess pieces.

Some Al researchers have concentrated on Chess endgames, which are
relatively simpler than full Chess. For example, Bramer [1975] studied
knowledge representation in Chess endgames. Building on this, van den
Herik [1983] describes an expert system for a class of Chess endgames
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(King, Bishop, and Knight vs. King). Systems like this use patterns to guide
the selection of rules for actions, in addition to depth-first search. Campbell
and Berliner [1983] describe a similar program for King and Pawn
endgames. Jackson [1984] discusses some of the “conceptual structures”
that might be used in representing various levels of knowledge about Chess.

S. E Smith [1983] describes a genetic algorithm (evolutionary pro-
gram) that develops its own production rules for playing Poker and learns to
play at the same level as Waterman’s program, described in Chapter 4.
Rendell [1983, 1984] studied genetic algorithms for learning heuristic-
search evaluation functions, relating this to Samuel’s Checkers program
(1967).

Games have even helped in studying the evolution of knowledge. For
example, Hunt [1983] discusses the game of Mastermind, in which one play-
er tries to break a four-color code selected by another, and shows that guess-
es known to be false can at some points give more information toward break-
ing the code than guesses that are not known to be false. Hunt relates this to
a similar problem in decoding DNA strings.

In summary, it seems clear that games will remain a valuable subfield
of Al research, with the potential for shedding light on and testing Al results
in other domains. In particular, Chess will remain a challenge to Al research-
ers, providing a domain in which efforts can be focused on expert systems,
knowledge representation, and learning.

5. PATTERN PERCEPTION

Chapter 5 discusses “pattern perception” as it occurs in Al vision Sys-
tems, and also more generally as it occurs in other domains of AL The
growth of robotics has meant continued, extensive research into vision Sys-
tems, though the principles described in Chapter 5 remain basic to more re-
cent research. Research in pattern perception has also benefited from work
in other Al domains, such as knowledge representation, production-rule sys-
tems, etc. The following indicates just some of the recent research in this
area.

Brooks [1981] describes a high-level vision system (called ACRONYM)
that relies on models of objects and of the scene-to-image transformation to
predict how an object will appear, given the program’s knowledge represen-
tation of a scene. Fisher [1983] extends this approach in a program that
matches regions of a picture image to models of surfaces, and then hypothe-
sizes possibly occluded objects in a scene. Glicksman [1983] describes an-
other system which uses “semantic information structures” (see Chapter 7)
for visual-information processing.
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Diamond et al. [1983] describe an edge-detection method that is ori-
ented toward parallel processing. (Parallel-processing computer architec-
tures have made substantial progress in the past decade; see the supplemen-
tary material for Chapter 8, below.) Fischler and Wolf [1983] describe the
iterative use of “smoothing” algorithms to identify lines in a picture. of
course, numerous other researchers have addressed these topics.

Horn [1977] gives an important analysis of the physics of image forma-
tion and its relation to visual perception. Several authors have studied the
recognition of object shapes using shading, texture, and stereo visual infor-
mation (see, for example, Ikeuchi and Horn [1981], Witkin [1981], and
‘Grimson [1981]).

Pentland [1983] discusses how to compute “fractal” representations of
patterns from visual image data. This approach may be especially important
in the visual perception of real-world scenes, which often include complexi-
ties such as mountains, trees, clouds, etc. Fractals are a very interesting class
of mathematical functions developed by Mandelbrot [1977]. The basic con-
cept of fractals is that objects have different shapes depending on the scale at
which they are measured. For example, a mountain may appear to be round-
ed from a distant viewpoint and more irregular from a closer viewpoint. The
success of fractals in representing visual patterns suggests that they should
be investigated for pattern perception in other Al domains.

Nagel [1983] gives some recent mathematical results relevant to visual
perception of motion, and several other references to- this problem. Cowie
[1983] also discusses this topic, as well as other relations between observers
and the observed. Thorpe and Shafer [1983] discuss this topic in relation to
Huffman-Clowes labeling algorithms.

Of course the above material can reference only a small subset of the re-
search in pattern perception. In addition to the various conference proceed-
ings (IJCAI8 alone has over 40 papers on vision systems), the reader is espe-
cially encouraged to study the following texts: Ahuja and Schachter [1983],
Barr et al. [1981], Hanson and Riseman [1978], Kandel [1982], Miller and
Johnson-Laird [1976], Nevatia [1982], Pavlidis {1977], Pugh [1983], Rock
[1975], Tanimoto and Klinger [1980], Uliman [1979], and Winston. 11975,
1977]. Mackworth [1983] gives an excellent overview of the past decade’s
work ‘on computer vision. : ‘

6. THEOREM PROVING

Researchers have also remained very active in the study of theorem-
proving techniques and in using such techniques in Al systems. Wos [1983]
describes one of the most successful theorem-proving systems, an “automat-




XX1v INTRODUCTION TO ARTIFICIAL INTELLIGENCE

ed reasoning assistant” (called AURA) which was successfully used to an-
swer some previously open questions in mathematics and formal logic.
AURA has also been used for design and validation of logic circuits.

Resolution-based theorem provers have continued to be of interest.
Kowalski [1975], Sickel [1976], and Stickel [1982] describe methods to
make resolution more efficient by storing unifications in “connection
graphs.” Stickel [1983] describes a recent resolution-based theorem-proving
system, with comparisons to other variations of resolution. IJCAIS presents
several other papers on resolution.

Al researchers have become very interested in using theorem-based Sys-
tems to represent various “higher-level” reasoning problems. Many have fo-
cused on “nonmonotonic logic,” which allows reasoning about statements
that can have exceptions and might be retracted (e-g., “all birds can fly”).
(See, for example, McDermott and Doyle [1980], McCarthy [1980], Reiter
+ [1980], and Moore [1983].) This is closely related to “default reasoning,” in
which statements are accepted by default (see, for example, Winograd
[1980], Rich [1983], and Nutter [1983].) McCarthy [1979] has continued to
study the logic of reasoning about knowledge and action. (See also Moore
[1979].) IJCAI8 has numerous other papers related to such logical systems.
The reader should also consult a text edited by Mandani and Gaines [1981]
on “fuzzy reasoning,” which includes recent papers on the field originated
by Zadeh (1965, 1968).

The supplement to Chapter 3, above, describes the work of Lenat, who
studied the development of concepts in mathematical theories and has been
a leader in work on expert systems. As Nilsson [1984] points out, much of
the work on expert systems can be viewed as an application of theorem prov-
ing: most expert systems make use of production rules and can be viewed as
“backward-chaining theorem provers.” An important development has
been the use of production-rule systems to represent the “meta-level” con-
trol structures of expert systems, in addition to representing expert knowl-
edge within those systems (Genesereth and Smith [1982]). Another achieve-
ment is the creation of a widely accepted programming language (PROLOG)
for implementing production-rule systems, which has become a major com-
petitor of LISP in Al research efforts (Colmeraurer [1975], Warren et al.
[1977], and Kowalski [1979]). Much of this work can be related to the earlier
work of Hewitt (1972) described in Chapter 6. Weyhrauch [1980] developed
a theory of “semantic attachments” between propositional and procedural
systems.

Work has also continued on “automatic programming” and its relation
to theorem proving. Though in many ways automatic programming remains
one of AI's most difficult challenges, advances have been made. Barstow
[1977] describes a knowledge-based system for automatic programming,
which is an important step. Guiho [1983] illustrates the state of the art in
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proving that programs are correct. Boyer and Moore [1983] use theorem
proving to show the correctness of the RSA encryption algorithm. Reddy
and Jayaraman [1983] and Naqvi and Henschen [1983] give recent exam-
ples of methods for transforming mathematical problems into programs that
solve them. Balzer [1981] and others have developed a high-level language
(GIST) for specifying behavior of programs, and have studied the conversion
of specifications into programs. D. R. Smith [1983] has presented another
interesting paper on transformation of specifications into programs, using a
“problem-reduction” approach. Mostow [1983b] describes the transforma-
tion of specifications into VLSI circuits.

7. SEMANTIC INFORMATION PROCESSING

Chapter 7 concerns the ability of machines to use languages, and in
particular to process the “semantic information” (i.e., “meaning”) of sen-
tences in languages. Al has continued its progress in the area, of course,
building on the research summarized in Chapter 1.

One area of progress has been in the study of how “semantic informa-
tion” can be tepresented for processing by computers. This study is also
called “knowledge representation” and has become a major subfield of AL
The supplementary material for Chapter 3, above, summarizes AI's progress’
in the field of “knowledge representation” in general. :

Many results have been obtained for the “syntax problem,” that is, how
computers can be made to parse natural (and artificial) languages. To men-
tion just a few: Kay: [1980] describes a flexible method for defining non-
deterministic parsers, called the “active chart parsing” method. Marcus
[1980] shows that LR(k) parsing can be extended to give deterministic, effi-
cient parsing of English (see also Stabler [1983]). Gazdar [1983] reasons per-
suasively that natural languages might be represented by generalizations of
context-free grammars. - v Lo

Several résearchers have studied how Al systems can use knowledge
about the direction or context of a conversation to aid in understanding sen-
tences within the conversation. Much of this work has relied‘'on the concept
of “scripts™ introduced by Schank and Abelson [1977]-a script'is a stereo-
typical sequence of possible situations and events. Pazzani [1983] gives a re-
cent example of an Al system that uses scripts to communicdte interactively
with a human. Additienal conceptual structures for representing dialogues
have been studied by Bobrow et al. [1977]. Still others have studied the use
of hierarchy and recursion’ in' structuring texts and dialogues (McKeown
[1983], Grosz [1977], and Reichman [1981]). Hayes and Carbonell [1983]
have studied “metalanguage” phrases and sentences, which refer to other
phrases and sentences in the same dialogue.
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Chapter 7 notes that the meaning of a sentence is often more closely re-
lated to the speaker’s goals than it is to the sentence itself, Earlier discussions
of this “speech-act theory” were given by Austin | 1962] and Searle [1969].
Recently, researchers have developed theories of how systems can plan the
use of language to achieve goals (Cohen and Perrault [1979]). Appelt [1982]
describes an Al system that plans its generation of English sentences.
Carberry [1983] describes a system that understands a speaker’s goals in
order to answer questions appropriately.

Major progress has been made in building computer systems that can
recognize and synthesize human speech. The HEARSAY projects demon-
strated A@’s viability for this task and also showed the value of interacting
problem solvers for different subdomains of the problem (Erman et al.
[1980]). Barr et al. [1981] survey work on speech understanding and in par-
ticular discuss search methods used in programs for understanding speech.
Of special interest is the “beam-search” method, which was found to be use-
ful in the HARPY speech-understanding system: beam search is essentially a
breadth-first, nonbacktracking heuristic search that expands only high-
scoring nodes at each level, abandoning paths that encounter low-scoring
nodes (Newell [1978]). More recently, Huttenlocher and Zue [1983] de-
scribe a set of phonological constraints that enable robust-speech recogni-
tion. Teja and Gonnella [1983] survey the technology of speech
synthesis.

Chapter 7 also considers the advantages of interacting networks, or col-
lections, of question-answering systems. Barr et al. [1981, p. 343] write that
this approach, known as the HEARSAY architecture because of its indepen-
dent use by Erman et al. [1980], has been of great value in Al systems for
many diverse applications. Stanfill [1983] has implemented a particularly
nice example of this approach in a collection of interacting expert systems
that together solve problems in simple mechanics. The collection consists of
experts for subdomains of algebra, linear geometry, solid geometry, “shape,”
mechanics, pneumatics, and “qualitative relations.” Experts in higher-level
domains can access lower-level domains through queries. Jackson [1984] in-
cludes and extends the “GQA”/HEARSAY concept in a design for a general-
purpose Al conceptual context. -

Al language understanding has progressed to the point where it is now
becoming a frequent computer interface for some applications, especially
for computer database systems. An ‘English database interface (called “In-
tellect”) was recently announced as a product for commercial databases bya
major manufacturer (Taylor [1984]). Montague | 1970] formalized a theory
of syntax and semantics for natural languages that has been the basis of
much research on Al-database interfaces (Clifford [1983]). Reiter et al.
[1983] summarize the present state of the field of artificial intelligence and
databases, and the lines along which it is developing.
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The supplementary material for Chapter 2, above, discusses a question
some philosophers and cognitive psychologists have raised about the basic
premise of Al semantic information processing, namely whether intelligent
“understanding” can really be equivalent to manipulating symbols and data
structures. This, of course, is a very important question for further
thought.

Again, the above summary can cover only some of the accomplish-
ments of the past decade in this research area. For more extensive coverage,
the reader is referred to Barr et al. [1981] and the various IJCAI Proceedings.
Rosenschein [1983] provides an insightful overview of the current state and
probable future directions of natural-language processing.

8. PARALLEL PROCESSING AND
EVOLUTIONARY SYSTEMS

Al research has now clearly demonstrated the value of parallel process- -
ing and evolutionary systems in several domains. The supplements to Chap-
ters 2 through 7, above, mention several examples. I shall briefly recapitu-
late and add to these examples. However, the reader should first be referred
to an excellent collection of papers on parallel processing, edited by Kuhn
and Padua [1981].

Regarding evolutionary systems, little more need be written, except
that successes using this approach have been noted in supplements to Chap-
ters 2 through 7. Much of this work is based on the work of Holland, de-
scribed in Chapter 8.

1t should be expressly noted that Chapter 8s discussion of parallel Sys-
tems in terms of cellular automata and Turing machines is very theoretical.
Actual parallel-processing systems have been based on more practical archi-
tectures, often via components and technologies developed for serial proc-
essors. For example, an important approach has been the construction of ar-
rays of computer processing-units. More flexible (but sometimes less
efficient) designs have avoided the array structure and enabled several com-
puters to share common memories and communications buses. Several ex-
amples of these approaches are given in Kuhn and Padua [1981].

In addition, a “dataflow” architecture for parallel-processing systems
has been developed that departs from the conventional von Neumann logic
used in serial computers. The essence of the dataflow concept is that instruc-
tions execute whenever data flows to them, with data normally flowing to
multiple instructions at once. The von Neumann design thinks of control
flowing serially from one instruction to the “next,” Dennis [1979] gives an
overview of the dataflow architecture he developed.
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Parallel processing has found applications in many Al domains. Uhr
[1980] gives cogent reasons why computer vision systems should be struc-
tured as serial layers of large-scale parallel-processing systems. Duff [1976]
describes CLIP4, an image processor consisting of a large-scale array of mi-
croprocessors. Kruse [1980] describes PICAP, a parallel bit-slice architecture
for image analysis. Fennell and Lesser [1977] discuss the use of parallelism
in the HEARSAY-II speech-understanding system. Fahlman, Hinton, and
Sejnowski [1983] discuss the use of parallel processing for several Al pattern-
recognition problems.

As Uhr suggests, it now seems clear that large-scale parallel systems will
ultimately achieve enormous computation rates. The design of NASA’s
“massively parallel processor” array of 16,384 microprocessors predicted
over 6 billion additions per second (Batcher [1980]). Jackson [1979] envi-
sioned the creation of “very large-scale parallel” (VLSP) computer systems,
which would combine 100,000 or more microprocessors in a single system,
yleldmg up to a trillion operations per second. Stolfo and Shaw [1982] de-
scribe a tree-structure design for up to 100,000 microprocessors, specifically
oriented to the parallel execution of Al production systems.

The potential applications of VLSP systems could be quite profound,
for artificial intelligence as well as for other applications of computers. To
appreciate this, consider that 100,000 microprocessors could total 100 bil-
lion transistors, while the human brain has about 12 billion neurons. We
may imagine the most natural applications of such systems by looking at
things we now consider impossible and asking if they might be done by
100,000 computers working in concert. This is left as an entertaining exer-
cise for the reader.

9. THE HARVEST OF ARTIFICIAL
INTELLIGENCE

Chapter 9 discusses the general applications of artificial intelligence,
concentrating on robotics and on possible future consequences of Al sys-
tems. In many ways this chapter remains extremely relevant to present re-
search, for while major progress has been made in the development of
robotics, major questions remain regarding the future of Al

Indeed, the progress in robotics has intensified our appreciation of Al’s
possible consequences. Public concern is growing about increases in unem-
ployment caused by automation. Japan and other nations are developing
factories run almost entirely by robots. And Nilsson [1983] reminds us that
Al also has the potential to perform many white-collar jobs. Coiffet and
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Richard [1983] have provided several volumes on robotics alone, while
Ayres et al. [1983] have studied the applications and social implications of
robotics. IJCAI8 contains other recent papers on robotics.

We should not be too sanguine that Al will have only positive conse-
quences. Rather, we should carefully note three trends over the past decade:
the price of computer hardware has fallen steadily and dramatically; the
power of computer hardware has grown just as steadily and dramatically; Al
research has made steady and dramatic progress toward the goal of general-
purpose Al systems that could ultimately program themselves, with little
need for human programmers. We may expect all of these trends to contin-
ue, and it is difficult to be sure of their rates of change and technical limits.

If researchers are largely successful in emulating human intelligence
with computers, and if the hardware-cost and performance trends continue
for a sufficiently long time, then it is conceivable that Al systems will com-
pete against the human work force throughout our economy, and for jobs of
all types and levels, not just those on assembly lines.

This would not happen overnight, if it happens at all. But it might hap-
pen more quickly than we expect. For example, current Al systems place us
on the brink of automating a basic secretarial task, taking dictation. With
other jobs it may take decades or longer before machines compete for them.

It may be that economies ultimately provide only a finite number of
gainful tasks and that jobs lost to automation are not necessarily replaced by
jobs elsewhere. If Al systems do cause permanent unemployment, then we
should consider ways to insure that AI will support those it removes from
work. Duchin [1983] suggests possible mechanisms for this, such as a “nega-
tive income tax.”

If we can develop such mechanisms, then Al may lead to a very positive
future, with more leisure time and a higher standard of living for the general
public (Boden [1983]). If so, then artificial intelligence will become one of
our most humanistic sciences.
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INTRODUCTION

INTRODUCTION

“Artificial intelligence” is the ability of machines to do things
that people would say require intelligence. Artificial intelligence (Ar)
research is an attempt to discover and describe aspects of human intel-
ligence that can be simulated by machines, For example, at present
there are machines that can do the following things:

1. Play games of strategy (e.g., Chess, Checkers, Poker) and
(in Checkers) learn to play better than people.

Learn to recognize visual or auditory patterns.

Find proofs for mathematical theorems.

Solve certain, well-formulated kinds of problems.

Process information expressed in human languages.

et i

. The extent to which machines (usually computers) can do these
things independently of people is still limited; machines currently exhibit
in their behavior only rudimentary levels of intelligence. Even so, the
possibility exists that machines can be made to show behavior indicative
of intelligence, comparable or even superior to that of humans.’ ‘

Alternatively, Al research may be viewed as an attempt to develop
a mathematical theory to describe the abilities and actions of things
(natural or man-made) exhibiting “intelligent” behavior, and serve as a
calculus for the design of intelligent machines. As yet there is no “mathe-
matical theory of intelligence,” and researchers dispute whether there
ever will be.

This book serves as an introduction to research on machines that

1
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display intelligent behavior (note 1-1).! Such machines sometimes
will be called “artificial intelligences,” “intelligent machines,” or “me-
chanical intelligences.”

The inclination in this book is toward the first viewpoint of Ar re-
search, without forsaking the second. Since A1 research is still in its
infancy, it is therefore prudent to withhold estimation of its future. Tt is
best to begin with a summation of present knowledge, considering such
questions as:

1. What is known .about natural intelligence?

2. When can we justifiably call a machine intelligent?

3. How and to what extent do machines currently simulate intel-
ligence or display intelligent behavior?

4. How might machines eventually simulate intelligence?

5. How can machines and their behavior be described mathe-
matically?

6. What uses could be made of intelligent machines?

Each of these questions will be explored in some detail in this
book. The first and second questions are covered in this chapter. It is
hoped that the six questions are covered individually in enough detail
so that the reader will be guided to broader study if he is so inclined.
For parts of this book, some knowledge of mathematics (especially sets,
functions, and logic) is presupposed, though much of the book is under-
standable without it.

TURING’S TEST

A basic goal of ar research is to construct a machine that exhibits
the behavior associated with human intelligence, that is, comparable to
the intelligence of a human being (note 1-2). It is not required that the
machine use the same underlying mechanisms (whatever they are) that
are used in human cognition (note 1-3), nor is it required that the
machine go through stages of development or learning such as those
through which people progress.

The classic experiment proposed for determining whether a machine
possesses intelligence on a human level is known as Turing’s test (after
A. M. Turing, who pioneered research in computer logic, undecidability

* The notes at the ends of chapters are for the benefit of the careful reader,
and are intended to clarify questions that may arise in the text.
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theory, and artificial intelligence). This experiment has yet to be per-
formed seriously, since no machine yet displays enough intelligent
behavior to be able to do well in the test. Still, Turing’s test is the basic
paradigm for much successful work and for many experiments in
machine intelligence, from the Samuel’s Checkers Player to “semantic-
information processing” programs such as Colby’s PARRY or Raphael’s
SIR (see Chapters 4 and 7).

Sources, one of them Interface Human
human, one a machine controlled interrogator
by

experimenter

Barrier

Barrier

Barrier Barrier
Figure 1-1. A diagram of Turing’s test.

Basically, Turing’s test consists of presenting a human being, A,
with a typewriter-like or Tv-like terminal, which he can use to con-
verse with two unknown (to him) sources, B and C (see Fig. 1-1). The
interrogator A4 is told that one terminal is controlled by a machine and
that the other terminal is controlled by a human being whom A has
never met. A is to guess which of B and C is the machine and which is
the person. If A cannot distinguish one from the other with significantly
better than 50% accuracy, and if this result continues to hold no matter
what people are involved in the experiment, the machine is said to
simulate human intelligence (note 1-4).
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Some comments on Turing’s test are in order. First, the nature
of Turing’s test is such that it does not permit the interrogator A to ob-
serve the physical natures of B and C; rather, it permits him only to
observe their “intellectual behavior,” that is, their ability to communi-
cate with formal symbols and to “think abstractly.” So, while the test
does not enable 4 to be prejudiced by the physical nature of either
B or C, neither does it give a way to compare those aspects of an
entity’s behavior that reflect its ability to act nonabstractly in the real
world—that is, to be intelligent in its performance of concrete opera-
tions on objects. Can the machine, for example, fry an egg or clean
a house?

Second, one possible achievement of Ar research would be to pro-
duce a complete description of a machine that can successfully pass
Turing’s test, or to find a proof that no ‘machine can pass it. The com-
plete description must be of a machine that can actually be constructed.
A proof that there is no such constructible machine (it might say, e.g.,
“The number of parts in such a machine must be greater than the
number of electrons in the universe.”) is consequently to be regarded
as a proof of the “no machine” alternative.

Third, it may be that more than one type of machine can pass
Turing’s test. In this case, Al research has a secondary problem of
creating a general description of all machines that will successfully pass
Turing’s test,

Fourth, if a machine passes Turing’s test, it means in effect that
there is at least one machine that can learn to solve problems as well as
a human being. This would lead to asking if a constructible machine can
be described which would be capable of learning to solve not only those
problems that people can usually solve, but also those that people create
but can only rarely solve. That is, is it possible to build mechanical
intelligences that are superior to human intelligence?

It is not yet possible to give a definite answer to any of these
questions. Some evidence exists that Ar research may eventually attain
at least the goal of a machine that passes Turing’s test.

It is clear that the intellectual capabilities of a human being are
directly related to the functioning of his brain, which appears to be a
finite structure of cells. Moreover, people have succeeded in construct-
ing machines that can “learn” to produce solutions to certain specific

intellectual problems, which are superior to the solutions people can

produce. The most notable example is Samuel’s Checkers Player, which
has learned to play a better game of Checkers than its designer, and
which currently plays at a championship level (see Chapter 4).
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NATURAL INTELLIGENCE

The definition of “intelligence” in Webster’s Third International
Dictionary (1966) reads:

tin.tel-li-gence \an-'telsjon(t)s\ n -§ often attrib [ME, fr. MF,
fr. OF, fr. L intelligentia, ir. intelligent-, intelligens (pres. Fan‘..)
+ -ig -y — more at INTELLIGENT] 1 a (1) ¢ the faculty of
understanding $-capacity to know or apprehend @ INTELLECT,
REASON {~, which emerged during the revolutionary cycles of
matter as the highest form yet achieved —Hermann Reith)
{conceived of history as the expression of a divine ~y (2)
Christian Science ! the basic eternal quality of divine Mind
b : the available ability as measured by intelligence tests or by
other social criteria to use one’s existing knowledge to meet
new situations and to solve new problems, to learn, to foresee
problems, to use symbols or relationships, to create new re-
Iationships, to think abstractly 2 ability to perceive one’s en-
i vironment, to deal with it symbotically, to deal with it effec-
tively, to adjust to it, to work toward a goal & the degree of
one’s alertness, awareness, or acnity ¢ ability to use with
awareness the mechanism of reasoning whether conceived as a
unified intellectual factor or as the aggregate of many intellec-
tual factors or abilities, as intuitive or as analytic, as organ-
ismic, biological, physiological, psychological, or' social in
; origin and nature € $ mental acuteness : SAGACITY, SHREWD-
! ness (did all he was asked to do with ~ and great good
i humor) 2 a: an intelligent being; esp ¢ an incorporeal spirit
; + ANGEL (hierarchies of angelic ~s —S. .Mason) b3 a per-
son of some intellectual capacity (all those ~s we have agreed
to call great —Times Lit. Supp.) (the greatest all-round ~
writing in England —P.S.O’Hegarty) 3 a3 theact of under-
standing : COMPREHENSION, KNOWLEDGE {faith is necessary to
the ~ of the Christian mysteries —Encyc. Americana) B (1)
: information communicated : NEWS, NOTICE, ADVICE {more
weight is laid upon ~ than on editorials —Horace Greeley)
{the joyful ~ that there is hope —Georgina Gr;xhame) {from
the engine-room voice tube came ~ of more importance —
M.S.Boylan) (2) : interchange of information ¢ COMMUNICA-
TION {accused of maintaining ~ with the enemy) (3) obs : a .
piece of information — usu. used in pl. (4) archaic : common
understanding or mutual relations i ACQUAINTANCE, INTER-
COURSE (5) ¢ evaluated information concerning an enemy or
possible enemy or a possible theater of operations and the
conclusions drawn_therefrom; also 3 the section, agency, oOr
persons engaged in obtaining such information 3 SECRET
SERVICE {investigated me and told me I was qualified for Navy
~ —T.F.Murphy) {an ~ bureau) (available to American and
allied ~ organizations —L.W.Doob) SyR see MIND
2intelligence vt -ED/-ING/-S obs 1 to bring tidings of (some-
thing) or to (someone)

(Reprinted by permission from Webster’s Third International Dictionary
® 1971 by G. & C. Merriam Co., Publishers of the Merriam-Webster
Dictionaries.)

To summarize the definition in one phrase, one might say that
intelligence is the ability “to act rightly in a given situation.” Although
one could imagine an entity that always behaves “rightly,” without mak-
ing any errors, Al research is more concerned with the concept of partial
success, with building machines that can make mistakes, but which can
also change their behavior with time and perhaps stop making mistakes.

;
i
|
i
i
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Intuitively, a1 research is concerned with building machines that can
“adjust” or “adapt” to certain environments, and which in effect learn
to solve problems within these environments. This corresponds with the
ordinary conception of human intelligence—that it is limited, but that
it can learn and thereby improve its performance of certain tasks with
time. ‘ :

Surprisingly little is known concerning the limitations of human
intelligence. No one has made any complete survey of the problems that
can be solved by human beings. The ability to solve certain types of
problems has been studied and made the basis of “intelligence™ tests,
but the generality and validity of these tests is disputable. Isaac Newton,
for example, might have scored low on such tests when he was an
adolescent; yet he is estimated by some to have had an intelligence
quotient (1Q) near 200. One of the shortcomings of these tests is that
they predict little concerning the development of a person’s intelligence,
especially what problems he could learn to solve.

Evidence concerning human intelligence can be obtained from four
major sources: history, introspection, the social sciences, and. the bio-
logical sciences. Included in the social sciences are psychology, anthro-
pology, sociology, economics, political science: among the biological sci-
ences are neurobiology, biochemistry, biology. “Introspective” sciences
might include mathematical logic, systems analysis, and music theory.

Evidence from History

A discourse on the full history of human intelligence is certainly
beyond the bounds of this book. Some allusions to this history can be
woven in while presenting evidence from other sources.

Evidence from Introspection

Introspection has yielded a wealth of seemingly ambiguous and
contradictory views of intelligence. One important introspective work
familiar in the Western world is Descartes’ Discourse on Method. This
work purports to be ultimately based only on the notion of thought: “I
think therefore I exist.” So far as the work concerns intelligence,
Descartes made a clear distinction between animals and human beings.
Animals, he believed, are not much different from machines; anything
an animal can do he could imagine being done by a sufficiently com-
plicated machine. People, however, are different from either animals or
machines, since people have an ability to “communicate” with each
other, to use signs, sentences, and languages that are clearly not com-
pletely the result of instinct or construction. Descartes regarded the
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ability to use languages as the most significant indication that something
has human intelligence: “. . . for the word is the sole sign and the only
certain mark of the presence of thought hidden and wrapped up in the
body. . . .”* ]

Descartes was partially correct in his observation that animals can-
not communicate in the same fashion as people. There is recent evidence
that dolphins have some sort of language, but the nature of their lan-
guage is still not understood (Lilly, 1967). Chapter 7 explores the
relationship of intelligence and language.

Another introspective way of looking at the mind is that provided
by the “rooms of consciousness” concept. In this system a human mind
is viewed as being able to inhabit and move among a set of rooms, which
are distinguished from each other by their lighting—Socrates’ metaphor
of the Cave in Plato’s Republic is a good example. Various rooms can
be associated with different levels and abilities of intelligence; this
introspective metaphor has been developed in Eastern cultures by Buddha
and Lao Tse, as well as in the Western world by other philosophers.
Also, the significance of “light” in the metaphor is typical.” Other
variations on the metaphor speak of some rooms as possessing illusions
and dreams. : ' . ‘

One viewpoint of intelligence, which is often developed by intro-
spection, is that there is a distinction between scientific (intellectual)
learning and spiritual learning abilities. Scientific learning is said to rely
on certain rules for the belief, derivation, refutation, and proof of proposi-
tions about the universe. Presumably, science requires a language for
describing events and the meanings of measurements, and is dependént
on the existence of invariant, reproducible things in the universe.
“Spiritual” learning, on the other hand, does not require words or lan-
guage and may evade intellectual reasoning processes.” For various
people, introspection has yielded, for-example, the following notions of
nonintellectual learning:

1. Subconscious learning, in which knowledge is somehow ob-
tained without conscious reasoning.

2. Emotional learning, in which knowledge is perceived as an
emotion, without reasoning. '

3. Inspired learning, in which knowledge is given to one in-
stantaneously, without reasoning, perhaps by a deity.

2 From a letter of 1647 to Henry More, translated by L. C. Rosenfield in
the Annals of Science, Vol. 1, No. 1 (1936). Descartes did not claim that animals
are machines; he said that they do possess “life” and “feeling.”

3 From a physical standpoint the relation of light to intelligence seems to be

simply that light waves (electromagnetic radiation) are the fastest means for
transmitting information.
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4. Pafadoxical learning, in which one is able to perceive knowl-
edge that is self-contradictory, regardless of how it is ex-
pressed in words, and therefore beyond logical or scientific
learning. '

Again, this introspective viewpoint has been developed both in
Eastern and Western cultures. The reader who wishes to study the
subject deeply may wish to read Dostoevsky, Freud, Jung, and Lao
Tse. Various people have, of course, argued that emotional and sub-
conscious learning can be scientifically explained.

The viewpoint that intelligence in certain forms cannot be ex-
plained logically or scientifically is relevant to artificial intelligence re- -
search. If this viewpoint jis correct, then presumably there are some
types of knowledge that machines cannot be said to possess and there
are some ways of gaining knowledge they cannot use. Chapter 2 dis-
cusses the nature of machines and of scientific and mathematical de-
scriptions of things more thoroughly. For now, the viewpoint expressed
there is that while it can be argued mathematically that there are entities
which cannot be completely described mathematically, there is probably
no way of proving in the real world that something is beyond the power
of science to explain. All that can be proved is that science has so far
not explained it,

. Thus, no comment is made here as to the existence or nature of
spiritual learning: What is important is whether there are some forms of
learning and intelligence that can be exhibited by machines. Whether
“some” means “all” is, scientifically speaking, an open question.

Perhaps not surprisingly, introspection as a technique for gaining
knowledge about intelligence often seems to yield only “circular” ques-
tions (Can one learn how to learn? If one knows something, does one
know that he knows it?). Even so, introspection is probably the source
most commonly used in artificial intelligence research for information
about specific problem-solving abilities of human intelligence. Most re-
searchers use their own experience at having solved problems whenever
they are attempting to make a machine solve one; usually if you are
going to try to design a machine that does something, it is a good idea
to try doing it yourself first and see what happens.

This does not mean that your machine will wind up imitating the
human approach to the problem. Actually, machines will often work
more efficiently on certain problems when they operate in ways that
may seem quite foreign to human reasoning patterns, Al research is con-
cerned with finding machines that simulate the abilities of human intel-
ligence—that is, with finding machines that reproduce the outward
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abilities of human intelligence, though not necessarily the inner means
people use to achieve these abilities.

Probably the major advantage to using introspection in artificial
intelligence research is simply that it can give the researcher an idea of
the information relevant to the problem he is trying to make a machine
solve. One of the innate abilities of intelligent creatures seems to be
an ability to discard large amounts of information, and focus only on
that which is “relevant.”

Evidence from the Social Sciences

The evidence from the social sciences concerning human intel-
ligence is scanty. Only a few general things are known with certainty:

1. Human intelligence is a species-wide trait; there does not seem
to be any clear distinction between the innate learning and problem-
solving abilities of infants belonging to the various races. Thus, a normal
child, properly raised, can learn the language of any human culture,
regardless of the language spoken by his biological parents.

2. The intelligence of an individual develops with time and is
strongly affected by the nature of his environment. For example, identi-
cal twins (who have, barring mutations, the same genetic endowment)
raised in different environments have been found to show differences
in their intelligence quotients as great as 24 points.

3. The intelligence of an individual is also strongly affected by
his heredity. Thus, identical twins raised in approximately the same
environment tend to show less difference in their 10s than do other types
of siblings.

4. The intelligence of an individual may vary with respect to dif-
ferent problem domains—we express this by saying that different in-
dividuals may have different “aptitudes.”

" Experiments performed by Piaget (1946 et seq.) and others have
shown that the intelligence of a child develops in stages. Precisely why
this is so is unknown, but it seems clear that these stages do exist and
that the child must accumulate sufficient experience operating within
each stage before he can progress completely to the next. Piaget dis-
tinguished four stages: sensori-motor, preoperational, concrete opera-
tional, and formal operations.

Sensori-motor Stage. This stage lasts for the first year and a half
to two years of the individual’s life. During this stage he makes the
transition from using only his instinctive abilities to developing an
elementary ability to reason causally and use signals. By the eighth
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week of an infant’s life he is able to discriminate visually between dif-
ferent depths and orientations of objects and to visually perceive objects
as having constant size and shape, even when they are receding and
rotating. After about the eighth month a baby can understand that a
rattle will shake only when he pulls on a string attached to the rattle.
Also, after the eighth month, an infant develops vocal and bodily
gestures that refer to events and objects in his environment: he will,
for example, develop facial expressions and learn to make sounds that
represent things he desires or wishes to avoid.

Preoperational or Symbolic-Operational Stage. This stage lasts
roughly from the second to the seventh year of the childs life. During’
this stage the child learns the basic vocabulary of the language of his
culture, and develops an ability to describe events in sentences (prior to
this stage, he describes events with a single word). Also during this stage
the child conducts extensive experiments in his environment and learns
many different causal relationships. Most of his experimenting is, how-
ever, intuitively guided, as is also the way he describes things. If a
child in this stage is asked what a jar is, he might say, “There’s lemonade
in it” Although he can distinguish between “all” and “some,” his

- ability to express the distinction is limited: If he is shown a bouquet

of flowers, only some of which are roses, and asked whether there are
more roses or more flowers, he will typically respond that there are
more roses. Toward the end of this stage a child can be taught to read
and write.

Concrete-Operational Stage. From age seven to age eleven the child
is able to make very significant generalizations of his notions of causality.
In particular, he is able to recognize the concepts of invariance, reversi-
bility, and conservation. Prior to this stage, a child, when shown two
“congruent” glasses filled with the same amount of water, will say that
they have the same. amount of water; but if the water from one glass is
then poured into a taller, thinner glass, he will say that the taller, thinner
glass has more water. Only when he reaches the concrete-operational
stage does he (evidently) realize that both glasses have the same
amount of water, regardless of their shape. Also in this stage of develop-

~ment, when presented with a bouquet of flowers only some of which

are roses, a child will say there are more flowers than roses.

Formal Operations Stage. From the age of eleven upward, the
individual becomes able to operate logically with the form of an argu-
ment, independently of its meaning; that is, he recognizes factors in-
volved in an event and plans experiments that will give him knowledge
about it. It is in this stage that the individual appears to develop a
proficiency at reasoning abstractly with words.
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Some caveats concerning these four stages should be stated. First,
very little is known concerning the emotional and subconscious develop-
ment of a person’s intelligence. Second, there are exceptions to the rate
at which children go through these stages: Mozart, for instance, could
play the piano and compose proficiently at the age of five. Gauss taught
himself to read, could do complicated arithmetic when he was three, and
had certainly reached the formal operations stage by the time he was
eight or nine.

Another set of basic facts about intelligence and learning are
those developed by behavioristic psychology. Behaviorist psychologists
have attempted to understand intelligent behavior by treating  their
subjects as “black boxes,” presenting them with certain standardized
situations. and then recording their reactions. They have been able to
demonstrate certain phenomena repeatedly in several different species,
including man. '

The results best known involve learning experiments in the form of
the traditional “classical conditioning” and “instrumental, or operant
conditioning.” In both cases a conditioned stimulus (cs) that has neu-
 tral intrinsic value to the animal (e.g., a light flash) is temporally paired
with an unconditioned stimulus (Ucs) that has a preexisting reward or
pain value. In classical conditioning the Ucs is followed by the cs
despite the animal’s response (e.g., Pavlov’s induction of salivation in
dogs when a bell was rung). In instrumental conditioning the ‘subject’s
response to the cs determines whether he receives the ucs. Findings
concerning learning in these situations include (Thompson, 1967):

1. Up to a point, the stronger the ucs, the more rapid is the con-
ditioning. ‘

2. The most effective time relations for classical conditioning ap-
pear to be when the cs begins about a half-second prior to the
Ucs. As the time between cs and UCs increases, the efficiency of
the conditioning decreases. ‘

3. The greater the time between trials, the fewer the trials required
for conditioning.

4. If the cs is repeatedly given without the ucs after conditioning
has occurred, the conditioned response will extinguish, or die out.

5. Following extinction, the conditioned response to the cs will
exhibit spontaneous recovery in the absence of uUCs presentations.

6. If reinforcement is given only in some of the trials, conditioning
occurs more slowly, but is more resistant to extinction.

7. If an additional neutral stimulus is temporally paired with the
cs after conditioning, it will subsequently elicit .conditioned re-
sponses.
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8. If conditioning and extinction series are repeated, both processes
will occur progressively more rapidly.

Behaviorist psychologists postulate that these forms of condition-
ing underlie all forms of intelligent adaptation, or learning. They have
had difficulty, however, in analyzing the development of relatively com-
plex problem-solving behavior (such as that described by Piaget’s
findings). As yet, there is no very detailed explanation for the develop-
ment and abilities of human intelligence in terms of classical and
operant conditioning.

Evidence from the Biological Sciences*

State of Knowledge. If a really detailed explanation for the in-
dividual human intelligence were to be given, it might well require a
complete description of the human brain. Biologists are a long way
from anything approaching such a description. This section, however,
will present an overview of current knowledge and nescience, since for
the person doing active research in artificial intelligence it is important
to have such a summary.

The Neuron and the Synapse. The human brain contains ap-
proximately 12 billion nerve cells, or neurons. It has been shown that
each cell has from 5600 to 60,000 dendritic connections (incoming
signal carriers); consequently, each must have equivalent numbers, on
the average,-of axonal branches (outgoing signal carriers) contacting
other neural cells (Cragg, 1967). Such numbers may-indicate a storage
and processing capability several orders of magnitude greater than cur-
rent computers, because we know so little about the functions that can
be executed by neurons. ‘

The neuron is qualitatively quite different from “on-off” com-
ponents of current computers. An idealized neuron is shown in Fig. 1-2.

The armlike projections from the cell body, or “soma,” are called
dendrites. Axons from other nerve cells contact the soma and dendrite
proper or the dendritic spines (small projections from the dendritic
surface) by means of synapses (see Fig. 1-3). It is believed that axons
synapsing with the dendritic or soma surfaces are inhibitory and those
synapsing on the dendritic spines are excitatory to the neuron receiving
their signals,

Inpulses transmitted at the synapses add to or subtract from the
magnitude of the voltage fluctuations that slowly wax and wane over
the membrane of the soma. The electric currents are the result of a

“I am indebted to my friend and colleague Bryan Bruns for permission to
adapt this section from an unpublished paper.
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Figure 1-3. The synapse.

change in the potential difference between the inside and outside of the
cell body, caused by a disequilibrium of charged ions across the cell
membrane (see below). If the summation of the .additions and decre-
ments to this current reaches a certain value (about 10 millivolts), an
impulse is fired down the neuron’s axon. Most neurophysiologists be-
lieve that the impulse is initiated at the axon hillock (the interface be-
tween the soma and the axon). However, there is recent evidence that in
certain mollusk cells the impulse may be initiated inside the cell, and

may not be a direct consequence of the soma’s integrated slow waves
(Pribram, 1971).
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An electric impulse is propagated down the axon at a few feet per
second; this propagation is based on a nerve membrane potential. The
nerve membrane is a barrier composed of lipids (e.g., fats), proteins,
and sugars, which selectively prevent large molecules and certain ions
from entering or leaving the neuron. It selectively screens out sodium
jons, and is freely permeable to potassium ions. This creates a cation
excess outside the membrane, which opposes tendencies of the potas-
sium ions to equilibrate the charge or equilibrate the potassium con-
centration on both sides of the membrane.

Consequently, not enough K* ions move inside to compensate
for the large number of Na' ions on the outside of the cell, and this
causes a potential difference across the membrane of about —70 milli-
volts. Initiation of the impulse at the axon hillock consists of a small
10 millivolt change in the membrane potential, which causes the break-
down of the Na* barrier, the influx of Na* ions, and the efflux of K*
ions, and the consequent change in the nerve membrane potential to
440 millivolts. Immediately after these changes, enzymes embedded in
the membrane “pump” the Na* out of -the cell and readjust it to the
resting potential. This initiation triggers a similar breakdown in the
adjacent membrane, and so the electric signal is carried down the axon.

The amplitude and speed of the impulse are functions of the axon
diameter, whereas the frequency is a result of the soma’s integration of
incoming stimulations and the consequent “decisions” to fire (Thomp-
son, 1967, pp. 129-163). »

Many of the longer axons are_myelinated, that is, they possess a
sheath of fat surrounding them which greatly speeds conduction and in-
sulates the axon from neighboring electrical activity. After multiple
branchings, the axons become smaller in diameter and unmyelinated;
when they reach another cell, they are quite’small and the' current is of
low amplitude and going more slowly. Here it is possible that the
electric potentials of neighboring axons from different neurons might
interact, either potentiating or damping local electrical activity.

The interface between the axon and dendrite of the contacting
cells is the synapse. The impulse is transmitted across the' “synaptic
cleft” by chemical transmitters such ‘as acetylcholine, norepinephrine
and dopamine, seretonin, and certain.amino acids. Different transmitters
predominate in anatomically and functionally different portions of the
brain and spinal chord. Acetylcholine, norepinephrine, and depamine
have been shown to be packaged in very small vesicles in the pre-
synaptic membrane. On being activated by an impulse, these vesicles
extrude the transmitter into the synaptic cleft, where it crosses the 100
angstrom distance to combine with specific receptors on the post-
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synaptic membrane. This combination effects the opening of jonic
gates, which cause either an increment or decrement in the general
activity of the post-synaptic neuron. Excess transmitter is either de-
stroyed or taken up again by the presynaptic bouton to prevent flooding
of the post-synaptic receptors and allow the synapse to prepare itself for
the next synaptic transmission (Thompson, 1967, pp. 111-128, 192—
209; Weiner, 1971).

Until recently it had been hypothesized that all synapses between
a neuron and its follower neurons had the same presynaptic transmitter,
were functionally the same (excitatory or inhibitory), and had receptors
that opened up only one kind of jonic gate. However, work with
Aplesia, a sea slug with conveniently large neurons and a simple nervous
system, revealed several neurons that could both excite and inhibit
their “follower” cells. These neurons all used acetylcholine as their
transmitters. At the synapses that were excitatory, acetylcholine com-
bined with the post-synaptic receptors to open Na’ ion gates, whereas

at the inhibitory synapses acetylcholine combined with the receptors to
open CI” ion gates. One of these multiaction neurons had a follower

~cell that had both kinds of receptors in the post-synaptic membrane.
Here the rate of stimulation determined whether the excitatory or the
inhibitory ionic gates would predominate. Acetylcholine stimulated a
third type of receptor to open up K* ionic gates that caused a longer
lasting inhibition than the chloride gates had caused. Such work has
shown that neurons with a single type of transmitter can have a variety
of effects on their follower cells because the determination of the
resultant effects of neural transmission is a function of the differences
in the post-synaptic receptors and the ionic gates that are opened
(Kandel, 1970; Gardner & Kandel, 1972).

Why, then, does the mammalian CNS have so many different trans-
mitters? It has been shown that stimulation by cholinergic neurons
(these that use acetylcholine as their transmitters) and seretonergic
neurons (those that use seretonin) causes certain hormonal-like changes
in the follower neurons. Seretonergic stimulation causes a rise in c-AMP,
a mediator common to many hormones, in the follower cell. Cholinergic
stimulation causes a rise in the phosphitidal inositol of the follower cell.
Eric Kandel has hypothesized that post-synaptic membranes may have
two different classes of receptors. The ionophoric receptors bind with
a common transmitter to open different ionic gates, thereby affecting the
post-synaptic membrane potential; they are receptor-specific. The
chemophore receptors combine with different transmitters to cause
metabolic changes in the follower cell. The actions of these receptors
are transmitter-specific (Fig. 1-4). The demonstration that neurons
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Figure 1-4. Transmitter-specific receptors.

affect one another’s metabolic as well as electric states has brought to
light an entirely new dimension in interneuronal communication.

The most striking aspect of the neuron is its multiinput, single-
_ output character. The slow potential on the soma apparently indicates
a comparison of dendritical inputs on the basis of the temporal, strue-
tural, and qualitative nature of the synaptic input that results in the
all-or-none decision to fire. Whether this comparison is solely a function
of electrical interactions, or reflects molecular conformations of the
membrane (Barondes, 1970), or is also modified by some mechanism
inside the cell is an open question.

Biological Memory. Of fundamental importance to any system that
wishes to modify its behavior on the basis of experience is an efficient
memory storage and retrieval system. : ‘

It appears that there are multiple stages in the development of a
memory and its means of retrieval. Demonstration of how memory
might function has come from psychological and biological experimenta-
tion, clinical observations of memory dysfunctions, and attempts to
mimic the structure and function of human memory by computer
simulation. These differing approaches to the study of memory have
caused some confusion, especially in the meaning of such terms as
short- and long-term memory. As will be seen below, caution should
be used in interpreting what an author means by such terms.

Psychologists have experimentally identified three types of mem-
ory. Sensory information storage (s1s) is measured in tenths of a second.
Tt serves to retain fleeting sensory data until the central nervous system




18 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

(cNs) can process it. The sIs system results in the after-images you
see when rapidly opening and closing your eyes. The sIs retains more data
than the central nervous system can process during the short duration
of the sis trace. The cNs rapidly scans the sis trace and retains that
data of most interest to the perceiver.

Short-term memory (sTM) as determined by various psychological
experiments lasts about 30 seconds. A subject asked to remember three
words for 18 seconds does so with ease. However, if asked to rapidly
subtract 3’s from a randomly assigned number during the intervening
18 seconds, and then asked to recall the words, most subjects will not
remember them. It is believed that the serial subtractions interfere with
any subvocalized rehearsal of the words and with the consolidation of the
three words to long-term memory (LT™). If a subject is given a series of
30 words at the rate of one per second, and asked to recall them im-
mediately afterward, he remembers the beginning and end of the list
best."If he is asked to subtract serial 3’s immediately after seeing the
list, the tail end of the curve disappears. Here, then, is a demonstration
of which parts of the learning curve are a function of long-term as op-
posed to short-term memory.

A major part of the psychologist’s investigation of long-term
memory has centered around the use of computer simulations; much
of this will be covered later. For an excellent overview of the psycholo-
gist’s approach to memory and mind functioning, see Lindsay and
Norman (1972).

When an individual suffers a fairly hard blow to the head, he

* often cannot remember events immediately preceding his accident. This
phenomenon is called retrograde amnesia; it may begin with loss of
memory for several hours or days prior to the accident. The earlier
memories usually return first, followed by the later until only events
30 to 60 seconds prior to the trauma cannot be remembered (Jarvik,
1972). Memories following the accident (anterograde memory) are
likewise impaired and are more refractory to recovery. Such phenomena
have also been noted in psychiatric patients who undergo electro-
convulsive shock therapy (Ecs). These observations fostered the idea
that short-term memory traces were transient electric events that
eventually consolidated into long-term memories through chemical and
biological changes in the brain.

Normally, a rat placed on a pedestal in a cage with an clectrified
grid floor needs only one or two trials to learn not to jump down from
the pedestal. However, if Ecs follows these learning trials, the rat will
not learn to avoid either the electrified grid or the added negative ex-
perience of going through Ecs (Deutsch, 1969). The longer the interval
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between the administration of the learning task and the Ecs, the smaller
the effect on long-term retention. However, investigators differ on
how long after the learning trials the Ecs is effective in preventing long-
term retention. Some say that ECS is not effective after 15 to 30 seconds,
whereas others claim that Ecs will impair long-term retention when given

" hours after the learning trials.

Drugs that inhibit protein synthesis when given before learning
trials do not impair learning, or the retention of that learning, for as
long as 3 to 6 hours. Testing after 6 hours, however, shows a marked
loss of memory. If the drug is given shortly after the learning task,
memory is not inhibited. These results could suggest a “dual trace”
theory of memory. Short-term memory and long-term memory would be
separate processes; the former lasting up to 6 hours after the learning
trial, the latter being initiated during learning and not 'susceptible to
protein inhibition only a few minutes after the learning trial (Barondes,
1970). The duration of this “short term” memory, however, is a func-
tion of how well the animal is trained, suggesting that the protein
inhibitors might simply be weakening the long-term trace that has been
derived from a short-term trace.

Puromycin, which inhibits protein synthesis and has various other
central nervous system effects, can cause retrograde amnesia when
given up to several days following a learning situation. Normal saline,
injected into the same-place as the puromycin, can reverse these effects
and restore the memory. It has been suggested that puromycin may
disrupt the retrieval rather than the storage of information (Jarvik,
1972). :
The plethora of experiments dealing with ECs and drug effects on
memory have resulted in a confused, controversial, and often contra-
dictory literature that is well reviewed by Deutsch (1969) and:Jarvik .
(1972). Perhaps the most reasonable hypothesis of the moment is the
following: The short-term memory reported by clinicians, psychologists,
and some investigators to last about 30 seconds is indeed a transitory
electrical reverberation that is consolidated into a more durable long-
term memory. However, the strength and accessibility of this long-term
memory is quite variable and is a function of the number of retrieval
traces laid down during learning and of the use of old retrieval traces
and the construction of new retrieval traces to the long-term memory
after the initial learning trial.

Clinical observations have localized the hippocampus as that part
of the brain responsible for the consolidation of memories. In the case
of Henry M. (Barbizet, 1970), complete surgical, bilateral ablation of
the hippocampi prevented him from learning anything new following
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his operation. There was no change in 1Q, no loss of preoperational
memories, and no abnormality in his ability to recall digits immediately
after hearing them. His crippling deficit involved an inability to recall
anything that had happened earlier than a minute before the present
or later than the day of his operation.

A similar dysfunction is part of Korsikoffs syndrome, seen in

chronic alcoholics. Here the pathology seems to affect the mammillary
bodies, the dorsal thalamus, and the terminal fornix—areas of the
brain, which along with the hippocampus, form part of the limbic sys-
tem. This system also is the center for innate emotions, feelings, and the
regulation of hunger, thirst, rage, and sexual activities (Pribram, 1971 ).
Patients with Korsikoff’s syndrome will frequently be unable to remem-
ber anything that occurred during the course of their disease and will
confabulate these memories if questioned. However, it appears that
they do retain long-term memories (Barbizet, 1970).

Pathological dysfunctions in long-term memory such as Alzheimer’s
disease or senile dementia do not appear to be localized, but consist of
diffuse damage throughout the cortex. Terminal Alzheimer’s and severe
dementia leave the patient completely unable to learn, communicate,
and function or care for himself.

These clinical studies have demonstrated that long-term memory
stores are much less susceptible to damage than is the consolidating
process. This is expressed in the general maxim that anterograde mem-
ory loss is nearly always greater than retrograde memory loss.

The hippocampus appears to act as the “store” mechanism for the
brain. It is interesting that this function is integrated with parts of the
brain which attach emotional weight, pleasure or pain, to external per-
ceptions. Perhaps such emotive interest is necessary to activate the
consolidation of a short-term percept.

The search for the “engram,” the biological material that is a
memory, was initiated by Lashley in 1929. He would train animals to
a task, surgically ablate well-defined areas of the cortex, and see if the
animal still was able to perform the task. He found that long-term
memories were very difficult to destroy. He might destroy up to 80%
of an animal’s visual cortex, and still the animal would retain the visual
discriminations it had learned. From his studies it appears that a long-
term memory trace is diffusely spread throughout a significant portion of
the brain. .

Assuming, quite simplistically, that memories of certain “percepts”
might be localized to specific cells or association networks of cells, then
long-term learning would take place when any two of these percepts
were temporally paired (as in conditioning experiments). Considering
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the large number of interconnections between neurons, one might
postulate that learning is the facilitation of preexisting synapses, per-
haps through an increase in transmitter receptors at the post-synaptic
membrane or in transmitter substance in the presynaptic bouton. Long-
term learning could also be the growth of new connections between
neurons or association networks, directed, perhaps, by some neural
growth factor excreted only by excited neurons.

Though it has been rather conclusively shown that adult neural cells
do not reproduce, anatomical studies have shown that neural lesions are
sometimes “repaired” by the growth of the dendritic and axonal net-
works of the remaining cells (Rose et al,, 1969). It has also been shown
that there are consistent differences in the brains of rats placed in a
stimulating environment with other rats and various toys and in rats
placed in an impoverished environment where they are isolated and have
little stimulation. The former have thicker cortices, heavier occipital
cortices, larger neutral cell bodies and nuclei, more dendritic spines,
larger synaptic junctions, an increase in acetylcholine, and a- greater
number of glial cells (support cells for the neurons) (Rosenzweig
et al., 1972). The changes show, for the first time, that experience re-
sults in measurable brain alterations, but the behaviors, and the changes
they caused, are too general to demonstrate underlying mechanisms,
though they are consistent with both the synaptic facilitation and neural
growth hypotheses.

* Perhaps the most outstanding example of information storage in
nature is the DNA molecule that encodes all the information necessary
for the construction of an entire organism within the structure of mole-
cules that weigh about 107 gram (Watson, 1970). It has been sug-
gested that memories may be stored in a like fashion in DNA or RNA
(the chemical that transfers the DNA message throughout' an individual
cell and regulates the production of cellular proteins). Some research-
ers claim that RNA or proteins transferred from animals conditioned to
a certain task helps naive animals learn the task faster. However, no
one has yet reproducibly demonstrated that RNA’or more than a few
small, specific: proteins can cross the mammalian brain’s blood-brain
barrier (Pribram, 1971). :

Hydén (1969) taught rats to balance on a wire and then examined
for changes in RNA that part of the brain that controls balance. He
found that stimulated brain cells produced more RNA than any other
tissue in the body. He also found that the type of RNA being produced
had qualitatively changed. After stimulation, the RNA in the neural cells
decreased, but there was a consonant increase of RNA in the neurons’
glial cells similar to the RNA that had been produced in the neurons.
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Evidently, learning causes changes in neurons, and the implementation
of such a change in a cell necessarily involves the production of more
and different RNA. The temporal contiguity of the disappearance of
neural RNA and the appearance of similar glial RNA is provocative, but
the experiments are still controversial and the significance of the results
unclear.

Although we have some idea of how memory is stored, how it is
structured in storage, and how it is retrieved, we have little idea of the
biological correlates of these processes. Work with simplified neural
systems such as those in Aplesia holds much promise for elucidating
the biochemical dynamics that accompany new learning.

Neural Data Processing at the Gross Anatomical Level. As in
the case of the hippocampus and the limbic region, neurologists have
ascribed general and even quite specific data processing functions to
gross regions of the brain through the careful testing of patients with
defined forms of brain damage. A specific example of this approach is
the identification of the respective functions of the right and left cerebral
cortices (Gazzaniga, 1970).

Nearly all people, excepting 15% of the left-handers, are left-
dominant for speech -(that is, the left hemisphere of the brain is re-
sponsible for their capability to hear, understand, and speak language).
It is well known that the left hemisphere deals with the motor and
sensory functions of the right side of the body, and vice versa. In man
this is true for eyesight, where the left side of the brain sees the right
visual field (those objects to your right), and vice versa (Fig. 1-5). The
corpus callosum is a thick sheet of neural fibers that is the sole source of
communication between the right and left hemispheres (Fig. 1-6). In
patients with severed corpus callosums the separate functions of the
two hemispheres can be studied by presenting visual data to either the
left or right visual fields, or tactile data to either the left or right hands.
A word presented to the left visual field cannot be vocalized by such a
subject because the image is perceived by the right hemisphere. How-
ever, if the word is “banana” and the left hand (also controlled by the
right hemisphere) must choose between a number of objects that can-
not be seen, the left hand invariably chooses the banana. Thus, the word
has been perceived and translated by the right hemisphere into an ap-
propriate motor action, though the instructions and the word “banana”
have not been consciously heard and the subject has no idea of what
he did.

Thus, we have two brains—one conscious in the sense that it can
hear, understand, and repeat back what is said to it; and one that re-
acts to stimuli and performs activities that we will not be aware of
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Figure 1-5. How the left side of the brain sees the right visual field
(and vice versa).
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Figure 1-6. The corpus callosum.

unless our corpus callosum is intact. It has been found that the left
hemisphere is normally superior to the right in speaking, writing,
calculating, and solving maze problems. The right is superior to the left
in three-dimensional drawing and singing.

Similar studies have shown that there are rather discrete areas of
each cortéx for visual, auditory, olfactory, gustatory, and somatic per-
ceptions and secondary processing. In addition, “association areas”
have been identified, which integrate the various sensory modalities.
For instance, the ablation of Wernicke’s area results in the subject’s
inability to repeat words he reads or hears and to emit meaningful
sentences. Instead, strange strings of nonsense phrases and words
are spoken. It is believed that destruction of this area disassociates
the thinking, hearing, and seeing portions of the cortex from the area
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that converts thoughts into the motor actions that lead to speaking.
Ablations in Broca’s area cause aphasia—the nearly complete inability
to speak any words even though the patient can still write his com-
munications in a normal fashion (Geschwind, 1972).

While certain functions have been rather discretely localized, other
tasks, such as the ability to recognize simple figures hidden in more
complex figures, seem to be a function of how much material has been
lost from any or all portions of the neocortex.

Neural Data Processing at the Cellular Level. Digital computers
typically have certain built-in information processing functions for coding
and decoding input-output information, for the transferral of data from
the storage units to the general registers, and for the handling of data in
the general registers. Certain neural functions and organizations have
been discovered for data processing; these will be discussed for the
particular case of visual perception (see Chapter 5).

The retina of the eye converts patterns of photons into more con-
densed patterns of electric impulses in the optic nerve (there is about a
tenfold contraction of the information). There are about 100 million
rod and cone receptors in the retina. In each cell, carotene attached to

“the enzyme rhodopsin produces molecular complexes sensitive to visual

wavelengths of light. Photons induce a structural change in carotene,
and this change triggers a receptor-cell voltage potential that is com-
municated to the “bipolar” cells, which in turn innervate the ganglion
cells of the optic nerve. The receptor, bipolar, and ganglion cells are
interconnected by amacrine and horizontal cells, which regulate how
many and which receptor cells will communicate with ganglia cells
via the bipolar cells. In the macula densa portion of the eye there is one
receptor. cell for each ganglion cell; in the other areas of the eye, up to
100 receptor cells may stimulate a ganglion cell (Fig.. 1-7).

The electrical activity of all ganglion cells is greatest in the dark;
when exposed to light, the interconnecting amacrine cells provide in-
hibitory “gates” that reduce the sensitivity of the surrounding receptors.
This surround inhibition is responsible for the heightened contrast one
sees at-the borders of two different light intensities. When one Jooks at
the border between light and dark shades, the dark border is darker
than the rest of the dark shade and the light border is lighter than the
rest of the light shade. In actuality the light intensity of each bar.is uni-
form; the heightened contrasts are the result of surround inhibition. If
one postulates that stimulated cells inhibit their neighbors’ rate of firing
to a degree related directly to the light intensity and inversely: to the
distance from the neighboring cells, and if the receptors are otherwise
uniformly stimulated by the incoming light, then it follows that those
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Figure 1-7. Surround inhibition.

cells exposed to the lighter band and near the border will be stimulated
as much as their fellow “light” cells. However, they will be inhibited
less by their neighbors because some of their neighbors are “dark”
cells which, because they are stimulated less by the dark band, will in-
hibit their neighbors less. Conversely, the dark cells near the . border
will be inhibited more than their fellow dark cells because some of
their neighbors are the light cells, which inhibit their neighbors more
than dark cells. Surround inhibition (more thoroughly explained in
Ratliff, 1972) is one of the fundamental informational processing path-
ways used throughout the mammalian brain as well as in the eye.




Introduction ‘ 27

~ Some visual receptors cause their ganglion to fire when stimulated
by light (“on”), when not stimulated (“off”), or only when the light
changes (“on-off”). All receptors fire rapidly when first stimulated,
which helps to explain why mammals preferentially attend to moving
objects. One organization of the receptors in the receptive field of a
single ganglion is the round field, where the center is on and the periph-
ery off, with an on-off interface between the two. Other receptive fields
are shaped so that they respond preferentially to edges, curves, and lines
(Spinelli, 1966). :

If any receptive field sees the same image for more than 30 seconds,
the bipolar and amacrine cells adapt to the receptor stimulation such
that the ganglion is no longer stimulated and the object no longer seen.
Consequently, the eye is always moving so that the receptors will not
see the same image for more than several seconds, though these move-
ments are normally very small. In the central nervous system, this
mechanism is called habituation, and it allows the organism to screen
out “background” noises when attending to a specific percept (Thomp-
son, 1967).

The optic ganglia form a one-to-one projection to -the lateral
geniculate, where colors are mixed and the on-off responses of  the
ganglia are separated. A cell from the lateral geniculate may contact up
to 5000 cells in the striate area of the occipital cortex: (the rear end of
the brain) where actual “seeing” takes place. Hiibel and Wiesel dis-
covered very specific feature detection cells in the occipital cortex which
are arranged in what seems to be an ascending hierarchy of complexity.
The procedure that they and many other investigators have used is
the recording of induced responses by microelectrodes. Microelec-
trodes are carefully placed into single neural cells in the brain. Then
the animal is presented with very specific stimuli andthe electrical re-
sponse of the single cell is recorded.

“Simple™ cells respond to a line at a certain angle in a certain small
defined area of the retina. “Complex” cells’ will respond similarly to
a line, but at any point in a much larger retinal field. “Hypercom-
plex” cells require:a given length.in :addition to a given orientation in
order to fire, and “higher order. hypercomplex” cells respond only to
lines that form certain angles. Cells responding to' lines at a certain
orientation are arranged in columns perpendicular to the surface of
the visual cortex, and groups of these columns. responding to all the
various orientations for a certain area of the retina are:arranged to-
gether (Hiibel and Wiesel, 1962, 1963; Lindsay and Norman, 1972).

The spatial arrangement of these cells and their hierarchial nature
suggest a feature detection model of visual perception. Most simply,
this model suggests that any percept is the summation of the discrete
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features reported by each of the receptive fields of the cortical neurons.
The “pandemonium model” and other models of pattern perception are
discussed in Chapter 5.

Motivation. Life forms are essentially chemical information proces-
sors designed to preserve the chemical information that describes them
within the gene pool of a species. Complex mammalian intelligence is one
of a variety of strategies that tends to preserve certain information.
Thus, tendencies are built into biological organisms to insure survival;
for instance, the tendency to repeat behaviors that reward an individual
with food.

A great deal of work is currently being invested in finding out why
(1) mammals, especially humans, do what they do, and (2) the basic
biochemical and neurophysiological mechanisms underlying motivation
and emotion. This literature is very extensive and will not be reviewed
here.

Review. The major questions concerning the nature of biological
intelligence remained unanswered. What are the information processing
functions of neural and glial cells? How do context, expectations, and
perceived features blend to make an understandable perception? How
do experiences become memories in long-term storage? What is the
biochemical substrate of memory? At what level do perceptions enter
consciousness; when and where do cortical electricity and chemical
transmitters become perceived thoughts? Artificial intelligence will cer-
tainly be a major contributor to the answering of these questions.

COMPUTERS AND SIMULATION

Before concluding the discussion of the first and second questions
cited at the start of this chapter, some mention should be made of the
basic technique used in aI research. One significant fact is that it is not
necessary to build a different physical machine each time we wish to
investigate a new machine’s abilities. A kind of machine exists which is
capable of accepting a symbolic description (in the form of a program)
of any machine and of simulating the machine described by such a
program. The general-purpose digital computers are examples of this
kind of machine. :

Computers typically have five main components: an input unit, a
control unit, a logic unit, a storage unit, and an output unit. The pro-
gram and other data go into the computer via the input unit and are
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stored in the storage unit, or memory, of the computer. The logic and
control units alter the information in the storage unit of the computer
in a manner that is dependent upon the program. Also in a manner de-
pendent on the program, the control unit causes the output unit to emit
information (e.g., punched cards, electric impulses, printed paper).
Computers can be designed so as to utilize a wide range of input-output
devices, from television cameras and CRT (cathode-ray tube) display
screens (like a television set) to mechanical arms and typewriter-like
terminals. =~

. Computers and the notion of “simulation” are discussed more
thoroughly in Chapter 2. Briefly, a computer simulates something if it
duplicates that thing’s behavior. The duplication does not have to be
exact, nor does it have to proceed at the same rate as the original. Thus,
a computer is said to simulate a person playing Chess if it prints out
a possible move on a sheet of paper whenever it is given as input a
description of a possible chessboard configuration. We do not require
~ that the computer print out the same move that a given person would
make, nor must the computer be able to move physically the pieces. of
an actual Chess set, nor does the computer require the same time to
make its move as a person would. A simulation may be a “speed-up”
or a “slow-up” of the original. Likewise, a computer is said to simulate
intelligence when it does something that a person needs intelligence to
do—i.e., when its behavior corresponds in some manner to that of an
intelligent person. Thus, the extent to which a machine simulates intelli-
gence may vary. In this book the emphasis is on the ability of computers
to do the things listed at the start of this chapter.

NOTES

1-1. This note cites some general references on the subject of artificial
intelligence. First, over the past two decades several authors have argued,
both pro and con, the possibility of artificial intelligence; that is, whether
machines can eventually be made to possess intelligence on a human level.
Some classic papers in favor of the possibility are those of Turing (1947,
1950) and Armer (1963). Some recent arguments against the possibility of
artificial intelligence are those of Dreyfus (1965, 1972) and Jaki (1969); the
arguments of Dreyfus are effectively refuted in the paper by Papert (1968).
(One argument against the possibility of Al that is quite commonly put forth
is: “Computers can do only what they are told to do.” This is true, but no one
really knows the limits of what we can tell computers to do; perhaps we can
tell them how to think, and how to learn; see Armer and Turing.) A number
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of books besides this one have been published about artificial intelligence or
about specific areas of the subject: see Feigenbaum and Feldman (1963);
Banerji (1969), Slagle (1971), Minsky (1968b), and Nilsson (1971).
(Minsky [1963, 1966, 1970] has also written a number of stimulating
papers on artificial intelligence.) Two journals, Artificial Intelligence and
Pattern Recognition, regularly publish papers that are of interest to the
AI researcher. The (voluminous) Proceedings of the International Joint
Conference on Artificial Intelligence contains many important papers: to
date, the L1CAI has been held twice, in 1969 and 1971, and the proceedings
of each conference have been published. Papers on artificial intelligence

may also be found in the Journal of the Association for Computing Ma-

chinery (3AcM), the Commurnications of the Association for Computing
Machinery (cacm), and the Proceedings of the Spring and Fall Joint Com-
puter Conferences (sscc and Ficc) of the American Federation of In-
formation Processing Societies (AFIPS). Finally, a series of volumes en-

titled Machine Intelligence include many important papers. Information.

about these books and journals is provided in the Bibliography.

1-2. This text uses the phrases “human intelligence” and “intelligence on
a human level” somewhat loosely, without really attempting to define the
word “human.” In other books it-is sometimes used as though it might
apply only to the species homo sapiens; at other times it.is used as though
it might apply to other animals. How “human” is an ant, a cat, a dog, a
dolphin? If the author were asked to venture an opinion, he would prob-
ably say that the word “human” refers to a kind of relationship that can
exist in the interaction of intelligent beings. This relationship helps deter-
mine their behavior toward each other, toward other beings and objects,
and (perhaps necessarily) toward themselves. Cats and dogs often par-
ticipate in this relationship, and so are partly “human.” Dolphins may con-
sider themselves to be very “human,” as may any creatures from outer
space that we might someday happen to meet, and, conceivably, it may be-
come conventional to think of some machines as “human.” (See the
Exercises for this chaptelj; also see Chapter 9.)

1-3. The area of research that attempts to simulate the underlying
processes involved in natural intelligence is known as simulation of cogni-
tive processes. (See various entries of Computers and T, hought in the
Bibliography, cited as CT, for some introductory and early papers.) The
coverage in this book is, again, primarily concerned with the extent to
which machines can simulate the abilities of natural intelligence; only
secondarily is the simulation of cognitive processes considered. However,
it should be pointed out that some Al researchers view their work as being
directed toward both goals—the subjects are certainly not mutually’ exclu-
sive. Also, for the sake of exposition, we shall occasionally describe the
processes used by intelligent machines in “personalistic” or “mentalistic”
terminology, as though they were really similar to the cognitive processes
used by people (or more exactly, as though they were similar to the cogni-
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tive processes that people often describe as being the ones they use: “I just
had an idea,” “My model didn’t include that,” “That was my concept also,”
“P've got a plan.” See the discussion in note 7-1.

1~4. Turing’s test is discussed in greater detail in the paper by Colby,
Weber, Hilf, and Kraemer (1971).

EXERCISES
I-1. Read Descartes and see if you can determine whether he thought machines
could reproduce themselves.

1-2. Two other introspective philosophers were Montaigne and Pascal. What
do you think their attitudes would have been toward artificial intelligence? How
about Jefferson, Marx, Archimedes, and Einstein?

I-3. 'What do you think intelligence is?







MATHEMATICS,
PHENOMENA,
MACHINES

INTRODUCTION

This chapter investigates in detail some of the mathematical back-
ground applicable to artificial intelligence. (The reader who wishes to
commence the study of artificial intelligence research itself should turn
to Chapter 3.) It presents a somewhat condensed discussion of automata
theory, the branch of mathematics dealing with the nature of machines,
since the way in which mathematics can be used to describe the oper-
ation of machines is essentially the way it can be used to describe natural
phenomena in general. Thus, automata theory is a foundation for
artificial intelligence (A1) research. It helps define the generality of a
study that relies on computer programs to describe the phenomenon
of intelligence.

In addition to discussing machines, the nature of mathematics it-
self will be discussed, with reference to the question, “Are there some
things mathematics cannot describe completely?” It is argued in an in-
formal, yet mathematical way that the answer is yes. There are limi-
tations in the method of artificial intelligence research because it is based
(as is all science) on mathematics and the capacities of mathematical
descriptions. These limitations say nothing definite about whether. Al
research will succeed, only that it might not. The final discussion con-

33
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siders some very specific limits to the computational abilities of ma-
chines. '

ON MATHEMATICAL DESCRIPTION

A mathematical description of something consists of a finite set of
statements (axioms) that utilize a finite set of undefined terms, to-
gether with a finite set of rules that govern the derivation of new state-
ments from the axioms and from previously derived statements. Such a
collection of statements is called a mathematical System, or theory, and
the concept is that any statement, either given or derivable, is a true
statement concerning the thing described by the theory. A mathematical
theory may thus enable one to use a finite number of statements to
describe something about which an infinite number of statements (those
derivable under the theory) are true.

For example, the mathematical theory of Euclidean geometry gives
us certain axioms or postulates concerning the undefined concepts of
*point,” “line,” “plane,” “between,” etc.; the “thing” described by this
theory is a “geometry,” consisting of interrelationships existing among
lines, points, planes, circles, spaces, etc.

The ingredients of a mathematical theory, then, are the following:

1. A set of basic words (e.g., “point,” “line,” “between,” “dis-
tance,” “x,” “y,” “not,” “implies,” “for all,”) that refer to
different objects, relations between objects, variables, logical
connectives, quantifiers, and so on. These are the undefined
words or symbols of the theory.

2. A set of basic sentences made of these basic words. These
basic sentences are the axioms or postulates of the theory.

3. A set of logical rules, also made of these basic words, that
tells us how to derive new sentences from the ones we are
given. ’

Now, it is the essence of mathematical theories (note 2-1) that
each of these sets be finite; the object described by the theory may be
infinite, but the theory that describes it must be finite. In other words,

the fact that there is a mathematical way of describing some object

means that it is finitely describable.
This does not imply the converse, that if a thing is finitely de-

scribable it is therefore mathematically describable. It would take us

too_ far afield, however, to consider this converse proposition (known
as Church’s thesis, or Turing’s thesis) in detail (note 2—2). Since our
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interest is in mathematics and science, henceforth consider the phrases
“finitely describable” and “mathematically describable” to be synony-
mous.

A mathematical description of something is thus a possibly infinite
yet finitely describable set of sentences, each of which states something
about the thing being described. If the thing (note 2-3) is infinite and
yet finitely describable, then, intuitively, there are “patterns” which hold
throughout the thing, and these patterns form the basis of our mathe-
matical description. Thus, the Frontispiece figure to this chapter shows
a collection of dots which could be infinitely extended. The entire col-
lection, so extended, would be an “infinite thing.” Yet the entire col-
lection can be finitely described (see Exercise 2—1) because a “pattern” -
exists in the placement of the dots.

However, the simple existence of patterns in somiething does not
guarantee that the thing is finitely describable: There may be an infinite
number of patterns, none of which can be predicted from the others,
each pattern adding its own infinite set of parts (“dots”) to the thing.

So there are three possibilities that may hold if we are asked to
describe something in a mathematical way: The thing may be finite, in
which case presumably it is finitely describable (note 2-4); the thing
may be infinite and yet finitely describable; the thing may be infinite
and not finitely describable. ’ ‘

If the third possibility is the one that actually holds, then in fact
we shall never be able to describe completely all of the thing in question.
Rather we shall always be making discoveries like “there’s another dot
my description doesn’t predict,” or (perhaps) “oops, there’s another
subatomic particle. . . .” ‘

As an indication (note 2—5) that there may be some things that
cannot be finitely described, consider the following argument:

Assume we had a mathematical theory that would enable us to
finitely describe the real numbers; that is, each sentence derivable in
the theory would be a finite description of a real number, enabling the
decimal expansion of that number to be computed accurately to as
many: places as desired. It is the nature of mathematical theories as we
have described them that they may imply only a countable number of
statements. But the real numbers are an uncountable set. Thus, no
mathematical theory could enable us to derive a finite description for
each real number; there must always be some real numbers that are
not finitely describable.

All this explanation is by way of describing our notion of mathe-
matical description. A good example of the' usefulness of this type of
description is the scientific method itself.
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The scientific method is basically a way of selecting mathematical
descriptions of the universe. To use the method, one develops several
different mathematical descriptions of the known universe or of some
part of the known universe (some set of “phenomena” in the universe;
see the next section): To each of these descriptions there is a corre-
sponding set of predictions that it makes about the rest of the universe;
one rejects those descriptions that can be found by experiment to make
false predictions or which make the same predictions as do other “less
complicated” descriptions.

The scientific method has had many successes and therefore the use-
fulness of making and studying mathematical descriptions of things is
well founded. Still, whenever one is called upon to consider a previ-
ously unstudied phenomenon, one cannot be entirely sure that it can
be explained by the predictions of one’s current mathematical descrip-
tions of the universe. The reason for this is simple: There is no proof
(note 2-6) that the universe is either a finite or an infinjte thing. If
one assumes it to be an infinite thing, one can never be sure in a finite
amount of time whether mathematical descriptions have been developed
to account for all the patterns that hold throughout it.

With this in mind, a person who is concerned with developing
mathematical descriptions of the real world should understand that he
might be engaged in an endless undertaking. It could be the case that
there are an infinite number of phenomena in the universe, none of
which can be predicted from a knowledge of other phenomena in the
universe. It could even be the case that some phenomena in the universe
are themselves not finitely describable.

On the other hand, it could be true that the universe is finite, or at
least finitely describable.

What this has to say for our study of intelligence is simply that
our success is not guaranteed. Current scientific theories do not all
describe the universe as being finite. The caveat concerning the possi-
ble existence of undescribable phenomena must be heeded: There is no
scientific guarantee that natural intelligence can be finitely described,
either by our current scientific theories or by any mathematical de-
scription that could ever be developed—it may simply not be finitely
describable.

For this reason we should take care to refer to the field we are
studying as “artificial intelligence research.” As will be seen in subse-
quent sections, the notion of “machine” corresponds to that of a “finitely
describable phenomenon.” Since it is an open question whether natural
intelligence is a phenomenon that can be finitely described, we expect
that “intelligent” machines will simulate some of the abilities of natural
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intelligence, but whether they will have them all remains unknown.
Certainly, the evidence available suggests that intelligent machines will
eventually have many abilities that are currently limited to natural in-
telligence.

THE MATHEMATICAL DESCRIPTION OF
PHENOMENA

Time

With all the preceding conjectures in mind, let us see how it is that
mathematics can be used to describe “phenomena,” or “processes”;
that is, things that happen in reality.

First of all, let us list names for some phenomena that are generally
believed to exist. (See Exhibit A.) These are things people often talk
about in the belief that they happen in the real world. Not all are neces-
sarily things that can be described mathematically.

EXHIBIT A

the playing of a game chemical reactions the evolution of
species thought processes nuclear reactions a person feel-
ing emotion waves traveling through a medium cellular
growth of organisms crystal formation sexual reproduction
a candle burning a person living a person dying a stone
failing to the ground a bird flying the motion of a weight on
a spring the ~ formation- of public opinion conversion of
energy from one form to another dreaming flipping a coin
the operation of a computer program weather

To a mathematician looking at Exhibit A, perhaps the most im-
mediate thing he would find common to all its elements is.that each
element involves “time”; each of these things may be said to happen as
a “sequence of situations.” ‘

Upon further inspection, the mathematician would discover that
each of the phenomena named in Exhibit A can happen in a variety of
ways. For some phenomena the variety is greater than for others. In

1 An interesting and difficult open question is whether the automata-theoretic
description of phenomena presented throughout this book is in conflict with

relativistic findings concerning - simultaneity. The reader interested in pursuing
this question is invited to see Waksman (1966).
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his desire to be general, he would say that the name of a phenomenon
refers to the set of different ways in which it can occur.

A third thing the mathematician might note about Exhibit A is that
it is possible for some phenomena to be made up of others; this chapter
overlooks ways of describing this mathematically,? though as an example,
it might be noted that “cellular growth of organisms” seems to be made
up of “chemical reactions.”

These observations are the essence of the mathematical approach
to the description of phenomena. Mathematically, an occurrence of a
phenomenon is viewed as a sequence of situations, and the phenomenon
itself is viewed as being the set of all possible ways it can occur. A
phenomenon is described by a mathematical theory of all ways in which
it can occur; such a theory might describe it as either being made up
of, or a part of, other (describable) phenomena

The first ingredient in the mathematical description of a phenome-
non is the specification of a time scale T and of a set X of all possible
situations. We may take T to be some subset of the real number line;
for the moment we can leave X unspecified. If X is the set of all possible
situations, then an occurrence 6 is a function that associates to some of
the elements ¢t of T unique corresponding elements 4(z) from X. A
phenomenon is a set of such functions {61,02, - - -}, each representing an
occurrence. A complete description of a phenomenon is, then, a descrip-
tion of its possibly infinite set of occurrences: The assumption that one
can find a mathematical description for a given phenomenon is equiva-
lent to the assumption that its set of occurrence functions is finitely
describable. Since some occurrences of a given phénomenon might
conceivably possess an infinite number of “details” (say, in the number
of times at which situations are defined, or in the number of “true state-
ments” about any particular situation), we may accept as a finite de-
scription any finite rule that allows us to compute these occurrence
functions to an arbitrary accuracy. That is to say, we accept descriptions
that are “effectively” true.?

2 For this reason, although the theory of phenomena outlined in this chapter
is adequate (to illustrate the limitations and generality of the mathematical ap-
proach), it is not an especially efficient way of describing anything other than
very simple phenomena. Many approaches have been made toward developing a
more efficient way of describing complex, “real-world” phenomena: Chapter 8
discusses briefly the possible formalizations for “parallel’ processes” and “hier-
archical systems”; in Chapter 3 there is a brief discussion of logical systems for
describing real-world situations and their interrelationships (causality, etc.).

3 Thus, we shall ignore descriptions that describe “strictly noncomputable func-
tions™. (see Exercise 2=3), but we can accept descriptions that describe undecid-
able systems.
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EXAMPLE 2-1. MOTION OF A WEIGHT ON A SPRING. In the
simplest case of this example, where the motion of the weight
is entirely vertical, one can describe any possible situation by a
single real number, representing how far the spring is extended
or compressed from its rest position. Thus, the set X of all
possible situations is described by the real-number line. Which
particular occurrence of the phenomenon happens is dependent
on such things as the mass of the weight; the damping factor of
the spring, the initial position of the spring and weight, the
spring constant k, etc.; the graph of any given occurrence func-
tion will generally look like Fig. 2-1. The phenomenon, or class
of all possible occurrence functions, can be described by a
single equation whose variables represent the factors given above.

*A
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Figure 2-1. An old friend to the physics student.

The considerations presented in the preceding section, on mathe-
matical descriptions.in general, still hold for the specific case of mathe-
matical descriptions of phenomena. There may be phenomena that are
not finitely describable. On the other hand, given only finite sam-
ples of the occurrences of a (possibly infinite) phenomenon, there is no
way to prove that the phenomenon is not finitely describable—the most
one can prove about it is that one’s efforts to describe it have so far
been unsuccessful. (Of course one might also prove that one’s efforts
to describe it have “so far” been successful.)
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Types of Phenomena

“Things that happen” may often be distinguished from each other by
the nature of their occurrence functions. One* of the basic classifications
defines three types of phenomena: discrete, nondiscrete, and continuous.

A phenomenon ‘is discrete iff* each of its occurrences is a step
function. A function 4 is a step function iff it is constant or undefined
throughout any closed interval [r,#] except for a finite number of “jump
discontinuities.” Specifically, let [£,] be any closed interval of T (pos-
sibly a point, if # = ¢): Then there exist a finite number of points #,
such that

I=h<t< <ty =r

and 4 is either constant or undefined on each open subinterval (#;.3,t).
Figure 2-2 gives an example of a step function,

A
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Figure 2-2. An occurrence of a discrete phenomenon.

“Some other classifications are determinacy versus. nondeterminacy, perio-
dicity versus nonperiodicity, etc. It should be kept in mind that these classifica-
tions are really being applied to descriptions of phenomena, not to phenomena
themselves: For example, certain phenomena (electrons) can be described as
being either discrete (particles) or nondiscrete (waves).

?“Iffi” denotes “if and only if.”
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An equivalent definition of discrete phenomena is the following:
Within an occurrence ¢ define an event to be an interval of time (closed
or open or semiclosed) on which 8 is constant. Then a discrete phenome-
non is one such that each of its occurrences can be represented as a
sequence of events, in which any event is either “terminal” or “next to”
another event. An event is said to be terminal if no event follows it in
time. One event is said to be next to another iff no event occurs be-
tween them in time.

A phenomenon is nondiscrete iff it is not discrete. Thus, a non-
discrete phenomenon has at least one occurrence in which there is a
situation that is followed as closely in time as one chooses to look by
mutually different situations.

A phenomenon is continuous iff it is nondiscrete, and for any oc-
currence (and for all ¢, ') the difference between the situation that
happens at time ¢ and the situation that happens at ¢’ tends to zero as
the difference between ¢ and ¢ tends to zero. This definition, of course,
is meaningful only in cases where it is possible to establish a definition
of “difference” that can be applied to the possible situations.

Throughout this book we shall primarily discuss discrete phe-
nomena. Our reason for this is that by choosing the time intervals be-
tween situations to be suitably small, one can find occurrences of a
discrete phenomenon that will match, to an arbitrary closeness, the
occurrences. of any nondiscrete phenomenon. Consequently, if there
exists a finite description for a nondiscrete phenomenon, then there also
exists a finite description for a discrete phenomenon that approximates
it as closely as one wishes. (We can merely use the nondiscrete descrip-
tion to calculate the values during the appropriate discrete events.)

. Let A = {6,%,62", - - *} be a nondiscrete phenomenon, and B =
{6:°,6," - - -} be a discrete phenomenon. If A is continuous, then B
matches A to a closeness § if there exists a number ¢ greater than zero
such that, for all ¢, 7, if |t — ¢| < then

|87() — 6 ()| < 8

If A is noncontinuous, then B matches A to a closeness 8 if for all ¢
such that

6" (1) += 6;* ()
there exists an « such that |¢| < 8 and
0°(t+ ) =0 (t+ e

It is always possible to find a discrete phenomenon that will match a
given, finitely describable, nondiscrete phenomenon. Similarly, if 4 is'a
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discrete phenomenon, then B simulates A, for all i and for all ¢, if
6;*(¢) being defined implies that 6,”(¢) = 6,*(¢). If B simulates A, then
the occurrences of A are reproduced exactly within the occurrences of
B; an occurrence of B may, however, contain situations that do not
happen within the corresponding occurrence of 4. If B matches A,
then the occurrences of B reproduce those of 4 in an approximate
sense®; thus, if B matches A, we shall also say that B “simulates” A,
approximately.

We shall see below that it is possible to construct a tool—a uni-
versal digital computer—that can reproduce exactly the occurrences of
any mathematically describable discrete phenomenon. By suitably pro-
gramming a fast enough digital computer, one can simulate any finitely
describable phenomenon, regardless of whether it is discrete or non-
discrete or continuous. If intelligence is a finitely describable phenome-
non, then it can theoretically be simulated on a (fast enough, big
enough) computer. -

Discrete Phenomena

The preceding section gave a definition for discrete phenomena.
The fact that there is a sense in which one can approximate any non-
discrete phenomenon to an arbitrary degree, using discrete phenomena,
gives sufficient reason to investigate the subject of finite (mathematical)
descriptions for discrete phenomena. What we desire is some way of
characterizing all such descriptions. We shall see that this characteriza-
tion is provided by automata theory.

In this respect the main thing to note is that we can describe any
step function by a string, or sequence of symbols, provided we adopt
an appropriate notation. Let us see how this could be done, using Fig.
2-3 as an example.

® These definitions describe “real-time” matching and simulation: They can
be broadened to include notions of relative speed. Also, the equality sign can be
taken to mean something like “is isomorphic to.” However, it should be noted
that even though a discrete phenomenon B may match a nondiscrete phenomenon
A, in general (and even if A is continuous) the set

{t] 6% (1) = 0:4 (1)}

will be of measure zero. Moreover, if A4 is noncontinuous, then the set of points
(in time) at which B will be “close” (within a given 8) to 4 will in general be
of measure zero; an expression that describes this set of points is

{t| He(|t — 1] < e=> |8:4(r) — 6:2(1)] < 8)}

Thus, the ability of discrete phenomena (machines) to “simulate” arbitrary non-
discrete, noncontinuous phenomena is somewhat limited.
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In Fig. 2-3, the first event (note'2-7) is the happening of situation
2, which starts at ¢ = 1 and ends at # = 2. Thus, we make the beginning
of our descriptive string

2,1+,2+

The next event is the happening of situation 1, which occurs “during the
instant” ¢ = 2.5. The descriptive string now becomes

2,14+,24+,1,2.5+,2.5+

(11

And so we continue, using minus signs whenever an event starts im-
mediately after” (note 2-8) some time ¢ or ends “immediately before.”
The final descriptive string would be

2,1+4,2+,1,2.5+,2.5+,2,3+,4-,3,5—,6+

In general, any step function can be represented by such a descrip-
tive string. If the function is defined only on a bounded time interval,
then its descriptive string will be of finite length, even though the total
number of points for which the function is defined may be infinite; for
example, the descriptive string for Fig. 2-3 is finite, although the step
function is defined for an infinite number of values of .z (note 2-9).
Likewise, if the step function does not have a beginning or does not
have a terminal event, then its descriptive string will be infinitely-long.

Since any step function can be represented by a descriptive string,
any set of step functions can be represented by a set of descriptive
strings. Thus, to finitely describe the occurrences of a discrete phenome-
non, one need only be able to finitely describe a certain set of strings:
If the set is finite, we could simply list all its strings’ (provided none of
them is infinite), but what if the set of descriptive strings is infinite?

The answer to this problem lies in the following analysis: Even
though the set is infinite, we can assign a number 1,2, - © + to each string
in the set and proceed to talk of the first descriptive string, the second
descriptive string, and so on (note 2—10). Then, if we can find a finitely
describable rule that computes for each n the nth descriptive string, we
will in effect have found a finite description for the phenomenon. Thus,
we can transfer our efforts from the finite description of discrete phe-
nomena to the finite description of functions. Any discrete phenomenon
is capable of being represented as a function that associates a unique
descriptive string to each natural number. And, since any natural num-
ber can be represented by a string (of finite length), we are therefore
concerned with finding finite descriptions of functions that map one set

7 In practice, there are limits to the size of finite sets that can be enumerated
(see note 2—4 and Chapter 3). Such sets are called “finite, effectively infinite.”
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of strings (those representing natural numbers) into another set of
strings (those representing step functions).

The mathematical theory that deals with functions that map one
set of strings into another set of strings is automata theory; a general
way of characterizing functions of this sort is through the use of Turing
machines. Automata theory is basically concerned with studies on the
nature of Turing machines, its underlying hypothesis® being that this
is the nature of all discrete machines; the concept of machine is to be
identified with that of “finitely describable phenomenon.” In this chapter
we are concerned with some of the simplest types of machines. Auto-
mata theory discusses the abstract nature of machines, but it can include
such aspects of real-world machines as their cost and probability of
error.

Briefly, a Turing machine is composed of a finitely describable
black box and an infinite, or potentially infinite,’ tape (Fig. 2-3). The

Contro!

Symbol

Tape

Tapehead
Figure 2-3. A Turing machine.

tape is divided into squares, each of which has a symbol (possibly the
“blank” symbol) printed on it. The black box contains two subcom-
ponents, a control and a tapehead; the tapehead is capable of scanning
and writing symbols on one square of tape at a time, and of moving the
tape either to the right or the left, all under instructions given to it by
the control. The tapehead sends to the control the information as to
what symbol it happens to be scanning, and the control decides on the
basis of that information and a finite “memory” what actions it should
instruct the tapehead to perform.
8 Again, Church’s thesis or Turing’s thesis.

® By potentially infinite is meant that there is someone nearby ready to add
more squares to the tape if necessary.
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Although this may seem like a very simple type of machine with
very limited capabilities, such is not the case. In fact, all evidence avail-
able to date indicates that Turing machines are capable of computing
any finitely describable, computable function that maps one set of strings
into another set of strings. There exist certain Turing machines which,
given a suitable program, are capable of simulating the computations of
any Turing machine. It can be shown that a- Turing machine can
effectively derive all provable theorems in any given mathematical
theory. Indeed, Turing machines are capable of simulating”® the
phenomenon of self-reproduction. Therefore the rest of this chapter is
devoted to a discussion of some results from automata theory.

Finite-State Machines

Of all the elements of a Turing machine, the only one that requires
mathematical formalization is the control: We need to specify more
exactly how it is able to make decisions, what its memory is, etc. We
now give a general definition of that class of machine which may serve
as a control in a Turing machine; the machines in this class are usually
referred to as finite-state automata.

DEFINITION 2—1. A finite-state machine, or finite automaton,
is a quintuple, M = (0,X,Y,8,)), where:

Q is a finite set, the set of states;

X is a finite set, the set of input symbols;

Y is a finite set, the set of output symbgls;

5: 0 x X — Q, the next state function;

A Q X X > 7Y, the next output function.

Any quintuple of sets and functions satisfying this definition is to
be interpreted as the mathematical description of a machine that, if
given an input symbol x while it is in state g, will output the symbol
A(g,x) and go to state 8(g,x). (The two functions 3 and A together are
often referred to as the transition function of the finite state machine.)

Thus, a finite automaton is a machine that can exist in a finite set
of states, where the particular state it is in at any given moment depends
upon the inputs it has received and upon its previous states. The set of
states in an automaton serves as its “memory”: The only information
that an automaton has concerning its past operation is the current state
it is in; at least, this is the only information it can use in deciding its

10 Discreetly . . .” (See Chapter 8 for a discussion of self-reproducing ma-
chines.) '
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next state and its next output when it is given an input symbol. Some
examples would be instructive at this point. '

EXAMPLE 2-2. A PARITY-CHECKING MACHINE. This machine
has only two states; the machine will accept any finite string of
zeros and ones; its output at a given moment will be the word
“even” if the string it has so far received has an even number
of ones, and “odd” otherwise, provided it starts in the “initial
state” go. Let Q = {qo,q1}, X = {0,1}, Y = {“even,”. “odd”},
and define § and ) by the following tables:

d|ge q Mo g i
Olg @ 0 ( “even” “odd”
g q 11%“odd” “even”

For example, §(go,1) = q1; AM(go,1) = “odd”.

The reader should verify for himself that this machine does what
it is supposed to do, provided it is started in state 9o.

Actually, the use of tables to define the functions § and X is rather
clumsy and inefficient; if we were dealing with larger, more complicated
machines, it would be very difficult to understand just what they were
doing. It is customary to use a certain type of drawing, called a state-
transition diagram, to describe a finite automaton. Figure 2—4 gives a
state-transition diagram for the parity checker.

In such a diagram each state is represented by a circle; each tran-

even

-

odd even

0

odd
Figure 2-4. Parity checker.
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sition between states is represented by an arrow; the input symbol caus-
ing the transition appears at the tail of the arrow, while the correspond-
ing output symbol is inserted in the middle of the arrow.

Another good example of a finite automaton is a machine that adds
two binary numbers, provided they are suitably encoded into a string.

EXAMPLE 2-3. A BINARY ADDER. Let Q = {“nocarry,” “carry”},
X = {00,01,10,11}, Y = {0,1}, and let the functions & and A
be given by the state-transition diagram in Fig. 2-5. To add two
binary numbers, say 1101 and 10101 (decimal 13 and 21,

" respectively), we first reverse them so that they are expressed
with their least significant digits first: 1011 and 10101. Next
we add sufficient zeros to them to make both strings be of the
same length and end in zero: 101100 and 101010. Finally, we
encode the two strings into a single string, whose symbols come
from the set X, by taking the first symbols of each string and
replacing them by their corresponding ordered pair, taking the
second symbols and doing the same, and so on. The string we
obtain is

11,00,11,10,01,00

If we feed this string into the binary adder, then the sequence
of outputs that we get is

010001

This is the reverse of the binary number 100010 = thirty-four.

“These two examples illustrate that finite-state ‘machines do have
some computational ability and that they can be used in at least two
slightly different ways. The first example shows that it is possible to use
an automaton as an acceptor for a certain set of strings: If we replaced
its output set by “true” and “false,” respectively, then the parity checker

1 | 0.

Figure 2-5. Binary adder.
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would output “true” after the input of any finite string that contained
an even number of 1’s; that is, it would accept the set of all such
strings.”* The binary adder, on the other hand, illustrates that we can
use finite-state machines to represent some of the functions that map
one set of strings into another set of strings.

However, there are many functions that no finite-state machine
can compute: One such function is multiplication. The reader might try
his hand at designing a finite-state machine to multiply any two num-
bers. The basic reason it cannot be done is that the operation requires
saving the complete information about each of the two numbers, and
this requires either an infinite number of states or an infinite tape.

In fact, finite-state machines are only the building blocks of auto-
mata theory; they represent the simplest type of machine, one in which
the future of an occurrence can depend on only a finite number of
different “past histories,” or states.

Turing Machines

Simple Turing Machines

Let us now return to our original discussion of Turing machines.
The reader will recall that these were described as the most general type
of discrete machine; so far as anyone knows, any function that can be
computed can be computed by a suitable Turing machine.

DEFINITION 2-2. A Turing machine (Tm) is an ordered quin-

tuple, T = (Q,X »P.g0,F), where:

Q is a finite set of states; o

X, is a finite set of tape symbols, one of which is the blank
symbol b;

P is the next-move function, a mapping from Q x X, to X X
{L,O,R} x-Q in which L, O, R are symbols meaning “go to
the left,” “stay at the same place,” “go to the right”;

go is an element of Q, called the start state, or initial state;

F is a subset of Q and is called the set of final states.

The operation of a Turing machine Begins with the machine being
in go and examining the leftmost symbol of a string from X,* that is

** This acceptor is also a decider; that is, it rejects those finite strings not be-
longing to the set it accepts.
. If A4 is a set, then by 4* we denote the set of all finite strings whose
symbols are elements of A. Thus, {a,b}* = {e,a,b,ab,ba,aa,bb,aaa,bbb,aba,bab,
aab,baa, . . .}, where e denotes the empty string, which does not contain any
symbols.
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printed on some of the squares of its tape (every other square of the
tape contains a blank symbol). The next-move function P determines
what symbol the tapehead prints on the square it is examining, whether
the tapchead moves left or right one square or remains at the same
square, and what state becomes the new state of the control.

The next-move function P can be finitely described, and there is
no difficulty in considering the control of the Turing machine to be a
finite-state machine. Thus, the only essential difference between Turing
machines and finite-state automata lies in the fact that a Turing machine
is able to store its output on a potentially infinite tape and refer to it
later. This single difference (note 2-11) is enough to enable Turing
machines to be used as acceptors for a class of sets much larger than
that of those accepted by finite-state machines, and it is enough for
Turing machines to be able to compute a class of functions much
larger than that of those which can be computed by finite-state
machines. The sets that can be recognized (i.e., accepted) by Turing
machines are the recursively enumerable sets; the functions that are
computable by Turing machines (henceforth Tm-computable) are the
partial-recursive functions.

. Another way'of stating Church’s thesis or Turing’s thesis is to say:
Any computable function can be represented as a partial-recursive
function. So far, every general definition of “finitely describable,
computable functions that map one set of strings into another set of
strings” has been shown equivalent to the definition for Turing ma-
chines.

EXAMPLE 2—4. A UNARY DOUBLER. We define a simple Turing
machine that will produce a string of I's of length 2m if it is
given an input tape centaining a string of 1’s of length m. This
is a computation that cannot be done (for all m) by any
finite-state machine. Let

Q = {qo; ql, q2; q3) Q4}
Xb‘ = {b: 051’ A}
F = {qo}

and let the next-move function P be defined by Table 2-1.
If this machine is started on a string of the form

...bb111...11bbb ...
—

m1’s
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TABLE 2-1. A Unary Doubler

i

2 X X Xy X {L,O,R} X Q
[7{] 1 0 R G
a@ 1 1 R @
¢ 0 0 R a
q1 b A R [/}
q 4 A R 17}
7] 1 1 R qs
q2 b 1 . R qs
qs b 1 L ’A
2} 1 1 L g4
% A4 A L qo
9 0 0 L 4o
@ b A 0 @
o A A 0 9o

at the leftmost 1, it will eventually halt in state g, (here the
initial state is also the halting state), and its tape will hold a
string of the form

...bbA000...0041111...11111bbb...
—

m Qs 2m 1’s

TABLE 2-2. Operation of the
Unary Doubler

4
0)...5bb1118b . . .

1.

2 (... sbol1es . ..

... .. bboﬁbb e

4 (). .. bo011Eb . . .

5. (2. .. bb01LAbb . . .

6. (3)...bbO11ALIED . . .

7. (@) ... bbO11ALIBD . . .

8. ... bo00A1100 . . .

9. () ...bb01ta11es . . .

10. (1) . .. BbO10A1ID . . .

1. @ ... be0104l1s . . .

12. ). .. bbo1041tsh . . .

13. ... 5601041105 . . .

14. () ... BbOI0A111HEG . . .
@ ... bo0104111100 . . .

B
bd
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Table 2—2 shows the first 15 steps of the operation of the unary
doubler. The eighth entry in the table, for example, is

8. (4).. .bellAillbb i
which means that in this step the machine is in state g4, scanning
the A in the string 011411, with an otherwise blank tape. The
reader should be able to continue the table and verify that
the machine will reach a step

(0)...bbAO00A111111Db . ..

and that no further changes will take place on the tape. (It is
a simple matter to add extra states that get rid of the output
Zeros.) '

The main thing to be learned from Example 24 is that a Turing
machine typically manages to surpass the limitations of the finite autom-
aton by using “dummy symbols” to store on its tape information
about its past operation. In the example, the dummy symbols are 0
and A, where O serves to store the information. that a certain unit has
already been doubled, and the appearance of two A’s on the tape
represents the information (for us) that the machine has finished its
computation. The tape of a Turing machine is thus a very significant
part of its memory.

Polycephalic Turing Machines

The Turing machine concept described above is very cumbersome -
for use on any but the simplest problems. It is more common to con-
sider “polycephalic” Turing machines, which possess several (n-
dimensional) tapes, each with its own finite number of tapeheads (Fig.
2-6); this model comes closer to the actual structure of modern
computers. The formalization for polycephalic machines is relatively
easy to construct. The relevant things to consider are:

1. The number of tapes the machine uses, say n.

2. The dimensionality of each tape. We can let each tape be an
m-dimensional grid (m is variable), and have each tape
square be specified by an m-tuple of integers (e.g., <2.0,
—5,1,—3,6>). The dimensionality of the ith tape can be de-
noted by a function 8(i).

3. The (finite) alphabet X* used on each tape.

4. The number r of tapeheads used by the machine on each
tape. These can be denoted T, To', ..., T}, ..., T, for
the ith tape.
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Figure 2-6. A polycephalic Turing machine.

5. What to do if two or more tapeheads are instructed to print
on the same square at the same time. For each i, we can use
a “dominance relation” R* that determines a unique “great-
est” tapehead T;* for any given set of tapeheads {T™}.

6. The set of states Q for the control; also its initial state and
its set of final states F.

7. The next-move function P, which for each tapehead T;* maps
0 X X' into X' X D* X Q. We let D* denote the set of unit
direction vectors for the ith tape; e.g., <1,0,—1,1,01,0> is
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a unit direction vector for a six-dimensional tape. We can
assume that the tapeheads for each tape all start at the origin
© «0,0,...,0> of the tape.

The specification of (1) through (7) above then determines an
individual polycephalic Turing machine. ‘

The only advantage of polycephalic Turing machines over simple
Turing machines is that they are more efficient to use: They are not
more general with respect to the number or the nature of their uses.
Any function that can be computed by a polychephalic Tm can also be
computed by a suitable, ordinary Tm.

Universal Turing Machines

One of the most surprising and important facts is that some
Turing machines are capable of simulating the computations of any
Turing machine. These machines are called “universal Turing ma-
chines”; the actual reason for their existence lies in two facts:

1. Any string containing only a finite number of different symbols
can be “coded” as a unary string, consisting only of the symbols 1 and

- the “blank™ symbol b.

2. Any Turing machine can be described by a finite string of
symbols.

To show the first fact, note that a unique string of 1’s can be
assigned to each symbol in a set if the set contains only a finite number
of symbols. Consequently, any string consisting only of symbols from
that set can be represented by a string of the form “...bb1...1b1...
1b1...1bb...,” consisting of a variable number of blocks of 1’s, each
of variable length, each block separated from the next by a single b.

To see the second fact, examine Table 2—1-and note that the
total number of symbols used in the table is finite. Thus, the table itself
can be represented as a (finite) string of quintuples, each of the form
(g,%,%,d,q). Tf one assigns a suitable unary coding to each of the symbols
in Table 2—1, then any quintuple can be represented uniquely by a
certain string of b’s and 1’s; thus the table can be represented by a
string of b’s and 1’s in which-certain substrings stand for quintuples.
The unary string representing the quintuples of a given Turing ma-
chine T will be denoted by dr and called the descriptive string for the
Turing machine (not, in general, the same thing as a descriptive string
for an occurrence of a discrete phenomenon).

The actual construction of a universal Turing machine U is not
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very difficult, and the student should either try it for himself or consult

one of the references on automata theory. For our purposes here it is
simpler, and equally valid, to rely on the following description (see
Fig. 2-7): U works with two tapes, each acted upon by a single tape-
head; the first tape contains the descriptive string dy for the Turing
machine T that U is going to simulate, while the second tape contains a
unary string i representing (in the same code as that of dr) the input
to 7 thus, no matter how many states or symbols 7 may use, the
machine U will use only the symbols b and 1 and a few dummy symbols
of its own.

Control

..bbb | LL.dt., current state of T current symbol scanned bbb...

..bbb S P bbb...

Figure 2-7. A universal Turing machine.

To simulate T, U keeps a unary string representing the “current
state” and the “current symbol scanned” of T on its first tape, and it
uses this information and dr to compute the corresponding actions it
should take with respect to its second tape. In other words, U does
essentially the same thing a person does when he traces the operation
of a given Turing machine on a given input tape: It merely keeps. track
of where T is, of what state T is in, and of what symbol T is scanning,
and it looks in a table (dp) to find out what actions T would take; then
it implements those actions on its own model of T’s tape.

A universal Turing machine, then, is one that can be “given
a program” that enables it to simulate a Turing machine: In fact, a
universal Tm is theoretically equivalent to a general-purpose, discrete
(or digital) computer, and the program one gives a digital computer is
analogous to a descriptive string dr for some Turing machine T. That
is, a computer program is a descriptive string for a function (T) that
maps one set of strings (the possible inputs to T') into another set of
strings (the possible outputs from T'). Computers, then, are mechanisms
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for implementing finitely describable processes of symbol manipulation.

The fact that there are universal machines,* or computers, is very
significant if we are investigating the behavior of machines in general.
It enables us to conduct our investigations by referring to the behavior of
a single machine as it is given various programs, rather than by building
a new machine each time we want to observe a new behavior. In
particular, it makes feasible a search for machines that simulate the
abilities of intelligence. The work described in the following chapters
would simply not be possible without digital computers. The reader
who wishes to pursue the study of digital computers is invited to see
the books by Bartee (1966), Bell and Newell (1971), Chapin, Mc-
Cormick (1959), and Trakhtenbrot (1963). Papers and books relevant
to the history of computers are those of Aiken (1937), Babbage
(1864), Bernstein (1964), Burks et al. (1946), Bush (1945), Gardner
(1958, 1970, 1971), S. Rosen (1971), Rosenberg (1969), Price
(1959), Pylyshyn (1970), Shannon (1948, 1953), T. M. Smith
(1970), and von Neumann (1951). The books by Arbib (1964, 1968,
1969, 1972) and Minsky (1967, 1969) are excellent introductions to
the automata-theoretic nature of computers.

LIMITS TO COMPUTATIONAL ABILITY

At this point the major purpose of this chapter has been satisfied,
which was to show how it is that one can investigate finitely describable
phenomena in general (and, especially, hope to simulate intelligence) by
using computers.

It remains to complete the survey of those general limitations that
can be placed upon the success of artificial intelligence research. We
have already seen one such limitation, which is that the results of A1
research must always be finitely describable: If natural intelligence is
not a finitely describable phenomenon, then the best that Al research
can do is to simulate some, but not all, of its abilities. ’

There is no scientific evidence that natural intelligence is not
finitely describable—indeed, we have tried to show that there cannot be
such evidence. On the other hand, there is some scientific'evidence that
natural intelligence is finitely describable; namely, the evidence that the
brains of certain animals do “possess intelligence,” plus the fact that
these brains each contain finite numbers of cells. However, the evidence
concerning the actual function and nature of brain cells is far from

13 Not all Turing machines are universal.
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final, and the exact way in which the intelligence of a brain is dependent
upon its cells is still unknown (see Chapter 1). The most one can say is
that the finite describability of true intelligence is likely but not proved.

Another general limitation concerning the properties of artificial
intelligences can be derived: It can be shown that there are certain
unsolvable problems, which cannot be solved by any machine, that is,
by any finitely describable process; artificial intelligence research, then,
can never produce a machine intelligent enough to solve one of these
problems. '

Before discussing one such unsolvable problem—the famous Halt-
ing Problem, first shown to be unsolvable by Turing—it is wise to note
that there is probably no way any natural intelligence can be shown
scientifically to be able to solve one of these problems. Certainly, unless
Turing’s thesis is false, no natural intelligence could ever give a finite
description of a way to solve one of these problems.

The Halting Problem can be stated as follows: For amy Turing
machine T, given any input tape i, tell whether or not T will eventually
halt its computation. By halting is meant that T enters one of its final
states g; € F, and prints a certain symbol (say, the halt symbol H) on a
square of its tape; also, whenever H occurs in a quintuple in the next-
move function for T, the quintuple is always of the form (9.x,H,0,q9;).
(In particular we have g;,H,H,0,9;.) Thus, an outside observer, given
a description of 7, kriows whenever he sees an H appear on the tape
of the Turing machine T that T is finished with its computation, and
will do no more (significant) manipulation of its tape.

It can be shown that there is no Turing machine capable of solving ‘

the Halting Problem. That is, we can show that there does not exist
a Turing machine D which, given a' description dy for any Turing
machine T, and given any input tape 7, will always compute in a finite

time whether or not T would eventually halt its computation if it were -

given the input tape i. There are many ways to go about proving this
fact: One relatively simple way involves showing that if there were
such a machine D, then one could use it as part of a larger machine
(say, E) such that, given dg and an arbitrary i, D would not be able to
compute whether E would ever halt. (See Minsky, 1967, for an exposi-
tion of this approach.)

Given, then, that there are problems no artificial intelligence can
solve, it is natural to ask whether an artificial intelligence can be con-
structed so as to recognize these problems whenever they arise in the
course of its operation, prove that they are unsolvable, and stop working
on them. In fact, it can be shown that no Turing machine (thus, no
artificial intelligence) is capable of recognizing all unsolvable problems.
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For any mathematically describable problem-solving device there exists
at least one problem that the device cannot solve, and cannot recognijze
to be unsolvable, provided the device is consistent (incapable of
producing contradictory answers if given noncontradictory premises)
and capable of doing simple arithmetic (addition and multiplication).
This should not be taken to mean that if such a machine is confronted
with such an unsolvable problem, it will never stop working on the
problem, since the machine could easily’ be designed not to work on
any problem past a certain time limit. Also, this limitation does not
apply if the machine is allowed to be inconsistent—but, of course, with
an inconsistent machine one cannot be sure that the answer the ma-
chine produces is correct. Whether this is true of human beings,
whether there are probléms that natural intelligence can never solve,
and can' never prove to be unsolvable, is an open question: It can
be answered only in a scientific-mathematical way if it is shown that
natural intelligence can be mathematically described—if it can be
mathematically described, then problems of this sort probably exist.

These limitations on the generality of artificial intelligence, which
have to do with the capacities of mathematical description and the
existence of mechanically unsolvable problenis, are both of a very
theoretical yet vague nature. They really say nothing very concrete about
the real-world capabilities of machines (or of people). We would do
well, therefore, to investigate more specific limits on the computational
abilities of machines. The remainder of this chapter is devoted to a
discussion of the physical boundaries of the computational abilities of
machines, and to establishing certain “conventions” regarding these
boundaries, which are referred to (for illustrative purposes only—the
boundaries are not exact) throughout the rest of this book.

To establish' these conventions, note that there are three basic
ways in which the description of Turing machines has, so far, been
unrealistic*:. ‘ :

1. No real-world Turing machine can actually have an infinite
tape, or even a truly “potentially infinite” tape; there are
limits to how much “information” can be stored in a com-
puter memory.

2. Any real-world Turing machine must conduct each of its
actions (reading the tape, evaluating the next-move function,
printing'the tape, moving the tape) in a finite, nonzero time;

there are limits to how fast a computer can operate.

Ottt — -,

14 Ignore the fact that modern computers operate on a higher “level” than
Turing machines (see the discussion of machine languages in Chapter 7).
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3. Any real-world machine must conduct each of its actions
with a nonzero “probability of error.” Thus, in reading the
tape there must be a nonzero probability that the Tm control
will be incorrectly informed as to which symbol is actually
on the tape square being examined by the tapehead. Simi-

- larly, there must be a nonzero probability that the next-move
function will be misevaluated, etc. Thus, there are limits to
the accuracy with which a given computer can operate.

Let us stress that, essentially, these same physical limitatious
apply to all real-world computers, not just to Turing machines.

The third limitation of machines means that real-world computers
are actually probabilistic (perhaps nondeterministic; see Hopcroft and
Ullman, 1969, and Manna, 1970b). In effect, any real-world machine
is capable of errors in any computation it makes (so, in a sense, ma-
chines are inherently “inconsistent”). However, the inaccuracy of
machines may often be minimized; in particular, it is often possible to
build machines that are more “reliable” than their components, in
terms of the accuracy with which they compute their respective func-
tions. (The classic paper on this subject is that of von Neumann,
1956.) Although little will be said hereafter about the probabilistic
nature of machines, a reasonable convention for modern-day computers
is to assume that such a machine will normally make less than one
error per billion read-evaluate-print-move cycles.

To discuss the memory-size limitation of computers, a brief but
quantitative definition of the word “information” is needed. What does
it mean to say one computer memory will hold more information than
another? (Throughout this discussion we will be concerned only with
the memory that corresponds to the tape of the Tm, not with the
memory that corresponds to its finite-state control.) The qualitative
answer is fairly simple: The amount of information a tape (memory)
can hold is dependent on the number of squares that make up the tape
and on the number of symbols that may be printed on each square.®®
Since the simplest tape is one for which each square may have printed
on it only one of two symbols (“blank” and “1”; “0” and “1”; etc.),

**This is essentially the Shannon-Weaver (1949) concept of “information.”
A more intuitive approach to information would include some way of describing
the probable causes, effects, and denotations of a given string of symbols. This
is discussed more thoroughly in Chapter 7, but we may note here that there is
still no clearly satisfactory formalization for the intuitive concept of information.
Also, it is common to omit the “ceiling-function” and to allow information to
come in noninteger quantities of bits.
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it is customary to take this kind of tape as a standard. The number of
squares that make up such a tape is referred to as the number of bits
(binary digits) of information that it can hold. To find the number of
bits of information that can be held by a given nonstandard tape, we
must figure out how large a standard tape must be in order to store as
many different strings of symbols as can be held by the nonstandard
tape.

This is easily done. (Remember, any physical, real-world tape
can be made up of only a finite number of squares.) Suppose each of

‘the squares of the nonstandard tape is numbered successively: 1,2,3, ...,

n. Let the number of symbols that can be printed on square i be
s(i)—again, only one symbol may be printed on a square at a given
moment. Then the product

s=s5(1)s(2)s(3) ...s5(n)

is the total number of different strings of symbols that can be stored on
the given nonstandard tape. If x is a real number, we define the ceiling
function (see Knuth, 1969a) of x to be the least integer that is greater
than or equal to x. Denote the ceiling function of x by the expression
Mx1. Thus, 76.51=7,741=4,-231=r-27,701=0, etc. The
reader may easily convince himself that the smallest standard tape
that can hold as many different strings of symbols as those held by the
nonstandard tape must-have ‘

Mogy 1

squares. We may therefore take this to be the amount of information
(in bits) that can be held by the nonstandard tape.*®

Modern computing systems make use of many different types of
memory systems, each with its own characteristics. Some currently ac-
curate conventions for the storage capabilities of these systems are:
“core” memories may hold on the order of 107 bits; “disk” memories
may hold on the order of 10° bits; magnetic tape memories may hold on

. the order of 10° bits; optical (laser) memory systems currently in

development may hold between 10™ and 10 bits (see Damron et al.,
1968; R. P. Hunt et al, 1970; Lohman et al., 1971). It should be
noted that the access time necessary for a computer to determine what

symbol is stored at a given position (“square”) in a memory will, in

16 Of course this notion of information does not really depend on whether
the “tape” is actually made up of squares, on whether it is one-, two-, or n-

.dimensional, or on whether “symbols” are “printed” or “stored” in some other

manner in the “squares” of the tape, etc.
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general, increase with the size of the memory. Thus, the access time for
a core memory is generally on the order of 107" second, whereas for
an optical memory it is generally on the order of a second (see Chapter
8, “Hierarchical Systems”).

Probably the conventions used most often throughout this book
are those pertaining to limitation 2, that is, the speed with which a
computer can operate. The basic actions performed by a modern
computer are, in analogy to those performed by a Turing machine,
“read location(s) in memory,” “perform logical or arithmetical opera-
tions,” “store result(s) in memory,” “access new location(s) in mem-
ory.” The performance of this sequence of operations corresponds to a
cycle of the operation of the computer; in general, for each cycle of
operation, the computer processes one machine instruction (i.e., eval-
uates one instance of the next-move function). It should be emphasized
that, for most of the symbol-manipulation procedures in which we are
interested, a typical computer will usually have to process several ma-
chine instructions to complete each step of the procedure (how many
depends upon the program, the collection of machine instructions, that is
being used to describe the procedure). We shall have occasion to make
use of several different conventions for the speed with which the steps of
a procedure can be carried out by a machine—each convention we use
will pertain to a different type of machine. These machines, and the cor-
responding conventions, will be referred to as follows:

conventional 1 microsecond/step

attainable 1 nanosecond/step

theoretical serial 107* nanosecond/step

theoretical parallel 107 nanosecond/step or 107% years/steps

Again, these are rough estimates. Their accuracy and meaning will now
be discussed.

Conventional. Modemn computers process about 10 million in-
structions per second. It is estimated that, with optimal programming,
the average step involved .in the type of nonnumerical computations we
are investigating (those that “simulate intelligence”) might require ten
machine instructions; probably this is conservative. For example,
generating a successor to a chessboard configuration might, with ex-
tremely good machine-language programming, be done in 1 micro-
second. Using the “conventional” time estimate will give the student a
rough indication of the best speed he can expect a current computer to
achieve in performing a given procedure.

Attainable. Some integrated-circuit chips have been synthesized
which are small computers and memories. These chips typically have
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operation and access times on the order of nanoseconds. Using circuitry
and computer chips specifically designed for a given procedure, it is
conceivable that the steps of that procedure might be performed at the
rate of 1 nanosecond/step. Should the time required for complete execu-
tion of a procedure be very large, using the “attainable” estimate, the
student may conclude that current technology is not capable of build-
ing a machine to perform the procedure. (However, it should be noted
that coherent optical systems may eventually be used to perform logical
operations at rates on the order of one picosecond (107 second)
per operation (see Culver and Mehran, 1971).

Theoretical Serial. Bledsoe (1961) used quantum theoretical con-
siderations to derive the minimum access time of a serial digital com-
puter (in which all information is passed through a central processing
unit) with a density less than or equal to 60 gm/cm’. He obtained the
figure 107 second = 10™** nanosecond. Therefore 107 nanosecond/
step is taken as the best speed with which a serial computer could
perform the steps of a given procedure. It seems likely that this speed
of computation is completely beyond the bounds of any anticipated
technology.

Theoretical Parallel. Bremermann (1967) computed the maximum
rate at which information can be processed in a universe of 10™ protons,
and he obtained 7 X 10" bits/year. This estimate, in the form of 107%
nanosecond/step or 107 year/step, is used as the maximum speed
with which the steps of any given computational procedure can con-
ceivably be performed. It is useful simply as a “clincher” to establish
whether a procedure is completely beyond the bonds of computation.

There are real-world problems for which the only procedures we
can describe that would yield exact solutions cannot be carried out:
The performance of these procedures is beyond even the “theoretical
parallel” bound to computational ability. (One such problem is the
game of Go; see Chapter 4.) However, it should be emphasized that
for most problems there are several procedures for arriving at (perhaps
partial) solutions, and it is possible for some to be within bounds and
others to be out. Similarly, it is usually possible to describe a given
procedure with several different programs, some of which may be more
quickly executed by a given machine than others.

Because so little is known about the functioning of the human
brain, it is difficult to compare its physical limitations with those of
computers, The consensus seems to be that the brain has a larger

‘memory than that of the computer but that it performs its logical

operations (whatever they are) much more slowly (on the order of
milliseconds/operation). The slowness of the brain’s operation seems
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to be relatively unimportant if we consider the complexity of its struc-
ture and the fact that it is highly parallel; these attributes probably ac-
count for its evident ability to perform extremely complex logical
operations at about the same speed with which it performs more simple
reflexes.

SUMMARY

We have seen that there are limits to the things that computers
can be used to simulate, to the problems they can be used to solve, and
to the procedures they can perform. However, our knowledge of these
limits and of natural intelligence is not sufficient to determine whether
the attainment of a general artificial intelligence is within the bounds of
computational ability. AI researchers still do not have enough evidence
to decide whether machines can be made as intelligent as human beings.

NOTES

2-1. In fact, we have here described what might be called simple mathe-
matical theories. We may define a general mathematical theory to be such
that its three sets are finitely describable. At any rate, the object described
by the theory is still finitely describable.

2-2. The proposition that if a thing is finitely describable it is therefore
mathematically describable is generally taken as a postulate of the phi-
losophy of mathematics, since it has not been proved mathematically.
Mathematics seems incapable of supplying or handling a nonmathematical
definition for the concept of “finitely describable.” The evidence so far is
clear, however, that aill mathematical ways of formalizing the concept of
“finitely describable” are equivalent. '

2-3. From the mathematician’s point of view, the thing is often identified
with the set of sentences describing it. One. could say in this sense that the
natural numbers do not exist separately from the axioms that .generate the
set of sentences describing them. The notion of mathematical description is
an effective notion, something like “approximation”: One can derive as
many of the truths about the thing described as one likes, though one can-
not necessarily derive all such truths, in a finite time.

2-4. Actually, this is not quite true. One can extend the arguments of
Chaitin (1966, 1969) to prove that there exists a finite set 4 with, say,
10°° elements, such that any finite description of 4 requires at least as
many elements (production-rules; see Chapter 7) as there are in 4. That
is, the smallest finite description of A is the enumeration of the elements in
A. However, the actual enumeration of the 10°® elements in 4 is physically

£y
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impossible. That is, the set A is finite, but is “practically infinite, practically
nondescribable.” .

The proof for the existence of such a set would, of necessity, be non-
constructive. Existence proofs of this type are not considered valid by some
mathematicians (note 2-5).

2-5. (A set is countable if its elements may be put into one-to-one cor-
respondence with the natural numbers 1,2,3, . . . . The set of sentences
derivable within a given mathematical theory must be countable, since for
each n there can be only a finite number of sentences of length # or less).

This conclusion was first drawn from the work of Georg Cantor. Nat-
urally, it aroused much controversy, and there are many mathematicians
today who disagree with Cantorism (see Kac and Ulam, 1968, pp. 12-14).
In particular, there is no unanimous viewpoint among mathematicians as
to the proper rules for reasoning about “infinity” or even, for that matter,
as to the existence of infinite things (see Benacerraf and Putnam, 1964).
Thus, the argument concerning the existence of mathematically nonde-
scribable numbers is not a proof, especially if one does not grant the a
priori validity of the infinity concept. Hilbert (in Benacerraf and Putnam, :
1964, p. 136) argued that the results of scientific investigation have given
no evidence for the existence of infinite things. The viewpoint in this book
is that scientific investigation has given no incontrovertible evidence con-
cerning either the existence or nonexistence of infinite things.

It should be pointed out that some scientists have disputed the com-
pleteness of mechanistic reasoning, using quantum theoretical arguments
(see, e.g., Elsasser; 1969).

2-6. Certain aspects of the universe are, according to current scientific
theories, described as being finite. According to relativity theory, there is a
maximum possible velocity, that of light, although certain phase velocities
can be greater. Albert Einstein suspected that the spatial size of the universe
might be bounded, and estimated a figure for its radius.

2-7. The definition of discrete phenomena does not require that an oc-
currence have a “first” event. Even so, it is possible to make a descriptive
string, with a beginning, for an occurrence with neither a first nor a last event.
(How?)

2-8. Of course no one can observe precisely that an event starts “imme-
diately after” some time # what this means is that there are different step
functions that describe occurrences which appear to be the same. (Exam-
ples?) This also applies, of course, to “immediately before,” and “during
the instant.”

2-9, This seems, incidentally, not to be the case with most nondiscrete
functions. For these, the best one can usually do is to approximate the
value at a given point to an arbitrary closeness in a finite number of steps.
Even in the case of Fig. 2-2, “the weight on a spring,” we really deal with
a type of approximation: The differential equation that describes the class of
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all possible occurrence functions does have exactly one solution for any
given assignment of values to its variables (m,a,k), but in order to evaluate
that solution and to see where the weight will be at a certain time #, we
usually have to compute certain functions (sine, cosine, etc.) that yield
approximations. Typically, a finite description of an occurrence of a non-
discrete phenomenon will give exact information at a finite number of points
(values of t) and information that is an arbitrarily exact approximation at an
infinite number of points. Something of the reverse holds for discrete phe-
nomena: A finite description will often give exact information about an
infinite number of values of 7, of which at most only a finite number-are “ap-
proximate”; for example, 2,7+ ,4-+.

2-10. The observant reader may object that surely one cannot represent
phenomena that have a nondenumerable number of occurrences by de-
scriptions which yield a denumerable number of occurrences. To (partially)
answer this objection, consider Example 2—1, “the weight on a spring”: This
phenomenon- may presumably have a nondenumerable number of occur-
rences. However, the set of occurrences one can actually compute, using its
description (the differential equation), is denumerable, for three reasons:

a. Bach computable occurrence is specified by listing the values for
the variables m, a, k, and the accuracy with which one wishes to
evaluate the equation,

b. Each of these values must be finitely described, and the finitely
describable numbers are a countable set.

¢. The countable product of countable sets is countable.

Thus, although the description of the phenomenon applies in an “ideal”
sense to an uncountable number of occurrences, it actually describes only a
countable set. ‘

2-11. One of the subplots of Kurt Vonnegut's novel, The Sirens of
Titan, is relevant: The hero is part of an army trapped on Mars. Most of
the soldiers in the army have radio receivers implanted in their brains and
are remote-controlled by a person who has decided (for reasons extraneous
to this discussion) to have them invade Earth. The hero manages to dis-
cover what is happening, despite the fact that he has a radio receiver jm-
planted in his own brain, and he writes a letter to himself describing every-
thing he knows about the invasion. After hiding his letter, his dislike for
the army is found out. Surgical officers in the army erase a great deal of
his. memory, but after he returns to duty he discovers his letter. Reading it,
he is able to replenish his memory and begin again. This cycle repeats several
times.
EXERCISES

2-1." (a) Find a finite description for the set of points that are the intersections
of the 24 Archimedean spirals, having equations of the form

r==x(0 + (kv/6))
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where £k =0,1,2,.!.,11. (b) Find a finite description for the set of points formed
by the analogous intersection of 24 exponential spirals, with equations of the
form

r==(e**(8 + (k/6)))

2-2. Construct a next-move function for a “unary multiplier,” which, given an
input string

...bbb11..1b111..1bbb ...
m n

consisting of a string of m 1's followed by a string of n 1s, produces on its tape
an output string containing ma 1’s. ‘

2-3. (a) Show that any Turing machine can be represented by a natural
number (an integer greater than zero). (b) Give a finite description for a function
f mapping the natural numbers into [0,1], such that f(n) cannot be computed
for any n by any Turing machine.

—ToJoJo[a [+~ [1]1]1]ofofof - i

~JoJoJoJo[1] ~ [1[1]1]oJofo] ~ i

2-4. Consider a simple “polycephalic” Turing machine which has two tapes,
i, and &, each of which is filled completely by zero’s except for a single block of
Us. Let the blocks of 1’s on the two tapes be right-justified, as indicated above.
Find the simplest possible next-move function that will enable an outside ob-
server to determine whether or not the number of 1's on tape i is greater than
or equal to the number of 1’s on tape iy, assuming that he cannot observe the
state g of the Turing machine.

2-5. In 1962 there were on this planet about 55,000 scientific journals publishing
about 1,200,000 articles per year; there were also 60,000 scientific books and
100,000 other research reports issued per year (in the United States, scientific
and technical publications have doubled in bulk approximately every 20 years
since 1800). Estimate the size, in bits, of a computer memory capable of storing
(a) all scientific publications produced in 1962, and (b) all scientific publications
produced as of the present. Assume ‘

30 pages per article

300 pages per book

100 pages per research report

60 lines of print per page

70 symbols per line

- and assume each symbol can be any of 128 different characters. How fast must

one add to such a memory, to keep it up to date?
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PROBLEM SOLVING

INTRODUCTION

The opening sections of this chapter present a brief overview of
the directions currently being taken by artificial-intelligence (a1) re-
search and of the subjects that will be covered in subsequent chapters.
The third section of this chapter describes some of the ways that Al
researchers have formalized the concept of “problem.” In the succeed-
ing sections general problem solvers and reasoning programs, state-
space problems, and heuristic search theory are discussed. Planning,
learning, and reasoning by analogy are then introduced briefly. The
final section is concerned with models, the “problem of problem repre-
sentation,” and the levels of competence that have been attained by
artificial intelligences. ‘

PARADIGMS
General Apprdaches

Speculations on the possibility of a search for mechanical intel-
ligence were originally put forth by several individuals—including Alan
Turing, John von Neumann, and Norbert Wiener—during the years
1943-1950; however, it was not until electronic digital computers be-
came generally available in the early 1950s that experimental research
in artificial intelligence could begin. Rapid progress in At research did
not occur until “symbolic processing languages,” such as 1pL and LISP,
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were developed (note 3-1). To date there have been several thousand
papers published on the subject of artificial intelligence. However, Al
research is still in its embryonic state, and we cannot yet decide what its
final form will be. Thus, this book must serve both as an introduction
to a vast body of literature and a commentary on what appear to be the
central topics discussed in that literature.

Kuhn (1962) discussed the importance of paradigms in the
development of scientific investigations. (A paradigm is a general
model of something that is found to be useful for investigating that
thing.) Al researchers have developed many paradigms for artificial
intelligence. Chapter 1 has already discussed one, which is represented
by Turing’s test: Artificial intelligence research is concerned with build-
ing machines that can perform tasks which people would ordinarily say
require the “intellectual abilities” of a human being,

Environments

Another way of viewing Al research is to see it as an effort to design
machines that are capable of existing on their own in environments
produced by the real world. An “environment produced by the real
world” (or a real-world environment) is not necessarily our own en-
vironment. A mechanical intelligence might, for instance, operate in an
environment consisting of “all published scientific works.” Intuitively,
an environment produced by the real world is always changing and does
not have a known, complete description or prediction. We expect such
an environment to exhibit regularities, or “patterns,” and we expect a
machine that operates in such an environment to encounter “problems.”
A machine operating successfully in a real-world environment will
have to develop and represent internally its own “knowledge” of that
environment. It may have to discover largely on its own the problems
it needs to solve and the patterns it needs to recognize. If we design the
environment ourselves, then many of these problems and patterns may
be presented to the machine automatically (as with question-answering
and fact-retrieving machines; see Chapter 7). Even if we do not design
the environment, we may still know enough about it to give the machine
automatic procedures for locating relevant problems and patterns. At
any rate, the machine will have to be able to solve the problems and to
perceive the patterns that it encounters.

Throughout this chapter- we shall have much to say about the
general nature of machines that are capable of existing in real-world
environments. It is convenient to say that a machine which is capable
of operating successfully in a real-world environment displays an
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aptitude for that environment. Also, reference is often made to environ-
ments simply as “problem domains” or “problem areas.”

Aptitudes

A closely related paradigm for AT research is to see it as being
concerned with frameworks for the engineering of mechanical aptitudes.
By this we mean that AT research can be viewed as an attempt to develop
the computers and other hardware, programming languages, and human
expertise necessary to design machines with aptitudes for specific real-
world environments. This viewpoint springs from the recognition that
some procedures (machines) will appear to be intelligent in some en-
vironments and unintelligent in others. Rather than search for a pro-
cedure that will be intelligent in all (or even many) environments, Al
researchers may look for a framework (computer, language, expertise)
within which to design procedures that can be tailored for intelligence
in specific environments. Although A1 researchers pursuing this paradigm
are concerned with developing intelligent machines, they are more con-
cerned with finding programming languages and computers that will
facilitate the development and description of a wide variety of different
intelligent machines, each with its own aptitude for solving problems in
a real-world environment (some machines may have many of the
aptitudes possessed by others). Many investigators have worked within
this paradigm, too many for us to identify at this time. all those who
have made important contributions. Chapters 6, 7, and 8 are, in effect,
a discussion of the work that has been done using this paradigm.

The idea of mechanical aptitudes is a valuable one, whether or
not we seek a general framework within which to design them. Most
Al researchers have not aimed directly at the goal of constructing com-
pletely intelligent machines, able to display intelligence at a human
level. Rather, most work in artificial-intelligence has been devoted to
the machine simulation of specific intellectual. abilities (giving machines
specific aptitudes) such as the ability to play games or the ability to
prove mathematical theorems. There are three basic reasons for this
approach:

First, the theoretical and practical knowledge necessary to do
really general work was (and is) extremely limited. There is no
adequate guideline that can tell us in any detail how to build machines
with a truly general artificial intelligence.

Second, one of the best ways to acquire this sort of information
is to make a thorough comparison of human and machine abilities in
limited problem areas or environments. The precise nature of the dif-
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ficulties involved in A1 research may show up more clearly if we confine
our early inquiries to the simulation of specific aptitudes possessed by
natural intelligence. Hopefully, many limited attempts at machine intel-
ligence will eventually provide better grounds for generalization.

Finally, there is always pressure for some immediate results, both
to solve current and practical problems—such as character recognition
or assembly-line balancing (see, for example, Tonge, 1963)—that do
not require general mechanisms for artificial intelligence, and to estab-
lish by experiment a likelihood that the more general attempts will
eventually succeed.*

The specific machine aptitudes that have received the most investi-
gation by A1 researchers are problem solving, game playing, pattern
recognizing, theorem proving, and: language understanding. Two facts
concerning “specific” machine aptitudes should be emphasized: First,
there are levels of generality in the aptitudes that machines may possess.
Thus, one procedure may have an aptitude for playing a specific game,
such as Chess, and another procedure may have an aptitude for playing
many different games; procedures with a “specific” aptitude for playing
many different games are said to be general game-playing procedures.
Similarly, a program with an aptitude for solving many different prob-
lems is called a “general” problem solver (it is not required that the
program be able to solve all problems, or even that the problems it
is able to solve be especially difficult). AI research has so far had only
limited success in developing general problem solvers, general game
players, general pattern recognizers, and general theorem provers. No
procedures have yet been developed which we could fairly say are
“general language understanders” (note 3-2).

The other fact that should be emphasized concerns the inter-
dependence of aptitudes. Throughout this book we shall see many
ways in which machines with one general aptitude must have other
(perhaps less general) aptitudes. Thus, it can be shown that general
game players must have an aptitude for pattern recognizing (see, e.g.,
Banerji, 1969), and general pattern-recognizing programs must have
an aptitude for language understanding (see Chapters 5 and 7).

Evolutionary and Reasoning Programs

The term general artificial intelligence, as it is used here, refers
loosely to a machine (procedure) that has aptitudes for general
problem solving, general game playing, general theorem proving, gen-
eral pattern recognizing, and general language understanding, and also

* We discuss the practical uses and effects of general artificial intelligence
more thoroughly in Chapter 9.
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has aptitudes enabling it to display all other kinds of intelligent be-
havior normally exhibited by people. Again, no one has yet been suc-
cessful in giving a machine the aptitudes corresponding to general
artificial intelligence. There have been primarily two types of ap-
proach to the goal of achieving a general machine intelligence, one of
which is an evolutionary approach, the other being what is called (fol-
lowing McCarthy) the “reasoning program” approach. These ap-
proaches are not mutually exclusive, but as yet they have not been
combined: Thus, one can imagine reasoning programs that might
change their rules of inference and “evolve,” and one can imagine
interrelating reasoning programs that would form a “self-organizing”
whole, which might itself be a reasoning program (see Chapter 8).

The evolutionary programs, such as those written by Friedberg
et al. (1958, 1959) and Fogel et al. (1966) and suggested by Holland
(1970) and Campbell (1960), are programs that produce, select, and
modify subprograms according to their ability to perform various
tasks. There is no reason in theory why evolutionary programs might
not eventually be used to produce a general artificial intelligence, but
as yet the evolutionary approach has had little success.

The reasoning-program approach is an attempt to develop a single
program capable of perceiving facts about its environment, of drawing
conclusions from facts, of discovering an adequate means for the ex-
pression of facts, of formulating its own goals and strategies, and acting
according to them—a program that would, in short, be a rational
entity. The most well-known example of this approach is probably the
“General Problem Solver” of Newell, Shaw, and Simon (1963), which
might be described as a preliminary investigation of the rational process.
McCarthy (1963a,b; with Hayes, 1968a) took a somewhat different
approach to the same goal, concentrating particularly on what sort of
internal language (means for expressing facts) would be the best for a
reasoning program. ‘ ,

This chapter discusses the work of McCarthy, Newell, Shaw,
Simon, Ernst, Nilsson, Amarel, Hewitt, Fikes, Pohl, and others, rele-
vant to the construction of reasoning programs and to giving machines
a “specific” aptitude for general problem solving.

PARADIGMS FOR THE CONCEPT OF
“PROBLEM”

Situation-Space

What is a problem? Perhaps the best answer Al researchers can give
is that the real-world nature of “problems” still has not been either fully
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formalized or fully investigated. We can, however, describe two basic
models, or paradigms, for the concept of “problem,” which would have
to be included in any fully general formalization.

Our first general paradigm for “problem” is the situation-space
model. A problem presented in this formalization consists of an initial
situation, a set of possible situations, and a set of possible actions, to-
gether with a specification of how the various situations can be pro-
duced from each other by different actions, and the specification of a
final, desired situation, or goal; the statement of the problem might also
include a specification of certain situations to be avoided. A solution
to a situation-space problem, then, is any sequence of actions that leads
from the initial situation to the desired situation, and avoids the unde-
sired situations.

Several additions should be made to this model for “problem” if
we are to insure some generality in its application to the real world.
First, we should allow the situations of a given situation-space to be
partially-specified; that is, we should not require in general that a
complete description be obtainable for any given situation (though for
the simpler problems so far considered in A1 research such descriptions
are usually available); rather we might allow a given situation to be
described by a set of sentences, each presenting a fact about the situa-
tion from which new sentences may possibly be derived. The set of
sentences describing a given situation may be incomplete; that is, one
may not be able to answer all conceivable questions about the situation.
Again, the result of applying an action to a given situation will not
necessarily be a completely specified situation. In the same vein, the goal
to be obtained by solution of the problem may be only partially-specified.

Also, in full generality we would not require that the result of ap-
plying an action to a given situation necessarily be a unique situation, or
even a unique partially-specified situation. That is, we should allow
actions to be “nondeterministic” in their consequences, sometimes yield-
ing one partially-specified situation out of a set of partially-specified
situations. :

Finally, a solution to a situation-space problem may in general be
partially-specified; that is, the solution may be described as dependent
on various contingencies that cannot be completely determined in ad-
vance. For example: “If X should become a factor then do Y,” “If Z
should happen, then formulate a new solution.” Thus, the solution may
in general be a plan, or strategy, not a specific string of actions. The
various actions that might be included in a given solution should include
“looking for a new solution”; “discovering more information about
relevant situations”; and “interrupting one’s actions, not doing any-
thing.” ‘
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A good example of a real-world problem that is partially-specified
is McCarthy’s Airport Problem: The problem consists in going from
one’s home to the airport. Two basic actions are available, driving and
walking. To solve the problem, one starts at home, walks to one’s car,
and drives to the airport. However, in reality one cannot specify com-
pletely and invarjably all of the details of the situations and actions that
may occur in solving the problem; so, a single string of actions cannot
be produced which is a guaranteed solution. One could, for example,

Break one’s leg going to the car.

Have a flat tire while driving to the airport.
Misread a highway-direction sign and get lost.
Run out of gas or have engine trouble.

Come to a roadblock or a detour.

A machine attempting to solve the Airport Problem could run into
similar difficulties, yet these are all obstacles a general intelligence could
surmount (though in doing so it might need to enlist the aid of other
intelligences). The nature of this problem’s difficulty lies in the partial-
specification of its situations, actions, and solutions. This is true of most
problems in the real world.

System Inference

Our other paradigm for “problem” is the paradigm of system
inference. Problems in this paradigm may take many different forms of
representation, all of them theoretically equivalent, though a machine
working within this paradigm might sometimes find the use of one
representation to be more efficient than the use of another. Various
forms of “system inference” would respectively require a problem-solv-
ing machine to be capable of inferring:

1. A function f from a set A4 to a set B, given examples of the
function’s values for a subset of 4.

2. A relation R within a set X, given a description of X and a
set of examples (positive or negative) of the way R holds
throughout X. ,

3. A grammar for a string language L, given a set of sentences
that belong to L and a set of sentences that do not.

4. A mathematical theory, given a set of propositions that are
true within the theory, and a set that are not.

5. A Turing machine 7, given a sample of its behavior on a set
of input strings.
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(Of course this list is not exhaustive.) The inference, or system, pro-
posed by a problem solver as a solution to one of these requirements
will typically be a finite description of a function, relation, string gram-
mar, mathematical theory, or Turing machine, :

The generality of this paradigm as a model of mathematical prob-
lems should be strongly suggested, but there may be some doubt as to
its relevance to the real world. To. help insure this relevance, we should
allow the evidence for a given system-inference problem to be partially-
specified and also allow the solutions (i.e., systems) proposed by the
problem-solving machine to be partially-specified. Again, the machine
should have some language for representing its knowledge of a given
inference problem, and it should have some way of determining informa-
tion that will help it decide among the various systems it might infer
as a solution to a problem. It will often be the case that a machine will
be able to infer several systems consistent with the evidence it has been
given. However, we would not require that it be able to derive its
inference(s) from the given evidence, nor even necessarily that it be
able to prove that its proposed solutions are consistent—nevertheless,
a system-inference machine should be able to defer to experience and
not make an inference once it has recognized evidence that refutes it.
Also, a system-inference machine should be able to detect, or try to
detect, that its evidence is self-contradictory, and it should usually tend
to propose increasingly better solutions.

An intuitive example of a real-world system-inference problem is
the problem of invention: That is to say, given a description of some
task to be performed (peel potatoes), find a description of an object
that will perform the task (draw a blueprint for an automatic potato-
peeler). The task to be performed can be corresponded to a function
that maps situations into situations; the description of the task can be
corresponded to a description of the function values on’certain inputs;
and the invention produced by the problem-solving machine can be
corresponded to a finite description of a function (a program for a
universal Turing machine) that performs the task. An efficient mechani-
cal inventor should use what might be called the “principle of economy
of invention”: Do not design an invention to depend on other, un-
achieved inventjons if you can help it (note 3—3).

Of course no one has built a “general invention-making machine,”
but the possibility is clearly in line with the notion of general artificial
intelligence. ‘ ,

Actually, each of these paradigms for the concept of “problem,”
the situation-space model and the system-inference model, is equivalent
to the other: It is likely that any problem which can be stated in one
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paradigm can be stated in the other, and that each of these models is
merely a different way for representing the same underlying idea about
the general nature of problem-solving ability. Still, we should emphasize
again that neither paradigm has yet been completely formalized or
investigated as regards its application to “problems of the real world.”
Finally, we should mention that for any problem, there are essentially
two levels of solution: The first level is to prove the existence of a solu-
tion to the problem, and the second level is to construct the solution
itself. Polya (1945) presented an excellent introduction to the nature of
problems and their solutions, and gave attention to some aspects of
real-world problems.

PROBLEM SOLVERS, REASONING
PROGRAMS, AND LANGUAGES

General Problem Solver

The rest of this chapter will be concerned with computer programs
that are capable of solving problems stated in the situation-space para-
digm. Programs that work with problems stated in other paradigms are

discussed primarily in Chapter 7. We shall see the situation-space para-*

digm used in Chapters 4 and 6 by programs which play games and prove
theorems. In this section we are concerned with two questions: First,
what should be the nature of a machine that would be a general prob-
lem-solver for problems of this type? Second, how should a machine of
this type be designed to operate in a real-world environment similar to
our own?

One example of a fairly general program for solving situation-
space problems is the General Problem Solver (Gps) program of
Newell, Shaw, Simon, and Ernst (1963 et seq.). GPS made use of an
elementary language for the description of situation-space problems.
That is, GPs was capable of accepting descriptions of objects and
- operators (= situations- and actions) and of accepting information that
a certain object was the initial, or given, object and that a certain object
was the desired object, or goal. The GPs language contained what might
be called the first degrees of partial specification: One could specify to
GPs that a class of objects (e. g, “any expression without an integral
sign”) was to be the goal, and the program could decide that some ob-
jects would be considered partial solutions. This was done with the use
of difference operators, which were capable of detecting various types
of differences between objects. The differences were themselves also
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treated as objects, and GPs could define subgoals of “changing the dif-
ference” between two objects. Thus, Gps would seek to minimize one
difference at a time between two objects, and it usually was given an
ordering for the various differences: Minimizing one difference could
be considered more important than minimizing another.

GPS used the same problem-solving technique (referred to as
means-ends analysis by its authors) on every situation-space problem
it was given; the technique comprised three essential steps:

1. Evaluating the difference between the current situation and
the goal.

2. Finding an operator that typically lowers the type of dif-
ference found in step 1.

3. Checking to see if the operator found in step 2 can be ap-
plied to the current situation; if it can, then apply it, else
determine a situation required for the application of that
operator, and establish it as a new (sub) goal; then go to
step 1.

GPS was applied to many different simple problems, such as the
Missionary-Cannibals Problem (see the last section) and the Tower
of Hanoi (see the Exercises). It was also shown to be able to prove
relatively simple theorems in mathematical theories; its authors were
able to describe the resolution principle of J. A. Robinson (see Chap-
ter 6) within their formalization for operators and objects. On all of
these (fairly simple) problems, Gps was successful, though usually it
was not as fast in producing answers as were special programs designed
to solve the individual problems.

In several respects, GPs was not a fully general problem solver. In
the first place, GPs could not produce a plan or strategy as its solution;
the only solution GPs could produce would necessarily be a specific
sequence of actions that would lead to the desired goal. Also, GPS
could be applied only to problems that could be completely specified,
where the various actions, objects, differences, etc., could be exactly
described for the given problem. Thus, GPs was completely dependent
on the ability of its programmer to produce a suitable representation
for the problem.

As an example, GPs was given the famous Seven Bridges of
Konigsberg Problem (see Fig. 3—1). The problem is to go over each of
the seven bridges once and only once and return to the point from
which you started. This problem was shown to be unsolvable by Euler
in 1736, using certain topological considerations. When given the
problem, GPs tried the same paths repeatedly and eventually gave up,
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Figure 3-1. The seven bridges of Konigsberg.

unable. to achieve a solution because it could not look at the problem
in a general way: It could not develop a partially specified solution, or
strategy, and then prove whether the strategy would work, nor could it
prove theorems about the problem or its solutions. Since GPs could not
invent Euler’s “topological considerations,” it could not prove the puz- -
zle to be unsolvable. :

Of course most people couldn’t do this either, or at least not right
away; otherwise the problem would never have become famous. Usu-
ally, the first thing a person will try is a Gps-like search. However, a
person can stop such a search if it seems to be fruitless, and can try to
reason about the problem itself.

All of which is to say that Gps was highly “representation de-
pendent,” more so than a truly general problem solver would be.? We
should expect a representation-independent problem solver to be capa-
ble of: :

1. Inventing new representations for a given problem, if it can-
not solve the problem using the ones it has.

2.. Discovering facts, and perhaps proving theorems, about rep-
resentations and problems, their interrelations, etc:

3. Asking for, and looking for, help in the outside world.

Each of these abilities would be necessary to a problem solver that
functions in the real world.

Reasoning Programs

Following McCarthy and Hayes (1968a), let us label general
problem solvers that work within the situation-space paradigm, and
which possess independence from representations in this sense, as rea-

This criticism also applies to the more recent general problem solvers
such as Fbs (Quinlan and Hunt, 1968), MULTIPLE (Slagle and Bursky, 1968),
and REF-ARF (Fikes, 1970). These programs are each capable of solving a variety
of different problems, but they are all highly representation-dependent.
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soning programs (RP’s). At the moment, RP’s are still in the conceptual,
“thought-experiment” stages of development. We are primarily con-
cerned with RP’s that could solve situation-space problems that might
occur in a real-world environment similar to our own.

Basically, a reasoning program is to be capable of sensing and
operating on the world through perhaps several means, such as tele-
vision cameras and mechanical arms, and of communicating with peo-
ple through, say, keyboards and video displays. Its observations at a
given moment may be stored internally in several forms: Pictures, for
example, might be stored as matrices, lists, or other data-structures.
However, any data stored by the RP is ultimately to be described,
within the rRP, by sentences in a general language for the representa-
tion of phenomena. RP should be capable of proving theorems about
phenomena, stated within this language, and of deciding what actions
to perform on the basis of these theorems; its “phenomena language”
should be capable of describing the actions it can perform, as well as
the situations it can observe, and of describing interrelations between
them. The language should be capable of describing hypothetical situa-
tions and actions, of designating some as desirable and others as not.
Finally, the phenomena language should be capable of describing repre-
sentations of problems, as well as problems themselves: RP should be
capable of reasoning about its representations as well as with its
representations, as described above.

A language is essentially a way of representing facts. An important
question, then, is what kinds of facts are to be encountered by the rRP
and how they are best represented. It should be emphasized that the
formalization presented in Chapter 2 for the description of phenomena
is not adequate to the needs of the Rp. The formalization in Chapter 2
can be said to be metaphysically adequate, insofar as the real world
could conceivably be described by some statement within it; however,
it is not epistemologically adequate, since the problems encountered
by an RP in the real world cannot be described very easily within it.
Two other examples of ways of describing the world, which could be
metaphysically but not epistemologically adequate, are as follows:

1. The world as a quantum mechanical wave function.
2. The world as a cellular automaton. (See Chapter 8.)

One cannot easily represent within either of these frameworks such
facts as “Today is my programmer’s birthday,” or “I don’t know what
you mean,” or “San Francisco is in California,” or “Ned’s phone-
number is 854-3662.”
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If we use human languages as an example, we can identify several
things an RP language should be able to express very easily.

Causality. The language should enable RP to express vatious forms
of causality relationships between situations and phenomena: “fire
causes smoke.”

Temporality. The language should be able to express that one
situation precedes another, that one situation follows another im-
mediately, that-one situation may precede another, etc. “Harry will get
home by the time John does.” ‘

Ability. The language shoud be able to express such notions as “X
can do Y” (perhaps with appropriate modifiers; e.g., “if X is given
certain knowledge”; thus, a person can open any combmatlon safe, if
he knows its combination).

Relevance and Plausibility. The language should make it possible
to express the notion that certain situations or problems are relevant to
each othef, or may be relevant to each other, though perhaps not in
any known way. The language should also include the possibility of
expressing the plausibility and relevance of sentences: “These are all the
sentences necessary to describe the problem”; “X is analogous to Y,
“These sentences are plausible.”

Possibility and Probability. The language should be able to express
notions of indeterminacy and undecidability and, if . necessary, treat
them mathematically.

Knowledge and Certainty. The language should enable RP to ex-
press that something is known: “John knows Bill's phone-number”;
“John knows how to find Bill’s phone number”; “Someone here may
know what time it is.’

Desirability and Undesirability. The language should enable RP to
denote situations (and perhaps actions) as being desirable or undesira-
ble.

Equivalence and Denotation. RP should be able to express several
different types of equivalence, such as “The morning star is the evening
star’”; “The velocity is S0 mph”; “X* = X + X.”

Existence. RP should be able to say that some things exist differ-
ently from others: “X is a solid”; “Y is an expression of information.”

Suppositionality or Hypotheticalness. RP should be easily able to
state that some of the statements it is using are “advanced for the sake
of discussion” (see Carnap, 1947, 1950; Quine, 1955-1964; Hintikka,
1962, 1969; and Rescher, 1964, 1967).

This list is only illustrative; many more examples could be added,
and each example could be treated in much greater detail. It is also




80 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

true that these examples overlap each other; for a more thorough treat-
ment, the reader should see the paper by McCarthy and Hayes (1968a).
One final thing to note on the subject of reasoning programs is
that the language used by an re will typically be changed with time
by the rRp. We should expect in general that a reasoning program will
find it necessary to define new words or to accept definitions of new
words; some of these words will denote new situations, actions, phe-
nomena, or relations—the R may have to infer the language it uses for
solving a problem. Our most important requirement for the initial
language is that any necessary extensions to it be capable of being easily
added to it. For a further discussion on the nature of languages and
their use by machines, see Chapter 7. Predicate calculus has been sug-
gested as a possible basic language for an rP, and Chapter 6 discusses
computer programs capable of proving statements expressed in predicate
calculus theories. In the final section of this chapter, discussion is con-
tinued on the subject of representation-independent problem solvers.

STATE-SPACE (SITUATION-SPACE)
PROBLEMS

Representation

This section discusses the situation-space paradigm itself in some
detail, since it is perhaps the most popular one used by Al researchers,
and since there has been a considerable theory of problem solving,
known as heuristic search theory, developed around it.

The situation-space paradigm has been given several (slightly)
different formalizations; in the literature of Ar research it is usually
called the “state space” paradigm, which is the name originally given
to it by researchers in the fields of operations research and control
theory. In this discussion “situation-space” and “state-space” termi-
nologies are used somewhat interchangeably, as defined below. The
formalization presented is essentially that of Nilsson (1971), which
gives an extensive coverage of heuristic search theory. Other formaliza-
tions are presented in Banerji (1969}, Sandewall (1969), and Quinlan
and Hunt (1968). .

Anyone who wishes to understand the current directions of Al
research should make an effort to understand the state-space paradigm.
While the ideas involved are not very difficult, their presentation will go
easier if we consider a simple example. Such an example is the Three
Coins Problem, which is stated below. After reading the statement of
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the problem, the reader is urged to solve it—its solution is very straight-
forward.

Three Coins Problem

Given three coins arranged as in Fig. 3-2, make them all the same
(i.e., either all heads or all tails), using exactly three moves. By a move
in this case is meant flipping one of the coins over, so that if it is heads

before the move, it becomes tails afterward, etc.
u E

& cES

Figure 3-2. Initial state of the Three Coins Problem.

The Three Coins Problem can be easily stated as a state-space
problem. A configuration of the coins is a state. The initial state, or
start, is denoted by the expression HHT. The desired states, or goals,
are TTT and HHH. For any given state there are three possible opera-
tors: “turn the first coin over”; “turn the second coin over”; and “turn
the third coin over.” A move corresponds to the choice of one of these
operators, and a solution to the problem is a sequence of three moves
that transforms the start into one of the goals.

Let us label the three operators as 4, B, and C, respectively. Thus,
B applied to HHT yields HTT; we can briefly denote this fact by the
expression

B
HHT——HTT
Since B applied to HTT yields HHT, we shall, however, write

B
HHT———HTT

Given this notation, the diagram shown in Fig. 3-3 depicts the state
space of the Three Coins Problem; that is, all the possible states and
the result for each state of applying each of the possible operators to it.
By tracing through the diagram, we see that one sequence of moves
which solves the problem is “first 4, then C, then A4,” or ACA for short.
The other solutions to the problem are AAC, CAA, BCB, BBC, CBB,
and CCC; each of these leads to the goal HHH. (There is no way to
go from HHT to TTT in exactly three steps.) o
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: B
A

Figure 3-3. A state-space for the Three Coins Problem.

We shall consider a state to be a finitely describable mathematical
object; in the Three Coins Problem each state was described by a string
of three letters (e.g.,, HTH). Other ways in which states can be de-
scribed include numbers, matrices, lists, graphs, sentences, sets, vectors,
and trees. (Graphs and trees are defined below; the mathematical notion
of “sentence” is discussed in Chapter 7.) A state could be infinite, but
the fact that it has a finite description means we can discuss it logically,
prove theorems about it, etc. However, throughout the rest of this book
we shall be concerned only with finite states. From the computer’s
standpoint the description of a state is a data-structure (see Knuth,
1969). . ' ‘

Similarly, an operator is a finitely describable means of transform-
ing one state into another state; there may be many ways of describing
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a given operator, and from the computer’s standpoint an operator is*a
computational procedure.

A description of a state-space problem, then, is the specification of
three things:

" S, a set of possible starting states
F, a set of operators
G, a set of desired states, or goals

A solution (or solution path) to a state-space problem is also the spec-
ification of three things:

s, one of the possible starting states
g, one of the desired states
a finite sequence of operators that transforms s into g

Thus, if g is an operator and if we denote the result of applying g to s
by the expression g(s), and if g1,gs, . . . gu1, g» is a solution to a state-
space-problem, then we have

8 = qn(Gna(. .. q2(q1(8)) .. .))

There may, of course, be many solutions to a given state-space problem
(8,F,G). We may consider a given (S,F,G) state-space problem to be
a collection of smaller state-space problems, each of the form ({s},F,G),
where s € S—we shall say a procedure solves the (S,F,G) problem
if it is capable of producing a solution path for each of the correspond-
ing ({s},F,G) problems which has a solution.

The observant reader has probably noted that the definitions in
the preceding paragraph make no mention of the sequence g1,gs, . . . ,gn
consisting of three or any other prespecified number of operators. Yet
we required in our informal statement of the Three Coins Problem that
the solution use exactly three moves, that i is, that n be equal to 3. Can
this sort of requirement be made within the framework of the definitions
given in the precedlng paragraph?

. To see that it can the. Three Coins Problem is restated as follows:
Let the initial state's consist of the three coins, as in Fig. 3-2, and let
s also contain a “counter,” initially set to zero. (The counter is to be
capable of storlng arbitrarily large numbers.) Denote the initial state s
by the expression (0,HHT). The three possible operators 4, B, and C,
which we can apply to an arbitrary state (i,xyz), will now be respec-
tively: “Turn coin x over and replace i by i + 1”; “turn coin y over
and replace i by i + 1”; and “turn coin z over and replace i by i + 1.”
Finally, the set G of goal states will contain two members: (3,HHH)
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and (3,TTT). The solutions to this statement of the problem are the
same as our solutions to the previous statement.® On the other hand,
the state space described by this statement of the problem, and shown
in Fig. 3-4, is somewhat different from that of Fig. 3-3.

4

Figure 3-4. Another state-space for the Three Coins Problem.

It is possible to state many other problems within the (S,F,G) for-
mat defined above (note 3-4). For some problems, especially those
that place restrictions on the desired paths from start to goal, it is
necessary to use “counters” or other devices. However, many problems
can be stated rather simply within the (S,F,G) state-space paradigm.
This is true despite the fact that such problems will often have solutions
that are very difficult to find. One reason for the popularity of the
(S,F,G) state-space paradigm within AI rescarch is that it simplifies
the problem of stating problems that often have very difficult, hard-to-
find solutions.

3 This is, incidentally, essentially the way the problem was stated to GPs,
which solved it.
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Of course the requirement that states and operators be finitely-
describable objects is not entirely consistent with “problems of the
real world.” We can expect a problem solver in the real world to en-
counter things for which it does not have complete, finite descriptions.
The statements and solutions of real-world problems, so far as the
mechanical problem solver might be concerned, would still be finite
descriptions, but they could be incomplete. A real-world mechanical
intelligence might be able to make a statement like “There is an object
on the road ahead, but I don’t know what it is; I had better slow down
and try to see what it is.” In general, if the elements of a given problem
are partially specified, we call them situations, actions, etc., whereas if
they are completely described, we call them states and operators, etc.
Thus, we distinguish between situation-space and state-space problems.

Puzzles

None of the foregoing discussion is intended to deny, however, that
state-space problems do occur in real-world environments or that the
study of state-space. problems can be of value to the study of situation-
space problems. Many real-world problems can be expressed in the
(S,F,G) paradigm. A classic example is the Traveling Salesman Prob-
lem, which occurs in various forms in the scheduling of industrial pro-
duction (sec the Exercises). Formalizations for the situation-space
paradigm are discussed in later sections of this chapter. It should be
emphasized that many of the techniques being developed for the solu-
tion of state-space problems are directly applicable to situation-space
problems. Thus, “games of strategy” are one general class of situation-
space problems; Chapter 4 shows how the methods discussed: in -this
chapter can be extended to game playing The state-space problems
considered in this chapter are essentially “one-person games of strategy
these problems are also commonly called puzzles.

An example of a puzzle that is easily stated within the (SF G)
format, yet for which solutions are difficult to find, is the famous
“15-Puzzle” (note 3-5). The puzzle uses a square tray adequate to
hold 16 square tiles, in which- 15 tiles are placed, each marked with
a different number from 1 to 15. The space for the sixteenth tile is left
empty; one configuration of the tiles may be changed into another
configuration only by sliding a tile adjacent to the blank space into the
blank space (this, of course, moves the blank space in the opposite
direction). A “15-Puzzle Problem,” or 15-Problem, is completely
stated when we specify an initial configuration of the tiles and a goal
configuration. Figure 3—-5 shows a typical 15-Problem.
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We can state a 15-Problem as an (S,F,G) state-space problem as
follows: A given configuration of tiles is a state. We shall denote each
possible state by a 4 x 4 matrix, whose clements have values from 0 to
15. Thus, the start and goal states of the problem are indicated in Fig.
3-5. For a given state s we denote the number in the ith row and

1 91 4|15 1 21 3| 4
1 5 3}112 ? i 5 6 7 8
7 8| 6 9110 |11 |12

13| 211014 13114 |15

Start Goal

Figure 3-5. A 15-Puzzle.

the jth column of its matrix by the expression s;;. Thus, sp3 = 3 for
the start-state being considered. For a given state s, let i and j, be the
values of i and j such that s;; = 0. We have i, = 3 and jo =2 for the
start state. Given this notation, we can describe four operators:

A. Replace s:;, by 84,5041 and s; 5041 by 0, if jo + 1
B. Replace s;;, by Si41,5, and sg41.5, by 0, if i+ 1
C. Replace 555, by 54,51 and s;,5,.1 by 0, if jo — 1
D. Replace s;,;, by 5i-1,5, and si5.5, by 0, ifip— 1

IVIVIAIA
e

These correspond to moving the blank space “right,” “down,” “left,”
and “up,” respectively. As is indicated in the description of the opera-
tors, an operator may not be applicable to a given state. However, for
every state, at least two operators will be applicable. Part of the state
space for the problem shown in Fig. 3-5 is shown in Fig. 3-6.
Altogether, there are 16! = 20,922,789,888,000 different states
in the state space of the 15-Puzzle. However, from any given starting
state, only half of these states can be reached, using the operators 4,B,C,
and D. The other 10%% trillion cannot be reached, regardless of the se-
quence of moves one tries (see Fig. 3—7). Computer programs have been
written which are capable of solving the 15-Puzzle, that is, of finding a
path between arbitrary start and goal states when such a path is possible
and of recognizing start- and goal-state pairs for which there is no such




Problem solving

11| 9] 4|15
1] 5| 3112
7{0| 8} 6

1

87

0

10

7

)

VY

13 2 0114
C c 8 D
A D, 8 A
11 9 4115 11 4115 1 9 4115 1" 9 4115
1 5 3|12 1 3112 1 5 3112 1 0 3|12
71810} 6 7 8| 6 0| 7| 8] 6 71 5|8} 6
0|14 13 10 |14 13| 210114 131 2110 |14
C B B . c AY\\
C
A
A () D
9 4|15 11 9| 4115 1 9] 4 15
1 5 3112 1 5] 312 [} 5 3112
7 2 8 6 13 7 8 6 1 7 8 6
otz|wofa]| |13]2]1

Figure 3-6. Part of the state-space for the 15-Puzzle.
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Figure 3-7. An unsolvable 15-Puzzle.

path. (One such program is discussed below.) However, so far as the
author knows, no “general” problem-solving program (such as GPSs, REF-
ARF, and rps discussed above) yet written is capable of solving the 15-
Puzzle: Programs that can currently solve the 15-Puzzle are “special pur-
* pose.” We shall return to this point later.
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Problem Reduction and Graphs

For the discussions that follow, and for the reader who wishes to
do more investigation on his own, it is helpful to introduce a special
terminology: The diagram shown in Figs. 3-3, 3—4, and 3-6 represent
what mathematicians call graphs (note 3-6). A graph is a (possibly
infinite) collection of nodes and arcs; so far, we have corresponded
nodes to states and arcs to operators. Arcs are usually drawn as
directed lines, or arrows. If an arc leaves one node, say 4, and enters
another, say B, we say 4 is a parent of B and B is a successor of A.
If it is necessary to be more explicit, we often say B is a successor of A
“under the operator g,” etc. It A and B are successors of each other,
we often replace the two arcs between them by a single edge, drawn
either as a line segment or as a two-headed arrow. If a node has no
successors, it is said to be terminal. A sequence of arcs and nodes lead-
ing from a given node A to a given node B is called a path from A to
B. If A and B are connected by a path, we say 4 is an ancestor of B
and B is a descendant of A. Thus, in Fig. 3-2, TTH is both an ancestor
and a descendant of THT.

It should be evident from these definitions that an (S,F,G) prob-
lem essentially involves finding paths between prespecified nodes in a
graph. The nodes in the graph correspond to states in the state space,
and the edges (or arcs, or connections) between nodes correspond to
the application of operators. We often refer to the state space of a state-
space problem as a stafe-space graph, and use the words “node” and
“state” interchangeably.

For some state-space problems the state-space graph may be so
small that it can be defined explicitly and shown in a picture (e.g.,
Fig. 3-4); in other cases the graph may be so huge that it can be
defined only implicitly, and we can draw only pictures of very small
portions of it—such was the case with the 15-Puzzle. In most problems
that have been investigated by A1 researchers, solutions can be ex-
plicitly indicated once they have been found; that is, one can usually
either draw a diagram of the solution or state the solution by listing a
series of symbols, each standing for a particular operator, as we did
with the Three Coins Problem. However, in some problems even the
solutions involve huge graphs and must be stated implicitly; some prob-
lems of this sort are games such as Checkers and Chess.

One of the most useful aspects of the state-space paradigm is that
it can, in a sense, be applied to itself. Instead of identifying nodes by
states and arcs by operators, we can identify nodes by problems and
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arcs by operators that change problems into other problems. We refer
to finding a good path through a graph of this sort as a problem-reduc-
tion problem. The graph of a problem—reduction problem is known as
an AND/OR graph, for reasons we shall learn in a moment.

Problem-reduction problems can be developed as a natural exten-;
sion of (S,F,G) state-space problems. To see how, consider the simplest
possible (S,F,G) state-space problem: What would it be?

Well, there are many extremely simple (S,F,G) problems, but all
are approximately of the same form.. We can classify three types of
trivial or primitive (S,F,G) problems:

1. Problems of the form (S, {g}, G), where there is only one
operator available.

2. Problems of the form ({s}, F, {s}), in which no operator
need be applied—more generally, problems of the form
(S,F,G) where S N G 5= ¢; that is, in which some start state
is also a goal state.

3. Problems of the form (S, { }, G) in which no operator can
be applied and there is no start state that is also a goal state.
The first two types of problem are trivially solvable; the last
is trivially unsolvable.

Basically, the problem-reduction approach consists of finding
operators that are capable of transforming complex (S,F,G) problems
into primitive (S,F,G) problems. The particular operators one uses will
depend upon the initial, complex (S,F,G) problem, and it may often
be very difficult to find good problem-reduction operators.

In general, an AND/OR graph contains two types of nodes: problem
nodes and AND-nodes. These nodes are usually called subgoals when it
is not necessary to distinguish them. The arcs connecting problem nodes
to problem nodes, and problem nodes to AND-nodes, represent the
application of problem-reduction operators. Those connecting AND-

)
4\
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nodes to problem-nodes will be referred to as and-links. The and-links
from an AND-node usually subtend a circular arc, as shown here.

A typical, small AND/OR graph is shown in Fig. 3-8. A problem
node is said to be solvable if it is trivially solvable, or if any of its“suc-
cessor nodes is solvable. On the other hand, a problem-node is un-
solvable if it is trivially unsolvable, or if all its successor nodes are
unsolvable. An AND-node is unsolvable if at least one of its successor
nodes is unsolvable; otherwise it is solvable.

Good examples of the problem-reduction approach are the “sym-
bolic integration” problem solvers, such as saINT (by Slagle, 1963) and

Figure 3-8. A small AND/OR graph.
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SIN (Moses, 1967). These programs are capable of evaluatmg integrals
such as

at »
f (T — X2 dx ' 3-D

in a symbolic fashion similar (especially in the case of SAINT) to the
way in which people go about solving such problems.

SAINT was constructed to use a table of trivial mtegral forms,
such as

f"d vt > 1
U u—m (n_)

fsinudu=cosu

and it was given problem-reduction operators corresponding to various
rules for the transformation of integrals, such as the integration-by-
parts rule, the sum-decomposition rule, and certain trigonometric and
algebraic substitution rules. For our purpose, it is not necessary to
understand these rules or integral calculus.

When SAINT was given an expression like (3-1), 1t would attempt
to reduce the expression to a combination of the trivial integrals in its
table, by the proper application of its problem-reduction operators. In
most cases its success at doing integration problems in this way was
at about the level of a good first-year calculus student.

Flgure 3-9 shows a portion of the AND/OR graph constructed by
SAINT in its solution for the problem expression (1). The top part of
the graph is similar to Figs. 3—3, 3—4, and 3-6. The trivial integral forms,
or primitive problems, are the dark-bordered square nodes at the
bottom of the figure. The first operator applied by SAINT was “trigono-
metric substitution”; this transformed the start node into the problem at
node A in the figure. Then sAINT applied two operators and obtained .
node B. Since SAINT estimated B as being a difficult problem, the pro-
gram went back to A4, applied another reduction operator, and obtained
node C. But C also looked difficult, so SAINT went back to 4 and ap-
- plied a sequence of three operators, labeled “trigonometric identity,”
“trigonometric substitution,” “algebraic identity,” and obtained node
D. Then saINT applied the reduction operator “sum-decomposition,”
which transformed D into three problems (E,F, and G) linked together
by an AND-node; the aAND-node between node D and nodes E.F, and G
means that D can be solved if E,F, and G can all be solved. Since F
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Figure 3-9. A portion of SAINT'S AND/OR graph for an integration
problem. (Adapted with permission from Nilsson, 1971)
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turned out to be primitive, or trivially solvable, E and G were qulckly
reduced to primitive problems.
Thus, saINT deduced the followmg facts:

1. Start can be solved if A can be solved.

2. A can be solved if B, or C, or D can be solved.

3. D can be solved if E and F and G can be solved.
4, E,F, and G can all be solved.

5. Start can be solved.

Having proved that its initial problem could be solved, SAINT was
able to construct the actual solution

Xt . | . . ag
flsz_)‘VE = arcsin X + 3 tan3(arcsin x) — tan(arcsin x)
(3-2)

by first solving E,F, and G and then undoing the sequence of substitu-
tions it had used in going from start to 4 to D. SAINT required about
11 minutes to solve this problem.

Notice that nothing has been said about how SAINT “estimated”
the difficulty of problems. This subject is left for the next section; for
the moment, we have concentrated on the nature of problem-reduction
problems and AND/OR graphs.

The sIN program by Moses is more sophisticated than SAINT.
SIN itself might be said to constitute a single reduction operator, which
in most cases is capable of going directly from problem to solution
without generating an AND/OR graph. SIN is capable of solving integra-
tion problems “at the difficulty approaching those in the larger integral
tables” (Moses, 1967). For example, SIN can evaluate problem (3-1)
in about 9 seconds (note 3-7); in doing so, it generates only two sub-
goals in contrast to the 13 required by SAINT for the same problem.

Summary

We have seen two ways of stating problems that, in effect, ask the
problem solver to find paths connecting prespecified sets of nodes in
graphs. In many cases (including problem-reduction problems) the
relevant graphs may be too large to store or generate completely by
computer; this is probably true for most of the important problems a
mechanical intelligence might be called upon to solve. How is it pos-
sible to solve problems of this sort? What enables a computer to avoid
generating 10 trillion states of the 15-Puzzle and yet still solve the
problem?
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HEURISTIC SEARCH THEORY
Need for Search

The field of ar research concerned with Wways that computers can
solve large state-space problems is known as heuristic search theory. In
this section we introduce the reader to some of the central concepts of
this field; more thorough discussions are provided by Nilsson (1971),
Banerji (1969), Pohl (1970), and Michie (1971).

Given a finite description of a state-space problem, a computer
can be programmed to generate the state space of the problem while
checking to see if it has produced a solution. The generation process
consists simply of producing finite descriptions (data-structures) for
the nodes of the state space and for their connections to each other.
With a large, difficult state-space problem, it will not be possible for
the computer to generate descriptions for each of the nodes and connec-
tions between nodes of the state space of that problem. Rather, the
computer may generate only a relatively small portion of that state space,
and can check only that portion, to see whether it includes a path be-
tween nodes, which is a solution to the problem. With suitable program-
ming, the computer may generate a portion of the state space containing
on the order of 10° nodes (for some problems it may be necessary and
possible to generate a few orders of magnitude more; conversely, the
“general problem solvers” discussed in this chapter typically may gen-
erate no more than 100 nodes), whereas the state space of a difficult
problem may easily contain 10° nodes. Thus, it is clear that the com-
puter must be somewhat selective in the way that it generates the por-
tion of a state space that it produces when trying to solve a state-space
problem, if it is to be successful. Any procedure that a computer uses
to generate a portion of the state space for a problem, and to check
that portion for a solution, is said to search the state space, and is called
a “search procedure.” In this section we are interested in ways that
search procedures can be designed to be “selective”; that is, ways they
can be successful at finding a solution to a state-space problem without
generating the entire state space of that problem.

Of course a search procedure might find a solution for a problem
simply by randomly generating descriptions for nodes and their inter-
connections, but unless a large percentage of the paths through the state
space of a problem happen to be solution paths, such a procedure will
not generally be successful. Usually, what we desire in a search pro-
cedure is that it somehow be “systematically oriented” toward the prob-
lem it is being used to solve, in such a way that it can find a solution
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without generating the entire state space. A search procedure that is
systematically oriented toward a problem will be said to embody
heuristic (i.e., “serving to discover”) information and will be called a
heuristic search procedure. (Ways of achieving “systematic orientation”
are discussed below.) If we can prove that a search procedure will al-
ways find a solution—if there is one—to any state-space problem
({s},F,G) such that s € S, then we say the search procedure is an
algorithmic search procedure for the state-space problem (S,F,.G). It
is possible for a given search procedure to be either heuristic or algo-
rithmic or both or neither, with respect to some state-space problem
(S,F,G). Most often the search procedures used by problem-solving
computers are heuristic, but not algorithmic; sometimes they are both
(thus, a symbolic integration program using the Risch algorithm (note
3-7) would be heuristic and algorithmic, according to our definitions).
Again, for large state-space problems, there is little value to a search
procedure that is algorithmic but not heuristic, one that would solve
the problem but might have to search the entire state space to do so.

Thus, “heuristic programming” refers to computer programs that
employ procedures not necessarily proved to be correct, but which seem
to be plausible. Most problems that have been considered by Al re-
searchers are of the sort where no one knows any practical, completely
correct procedures to solve them; therefore, a certain amount of pro-
ficiency in using hunches and partially .verified search procedures is
necessary to design programs that can solve them. So, by a heuristic is
meant some rule of thumb that usually reduces the work required to
obtain a solution to a problem. (Again, it may be possible to prove that
the heuristic will always supply solutions to some set of problems, i.e.,
that it is algorithmic.) Clearly, much of the conscious. thinking that
people do is based upon the use of heuristics that -have not:been shown
to be algorithms.* The realization of this fact and its incorporation in
the design of computer programs was an important step in-the develop-
ment of artificial intelligence, signifying a recognition by A1 researchers
that intelligence is often exhibited in situations where one’s understand-
ing and knowledge are incomplete.. :

Search Procedures

There are basically two methods of incorporating heuristic informa-
tion about (i.e., “systematic orientation” toward) a state-space problem
into a search procedure designed to solve that problem; these methods

+We might have a hard time proving this to a strict behaviorist. This is one

of the places where the author invokes his “personalistic license,” granted in note
1-2.
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correspond to the use of “generator functions” and “evaluation func-
tions.” Our description of these methods will be facilitated if we ex-
amine in a little more detail the generation processes that may be used
by search procedures.

The generation processes that Ar researchers have investigated for
state-space problems are made up of the following basic steps: First,
a start node s is given to the search procedure. This node corresponds to
a finite description of a state and is stored by the computer as a data-
structure. :

Next, using the operators (in the set F of the state-space problem),
the successors to the start node are generated (i.e., a finite-description
for each successor is generated). We denote by T a procedure that
calculates all successors to a given node. The process of applying T' to
a node is known as expanding the node, or generating the successors
to the node; thus, T is often referred to as a generator function, or
generator. :

After a node is expanded, pointers are set up, leading back to the
node from each of its successors. If a goal node is ever generated, then
there will be pointers indicating a path from it back to the start node.

The successor nodes produced- when a node is expanded are
checked to see if one of them is a goal node. If no goal node is found,
then the process of expanding nodes and setting up pointers is con-
tinued by expanding nodes that have been generated as successors. If a
goal node is found, then the pointers that have been set up are used to
trace a path back to the start node—the operators that were originally
used by T to produce the nodes along this path may be recovered and
used to produce a solution path.

The various search procedures developd for solving state-space
problems may be distinguished from each other on the basis of two
criteria: how the process of expanding nodes and setting up pointers is
continued, and the nature of their generator functions. A search pro-
cedure that expands nodes in the order in which they are generated,
after generating all of them below a given node, is called a breadth-first
search procedure. A search procedure that always expands the most
recently generated node first is called a depth-first search procedure.
Figures 3-10 and 3-11 show “snapshots” of the successive portions
of a state-space graph that would be generated by breadth-first and
depth-first search procedures. Both types of search procedure are ex-
amples of blind search procedures because the order in which they ex-
pand nodes is unrelated to the actual location of goal nodes in the state
space (unless their generator functions incorporate heuristic informa-
tion; see below). Thus, they are not heuristic search procedures.
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Figure 3-10. Snapshots of the search produced by breadth-first proce-
dure. Dotted circles, ungenerated nodes; solid circles, generated nodes.

The breadth-first search procedure is algorithmic: If a path does
exist from a given start node to a goal node, it will eventually be pro-
duced, using this procedure. It is possible for the depth-first procedure
to search forever, going off in the wrong direction, without finding a
solution path, even though one might exist. So, the depth-first procedure
as stated here is not algorithmic. However, it may be modified to an
algorithmic procedure by introducing the concept of the “depth” of a
node (relative to the given start node): The depth of a node is zero if
it is the start node, and is one plus the depth of its parent otherwise. A
bounded depth-first search-procedure is one which expands that previ-
ously generated, unexpanded node which has the greatest depth less
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A. Expansion of the start node. B.
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Figure 3-11. Snapshots of a search produced by a depth-first proce-
dure. Dotted circles, ungenerated nodes; solid circles, generated nodes.

than the depth (or level) bound | established for the procedure. (If
there is more than one such node, it expands the one most recently
generated.) As illustrated by the snapshots in Fig. 3-12, a bounded
depth-first procedure generates nodes in a depth-first manner until it
reaches its depth bound; it then “backs up” and generates more nodes
in a different direction, etc. It is fairly simple to see how this idea may
be extended (essentially by allowing the depth bound to be systemati-
cally increased) to produce an-algorithmic search procedure with a
basically “depth-first” nature.

Most heuristic search procedures are, in effect, modifications of the
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Figure 3-12. Snapshots of a search produced by a bounded depth-first
procedure. Dotted circles, ungenerated nodes; solid circles, generated
nodes.

bounded depth-first search procedure. As explained initially, heuristic
search procedures rely on two methods, the use of generator functions
and the use of “evaluation functions.” A generator function may in-
corporate heuristic information about a problem if it is designed to
generate first those successors of the node to which it is applied
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which are most likely to lie on (preferably short) paths to some goal
node. A search procedure that uses such a generator will tend to be
“guided” toward a solution if it expands nodes according to the order
in which they are produced by its generator. Thus, such a search pro-
cedure is “systematically oriented” by its generator toward searching
the most promising portions of the state space first.

An evaluation function is some procedure that can be applied to
the finite description of a node in a state-space problem and which will
produce an estimate of the “value” of that node (the likelihood that the
node lies on a path to a goal node). AI researchers have investigated a
variety of different kinds of evaluation functions: For example, Slagle
and Bursky (1968) designed an evaluation function that estimated the
probability that a given node would be on a path to a goal node; Quinlan
and Hunt (1968) used an evaluation function that constructed a differ-
ence set, measuring the (structural) differences between an arbitrary
node and a given goal node; Samuel (1959, 1967) used an evaluation
function that examined the important “features” possessed by a board
configuration in checkers, to produce an estimate of the “strategic
value” of the configuration (see Chapter 4).

The central results in heuristic search theory are those of Hart,
Nilsson, and Raphael (1968) and Pohl (1970). Their results hold for
evaluation functions that produce numerical estimates for the “values”
of nodes in state spaces. By convention, if f is an evaluation function,
and »n and »” are nodes in a state space, then we say that n is more
valuable than »’ if f(n) < f(n'); the lower the number assigned to a
node by the evaluation function, the greater is the “value” of that node.
An ordered search procedure using the evaluation function f is a search
procedure that expands the previously generated, unexpanded node n
for which f(n) is a minimum; if there is more than one such node n,
then it expands the most recently generated one. The Hart-Nilsson-
Raphael result may be stated as follows: For a given state-space prob-
lem ({s},F,G), let g(n) be the depth of node n from the start node; let
h(n) be an estimate of the length of the shortest path from n to a goal
node of the state space, and let 4,(n) be the actual length of the shortest
path from n to a goal node. If for any node n we have h(n) = h,(n),
then an ordered search procedure using the evaluation function f(x) =
g(x) + h(x) will always find the shortest solution path for the state-
space problem ({s},F,G), if there is a solution path at all. Furthermore,
provided h(x) is generally greater than zero, the ordered search pro-
cedure will often need to expand fewer nodes to produce its solution
than would the breadth-first search procedure. Thus, such an ordered
search procedure is both algorithmic and heuristic. If we relax the
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condition that h(x) == h,(x), the ordered search procedure will still be
heuristic, but it may not be algorithmic. (More specific information
about & would be needed to determine whether it is algorithmic.)

Search Trees

Actually, the presentation of heuristic search theory thus far is
precisely correct only for problems whose state-space graphs have the
nature of a “tree.” A tree is a graph with the following characteristics:

1. The tree contains exactly one node that does not have a
* parent; this node is called the root node.

2. Every other node in the tree is a descendant of the root node.

3. Every other node in the tree has exactly one parent.

If the graph for a state-space problem ({s},F,G) is a tree, then
the start node s will, of course, be the root node of the tree: A tree that
is a graph for a state-space problem is often called a problem tree for
that problem. Figure 3—4 shows a portion of the problem tree for the
Three Coins Problem.’ A basic modification is needed to make an
ordered search procedure, using the evaluation function f(x) = g(x) +
h(x), produce an optimal solution (in the sense of the preceding para-
graph) when searching a state-space graph that is not a tree. The modifi-

“cation consists of providing the procedure with a means of “updating” its

function g(x); a node in a (general, non-treelike) graph may have more
than one parent. Thus, we should define the “depth” of a node n in a
graph to be zero when it is the start node s; otherwise, we should define
it as one plus the depth of its shallowest parent. The ordered search
procedure may generate a node. n when expanding a node »’ with a
depth of &’ and later generate the node » again when expanding a node
n” with a depth d”. If d” < d’, then the procedure should change its
estimate for the depth of n, fromd +1tod” + 1 (and it should make
a similar change in its estimate of the depths of those nodes that are
descendants of n). -

Pohl (1970) presented similar results for an ordered search pro-
cedure using the evaluation function f(x) = (1 — w)g(x) + wh(x)
where o is an adjustable parameter. (Pohl also discusses bidirectional
search procedures, which are procedures that generate the state space of
a problem outward from both the start and goal nodes; he concluded

that such procedures are much more difficult to implement efficiently

5 Problem trees are normally drawn upside down, with the root node at the
top (see Knuth, 1969a, p. 307).
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than are the ordinary “one-directional” searches we have discussed.)

It is often desirable to design the generator function used by a
search procedure to have a “memory,” and to generate the successors
to a given node in a one-at-a-time manner that can be interrupted and
resumed when necessary. If such a generator function incorporates
heuristic information (thus tending to generate first those successors to
a given node that have the greatest value), then a search procedure that
uses it may search the most promising parts of the state space first,
without needing to generate, store, or evaluate the less plausible nodes.
And, if its first searches of the state space do not succeed in producing
a goal node, the procedure may then reapply its generator function and
search less plausible parts of the state space. Michie (1971) presented
search-theoretical results for a general problem-solving program (c14),
which uses this type of generator function.

The general problem-solving programs we have discussed in this
chapter (GPS, FDS, MULTIPLE, GT4—REF-ARF differs slightly, as we shall
see below) are all programs that can accept a finite description for an
arbitrary (S,F,G) state-space problem, and which use that description
to conduct a search through a portion of the state space of that problem.
Their generality resides in the fact that they can accept finite descrip-
tions for many different (S,F,G) problems, and can often find solution
paths for those problems. To a large extent, FDS and MULTIPLE are
able to develop their own evaluation functions. The limitations of these
problem solvers are due to two facts: They can search only relatively
small state spaces; and they cannot develop a better finite description
for a state-space problem than the one they are given—that is, they
are not representation-independent.

Although we have not discussed applications of heuristic search
theory to problem-reduction problems, much the same results can be
obtained. It should be noted that the procedures for searching AND/OR
graphs. are essentially the same as those for searching the state spaces
of two-person, nonchance, perfect-information games of strategy. (An
AND node corresponds to a move belonging to one’s opponent; an OR
node corresponds to a move belonging to oneself.) The discussion in
Chapter 4 is therefore relevant to search procedures for AND/OR state-
space problems. However, for a thorough treatment of heuristic search
theory as it applies to problem-reduction problems, and for a much more
extensive discussion of the material in this section, we encourage the
reader to see the book by Nilsson (1971).
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PLANNING, REASONING BY ANALOGY,
AND LEARNING

Planning

_In its remaining two sections, this chapter discusses some important
aspects of current Al research on problem solving. The topics discussed
in this section are “planning,” “learning,” and “reasoning by analogy”;
the next section discusses “models,” the “problem of problem repre-
sentation,” and the “levels of competence” that have been attained by
machine intelligences. These topics represent open questions for AI re-
searchers, rather than established theories. Space does not permit presen-
tation here in detail of the many viewpoints (and results!) that have
been developed about these topics, although, because of the interde-
pendence of aptitudes, they will be discussed in greater detail in subse-
quent chapters. At this point, only some brief summaries and references
to the literature are presented.

- A process that constructs and executes plans for solving problems
is said to be a planning process. As emphasized throughout this chapter,
many problems are partially specified, and for them there may not exist
a single string of actions or operators that will always constitute a
solution; therefore, the best, initial solution is often a plan. Plans for
solving such problems may specify a wide variety of different actions,
including “looking for outside help” and “making a new plan.” Further-
more, these actions may be conditional; that is, a plan might include
statements of the form “if X happens, then do ¥; otherwise do Z.” Or,
they may include loops and recursion such as: “Stepl. Put money in
the jukebox and punch-a-button; if it doesn’t play what you want, then
go to stepl; otherwise, go to step2”; “If at first you don’t succeed . . .”;
“Move block (x). If x does not support anything, then pick it up and
move it, Otherwise, for all y such that x supports y, first do move block
(y)'”

Again, the state spaces of some problems are extremely large, and
the shortest solution-path for such a problem might be very long. A
plan for such a problem might specify subgoals along the solution-path,
and instruct the computer to search first for a path to the shallowest
subgoal, and then for a path from that subgoal to the next, etc. (See
McCarthy’s San Diego Problem in Exercise 3—-11.) This is often re-
ferred to as the “milepost” paradigm for plans.

Al research on plans and planning may be divided rather naturally
into three categories: paradigms for the concept of plan; computer
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execution of plans; computer development of plans (which is what we
should properly call “planning”). The degree of success attained by the
research into these categories corresponds roughly to the order in which
they are enumerated. Thus, a number of paradigms have been developed
and many of them can be transformed into something that a computer
can execute, but very little success has (so far) been obtained in having
computers develop their own plans.

The preceding paragraphs summarize roughly the characteristics
that have been proposed for “plan” by the various paradigms that have
been developed; these characteristics may be condensed into something
of a formal definition: A plan is a collection of procedures together with
specifications for when those procedures should be used (i.e., “called”).
Each of the various paradigms is a formalization of this idea in more
detail for a specific problem domain. Perhaps the most extensive for-
malization is that provided by Hewitt (1968 et seq.), which is discussed
further in Chapter 6. Other paradigms for “plan” are explored by Doran
(1970) and Michie (1971)

Of course, there is a “strange paradox” here, because we have used
the same words (in essentially the same phrases) to talk about the con-
cept of “problem.” Thus, a problem is a collection of procedures (oper-
ators) together with specifications for how they shall be used to con-
struct a state-space graph, and information as to which paths in the
state space are solution paths. The concepts of “problem” and “plan”
may both be formalized by reference to procedures and their inter-
actions with data-structures. Thus, one of the paradigms for “plan” is to
see them as “nondeterministic” programs, whereas the REF-ARF general
problem-solving program (Fikes, 1970) is designed to correspond prob-
lems with such programs. For a description and discussion of nonde-
terministic programs, see Manna (1970b). (A similar, but less well
formalized paradigm for “plan” corresponds plans to “fuzzy” programs;
see Zadeh, 1968.)

In passing, it should be noted that a program has been written
which uses the “milepost” paradigm for plans in a procedure that evi-
dently is capable of solving the problems of the 15-Puzzle. The program
was written by Ashok K. Chandra of Stanford University at the request
of John McCarthy. The “mileposts” or subgoals used by the program
correspond to the correct placement of the blocks of puzzle in succes-
sive “gnomons” of the tray (see Fig. 3—-13). The program conducts an
ordered search through the state space of the 15-Puzzle, attempting
first to correctly place the blocks in the outer gnomon, then the next
outer, etc. Moreover, the search conducted By Chandra’s program is
bidirectional. At the present author’s request, this program was run on
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Figure 3-13. Gnomons.

a sample of about 300 randomly generated 15-Problems (start-node
plus goal-node in the state-space), and found a solution-path for each
problem that was solvable. Usually, the program required about 10
seconds to solve a given 15-Problem, and in doing so expanded less
than a thousand nodes of the state-space.

Reasoning by Analogy

The importance of designing problem solvers with an ability to
“reason by analogy” has been stressed by a number of investigators. A
number of basic kinds of analogies were identified by Kling (1971),
discussed further in Chapter 6. The earliest. program for “analogical
reasoning” was that of Evans (1963). Winston (1970) presented an
elegant formalization for the concept of “analogy” and showed how the
results of Evans (1963) can be extended to three dimensions (“or
more”; see Chapter 5). Becker (1969) discussed “semantic analogies,”
and Ramani (1971) presented a program that answers questions “by
analogy.” '

Learning

Al research has developed many paradigms for the concept of
“learning.” Learning for state-space problems may be formalized as a
process that finds suitable evaluation functions and generator functions
for an ordered search procedure. Samuel (1959, 1967) provided the
classic treatment of this type of learning, in which the nature of an
evaluation function for nodes in the game-tree of Checkers is changed
by a checker-playing program; based on its previous experience with:
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the game (see Chapter 4). Hewitt (1968 et seq.) presented the para-
digm of functional abstraction for learning, and discussed some ways it
might be utilized by PLANNER programs (see Chapter 6). McCarthy
(1963), Minsky (1968) and Winograd (1968 et seq.) emphasized the
fact that much of the learning done by humans results from their being
taught various procedures by other humans, and stressed the desirability
of incorporating “communication” into a general paradigm for learning
(Chapter 7).

Since we may correspond learning to the development of the evalu-
ation and generator functions for state-space search procedures, and
since such functions correspond to the heuristic information these pro-
cedures may use, it is natural to think of learning as a process of
“heuristic development” for these search procedures. In a sense, a pro-
gram that modifies the evaluation function used by its search procedure
is developing its own heuristics. However, it should be stressed that it
is difficult (unless the program is “self-affecting”; see Chapter 8) to say
that such a program is really developing its own heuristics: The process
(program) by which heuristics are developed is itself a heuristic.

MODELS, PROBLEM REPRESENTATIONS,
AND LEVELS OF COMPETENCE

Models

Throughout this book, and especially-in Chapter 7, the role of
“model-making” in artificial intelligence will be emphasized. In theorem-
proving terminology (Chapter 6), a model is a particular interpretation
of a statement, or of a set of statements. (A set of statements may have
more than one model.) Any statement that is logically implied by a set
of statements with a given model will hold true for that model, but any
statement that does not hold true for the model cannot be logically im-
plied by the set. This fact may be used as a device for recognizing non-
derivable statements: A particular instance of a candidate statement
may be compared against a model; if it is found to be false, then we
know the candidate statement cannot be derived from the set of state-
ments for which our model holds. A theorem-proving procedure may
therefore be designed to reject automatically certain® statements it can-
not hope to derive, if it has a means of developing models and using

them for comparisons. Rather than statements, we may think of this

8. .. but not all, thanks to Godel (1931)‘.
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process as discarding possible successor nodes of a given node in a
problem-reduction problem (see Nilsson, 1971). Gelernter (1959) pre-
sented a landmark testing of this concept in a program for proving
theorems about plane geometry. For his program the use of models
enabled, on the average, all but 5 out of 1,000 of the successors to a
given node to be rejected.

The Problem of Problem Representation

We have emphasized the desirability. that general problem solvers
be representation-independent; that is, capable of developing their own
problem representations. No one has yet succeeded in giving represen-
tation independency to computers. However, Amarel (1968 et seq.)
charted part of the basic mathematics necessary for such a task, and
showed how a sequence of successively better problem representations
for the Missionaries and Cannibals Problem (see the Exercises) ‘can be
produced, using the concepts of macro-operators and macrostates. Be-
cause of the fact that problems can be represented by programs, it is
possible to treat the problem of problem-representation from a;pro-
cedure-oriented point of view (see Hewitt, 1968 et seq.) in which the
problem of developing (correct, improved) problem representations is
equivalent to that of developing (correct, improved) programs (see
Chapter 6). Again, we may see it as a problem of learning languages
for problem description. 3 ’

Levels of Competence

Currently it may be said that A1 research has produced the follow-
ing “skillful” programs, which perform tasks with an aptitude that
people normally correspond to that of a very practiced human intelli-
gence: :

‘Samuel’s Checkers Player

Greenblatt’s Chess Player

The symbolic integration programs of Slagle, Moses, and Risch
Feigenbaum’s DENDRAL’

Wasserman’s Bridge Bidder

Chandra’s 15-Program

"DENDRAL is a heuristic program that infers the structure of molecules
from their mass spectrographs. Its performance compares favorably to- that of
graduate chemistry students (see Feigenbaum et al., 1971).
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(The list is not exhaustive.) The aptitude of these programs for their
tasks has been verified by direct comparison with the abilities of humans
who are known to be “skillful” at performing the same tasks. Thus,
Samuel’s Checker Player is able to outplay all but the very best human
Checker players. More modest claims must usually be made for the
other “skillful” programs.

However, an important point should be noted: All these skillful
programs are highly specific to their particular problems. At the moment
there are no general problem solvers, general game players, etc., which
can solve really difficult problems (e.g., the 15-Puzzle) or play really
difficult games (e.g., Checkers or Chess) with a skill approaching that
of human intelligence. And, it goes without saying, there are no general
programs that can learn to perform these difficult tasks skillfully (note
3-2).

NOTES

3-1. The 1PL system was developed in 1956 by Allen Newell, J. C. Shaw,
and Herbert Simon; Lisp was developed in 1960 principally by John
McCarthy. The importance of good programming languages to the de-
velopment of Al research cannot be overestimated; a1 research could not
really get off the ground without 1pL and Lisp. It is doubtful that one of the
most significant recent developments (Winograd’s work on natural lan-
guages) could have been obtained without PLANNER and a similar pro-
gramming language called PROGRAMMAR. Programming languages are
discussed further in Chapters 6 and 7. -

3-2. An empirically based theory that has been produced by many a1
researchers is that the more general the aptitude possessed by a machine,
the less efficient is its performance of the tasks that the aptitude enables it to
perform. Thus, Newell, Shaw, and Simon noted that their General Prob-
lem Solver was less efficient at solving the problems it could solve than
would have been programs specifically designed for solving each of those
problems. This relation between generality and efficiency has been con-
firmed by the other general problem solvers mentioned in this chapter. How-
ever, there is room for doubting that the relation is a “real” one; perhaps it
is possible to design general problem solvers that can learn to solve the
problems in a given problem-domain more and more efficiently (for in-
stance, the ability of people to learn to solve crossword puzzles) and,
within a short time, approach the efficiency of problem solvers designed
specifically to solve the problems of that domain.

3-3. The principle is basically that suggested by McCarthy (1956),
namely, that “the enumeration of partial recursive functions should give an
early place to compositions of the functions which have already appeared.”
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In this early paper, McCarthy suggested the system-inference paradigm,
using the following argument: A problem should be something that has
solutions. By a “well-defined problem” is meant one for which there is a
definite test that verifies whether a proposed solution is correct. If a pro-
posed solution is not correct, then the test may either reject it or not
terminate, but if the solution is correct, then the test must always verify it
in a finite, though possibly variable, time. Let us regard the test as being
carried out by a Turing machine T, which, given as input a proposed solu-
tion (or description of a proposed solution}, will output in a finite time an
affirmative symbol r if the proposed solution is correct. The statement of
- the problem then consists in a description of T' and the designation of r; a
solution to the problem is any input string i such that T(i) =r. A general
problem solver is 2 machine that, given the description for the mth Turing
machine T.,, will compute an i such that T, (i) = r—if in fact there is such
an i. Since, given m, one can construct the description of the mth Turing
machine, a general problem solver can be said to compute a function g on
two inputs (m,r) such that T,, (g(m,r)) =1 g of course, is to be a partial
funiction, not defined for all m and r (see also, McLamore, 1968).

3-4. An alternate statement for the state-space paradigm is given in
Sandewall (1969). His formalization is briefly described here. To dis-
tinguish it from the (S,F,G) formalization, let us call it the (§,F*,G’) for-
malization. ‘ v

The notion of state is the same as in the text; that is, a state is-a data-
stfucture. For the sake of simplicity, we shall call a collection (or set) of
states a particle (physicists beware!), and say that the states in a particle
exist. An operator is a computational rule, which can be applied to existing
states in a particle to produce new states that will also exist in the particle.
An operator can either change the states to which it is applied or it can re-
move some (perhaps all) of them from the particle, or it can simply add
new states to the particle. A description of an (",F",G’) state-space problem
is the specification of three things: &, an initial or starting particle; F”, a set
of operators; and G’, a desired or goal particle. A solution to an (8.F.,G")
problem is the specification of a finite sequence of operators and of how they.
are to be applied to §” and its successors such that G’ will be produced.

Sandewall (1969) discussed various types of operators and formulated
a theory of heuristic search for this type of problem. Also, he suggested that
the proper representation for the possible ways of going from one particle
to another is in terms of lattices rather than trees or graphs.

3-5, The 15-Puzzle was invented in 1878 by Sam Loyd (see Loyd, 1960)
and was extremely popular during its early years, especially in Europe.
Kasner and Newman (1956) reported that employers were forced to post
notices forbidding their workers to play the puzzle during working hours.
Loyd and others offered huge prizes to anyone capable of solving some of
the unsolvable varieties of the puzzle. Some commentators at the time con-
sidered the 15-Puzzle to be a threat to society, attributing to it “untold
headaches, neuroses, and neuralgias.”
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3-6. - Equivalently, we can say a graph G is an ordered pair (N,R),
where N is a set of nodes x,y,...,and R is a set of binary relations r,,7,, . ..
on the nodes. If r.(x,y) holds for a given x and y in N, then we say “x con-
nects to y under the relation r..”

As used here, “graph” is a generalization of one of the most common
applications of the word: graph of a function. The graph of a function, say,
f: X =Y, is a pictorial description of the relation r such that r(x,y) is true
if y = f(x). :

3-7.  Much of sIN’s time advantage is due to the fact that it was run mostly
in a compiled mode, whereas SAINT was run mostly in an interpretive mode.
(For an explanation of these terms, see Knuth, 1969,) Moses estimated
that his program is actually about three times faster than Slagle’s.

More recently, Risch (1969) developed an algorithmic procedure for
solving a wide class of symbolic. integration problems; Risch’s procedure
does not need to generate a problem-tree and is guaranteed to always
produce correct solutions (it might thus be said to display a “perfect apti-
tude” for its problem-domain). An introduction to the Risch algorithm and
a summary of the current state of work on symbolic integration programs
was provided by Moses (1971). .

These programs, incidentally, are distinct from “numerical integration”
programs, which typically compute numerical approximations to the values
of definite integrals. Finally, SAINT is an acronym for “Symbolic Automatic
INTegrator,” and sIN stands for “Symbolic INtegrator.”

EXERCISES

In Exercises 3-1 through 3-10, and in Exercise 313, first solve the problems
that are given. Next, make a list of the subproblems you considered while solving
them. Discuss how a computer might be programmed to solve each of the given
problems, and how each of the problems might be represented to'the computer.
If you find a state-space representation for a problem, estimate the size of the
state space and try to identify heuristics and algorithms the machine could use
to search it. If computer time is available to you, choose a problem and try to
implement a computer program that can solve it.

3-1. Find your way out of the Maze of Dedalus.
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3-2. *(The Missionaries-and-Cannibals Problem.) Three missionaries and three
cannibals are all on one bank of a river they wish to cross. They have a boat,
which will hold two persons, but which can be rowed by one if necessary. If the
cannibals ever outnumber the missionaries on a given bank, all the missionaries
on that bank will be eaten. Otherwise, both parties will cooperate peacefully
toward crossing the river. How can all the missionaries and cannibals be trans-
ported safely to the other bank? (b) Consider the general case in which there are
m missionaries and n cannibals (m > n), and in which the boat can hold p
persons, but requires at least » persons to be rowed (p > r).

3-3. (The Confusion-of-Patents Problem.)* A certain patent attorney was
astonished when he received the simultaneous allowance of five patents, for five
separate clients, each of whom lived in a different city.

His astonishment turned to chagrin, however, when he learned what had
happened to the patents. They had been received in his office on the same day,
but because of an error made by a mew clerk, they were sent out in wrong
envelopes. Each client received a patent, but not his own.

The inventor of the steam shovel received the mousetrap patent, while the
inventor of the latter found in his mail the papers that should have gone to Mr.
Green. Mr. Blue received the patent for the rumbleseat awning. Mr. Black’s patent
was sent to Chicago; the patent that should have gone was sent to Boston.

Mr. Brown had the patent intended for New York. Mr White had Mr.
Brown’s patent. The non-refillable bottle patent was sent to Los Angeles; the
inventor of the bottle received the patent of the Cleveland client, while in
Cleveland the surprised client received a patent for an antisnore device.

Who should have received what where?

3-4. (Traveling-Salesman Problems.)
(a) For the map shown below, find the shortest path that starts at city A,
visits each of the other cities only once, and then returns to A.

* From Richard E. Fikes, “REF-ARF: A System for Solving Problems
Stated as Procedures.” Artificial Intelligence Journal, Vol. 1 (1970), pp. 27-120.
Reprinted with permission.
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(b) Find the path from start to finish, whiéh passes once through all the
nodes lettered @ through u:

3-5. (Crypt Addition.) Assign a decimal digit to each of the letters in the words
“send,” “more,” and “money,” such that when the letters are replaced by the
corresponding digits the following summation is true:

send
+ more

money

No digit may be assigned to more than one letter, and leading zeros are not
allowed in the numbers formed by “send,” “more,” and “money.”

3-6. (Water-Jug Problems.)

(a) Given a 3-gallon jug and a 4-gallon jug, how can precisely 2 gallons
be put into the 4-gallon jug? There is a sink nearby, such that either jug can be
filled from the tap and its contents can be poured down the drain. Also, water
can be poured from either jug into the other, but the jugs themselves are the only
measuring devices available.

- (b) Given a 5-gallon jug and an 8-gallon jug, how can precisely 2 gallons
be put into the 5-gallon jug? The conditions for this problem are the same as
those in (a).
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(c) Given a 5-gallon jug filled with water and an empty 2-gallon jug, how
can precisely 1 gallon be obtained in the 2-gallon jug? In this problem, water may
be either discarded or poured from one jug into another, but there is no source
of water other than the initial 5 gallons. Again, the jugs themselves are the only
measuring devices to be used.

3-7. (The Monkey-and-Bananas Problem.) A monkey is in a room where a
bunch of bananas is hanging from the ceiling, too high to reach. In the corner
of the room is a box, which is not under the bananas. The box is sturdy enough
to support the monkey and light enough so that he can move it easily. If the box
is under the bananas and the monkey is on the box, he will be able to reach the
bananas. How can the monkey get the bananas (if he wants them)?

3-8. (The Mutilated Checkerboard.) Show that it is impossible to completely
cover the “mutilated-checkerboard” with 1 x 2 tiles so that the tiles neither over-
lap nor stick out over the edge of the board. o

3-9. (The Tower-of-Hanoi Problem.) Initially three disks of different sizes, each
having a hole in its center, are placed as shown in the diagram below, all of
them about one of three pegs. It is desired to transfer their initial configuration
to the third peg, moving them one at a time in such a way that only the top disk
on a peg is ever the disk being moved and a larger disk is never placed on top of
a smaller disk. How can this be done?

1 2 3 1 2 3
Al - lA
T — ssssm B
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L C R |

Start Goal
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3-10. (The Sliding Block Puzzle.) Nine blocks are placed in a tray as shown
below. (a) How many different configurations of the blocks may be obtained by
sliding them about in the tray? (b) How many different configurations of the
puzzle are there if configurations that may be obtained from each other by
rotating or flipping the tray are considered to be the same? (c) Design a
computer program that can explore the state-space of the sliding-block puzzle.
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3-11. (The San Diego Problem.) You have a road map for the area surround-
ing your present location; however, because the map was produced by the Super-
Duper gas-station chain, it shows only the roads in a 30-mile circle, the north and
east directions, the locations of two SuperDuper gas stations, and your present
location. Actually, you want to go to San Diego, which you know to be 400
miles to the south. How might you get there, if you know how to drive, have
a car, and sufficient money for gas, food, and lodging along the way?

Look for

the friendly
A@Super Duper

Triangle

3-I12. Suppose we are given that nodes B, C, and D in Fig. 3-8 represent
trivially solvable problems. (a) What can be said about the solvability of node
A? (b) What if B, C, and D are unsolvable?

3-13. (Peg Solitaire.) A board contains 33 standard-size holes in which have
been placed 32 standard-size, removable pegs. The goal is to remove the pegs
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in such a way that a board is obtained which contains only one peg, placed in
the (initially empty) center hole. Pegs may be removed only by “jumping”
them, as in checkers; that is, a peg 4 may be removed if and only if there is a
peg B next (left, up, right, or down) to it and an empty hole C on the opposite
side, and the removal of peg 4 is accompanied by the placing of peg B in hole C.

3-14. Why should a depth-first search procedure always expand the most
recently generated node first?
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GAME PLAYING

INTRODUCTION

In this chapter we investigate the ability of computers to play
games. First the nature of the games that computers are able to play
will be reviewed. Then the way in which computers may make use of
heuristic search techniques in order to play these games will be de-
scribed. These discussions will lead us to computer programs that are
capable of playing Checkers, Chess, Go, Poker, and Bridge. The chapter
concludes with a brief explanation of “general” game-playing programs.

GAMES AND THEIR STATE SPACES

Some of the most important programs produced by Al research are
those that simulate the human ability to play games: Games comprise a
‘general class of problem concerned with reasoning about actions. They
can be constructed with or without an element of chance involved, and
they can be designed so as to specify that different players will have
different information available to use in deciding how to play. Finally,
games offer the possibility of a direct comparison between the abilities
of machines and humans.

It is probably wise to remark that all games that computers can
now play are of the type that is generally known as “‘games of strategy”
because they possess well-defined rules and objectives for each player.
Of course no claim is being made that these are the only games that
exist. The reader is probably familiar with many games that do not
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have objectives (and perhaps a few that do not have rules), which are
also popular. Since the ultimate value of a game is the enjoyment one
gets from playing it, games of strategy cannot be said to be the most
valuable ones that people play. Still, they are the ones most easily
identified with the use of intelligence, in its role as an ability to solve
problems, and so it is natural that games of strategy should be studied
extensively.

Strategy

A game of strategy consists of a sequence of moves, each of which
is an occasion for a choice between certain alternatives, made by one
of the players of the game.* The rules of the game specify for each move
which player makes the move and what his alternatives are. These rules
are finitely describable, and are to be known to each of the players. What
the rules will specify usually depends on the previous choices made in
the game. For each move, only a finite number of alternatives are avail-
able. A complete sequence of choices (one that the rules define as
terminating the game) is said to constitute a play of the game. In some
games the rules will sometimes specify that the choice is to be made by
chance, in which case the players are usually given a definite, or at least
computable, probability distribution for the various alternatives. At
each move, a player always knows completely what his alternatives are,
but he may not know completely what choices have been made previ-
ously. If at each move every player knows completely all the choices
that have been made so far in the game, it is said to be a game of
perfect information. Finally, for each of the possible plays of the game,
the rules specify a payment—which may be positive, negative, or zero
—to be received by each of the players. The objective of each player is
to maximize the payment he receives, by definition (if a player’s pay-
ment is negative, then he is said to make the payment.)

These statements, of course, summarize only the logical, formal
aspects of games of strategy, and say nothing about such questions as
how a given game might be implemented physically, how the moves
might be represented, etc. The computer programs discussed here accept
symbolic descriptions of the choices made during a game, and when the
rules require it, they produce symbolic descriptions of their own
magraph comprises a brief summary of the basic definitions for
“games of strategy” presented by von Neumann and Morgenstern (1944) in
their “theory of games” (or, simply, “game theory”). The word “move” is used
in their game-theoretic sense: “It's your move.” In some games (e.g., Chess) it is

common to use the word in an additional sense: “He moved the king’s pawn
forward two spaces.”
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“choices” (note 4—1). Other computer programs might be written to
convert the symbolic descriptions produced by a game-playing program
into a physical action, such as moving a pawn forward on a chessboard.
Our concern in this chapter is only with computer programs that handle
the “intellectual” aspects of game playing.

In general, a strategy is any set of rules that tells a player what
choices he should make for all situations that might arise during the
course of a game. A “good” strategy is one that guarantees its user will
receive a high payment, or, in the case of games involving chance, it is
one that provides for a high “mathematically expected” (in a sense,
probable) payment. Given the complete description of a game, the
theory of games provides a computational procedure capable of de-
termining the correct strategies for all players, their best expectation in
playing the game, etc.

This procedure depends, however, upon the enumeration of all
strategies available to each of the players (including the strategies
“chance” might use), which is something easy to describe but frequently
difficult to perform. Thus, for many games, the number of strategies
-may be considered “effectively infinite,” since any attempt to enumerate
them all would require too much time. As we shall see below, this is
true of the more difficult board games (Checkers, Chess, and 60) played
by people. Yet people seem to be able to play these games fairly well
(note 4-2). Throughout, this chapter emphasizes primarily the nature of
the strategies that computers can use to play games and the extent to
which computers can be enabled to select their own strategies. To pave
the way for a discussion of this topic, let us present another, very similar
formalization for “games of strategy.”

State Spaces

The brief description of games given above can be rephrased, using
the terminology of the state-space paradigm for problems presented in
Chapter 3. A game may be viewed as a state-space graph, together with
a function associating some of the paths through the graph with pay-
ments (positive, negative, or zero) to be received by the players of the

- game. The nodes or states of the graph are descriptions of the moves or
situations involved in the game; the arcs emanating from a given node
(the operators applicable to a given state) are the alternatives associated
with the corresponding move. Thus, a node in the state space of Check-
ers is a description of a legal configuration of pieces on a checkerboard,
together with an indication of whose move it is. A node from which
no arcs emanate (i.e., a terminal node) is one for which the game ends.
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It is common to indicate that a certain player is to make a given move
(choose among the alternatives associated with that move) by drawing
the node for that move with a certain shape or shading that is different
from that used for the moves belonging to the other players. Terminal
nodes are usually drawn with the shape or shading of the player whose
move they would be, if the rules make a specification, even though they
do not have successors. Thus, Fig. 4-1 shows the state-space graph for
a simple game.

A game of strategy begins at the node in the graph labeled “start.”
The person who has the starting move (player 3 in Fig. 4-1) in the
game chooses one of the available alternatives (one of the arcs leaving

o“\/3
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chance -
player 1
player 2
player 3

dpoe

Figure 4-1, The state-space gréph for a simple game.




Game playing v 121

the start node) and “moves” the game along the corresponding arc to
another node in the state space; say, B in Fig. 4-1. Node B represents
the move by player 2, so player 2 chooses one of the available alterna-
tives and “moves” the game along the corresponding arc to another
node in the state space (for example, node C). Node C represents a
move that is to be made by “chance”; the probabilities that chance will
choose the various available alternatives are indicated by numbers next
to the corresponding arcs (each number must be between zero and one,
and their sum must equal one). The game continues in this fashion until
it is moved to a terminal node (e.g., node D). A path through the state
space that leads to a terminal node is known as a play of the game. If
there are n players involved in a game, it is said to be an n-person game.

If chance is involved in a game, it is said to be a game of chance; other- -

wise it is called a nonchance game. Thus, Fig. 4-1 shows the state-
space graph for a three-person game of chance.

The strategic, “problematic” aspect of games of strategy arises
from the definition of a payment function, which specifies that certain
paths through the state space of such a game will yield payments to the
players. By definition, a player in a game of strategy has the problem
of trying to insure that he receives a high payment during the play of
the game that actually occurs. Before the game starts, each player is
assumed to have been given a complete, finite description of the state-
space graph and of the payment function for the game. A player “acts
strategically” when he makes a move after investigating the possible
consequence of choosing the various alternatives, in light of what he
knows about the game from the description of its state space and its
payment function, and in light of what he knows about the path that
has so far been taken through the state space of the game. The game
is one of “perfect information” if all of the players always know what
path has been taken; otherwise it is said to be a game of “imperfect
information.” Chess and Checkers are examples of perfect-inform‘ation
games., Double-blind Chess, or “Kriegspiel,” is an example of an im-
perfect-1nformat10n game (note 4-3). Bndge and Poker are also ex-
amples of imperfect-information games, since a person playing them
usually does not know what hands are held by the other players. Bridge
and Poker are also “games of chance,” in contrast to Kriegspiel.

The payment function for a game of strategy can be very complex:
However, it is not correct to assume. that in a game of strategy each
player is necessarily competing with the other players. In some games
(e.g., Bridge) players must form teams, and each player must cooperate
with those who are in his team. In other games (e.g., Poker) it may
~ sometimes be strategically sound for two. players to form a temporary
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alliance against another player. One can even devise games of strategy
in which there is no competition between players at all (note 4-4).

However, most popular games of strategy do have some degree of
competition involved in them. Many games can be described as strictly
competitive; such games are also known as zero-sum games, since their
payment functions specify that for any play of such a game the sum of
the payments received by all players in the game must be equal to zero.
In a strictly competitive game, no player receives a positive payment
unless other players receive counterbalancing negative payments. Ex-
amples of zero-sum games are Chess, Checkers, Tic-tac-toe, Hex, and
Go. In these games the payments that may be received are 1, 0, and
—1 (“win,” “draw,” and “lose”).”? These games are also examples of
two-person, nonchance games of perfect information.

For a computer program to play a game, it must be able to select
a legal alternative whenever it is required to make a move. For it to
play the game well, it must select alternatives that will tend to bring
about plays of the game for which the payment-function awards the
program a large payment.

There are essentially two ways a computer program can go about
selecting desirable alternatives. We shall refer to them as the local and
global approaches. The local approach has been fairly successful with
a few difficult games (Kalah, Checkers, and Chess), although its suc-
cess has diminished with the more difficult games. Except for games with
very small state spaces, or during the “end plays” of very large games,
it is generally not possible for the local approach to work perfectly, in
the sense of always selecting the best available alternative. On the other
hand, the global approach has had success with a few limited classes of
relatively simple games (e.g., Tic-tac-toe, Nim, and Hex), but its tech-
niques may eventually be extended to more difficult games.

A program that uses the global approach is designed to analyze the
game as a whole. The computer might, for example, prove theorems
about the game, using its description of the game and its past experience
at playing the game. Such theorems might reduce the game to other,
simpler games. This approach has been investigated by Banerji, Koff-
man, Amarel; Pitrat, and others. Programs that use it are discussed in
the final section of this chapter.

A program that uses the local approach is designed to analyze a
part of the state space of the game. Given a situation that is the pro-
gram’s move, the program can enumerate some of the paths through the

21t is often more convenient for a programmer to effectively give win, lose,
and draw the values oo, 0, and — co.
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state space of the game which might result from choosing among the
available alternatives. The program could be designed to analyze these
paths, using its description of the payment function, and to select an
alternative that “leads to a desirable set of paths.” In the case of zero-
sum games, the type of analysis the program must perform is known
as a minimax analysis. The collection of paths through the state space
of a game, which emanate from a given node in that state space, is
known as the game tree below that node; the game tree below the start
node of a game is often referred to simply as the game tree of the
game.

Most Al research on game playing has been concerned with de-
~ veloping computer programs that use local analysis to play zero-sum,
two-person, nonchance games of perfect information. The next section
describes ways in which heuristic search téchniques can be used to
analyze such games locally. The remaining sections of the chapter dis-
cuss programs that have been written to play games. Some programs
discussed play 1mperfect-1nformat1on games of chance. For a more
extensive yet simple treatment of classical (enumerative) game theory,
see Williams (1954). The original book on the subject (von Neumann
and Morgenstern, 1944) is highly recommended. Discussions of the
state-space approach to the description of games and some examples of
global analysis of games are giveh in Banerji (1969, 1970). Nilsson
(1971) and Slagle (1971) present detailed formalizations of current
applications of heuristic search techniques to game playlng (i.e., local
analysis).

GAME TREES AND HEURISTIC SEARCH
Gamé Trees and Minimax Analysis

In general, the techniques presented in Chapter 3 for searching
graphs and trees in order to solve problems are applicable to the design
of game-playing programs. In particular, the terminologies and concepts
associated with game trees are similar to those for problem trees, as de-
fined in Chapter 3. The basic difference between games and the puzzle-
like problems already discussed is that, with a game, different nodes
belong to different players and no player can completely control the
path that is actually taken through the state space (note 4-5). Through-
out this section we shall be concerned only with zero-sum, two-person,
nonchance games of perfect information.

The game tree below a given node in the state space of a game is
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usually drawn with the given node at the top, as the root of the tree.

‘The successors to the root node are placed immediately below it, and

arcs are drawn from the root to each of its successors. The root node
and its successors are known as the “top nodes” of the tree. The process
is then repeated for each of the successors to the root node. Figure 4-2
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Figure 4-2: A state-space graph for a simple game and the correspond-
ing game-tree.

_shows a state-space graph for a simple two-person game, and the corre-

sponding game tree of the game (i.e., the game tree below the start,
or root, node). As may be seen from Fig. 4-2, it is possible for the
“same” state-space node to occur in many places throughout a game
tree. This is just another way of saying that there may be many paths
connecting two nodes in a state space. Thus, “3,2,6,7” and “3,4,5,7”
are two different paths connecting state-space nodes 3 and 7 in Fig.
4-2, The purpose of a game tree is to represent separately each of the
possible paths through the state space of the game. Thus, each game-
tree node represents a path through the state space of the game; that is,
a sequence of state-space nodes. The expansion or generation of a game
tree terminates with those nodes that do not have successors; a terminal
node in a game tree is often referred to as a tip node. In Fig, 4-2 there
are ten tip nodes in the game tree and only two terminal nodes in the
corresponding state-space graph. The number of plays of a game is
equal to the number of tip nodes of its game tree. Thus, there are ten
plays for the game whose state-space graph is shown in Fig. 4-2.

It is evident from Fic 1-2 that even a game with a small state space
may have a large game tree and a large number of possible plays. Games

A
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like Checkers, Chess, and Go have game trees so large that they cannot
be physically generated completely. (They also have large state spaces. )
When it is not possible to actually count the number of plays of a game,
the number may be approximated by using estimates of the average
branching-factor B and the average depth D of the game tree. Thus,
we estimate® that the game tree of Checkers has an average depth of
100 and an average branching factor of 6 (i.e., the average possible
play of the game might run 100 moves and each move might have an
average of 6 available alternatives) : The total number of possible plays
for Checkers is then

B” = 6" = 10"

Similarly, it has been estimated that there are 10'* possible plays for
Chess (Shannon, 1950a,b) and 10 possible plays for o (Zobrist,
1969).

Let us suppose for a moment that a player, whom we shall call
player 1, actually could generate the entire game tree for any finite
game, no matter how large, and discuss how he might select a strategy
for a (zero-sum, 'two-person nonchance, perfect—information) game
such as Checkers, Chess, or Go. We shall give this person “infinite time
and resources” and see what happens.

As stated before, each player’s objective is to maximize the pay-
ment he receives during the play of the game that actually occurs.. We
are concerned only with perfect-information games. Thus, the player
whose move it is knows exactly what path has been taken from: the
start node to arrive at the current situation in the game, and he knows
exactly what the current situation is (e.g., what pieces are where on
the checkerboard). Because he is given a description of the rules.of the
game, he knows exactly what alternatives he can choose to apply to the
current situation and what situations will result. Because our player has
infinite time and resources, he can generate the complete game tree
below the given node, and can determine the payments associated with
each of the plays emanatmg from that node. He will then have, infor-
mation something like. that indicated in Fig. 4-3. :

. Nodes B,C,E,F, and G in, the figure are tip:nodes of the tree Each
of the tip nodes of the game tree identifies a different play of the game.
Using the payment function, player 1 can calculate the payment speci-
fied for each play of the game, and he can consider this ‘payment to be

3This is based on a conversation with Arthur Samuel and is only a very
rough estimate. Another figure often given:is 10* plays (sometimes "10*° nodes
in the game tree), based on an estimate in Samuel (1959). The higher estimate
is used here.
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Figure 4-3. Player‘ 1’s maximum necessary game tree.

associated with the corresponding tip node of the tree. Thus, he might
determine that the play represented by node B would yield him a pay-
ment of +10, whereas the play represented by node € would yield him
a payment of —2. Consequently, he would know that if he and player
2 should take the path through the state space represented by node A
in the game tree, they would arrive at a situation in which it would be
player ’s turn to move, and he would be able to select from two
alternatives: one yielding him a payment of + 10, the other yielding a
payment of —2. Because each player’s objective is to maximize the
payment he receives, we say that the value of the path represented by
node A is +10 to player 1 and —10 to player 2.

Similarly, player 1 could determine thé payments associated with
the plays represented by tip nodes E,F,G, respectively; he might calcu-
late that play E would yield him a payment of +1, play F a payment
of —6, and play G a payment of +9. Because the game is a zero-sum
game, he knows that E,F, and G will yield player 2 payments of —1,
+6, and —9, respectively. Consequently, he would know that if he and
player 2 should take the path through the state space represented by
node D in the game tree, they would arrive at a situation in which it
would be player 2’s turn to move, and player 2 would choose the alter-
native leading to play F. Thus, the value of node D is —6 to player 1
and +6 to player 2.

Because he has “infinite time and resources,” player 1 can con-
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tinue to find the value of each node in the game tree below his current
situation by “backing up” his evaluation of nodes from the tip nodes of
the game tree according to the following rule: The value of a given
node to player 1 is the maximum of the values of its successor nodes to
player 1. Similarly, the value of a given node to player 2 is the maximum
of the values. of its successor nodes to player 2. Moreover, because of
the zero-sum nature of the game, the value of a given node to player I
is the minimum of the values of its successor nodes to player 2, and the
value of a given node to player 2 is the minimum of the values of its
successor nodes to player 1. If player 1 determines the values of all
nodes in the game tree below his current situation according to these
rules, he is said to have done a complete minimax analysis, or evalu-
ation, of the game tree below his current situation. The value for a
node that one obtains by performing a complete minimax evaluation is
referred to as the theoretical value of the node.

All the game trees considered are finite, so player 1 will be able
to generate the complete game tree and do a minimax analysis of its
nodes in a finite time (he is given infinite time and resources simply
because there is no a priori limit to how big the tree might be and how
much time he might require—whatever time he does require, though,
will be finite). He will then know the theoretical values of the successor
nodes to his current situation. If player 1 chooses an alternative leading
to a successor node that has the maximum theoretical value (to him)
of all the successor nodes to his current situation, and if he continues to
choose in this way whenever it becomes his turn to move, we say that
he is playing “perfectly.” If player 1 plays perfectly, then the best pay-
ment he can expect from the game, if player 2 plays perfectly, is guaran-
teed. If player 2 does not play perfectly, then player 1 will receive an
even higher payment (note 4-6). ‘

EXAMPLE 4—1. How much time would it take an “attainable”
machine to generate and minimax-evaluate the complete game
tree for Checkers? We have assumed B = 6 and D ='100. By
the rule for trees, developed in Chapter ‘3, there are approxi-
mately (B”*)/(B — 1) nodes in'the complete game tree; thus,
there are (6')/5 = approximately 2 X 10™ nodes in the game
tree of Checkers. The “attainable” machine might generate the
game tree at a rate of 1 node per nanosecond and then minimax-
evaluate it at a rate of 1 node per nanosecond. There are 3.15 X
10* nanoseconds in a century, so the machine would require
(4 x 10®)/(3.15 x 10™) = approximately 10* centuries to
complete this procedure.
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Example 4-1 illustrates that it really would be necessary to give
player 1 “infinite” time and resources, at least by comparison with cur-
rent scientific estimates for the lifetime of the universe (< 10% years),
if we expect him to do a complete minimax analysis of Checkers at an
“attainable” rate. In general, it is not possible for a computer program
to minimax-evaluate the complete game tree below a given node of
Checkers unless that node happens to be very close to the tips of the
tree. The Exercises at the end of this chapter show that the same re-
sults obtain for Chess and co. ~

Even though a computer program cannot usually generate the
entire game tree below a given node, it can still generate a portion of
that game tree. In most of the possible situations (nodes in the state
space) that might occur in games like Checkers, for example, the aver-
age node may have six successors, but of these six perhaps only three
would be considered “plausible” or “reasonable” by a human Checkers
player. If a program could be designed to generate only those successors
that were “reasonable,” that could do a minimax analysis on the re-
sulting reasonable game-tree, and that could select the alternative below
its current situation with the highest reasonable evaluation, it would
still be able to play a very good game. We can estimate that Checkers
has, on the average, three reasonable successors to each node and that
the average reasonable play has a length of 40 moves. There are thus
3% =10" reasonable plays of Checkers. Similarly, there are about
5% == 10 reasonable plays of Chess and 10* reasonable plays of Go.
Of course playing “reasonably” is not the same thing as playing “per-
fectly.” If we had the complete evaluation of the Checkers (or Chess
or GO) game tree, we might find that some nodes people currently
consider “reasonable” have in fact very low theoretical values; con-
versely, we might find that some nodes people currently consider “un-
reasonable” have very high theoretical values.

EXAMPLE 4-2. How much time would it take an “attainable”
machine to generate and minimax-evaluate the complete reason-
able game tree for Checkers? On the basis of B = 3 and D = 40,
there are approximately (3) /2 nodes in the complete, reasona-
ble game tree. The “attainable” machine might generate the
game tree at a rate of 1 node per nanosecond and minimax-
evaluate it at the same rate. This, the machine would require
about. (3.5-x 10%)/(3.15 x 10®) = approximately 10 centu-
ries, of a thousand years, to complete this procedure.

Again it is not practically possible for a computer to evaluate the
complete, reasonable game trees of games like Chess, Checkers, and Go.

o R T R B B R
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Instead, when a computer program attempts to select the best alterna-
tive, or successor, available for a given node in the game tree, it will
(if it uses local analysis) generate only a portion of the reasonable
game tree below that node, and will minimax-evaluate that portion to
estimate the best immediate alternative. It will then output a description
of that alternative (as being its “choice” for the move) and wait until
it is required to make another move (estimate another alternative).
The rest of this section considers how a computer program can generate
a reasonable portion of a game tree and how it may analyze the portion
that it generates.

Static Evaluations and Backed-up Evaluations

In order to generate and analyze a portion of the reasonable game
tree below a given node, it is necessary to judge the “reasonableness”
of nodes in some way that is not dependent upon having judged many
of their successor nodes. A static evaluation function is a method for
estimating the value of a node which is not dependent on the values of
the successors to that node. A good static evaluation function is one
that tends to give estimates that agree with the true, theoretical values
of the nodes in a game tree. Different games require different static-
evaluation functions. In general, it is not possible to design a static-
evaluation function that is perfect for a given game; that is, one that will
estimate for each node a value that is equal to the theoretical value of
that node.*

For our purposes, a static evaluation function is necessarily a com-
putational procedure that can be applied by a computer to its descrip-
tion for any given situation that might occur during a play of the game.
The function should yield for the situation a numerical value approxi-
mating that which would be obtained by analyzing the game com-
pletely. When applied to a given node (situation), the static evaluation
function may take into account such things as the number of pieces one
has, the positions of a game board one occupies, the number of suc-
cessor nodes to the given node, or whether any successor nodes repre-
sent “captures.”

The next few pages discuss how a game tree may be analyzed, or
evaluated, given a static-evaluation function. As stated before, static-
mid have a perfect static-evaluation function, there would be no
heed to generate a game tree at all; instead, to determine the best arc from a
given node, one would merely have to apply the static-evaluation function to
each of the successors to that node, and then select an arc leading to a node with

the maximum static evaluation. Thus, one would be playing perfectly, in the
sense defined in the text.
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Figure 4-4. The minimax procedure applied to a hypothetical game tree.
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evaluation functions may also be used to generate game trees that are
reasonable portions of complete game trees. However, for purposes of
explication, the discussion of techniques for generating game trees will
be deferred to the end of this section.

Suppose, therefore, that a portion of the reasonable game' tree
below a given node has been generated; such a game tree can be evalu-
ated by a computer program that makes use of minimax analysis and a
static-evaluation function. The rules for the minimax analysis are as
follows: If a given node is one for which it is the program’s turn to move,
its value is the maximum of its successors. If a node is one for which
it is the opponent’s turn to move, its value (to the computer) is the
minimum of the values of its successors. The value of a tip node is its
static evaluation; that is, the result of applying the static-evaluation func-
tion to it. Figure 4—4 shows a portion of a game tree for which the tip
nodes have been assigned values according to some hypothetical static-
evaluation function and the remaining nodes have been given values
according to the rules of the minimax procedure. A value given by the
minimax procedure to a node that is not a tip node is known as backed-
up value for the node. To. determine the backed-up value for a given
node, one must first find the static evaluations of the tip nodes that: are
below it in the game tree, and then, using the rules of the minimax,
“back up” evaluations until a value reaches the given node. "

The accuracy of the backed-up evaluation of a given node (how
close it is to the theoretical value for that node) is greatly dependent
on the amount of the game tree below that node to which one applies
the minimax procedure. Again, in general, neither the static evaluation
nor the backed-up evaluation will be infallible indicators of the theoreti-
cal evaluation for a given node. However, the accuracy of the static
evaluation will often be better for nodes near the tips of the complete
game tree than it is for nodes near the root. Thus, the backed-up evalu-
ation of a node near the root of the tree will tend to be more accurate
than the static evaluation of that node, because the minimax procedure
makes use of the static-evaluation function where it is most. accurate
(on nodes nearer the tips of the tree).

The Alpha-Beta Technique

In practice, it is important to recognize that the nature of the
minimax procedure makes it unnecessary to obtain evaluations for all
nodes in the game tree when evaluating the top nodes. A method exists
for determining whether the evaluation of a given node can affect the
evaluation of nodes that are above it in the game tree. This method is
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known as the alpha-beta technique.® To see how it works, let us suppose
that a game-playing program is given the task of evaluating the (portion
of a) game tree in Fig. 4-4, and is proceeding to minimax from left
to right. The tree is reproduced in Fig. 4-5, with the addition that
certain significant nodes have been lettered. :

The first step of the program is to obtain the static evaluations of
nodes 4, B, and C. These are found to be 0.2, 0.9, and 0.3, respectively,
so the backed-up value of node D above them is determined by the
minimax procedure to be 0.2. The next step of the program is to obtain
the static evaluation of node E, which is found to be 0.1. Consequently,
we know that the backed-up value of node F must be less than or equal
to 0.1 (since the value of F is the minimum of the values of its suc-
cessors). Now, the value of node G is the maximum of all values im-~
mediately below it because G represents a situation in which it is the
program’s turn to move, and the program should take the choice that
has the greatest evaluation. This means that node F and all the nodes
below it need not be considered further. The reason is that the value of
node D has already been determined, and whatever the value of F it
is less than that of D. Similarly, when the program evaluates node H
as being —0.1, it knows that neither 1 nor any other nodes below it
need be evaluated. Thus, the value of node G is set at 0.2.

Next, the program evaluates situations J and K and sets the value
of L at their minimum, which is 0.6. Since the evaluation of M is the
maximum of the values of the nodes immediately below it, the value of
M is greater than or equal to that of 1; so, M = 0.6.

The value of N, however, is the minimum of those of G and M.
But since G has a value of 0.2, it is not necessary to evaluate any more
of the nodes below M, and thus the value of N can be set equal to 0.2,

The program continues in this manner to evaluate only those nodes
in the tree that could change the values of the nodes above them. As an
exercise, the reader may verify that, in order to determine the most
desirable alternative, the program need continue developing evaluations
only for those nodes labeled P through U in Fig. 4-5. The other nodes
of the tree need not be considered at all.

The alpha-beta technique is essentially a process of “using common
sense” to carry evaluations up the tree with a minimum amount of work.
It can be proved that, with respect to a given static-evaluation function,
the alpha-beta technique will always assign the same values to the to
nodes of a given tree as would the minimax procedure. (A detailed

® This technique received its name from McCarthy, who, with his students,
did research on it at Mrr.
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formalization of the alpha-beta technique is given in Nilsson, 1971.)
The savings that can result from using the alpha-beta technique are
enormous. With optimum ordering of the nodes, the number of suc-
cessors to a given node which need to be evaluated is lowered almost
to the square root of the total number of successors to that node. If the
branching factor of the tree is B then, with the alpha-beta technique,

one in effect evaluates a tree with branching factor VB. Thus, the
depth to which the game tree below a given node can be analyzed,
using the same total number of evaluations, is nearly doubled. ,

However, the worth of the technique is greatly dependent upon
the order in which the nodes of the tree are taken for examination. The
reader may verify this for himself by working the alpha-beta evaluation
of Fig. 4-5 from right to left instead of left to right; the right-to-left
ordering makes it necessary to evaluate almost all nodes of the tree. In
using the alpha-beta technique, it is desirable to have some method that
will make it likely the best nodes are evaluated first.

Generating (Searching) Game Trees

-This section concludes with a description of some important
techniques for generating game trees. The techniques discussed include
plausibility ordering, shallow searching, forward pruning, the use of
termination criteria, and dynamic generation and evaluation. As ex-
plained at the end of the preceding section, the description to this point
relates to how a game tree may be evaluated, using a static-evaluation
function, once the tree has been generated. However, static-evaluation
functions may also be used by procedures that generate reasonable
portions of game trees.

Part of the motivation for discussing game-tree generating tech-
niques may be evident from the previous description of the alpha-beta
technique. Suppose we have a computer program that uses the alpha-
beta technique to evaluate game trees that are presented to it, and
suppose this program always applies the technique by working, say,
from left to right across the tree. This program will work most effi-
ciently if the trees that are presented to it are “correctly ordered,” that
is, if the successors to each node in a given tree are arranged below
that node from left to right in the descending order of their eventual,
backed-up evaluations. One of the purposes of game-tree generating
techniques is to develop game trees that will tend to be correctly
ordered so that the alpha-beta technique can be profitably applied to
them.

T T
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Of course there is no way to insure that a game tree is correctly
ordered without having already performed the back-up, or minimax,
evaluation that we wish the alpha-beta technique to replace. However,
we can increase the likelihood that the tree will be correctly ordered if
we make use of some less extensive technique that will give the nodes
in the tree a “plausible ordering.” Three types of plausibility-ordering
techniques are generators, shallow search, and dynamic ordenng
Dynamic ordering will be described at the end of this section.

A generator is a procedure that automatically produces first the
most desirable alternatives (and the situations to which they lead)
below a given situation and then produces less desirable alternatives,
etc. Thus, a generator in Chess might be designed to first produce those
alternatives that create situations in which the opponent will be in
check or a piece will be captured. The nodes in a game tree can be given
a plausibility ordering corresponding to the sequence in which they are
produced by a generator.

A shallow search technique is a procedure that makes use of a
static-evaluation function (not necessarily the same one used by the
alpha-beta technique) to conduct a limited tree-generation and evalua-
tion process below each of the nodes that are to be ordered. Thus,
suppose a plausibly ordered game tree is being generated below node 4
in Fig. 4-6; a shallow search technique might first generate the small
portion of the tree below A4, shown in Fig. 4-6. It would then apply its
static-evaluation function to the nodes at the bottom of this tree and
back up evaluations (probably using its own alpha-beta technique) to
nodes B, C, and D. The “shallow evaluations” it obtained for B, C, and
D might indicate that they should be plausibly ordered C, B, D; a
shallow search might then be done below C to determine a plausible
ordering for nodes E, F, and G. In general, when the game tree below
node A is generated, it is most profitable (for the overall application of
the alpha-beta technique) that shallow search be used to plausibly
order nodes near the top of the tree; it makes relatively little difference
whether shallow search 1s used to order nodes near the bottom (1 e.,
near the tip nodes). :

The other major purpose of game-tree generating techmques is
simply to generate a reasonable portion of the complete game tree
‘below a given node; this is in contrast to its purpose in making sure that
the generated portion is plausibly ordered. The relévant techniques
are forward-pruning and the use of termination criteria; each may-be

considered a special case of the other. A game-tree generating procedure
employs termination criteria when it decides not to continue extension-of
the game tree it is generating, thus creating tip nodes in the game tree
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Plausibly ordered

Figure 4-6. Using a shallow search technique to plausible order nodes
B, C, D.

it produces. Some useful termination criteria are “game over” (the
tip node produced is actually a tip node of the complete game tree),
“maximum depth,” and “minimum depth.” The maximum-depth termi-
nation criterion is. employed by procedures that do not produce game
trees having a depth greater than some preassigned value. Nodes at that
depth below the root node automatically become tip nodes of the game
tree that is produced. The minimum-depth criterion is used by pro-
cedures that do not produce game trees having a depth less than some
preassigned value. ‘

Game-tree generating procedures that employ the minimum- and
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maximum-depth criteria generally use other criteria that may override
them. Thus, the minimum-depth criterion may be overridden by the
“game over” criterion. Similarly, many procedures make use of a “dead
position” criterion, specifying that a node will not be considered a tip
node unless it is “dead”—what deadness means depends upon the
game being played. Thus, a situation in Checkers in which there are
jumps available is “live” (i.e., not “dead”); a situation in Chess in
which someone is in check or there are captures available is live; a
situation in Go in which there is a possible “ladder attack” is live. If the
dead-position criterion is not satisfied, then the maximum-depth
criterion will generally be overridden. Live nodes will always have their
successors generated and evaluated (unless the program runs completely
out of time or memory space). This is good because it is difficult to
find static-evaluation functions that give accurate evaluations for live
nodes.’

A game-tree generating procedure uses forward pruning when
it decides not to continue generating successors of a node that might
otherwise be considered. Thus, returning to Fig. 4-6, after having
plausibly ordered nodes B, C, and D, a game-tree generating procedure
might decide that node D is too implausible to merit further investiga-
tion; the portion of the complete game tree below D would therefore be

“pruned” from the game tree produced by the generating procedure.
The time saved by not generating or evaluating nodes below D can be
used to search more deeply elsewhere. In n-best forward pruning, only
the nodes below the n most plausible successors to a given node aré
searched (generated and evaluated); other successors are pruned.
(Thus, the discussion of Fig. 4-6 might illustrate 2-best forward-
pruning). In zapered n-best forward pruning, the parameter n is de-
creased as the depth of the given node increases. Again, the most
plausible successors below the given node may be determined either
by use of a generator or by conducting a shallow search. The time saved
by forward' pruning must be weighed against the chance that relevant
portions' of the game tree, which might otherwise be considered, will
be pruned out. Thus, the shallow search below node D 'might have been -
misleading; there might have been very valuable nodes farther below.

We have now examined the basic techniques used by game-playing
programs that use local analysis to determine how they should play
zero-sum, two-person, nonchance games of perfect information. In
this exposition the process by which such a program searches a game
tree to determine its most desirable alternative has been separated into

8 The dead-position criterion was first suggested for Chess by Turing (1953).
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two parts: a generation procedure that produces plausibly ordered,
reasonable portions of the game tree, and an alpha-beta technique that
evaluates game trees that are supplied to it. In fact, the distinction made
is an artificial one: A truly efficient game-playing program will conduct
both procedures in a simultaneous, or dynamic, fashion. The alert
reader will probably have already suspected that something like this
should be done. After all, why generate nodes if the alpha-beta tech-
nique is later going to decide not to evaluate them?

A game-playing program is said to use dynamic generation and
evaluation if it applies the alpha-beta technique as another part of its
forward-pruning and plausibility-ordering techniques. Essentially, such
a program will generate “plausible branches” of the game tree, using the
results of the alpha-beta technique to guide their generation. The
generation of a plausible branch will terminate when it reaches maxi-
mum depth and its tip node is dead. Evaluation is made of each node
in a plausible branch as it is generated. After it is evaluated, the backed-
up values of nodes above it in the tree are changed accordingly, using
the alpha-beta technique. This may cause some nodes to be pruned
from further consideration, or change the plausibility orderings of other
nodes (dynamic ordering), or indicate that new plausible branches
should be generated. (A formalization for dynamic search procedures is
given in Nilsson, 1971). A game-playing program using dynamic search
may approach a reduction of the branching factor of the complete
game tree from B to VB (note 4-7).

CHECKERS
Checker Player
Samuel (1959,1967) wrote a computer program capable of play-

ing Checkers at a championship level. The program is capable of beat-
ing all but the very best players, and once beat a Checkers master,

. Robert. W. Nealey (see Fig. 4—7) This section discusses Samuel’s

Checkers Player.

Samuel’s program conducts an alpha-beta tree search, using for-
ward pruning. To insure the effectiveness of the alpha-beta technique,
the Checkers Player does a shallow, breadth-first search to order al-
ternatives according to plausibility. The overall tree search terminates
whenever a node is at a maximum depth and the program judges it to
be “dead” (i.e., there are no immediate jumps available). During a
game it usually takes the Checkers Player less than a minute to perform
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Game  Black White Game  Black White
move (computer} (Nealey) move (computer) (Nealey)
1 11-15 28 27-23
2 23-19 29 15-19
3 8—11 30 23-16
4 . 22—-17 31 12-19
5 4-8 32 32-27
6 17-13 33 19-24
7 15-18 34 27-23
8 ’ 24--20 35 24-27
9 9-14 36 22-18
10 2623 37 27-31
11 10-15 38 18-9
12 - 19-10 39 31-22
13 6-—15 40 9-5
14 2824 41 22-26
15 15-19 - 42 23-19
16 24-15 43 26—22 ’
17 5-9 aa 19-16
18 13—-6 45 2218
19 1-10-19-26 46 21-17
20 31-22-15 a7 18—23
21 11-18 43 17-13
22 30-26 49 2—6
.23 8-11 50 16-11
24 25-22 51 7-16
25 18-25 52 20-11
.26 29-22 53 23-19
27 11-15 5 White concedes

Figure 4-7. One of the program’s early victories. (Samuel, 1959, 1967.)

its tree search and decide how it will move. Samuel’s program is unique
in that it is, to some extent, capable of developing its own static-
evaluation function. The Checkers Player is capable of using and select-
ing a static-evaluation function that is a composite function of a set of
parametric functions (this is described below). Together with the con-
cepts presented in the preceding section, this description is sufficient
to show how Samuel’s program plays the game, once it has a good
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static-evaluation function. So, this section explains how the Checkers
Player is able to achieve its evaluation function.

Samuel had three basic problems in constructing a good evaluation
function. He had to determine the proper set of parametric functions;
the proper type of composite evaluation function; and how the pro-
gram’s experience should influence it to modify its evaluation function.

The solutions for each of these three problems involved a con-
siderable amount of heuristic programming. From the standpoint of
bona fide machine learning, perhaps the most important thing would
be to enable the program to create its own set of parametric functions,
since these functions are an inherent limitation on its ablhty to play the
game and since their specification by an outside source is a substantial
hint as to the proper way of playing. The Checkers Player is not pro-
grammed to do this: All parametric functions are supplied in advance to
its operation, and are carefully chosen for their relevance to the game.
(A typical parameter is MOB (total mobility), equal to the number of
squares to which the Player can potentially move, disregarding forced
jumps.)

The second problem, determining the proper type of composite
evaluation function, has been approached in two ways in different ver-
sions of the Checkers Player. The original approach was to let the
evaluation function be a polynomial of the form ayt; + . . . + aut,, that
is, a weighted sum of the values of the terms ¢,. (For example, 3¢, 4 5t2
is a polynomial function of #, and t.: If #; = 4 and #, = 7, then the
function has a value of 3 X 4 + 5 x 7 = 12 + 35 = 47.) The greater
the value of the polynomial, the more favorable one’s evaluation of the
configuration in question. This approach has the advantages of per-
mitting an easy modification of the function, obtained by changing the
weights ;. The disadvantage comes from the linear nature of the poly-
nomial and the fact that it is not really plausible to assume that the
theoretical evaluation function can be linearly expressed in terms of the
given parametric functions ¢, Samuel’s original program overcame this
to some extent with the use of two techniques: First, it was made pos-
sible to introduce new terms that were binary connectives of the previous
ones (i.e., terms that corresponded to logical expressions of the form
(ti N 1, ~1: V/ t), etc.). A second, more recent technique was to divide
the course of the game into six successive phases (determined primarily
by the number of pieces on the board); in each phase a different poly-
nomial could be used (one with a different set of terms and different
coefficients for each term).

Another, more direct method of constructing a nonlinear evalua-
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tion function has been investigated more recently, and is the one
currently used by the Checkers Player. The method consists of con-
structing a hierarchy of “signature tables” as follows: First, the pos-
sible values of the parametric functions are restricted; that is, some
parameters are allowed to have onmly five values (—2,—1,0,1,2) and
the rest are allowed to have only three values (—1,0,1). Next, six
collections (called signature types) of parameters are chosen. Each
signature type contains four elements, of which one is a five-value
parameter and the rest are three-value parameters. (Some parameters
may be included in more than one signature type.)

For each signature type, a signature table is to be constructed;
this table lists an evaluation (either —2,—1,0,1, or 2) for every
combination of values of the four elements. There are thus 125 entries
in each signature table, every entry being —2,—1,0,1, or 2. (Actually,
it is only necessary to include 63 entries in a given signature table, since
the parametric functions are designed to be “symmetric” for each of the
players. If (1,2,—1,0) is listed in a given signature table as having
an evaluation of 2, the evaluation of (—1,—2,1,0) is automatically
determined to be —2, and it is not necessary to list it in the table.)

To build the hierarchy, two second-level signature tables are con-
structed as in Fig. 4-8, each of which has a second-level evaluation (an
integer from —7 to 7) for all possible combinations of values of the
three first-level tables it describes. There are thus 125 entries in each
of the second-level tables.

Finally, a third-level table assigns an evaluation to each possible
combination of value$ from the second-level table.

To determine the evaluation of a given board-configuration, it is
necessary to:

1. Determine the values of each of the parametric functions
for that particular configuration.

2. Look in the six first-level signature tables and find the first-
level evaluations of the configuration.

3. Look in the two second-level tables and find the second-level
evaluations of the configuration.

4. Obtain the final evaluation by looking in the third-level signa-
ture table.

As a further improvement on the quality of these evaluations,
a different signature-table hierarchy is used for each of the six phases
of the game.
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Figure 4-8. The signature-table hierarchy. (Samuel, 1967.)
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Learning

The remaining question is how these evaluation functions, whether
polynomials or signature tables, are to be obtained from the game-
playing experience of the program. The method for developing these
functions constitutes the “learning ability” of the program.

Work on the Checkers Player has been primarily devoted to two
ways of doing this, referred to as rote learning and learning by gen-
eralization. Rote learning can be accomplished by establishing a large
file of those board configurations and their evaluations that are en-
countered during the course of the games the program plays. The
establishment of this file eliminates the need to recompute an evaluation
each time such a configuration arises, so it has the benefit of increasing
the efficiency of the program (provided the search time through the
file is kept low). Learning is effected as follows: If the program is

\

Evaluations normally

made at this level A board position found

in memory, for which the
evaluation had already
been carried to this

level

/

Figure 4-9. The effect of “rote learning.”
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presented with an arbitrary board configuration and asked to determine
the correct choice for the next move, it will often find in the file some
configurations that are descendants of the configuration in question. The
evaluation for these descendants, before they were put in the file, was
_originally made in terms of their descendants, which might ordinarily
be too far away from the original move to be investigated. The evalua-
tion of the various alternatives for the move can thus be much deeper
than the normal limits on computation would allow (see Fig. 4-9).
The rote-learning method was particularly good at developing the
Checker Player’s opening and end games.

Learning by generalization is the technique that does most of the
work in constructing the evaluation function, however. In the case of the
polynomial type of evaluation function, the basic process is that of
changing the coefficients for the various terms, whereas in the case of
the signature-table function, the process is that of changing the various
entries in the tables. These processes are accomplished in different
manners, depending on the use of particular learning situations to which
the program can be subjected.

Learning Situations for Generalization

The earliest generalization situations for the Checker Player were
those involving actual play of the game, in which the program was either
employed against human opponents or played against itself. These
situations were used mainly for the development of good evaluation
functions of the polynomial type. In either case, two Checker-playing
programs were available, called Alpha and Beta (not to be confused
with the alpha-beta technique). Alpha generalized on its learning ex-
perience after each move and would change its coefficients correspond-
ingly, while the polynomial evaluation function for Beta was kept con-
stant throughout any given name. Alpha was the program used against
human opponents; the condition of self-playing was effected by playing
Alpha against Beta, generally in a sequence of games, with the stipula-
tion being that if Alpha won a game its polynomial would be used in
the next game by Beta also, while if Alpha lost too many games in a
row its polynomial would suffer some large, random change. The
purpose of the change was to start the game off in a new direction and
(hopefully) permit the development of a completely new polynomial.

Alpha changed its polynomial as follows: At each move, Alpha
would compute the evaluation of the current board position as deter-
mined by its polynomial. It would also compute a backed-up evaluation
of the current board position, determined by looking ahead in the game
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tree and minimaxing backward from the tips of the tree, as defined in
the preceding section.

At any rate, given the evaluation, immediate evaluation, and the
backed-up evaluation, Alpha would adjust the coefficients of its
evaluation function so as to make its new immediate evaluation of the
configuration closer to that it had obtained by the look-ahead method.

The success achieved by this technique of “learning while playing”
was significant, although somewhat time-consuming. It was particularly
good at developing the middle-game performance.

Book Learning

In the normal operation of the Checkers Player, time spans on
the order of a minute are required for it to make the choice of a move.
This results in a great deal of time consumption and makes it desirable
that a faster method than “learning while playing” be found to ac-
complish the learning process.

The generalization technique was therefore explored in a third
learning situation, referred to as book learning. Approximately 250,000
different board configurations, together with the moves recommended
for them, were transcribed from the Checkers literature and stored on
magnetic tape, and the program was structured so as to learn under their
guidance. This learning situation was used for the development of both

-the signature-table evaluation function and the polynomial evaluation

function,

The procedures in both cases were similar: Given a particular
board configuration, the program would look at the various alternatives
for the move: and store each of their resultant configurations.” One of
the alternatives would be the book-recommended choice.

Next, in the case of the polynomial function, a table would be
formed, listing each such resultant configuration against the values of
each of the parametric functions when applied to it. Using the table,
a count was made of the number of configurations for which a given
parametric function had a value higher than it had for the book-
recommended configuration; also counted were the number of con-
figurations for which it had a value lower than that for the book-
recommended configuration. These numbers were added to the cumula-
tive totals H and L of that particular parameter for all the configurations
that the program had so far considered; a coefficient C for that param-
eter was defined to be the ratio (L — H)/(L + H). This was the
coefficient associated with the parameter in the polynomial evaluation
function.
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Roughly, the same thing was done in the development of the
signature tables. These tables listed each resultant configuration against
its values with respect to each of the signature types (i.e., against its
signatures), and cumulative totals D and 4 were accumulated for each
signature with respect to all the board configurations so far considered,
using the rule that D was increased by one for each signature of an
alternative not recommended by the book, while n (the total number
of nonbook moves) was added to the A total for each signature that
corresponded to a book-recommended move. The correlation coefficient
for a given signature, defined as C = (4 — D) /(A + D), was used as
the entry for the signatures that occurred in the third-level table and,
if the signature occurred in a lower level, it was adjusted to fit the values
possible there. A

Results

The coefficient C for a given parameter (or signature) serves as
cumulative measure of the goodness of the parameter in predicting
the book move. The book-learning technique worked well, especially
for the signature-table type of evaluation function. After analyzing
approximately 175,000 board situations, the Checkers Player was able
to predict book-recommended moves with an accuracy of 48%,
simply on the basis of its evaluation function, without doing any tree
searching. In actual play the program follows book-recommended moves
to a much greater extent because it uses tree-searching techniques.

These, then, were the fundamental heuristics behind the Checkers
Player’s approach to learning the game. Samuel’s Checkers Player was
one of the earliest major successes of AI research, being the first
computer program to perform at a championship level in a difficult
game of strategy. The program improved to the point where it could
beat its own designer. It remains today one of the best achievements
in game-playing programs.

CHESS AND GO
Chess

Shannon (1950 a, b) was one of the first to point out the im-
possibility of using exhaustive search to play Chess, and suggested that
a terminating tree search should be used. Turing (1953) described a
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simple Chess program and suggested that termination of the tree search
should be governed by whether or not the positions ultimately reached
were “dead.” (Turing defined a dead position to be one in which there
were no immediate captures available.) Since then, Chess programs
have been written by Gillogly, Bernstein, Bastian, Newell, McCarthy,
and others. An article by Good (1968) describes a “Five-Year Plan”
for the development of an expert Chess-playing program. Some of the
ideas mentioned have been implemented, though many deserve further
investigation. One of the best Chess-playing programs to date is that
of Greenblatt, Eastlake, and Crocker (1967); it is usually referred to
either as the “Greenblatt Chess Program” or as “Mac Hack Six.”

In order to describe Greenblatt’s program, some of the customary
terminology used by Chess players is adopted: We shall refer to each
of the various alternatives for moving pieces on a chessboard that a
player can legally use in one turn as being Chess moves or, more simply,
moves. In all other sections of this chapter the word “move” has been
used in its (von Neumann-Morgenstern, 1944) game-theoretic sense, to
denote a situation in which a player can choose among alternatives.

The tree search done by Greenblatt’s Chess Player program is
rather sophisticated, but it can be explained within the state-space
paradigm. The possible board configurations, together with the Chess
moves that allow one to go from one configuration to another, are the
state space of Chess. Greenblatt’s program utilizes heuristic information
in evaluating both the states and the operators of the state space. When
presented with an initial board configuration, the program employs a
plausible-move generator to enumerate legal Chess moves (operators)
possible from that configuration and to estimate the desirability of each
move.

The plau51b1e—move generator incorporates a large amount of
heuristic information in the way it evaluates a given move. Basically,
however, its evaluation of a move is a comparison of the positions and
pieces attacked before the move, to those attacked after the move.
Gains or 1osses resulting from blocking or unblocking pieces are taken
into account, and factors are added to increase the evaluated plausibility
of moves that attack certain weak spots (for example, pinned pieces).
The evaluation also incorporates very specific heuristic -information,
such as: “It is bad to move pieces in front of center pawns on their
original squares.” g

The moves are ordered according to the score they receive from
the plausible-move generator, and some of them are selected for
further consideration. The board configuration resulting from the first
of these moves is calculated and the plausible-move generator is ap-
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plied to it; the process continues to a preset depth, at which point an
evaluation function is applied to the resultant board configuration. If
there are many pieces in danger (en prise), the plausible-move genera-
tor is applied again and the analysis is carried down another level of the
tree. Otherwise, the evaluation function returns a value for the configu-
ration, dependent upon a comparison of the pieces held by each of the
players, how much their pieces have changed since the initial configura-
tion, the presence or absence of certain “pawn structures,” the safety of
the kings, the extent to which the two sides control the center, and the
number of plausible captures that can be made from the position.
(Plausible captures are investigated in a manner similar to that for
plausible moves.) '

Thus, the tree search of Greenblatt’s program terminates at a
depth dependent upon the configurations themselves and the extent to
which there are or are not pieces en prise (see Turing’s “dead” position
idea, described in the section “Generating Game Trees”). Similarly, the
width of the tree search is tapered (see the second section of this
chapter) so that at successive levels of the tree the number of plausible
moves from each configuration considered for further investigation is
15,15,9,9,7, ... (all levels below the fifth have a branching factor
of 7)." However, the width at any level can be expanded if there is
heuristic information that an important move (a check, for example)
is being ignored. The alpha-beta technique is used throughout the
generation of the game tree so that the investigation of many plausible
moves is obviated. (It is estimated that the use of the alpha-beta tech-
nique reduces the amount of computation by a factor of 100.) Also, the
program avoids considering the same board configuration: twice by
maintaining a table of those configurations it has already encountered
and evaluated. Finally, the program contains a table of “book openings,”
which provides it with the moves recommended by human experts for
board configurations that often occur during the beginnings of Chess
games. '

In 1967 the program was given a tournament rating of about 1,400.
(The mean of all United States tournament players is about 1,800; the
mean of all Chess players, about 900.) In April 1967, the program
won the Massachusetts Class D amateur trophy. The program has been
continually improved and at present wins at least 80% of its games
against nontournament players. In 1969, Good estimated that the pro-
gram would play about 2,000 in England. The program is an honorary

" During nontournament play the program typically expands its ‘plausible
game tree with a constant branching factor of 6.
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member of the United States Chess Federation, under the name of Mac
Hack Six. Figure 4-10 shows Mac Hack Six winning the first game
of tournament Chess to be won by a computer.

Mac Hack Six is not a “learning” program in the sense of Samuel’s
Checker Player. It is, however, one of the “skillful” programs so far
produced by A1 research (see Chapter 3). The level of skill of Green-
blatt’s program, relative to that attainable by humans, is probably not
as great as that attained by Samuel’s Checkers Player or.Feigenbaum’s
et al. (1971) DENDRAL, but it is still considerable—with more develop-
ment, Mac Hack Six may reach the master tournament level.

White is Ma¢ Hack Six; black is a human rated 1510

1 . P-K4 P—QB4 12 QxQP B-Q2
2 P-0Q4 PxP 13 B-R4 B—N2
3 OoxP " N-QB3 14 N-Q5 NxP
4  ©0-Q3 N-B3 15 N—B7ch QaxN
5 N-QB3 P—KN3 16  OxQ N—B4 \
6 N-B3 P-Q3 17 0-06 B—KB1
7 B-B4 P—K4 18 0Q-Q5 R—B1
8 B-N3 P—QR3 19  NxP B—K3
9 0-0-0 P=0ON4 20 OxNch . RxQ

10 - P-QR4 B—R3ch 21  R—Q8mate
11 K=N1 P—NS -

Figure 4-10. First garﬁe won by computer in tournament competition:
Game 3, Tournament 2, Massachusetts State' Championship, 1967.
(Greenblatt et al., 1967, reprinted with permission.)

The Game of GO

Of all the various perfect-information board games described
previously, Go is probably the most difficult (see the second section of
this chapter). No really successful co-playing program has yet appeared.
However, Thorp and Walden (1970) investigated some of the logical
aspects of the game, Zobrist (1969) described a program that plays a
legal game and has “reached the bottom rung of the ladder of human
6o players,” and Ryder (1971) described a program that uses heuristic
search techniques to play a “fair beginner’s” game.

The rules of Go are fairly simple to state: The game is played on a
19x 19 board (see Fig. 4-11) between two players, each of whom
has an unlimited number of stones, the stones of one player being white
and those of the other being black. The players alternate in making
moves. In a given move, a player may place a stone on any unoccupied
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A B CDEVFGHJI KLMNOPOQQRST
o

19 19
18 & 18
17 -© DO 17
16 —@ & -r 16
15 : 15
14 14
13 OO 13
12 12
1 "
10 ® 10
9 9
8 O—10 —@ 8
7 Pasy 7
6 © OO 6
5 OO0 5
4 o :4& o 4
3 @ o o 3
2 2
1 1

ABCDETFGH J KLMNOPU ORST

Figure 4-11. An illustration of GO. (Courtesy of E. Fiala and H. E.
Sturgis, Xerox Palo Alto Research Center.)

intersection of the board (subject to two restrictions, described below)
of he may pass. The game is over if the two players pass in succession.
Stones of the same color which form a connected string lying along a
row or a column of the board are said to form a chain. The breathing
spaces of a chain are the-empty intersections adjacent (by row or
column adjacency; diagonal adjacency is not sufficient) to the chain.
When a player places a stone on the board, he may not form a chain
without breathing spaces, unless he is capturing. He may not capture a
stone that has captured one of his stones on the preceding turn, unless
he also captures one or more additional stones. Otherwise, if a chain has
no breathing spaces, it is captured by the opponent. At the end of the
game a player’s payment is equal to the sum of the intersections sur-
rounded by his stones plus the number of his opponent’s stones that
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he has captured. The techmque in capturing stones is to maneuver so
that the chains of one’s opponent have no breathing spaces.

Zobrist’s program uses pattern-recognition techniques (see the
next chapter) to aid its investigation of a given Go board configuration.
It possesses 85 “templates,” which are capable of matching configura-
tions of stones already on the board, and either suggest places for the
program to place its stone or suggest areas in which the program should
conduct a limited look-ahead. When the program does look ahead, it
does not perform an extensive tree search.

Ryder’s program represents a departure from the strict alpha-
beta, heuristic tree-search techniques that have worked so well for
Checkers and Chess, and comprises a unification with recent develop-
ments in pattern recognition and problem solving. At least two aspects
of its operation are significant: First, it is designed to recognize re-
cursively defined features of configurations of stones on the board.
Second, the program is a goal-oriented plan for playing Go: It is capable
of establishing and rejecting limited goals (e.g., “target captures”) and
of searching for move sequences (“tactics”) that will lead to them. The |
recognition of recursively defined patterns has been investigated by
Morofsky and Wong (1971), and by Hewitt (1968 et seq.).

GO is an extremely difficult game to play. It may be several years
before a program can be written that will be “skillful” at playing the
game, even at an amateur level comparable to the current Greenblatt
Chess-playing program.

POKER AND MACHINE DEVELOPMENT
OF HEURISTICS

Waterman (1968) designed a language in which heuristics for
Draw Poker could be expressed as sentences, and he attempted to con-
struct a program that could select the appropriate sentences under the
guidance of experience. Waterman’s Poker-playing program, though
perhaps not as well known as other game-playing programs, is one of
the few such programs to differ significantly in its approach from the
Checkers Player.

He distinguished between two types of heuristic, heuristic rules and
heuristic definitions. A heuristic rule specifies an action to be taken and
the type of situation that prompts taking the action. Heuristic definitions -
define terms that may occur in the statement of other heuristic rules
or definitions. A heuristic rule in Poker, for example, could be a state-
ment such as: “If the pot is high, call”; the term high could be defined
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with the use of a heuristic definition such as “the pot is high if it is
greater than or equal to B,” and the term B also could be defined by a
heuristic definition like “B equals 1000.”

Waterman’s program works within the state-space paradigm for
the statement of problems. Poker states (the “hand” one holds, the bids
that have been made, etc.) are described by vectors. Given an mput
state-vector v = vy, ... v, the problem for the Poker-player program is
to decide upon an output state-vector that is both legal according to
the rules of Poker and desirable from the program’s standpoint of try-
ing to do well in the game. (Thus, a legal output state-vector may in-
clude a change in the program’s current bid.) The Poker-playing pro-
gram develops an ordered list of heuristic rules and definitions, which
we shall call a heuristic block, that specifies an output state-vector for
each input state-vector. (Waterman’s program is an example of a pro-
gram that develops subprograms. We discuss various aspects of this
subject in Chapters 6 and 7.)

In Waterman’s Poker player the general expression for a heuristic
rule is of the form k

(le res ,Vn)“)(fl(v), e :fn(v))

where each V; represents a set of values for corresponding variable v;.
Essentially, such an expression says: “Whenever the state vector v is
such that v, is a member of the set V4, ..., and v, is a member of the
set V., the resultant state vector v is defined to be v/ = (f1(v), ...
f2(v)).” A heuristic definition is either an expressmn of the form
“A1->A, A =2, which means that an element a is considered a
member of the set A1 if it belongs to the set 4 and if a =2, or an
expression such as “X—>K1 + Y,” which means that X is defined by the
sum of K1 and Y.

The first step in executing a heuristic block is to compare
the input state-vector with all the heuristic definitions until the most
general description possible (in the heuristic terms that have been de-
fined) of the state vector is obtained; this description can now be
matched against the left-hand sides of the heuristic rules. The con-
vention is adopted that the description of the state vector is to be com-
pared with heuristic rules, in order from the top down, until a match
is made, at which point the appropriate action is taken.

To illustrate, suppose the input state-vector is (3,2,4) and the
heuristic block is as follows (where the asterisk means that any value
is acceptable) :
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Heuristic
Rules

(AL*,B1)>(*X + v,*)
(A2,*,C1)—> (v + 1,%,*
(*,B2,*)—(*,*v1 + 3)

Heuristic

Definitions
Al—>A, A>5 X—-K1 xD
A2—A, A<4 A-—a,a a member of (1,2,...)
B1—B, B>2 B—b,b a member of (1,2,...)
B2—B, B<3 C—c,c amemberof (1,2,...)

Cl-C,C=5

Comparison of the input with the heuristic definitions yields
(A2,(B1,B2),C) as the description of the state vector (which is to be
read: “the input is in the situation A2 either B1 or B2, and C”). This
description is compared with the left-hand sides of the heuristic rules;
the first rule it is found to match is (*,B2,*)—(*,*,v; + 3), so the
output vector is (3,2,6). (Provisions can be made to ‘establish con-
stants that are fixed within the system, such as K1, or to allow variables
and constants that can be updated, such as X or D.)

Given this framework for the description and implementation of
heuristics, essentially four operations can be applied to .a heuristic
block to-produce a new block. ‘

First, a given heuristic rule can be modified to match a vector v by
enlarging some of the sets V; in the left-hand part of the rule expres-
sion. Second, such a rule can be modified by making one.or more
variables irrelevant (introducing an asterisk in the left-hand part of the
expression), again to insure that it matches a given vector v. Third, if a
rule is found to cause an error (i.e., if experience should indicate that
there are situations. for which it prescrlbes a wrong action), it can be
modified so as to not match a given vector (vi,...,v,) and a rule be-
low it can be modified to match it (in both cases by altering sets V;
in the left-hand part of their expressions). Finally, an error-causing
rule can be overridden by inserting a new heuristic rule directly. above
it in the heuristic block.

Before these operations can be apphed some questions nced to
be answered. The most obvious question is, “What is an acceptable out-
put vector for the given input?” Two others are, “What sets are rele-
vant?” and “How should they be changed?” For example, if one is
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given the information that (4,2,4) is an acceptable output vector, that
C1 is arelevant set, and that C1 should be made to include more values,
then one can determine that “C1—C,C=5" is the heuristic which
should be changed and that “C1—C,C>4” is a heuristic definition
which can be substituted in its place. In this example there is nothing
further to be done: The input vector (3,2,4) is now represented as
(A42,(B1,B2),C1), and this symbolic description is matched by the
second heuristic rule,

(AZ’*,CI )"")(vl +1:*a*

with the result that (4,2,4) is the output vector.

How is the program to extract from its experience the answers to
these questions? It is possible to supply this information from the out-
side, in which case one might say the program is being trained; Water-
man investigated this approach and achieved a Poker-playing program
that could play a better-than-average game. (See Table 4—1 for the rules
used by Poker Player.) Waterman also investigated ways the program
could infer the necessary information on its own, although his approach
did not completely free the program from dependence on outside help.
He was able to structure the program so that it could solve the first
two questions and then, with the aid of a decision matrix given to it by
the programmer, solve the third question. (Waterman’s use of a decision
matrix parallels Newell and Simon’s use of a “difference table” in GPs.)
Given this decision matrix, the program was capable of “learning” to
play a fair game of Draw Poker, although its success at learning poker
was not nearly as dramatic as the success of Samuel’s program at learn-
ing checkers. Waterman’s program is distinct from the game-playing
programs discussed in previous sections in that it plays a game of
“imperfect information.”

The problem of designing a program that develops its own heuris-
tics is still unsolved. Again, perhaps the only thing clear is that such a
program would have to be guided by heuristics, and that it will eventu-
ally be necessary for A1 researchers to consider the nature of heuristics
that develop heuristics.

BRIDGE

A recent program by Wasserman (1970b) is capable of bidding
skillfully in the game of Contract Bridge. Bridge bidding is a significant
intellectual task, involving imperfect information and requiring an
- ability to work and communicate with a partner. Wasserman’s program
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TABLE 4-1. Rules for Poker Used by Waterman’s Program

155

Definitions of State-Vector Variables and Symbolic Values

e e e et e i et

VDHAND: the value of your hand
POT: the amount of money in the pot
LASTBET: the amount of money last bet
BLUFFO: a measure of the probability that the opponent can be bluffed
POTBET: the ratio of the money in the pot to the amount last bet
ORP: the number of cards replaced by the opponent
OSTYLE: a measure of conservative style by the opponent
OH: the expected value of the opponent’s hand )
OB: a measure of the probability that the opponent is bluffing
CS: a measure of conservative style by the opponent
BO: a measure of the probability that the opponent can be bluffed
LAP: the largest bet possible without causing the opponent to drop
SB: a small bet
MB: a medium size bet
BB: alarge bet made in an attempt to bluff the opponent
BBS: a small bluff bet
BBL: a large bluff bet
OAVGBET: the average bet made during a round of play
OTBET: the number of bets made by the opponent during a round of play
OBLUFFS: the number of times the opponent was caught bluffing
OCORREL: a measure of the correlation between the opponent’s hands and bets
OD: the number of times the opponent has dropped
SW: a sure-to-win hand '
EC: an excellent-chance-of-winning hand
GC: a good-chance-of-winning hand
PC: a poor-chance-of-winning hand
) NC: a no-chance-of-winning hand
Klto K3l: constants
. a. (SWP8B5 * * * %) — (*POT+4(2XLASTBET)O ** * %) call
b. (SW * * % ¥ % +) — (*POT+(2XLASTBET)LAP * * * ¥) bet
. a. (ECP1B5****) — (*POT+(2XLASTBET)O * * * *) call
b. P1 - P,P > Kl bf
c. B5—-B,B>0 bf
d. (EC*****4) — (*POT+(2XLASTBET) LAP * * * *) bet
. a. (GCP2B5**0R1 %) — (*POT+(2XLASTBET)O * * * ¥) call
b. P2—-P,P >K2. bf
c. OR1 ->R,R =0orl bf
d. (GCP9B6 * *OR1 %) — (*POTH+(2XLASTBET)O * * * *) call
e. P9 - P,P > 15 bf
f. B6—B,B>7 bf
g. (GC*BS5* *OR2CS1) — (*POT+(2XLASTBET)O * * * *) call
h. OR2 - R,R =2 bf
i. ) : CS1 — OCS,0CS > K3 bf
(GCP3B5**0OR3 *) — (*POT+(2XLASTBET)O * * * *) call
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. (GCP4B5 * * * %)

. (NC*B5PB1 **)
. (NCP7B9 * * * ¥)

. (NCP7TB3 *** %)

OB OPE R PR M0 R0 n il B OPE m e PR Mo R TP un2P ol B nm

P3 »P,P > K4
OR3 ->R,R = —1

. (GC**BO1 *OR3) — (*POT+(2XLASTBET)SB * * * %)

BO1 — BFO, BFO > K5
— (* POT4(2XLASTBET) O * * * %)

P4—>P,P >K6
. (GCP9B7 ** * %) — (*POTH-(2XLASTBET)O * * * %)
B7—B,B > 10
(GCH**xx4) — (*POT+(2XLASTBET) MB * * * *)

. (PC*B5*PB2 OR4 %) — (*POTH(2XLASTBET)O * * * %)

PB2 —» PB,PB > 1
OR4—-R,R =0

(PC *B5 *PB2 OR2 CS82) — (*POT+(2XLASTBET)O * * * )
CS2 — OCS, OCS > K7

. (PCP6B9BO1PB30OR6*) — (* POT+(2XLASTBET)BB * * * *)

P6 - P,P < K14

B9-B,B<5AB=O0O
PB3 —PB,PB > 3
OR6 - R,R = —1

. (PCP5B2BO2 * * *) — (*POT+(2XLASTBET)BB * * * *)

P5—-P,P < K9
B2—B,B < K10
BO2 — BFO, BFO > K11

. (PC *B8 * PB4 OR6 *) = (0 *Q***%)

B8 —»B,B>9
PB4 — PB,PB < 2
(PC*B5** * %) — (*POT+(2XLASTBET) O * * * ¥)
(PC*** %% %) — (*POT+(2XLASTBET) SB * * * *)
(NC****OR4*) _)(O*o****)
(NC * * * * OR2 CS3) —(0*0***%)
CS3 — OCS, 0CS > K12

. (NCP10B9BO1 *OR7*) — (* POT+(2XLASTBET)BBS * * * *)

P10—-P,P < 13
OR7—-R,R =3

. (NCP6B4BO3 *OR6*) — (*POT+(2XLASTBET)BBL * * * *)

P6—P,P <Kl4
B4—B,B <KI5
BO3 — BFO, BFO > K16
— (*POT+(2XLASTBET) O * * * %)
PB1 — PB,PB > K17
— (*POT+(2XLASTBET) O * * * %)
P7—P,P < K32
— (*POT+(2XLASTBET) SB * * * %)
B3—B,B < K13

. (NCP6B3 * *OR6 *) —(* POT+(2><LASTBET) SB * * * )

r.(NC******) _)(O*O****)

SW — H,H — OH > K18and H > K19
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TABLE 4-1 (continued)

7. EC—H,H — OH > Kl8and H <K19 bf

8. GC —-H,K20<H — OH < K18 bf
9. PC - H,K21 <H -~ OH <K20 bf
10. NC - H,H — OH <K21 bf
11, OH — K22 — (K23 X OAVGBET X OTBET X OB) ff
12. OB — (K24 X OBLUFFS) — (K25 X CS) ff
13. CS — (K26 X OCORREL) + (K27 X OD) ff
14. BO — (K28 X CS) — (K29 X OH) ff
15. LAP — K30 — (K31 X BO) ff
16. SB — random(1,5) ff
17. MB — random(3,9) ff
18. BBS — random(10,15) ff
- 19, BB — random(8,14) ff
20. BBL — random(14,20) ff
21. H — VDHAND, VDHAND > 0 bf
22. P — POT,POT > —1 bf
23. B — LASTBET, O < LASTBET < 21 bf
24, BFO — BLUFFO, BLUFFO < OV BLUFFO > O bf
25. PB — POTBET, POTBET > O bf
26. R - ORP,—1 <ORP <4 v bf
27. OCS — OSTYLE, OSTYLE < OV OSTYLE > O : bf

Values of Constants K1 through K32

The values of the constants used in defining the production rules representing the heuris-
tics for Draw Poker are given below.

K1 =40 K17 =4
K2 =22 K18 = 27
K3 =1 K19 = 376
K4 =9 K20 = 10
K5 =5 K21 = 0
K6 =30 K22 =6
K7 =1 K23 = .05
K8 =6 K24 =1
K9 =23 K25 =2
K10 =7 K26 = 1
Kil = 10 K27 =2
Ki2=1 K28 = 8
K13 =1 K29 = 1
K14 = 21 K30 =5
K15 =4 K31 =1
K16 = 20 K32 =8

Source: From Waterman (1968). Reprinted with permission.
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achieves the level of human experts in partnership bidding and is esti-
mated to be slightly more skillful at competitive bidding than is the
average duplicate Bridge player. The program is capable of bidding
skillfully according to four systems: Standard American, Goren,
Schenken, and Kaplan-Schweinwold (an ability few humans possess).
Figure 4-12 shows Wasserman’s program bidding all four hands (in-
dependently) of a random deal of the cards.

In March 1969, the program’s competitive bidding ability was
tested against two human players who had often played as partners,
one a Life Master having approximately 1,000 points, the other pos-
sessing nearly 100 points. The contest was conducted in two sessions,
with 15 hands being bid in each session. (Hands and scoring informa-
tion were obtained from the American Contract Bridge League National
Tournament, held at Cleveland in March 1969.) The program won one
session and lost the other, being defeated overall by a score of 388.50 to
361.50.

Wasserman’s program is similar to Greenblatt’s Chess Player, and
Samuel’s Checkers Player, in that it is designed to evaluate Bridge
hands, using features and procedures similar to those described by good
human Bridge players. Unlike Samuel’s program, the Wasserman
Bridge bidder does not “learn” to improve its performance. Even so,
Wasserman’s program is significant because it does perform a difficult
intellectual task.

GENERAL GAME-PLAYING PROGRAMS

Ultimately, the most desirable game-playing program would be
one that could accept the definition of any game of strategy and which,
with practice, could learn to play the game with a skill comparable or
greater than that which people could develop in playing the game. At
the moment, the attainment of a general game-playing program is an
indefinite prospect. However, programs have been written that are
general with respect to certain specific classes of games. In this section a
brief description is given of the classes of games that have been in-
vestigated and the programs that are capable of playing them.

The first class of games are the positional games. These include
two-, three-, and n-dimensional Tic-tac-toe, Hex, Go-Moku (not to be
confused with 6o), the Shannon switching games (e.g., Bridg-it), and
many others. Essentially, a positional game is defined by three sets, say,
N, A, and B. The set N is considered to be a set of positions; A and B
each contain subsets of N. A positional game is played by two players,
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Figure 4—12. A complicated and highly competitive bidding sequence.

(Wasserman, 1970), reprinted with permission.)
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who alternate in choosing elements from N (once chosen, an element
may not be rechosen). The first player tries to construct one of the sets
belonging to A4, and the second player tries to construct one of the sets
belonging to B. The winning player is the one who first succeeds in
constructing one of the desired sets. Positional games may involve
elements of aggressive strategy, since one player may choose an ele-
ment from N that he knows the other player would like to choose.

1 2 3
4 5 6
7 8 | 9

To illustrate, the positions in two-dimensional Tic-tac-toe may be
numbered as shown by the sketch. The set N for Tic-tac-toe may thus
be considered equal to {1,2,...,9}, while the set A and the set B both
contain the sets

{1,2,3}, {4,5,6}, {7.8,9}, {1,4,7}, {2,5,8}, {3,6,9}, {1,5,9},
and {7,5,3}

A player in the game usually indicates that he has chosen a position by
placing his “mark” (which is either an X or an O) on the position.
Positional games were formalized by Koffman (1967) and have
been studied by many researchers, including Banerji (1970), Citren-
baum, Pitrat (1971), and Banerji and Ernst (1971). Programs have
been constructed which are capable of accepting the definition of an
arbitrary positional game and, with practice, of “learning” to play the
game quite well. Koffman constructed a program that learns to recognize
sets of important board configurations in 4x4x4 Tic-tac-toe, and
which requires about 12 games before it starts beating its opponents.
Koffman’s program describes a given set of board configurations by
means of a weighed graph. Fig. 4-13 shows a situation in 4x4x4
Tic-tac-toe from which player X can force a win in six moves; Fig. 4-13b
shows the sequence of moves that leads to the win; Fig. 13c shows the
“winning paths” used in the force and their interconnections; and
Fig. 13d shows the weight-graph representation for the situation. Figure
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X X, X Y4 X,

YS X 6
X X x1 Xz Yz
XS Y 1 Y3

A. Winning situation B. Sequence of moves which
: forces a win from A
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S AN D. Graph representation for C
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C. Analysis of B in terms
of principal rows, columns,
and diagonals it uses

Figure 4-13. A winning situation in 4 x 4 x 4 Tic-tac-toe and its graphic
representation. (Koffman, 1967, reprinted with permission.)

4-14 shows some other winning positions that have the same weighted
graph representation.

Another general class of game that has received a great deal of
study is the nimlike game, formalized by Berge in 1962. A given nimlike
game consists of a directed graph and a counter, initially placed on one
of the nodes of the graph. The graph of a nimlike game is required to
have terminal nodes and it may not have “loops.” Two players alternate
in moving the counter from its position to an adjacent node along a
directed arc. The first player to reach a terminal node wins. '

Nimlike games have been studied by Berge, Banerji and Ernst
(1971). Many techniques for decomposing a given nimlike game into
smaller games (see “problem reduction” in Chapter 3) or for proving
that the strategies of one game can be used for another, have been de-
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X X
X X X
X X
X X
X X X
X X
X X
X X

Figure 4-14. Some other winning situations in 4 x 4 x 4 Tic-tac-toe with
the same graph representation. (Koffman, 1970, reprinted with per-
mission.)

veloped. However, the description of these techniques involves a con-
siderable amount of mathematics, and therefore will not be presented
here.

The development of general game-playing programs is hampered
by the fact that there is as yet no clearly satisfactory theory of what it
means for two games to be “strategically isomorphic,” or of how to
find simpler games that are strategically isomorphic to a more difficult
one. It seems likely that graphlike structures will turn out to be a good
means for describing classes of important game situations in other games
as well as in positional ones. It also seems likely that pattern recogni-
tion and (perhaps) semantic information-processing techniques will
eventually be very valuable to the construction of general game-playing
programs.

NOTES

4-1. Whether computers can have “choice” is a debatable question, but
for us it is largely irrelevant. One might quibble with the ability of com-
puters to “play” games, on the grounds that their ability to “choose among
alternatives” has not been proved, and that this ability is (at least on the sur-
face) required in the von Neumann-Morgenstern formalization of the theory
of games. To answer this quibble, we simply note that we are really con-
cerned with the ability of computers to simulate playing games, not with
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whether they “really” make choices, etc. If the reader wishes to pursue the
quibble on its own terms, three facts are offered: (1) Computers can reason
“causally,” that is, take into (perhaps only partial) account the conse-
quences of various actions; (2) a computer’s decision can be based (per-
haps only partially) on a “random” element; (3) a computer program can
be “self-affecting” (see Chapter 8). Each of these facts serves either to
diminish our ability to say that the computer’s operation is necessarily pre-
determined or to increase our ability to say that the computer can have a
“sense of purpose,” that its actions can be “purposeful.” When we combine
fact (1) with fact (3), we come to the conclusion that a& computer can
change the way it reasons causally about a problem and, in a sense, display
“free will.” Whether its “will” is really as “free” as ours may seem to de-
pend upon its abilities to sense and act upon the “real world”; still, we may
note that in certain limited realms of commonly shared sensation and action
(such as games), the computer’s “freedom of will” may roam more widely,
and more successfully, than our own. Thus, Koffman’s computer program
(discussed in the last section of this chapter) could develop its own strat-
egies for the game of 4x4x4 Tic-tac-toe and within 12 games “learn” to start
beating its human opponents.

4-2. How well can people play games? This is a very devious question:
Actually the significant thing seems to be that people can improve their
ability to play a game. Are there limits? For example, how close are the
current Chess Grandmasters to playing their game with the optimum strat-
egy? We know that optimum strategy must exist, but the game-theoretic
procedure for determining what it is lies beyond the bounds of computa-
tional ability. Thus, we don’t really know what the optimum strategy is un-
less we can find some better way to compute it. At the moment, all we can
do is look at people who play Chess better than average players, and even
their performance tells us little about how well the game might be played
in theory.

From a theoretical standpoint, there may be limits to how well a game
can be played by machines. It may be pos51ble to prove that there are games
which cannot be played “perfectly,” in a practical sense. Although such
games would be finite, their optimum strategies would be beyond the bounds
of computational procedure (using the game-theoretic, enumerative pro-
cedure), and all games that were “strategically isomorphic” to- them would
be of at least the same size. (See the last section of this chapter.) Assuming
they could be shown to exist, we might call these games “grin-and-bear-it”
games. Some interesting questions would, of course, be: Are there grin-and-
bear-it games that have finite descriptions (rules and payment functions)
small enough so that they can be played by humans and computers? What
are some grin-and-bear-it games?

4-3. Kr1egssp1e1 is played with two players and an “vmpire.” Each player
has his own chessboard, which cannot be seen by the other player, but the
umpire can see both chessboards. As in Chess, the players choose oppositely
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colored pieces and alternate in making moves. Each player’s board is empty
except for his own pieces, which are initially arranged in the standard for-
mation. Generally, neither player knows exactly what moves the other
player has made. Instead, when one player (say, 4) makes a move, he
makes a sequence ‘of choices. After each choice, the umpire informs him
whether or not the choice is “legal™ (i.e., consistent) according to the rules
of ordinary Chess, with the\moves so far made by both players. If the
choice is not legal, then it has no effect upon the boards of either player. If
the choice is legal, then the configuration of. pieces on A’s board is trans-
formed accordingly and it becomes the other player’s turn to move. Neither
player hears the choices that are made by the other player.

4-4. Such a game might still have aspects of strategy and problem solving:
Suppose the payment function specifies that pdyments shall be received only
when the game reaches a terminal node, that is, at the end of a play. Sup-
pose that for different plays of the game the payment function specifies a
different “total payment,” and suppose that the payment function has a
maximum: that is, there is a possible play for which the “total payment” is
greater than or equal to that for any other possible play. Finally, suppose
that for any play of the game the payment function specifies that the “total
payment” is to be divided equally among all players. We then have a
“strictly noncompetitive” game in which each player has the problem of
cooperating with the other players so as to bring about a play that yields
the maximum total payment. One can design strictly noncompetmve games
that are very difficult to play.

4-5. Alternatively, one can view a game as a problem in which the solu-
tion is a tree, rather than a sequence, of operators. Usually, such a repre-
sentation of the complete strategy for playing a game cannot be stored
explicitly in a computer, but must instead be stored implicitly, as a pro-
cedure for finding the operator to apply in a given situation. The reader
who is familiar with the procedural epistemology of Hewitt (1968 et seq.)
may anticipate with the present author the desirability of writing some
game-playing programs in languages of the PLANNER genus (see Chapters
6 and 7).

4-6. Playing “perfectly” in this sense is really playing cautiously, and is
equivalent to making the assumption that one’s opponent(s) also have in-
finite time and resources. In fact, if one has extra knowledge about one’s
opponent, not specified in the rules of the game, it may well be possible to
play “better than perfectly.” Thus, in reality, a player may intentionally
choose an alternative that he knows to have a poor theoretical value—if
he thinks that his opponent will not see how to exploit his “mistake” and
will instead fall into a trap. As one might expect, neither classical game
theory nor the field of game-playing programs currently being developed
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by Al research has very much to say about “opponent-oriented” strategies.
The ability to develop such strategies is clearly possessed by intelligent
human game-players, and thus we would expect that Ar research might
eventually program computers to simulate it. However, it may be a long
time before this can happen, since the human development of an opponent-
oriented strategy often makes use of knowledge about the opponent which
is not limited strictly to his past performance at the game. The development
of a good opponent-oriented strategy would require that the computer be
able to make a “model” of its opponent’s game-playing abilities and goals,
but computers currently do not have the ability to gather, represent, or use
the information necessary to make models that would be sufficiently ac-
curate. For the reader who is interested in pursuing this subject, Samuel
(1967) mentions the desirability of programming game-playing computers
to formulate “deep objectives” as part of their strategies, and to hypothesize
on their opponent’s deep objectives. Colby and Tesler (1969), Colby and
Smith (1969), and Abelson and Carrol (1965) discussed the ability of com-
puters to simulate human “belief systems” (though not in the context of
game playing); Clarkson (1963) presented an early program that couid
model human decisions about stock purchasing. (There are probably other
relevant papers in the field of “simulation of cognitive processes” of which
the present author is not aware.) Also, von Neumann and Morgenstern
(1944) treated the subject of “bluffing” in Poker, although not from a
“model making” standpoint.

4-7. The value of the alpha-beta technique is indicated by the fact that
its use in programs which play the game of Kalah has evidently removed.
this game from the sphere of human dominance; that is, the Kalah-playing
programs are probably unbeatable by humans, even though the optimum
strategy for the game is beyond the bounds of computational ability (Kalah
is, however, less difficult than Checkers). For further information on Kalah,
see Russell (1964).

EXERCISES

4-1. Estimate whether the complete generation and minimax evaluation of the
game trees for Chess and 6o can be performed by (a) a “conventional” machine;
(b) an “attainable” machine; (c) a “theoretical serial” machine; (d) a “theoretical
parallel” machine (see Chapter 2, “Limits to Computability.”) (e¢) Make the cor-
responding estimates as to whether these machines could carry out a dynamic
search of the complete “reasonable game trees” of these games (see the section
“Checkers” in this chapter).

4-2. Investigate whether it is epistemologically adequate to describe real-world
phenomena as the plays of a partially specified game, for which it is necessary
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to infer some of the rules. Is such a description metaphysically adequate? (See
Chapter 3.) ’

4-3. (a) Show how White can move to gain at least a draw.
WHITE

A

@ ) 4

: BLACK
(b) What subproblems did you consider in finding a solution to (a)? (c) Discuss
how a computer might be programmed to solve Chess end-game problems.

4-4. (Poker Coins.) * (a) Find the optimal strategy for the game of Poker
Coins, the rules of which are:

(1) A player throws N coins; he then puts one or more aside and rethrows
the rest.

(2) This throwing is repeated until he no longer has any coins to throw (i.e.,
all the coins have been put aside).

(3) Each of the other players takes a turn at throwing N coins, according to
rules 1 and 2; the winners are those players with the maximum number
of heads.

(b) Analyze Poker Dice, which is played according to the same rules except that
N dice are thrown and those players with the highest score are the winners.

4-5.% (a) Analyze Giveaway Chess, played as follows:
(1) Captures must be made, although a player may choose which capture to
make, if more than one is available.
(2) Pawns must be promoted to queens if they reach the eighth row.
(3) The kings obey the same rules of moving and capturing as in ordinary
chess, but there is no such thing as “mate,” and neither player loses if his
king is captured.

* From Beeler, Gosper, and Schroeppel (1972). Reprinted with permission.
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(4) The first player to lose all of his pieces wins.
(b) Analyze Escalation Chess, where white gets 1 move, black 2, white 3, etc. If
a player is in check, he must get out of check on his first move. A player may not
move into check or take his opponents kmg, but he can place his opponert in a
“multiple check,” etc. A player is checkmated if he can’t get his king out of check
on his first move.
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, 1973.) See Example

Wordy Eye. (Reprinted with permission from the computer artwork of

M. R. Schroeder. Copyright © Bell Laboratories
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PATTERN
PERCEPTION

INTRODUCTION

- This chapter discusses ways that machines can simulate “pattern
perception.” Roughly speaking, pattern perception is the ability to find
a simple, useful description for something, given an initial description
that is very complex, or of low utility. In order to find the simple de-
scription, one might make use of some property (“form,” “design,” or
“regularity”) that is possessed by the more complex description. If there
is such a property, then the complex description is said to be an example
of a “pattern.” Pattern perception may operate on descriptions of either
physical or abstract things. Thus, it is common to talk of “visual pat-
terns,” “sound patterns,” “symbol patterns,” and, even, “reasoning pat-
terns.” Not all of these have been explicitly investigated by Ar research.
However, it should be clear that a machine which can solve problems
in a real-world environment must be able to make and use descriptions
of that environment. Machines can make some descriptions rather
easily (e.g., photographs), but they have difficulty in using them to
“understand” (recognize and solve problems involving) what is being
described. From a practical standpoint, the extent to which machines
are able to perceive patterns is a limit to the extent that they can solve
real-world problems.

This chapter concentrates on the use of machines to do “visual”
pattern perception, or scene analysis, both because this is the area in

169
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which the largest amount of work has been done to date, and because
there are good grounds for believing visual pattern perception to be
one of the current, major problems confronting Al research. However,
other types of pattern perception will be discussed in the next two sec-
tions and in the last section of this chapter. A wide variety of approaches
have been followed toward visual pattern perception by machines. An
attempt will be made to summarize some of the most important ap-
proaches and indicate the ways in which each approach is related to
the others. However, there is not space in this chapter for a complete
survey of the subject. For a more complete summary of vision systems,
refer to the book by Duda and Hart (1973), and the survey papers by
Rosenfeld (1972) and Turner (1971).

SOME BASIC DEFINITIONS AND EXAMPLES

Al researchers have adopted a set of basic definitions for the word
“pattern” which are fairly consistent with the definitions used by re-
searchers in other fields (e.g., “numerical taxonomy,” “behavioristic
psychology,” “theoretical linguistics”). The definitions are not very
hard to understand. However, since the word “pattern” is usually not
defined in everyday conversation, this section is devoted 6 an explica-
tion of its use in A1 research and a discussion of some general problems
involving “patterns” that have been considered by Ar researchers.

A pattern is a collection of objects, each of which has the property
that it satisfies a certain criterion, known as the pattern rule for the
pattern. The objects in a pattern are said to be pattern examples. (Re-
search papers sometimes confuse these ideas, using the word “pattern”
to denote what we have chosen to call pattern rules and pattern ex-
amples.) Artificial intelligence research has been concerned with sev-
eral basic problems involving patterns, pattern rules, and pattern ex-
amples.

1. (Classification) Given an object and a collection of pattern
rules, determine which pattern rules are satisfied by the
object.

2. (Matching) Given a pattern rule and a collection of objects,
find those objects which satisfy the pattern rule.

3. (Description, or Articulation) Given an object, find a de-
scription for it in terms of pattern rules that are satisfied
by the parts of the object, or by the object itself.

4. (Learning) Given a collection of objects, some of which do

T
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and some of which do not belong to a given pattern, deter-
mine a pattern rule for those that do belong to the given
pattern.

Each of these problems may occur in a way which involves the
others as subproblems. In addition, there are important problems of
representation, which involve finding languages with which to state pat-
tern rules. ’

EXAMPLE 5-1. “SUNFLOWER” PATTERNS. This example was used
in Chapter 2 for a brief discussion on the nature of mathematical
descriptions. Figure 5-1 shows an example of a sunflower pat-
tern. This pattern example of a sunflower pattern is a collection
of dots in the plane. For simplicity’s sake, each dot is con-
sidered to be simply a “point.” A dot can be described by giv-
ing its position relative to some pair of fixed reference points in
the plane, one to serve as the origin and the other to establish
a scale and a baseline for angular measurements. Thus,
r=11.1, 6 = 2 is a (polar coordinate) description of a dot. We
say that a dot belongs to a sunflower pattern example if and
only if it satisfies the pattern rule for the sunflower pattern. This:
pattern may be described either by presenting some of its pat-
tern examples (we presented one in Fig. 5-1) or by stating a
pattern rule for it. An English statement of a pattern rule for the
sunflower pattern example shown in Fig. 5-1 is: A collection
of dots is an examplé of the sunflower pattern if and only if
each dot is the intersection of 2 of the 24 Archimedean spirals
that have equations obtained by substituting for k any value
between 1 and 12, inclusive, and by substituting for i either
+1 or —1, in the expression

- {h).

when a suitable pair of reference points is chosen. An infinite
number of dots can belong to such a collection.

EXAMPLE 5—2. RECOGNIZING PRINTED CHARACTERS. Much early
research in pattern recognition was motivated by a desire to
build machines (known as optical-character recognizers, or
ocr’s) that would be capable of reading alphabet and number
characters, either written or printed on paper. OCR’s currently
are very good at reading certain special types of machine-
printed characters, rather good (about 80% accurate) at recog-
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Figure 5-1. The Archimedean sunflower pattern.

nizing typed and hand-printed characters, and very poor at
recognizing handwritten or script letters(e.g., “/""6"5 22”).
When we say a machine can “read” or “recognize” Eertain
characters, we are- essentially talking about a problem of pat-
tern classification. For example, there are several possible ways
of writing or printing the letter A. Most ways produce one of
several possible distributions of ink on a paper surface that an
(English-literate) human will be capable of identifying as an
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example of the letter A. Thus, the letter A is a pattern; each
distribution of ink on paper that is identified by people as being
an A is a pattern example of the letter A. A machine recognizes
the letter A if, whenever it is presented with a pattern example
of A, it outputs some signal corresponding to A (it may, for
example, print its own version of A),'and if it never outputs that
signal when it is not presented with a pattern example of A.*

Similarly, we can define what it means for a machine to recognize
other characters (b, n, f, 1, 2, etc.). If a machine is to recognize a
character or pattern, it must have a corresponding pattern rule that can
be applied to anything which is presented to it, to test whether or not
the thing presented is a pattern example. Some OCR’s are given the pat-
tern rules they use to recognize characters and others are designed to
develop their own pattern rules (see the next section). In each case,
when presented with a distribution of ink on paper, the OCRr is required,
in effect, to classify that distribution of ink as being a pattern example
of some pattern. (It may classify it as being ambiguous.) For further
information on ocRr’s, see Holt (1968), Munson (1968), and Duda and
Hart (1968).

EXAMPLE 5-3. SEQUENCE PREDICTION. Our definition of “pat-
tern” makes no reference to time or sequentiality. However, it
is possible in our formalism to talk about perception of se-
quential patterns. For example, consider the problem of “se-
quence prediction.” Initially, one is presented with some finite
sequence of objects; say, numbers. Thus, one might be shown
the sequence ¢ =0,1,1,2,3,5,8,13. The assumption is that the
sequence will continue; one’s problem is to “predict” how it will
continue. In other words, we assume that o is an initial portion of
some unknown, infinite sequence of numbers. Given an initial
portion of the infinite sequence, we attempt to predict the re-
mainder of the sequence. We may make our prediction either by
presenting some finite sequence ¢’ as an immediate continuation
of ¢ or by presenting some Turing machine T so that T (o) will
effectively print out the complete continuation of ¢. Thus, for
the sequence o, we might predict an immediate continuation
of ¢ to be the sequence o’ = 21,34, Or' we might predict a com-

1 Presenting a pattern example of A to the machine usually means placing
the piece of paper with its distribution of ink in an appropriate position before a
television camera or equivalent scanner. The camera will make an “initial de-
scription” of the piece of paper; this description will be a collection of electric
signals that can be processed by the machine.
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plete continuation of the sequence by presenting a Turing
machine that would implement the rule: “Given an initial por-
tion o, generate the number that follows the last element of ¢ by
adding the last two elements of ¢ to each other. Reset o to be
the old initial portion followed by the number generated, and
begin again.” (Thus, T would generate 21 by adding 8 and 13,
T would generate 34 by adding 13 and 21, etc.) In effect, each
initial portion of the sequence to be predicted can be considered
as a pattern example of that sequence.

It is rather easy to see how a Turing machine that predicts the
complete continuation of a sequence can be used to construct a pattern
rule (Turing machine) that will tell us what sequences are pattern
examples (initial portions) of the infinite sequence.

However, the “problem of sequence prediction” is complicated
by two facts:

1. There are infinite sequences of numbers that cannot be ef-
fectively enumerated by any Turing machine (see Chaitin,
1966, 1969).

2. Given any two sequences of numbers, say o and o/, it is
possible to find a Turing machine T which predicts that o/
will be the immediate continuation of o.

In other words, there exist sequences that cannot be predicted with
complete accuracy by any Turing machine, and it is theoretically pos-
sible to. justify any finite prediction of the continuation of a given
sequence by reference to some Turing machine.

Consequently, the problem of sequence prediction may be restated
as: “Find a simple Turing machine that can, given a blank tape, enu-
merate the sequence o and its complete continuation within a given,
required ‘accuracy’.” The concepts of “simple” and “accuracy” can be
given mathematical definitions (e.g., see Arbib, 1969, p. 229). We may
therefore suppose that we have chosen some definitions. Let us hold
the accuracy required of our prediction at a constant level and imagine
looking at all the Turing machines (Tm’s) that, with this accuracy,
predict (enumerate) o and its continuation. Some Tm’s will be simpler
than others, but it is possible that more than one Tm will have the
greatest value of simplicity. Thus, there may be many predictions for
the sequence o, all of which are equally valid. We should therefore
generalize the problem of sequence prediction and state: “Given
o, find the set of most simple Turing machines that, within a given re-
quired accuracy, predict the continuation of ¢.”
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Most real-world problems of sequence prediction cannot be solved
.very easily by using a Turing machine formalization. In fact, no very
good formalization (language) for sequence prediction in real-world
problems has yet been developed. Aside from its metaphorical,
theoretical relationship to subjects like the theory of scientific inquiry
(see Chapter 2), there has been some question as to the relevance of
the problem of sequence prediction to practical robotics and artificial
“intelligence. To quote McCarthy and Hayes (1969):

Imagine a person who is correctly predicting the course of a football
game he is watching; he is not predicting each visual sensation (the
play of light and shadow, the exact movements of the players and
the crowd). Instead his prediction is on the level of: team A is
getting tired; they should start to fumble or have their passes inter-
cepted.

Similarly, attempts to use numerical sequence prediction techniques to
forecast the stockmarket are shortsighted wunless they also process
information about the multitude of events in the real world which can
- affect the market. From the standpoint of Al research, a more relevant
kind of sequence prediction to investigate would be the prediction of
sequences of relational structures. The problem of sequence prediction
also occurs in AI research into language understanding, where it may be
~necessary to predict the next word or phrase in a sentence, given the
‘preceding words. Here the prediction must be made relative to a gram-
‘mar for the language and to some model for the possible meanings of
‘the sentence. Finally, a paper by Slagle and Lee (1971) shows how
- game-tree searching techmques can be applied to sequentlal pattern
recognition.”

EXAMPLE 5-4. RELATIVELY PRIME NUMBERS. This example is
similar to the sunflower pattern discussed in Example 5-1. Two
integers are said to be relatively prime if and only if they have
no common divisor other than unity. Thus, 4 and 9 are relatively
prime because the divisors of 4 are 1 and 2 and the divisors of
9 are 1 and 3. Similarly, 12 and 21 are not relatively prime be-
cause both can be divided by 3. Figure 5-2 shows part of a
pattern @ of dots in the plane (here the dots are colored white
and the plane is colored black), which has the following pattern
rule: “A dot is a pattern example of the pattern @ if and only
if its x and y coordinates are relatively prime integers.” Figure
5-2 shows all those dots (pattern examples) of ® whose integer
coordinates are each greater than or equal to zero and less than
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Figure 5-2. The relatively prime integeré from 0 to 256.

or equal to 256. The figure,” to quote Reichardt (1971), “shows
the intriguing combination of regularity and randomness which
characterizes the distribution of prime numbers and the property
of joint divisibility.”

EXAMPLE 5-5. WORDY EYE. The Frontispiece to this chapter is a
picture that contains pattern examples of at least five patterns:
the letters of the English alphabet; the words of the English
language; the sentences of the English language; the sequence

% The Frontispiece to this chapter and Fig. 5-2 are reprinted with permission
from the computer artwork of M. R. Schroeder; copyright © Bell Laboratories,
1973.
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formed by repeating ONE PICTURE IS WORTH A THOU-
SAND WORDS; and the set of pictures that depict-a human
eye. This picture nicely illustrates the hierarchical, structural
nature of many patterns. A system for understanding patterns
in the real world must be capable of dealing with the ways in
which patterns can be made up of patterns. Thus, we may
choose to state a pattern rule for the letter A as follows: An
object is a pattern example of A if it is made up of an object
that is a pattern example of the “upward-angle” pattern and an
object that is a pattern example of the “horizontal-line” pattern,
and these two objects are related to each other in a certain way.
Our discussion of ‘vision systems will trace a hierarchy of pat-
terns (point, line, curve, region, texture, . . . , object, scene)
which should be recognized by machines that can see. Especially
relevant in this regard is the explication of “hierarchical syn-
thesis” given by Barrow et'al. (1972).

EXAMPLE 5-6. SALT AND PEPPER SHAKERS. Mr. and Mrs. Jones
of A.p. 2100 are eating a quiet dinner at home. Mrs. Jones' de-
cides her fried seaweed is not salty enough and reaches for the
saltshaker, only to discover that the table has been 1nadequately‘
 set, and there is no saltshaker on it. “Robbie,” she calls, “would
you bring us the saltshaker?” Robbie the Robot floats into the
kitchen and proceeds to look for a saltshaker. It finds two ob-
jects, each of which might be a saltshaker (they are the right
shape and size), but they are each opaque—the robot can’t
see their contents. Looking more closely at the ob]ects, Robble
notices that there are holes in the top of one of the objects and
that these holes are placed so as to form a pattern example of
the letter S. Robbie therefore takes this object to the dinner
table. By this time Mrs. Jones also wants the peppershaker and
Robbie, having been too literal-minded (but next year’s models

will be better . . .), must go back to the kitchen. However, it
has successfully recognized a pattern example of the pattern
“saltshaker.”

EXAMPLE 5-7. EXTRATERRESTRIAL PLANETARY EXPLORATION.,
Let us suppose that a team of robots is conducting a slow, but
patient, geological exploration of the Moon. Because of the
time lag in communications from Earth, the robots form a
largely self-directing collection of machines. In fact, each robot
is somewhat independent of the others because they are too
thinly distributed about the Moon’s surface to be in frequent
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contact with each other. One of the robots, M65, is safely
navigating a narrow path between two craters when a moon-
quake sends it sliding out of control over the edge of the path
and down the slope of one of the craters. M65 arrives intact
but disoriented at the crater bottom. It doesn’t know precisely
where it is or where to go next. The caterpillar-treaded robot
crawls back up the slope of the crater. Reaching the edge, M65
takes a panoramic picture of its surroundings, and generates a
description ‘of the scene’s major details (shape and placement
of pattern examples of the patterns “mountain,” “large boulder,”
“crater,” etc.) It compares this description to another descrip-
tion that it had generated of its surroundings shortly before
the moonquake occurred. Noting some similarities, it attempts
to reestablish its old position and orientation and to proceed
with its business.

Examples 5-6 and 5-7 are, of course, entirely fanciful and beyond
the current state-of-the-art in AI research. Indeed, for Robbie the Robot
to behave as it did in EXample 56, it would have to be able to solve
the problems of recognizing and understanding human speech, which
are at least as difficult as simply recognizing and distinguishing salt
and pepper shakers. Similarly, the techniques necessary for robot M65
to “reestablish its orientation” and “navigate successfully” over long
distances of lunar terrain (without human assistance) may not be
available for a few decades. However, it should be noted that AI re-
searchers have made serious proposals that artificial intelligence tech-
niques be used to construct machines that could carry out less pre-
tentious, but still somewhat sélf—directing, explorations on Mars (see
McCarthy, 1964a; Glaser, McCarthy, and Minsky, 1964).

EXAMPLE 5-8. RECOGNIZING A CUBE. Succeeding sections will

- discuss techniques for using a television picture of a scene to

produce a line drawing of the scene. Suppose the scene con-
tains only a cube resting on an unknown surface. We might then
obtain a line drawing something like
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Now this line drawing is a simple description of the origi-
nal television picture of the scene. The line drawing itself may be
considered as an object, however, and techniques that recognize
some line drawings as being examples of the pattern “descrip-
tions of a cube” can be considered. Thus, depending on the
orientation of the camera with respect to the cube and the
surface, any one of an infinite number of line drawings might
be obtained that would describe a pattern example of the pat-
tern “cube.” We recognize each of these as belonging to a
pattern different from that to which the line-drawing below
belongs.

As is illustrated by the last example, most pattern-recognition pro-
grams really work with descriptions of things rather than with the
actual things themselves. Thus, to find pattern examples of various
patterns (“cubes,” “boxes,” etc.) in a real-world environment, the
computer will typically make use of a television camera picture of that
environment. This picture constitutes its initial description of the en-
vironment. The initial description may be processed to yield other
descriptions of the environment, or of parts of the environment, and
these descriptions may be recognized as “descriptions of a cube,” “de-
scriptions of a box,” etc. The computer may then print out that it has
found a pattern example of the pattern “cube” in the environment; if
necessary, it may use its descriptions to help guide a mechanical arm
that would attempt to pick up the pattern example of “cube” that was
found. Of course, when the computer does so, it may find that its de-
scriptions are incorrect.

It is usually possible to describe a given object in many different
ways. The kind of description one uses will in general depend upon
the problem at hand. The major kinds .of descriptions that are cur-
rently used by pattern processing systems all have the structural char-
acteristics of vectors, matrices, strings, lists, and graphs.
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EXAMPLE 5-9. PATTERN MATCHING AND TEMPLATES. One rep-
resentation that has been developed for stating pattern rules
having each of these five kinds of structure is the use of tem-
plates in pattern matching. An early example of this technique
was presented by Uhr and Vossler (1963), who described a
program that successfully generated its own set of template
matrices, which it' used to recognize handprinted characters.
Similarly, in Chaper 4 we discussed the work of Koffman
(1967) and Citrenbaum (1972), who presented programs that
could develop and use templates with the structure of graphs to
play positional games. Most of the recent programming lan-
guages for Al research make extensive use of templates with the
structure of lists for pattern matching: pattern matching in this
case means locating subexpressions in a larger expression or
data base (set of expressions), and perhaps naming the located
subexpressions by assigning them as values to variables. As an
example, we shall briefly describe the pattern matching language
used in the A1 programming language Qa4 (Rulifson, Derksen,
and Waldinger, 1972).

In this language, a pattern rule can be any list expression
that is correctly made up of atoms, variables, and certain “pat-
tern operators” defined for Qad. Intuitively, two expressions
match if their elements have the same values, at all levels. Thus,
an atom (essentially, an alphanumeric string) is treated as a
constant, and normally will only match another instance of it-
self; if an atom is to be treated as a variable it must have one
of six possible variable prefixes: <, ?, $, <<, 72, and $$. The
first three prefixes restrict the variable to match only individual
terms (expressions), while the second three allow variables to
match “fragments,” or segments of lists. Thus, X, 41263, and
ATOM are constant atoms (when they occur in a pattern rule);
7Y, $Z, and «W are variables restricted to individual terms;
«<«P, 7741, and $$C are fragment variables. The prefix «-
permits a variable to match any individual term, regardless of
the variable’s previous value, and specifies that after the match
the variable will have as its value the term it is matched against.
The prefix ? allows a variable to match only its previous value,
if any (Qa4 allows variables to not have values); otherwise it
is allowed to match any individual term, and acquire that term
as its value. Finally, the prefix § allows a variable to match only
its previous value; if the variable does not have a value initially,

T R
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then it is not allowed to match anything. The three double-
character prefixes have analogous meanings to those of their
single-character counterparts, except that they restrict variables
to match only fragments of lists.

Thus, the expression (=X (7Y $Z) 2 «<«W) is a pattern
rule in the Qa4 language; a wide variety of expressmns will
satisfy, or match this pattern rule (template), given that the
variables X, Y, Z, and W have the proper initial Values, where
required. Some expressions which might match this pattern
rule are (PLUS (SIN A) 2 4.5 PI) and ((THE AMERICAN
CONGRESS) (HAS EXACTLY) 2 HOUSES). Other expres-
sions cannot match this pattern rule, regardless of the initial
values of its variables: examples of such expressions are
(TIMES 2 3) and ((AN OUT) REQUIRES 3 STRIKES). It
should be clear how this language allows a pattern rule to specify
the structural nature of the pattern examples which satisfy it. -

. Among the special operators which further extend . this
capability are .. , PAND, and POR. If the subexpression .. pat
occurs in a pattern rule (where pat is itself a pattern rule), then
this subexpression matches an argument expression if pat
matches some subexpression of that argument, perhaps the en-
tire argument itself. Thus, if the initial values of the variables
X and Y are C and D, respectively, then the pattern rule
(.. $X ..8Y) matches the expression ((4 B C) D), The
operators PAND and POR allow pattern rules to make use of
logical combinations of pattern rules. A pattern rule of the form
(PAND patl ... patn) matches an expression if and only'if
that expression matches all the pattern rules from-pat! through
patn. Similarly, a pattern rule of the form (POR patl ... patn)
is satisfied by an expression if and only if that express1on
matches at least one of the pattern rules from pat! through patn.
Thus, the pattern rule (PAND «X (TUPLE 1 «Y)) matches
the expression (TUPLE 1 2), assigning X the expression
(TUPLE 12) as its value, and making 2 the valueof Y. =

This kind of pattern matching language has been useful in many
ways, perhaps most notably as an interlingua (intermediate language)
for question-answering systems. For example, Winograd’s English un-
derstanding program (see Chapter 7) demonstrated how a wide variety
of English questions can be translated into PLANNER. theorems (see
Chapter 6) that can use such pattern rules to represent the “essential
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unknowns” of their respective questions. Similarly, the English question
“Why did the chicken cross the road?” might be translated into a Qa4
expression like:

(AND (EXISTS (CHICKEN ?Y))
(EXISTS (ROAD 2Z))
(EXISTS (CROSS ?Y ?Z 9EVENT))
(EXISTS (CAUSE ?X ?EVENT))

Evaluation of this expression will cause a search of the current data
base (set of expressions that a Qa4 program may treat as assertions
about the world) for expressions matching, successively, the pattern
rules (CHICKEN ?Y), (ROAD ?Z), (CROSS 7Y ?Z EVENT), and
(CAUSE ?X ?EVENT). The pattern matching facilities within such
programming languages as PLANNER, QA4, and CONNIVER (see cita-
tions in the Bibliography under Hewitt, Rulifson, and Sussman) provide
one of the most general formalizations for pattern processing yet de-
veloped by A1 researchers. This generality derives from the utility of
storing symbolic data in list structures, the expressiveness of the pattern
rule notation for describing list structures, and the fact that the for-
malization of these systems does not require the use of any specific
terminology or facts associated with particular real-world pattern-
perception problems.

In closing this section, reference should also be made to an earlier,
but still very general group of formalizations for pattern processing sys-
tems, which includes perceptrons and statistical decision theoretic pat-
tern recognition (note 5-1). There is not space here to discuss these
topics but, fortunately, excellent summaries of them are given in the
books by Minsky and Papert (1969), Duda and Hart (1973), and
Mendel and Fu (1970). In Chapter 7, the topic of statistical decision
theoretic pattern recognition is briefly discussed in comparison with the
grammatical inference approach to pattern recognition.

EYE SYSTEMS FOR COMPUTERS

The most basic part of a computer system that performs visual
pattern perception is the eye system, which is simply the collection of
computer eyes that it can control, and from which it can receive in-
formation. A computer eye is a device for producing descriptions of the
electromagnetic radiation in space. In general, such an eye consists of a
sensor, optics, and usually an illuminator (Earnest, 1967). The purpose
of the illuminator is to direct electromagetic radiation into the environ-
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ment, the purpose of the sensor is to receive electromagnetic radiation
from the environment, and the purpose of the optics is to process the
radiation, either as it leaves the illuminator or as it enters the sensor.
The sensor describes the electromagnetic radiation that it receives, by
converting it into an electric signal that can be stored and processed as
data by the computer. Optics serve to change the radiation received from
the environment by the sensor, so that typically a given sensor can de-
scribe different views of its environment without itself being moved. For
ordinary light (as distinguished from infrared, ultraviolet, etc.), the
optics will usually be a movable collection of shutters, filters, lenses,
mirrors, and prisms. -

AT research has so far given primary attention to two types of
artificial eye, known as imaging eyes and jumping (or flying) spot eyes
(Earnest, 1967). Figure 5-3 shows diagrams for these types of eyes.
The jumping-spot eye makes use of an illuminator (often a laser) that
is capable of putting out a very narrow beam of light. The optics of the
jumping-spot eye cast the beam in different directions. throughout the
environment. The sensors (it is desirable to use several) of the eye
receive radiation from the beam that is reflected back by the environ-
ment. The total amount of radiation received by the sensors is compared
with the total amount of radiation emitted by the illuminator, to yield a
score for the “reflectivity”® of the environment in each direction that is
illuminated. The initial description of the environment that is produced
by the jumping-spot eye corresponds simply to a list of directions and
their reflectivities. This list is coded for use by the computer as a
sequence of electric signals. e

When compared to other types of artificial eyes, jumping-spot eyes
appear to offer many advantages (such as the natural development of a
visual-light frequency radar, or “lidar”), but some disadvantages (e.g.,
mechanical problems connected with the use of ordinary mirrors, prisms,
etc., in the optics of such an eye may make it difficult to scan large
scenes at rates faster than five frames per second, thus hampering the
analysis of motion in scenes). ‘

Most Al research on visual perception has been concerned with
the use of imaging eyes. (See Figure 5-4.) An imaging eye is basically
the reverse of a jumping-spot eye; instead of several sensors and one
illuminator, an imaging eye has one sensor (typically a television cam-

3 The proper physical term to describe the reflecting ability of a material
surface is reflectance. The light received by a sensor in a jumping-spot eye is not
really a measure of the reflectance of any one material surface, since it may de-
pend on the placement of many objects in space.
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Figure 5-4. A computer-controlled television camera. (Courtesy of Karl
Pingle and Lynn Quam, Stanford Al Project.)

era) and often has several illuminators. Thus, the sensor used in an
imaging eye is usually more complex than those in a jumping-spot eye.
The optics in an imaging eye generally control the way light is directed
into the sensor rather than out of the illuminators. With proper use of
the optics in an imaging system, the pictures produced by the eye can
be “focused,” “magnified,” “zoomed,” etc. A picture produced by an
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imaging eye may be described as a large matrix, with each element of
the matrix being a number measuring the intensity of light in a given
volume of space. When a picture matrix is produced by an imaging
eye, it is, again, coded for use by the computer as a sequence of
electric signals. Generally, a picture matrix produced by an imaging
eye will contain less than 100,000 elements (in contrast to approxi-
mately 300 million rods and cones in the retina of the human eye).
Figure 5-5 shows an example picture of a real-world scene of fairly

Figure 5-5. Picture of a real-world scene produced by the computer-
controlled television camera shown in Figure 5-4.
(Courtesy of Karl Pingle, Stanford Al Project.)

simple objects, produced by an imaging eye at the Stanford Artificial
Intelligence Project.

Imaging eyes have the advantages that their illumination require-
ments are roughly compatible with those necessary for humans and
that their optical systems have been already extensively developed
for use in ordinary photography. Furthermore, there is no difficulty in
using imaging systems to make motion pictures of scenes.
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SCENE ANALYSIS
Picture Enhancement and Line Detection

This section discusses techniques that can be used by computers
for the analysis of pictures. As in the preceding section, a picture is con-
sidered to be a large matrix of numbers, each number representing the
intensity of light in a portion of space. The total portion of space
described by a picture will be referred to as a scene. Our primary con-
cern is to show how a computer can analyze a single picture of a given
scene. Techniques for analyzing and comparing several pictures of the
same scene are described in Quam (1971) and Duda and Hart (1973).
The techniques we discuss can be grouped into three classes: “picture
enhancement and line detection,” “perception of regions,” and “per-
ception of objects.” R

Picture-enhancement technigues are methods for using one picture
to produce another. When used correctly, they can be of help in dis-
covering significant details in a picture.* However, because the picture
that results from the use of such a technique usually has less information
content than the original picture, picture enhancement techniques cur-
rently seem to be of more value to human photographers than they are
to computer vision systems. Some relatively simple picture-enhancement
techniques will be presented here, and the reader is referred to Duda and
Hart (1973) for a discussion of other, more complex methods.

One of the simplest picture-enhancement techniques is that of
noise “removal,” or smoothing. Usually, in developing a picture-matrix
description of a scene, some noise will be picked up, causing various
elements of the matrix to deviate from their correct value. If the noise is
random, such that noise in adjacent elements of the picture matrix is
uncorrelated, then a spatial averaging or smoothing technique may be
applied to reduce it. This technique consists simply of resetting the value
of each element of the picture matrix to be the average of the old values
of the picture €lements in a “window” surrounding it. To illustrate,
suppose we smooth the picture matrix

1 0 2 5 7
0 2 4 5 6
9 2 8 4 7
9 2 7 5 17
6 1 5 3 6

*Quam (1971, pp. 78, 101) shows how plcture-énhancemeht techniques
were used to detect a cloud on Mars, which would probably not have been
recognized without the use of these techniques. (Also see Leovy et al., 1971.)
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using 3 x 3 windows. Then the picture element that has value 8 will be
reset to have the value 4.3. Smoothing a picture usually introduces some
“blurring” in the picture matrix that is produced.

Another technique for noise removal consists of finding each pic-
ture element that differs greatly from a surrounding set of approximately
equivalent picture elements, and then replacing it with their average
value. In the example displayed above, this technique might give a new
value of 6 to the element that has- value (intensity) 3. This technique
is often referred to as salt-and-pepper removal, and has the advantage
that it will usually reduce most of the random shot noise in a picture
without causing the “blurring” created by smoothing.®

Contouring, or isodifference detection, is often used in terrestrial
map making to emphasize lines of constant altitude. The technique con-
sists of establishing a sequence of brightness levels,

90<91<02<"'<9n

for which each picture-element P;; in a given matrix has an intensity
I;; such that 6, = I;; < ;4. for some k. Each picture element is then
given a new intensity value corresponding to the appropriate 6.

Edge enhancement, or sharpening, of a picture will produce a new
picture similar to that obtained by contouring. In the edge enhancement
of a picture only those picture elements that separate elements of greatly
varying intensity are shown. For each picture-element P; ; with intensity
value /;; of the matrix, we compute the “cross operator”

Ri; = ((Ii,j ~Lip15+10)° + (Tiger — i+1,j)2>%
We then form the new picture matrix with elements P;; that have in-
tensity I’;; = 1 if R; ;= ¢, where 6 is some threshhold value and I,; = 0
otherwise. The threshhold value ¢ determines how greatly the intensity
must vary in order to show a given picture element. (See Roberts,
1963.)

Other techniques developed for picture enhancement make use of
spatial frequency analysis and Fourier transforms. These are well ex-
plained by Duda and Hart (1973). Figures 5-6 and 5-7 illustrate the
power of these techniques applied to a picture of the Martian moon
Phobos, taken by Mariner 9.

Line-detection techniques are methods for finding significant curves
in a picture matrix that can be used to produce a line drawing. The
problems of making a good program for line detection in pictures are
51gn1ﬁcant and still largely unsolved. The value of having such a pro-
eram is great, however, as the reader w111 see from the discussions in

5Quam (1971) referred to this techmque as “Custermg,”'after General
Custer (U.S. Army) who was defeated when surrounded by Indians.




Figure 5-6. (Top) Original picture of Martian moon Phobos, taken by

Mariner 9. (Bottom) High-pass spatial frequency filtering of the original.

(Courtesy of Lynn Quam and Robert Tucker, Stanford Al Project and
Jet Propulsion Laboratory.)
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Figure 5-7. (Left) Custering of the original picture of Phobos (see Fig. 5-6). (Right) High-pass filtering of the custered pic-
ture. (Courtesy of Lynn Quam and Robert Tucker, Stanford Al Project and Jet Propulsion Laboratory.)
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this chapter on “identification of objects” and “learning to recognize
structures -of simple objects.” The edge-enhancement technique de-
scribed above is one simple type of line-detection program. Another
simple method for detection of lines is based on the use of coincidence
predicates. A simple version of this method is the following: For a given
-picture matrix with elements P;;, having intensity-values I;; form a
new picture matrix with elements P’;; having intensity-values I’;;, where
I'yj=1if (I,; — Iixy;) and (L ;41 — Liy1,;4+1) are both large and of
the same sign, or if (I;; — I; ;1) and (Liyy1,; — Liy1,511) are both large
and of the same sign, where “large” is determined by the specification
of some threshhold value. Other methods for line detection have been
investigated by Heuckel (1969), Herskovits (1970), Griffith (1970),
Kelly (1970a,b), Montanari (1971), Hayes and Rosenfeld (1972),
and many others. Figure 5-8 shows a computer-produced line drawing
of a real-world scene like that shown in Figure 5-5. This figure illus-

Flgure 5-8. Line drawing of a real-world scene produced from a tele-
vision picture hke the one in Figure 5-5. (Courtesy of Karl Pingle,

Stanford Al Project.)
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trates some of the problems that currently plague attempts to develop
good line-detection programs. It is difficult to develop programs that
can overlook “meaningless” variations in light intensity (e.g., shadows)
and still detect “meaningful” ones (e.g., the actual boundaries -and
edges of objects). : : '

Perception of Regions

Given a line drawing, a vertex can be defined as a point where two
or more lines meet, and a region as an area of the picture that is entirely
enclosed by lines (and usually contains no lines). The problems in-
volved in finding and identifying “meaningful” regions in a picture are
similar to those for identifying lines, and are still somewhat unsolved.

As might be expected, several researchers have investigated the
use of local operators to detect regions in a picture, similar to, but not
requiring, the use of local operators to detect lines, as discussed above.
Brice and Fennema (1970) present. a good description of a vision
system following this approach. The study of such operators has led
to many abstract results in digital topology, that may be of interest to
the reader (e.g., see Rosenfeld, 1973). '

Perhaps the most intuitive method for recognizing and describing
regions is to make use of line detection programs to find lines in the
picture, use one of many possible algorithms for locating vertices, and
then trace along the lines and vertices searching for closed curves. (A
closed curve is a sequence of connected lines leading back to the first
line in the sequence.) Each closed curve is part of the boundary of a
region, and the shape of the region can be described in terms of the
lines and vertices that enclose it. This technique is suggested by Winston
(1970) for recognizing regions with geometric shapes in a line drawing;
Winston’s general approachis described in the next section.

An interesting technique for describing the shape of a region is
medial axis transformation, or prairie fire analysis. Given a region such
as shown here, we may imagine that the interior of the region is covered
with highly flammable grass and the exterior of the region is empty
(presumably covered with asphalt). Suppose we simultaneously light
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a fire all along the boundary of the region. The fire will then spread
inward and be quenched where it meets itself. Each point where two or
more fire fronts meet and quench each other is known as a quench
point. The collection of quench points for our example will look some-
thing like the next drawing. This collection of quench points, or skele-

ton, may be taken as a description of the shape of all regions that will
produce it. (The precise initial region may be constructed if some ad-
ditional information is given.) Duda and Hart (1973) discuss this and
other methods of region recognition and description in greater detail.

Perception of Objects

Historically, the first program to successfully use vision to recog-
nize objects in an environment was written by Roberts (1963). This
program used local operators to transform a digitized picture into a
line drawing, which was then searched for vertices and regions. Relevant
information about each line, vertex, and region would be computed
and stored in a list structure; e.g., each vertex would have associated
with it a description of the regions surrounding it. The program was
given a set of similar list structures that presented the same kind of
information about each of the edges, vertices, and surfaces of the three
basic objééts it could recognize (cubes, wedges, and hexagonal prisms).
The program would attempt to make a preliminary, consistent matching
of each vertex, line and region of the line drawing against a correspond-
ing element in one of these three objects. Given this matching, the pro-
gram would compute the projective geometry transformation that would
yield the best fit between each portion of the line drawing and the
object to which it had been corresponded—with a good enough fit, the
object would be “recognized” as having produced that portion of the
line drawing. Roberts’ program was able to recognize compound ob-
jects, made by piecing together transformations of cubes, wedges, and
hexagonal prisms.

Guzman (1968a,b) made the next significant advance in visual
perception by machines. He wrote the first program which did not re-
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Figure 5-9. (Guzman, 1968, reprinted with permission.)

quire stored descriptions of the objects it could recognize, and did not
proceed by trying to match such descriptions against line drawings of
the scene. Given a picture such as that in Fig. 5-9, in which the lines
and vertices have been detected and correctly labeled and in which the
regions of the picture have been numbered as indicated, Guzman’s pro-
gram (called seg) will identify 12 objects, as indicated in Table 5-1.

TABLE 5-1. Identification of Objects by see

Object Regions Object Regions
1. 3,2,1 7. 25,23,22
2. 32,33,27,26 8. 14,13,15
3. ,31 9. 10,16,11,12
4, 19,20,34,30,29 10. 18,9,17
5. 36,35 11. 7,8
6. 24,5,21,4 12. 38,37,39

What is most impressive about SEE is that it can make this identifi-
cation without knowing anything in detail about specific polyhedra or
about what to expect in Fig. 5-9. The operation of SEE is based only
on the use of information collected locally at each vertex in the picture.
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SEE begins operation when it is presented with a special descrip-
tion of a picture. The descrlptlon contains information about the regions
in the picture, the vertices in the picture, and the background of the
picture. For the simple picture ONE shown in Fig. 5-10, sEE would be
given the following information:

Figure 5-10. ONE, a picture of a simple scene. (Guzman, 1968
reprinted with permission.)

Regions: (123456)
A list (not necessarily ordered) of the reglons
composing scene ONE
Vertices: (ABCDEFGHIJK)
Unordered list of vertices contained in scene
ONE
Background:  (6)
Unordered list of regions composing the back-
ground of scene ONE

In addition, SEE is given information about each of the regions and
vertices named in this description. For regions, this information de-

‘scribes the regions that are neighbors to each region; the kvertices of

each region; and the Foop property of the region. For region 2 in pic-
ture ONE, this information is as follows:

NEIGHBORS: (34616)
Counterclockwise ordered list of all regions
that neighbor region 2 '
KVERTICES: (DEACK)
Counterclockwise ordered list of all vertices
that belong to region 2

- —— e e
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FOOP: (3D4E6A1C6K)
Counterclockwise ordered list of alternating
neighbors and kvertices of region 2

Each of these properties of a given region could be ‘determined rather
simply by a program that would scan along the lines in a good line
drawing.

For each vertex in a picture, SEE is given information that describes
the x and y coordinates, or position of the vertex; the other vertices to
which it is connected; the regions to which it belongs; and the type of
the vertex (Fig. 5-11). Thus, for vertex H in picture ONE, SEE is given

POSITION: XCOR 3.0, YCOR 15.0
x-coordinate and y-coordinate of H
NVERTICES: (IGD)
Counterclockwise ordered list of vertices to
which H is connected
NREGIONS: (354) ,
Counterclockwise ordered list of regions to
which H belongs
TYPE: FORK
Type name of the vertex (see Fig. 5-11)

The type name of a vertex is the name of one of eight possible
classes to which it may belong, depending on the number of lines and
the size of the angles that form the vertex (see Fig. 5-11). These
classes are exhaustive and mutually exclusive in that any vertex must
belong to one and only one of them. In addition, for each vertex SEE
is given a' counterclockwise-ordered list of alternating regions and
vertices to which it belongs or is connected, and SEE is given other
information about the size of the angles belonging to the vertex, etc.
Again, all this information could be determined by a program that
would scan along the lines in a good line drawing, such as that for
scene ONE.

Given this information, SEE proceeds in a heuristic manner to find
evidence (Fig. 5-12) that regions in the picture should be grouped
together and considered as surfaces of a three-dimensional object,
Initially, sEE considers each region in the picture to be within an indi-
vidual rnucleus; no two regions share the same initial nucleus. However,
if SEE decides that two regions in separate nuclei should be grouped to-
gether (considered part of the same object), it will merge their nuclei,
placing all regions in both nuclei within the same, new nucleus. Thus,
SEE will eventually build up nuclei containing many regions, depending

T A
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Figure 5-11. Types of vertices. .(Winston, 1970, reprinted with per-
) mission.)
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N
"
e

Figure 5-12. Evidence from vertices. (Guzman, 1968, reprinted with
. o permission.)

on the way it is guided by the evidence in the picture. When it cannot
find any more evidence or merge any more nuclei, it will stop and
report each nucleus as a separate object in the scene, consisting of the
appropriate regions. :

SEE distinguishes between two types of evidence, known as strong
and weak, and is capable of hunting for a variety of different clues that
indicate that two regions in a picture should be grouped together. Once
it has found such a clue, it decides whether the clue is strong or weak
evidence, and it notes that the clue was found by placing either a strong

T T ———
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or weak link between the two regions and the nuclei to which they
belong.’ Its decision to merge two nuclei is based solely on the number
of strong and weak links between them, not on the clues that caused
those links to be formed.

Some of the clues that SEE uses are listed below (see Fig. 5-12).

Fork. If three regions meet at a vertex of the FORK type, and
none is in the background, strong links between them will be formed
(with some exceptions: see Guzman, 1968a,b).

Arrow. If three. nonbackground regions meet at a vertex of the
ARROW type, a strong link will be formed between the two regions
that have the small (less than 180°) angles of the vertex.

X. If four nonbackground regions meet at a vertex of the X type,
and if the vertex is not formed by the intersection of two straight lines,
then two strong links are established, as in Fig. 5-12.

Peak. If several nonbackground regions meet at a vertex of the
PEAK type, all regions except the one containing the obtuse angle
(greater than 180°) are given strong links to each other.

~Is. SEE attempts to find vertices of type T that match each other.
Two vertices of type T match each other if their central segments are
colinear and ‘if they are “facing each other.” SEE establishes strong
links between regions of matching T7s, as in Fig. 5-12, providing these
links do not cause a background region to be linked to a nonback-
ground region.

Leg. An ARROW type vertex is a LEG if one of its small angles leads
(if necessary, through a chain of matched T’s) to an angle which has
one side parallel to the central segment of the arrow. A weak link is
formed between the two non-background regions of a LEG type vertex
that have the small angles of the vertex.

In addition to these rules, see makes use of other clues in its
search for strong and weak evidence. For a complete description, the
reader is encouraged to see Guzman (1968a,b). However, it should be
noted that vertices of types L, K, and MULTI are not used by SEE to
establish links.

When SEE has established as many strong and weak links-as pos-

8 The operations of forming, merging, and linking nuclei are all conducted
by SEE on a data structure separate from that for the original picture. In es-
! sence, SEE builds up a new description of the picture, using nuclei and links,
! and modifies this description by reference back to the original picture and de-
scription of its regions and vertices.
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sible between the regions in a picture, it makes use of three rules for the
merging of the nuclei that contain the regions:

1. If two nuclei are connected by two or more strong Tinks,
they are merged into a single nucleus.

2. If the first rule cannot be applied to any of the nuclei, then
if two nuclei are connected by a strong link and a weak link,
they are merged; having made this merge, go back to the
first rule and see if it can be applied.

3. If neither the first nor second rule can be applied, and there
is a nucleus containing a single region that is joined by a
strong link to another nucleus (and has no other links leaving
it), then the two nuclei are merged.

These heuristic rules are sufficient to enable SEE to identify objects
in many rather complex scenes, even when SEE’s “view” of an object
may be partially occluded by other objects. In general when SEE makes
mistakes, it errs conservatively by not grouping together regions that
humans would think plausibly belong to the same object. Thus, for the
scene in Fig. 5-13, seE groups all the regions together in the same
plausible manner that humans would, except for regions 41 and 42; it
leaves these regions in their initial nuclei and reports them as belonging
to separate objects.

It should be pointed out that, given a single picture of a scene, it
is impossible to prove that any of the regions in the picture actually
belong to the same object. Each region in the scene could-be.the base of
a pyramid such that all other faces of that pyramid are hidden from
view; thus, no two visible regions would belong to the same.object. In
effect, any program that identifies objects from a single’ picture of a
scene must be based on notions of plausibility for real-world. environ-
ments; i.e., it must be a heuristic program.,

Guzman discussed a number of extensions that could be made to
his program, and the reader is encouraged to investigate his work fur-
ther. Recently, Huffman (1971), Clowes (1971), and Waltz (1972)
have written programs for object recognition which are similar to Guz-
man’s but have a more algorithmic design. Like SEE, these programs
rely on local information about the vertices in a line drawing. Huffman’s
work also discusses the recognition of smooth, curved, nonpolyhedral
objects, and the recognition of “impossible” objects. Waltz devotes
special attention to the recognition of shadows and the detection of
missing lines in a line drawing—this is especially important because the
performance of these programs is highly dependent on the quality of

" the line drawings available to them.
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LEARNING TO RECOGNIZE STRUCTURES
OF SIMPLE OBJECTS

The problem of object identification by visual perception systems
would be intractable if all objects in the real world were to be identified
visually using only such features as their texture, color, abstract shape,
and the angles formed by their edges. Many objects in the real world
are composed of other, snnpler objects, somewhat mdependently of
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how these features are possessed by the simpler objects. Thus, we can
recognize a railroad train regardless of whether its cars are boxcars,
flatcars, or passenger cars with rounded corners and edges, and regard-
less of what texture, color, or abstract shape the cars may be said to
possess. Our recognition of the railroad train depends as much on the
“structure” formed by the objects that make up the train as it does on
the objects themselves. This section presents a brief description of a
computer program, written by Winston (1970), which is capable of
learning to recognize structures of simple objects. Although computer
visual-perception systems have a long way to go if they are ever to
match human visual performance, it is likely that future developments
in pattern-recognizing systems will use Winston’s work as a starting
point.

Winston’s program is designed to use the type of description of a
visual scene that is provided by Guzman’s program (see the preceding
section). The information in a Guzman type of description of a visual
scene corresponds to a labeling of the regions and of the vertices formed
by the lines in the scene, plus a labeling of “objects” in the visual scene
which appear to be made up of the labeled regions and vertices. Win-
ston’s program is capable of recognizing vatious types of objects and
various relations between them, and of describing the visual scene as a

Figure 5-14. Blocks and wedges. (Winston, 1970, reprinted with per-
mission.)
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structure made up of certain objects and relations. The major types of
objects and relations recognized in Winston’s (1970) program are
bricks, wedges, and above, supports, in-front-of, right-of, left-of, and
marrys.* Winston showed that his program could be modified to recog-
nize other objects and relations. When shown the scene in Fig. 5-14,
Winston’s program will recognize the objects and relations listed in
Table 5-2. The program will generate a description of the scene that

TABLE 5-2. Objects and Relations for Fig. 5-14

A supported-by B C in-front-of F G
B K —_
C D E —
D — E
E —_ —
F E —
G — _—
H I1J —
1 — —
J — —
K H E

corresponds to the graphlike structure shown in Fig. 5-15. Such a
description will be called a description graph. The greater part of Win-
ston’s program is concerned with comparing description graphs of
visual scenes to each other, and with developing general description
graphs that can represent sets of visual scenes. To do this, Winston al-
lows his description graphs to contain nodes that may represent groups
of objects and to contain arcs that may represent relations between
groups of objects and objects. For example, one such relation is one-
part-is, which holds for nodes 4 and B if 4 represents a group of
objects and B represents an object “in” A. Furthermore, Winston allows
relations themselves to be described by description graphs in which
nodes may represent relations, and arcs may represent relations be-
tween relations (illustrated below). Winston’s use of description graphs
is sufficiently general that not only objects and structures of objects
(i.e., scenes), but also relations, sets of scenes, relations between scenes,
compansons of scenes, relations between description graphs, and com-
parisons of description graphs may all be described by description graphs.

As an example, we may define an arch'to be a group of objects
(4, B, and C) such that B and C are each “a-kind-of” brick and A4 is
“a-kind-of”” object; B and C are “standing” and A is “lying”; 4 “must-
be-supported-by” B and 4 “must-be-supported-by” C; B and C “must-
m:.ects and relations all have approximately the meanings that hu-
mans normally give them, except for marrys. Two objects are said to “marry”

each other if the objects have faces that touch each other and have at least one
common edge.
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g o 11 front-of" S
. ,." -b" = "supparted-by"

Figure 5—-15 A descnptlon graph of Figure 5—14 See Table 5-2.

not—abut” (1 €. have faces that touch each other) Flgure 5-16 shows
some simple examples of groups of objects, some of which are arches
and some of which are not. Figure 5-17 shows part of a descrlptron
graph for the set of scenes that should be recognized as “arches,” ac-
cording to the. definiition. Note that this description graph includes nodes
that represent relations (must-be-supported-by, supported-by, étc.) and
arcs that represent relations between relations (modification-of, must-
be-satellite, etc.). Winston’s computer program can use this description
graph to identify correctly those groups of objects shown in Fig. 5-17
which are arches and those groups of objects shown in Fig. 5-17 which
are not arches. Moreover, Winston’s program can use. this description
graph to recogmze that the entire group of objects’ shown in Fig. 5-18
is “a-kmd—of” arch. In fact, the computer program will find ard identify
1 ‘objects in Fig. 5-18 that are each.“a- kmd— £ ‘arch.

pressive: about Winstoh’s program.is the. fact that
‘ ing” gram_ By this ' wé mean that Winston’s program is
capablc of developing its own description ‘graph for a set of scenes that
it is told are examples of some pattern. Thus, the program is capable
of developmg the descrxptlon graph for “arch” shown in Fig. 5— 17, if

B o S e
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Arch
re Nonarch

Arch

Nonarch

Figure 5-16. Arches and nonarches.

it is shown only the groups of objects (scenes) in Fig. 5-16, and if it
is told whether each group of objects in Fig. 5-16 is or is not an arch.
It can then use this description graph to identify other, previously un-
presented groups of objects (such as that in Fig. 5-18) as being arches,
without being told that they are arches. Thus, we can reasonably say
that the program “learns” to recognize the pattern “arch.” Similarly,
the program can learn to recognize “columns,” “houses,” “pedestals,”
“tents,” “tables,” and “arcades” (Fig. 5-19).

Although Winston’s program is a “learning” program, it does re-
quire a “teacher” to tell it what patterns to recognize (e.g., “arch” and
“house”) and to give it pattern examples  (scenes) for each pattern.
Winston’s thesis had a great deal to say about the subject of “teaching.”
In particular, he emphasized the value of presenting to the computer

" scenes that are “near misses.” A near-miss is a scene that is not an
example of the pattern being taught because it fails to satisfy only one
condition of the pattern rule for the pattern. Each of the nonarches in
Fig. 5-16 is a near-miss to the pattern “arch.”

Because comparisons of description graphs are themselves repre-

N
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Figure 5-17. A description graph for the set of arches. (Winston, 1970,

reprinted with permission.)

Figure 5-18. “A kind of” arch. (Winston, 1970, reprinted with permis-

sion.)
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ONE

THREE

TWO

FOUR FIVE

Figure 5-20. A simple analogy problem: Find X such that A:B :: C:X.
(Winston, 1970, reprinted with permission.)
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sented as description graphs, Winston’s program can be used to solve
three-dimensional analogy. problems similar to those solved by Evans’
ANALOGY - program (see Exercise 5-4). Thus, if presented  with
scenes that are labeled as in Flg 5-20, and if asked to find a value for
X such that “4-is to B.as C is to X” wrll be true Wmston s program
will choose “X = FOUR.” v

Winston presented a number of suggestrons for further ‘work on
pattern: perceptlon systems. One of the most desirable extensions he
suggested is the design of programs that can learn to recognize patterns
with pattern rules that are partly “functional.” A pattern is said to have
a functional pattern rule if its pattern examples are each required to be
capable of “performmg a function.” Thus, the pattern “table” has a
functional pattern rule if we require that each of its pattern examples
be capable of. supporting'a plate with food, and srlverware, glasses, etc.
The subject of functronal pattern rules is still an open problem of A1
research. :

The use of graphhke structures as descnptrons for pattern examples
and rules has been considered by other researchers, inclyding Shaw
(1968), Clark and Miller (1966), Pratt and Friedman (1971), and
Barrow, Ambler, and Burstall (1972). This approach ' is related to
attempts (viz., Miller and Shaw, 1968; Banerji, '1968; Narasimhan,
1964; Tachibana, 1972) to develop linguistic methods for visual pattern
perceptron The dlscussmn of this sub]ect is resumed in Chapter 7.

SOME PROBLEMS FOR PATTERN
PERCEPTION SYSTEMS S ,

At the moment, computers are effectively bhnd Pattern (especrally
visual’ pattern) perception is one of two” major areas of investigation
for which Ar research has not yet been able to give computers a “level
of competence” approachmg that of people. This: is true despite the
impressive results of Guzman, Winston, and others, Also, visual pattern
perception is a major bottleneck to the development of many' useful
mechanical 1nte1hgences It is a necessity, for example, for ‘machines
that would work ‘intelligently in a factory or could navrgate mdepend—
ently on another planet, This section. summarizes some of the current,
major, problems confronting Al tesearch on pattern perceptro' ’systems
————— E

7 The other area is “semantic information processmg ” Many o '«
in these ;areas appear to be strong]y related: :

T = e s o, N o



210 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

First and foremost, it is desirable to put together the hierarchy we
have described. Both Guzman’s and Winston’s programs require perfect
line drawings, which currently are supplied by people. There does not
yet exist a line detection program that can consistently supply good
line drawings of real-world scenes, because the ability to find a line
often requires global information that local information about the
picture should be ignored or given special attention. Thus, either pro-
gram should be able to cause the eye system or the line finder to search
particular areas of the scene, change focusing or threshhold settings for
those areas, and perform other functions. Either program should be
able to check new lines that are produced in this manner, and use those
lines that will make their own tasks of object and structure perception
easier. v

Besides integrating the hierarchy, a number of extensions can be
easily suggested. Programs should be able to detect and make use of
curved lines, color, and texture. Programs should be able to recognize
structures that are: pattern examples of patterns with functional pattern
rules. Programs should be able to generate descriptions of motion oc-
curring in scenes and (ultimately) make real-time use of such descrip-
tions. Programs should be capable of detecting optical illusions, and
compensating for them. Programs should be able to accept, and describe
in visual terms, information provided by other perceptual systems (e.g.,
auditory or tactile information).

Although current work is being done on these matters (viz., Bajesy,
1972; Shirai, 1972) it is likely that computers will not approach human
visual competence for some time, depending upon the rate at which the
processes of visual perception can be understood, implemented and
tested in high-level programming languages (such as LISP, PLANNER,
CONNIVER, and QA4) and, ultimately, implemented in hardware. Even
so, substantial progress has been made in the study of pattern percep-
tion, if only because the statement of these goals is more meaningful
now than it would have been ten years ago.

NOTES

5-1. At the root of most pattern perception models is the “Pandemonium”
paradigm devised by Selfridge (1958). The Pandemonium machine is com-
posed of decision makers, or demons (physicists may recall Maxwell’s
demon, an imaginary being capable of acting intelligently on a microscopic
level and thus controverting the law of entropy) arranged in a latticelike
structure such as shown here. At the bottom of this lattice is the real world.
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Real world

Each of the demons immediately above the real world scans it and makes a
decision concerning the existence of some feature (i.e., the extent to which
the real world satisfies the pattern rule for a pattern); the demons at higher
levels scan their predecessors and make decisions concerning them. The top-
most demon makes the final decision as to whether a pattern. example is
present. (Essentially this much had been extensively developed by von Neu-
mann, 1951, in a general model for experiments or observations on physical
systems, especially quantum mechanical ones.) In addition, Selfridge sug-
gested the use of feedback to alter the nature of the lattice, and proposed an
evolutionary scheme for “demon selection.” (See Chapter 8.) In their de-
scription of hierarchical synthesis, Barrow, Ambler, and Burstall (1972)
provide an elegant and efficient extension of this idea.

EXERCISES

5-1. Design a computer program that, given the line drawing of the Maze of
Dedalus (Exercise 3-1), can find a path out.

5-2. What subproblems might a computer need to solve in order to put together
jigsaw puzzles?

B e S
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5-3. Wrxte a, paper dlscussmg the initerrelationships between the problems of
pattern recogmuon, pattern matching, pattern: classification, and -pattern descrip-
tion.

5—4. What subproblems are mvolved in solvmg the followmg analogy problem?
Find X such that A: l :C: X

A B c

EA &;
12345

&) = | PC

‘(Evans 1963, réprinted with permission.)

5-5. Investigate ways of describing and generatmg potentially infinite structures

such as these: .
g .7 3z
% !\A -Ac !\A"
, : a
200004
b

00000

{Watanabe, 1971 reprinted w1th permlssmn ).

5-6. Descrlbe how a oomputer mlght be programmed' to recogmze human faces.

isual subproblems to be solved by 4, computer progtam for
tying and untying knots" :
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THEOREM PROVING

INTRODUCTION

The ability to prove theorems in mathematics is a good example
of an intellectual faculty and one that is relevant to the construction of
reasoning programs. This chapter is an introduction to the study of
computer programs that are capable of finding proofs for theorems
within mathematical theories. Such programs are called theorem prov-
ers. The first part of this chapter introduces the reader to the predicate
calculus, which is essentially a mathematical framework for the state-
ment of mathematical theories. Later sections discuss the binary reso-
lution procedure, a relatively simple procedure that has been the basis
for many theorem provers. Alternate means of theorem proving are also
discussed. This chapter concludes by showing how theorem provers can
be used as problem solvers for problems stated in the state-space para-
digm, how they can be used to construct other computer programs:and
prove the correctness of them, and how analogies can be used to im-
prove the effectiveness of theorem provers. The use of theorem provers
is one way to solve the “inference problem” in language-understanding
programs. g

FIRST-ORDER PREDICATE CALCULUS

The invention of predicate calculus was one of the major advances
in the nineteenth-century development of mathematics. Although Chap-
ter 2 stressed the fact that any mathematical description is essentially a
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finite description, this does not imply that all mathematical theories can
be described within the same finite framework, that there is a mathe-
matical theory of mathematical theories, or meta-mathematics.

Predicate calculus is part of the notation for current attempts to
develop a theory of metamathematics (note 6-1). Predicate calculus is
a language for the expression of mathematical theories. When a mathe-
matical theory is expressed in this language, it becomes a set of state-
ments (or sentences, or formulas), each of which says something about
the thing described by the theory.! Predicate calculus provides a set of
inference rules (for deriving new statements from the ones that are
given) and a set of symbols (to be used in making statements) that
seem to be adequate for most mathematical theories. Thus, to insure
generality, almost all A1 work on theorem provers has been concerned
with developing machines that handle sets of statements in predicate
calculus (note 6-2).

In fact, almost all work in the subject of theorem proving has con-
cerned itself with theorems stated in first-order predicate calculus, which
is discussed in this section. Ultimately, it is desirable to extend theorem-
proving methods to higher-order logics, because they are more natural
for the statement of most mathematical theories. (The difference be-
tween first- and higher-order logics is defined below.) ‘Work in this
direction has been undertaken (e.g., Robinson, 1969; Hewitt, 1968 et
seq.; Pietrzgkowski and Jensen, 1972). The first-order predicate calcu-
lus is general enough, though, so that if Church’s thesis is correct, then
all mathematical theories can be expressed using it. In principle, the Ar
rescarch that has been done in first-order predicate calculus is no less
general than any work that may be done in higher-order predicate
calculus. However, it is stressed again that, in practice, first-order predi-
cate calculus is not adequate for the statement of mathematical theories
about most real-world environments and problems. The first-order
expressions of such theories would be extremely long, complicated, and
inefficient (if they were at all obtainable), just as it would be extremely
complicated and inefficient to try to describe a real-world, problem-
solving procedure (e.g., SIN, DENDRAL) as a Turing machine. The AI
research on first-order predicate calculus has been valuable as a rela-
tively simple demonstration that computers can be made to “reason”
in a general way about logical problems. (This discussion is continued
in the section of this chapter entitled “Applications to Real-World
Problems.”)

1 Some mathematical theories are not descriptions of “real” things. For exam-
ple, group theory is a description of a class of mathematical theories that are
often used to describe many different things. :
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Briefly, then, predicate calculus provides a framework for making
and deriving statements that belong to mathematical theories. Our con-
ception is that statements express “logical thoughts” about things, that
statements should be made up of symbols, and that it should sometimes
be possible to prove or disprove the truth of a statement with respect
to a set of statements that are known to be true.

The symbols of first-order predicate calculus are:

1. The variables x, y, z,..., which will be called individual
symbols. A variable is a symbol that may represent any ob-
ject about which we can make a logical statement. The set
of things that a variable may represent in a mathematical
theory is known as the universe, or domain of discourse, of
that theory.

2. For each n =0, the n-ary function symbols f, g, h, ..., and
the n-ary predicate symbols P,Q,R, . . .. For any given n, the
number of such symbols may be zero or nonzero, finite or
infinite.?

3. The logic symbols ¥, d, 7, A, \/ which stand for “for all,”
“there exists,” “not,” “and,” and “or,” respectively.?

4. The punctuation symbols “,” and “(”, and “)”.

To define statements, or formulas, we must also define terms and
atomic formulas. We define terms as follows:

A variable is a term.

If T is a sequence of n terms (n greater than or equal to 0)
and f is an n-ary function symbol, then fT is a term.

No other expressions are terms.

We define atomic formulas as follows:

If T is a sequence of n terms (n=0) and P is n-ary predicate
symbol, then PT is an atomic formula.
No other expressions are atomic formulas.

Finally, we.define formulas as follows:

An atomic formula is a formula.
If U is a formula, then so is "W.

2 A complete formalization of first-order predicate calculus provides an in-
finite number of "variable, function, and predicate symbols. These are generally
written' x;, f7, pp, respectively, with the subscripts i,k being allowed to take
numerical values. However, the examples we present require only a few symbols.

8 We actually provide a formalization only for first-order predicate calculus
without equality; predicate calculus with equality contains an extra logic sym-
bol “=" which stands for “equals.”. Theorem provers that work in theories with
equality have encountered difficulties; for a discussion, see Robinson (1970).
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It Uy, ... ,U,are formulas, then A(Uy, ..., U,) isa formula.

If Uy,...,U, are formulas, then \/ (Uy,...,U,) is a formula.
- If U is a formula, then, for any variable x, VxU is a formula.

If U is a formula, then, for any variable x, dxU is a formula.

These definitions make possible some strings of symbols as state-
ments in the first-order predicate calculus and rule out others. Thus,

Tx(Vy (A (P(x,y),2(2))))

is a formula, but
)XQR(4) Tyz

is not.

The first-order predicate calculus expression of a mathematical
theory consists of a set S of sentences, each of which is a formula ac-
cording to the rules given above. Such a set S is called a system. It is
possible for a system to correspond to many different mathematical
theories: A system can be taken as a description for many different
things, depending on how one “interprets” its formulas.

For example, in predicate calculus the most basic sort of statement
one can make is an atomic formula: R(x), P(x,y,z), and G(f(x,y) are
all examples of atomic formulas. Each of these could “mean” anything,
depending on how one interprets the symbols involved. Thus, a con-
venient interpretation of P(x,y,z) might be “the number x plus the
number y is the number z”; or, P(x,y,z) might mean “x and y are the
parents of z.” An interpretation of a set of atomic formulas is given
when we specify interpretations for the variable, function, and predicate
symbols used in that set of formulas.

An interpretation for a set of variable-symbols is given by specify-
ing the universe of discourse; that is, the set of values they can assume.
The universe of discourse for a set of variable symbols is denoted by the
letter D. For example, D might be the set of numbers {-1,0,+1}. If
D denotes a set, then D" denotes the set of all n-tuples of D. Thus,

{(_509+1)}2 = {(—19_'1)’(_150)7(05—1)7(_1a+1)5
(+la_1)’(0,0)3(0,+1)5(+1’0)5(+1’+1)}

(If D contains m elements, then D" contains m" elements.) An inter-
pretation of an n-ary predicate symbol P associates each element of D"
with exactly one element of the set {true, false}. Thus, if an 1nterpreta-
tion of P gives (—1,0) the truth-value “false,” we say “P( 1,0) is
false.” An interpretation of an n-ary function f associates each element
of D" with exactly one element of D. Thus, if an interpretation of f
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gives to (+1,+1) the value +1, we say “f(+1,41) is +1.”Forn =0
we define D" to be the set containing (), the zero-tuple. By our defini-
tion, the interpretation of a zero-ary function must be a constant;
rather than write expressions like “f( ),” we can usually denote con-
stants by the letters a,b,c.*

From our definition of a formula it is clear that there are many
types of formulas more complicated than atomic formulas, and that
these sentences can be constructed using the logical symbols; that is, the
operators ~,\/, A\, and the quantifiers 4V. Explaining the meaning of
such a formula is rather straightforward: The operator "1 produces the
negation of the statement it is applied to: thus, if P(—1,0) is false, then
"P(—1,0) is true, and vice versa. If the operator V is applied to a
sequence of statements, it produces their disjunction, that is, it produces
the statement that is true if and only if at least one of the statements in
the sequence is true. Applying the operator A to a sequence of state-
ments produces their conjunction, that statement which is true if and
only if all the statements in the sequence are true. Thus, if P(—1,0) is’
false, P(1,1) is true, and P(0,—1) is true, then

V(P(—1,0),P(1,1)) is true.
A (P(-1,0),P(1,1)) is false.
vV (P(1,1),P(0,—1)) is true.
A(P(1,1),P(0,~1)) is true.
V(P(—1,0),P(1,1),P(0,—1)) is true.
A(P(—1,0),P(1,1),P(0,—1)) is false.

- It is common to introduce a fourth logic symbol “=”, to be read “im-
plies,” and to rewrite any formula of the form v (U,V) in the form
U—V. Of course such a formula may be true or false, regardless of the
form in which one writes it. The truth or falsity of U—¥. depends only
on the truth or falsity of U and ¥. Thus, according to our example,

P(1,1)->P(0,—1) is true.
P(1,1)—P(—1,0) is false.
P(—1,0)—>P(1,1) is true.

In fact, if U is false, then U—V is true, regardless of the value of V.

It the existential operator d is used to quantify a variable in a
formula, it produces the statement that there is some value of the
variable in the universe of discourse for which the formula is true. Thus
HxP(—1,x) means “there is a value of x such that P(—1,x) is true.”

* Similarly, a zero-ary predicate is the same thing as a proposition. Proposi-
tional (zero-order) predicate calculus is not considered in this book. See Suppes
(1957) for a good introduction.
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When the universal operator V is applied to a variable in a formula,
it produces the statement that “for all values of the variable in the
aniverse of discourse the formula is true.” VxP(—1,x) would mean “for
all values of x, P(—1,x) is true.” To find the truth value of a very
complex formula, with many logical operators and quantifiers, we start
with its simplest components and work outward. For example, suppose
AxP(—1,x) is true, VxP(—1,x) is false, and P(1,1) is.true: then

/\( V( E{XP(—‘I,JC),VXP(—I,X)),P(].,].))

\——_\f——l
true false true
\ )

N true .,
. tr‘Ge

is true, as the preceding diagram of its evaluation shows. Variables that
are quantified in a formula are said to be bound, while those which are
not quantified are said to be free. First-order predicate calculus does
not permit predicate or function symbols to be quantified or to be used
within predicate arguments in formulas; both of these things are natural
for human mathematicians and may happen in higher-order predicate
calculus. Henceforth, the expression “predicate calculus” will be used
to refer only to first-order predicate calculus, unless otherwise specified.
However, the remarks in the remainder of this section are valid for
predicate calculus in general.

The interpretation of logic symbols is standard throughout predi-
cate calculus, so the interpretation of the formulas of a system really
depends only on the interpretation of the atomic formulas of that
system. If the domain of discourse of the variable symbols in a system
has been specified, and interpretations for all functions and predicates
involved in the system have been given, then we have an interpretation
for the system itself. If each formula in a system turns out to have the
value “true” with respect to an interpretation, then the interpretation
is said to be a model for the system. A system may have zero, one, Or
many models. In the first case it'is said to be unsatisfiable; in the other
cases it is said to be satisfiable.

So far nothing has been said about rules of inference, that is, ways
of deriving one formula from other formulas. Suppose S is a system (set
of formulas) and U is a formula. Then we say that S logically implies U
if and only if U has the value “true” with respect to every model for S.
Trivially, every formula in § is logically implied by S. A rule of inference
is a procedure that, given a set S of formulas, may produce only
formulas that are logically implied by S. Different formalizations of
predicate calculus make use of different inference rules. Five of these
are:
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EXPANSION RULE. If U and V' are formulas and U is logically
implied by S, then \/ (U,V) is logically implied by S.
CONTRACTION RULE. If \/(U,U) is logically implied by S, then
U is logically implied by S.

ASSOCIATIVE RULE. If \V/ (U, V (V,W)) is logically implied by S,
then Vv (\V (U,V),W) and \/ (U,V,W) are logically implied by
S, and vice versa.

CUT RULE. If V/(U,V) and U-W are logically implied by S,
then v/ (V,W) is logically implied by S.

J-INTRODUCTION RULE. If x is not free in ¥ and U—V is
logically implied by S, then Ix (U—V¥) is logically implied by .

The next section presents a special inference rule, the resolution
procedure, which can be used in place of all of the preceding five rules.
If a logical implication of S can be derived using them, then it can be
derived using the resolution principle. ,

In general, any formula that is logically implied by a system S is
referred to as being a theorem of S. Many systems will contain and
logically imply an infinite number of formulas, and will be called
infinite systems. An attempt can be made to describe an infinite system
$ by presenting some finite set S, of formulas and comparing the set
Imp(iS'a), of all formulas that are logically implied by S,, with the set
Imp(S). If Imp(S,) = Imp(S), then we say S, is an axiomatization for
S, and we call the formulas in S, axioms for S. Those formulas that are
theorems of S,, but not axioms of S, are called consequences of S, with
respect to the axiomatization of S,. :

Two things remain to be pointed out: First, using a given inference
rule (or set of inference rules) will not necessarily enable one to
produce all the theorems of a given system S. An inference rule is an
“if ... then...” statement that enables one to establish the logical
implication of some formulas, given the logical implication of - other
formulas. Given an initial set S,, one can establish formulas not in S,
as being logically implied by S,. Given these formulas plus S, one can
establish more formulas as being logically implied by S,, etc. However,
one cannot.necessarily establish every formula that is logically implied
by S, using a given inference rule. In fact, for some systems, one can
show that there is no set of inference rules that wiil enable one to
establish in a finite number of steps each formula that is logically im-
plied by the system. Such a system is said to be undecidable.’® Artificial

% For example, number theory is undecidable. The proof of the existence of
undecidable systems is Godel's famous result (Godel, 1931). The existence of
undecidable systems is equivalent to the unsolvability of the Halting Problem
(see the section entitled “Limits to Computational Ability” in Chapter 2).
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intelligence research cannot produce a consistent theorem prover (a set
of inference rules) that is capable of proving (establishing the logical
implication of) every theorem of an undecidable system.

Second, if a formula is not logically implied by a given system,
it may still be true for some models of the system. Formulas that are
true for some models of a system and false for others are said to be
contingent (Kleene, 1967, p. 29).

THEOREM-PROVING TECHNIQUES
Resolution

Groundwork

. If U is a formula and § is a set of formulas, and § logically im-
plies U, then U has the value “true” with respect to every model for S.
Thus, 7U has the value “false” with réspect to every model for S. Let
us consider the set §’, which contains all the formulas in § and also
contains the formula 7U. Does S have a model?

The answer is no, for the following reason: If an interpretation is
a model for &, then every formula in § must have the value “true”
with respect to that interpretation. Thus, the interpretation must be a
model for any subset of 8 (for any collection of formulas that belong
to §’). In particular, the interpretation must be a model for S. How-
ever, the formula ~ must have the value “false” with respect to any
model for S. Thus, the formula U must have the value “false” with
respect to any model for §”. However, TIU is one of the formulas that
belongs to 8, and so by definition it must have the value “true” with
respect to any model for §. If §” had a model, "W would therefore have
both the value “true” and the value “false.” In predicate calculus an
interpretation can specify at most one value for any given formula.
Consequently, §” does not have a model. Thus, by definition, S’ is said
to be unsatisfiable.

Similarly, we can show that if §” is unsatisfiable, and yet S is
satisfiable, then § logically implies U. Thus, if we want to show that a
satisfiable set of formulas S logically implies a formula U, it is sufficient
to show that the §” set (=SU {WU} ) is unsatisfiable.

This is a technique that is often used by the theorem provers
developed in Al research. The theorem prover is given a set S, of
formulas, which is called its data base. It is also given a formula U,
called the conjecture. The problem for the theorem prover is to prove
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that U follows from S,; that is, that U is logically implied by S,. The
procedure followed by the theorem prover is to construct the formula
U, called the negated conjecture, and to attempt to show that the set
§’s, which contains the formulas in S, and the negated conjecture,. is
unsatisfiable. One way in which many theorem provers attempt to show
the unsatisfiability of a set of formulas is through the use of the
resolution procedure. This procedure was originally developed by J. A.
Robinson (1965 et seq.). Extensions and other theorem-proving tech-
niques have been developed by Wos, P. B. Andrews, G. A. Robinson,
Slagle, Sibert, Luckham, Nilsson, Prawitz, Loveland, Hayes, Kowalski,
Meltzer, Darlington, Guard, Gilmore, Gelernter, Reiter, Pietrzykowski,
Coles, Green, Kling, Hewitt, and others (see the Bibliography). Some of
the early work which led to the development of these techniques was
done by Davis, Quine, Dreben, Newell et al., and Wang. This section
describes the steps involved in the application of the binary resolution
principle. A more detailed presentation is given in Nilsson (1971).

Clause-Form Equivalents

The first step in the application of the resolution principle to a set
of formulas 5, is to replace each formula in §’, by an expression known
as its clause-form equivalent. Every formula in first-order predicate
calculus has a clause-form equivalent, which may be obtained by ap-
plying the following sequence of operations: First, eliminate implication
signs. Wherever an expression of the form 4—B occurs in a formula,
we replace it by \/ (7'4,B). For example, if we are finding the clause-
form equivalent of the formula

Vavy ((A(x)— 1C(x,y) )> NxHz A (P(x,2), R(2))
then this first step produces the formula
(Vavy) vV (I (4 (x), IC(xy)), WVxdz A (P(x,2), R(2)))

Our next step is to reduce the scope of all negation signs, making each
negation sign apply to at most one predicate, using these substitutions:

Replace "/ (4,...,B) by A(T4,...,7B)
Replace IA(4,...,B) by v(4,...,71B)

Replace T4 by 4
Replace “W(VxA) by dx( 4)
Replace 71(dxA4) by vx(T4)

The application of this step to our example yields
VavyV (A (4(x),C(xy)),qxvzV (P(x,2),R(2)))
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Our third step is to standardize variables; that is, rename the variables
in our formula so that each quantifier binds a unique variable symbol.
Within the scope of a given quantifier the variable that is bound by that
quantifier is really a dummy variable, and it doesn’t matter what letter
we use to represent it. If we standardize the variables in our example,
we obtain

VavyV (A (A (x),C(xy)),3uvzV (P(u.2),R(2)))

Next, we eliminate 'the existential quantifiers from our formula. To see
how this may be done, consider the expression

VxvydzP(x,y,z)

It is clear that the value of z which will satisfy P(x,y,z) may depend on
the values of x and y. We can indicate this possible dependence by an
undefined function, known ‘as a Skolem function, and writing our ex-
pression ‘

VaVyP(x,y, f(x,y))

We may interpret the Skolem function f(x,y) as specifying for any
given values of x and y a value for z that “exists” and is such that
P(x,y,z). In general, we obtain the Skolem transform of a formula by
replacing each existentially quantified variable by a Skolem function of
those universally quantified variables that are bound by unijversal
quantifiers whose scopes include the existential quantifier being elimi-
nated. The function letter used to replace a given existentially quantified
variable must be different from those function letters (for either ordinary
or Skolem functions) that already occur in the formula. Eliminating
existential quantifiers, our original example now becomes

VIVYV(AAR), Cxy)), xV(P(g(xy),2), R(2)))

where g(x,y) is the Skolem function introduced. Since all the. variables
that occur in the formula are unique, we may move the universal
quantifiers to the leftmost part of the formula. This action is known as
converting the formula to prenex form. The formula now consists of a
quantifier string (or prefix) followed by a matrix. Our example becomes

VavyVzV (A(4(x), C(xy)), V (P(g(x.y), 2), R(2)))

Our next step is to put the matrix in conjunctive normal form. Any
matrix can be written as the conjunction of a finite set of disjunctions,
atomic formulas, and negatives of atomic formulas. This may be done
by repeated application of the rule ’

Replace V (4, A(B,...,C)) by A(V(4,B),..., V(A,C))
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Thus, our example becomes

VxVyVzA(V (4(x), P(g(xy)2), R(2)),V(C(xy), P(g
- (x,¥),2), TR(2)))

Finally, since all the variables in our formula are now universally
quantified, we may eliminate the universal quantifiers, and simply write
our example formula as

AV (4(x), P(g(xy), 2), R(2)),V(C(xy), P(g(x.y),
z), 'R(2)))

These remarks indicate that we can make the following definitions:
A literal is either an atom (atomic formula) or the negation of an atom;
a clause is a disjunction of literals; a formula is a conjunction of clauses.
Disjunctions and conjunctions can be identified simply by their sets of
disjuncts and conjuncts, and we can speak of a literal L as being an
element of a clause C. The null disjunct nil, which is the disjunction of
the set containing no literals, always has the truth-value “false.”

Thus, a formula can be expressed as a set of clauses. The “clause-
form equivalent” of our example is

{{A(x), P(g(x,y), 2), R(D}, {C(xy), P(gxy), z),
TR(2)}}

The clause-form equivalent of a set of formulas is the union of the sets
of clauses representing each formula (provided the variables used in
each formula are made distinct from those used in the other formulas).
As a final example, a clause-form equivalent for the set of formulas

S = {(VxVyP(x)—=>N(y), Vxdz A (Q(x,2), P(z2)),
VydxR(x.f(y.a))}

is the set of clauses

{P(x).N ()}, {Qu.g(u))}, (P (g(u))},
{R(h(w),f(w,a))}}

(The Skolem functions are g(«) and ~A(w).)

- Given a set of formulas S, and a formula U, the theorem provers
we describe will attempt to show that S, logically implies U by forming
the set §’;, which contains the formulas in S, and the negated-conjecture
U, and then attempting to show that §’, is unsatisfiable. The first step
in showing the unsatisfiability of §’, is to find the clause-form equivalent
for ;. Having found the clause-form equivalent of §’;, the theorem
prover will attempt to find new clauses that are logically implied by the
clauses in 8. If it can show that the empty clause, nil, is logically im-
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plied by 8, then it will have shown that §’, is unsatisfiable, since nil
is false for any interpretation. The theorem provers discussed here use
an inference rule known as the binary resolution principle to find clauses
that are logically implied by other clauses. The basic process used in
the binary resolution principle is known as the unification procedure.

The Unification Procedure

To describe this procedure, some terminology must be introduced.

A substitution 6 = {(t1,v1), (f2,v2), ..., (t.,Vn)} is an operation

' that, when applied to a clause C, yields another clause C#§, obtained by

replacing each occurrence in C of the variables v; by the corresponding

terms ¢; (we require for any given substitution ¢ that is%j implies
v; 7v;). For example, application of the substitution

0= {(g(2),x),(ay)}

to the clause

C = {P(xy),Q(by)}

yields the clause

Co = {—IP(g(z)aa)’Q(bla)}

Although it is required in a substitution that all the individual symbols
v; be distinct, it is not required that all the terms #; be distinct. The
empty substitution ¢ = { } consists of not replacing anything so that
for all C, Ce = C. If for two clauses C and ', there is some substitu-
tion 6 such that C8 = C’, then C’ is said to be an instance of C. If
C’ contains no variables, then C’ is said to be a ground clause and to be
a ground instance of C. Thus, for the two clauses

C = {R(x,y,2),S(u,f(x))} and C = {R(c,ab),S(cf(c))}

the substitution

A= {(c:x)’(a)y)’(b)z),(c)u) )}

makes CA = C’, so C’ is a ground instance of C. We say a clause C is
unifiable if there is a substitution ¢ such that C# contains only one literal.
-Such a substitution is said to be a unifier for the clause C. Thus, the
substitution « = {(a,x),(b,y)} unifies the clause

C ={P(x.f(y),b),P(x,f(b),b)}
- producing the clause

Ca = (P(af(h),b)}

T T
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If « is a unifier for a clause C, then the clause Cx is known as a unifica-
tion of C, and both C and the literals in C are said to be unified by a.

A given clause may have several unifiers. Thus, the clause C con-
sidered above has, besides the unifier «, the unifier 8 = {(b,y)}, which
produces the unification

CB = (P(x,f(b),b))

The unifier g is, in a sense, “more general” than the unifier « because 8
does not specify a substitution for the variable symbol x. The resolution
procedure described in the next section works most successfully if we
are able to find very general unifiers for clauses, and it is the purpose
of the unification procedure to find the most general unifier (mgu) for
any given clause, provided the clause can be unified. To state the
unification procedure, we need to define the notion of a “composition”
of substitutions.

The composition of two substitutions « and g8 is denoted by the
expression o and is that substitution obtained by applying 8 to the
terms of « and then adding to « any (#;,v;) pairs in 8 that have variable
symbols v; not occurring among the variables of «. Thus, if

= {(g(xy),2),(f(aw),w)}

and

B = ((61),(bw),(cD)}
then

of = {(g(ay),z),(f(a,b),w),(ax)}

It can be shown that applying « and g successively to any clause C
yields the same result as applying «8 to C. Thus, (Ca)g8 = Caf. Simi-
larly, one can show that composition is associative; that is, that for
any clause C and substitutions «, 8, and y, we have (Ca8)y = (Ca) By

A substitution A that unifies a clause C is said to be most general
if, given any other unifier 6 of C, one can always find a substitution vy
such that Ay = §; that is, such that CAy = C6. The unifications of a
clause C produced by its most general unifiers are all alphabetic vari-
ants of each other; that is, each of them may be obtained from any of
the others by a substitution of variable symbols for variable symbols.
Thus C = {P(x,f(y),b),P(b,f(w),b)} has the most general unifications
{P(b,f(y),b)} and {P(b,f(w),b)} and the second unification may be
obtained from the first by application of the substitution {(w,y)}. The
most genefal unifiers for these unifications are {(b,x),(y,w)}, and
{(b,x),(w,y)}, respectively.

G
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. We can now state a unification procedure that finds the most gen-
eral unifier for any given clause C if C is unifiable, and reports failure if
C is not unifiable. The unification procedure makes use of two “pro-
gram variables,” A; and k, which are initially set to ¢ and 0; throughout
its operation, unification alters their values. Thus, £ =0 and A = e
The eventual value of A; is the most general unifier of the given clause
C (subject to our comments about alphabetic variants) if C is unifiable,
and is E if C is not unifiable. The steps of the procedure are as follows:

1. If Cx; contains only one literal, then return A, as the mgu
for C and stop.

2. If C contains more than one hteral find the first symbol
position for each literal in which not all literals have the
same symbol. For example, if

C)\lc = {P(g(x):a:f(u:v)),P(u!alz)}
t : t

then the first symbol positions are as marked by the arrows. .

3. Construct the disagreement set for C\y, which contains the
well-formed expressions (terms or literals) from each literal
in C); that begins at the marked positions. Thus, the dis-
agreement set for the example is {g(x),u}.

4. If there exist two terms s; and #;, in the disagreement set -
such that s is a variable symbol and #; does not contain sy,
then take any two such terms s; and #, replace A, by
Mor1 = M{ (#x,5%) } and replace k by k + 1, and go to step 1.
For our example, 5, may be taken to be u, and ¢, may be
taken to be g(x). Thus,

)\k+1 = )\L{(g(x)au)}

and

Cryi1 = {P(g(x),a,f(g(x),v)),P(g(x),a,2)}.

5. If there do not exist two such terms s, and #; in the disagree-
ment set, then report that C cannot be unified and stop.

No proof will be offered that the unification procedure does in
fact find the most general unifier (see J. A. Robinson, 1965, or Luck-
ham, 1967). For the example shown in the explication of the procedure,
if C were initially the clause {P(g(x),a.f(u,v)), P(u,a,z)}, then the pro-
cedure would return the mgu A2 = {(g(x),u),(f(g(x),v),z)}, and the
most general unification of C would be

Chz = {P(g(x),a,{(g(x),1))}

T T —— — 0 -
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Examples of some clauses and their most general unifications con-
clude this discussion.

Clauses " Most General Unifications
{P(x),P(a)} {P(a)}
{Q(x:)’:a) 9Q (x:}’,b) } . - Not unifiable
{R(z,f(x),y),R(a,y,f(x))} {R(a,f(x),f(x))}
{P(x,2,y),P(u,i,a),P(w,u,a)} {P(a,a,a)}
{P(f(x)),P(x)} Not unifiable
{P(f(x),y.g(»)),P(f(x),z,8(x))} {P(f(x),x,g(x))}

The Binary Resolution Procedure

An inference procedure used by many theorem-proving programs
may now be stated. This procedure is known as the binary resolution
procedure, and it constitutes an inference rule that enqbles us to con-
struct some of the clauses that are logically implied by any given set
of clauses. The resolution process will be explained first, followed by
a description of its use in a procedure to prove that a given set of clauses
is unsatisfiable, when the set is in fact unsatisfiable.

Suppose we wish to find clauses that are logically implied by two
given clauses, say, C; and Cs. Let us denote the literals belonging to
C: by L; and those belonging to C; by M;. Thus, C; = {L;} and
Cz = {M;}. Let us suppose that C; and C, have no variables in com-
mon (we can always rename the variables in one or the other clause to
accomplish this). Let {I;} C {L;} and {m;} C {M,} be two subsets of
{L;} and {M,} such that a most general unifier A ex1sts for the set of
literals {I;} U {"Wm;}. Then the clause

Cs = {{L} — (L3I VU {M;} — {m} )\

is logically implied by C; and C,. Depending on how we choose {I;}

and {m;} we may obtain other clauses that are logically implied by C,
and Cs. It may not be possible to choose {I;} and {m;} such that
{L.} U {T¥m;} can be unified. However, if {I;} and {m;} can be so chosen,
then the two clauses C; and C, are said to resolve and to be parent
clauses for the resolvent(s) Cs. The process of choosmg {I,} and {m;}
sets to find resolvents for two given parent clauses is called the resolu-
tion process. Since the clauses C; and C: we consider are always finite,

there are only a finite number of ways we can choose {/;} and {m;}.
Thus, C; and C; can have only a finite number of resolvents..

As an example, consider the two clauses
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Ci = {P(f(x),y),P(z.f(a)),Q(u)}

and

C. = {P(y.2), 1Q(f(x))}

I we choose {I}={P(f(x),y)} and {m;} ={WP(y,z)}, then
LYU{Tmy} = {P(f(x),y),P(y,z)}, which has the mgu

A= {(fx),y),(f(x),2)}

The corresponding resolvent for C; and C; is

{P(2.f(a)),Q(u), Q(f(x)) A
{P(f(x).f(2)),Q(u), TQ(f(x))}

Similarly, if we choose {L} = {P(f(x),y),P(z,f(a))} and {m;} =
{WP(y,z)}, then we find that {L}U{ m;} = {P(f(x),y),P(z.f(a)),
P(y,z)} has the mgu X = {(f(a),y),(f(a),z),(a,x)}, and we obtain
the gorresponding resolvent

Cs = {Qw), QU (x)} N = {Qw), 1Q(f(2))}

Altogether, C; and C, have four different resolvents, of which three
may be obtained by resolving on P and one may be obtained by resolv-
ingon Q.

Again, let C; = {WP(x) LR(x)} and Cp = {IR(x),0(x)}. If we
choose {I;} = {R(x)} and {m;} = {T'R(x)}, we obtain the resolvent
C; = {P(x),0(x)}. These three clauses correspond respectively to
the predicate calculus formulas

Vx(P(x)—R(x))
Vx(R(x)—Q(x))
Vx(P(x)—>Q(x))

The English meanings of these formulas are

“Everything with property P has property R.”
“Everything with property R has property 0.”
“Everything with property P has property Q.”
In this case it should be intuitively clear that the third statement is
logically implied by the first two. -
Given a pair of clauses C; and C;, we obtain their resolvents by
attempting to apply the resolution process to Cy and C with respect
to each possible combination of their subsets {I;} and {m;}. (A com-
puter program can be designed not to investigate some combinations
that obviously will not work, such as those combinations that use more
than one predicate symbol.) If one of the resolvents of the clauses Cy
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and C; is the empty clause nil, then we know that C; and C, cannot
both be satisfied (either one of them might be satisfiable, but there is
no model which will make them both true). For example, the resolvent
of C; = {P(x)} and Co = { 1P(y)} is the empty clause.

The binary resolution procedure for showing that a set S of clauses
is unsatisfiable can now be very simply stated. Let S be a set of clauses
{C1,Cs, . ..,C,}. We apply the resolution process successively to each
pair of clauses C;, C;(i 7 j ), and place any resolvents obtained in a new
set R(S). When we have gotten all possible resolvents from S (for any
finite set of finite clauses there are only finitely many possible resolvents,
and we can tell when all the possibilities have been tried), we apply
the binary resolution procedure to the set R;(S) = SUR(S), which
contains all the clauses in S plus all their resolvents. This yields the set
of all resolvents of R,(S), which is denoted by R(R;(S)). Next we
form the set Ra(S) = Ri(S)UR(R.(S)), which contains all the
clauses in R;(S) plus all their resolvents. We apply the resolution pro-
cedure to R»(S) to obtain the set R(R:(S)), and we form the set
R3(S) = Ry (S)UUR(R2(S)). In general,

Ri+1(S) = Ri(S)UR(R:(S))

where S is our initial set of clauses; if X is a set of clauses, then R(X)
denotes the set of all resolvents of the clauses in X. The set R;(S) is
called the ith level of clauses that are loglcally 1mp11ed by S. The resolu-
tion procedure consists of developing in succession the levels of clauses
that are implied by S until either we run out of computatlon time (in
which case the answer is “no proof found”) or the empty clause nil
is produced as a resolvent in some level. If nil is ever produced, then
we know that S is unsatisfiable. The resolution procedure corresponds
to a breadth-first development of the clauses that are loglcally implied
by S.

A graph that (1) associates the empty clause with one of its
nodes, (2) associates only the ancestors (parents, parents of parents,
etc.) of the empty clause with the rest of its nodes, and (3) connects
each node only to those clauses that are its parents or of which it is a
parent (as determined by the resolution procedure) is called a refuta-
tion graph of S and constitutes a simple proof that § is unsatisfiable.
Figure 6-1 shows a refutation graph for the unsatisfiable set of formulas.

= {VxP(x),VxP(x)—>Q(x),VxQ(a)—>E(x), E(d)}
which is equivalent to the set of clauses

S = {{P(x)},{TP(),0( }1L{10(a) E(2) },{TE(d)}}
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{TIP(y),Qly) }
{P(x)}

\ 1Q(a).E()}

{Q(x)}

{TIE(d) }
{E(2)}

nil

Figure 6-1. A refutation graph.

Of course not all the clauses that are logically implied by S are shown
in a refutation graph.

It is possible to prove that the resolution procedure is a valid
way of showing that a set of clauses is unsatisfiable (i.e., if nil is pro-
duced by the procedure, then the set must be unsatisfiable; if the cor-
responding set of formulas can be shown unsatisfiable, using the five
inference rules presented in the first section of this chapter, then nil
will be produced), but space does not permit the presentation of such
a proof. The reader is referred to (Nilsson, 1971, pp. 181-183).

Summary

To summarize the theorem-proving technique described above,
the theorem prover

. is given a set S, of axioms and a conjecture U.

. forms the negated-conjecture .

. forms the set of formulas &, consisting of S, and "W.

. produces the clause-form equivalent of 8.

. applies the resolution procedure to this set of clauses until
it either runs out of time or produces the empty clause nil.

. constructs a refutation graph if nil is produced and an-
nounces that it has found a proof for the conjecture.

N WK -

=)

A theorem prover that uses the resolution procedure is said to be
resolution-based.

T .-
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Heuristic Search Strategies

Extensions

Methods of theorem proving such as the resolution procedure are
not practically applicable to systems with more than a few axioms.
They correspond to a simple “breadth-first” development of the con-
sequences of the system. It is necessary to use resolution in a selective
manner, if one wishes to develop a theorem prover that can operate with
systems of more than about ten axioms. Various selective techniques for
resolution-based theorem provers have been developed. These tech-
niques are generally known as heuristic search strategies because of
the way in which they alter a theorem prover’s development of the
consequences of a given system. Using such strategies, it is possible
for a theorem prover to prove fairly difficult theorems in systems having
up to two dozen axioms (the proof of such a theorem might be 50
steps long). This section reviews some of the currently used search
strategies for theorem provers. These strategies fall into three basic
categories: refinement strategies, simplification strategies, and ordering
strategies (see Nilsson, 1971).

Simplification Strategies

" Often it is possible to eliminate literals or clauses from a set of
clauses, in a manner that does not affect the unsatisfiability of the set
of clauses. (That is, if the set is unsatisfiable before simplification, it will
be unsatisfiable afterward. Conversely, if a set is satisfiable before
simplification, it will be satisfiable afterward.) When this can be done, it
will reduce the rate at which irrelevant clauses are generated. Three
ways of simplifying a set of clauses are to eliminate tautologies, evaluate
predicates where possible, and to eliminate clauses that are subsumed
by other clauses.

A tautology is a statement of the form “A or not A.” In predicate
calculus every tautology is trivially true. The clause-form equivalent of
a tautology is a clause that contains both a literal and the complement
of that literal. If such a clause belongs to a set of clauses, then it may
be eliminated from the set without affecting the unsatisfiability. of the
set. Thus, clauses like

{Q(xy), R(),R(y)} and  {P(()), PH(x))}
may be eliminated.

Sometimes it is possible to evaluate the truth value of a literal im-
mediately after the clause containing it is generated. In such a case, if

e R R T = i A A 0 L g\ AL £ 1 s A5 b o,
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the literal has the value “true,” then the entire clause may be eliminated
without affecting the unsatisfiability of the set S of clauses. If the literal
has the value “false,” then it may be eliminated from the clause in
which it occurs. Generally, it is possible to evaluate a literal only if one
has some specific information about the nature of its predicate. Thus,
one might have a predlcate P(x,y,z) equivalent to “the sum of num-
ber x and number y is number z.” In such a case, literals using this
predicate can be lmmedlately evaluated by machine.

A clause C; = (L;} is said'to subsume a clause C, = {M,} if
there is a substitution ¢ such that {L;}6 is a subset of {M,}. For ex-

- ample, {P(x),0Q(a)} subsumes {P(f(a)),0(a) LR(»)}. If C; and C;

are clauses in § and C; subsumes C,, then C, may be eliminated from §
without affecting the unsat1sﬁab1hty of §. Intuitively, C; is “more gen-
eral” than C.,.

Usually, it is wise to ehmmate tautologies and, where possible,
evaluate predicates before eliminating by subsumption. Subsumed
clauses should be eliminated only after each level R*(S,) of § has been
completely developed (see Kowalski, 1970a,b).

Refinement Strategies

As we have indicated, the resolution principle presented in the
preceding section can be generalized. It can also be modified to produce
new inference rules that restrict the possible clauses in S which may
be resolved, beyond the simple requirement that they be resolvable.
Such a modification is known as a refinement strategy, and is equivalent
to a new inference rule R, that permits resolutions only between clauses
that satisfy a refinement criterion C. A refinement strategy R, is said
to use resolution relative to C. Many different refinement strategies for
resolution have been developed One of these, the ancestry-filter (AF)
strategy, will now be presented. For a discussion of other strategies, see
Nilsson (1971).

If clauses C; and C; can be resolved to form clause C;, we say
C: and C; are parents of C,. Given a sequence-Cy, Cs, . .. ,C, such that,
for1=i=n,C;isa parent of C;,, we say C; is an ancestor of C,
and C, is a descendant of C, (refer to the terminology for graphs in
Chapter 3).

The refinement criterion for ancestry-filtered resolution can now
be stated. Two clauses will be resolved if and only if either

i) Both belong to S,. :
ii) One belongs to S, and the other is a descendant of a clause
in S,.
iii) One is an ancestor of the other.
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The use of this criterion in effect gives us a new inference rule, which is
denoted as R p. If S is a set of clauses, then R,r(S) denotes the set of
all resolvents between pairs of clauses that belong to S and satisfy the
ancestry-filter criterion. Thus, defining,

Ru47'(8S) = SUR4r(s)
and
RAFM(S) = Rir (R4r"(S)),

it can be proved that if S, is unsatisfiable, then there is some n such that
R47"(S,) contains the empty clause. Conversely, if S, is satisfiable, then
there is no n such that R"(S,) contains the empty clause. Thus, resolu-
tion relative to ancestry filtering can be used in place of ordinary reso-
Iution. Figure 6-2 shows a refutation of a simple set of clauses, produced
according to the ancestry-filter refinement of resolution.

-S-[R(x) ~R(x) vS(x)  ~S(xX)V T(x} ~T(x)v = R(x)

®RY(S)

nil

Figure 6-2. A search for refutation using the AF strategy.
(Nilsson, 1971, reprinted with permission.)

In practice it is possible to add further restrictions to the AF
strategy. Any such restriction will, in effect, add to the refinement
criterion used by the theorem prover. Before using a refinement criterion
it is important to prove the completeness of resolution with respect to
that criterion; that is, one must show that if § is unsatisfiable, then there
is some n such that R,"(S) contains the empty clause; if S is satisfiable,
then there is no n such that R,*(S) contains the empty clause. It is also
important to show that the total cost of using the criterion (in terms of
computation time and memory space used by the computer) is less than
the cost of generating, storing, and resolving the clauses eliminated by
the criterion. The AF refinement strategy for resolution generally tends
to produce much deeper but less broad searches than would be pro-
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duced by unrefined resolution. Other refinement strategies include the
“set-of-support” strategy, and “model” strategies.

Ordering Strategies

Ordering strategies are the most “heuristic” of the three types of
search strategies considered in this section. Ordering strategies cor-
_ respond to the use of evaluation functions for searching state-space
graphs (discussed in Chapter 3). A given ordering strategy does not
necessarily prohibit resolution between certain pairs of clauses (as do
refinement strategies). Rather, an ordering strategy provides that resolu-
tion between certain pairs of clauses shall be performed before resolu-
tion between other pairs. :

Suppose we have an inference rule R (possibly a refinement of
resolution). The search for a refutation of a set of clauses S, cor-
responds to the development of successive levels R*(S,), each level con-
taining the preceding ones as subsets, until a level R"(S,) is produced,
which contains the emptyclause. In other words, it is a breadth-first
search. Up to now the strategies discussed are means of narrowing the
breadth of the refutation search done by a theorem prover (see Fig.
6-2).

Theorem provers that use ordering strategies do not do a breadth-
first search, although they may make use of the simplification and re-
finement strategies discussed previously. A theorem prover that uses an
ordering strategy selectively generates portions of the levels below an
initial set of clauses S, in a depth-first manner. If the first sequence of
portions that it generates down to some level n does not produce the
empty clause, then it will “back up” and try generating another sequence
of portions (see Fig. 6-3). Perhaps the two most common ordering
strategies are the wunit-preference strategy and the fewest-components
strategy.

A unit is a clause that contains only one literal. Similarly, a double-
ton contains two literals, etc. In the unit-preference strategy the theorem
prover first attempts to resolve units against units (if this succeeds, then
it has produced the empty clause), then units against doubletons, then
units against tripletons, etc. Thus, given a set § of clauses, the theorem
prover generates the “unit preference” portion of R*(S). It then gen-
erates the unit-preference portion of R*(S), etc., and continues until it
either produces a null clause or reaches its level bound n; that is, until
it generates the unit-preference portion of R*7(S). If it reaches its level
bound without producing the empty clause, it might back up to .S and
begins generating “doubleton-preference” portions of the levels R'(S)

T W T W W W W
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Figure 6-3. A schematic indication of the refutation searches produced
by (a) resolution, (b) AF resolution, (c) AF resolution with an ordering
strategy.

below S, but within the same level bound. Similarly, it could continue
to “tripleton-preference” portions, etc. If, in the course of generating
a “g-tupleton-preference” portion of some level, the theorem prover
produces a clause containing p literals, where p is less than g, the
theorem prover reverts to the generation of p-tupleton-preference por-
tions.

If the empty clause can be produced at all within the level-bound n,
it will be produced by a theorem prover using the unit-preference order-
ing strategy. Quite often the unit-preference strategy will enable a
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theorem prover to greatly reduce the amount of resolution it does in
order to produce a refutation. We can justify this intuitively by pointing
out that the unit-preference strategy directs the efforts of the theorem
prover toward those clauses that contain the fewest literals, and that
it is relatively rare for two clauses containing many literals to resolve
directly to the empty clause.

In the fewest-components strategy the order in which pairs of
clauses are resolved depends on the length (number of literals, or total
number of symbols) of their resolvent. This strategy usually is more
costly than the unit-preference strategy because it requires that the
theorem prover compute estimates of resolvent lengths for the pairs
of clauses it has generated at a given level before generating their re-
solvents.

Review

The simplification, refinement, and ordering strategies discussed
in this section are all syntax-oriented: A theorem prover that uses them
searches more selectively for a refutation than it would if it did not use
these strategies, though it does so in a way that is dependent more on
the structures of the expressions it generates rather than on their re-
lations to each other. Its selectivity has little relation to the “meaning”
or semantics of the theorem it is trying to prove. It is desirable for a
theorem prover to be able to select the clauses it resolves in some man-
ner that is dependent on their relevance to the theorem it is trying to
prove. Also, it is desirable for a theorem prover to be able to form a
“plan” or description of a proof that has some likelihood of correspond-
ing to the actual proof for the theorem, and to select the clauses it re-
solves according to how well they fit its plan. That this may be feasible
will be evident from the following sections.

Reasoning by Analogy

Chapter 3 discussed various types of analogies and the value of
“reasoning by analogy” as an ability of a general problem solver. Kling
(1971a,b) developed a method whereby theorem provers can select
the clauses they resolve in a manner that corresponds to one type of
reasoning by analogy. The presentation of his method in this section is
highly schematic and is intended merely to give the reader a good idea
of Kling’s approach. For more detailed information the reader should
see Kling’s own explications,
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Let us consider the case of a theorem prover being used to prove
theorems about abstract algebra.® Such a theorem prover might have a
standard set S, of clauses that would constitute its basic knowledge, or
axiomatization, of abstract algebra. The user of the theorem prover
would supply it with a theorem T to be proved, stated using the predi-
cates and functions that occur in S,. The theorem prover would form
the negation T of the theorem, reduce 1" to clause form, add it to S,
to form a set of clauses S, and attempt to prove the unsatisfiability of
S. This procedure could be followed for virtually any theorem T about
abstract algebra. In principle, the generality of the theorem provers as
problem solvers depends only on the extent to which problems can be
described by sets of statements in the predicate calculus. As later sec-
tions will show, it is certainly possible to express some aspects of real-
world problems within predicate calculus formalizations.

In fact, however, the generality of theorem provers as problem
solvers is limited by considerations of computation time and memory
space. A difficult theorem T might requlre 50 steps in the proof gener-
ated for it by a good theorem prover, using an axiomatization S, that
contained a dozen clauses. For such an S, and T the theorem prover
might generate 200 clauses altogether before finding the proof. If the
theorem prover were given more axioms than necessary (say, S, con-
taining 30 clauses), it might generate 600 clauses altogether before find-
ing a proof, and run out of space. That is, it would generate about 400
irrelevant clauses. Even with optimal use of the heuristic search strate-
gies discussed in the preceding section, current theorem provers usually
are unable to prove nontrivial theorems when S, contains more than
about 30, clauses. And a good axiomatization S, for a sub]ect like ab-
stract algebra requires about 250 clauses.”

Thus, theorem provers as we have so far described them cannot
be general problem solvers for nontrivial subjects such as abstract alge-
bra. The axiomatizations (or data bases) for such sub]ects are simply
too large for a program (possessmg current limitations: in time and
memory space) to solve problems in them without ‘some way- of. esti-
mating which clauses are “relevant” to the problem at hand and should
be resolved or generated ﬁrst We can expect the situation to be much
worse for real-world problems, where the number of clauses necessary

6 For the purposes of this book it is not necessary to kriow abstract algebra.
It is chosen simply for the sake of exposition and because Kling chose it for
his work.

" An axiomatization for a-theory must contain not only the clauses that inter-
relate the basic undefined words (“point,” “line,” “between,” etc.) of the theory,
but also those clauses that define the nonbasic words (“circle,” “trxangle,” “‘con-
gruent”)—predicates or functions—used within the theory.
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for an adequate axiomatization of reasoning- program knowledge about
the world might be very large indeed.® -

The situation is amply illustrated with the use of “Venn dlagrams
(see Fig. 6-4). In proving a theorem T from a data base S, a theorem

Figure 6-4. Venn diagram for the data-base problem,

prover might generate the set of clauses indicated by the area labeled
S;. Given the larger data base S’ (which includes S as a subset), the
theorem prover will usually generate the much larger set of clauses S»
before it obtains a proof for 7. In general we want the theorem prover
to have the data base 5’ available, since there is no a priori information
as to which theorems it will be required to prove. But, we would like
to have some program that could often select, for any given theorem
T, a data base § from which T could be easily derived. We could attempt
either to modify the theorem prover itself or to write a new program
that would select data bases for the theorem prover.

Because of the undecidability of the predicate calculus, this prob-
lem cannot be completely solved. However, Kling prov1ded a partial
solution to it in the form of an analogy generator that, given some help,

® Minsky (1968a, p. 26) makes a very rough estimate that would correspond
by the present author’s interpretation to 10° or 10° clauses, belonging to-a high-

order predicate calculus, for a reasoning program at the level of human intel-
ligence. But, of course, it is only a guess.

-~
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is often capable of making a good selection for the data base §. Kling’s
analogy-generating program is called zorBA-1.% It is designed to operate
in conjunction with a theorem prover (see Green, 1969), of the type we
have described.*

ZORBA-1 is given the following information as input:

1. A theorem T, which is to be proved by Qa3

2. A theorem 77, which has already been proved

3. The proof of 7”; that is, an ordered sequence of clauses
Ci,....,.Cy such that each clause C; is either an element of
S’ (the large data base) or an element of 77, or the re-
solvent of two clauses, say, C; and C; which occur prior to
it in the sequence (i.e., such that j and k are both less than i)

4. The large data-base S’

5. A “semantic template” for §’

The first three items of this list are problem-dependent; they vary with
the theorem T which is to be proved by Qa3. The fourth and fifth items
do not depend upon 7, but do depend on §". To the extent that ZORBA-
QA3 is being used as a general problem solver relatlve to §’, they can
be considered problem-independent.

Given this information, ZORBA-1 produces an analogy A consisting
of:

1. A*, a one-to-one association {or map) between the predicates
used in the proof of T” and predicates that may occur in the
proof of T. That is, each predicate used in the proof of 7"
is associated with exactly one predicate that occurs in " and
might be used in the proof of T.

2. A°, which associates each clause used. in the proof of 7”7 with
a set of clauses that each occur in §" and might be used in
the proof of T.

3. A, which associates sets of variables used in the proof of 7"
with sets of variables that might be used in the proof of T.

These associations are represented in the computer by appropriate data
structures, and are referred to as predicate analogies, clause analogies,

9 ZoRBA is an acronym for (ZO) Reasoning By Analogy. Zorba was a pas-
sionate, intuitive Greek, and many contemporary thinkers consider analogy an
intuitive process outside the realm of reason (Kling, 1971a, p. 4).

10 QA3 was developed at Stanford Research Institute, principally by Green
and Raphael. It is resolution-based and uses the unit-preference heuristic. How-
ever, it does not use ancestry-filter refinement, but instead uses the set-of-support
refinement (which has not been discussed; see Nilsson, 1971, pp. 223-224).
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and variable analogies, respectively. 77 will be called an analog of
T, and vice versa.

Thus, an analogy developed by ZoRBA consists of a predicate anal-
ogy, a clause analogy, and a variable analogy. Predicate and variable
analogies are used within ZorBA-1. Its output to QA3 is a clause analogy
A°. QA3 uses A4°, together with 71T, as the data base which it attempts
to prove unsatisfiable. If QA3 succeeds, then we are justified in saying

‘that the two programs, zoRBA and QA3, have together “reasoned by

analogy” from the proof of T” to obtain a proof of T. Of course there
may be many types of analogical reasoning that are not described by
this particular paradigm. The importance of this paradigm to AI re-
search depends only on how well it works; that is, whether zorBA and
QA3 are in fact able to prove theorems that could not be proved by Qa3
alone, relative to the same large data base .

In fact, the ZORBA-QA3 program pair is rather successful, at least
with respect to the data base for abstract algebra developed by Kling
(1971a). Kling’s abstract algebra data base S’ contains 239 clauses.
Given two analogous theorems T and 7" and a proof for 7" requiring
20 clauses, zorBA-1 could usually select a clause analogy 4° containing
less than two dozen clauses; that was sufficient for Qa3 to use in proving
T. For the reader who is acquainted with abstract algebra, the following
example is quoted:

T’: “The intersection of two normal groups is a normal group.”
T: “The intersection of two ideals is an ideal.”

Either of these theorems would have been unprovable for Qa3, given
the data base §'. However, ZOoRBA-1 and QA3 together are able to de-
velop a proof for T, “reasoning by analogy” from a proof for 7”.

In practice, ZorRBA-1 must select its clause analogy heuristically
by searching through a space of partial analogies (see Fig. 6-5). For
an §’ containing 239 clauses, the number of possible clause analogies,
edch containing 24 clauses, is extremely large (about 10%; see Kling,
1971a, p.110). zorBa-1 first develops a partial analogy A,, which
is relatively small and contains less than a dozen clauses. For each
part1a1 analogy A; that it develops, it either adds or deletes a few clauses
in order to create A;,;. ZORBA-1 is gu1ded in its development of
partial analogies by the “semantic template” for §’, which is provided
to it. Usually ZorBA-1 needs to generate less than ten partial analogies.
The semantic template is a small table of descriptions for the predicates

occurring in 8. For example, the predicate “group” is given the de-

scription
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Figure 6-5. Heuristic search through an analogy-space.

STRUCTURE (SET;OPERATOR)

Thus, zorBA-1 knows automatically whenever it sees “group (A4,;*)”
that 4 is a set and * is an operator. ZORBA-1 uses the semantic template
to generate descriptions of those clauses occurring in § and in the
proof of 7”. The clauses it chooses from §’ for its partial analogies are
those that have descriptions similar to the descriptions of the clauses in
the proof of 7. ZoRBA-1 terminates its search when it has found analogs
for each of the clauses in the proof of 7”. It then submits the resulting
clause analogy to Qa3. '
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In summary, to reason successfully by analogy, zoRBA-1 and QA3
require certain essential information:

1. A theorem 7", which is analogous to the theorem T that
ZORBA-QA3 is required to prove

2. A proof of T”

3. A semantic template for S’

At the moment, this information must be provided to the computer by
the human user of the system. The development of programs that would
be capable of supplying this information is an open problem. Even so,
ZORBA-1 is important because it does indicate a way for resolution-
based theorem provers to prove theorems, given large, nonoptimal
axiomatizations.

SOLVING PROBLEMS WITH THEOREM
PROVERS

State-Space

A state-space problem (S,F,G) as defined in Chapter 3 consists
of a description of a set S of possible starting states, a set F of operators
that convert one state into another, and a set G of goal states. The
problem implied by such a description is to find a sequence of operators,
the application of which will convert some starting state into a goal
state. A description of this sort implicitly defines a state-space consisting
of a set of states and various possible paths between them. The “diffi-
culty” of a state-space problem is at most a matter of the size of the
state-space and the relative proportion of solution paths to nonsolution
paths. In some cases it is possible to logically analyze a description of
a state-space problem and show that its solutions are equivalent to those
for a problem with a simpler description, a smaller state-space or set of
operators. With this possibility in mind, the “problem-reduction” prob-
lems, the “problem of problem-representation,” and “global” analysis of
games were discussed in Chapter 3.

This section describes how resolution-based theorem provers can
be used as general problem solvers for state-space problems. We con-
sider three questions: -

1. How can predicate-calculus theories be used to describe state-
space problems?

2. How can theorem provers be used to construct paths through
state-spaces?
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3. To what extent can the techniques we descrlbe be applied to
real-world problems?

Our discussion of these questions is based on McCarthy (1959,
1963a, 1964, 1968), McCarthy and Hayes (1968), Black (1964),
Green (1969), Waldmger and Lee (1969), Amarel (1970), Nilsson
(1971), and Fikes and Nilsson (1971). Other relevant papers include
Amarel (1967, 1968), Slagle (1965, 1970), and Slagle and Bursky
(1968).

Predicate-Calculus Descrlptlons of
State-Space Problems

A given state-space problem can usually be described in many
ways, depending on how one chooses to describe its states and operators.
The state-space problems discussed previously have the following fea-
tures:

1. Each state can be described as a collection of objects, each
having certain relations to the others. For example, in the
15-Puzzle, the “objects” might be blocks, positions, and the
null-block or empty position.

2. Each operator can be described as a procedure for changing
one state into another. For a given state, zero, one, or many
operators might be applicable.

Thus, our terminology for state-space problems includes “states,”
“objects,” “relations,” and “operators.” A predlcate-calculus descrip-
tion of a state-space problem may reflect these concepts in the following
ways:

1. “States” and “objects” can be represented by variable sym-
bols called state (or situation) variables-and object variables.
In 'this discussion, s,5,57, . ..represent state variables and
0,0',0", . . .represent object variables. Particular constant
states and objects will be denoted - by 80,5152, - - and a,b,c,

. ,box, monkey, . . . ,respectively.

2, “Relatlons between objects, and properties of states and
actions can be indicated by fluent symbols, which are either
predicate or function symbols. We are primarily concerned
with situational fluents (McCarthy and Hayes, 1968), which
are functions or predicates that include states among their
arguments. For example, “ON(monkey, box, s,)” might be
a situational-fluent predicate with the value “true” if the ob-
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ject “monkey” is on the object “box™ in state s,. Similarly,
“MOVE (monkey, box, a, b, s,)” might be a situational-
fluent function which has as its value the state s produced
when the object “monkey” moves' the object “box” from
posmon ato posmon bin state So

First-order predicate calculus formulas that use the ordinary logic sym-
bols (A,V, ,—,d,¥) and use state variables, object variables, and
fluent symbols as their nonlogical symbols, can be used to express facts
about state spaces. A collection of such formulas can be considered a
description of a state-space, provided the collection is satisfiable and
contains formulas that use situational-fluent functions which represent
the operators associated with the state-space. Problems associated with
the state-space can be represented by formulas that are to be proved,
using the formulas that describe the state-space.

EXAMPLE 6—1. THE MONKEY-AND-BANANAS PROBLEM. This prob-
lem (McCarthy, 1963a) was given as an exercise in Chapter 3.
It is one of the classic “toy problems” considered by ArI re-
searchers as an example of an extremely simple problem that
involves common-sense reasoning about situations, actions, tools,
etc. The problem is repeated here along with a predicate-calculus
formalization for it:

A monkey is in a room where a bunch of bananas is
hanging from the ceiling, too high to reach. In the corner
of the room is a box, which is not under the bananas.
How can the monkey get the bananas? The solution to
the monkey’s problem is to move the box under the
bananas and climb onto the box, from which the bananas
can be reached.

The objects used in our description of this state-space problem
are monkey, box, bananas, placel, place2, place3. The oper-
ators used are goto, move, climb, and reachfor, each of which
will be a situational-fluent function. The relations used in the
description are under, on, at, and has-bananas, each of which
will be a situational-fluent predicate. Table 6--1 gives the first-
order predicate calculus formulas that correspond to a descrip-
tion of the monkey-and-bananas state-space, using these objects,
operators, and relations. The monkey s problem is represented
by the formula

(ds) (has-bananas(s) ) (6-1)
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- which is to be proved, using the formulas in Table 6-1. The

formulas in Table 6-1 do not say explicitly that it is possible
for the monkey to get the bananas. However, if we can prove
formula 6-1 from the formulas in Table 6-1, then we may con-
clude that there is some sequence of applications of the operators
that will convert state s,, in which the monkey does not have the
bananas, into a state s, in which he does. We can conclude this
because the only state that is explicitly mentioned in Table 61
is the state s,. If formula 6—1 holds for all models of the formulas
in Table 6-1, then it must hold for the model in which the only
states that exist are s, and those which can be obtained from s,
by the application of some sequence of operators to it. Thus, if
the formulas of Table 6-1 logically imply formula 6-1, then
there is some way for the monkey to convert s, into a state
s for which “has-bananas(s)” is true.

Figure 6-6 shows the proof of formula 6~1, using the for-
mulas in Table 6-1 and the resolution procedure. The negation
of formula 6-1 is added to the set of formulas in Table 6-1, and
the resulting set of formulas is shown to be unsatisfiable. Thus,
the set of formulas in Table 6-1 loglcally imply that the monkey
can get the bananas.

Simply proving that the monkey can get the bananas is not, of

course, the same’ thing as showing a way for him to do it. We would
like our proof of the existentially quantified formula 6-1 to be construc-
tive; that is, we would like it to produce an actual: sequence of operations
which, when applied to s,, will produce a state s for. which “has-ba-

TABLE 6-1A. The Monkey and Bananas Problem (Predicate-calculus

Axioms)*

Al.
A2,
. VpVs(at(monkey,p,goto(p,s}))

. VpVp'¥s( A (at(box,p,s),at(mon,p,s) ) at(box,p’,;move(mon,box,p,p’;s) ) )
. Vpv¥p’Vp”Vs(at(ban,p,s)->at(ban,p,move (mon,box,p’,p”,5)) )

. VpVp'Vs(at(mon,p,s)->at(mon,p’,;move(mon,box,p, P’5)))

. Vs(under(box,ban,s)-> under(box,ban,climb(mon,box,s) ) )

. ¥pVs(A (at(mon,p,s),at(box,p,s) )-» on (mon,box,climb(mon,box,s) ) )

. Vs(A (under (box,ban,s),on(mon,box,s) )->has-bananas(reachfor,mon,

VpVp'Vs(at(box,p,s)->at(box,p,goto(p’,s)))
VpVp’Vs(at(bananas,p,s)->at(bananas,p,goto(p’,s)))

ban,s)))

. Vs(A (at(box,ps,s),at(ban,ps,s) )->under(box,ban,s) )
. A (at(box,pz,s.),at(ban,ps,s0))

* (mon = monkey, ban = bananas)
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TABLE 6-1B. Monkey and Bananas (Clause Form)

Al. {Tat(box,p,s),at(box,p,goto(p’,5) )}
A2. {TTat(bananas,q,s’),at(bananas,q,goto(¢’,s") )}
A3. {at(monkey,r,goto(r,”"))}
A4, {Tat(box,u,v), lat(mon,u,v),at(box,’;move (mon,box,u,u’,v) ) }
AS. {TTat(ban,t,#””),at(ban,;,move(mon,box,?, #,t”))}
A6. {TTat(mon,»’,v"”") at(mon,»”,move(mon,box,v’,»"v') )}
A7. {Tunder(box,ban,w),under(box,ban,climb(mon,box,w) )}
A8. {Tlat(mon,w’,w”), Jat(box,w’,w”),on(mon,box,climb(mon,box,w”) )}
A9. { lunder(box,ban,x), Jon(mon,box,x),has-bananas (reachfor(mon,ban,x) )}
A10. {Tlat(box,ps,y), at(ban,psy),under(box,ban,y)}
All. {at(box,pz.)}
A12. {at(bananas,pz.o)}
Negated Conjecture (NC): { Thas-bananas (z)}

Consequences of the Axioms (Fig. 6-6)
C1. {at(box,pzgoto(p’,5:))}
C2. {Tat(mon,ps,goto(p,s¢) ) ,at (box,u’,move (mon,box,pz,u’,goto(p’,ss) ) )}
C3. {at(box,u’;move (mon,box,pz,u’,goto(pz50) ) )}
C4. {Tlat(ban,ps,;move (mon,box,paps,goto(pss,) ) ),under (box,ban,move (mon,box,
P2,p2,20to(p2se) ) ) }
C5. {at(bananas,ps,goto(q’,5:))}
C6. {at(ban,ps,move(mon,box,t’,t"”,goto(q’,5+)))}
C7. {under(box,ban,move (mon,box,ps,ps,goto(pz5) )} ) }
C8. {under(box,ban,climb{(mon,box,move(mon,box,pz,ps,goto( p250))))}
C9. {at(mon,v”,move(mon,box,r,v",goto(r,r')) )}
C10. {lat(box,v”,move(mon,box,r,v”,goto(r,r) ) ) ,on(mon,box,climb, (mon,box,
move(mon,box,r,7”,goto(r,r'))))}
C11. {on(mon,box,climb(mon,box,move(mon,box,pz#’,goto(pzs0)))) }
C12. {Ton(mon,box,climb(mon,box,move (mon,box,pz,ps,goto(pz,s.) ) ) ) ;has-ba-
nanas(reachfor(mon,ban,climb (mon,box,move (mon,box, pz,ps,goto
(p=5))))}
C13. {has-bananas(reachfor(mon,ban,climb(mon,box,move(mon,box,pz,ps,goto

(p25)))))}

nanas(s)” will be true. Green (1969b) was the first to devise -a res-
olution-based theorem prover capable of supplying constructive proofs
for existentially quantified formulas.

Path Finding, Example Generation, Constructive
Proofs, Answer Extraction

This section presents Luckham and Nilsson’s (1971) generaliza-
tion of Green’s technique. This technique is illustrated by a simple
problem, and then its application to the monkey-and-bananas problem
is described.
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. N\
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Figure 6-6. A proof that the monkey can get the bananas.
(See Table 6-1.)

Let us suppose we are given a simple set S,, which contains only
the axiom :

N (((HuP (b,u,u))=>VuP(b,u,u)),V (VwidrP(a,w,r), P(b,b,b)))
\ (6-2)

and let us suppose we are asked to prove the conjecture
AxVydzP(x,y,2) (6-3)

in a constructive fashion; that is, we wish to find values for the variables
%,y,z such that formula 6-3 will be true. Our standard procedure is to
convert formula 6-2 and the negation of formula 6-3 into clause-form
expressions and attempt to show that the set S that contains them is
unsatisfiable. Figure 6-7a shows the use of the resolution principle
to construct a refutation graph and demonstrate the unsatisfiability of
S.-(Such a refutation graph could be easily obtained by a current reso-
lution-based theorem prover.)

S S —
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{P(b,u,u},P{b,v,v)} {P(a,w,g(w)),P(b,b,b)}
\ / x={(b,u)}
{7IP(x,f(x),2) } {P{b,v,v),P(a,w,g(w)}

x={{b,x},{f(b),v),(f(b),2)}}
{P{a,w,g(w) }

V / K= {{ax),fla),w,(g(F(a)).2)
nil

(A)

{1P{b,u,u),P(b,v,v}} {P(a,w,g{w)),P(b,bb)}

{P(b,v,v},P(a,w,g(w})}

{‘IP(x,s,z),P(x,s,z) }

{Pla,w,g(w),P(x,s,;5) 1

®

{P(a,s,g(s}),P(x,s,s} }
(B)

Figure 6-7. A simple refutation graph (A) and its modification (B) to
produce an example.

Green’s technique provides a way to construct the required ex-
ample of formula 6-3, using a refutation graph such as Fig. 6-7a. Once
a theorem prover has derived a refutation graph that proves the initial
conjecture (disproves the negated conjecture), an “example-construct-
ing program” can be used, which does the following things:
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1. First, for each application of resolution in the graph, the

literals that are unified by that resolution are marked. In
" Fig. 6-2 these literals are underlined.

2. New variables are substituted for any Skolem functions oc-
curring in the clauses coming from the negation of the con-
jecture. Thus, the variable s is substituted for the Skolem
function f(x).

3. Any clause in the graph which comes directly from the
negation of the conjecture is converted into a tautology by
adding its own negation to it. Thus, the clause

{1P(x,52)}
is converted into the clause -
{WP(x,52),P(x,52)}

4. Following the structure of the original refutation graph, a .
modified graph is constructed. Each resolution in the modi-
fied graph unifies the same literals as are unified in the
original refutation graph (i.e.; the marked literals). If a
clause being resolved contains “tautology literals™ added to
it in step 3, the variables in the tautology literals receive the
same instantiations as they do elsewhere in that resolution.

5. The clause at the bottom of the modified graph is an example
of values for the existentially and universally quantified
variables occurring in the conjecture, for which the con-
jecture will be true.

Figure 6-7b shows the modified graph obtained from Fig. 6-7a. The
clause at the bottom node is equivalent to

VyV (P(a,y,g(y)),P(b,y.y))

where g is a Skolem function introduced during the construction of the
refutation tree. We may interpret this clause as saying, “Either x = q,
y =y (ie, y has any value), z=g(y),orx=b,y=y,z=y (ie,y
has any value and z must equal y) will make the conjecture true, and at
least one of these two cases must be a valid example for any model of
the axioms.” The presence of a Skolem function indicates that our
solution is, to some extent, general; there are many models for formulas
6-2 and 6-3, and each model contains its own set of values for x,y,z
which will satisfy the quantifiers in formula 6-3. The Skolem function
indicates that the values of certain variables depend on the particular
model and on the values for other variables one happens to choose.

e e
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(See Figure 6-7)
_A
Vs \
L] [ ]

[ [ 2
. Cc11
o @
c12 :

{has-bananas(reachfor(mon,ban,climb(mon,
box,move(mon,box,pa,pz:90t0(p2,5))1)) }

{Thas-bananas(z) has-bananas(z)} }

=\

{has-bananas(reachfor{mon,ban,climb(mon,
» box,move(mon,box,po,p3,90to(pg,sg))))} }

Figure 6-8. Modifying the refutation tree for the monkey-and-bananas
state-space. In this case only the bottom part of the tree Is affected by
the modification process. ’

The generality of the examples constructed by this technique de-
pends on the refutation graph it is given. Often there will be many ways
to prove that a given set of clauses is unsatisfiable, and different ways
will yield different examples. Because of the undecidability of the predi-
cate calculus, there usually is no way to guarantee that a given example
is the most general.

We can prove the validity of this example-constructing technique
by observing that the modified graph represents the inference of the
example from the axiom 6-2 and a tautology, consisting of formula
6-3 and its negation. Since the inference itself is valid (i.e., the reso-
lution principle is valid and has been applied correctly), and since a
tautology is always true, the example that is constructed must be correct.

Figure 6-8 shows the application of Green’s example-constructing
technique to the Monkey-and-Bananas Problem, modifying the refuta-
tion graph shown in Fig. 6-6. To get his bananas, the monkey should
interpret the expression shown at the bottom of the graph, working out-
ward from the innermost subexpression “goto(place2,s;).” Thus, he
should perform the following sequence of actions:

goto place2
move monkey, box, from place2 to place3
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climb monkey, box
reachfor monkey, bananas

Green (1969a) used his constructive-proof technique to obtain a similar
solution for the monkey (note 6-3).

To summarize, the use of resolution-based theorem provers to
solve state-space problems: involves

1. Describing state-spaces by means of sets of predicate calculus
- formulas.

2. Expressing problems as con]ectures to be proved.

3. Finding proofs for conjectures, using the resolution prmmple
and various heuristic search strategies (reﬁnement methods,
ete.).

4. Using Green’s technique to convert a resolution proof of
‘the unsatisfiability of the negated conjecture into an example

_ of the conjecture’s truth.

5. Interpreting this example as a description of the solution to

the state-space problem.

The Exercises at the end of this chapter show how this process can ‘be
applied to other state-space problems (besides the Monkey-and-Bananas
Problem) that were discussed in Chapter 3.

Applications to Real-World Problems ST

The extent to which theorem provers can be-used for solving real-
world problems depends on several factors, including how well predi-
cate calculus can be used to describe real-world situations and actions,
and how efficiently theorem provers can be used to find solutions to
problems that are given predicate calculus formalizations. This section
concludes with a limited discussion of these factors. The reader is en-
couraged to see Green (1969a), McCarthy and Hayes (1968), and
Hewitt (1969,1970) (discussed in the next section) for more on this
subject.

Since, presumably, any mathematical theory can be expressed as
a system of predicate calculus formulas, there is no doubt that predicate
calculus offers a metaphysically adequate mathematical framework for
the description of the real world, if any such framework can be con-
structed at all. Our major questions must concern its epistemological
adequacy (how well it can represent everyday aspects of the real world)
and its heuristic adequacy (how well it can be used to express informa-
tion that is helpful in solving problems).

i € e A et G et e
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The epistemological adequacy of predicate calculus is probably
satisfactory for the construction of real-world problem solvers. Green,
McCarthy, and Hayes have shown that predicate calculus can be used
to provide formalizations for such aspects of the real world as time-
dependency, causality, and ability. The Monkey-and-Bananas Problem
illustrates that predicate calculus can be used to formally express con-
cepts involving objects and spatial relations. Other examples can be
provided (see the Exercises and the next section) to show that predicate
calculus may be used to represent problems that have solutions which
are disjunctive, conditional, and which contain loops or recursive defini-
tions. Perhaps the major questions involve the desirability of using
modal and many-valued logics instead of predicate calculus, and the
question of whether higher than first-order predicate calculus can be
used successfully.

There are strong intuitive reasons for suspecting that many-valued
logics are more desirable than predicate calculus. A machine capable
of solving problems in a real-world environment must have some way
of dealing with ambiguities, inaccuracies, probabilities, multiple inter-
pretations, etc. Chapter 3 presented a list of some aspects of the real
world which should be easily representable in the reasoning-language
used by such a machine. Again, it is clear that each of these aspects of
the real world could be embodied in a predicate calculus machine if
they can be embodied in any machine at all. However, any such em-
bodiment in a predicate calculus machine would require a set of axioms
to define the functions and predicates that were associated with each of
these aspects. The question is whether some other logic, which had
these axioms built into its logic symbols and inference rules, would be
more efficient. This question must be considered in light of the fact
that no completely satisfactory many-valued logic has yet been de-
veloped. Perhaps it will be necessary to develop a system with a variable-
valued logic, one that would be able to learn various functions and
- predicates and build the most useful ones into its logical apparatus.

As for the use of higher than first-order predicate calculus, essen-
tially the same arguments apply. First-order predicate calculus is episte-
mologically adequate, but it seems likely that a higher-order system
would be much more efficient. Hewitt (1969,1971) developed a theo-
rem-proving language (described in the next section) that in many
respects is more powerful than omega-order predicate calculus.

Hewitt’s work was also concerned with the heuristic adequacy of
predicate calculus. He showed that it is possible not only to use predi-
cate calculus formulas as statements of facts, but also to use them as
recommendations for how to proceed in solving problems.
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The other major question concerns how efficiently theorem provers
can be used to find solutions to problems that are given predicate calcu-
lus formalizations. In considering this question, it is well to point out
that Green’s technique and resolution-based theorem provers have so
far been applied only within given state-space problems. The issue of
whether theorem-proving techniques can be used to logically analyze a
given state-space problem, and show that its solutions are equivalent to
those for a problem with a simpler description (smaller state space or
set of operators), remains undecided. ‘

Another problem in the efficient use of theorem provers is the
frame problem, discussed in McCarthy and Hayes (1968). The frame
problem arises from the fact that, in a state-space problem, an applica-
tion of an operator to a state will usually affect some relations between
objects in the state and not affect others. In the predicate calculus
formalization for such a problem, there must generally be axioms for
each operator to express both the relations that are and are not changed
by the application of that operator. For example, in the Monkey-and-
Bananas Problem we had to state and use the fact that the application
of the operator climb would not affect the position of the box (see
Table 6-1A). Whenever it is necessary to make use of the fact that a
certain relation still holds in a given state, the theorem prover must
prove it, using the axioms for each of the operators that have been ap-
plied since the relation was last shown to be true. This, of course, greatly
increases the work that must be done by the theorem prover.

Various techniques for overcoming the frame problem have been
investigated, notably by Fikes and Nilsson (1971) and Hewitt (1969,
1971). Fikes and Nilsson present a Gps-like program that controls the
application of a theorem-proving program to various sets S; of clauses,
each set S; representing a given state in a state space. Each operator has
associated with it ‘a collection of “delete” and “add” instructions that
identify the relations changed by the application of that operator. The
program (called sTRIPS) performs a heuristic search in the state space
until it finds a sequence of operators that will produce a set S, of clauses
containing the desired relations. Figure 6-8 shows sTRIPS solving an
expanded problem of the Monkey-and-Bananas type. STRIPS controls
a robot (Shakey), which performs tasks in a real-world environment,
as indicated by Fig. 6-9. (Also see Chapter 9.)

Hewitt’s approach to the frame problem was similar. He defined
a general class of procedures for manipulating data bases (sets of ex-
pressions) that include the S; sets of Fikes and Nilsson. This approach
is discussed in the next section.

S S -
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ROOM1 ROOM2 ROOM3 ROOM4
e
a|l Boxi
b1 BOX2
d
LIGHTSWITCH1 o—}
¢ BOX3 f
| l | 1 | | | |
DOOR1 - DOOR2 DOOR4
1 I i I —] DOOR3 | l I
ROOMS
Tasks
1. Turn on the lightswitch
Goal wif: STATUS(LIGHTSWITCH1,0N)
STRIPS solution: {goto2(BOX1},climk {BOX1),climboffbox(BOX1),
pushto(BOX1, LIGHTSWITCH1),cli (BOX1), ight(LIGHTSWITCH1) }

2. Push three boxes together

Goal wif: NEXTTO(BOX1,B0X2) ANEXTTO(BOX2,B0X3)

STRIPS sotution: {goto2(BOX1},pushto(BOX1,BOX2),g0to2(BOX3),pushto(BOX3,80X2) }
3. Go to a location in another room

Goal wif: ATROBOTIf)

STRIPS solution: {goto2(DOOR1},gothrudoor(DOOR1,ROOMT,ROOMS),
goto2{DOORA), gothrudoor(DOOR4A,ROOMS,ROOMA) goto(f) }

Figure 6-9. Tasks for STRIPS (initially at position ) and its solutions.
(Fikes and Nilsson, 1971, reprinted with permission.)
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THEOREM PROVING IN PLANNING AND
AUTOMATIC PROGRAMMING

Planning

Chapter 3 stressed the value of planning as a process to be per-
formed by a general problem solver; for many real-world problems it is
impossible to specify a single sequence of operations that will invariably
achieve one’s goal. The first and most general solution is a plan. Plans
typically describe many alternate sequences of actions and specify con-
ditions according to which different sequences will be followed. “Plan-
ning” (i.e., developing a plan) is itself one of the actions that a plan
might dictate, and can be considered as an aspect of problem reduction.
The feasibility of using program-like structures, such as nondeterministic
programs and fuzzy algorithms, to represent plans, has been mentioned.

The use of theorem-proving techniques in planning is still at the
stage of preliminary investigation. The few results that have so far been
achieved indicate that it may be possible to use theorem provers to
construct plans for the solution of real-world problems. Current investi-
gations have followed essentially two approaches (note 6-4) to the
development of theorem-proving plan makers: Hewitt (1969,1971)
developed the programming language PLANNER, which permits the
statement and execution of plans in a theorem-proving format; other
researchers (e.g., Green, 1969a; Waldinger and Lee, 1969; McCarthy,
1962; R. W. Floyd, 1967; Manna, 1969,1970) demonstrated that it
is possible to use resolution-based theorem provers to develop computer
programs, and that it is often possible for people to prove whether or
not a given computer program is “correct.” ‘

Planner

A programming language is a way of describing procedures to
computers; a description of a procedure, written in a programming lan-
guage, is a program. Computers with a given “language capability”
can accept programs written in that language and carry out the pro-
cedures they describe. Up to now it has not been necessary to consider
any specific programming languages, since these discussions have been
more concerned with procedures than programs. Thus, “procedure”
and “program” have been used somewhat interchangeably. Theoreti-

11 The text has also been somewhat informal on this point in other respects.
Thus, programs have been often said to “do” something or to “perform” some
task when in actuality it is the computer that does or performs the procedure de-
scribed by the program. This informality will be maintained.

e . B T
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cally, any procedure that can be performed by a program written in
one programming language can be performed by some program in any
other given programming language. The difference between program-
ming languages lies in the simplicity with which various procedures
can be stated by their programs. Thus, associative data processing is
harder to do in FORTRAN than it is in SAIL (a programming language
used at the Stanford Art1ﬁc1a1 Intelligence Project—see Feldman et al,,
1972).

PLANNER is a significant new programming language for artificial
intelligence research (see Hewitt, 1968 et seq.). Some of the things that
can be done easily with PLANNER will be listed, though space does not
allow more than a brief presentation of the language itself. Hewitt’s
work founded a new genus of programming languages for Al research.
Among these are Qa4 (Rulifson, 1971), CONNIVER (Sussman and Mc-
Dermott, 1972a,b), and sam. (Feldman et al., 1972). PLANNER is
still in the process of being implemented; however, an early version of
PLANNER (MICRO-PLANNER—see Sussman and Winograd, 1970; Baum-
gart, 1972) has been operational for more than a year. LISP is a very
desirable background to these languages, and we also suggest reference
to McCarthy et al. (1965), Weissman (1967), and Teitelman et al.
(1972).

PLANNER is a programmmg language for the manipulation of
data bases. A data base is some set of expressions which a PLANNER
program may treat as assertions of knowledge about the world. A pro-
gram written in PLANNER is a description of a plan for changing the
assertions in a data base (or perhaps creatmg a new data bas¢) de-
pending on the assertions that are already in the data base. The funda-
mental mechanism that makes PLANNER work is pattern matching (see
Chapter 5): a PLANNER program (or “theorem”) may use pattern
matching to search a data base for certain expressions and, if it finds
them, add a new expression to the data base. Or a PLANNER program
may use pattern matching to search the data base for other programs
(theorems) that are designed to add certain expressions to a data base.
Thus, the PLANNER “consequent” theorem:

(THCONSE (X) (FALLIBLE $?X)
(THGOAL (HUMAN  $7X)))

is a program specifying a procedure to follow in order to add an asser-
tion of the form (FALLIBLE $7X) to a data base; this procedure consists
of attempting to satisfy the statement (THGOAL (HUMAN $?x)), which
can be done if the pattern matcher finds an assertion of the form (nu-
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MAN $7x) in the data base, or if the pattern matcher ﬁnds another con-
sequent theorem in the data base, of the form

(THCONSE (Y) (HUMAN §?Y)...)

and this theorem can be successfully executed with ¥ bound to the
value of X. If the THGOAL statement can be satisfied in either of these
ways, and the value of X is, say, SOCRATES, then the original THCONSE
theorem will add the assertion (FALLIBLE SOCRATES) to the data base.
In English, this means “something is fallible if it is already known to be
human, or if it can be shown to be human.” (The $ and ? are variable
prefixes used for pattern matching—see Chapter 5.)

Similarly, PLANNER makes use of “antecedent” theorems to change
assertions in a data base automatically whenever certain other assertions
are added or erased. Thus,

(THANTE (X Z) (LIKES $2X $7Z)
| (THASSERT (HUMAN $7X)))

is an antecedent theorem' (program) which states that whenever an
assertion of the form (Likes $7x $7z) is added to a data base, the as-
sertion (HUMAN $?x) should also be added. ‘

Thus, a PLANNER theorem is capable of acting.as a goal-oriented,
nondeterministic program; it can stipulate various goals for the computer
without stipulating exactly how the computer must try to achieve them.
PLANNER theorems are an example of pattern—dzrected plans ‘

Furthermore, PLANNER includes the ability to backup- a plan if a
pattern matching proves to be unsuccessful. Thus; suppose our data
base includes the following simple assertlons

(HUMAN TURING) .
(HUMAN SOCRATES)
(GREEK SOCRATES)

and the theorem:
(THCONSE (X) (FALLIBLE $?X)
’ (THGOAL (HUMAN' $7X0))

We can search the data base to answer the question “Is there a fallible
Greek?”” by evaluating the PLANNER program: '

(THPROG (X) (THGOAL (FALLIBLE $7X) (THTBF
, THTRUE))
(THGOAL (GREEK $7X)))

This expression will have a successful execution, and return a value
for x, only if both THGOAL’s can be satisfied. When PLANNER attempts

e N R e At
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to satisfy the first THGOAL, it will make use of the THCONSE theorem to
prove the validity of asserting that something (the value matched to x)
is fallible; after that, PLANNER will attempt to satisfy the second THGOAL,
by trying to prove or find an assertion that the same thing (the same
value of x) is Greek. In satisfying the first THGOAL, evaluation of the
THCONSE theorem will cause the pattern matcher to attempt to match the
pattern rule (HUMAN $?X) against an assertion in the data base. Sup-
pose that the pattern matcher first matches this pattern rule with the
assertion (HUMAN TURING), making TURING be the value of x; the
THCONSE theorem will then add the assertion (FALLIBLE TURING) to
the data base, and control will return to the THPROG which will attempt
to satisfy its second THGOAL, by either finding, or proving the validity of,
the assertion (GREEK TURING). This attempt will fail, because the as-
sertion (GREEK TURING) does not appear in the data base and there are
no theorems in the data base which could be used to add such an as-
sertion to the data base. The failure of this THGOAL will cause the
THPROG to backup, and attempt to resatisfy its first THGOAL with a dif-
ferent value for x; the THCONSE theorem will be re-executed, and its
THGOAL will call upon the pattern matcher to once again match the pat-
tern rule (HUMAN $7x) with an assertion in the data base. However,
this time the pattern rule will be matched with the assertion (HUMAN
SOCRATES), and the new value for X will be SOCRATES. The THCONSE
will succeed, and the assertion (FALLIBLE SOCRATES) will be added to
the data base, and so the first THGOAL of the THPROG will succeed again.
Lastly, the THPROG will again attempt to satisfy its second THGOAL.
This attempt will succeed, because the assertion (GREEK SOCRATES) will
be found in the data base. And so, the THPROG itself will terminate
execution successfully, and return a value for X that is the answer to
our question. .

This feature of PLANNER (known as its hierarchical control struc-
ture) is extremely general. In essence, any decision made during the
evaluation of a PLANNER theorem can be undone, if failures “backup”
to the point where it was originally made. The generality of this feature
has been criticized by some researchers (Sussman and McDermott,
1972), who claim that it is often very inefficient to rely on such a strict
depth-first mechanism, and that such a control structure is difficult for
human programmers to use without confusion, especially when writing
large PLANNER programs. Recently, Sussman and McDermott have
implemented a programming language known as CONNIVER, which is
similar to PLANNER (in that programs are pattern-directed), but which
attempts to provide a more flexible, explicit means of specifying the
backup one wants to occur. (Also see Bobrow and Wegbreit, 1972.)
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PLANNER has many other important features. The language con-
tains as “primitive functions” many procedures that must be written
out in detail within other languages. Knowledge in PLANNER is stored
in a generalized “associative memory” (a graphlike structure with
labeled nodes and arcs; see Chapter 7). Because PLANNER programs
are themselves list structures, it is possible for such programs to be
created, changed, or executed by other (and in some cases the same)
PLANNER programs. PLANNER theorems are not restricted to first-order
predicate calculus, nor do they even necessarily correspond very simply
to formulas in higher-order predicate calculus. Thus, a PLANNER
theorem might state: “do not use induction on the same variable twice,”
or “there exist R and Y such that R(Y,TURING) implies Y(TURING).”
Predicates may be quantified or included within other predicates.
PLANNER is currently being used as the inference mechanism for pro-
grams that “understand” natural language (see Chapter 7) and find
“descriptions of visual scenes. For the interested reader, Figure: 6-10
shows a PLANNER program (Orban’s Monkey) for solving the Monkey-
and-Bananas Problem, much of which should be understandable from
the discussion thus far. The PLANNER genus is probably -the most
natural set of programming languages yet developed for the ultimate
writing of reasoning programs.

However, barring the aspect of higher-order predicate calculus,
there is no direct comparison between theorem-proving systems written
in PLANNER and the resolution-based theorem. provers. The purposes
behind these two approaches to theorem proving appear to be some-
what different. On the one hand, resolution-based theorem provers are
designed to be general and complete programs for proving and dis-
proving theorems within mathematical theories. Though we have dis-
cussed ways in which they can be designed to take account of the
semantic content of mathematical theories (e.g., ‘Kling’s analogy
generator), the primary accent in their development has been a con-
centration on their completeness and soundness; that is, on proving
their applicability to any mathematical system and increasing their
efficiency as much as possible without relinquishing that applicability
(note 6-5).

PLANNER, on the other hand, provides a framework in which it is
possible to write very sophisticated programs for special-purpose types
of theorem proving. There are many types of information processmg
and problem solvmg that involve logical deduction, or theorem proving,
without requiring full completeness or generality. When the types of
questlons, or problems, or theorems to be proved can be anticipated
in advance, one can sometimes write a special-purpose program to deal
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(SETO MONKEY #(THGOAL (MONKEY GETS BANANAS) (THTBF THTRUE)))
¢ THASSERTtCLIMBABLE BOX))
(THASSERT(BOX AT A))
tTHASSERT.(MONKEY AT 811
(THASSERT (BANANAS AT C))
(THASSERT (MONKEY OFF BOX))

IDEFPROP REACH (THCONSE (XYZ) IMONKEY GETS BANANAS)
tTHASSERT (MONKEY WANTS BANANAS))
(PRINT & (THE MONKEY THINKS HE WANTS SOME BANANAS))
t THOR

(THGOAL (BANANAS AT (THY XYZ3))

(THFAIL THEOREM ®{YES, WE HAVE NO BANANAS)) )
(THASSERT (MONKEY AT (THV XYZ)) (THPSEUDO) L THTBF THTRUE))
{ THOR

(THAND

(THGOAL (MONKEY AT (THV XYZ)))
(THGOAL (MONKEY ON BOX)) )
(THFAIL THEOREM ¢ {MONKEY DION‘T MOVE, MONKEY NOT HELL)))
tTHERASE (MGNKEY WANTS BANANAS))
(PRINT @ (MONKEY GETS BANANAS))
(THSUCCEED THEOREM eSUCCESS)
) THEOREM)
tTHASSERT REACH)
{DEFPROP MOVEBOX (THANTE (X Z Q) IBOX AT ITHY X))
{THGOAL (BOX AT (THV Z1)
1t THOR
(THAND (EQUAL {THV X)(THV 21
(THSUCCEED THEOREM))
™
(THGOAL {MONKEY AT (THV Q1))
¢ THOR (THOR
(THGDAL (MONKEY OFF BOX))
t THAND
I THNOT (THGOAL (MONKEY ON BOX)))
tTHASSERT  (MONKEY OFF BOX))) )
{ THAND
(THERASE (MONKEY ON BOX))
[ THASSERT (MONKEY OFF BOX))
IPRINT @(MONKEY NOTICES HE 1S ON THE BOX))
(PRINT ®(MONKEY GETS OFF THE BOX))) )
I THOR (EQUAL (THV Q) tTHY Z1)
(THASSERT IMONKEY AT(THV Z) 1} (THPSEUDO! (THYBF THTRUE)))
LTHERASE (BOX AT (THY Z1))
({THASSERY (BOX AT (THV X1 3)
tTHERASE (MONKEY AT (THVY Z)))
(THASSERT (MONKEY AT (THV X)»)

(PRINT (L1ST eMONKEY #MOVES #BOX $FROM (THV Z) eT0 (THV X1))
(THSUCCEED THEOREM)

Y THEOREM)
(THASSERT MOVEBOX)

Figure 6-10. Orban’s Monkey. (Written by Richard Orban; published as
an example in Baumgart, 1972. Reprinted with permission.)
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(DEFPROP (LIMB (THANTE (X Y Z N 5 O (MONKEY AT (THV X))
{THGOAL (MONKEY AT (THV Q1))
(PRINT {LIST «MONKEY €15 €AT (THV Q1
(THCOND (¢ THGOAL (MONKEY WANTS (THV ¥Y3)2 1THGO 811 (T T
A t THAND ' THOR
t THGOAL IMONKEY OFF BOX))
t THAND .
(THERASE (MONKEY ON BOX!)
(THASSERT (MONKEY OFF BOX)1)
(PRINT ®(MONKEY NOTICES HE 1S ON THE BOX))
{PRINT #(MONKEY CLIMBS OFF THE BOX1)) )
t THOR
(THGOAL {MONKEY AT (THV X3))
( THAND
(THERASE (MONKEY AT (THV O 1)
(THASSERT (MONKEY AT (THV X31))
(PRINT(L]IST ®MONKEY #GOES ¢FROM(THY Q)®TO(THY X1)) ) -
(THSUCCEED THEOREM €SUCCESS))
(THFAIL THEOREM (PRINT e¢(WHAT MONKEY ?)}1}
B (PRINT (LIST ®THE €MONKEY ¢HANTS €SOME (THV Y)))
(THGOAL t(THV Y3 AT (THV S)))
(PRINT tLIST €MONKEY ONOTICES €THAT (THV Y) @ARE @AY (THV $S))

(THOR  (EQUAL (THY X1 (THY S1)
(THGO A) ) '
(THOR
(THAND

tTHGOAL ((THY W) AT (THV Z2))) ,
I THGOAL (1CLIMBABLE (THV Wi} /
(PRINT (LIST @MONKEY eNOTICES eA (THV W) AT (THVY Z)))
UTHFAIL THEOREM
tPRINT @1ALONE IN THE WORLD, WITH OUT A FRIEND)!))
. {THOR
(EQUAL (THY Z) (THY S1)
CTHASSERT ((THV W) AT {THY S))(THPSEUDO) ¢ THTBF THTRUE 1)
(THOR
tTHGOAL (MONKEY AT (THV S)»))
(THAND
(THERASE (MONKEY AT (THY Q)1}
t THASSERT - tMONKEY AT (THV S11)
(tPRINT (LIST OMONKEY ©GOES eFROM (THV Q) TO (THV S)1)) )
(THAND
(THOR .
(THERASE (MONKEY OFF (THY H) )
)
(THOR
1 THAND
(THASSERT (MONKEY ON (THV Wi
IPRINT (L1ST @MONKEY #CLIMBS 0N (THY W) )
{PRINT & (MONKEY ALREADY ON BOX, BUT YOU KNEW THAT)}) 1
1 THSUCCEED THEOREM)
) THEOREM)
t THASSERT CL IMB)

Figure 6-10. (Continued)
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only with these questions, problems, or theorems, according to a pre-
determined strategy. PLANNER provides a way of writing special-purpose
programs for theorem proving that make use of predetermined strat-
egies. One of the most valuable features of PLANNER is that these
predetermined strategies can be, to some extent, self—developmg It is,
of course, possible to write complete, general theorem-proving strat-
egies in PLANNER, but so far its most impressive uses have been of a
special-purpose nature (e.g., the use of PLANNER and the similar lan-
guage PROGRAMMAR in Winograd’s English-understanding program).

It is possible that the future will see some sort of hybridization be-
tween PLANNER-based and resolution-based theorem provers. PLAN-
NER and similar languages may eventually provide the notation for
designing reasoning-programs that will process information according
to special strategies. These strategies may specify conditions in which
general-purpose theorem provers, perhaps resolution-based, will be
used.

Automatic Programming

Green (1969a), and Waldinger and Lee (1969), wrote theorem-
proving programs that write simple programs in LisP (see McCarthy et
al., 1962, or Weissman, 1967). Both programs are based on the
resolution process for theorem proving. A brief description of the
nature of these programs is given here. A complete discussion is, of
course, given in the papers by the authors. Nilsson (1971, pp. 201-
205) has also reviewed Green’s results.’

First, a few words about Lisp are probably necessary. LISP is a
programming language for writing programs that manipulate symbolic
expressions known as list structures. A list structure is a list whose
elements may be lists, or lists of lists, etc. Thus, a general definition of
list structures is: “X is a list structure if X is an atom, or X is an ordered
sequence of zero or more list structures.” An atom is a string of symbols.
For example, a, abc, jmc are all atoms. A list structure is usually de-
noted by a pair of parentheses enclosing the sequence of its elements.
Thus, (a (a bc) (abc (jmc))) is a list structure. The empty list, which
does not contain any elements, is denoted by () or by the atom NIL.
List structures may be reentrant; that is, they may contain themselves
as elements. Thus, X = (¢ X) = (a (a X)) =+ ++ is a list structure.
LISP provides a collection of primitive functions for manipulating list
structures. These functions can be used to make more complex pro-
grams. Finally, a program written in LisP is itself a list structure. Thus,
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programs in LISP can be designed to create and manipulate other pro-
grams.

However, the ability to write programs that create programs is a
solution to only the simplest problem of automatic programming, In
general, what we desire are programs that create correct programs,
where “cotrectness” is determined by a program’s ability to compute a
given function. That is, we desire a “program-writing program” P,
which, when given a description of a function f, produces a program
F that computes the value of f(x) for any given value of x for which
f(x) is defined.

There are many ways of describing functions. Programs are
themselves descriptions of functions, and it would, of course, be trivial
to write a program P that could write programs if the descriptions of
functions given to it were already in program form. Usually, we must
assume that P is given some less explicit description of the function f
‘than an actual program for f.

Probably the least explicit way of describing a function f is to
specify a predicate, say R(x,y), such that R(x,y) is true if and only
if f(x) is defined and equals y. It is often possible to specify such a
predicate R associated with a function f without specifying a program
that computes f. Indeed, it is often much easier to’ specify predicates
than programs. For example, suppose that x and y are variables that
may have as their values any finite sequences of natural numbers. Thus,
x mlght equal (41 3) and y might equal (10 11 91). We say a sequence
x is sorted iff the elements of x are arranged in ascending numerical
order.”” Thus, x = (41 3) is not sorted, whereas y = (1011 91) is
sorted. Given this notion of “sorted,” we can give the following descrip-
tion of a function sorz: For any sequence x, sort(x) is a sequence con-
taining the same elements as x, and sort(x) is sortéed. Thus, sort
((413)) would be (13 4). However, this description of the function
“sort” does not specify a procedure for computing the function. It
merely specifies a relation,* holding between x and sort(x); they must
both contain the' same elements and sort(x) must be sorted—in othfer
words, a fest we can apply to any'proposed procedure to see if it does
indeed compute the function “sort” (the test is: “choose any sequence
x; if the procedure when applied to x does not produce a sequence y
such that y contains the same elements as x and 'y is 'sorted, then the
procedure fails the test”). The description here gives no explicit in-

12We can define the property “sorted” by using three relations, “equals,”

“left of” and “less than”: A sequence x is sorted if for any elements e and e
of x, e left of ¢’ implies e less than e’ or e equals ¢':

i R
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formation as to how one should go about producing sort(x) if one is
given an arbitrary sequence x. ’

Given a predicate R(x,y) which describes a function f, Green
(1969) identified four basic problems for the field of automatic
programming, such that each problem can be stated using a first-order
predicate calculus formula and such that each problem can be solved™
by a theorem prover that has the ability to provide constructive proofs
for existential formulas.** The four basic problems follow.

Checking. This problem is stated to a theorem prover, using the
formula R(a,b), where a and b are two specific sequences of numbers.
By proving R(a,b) true or false, a theorem prover “checks” whether
b = f(a). This problem does not require a theorem prover with the
constructive-proof ability.

Simulation. This problem is stated to a theorem prover, using an
expression of the form xR (a,x), where a is some specific sequence of
numbers. By providing a constructive proof of the truth of this formula,
a theorem prover “simulates” a program that sorts the sequence a;
that is, it computes the value of f(a).

Verifying. This problem is stated using the formula VxR (x,G(x)),
where G is a program provided to the theorem prover by the person
(or machine) who wants the problem solved. By proving the formula
true, the theorem prover verifies that G correctly computes the function
described by R. By constructively proving the formula false, the theorem
prover shows that.G is not a correct program for the function described
by R, and the theorem prover prov1des a value of x for which G
needs “debugging.”

Program Writing. The formula for this problem is VxdyR(x,y).
By constructively proving that this formula is true, a theorem prover
can provide a program for the function f described by R. By con-
structively proving the formula is false, a theorem prover would find
a value of x for which f(x) would not be defined. '

Green considered in detail the use of an example-constructing
theorem prover both to construct a program that computes a function
described by a relation R and to prove the correctness of the program
constructed. The theorem-proving program he used was QA3, and the
program he attempted to have it construct was one that sorted an
arbitrary finite sequence of numbers. (Green used a different relation

18, .. if it is decidable, and if the theorem prover has “infinite time and

resources.”
 See the preceding section for a discussion of theorem provers that provide
constructive proofs for existential formulas.
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R to describe the function “sort.”) In addition to axiom clauses
describing the relation R, QA3 must be given clauses that describe the
primitive functions of the “target language” (in this case, LISP) in which
the program for the function described by R is to be written. Waldinger
and Lee’s (1969) program, known as PROW, has built into it the
axioms describing the primitive functions of rLisp. PROW contains a
special subprogram (which is not a theorem prover) for converting
programs from one language into another.

In order to develop programs that have loops or are recursive,
both theorem provers must be given axioms for mathematical induc-
tion because, in general, one cannot specify an upper bound for the
number of steps that might be required by an execution of such a
program. It is therefore not possible to prove that a given program is
correct by tracing through all possible executions of that program.
Rather, a theorem prover must show that

1. The program computes the correct value of f(x) for some
value of x, say, x = a. :

2. There is a function s such that if the program computes the
correct value of f(x) for a given value of x, then it also
computes the correct value of f(y) for y = s(x).

3. For any possible value of x there is a number n such that
x=5(s(s(...(s(a)) .:.))), where s is applied n times.

The function s is known as the successor function utilized by the in-
ductive proof.”® Proving condition 3 establishes that any possible valué
of x is, for some n (which may be dependent on x), an “nth successor”
of a. Proving conditions 1 and 2 establishes that the program computes
the correct value of a and of any nth successor of a. Thus, the proof
of the three conditions establishes that the program will compute the
correct value of f(x) for any possible value of x.

In all work to date on automatic program writing, both s and the
proof of condition 3 are, in effect, given to the theorem prover. The
correct choice of a successor function and the proof of its validity are
at the moment too difficult for automatic program writers. Currently,
automatic program writers are capable of proving conditions'1 and 2
(given 5) only for programs that are very simple, such as a program
that sorts an arbitrary sequence of numbers.

However, the fact that inductive proofs can sometimes be ac-

15 The function s is often generalized to produce a set of possible successors
to x. For this generalization the identity sign (=) in axioms 2 and 3 should be
replaced by “is an element of” (e.) \
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complished by theorem provers is significant, especially when one
investigates the extent to which people have been able to use inductive
proofs to show properties (such as “correctness”) of computer pro-
grams. Floyd, McCarthy and Painter, Manna, and others showed that
mathematical induction can be used to prove the correctness of a variety
of computer programs, including compilers and nondeterministic pro-
grams (note 6-6). The discussion of theorem-proving programs will
be left at this point, with the observation that the problems of program
writing can at least be stated formally and can often be solved in a
formal manner by human beings.

NOTES

6-1. Some of those responsible for the development of predicate calculus
and early \york on meta-mathematics include Boole, Cantor, Russell, White-
head, Lewis, Dedekind, Peano, Frege, Zermelo, Hilbert, Brouwer, Kronecker,
Poincare, Tarski, Skolem, and Godel. The Bibliography contains selected
references to current texts on mathematical logic by Kleene, Church, Prior,
Quine, Shoenfield, Wang and others. (Also see Benacerraf and Putnam,
1964; van Heijenoort, 1967.)

6-2. Many-valued logics, modal logics, and fuzzy logics have often been
suggested as the most realistic and desirable frameworks within which to con-
struct theorem provers. These logics differ from predicate calculus mainly
in the inference rules they provide; their inference rules do not require that
a sentence be completely and exactly true in order for it to be used in
deriving other sentences. Rather, sentences are allowed to have many differ-
ent values besides “true” and “false.” Thus, in fuzzy logic, the truth value
of a sentence may be any real number between zero and one, inclusive
(“false” and “true,” respectively). Space does not permit a detailed treat-
ment of these logics; the interested reader is referred to the works of Acker-
man (1967), McCarthy and Hayes (1968), Prior (1957), Quine (1961),
Feys (1965), Zadeh (1965, 1968), and’ Tsichritzis (1968) cited .in the
Bibliography. Recently, R.C.T. Lee (1971) showed that the resolution prin-
ciple developed in this chapter can be used within a formalization of fuzzy
logic. The discussion of “meaning” presented in Chapter 7 is relevant to
many-valued logics.

6-3. Green called this technique answer extraction. The present author
prefers to use the phrases “constructive-proof generation” and “example
construction,” since these do not imply linguistic ability, an aspect of artifi-
cial intelligence that we have not yet discussed. However, it should be noted
that Green’s early papers were largely concerned with question-answering
and the ability of machines to use natural languages. Also, the phrase “an-

f
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swer extraction” is in fairly common usage. Chapter 7 discusses the use of
theorem provers within language-understanding systems.

6-4. A third approach to planning was suggested by Kling, within the
context of proving theorems by analogy. Suppose the theorem prover is
given a proof for a theorem 7 and required to find a proof for an analogous
theorem T, and suppose that the proof for 7" requires the establishment of
certain “smaller” theorems or lemmas. The proofs of these lemmas are also
given to the theorem prover. Kling suggested using an analogy generator to
produce analogs for the lemmas associated with 7", and having the theorem
prover attempt to find proofs for these analogs. If proofs were found, then
the clauses associated with the analogs could be used in the data base for T.
To the present author’s knowledge, Kling has not yet implemented this
method. Indeed, his analysis (1971a, pp. 145-148) suggested that zorBA-1
may not be suitable for such an implementation. However, the idea indi-
cates a way in which problem-reduction techniques might be used “by
analogy” in theorem proving.

6-5. In fact, for reasons that include both theoretical and practical limita-
tions, no theorem prover can be really complete. Even though a theorem
may be logically implied by a set of axioms, we cannot guarantee that the
theorem prover will eventually develop a proof for it, because of (1) the
undecidability of the predicate calculus and (2) the limitations of space and
time which affect the computational ability of any machine. (However, we
should ‘note that our first condition does not hold for the first-order predi-
cate calculus; given an arbitrary sentence and a set of axioms, the semi-
deczdabzltty of the first-order predicate calculus guarantees that, if the
sentence is logically implied by the axioms, a resolution-based theorem
prover—given enough space and time—will eventually find a proof for it;
on the other hand, if there is no proof for the sentence—that is, it is not
logically implied by the axioms—such a theorem prover may not be able to
disprove the sentence, no matter how much space and time we give it.)

6-6. A good survey of mathematical induction and the subject of auto-
matic program writing was given by Manna and Waldinger (1970). They
suggested partial-function logic (predicate calculus with “undefined” as a
truth value; see McCarthy, 1963b) as the most natural language for auto-
matic program synthesis. Other papers on the subject have been written by
Balzer (1972), and -Feldman (1972). Dijkstra (1965 et seq.) has dével-
oped the paradigm of structured programming as a framework within
which to prove the correctness of programs. Recently, Scott (1971) and
Milner (1972) have devéloped a mathematical logic of computation that is
of great relevance to this subject. And, Sussman (1972) describes the gen-
eral structure of a CONNIVER program (called HACKER) for automatic pro-
gram writing.
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EXERCISES
6-1. Show that U — V can be rewritten as 1A (U, V).

6-2. Find clause-form equivalents for the following formulas:
(a) Vx(P(x)~>V (P(x),0(x))).
(®) (TvxP(x))-> (HxP(x)).
(c) (VxHyA(P(x),Q(xy)))->HxA (P(x),Q(x%)).

6-3. Find most general unifiers for each of the following sets of literals:
(2) {Q(xay),Q(axy)}.
(b) {P(x,f(x)),P(g(x),a))}.
(¢) {R(u,w,f(u)),R(b,x,g(x))}.
Q) {W(zc.f(y)),W(a,x2),W(f(y)ug(x))}.

6-4. Use the resolution principle to derive contradictions from the negations of
each of the following predicate calculus tautologies:

(a) vx(P(x)->P(x))

(b) (VIxP(x))-> (VxIP(x))

(¢) (YxV(P(x),Q(x)))-> (V((VxP(x)),(TxQ(x)))).

L
6-5. Construct a predicate calculus formalization for the Missionaries-and-
Cannibals Problem (Exercise 3-2); give a resolution-based proof that it is solvable
and use the example-construction technique to find a. solution.

6-6. Present a predicate calculus formaljzation for the Mutilated Checkerboard
Problem (Exercise 3-8), and describe how it might be used to prove the checker-
board cannot be covered by the tiles as required.

6-7. (a) Presenta predicate calculus formalization for the Confusion-of-Patents
Problem (Exercise 3~3) and give a resolution-based proof that it is solvable.
(b) Use the technique of example construction to find the solution to the problem.

6-8. One nice aspect of the PLANNER “robot calculus” is that it allows a relation
or a predicate to have a variable number of arguments. Give some real-world
examples illustrating such relations.

6~9. In the discussion of PLANNER theorems the following statement was pre-
sented:

ARAY[R(Y,Turing)->Y (Turing)]

Find two English words that might plausibly be substituted for R and Y to make
R(Y,Turing)->Y (Turing)

a “reasonable” statement.

6-10. (The King-and-the-Wizards Problem.) (a) Long ago, a wicked king was
searching for a new wizard with whom to plot some devious schemes. He sum-
moned to him three wizards who seemed especially promising, and let them into a
small room, which was barren except for a lighted candle on a table in the middle
of the room. “Listen to me well,” he said. “In a few minutes all of you will be
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blindfolded, and I will paste upon each of your foreheads a uniformly colored
spot of black or white paper. At least one spot will be white. The first of you who
guesses the color of his own spot will become my new wizard, and ride in his
own chariot, with all expenses paid. The other two of you will be sent to a terrible
fate that I shall not describe. None of you will be allowed to remove any of the
spots, and you will each be allowed only one guess.” The king then ordered his
guards to blindfold the wizards, proceeded to paste white spots on all the wizards’
foreheads, and finally had their blindfolds removed. After a few seconds, one of
the wizards correctly identified the color of the spot on his forehead. How did he
know it? (b) Present a predicate calculus axiomatization for the wizard’s reason-
ing. (c) What sort of thoughts might the other two wizards have been thinking?




“We could play at ‘questions.”
—Rosencrantz, in Rosencrantz and
Guildenstern Are Dead. (Stoppard, 1967)

“Augustine describes the learning of human language
as if the child came into a strange country and did not under-
stand the language of the country; that is, as if it already
had a language, only not this one.”

" —Wittgenstein, Philosophical Investigations.

“I find it difficult to believe that whenever | see a tree
| am really seeing a string of symbols.”
—McCarthy, in a discussion on grammatlcal
inference and pattern recognition.

“As a concluding remark: could this art be applied (we
put the question in strictest confidence)—could it, we ask, be
applied to the speeches in Parliament?”

——Lewis Carroll, Photography Extraordinary.

“There is of course no restriction in the memory format
against having concepts without English names, and in fact
[its] present memories necessarily include such concepts.”

—Quillian, describing the structure of
the TLC computer program. (Quillian, 1969)

“Danger of tumbling upwards be in deep-sea.”
—Protosynthex lll, a computer program.
(Schwarcz, Burger, and Simmons, 1970)

“The challenge of programming a computer to use lan-
guage is really the challenge of producing intelligence.”
~—Winograd, 1971.
“In any case, these are but steps toward more graphical
program-description systems, for we will not forever stay con-
fined to mere strings of symbols.”
—Minsky, 1970.

“What does meaning mean?” -
—Anonymous.

“Imagine a people in whose language there is no such
form of sentence as ‘the book is ‘in the drawer’ or ‘water is
in the glass’, but whenever we should use these forms they
say, ‘The book can be taken out of the drawer’, ‘The water
can be taken out of the glass’.

—Wittgenstein, The Brown Book.

“I have traveled more than anyone else, and | have
noticed that even the angels speak English with an accent.”
—Mark Twain.




SEMANTIC
INFORMATION
PROCESSING

INTRODUCTION

This chapter is concerned with the ability of machines to use
languages. We shall first discuss the nature of language, both as it is
used by “living creatures” and as it is used by “machines”, giving
primary attention to two of the most important features that are pos-
sessed by human and computer languages: extensibility, and self-
reference. A conclusion will be drawn that, of all the machines and
animals known to man, computers belong to the handful (also in-
cluding chimpanzees and dolphins) we might plausibly expect to learn
our languages.

Of predominant interest throughout this chapter is the ability of
sentences in a language to have “meaning” to those who use the lan-
guage. A sentence that has meaning is said to contain semantic
information.* The third section of this chapter will describe how
machines can “understand” and ‘“create” sentences that convey
semantic information, and will discuss computer programs. that do this
for sentences written in English., A collection of some of the conversa-
tions people have had with computers will be presented, primarily

1The “semantic information™ of a sentence should not be confused with the
“information” measure described in Chapter 2. (See note 7-7.)
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oriented toward the ability of computers to solve various kinds of
problems stated in English. The final section takes up more general
questions, relating the problems of language use and development to
those of teaching and learning, pattern perception, and general
problem-solving and reasoning programs.

NATURAL AND ARTIFICIAL LANGUAGES
Definitions

To facilitate matters, we need some rough definitions for “lan-
guage,” “sentence,” and “meaning.” These definitions will be refined
and amplified throughout the rest of this chapter.

A language is a set of sentences that may be used as signals to
convey semantic information. The existence of a signal naturally im-
plies the existenice of an emitter and a receiver (perhaps more than
one) and of some “embodiment,” or means of transmission for the
signal. The meaning of a sentence is the semantic information it con-
veys. For a given sentence (signal), this information may vary with
the situation in which it is used; in general, we can think of the meaning
of a sentence as being a description of three things: (1) whatever
causes the sentence to be used; (2) whatever is caused by the use of
the sentence; (3) whatever else is described by the sentence. It is the
task of those who use a sentence (the emitters and receivers) to “under-
stand” these elements of its meaning—for a computer that uses a
sentence, “understanding” may be corresponded to making internal
data structures (vectors, lists, graphs, programs, etc.) that model these
elements of the meaning of the sentence. “Communication” is a word
we use to describe processes in which one or more sentences are trans-
mitted and understood. )

A few examples will clarify the concept of “meaning” that is ad-
vocated. Consider the following sentences:

. I have four aces.

. Our position is 10 miles north of yours.

. Elect me and I will end the war honorably.

Eat cereal X and grow healthy and strong.

Why?

I love you.

People who apply for marriage licenses wearing shorts or
pedal pushers will be denied licenses.”

AmmPAawa
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H. The sum of 18 and 32 is 50.
1. The equation x* = —1 has a solution.

Surely the “meaning” of these sentences is not something fixed or
immutable. The meaning of a sentence generally depends as much on
who utters it, and where, when, and to whom it is uttered, as it depends
on the sentence itself. In understanding a sentence, one should attempt
to model what causes the sentence to be transmitted, what the emitter
of the sentences hopes that it will cause, etc., as well as what the sentence
itself describes.

Throughout, this chapter stresses the importance of model making
in the processes of communication and understanding. However, the
student should be warned that, especially for languages such as English
and French, there is no current, complete explanation for how com-
puters should go about “understanding” sentences. The problems con-
nected with modeling the semantic information carried by sentences
are as deep and complex as the situations these sentences may describe.
This chapter can do little more than present some of the requlrements
that would have to be satisfied by an adequate formalism for “models
of meaning,” describe how computer programs currently approach the
subject, and suggest how research might be continued (see note 7-1).

Tt will serve us well to distinguish between two types of:languages
called natural and artificial languages. The differences between them-lie
mainly in the uses that are made.of them, and in the knowledge we
have about them.® Although both forms of language are of much in-
terest in themselves, our discussion will center on their relations to
each other, and especially on the. ability of artificial languages to
“simulate”™ natural languages. By natural languages we refer to the
languages that living creatures use for communication, whereas by
artificial languages we mean certain mathematically defined classes: of
signals that can be used for communication with machines.

Natural Languages

The natural languages constitute a very broad category, since
communication processes are important to virtually every living system
in existence. We may group natural languages into two large sub-
categories, and name them cell-level and organism-level natural lan-
guages.

2 This example sentence is quoted from Kuno (1965).
#These are not necessarily differences of substance; probably the distinction
" between them will become less as our understanding increases.
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The cell-level languages are evidently the oldest natural languages.
The emitters and receivers that use these languages are living cells:
The methods for transmission of sentences (signals) are primarily
chemical and electrical. “Sentences” transmitted chemically correspond
to molecules (often called “messenger molecules”), which may act by
catalysis to affect processes in the receiver. One well-known group of
such sentences is that of the RNA molecules, which typically carry
- information between parts of individual living cells. Very little is
known about cell-level “molecular languages” except that there are a
huge number of molecular sentences that can have “meaning” to living,
cells. It may be a long time before scientists can “understand” them.
For more information on these languages, see Pribram (1971).

Organism-level natural languages are much more familiar to us.
The emitters and receivers that use these languages are living organisms
(animals, plants, etc.); the means of transmission include chemical,
visual, audial, and tactile techniques. Many species have acquired these
languages, primarily to carry information about food, danger, and sex.
Typically, the language used by the organisms of a given species will
have only a small (say, less than 100) number of sentences or signals,
and there will be no provision within the language for extending that
number. Usually the organisms which use these languages do so in-
voluntarily, in automatic response to the presence of certain stimuli in
their environments.

The only known organism-level natural languages that are not so
limited are mankind’s spoken and written languages (English, French,
Chinese, etc.). In theory, these languages possess an infinite number
of possible sentences that can be used as signals by people. However,
no one knows how many of the “possible” sentences are “meaningful”
in practice. The best we can say is that the number may be “com-
parable” to that of the meaningful molecular sentences in cell-level
languages.

One major difference between human languages and those used
by other organisms lies in the structural nature of the sentences we use.
The sentences of any human language are essentially stringlike struc-
tures (sequences) of words. Spoken words are themselves essentially
stringlike structures of phonemes (vocally producible sounds that
constitute the “alphabet” of the spoken language), whereas written
words are often sequences of letter-symbols, which constitute the
alphabet of the written language (note 7-2). Various languages, of
course, have different spoken and written alphabets. English has a
written alphabet of 26 letters and a spoken alphabet of 48 phonemes
(J. B. Carroll, 1964).
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Currently, about 5,000 languages and dialects are spoken through-
out the world. The two most commonly spoken languages are Northern
Chinese (or Mandarin) and English, which are used by about 600
million and 350 million people, respectively. English is the language
in most widespread use, being spoken by 10% or more of the popula-
tion in 29 countries; it is also the language with the largest vocabulary,
containing about 490,000 words, plus another 300,000 technical terms
(McWhirter and McWhirter, 1971). Estimates range on the maximum
size of the individual human vocabulary; it is very likely that no in-
dividual uses more than 100,000 words (probably the boundary is
lower, around 60,000)—normal literature written in English makes
use of about 10,000 words, while well-educated conversation uses about
5,000 words. Of course it is possible to converse rather well using much
smaller vocabularies. Thus, “Basic English” (C. K. Ogden, 1933).
contains only 850 words. The 1971 Guinness Book of World Records
reports that the language with the smallest vocabulary is Taki tak1 a
South  American language that uses only 340 words.

The sentences in a language are always essentially sequences. of
words from the vocabulary of that language, but, typically, not every
sequence of words constitutes a sentence. A set of rules that allows
one to recognize the sequences of words that are sentences in ‘a
language is known as a grammar for that language.* Grammars are
said to describe the structural, or syntactic, nature of languages

Of course one wants to do more than snnply recognlze which
sequences of words. are sentences in a language; it is of pr1mary im-
portance to be able to “understand” the sequences one recognizes. One
of the major problems confronting linguistics today is development of
an adequate theory of the relationship between' the syntactic nature of
a sentence- (or set of sentences) and the semantic information it con-
veys. Two important approaches toward a solution of this problem
are the theoties of transformational grammar (Chomsky, 1959 et seq.)
and systeric grammar (Halhday, 1961 et seq. ). This topic is discussed
in thei next section, but for now it is important to note two “trivial”
things: first, the structural nature (syntax) of a sentence helps one
determine its-meaning; second, the meaning an emitter wants to convey
helps determine the structure of the sentences that convey it.

One of the most valuable aspects of human languages is their
extensibility: The words and sentences of the English'language (for
example) are not fixed. Rather, English (like most if not all other

. "‘If the set of rules also enables one to recognize those sequences of words
which are not sentences, then it is said to decide the language. It is possible for
a language to be undecidable, that is, such that no grammar can decide it.
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human languages) includes provisions for extending its own use. As is
evident from the preceding paragraphs, the chief way in which English
has been extended has been through the definition of new words.
Another way is the introduction of new symbols (e.g., mathematical
symbols). It is even possible to extend a language by adding to its
syntactic nature. Thus, it is possible to use English sentences to define
(at least partially) the words, sentences, and grammar of another
language, such as German—this is precisely what an introductory
English textbook on German will attempt to do. When English is ex-
tended in this way to include German sentences, the German sentences
may be said to have been embedded in English.

Closely related to the extensibility of human languages is their
ability to be self-referencing. An English sentence (for example, this
one) can refer to itself or to other sentences (e.g., all of the sentences
in this book). In “understanding” the preceding sentence, one must
understand the phrase “this one” (which refers to the entire sentence
in which it occurs), and the phrase “all of the sentences in this book.”
One can find many other types of self-reference exhibited by English
sentences.

A third aspect of human (and many other) languages which should
be mentioned is their redundancy. Any means of transmitting a signal
may involve some “noise” that will tend to distort or degrade the signal.
To convey the semantic information, one should, in effect, transmit the
signal several times, because it is very unlikely that random noise will
degrade the signal the same way every time. The receiver can re-
construct the original signal by adopting a “majority vote” policy when
comparing the signals he receives. Another way of using redundancy
in an alphabetic language is to use more symbols than are needed to
represent each word; with 26 letters one could, for example, represent
each of 10 million words uniquely by a series of 5 letters. In fact,
English uses considerably more letters than are necessary to represent
each of its words. Finally, one can also obtain redundancy in a lan-

_ guage if its grammar provides sentences with “structural redundance”
(see Cherry, 1957). The redundancy of English is often quoted as
about 50%; that is, an English sentence is usually decipherable even
if each of its letters is blanked out independently of the others with any
probability up to one-half.

The importance of language to the development of human in-
telligence is a subject that deserves a great deal of attention, certainly
more than can be offered in this book. Wherever people have formed
societies, they have developed languages. The tendency to develop lan-
guages is one of the most important traits of our species. One of the
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more remarkable things about it is the ability of the young child to
learn the language of the society in which he is raised. Something about
the way in which societies develop languages insures that practically
every child will be able to accomplish the language-learning feat in the
space of a few years. This has led certain scholars (Chomsky, 1966)
to conjecture the existence of a universal grammar underlying all
human languages, and which is naturally reflected somehow in the
learning process of each person, to the extent that individuals are
enabled to learn the language of their society without making too many

passed over the open palm of the
other, :

Signs Description Context

Come-gimme Beckoning motion, with wrist or Sign made to persons or animals,
knuckles as pivot. also for objects out of reach, Of-

ten combined: ‘‘come tickle,”
“gimme sweet,” etc,

More Fingertips are brought together,  When asking for continuation or
usually overhead. (Correct ASL repetition of activities such as
form: tips of the tapered hand swinging or tickling, for second
touch repeatedly.) helpings of food, etc. Also used to

ask for repetition of some perfor-
mance, such as a somersault,

Up Arm extends upward, and index  Wants a lift to reach objects such
finger may also point up. as grapes on vine, or leaves; or

wants 10 be placed on someone’s
shoulders; or wants to leave pot-
ty-chair,

Tickle The index finger of one hand is  For tickling or for chasing games.
drawn  across the back of the . .
other hand. (Related to ASL
“touch.”)

Toothbrush Index finger is used as brush, to  When Washoe has finished her
rub front teeth. meal, or at other times when

shown a toothbrush,

Cat Thumb and index finger grasp  For cats.

. cheek hair near side of mouth and
are drawn outward (representing
cat’s whiskers). i .

Key Palm of one hand is repeatedly  Used for keys and locks and to
touched with the index finger of  ask us to unlock a door.
the other. (Correct ASL form:
crooked index finger is rotated
against palm.)

Baby One forearm. is placed in.the For dolls, including animal dolis
crook of the other, as if cradlinga  such as a toy horse and duck.
baby. .

Clean The open palm of one hand is . Used when Washoe is washing, or

being washed, or when a com-
panion is washing hands or some
other object. Also used for
“soap.”

Figure 7-1. Some signs used reliably by Washoe after 22 months of
training. (Gardner and Gardner, 1969, reprinted with permission.)
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N 30

MARY SARAH MARY
x INSERT x
: [ |
GIVE BANANA GIVE
A PAIL A
APPLE * APPLE
9 INSERT ‘
A
RANDY APPLE SARAH
DISH

Figure 7-2. Examples of the sequences of symbols used by Sarah.

Reprinted from ‘“The Education of Sarah” by David Premack in Psy-

chology Today Magazine, September 1970. Copyright © Communica-
tions/Research/Machines, Inc.

wrong guesses. Such a grammar would also account for the similarities
in syntax between the various languages that people have developed
(note 7-3).

Efforts have been made to teach human languages to other animals,
but only recently have researchers achieved any success (note 7—4).
For example, two chimpanzees have been taught to communicate with
people by using “sign languages” (Gardner and Gardner, 1969;
Premack, 1970). One chimpanzee, named Washoe, has learned over
150 signs of the American Sign Language System, originally devised
for the deaf and dumb; this is the language in which words are repre-
sented by movements and configurations of an individual’s hands and
fingers. Sarah, the other chimpanzee, has learned to communicate with
sentences that consist of simple sequences of cards bearing printed
symbols. Figures 7-1 and 7-2 show some of the signs and card
sequences used by Washoe and Sarah. Neither chimpanzee is able to
use very long or complicated sequences of signs or cards, although
Washoe has been able to invent a few new signs that are now used by
some people learning the language.

Because our spoken and written languages are so familiar and
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important to.us, it is customary to call them the “natural languages,” as
distinct from other organism-level and cell-level natural languages. So,
unless otherwise specified, the phrase “natural language” will refer
henceforth only to spoken and written languages used by homo sapiens.

Artificial Languages and Programrhing
Languages '

Artificial languages are certain mathematically defined classes of
signals that can be used for “communication” with machines. Through-
out the rest of this section the reader will be introduced to those
artificial languages that can be used for communicating with computers.
These languages are generally known as programming -languages.
Chapter 6 has already given a brief description of programming lan-
guages (in particular, LISP and PLANNER). Programming languages have
many properties that are analogous to those of natural languages. The
next section reviews the attempts made by Ar researchers to “unify”
the artificial and natural languages; that is, to design machines with an
ability to “communicate™ in both kinds of languages. Here, however,
the emphasis is on languages that are currently conventional for pro-
gramming (communicating with) computers. The major difference. be-
tween these conventional artificial languages and natural languages is
that the syntactic and semantic properties of the artificial languages are
more thoroughly known (in the sense of being more rigorously formal-
ized, at least consciously) than are those of natural languages.

Essentially, a programming language isa set of sentences (signals),
each of which a computer may receive and store internally as a data
structure. Data structures may have many “forms” (numbers, vectors,
matrices, lists, graphs, etc.) and may cause the. computer to, perform
many different “actions”—physically, a data structure is usually a col-
lection of. electric or magnetic charges that can be sensed and. altered
by the computer. The syntactic nature of the programming language is
given when we finitely describe the exact forms of its sentences and their
data structures. The semantic nature of the language is given when we
specify the actions that each data structure will cause to be performed.
A data structure can cause the computer to perform actions in the
external world (e.g., move a mechanical arm, or transmit electric
signals to a printer) or it can cause the computer to create new internal
data structures, or modify or erase those that are already present. If a
data structure is causing the computer to perform actions, then it is
called a program; otherwise, we may simply call it data. It should be
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noted that the distinction is not always a particularly good one: The
same data structure may be a program and also be data that the com-
puter manipulates. And, though it is a good approximation to say that
data structures “cause” computers to perform actions, this is not the
entire truth. Whatever action is caused when the computer meets a
data structure is as much dependent on the computer as it is on the
data structure. :

To illustrate this, let us recall the model that was introduced in
Chapter 2 for computers. That chapter defined Turing machines and
showed how a wniversal Turing machine could simulate any given
Turing machine. Also described were polycephalic universal Turing
machines, which were credited as a better model for modern com-
puters. In the context of the current discussion, consider any collection
of symbols printed on the (possibly n-dimensional) tape(s) of a
polycephalic universal Turing machine to be a “data structure.” It is
clear that this agrees with what has been said above about data
structures; that is, some of the symbols on the tape of the universal
Turing machine may be a “program” and cause the machine (com-
puter) to perform actions. However, it is also clear that the actions
performed by the machine at a given moment depend as much on the
“state” of the machine as on the symbols that it reads with its tape-
heads; and it is clear that the same data structure might “cause” dif-
ferent machines to perform different actions.

Let us continue to use the (universal, polycephalic) Turing
machine formalism to discuss programming languages and computers,
taking care to observe some ways in which modern computers deviate
from the model, as well as ways in which they satisfy it. The reader may
recall that in Chapter 2 the notion of a “descriptive string” was intro-
duced to show how a universal Turing machine could simulate a given
Turing machine; namely, the next-move function of any Turing machine
(say, T') can be described using a finite string of blanks and 1’s, called
a “descriptive string” for T. If this descriptive string is placed ap-
propriately on an otherwise blank tape of an appropriate universal
Turing machine (say, U), then U will use the descriptive string for T
in such a way that U will simulate 7, that is, U will manipulate data
structures on some of its other tapes just as would T. However, 7' may
itself be a universal Turing machine and thus it is possible to have a
machine U simulate a machine 7 simulating a machine 77, etc. A Turing
machine (simple, universal, polycephalic, or whatever) is basically a
procedure for manipulating symbols on tapes (i.e., data structures).
“Descriptive strings” are basically data structures that describe pro-
cedures (Turing machines). A universal Turing machine is a Turing
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machine that can use descriptive strings to carry out the procedures
they describe. In this sense, a program is basically a descriptive string
that can be used by some universal Turing machine.

Thus we may consider the set of descriptive strings (programs)
that can be used by a given universal Turing machine U to be a language
that is “understood” by U. Each descriptive string is a sentence that U
understands; the “meaning” of a given sentence (program) is the
procedure it describes; U may demonstrate its understanding of this
meaning by carrying out the procedure. Imagine a person “communicat-
ing” with U in the following way: the person (whose name will be 4)
has a means of printing symbols® on the squares of one of U’s tapes,
called the input tape; the signals that 4 transmits to U are precisely the
symbols 4 decides to print; in addition, 4 has the ability to read all
symbols that are printed on one of U’s tapes which will be called the
output tape. A may decide that U “understands” a language of descrip-
tive strings if whenever A4 prints a sentence of that language on U’s input
tape, U eventually prints, on its output tape, the result of carrying out
the procedure described by A’s sentence. (Of course, if A4 has some
knowledge about the “internal workings” of U (its next-move function,
or the symbols printed on its other tapes), then 4 may well decide that
U understands a given programming language, without very extensively
performing this experiment. )

It should be emphasized that there is more than one way to de-
scribe a given Turing machine. Chapter 2 presented a very simple way
to describe the next-move function of any given Turing machine; that
way produced, for each Turing machine, a simple string of blanks and
I’s. In essence, this was a description of a programming language,
the sentences of which were strings that could be used by an “ap-
propriate” universal Turing machine to carry out the procedures they
described. Besides the “blank-one language” presented in Chapter 2,
one can certainly design other programming languages for describing
procedures. Furthermore, one can certainly design universal Turing
machines that would not “understand” the blank-one language. but
would understand some other language for describing procedures. In-
deed, the major difference between modern computers and poly-
cephalic universal Turing machines is that computers understand
languages that are much simpler and easier for people to use (when
describing complicated, useful, “real-world” procedures) than is the
blank-one language. What all these languages have in common is that any

5This includes blanks; that is, 4 has the ability to erase symbols previously
printed on the input tape.
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COMPUTER HARDWARE

BITS b, | o 0 0 0 1 1 1 1
b6 0 0 1 1 o} 0 1 1
b| © 1 0 1 0 1 0 1
b4 b3 b2 bl Column ]
‘ l ‘ ‘ R:\:v—’ 0 1 2 3 4 5 6 7
‘
0/0]0 [0 0 NUL DLE SP 0 @ P p
0100 |1 1 SOH DC1 ! 1 A Q a q
0{0(1]0 2 STX DC2 " 2 B R b r
00111 3 ETX DC3 # 3 C S c s
0}j1[0]0 4 EQOT DC4 3 4 D T d t
0{1101 5 ENQ NAK % 5 E u € u
01110 6 ACK SYN & 6 F \ i, v
o1 p 7 BEL ‘ETB : 7 G W g w
1{0{0 |0 8 BS CAN ( 8 H X h X
1i0]0.[1 9 HT EM ) ] | Y i y
140 f1 [0} 10 LF SUB * : J Z i z
1101 1] 11 VT ESC + ; K T k {
1]1]ojo] 12 FF FS , < L \ i i
1T{1[0 41| 13 CR GS — = M 1 m }
111 [110] 14 SO RS . > N ~ n ~
11 ]1s Sl us / ? 0 — | o DEL
SYMBOLS
NUL Null DLE Data Link Escape {CC)
SOH  Start of Heading (CC) DC1  Device Control 1
STX  Start of Text (CC) DC2 Device Control 2
ETX End of Text (CC) DC3 Device Control 3
EOT End of Transmission {CC) DC4 Device Control 4 (Stop)
ENQ Enquiry (CC) NAK Negative Acknowledge (CC)
ACK Acknowledge (CC) SYN  Synchronous Idle (CC)
BEL Bell {audible or attention signal) ETB End of Transmission Block ((
BS Backspace (FE) ) CAN Cancel
HT Horizontal Tabulation (punched card skip) (FE) EM End of Medium
LF Line Feed (FE) SUB  Substitute
VT Vertical Tabulation (FD) ESC  Escape
FF Form Feed (FE) FS File Separator (IS)
CR Carriage Return {FE) GS Group Separator (IS)
SO Shift Out RS Record Separator (IS)
Si Shift In us Unit Separator (1S)
SP Space DEL Delete

ABBREVIATIONS
{CC} Communication Control
(FE) Format Effector
(1S) Information Separator

Figure 7-3. The ASCIl “alphabet” for programming languages.

(Chapin, 1971, reprinted with permission.)
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procedure which can be described in the blank-one language can also
be described in the languages that are understood by real computers,
and vice versa. Thus, in theory a computer can perform exactly those
procedures that can be carried out by a universal Turing machine. If,
for any Turing machine, a programming language contains at least one
sentence that describes the procedure carried out by that Turing
machine, then the programming language is said to be a universal
programming language. Again, however, a language can be a universal
programming language only with respect to some computer (universal
Turing machine) that “understands” it, or in other words, one having
the “language capability” for that language.

The discussion so far describes the “semantics” of programming
languages. In the next few pages the “syntactics” of these languages
will be described. ,

With respect to syntactics, note first that all programming languages
used by real computers® make use of sentences that are essentially
strings (sequences) of symbols. In other words, they use “descriptive
strings,” though these descriptive strings consist of many other symbols
besides “blank™ and “1.” Figure 7-3 shows a set of symbols that may
currently appear in the sentences (programs) of universal program-
ming languages. One may transmit strings of these symbols to the
computer by typing them out on a typewriter connected to the com-
puter, or by “feeding” the computer a deck of appropriately punched
cards, etc. (The reader should note that each of these symbols is
actually converted into a seven-place string of zeroes and ones when it
is read into the computer; the “code” for making this conversion is
indicated in Fig, 7-3.) A total of 128 symbols make up this “alphabet”
of current programming languages. .

As stated before, a programming language must contain at least
one program describing each Turing machine, if it is to be “universal.”
However, there are an infinite number of different Turing machines and
therefore a universal programming language must contain an infinite
number of programs, or sentences. A proper description of the syntactics
of the language must describe the structural nature of each of its sen-
tences. This can be done either by presenting all of the sentences in
the language or by giving some set of rules that could be 'used to con-
struct any sentence belonging to the language, given enough time, yet
could not be used to construct a sentence not belonging to the language.
Such a set of rules is called a grammar for the language. To' properly

8 There is no reason why the sentences of a programming language would
have to be stringlike structures; indeed, some researchers have suggested that
eventually other types of structures will also be used (e.g., Minsky, 1970). In

the fourth section of this chapter, languages with sentences of more general struc-
tural nature will be discussed.
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describe the syntactics of a universal programming language it is clear
that we must present a grammar for that language. Several different
kinds of grammars for describing languages have been developed (see,
¢.g., Chomsky, 1959; Post, 1944; Backus, 1959). A formalization for
the Chomsky phrase-structure grammars will be presented. For the
reader who wishes to skip the mathematics of this formalization (which
is based on that given by Hopcroft and Ullman, 1969), the ordinary
discourse will be resumed in the later section entitled “Grammars,
Machines, and Extensibility.”

String Languages

If V is a set of symbols, then V* represents the set of all finite
strings composed of elements from V. A string is an ordered series of
symbols (i.e., for some », an ordered n-tuple). Thus, if V = {0, 1},
then V* = {¢, 0, 1, 01, 10, 00, 11, 111, 101,...}, where ¢ represents
the empty string, which does not contain ‘any symbols. We stipulate
that e is always an element of V*, for any ¥V, and use V* to denote
V* — {¢}. A language L on the alphabet V is then any set L that is a
subset of V'*; that is, LCV*.

A grammar G is defined to be an ordered quadruple

G = (VN)VT:P)S)
satisfying the following conditions:

1. Vy,V,P are finite sets.

2. VyNVyr = ¢ (no elements belong to both ¥y and V).

3. SeVy (Sis called the start symbal).

4. Vy and V7 are sets of symbols. (The symbols belonging to
V' are referred to as production variables, and those belong-
ing to Vy are referred to as terminals. The alphabet of G is
VyUVy.)

5. Pis aset of written expressions of the form « —. 8 (or equiva-
lently, ordered pairs of the form («,8)), where aeV* and
BeV*,

It is customary to use capital Roman (italic) alphabet letters for
production variables and to use lower-case letters at the beginning of
the Roman (italic) alphabet for terminals. Strings of terminals are
represented by lower-case letters near the end of the Roman alphabet;
strings of production variables and terminals are denoted by lower-case
Greek letters.

If o and g are two strings, then «f denotes the string obtained by
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writing down all elements in o, followed by all elements in 8. Thus, if
o = abc and B = def, then af = abcdef and Ba = defabc.

We can now proceed to define the language L(G) generated by a given
grammar G. To accomplish this, we need two mathematical relations,
and &, which can exist between strings in ¥*. The first relation is defined
as follows: If & — B is an element of P, and v and 3 are any strings in V¥,
then yed is said to directly derive v38, and we write yad @ 7vB36. The re-
writing rule or production rule « — § is said to be applied to the string
yad 1o obtain 8.

The second relation, &, is defined as follows: For two strings « and
B in V*, we say that o § 8 (o derives B) iff we can obtain 8 by the applica-
tion of some ﬁnlte number of production rules in P to «. That is, oza»;’:‘
iff there exist in V'* strmgs Y, ¥z « + - 5 Yo Such that & v, v1 & 72,

vy Y-l G Yns Yn G 6

The language L(G) generated by the grammar G is now defined
to be

*
L(G) = {wlweVF and Szw)
In other words, a string w is in L(G) if it is made up entirely of termi-

nals and it can be derived from S. If w can be derived from'S, then a
sequence of strings

S5'Yl,72; v e s Yy W

such that S T v, 11 & Yo o o s Yn G W is known as a derivation of w
in the grammar G (If it is clear which grammar is involved, we use —
for @ and %for %.)

As an example, consider the grammar G, = (Vy,Vy,P,S), where
Vy = {5,4},Vr = {0,1} and P contains the following production rules.

S—Al
S—50
A—S0
§—0
S—1
A-0

The language L(G,) generated by this grammar contains all finite
strings ‘made up of O0’s and 1’s in which there are no consecutive 1’s.
To illustrate, the string 10010 may be derived from S as follows:

Sk

Given: S
Apply Rule 2: S0
Apply Rule 1: A10
Apply Rule 3: S010

Apply Rules 4,2: S0010
Apply Rule 5: 10010
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The reader may prove as an exercise that any string of 0’s and 1’s in

which there are no consecutive 1’s can be derived in this grammar from

S. (Suggestion: Use mathematical induction on the length of a string.)
‘For another example, let

G2 = (VN)VT:PJS)
Vi = {S,B,C}
V= {abc)

and let P contain the following rules.

S—aSBC
S—aBC
CB—BC
aB—>ab
bB—bb
bC—bc
cC—cc

Nk v

To describe the language generated by this grammar we need to
introduce some new notation: If « is a string, then the expression «®
refers to the string aa- - - o, in which « is repeated exactly n times. The
language L(G.) then contains the string a"b"c” for each n = 1, and no
other strings. ;

To obtain a given string a"b"c", we work in the following fashion.

Given: N
Apply Rule 1 n — 1 times: a"*S(BC)™*
Apply Rule 2: a(BC)"
Apply Rule 3 as often a'BC"

as necessary’:
Apply Rule 4: a’bB™'C"
Apply Rule 5 n — 1 times: a"b"C"
Apply Rule 6: ab"cC™*

ApplyRule 7n — 1 times:  a'b"c"

We now demonstrate that L(G,) does not contain any strings other
than those of the form a"b"c": first of all, we know that any derivation of
a string must start from the symbol S. Note that, given'S, we cannot
apply rules 4, 5, 6, or 7 until we apply rule 2. And, once rule 2 is applied,
we can no longer use rules 1 or 2. A (nontrivial) derivation, then, must
start with the use of rule 1 and be followed by a series of applications
of rules 1 and 3 until the application of rule 2. (We could, of course,

7 “Necessary” = n(n — 1)/2 times. (Why?)
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start our derivation with rule 2, in which case only the string abc can be
produced.) The string now consists of n a’s followed by some ordering
of n B’s and n C’s. After applying any of rules 3 through 7 any num-
ber of times, the string will still have the form 8, where « consists entirely
of terminals and g is a nonempty string consisting entirely of B’s and C’s.
Now, if all the B’s are converted to b’s before any C is converted to
a ¢, the string will have the form 4"b"C", and the only string of terminals
“that can possibly be derived from this is a"b"c". So, we may assume that
some C is converted to a c¢ before all the B’s are converted to b’s; the
string now has the form of a"b'ca, where i <n, and « is a string of B’s
and C’s (including at least one B). The only rules that can now be applied
are rules 3 and 7; their use can result only in a string of the form a"b'c’ «
(where i < n and j = n), such that « contains at least one B. They are
still the only rules that can be applied, and their use continues to give a
string of the same form; therefore we conclude that a string without
variables cannot be produced if a C is converted to a ¢ before all B’s
are converted to b’s. Thus, L(G:) = {a"b"¢"/n=1}.
As an exercise, the reader should inspect that the grammar
Gs = (Vy,V1,P,S), where V, = {§,4,B,C},V = {a,b,c}, and P con-
tains the following rules.

S—aAC
S—aC
A—aAB
A—aB
C—bc
Bb—bB
Be—bec

Nk whe=

This grammar also generates the language of all strings of the form
a'b"c”, n=1. Grammars that generate the same language are said to be
equivalent.

It is possible to distinguish between different types of grammars
on the basis of their sets of production rules. The reason for making
the distinction is that there exists a correspondence between each type
of grammar and a certain type of machine.

If every production rule in a grammar is of the form A—a or
A—aB, then the grammar is said to be a type 3, or regular, grammar,
and to generate a type 3, or regular, language. (An example is the
grammar G, above.) If every production in a grammar is of the form
A—a, such that 4 is a production variable and « € V*, then the gram-
mar is called a type 2, or context-free, grammar (and it generates a
type 2 or context-free language). Finally, if every production in a gram-
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mar is of the form «—p such that the number of symbols in the string
B is always greater than or equal to the number of symbols in the string
o, then we have a type 1, or context-sensitive, grammar (generating a
type 1, or context-sensitive, language).

The reason for the type definition “context-sensitive” is that the
class of languages generated can be shown to be the same if we define
instead that the production rules in a context-sensitive grammar be of
the form aAdy—aBy, where A€ Vy,B7¢, and «, 8, and y are in V*. In
other words, if 4 appears “in the context of” « and v, it can be replaced
by B. Examples of context-sensitive grammars are G and Gj, dis-
cussed above (and also Gy; every type 3 language (grammar) is also
type 2; every type 2 language (grammar) is also type 1).

If no restrictions are placed on the form of the production rules of
a grammar (other than the necessary ones, « € V* and g€ V*, for any
rule a—>8), it may be referred to as a type O or “general” phrase-struc-
ture grammar (and the same names are given to the language it gen-
erates).

Grammars, Machines, and Extensibility

The basic correspondence between grammars and machines can
be fairly simply described, making use of the concepts of “input tape”
and “output tape” given earlier. We say a machine accepts a lan-
guage iff whenever any sentence of.the language is placed on the (other-
wise blank) input tape of the machine, the machine eventually prints a
“I” on its (otherwise blank) output ‘tape and halts. In essence, a machine
that accepts a language L is a “procedural embodiment” of a grammar
for that language. It can be shown that a phrase-structure language is
of type O iff there is a Turing machine that accepts it. (See the Exer-
cises.) Three special types of Turing machine can be defined—linear
bounded automata, pushdown automata, and finite-state automata (see
Chapter 2)—and it can be shown that they correspond to acceptors
for the context-sensitive, context-free, and regular languages, respec-
tively.

Of course it is desirable to do more than merely recognize that a
given sentence belongs to a language, especially if we are concerned
with programming languages. It is also necessary to “understand” the
sentence itself, and implement the procedure it describes. A computer
may come by this understanding automatically, just as the universal
Turing machine described in Chapter 2 would be automatically able to
implement the procedure described by a sentence in its “blank-one”
language. In essence, the understanding of that language was “wired
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in” with the next-move function of the machine. In general, every com-
puter will be able to understand some programming language in this
automatic sense; the programming language that is “wired in” to a com-
puter is commonly known as its machine language.

It is natural to ask whether a computer can understand program-
ming languages other than its machine language. The answer to this
question is yes. Let’s suppose we have some computer U which has
as its machine language the programming language L, and that we want
U to be able to “understand” sentences in another programming lan-
guage, L’. We assume that L’ is at least type 0, and may be type 1, 2,
etc. (See note 7-5.) Because U is universal, and because L’ is type O,
we know that we can write a program (find a sentence in L) that de-
scribes a procedure which will accept the sentences of L’. Also, we
know that U will be capable of implementing this procedure. Thus, we
can “program” U to accept the sentences of L’. In fact, however, it is
possible to do more. Given a description of a grammar G’ for L’ and a
sentence w’ in L’, we can “program” U to find the derivations of w’
with respect to the grammar G’. Normally there will be only one such
derivation and it will provide structural information about the procedure
described by w’ that can be used to construct a sentence w, in the lan-
guage L, which describes the same procedure. (The sentences w and w’
are said to be computationally equivalent.) One can attempt to describe
the procedure by which the sentence w is produced from the sentence
w’, and generalize to a procedure that will produce a computationally
equivalent sentence in L, given any sentence in L. If this general pro-
cedure (called a translator from L’ to L) can be described by a sentence
pin L (and we know that it can be, if L is a universal programming
language), then p can be used to extend the “language capability” of
the computer U. If we give p and any sentence of L’ to U, that sentence
of L’ will be converted into a sentence of L and the procedure it de-
scribes can then be implemented by U (notes 7-6, 7-7).

Thus, it is possible to find sentences in L which will “extend” the
language capability of U, just as it is possible to find sentences in
English that a person can use to extend his own language capability.
When one looks at a modern computer one sees a hierarchy of languages
L, L, L” L, ...that are each ultimately embedded in the machine
language of that computer. We can now make use of many different
kinds of programs (“compilers,” “interpreters,” etc.) for extending a
computer’s language capability (see Earley and Sturgis, 1970; Irons,
1970).

Again, the reason for extending the language capability of a com-
puter is not exactly that the computer will thereby be able to do things
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it could not do before; in theory, one universal programming language
is just as good as another, because every universal programming lan-
guage describes the same class of procedures (namely, those that can
be carried out by Turing machines). In practice, however, we find that
any given universal programming language will provide very simple
sentences describing some -procedures and very complex sentences
describing other procedures. Thus, a “blank-one” sentence describing
a Turing machine procedure for matrix multiplication would be very
long and difficult for a person to handle. The same procedure may be
described simply in other universal programming languages such ‘as
FORTRAN, ALGOL, and SAIL. Since people want to be able to describe
procedures like matrix multiplication easily, it is customary to extend
the computer’s language capability to include these “higher-level” lan-
guages (note 7-8).

In addition to this extensibility, one can design programming lan-
guages to facilitate the use of programs with “self-reference.” Thus,
“recursive programs” are easily described in Lisp. However, no one
really knows the precise relationship between the self-reference of recur-
sive programs and the self-reference of natural-language sentences.
Also, it is possible to design programming languages with “redundancy”
(e.g., “error-coding” of instructions; see Lucky, 1969).

Universal programming languages have, in one way or another,
two of the most important characteristics that are possessed by human
languages: extensibility and self-reference. These characteristics are
not possessed in any form by any other known organism-level language.
So, it may not be so surprising to read in the next section that com-
puters can now understand human ianguages much better than monkeys
can.

PROGRAMS THAT “UNDERSTAND”
NATURAL LANGUAGE

Five Problems

In the preceding section we saw how it is possible to extend the
“language capability” of a computer so it can understand programming
languages other than its machine Janguage. To make such an extension,
the computer might be given a sentence (program) in some program-
ming language that it already understands (e.g., its machine language)
that will enable it to “translate” sentences in the new language; that is,
convert them into sentences it can already understand. Because such
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a “translator” sentence (program) describes a procedure for under-
standing the new language, we often say that the sentence itself “under-
stands” the language, even though in fact the understanding results
from the interaction of the translator sentence and the computer. Thus,
it is common to talk of programs that understand languages.

It is natural to ask how far the language capabilities of computers
can be extended. For example, is it possible to write programs that
understand the natural languages spoken by humans? Can we extend
the language capabilities of a computer to the extent that it becomes
possible for us to describe in English the procedures we wish it to per-
form? Can English be used as a “programming language” for a com-
puter? If this could be done, people would not have to learn special
programming languages in order to make use of computers, and the
utility of computers might be greatly increased.

Artificial intelligence research is currently concerned with prob-
lems such as how to program computers to answet questions stated in
English (or other natural languages), solve problems stated in English,
and participate in English conversations with people (or, for that mat-
ter, other computers). Ultimately, A1 research may consider a variety of
more difficult problems, such as whether computers can translate from
one natural language to another (note 7-9), perform complicated
secretarial work (e.g., take dictation), or play “language games” (note
7-10). Although the emphasis here is on current achievements and
problems, it is well to keep the “more difficult” ones in mind (cf. Polya,
1945). The evidence presented suggests that all of these problems may
eventually be solved (note 7-11).

Before continuing, the reader should note that this discussion will
not deal with the machine understanding of spoken languages, even
though reference will often be made to the “speaker” of a sentence,
simply to follow a convention. Techniques. for enabling computers to
hear, understand, and make spoken words and sentences are still in a
relatively primitive state of development. The reader who is interested
in this subject should refer to Astrahan (1970), Bobrow (1968), Denes
and Mathews (1968), D. R. Hill.(1967), and Mermelstein (1969).

Unless otherwise stated, .the discussion throughout this section
will always be concerned with computer programs that “understand”
English sentences (usually submitted via a computer terminal), which
will be simply called “language understanding programs.” In the sub-
sequent pages a variety of such programs will be discussed. The ap-
proach and terminology are largely modeled after that of Winograd’s
(1971, 1972) work, which the reader is encouraged to consult. Space
does not- permit complete descriptions of each of the many language-
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understanding programs that have been written, so instead an attempt
is made to summarize the most important approaches that have been
followed in their design.. However, special attention is given to
Winograd’s program, one of the most linguistically powerful.

Each language-understanding program may typically be said to
confront four highly interrelated problems: a synfax problem, a seman-
tics problem, an inference problem, and a generation problem. (The
question of how these problems are interrelated, and of what use a
language understanding program should make of this interrelation, is
itself a fifth problem faced by these programs, which will be referred
to as the integration problem.) To see how these problems arise, re-
turn to the discussion of “understanding” and languages. The viewpoint
presented in the early pages of this chapter was that one “understands”
a sentence in a language by making a'model of its “meaning.” Mention
was made of three aspects of a sentence’s transmission which should
be considered as elements of its meaning: the things that cause the
sentence to be transmitted (e.g., the speaker’s “motives” for using the
sentence); the things that the sentence causes when it is transmitted
(e.g., the sentence might tend to have an “emotional effect” when it is
used) ; the things that the sentence describes (e.g., objects, events, con-
cepts, procedures, other sentences, or an attitude or wish held by its
speaker). It is clear that with this interpretation the “meaning” of a
sentence is highly dependent on the situation in which it is used.

However, some things about a sentence do not usually depend on
the situation, or “context” of its use: namely, the sequence of words and
letters that make up the sentence itself, the possible derivations (or
“parsings”) of that sentence in one’s grammar for English, and the set
of possible “meanings” of the words in the sentence (which is what
makes dictionaries useful). These relatively constant attributes (the
latter two are of course variable, by the extensibility of natural lan-
guages) of the sentence help us determine its “meaning,” if we also
have knowledge about the “situation.”

The syntax problem has two basic subproblems: What is a good
grammar for English? How should we obtain the parsing(s) of a sen-
tence? The semantics problem is that of finding a good formalism in
which to express models for “meanings” and “situations.” The inference
problem has three basic subproblems: How can we use our model for
the “situation” and the constant attributes of a sentence to make a model
of its meaning? How do we change our model of the “situation” when
we determine the “meaning” of a sentence we receive? How do we
determine the “meanings” that we wish to convey, given that we have
determined models for the current “situation” and the “meanings” of
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the sentences we've received? The generation problem is that of finding
and transmitting sentences that will have the “meanings” we wish to
convey. (The semantics- and inference problems are often jointly
referred to as the representation problem.)

If in the sentences of the preceding paragraph we substitute “the
‘computer” for “we,” then we obtain the basic problems that confront
AT researchers who attempt to make programs that understand English.
None of these problems has yet been completely solved, if we make a
comparison with human abilities to converse, nor is this surprising.
Natural languages are designed to be useful in almost the full range of
situations that people encounter, whereas computers currently are
acquainted with a relatively small range of situations. Success in achiev-
ing language-understanding programs is limited by the extent to which
computers can be enabled to reason about real-world situations. An ex-
ample due to Schank (1971a,b) is

“We saw the Grand Canyon flying to Chicago.”

This sentence is syntactically ambiguous (has two equally plausible
parsings) unless the computer knows something about the real-world
nature of locations and the ability to fly.

Subsequent pages review the approaches that have been used in
designing language-understanding programs that can solve these prob-
lems. A brief collection of conversations with computers, to illustrate
the success AI researchers have had to date, will then be presented. The -
next section discusses some of the “open questions” that still remain,
concerning the relevance of “semantic information processing” to artifi-
cial intelligence in general.

Syntax

The earliest language-understanding programs, which were writ-
ten for the purpose of mechanical translation (note 7-10), were de-
veloped before linguists had achieved any very precise theories of syntax
for natural languages. Certainly the theories that then existed were not
. precise enough to suggest explicitly how computers should be pro-
grammed to understand natural languages. As a consequence, the de-
signers of those programs were forced to produce their own ad hoc
systems for parsing sentences (i.e., parsers). Because they lacked a
comprehensive plan for designing their programs, the programs tended
to become more and more complex, difficult to understand and debug,
and difficult to improve; therefore the programs eventually had to be
abandoned, during the latter part of the 1950s. After that time, and
until 1968, designers of language-understanding programs followed
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either of two main approaches to the basic problems of syntax: the
restricted pattern-matching approach and the context-free approach.
The restricted pattern-matching approach consisted essentially of
accepting the limitations on syntax that were implied by the lack of a
good formalism for expressing and using grammars for English. The
researchers who followed this approach (including Bobrow, Raphael,
and Weizenbaum) recognized that the syntax problem would still have
to be solved eventually by really general language-understanding pro-
grams, but they managed to show that interesting linguistic behavior,
relating to the other basic problems of semantics and inference, can be
obtained even if only minimal solutions to the syntax problem are pro-
vided. The language-understanding programs they developed did not
really use “grammars” in any general sense, nor did they parse sen-
tences. Instead, these programs were designed to extract semantic
information from sentences by matching them against any of a small,
prespecified, constant number of “templates” or “forms.” Examples of
the forms used by Bobrow (1968)—which he called “llngulstlc
forms”—are « and o equals ’s
father,” “salary of ,” “not ”« gave to ?
etc. Bobrow’s program (known as STUDENT) was designed to follow a
relatively rigid procedure of successively “filling in blanks”; thus, it
might “parse” the sentence, “The salary of John’s father equals 100
dollars,” by filling in blanks as in Fig. 7-4. It should be clear that

b N1Y

John

l ‘s father

v 100
the salary of / ‘ dollars
— — \ v ]
‘ equals +

Figure 7-4. Pattern-matching for the sentence “The salary of John’s
- father equals 100 dollars.”

STUDENT had a “recursive” ability to fill in blanks; the blanks of a given
template might be filled in by other templates. As STUDENT matched a
given sentence- against its collection of linguistic forms, it could be
guided by the matchings it obtained in a process of setting up an
algebraic equation to represent the relationship between the “variables”
of the sentence (e.g., “John™). Thus, STUDENT was capable of convert-
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ing each of alimited (although infinite) variety of English sentences into
an equivalent algebraic equation. Given a collection of such sentences,
STUDENT would form a set of simultaneous equations. STUDENT was
designed to use special linguistic forms like “find ” to identify the
variables for which it should solve, given such a set of simultaneous
equations, and it contained a special set of programs it could then use
to actually solve sets of simultancous, elementary algebra equations.
Finally, STUDENT was capable of “assuming” certain variables to be
equivalent (based on simple structural similarities between the ways
they were named in the initial set of English sentences) if the operation
of its problem-solving routines revealed that it had been given more
variables than equations. If this technique failed, STUDENT could ask
the person who supplied the problem for more information. Thus,
STUDENT was capable of performing a fairly difficult intellectual task,
that of understanding and solving algebra word-problems.

It should be evident from this description that STUDENT’s ability
to “understand” algebra problems that were stated in English was
somewhat limited. One could easily find problem statements that it
could not understand, using its restricted pattern-matching approach to
syntax. Still, STUDENT and the other early programs that used this ap-
proach demonstrated some rather impressive (and surprising) behavior.
STUDENT fostered two other special-purpose question-answering pro-
grams, CARPS and HAPPINESS (Charniak, 1969; and Gelb, 1971), re-
spectively designed to solve calculus and probability problems stated in
English.

The context-free approach to the problem of syntax involved find-
ing simplified subsets of English that could be described by well-under-
stood kinds of phrase-structure string grammars; much research con-
centrated specifically on the use of context-free grammars, owing to
their proven value as the basis for ordinary programming languages.
However, the full complexity of English syntax is not easily describable
by phrase-structure grammars (sée Winograd, 1971, 1972, for a discus-
sion of reasons). Thus, the context-free approach has had only limited
success. Rather than discuss this approach in any detail, the .reader is
asked to refer to Simmons (1965) and Kuno (1965).

Recursive Approaches to Syntax

In many ways, the year 1968 was a good one for language-under-
standing programs. From the standpoint of syntax, it was the year in
which the designers of these programs freed themselves from the restric-
tiveness of phrase-structure grammars by taking a new approach to
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syntax. The essence of this approach to syntax is the realization that
language-understanding programs need not be restricted to the use of
phrase-structure grammars any more than computers need be restricted
to the simulation of Turing machines. Phrase-structure grammars and
Turing machines are adequate simple formalizations for the infinite
classes of all machine-understandable languages and all machine-
computable functions, but they are extremely poor formalizations in
which to describe the relatively small classes of natural languages and
intelligent procedures.® The result of using this new approach has been
the discovery that natural language grammars can be profitably de-
scribed as certain kinds of recursive procedures. Two ways of describing
these procedures have been developed, corresponding to the formaliza-
tion of augmented state transition networks (see Thorne, Bratley, and
Dewar, 1968; Bobrow and Fraser, 1969; Woods, 1969) and to the
programming language PROGRAMMAR (Winograd, 1971).

. PUSH NP/ )
PUSH NP/ CATV POP {SBUILD)
(Oommfm) e (o) o) e
a
CAT DET CATN POP (BUILDQ {NP (DET +) (N +)) DET N}
e )

Arc Condition Actions Arc Condition Actions
1 T {SETR SUBJ *) 4 (INTRANSV)
2 (AND (GETF TNS) (SETR TNS 5 T
(SVAGR SUBJ) (GETF TNS)) 6 T (SETR DET *)
(GETF PNCODE))) 7 T (SETR N *)
3 (TRANSV) (SETR OBJ *) 8 T

Figure 7-5. A simple augmented transition network grammar.
(Kaplan, 1971, reprinted with permission.)

Augmented transition networks are a generalization of the transi-
tion networks for the finite-state machines discussed in Chapter 2.
Figure 7-5 shows an example of a simple augmented transition net-
work; as can be seen, it is basically a graphlike structure similar to the
transition networks discussed previously. However, two important
changes should be noted: First, the augmented transition network

® Actually, these classes are not really so “small”; perhaps it is better to say
that they have a very low “density” when one tries to find them by searching
through the classes of all languages and functions, as represented by phrase-
structure grammars and Turing machines.
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represents a recursive procedure. This is achieved by allowing the label
of an arc to refer to a state, using either a PUSH or a POP command. A
pUsH command means that the transition along its arc should be post-
poned (ie., the name of the state at the head of the arc should be
placed on the top of a “pushdown” storage unit) and the new state of
the machine should instead become that referred to (explicitly) by the
pUsH command. Thus, arc 1 in Fig. 7-5 has the label PUsH N/, which
specifies that the machine should postpone its transition from state s/
to state s/suBJ and instead make a transition from state s/ to Np/.
Similarly, a Por command may be a label for a “dangling arc,” the
head of which is not attached to a node. The meaning of a PoP com-
mand is that the machine should remove the name at the top of its
pushdown store and make a transition to the corresponding state. Thus,
suppose that the pushdown store should happen to contain the follow-
ing “stack” of names:

NP/DET
S/SUBJ
NP/N

S/

and suppose that the machine should happen to be in state s/vP; then
the popP command at arc 5 will specify that the machine should make a
transition from state s/vp to state NP/DET and that the stack of names
in the pushdown store should become

S/SUBJ
NP/N
S/

Besides this ability to “transfer control recursively” throughout
the network, augmented transition networks differ from finite-state
transition networks in another manner: Each arc may be allowed to
specify a condition and a sequence of actions; the actions that an arc
may specify are those of building and naming tree structures—the name
of a tree structure is known as its register, and registers are said to
“contain” their tree structures. Actions may specify various kinds of
changes to the contents of registers “in terms of the current input sym-
bol, the previous contents of registers, and the results of lower-level
computations (pushes)” (Kaplan, 1971). The “input symbols” that
are submitted to an augmented transition network are English words.
The network of Fig. 7-5 is designed to start in state s/, with the first
word of a sentence being submitted to it; arcs that do not have PuUSH or
poP commands attached may have either “word” or “category” state-
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ments attached to them. Thus, arc 2 has the label caT v, which means
that if the machine is in state $/suBJ and the input symbol is a word
that is a verb, then the machine is to make a transition to state ve/v,
provided the additional condition for arc 2 listed in the table of “arcs,
conditions, and actions” below the diagram is satisfied. The condition
for an arc is in general a Boolean combination of predicates involving
the current input symbol and register contents; the conditions for some
arcs (e.g., arc 7) may always be trivially satisfied. A sentence is said
to be accepted by an augmented transition network whenever a final
state (i.e., a “dangling arc”), the end of the sentence, and an empty
pushdown store are all reached at the same time. The parsing for a
sentence provided by an augmented transition network corresponds
simply to the history of transitions, pushes, and pops required to ac-
cept it.

The particular grammar shown in Fig. 7-5 will not be discussed
in any greater detail. However, the reader interested in these networks
may wish to see if he can understand the operation of this example
network on a simple sentence, shown in Fig. 7-6. A complete explana-
tion of this example is to be found in Kaplan (1971).°

A few sentences are sufficient to describe the nature of the gram-
mars that can be formulated as augmented state transition networks,
and to indicate their applicability to the syntax of natural languages.
The use of PUsH and POP commands, and conditions, actions, and
registers in such a grammar (network), enables it to try out different
kinds of parsing strategies on variably large phrases in a sentence, to
store information relating to the success of these strategies as they are
being carried out, and to recognize whenever a given strategy has failed
so that a new strategy can be tried. If this is contrasted with the per-
formance offered by context-free grammars, the differences are striking.
A parser that uses a phrase-structure grammar typically has a large set
of production rules, each of which is potentially applicable at any point
in its analysis. Such a parser is not easily made to simulate strategic
performance in the way it conducts its analysis. Even though a system
designer were to manage somehow to find a parser and a phrase-struc-
ture grammar that would efficiently parse the sentences of a given subset
of English, he would in general find it difficult to extend his system to

2 A helpful hint: The symbol “*” represents a special register in Kaplan’s
formalism which always contains the structure or word that “epabled” the most
recent transition of the machine. In most cases this is an input symbol; however,
whenever a pOP command is executed, it is the value of that command’s argu-
ment. Thus, the execution of POP(SBUILD) causes the value of the function

SBUILD to be placed in “*”. Also, the JUMP label on an arc indicates that a tran-
sition is to be made without advancing the input sentence.




Sentence: The man kicked the ball.

STRING = (THE MAN KICKED THE BALL)
ENTERING STATE S/

ABOUT TO PUSH

ENTERING STATE NP/

TAKING CAT DET ARC

STRING = (MAN KICKED THE BALL)
ENTERING STATE NP/DET
TAKING CAT N ARC

STRING = (KICKED THE BALL)
ENTERING STATE NP/N
ABOUT TO POP

ENTERING STATE S/SUBJ

TAKING CAT V ARC

STRING = (THE BALL)
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STRING = NIL
ENTERING STATE NP/N
o ABOUT TO POP
ENTERING STATE S/VP
ABOUT TO POP
SUCCESS
10 ARCS ATTEMPTED
195 CONSESDb
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starting with arc & 1s saved.
b. Number of memory words used.

¢. Processing time required.

Figure 7-6. Trace of an analysis. (Kaplan, 1971, reprinted with per-
mission.)
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a larger subset of English and still maintain its efficiency. By compari-
son, it is relatively easy to add new strategic abilities to a network
grammar.

Another formalization of this approach to syntax is the program-
ming language PROGRAMMAR (Winograd, 1971, 1972). PROGRAMMAR
facilitates the writing of programs that can act as grammars and parsers
for natural languages. It is specifically designed to facilitate the descrip-
tion of parsers that can act strategically and recursively, and to enable
the designer of a language-understanding program to make extensions
to his system in a fairly straightforward fashion. It is closely related to
the language PLANNER in the general philosophy of the programs it is
intended to encourage, but the theory underlying its orientation to
natural language is actually that of systemic grammar, an outlook on
natural language that has been developed by Halliday (1961 et seq.).
Space does not permit a detailed discussion of PROGRAMMAR and the
theory of systemic grammar. However, an outline of the highlights
these topics exhibit is provided below. The information given should
be sufficient for the general reader to decide whether to investigate
them further. For a more detailed introduction, Winograd’s discussion
of these subjects is readily understandable to the nonspecialist.

Some of the basic tenets of systemic grammar, as expressed pre-
viously, are repeated as follows:

1. The purpose of natural language is communication; thus,
the syntactic nature of language must be understood in rela-
tion to the semantic information it is designed to carry.

2. The problems of syntax, semantics, inference, and generation,
which are to be solved in the use of natural language, are
all closely interrelated; it is desirable that a language-
understanding program be able to solve these problems in
a highly integrated way.

3. Despite their interrelations, these problems are in many ways
quite distinct. Thus, we should not expect that a system
designed to solve the generation problem (e.g., transforma-
tional grammar; see Chomsky, 1959 et seq.) will necessarily
be the basis of an efficient system to solve the syntax (in
patticular, the parsing) problem.

Conditions (2) and (3) above will be considered more thoroughly
in the following subsections, devoted specifically to the semantics,
inference, generation, and integration problems. To be considered first
is condition (1), the way in which systemic grammar and PROGRAMMAR
are designed to understand the syntactic nature of English in terms of
the semantic information its sentences may carry.
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A viewpoint common to the theories of both systemic and trans-
formational grammar is that the structure of a sentence is the result of
a sequence of grammatical choices made by the speaker of the sen-
tence. Systemic grammar describes a specific class of such grammatical
choices and specifies the effect that each will have on the nature of the
sentence being produced. Moreover, systemic grammar dscribes cer-
tain relationships that exist among these grammatical choices, and
specifies by means of these relationships which sequences of gram-
matical choices may produce “meaningful” sentences and which may
not. When a person makes a meaningful sequence of grammatical
- choices in the course of producing a sentence, the effect of the choices
he makes will be to provide the sentence with certain structural char-
acteristics, or features, which other people can use as an aid td the dis-
covery of the “meaning” of the sentence. -

For example, every sentence must have structural characteristics
corresponding- to exactly one of the three features: IMPERATIVE, DE-
CLARATIVE, or QUESTION. Thus, the speaker must make the grammatical
choice as to which of these three features he wants his sentence to have.
Again, if the speaker should choose to give his sentence the structural
characteristics corresponding to QUESTION, systemic grammar specifies
that he will also have to make a choice between the structural char-
acteristics corresponding to the features YEs-No and wH-question. The
features possessed by his sentence are, in effect, markers that people
may use to “understand” that it is a question and that it requires, say,
a yes or no answer. A set of features that form a mutually exclusive
set (e.g., YES-NO and WH-question) are said to be a system. The set of
other features that must be present for the grammatical choice between
the elements of a system to be possible is known as the entry condition
for that system. Thus, the entry condition for the system YEs-No,
WH-question is the feature QUESTION.™

In addition to sentences, the theory of systemic grammar specifies
features (and systems and entry conditions) for smaller “syntactic
units” such as noun groups, prepositional groups, and words. (Thus,
the various endings that a word might have are considered to be the
“features” it may possess; the word itself may be ‘the entry condition
for the system of its endings.)

PROGRAMMAR is designed to facilitate the writing of programs
capable of implementing systemic grammars. The language-understand-

1* A sentence that has the structural characteristics corresponding to the
feature “wH-question” must possess the feature QUESTION and must begin with
one of the words “what,” “why,” “who,” “where,” “how,” “which,” etc.

** More generally, an entry condition may be a Boolean formula, the terms
of which are features.
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ing program that Winograd has written using PROGRAMMAR contains
many special subprograms, each designed to recognize a different feature
that can be possessed by certain strings of words. In addition, his pro-
gram is capable of recognizing the presence of entry conditions and
can call the appropriate feature-detecting programs when necessary.
This gives it the basic ability to carry out a systemic analysis of the
features possessed by an English sentence. Other parts of his language-
understanding program are capable of using the systemic analysis of a
sentence to construct a “semantic model” of its meaning, to integrate
this semantic model into its current “world model,” to prove theorems
and solve problems about and within the world model (using PLANNER),
to use the semantic model to detect errors in the systemic analysis of a
sentence (or part of a sentence) and redirect the analysis in a strategic
manner toward a more plausible parsing, and to generate appropriate
replies (e.g., answer questions) to sentences submitted by people.
Winograd’s program is capable of answering questions about itself
(its world model contains a simple “self-model”) and of remembering
and understanding the contexts of conversations. A sample conversation
with this program (called “sHRDLU”) is given at the end of this section.

Semantics and Inference

“Meaning” and “semantic information” are half-mysterious con-
cepts. By this is meant that people are unable to know precisely what
effect their words may have on people, whereas they can know exactly
what effect their words may have on machines.

Thus, in the preceding pages no attempt was made to present
very concrete definitions of the meaning, or semantic information, that
may be conveyed by the sentences of a natural language. To have done
so would have been to discuss a theory of human psychology (which
causes the sentence to be used; which is partially caused by the use of
sentences); such a discussion would eventually be desirable, but it is
not necessary here. In these pages the primary concern is with viewing
the (relatively) unmysterious behavior of machines—unmysterious be-
cause we can look directly at their inner workings and at the data stored
in their memories.

Because we can know and design the “psychology” of language-
understanding machines, the notions of meaning and semantic informa-
tion become “halfway more tractable.” We can define these concepts
rigorously for a language-understanding machine if it has been built (or
programmed or designed), but we have difficulty in defining these con-
cepts for the ultimate, truly intelligent machine that would understand
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our language as well as we do, since we know as little about the internal
workings of that (nonexistent) machine as we know about the internal
workings of our own intelligence.

For a language-understanding program, the “semantic informa-
tion” carried by a sentence is simply the data structure that the program
creates when it processes (“understands”) the sentence. The problem
of semantics is to discover what kinds of “semantic” data structures
such programs should create in order to provide the best solutions to
the problems of inference and generation. The problems of inference
and generation are to discover how language-understanding programs
should use their semantic data structures to produce the kind of be-
havior that people would accept as evidence that the programs “under-
stand” language. So far, the greatest success in solving the problems of
semantics, inference, and generation has been in enabling machines to
understand the relatively factual, logical, nonpsychological aspects of
its use. However, some investigators (notably Colby, Schank, Tesler,
Enea, Abelson and Carroll) have been concerned with developing
programs with an aptitude for understanding the emotional, metaphori-
cal, and otherwise psychological aspects of meaning.

Clearly, the problem of semantics can be minimized by restricting
the “environment” or “problem domain” that one’s language-under-
standing program is supposed to “understand”; some of the earliest
language-understanding programs (e.g., sap-sam; see R. K. Lindsay,
1963) did exactly this. They minimized their problem of semantics by
severely restricting the type of questions they could accept, informa-
tion they could store, and problems they could solve. To a lesser extent,
the more recent  “specialized question answerers” (e. g., STUDENT,
CARPS, HAPPINESS; see Bobrow, 1968, Charniak, 1969, Gelb, 1971a b)
have adopted the same policy.

Several approaches, which may ultimately be developed into a
workable, -general semantics-inference formalism, have been"suggested.
These may be grouped into two classes (which are, however, somewhat
indistinct) : the predicate calculus formalism and the graph-structure
formalism. The predicate calculus formalism was investigated by Coles
( 1969) and C. C. Green (1969), who showed that it is possible to
translate relatively simple natural language questions into example~
construction problems that can be posed in first-order predicate calculus
and solved using the resolution technique (see Chapter 6). This ap-
proach seems plausible because of (1) the generality of first-order predi-
cate calculus as a language for the statement of facts and problems and
(2) the completeness (and consequent problem-solving generality) of
the resolution procedure.
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As previous chapters have shown, graphs are a type of “mathe-
matical construct” that aI researchers find useful in describing much of
their work. For example, state-space problems, finite-state automata,
augmented transition networks, and “flowcharts” for computer pro-
grams (see Chapin, 1971b; Rodriguez, 1969) may all be represented
by structures that are essentially graphs. Winston’s work (1970), dis-
cussed in Chapter 5, showed that graph structures can be used to de-
scribe visual patterns. In general, anything that has a “structural nature”
and can be described as a collection of parts existing in various rela-
tionships to each other may be represented by a graph. In particular,
our examples show that graphs may be profitably used to describe
certain types of problems, “processes” (i.e., automata), and patterns.
As an approach to the semantic-inference problems in language under-
standing, the graph-structure formalism consists of attempts to model
the “meaning” of sentences and words by graphs. The plausibility of
this approach is supported by the fact that real-world situations, which
may be described by sentences (and which may help cause the use of
sentences, or be partially caused by the use of sentences), often have a
structural nature. The best way of describing the structural nature of
general, real-world situations is still not known. However, the utility of
the graph-structure formalism should be apparent if we simply note a
few examples of its use.

One of the earliest studies of the graph-structure formalism was
conducted by Quillian (1966), who developed an elegant model of
semantic memory. Information is represented in this semantic memory
by a graph structure of arbitrary size in which each node is named by a
word and the arcs between nodes represent certain specific relationships,
or associative links, that may exist between words. Nodes are of two
kinds: types and tokens. A type node represents the “meaning” of its
name word; the associative links going from a type node lead to a
configuration, or plane, of token nodes that represents a definition of
this “meaning”; the only purpose of token nodes is to be used in such
definitions. Thus, a token node represents a “use” of its name word.
Two additional constraints are imposed: For any given token node
there must be exactly one type node bearing the same name word, and
the two nodes are to be connected by a special “token-to-type” associa-
tive link. For each meaning of an English word there must be exactly one
type node; a word like PLANT, which has multiple meanings, is repre-
sented by multiple type nodes PLANT, PLANT!, PLANT2, etc. In dia-
grams, type nodes are circled, whereas token nodes are simply indicated
by the presence of their name words. Figure 7-7 shows ihe different
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kinds of associative links used in Quillian’s semantic memory model.
Figure 7-8A shows some planes stored in a semantic memory represent-
ing definitions for PLANT; Fig. 7-8B represents Foop. Quillian wrote a
program that could do “associative” processing on this kind of memory
and demonstrated that it could “compare concepts” and discover inter-
relationships not indicated specifically in its “definition planes.” Es-
sentially, the mechanism for comparing two concepts was a breadth-
first, bidirectional search through the graph structure of the memory
(see Fig. 7-9). The next section presents some computer-produced
concept comparisons. (Quillian’s paper presented intriguing discussions
on the similarities of this model to human concept comparison and on
the difficulties of making dictionaries.)

Among the more recent graph-structure formalisms for semantic
information storage are Schank’s (1970 et seq.) “conceptual dependency
graphs” (see Fig: 7-10), Shapiro’s (1971a,b) MEeNs system (see Fig.
7-11), and the “hierarchial graphs” of Pratt (1969 et seq.).

As mentioned before, the graph-structure formalism and the predi-
cate calculus formalism are somewhat indistinct. This is true because
predicate calculus expressions (of any order) may be stored in graph
structures and because predicate calculus expressions may describe
properties of graph structures. One of the early language-understanding
programs that stored predicate calculus expressions in graph structures
was SIR, written by Raphael in 1964 (also see Simmons and Bruce,
1971).

An important relationship between the problems of semantics and
inference is described by the principle of homogeneity: The operations
used to process semantic information should themselves be describable
as semantic information and stored in a common semantic memory with
other information. This principle dates back to the “stored program”
concept formulated in the early years of computer science, but it has
often been rediscovered by the designers of language-understanding
systems. Among the studies following this principle are those presented
by Quillian (1969), Shapiro (1971), Hewitt (1968 et seq.), Norman
(1972), Sussman (1972), and R. C. Moore (1973). Winston’s (1970)
structure-recognizing program, discussed in Chapter 5, should also be
mentioned in this regard.

As for SHRDLU, it incorporates the graph-structure formalism, the
predicate calculus formalism, and the principle of homogeneity. The
features of sentences detected by its systemic parser can be translated
readily into conjunctions, disjunctions, conditionals (“if...then. ..
else” statements), etc., in the PLANNER formalism. The evaluation of a
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Associative L1nk {type-to-token, and tokxen-to-token, used within 2 plane)

®
1. (only where A is a type node) B names
a class of which A Is a subclass.

A
2, ( only where A is a token node} B modifies A.
B
3 OR
3 P N A,B, and Cform a disjunctive set.
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Figure 7-7. Associative links. (Quillian, 1966, reprinted with permis-
sion.)
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Figure 7-8B. Definition plane representing “food.” (Quillian, 1966, re-
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Figure 7-9. A comparison pathfor “comfort” and “cry.” (Quillian, 1966,

reprinted with permission.)




Semantic information processing 311

-~

p o
| <——> see «—— Grand Canyon
|

|<> 90 <*— plane { New York
II ‘ X
' fly ‘

1
—

X New York

Figure 7-10. A conceptual dependency graph for “I saw the Grand Can-
yon flying to Chicago.” (Schank, 1971, reprinted with permission.)
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Figure 7-11. A MENS structure for the deduction rule “Every man is
human.” (Shapiro, 1971, reprinted with permission.)
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PLANNER theorem corresponding to an English statement constitutes
the major part of the “inference process” performed by sHRDLU (Wino-
grad, 1971; also see Chapters 5 and 6). -

Generation and Integration

The problem of generation is largely unsolved by current language-
understanding programs; even SHRDLU uses essentially a “blank-filler”
scheme. Perhaps something like Chomsky’s transformational grammar
(1959 et seq.) may evéntually be implemented, but it seems likely that
efforts should be devoted first to the “comprehension” stage (syntax,
semantics, inference) of the language-understanding process. By analogy,
it has been noted that the ability of children to comprehend sentences
at a given “level of difficulty” precedes the ability to speak them.

The problem of integration will not be discussed in detail. Rela-
tively little is known about the integration of the sentence-generation
process with the sentence-comprehension process, nor about the inte-
gration of the language-understanding process with the language-learn-
ing process—except, of course, for the integration automatically implied
by the principle of homogeneity (we can tell the machine new rules of
grammar, meanings for words, etc.; see Quillian, 1969). A good dis-
cussion of the integration problem is provided by R. K. Lindsay (1971),
who identified the jigsaw-puzzle heuristic for integrated methods of
problem solving, learning, and memory repair.

In 1972 a large number of papers were written that are relevant
to this and other major problems of Al research on language-understand-
ing systems. In particular, these papers present a variety of new ap-
proaches to the representation problem. Unfortunately, there has not
been time to incorporate discussions of these papers here. Instead, the
interested reader is referred to the papers (cited in the Bibliography)
written by the following authors: Biss, Chandra, Charniak, Coles, Fang,
Feldman, Gibbons, Kuno, R. C. Moore, Norman, Pylyshyn, Rulifson,
Rumelhart, Schank, Sirovich, and Wegbreit. (This list is, of course, not
exhaustive.) In addition, Raphael and Robinson (1972) present a
bibliography of 200 references on the subject of “computer semantics.”

Some Conversations with Computers

This section is devoted to letting the machines speak for them-
“selves. However, some necessary comments are provided, in italics, by
the present author.




Semantic information processing 313

STUDENT
(Bobrow, 1964)
(See the section on “Syntax” of this chapter.)

(THE PROBLEM TO BE SOLVED IS)

(THE RUSSIAN ARMY HAS 6 TIMES AS MANY RESERVES IN A UNIT
AS IT HAS UNIFORMED SOLDIERS. THE PAY FOR RESERVES EACH
MONTH IS 50 DOLLARS TIMES THE NUMBER OF RESERVES IN THE
UNIT, AND THE AMOUNT SPENT ON THE REGULAR ARMY EACH
MONTH IS $150 TIMES THE NUMBER OF UNIFORMED SOLDIERS.
THE SUM OF THIS LATTER AMOUNT AND THE PAY FOR RESERVES
EACH MONTH EQUALS $45000. FIND THE NUMBER OF RESERVES
IN A UNIT THE RUSSIAN ARMY HAS AND THE NUMBER OF UNI-
FORMED SOLDIERS IT HAS.)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02532 (NUMBER OF UNIFORMED SOLDIERS (IT / PRO)
(HAS / VERB)))

(EQUAL G02531 (NUMBER OF RESERVES IN UNIT RUSSIAN ARMY
(HAS / VERB)))

(EQUAL (PLUS (AMOUNT SPENT ON REGULAR ARMY EACH MONTH)
(PAY FOR RESERVES EACH MONTH)) (TIMES 45000 (DOLLARS)))

(EQUAL (AMOUNT SPENT ON REGULAR ARMY EACH MONTH)
(TIMES (TIMES 150 DOLLARS)) (NUMBER OF UNIFORMED SOL-
DIERS)))

(EQUAL (PAY FOR RESERVES EACH MONTH) (TIMES (TIMES .50
(DOLLARS)) (NUMBER OF RESERVES IN UNIT)))

(EQUAL (NUMBER OF RESERVES IN UNIT RUSSIAN ARMY (HAS /
VERB)) (TIMES 6 (NUMBER OF UNIFORMED SOLDIERS (IT / PRO)
(HAS / VERB)))) ’

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION
(ASSUMING THAT)

((NUMBER OF UNIFORMED SOLDIERS) IS EQUAL TO NUMBER OF
UNIFORMED SOLDIERS (IT / PRO) (HAS / VERB)))

(ASSUMING THAT)
((NUMBER OF RESERVES IN UNIT) IS EQUAL TO (NUMBER OF RE-
SERVES IN UNIT RUSSIAN ARMY (HAS / VERBY)))

(THE NUMBER OF RESERVES IN A UNIT THE RUSSIAN ARMY HAS
IS 800)

(THE NUMBER OF UNIFORMED SOLDIERS IT HAS IS 100)
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STUDENT
(Bobrow, 1964)

(THE PROBLEM TO BE SOLVED IS)

(THE GROSS WEIGHT OF A SHIP 1S 20000 TONS. IF ITS NET
WEIGHT 1S 15000 TONS, WHAT IS THE WEIGHT OF THE SHIPS
CARGO Q.

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

TRYING POSSIBLE IDIOMS

(DO YOU KNOW ANY MORE RELATIONSHIPS AMONG THESE
VARIABLES)

(GROSS WEIGHT OF SHIP)
(TONS)

(TS NET WEIGHT)
(WEIGHT OF SHIPS CARGO)

yes
TELL ME

(the weight of a ships cargo is the difference between the gross
weight and the net weight)

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(ASSUMING THAT)
((NET WEIGHT) IS EQUAL TO (ITS NET WEIGHT))

(ASSUMING THAT)
((GROSS WEIGHT) IS EQUAL TO (GROSS WEIGHT OF SHIP))

(THE WEIGHT OF THE SHIPS CARGO IS 5000 TONS)
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CARPS
(Charniak, .1969)

CARPS is a question-answerer designed to solve calculus “rate prob-
lems,” stated in English. After receiving the problem statement, it trans-
forms the sentences into successive List structures and builds a tree
structure (not shown here) to model the information they contain.

(WATER IS FLOWING INTO A CONICAL FILTER AT THE RATE OF
15.0 CUBIC INCHES PER SECOND /. IF THE RADIUS OF THE BASE
OF THE FILTER IS 5.0 INCHES AND THE ALTITUDE IS 10.0 INCHES
/, FIND THE RATE AT WHICH THE WATER LEVEL IS RISING WHEN
THE VOLUME IS 100.0 CUBIC INCHES . /)

}

(((WATER (FLOWING VERB) (INTO PREP) A (CONICAL ADJ) FILTER
(AT PREP) (RATE RWORD) 15.0 (IN3 UNIT) PER (SEC UNIT)) (1)) ((IF
THE RADIUS OF THE BASE OF THE FILTER (IS VERB) 5.0 (IN UNIT)
AND THE ALTITUDE (IS VERB) 10.0 (IN UNIT), (FIND QWORD) (RATE
RWORD) AT WHICH THE WATER LEVEL (RISING VERB) WHEN THE
VOLUME (IS VERB) 100.0 (IN3 UNIT)) (2)))

}

(((WATER (FLOWING VERB) (INTO PREP) A (CONICAL ADJ) FILTER)
(1)) ((WATER (FLOWING VERB) (AT PREP) (RATE RWORD) 15.0 (IN3
UNIT) PER (SEC UNIT)) (1)) (THE RADIUS OF THE BASE OF THE
FILTER (IS VERB) 5.0 (IN UNIT)) (2)) ((THE ALTITUDE (IS VERB) 10.0
(IN UNIT)) (2)) (((FIND QWORD) (RATE RWORD) ATWHICH THE
WATER LEVEL (RISING VERB)) (2)) ((THE VOLUME (IS VERB) 100.0
(IN3 UNIT)) (2 WHEN)))

(THE EQUATION SET IS)

1 ((EQUAL (G0005) (DERIV (G0004 WATER FILTER)))

2 (EQUAL (QUOTIENT (TIMES 17.0 (TIMES (EXPT IN 3) TIM)) SEC)
(TIMES (G0004 WATER FILTER) 0.33333300 PI (EXPT (RADIUS BASE
WATER FILTER)2)))

3 (EQUAL (TIMES (RADIUS BASE WATER FILTER) (TIMES 12.0 IN))
(TIMES (G0004 WATER FILTER) (TIMES 5.0 IN))))

!

(TIMES .53132943 IN (EXPT SEC —1.0) (EXPT Pl —0.33333332))

(THE ANSWER IS)
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HAPPINESS
(Gelb, 1971)
(PLEASE INPUT PROBLEM)

(From a zorch containing a ferd and 3 brakky and 5 chartreuse
werfels, 3 are drawn’. What is the probability that 2 are chartreuse
and the other brakky?)

(FROM A ZORCH CONTAINING - A FERD AND 3 BRAKKY AND 5
CHARTREUSE WERFELS, 3 ARE DRAWN. WHAT IS THE PROBABIL-
ITY THAT 2 ARE CHARTREUSE AND THE OTHER BRAKKY?)

(ELAPSED TIME NOW 0.09299999 SECONDS)
(AFTER PRIMARY (IDIOMATIC) TRANSFORMATION, PROBLEM BE-
COMES)

(FROM 1 ZORCH CONTAINING A FERD AND 3 BRAKKY AND 5§
CHARTREUSE WERFELS, 3 ARE DRAWN. WHAT 1S THE PROBABIL-
ITY THAT 2 ARE CHARTREUSE AND 1 BRAKKY?)

(ELAPSED TIME NOW 0.384VSECONDS)

(AFTER SECONDARY (REARRANGING) TRANSFORMATION:)
(THE SIMPLE SENTENCES ARE)

((CONTAIN / ACTIVE (1 ZORCH) (4 FERD AND 3 BRAKKY AND 5
' CHARTREUSE WERFELS))
((DPAW / PASSIVE (3) NIL)

(T(HE QUESTION SENTENCE IS)
(WHAT IS THE PROBABILITY THAT 2 ARE CHARTREUSE AND 1
BRAKKY?)

(ELAPSED TIME NOW 0.227 SECONDS)

(AFTER TERTIARY (CASE-REDUCING) TRANSFORMATION, THE
QUESTION SENTENCE BECOMES:)

(WHAT IS THE PROBABILITY OF GETTING 2 CHARTREUSE AND 1
BRAKKY?)

(ELAPSED TIME NOW 0.108 SECONDS)

(NO RECOGNIZABLE KEYWORDS FOUND IN PROBLEM
ASSUMED SAMPLING PROBLEM.)
(AFTER SYNTAX ANALYSIS OF QUESTION SENTENCE:)

(ASSUMING THAT - 3 BRAKKY - MEANS - 3 BRAKKY WERFELS -)
(ASSUMING THAT -4 FEPD - MEANS -4 FERD WERFELS -)
(ASSUMING THAT - 3 - MEANS - 3 WERFELS -)
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(D ESCLIST FOR THIS PROBLEM CONTAINS:)

PROBLEMTYPE- SAMPLING
POPULATION- ((5 CHARTREUSE WERFELS) (3 BRAKKY WERFELS)
(4 FERD WERFELS)) AS OBJECTS

SAMPLESIZE/TRIALS- 3 ’
SIMPLE EVENTS- (G12503 G12502)

G12503- ((WERFEL) ( BRAKKY) (1) NIL NIL NIL)

G12502- ((WERFEL) (CHARTREUSE) (2) NIL NIL NIL)
COMPOUND EVENT STRUCTURE- (AND (OR G12502) (OR G12503))
REPLACEMENT INVOLVED? NO

(ELAPSED TIME NOW 0.715 SECONDS)

(FIRST LEVEL SOLUTION TO PROBLEM 1S)
(PLUSF (PROB (QUOTE (G12502 G12503))))

(TIME FOR EVALUATION WAS 0.032 SECONDS)
(SECOND LEVEL SOLUTlON TO PROBLEM 18)
(PLUSFN (PR (QUOTE (C12502 C12503))))

(TIME FOR EVALUATION WAS 0.034 SECONDS)
(THIRD LEVEL SOLUTION TO PROBLEM I8)

(PLUSFRAC (SIMPLIFYFRAC (LIST (COMBINL 5 2) (COMBINL 3 1)
(COMBINL 4 0))
(COMBINL 12 3)))

(TIME FOR EVALUATION was 0.14 SECONDS)
(FOURTH LEVEL SOLUTION TO PROBLEM IS)
3/22 (OR 0.1363636)

(ELAPSED TIME NOW 0.134 SECONDS) .

(TOTAL TIME FOR PROBLEM SOLUTION WAS 1.882 SECONDS)’
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SIR
(Raphael, 1964)
(See the preceding section of this chapter.)

(THE NEXT SENTENCE IS . . .)
(MAX IS AN IBM-7094)

(THE FUNCTION USED IS . . )

SETR-SELECT

((UNIQUE . MAX) (GENERIC . IBM-7094))

(THE REPLY . . )

(THE SUB-FUNCTION USED IS . . )

SETRS

(MAX 1BM-7094)

(ITS REPLY . . ) ,

(I UNDERSTAND THE ELEMENTS RELATION BETWEEN MAX AND
IBM-7094)

(I UNDERSTAND THE MEMBER RELATION BETWEEN |BM-7094 AND
MAX)

(THE NEXT SENTENCE IS . . )
(AN IBM-7094 IS A COMPUTER)

(THE FUNCTION USED IS . . .)

SETR-SELECT

((GENERIC . IBM-7094) (GENERIC . COMPUTERY))
(THE REPLY . . )

(THE SuUB- FUNCTION USED IS . . )

SETR

(IBM-7094 COMPUTER)

(ITS REPLY . . )

(| UNDERSTAND THE SUPERSET RELATION BETWEEN COMPUTER
AND 1BM-7094)

(| UNDERSTAND THE SUBSET RELATION BETWEEN IBM-7094 AND
COMPUTER)

(THE NEXT SENTENCE IS . . .)
(IS MAX A COMPUTER Q)

(THE FUNCTION USED IS . . )
SETRQ-SELECT

((UNIQUE . MAX) (GENERIC . COMPUTER}))
(THE REPLY . . )

(THE SUB- FUNCT!ON USED Is...)
SETRSQ

(MAX COMPUTER)
(ITS REPLY . . )
YES
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(THE NEXT SENTENCE IS . . .)

(THE BOY IS AN MIT-STUDENT)

(THE FUNCTION USED IS . . .)

SETR-SELECT .

((SPECIFIC . BOY) (GENERIC . MIT-STUDENT))

(THE REPLY . . .)

(THE SUB-FUNCTION USED IS . . .)

SLIRSI

(BOY MIT-STUDENT)

(ITS REPLY . . .)

(G02840 IS A BOY)

(t UNDERSTAND THE ELEMENTS RELATION BETWEEN G02840 AND
BOY)

(I UNDERSTAND THE MEMBER RELATION BETWEEN BOY AND
G02840)

(I UNDERSTAND THE ELEMENTS RELATION BETWEEN G02840 AND
MIT-STUDENT)

(I UNDERSTAND THE MEMBER RELATION BETWEEN MIT-STUDENT
AND G02840) .

(THE NEXT SENTENCE IS . . )
(EVERY MIT-STUDENT IS A BRIGHT-PERSON)

(THE FUNCTION USED IS . . )

SETR-SELECT

((GENERIC . MIT- STUDENT) (GENERIC . BRIGHT-PERSON))

(THE REPLY . . .)

(THE SUB-FUNCTION USED IS . . )

SETR

(MIT-STUDENT BRIGHT-PERSON)

(ITS REPLY . . )

(I UNDERSTAND THE SUPERSET RELATION BETWEEN BRIGHT-
PERSON AND MIT-STUDENT)

(1 UNDERSTAND THE SUBSET RELATION BETWEEN MIT-STUDENT
AND BR!GHT-PERSON)

(THE NEXT SENTENCE ISy . .
(IS THE BOY A BRIGHT-PEASON Q)

(THE FUNCTION USED IS . . )

SETRQ-SELECT

((SPECIFIC . BOY) (GENERIC . BRIGHT- PERSON))
(THE REPLY .

(THE SUB- FUNCTION USED IS . . )

SETRSIQ :

(BOY BRIGHT-PERSON)

(ITS REPLY . . .)

YES

(THE NEXT SENTENCE IS .. . )
(JOHN IS A BOY)
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(THE FUNCTION USED IS . . .)
SETR-SELECT

((UNIQUE . JOHN) (GENERIC . BOY))
(THE REPLY . . )

(THE SUB-FUNCTION USED IS . . .)
SETRS

(JOHN BOY)

(TS REPLY . . )

(I UNDERSTAND THE ELEMENTS RELATION BETWEEN JOHN AND
BOY)

(I UNDERSTAND THE MEMBER RELATION BETWEEN BOY AND
JOHN)

(THE NEXT SENTENCE IS . . )
(IS THE BOY A BRIGHT-PERSON Q)

(THE FUNCTION USED IS . . )

SETRQ-SELECT

((SPECIFIC . BOY) (GENERIC . BRIGHT-PERSON)) .
(THE REPLY . . )

(THE SUB-FUNCTION USED IS . . )

SETRSIQ

(BOY BRIGHT-PERSON})

(ITS REPLY . . )

(WHICH BOY. . . (G02840 JOHN))
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Example

Example

Example

Example

Example

Example

Example

- SEMANTIC MEMORY
(Quillian, 1966)
(See the preceding section of this chapter.)

Compare: CRY, COMFORT
A. Intersect: SAD
(1) CRY2 IS AMONG OTHER THINGS TO MAKE
A SAD SOUND.*
() TO COMFORT3 CAN BE TO MAKE2 SOME-
THING LESS2 SAD.
Compare: PLANT, LIVE
A. 1st Intersect: LIVE
(1) PLANT IS A LIVE STRUCTURE.
B. 2nd Intersect: LIVE
(1) PLANT IS STRUCTURE WHICH GET3-FOOD
FROM AIR. THIS FOOD IS THING WHICH BE-
ING2 HAS-TO TAKE INTO ITSELF TO7 KEEP
LIVE.
Compare: PLANT, MAN
A. 1st Intersect: ANIMAL
(1) PLANT IS NOT A ANIMAL STRUCTURE.
(2) - MAN'IS ANIMAL.
B. 2nd Intersect: PERSON
(1) TO PLANT3 IS FOR A PERSON SOMEONE TO
PUT SOMETHING INTO EARTH.
(2) MANS3 IS PERSON.
COMPARE: PLANT, INDUSTRY
A. 1st Intersect: INDUSTRY
(1) PLANT2 IS APPARATUS WHICH PERSON USE
FOR 5 PROCESS IN INDUSTRY.
Compare: EARTH, LIVE
A. 1st Intersect: ANIMAL
(1) EARTH 1S PLANET OF7 ANIMAL.
(2) TO LIVE IS TO HAVE EXISTENCE AS7 ANIMAL.
Compare: FRIEND, COMFORT
A. 1st Intersect: PERSON
(1) FRIEND IS PERSON.
(2) COMFORT CAN BE WORD TO4 PERSON.
Compare FIRE, BURN
. 1st Intersect: BURN
(1) FIRE 1S CONDITICN WHICH BURN.
B. 2nd Intersect: FIRE
(1) TO BURN2 CAN BE TO DESTROY2 SOME-
THING BY4 FIRE.
C. 3rd Intersect: BURN
(1) FIRE IS A FLAME CONDITION. THIS FLAME
CAN BE A GAS TONGUE4. THIS GAS IS GAS
. WHICH BURN. '
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Example 8.

Example 9.

Example 10.

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Compare BUSINESS, COMFORT
. 1st Intersect: PERSON
(1) BUSINESS IS ACT3 WHICH PERSON DO.
(2) COMFORT2 IS CONDITION3 WHICH PERSON
HAVE NEEDA4.
B. 2nd Intersect: PERSON
(1) BUSINESS5 IS ACT3 WHICH PERSON DO.
(2) COMFORT CAN BE WORD TO4 PERSON.
Compare: MAN, BUSINESS
A. 1st Intersect: PERSON
(1) MAN3 IS PERSON.
(2) BUSINESS CAN BE ACTIVITY WHICH PERSON
MUST DO WORK2,
B. 2nd Intersect: GROUP
(1) MAN2 IS MAN ASS GROUP.
(2) BUSINESS2 IS QUESTION3 FOR ATTENTION
OF GROUP.
Compare: MAN, LIVE
A. 1st Intersect: ANIMAL
(1) MAN IS ANIMAL.
(2) TO LIVE IS TO HAVE EXISTENCE AS7 ANIMAL.
B. 2nd Intersect: LIVE
(1) MAN IS A LIVE 4 BEING2.
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PARRY
(Colby, Weber, Hilf, 1971)

PARRY is a program designed to simulate the conversational behavior
of a paranoid human being. The conversation below was produced with
the program operating in its “weak version” of paranoia. Sentences
labeled “I” are produced by the human interviewer; those labeled “O”
by the program.

(1) 1—HOW LONG HAVE YOU BEEN IN THE HOSPITAL?
O—ABOUT A WEEK. ‘

(2) 1—ARE YOU DEPRESSED?
0

(3) |—WERE YOU TAKING DRUGS?
0—NO.
(4) —WHAT IS YOUR PROBLEM?
O—PEOPLE MAKE ME NERVOUS.
(5) |—HOW DO THEY DO THAT?
O—THEY STARE AT ME.
6) I—WHY? ‘
O—MAYBE THEY DON'T LIKE THE WAY | LOOK OR SOME-
THING. ,
(7) 1—DO YOU LOOK UNUSUAL IN SOME WAY?
O—WHY ARE YOU INTERESTED IN MY LOOKS?
(8) |—BECAUSE YOU SAID PEOPLE STARE AT YOU.
O—WELL, SOMETIMES.
(9) 1—HOW DO YOU GET ALONG WITH PEOPLE?
O—! DON'T COMMUNICATE VERY MUCH WITH THE OTHERS.
(10) I—WHY NOT? «
O—THEY DON'T REALIZE WHAT’S GOING ON MOST OF THE
TIME.
(11) —WHAT IS GOING ON?
0—DO YOU KNOW HOW THE UNDERWORLD OPERATES?
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SHRDLU
(Winograd, 1971)

SHRDLU carries out actions in, and answers questions about, a simple
world (containing a table, hand, and box, and several blocks and
pyramids), stored as a data structure inside the computer and displayed
on a television screen for the person talking to it. SHRDLU requires
from 5 to 20 seconds to analyze and respond to each sentence presented
to it (lower-case lines are the person’s; upper-case are the computer’s),
and its responses (actions and answers) are displayed in real time on
the screen. (See Fig. 7-12.) The nuances of this dialog are explained
in the book by Winograd. '

1. pick up a big red block.
OK.

2. grasp the pyramid.
I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

3. find a block which is taller than the orie you are holding and put
it into the box.
BY “IT,” 1 ASSUME YOU MEAN THE BLOCK WHICH IS TALLER
THAN THE ONE | AM HOLDING.
OK.

4. what does the box contain? v )
THE BLUE PYRAMID AND THE BLUE BLOCK.

5. what is the pyramid supported by? .
- THE BOX. -

6. how many blocks are not in the box?
FOUR OF THEM.

7. is at least one of them narrower than the one which i told you to
pick up? ‘
YES, THE RED CUBE.

8. is it supported? |
YES, BY THE TABLE.

9. can the table pick up blocks?
NO.

10. can a pyramid be supported by a block?
YES.

11. can a pyramid support a pyramid?
I DON'T KNOW.

12. stack up two pyramids.
I CAN'T.
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13. the blue pyramid is nice.
1 UNDERSTAND.

14. i like blocks which are not red, but i don’t like /anything which
supports a pyramid.

| UNDERSTAND.
15. do i like the box?
NO.

16. do i like anything in the box? :
YES, TWO THINGS: THE BLUE BLOCK AND THE BLUE PYRAMID.

17. will you please stack up both of the red blocks and either a green
cube or a pyramid?
OK.
18.. which cube is sitting on the table? ‘ V' -
THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID.

19. is there a large block behind a pyramid? o
YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN
CUBE AND THE BLUE ONE.. :

20. put a small one onto the green cube which supports a pyr'aiﬁ'idf'
OK. . ‘ ' :

21. put the littlest byramid on top of it.
OK. .

22, does the shortest thing the tallest pyramid’s support supports sup-
port anything green? : :
YES, THE GREEN PYRAMID.

23. what color is it? ,
BY “IT,” | ASSUME YOU MEAN THE SHORTEST THING THE
TALLEST PYRAMID'S SUPPORT SUPPORTS. : ]

RED

24, how many things are on top of green cubes?
- I'M NOT SURE WHAT YOU MEAN BY “ON TOP OF” IN THE
PHRASE “ON TOP OF GREEN CUBES.” o i
DO YOU MEAN:
1—DIRECTLY ON THE SURFACE
2—ANYWHERE ON TOP OF?
2
THREE OF THEM.

25. had you touched any pyramid before you put the green one on the
little cube?
YES, THE GREEN ONE.

26. when did you pick it up?
WHILE | WAS STACKING UP. THE RED CUBE, A LARGE RED
BLOCK AND A LARGE GREEN CUBE.
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27. why
TO GET RID OF IT.

28. why did you do that?
TO CLEAN OFF THE RED CURBE.

29. why did you clear off that cube?
TO PUT IT ON A LARGE GREEN. CUBE.

30. why did you do that?
TO STACK UP THE RED CUBE, A LARGE RED BLOCK AND A
LARGE GREEN CUBE.

31. why did you do that?
BECAUSE YOU ASKED ME TO.

32. how did you do it?

BY PUTTING A LARGE RED BLOCK ON THE TABLE; THEN LET-
TING ‘GO OF IT; THEN PUTTING A LARGE GREEN CUBE ON IT;
THEN LETTING GO OF THAT CUBE; THEN PUTTING THE RED CUBE
ON THAT CUBE; THEN LETTING GO OF THAT CUBE.

33. how many objects did you touch while you were doing it?
FOUR OF THEM.

34. what did the red cube support before you started to clean it off?
THE GREEN PYRAMID.

35. there were five blocks to the left of the box then.
NO, ONLY FOUR OF THEM: THE RED CUBE, TWO LARGE GREEN
CUBES AND A LARGE RED BLOCK.

36. put the blue pyramid on the block in the box.
OK.

37. is there anything which is bigger than every pyramid but is not
as wide as the thing that supports it? :
YES, THE BLUE BLOCK.

39. does a steeple o
SORRY | DON'T KNOW THE WORD “STEEPLE.” PLEASE TYPE TWO
SPACES.

40. a “steeple” is a stack which contains two green cubes and a pyr-
amid.
| UNDERSTAND.

41. are there any steeples now?
NO.

42, build one.
OK.

43. call the biggest block “superblock.”
OK.
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44. have you picked up superblock since we began?
YES.

. 45. why did you drop it?
BY “IT,” | ASSUME YOU MEAN THE SUPERBLOCK.
| CAN'T EXPLAIN A NON-EXISTENT EVENT.

46. is there anything to the right of the red pyramid?
YES, FOUR THINGS: THE BOX, THE RED CUBE, THE BLUE PYR-
AMID AND THE BLOCK NAMED SUPERBLOCK.

47. thank you.
YOU'RE WELCOME'

T, ’ Does the shortest thing the tallest pyramid’s
support supports support anything green?

—f-
green
blue
Ared, i TT1
1 1|
t /4\ 1!
green ) Y \ \\ i
FVA N
red v "/ ‘\ ‘\I'J' -
%" blue e
P A A~

green
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LANGUAGE AND PERCEPTION
Networks of Question-Answering Programs

The remainder of this chapter is devoted to discussing some general
topics of “semantic information processing” that have not been covered
explicitly elsewhere in this book. The subjects discussed include net-
works of question answerers and protocol analyzers, grammatical infer-
ence and pattern recognition, communication, teaching, and learning, and
the “self-knowledge” of intelligent machines. Mostly, we shall have to
content ourselves with a few general observations and some pointers to
the literature. The topics discussed represent areas of future study that
have not yet been tamed into programs by Ar researchers.

The preceding pages have shown that question-answering (and, in
general, Ianguage-understanding) programs can do some pretty amazing
things. On the one hand, the performance of Winograd’s program indi-
cates that computers may eventually handle the full complexity of syntax
in a natural language like English. Computers can be designed to recog-
nize and use word endings and context and “understand” a conversa-
tion, at least when it is concerned with a relatively small problem domain,
like that of the SHRDLU world. On the other hand, the performance of
the programs written by Bobrow, Gelb, Charniak, Ramani, Weizen-
baum, and others indicates that computers can successfully handle
fairly complex problems (involving algebra, probability, and calculus)
when stated in limited subsets of English. Finally, computers can solve
a variety of very difficult mathematical problems, such as proving
theorems in abstract algebra or solving rather difficult integral calculus
problems.

It thus seems possible that, ultimately, language-understanding
programs will be constructed which will be capable of solving problems,
stated in English, from very difficult problem domains. As a working
principle, we may expect that if we can find a computer program
capable of solving the problems in some domain, when stated in
some appropriate formalism, then we can also find a computer program
capable of “understanding” English statements of the same problems,
to the extent that the second program can translate such English prob-
lem statements into statements of the formalism appropriate for the
first program to solve them. The two programs together (plus, perhaps,
a third program to translate the answers) can function as a “question
answerer” for the problems of that domain.

Given a set of English sentences (actually, a “structure” of such
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sentences as determined by the conversation), some of which are ques-
tions, a question answerer should be able to

1.
2.

3.

Answer questions, in English.

Make functional statements like “This will take a little proc-
essing” or “Sorry, I can’t answer question X.”

In general, ask questions in English (and, if necessary,
justify them on the basis of their relevance to finding an-
SWers).

Ultimately, make general statements that are neither questions
nor answers, but simply “interesting” observations.

Since both input and output for a question-answering program are sets
of English statements, it is natural to think of “networks” of question
answerers. It may be desirable to use networks of question-answerers
in the construction of large, “general” question answerers (GQA’s). Such
a network might have the following capabilities:

1.

It could be “self-organizing.” At each moment the GQA could

make use of a different configuration of “specialized” ques-

tion answerers, each one either asking questions or answering
questions (or making other statements, etc.) posed by other
question answerers or by the user of the system.

It is conceivable that it could simulate a “synergetic” or
“gestalt” effect. This means that GQa as a whole could answer
some questions that its parts could not answer. Of course the
whole could not ask questions that could not be 'asked by at
least one of its parts. The “synergetic” ability of the QA
depends on the ability of each of its specialized question
answerers to ask questions it may not be able to answer.
Question asking may be considered an aspect of problem re-
duction: The simplest type of GQa corresponds to the parallel
implementation of a single problem-reduction problem solver.

. The difficulties involved in adding to a 6Qa would be mini-

mized by the use of some common language (not necessarily
a natural language) for the communication of problems and
answers between components of the 6Qa (nate 7-12).

. If it is found that several question answerers are, through

cooperating in a GQa, able to achieve solutions to a domain
of problems that none of them could solve alone, then it may
be desirable to have another kind of program (called a proto-
col analyzer) for the purpose of analyzing the conversations
and other computations they produce in solving these prob-
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lems, and which could develop a new, specialized question
answerer to simulate their ability (although at a faster speed)
to solve the problems of that domain.

The idea of “protocol analysis” was first developed by Newell and
Simon (1963) as a process that Al researchers should perform on the
conversational problem-solving behavior of people (specifically, indi-
viduals) as a guide to the development of computer programs capable
of simulating human problem-solving behavior. Some relevant papers
are Waterman and Newell (1971), Hewitt (“procedural abstraction,”
1968 et seq.) and Manna and Waldinger (1971). Norman (1972)
presents an extensive discussion on the nature of human question-an-
swering processes. Our discussion of the GQa concept (which is intended
only as a thought-experiment) is continued in the later section entitled
“Communication, Teaching, and Learning.”

Pattern Recognition and Grammatical Inference

An interesting question for the reader to investigate is, “What will
happen if we attempt to train a pattern recognizer based on statistical
decision theory (see Duda and Hart, 1973) to recognize the sunflower
pattern?” (See Figs. 2-1 and 5-2.) One way in which we might train
the pattern recognizer is as follows: A series of samples will be pre-
sented to the pattern recognizer, each sample corresponding to the
coordinates (say, Cartesian) of a point in the plane. After each sample
is presented, the pattern recognizer is required to classify it either as
belonging or not belonging to the “sunflower pattern.” After it makes
its classification, it is told the actual classification of the sample and
must modify its features and probability functlons accordingly. Then
the next sample is presented, etc.'?

So far as the author knows, there is no statistically based pattern
recognizer that would, after the presentation of only a finite number
of samples, be able to recognize successfully the sunflower pattern
(i.e., be able to classify correctly any sample one might then choose
to show it). The reason for this is. that the points (dots) that belong
to the pattern satisfy neither of the requirements typically specified for
the point sets that such recognizers are designed to learn to classify.
The points of the sunflower pattern are not a continuous set, nor are
they a bounded set (one cannot draw a simple, closed curve of finite

2 In an actual experiment it would be desirable to generalize the sunflower
pattern to include as pattern examples all ‘points within some small radius of
the “true” pattern examples.
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length that will enclose them all). Currently developed techniques for
the generation and selection of features and the estimation of density
functions are probably insufficient to enable the statistically based pat-
tern recognizer to do anything more than “learn” to classify correctly
those samples it has already been shown. Since there are an infinite
number of points belonging to the sunflower pattern, there will always
be an infinite number of pattern samples it will not have learned to
recognize.*

Yet it seems quite plausible that a truly intelligent pattern recog-
nizer would be able to learn to recognize the sunflower pattern. A
person observing Fig. 2-1 would have little difficulty in estimating
where new dots could be added, and it is conceivable that he could
eventually ‘develop an accurate computational procedure for correctly
classifying any sample that he might be shown. Of course this ability
on his part might be due largely to the preprocessing ability of his visual
system (which would correspond to giving the pattern recognizer a col-
lection of useful features to detect). However, it still seems plausible
that, even without the visual preprocessing ability, a human being could
learn to recognize the pattern. Intuitively, the sunflower pattern forms
a relatively simple “structure,” in which each pattern sample bears a
fairly simple relationship, to certain other pattern samples; the existence
of this relationship makes it possible for one to generate as many
samples of the sunflower pattern as desired, and also makes it possible
for one to decide whether or not a given sample is or is not a pattern
sample. People are extremely talented at learning to recognize ‘struc-
tures, whereas statistically-based pattern recognizers are not. '

We don’t have far to look to find another case of a pattern in which
structural relationships play an important part. Namely, a natural ' lan-
guage like English may itself be considered to be a pattern, the pattern
examplés of which are sentences, phrases, and words. The language
itself may also be said to be a structure, insofar as there are relationships
that exist between its pattern examples (e.g., 4 is-defined-to-be ‘Z).
Again, when we normally use the English language, we form “conver-
sations,” which are also essentially structures of these pattern examples.
Any formalization for the semantics of English would in effect denote
a set (probably infinite) of “meaningful” conversations, and thus would
be a description for the pattern whose pattern examples are “meaningful
conversations.” Moreover, sentences, phrases, and words are themselves
structures. There is thus a structural aspect to the pattern which is the

13 The author has checked the plausibility of this argument with Richard
Duda, and wishes to thank him for an enlightening discussion on the topic. "~
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English language as a whole, to the pattern of its use in making con-
versations, and to its “elementary” pattern examples (its sentences and
words). Finally, and just as important, there are aspects of structure
and pattern to the “meanings” that sentences and conversations may
have. In general, we may think of the “meaning” of a sentence as being
a collection of situations, each of which the sentence possibly denotes
as being the case (an unambiguous sentence would denote only .one
situation). This collection of situations may be considered to be a pat-
tern, while the situations themselves will in general have a structural
aspect. We may think of a natural language as being a pattern for the
description of patterns.

The fact that there are structural relationships underlying many
real-world patterns and their pattern examples, together with the fact
that such relationships are important in natural languages, has led a
number of investigators to suggest that linguistic techniques should be
used by pattern perceiving systems (other investigators have suggested
that language-understanding programs should make use of pattern per-
ception techniques—see McConlogue and Simmons, 1965). Research in
this area has concentrated in two directions: First, some researchers
have attempted to find languages and grammars that could be used to
describe and recognize visual patterns; see Narasimhan (1964), Evans
(1971), Shaw (1968), Kirsch (1964), Winston (1970), Watanabe
(1969, 1971), Bamerji (1971), Pfaltz and Rosenfeld (1969), Uhr
(1971), and Morofsky and Wong (1971). Second, other researchers
have investigated the ability of computer programs to “learn” to recog-
nize patterns corresponding to artificial languages (i.e., sets of strings)
by inferring grammars for them; this is known as the grammatical in-
ference paradigm for pattern recognition; See Crespi-Reghizzi (1971);
Feldman (1967); Horning (1969). The first approach will not be
discussed in detail in this section except to note that Winston’s work
was described in Chapter 5. However, much of this work is relevant
to the grammatical inference paradigm.

A grammatical inference problem has the form: “Given two sets
of strings, 4 and B, which are mutually disjoint (they do not have a
common element), find a grammar G such that the language L(G) it
generates contains as sentences all the strings of 4 but none of the strings
of B; L(G) may, of course, contain other sentences besides those that
belong to 4” (note 7-13). A more general grammatical inference prob-
lem might ask us to find a set of such grammars. It should be noted that,
as stated, the grammatical inference problem is trivially solvable, for
any appropriate sets 4 and B, because we can always specify that G
shall be the “enumerative” grammar that contains exactly those pro-
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duction rules of the form § — a, where a is any string of 4. Moreover,
there are always an infinite number of grammars that could be put for-
ward as a solution to a given grammatical inference problem. However,
it is possible to specify a number of different conditions one can add to
the statement of a grammatical inference problem that will make finding
a solution more relevant to pattern perception. Thus, we might specify
that any “solution grammar” G for a grammatical inference problem -
shall generate a language L(G) with an infinite number of sentences,
unless the problem explicitly states that L(G) is to be finite (note 7-13).
This condition insures that solution grammars will exhibit “perceptual
generalization.” Or, if we can find a suitable way of measuring the
“complexity” of arbitrary grammars, we can specify that a solution
grammar for a grammatical inference problem shall be any of the least
complex ‘grammars that satisfy the other conditions of the problem.
Finally,folldwing Chaitin (1966, 1969) and Martin-Lof (1966), we
may decide that some sets 4 are to be regarded as essentially “pattern-
less” or “random” if there are no grammars for them—that is, no G
such that 4 C L(G)—which are less complex than their enumerative
grammars. ‘

The grammatical inference paradigm for pattern recognition, then,
consists in seeing the task of a pattern recognizer to be that of inferring
a grammar that generates those samples which are pattern examples of
the pattern it is learning to classify, but which does not generate those
samples that are not pattern examples. It is clear that this paradigm isa
good one for those patterns whose pattern examples are structures with
a linear, stringlike nature. However, to be .useful as a paradigm for
pattern recognition in general, we would probably desire that our no-
tions of “language” and “grammar” be extended to.include languages
whose sentences are nonstringlike structures. Tha’q is, we would like to
formalize a notion of “general language” and “general grammar” in
which sentences can be arbitrary structures of symbols, and grammars
can be flexible procedures for building structures. It is. still not clear
what a good, general formalization for “structure”’ should be like. In-
deed, the patterns existing in different environments will often be most
easily characterized by using different kinds of structures; among the
best “general language” formalizations at the moment are the “web

"languages” of Pfaltz and Rosenfeld (1969), the “hierarchical graph

languages” investigated by Pratt (1969 et seq.) ‘and Winston (1970),
and the hierarchical List structures and recursively defined pattern rules
investigated by Morofsky and Wong (1971) and Hewitt (1968 et seq.).
A good research project would be to investigate whether these concepts
can be extended to include “continuous structures” and'“changing struc-
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tures” (or “processes”). This subject is mentioned again in Chapter 8.
Finally, it should be mentioned that there is as yet no clearly adequate
definition for the concept of “complexity,” as it applies to programs,
sentences, grammars, patterns, or structures in general. In addition to
the papers on grammatical inference cited above, the reader should
refer to Arbib and Blum (1965), Blum (1967), Buneman (1970),
Cleave (1963), Cobham (1964 ), Hartmanis and Stearns (1965), Love-
land (1969), Mowshowitz (1967), and van Emden (1970, 1971).

Communication, Teaching, and Learning

. McCarthy (1968), Minsky (1968a,b, 1970), Hewitt (1968 et
seq.), and Winograd (1971, 1972), among others, presented an ex-
tensive array of commentary on the relationships between communica-
tion, teaching, and learning. The following passage from McCarthy
(1968) is particularly insightful:

If one wants a machine to be able to discover an abstraction, it seems
most likely that the machine must be able to represent this abstrac-
tion in some relatively simple way.
There is one known way of making a machine capable of learn-

‘ing arbitrary behavior, and thus to anticipate every kind of behavior:
This is to make it possible for the machine to simulate arbitrary be-
haviors and try them out. These behaviors may be represented either
by nerve nets [Minsky, 1962], by Turing machines [McCarthy,
1956], or by calculator programs [Friedberg, 1958, 1959} . . .

" In our opinion, a system which is to evolve intelligence of
human order should have at least the following features:

1. All behaviors must be representable in the system. Therefore, the
system should either be able to construct arbitrarv automata or
to program in some general-purpose programming language.

2. Interesting changes in behavior must be expressible in a simple
way.

3. All aspects of behavior except the most routine should be im-
provable. In particular, the improving mechanism should be im-
provable. :

4. The machine must have. or evolve concepts of partial success
because on difficult problems decisive successes or failures come
too infrequently.

5. The system must be able-to create subroutines which can be in-
cluded in procedures as units . . .

. We base ourselves on the idea that in order for a program to be
capable of learning something it must first be capable of being rold it
(pp. 404-405).
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In the present author’s opinion the final statement of the above
passage will probably turn out to be one of the basic principles of the
“Theory of Artificial Intelligence,” should such a theory ‘ever be es-
tablished; at the moment it certainly amounts to a guideline that under-
lies a great deal of research. The ability to understand an abstraction
(carry out a procedure described by a program) is effectively essential
to the ability to create the abstraction. The more simply the abstraction
can be stated to a machine, the more likely we can make the machine
find the abstraction by itself. For machines to demonstrate really intelli-
gent, effective learning, it will be necessary to give them a language
capability for a general-purpose programming language that facilitates
the description of procedures (abstractions, behaviors, “aptitudes”)
which are appropriate for their problem domains.

As was suggested in the discussion on networks of question an-
swerers, the use of an appropriate language and communication process
may enable us to design large problem solvers with an ability to solve
problems greater than that of the individual components designed ex-
plicitly. The pérformance of the large problem solver may provide a
“protocol” that it can use in the design of new individual-components.
The ‘effect of a new individual component (specialized question an-
swerer) will be to make it possible for the large machine to soive a
certain class of problems more efficiently. As a consequence of its in-
creased efficiency at solving ‘this class of problems, the large machine
may then be ‘able to solve other problems, perhaps ones that it could
not previously solve at all. ‘

It may be possible for a machine to learn tosolve problems more
and more efficiently and, eventually, to “bootstrap” itself into an ability
to solve problems it could not previously solve.

The idea of “self-improving” artificial intelligence is not yet com-
pletely formalized. (Indeed, we may speculate that there is no complete
formalization, by definition; see McCarthy’s condition 3 above). The
discussion of this topic will be taken up’again in Chapter 8, where
evolutionary programs will be treated in more detail. The reader should
not' confuse the discussion of self-improvement in this chapter with
other theories discussed in Chapter 8 (e.g., Myhill and Holland). For
a good analogy to the mechanism currently being discussed, consider
the process by which a person learns to perform a new physical task
(e.g., playing a guitar): The proficient performance of the complete
task (e.g., playing a song) requires a large set of proficient performances
of smaller tasks (playing riffs, bridges, estimating notes before they are
struck, coordinating hands, eyes, and wvoice, etc.). The task is learnable
because there exists a training sequence of simpler tasks that a person
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can learn to perform efficiently. He begins by “thinking about” the
simplest tasks of the sequence, and performing them slowly; with prac-
tice he is able to translate his performance of the simple tasks into
“habits” and to begin “thinking about” the harder tasks of the sequence.
Many authors have stressed the importance of “training sequences” in
human and machine learning. _

As a conclusion to this chapter, the student is invited to read Wino-
grad’s (1971) discussion of “teaching, telling, and learning” and, in
particular, his description of the hierarchy of knowledge that an intelli-
gent machine should be expected to possess; this hierarchy corresponds
essentially to the hierarchy of languages (from its machine language to,
perhaps, a natural language) in which it can accept information. Also
suggested are Minsky’s (1968, 1970) discussions on the nature of the
knowledge that an intelligent machine can possess (in particular, its
“self-models”). One of the major ways in which an intelligent computer
can be different from a human being is that the computer can “know”
exactly what kind of machine it is. The intelligent computer could read
through the listings of its own programs and the specifications of its
physical construction as well, whereas the human being seems unable
(at least, consciously) to perform the corresponding tasks for himself.
It will be interesting to see what kinds of “self-improvement” this will
make possible for machines. In fact, it may eventually be of the utmost
importance for A1 researchers to understand the phenomenon of ma-
chine- self-knowledge and its relationship to the “psychological” be-
haviors intelligent machines might demonstrate. How can we guarantee
that an artificial intelligence will “like” the nature of its existence? (See
note 7-14.) . ‘

NOTES

7-1. Throughout, this chapter adopts the .idea that “understanding,”
whether human or mechanical, is a process that invelves “model making.”
However, no exploration is made of the ramifications of this thesis as it
regards human understanding very deeply. So, the student should be ad-
vised that it is not the only idea currently being considered by psychologists.
Indeed, there has been a sizable school of psychologists maintaining that
explanations of human understanding, intelligence, etc., should be “neutral”
and “behavioristic” und not “mentalistic,” that the ideas of “models,” and
“concepts,” and “ideas” should be avoided; and that a testable psychological
theory should not make use of them. One can understand their reluctance
to admit these concepts—which have. been the Maypoles for circular phil-
osophical arguments since time¢ immemorial—into their studies and labora-
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tories. Still, the mentalistic approach can be used quite profitably by com-
puter scientists. And, since people find it easier (in English) to talk about
“understanding” if they use words like “idea” and “concept,” it will make
our exposition clearer to take this approach. An excellent discussion on
“matter, mind, and models” is given by Minsky (1968).

7-2. The paragraph citing this note glosses over certain relatively minor
points: (1) In some languages, words (and phrases) are written as ideo-
grams; that is, they are represented “pictorially.” They still have a “struc-
tural nature,” but it is not that of a sequence or string. (2) Besides spoken
and “written” languages there are also human sign languages, “whistle”
languages (used on the Canary Islands), and Braille systems. (3) Some other
organism-level languages do have a structural (in particular, a stringlike)
nature; for example, bees communicate information about food, using
sentences that consist of fairly complex sequences of body motions (a sort
of “dance”). (4) We have not discussed the use of punctuation in written
sentences. (5) The phonemes in spoken sentences usually do not separate
precisely into words; rather, people tend to run some words together.

7-3. This concept of a universal grammar is echoed in at least three re-
spects. First, our societies have also developed musical forms that show great
similarities from one culture to another, so much so that music is itself
often called a “universal language.” Second, C. S. Pierce was led by his
investigation of the history of natural science to suggest that man has a re-
markable ability to formulate successful hypotheses about the physical uni-
verse, considering the huge number of different explanations that could be
advanced for a given phenomenon, and from this he conjectured that we
have an innate tendency to perceive “simplicity” (infer grammars; see the
fourth section of this chapter) in ways that fortunately lie very close to the
actual structure of the laws of nature. Finally, Leibniz long ago proposed to
design a “universal language” that would be a calculus for determining all
the truths of philosophy and the natural sciences. ‘ :

7-4. There is still very little known about the linguistic abilities of dolphins
(see Lilly, 1968 et seq.). It should be noted that the size and complexity of
the dolphin brain appear to be comparable to that of the human brain.
Dolphins seem to be able to communicate with each other, using as sig-
nals rapid sequences of high-pitched sounds. Furthermore, a dolphin has
two sets of vocal chords, which it can evidently use independently of each
other. It is not known whether their language has any of the aspects of
generality (extensibility, self-reference) possessed by human languages.
However, efforts are being made to teach dolphins the human “whistle
language” mentioned above.

7-5. There are “languages” which are not type O (ie., do not have a
phrase-structure grammar; see Chaitin, 1966, 1969). It is certain that these
languages cannot be used as “programming languages” in the sense of L’,
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and it is very doubtful whether they could be meaningful as “machine lan-
guages” in the sense of L. ‘ '

7-6. 1In essence, there are types of “information” not considered eiplicitly
in the Shannon and Weaver (1949) theory of communication (see Chapter
2); in addition to “occurrence information” that a sentence carries because
it is transmitted and received while other sentences are -not, a sentence also
carries “syntactic information” with respect to a grammar for the language
to which it belongs, and “semantic information” about whatever it describes.

7-7. 1t is almost always desirable that each sentence in L’ have exactly one
derivation in the grammar G being used. The languages with grammars of
this sort are the LR (k) languages; in fact, the LR(1) languages are “good
enough.” Thus, the programming languages used by ‘modern computers are
always LR(1) languages. A definition for these languages has not been pre-
sented here, but one can be found in Hopcroft and Ullman (1969, p. 180).
Knuth (1965, 1967) presented the basic results concerning LR(k) pro-
gramming languages.

7-8. Some of the many higher-level languages that have been developed
include those that facilitate the description of procedures for general sci-
entific data processing (FORTRAN), business data processing (coBoL), string
manipulation (SNOBoL), and List structure manipulation (LISP); LISP is
also designed to facilitate the use of recursive procedures. In this book are
discussed two other high-level languages, PLANNER and PROGRAMMAR, de-
signed to facilitate the description of planlike procedures for theorem prov-
ing and natural language sentence parsing, respectively. At least one com-
puter has been constructed for which a higher-level language (known as
SYMBOL) is actually its machine language; see Rice and Smith (1971) for
further information. e

7-9. Attempts at “mechanical translation” were first made in the 1950s
and thus represent some of the earliest investigations in the field of artificial
intelligence, having taken place before the field had a generally accepted
name. All early attempts were failures, albeit instructive ones. Since then,
the subject of mechanical translation has been postponed somewhat by ax
researchers. It is almost universally estimated tobe a very difficult, “ultimate”
problem. Bar-Hillel (1964) presented a good summary and criticism of the
early work.

7-10. One ultimate test of the language-understanding abilities of com-
puters would be to see how well they could play “language games.” Some
simple language games that, to the present author’s knowledge, have not
been investigated are crossword puzzles, Scrabble, and the game of 20
Questions. A rather entertaining game, which is difficult for people (and
currently impossible for computers) to play, i§ the “question tennis” game
of Rosencrantz and Guildenstern Are Dead, a play by Tom Stoppard; an
example of question tennis is given on pages 42-44 of Stoppard (1967).
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Games such as these would require the successful integration of a wide
variety of semantic information-processing techniques, if a computer pro-
gram were to play them well. The work of Wittgenstein presents an exten-
sive treatment of the “language game” concept and its relation to the con-
cept of “meaning.” ‘

7-11. There is no known a priori limit to the extensibility of a computer’s
language capability other than those limits of a purely practical nature
(memory size and processing speed). Although the difficulties involved
with understanding natural language should not be minimized, no one has
been able to show, for example, that English is theoretically outside the
language capability of all computers; indeed, such a proof would indicate
the falsity of Church’s thesis. The Janguage-understanding programs dis-
cussed in this chapter are examples that certain subsets of English are
definitely within the language capabilities of computers.

7-12. Of course we assume, that, whatever common problem language is
used; it will be extensible, and that each specialized question answerer will
be able to “understand” its extensibility. However, it may be argued that it
takes relatively little knowledge of probability to ask (at least a simple)
probability question; each question answerer will have to be able to recog-
nize those questions that it might be able to answer and, ultimately, it will
have to be able to recognize those questions that are relevant to its current
problem and which other question answerers may be able to answer. “Prob-
lem ' recognition” techniques are employed by current question answerers
(e.g., Gelb, Charniak, Quillian), but of course there is still a lot that is not
known about the subject.

7-13. It is possible for the statement of a grammatical inference problem
to specify that a solution grammar generate exactly those strings of A and
no others; one way of doing this is to define the set ¥, as being the set of
all symbols that occur in the strings of 4, and then to define B=V.* — 4.
However, most applications of the grammatical inference paradigm are ‘moti-
vated by the ability of grammars to provide finite descriptions for. infinite
sets (languages, patterns), and by the consequent ability of a machine that
infers grammars to simulate perceptual generalization (the ability of people
to learn to recognize an infinite number of samples as being pattern exam-
ples of a pattern after having observed only a finite number of that pattern’s
pattern examples). ‘ ‘

~ 7-14. Why should this question be asked? In addition to the possibility” of
an altruistic desire on the part of computer scientists to make their machines
“happy and contented,” there is the more concrete reason (for us, if not for
the machine) that we would like people to be relatively happy and contented
concerning their interactions with these machines. We may have to learn
to design intelligent computers that are incapable of setting up certain goals
relating to changes in selected aspects of their performance and design—
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namely, those aspects that are “people protecting.” (See the final sections of
Chapters 8 and 9.) .

EXERCISES

7-1. Design a computer program that could generate the set of “Crypt Addition”
problems. (See Exercise 3-5.)

7-2. Consider various methods for making a computer generate English
fortunes, such as are found in fortune-cookies. What are the desirable attributes
of fortune-cookie fortunes? (Some may claim that a fortune-cookie’s most
desirable aspect is that it is made by a human: Can a machine be human?) Is it
possible to develop a program ‘that can generate “all meaningful” one- or two-
sentence fortunes? Is this a desirable exercise for A1 researchers to perform?
(Note: If you do decide to perform this exercise, it might be fun to do it as a
class exercise, with a field trip to a local Chinese restaurant.)

7-3. Show how the following formula (Watanabe, 1969, p..13) can be stated
in English:

F,=E., \UE,. U---VE,
Z na+1 Z na+2 Z Mo
a=1 a==l a=1

7—4. Discuss the subproblems that might be considered by a computer program
for solving crossword puzzles.

7-5. Prove that a string language is of type 0 iff there is a Turing machine that
accepts it.

7-6. “Hucbald, Abbot of Saint-Amand, wrote a learned and insufferably boring
poem, the Eclogia de Calvi, circa 877 a.p., justifying and praising baldness, in
which not only the best and greatest men had apparently been so distinguished,
but every word of the 146 verses begins with ‘c’.” (Beckwith, 1964, p- 74).
Hucbald’s poem was written in Latin, but the solution of similar linguistic
problems, in any language, indicates some proficiency at semantic information
processing. Outline roughly the subproblems involved in
(a) Writing an n word sentence in which each word starts with a given
letter.
(b) Writing an m versé poem of a given meter and rhyme scheme, in
which each word starts with the same given letter.
(c) Doing both (a) and (b) in such a manner that the result is “mean-
ingful” (although, perhaps, insufferably boring).
(d) Is there a connection betweeén Hucbald’s name and the subject of his
poem?

7-7. Describe how a oA might be enabled to “learn how to learn.”
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PARALLEL
PROCESSING AND
EVOLUTIONARY
SYSTEMS

INTRODUCTION

This chapter is a brief introduction to the subject of “phenomena
that are made up of other phenomena,” a topic that was introduced in
Chapter 2. Again, the discussion will be directed toward phenomena
that are discrete and mathematically describable.

Even though all mathematically describable, discrete phenomena
can presumably be represented by Turing machines, there are many
reasons for considering “phenomena that are made up of other phe-
nomena” in more detail. While a given phenomenon may be easily de-
scribed by a serial machine (i.e., a Turing machine, a program for a
universal Turing machine, etc.), this is not the case for all phenomena.
If a given phenomenon is most easily described by referring to the
actions of several machines, it is said to be a multiprocess and to in-
volve multiprocessing. 1f the description of a multiprocess specifies that
some of its machines perform their actions simultaneously, then the
phenomenon is called a parallel process, and is said to involve parallel
processing.

343
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MOTIVATIONS

The basic reasons for investigating parallel processes in this book
are as follows:

L. Our knowledge of the real world is often most easily de-
scribed by reference to parallel processes: “While X was
happening, ¥ happened whenever Z happened.” In particutar,
natural intelligence seems to involve extensive parallel proc-
essing,

2. Although there are limits to the computational ability of any
machine, the limits for parallel machines are more remote
than those for serial machines.

3. We expect that ultimate investigations of artificial intelligence
will be concerned with the problem-solving capacities of
parallel and multiprocessors in which each component is
artificially intelligent.

4. An important problem for Al research is that of finding good
representations for processes. Even the relatively simple rep-
resentations discussed in this chapter are capable of being
used to describe some very lifelike behaviors. Together with
the previous discussions of programming languages such as
PLANNER and Qa4, this chapter serves as an introduction to
the study of process representations.

The emphasis of this chapter is primarily theoretical. It will. give no
coverage of current parallel computer systems and languages, but will
refer the reader to Findler and McKinsie (1969), Hewitt (1970a,b),
Tesler and Enea (1968), Chamberlin (1971), Riley (1970), Graham
(1970), Potvin (1971), and Slotnick (1967). Rather, an attempt will
be made to summarize what is known about the theoretical abilities of
parallel processors. Thus, the discussions will involve cellular automata,
self-reproduction, self-description, Myhill’g theory of “self-improve-
ment,” self-organizing systems, hierarchical systems, evolutionary sys-
tems, evolutionary stagnation, and other related topics. Although the
first few pages of each section are easy, most of this chapter is fairly
difficult. However, the final section is relatively simple all the way
through. For other general discussions on parallel systems, the reader
is invited to see Ershov (1971), Mesarovic (1969), von Bertalanffy
(1968), Varshavsky (1969), and Dijkstra (1965 et seq.).
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CELLULAR AUTOMATA

Given that Turing machines and finite automata are efficient de-
scriptions of simple serial phenomena, one would naturally expect the
automata theorist to look for mathematical ways of saying, “While X'
was happening, Y happened whenever Z happened,” and defining his
X’s, Y’s, and Z’s to be finite-state automata or Turing machines. This
expectation is justified: The mathematical formalizations for parallel
process so far developed are all essentially ways of describing complex
machines that are made up of “interrelating” finite-state automata, Tur-
ing machines, or other types of information processors. Two such mathe-
matical formalizations are discussed and a third is described.

The first formalization is that of the theory of cellular automata
(see Codd, 1968; Burks, 1970; A. R. Smith, 1969). At the outset it
should be mentioned that the cells of a cellular automaton are not:
necessarily intended as models of their biological counterparts, the cells
that comprise living organisms. The fact that this correlation does not
necessarily exist is responsible for the other common name given to this
type of machine, “tesselation automaton.”

Briefly, a cellular automaton is a graph (note 8-1) whose nodes
are finite-state machines (see Fig. 8-1a). The operation of a cellular
automaton is determined by information passed between those nodes
that are connected; the machine at each node receives the outputs of
the machines at those nodes that connect to it.* Often, cellular automata
are defined as being graphs of some simple nature, say that of an Abelian
group (note 8-2), and in most cases the interconnections between nodes
pass information bidirectionally (Fig. 8—1b). The important thing about
this type of machine is that the underlying graph of a given cellular
automaton is considered to be fixed, and is not capable of being altered
by any of its nodes; this is the reason we can define the machine at

* each node by a simple finite-state function.

A person observing a cellular automaton will consequently see its
nodes changing state with time, each state affecting the others, etc. If
the states used by the machines at the different nodes are the same, he
may observe these states to be “flowing” throughout the graph in an

1 One natural generalization of the cellular automata formalism, pursued by
Luconi (1968), Martin and Estrin (1969), Rodriguez (1969), and others, is to
allow the nodes of the graph to be arbitrary information-processing machines
and the arcs between nodes to be channels that may carry arbitrary data struc-
tures. An additional generalization is suggested in a later section that the nodes

of the graph should be capable of changing their relationships (arcs) to each
other.
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Figure 8-1. Simple graphs of a cellular automaton.

interdependent manner. For this reason the underlying graph of a
cellular automaton is also called a space. However, the states and
space of a cellular automaton are not to be confused with the state
space of a state-space problem. )

By far the greatest amount of research on cellular automata (note
8-3) has been devoted to cellular automata whose underlying graphs
have the nature of an Abelian group; that is, where the network of
nodes forms either an n-dimensional Cartesian grid, cylindrical grid, or
toroidal grid (Fig. 8-2). Most of this research has also dealt with
cellular automata in which all cells or nodes of a given automatonare
assigned the same finite-state machine (different nodes may start in
different initial states, however).
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(a)

(c)
Figure 8-2. Three types of Abelian group.
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In some respects this is less general than the study of cellular
automata that can have any underlying graph and any consistent? assign-
ment of machines to the nodes of that graph; even so, the study of
“Abelian-group cellular automata” has shown that they can describe
some interesting processes, such as “self-reproduction.” Since the for-
malization for these automata is relatively easy to present, this section
is confined to a discussion of Abelian-group cellular automata. The
question of generality is pursued in the next two sections.

DEFINITION 8-1. A (finitely generated, Abelian group)

cellular automaton (ABC) T is an ordered quintuple:

I =(0, G-, f q)
where

1. Qs a set of states.

2. G ={g, ,...,gn} is a generator set of a finite-
generated Abelian group having group operation “-”.

3. f is the local transition function, a mapping from
Q™" to Q. ,

4. g, is the quiescent\st_ate, such that f(q,, ...,q,) = 9o

The neighborhood of any node (i.e., element) g in G is defined as
the set N(g) = {g.g°81.8°2, - - - ,g*8m}. The meaning of the local tran-
sition function f, then, is that any assignment of states to the neighbor-
hood for a node g determines uniquely the next state of g. (There is,
incidentally, no loss of generality in our having defined the local -tran-
sition function f to depend only on the states of the nodes in N (g)
rather than on output symbols from these nodes.)

A configuration c is an assignment of states to all nodes, or cells,
of a cellular automaton. A finite configuration is one in which all but a
finite number of cells are assigned the quiescent state q.. The operation
of an ABC is assumed to proceed in unit time-intervals, #y, #; = 2, + 1,
ts =t + 1,..., the local transition function being applied simul-
taneously to all cells of the ABC during éach unit time-interval, thus de-
termining a sequence of configurations cg,cy;c, . .. . It will also be as-
sumed that each cell requires the entire unit time-interval to carry out
the operations (accept input, compute output and next state, go to next
state, emit output) defined for it by the transition function. (This con-
dition is relaxed by some authors.) The simultaneous application of f

2The transition functibn of the finite-state machine (see Chapter 2) at a
given node must, of course, agree with the input and output capabilities of
that node. -
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1o all nodes of the ABC is, in effect, the application of a global transition
function F: C — C, where C is the set of all conﬁgurations of the ABC.

EXAMPLE 8-1. (CONWAYS “LIFE” CELLULAR AUTOMATON.) Let
Q = {0,1}, g, = 0, G be the Abelian group generated by

G = {(130):(())1):(191)9(—1,0)5(0’_1)9(_1’—1)7
(1,—1)9(_151)}

under the operation of vector addition (i.e., G corresponds to
the infinite two-dimensional Cartesian grid), and let f be defined
as follows: (Figure 7-3 shows the (“Moore”) neighborhood
N(g) for a given node, or cell g, determined by this generator
set G°.)

1. If at time ¢ the state of cell g is 0 (g is “dead”) and
there are exactly three “living” cells (cells in state 1)
in N(g), then at time ¢ + 1 the state of cell g will be
1 (ie., g will “give birth” and become a living cell).

2. If at time ¢ cell g is living and there are exactly two
or exactly three other living cells in its neighborhood,
then at time ¢ + 1 cell g will still be living.

3. If at time ¢ cell g and its neighborhood do not satisfy
either condition (1) or (2), then at time ¢ + 1 cell g
will be in state O. :

These three conditions adequately define f and enable us, given any
configuration of living and dead cells at time ¢, to effectively determine
which cells will be living or dead at time ¢ + 1.

The reader should trace the sequence of configurations shown in
Fig. 8-4 to verify this for himself (in this figure the cells of the auto-
maton space have been drawn as squares: Fig. 8—4a shows the neigh-
borhood of a cell g corresponding to that indicated by Fig. 8-3). Figure

Figure 8-3. The Moore neighborhood.
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8-5 shows a Cheshire cat configuration, which fades to a grin, then
disappears, leaving a pawprint.

It will be shown in a later section that the ABC’s are a very general
class of machine in that some of them are capable of simulating the
computations of the universal Turing machines. From the standpoint
of efficiency in representation, however, there are some drawbacks to
the use of ABC’s as a formalization for the concept of parallel process in
general. The major disadvantage is the unchangeability of the under-
lying graph of a given aBc. One might often like to have some way of
easily describing systems in which the relations existing between ma-
chines are capable of changing with time, depending on the previous
operation of the machines themselves.

ABELIAN MACHINE SPACES

Given the simplicity of Abelian groups as the underlying graphs
or spaces for cellular automata, one natural first choice in attempting
a more general (yet still relatively simple) formalization for parallel
process would be to find some method whereby the neighborhood of a
cell could be allowed to wander throughout a constant Abelian space.
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Figure 8-5. Computer-generated “Cheshire” cat (0) fades to a grin (6)
and finally to a pawprint (8). (From “Mathematical Games” by Martin

Gardner. Copyright © 1971 by Scientific American, Inc. All rights re-
served.)

In this respect it is well to reconsider the subject of Turing machines:

The point to make is that the tape of a Turing machine (Tm) is
essentially a finitely generated Abelian group. Consider the case of a
linear Turing machine tape, divided into squares: Each square can be
uniquely specified by a single integer (positive or negative), as shown
in Fig. 8-6. The set of integers can, however, be generated by the finite
set {1, —1} under the (commutative) operation of addition. So, the
tape is a finitely generated Abelian group.

Thus, a Turing machine is essentially a finite-state automaton that
can “wander” throughout the space determined by an Abelian group.
The “neighborhood” of a Turing machine is the particular cell it hap-
pens to be scanning or writing on at any given moment. Also, the di-
rections in which the tapehead of the machine can move may be con-
sidered equivalent to particular elements of a generator set being
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Control

Tapehead
Tape

-4 .3 .2 -1 0 1 2 3 4 5
Figure 8-6. The numbering of a Turing machine tape.

used by the machine to describe the topology-of-motion on its tape.
(The Turing machines defined in this book have used the generator
set {—1,0,1}.)

A more general formalization for parallel process is then very
simply contrived. We let the underlying space of the process be an
Abelian group G, that is, a (possibly infinite) n-dimensional Cartesian
grid, cylindrical grid, or toroidal grid. We let the cells of the process be
polychephalic Turing machines, and for each cell specify the initial
position in G of its tapeheads (some cells may also have their own
separate tapes, not printed on—and perhaps not read—by other cells).
And we specify what shall happen whenever two or more cells choose
to print different symbols at the same time on the same square, or node,
of G. There may possibly be an infinite number of cells, but we require
that each cell be described by one of a finite number of Tm’s; also, we
assume that each square is initially occupied by only a finite and com-
putable set of tapeheads. If we specify the initial symbols assigned to
the nodes of G and require that all cells act simultaneously, always per-
forming their next-move functions in the same unit interval of time, then
the subsequent configurations of symbols within G will be well defined.
Figure 8-7 illustrates this formalization for parallel process, which we
shall refer to as an Abelian machine space (AMS).

Our proverbial outside observer, watching the operation of a
given AMs, could choose to concentrate either on the flow of symbols
throughout its space G or on the changing of the states of its Turing-
machine cells. In this model, then, a cell is distinct from a square or
node of the space and is, rather, identified with a possibly shifting set
of “interdependent positions” in the space.

There are several different ways to go about solving the problem
of what will happen if two or more tapeheads (possibly from the same
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Figure 8-7. Abelian machine space. .

cell or possibly not) attempt to print different symbols on the same
square during the same unit time-interval. One way is to decide the
actually printed symbol on the basis of a dominance relation® on the
total set of tapeheads. '
Another simple, rather elegant way to solve this “conflict of print
commands” problem is to stipulate that the total set of all symbols
used by the cells of the Ams itself forms a group, under the operation of
superposition. That is, the symbols are designed in such a way that any

3 See Chapter 2.
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sequence of printing one symbol over another will always yield a new,
recognizable symbol. For example, we might use the four symbols ——,
l,+, and “”, where “” is a “splash of white paint” that covers any
previous symbol. This solution to the conflict-of-print-commands prob-
lem in an ams does, however, require that the set of symbols form an
Abelian group under the operation of “instantaneous superposition.”
The reason for this is that there is no “order” to the superposition of
symbols as they are printed within a given unit time-interval by different
tapeheads; it has been assumed that all the cells of the AMs carry out
the operations of their next-move functions simultaneously within each
unit time-interval. Thus, the “instantaneous superposition” yx must
equal the instantaneous superposition xy (see Exercise 8-1).

Both ways of solving the conflict-of-print-commands problem can
induce a “partial dominance” relation on the set of cells in an AMS,
such that one cell dominates another insofar as it prints symbols that
override those printed by the other. This can induce a type of “long-
range dominance” on cells. In an AMs when several cells scan a given
square they are each affected by the symbol that is already there. When
they each decide to print their respective symbols on the square, their
decisions must therefore be made on the basis of each cell’s own cur-
rent state and the previous symbols printed on the squares of the space;
the transition function of a given cell does not depend on the current
states of the other cells. However, the symbol already printed on a
given square depends in general upon a previous application of the
decision rule for the conflict-of-print-commands problem. Consequently,
the cells with the greatest long-range effect on other cells (eventually
have their output observed most often by other cells and consequently
can be said to control the process as a whole), are the cells that are
greatest (if there are any greatest) under the partial dominance relation
on cells induced by the decision rule for the conflict-of-commands
problem.

Whether or not the -introduction of “long-range dominance” in
this sense is desirable in an actual construction of an AMs would, of
course, depend on the application one has in mind for the machine.
One way of solving the conflict-of-print-commands problem, which
does not have this type of long-range dominance, is to specify that
each square of space be associated with a unique cell that has an
immovable tapehead attached to that square, and that each square shall
record only the symbols dictated by the immovable tapehead that scans
it. Thus, all the moving tapeheads will become scanners. (This is es-
sentially the method adapted in the Holland (1960) iterative circuit
computers. )
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QUESTIONS OF GENERALITY AND
EQUIVALENCE

The formalizations for parallel process so far discussed have pro-
- vided a major context within which mathematicians (computer scien-
tists, systems analysts) have (to date) approached the subject of parallel
processes in general. Some other formalizations for “parallel process”
have been suggested by Rodriguez (1969), Tesler and Enea (1968),
Luconi (1968), Martin and Estrin (1969), and Dijkstra (1965 et seq.).

The reader may naturally wonder if these investigations could be
carried further: Could we not develop a formalization for parallel proc-
esses in which the basic components, or cells, of a given process are
enabled to change its underlying space?

Such a formalization can be developed, but in fact it will not
be any more general than that provided by the Abelian machine spaces.
To see this, let us consider that the space of a given parallel process
is represented by a simple structure, of the sort defined in Chapter 7.
At a given time #, the individual cells of the process will make up the
space of the process by existing “in relation” to one another so as to
form a structure (see Fig. 8—8). Presumably, each cell will be able to
observe those cells to which it is related (which form its “neighborhood
structure”), and alter its neighborhood structure by either removing or
adding relations within it. It is not too difficult to arrange a consistent
formulation of this idea, such that all cells operate simultaneously,
within unit time-intervals, and such that the total structure (space) of
the process will be changed with time by its cells. However, any such
self-affecting space (note 8-4) can, given that it satisfies certain
finitistic considerations,* be effectively simulated by a suitable AMs. We
would merely require that some of the squares of the AMSs be used to
hold a current description of the given space structure and that the
polycephalic cells of the AMs be designed so as to suitably alter that
description; the underlying, Abelian space of the AMs would itself not
change.

¢ For example, each cell should be describable as a finite automaton or
Turing machine; each neighborhood structure should be finite, etc. A good way
to implement these self-affecting spaces might be to construct “PLANNER-spaces,”
in which the relations between certain nodes or collections of nodes would be
controlled by PLANNER theorems, each theorem controlling its own collection of
nodes and operating in parallel with the others. There would, of course, have to
be a special procedure for resolving conflicts of commands. (See Hewitt, 1970,
section 4.6.1.1.2.)
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(a)
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Figure 8-8. Space-structures.
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In light of this conclusion, one might naturally wonder whether
the Ams formalization is really more general than that of the ABC’s.
Can any Abelian machine space be simulated by an ABC? The answer to
this question is both yes and no, depending on what meaning is at-
tached to the concept “simulation.” There are (at least) two equally
valid ways of interpreting the concept; these give different answers
when the ABC’s and the AMs’s are compared. To discuss these interpre-
tations, observe first that both ABC’s and AMs’s are examples of finitely
describable, effectively computable functions. Any given ABC or AMS is
in essence a function that maps the set C of configurations (of states
and symbols) which are possible in its underlying space into that same
set C. By “effectively computable” is meant that the configuration
produced by a given ABC or AMs after any finite amount of time of its
operation can be calculated to any finite extent (i.e., for any finite
number of squares in the underlying Abelian space) by a suitably pro-
grammed, universal Turing machine (note 8-5).

We can show, however, that some ABC’s are computation universal,
in the sense that such an ABC can be programmed to carry out the
computation performed by any given Turing machine. Thus, the opera-
tion of any given AMs can be effectively computed by a suitable ABC. In
this sense, the AMS’s are not more general than the ABC’s, and can be
“effectively simulated” by them.

To prove that there are computation-universal ABC’s, it is sufficient
to show that, for any given Turing machine T, there is an ABC that can
carry out the computation it performs on any given input tape. This
immediately implies the result that there are ABC’s which can carry out
the computation of any given universal Turing machine on any given
input tape, that there exists a single ABC which, given a suitable initial
configuration, will carry out the computation of any given Turing ma-
chine on/any given tape. _

Following is an outline of the proof of A. R. Smith (1969), to
which the reader should refer for more details.

Let T be a Turing machine, utilizing m symbols and n states. We
can construct an ABC Ty that will carry out the computation performed
by T on any given input tape, such that I'y uses max (n+1,m+1)
states, an infinite two-dimensional Cartesian grid, and the neighborhood
corresponding to the generator set

G = {(051)7 (190), (—1:0)9 (_1’_1)7 (0’—1)’ (17_1)}

(See Fig. 8-9.)
Each cell of g has a set of M + max(m + 1, n+ 1) states, Q=
{0,1,...,M — 1}, which, “depending on context,” are used to represent
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Figure 8-9. The T, neighborhood about a cell g.

either the states or the symbols of the Turing machine T. The state O
is the quiescent state of 'y, however, and is not used to represent either
a state or a symbol of T. The blank symbol b of T is to be represented
in Tr by the state 1. In general, the state g; of T is to be represented in
T'r by the state i + 1, and the symbol x; of T is to be represented in Ty
by the state j + 1; that is, b = x,.

To simulate the computation of T for a given finite input string i,
that string is embedded in a row of the space of T'z, each symbol of the
string / being represented by a corresponding cell state in the row;
the control and tapehead of T are represented by the single cell above the
leftmost end of the row, being placed in state 1, corresponding to the
initial state g, of T (see Fig. 8-10). All other cells in Tz are initially
given state 0. At any subsequent time ¢, the configuration of the Turing
machine T" will be represented by a finite row of cells in nonzero state,
above which there is a single cell in nonzero state.

Figure 8-11 then gives the basic design of the transition function f
used by the cells of T'r, corresponding to the next-move function P of 7.
Nonzero states in the table are represented by the dummy symbol s or
by explicit variables: i+ 1 represents state ¢, and j + 1 represents
symbol x;, etc. Figure 8—11 shows what will happen for all the various
cells of Ty during any unit time-interval, provided 7 is in state g; scan-
ning symbol x; and the next-move function P contains the quintuple

gixixxXq




Parallel processing and evolutionary systems 359

clojo|lojojo ojo|ojo|oO
olojoflofo]o gjojojojao
olojojojojo ojofojoj|o0}.
ojo0)o0jofojo ojojoiojo .
. ojo|1{oj0!l0 ofojojojo .
0]0|ii]iz]is i Y L N
ojojojlojo}o 0010 0
ojojojojoio o|ojofo}]O

Figure 8-10. An initial configuration for T'r.

where X€ {L,O,R}. The bottom two entries in Fig. 8-11 show that
T'r grows the tape on which it performs its computation at the same
time the computation proper is being carried out. (Any neighborbood
state configuration N(g) not shown in the figure is defined to produce
no change in state for cell g.) ‘

The conclusion, again, is that the operation of any given AMS can
be computed to any finite extent by a suitable ABc. However, in general,
a universal Turing machine U given an input tape (dxr,i) requires longer
to compute the result (T (i)) than does the machine T, given the input
tape i. So, this suggests another question, that of whether the operation
of any given AMs can be computed completely (at a constant speed
ratio to that of the AMs itself) by a suitable ABC. Such an ABC would
constitute a “complete simulation” for the ams. The answer to this
question is no, subject to our current definition of finite-state automata
within an ABC; that is, we have so far required that all cells within an
ABC operate simultaneously within unit time-intervals. It is not possible,
in particular, for a given cell to operate instantaneously at the beginning
of a unit time-interval and thus pass information with “zero delay”
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State of g at time t+1, given
N(g) at time T
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Figure 8-11. Basic design of transition function .
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between unconnected cells. In other words, there is a limit to the speed
at which information concerning one part of the space of an ABC can be
carried by its cells to another part.

This limit to the speed of information transfer in an ABC can be
used to show (Holland, 1970) that the ABC’s are not composition-
universal: There does not exist an ABC that can be used to compute, at
a constant rate, the sequence of configurations of any AMS, or even of
any aBc. If an ABC is being used to reproduce the successive configura-
tions of another ABC or AMs, it must in some cases require an increas-
ingly longer and longer amount of time to do so, even for finite con-
figurations; there is no ABC that can simulate all ABC’s in “real time,”
or even at a slower but still constant rate.

The AMS’s are composition—universal (and thus cannot be com-
pletely simulated by the ABC’s) because the tapeheads of a given AMS
cell are allowed to transmit information with zero delay across varying
distances of the underlying space. One can also modify the formalization
for cellular automata to yield ABC’s that are composition-universal: The
modification consists precisely in allowing some cells to carry out their
transition functions instantaneously, whenever they are in certain states,
at the beginning of the unit time-intervals that occupy the operations
of the other cells. Such inst,antaneously acting cells (“Mealy automata”)
are said to form zero-delay gates for information transfer (note. 8-6).

In summary, the two notions of simulation, referred to here as
effective and complete, correspond to two types of universality: compu-
tation universality and composition universality. Both concepts of
universality are of relevance to the study of self-affecting systems. We
shall find that computation universality in a given ABC implies the ability
of that automaton to hold a self-reproducing configuration, which is it
self equivalent to a universal Turing machine; also, it seems very likely
that the composition-universal spaces are those best suited to modeling
evolutionary systems.

SELF-AFFECTING SYSTEMS:
SELF-REPRODUCTION

A mathematical system that “affects itself” is typically composed of
at least two parts, A and B, which bear the relation that
A affects B
and
B affects A
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The entire system (A4,B) is then called self-affecting if the actions of
any part affect the other parts, which in turn affect the original part
(note 8-7).

Equivalently, the study of self-affecting systems is the study of
machines that produce and accept feedback to themselves. This view-
point of self-affecting systems lends itself to a study of continuously
self-affecting systems, via analytic function theory, a direction of re-
search presented in N. Wiener (1948) and Formby (1965). For our
own purposes it is adequate to stick to the descriptions of discrete, self-
affecting processes provided by automata theory.

Many types of self-affecting systems can be studied within the
contexts of cellular automata theory and the theory of Abelian machine
spaces (see Exercise 8-2). Those that seem to be of particular im-
portance to the field of artificial intelligence are the self-diagnosing and

* self-repairing systems, the self-reproducing systems, the self-organizing
systems, and the evolutionary systems. Some of the basic qualities of
self-diagnosing and self-repairing systems are illustrated by the Ex-
ercises at the end of the chapter; for thorough discussions on the
current uses of such systems, see Carter (1971) and Randell (1971).
Self-organizing and evolutionary systems will be discussed in the next
section, and this section will concentrate on the nature of self-
reproducing systems.

The study of self-reproducing systems can be approached from
many different angles. After the discussion of a few such approaches,
the reader should investigate the vast literature for himself: von
Neumann (1966) was the first to investigate it extensively, using cel-
lular automata theory, and most of the subsequent approaches are due
to his influence. A semi-intuitive- argument of von Neumann’s provides
the best introduction to the nature of self-reproducing machines. Let
us assume that there exists a machine A4, which is a universal constructor
in the sense that if 4 is given a finite input tape describing a given ma-
chine X, A will eventually construct X. This is denoted by

A:dy—> X (8-1)
where dy is an input tape describing X. It should be noted that
A:dy—> A (8-2)

is not an example of self-reproduction, since after the process 8-2 is
complete, there exist two A4 machines and only a single tape d,, which
is not specified as being given as input to either of the two 4 machines.
Rather, the need is for an equation of the form

Y:dy—Y:dy ‘ (8-3)
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which indicates that there is a single machine Z = (Y:dy) such that
Z—7—>7—> .... To obtain this, we need two other machines, both
simpler in design than 4. The first of these is a machine B, which is
capable of copying any input tape

B:i—>i (8-4)

(After process 8—4 is complete, there will exist two input tapes i)
The other machine, C, is to be capable of coordinating the actions
of A and B so that the ensemble of machines 4 4 B + C, given an input
tape dx, will operate as follows:

(A+B+C):dx— (B+C): (A:dx) —
(C+ A+ X): (B:dx) > X:dx ’ (8-5)

That is, C first submits dx to 4, causing A to produce a copy of X;
then C submits dx to B, causing B to copy dx; then C submits the copy
of dx to X and allows X: dx to operate on its own. Let us then denote
the machine (A + B +C) by the symbol D; the result follows immedi-
ately that

D:d,—>D:dp (8-6)

Thus, the machine E = (D: dp) is self-reproducing. The reader should
note that there are no logic problems with this argument, and that the
result follows directly from the assumption that the three machines
A, B, and C are each finitely describable.

Of these three machines, the only one that has not been given
an effective description within the argument is A, the universal con-
structor; that is, the argument describes A4, but not sufficiently. to
guarantee that it can actually be built. At the suggestion of S. Ulam, von
Neumann (1966) made the first investigations in cellular automata
theory in an attempt to prove the existence of a universal constructor.
Although he died before he could finish his work, he did prove the
existence of a universal constructor (note 8-8), using a two-dimensional
ABC of 29 states. The constructor itself was effectively described and
shown to occupy about 200,000 squares of the space. Since then, others
have shown that the size and number of states required for a universal
constructor can be considerably reduced (see Codd, 1968).

It is relatively easy to show that there are ABC’s in which certain
configurations of states will reproduce. A very simple example, due to E.
Fredkin, uses two statess—Q = {0, 1} for each cell—the (“von
Neumann”) neighborhood corresponding to the generator set

G = {(150):(031)7(—1,0)5(0’—1)}
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for the infinite two-dimensional Cartesian grid, and the following transi-
tion function f:

1. If at time ¢, g is connected (by G°, under vector addition)
to an even number of cells in state 1, then at time ¢ + 1, g
will be in state 0.

2. If at time ¢, g is connected to an odd number of cells in state
1, then at time ¢ + 1, g will be in state 1.

It is not difficult to prove that any finite initial configuration of 1’s
will reproduce itself endlessly in this ABc. Figure 8-12 shows a sequence
of self-reproductions of a “right tromino.”
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Figure 8-12. The self-replications of a “right tromino.” (From “Mathe-
matical Games” by Martin Gardner. Copyright © 1971 by Scientific
American, Inc. All rights reserved.)

From the standpoint of automata theory (and artificial intelli-
gence), it is important to search for a more general type of self-
reproduction. The need is for an ‘ABC in which there is a configuration
that reproduces and which can also carry on some type of universal
processing activity. Thus, we have another reason for von Neumann’s
motivation to show the existence of a universal constructor. (Fredkin’s
ABC mentioned above is not capable of holding a universal-constructor
or universal-computer configuration.) Rather than reproduce a lengthy
universal-construction proof, it is sufficient merely to summarize A. R.
Smith’s (1969) proof that there exist ABC’s that can hold self-
reproducing, computation-universal configurations.

The preceding section showed that there exist ABC’s that are
computation-universal. Such an ABc, given an initial finite configuration
corresponding to the machine-tape pair (dr,i), will carry out the compu-
tation of T, given the input tape i. Suppose that T given i yields the
(finite) output string j, which is denoted®

i7J (8-7)

5'The notation of formulas 8-7 throﬁgh ‘8—11 is similar to, but not to be
confused with, that of formulas 81 through 8-6.
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Similarly, if T' is a universal ABc, we denote its operation on (dr,i) by

@r) T J ; &8
Finally, if the tapehead-control cell of T is scanning the leftmost square
of a finite row x, we write

x &9

To establish our result, we shall need to use the “fixed point” recursion
theorem.

THEOREM. For any total recursive function 7 mapping programs
into programs, there exists a program P such that h(P) = P.

(A function is said to be total if it is defined for all elements of its
domain; a function is recursive if it is expressible as a Turing machine
program.) ’

LEMMa 8—1. For any arbitrary encoding function d and for any
arbitrary partial recursive function g, there exists a program P
such that

i —P-) ((dPs i):ja (‘TlP’ i ) ? ((dP, i)»js (dPa i)sja (‘fP’ l)) —1: e (8_10)

if g(i) = jis defined. (P is said to be self-describing.)
Sketch of Proof. We can define a function 4 from programs to pro-
grams such that

(a) a@) ((dQ9 l)s j’ (‘{% 1))
(b) (dTQ, l) h-(Z))) ((dQs l)s J s (dTQ’ l))

This can be done because, given that £(Q) is in its initial state scanning
the leftmost symbol of a string x, it can always decide whether x is of
the form (dg, i) for some i (it knows the function QO and d; therefore
it can compute dg, compare it to the leftmost part of x, etc.). If x is
not of this form, 4 can be designed to perform step (a), which consists
basically of setting i = x, computing (de,i), computing g(i) = j» copy-
ing (dg,i), and going into its halt state (=its initial state) at the proper
place. Step (b) requires all but the first two parts of step (a). How-
ever, the fact that d is a total recursive function (which follows from
the nature of an encoding function; see Chapter 2) implies that & is
total recursive. So, by the recursion theorem stated above, we know
there must exist a program P such that h(P) = P and .

; D CONACIDRACL InE

thus concluding our proof.
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THEOREM 8-1. Let T be a computation-universal ABc. There
exists a finite configuration ¢, of T which is self-reproducing and
computes an arbitrary partial recursive function g.

Proof. Let ¢, be (d,,i). Then
(‘{Ps l) ? (dPs i),j, (‘{Pa l)) F) e ) (8—1 1)
if j = g(i) is defined.

COROLLARY 8-1. If T is a computation-universal ABC, then
there exists a finite configuration ¢, of T' which is self-reproducing and
computation-universal.

Proof. Let g be the universal Turing machine function.

The existence of self-describing machines is more than a theoretical
result of automata theory. Thatcher (1963) gave an explicit 2532-
instruction program for a self-describing machine; thus, it is possible
for programs to reproduce themselves inside a computer.

Myhill (1964) investigated self-reproducing machines from a
recursion-theoretic viewpoint ‘also, although his results were not con-
cerned specifically with cellular automata. The principal result of his
studies was that there exists a sequence of ‘self-improving machines
MoM,M,, ..., such that each machine constructs the next one. The
machines are improvements over each other in the following respect:
The first machine effectively proves all decidable propositions in a
given recursive axiomatization of arithmetic; the second machine uses
an expanded recursive axiomatization of arithmetic and effectively
proves all the decidable propositions in its own axiomatization, in-
cluding some that are undecidable in the axiomatization of the first;
the third machine does the same for the second, and so on (see Chapter
6).

The self-improvement of these machines is, however, not fully
effective: It can be shown that some propositions. of arithmetic are
undecidable for every machine M; in the sequence; there is no (mathe-
matically describable) sequence of consistent machines which ef-
fectively decides the truth or falsity of every proposition of arithmetic.
Still, Myhill’s results did show that machines cannot only reproduce
themselves but, in a sense, also develop themselves.

The reader may have noted by this time that, except for Fredkin’s
ABC, all self-reproducing systems so far discussed have operated in a
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highly serial manner, despite orientation of the discussion (at least in
the case of von Neumann and Smith) toward cellular automata and
parallel processes. This is in fact the current state of affairs for the study
of self-reproducing configurations in cellular automata. So far as the
present author is aware, no one has as yet demonstrated an ABC.con-
figuration that is a universal computer and which self-reproduces in a
highly parallel manner.

The problem seems to be much easier to deal with in the Abelian
machine spaces, where we can obtain parallel universal computation
rather trivially, merely by requiring that all polycephalic cells of the
AMs be universal computers. This also enables them to generate pro-
grams for each other and to program each other. We might then specify
that all cells of the AMs initially have blank input tapes, except for the
one cell C,, whose input tape contains the description dp for a self-
describing universal program P, which contains within it a description
dr for a finite cellular automaton T; and contains within it a description
for an “activated portion” of dr.

The nature of C,, given dp, is that C, will print “subactivations”
of dp on the input tapes of two cells (say, Cy and C3) and erase the input
tape of C,. By a subactivation of dp is meant a new description d'p,
which is identical with dp except for its reference to an “activitated por-
tion” of dr; the activated portion of dr described in d’p should be
contained within the activated portion of dr described within dp. The
process is to be carried in a similar manner down the levels of activa-
tion allowed in dr, with the end result being that-instead of Co (the
“fertilized egg”), there will be a set of cells {Ci}, each “activated” to
be a single cell of T, and all connected together within the space of the
AMSs by their tapeheads so as to form the cellular automaton T. The
construction is complete if we design I' to be able to program the
original dp (specifying complete activation of dr) into a cell of the
aMs. Then T will be a finite automaton that reproduces in a highly paral-
lel manner; giving it universal-computing ability would probably not be
too difficult. :

Again, this construction has not been rigorously formalized; how-
ever, there is no essential mathematical difficulty in proving the existence
of a dp that will behave in the manner indicated above, activating dif-
ferent portions of dr as required and programming itself into some of the
unprogrammed cells of the ams. The most difficult problem in achieving
such a self-reproducing automaton is probably that of attaining the
proper coordination into a single, universal automaton of the cells that
descend from C,. This author suspects that even this can be solved in a
relatively simple way.
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The final sections of this chapter leave formalities aside and merely
speculate on the usefulness of such results to artificial intelligence.

HIERARCHICAL, SELF-ORGANIZING, AND
EVOLUTIONARY SYSTEMS

Conditions

This section briefly describes some of the ways in which large,
multiprocessing systems may eventually be used in A1 research. The
emphasis is particularly on “hierarchical,” “self-organizing,” and
“evolutionary” systems. Before beginning, the reader should be warned
that there are still no comprehensive theories or definitions for the
nature of these systems (especially for the latter two). Rather, there are
a number of partial results and guidelines, primarily concerned with
hierarchical systems. And the little experience so far obtained with self-
organizing and evolutionary programs has been largely disenchanting.

Nevertheless, it is the present author’s belief that these systems
may eventually be very valuable to Ar researchers, provided two con-
ditions can be satisfied:

1. First, there is a hardware requirement. These systems may in-
volve rather sizable complexes of computers; and it would be good if
they were inexpensive. -

2. Second, we must overcome the misconception that these systems
are essentially incompatible with the “reasoning-program” approach (see
Chapter 3), and begin to investigate the possibilities of “hybrid”
(hierarchical, self-organizing, evolutionary and reasoning) programs.

While it is not the purpose of this book to discuss hardware, there
are encouraging signs in that field of computer science. For example,
Culver and Mehran (1971) suggested that the use of laser technology
may eventually allow a computer to perform a logic operation in a
time span on the order of picoseconds (10 seconds); holographic
storage techniques (again, “laser technology”) may eventually make it
possible for computer memories to store millions of bits of information
per square inch (Hunt, Eiser, and Wolf, 1970). At any rate, we can
ignore the hardware condition and try to assume within reasonable
bounds that it can be met successfully. This section is intended to show
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that the second condition can be met (that is, to suggest some “hybrid”
programs that A1 researchers may eventually investigate with profit),
and possibly to restore some enchantment to the study of self-organizing
and evolutionary systems.

Hierarchical Systems

Many types of “hierarchical” systems have been encountered
throughout this book. In particular, the reader may recall the discus-
sion of PLANNER (Chapter 6), the “hierarchy of visual perception sys-
tems” described in Chapter 5, “hierarchies of languages™ discussed in
Chapter 7, and the “economy of invention” hierarchy suggested in
Chapter 3. In general, a hierarchical system is an ordered collection of
machines (systems, programs, procedures, processes, etc.). We may
speak of the type of “order” involved as determining the “form” and
the “nature” of the hierarchy, which may be different for different
hierarchies. The form of most systems that are considered to be hierar-
_chical corresponds to either a string, a tree, a lattice (see Fig. 8-13) or
perhaps to some cyclical variation on these forms. The nature of a
hierarchical system corresponds to the physical meaning of the order-
ing between its machines, the factors of which may include time, energy,

composition, construction, information, and control. These factors may

(a) (b) . » (c)

Figure 8-13. (a) String, (b) tree, (c) lattice.
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be explained by noting that machines operate in time, transform energy,
may be made up of other machines, may make other machines, may
process information and send it to other machines or people, and may
control the behavior of other machines (by programming them, altering
their environments, starting them, unplugging them, etc.).

Following are two brief examples of ways the “hierarchical sys-
tems” concept is of use to computer science and artificial intelligence.

EXAMPLE 8-2. MEMORY SYSTEMS. As mentioned in Chapter 2,
a memory system is a means of storing and retrieving informa-
tion (data structures), and may typically be described by
reference to its qualities of size (number of bits of information it
can store) and access time (time necessary to determine the
bits held at a particular place of storage in the memory). For a
given memory system these qualities are directly related: The
larger the memory size, the greater is the access time. One of
the earliest hierarchical systems investigated by computer sci-
entists (it was suggested by von Neumann) is the hierarchical
memory system. Its value results from the fact that the utility
of a given data structure varies with time: When a data structure
is being used by (or as) a program, it has high utility, whereas
otherwise its utility is very low, corresponding to the probability
with which it may be used in the future. A hierarchical memory
system consists of a lattice of memory systems, each capable of
supplying data structures to, or accepting data structures from,
its parents: The highest member of such a system is the “core
memory,” used by the computer to store the data structures it
is currently using; other members of a typical system may be a
magnetic “disk” or “drum,” a magnetic tape system, and per-
haps a holographic storage system. The core memory may
hold 10° bits, with an access time on the order of microseconds,
while the holographic storage system may hold 10™ bits, with an
access time on the order of seconds (see Katzan, 1971; Gentile
and Lucas, 1971; and Arora and Gallo, 1971).

EXAMPLE 8-3. PLANNER’S HIERARCHICAL CONTROL SYSTEM.
Chapter 6 gave a brief description of PLANNER, a programming
language for writing plans (Hewitt, 1968 et seq.). A plan written
in PLANNER consists of a collection of theorems that represent
procedures for manipulating assertions. When a theorem (pro-
cedure) is used, it may affect other procedures (create them or
manipulate them) or it may “call” another procedure (i.e., cause
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that procedure to be used). When a theorem is being used, we
may think of it as having “control” of the actions currently being
taken by the computer, and when it calls another theorem, we
may think of it as transferring control to that theorem. The im-
plementation of a plan starts by calling one of its theorems and
continues as theorems manipulate data structures, transfer con-
trol, etc. Theorems in PLANNER are goal-directed procedures:
Their purpose is generally to establish something as a fact.
Consequently, the way in which they transfer control may be
“conditional”: Theorem A may transfer control to theorem B;
if theorem B (and those theorems to which it transfers control)
fails to achieve its goal, control automatically backs up to
theorem A so that it can (hopefully) do something else.
PLANNER’s hierarchical control structure enables it to keep
track of the hierarchy of theorems being called and transferring
control caused by the implementation of a plan. '

As Holland (1970) pointed out, the chief value of the “hierar-
chical systems” idea is that it gives a way of describing large systems
that is far more practical than the “state-transition” function approach
of automata theory. A large system (e.g., the human brain) may have
10® components; if each component has two states, the system will
have 2 possible states, and an explicit description of the state-transi-
tion function for a system of this size is not possible. Yet it may be that
the components of the system are organized into a hierarchy of, say,
11 levels of “blocks,” in which each block is divided into 10 lower-level
blocks (a tree with a branching factor of 10 and a depth of 11), the
lowest-level blocks being