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PREFACE (1985) 

Are we intelligent enough to understand intelligence? One approach to 

answering this question is "artificial intelligence," the field of computer sci­

ence that studies howmachines can be made to act intelligently. This book is 

intended to be a general introduction to artificial intelligence (AI). The sub­

jects for discussion are machines that can solve problems, play games, recog­

nize patterns, prove mathematical theorems, understand English, and even 

demonstrate learning by changing their own behavior to perform such tasks 

more successfully. In general this book is addressed to all persons who are 

interested in studying the nature of thought, and hopefully much of it can be 

read without previous formal exposure to computers. 

In this book, I try to describe the major experiments that have already 

been performed and to indicate some of the open questions that still need re­

search in the field of artificial intelligence. To this end, the exercises that 

conclude each chapter were designed not only to give students some prac­

tice in the subjects discussed explicitly, but also to direct them toward other 

subjects that, for want of space, could not be discussed. The exercises were 

designed to flex the students' own intelligence, as well as to help develop 

machine intelligence. · 

However, artificial intelligence can and should be studied in ways that 

are not strictly technical. It is important for us to realize how this science is 

related to the hopes (and fears) ofhumanity. To do this we must try to under­

stand people, not just machines. If artificial intelligence is to be developed 

beneficially, it will have to become one of our most humanistic sciences. 

Happily, there is a vast body ofliterature (mostly science fiction) that can 

provide a sample of nontechnical thinking about AI. There are also some 

excellent motion pictures (especially the Star Wars series) that provide a 

vision of what AI might someday produce. 

xiii 



xiv PREFACE (1985) 

Much progress has been made in the field of artificial intelligence since 
this book was first published in 1974. The book as originally written, how­
ever, remains a good general introduction to AI, since the foundations ofthe 
field remain the same. Even so, this edition will be more useful because of 
material I have added to summarize the decade's progress and guide the 
reader to further study. For simplicity, this supplementary material, includ­
ing its own bibliography, is added as a separate section immediately follow­
ing this Preface. 

In retrospect, the following people have to date made the greatest con­
tributions to my work, and so either directly or indirectly to this book: J. Mc­
Carthy, A. Samuel, N. Chapin, E. Deaton, B. Raphael, J. Munson, 
R. Manuck, E. Feigenbaum, J. Lederberg, T. Rindfleisch, R. Scroggs, 
M. Uren, I. Laasi, R. Champion, S. Sickel, I. Pohl, M. Cunningham, 
H. Crafts, B. Chatterjee, J. A. Wheeler, W. Honig, D. Lenat, R. Schuet, 
E. McGinnis, P. Roth, D. B. Pedersen, B. A. Bowman. 

I am grateful to all of these people and have benefited from their advice. 
It should be expressly noted that I alone am responsible for the content 

of this book. Naturally, I hope the reader will find that its value greatly out­
weighs its errors, and I apologize for any errors it contains. 

Finally, a special word of thanks goes to my parents, whose faith and 
encouragement have made this effort possible. 

PHILIP C. JACKSON, JR. 



DEVELOPMENTS 
1974-1984 

This supplementary section presents material updating the text of the 

first edition of ln(roduction to Artificial Intelligence, which has been kept in­

tact. The new material is organized to parallel the coverage of the original 

chapters, and readers unfamiliar with the first edition may wish to read each 

original chapter first, then turn to the supplementary section for that 

chapter. 
In some cases, references are made to the original chapters by using just 

chapter or page numbers. Parentheses enclose the year portion of references 

to entries in the original Bibliography at the end of the book, while square 

brackets are used in references to entries in the Supplementary Bibliography 

at the end of this n'ew section. 
It should be emphasized that this new material is only an introduction 

to AI research for the decade 1974-1984,just as the original text of this book 

is only an introduction to AI research up to 197 4. Because of space limita­

tions, the supplementary material cannot discuss the decade's research in 

thorough detail. Rather, it tries to summarize and give pointers to some of 

the decade's major research. Hopefully, the reader will follow these pointers 

to gain greater knowledge of the entire field, including research not 

cited. 

1. INTRODUCTION 

Much of the material in Chapter 1 needs very little updating. Recently, 

however, several books have been published that contain material relevant 

XV 

----·---------·---·-
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to the coverage in Chapter 1. Among these, the reader is referred to Albus 
[1981], Boden [1977], Kent [1981], and Sagan [1977]. 

Also, it should be noted that since 1974 several books have been writ­
ten that are complete texts on artificial intelligence, with various levels of 
coverage and emphasis. The reader is encouraged to study such texts, in­
cluding Banerji [1980], Barr, Cohen, and Feigenbaum [1981 ], Bellman 
[1978], Nilsson [1980], Raphael [1976], and Winston [1977]. Other, more 
specialized texts are cited below. 

In general, the proceedings of conferences on artificial intelligence are 
the major sources cited in these supplementary notes; the reader can find 
detailed summaries of most published AI research in the Proceedings of the 
American Association for AI and International Joint Conferences on AI, 
which now run to 7,121 pages, spanning the years 1969 to 1983. 

2. MATHEMATICS, PHENOMENA, MACHINES 

The goal of Chapter 2 was to present some of the mathematical theory 
underlying artificial intelligence and computer science in general. In partic­
ular I discussed whether there was any way in theory of proving mathemati­
cally that machines could or could not be intelligent. In addition, I pre­
sented some practical limitations that affect computers because they are 
real-world machines subject to the laws of physics. These results from math­
ematics and physics are useful in reasoning about computers and the limita­
tions of artificial intelligence, but not in themselves sufficient to prove or 
disprove the attainability of true artificial intelligence. 

Naturally, scientists have continued to discuss this question, arguing 
both for and against the ultimate achievability of true intelligence by com­
puters. And into this debate they have introduced considerations from other 
sciences. 

Regarding the general theoretical limitations of artificial intelligence, 
Haugeland [MD; 1981] includes several papers arguing against the possibili­
ty of a truly complete artificial intelligence, one that could duplicate or sur­
pass human thought, as well as other papers that discuss AI methodology 
but are not skeptical of its ultimate success. (The scope of this collection 
makes it an important AI reference.) The arguments against AI (by Dreyfus, 
Haugeland, Searle, Davidson, and others) draw on relevant issues in the 
fields of psychology, philosophy, and biology. 

They argue that computers cannot duplicate the biochemistry of the 
human brain, which prevents AI from duplicating moods, emotions, aware­
ness, feelings, and other phenomena important to human thought. Also, 
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they argue fhat "understanding" concepts is fundamentally different from 

symbol manipulation; that sensorimotor (and other) skills are not devel­

oped by thought processes such as those studied by AI and its sister field, 

cognitive psychology; that human thought is "holistic" and cannot be divid­

ed into subprocesses in the way that AI approaches it; that human thought 

deals with infinite exceptions and ambiguities and thus is too complex for 

computers. (I do not say that each of the authors listed above subscribes to 

all of these claims.) 
I alluded to some of these concerns myself in Chapter 2, for example by 

noting that the universe might contain phenomena which are not finitely 

describable, and that the human brain is architecturally different from pres­

ent computers. Because of this I concluded that it is an open question 

whether computers could ever duplicate all the abilities of human intelli­

gence, though it seems clear they can emulate some. 

The argument that understanding is fundamentally different from sym­

bol manipulation, however, is particularly crucial to AI research, since a 

major approach of AI has been to apply discrete symbol~manipulation tech­

niques (via digital computers) to tasks which in humans involve "under­

standing." For example, AI programs have been written that "understand" 

sentences in English and other natural languages (see Chapter 7 and its sup­

plement, below). 
Searle [ 1981] gives an especially clear argument that symbol manipula­

tion cannot be equivalent to human understanding, using a variation of 

Turing's test (see Chapter 1 ). In essence, Searle argues that a human could 

perform a computer's symbol-manipulation procedures, and appear to un­

derstand a foreign language, without actually understanding the language at 

all. Searle asks the reader to agree through introspection that symbol manip­

ulation is qualitatively different from true "understanding." 

Recent papers by McDermott [1983] and Woods [1983]counter this ar­

gument, basically by contending that understanding really is a process of 

symbol manipulation: they contend in essence that understanding is a proc­

ess that deals symbolically with "meaning rules" Which represent interpreta­

tions of other symbols. Sloman [1983] suggests that the built~in interpreta­

tions for truth, conditionality, numbers, etc., that are provided by the 

machine languages of computers furnish a starting point for studying how 

other machine architectures can provide interpretations of concepts. 

I think these responses are adequate to show that computers can emu­

late understanding, i.e:, at least behave as though they understand concepts 

within some limitations of scope and complexity. This should be adequate 

for AI systems to achieve useful results, so that the general public will collo­

quially say that AI systems "understand" some concepts, though scientists 

should remain cautious in their comparisons. 
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Whether computers can "really" understand concepts just as we do will 
require more understanding of human intelligence to decide. Perhaps 
human intelligence "internalizes" its symbolic manipulation at a lower level 
ofbrain functioning to produce the sensati~ns of human "understanding," 
"consciousness," etc., and these sensations are not duplicated when humans 
process symbols consciously, as in Searle's variation of Turing's test. This 
seems to be the essence ofthe responses ofSloman, McDermott, and Woods 
to Searle's argument. 

Even so, Dreyfus ( 1981] notes that Husserl and Heidegger encountered 
an apparently endless task in their attempts to define human concepts sym­
bolically, and warns that AI confronts the same problem. Undaunted by 
such problems, I have proposed a high-level initial design for a system that 
would develop its own concepts to demonstrate general-purpose artificial 
intelligence in real-world environments (Jackson [1984]). 

Regarding the physical limitations of real-world computers, the limits 
described in Chapter 2 still apply, of course. Engineering progress has in­
creased memory sizes and reduced access and computation times, generally 
by an order of magnitude over the "conventional" imd "attainable" numbers 
given in Chapter 2. This progress continues rapidly, so that specific numbers 
cited at the time this is written would be obsolete by the time this reaches the 
reader. What is important is simply that these finite limitations still apply, 
constraining the computing power of machines. It should be noted that en­
gineers are still eons away from the "theoretical" limits to information pro­
cessing based on quantum theory, presented in Chapter 2. Also, the process­
ing rates predicted for "coherent optical logic" (Culver and Mehran, 1971) 
are as yet unfulfilled. 

Again, these limits in themselves do not answer the question of AI's ulti­
mate attainability. However, one development deserves special attention: 
the integrated-circuit "microcomputers" (mentioned on page 60) have 
evolved spectacularly, so that rather complex systems now occupy very little 
space. For example, up to 450,000 transistors can be placed on a ~-inch­
square "chip" (Beyers et al. [1983]). The evolution of microcomputers holds 
great promise for artificial intelligence, especially in parallel-processing sys­
tems. (Regarding developments in this field, see the supplement to Chapter 
8, below.) 

Finally, it should be noted that Hofstadter (1980] and Rucker (1982] 
present exuberant, insightful introductions to subjects in mathematical 
logic that underlie the field of artificial intelligence. In particular, they treat 
Godel's incompleteness theorem regarding unsolvable problems in mathe­
matical logic. The reader may wish to compare their expositions of this 
topic, and its relation to AI, to Chapter 2's presentation of the Halting Prob­
lem, a related unsolvable problem that fundamentally limits the abilities of 
machines. Again, such unsolvable logic problems do not limit machines any 
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more than they limit people. It is interesting, however, that the recursive way 

in which these problems are stated reminds us of the question, "Are we intel­

ligent enough to understand intelligence?" 

Though AI has made enormous progress in the last decade, understand­

ing intelligence remains an unsolved challenge to our intelligence. The 

progress in AI so far has also increased our awareness ofhow much we do not 

know. Whether or not machines can ever be truly intelligent, however, AI re­

search has shown that even limited forms of machine intelligence have great 

utility. 

3. PROBLEM SOLVING 

This chapter discusse.s concepts of"problem solving" that are central to 

AI research. As would be expected, AI researchers have continued to develop 

and explore these concepts, which retain their centrality. 

One major concept for problem solving remains "heuristic search" in 

the. "state-space" paradigm. Nilsson [ 1980] and Barret al. [ 1981] give thor­

ough presentations of this subject that complement the treatment given in 

Chapter 3. Dechter and Pearl [1983] present recent theoretical results on the 

Hart-Nilsson-Raphael (1968) heuristic search algorithm (known as the A* 

algorithm) that further support the optimality of this search algorithm. 

Pearl and Kim [ 1982] and Ghallab and Allard [ 1983].show the value of A* 

variations that search for solutions that are "nearly" optimal instead of com­

pletely optimal. 
Recently, Kumar and Kanal [1983] have shown that a variety of 

problem-solving algorithms can be "unified" via representation with 

context-free grammars as "composite decision processes." (See Chapter 7 re­

garding context-free grammars.) Stockman [1979] and Berliner [1979] pre­

sent recent search algorithms for AND/OR trees, which Kumar and Kanal 

have shown are closely related to the alpha-beta procedure described in 

Chapter 4. 
Heuristic search procedures require algorithms, called "heuristics," for 

estimating the values of nodes in the state space being searched. Valtorta 

[1983], Pearl [1982], and Gashnig [1979] have shown that heuristic-estimate 

functions can be automatically derived by a search procedure that solves 

"auxiliary" problems related to the original problem state space. However, 

Valtorta also shows it is not efficient, in general, to use this method. The de­

velopment of good heuristic-estimate functions remains a key problem for 

AI research: experience indicates that this is an area where the problem of 

problem representation remains central (see Chapter 3). AI researchers are 

still at the frontier of developing systems that can develop their own prob-
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lem representations. (See Amarel (1968), Lenat [1982], Lenat and Brown 
[1983], and Jackson [1984].) 

However, AI researchers have long recognized the centrality of the rep­
resentation problem, and in the decade 1974-1984 concentrated substan­
tially on machine representations of all forms ofhuman knowledge (includ­
ing problems). "Knowledge representation" has become a major subdomain 
of AI research. Among the multitude of papers on this subject, the reader 
should certainly be pointed to Minsky [1982], Schank and Colby [1973], 
Lenat [1979], and Lenat and Greiner [1980]. 

Lenat's work in particular should be briefly described, because it dem­
onstrated major progress in the past decade. Lenat [ 1979] describes a com­
puter program called AM, which used a LISP-based representation to emu­
late discoveries of concepts in elementary mathematics. For example, 
starting with LISP-structures to represent concepts of set theory ("set," 
"union," etc.), AM used heuristics to develop LISP structures representing 
higher-level concepts of elementary mathematics ("natural number," 
"prime," etc.). AM could also discover conjectures (relations between con­
cepts), though it was not designed to prove theorems. For example, AM was 
able to conjecture the unique factorization theorem, that any natural num­
ber can be uniquely factored into prime numbers. Lenat and Greiner [ 1980] 
describe the evolution of this approach into "RLL," a "representation­
language language" used for representing concepts in arbitrary domains be­
sides mathematics. Lenat and Brown [1983] give a recent analysis of this 
research. 

Besides heuristics and the representation problem, the concepts of 
planning, evolution vs. reason in problem solving, analogies, learning, and 
"skilled" (or "expert") problem solvers all remain central to AI. Researchers 
have continued to develop these topics, in many cases combining them (see, 
for example, Rendell [1983], Subrahmanian [1983], Salzberg [1983], 
Mostow [1983a], Carbonell [1983], Georgeff [1983], and Kim and 
McDermott [1983]). "Learning" especially has been a major AI research 
topic, with a recent book surveying the subject (Michalski, Carbonell, and 
Mitchell [1983]). The link between learning and knowledge representation 
is analyzed in a recent paper by Scott [ 1983]. Lebowitz [ 1983] illustrates this 
topic in a system which generalizes representations of patent abstracts. 
Burstein [1983] and Douglas and Moran [1983] present results on learning 
by analogies. 

Finally, AI has continued to make impressive progress in developing 
"expert" systems that can demonstrate skill in performing tasks previously 
requiring trained human intelligence. As a. result, "expert systems" have be­
come another major subdomain of AI research. The main tools for con­
structing expert systems have been "knowledge-representation" systems, 
typically using "production rules" and "backtracking" (Chapters 3, 4, 6) to 
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control how knowledge is used by the expert system. A textbook edited by 

Hayes~ Roth, Waterman, and Lenat '[1983] provides a standard reference on 

theories and techniques for building expert systems. Benjamin and Harri­

son [ 1983] describe work on a system that can learn its expert behavior by 

generalizing from examples of expert human behavior. The 1983 IJCAI and 

AAAI Proceedings contain 55 papers explicitly on expert systems, with many 

others indirectly related, which indicates the magnitude of research in this 

area. 
In particular, expert systems are envisioned as augmenting (and in 

some cases supplanting) human intelligence in development of the "fifth 

generation" of computers (Feigenbaum and McCorduck [1983]). In turn, 

the fifth generation of computers should support even more advanced AI 

processes, including expert systems. Lenat et al. [1983] describe one such 

ambitious, long-range project, called Knoesphere: an expert system able to 

represent, and intelligently explain, the knowledge of an encyclopedia. 

Jackson [1984] presents a similarly ambitious, high-level design of a system 

that would develop its own concepts, demonstrating general-purpose intelli­

gence in real-world environments. 

4. GAME PLAYING 

Game playing has remained a valuable subfield of AI research, and the 

concepts presented in Chapter 4 have remained central to computer pro­

grams that play games. Games have been useful in, and have benefited from, 

advances in other AI fields, such as knowledge representation and evolu­

tionary programs. 
Zhang and Zhang [ 1983] discuss application of the statistical-inference 

method to the A* heuristic search algorithm, claiming it results in a superior 

game-search algorithm. Other important work on search algorithms is men­

tioned in the supplement to Chapter 3, above. 

Chess has continued to be a major focus of AI research in game playing. 

As of this writing, computers cannot yet consistently win against human 

· grandmasters. Berliner [ 1981] discusses the use of brute-force search tech­

niques in Chess programs, which in conjunction with supercomputers are 

presently the best AI Chess systems. Kaindl [1983] discusses a more in­

formed (relying less on brute force) Chess search for "quiescent" states of 

the game. Simon and Gilmartin [1974] describe an earlier Chess program 

which recognized some "patterns," or related groups of Chess pieces. 

Some AI researchers have concentrated on Chess endgames, which are 

relatively simpler than full Chess. For example, Bramer [1975] studied 

knowledge representation in Chess endgames. Building on this, van den 

Herik {1983] describes an expert system for a class of Chess endgames 
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(King, Bishop, and Knight vs. King). Systems like this use patterns to guide 
the selection of rules for actions, in addition to depth-first search. Campbell 
and Berliner [1983] describe a similar program for King and Pawn 
endgames. Jackson [1984] discusses some of the "conceptual structures" 
that might be used in representing various levels ofknowledge about Chess. 

S. F. Smith [1983] describes a genetic algorithm (evolutionary pro­
gram) that develops its own production rules for playing Poker and learns to 
play at the same level as Waterman's program, described in Chapter 4. 
Rendell [1983, 1984] studied genetic algorithms for learning heuristic­
search evaluation functions, relating this to Samuel's Checkers program 
(1967). 

Games have even helped in studying the evolution of knowledge. For 
example, Hunt [ 1983] discusses the game ofMastermind, in which one play­
er tries to break a four-color code selected by another, and shows that guess­
es known to be false can at some points give more information toward break­
ing the code than guesses that are not known to be false. Hunt relates this to 
a similar problem in decoding DNA strings. 

In summary, it seems clear that games will remain a valuable subfield 
of AI research, with the potential for shedding light on and testing AI results 
in other domains. In particular, Chess will remain a challenge to AI research­
ers, providing a domain in which efforts can be focused on expert systems, 
knowledge representation, and learning. 

5. PATTERN PERCEPTION 

Chapter 5 discusses "pattern perception" as it occurs in AI vision sys­
tems, and also more generally as it occurs in other domains of AI. The 
growth of robotics has meant continued, extensive research into vision sys­
tems, though the principles described in Chapter 5 remain basic to more re­
cent research. Research in pattern perception has also benefited from work 
in other AI domains, such as knowledge representation, production-rule sys­
tems, etc. The following indicates just some of the recent research in this 
area. 

Brooks [ 1981] describes a high-level vision system (called ACRONYM) 
that relies on models of objects and of the scene-to-image transformation to 
predict how an object will appear, given the program's knowledge represen­
tation of a scene. Fisher [1983] extends this approach in a program that 
matches regions of a picture image to models of surfaces, and then hypothe­
sizes possibly occluded objects in a scene. Glicksman [1983] describes an­
other system which uses "semantic information structures" (see Chapter 7) 
for visual-information processing. 
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Diamond et al. [1983] describe an edge-detection method that is ori­

ented toward parallel processing. (Parallel-processing computer architec­

tures have made substantial progress in the past decade; see the supplemen­

tary material for Chapter 8, below.) Fischler and Wolf[l983] describe the 

iterative use of "smoothing" algorithms to identify lines in a picture. Of 

course, numerous other researchers have addressed these topics. 

Horn [1977] gives an important analysis of the physics of image forma­

tion and its relation to visual perception. Several authors have studied the 

recognition of object shapes using shading, texture, and stereo visual infor­

mation (see, for example, lkeuchi and Horn [1981 ), Witkin [ 1981], and 

Grimson [1981]). 
Pentland [1983] discusses how to compute "fractal" representations of 

patterns from visual image data. This approach may be especially important 

in the visual perception of real-world scenes, which often include complexi­

ties such as mountains, trees, clouds, etc. Fractals are a very interesting class 

of mathematical functions developed by Mandelbrot [ 1977]. The basic con­

cept of fractals is that objects have different shapes depending on the scale at 

which they are measured. For example, a mountain may appear to be round­

ed from a distant viewpoint and more irregular from a closer viewpoint. The 

success of fractals in representing visual patterns suggests that they should 

be investigated for pattern perception in other AI domains. 

Nagel [ 1983] gives some recent mathematical results relevant to visual 

perception of motion, and several other references to this problem. Cowie 

[1983] also discusses this topic, as well as other relations between observers 

and the observed. Thorpe and Shafer [1983] discuss this topic in relation to 

Huffman-Clowes labeling algorithms. 

Of course the above material can reference only a small subset of there­

search in pattern perception. In addition to the various conference proceed­

ings ( IJCA/8 alone has over 40 papers on vision systems), the reader is espe­

cially encouraged to study the following texts: Ahuja and Schachter [1983], 

Barret al. [1981), Hanson and Riseman [1978], Kandel [1984), Miller and 

Johnson"Laird [1976], Nevatia [1982], Pavlidis [1977], Pugh [1983], Rock 

[1975], Tanimoto and Klinger [1980], Ullman [1979], and Winston. [1975, 

1977]. Mackworth [1983] gives an excellent overview of the past decade's 

work on computer vision. 

6. THEOREM PROVING 

Researchers have also remained very active in the study of theorem­

proving techniques and in using such techniques in AI systems. Wos [1983] 

describes one ofthe most successful theorem-proving systems, an "automat-
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ed reasoning assistant" (called AURA) which was successfully used to an­
swer some previously open questions in mathematics and formal logic. 
AURA has also been used for design and validation of logic circuits. 

Resolution-based theorem provers have continued to be of interest. 
Kowalski [1975], Sickel [1976], and Stickel [1982] describe methods to 
make resolution more efficient by storing unifications in "connection 
graphs." Stickel {1983] describes a recent resolution-based theorem-proving 
system, with comparisons to other variations of resolution. /JCA/8 presents 
several other papers on resolution. 

AI researchers have become very interested in using theorem-based sys­
tems to represent various "higher-level" reasoning problems. Many have fo­
cused on "nonmonotonic logic," which allows reasoning about statements 
that can have exceptions and might be retracted (e.g., "all birds can fly"). 
(See, for example, McDermott and Doyle [1980], McCarthy [1980}, Reiter 
[1980], and Moore [1983].) This is closely related to "default reasoning," in 
which statements are accepted by default (see, for example, Winograd 
[1980], Rich [1983], and Nutter [1983].) McCarthy [1979] has continued to 
study the logic of reasoning about knowledge and action. (See also Moore 
[1979].) /JCA/8 has numerous other papers related to such logical systems. 
The reader should also consult a text edited by Mandani and Gaines [ 1981] 
on "fuzzy reasoning," which includes recent papers on the field originated 
by Zadeh (1965, 1968). 

The supplement to Chapter 3, above, describes the work ofLenat, who 
studied the development of concepts in mathematical theories and has been 
a leader in work on expert systems. As Nilsson [1984] points out, much of 
the work on expert systems can be viewed as an application of theorem prov­
ing: most expert systems make use of production rules and can be viewed as 
"backward-chaining theorem provers." An important development has 
been the use of production-rule systems to represent the "meta-level" con­
trol structures of expert systems, in addition to representing expert knowl­
edge within those systems (Genesereth and Smith [1982]). Another achieve­
ment is the creation of a widely accepted programming language (PROLOG) 
for implementing production-rule systems, which has become a major com­
petitor of LISP in AI research efforts (Colmeraurer [1975], Warren et al. 
[1977], and Kowalski [1979]). Much of this work can be related to the earlier 
work ofHewitt ( 1972) described in Chapter 6. Weyhrauch [ 1980] developed 
a theory of"semantic attachments" between propositional and procedural 
systems. 

Work has also continued on "automatic programming" and its relation 
to theorem proving. Though in many ways automatic programming remains 
one of AI's most difficult challenges, advances have been made. Barstow 
[1977] describes a knowledge-based system for automatic programming, 
which is an important step. Guiho [1983] illustrates the state of the art in 
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proving that programs are correct. Boyer and Moore [1983] use theorem 

proving to show the correctness of the RSA encryption algorithm. Reddy 

and Jayaraman [1983] and Naqvi and Henschen [1983] give recent exam­

ples of methods for transforming mathematical problems into programs that 

solve them. Balzer [ 1981] and others have developed a high-levellanguage 

(GIST) for specifying behavior of programs, and have studied the conversion 

of specifications into programs. D. R. Smith [1983] has presented another 

interesting paper on transformation of specifications into programs, using a 

"problem-reduction" approach. Mostow [1983b] describes the transforma­

tion of specifications into VLSI circuits. 

7. SEMANTIC INFORMATION PROCESSING 

Chapter 7 concerns the ability of machines to use languages, and in 

particular to process the "semantic information" (i.e., "meaning") of sen­

tences in languages. AI has continued its progress in the area, of course, 

building on the research summarized in Chapter 7. 

One area of progress has been in the study ofhow "semantic informa­

tion" can be represented for processing by computers. This study is also 

called "knowledge representation" and has become a major subfield of AI. 

The supplementary material for Chapter 3, above, summarizes AI's progress 

in the field of "knowledge representation" in general. 

Many results have been obtained for the "syntax problem," that is, how 

computers can be made to parse natural (and artificial) languages. To men­

tion just a few: Kay [ 1980] ·describes a flexible method for defining non­

deterministic P::trsers, called the "active chart parsing" method. Marcus 

[ 1980] shows that LR(k) parsing can be extended to give deterministic, effi­

cient parsing ofEnglish (see also Stabler [ 1983]). Gazdar [ 1983] reasons per­

suasively that natural languages might be represented by generalizations of 

context"free grammars. · 
Several researchers have studied how AI systems can use knowledge 

about the direction or context of a conversation to aid in understanding ~en­

tences within the conversation. Much of this work has relied on the concept 

of"scripts" introduced by Schank and Abelson [1977]: a script:is a stereo­

typical sequence of possible situations and events. Pazzani [1983;]gives are­

cent example of an AI system that uses scripts to communicate interactively 

with a human. Additional conceptual structures for representing dialogues 

have be~n studied by Bobrow et al. [1977]. Still others have studied the use 

of hierarchy and recursion in structuring texts and dialogues (McKeown 

[1983], Grosz [1977], and Reichman [1981]). Hayes and Carbonell [1983] 

have studied f'metalanguage" phrases and sentences, which refer to other 

phrases and sentences in the same dialogue. 
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Chapter 7 notes that the meaning of a sentence is often more closely re­
lated to the speaker's goals than it is to the sentence itself. Earlier discussions 
of this "speech-act theory" were given by Austin [1962] and Searle [1969]. 
Recently, researchers have developed theories of how systems can plan the 
use oflanguage to achieve goals (Cohen and Perrault [ 1979]). Appelt [ 1982] 
describes an AI system that plans its generation of Engl-rsh sentences. 
CarberrY[1983] describes a system that understands a speaker's goals in 
order to answer questions appropriately. 

Major progress has been made in building computer systems that can 
recognize and synthesize human speech. The HEARSAY projects demon­
strated AI's viability for this task and also showed the value of interacting 
problem solvers for different subdomains of the problem (Erman et al. 
[ 1980]). Barr et al. [ 1981] survey work on speech understanding and in par­
ticular discuss search methods used in programs for understanding speech. 
Of special interest is the "beam-search" method, which was found to be use­
ful in the HARPY speech-understanding system: beam search is essentially a 
breadth-first, nonbacktracking heuristic search that expands only high­
scoring nodes at each level, abandoning paths that encounter low-scoring 
nodes (Newell [1978]). More recently, Huttenlocher and Zue [1983] de­
scribe a set of phonological constraints that enable robust-speech recogni­
tion. Teja and Gonnella [1983] survey the technology of speech 
synthesis. 

Chapter 7 also considers the advantages of interacting networks, or col­
lections, of question-answering systems. Barret al. [ 1981, p. 343] write that 
this approach, known as the HEARSAY architecture because of its indepen­
dent use by Erman et al. [1980], has been of great value in AI systems for 
many diverse applications. Stanfill [1983] has implemented a particularly 
nice example ofthis approach in a collection of interacting expert systems 
that together solve problems in simple mechanics. The collection consists of 
experts for subdomains of algebra, linear geometry, solid geometry, "shape," 
mechanics, pneumatics, and "qualitative relations." Experts in higher-level 
domains can access lower-level domains through queries. Jackson [1984] in­
cludes and extends the "GQA" /HEARSAY concept in a design for a general­
purpose AI conceptual context. 

AI language understanding has progressed to the point where it is now 
becoming a frequent computer interface for some applications, especially 
for computer database systems. An English database interface (called "In­
tellect") was recently announced as a product for commercial databases by a 
major manufacturer (Taylor [1984]). Montague [1970] formalized a theory 
of syntax and semantics for natural languages that has been the basis of 
much research on AI-database interfaces (Clifford [1983]). Reiter et al. 
[1983] summarize the present state of the field of artificial intelligence and 
databases, and the lines along which it is developing. 
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The supplementary material for Chapter 2, above, discusses a question 
some philosophers and cognitive psychologists have raised about the basic 
premise of AI semantic information. processing, namely whether intelligent 
"understanding" can really be equivalent to manipulating symbols and data 
structures. This, of course, is a very important question for further 
thought. 

Again, the above summary can cover only some of the accomplish­
ments of the past decade in this research area. For more extensive coverage, 
the reader is referred to Barr et al. [ 1981) and the various IJCAI Proceedings. 

Rosenschein [1983] provides an insightful overview of the current state and 
probable future directions of natural-language processing. 

8. PARALLEL PROCESSING AND 
EVOLUTIONARY SYSTEMS 

AI research has now clearly demonstrated the value of parallel process­
ing and evolutionary systems in several domains. The supplements to Chap­
ters 2 through 7, above, mention several examples. I shall briefly recapitu­
late and add to these examples. However, the reader should first be referred 
to an excellent collection of papers on parallel processing, edited by Kuhn 
and Padua [1981). 

Regarding evolutionary systems, little more need be written, except 
that successes using this approach have been noted in supplements to Chap­
ters 2 through 7. Much of this work is based on the work of Holland, de­
scribed in Chapter 8. 

It should be expressly noted that Chapter 8's discussion of parallel sys­
tems in terms of cellular automata and Turing machines is very theoretical. 
Actual parallel-processing systems have been based on more practical archi­
tectures, often via components and technologies developed for serial proc­
essors. For example, an important approach has been the construction of ar­
rays of computer processing-units. More flexible (but sometimes less 
efficient) designs have avoided the array structure and enabled several com­
puters to share common memories and communications buses. Several ex­
amples of these approaches are given in Kuhn and Padua [1981 ]. 

In addition, a "dataflow" architecture for parallel-processing systems 
has been developed that departs from the conventional von Neumann logic 
used in serial computers. The essence of the dataflow concept is that instruc­
tions execute whenever data flows to them, with data normally flowing to 
multiple instructions at once. The von Neumann design thinks of control 
flowing serially from one instruction to the "next" Dennis [1979] gives an 
overview of the dataflow architecture he developed. 
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Parallel processing has found applications in many AI domains. Uhr 
[1980] gives cogent reasons why computer vision systems should be struc­
tured as serial layers oflarge-scale parallel~processing systems. Duff[1976] 
describes CLIP4, an image processor consisting of a large-scale array of mi­
croprocessors. Kruse [ 1980] describes PI CAP, a parallel bit-slice architecture 
for image analysis. Fennell and Lesser [1977] discuss the use of parallelism 
in the HEARSAY-II speech-understanding system. Fahlman, Hinton, and 
Sejnowski [1983] discuss the use of parallel processing for several AI pattern­
recognition problems. 

As Uhr suggests, it now seems clear that large-scale parallel systems will 
ultimately achieve enormous computation rates. The design of NASA's 
"massively parallel processor" array of 16,384 microprocessors predicted 
over 6 billion additions per second (Batcher [1980]). Jackson [1979] envi­
sioned the creation of"very large-scale parallel" (VLSP) computer systems, 
which would combine 100,000 or more microprocessors in a single system, 
yielding up to a trillion operations per second. Stolfo and Shaw [1982] de­
scribe a tree-structure design for up to 100,000 microprocessors, specifically 
oriented to the parallel execution of AI production systems. 

The potential applications of VLSP systems could be quite profound, 
for artificial intelligence as well as for other applications of computers. To 
appreciate this, consider that 100,000 microprocessors could total 100 bil­
lion transistors, while the human brain has about 12 billion neurons. We 
may imagine the most natural applications of such systems by looking at 
things we now consider impossible and asking if they might be done by 
100,000 computers working in concert. This is left as an entertaining exer­
cise for the reader. 

9. THE HARVEST OF ARTIFICIAL 
INTELLIGENCE 

Chapter 9 discusses the general applications of artificial intelligence, 
concentrating on robotics and on possible future consequences of AI sys­
tems. In many ways this chapter remains extremely relevant to present re­
search, for while major progress has been made in the development of 
robotics, major questions remain regarding the future of AI. 

Indeed, the progress in robotics has intensified our appreciation of AI's 
possible consequences. Public concern is growing about increases in unem­
ployment caused by automation. Japan and other nations are developing 
factories run almost entirely by robots. And Nilsson [1983] reminds us that 
AI also has the potential to perform many white-collar jobs. Coiffet and 
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Richard [ 1983] have provided several volumes on robotics alone, while 
Ayres et al. [1983] have studied the applications and social implications of 
robotics. IJCAI8 contains other recent papers on robotics. 

We should not be too sanguine that AI will have only positive conse­
quences. Rather, we should carefully note three trends over the past decade: 
the price of computer hardware has fallen steadily and dramatically; the 
power of computer hardware has grown just as steadily and dramatically; AI 

research has made steady and dramatic progre~s toward the goal of general­
purpose AI systems that could ultimately program themselves, with little 
need for human programmers. We may expect all of these trends to contin­
ue, and it is difficult to be sure of their rates of change and technical limits. 

If researchers are largely successful in emulating human intelligence 
with computers, and if the hardware-cost and performance trends continue 
for a sufficiently long time, then it is conceivable that AI systems will com­
pete against the human work force throughout our economy, and for jobs of 
all types and levels, not just those on assembly lines. 

This would not happen overnight, if it happens at all. But it might hap­
pen more quickly than we expect. For example, current AI systems place us 
on the brink of automating a basic secretarial task, taking dictation. With 
other jobs it may take decades or longer before machines compete for them. 

It may be that economies ultimately provide only a finite number of 
gainful tasks and that jobs lost to automation are not necessarily replaced by 
jobs elsewhere. If AI systems do cause permanent unemployment, then we 
should consider ways to insure that AI will support those it removes from 
work. Duchin [ 1983] suggests possible mechanisms for this, such as a "nega­
tive income tax." 

If we can develop such mechanisms, then AI may lead to a very positive 
future, with more leisure time and a higher standard ofliving for the general 
public (Boden [1983]). If so, then artificial intelligence will become one of 
our most humanistic sciences. 
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INTRODUCTION 

INTRODUCTION 

"Artificial intelligence" is the ability of machines to do things 

that people would say require intelligence. Artificial intelligence (AI) 

research is an attempt to discover and describe aspects of human intel­

ligence that can be simulated by machines. For example, at present 

there are machines that can do the following things: 

1. Play games of strategy (e.g., Chess, Checkers, Poker) and 

(in Checkers) learn to play better than people. 

2. Learn to recognize visual or auditory patterns. 

3. Find proofs for mathematical theorems. 

4. Solve certain, well-formulated kinds of problems. 

5. Process information expressed in human languages. 

The extent to which machines (usually computers) can do these 

things independently of people is still limited; machines currently exhibit 

in their behavior only rudimentary levels of intelligence. Even so, the 

possibility exists that machines can be made to show behavior indicative 

of intelligence, comparable or even superior to that of humans.' 

Alternatively, AI research may be viewed as an attempt to develop 

a mathematical theory to describe the abilities and actions of things 

(natural or man-made) exhibiting "intelligent" behavior, and serve as a 

calculus for the design of intelligent machines. As yet there is no "mathe­

matical theory of intelligence," and researchers dispute whether there 

ever will be. 
This book serves as an introduction to research on machines that 

1 
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display intelligent behavior (note 1-1) .1 Such machines somefimes 
will be called "artificial intelligences," "intelligent machines," or "me­
chanical intelligences." 

The inclination in this book is toward the first viewpoint of AI re­
search, without forsaking the second. Since AI research is still in its 
infancy, it is therefore prudent to withhold estimation of its future. It is 
best to begin with a summation of present knowledge, considering such 
questions as: 

1. What is known .about natural intelligence? 
2. When can we justifiably call a machine intelligent? 
3. How and to what extent do machines currently simulate intel­

ligence or display intelligent behavior? 
4. How might machines eventually simulate intelligence? 
5. How can machines and their behavior be described mathe­

matically? 
6. What uses could be made of intelligent machines? 

Each of these questions will be explored in some detail in this 
book. The first and second questions are covered in this chapter. It is 
hoped that the six questions are covered individually in enough detail 
so that the reader will be guided to broader study if he is so inclined. 
For parts of this book, some knowledge of mathematics (especially sets, 
functions, and logic) is presupposed, though much of the book is under­
standable without it. 

TURING'S TEST 
A basic goal of AI research is to construct a machine that exhibits 

the behavior associated with human intelligence, that is, comparable to 
the intelligence of a human being (note 1-2). It is not required that the 
machine use the same underlying mechanisms (whatever they are) that 
are used in human cognition (note 1-3), nor is it required that the 
machine go through stages of development or learning such as those 
through which people progress. 

The classic experiment proposed for determining whether a machine 
possesses intelligence on a human level is known as Turing's test (after 
A. M. Turing, who pioneered research in computer logic, undecidability 

1 The notes at the ends of chapters are for the benefit of the careful reader, and are intended to clarify questions that may arise in the text. 
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theory, and artificial intelligence). This experiment has yet to be per­

formed seriously, since no machine yet displays enough intelligent 

behavior to be able to do well in the test. Still, Turing's test is the basic 

paradigm for much successful work and for many experiments in 

machine intelligence, from the Samuel's Checkers Player to "semantic­

information processing" programs such as Colby's PARRY or Raphael's 

SIR (see Chapters 4 and 7). 

Barrier 

Barrier 

Sources, one of them 
human one a machine . 

B 

c 

Interface 
controlled 

by 
experimenter 

Barrier Barrier 

Figure 1-1. A diagram of Turing's test. 

Human 
interrogator 

A 

Basically, Turing's test consists of presenting a human being, A, 

with a typewriter-like or TV-like terminal, which he can use to con­

verse with two unknown (to him) sources, B and C (see Fig. 1-1). The 

interrogator A is told that one terminal is controlled by a machine and 

that the other terminal is controlled by a human being whom A has 

never met. A is to guess which of B and C is the machine and which is 

the person. If A cannot distinguish one from the other with significantly 

better than 50% accuracy, and if this result continues to hold no matter 

what people are involved in the experiment, the machine is said to 

simulate human intelligence (note 1-4). 
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Some comments on Turing's test are in order. First, the nature of Turing's test is such that it does not permit the interrogator A to ob­serve the physical natures of B and C; rather, it permits him only to observe their "intellectual behavior," that is, their ability to communi­cate with formal symbols and to "think abstractly." So, while the test does not enable A to be prejudiced by the physical nature of either 
B or C, neither does it give a way to compare those aspects of an entity's behavior that reflect its ability to act nonabstractly in the real world-that is, to be ·intelligent in its performance of concrete opera­tions on objects. Can the machine, for example, fry an egg or clean a house? 

Second, one possible achievement of AI research would be to pro­duce a complete description of a machine that can successfully pass Turing's test, or to find a proof that no machine can pass it. The com­plete description must be of a machine that can actually be constructed. A proof that there is no such constructible machine (it might say, e.g., "The number of parts in such a machine must be greater than the number of electrons in the universe.") is consequently to be regarded as a proof of the "no machine" alternative. 
Third, it may be that more than one type of machine can pass Turing's test. In this case, AI research has a secondary problem of creating a general description of all machines that will successfully pass Turing's test. 
Fourth, if a machine passes Turing's test, it means in effect that there is at least one machine that can learn to solve problems as well as a human being. This would lead to asking if a constructible machine can be described which would be capable of learning to solve not only those problems that people can usually solve, but also those that people create but can only rarely solve. That is, is it possible to build mechanical intelligences that are superior to human intelligence? 
It is not yet possible to give a definite answer to any of these questions. Some evidence exists that AI research may eventually attain at least the goal of a machine that passes Turing's test. 
It is clear that the intellectual capabilities of a human being are directly related to the functioning of his brain, which appears to be a finite structure of cells. Moreover, people have succeeded in construct­ing machines that can "learn" to produce solutions to certain specific intellectual problems,· which are superior to the solutions people can produce. The most notable example is Samuel's Checkers Player, which has learned to play a better game of Checkers than its designer, and which currently plays at a championship level (see Chapter 4). 
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NATURAL INTELLIGENCE 

The definition of "intelligence'" in Webster's 'Third International 

Dictionary (1966) reads: 

lin·t!ll·li·gence \~n.•telojon(t)s\ n -soften attrib [ME, fr. MF, 

~· ~~· -~-~ ;~~~~g!~'!~T~L~~~~~]ni, :,.nt(f~i~e~h~Pf:~~&;rtoi 
understanding :·capacity to know or apprehend : INTELLECT, 

REASON ("'. which emerged during the revolutionary cycles of 

matter as the highest form yet achieved -Hermann Reith) 

(conceived of history as the expression of a divine ,..,.,) (2) 

Christian Science : the basic eternal quality of divine Mind 

b : the available ability as measured by intelligence tests or by 

other social criteria to use one's existing knowledge to meet 

new situations and to solve new problems, to learn, to foresee 

problems, to use symbols or relationships, to create new re­

lationships, to think abstractly : ability to perceive one's en­

vironment, to deal with it symbolically, to deal with it effec­

tively, to adjust to it, to work toward a goal : the degree of 

one's alertness, awareness, or acuity : ability to use with 

awareness the mechanism of reasoning whether conceived as a 

unified intellectual factor or as the aggregate of many intellec­

tual factors or abilities, as intuitive or as analytic. as organ­

ismic, biological, physiological, psychological, or social in 

origin and nature c: mental acuteness : SAGACITY, SHREWD­

NESS (did all he was asked to do with ,...... and great good 

humor) 2 a : an intelligent being; esp : an incorporeal spirit 

: ANGEL (hierarchies of angelic ,......s -S.F.Mason) b : a per­

son of some intellectual capacity (all those .......,s we have agreed 

to call great -Times Lit. Supp.) (the greatest all-round "' 

writing in England -P .S.O'Hegarty) 3 a : the act of under­

standing : COMPREHENSION, KNOWLEDGE (faith is necessary to 

the ........, of the Christian mysteries -Encyc. Americana) b (1) 

: information communicated : NEWS, NOTICE, ADVICE (more 

weight is- laid upon ........, than on editorials -Horace Greeley) 

(the joyful......., that there is hope -Georgina Grahame) (from 

the engine-room voice tube came ........, of more importance -

M.S.Boylan) (2) : interchange of information : COMMUNICA· 

TJON (accused of maintaining ,...._, with the enemy) (3) obs : a 

piece of information- usu. used in pl. (4) archaic: common 

understanding or mutual relations : ACQUAINTANCE, INTER­

COURSE (5) : evaluated information concerning an enemy or 

possible enemy or a possible theater of operations and the 

conclusions drawn therefrom; also : the section, agency, or 

persons engaged in obtaining such information : sECRET 

SERVICE (investigated me and told me I was qualified for Navy 

~ -T.F.Murphy) (an~ bureau) (available to American and 

allied........, organizations -L.W.Doob) syn see MIND 

2inte1Ugence vt -ED/-ING/~s obs : to bring tidings of (some­

thing) or to (someone) 

(Reprinted by permission from Webster's Third International Dictionary 

© 1971 by G. & C. Merriam Co., Publishers of the Merriam-Webster 

Dictionaries.) 

To summarize the definition in one phrase, one might say- that 

intelligence is the ability "to act rightly in a given situation." Although 

one could imagine an entity that always behaves "rightly," without mak­

ing any errors, AI research is more concerned with the concept of partial 

success, with building machines that can make mistakes, but which can 

also change their behavior with time and perhaps stop making mistakes. 
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Intuitively, AI research is concerned with building machines that can 
"adjust" or "adapt" to certain environments, and which in effect learn 
to solve problems within these environments. This corresponds with the 
ordinary conception of human intelligence-that it is limited, but that 
it can learn and thereby improve its performance of certain tasks with 
time. 

Surprisingly little is known concerning the limitations of human 
intelligence. No one has made any complete survey of the problems that 
can be solved by human beings. The ability to solve certain types of 
problems has been studied and made the basis of "intelligence" tests, 
but the generality and validity of these tests is disputable. Isaac Newton, 
for example, might have scored low on such tests when he was an 
adolescent; yet he is estimated by some to have had an: intelligence 
quotient (IQ) near 200. One of the shortcomings of these tests is that 
they predict little concerning the development of a person's intelligence, 
especially what problems he could learn to solve. 

Evidence concerning human intelligence can be obtained from four 
major sources: history, introspection, the social sciences, and the bio­
logical sciences. Inclu.ded in the social sciences are psychology, anthro­
pology, sociology, economics, political science; among the biological sci­
ences are neurobiology, biochemistry, biology. "Introspective" sciences 
might include mathematical logic, systems analysis, and music theory. 

Evidence from History 
A discourse on the full history of human intelligence is certainly 

beyond the bounds of this book. Some allusions to this history can be 
woven in while presenting evidence from other sources. 

Evidence from Introspection 
Introspection has .yielded a wealth of seemingly ambiguous and 

contradictory views of intelligence. One important introspective work 
familiar in the Western world is Descartes' Discourse on Method. This 
work purports to be ultimately based only on the notion of thought: "I 
think therefore I exist." .So far as the work concerns intelligence, 
Descartes made a clear distinction between animals and human beings. 
Animals, he believed, are not much different from machines; anything 
an animal can do he could imagine being done by a sufficiently com­
plicated machine. People, however, are different from either animals or 
machines, since people have an ability to "communicate" with each 
other, to use signs, sentences, and languages that are clearly ndt com­
pletely the result of instinct or construction. Descartes regarded the 
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ability to use languages as the most significant indication that something 

has human intelligence: ". . . for the word is the sole sign and the only 

certain mark of the presence of thought hidden and wrapped up in the 

body .... " 2 

Descartes was partially correct in his observation that animals can­

not communicate in the same fashion as people. There is recent evidence 

that dolphins have some sort of language, but the nature of their lan­

guage is still not understood (Lilly, 1967). Chapter 7 explores the 

relationship of intelligence and language. 
Another introspective way of looking at the mind is that provided 

by the "rooms of consciousness" concept. In this system a human mind 

is viewed as being able to inhabit and move among a set of rooms, which 

are distinguished from each other by their lighting-Socrates' metaphor 

of the Cave in Plato's Republic is a good example. Various rooms can 

be associated with different levels and abilities of intelligence; this 

introspective metaphor has been developed in Eastern cultures by Buddha 

and Lao Tse, as well as in the Western world by other philosophers. 

Also, the significance of "light" in the metaphor is typical. 3 Other 

variations on the metaphor speak of some rooms as possessing illusions 

and dreams. 
One viewpoint of intelligence, which is often developed by intro­

spection, is that there is a distinction between scientific (intellectual) 

learning and spiritual learning abilities. Scientific learning is said to rely 

on certain rules for the belief, derivation, refutation, and proof of proposi­

tions about the universe. Presumably, science requires a language for 

describing events and the meanings of measurements, and is dependent 

on the existence of invariant, reproducible things in the universe. 

"Spiritual" learning, on the otper hand, does not reguire words or lan­

guage and may evade intellectual reasoning processes. For various 

people, introspection has yielded, for example, the following notions of 

nonintellectual learning: 

1. Subconscious learning, in which knowledge is somehow ob­

tained without conscious reasoning. 
2. Emotional learning, in which knowledge is perceived as an 

emotion, without reasoning. 
3. Inspired learning, in which knowledge is given to one in­

stantaneously, without reasoning, perhaps by a deity. 

-----
2 From a letter of 1647 to Henry More, translated by L. C. Rosenfield in 

the Annals of Science, Vol. 1, No. 1 (1936). Descartes did not claim that animals 

are machines; he said that they do possess "life" and "feeling." 
3 From a physical standpoint the relation of light to intelligence seems to be 

simply that light waves (electromagnetic radiation) are the fastest means for 

transmitting information. 
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4. Patadoxicallearning, in which one is able to perceive knowl­
edge that is self-contradictory, regardless of how it is ex­
pressed in words, and therefore beyond logical or scientific 
learning. 

Again, this introspective viewpoint has been developed both in 
Eastern. and Western cultures. The reader who wishes to study the 
subject deeply may wish to read Dostoevsky, Freud, Jung, and Lao 
Tse. Various people have, of course, argued that emotional and sub­
conscious learning can be scientifically explained. 

The viewpoint that intelligence in certain forms cannot be ex­
plained logically or scientifically is relevant to artificial intelligence re­
search. If this viewpoint js correct, then presumably there are some 
types of knowledge that machines cannot be said to possess and there 
are some ways of gaining knowledge they cannot use. Chapter 2 dis­
cusses the nature of machines and of scientific and mathematical de­
scriptions of things more thoroughly. For now, the viewpoint expressed 
there is that while it can be argued mathematically that there are entities 
which cannot be completely described mathematically, there is probably 
no way of proving in the real world that something is beyond the power 
of science to explain. All that can be proved is that science has so far 
not explained it 

Thus, no comment is made here as to the existence or nature of 
spiritual learning: What is important is whether there are some forms of 
learning and intelligence that can be exhibited by machines. Whether 
"some". means "all" is, scientifically speaking, an open question. 

Perhaps not surprisingly, introspection as a technique for gaining 
knowledge about intelligence often seems to yield only "circular" ques­
tions (Can one learn how to learn? If one knows something, does one 
know that he knows it?). Even so, introspection is probably the source 
most commonly used in artificial intelligence research for information 
about specific problem-solving abilities of human intelligence. Most re­
searchers use their own experience at having solved problems whenever 
they are attempting to make a machine solve one; usually if you are 
going to try to design a machine that does something, it is a good idea 
to try doing it yourself first and see what happens. 

This does not mean that your machine will wind up imitating the 
human approach to the problem. Actually, machines will often work 
more efficiently on certain problems when they operate in ways that 
may seem quite foreign to human reasoning patterns. AI research is con­
cerned with finding machines that simulate the abilities of human intel­
ligence-that is, with finding machines that reproduce the outward 
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abilities of human intelligence, though not necessarily the inner means 

people use to achieve these abilities. 
Probably the major advantage to using introspection in artificial 

intelligence research is simply that it can give the_researcher an idea of 

the information relevant to the problem he is trying to make a machine 

solve. One of the innate abilities of intelligent creatures seems to be 

an ability to discard large amounts of information, and focus only on 

that which is "relevant." 

Evidence from the Social Sciences 

The evidence from the social sciences concerning human intel­

ligence is scanty. Only a few general things are known with certainty: 

1. Human intelligence is a species-wide trait; there does not seem 

to be any clear distinction between the innate learning and problem­

solving abilities of infants belonging to the various races. Thus, a normal 

child, properly raised, can learn the language of any human culture, 

regardless of the language spoken by his biological parents. 

2. The intelligence of an individual develops with time and is 

strongly affected by the nature of his environment. For example, identi­

cal twins (who have, ba,rring mutations, the same genetic endowment) 

raised in different environments have been found to show differences 

in their intelligence quotients as great as 24 points. 

3. The intelligence of an individual is also strongly affected by 

his heredity. Thus, identical twins raised in approximately the same 

environment tend to show less difference in their IQs than do other types 

of sib1ings. 
4. The intelligence of an individual may vary with respect to dif­

ferent problem domains-we express this by saying that different in­

dividuals may have different "aptitudes." 

Experiments performed by Piaget (1946 et seq.) and others have 

shown that the intelligence of a child develops in stages. Precisely why 

this is so is unknown, but it seems clear that these stages do exist and 

that the child must accumulate sufficient experience operating within 

each stage before he can progress completely to the next. Piaget dis­

tinguished four stages: sensori-motor, preoperational, concrete opera­

tional, and formal operations. 
Sensori-motor Stage. This stage lasts for the first year and a half 

to two years of the individual's life. During this stage he makes the 

transition from using only his instinctive abilities to developing an 

elementary ability to reason causally and use signals. By the eighth 
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week of an infant's life he is able to discriminate visually between dif­
ferent depths and orientations of objects and to visually perceive objects 
as having constant size and shape, even when they are receding and 
rotating. After about the eighth month a baby can understand that a 
rattle will shake only when he pulls on a string attached to the rattle. 
Also, after the eighth month, an infant develops vocal and bodily 
gestures that refer to events and objects in his environment: he will, 
for example, develop facial expressions and learn to make sounds that 
represent things he desires or wishes to avoid. 

Preoperational or Symbolic-Operational Stage. This stage lasts 
roughly from the second to the seventh year of the child's life. During· 
this stage the child learns the basic vocabulary of the language of his 
culture, and develops an ability to describe events in sentences (prior to 
this stage, he describes events with a single word). Also during this stage 
the child conducts extensive experiments in his environment and learns 
many different causal relationships. Most of his experimenting is, how­
ever, intuitively guided, as is also the way he describes things. If a 
child in this stage is asked what a jar is, he might say, "There's lemonade 
in it." Although he can distinguish between "all" and "some," his 
ability to express the distinction is limited: If he is shown a bouquet 
of flowers, only some of which are roses, and asked whether there are 
more roses or more flowers, he will typically respond that there are 
more roses. Toward the end of this stage a child can be taught to read 
and write. 

Concrete-Operational Stage. From age seven to age eleven the child 
is able to make very significant generalizations of his notions of causality. 
In particular, he is able to recognize the concepts of invariance, reversi­
bility, and conservation. Prior to this stage, a child, when shown two 
"congruent" glasses filled with the same amount of water, will say that 
they have the same amount of water; but if the water from one glass is 
then poured into a taller, thinner glass, he will say that the taller, thinner 
glass has more water. Only when he reaches the concrete-operational 
stage does he (evidently) realize that both glasses have the same 
amount of water, regardless of their shape. Also in this stage of develop­
ment, when presented with a bouquet of flowers only some of which 
are roses, a child will say there are more flowers than roses. 

Formal Operations Stage. From the age of eleven upward, the 
individual becomes able to operate logically with the form of an argu­
ment, independently of its meaning; that is, he recognizes factors in­
volved in an event and plans experiments that will give him knowledge 
about it. It is in this stage that the individual appears to develop a 
proficiency at reasoning abstractly with words. 
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Some caveats concerning these four stages should be stated. First, 

very little is known concerning the emotional and subconscious develop­

ment of a person's intelligence. Second, there are exceptions to the rate 

at which children go through these stages: Mozart, for instance, could 

play the piano and compose proficiently at the age of five. Gauss taught 

himself to read, could do complicated arithmetic when he was three, and 

had certainly reached the formal operations stage by the time he was 

eight or nine. 
Another set of basic facts about intelligence and learning are 

those developed by behavioristic psychology. Behaviorist psychologists 

have attempted to understand intelligent behavior by treating their 

subjects as "black boxes," presenting them with certain standardized 

situations. and then recording their reactions. They have been able to 

demonstrate certain phenomena repeatedly in several different species, 

including man. 
The results best known involve learning experiments in the form of 

the traditional "classical conditioning" and "instrumental, or operant 

conditioning." In both cases a conditioned stimulus (cs) that has neu­

tral intrinsic value to the animal (e.g., a light flash) is temporally paired 

with an unconditioned stimulus (ucs) that has a preexisting reward or 

pain value. In classical conditioning the ucs is followed by the cs 

despite the animal's response (e.g., Pavlov's induction of salivation in 

dogs when a bell was rung). In instrumental conditioning the subject's 

response to the cs determines whether he receives the ucs. Findings 

concerning learning in these situations include (Thompson, 1967): 

1. Up to a point, the stronger the ucs, the more rapid is the con­

ditioning. 
2. The most effective time relations for classical conditioning ap­

pear to be when the cs begins about a half-second prior to the 

ucs. As the time between cs and ucs increases, the efficiency of 

the conditioning decreases. 
3. The greater the time between trials, the fewer the trials required 

for conditioning. 
4. If the cs is repeatedly given without the ucs after conditioning 

has occurred, the conditioned response will extinguish, or die out. 

5. Following extinction, the conditioned response to the cs will 

exhibit spontaneous recovery in the absence of ucs presentations. 

6. If reinforcement is given only in some of the trials, conditi<,ming 

occurs more slowly, but is more resistant to extinction. 

7. If an additional neutral stimulus is temporally paired with the 

cs after conditioning, it will subsequently elicit .conditioned re­

sponses. 
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8. If conditioning and extinction series are repeated, both processes 
will occur progressively more rapidly. 

Behaviorist psychologists postulate that these forms of condition­
ing underlie all forms of intelligent adaptation, or learning. They have 
had difficulty, however, in analyzing the development of relatively com­
plex problem-solving behavior (such as that described by Piaget's 
findings). As yet, there is no very detailed explanation for the develop­
ment and abilities of human intelligence in terms of classical and 
operant conditioning. 

Evidence from the Biological Sciencel 
State of Knowledge. If a really detailed explanation for the in­

dividual human intelligence were to be given, it might well require a 
complete description of the human brain. Biologists are a long way 
from anything approaching such a description. This section, however, 
will present an overview of current knowledge and nescience, since for 
the person doing active research in artificial intelligence it is important 
to have such a summary. 

The Neuron and the Synapse. The human brain contains ap­
proximately 12 billion nerve cells, or neurons. It has been shown that 
each cell has from 5600 to 60,000 dendritic connections (incoming 
signal carriers); consequently, each must have equivalent numbers, on 
the average,- of axonal branches (outgoing signal carriers) contacting 
other neural cells (Cragg, 1967). Such numbers may indicate a storage 
and processing capability severaL orders of magnitude greater than cur­
rent computers, because we know so little about the functions that can 
be executed by neurons. 

The neuron is qualitatively quite different from "on-off" com­
ponents of current computers. An idealized neuron is shown in Fig. 1-2. 

The armlike projections from the cell body, or "soma," are called 
dendrites. Axons from other nerve cells contact the soma and dendrite 
proper or the dendritic spines (small projections from the dendritic 
surface) by meap.s of synapses (see Fig. 1-3). It is believed that axons 
synapsing with the dendritic or soma surfaces are inhibitory and those 
synapsing on the dendritic spines are excitatory to the neuron receiving 
their signals. 

Inpulses transmitted at the synapses add to or subtract from the 
magnitude of the voltage fluctuations that slowly wax and wane over 
the membrane of the soma. The electric currents are the result of a 

4 I am indebted to my friend and colleague Bryan Bruns for permission to adapt this section from an unpublished paper. 
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Figure 1-3. The synapse. 

change in the potential difference between the inside and outside of the 
cell body, caused by a disequilibrium of charged ions across the cell 
membrane (see below) . If the summation of the additions and decre­
ments to this current reaches a certain value (about 10 millivolts), an 
impulse is fired down the neuron's axon. Most neurophysiologists be­
lieve that the impulse is initiated at the axon hillock (the interface be­
tween the soma and the axon). However, there is recent evidence that in 
certain mollusk cells the impulse may be initiated inside the cell, and 
may not be a direct consequence of the soma's integrated slow waves 
(Pribram, 1971). 
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An electric impulse is propagated down the axon at a few feet per 

second; this propagation is based on a nerve membrane potential. The 

nerve membrane is a barrier composed of lipids (e.g., fats), proteins, 

and sugars, which selectively prevent large molecules and certain ions 

from entering or leaving the neuron. It selectively screens out sodium 

ions, and is freely permeable to potassium ions. This creates a cation 

excess outside the membrane, which opposes tendencies of the potas­

sium ions to equilibrate the charge or equilibrate the potassium con­

centration on both sides of the membrane. 
Consequently, not enough K+ ions move inside to compensate 

for the large number of Na+ ions on the outside of the cell, and this 

causes a potential difference across the membrane of about -70 milli­

volts. Initiation of the impulse at the axon hillock consists of a small 

10 millivolt change in the membrane potential, which causes the break­

down of the Na+ barrier, the influx of Na+ ions, and the efflux of K+ 

ions, and the consequent change in the nerve membrane potential to 

+40 millivolts. Immediately after these changes, enzymes embedded in 

the membrane "pump" the Na+ out of the cell and readjust it to the 

resting potential. This initiation triggers a similar breakdown in the 

adjacent membrane, and so the electric signal is carried down the axon. 

The amplitude and speed of the impulse are functions of the axon 

diameter, whereas the frequency is a result of the soma's integration of 

incoming stimulations and the consequent "decisions" to fire (Thomp­

son, 1967,pp. 129-163). 
Many of the longer axons are _!!.IJ?.elinated, that is, they possess a 

sheath of fat surrounding them which greatly speeds conduction and in­

sulates the axon from neighboring electrical activity. After multiple 

branchings, the axons become smaller in diameter and unmyelinated; 

when they reach another cell, they are quite small and the current is of 

low amplitude and going more slowly. Here it is possible that the 

eleatric potentials of neighboring axons from different neurons might 

interact, either potentiating or damping local electrical activity. 

The interface between the axon and dendrite of the contacting 

cells is the synapse. The impulse is transmitted across the "synaptic 

cleft'~ by chemical transmitters such as acetylcholine, norepinephrine 

and dopamine, seretonin, and certain amino acids. Different transmitters 

predominate in anatomically and functionally different portions of the 

brain and spinal chord. Acetylcholine, norepinephrine, and depamine 

have been shown to be packaged in very small vesicles in the pre­

synaptic membrane. On being activated by an impulse, these vesicles 

extrude the transmitter into the synaptic cleft, where it crosses the 100 

angstrom distance to combine with specific receptors on the post-
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synaptic membrane. This combination effects the opening of ionic 
gates, which cause either an increment or decrement in the general 
activity of the post-synaptic neuron. Excess transmitter is either de­
stroyed or taken up again by the presynaptic bouton to prevent flooding 
of the post-synaptic receptors and allow the synapse to prepare itself for 
the next synaptic transmission (Thompson, 1967, pp. 111-128, 192-
209; Weiner, 1971). 

Until recently it had been hypothesized that all synapses between 
a neuron and its follower neurons had the same presynaptic transmitter, 
were functionally the same (excitatory or inhibitory), and had receptors 
that opened up only one kind of ionic gate. However, work with 
Aplesia, a sea slug with conveniently large neurons and a simple nervous 
system, revealed several neurons that could both excite and inhibit 
their "follower" cells. These neurons all used acetylcholine as their 
transmitters. At the synapses that were excitatory, acetylcholine com­
bined with the post-synaptic receptors to open Na+ ion gates, whereas 
at the inhibitory synapses acetylcholine combined with the receptors to 
open Cl- ion gates. One of these multiaction neurons had a follower 
cell that had both kinds of receptors in the post-synaptic membrane. 
Here the rate of stimulation determined whether the excitatory or the 
inhibitory ionic gates would predominate. Acetylcholine stimulated a 
third type of receptor to open up K+ ionic gates that caused a longer 
lasting inhibition than the chloride gates had caused. Such work has 
shown that neurons with a single type of transmitter can have a variety 
of effects on their follower cells because. the determination of the 
resultant effects of neural transmission is a function of the differences 
in the post-synaptic receptors and the ionic gates that are opened 
(Kandel, 1970; Gardner & Kandel, 1972). 

Why, then, does the mammalian CNS have so many different trans­
mitters? It has been shown that stimulation by cholinergic neurons 
(these that use acetylcholine as their transmitters) and seretonergic 
neurons (those that use seretonin) causes certain hormonal-like changes 
in the follower neurons. Seretonergic stimulation causes a rise in c-AMP, 
a mediator common to many hormones, in the follower cell. Cholinergic 
stimulation causes a rise in the phosphitidal inositol of the follower cell. 
Eric Kandel has hypothesized that post-synaptic membranes may have 
two different classes of receptors. The ionophoric receptors bind with 
a common transmitter to open different ionic gates, thereby affecting the 
post-synaptic membrane potential; they are receptor-specific. The 
chemophore receptors combine with different transmitters to cause 
metabolic changes in the follower cell. The actions of these receptors 
are transmitter-specific (Fig. 1-4). The demonstration that neurons 
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Figure 1-4. Transmitter-specific receptors. 

affect one another's metabolic as well as electric states has brought to 

light an entirely new dimension in interneuronal communication. 

The most striking aspect of . the neuron is its multiinput, single­

output character. The slow potential on the soma apparently indicates 

a comparison of dendritical inputs on the basis of the temporal, struc­

tural, and qualitative nature of the synaptic input that results in the 

aU-or-none decision to fire. Whether this comparison is solely a function 

of electrical interactions, or reflects molecular conformations of the 

membrane (Barondes, 1970), or is also modified by some mechanism 

inside the cell is an open question. 

Biological Memory. Of fundamental importance to any system that 

wishes to modify its behavior on the basis of experience is an efficient 

memory storage and retrieval system. 

It appears that there are multiple stages in the development of a 

memory and its means of retrieval. Demonstration of how memory 

might function has come from psychological and biological experimenta­

tion, clinical observations of memory dysfunctions, and attempts to 

mimic the structure and function of human memory by computer 

simulation. These differing approaches to the study of memory have 

caused some confusion, especially in the meaning of such terms as 

short- and long-term memory. As will be seen below, caution should 

be used in interpreting what an author means by such terms. 

Psychologists have experimentally identified three types of mem­

ory. Sensory information storage (sis) is measured in tenths ,c?J f!. second. 

It serves to retain fleeting sensory data until the central nervous· system 
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( CNS) can process it. The SIS system results in the after-images you 
see when rapidly opening and closing your eyes. The SIS retains more data 
than the central nervous system can process during the short duration 
of the SIS trace. The CNS rapidly scans the SIS trace and retains that 
data of most interest to the perceiver. 

Short-term memory ( STM) as determined by various psychological 
experiments lasts about 30 seconds. A subject asked to remember three 
words for 18 seconds does so with ease. However, if asked to rapidly 
subtract 3's from a randomly assigned number during the intervening 
18 seconds, and then asked to recall the words, most subjects will not 
remember them. It is believed that the serial subtractions interfere with 
any subvocalized rehearsal of the words and with the consolidation of the 
three words to long-term memory (LTM). If a subject is given a series of 
30 words at the rate of one per second, and asked to recall them im­
mediately afterward, he remembers the beginning and end of the list 
best. 'If he is asked to subtract serial 3's immediately after seeing the 
list, the tail end of the curve disappears. Here, then, is a demonstration 
of which parts of the learning curve are a function of long-term as op­
posed to short-term memory. 

A major part of the psychologist's investigation of long-term 
memory has centered around the use of computer simulations; much 
of this will be covered later. For an excellent overview of the psycholo­
gist's approach to memory and mind functioning, see Lindsay and 
Norman (1972). 

When an individual suffers a fairly hard blow to the head, he 
· often cannot remember events immediately preceding his accident. This 
phenomenon is called retrograde amnesia; it may begin with loss of 
memory for several hours or days prior to the accident. The earlier 
memories usually return first, followed by the later until only events 
30 to 60 seconds prior to the trauma cannot be remembered (Jarvik, 
1972). Memories following the accident (anterograde memory) are 
likewise impaired and are more refractory to recovery. Such phenomena 
have also been noted in psychiatric patients who undergo electro­
convulsive shock therapy ( ECS). These observations fostered the idea 
that short-.term memory traces were transient electric events that 
eventually consolidated into long-term memories through chemical and 
biological changes in the brain. 

Normally, a rat placed on a pedestal in a cage with an electrified 
grid floor needs only one or two trials to learn not to jump down from 
the pedestal. Howev~r, if ECS follows these learning trials, the rat will 
not learn to avoid either the electrified grid or the added negative ex­
perience of going through ECS (Deutsch, 1969). The longer the interval 
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between the administration of the learning task and the ECS, the smaller 

the effect on long-term retention. However, investigators differ on 

how long after the learning trials the ECS is effective in preventing long­

term retention. Some say that ECS is not effective after 15 to 30 seconds, 

whereas others claim that ECS will impair long-term retention when given 

hours after the learning trials. 
Drugs that inhibit protein synthesis when given before learning 

trials do not impair learning, or the retention of that learning, for as 

long as 3 to 6 hours. Testing after 6 hours, however, shows a marked 

loss of memory. If the drug is given shortly after the learning task, 

memory is not inhibited. These results could suggest a "dual trace" 

theory of memory. Short-term memory and long-term memory would be 

separate processes; the former lasting up to 6 hours after the learning 

trial, the latter being initiated during learning and not susceptible to 

protein inhibition only a few minutes after the learning trial (Barondes, 

1970). The duration of this "short term" memory, however, is a func­

tion of how well the animal is trained, suggesting that the protein 

inhibitors might simply be weakening the long-term trace that has been 

derived from a short-term trace. 
Puromycin, which inhibits protein synthesis and has various other 

central nervous system effects, can cause retrograde amnesia when 

given up to several days following a learning situation. Normal saline, 

injected into the same1'lace as the puromycin, can reverse these effects 

and restore the memory. It has been suggested that puromycin may 

disrupt the retrieval rather than the storage of information ( J arvik, 

1972). 
The plethora of experiments dealing with ECS and drug effects on 

memory have resulted in a confused, controversial, and often contra­

dictory literature that is well reviewed by Deutsch ( 1969) and J arvik _ 

( 1972) . Perhaps the most reasonable hypothesis of the moment is the 

following: The short-term memory reported by clinicians, psychologists, 

and some. investigators to last about 30 seconds is indeed a transitory 

electrical reverberation that is consolidated into a more durable long­

term memory. However, the strength and accessibility of this long-term 

memory is quite variable and is a function of the number of ~etrieval 

traces laid down during learning and of the use of old retrieva:l traces 

and the construction of new retrieval traces to the long-term memory 

after the initial learning trial. 
Clinical observations have localized the hippocampus as that part 

of the brain responsible for the consolidation of memories. In the case 

of Henry M. (Barbizet, 1970), complete surgical, bilateral ablation of 

the hippocampi prevented him from learning anything new following 
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his operation. There was no change in IQ, no loss of preoperational 
memories, and no abnormality in his ability to recall digits immediately 
after hearing them. His crippling deficit involved an inability to recall 
anything that had happened earlier than a minute before the present 
or later than the day of his operation. 

A similar dysfunction is part of Korsikoff's syndrome, seen in 
chronic alcoholics. Here the pathology seems to affect the mammillary 
bodies, the dorsal thalamus, and the terminal fornix-areas of the 
brain, which along with the hippocampus, form part of the limbic sys­
tem. This system also is the center for innate emotions, feelings, and the 
regulation of hunger, thirst, rage, and sexual activities (Pribram, 1971). 
Patients with Korsikoff's syndrome will frequently be unable to remem­
ber anything that occurred during the course of their disease and will 
confabulate these memories if questioned. However, it appears that 
they do retain long-term memories (Bar bizet, 1970). 

Pathological dysfunctions in long-term memory such as Alzheimer's 
disease or senile dementia do not appear to be localized, but consist of 
diffuse damage throughout the cortex. Terminal Alzheimer's and severe 
dementia leave the patient completely unable to learn, communicate, 
and function or care for himself. 

These clinical studies have demonstrated that long-term memory 
stores are much less susceptible to damage than is the consolidating 
process. This is expressed in the general maxim that anterograde mem­
ory loss is nearly always greater than retrograde memory loss. 

The hippocampus appears to act as the "store" mechanism for the 
brain. It is interesting that this function is integrated with parts of the 
brain which attach emotional weight, pleasure or pain, to external per­
ceptions. Perhaps such emotive interest is necessary to activate the 
consolidation of a short-term percept. 

The search for the "engram," the biological material that is a 
memory, was initiated by Lashley in 1929. He would train animals to 
a task, surgically ablate well-defined areas of the cortex, and see if the 
animal still was able to perform the task. He found that long-term 
memories were very difficult to destroy. He might destroy up to 80% 
of an animal's visual cortex, and still the animal would retain the visual 
discriminations it had learned. From his studies it appears that a long­
term memory trace is diffusely spread throughout a significant portion of 
the brain. 

Assuming, quite simplistically, that memories of certain "percepts" 
might be localized to specific cells or association networks of cells, then 
long-term learning would take place when any two of these percepts were temporally paired (as in conditioning experiments) . Considering 
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the large number of interconnections between neurons, one might 

postulate that learning is the facilitation of preexisting synapses, per­

haps through an increase in transmitter receptors at the post-synaptic 

membrane or in transmitter substance in the presynaptic bouton. Long­

term learning could also be the growth of new connections between 

neurons or association networks, directed, perhaps, by some neural 

growth factor excreted only by excited neurons. 

Though it has been rather conclusively shown that adult neural cells 

do not reproduce, anatomical studies have shown that neural lesions are 

sometimes "repaired" by the growth of the dendritic and axonal net­

works of the remaining cells (Rose et al., 1969). It has also been shown 

that there are consistent differences in the brains of rats placed in a 

stimulating environment with other rats and various toys and in rats 

placed in an impoverished environment where they are isolated and have 

little stimulation. The former have thicker cortices, heavier occipital 

cortices, larger neutral cell bodies and nuclei, more dendritic spines, 

larger synaptic junctions, an increase in acetylcholine, and a greater 

number of glial cells (support cells for the neurons) (Rosenzweig 

et al., 1972}. The changes show, for the first time, that experience re­

sults in measurable brain alterations, but the behaviors, and the changes 

they caused, are too general to demonstrate underlying mechanisms, 

though they are consistent with both the synaptic facilitation and neural 

growth hypotheses. 
Perhaps the most outstanding example of information storage in 

nature is the DNA molecule that encodes all the information necessary 

for the construction of an entire organism within the structure of mole­

cules that weigh about 10-1
• gram (Watson, 1970); It has been sug­

gested that memories may be stored in a like fashion in DNA or RNA 

(the chemical that transfers the DNA message throughout an individual 

cell and regulates the production of cellular proteins). Some research­

ers claim that RNA or proteins transferred from animals conditioned to 

a certain task helps naive animals learn the task faster. However, no 

one has yet reproducibly demonstrated that RNA or more than a few 

small, specific proteins can cross the mammalian brain's blood-brain 

barrier ( Pribram, 1971). 
Hyden ( 1969) taught rats to balance on a wire and then examined 

for changes in RNA that part of the brain that control~ balance. He 

found that stimulated brain cells produced more RNA than any other 

tissue in the body. He also found that the type of RNA being produced 

had qualitatively changed. After stimulation, the RNA in the neural cells 

decreased, but there was a consonant increase of RNA in the neurons' 

glial cells similar to the RNA that had been produced in the neurons. 
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Evidently, learning causes changes in neurons, and the implementation 
of such a change in a cell necessarily involves the production of more 
and different RNA. The temporal contiguity of the disappearance of 
neural RNA and the appearance of similar glial RNA is provocative, but 
the experiments are still controversial and the significance of the results 
unclear. 

Although we have some idea of how memory is stored, how it is 
structured in storage, and how it is retrieved, we have little idea of the 
biological correlates of these processes. Work with simplified neural 
systems such as those in A plesia holds much promise for elucidating 
the biochemical dynamics that accompany new learning. 

Neural Data Processing at the Gross Anatomical Level. As in 
the case of the hippocampus and the limbic region, neurologists have 
ascribed general and even quite specific data processing functions to 
gross regions of the brain through the careful testing of patients with 
defined forms of brain damage. A specific example of this approach is 
the identification of the respective functions of the right and left cerebral 
cortices ( Gazzaniga, 1970). 

Nearly all people, excepting 15% of the left-banders, are left­
dominant for speech (that is, the left hemisphere of the brain is re­
sponsible for their capability to hear, understadd, and speak language). 
It is well known that the left hemisphere deals with the motor and 
sensory functions of the right side of the body, and vice versa. In man 
this is true for eyesight, where the left side of the brain sees the right 
visual field (those objects to your right), and vice versa (Fig. 1-5). The 
corpus callosum is a thick sheet of neural fibers that is the sole source of 
communication between the right and left hemispheres (Fig. 1-6). In 
patients with severed corpus callosums the separate functions of the 
two hemispheres can be studied by presenting visual data to either the 
left or right visual fields, or tactile data to either the left or right hands. 
A word presented to the left visual field cannot be vocalized by such a 
subject because the image is perceived by the right hemisphere. How­
ever, if the word is "banana" and the left hand (also controlled by the 
right hemisphere) must choose between a number of objects that can­
not be seen, the left hand invariably chooses the banana. Thus, the word 
has been perceived and translated by the right hemisphere into an ap­
propriate motor action, though the instructions and the word "banana" 
have not 'been consciously heard and the subject has no idea of what 
he did. 

Thus, we have two brains-one conscious in the sense that it can 
hear, understand, and repeat back what is said to it; and one that re­
acts to stimuli and performs activities that we will not be aware of 
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Figure 1-6. The corpus callosum. 

unless our corpus callosum is intact. It has been found that the left 
hemisphere is normally superior to the right in speaking, writing, 
calculating, and solving maze problems. The right is superior to the left 
in three-dimensional drawing and singing. 

Similar studies have shown that there are rather discrete areas of 
each cortex for visual, auditory, olfactory, gustatory, and somatic per­
ceptions and secondary processing. In addition, "association areas" 
have been identified, which integrate the various sensory modalities. 
For instance, the ablation of Wernicke's area results in the subject's 
inability to repeat words he reads or hears and. to emit meaningful 
sentences. Instead, strange strings of nonsense phrases and words 
are spoken. It is believed that destruction of this area disassociates 
the thinking, hearing, and seeing portions of the cortex from the area 
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that converts thoughts into the motor actions that lead to speaking. 

Ablations in Broca's area cause aphasia-the nearly complete inability 

to speak any words even though the patient can still write his com­

munications in a normal fashion ( Geschwind, 1972). 

While certain functions have been rather discretely localized, other 

tasks, such as the ability to recognize simple figures hidden in more 

complex figures, seem to be a function of how much material has been 

lost from any or all portions of the neocortex. 
Neural Data Processing at the Cellular Level. Digital computers 

typically have certain built-in information processing functions for coding 

and decoding input-output information, for the transferral of data from 

the storage units to the general registers, and for the handling of data in 

the general registers. Certain neural functions and organizations have 

been discovered for data processing; these will be discussed for the 

particular case of visual perception (see Chapter 5) . 

The retina of the eye converts patterns of photons into more con­

densed patterns of electric impulses in the optic nerve (there is about a 

tenfold contraction of the information). There are about 100 million 

rod and cone receptors in the retina. In each cell, carotene attached to 

the enzyme rhodopsin produces molecular complexes sensitive to visual 

wavelengths of light. Photons induce a structural change in carotene, 

and this change triggers a receptor-cell voltage potential that is com­

municated to the "bipolar" cells, which in turn innervate the ganglion 

cells of the optic nerve. The receptor, bipolar, and ganglion cells are 

interconnected by amacrine and horizontal cells, which regulate how 

many and which receptor cells will communicate with ganglia cells 

via the bipolar cells. In the macula densa portion of the eye there is one 

receptor. cell for each ganglion cell; in the other areas of the eye, up to 

100 receptor cells may stimulate a ganglion cell (Fig. 1-7). 

The electrical activity of all ganglion cells is greatest in the dark; 

when exposed to light, the interconnecting amacrine cells provide in­

hibitory "gates" that reduce the sensitivity of the surrounding receptors. 

This surround inhibition is responsible for the heightened contrast one 

sees at the borders of two different light intensities. When one looks at 

the border between light and dark shades, the dark border is darker 

than the rest of the dark shade and the light border is lighter than the 

rest of the light shade. In actuality the light intensity of each bar ,is uni­

form; the heightened contrasts are the result of surround inhibition. If 

one postulates that stimulated cells inhibit their neighbors' rate of firing 

to a degree related directly to the light intensity and inversely to the 

distance from the neighboring cells, and if the receptors are otherwise 

uniformly stimulated by the incoming light, then it follows that those 
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Figure 1-7. Surround inhibition. 

cells exposed to the lighter band and near the border will be stimulated 
as much as their fellow "light" cells. However, they will be inhibited 
less by their neighbors because some of their neighbors are "dark" 
cells which, because they are stimulated less by the dark band, will in­
hibit their neighbors less. Conversely, the dark cells near the border 
will be inhibited more than their fellow dark cells because some of 
their neighbors are the light cells, which inhibit their neighbors more 
than dark cells. Surround inhibition (more thoroughly explained in 
Ratliff, 1972) is one of the fundamental informational processing path­
ways used throughout .the mammalian brain as well as in the eye. 
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Some visual receptors cause their ganglion to fire when stimulated 

by light ("on"), when not stimulated ("off"), or only when the light 

changes ("on-off"). All receptors fire rapidly when first stimulated, 

which helps to explain why mammals preferentially attend to moving 

objects. One organization of the receptors in the receptive field of a 

single ganglion is the round field, where the center is on and the periph­

ery off, with an on-off interface between the two. Other receptive fields 

are shaped so that they respond preferentially to edges, curves, and lines 

(Spinelli, 1966). 
If any receptive field sees the same image for more than 30 seconds, 

the bipolar and amacrine cells adapt to the receptor stimulation such 

that the ganglion is no longer stimulated and the object no longer seen. 

Consequently, the eye is always moving so that the receptors will not 

see the same image for more than several seconds, though these move­

ments are normally very small. In the central nervous system, this 

mechanism is called habituation, and it allows the organism to screen 

out "background" noises when attending to a specific percept (Thomp­

son, 1967). 
The optic ganglia form a one-to-one projection to the lateral 

geniculate, where colors are mixed and the on-off responses of the 

ganglia are separated. A cell from the lateral geniculate may contact up 

to 5000 cells in the striate area of the occipital cortex (the rear end of 

the brain) where actual "seeing" takes place. Hiibel and Wiesel .dis­

covered very specific feature detection cells in the occipital cortex which 

are arranged in what seems to be an ascending hierarchy of complexity. 

The procedure that they and many other investigators have used is 

the recording of induced responses by microelectrodes. Microelec­

trodes are carefully placed into single neural cells in the brain. Then 

the animal is presented with very specific stimuli and the electrical re­

sponse of the single cell is recorded. 
"Simple" cells respond to a line at a certain angle in a certain small 

defined area of the retina. "Complex" cells· will respond similarly to 

a line, but at any point in a much larger retinal field. "Hypercom­

plex" cells require a given length .in .addition to ;a giv~n orientation in 

order to fire, and "higher order hypercomplex" cells respond only to 

lines that form certain angles. Cells responding to lines at a certain 

orientation are arranged in columns perpendicular to the surface of 

the visual cortex, and. groups of these columns responding to all the 

various orientations for a certain area of the retina are arranged to­

gether (Hlibel and Wiesel, 1962, 1963; Lindsay and Norman, 1972). 

The spatial arrangement of these cells and their hierarchial. nature 

suggest a feature detection model of visual perception. Most simply, 

this model suggests that any percept is the summation of the discrete 
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features reported by each of the receptive fields of the cortical neurons. 
The "pandemonium model" and other models of pattern perception are 
discussed in Chapter 5. 

Motivation. Life forms are essentially chemical information proces­
sors designed to preserve the chemical information that describes them 
within the gene pool of a species. Complex mammalian intelligence is one 
of a variety of strategies that tends to preserve certain information. 
Thus, tendencies are built into biological organisms to insure survival; 
for instance, the tendency to repeat behaviors that reward an individual 
with food. 

A great deal of work is currently being invested in finding out why 
( 1) mammals, especially humans, do what they do, and (2) the basic 
biochemical and neurophysiological mechanisms underlying motivation 
and emotion. This literature is very extensive and will not be reviewed 
here. 

Review. The major questions concerning the nature of biological 
intelligence remained unanswered. What are the information processing 
functions of neural and glial cells? How do context, expectations, and 
perceived features blend to make an understandable perception? How 
do experiences become memories in long-term storage? What is the 
biochemical substrate of memory? At what level do perceptions enter 
consciousness; when and where do cortical electricity and chemical 
transmitters become perceived tlioughts? Artificial intelligence will cer­
tainly be a major con_tributor to the answering of these questions. 

COMPUTERS AND SIMULATION 
Before concluding the discussion of the first and second questions 

cited at the start of this chapter, some mention should be made of the 
basic technique used in AI research. One significant fact is that it is not 
necessary to build a different physical machine each time we wish to 
investigate a new machine's abilities. A kind of machine exists which is 
capable of accepting a symbolic description (in the form of a program) 
of any machine and of simulating the machine described by such a 
program. The general-purpose digital computers are examples of this 
kind of machine. 

Computers typically have five main components: an input unit, a 
control unit, a logic unit, a storage unit, and an output unit. The pro­
gram and other data go into the computer via the input unit and are 
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stored in the storage unit, or memory, of the computer. The logic and 

control units alter the information in the storage unit of the computer 

in a manner that is dependent upon the program. Also in a manner de­

pendent on the program, the control unit causes the output unit to emit 

information (e.g., punched cards, electric impulses, printed paper). 

Computers can be designed so as to utilize a wide range of input-output 

devices, from television cameras and CRT (cathode-ray tube) display 

screens (like a television set) to mechanical arms and typewriter-like 

terminals . 
. Computers and the notion of "simulation" are discussed more 

thoroughly in Chapter 2. Briefly, a computer simulates something if it 

duplicates that thing's behavior. The duplication does not have to be 

exact, nor does it have to proceed at the same rate as the original. Thus, 

a computer is said to simulate a person playing Chess if it prints out 

a possible move on a sheet of paper whenever it is given as input a 

description of a possible chessboard configuration. We do not require 

that the computer print out the same move that a given person would 

make, nor must the computer be able to move physically the pieces of 

an actual Chess set, nor does the computer require the same time to 

make its move as a person would. A simulation may be a "speed-up" 

or a "slow-up" of the original. Likewise, a computer is said to simulate 

intelligence when it does something that a person needs intelligence to 

do-i.e., when its behavior corresponds in some manne~ to that of an 

intelligent person. Thus, the extent to which a machine simulates intelli­

gence may vary. In this book the emphasis is on the ability of computers 

to do the things listed at the start of this chapter. 

NOTES 

1~1. This note cites some general references on the subject of artificial 

intelligence. First, over the past two decades several authors have argued, 

both pro and con, the possibility of artificial intelligence; that is, whether 

machines can eventually be made to possess intelligence on a human level. 

Some classic papers in favor of the possibility are those of Turing (1947, 

1950) and Armer ( 1963). Some recent arguments against the possibility of 

artificial intelligence are those of Dreyfus ( 1965, 1972) and J aki (1969); the 

arguments of Dreyfus are effectively refuted in the paper by Papert (1968). 

(One argument against the possibility of AI that is quite commonly put forth 

is: "Computers can do only what they are told to do." This is true, but no one 

really knows the limits of what we can tell computers to do; perhaps we can 

tell them how to think, and how to learn; see Armer and Turing.) A number 
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of books besides this one have been published about artificial intelligence or 
about specific areas of the subject: see Feigenbaum and Feldman ( 1963); 
Banerji ( 1969), Slagle (1971), Minsky (1968b), and Nilsson ( 1971). 
(Minsky [1963, 1966, 1970] has also written a number of stimulating 
papers on artificial intelligence.) Two journals, Artificial Intelligence and 
Pattern Recognition, regularly publish papers that are of interest to the 
AI researcher. The (voluminous) Proceedings of the International Joint 
Conference on Artificial Intelligence contains many important papers: to 
date, the IJCAI has been held twice, in 1969 and 1971, and the proceedings 
of each conference have been published. Papers on artificial intelligence 
may also be found in the Journal of the Association for Computing Ma­
chinery (JACM), the Communications of the Association for Computing 
Machinery (CACM), and the Proceedings of the Spring and Fall Joint Com­
puter Conferences (SJCC and FJCC) of the American Federation of In­
formation ProceSsing Societies (AFIPS). Finally, a series of volumes en­
titled Machine Intelligence include many important papers. Information. 
about these books and journals is provided in the Bibliography. 

1-2. ·This text uses the phrases "human intelligence" and "intelligence on 
a human level" somewhat loosely, without really attempting to define the 
word "human." In other books it· is sometimes used as though it might 
apply only to the species homo sapiens; at other times it is used as though 
it might apply to other animals. How "human" is an ant, a cat, a dog, a 
dolphin? If the author were asked to venture an opinion, he would prob­
ably say that the word "human" refers to a kind of relationship that can 
exist in the interaction of intelligent beings. This relationship helps deter­
mine their behavior toward each other, toward other beings and objects, 
and (perhaps necessarily) toward themselves. Cats and dogs often par­
ticipate in this relationship, and so are partly "human." Dolphins may con­
sider themselves to be very "human," as may any creatures from outer 
space that we might someday happen to meet, and, conceivably, it may be­
come conventional to think of some machines as "human." (See the 
Exercises for this chapter; also see Chapter 9.) 
1-3. The area of research that attempts to simulate the underlying 
processes involved in natural intelligence is known as simulation of cogni­
tive processes. (See various entries of Computers and Thought in the 
Bibliography, cited as CT, for some introductory and early papers.) The 
coverage in this book is, again, ·primarily concerned with the extent to 
which machines can simulate the abilities of natural intelligence; only 
secondarily is the simulation of cognitive processes considered. However, 
it should be pointed out that some AI researchers view their work as being 
directed toward both goals-the subjects are certainly not mutually exclu­
sive. Also, for the sake of exposition, we shall occasionally describe the 
processes used by intelligent machines in "personalistic" or "mentalistic" 
terminology, as though they were really similar to the cognitive processes 
used by people (or more exactly, as though they were similar to the cogni-
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tive processes that people often describe as being the ones they use: "I just 

had an idea," "My model didn't include that," "That was -my concept also," 

"I've got a plan." See the discussion in note 7-1. 

1-4. Turing's test is discussed in greater detail in the paper by Colby, 

Weber, Hilf, and Kraemer (1971). 

EXERCISES 

1-1. Read Descartes and see if you can determine whether he thought machines 

could reproduce themselves. 

1-2. Two other introspective philosophers were Montaigne and Pascal. What 

do you think their attitudes would have been toward artificial intelligence? How 

about Jefferson, Marx, Archimedes, and Einstein? 

1-3. What do you think intelligence is? 



The Archimedean sunflower. 
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MATHEMATICS, 
PHENOMENA, 

MACHINES 

INTRODUCTION 

This chapter investigates in detail some of the mathematical back­

ground applicable to artificial intelligence. (The reader who wishes to 

commence the study of artificial intelligence research itself should tum 

to Chapter 3.) It presents a somewhat condensed discussion of automata 

theory, the branch of mathematics dealing with the nature of machines, 

since the way in which mathematics can be used to describe the oper­

ation of machines is essentially the way it can be used to describe natural 

phenomena in general. Thus, automata theory is a foundation for 

artificial intelligence (AI) research. It helps define the generality of a 

study that relies on computer programs to describe the phenomenon 

of intelligence. 
In addition to discussing machines, the nature of mathematics it­

self will be discussed, with reference to the question, "Are there some 

things mathematics cannot describe completely?" lt is argued in an in­

formal, yet mathematical way that the answer is yes. There are limi­

tations in the method of artificial intelligence research because it is based 

(as is all science) on mathematics and the capacities of mathematical ' 

descriptions. These limitations say nothing definite about whether AI 

research will succeed, only that it might not. The final discussion con-

33 
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siders some very specific limits to the computational abilities of ma­
chines. 

ON MATHEMATICAL DESCRIPTION 
A mathematical description of something consists of a finite set of 

statements (axioms) that utilize a finite set of undefined terms, to­
gether with a finite set of rules that govern the derivation of new state­
ments from the axioms and from previously derived statements. Such a 
collection of statements is called a mathematical system, or theory, and 
the concept is that any statement, either given or derivable, is a true 
statement concerning the thing described by the theory. A mathematical 
theory may thus enable one to use a finite number of statements to 
describe something about which an infinite number of statements (those 
derivable under the theory) are true. 

For example, the mathematical theory of Euclidean geometry gives 
us certain axioms or postulates concerning the undefined concepts of 
"point," "line," "plane," "between," etc.; the "thing" described by this 
theory is a "geometry," consisting of interrelationships existing among 
lines, points, planes, circles, spaces, etc. 

The ingredients of a mathematical theory, then, are the following: 

1. A set of basic words (e.g., "point," "line," "between," "dis­
tance," "x," "y," "not," "implies," "for all,") that refer to 
different objects, relations between objects, variables, logical 
connectives, quantifiers, and so on. These are the undefined 
words or symbols of the theory. 

2. A set of basic sentences made of these basic words. These 
basic sentences are the axioms or postulates of the theory. 

3. A set of logical rules, also made of these basic words, that 
tells us how to derive new sentences from the ones we are 
given. 

Now, it is the essence of mathematical theories (note 2-1) that 
each of these sets be finite;· the object described by the theory may be 
infinite, but the theory that describes it must be finite. In other words, 
the fact that there is a mathematical way of describing some object 
means that it is finitely describable. 

This does not imply the converse, that if a thing is finitely de­
scribable it is therefore mathematically describable. It would take us 
too far afield, however, to consider this converse proposition (known 
as Church's thesis, or Turing's thesis) in detail (note 2-2). Since our 



Mathematics, phenomena, machines 35 

interest is in mathematics and science, henceforth consider the phrases 

"finitely describable" and "mathematically describable" to be synony­

mous. 
A mathematical description of something is thus a possibly infinite 

yet finitely describable set of sentences, each of which states something 

about the thing being described. If the thing (note 2-3) is infinite and 

yet finitely describable, then, intuitively, there are "patterns" which hold 

throughout the thing, and these patterns form the basis of our mathe­

matical description. Thus, the Frontispiece figure to this chapter shows 

a collection of dots which could be infinitely extended. The entire col­

lection, so extended, would be an "infinite thing." Yet the entire col­

lection can be finitely described (see Exercise 2-1) because a "pattern" 

exists in the placement of the dots. 
However, the simple existence of patterns in something does not 

gu~rantee that the thing is finitely describable: There may be an infinite 

number of patterns, none of which can be predicted from the others, 

each pattern adding its own infinite set of parts ("dots") to the thing. 

So there are three possibilities that may hold if we are asked to 

describe something in a mathematical way: The thing may be finite, in 

which case presumably it is finitely describable (note 2-4); the thing 

may be infinite and yet finitely describable; the thing may be infinite 

and not finitely describable. 
If the third possibility is the one that actually holds, then in fact 

we shall never be able to describe completely all of the thing in question. 

Rather we shall always be making discoveries like "there's another dot 

my description doesn't predict," or (perhaps) "oops, there's another 

subatomic particle. . . ." 
As an indication (note 2-5) that there may be some things that 

cannot be finitely described, consider the following argument: 

Assume we had a mathematical theory that would enable us to 

finitely describe the real numbers; that is, each sentence derivable in 

the theory would be a finite description of a real number, enabling the 

decimal expansion of that number to be computed accurately to as 

many places as desired. It is the nature of mathematical theories as we 

have described them that they may imply only a countable number of 

statements. But the real numbers are an uncountable set. Thus, no 

mathematical theory could enable us to derive a finite description for 

each real number; there must always be some real numbers that are 

not finitely describable. 
All this explanation is by way of describing our notion of mathe­

matical description. A good example of the' usefulness of this type of 

description is the scientific method itself. 
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The scientific method is basically a way of selecting mathematical 
descriptions of the universe. To use the method, one develops several 
different mathematical descriptions of the known universe or of some 
part of the known universe (some set of "phenomena" in the universe; 
see the next section) : To each of these descriptions there is a corre­
sponding set of predictions that it makes about the rest of the universe; 
one rejects those descriptions that can be found by experiment to make 
false predictions or which make the same predictions as do other "less 
complicated" descriptions. 

The scientific method has had many successes and therefore the use­
fulness of making and studying mathematical descriptions of things is 
well founded. Still, whenever one is called upon to consider a previ­
ously unstudied phenomenon, one cannot be entirely sure that it can 
be explained by the predictions of one's current mathematical descrip­
tions of the universe. The reason for this is simple: There is no proof 
(note 2-6) that the universe is either a finite or an infinite thing. If 
one assumes it to be an infinite thing, one can never be sure in a finite 
amount of time whether mathematical descriptions have been developed 
to account for all the patterns that hold throughout it. 

With this in mind, a person who is concerned with developing 
mathematical descriptions of the real world should understand that he 
might be engaged in an endless undertaking. It could be the case that 
there are an infinite number of phenomena in the universe, none of 
which can be predicted from a knowledge of other phenomena in the 
universe. It could even be the case that some phenomena in the universe 
are themselves not finitely describable. 

On the other hand, it could be true that the universe is finite, or at 
least finitely describable. 

What this has to say for our study of intelligence is simply that 
our success is not guaranteed. Current scientific theories do not all 
describe the universe as being finite. The caveat concerning the possi­
ble existence of u11describable phenomena must be heeded: There is no 
scientific guarantee that natural intelligence can be finitely described, 
either by our current scientific theories or by any mathematical de­
scription that could ever be developed-it may simply not be finitely 
describable. 

For this reason we should take care to refer to the field we are 
studying as "artificial intelligence research." As will be seen in subse­
quent sections, the notion of "machine" corresponds to that of a "finitely 
describable phenomenon." Since it is an open question whether natural 
intelligence is a phenomenon that can be finitely described, we expect 
that "intelligent" machines will simulate some of the abilities of natural 
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intelligence, but whether they will have them all remains unknown. 

Certainly, the evidence available suggests that intelligent machines will 

eventually have many abilities that are currently limited to natural in­

telligence. 

THE MATHEMATICAL DESCRIPTION OF 
PHENOMENA 

Time 

With all the preceding conjectures in mind, let us see how it is that 

mathematics can be used to describe "phenomena," or "processes"; 

that is, things that happen in reality. 
First of all, let us list names for some phenomena that are generally 

believed to exist. (See Exhibit A. ) These are things people often talk 

about in the belief that they happen in the real world. Not all are neces­

sarily things that can be described mathematically. 

EXHIBIT A 

the playing of a game chemical reactions the evolution of 

species thought processes nuclear reactions a person feel-

ing emotion waves traveling through a medium cellular 

growth of organisms crystal formation sexual reproduction 

a candle burning a person living a person dying a stone 

falling to the ground a bird flying the motion of a weight on 

a spring the formation of public opmwn conversion of 

energy from one form to another dreaming flipping a coin 

the operation of a computer program weather 

To a mathematician looking at Exhibit A, perhaps the most im­

mediate thing he would find common to all its elements is that each 

element involves "time"; each of these things may be said to happen as 

a "sequence of situations."' 
Upon further inspection, the mathematician would discover that 

each of the phenomena named in Exhibit A can happen in a variety of 

ways. For some phenomena the variety is greater than for others. In 

1 An interesting and difficult open question is whether the automata-theoretic 

description of phenomena presented throughout this book is in conflict with 
relativistic findings concerning simultaneity. The reader interested in pursuing 
this question is invited to s~e Waksman (1966). 
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his desire to be general, he would say that the name of a phenomenon 
refers to the set of different ways in which it can occur. 

A third thing the mathematician might note about Exhibit A is that 
it is possible for some phenomena to be made up of others; this chapter 
overlooks ways of describing this mathematically,2 though as an example, 
it might be noted that "cellular growth of organisms" seems to be made 
up of "chemical reactions." 

These observations are the essence of the mathematical approach 
to the description of phenomena. Mathematically, an occurrence of a 
phenomenon is viewed as a sequence of situations, and the phenomenon 
itself is viewed as being the set of all possible ways it can occur. A 
phenomenon is described by a mathematical theory of all ways in which 
it can occur; such a theory might describe it as either being made up 
of, or a part of, other (describable) phenomena; 

The first ingredient in the mathematical description of a phenome­
non is the specification of a time scale T and of a set X of all possible 
situations. We may take T to be some subset of the real number line; 
for the moment we can leave X unspecified. If X is the set of all possible 
situations, then an occurrence fJ is a function that associates to some of 
the elements t of T unique corresponding elements fJ(t) from X. A 
phenomenon is a set of such functions { 81>82, • • • } , each representing an 
occurrence. A complete description of a phenomenon is, then, a descrip­
tion of its possibly infinite set of occurrences: The assumption that one 
can find a mathematical description for a given phenomenon is equiva­
lent to the assumption that its set of occurrence functions is finitely 
describable. Since some occurrences of a given phenomenon might 
conceivably possess an infinite number of "details" (say, in the number 
of times at which situations are defined, or in the number of "true state­
ments" about any particular situation), we may accept as a finite de­
scription any finite rule that allows us to compute these occurrence 
functions to an arbitrary accuracy. That is to say, we accept descriptions 
that are "effectively" true.3 

2 For this reason, although the theory of phenomena outlined in this chapter 
is adequate (to illustrate the limitations and generality of the mathematical ap­
proach), it is not an especially efficient way of describing anything other than 
very simple phenomena. Many approaches have been made toward developing a 
more efficient way of describing complex, "real-world" phenomena: Chapter 8 
discusses briefly the possible formalizations for "parallel processes" and "hier­
archical systems"; in Chapter 3 there is a brief discussion of logical systems for 
describing real-world situations and their interrelationships (causality, etc.). 

3 Thus, we shall ignore descriptions that describe "strictly noncomputable func­
tions" (see Exercise 2...;.3), but we can accept descriptions that describe undecid­
able systems. 
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EXAMPLE 2-1. MOTION OF A WEIGHT ON A SPRING. In the 

simplest case of this example, where the motion of the weight 

is entirely vertical, one can describe any possible situation by a 

single real number, representing how far the spring is extended 

or compressed from its rest position. Thus, the set X of all 

possible situations is described by the real-number line. Which 

particular occurrence of the phenomenon happens is dependent 

on such things as the mass of the weight; the damping factor of 

the spring, the initial position of the spring and weight, the 

spring constant k, etc.; the graph of any given occurrence func­

tion will generally look like Fig. 2-1. The phenomenon, or class 

of all possible occurrence functions, can be described by a 

single equation whose variables represent the factors given above. 

X 

T 

d2 x dx 
Ill - + a - + kx = 0 

dt2 dt 

Figure 2-1. An old friend to the physics student. 

The considerations presented in the preceding section, on mathe­

matical descriptionsin general, still hold for the specific case of mathe­

matical descriptions of phenomena. There may be phenomena that are 

not finitely describable. On the other hand, given only finite sam­

ples of the occurrences of a (possibly infinite) phenomenon, there is no 

way to prove that the phenomenon is not finitely describable-the most 

one can prove about it is that one's efforts to describe it have so far 

been unsuccessful. (Of course one might also prove that one's efforts 

to describe it have "so far" been successful.) 
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Types of Phenomena 

"Things that happen" may often be distinguished from each other by 
the nature of their occurrence functions. One4 of the basic classifications 
defines three types of phenomena: discrete, nondiscrete, and continuous. 

A phenomenon is discrete iff5 each of its occurrences is a step 
function. A function (} is a step function iff it is constant or undefined 
throughout any closed interval [t,t'] except for a finite number of "jump 
discontinuities." Specifically, let [t,t'] be any closed interval of T (pos­
sibly a point, if t = t') : Then there exist a finite number of points tk, 
such that 

t L. t1 < f2 < • · · < fn L. t' 

and(} is either constant or undefined on each open subinterval (h_1,tk). 
Figure 2-2 gives an example of a step function. 

X 4 

3 ) • 

2 • • ••--~c 

1 • 
0 

1 2 3 4 5 6 T 
Figure 2~2. An occurrence of a discrete phenomenon. 

4 Some other classifications are determinacy versus nondeterminacy, perio­dicity versus nonperiodicity, etc. It should be kept in mind that these classifica­tions are really being applied to· descriptions of phenomena, not to phenomena themselves: For example, certain phenomena (electrons) can be described as being either discrete (particles) or non discrete (waves). 5 "Iff" denotes "if and only if." 
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An equivalent definition of discrete phenomena is the following: 

Within an occurrence 0 define an event to be an interval of time (closed 

or open or semiclosed) on which 0 is constant. Then a discrete phenome­

non is one such that each of its occurrences can be represented as a 

sequence of events, in which any event is either "terminal" or "next to" 

another event. An event is said to be terminal if no event follows it in 

time. One event is said to be next to another iff no event occurs be­

tween them in time. 
A phenomenon is nondiscrete iff it is not discrete. Thus, a non­

discrete phenomenon has at least one occurrence in which there is a 

situation that is followed as closely in time as one chooses to look by 

mutually different situations. 
A phenomenon is continuous iff it is nondiscrete, and for any oc­

currence (and for all t, t') the difference between the situation that 

happens at time t and the situation that happens at t' tends to zero as 

the difference between t and t' tends to zero. This definition, of course, 

is meaningful only in cases where it is possible to establish a definition 

of "difference" that can be applied to the possible situations. 

Throughout this book we shall primarily discuss discrete phe­

nomena. Our reason for this is that by choosing the time intervals be­

tween situations to be suitably small, one can find occurrences of a 

discrete phenomenon that will match, to an arbitrary closeness, the 

occurrences of any nondiscrete phenomenon; Consequently, if there 

exists a finite description for a nondiscrete phenomenon, then there also 

exists a finite description for a discrete phenomenon that approximates 

it as closely as one wishes. (We can merely use the nondiscrete descrip­

tion to calculate the values during the appropriate discrete events.) 

Let A = { 01 A ,0/, · · · } be a nondiscrete phenomenon, and B = 

{01
8 ,02

8 
• • ·} be a discrete phenomenon. If A is continuous, then B 

matches A to a closeness ll if there exists a number € greater than zero 

such that, for all t, t', if Jt - t'J < €, then 

jO/(t) - 0/(t') I < ll 
If A is noncontinuous, then B matches A to a closeness ll if for all t 

such that 

0/ (t) =I= 0/ (t) 

there exists an € such that 1€1 < ll and 

Oi8 (f + £) = 0/(f + €) 

It is always possible to find a discrete phenomenon that will match a 

given, finitely describable, nondiscrete phenomenon. Similarly, if A is a 

--------- """---~---''----------·--
----~ "' 
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discrete phenomenon, then B simulates A, for all i and for all t, if 
8/(t) being defined implies that ont) = (JiA(t). If B simulates A, then 
the occurrences of A are reproduced exactly within the occurrences of 
B; an occurrence of B may, however, contain situations that do not 
happen within the corresponding occurrence of A. If B matches A, 
then the occurrences of B reproduce those of A in ·an approximate 
sense6

; thus, if B matches A, we shall also say that B "simulates" A, 
approximately. 

We shall see below that it is possible to construct a tool-a uni­
versal digital computer-that can reproduce exactly the occurrences of 
any mathematically describable discrete phenomenon. By suitably pro­
gramming a fast enough digital computer, one can simulate any finitely 
describable phenomenon, regardless of whether it is discrete or non­
discrete or continuous. If intelligence is a finitely describable phenome­
non, then it can theoretically be simulated on a (fast enough, big 
enough) computer. 

Discrete Phenomena 
The preceding section gave a definition for discrete phenomena. 

The fact that there is a sense in which one can approx~mate any non­
discrete phenomenon to an arbitrary degree, using discrete phenomena, 
gives sufficient reason to investigate the subject of finite (mathematical) 
descriptions for discrete phenomena. What we desire is some way of 
characterizing all such descriptions. We shall see that this characteriza­
tion is provided by automata theory. 

In this respect the main thing to note. is that we can describe any 
step function by a string, or sequence of symbols, provided we adopt 
an appropriate notation. Let us see how this could be done, using Fig. 
2-3 as an example. 

6 These definitions describe "real-time" matching and simulation: They can be broadened to include notions of relative speed. Also, the equality sign can be taken to mean something like "is isomorphic to." However, it should be noted that even though a discrete phenomenon B may match a nondiscrete phenomenon A, in general (and even if A is continuous) the set 
{t I fitB (t) = (),A (t)} 

will be of measure zero. Moreover, if A is noncontinuous, then the set of points (in time) at which B will be "close" (within a given 5) to A will in general be of measure zero; an expression that describes this set of points is 
{t j.'!fe(jf'- t[ < e=> [f!<A(t')- fi<B(t)[ < 5)} 

Thus, the ability of discrete phenomena (machines) to "simulate" arbitrary non­discrete, noncontinuous phenomena is somewhat limited. 
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In Fig. 2-3, the first event (note 2-7) is the happening of situation 

2, which starts at t = 1 and ends at t = 2. Thus, we make the beginning 

of our descriptive string 

2,1+,2+ 

The next event is the happening of situation 1, which occurs "during the 

instant" t = 2.5. The descriptive string now becomes 

2,1 +,2+;1,2.5+,2.5+ 

And so we continue, using minus signs whenever an event starts "im­
mediately after" (note 2-8) some time tor ends "immediately before." 

The final descriptive string would be 

2,1+,2+,1,2.5+,2.5+,2,3+,4-,3,5-,6+ 

In general, any step function can be represented by such a descrip­
tive string. If the function is defined only on a bounded time interval, 

then its descriptive string will be of finite length, even though the total 

number of points for which the function is defined may be infinite; for 

example, the descriptive string for Fig. 2-3 is finite, although the step 

function is defined for an infinite number of values of t (note 2-9). 
Likewise, if the step function does not have a beginning or does not 

have a terminal event, then its descriptive string will be infinitely long. 

Since any step function can be represented by a descriptive string, 

any set of step functions can be represented by a set of descriptive 

strings. Thus, to finitely describe the occurrences of a discrete phenome­

non, one need only be able to finitely describe .a certain set of strings: 

If the set is finite, we could simply list all its strings7 (provided none of 

them is infinite), but what if the set of descriptive strings is infinite? 

The answer to this problem lies in the following analysis: Even 

though the set is infinite, we can assign a number 1 ,2, · ' · to each string 
in the set and proceed to talk of the first descriptive string, the second 

descriptive string, and so on (note 2-10). Then, if we can find a finitely 
describable rule that computes for each n the nth descriptive string, we 

will in effect have found a finite description for the phenomenon. Thus, 

we can transfer our efforts from the finite description of discrete phe­
nomena to tlie finite description of functions. Any discrete phenomenon 

is capable of being represented as a function that associates a unique 
descriptive string to each natural number. And, since any natural num­
ber can be represented by a string (of finite length), we are therefore 

concerned with finding finite descriptions of functions that map one set 

7 In practice, there are limits to the size of finite sets that can be enumerated 
(see note 2-4 and Chapter 3 ) . Such sets are called "finite, effec(ively infinite." 
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of strings (those representing natural numbers) into another set of 
strings (those representing step functions). 

The mathematical theory that deals with functions that map one 
set of strings into another set of strings is automata theory; a general 
way of characterizing functions of this sort is through the use of Turing 
machines. Automata theory is basically concerned with studies on the 
nature of Turing machines, its underlying hypothesis8 being that this 
is the nature of all discrete machines; the concept of machine is to be 
identified with that of "finitely describable phenomenon." In this chapter 
we are concerned with some of the simplest types of machines. Auto­
mata theory discusses the abstract nature of machines, but it can include 
such aspects of real-world machines as their cost and probability of 
error. 

Briefly, a Turing machine is composed of a finitely describable 
black box and an infinite, or potentially infinite, 9 tape (Fig. 2-3). The 

Tape 

Control 

Tapehead 
Figure 2-3. A Turing machine. 

Symbol 

a 

tape is divided into squares, each of which has a symbol (possibly the 
"blank" symbol) printed on it. The black box contains two subcom­
ponents, a control and a tapehead; the tapehead is capable of scanning 
and writing symbols on one square of tape at a time, and of moving the 
tape either to the right or the left, all under instructions given to it by 
the control. The tapehead sends to the control the information as to 
what symbol it happens to be scanning, and the control decides on the 
basis of that information and a finite "memory" what actions it should 
instruct the tapehead to perform. 

8 Again, Church's thesis or Turing's thesis. 
9 By potentially infinite is meant that there is someone nearby ready to add 

more squares to the tape if necessary. 
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Although this may seem like a very simple type of machine with 

very limited capabilities, such is not the case. In fact, all evidence avail­

able to date indicates that Turing machines are capable of computing 

any finitely describable, computable function that maps one set of strings 

into another set of strings. There exist certain Turing machines which, 

given a suitable program, are capable of simulating the computations of 

any Turing machine. It can be shown that a Turing machine can 

effectively derive all provable theorems in any given mathematical 

theory. Indeed, Turing machines are capable of simulating10 the 

phenomenon of self-reproduction. Therefore the rest of this chapter is 

devoted to a discussion of some results from automata theory. 

Finite-State Machines 

Of all the elements of a Turing machine, the. only one that requires 

mathematical formalization is the control: We need to specify more 

exactly how it is able to make decisions, what its memory is, etc. We 

now give a general definition of that class of machine which may serve 

as a control in a Turing machine; the machines in this class are usually 

referred to as finite-state automata. 

DEFINITION 2-1. A finite-state machine, or finite' automaton, 

is a quintuple, M = (Q,X,Y,S,A), where: 

Q is a finite set, the set of states; 
X is a finite set, the set of input symbols; 

Y is a finite set, the set of output symbols; 

S: Q X X~ Q, the next state function; 

A: Q x X~ Y, the next output function. 

Any quintuple of sets and functions satisfying this definition is to 

be interpreted as the mathematical description of a machine that, if 

given an input symbol x while it is in state q, will output the symbol 

A ( q ,x) and go to state S ( q ,x) . (The two functions S and A together are 

often referred to as the transition function of the finite state machine.) 

Thus, a finite automaton is a machine that can exist in a finite set 

of states, where the particular state it is in at any given moment depends 

upon the inputs it has received and upon its previous states. The set of 

states in an automaton serves as its "memory": The only information 

that an automaton has concerning its past operation is the current state 

it is in; at least, this is the only information it can use in deciding its 

10 Discreetly ... " (See Chapter 8 for a discussion of self·reproducing rna· 

chines.) ' 
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next state and its next output when it is given an input symbol. Some 
examples would be instructive at this point. 

EXAMPLE 2-2. A PARITY-CHECKING MACHINE. This machine 
has only two states; the machine will accept any finite string of 
zeros and ones; its output at a given moment will be the word 
"even" if the string it has so far received has an even number 
of ones, and "odd" otherwise, provided it starts in the "initial 
state" q0• Let Q = { q0,ql}, X= {0,1 }, Y = {"even," "odd"}, 
and define 8 and >.. by the following tables: 

X qo q1 
0 "even" "odd" 
I "odd" "even" 

For example, 8(q0,1) = q1 ; >..(q0,1) ="odd". 

The reader should verify for himself that this machine does what 
it is supposed to do, provided it is started in state q0• 

Actually, the use of tables to define the functions 8 and .\is rather 
clumsy and inefficient; if we were dealing with larger, more complicated 
machines, it would be very difficult to understand just what they were 
doing. It is customary to use a certain type of drawing, called a state­
transition diagram, to describe a finite automaton. Figure 2-4 gives a 
state-transition diagram for the parity checker. 

In such a diagram each state is represented by a circle; each tran-

odd even 

Figure 2-4. Parity checker. 
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sition between states is represented by an arrow; the input symbol caus­

ing the transition appears at the tail of the arrow, while the correspond­

ing output symbol is inserted in the middle of the arrow. 
Another good example of a finite automaton is a machine that adds 

two binary numbers, provided they are suitably encoded into a string. 

EXAMPLE 2~3. A BINARY ADDER. Let Q = {"nocarry," "carry"}, 

X= {00,01,10,11}, Y = {0,1}, and let the functions 8 and >.. 

be given by the state-transition diagra;n in Fig. 2-5. To add two 

binary numbers, say 1101 and 10101 (decimal 13 and 21, 

respectively), we first reverse them so that they are expressed 

with their least significant digits first: 1011 and 10101. Next 

we add sufficient zeros to them to make both strings be of the 

same length and end in zero: 101100 and 101010. Finally, we 

encode the two strings into a single string, whose symbols come 

from the set X, by taking the first symbols of each string and 

replacing them by their corresponding ordered pair, taking the 

second symbols and doing the same, and so on. The string we 

obtain is 

11,00,11,10,01,00 

If we feed this string into the binary adder, then the sequence 

of outputs that we get is 

010001 

This is the reverse of the binary number 100010 =thirty-four. 

These two examples illustrate that finite-state machines do have 

some computational ability and that they can be used in at least two 

slightly different ways. The first example shows that it is possible to use 

an automaton as an acceptor for a certain set of strings: If we replaced 

its output set by "true" and "false," respectively, then the parity checker 

0 

1 

1 

Figure 2-5. Binary adder. 
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would output "true" after the input of any finite string that contained 
an even number of 1 's; that is, it would accept the set of all such 
strings.11 The binary adder, on the other hand, illustrates that we can 
use finite-state machines to represent some of the functions that map 
one set of strings into another set of strings. 

However, there are many functions that no finite-state machine 
can compute: One such function is multiplication. The reader might try 
his hand at designing a finite-state machine to multiply any two num­
bers. The basic reason it cannot be done is that the operation requires 
saving the complete information about each of the two numbers, and 
this requires either an infinite number of states or an infinite tape. 

In fact, finite-state machines are only the building blocks of auto­
mata theory; they represent the simplest type of machine, one in which 
the future of an occurrence can depend on only a finite number of 
different "past histories," o~ states. 

Turing Machines 

Simple Turing Machines 
Let us now return to our original discussion of Turing machines. 

The reader will recall that these were described as the most general type 
of discrete machine; so far as anyone knows, any function that can be 
computed can be computed by a suitable Turing machine. 

DEFINITION 2-2. A Turing machine (Tm) is an ordered quin­
tuple, T = (Q,Xb,P,q0,F), where: 
Q is a finite set of states; 
X b is a finite set of tape symbols, one of which is the blank 

symbol b; 
P is the next-move function, a mapping from Q x X b to X X 

{L,O,R} X Q in which L, 0, R are symbols meaning "go to 
the left," "stay at the same place," "go to the right"; 

q0 is an element of Q, called the start state, or initial state; 
F is a subset of Q and is called the set of final states. 

The operation of a Turing machine begins with the machine being 
in q0 and examining the leftmost symbol of a stringt2 from X"* that is 

11 This acceptor is also a decider; that is, it rejects those finite strings not be­
longing to the set it accepts. 

12 If A is a set, then by A* we denote the J;et of all finite strings whose 
symbols are elements of A. Thus, {a,b}* = {•,a,b,ab,ba,aa,bb,aaa,bbb,aba,bab, 
aab,baa, ... }, where • denotes the empty string, which does not contain any 
symbols. 
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printed on some of the squares of its tape (every other square of the 

tape contains a blank symbol) . The next-move function P determines 

what symbol the tapehead prints on the square it is examining, whether 

the tapehead moves left or right one square or remains at the same 

square, and what state becomes the new state of the control. 

The next-move function P can be finitely described, and there is 

no difficulty in considering the control of the Turing machine to be a 

finite-state machine. Thus, the only essential difference between Turing 

machines and finite-state autOilllata lies in the fact that a Turing machine 

is able to store its output on a potentially infinite tape and refer to it 

later. This single difference (note 2-11) is enough to enable Turing 

machines to be used as acceptors for a class of sets much larger than 

that of those accepted by finite-state machines, and it is enough for 

Turing machines to be able to compute a class of functions much 

larger than that of those which can be computed by finite-state 

machines. The sets that ca11: be recognized (i.e., accepted) by Turing 

machines are the recursively enumerable sets; the functions that are 

computable by Turing machines (henceforth 'tm-computable) are the 

partial-recursive functions. 
Another way of stating Church's thesis or Turing's thesis is to say: 

Any computable function can be represented as a partial-recursive 

function. So far, every general definition of "finitely describable, 

computable functions that map one set of strings into another set of 

strings" has been shown equivalent to the definition for Turing ma­

chines. 

EXAMPLE 2-4. A UNARY DOUBLER. We define a simple Turing 

machine that will produce a string of l's of length 2m if it is 

given an input tape containing a string of l's of length m. This 

is a computation that cannot be done (for all m) by any 

finite-state machine. Let 

Q = { qo, q11 q2, qg, q4} 

xb = {b, o,t, A} 
F = {qo} 

and let the next-move function P be defined by Table 2-1. 

If this machine is started on a string of the form 

... bblll ... llbbb ... 
'----y------1 

m l's 
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TABLE 2-1. A Unary Doubler 

Q X xb -+ xb X {L,O,R} X Q 

qo 1 0 R q, 
q, 1 1 R q, 
q, 0 0 R q, 
q, b A R q. 
q, A A R q. 
q. 1 1 R q. 
q. b 1 R qa 
qa b 1 L q. 
q. 1 1 "L q. 
q. A A L qo 
qo 0 0 L qo 
qo b A 0 qo 
qo A A 0 qo 

at the leftmost 1, it will eventually halt in state q0 (here the 
initial state is also the halting state), and its tape will hold a 
string of the form 

... bbAOOO ... OOAllll .. . lllllbbb ... 
~~ 

m O's 2m l's 

TABLE 2-2. Operation of the 
Unary Doubler 

~ 
1. (0) •.• bb111bb ... 

~ 
2. (1) ... bb011bb . . . 

~ 
3. (1) . . . bb011bb . . . . ~ 

4. (1) . . . bb011bbb ... 
~ 

5. (2) ... bb011Abb . . . 
~ 

6. (3) ... bb011A1bbb ... 
~ 

7. (4) ... bb011A11bb ... 
~ 

8. (4) ... bb011Al1bb ... 
~ 

9. (0) . . . bb011A11bb ..• 
~ 

10. (1) ... bb010Al1bb ... 
~ 

11. (2) ... bb010A11bb ... 
~ 

12. (2) ... bb010A11bb ... 
~ 

13. (2) ... bb010A11bbb ... 
~ 

14. (3) ... bb010A111bbb ... 
~ 

15. (4) ... bb010A1111bb ... 
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Table 2-2 shows the first 15 steps of the operation of the unary 
doubler. The eighth entry in the table, for example, is 

~ 
8. (4) ... bb011Allbb ... 

which means that in this step the machine is in state q4, scanning 

the A in the string OllAll, with an otherwise blank tape. The 
reader should be able to continue the table and verify that 

the machine will reach a step 

(0) ... bbAOOOAllllllbb ... 

and that no further changes will take place on the tape. (It is 
a simple matter to add extra states that get rid of the output 
zeros.) 

The main thing to be learned from Example 2-4 is that a Turing 

machine typically manages to surpass the limitations of the finite autom­

aton by using "dummy symbols" to store on its tape information 

about its past operation. In the example, the dummy symbols are 0 
and A, where 0 serves to store the information that a certain unit has 

already been doubled, and the appearance of two A's on the tape 
represents the information (for us) that the machine has finished its 

computation. The tape of a Turing machine is thus a very significant 

part of its memory. 

Polycephalic Turing Machines 

The Turing machine concept described above is very cumbersome 

for use on any but the simplest problems. It is more common to con­

sider "polycephalic" Turing machines, which possess several (n­

dimensional) tapes, each with its own finite number of tapeheads (Fig. 
2-6) ; this model comes closer to the actual structure of modern 

computers. The formalization for polycephalic machines is relatively 

easy to construct. The relevant things to consider are: 

1. The number of tapes the machine uses, say n. 
2. The dimensionality of each tape. We can let each tape be an 

m-dimensional grid (m is variable), and have each tape 
square be specified by an m-tuple of integers (e.g., <2,0, 
-5,1,-3,6> ). The dimensionality of the ith tape can be de­
noted by a function S(i). 

3. The (finite) alphabet X' used on each tape. 
4. The number r of tapeheads used by the machine on each 

tape. These can be denoted T1', T2 ', ••• , T/, ... , Tr' for 
the ith tape. 

kM!!!lti!i& 
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Figure 2-6. A polycephalic Turing machine. 

5. What to do if two or more tapeheads are instructed to print 
on the same square at the same time. For each i, we can use 
a "dominance relation" R' that determines a unique "great­
est" tapehead T/ for any given set of tapeheads {T"'}. 

6. The set of states Q for the control; also its initial state and 
its set of final states F. 

7. The next-move function P, which for each tapehead T/ maps 
Q x X' into X' x D' x Q. We let D' denote the set of unit 
direction vectors for the ith tape; e.g., <1,0,-1,1,01,0> is 
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a unit direction vector for a six-dimensional tape. We can 

assume that the tapeheads for each tape all start at the origin 

<0,0, ... ,0> of the tape. 

The specification of ( 1) through (7) above then determines an 

individual polycephalic Turing machine. 
The only adv .. mtage of polycephalic Turing machines over simple 

Turing machines is that they are more efficient to use: They are not 

more general with respect to the number or the nature of their uses. 

Any function that can be computed by a polychephalic Tm can also be 

computed by a suitable, ordinary Tm. 

Universal Turing Machines 

One of the most surprising and important facts is that some 

Turing machines are capable of simulating the computations of any 

Turing machine. These machines are called "universal Turing ma­

chines"; the actual reason for their existence lies in two facts: 

1. Any string containing only a finite number of different symbols 

can be "coded" as a unary string, consisting only of the symbols 1 and 

the "blank" symbol b. 
2. Any Turing machine can be described by a finite string of 

symbols. 

To show the first fact, note that a unique string of 1 's can be 

assigned to each symbol in a set if the set contains only a finite number 

of symbols. Consequently, any string consisting only of symbols from 

that set can be represented by a string of the form " ... bb 1 ... 1 b 1 ... 

1b1 ... 1bb .. . ,"consisting of a variable number of blocks of 1's, each 

of variable length, each block separated from the next by a single b. 

To see the second fact, examine Table 2-1 and note that the 

total number of symbols used in the table is finite. Thus, the table itself 

can be represented as a (finite) string of quintuples, each of the form 

( q,x,x,d,q). If one assigns a suitable unary coding to each of the symbols 
in Table 2-1, then any quintuple can be represented uniquely by a 
certain string of b's and 1's; thus the table can be represented by a 

string of b's and 1 's in which certain substrings stand for quintuples. 
The unary string representing the quintuples of a given Turing ma­

chine T will be denoted by dT and called the descriptive string for the 

Turing machine (not, in general, the same thing as a descriptive string 
for an occurrence of a discrete phenomenon). 

The actual construction of a universal Turing ma~hine U is not 
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very difficult, and the student should either try it for himself or consult 
one of the references on automata theory. For our purposes here it is 
simpler, and equally valid, to rely on the following description (see 
Fig. 2-7): U works with two tapes, each acted upon by a single tape­
head; the first tape contains the descriptive string dT for the Turing 
machine T that U is going to simulate, while the second tape contains a 
unary string i representing (in the same code as that of dT) the input 
to T; thus, no matter how many states or symbols T may use, the 
machine U will use only the symbols b and 1 and a few dummy symbols 
of its own. 

... b b b current symbol scanned b b b ... 

. . . b b b ... i ... 

Figure 2-7. A universal Turing machine. 

To simulate T, U keeps a unary string representing the "current 
state" and the "current symbol scanned" of T on its first tape, and it 
uses this information and dT to compute the corresponding actions it 
should take with respect to its second tape. In other words, U does 
essentially the same thing a person does when he traces the operatidn 
of a given Turing machine on a given input tape: It merely keeps track 
of where T is, of what state T is in, and of what symbol T is scanning, 
and it looks in a table (dp) to find out what actions T would take; then 
it implements those actions on its own model of T's tape. 

A universal Turing machine, then, is one that can be "given 
a program" that enables it to simulate a Turing machine: In fact, a 
universal Tm is theoretically equivalent to a general-purpose, discrete 
(or digital) computer, and the program one gives a digital computer is 
analogous to a descriptive string dT for some Turing machine T. That 
is, a computer program is a descriptive string for a function ( T) that 
maps one set of strings (the possible inputs to T) into another set of 
strings (the possible outputs from T). Computers, then, are mechanisms 
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for implementing finitely describable processes of symbol manipulation. 
The fact that there are universal machines/3 or computers, is very 

significant if ~We are investigating the behavior of machines in general. 

It enables us to conduct our investigations by referring to the behavior of 
a single machine as it is given various programs, rather than by building 

a new machine each time we want to observe a new behavior. In 

particular, it makes feasible a search for machines that simulate the 

abilities of intelligence. The work described in the following chapters 

would simply not be possible without digital computers. The reader 

who wishes to pursue the study of digital computers is invited to see 

the books by Bartee (1966), Bell and Newell (1971), Chapin, Mc­

Cormick (1959), and Trakhtenbrot (1963). Papers and books relevant 

to the history of computers are those of Aiken (1937), Babbage 
(1864), Bernstein (1964), Burks et al. (1946), Bush (1945), Gardner 

(19 58, 1970, 1971), S. Rosen (1971), Rosenberg ( 1969), Price 

(1959), Pylyshyn (1970), Shannon (1948, 1953), T. M. Smith 

(1970), and von Neumann (1951). The books by Arbib (1964, 1968, 

1969, 1972) and Minsky (1967, 1969) are excellent introductions to 

the automata-theoretic nature of computers. 

LIMITS TO COMPUTATIONAL ABILITY 

At this point the major purpose of this chapter has been satisfied, 

which was to show how it is that one can investigate finitely describable 

phenomena in general (and, especially, hope to simulate intelligence) by 

using computers. 
It remains to complete the survey of those general limitations that 

can be placed upon the success of artificial intelligence research. We 

have already seen one such limitation, which is that the . results of AI 

research must always be finitely describable: If natural intelligence is 

not a\ finitely describable phenomenon, then the best that AI research 

can do is to simulate some, but not all, of its abilities. 
There is no scientific evidence that natural intelligence is not 

finitely describable-indeed, we have tried to show that there cannot be 
such evidence. On the other hand, there is some scientific .evidence that 
natural intelligence is finitely describable; namely, the evidence that the 

brains of certain animals do "possess intelligence," plus' the fact that 
these brains each contain finite numbers of cells. However, the evidence 

concerning the actual function and nature of brain cells is far from 

13 Not all Turing machines are universal. 
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final, and the exact way in which the intelligence of a brain is dependent 
upon its cells is still unknown (see Chapter 1). The most one can say is 
that the finite describability of true intelligence is likely but not proved. 

Another general limitation concerning the properties of artificial 
intelligences can be derived: It can be shown that there are certain 
unsolvable problems, which cannot be solved by any machine, that is, 
by any finitely describable process; artificial intelligence research, then, 
can never produce a .machine intelligent enough to solve one of these 
problems. 

Before discussing one such unsolvable problem-the famous Halt­
ing Problem, first shown to be unsolvable by Turing-it is wise to note 
that there is probably no way any natural intelligence can be shown 
scientifically to be able to solve one of these problems. Certainly, unless 
Turing's thesis is false, no natural intelligence could ever give a finite 
description of a way to solve. one of these problems. 

The Halting Problem can be stated as follows: For any Turing 
machine T, given any input tape i, tell whether or not T will eventually 
halt its computation. By halting is meant that T enters one of its final 
states qi E F, and prints a certain symbol (say, the halt symbol H) on a 
square of its tape; also, whenever H occurs in a quintuple in the next­
move function for T, the quintuple is always of the form ( q,x,H,O,qi). 
(In particular we have qi,H,H,O,qi.) Thus, an outside observer, given 
a description of T, knows whenever he sees an H appear on the tape 
of the Turing machine T that T is finished with its computation, and 
will do no more (significant) manipulation of its tape. 

It can be shown that there is no Turing machine capable of solving 
the Halting Problem. That is, we can show that there does not exist 
a Turing machine D which, given a description dT for any Turing 
machine T, and given any input tape i, will always compute in a finite 
time whether or not T would eventually halt its computation if it were 
given the input tape i. There are many ways to go about proving this 
fact: One relatively simple way involves showing that if there were 
such a machine D, then one could use it as part of a larger machine 
(say, E) such that, given dE and an arbitrary i, D would not be able to 
compute whether E would ever halt. (See Minsky, 1967, for an exposi­
tion of this approach.) 

Given, then, that there are problems no artificial intelligence can 
solve, it is natural to ask whether an artificial intelligence can be con­
structed so as to recognize these problems whenever they arise in the 
course of its operation, prove that they are unsolvable, and stop working 
on them. In fact, it can be shown that no Turing machine (thus, no 
artificial intelligence) is capable of recognizing all unsolvable problems. 



Mathematics, phenomena, machines 57 

For any mathematically describable problem-solving device there exists 
at least one problem that the device cannot solve, and cannot recognize 
to be unsolvable, provided the device is consistent (incapable of 
producing contradictory answers if given noncontradictory premises) 
and capable of doing simple arithmetic (addition and multiplication). 
This should not be taken to mean that if such a machine is confronted 
with such an unsolvable problem, it will never stop working on the 
problem, since the machine could easily' be designed not to work on 
any problem past a certain time limit. Also, this limitation does not 
apply if the machine is allowed to be inconsistent-but, of course, with 
an inconsistent machine one cannot be sure that the answer the ma­
chine produces is correct. Whether this is true of human beings, 
whether there are problems that natural intelligence can never solve, 
and can' never prove to be unsolvable, is an open question: It can 
be answered only in a scientific-mathematical way if it is shown that 
natural intelligence can be mathematically described-if it can be 
mathematically described, then problems of this sort probably exist. 

These limitations on the generality of artificial intelligence, which 
have to do with the capaciti_es of mathemati::al description and the 
existence of mechanically unsolvable problenis, are both of a very 
theoretical yet vague nature. They really say nothing very concrete about 
the real-world capabilities of machines (or of people). We would do 
well, therefore, to investigate more specific limits on the computational 
abilities of machines. The remainder of this chapter is devoted to a 
discussion of the physical boundaries of the computational abilities of 
machines, and to establishing certain "conventions" regarding these 
boundari,es, which are referred to (for illustrative purposes only-the 
boundaries are not exact) throughout the rest of this book. 

To establish these conventions, note that there are three basic 
ways in which the description of Turing machines has, so far, been 
unrealistic14

: 

1. No real-world Turing .machine can actually have an infinite 
tape, or even a truly "potentially infinite" tape; there are 
limits to how much "information" can be stored in a com­
puter memory. 

2. Any real-world Turing machine must conduct each of its 
actions (reading the tape, evaluating the next-move function, 
printingthe tape, moving the tape) in a finite, nonzero time; 
there are limits to how fast a computer can operate. 

,, 
14 Ignore the fact that modern computers operate on a higher "level" than 

Turing machines (see the discussion of machine languages in Chapter 7). 
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3. Any real-world machine must conduct each of its actions 
with a nonzero "probability of error." Thus, in reading the 
tape there must be a nonzero probability that the Tm control 
will be incorrectly informed as to which symbol is actually 
on the tape square being examined by the tapehead. Simi­
larly, there must be a nonzero probability that the next-move 
function will be misevaluated, etc. Thus, there are limits to 
the accuracy with which a given computer can operate. 

Let us stress that, essentially, these same physical limitation:s 
apply to all real-world computers, not just to Turing machines. 

The third limitation of machines means that real-world computers 
are actually probabilistic (perhaps nondeterministic; see Hopcroft and 
Ullman, 1969, and Manna, 197Gb). In effect, any real-world machine 
is capable of errors in any computation it makes (so, in a sense, ma­
chines are inherently "inconsistent"). However, the inaccuracy of 
machines may often be minimized; in particular, it is often possible to 
build machines that are more "reliable" than their components, in 
terms of the accuracy with which they compute their respective func­
tions. (The classic paper on this subject is that of von Neumann, 
1956.) Although little will be said hereafter about the probabilistic 
nature of machines, a reasonable convention for modern-day computers 
is to assume that such a machine will normally make less than one 
error per billion read-evaluate-print-move cycles. 

To discuss the memory-size limitation of computers, a brief but 
quantitative definition of the word "information" is needed. What does 
it mean to say one computer memory will hold more information than 
another? (Throughout this discussion we will be concerned only with 
the memory that corresponds to the tape of the Tm, not with the 
memory that corresponds to its finite-state control.) The qualitative 
answer is fairly simple: The amount of information a tape (memory) 
can hold is dependent on the number of squares that make up the tape 
and on the number of symbols that may be printed on each square.15 

Since the simplest tape is one for which each square may have printed 
on it only one of two symbols ("blank" and "1 "; "0" and "1 "; etc.), 

15 This is essentially the Shannon-Weaver (1949) concept of "information." 
A more intuitive approach to information would include some way of describing 
the probable causes, effects, and denotations of a given string of symbols. This 
is discussed more thoroughly in Chapter 7, but we may note here that there is 
still no clearly satisfactory formalization for the intuitive concept of information. 
Also, it is common to omit the "ceiling-function" and to allow information to 
come in noninteger quantities of bits. 
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it is customary to take this kind of tape as a standard. The number of 
squares that make up such a tape is referred to as the number of bits 

(binary digits) of information that it can hold. To find the number of 
bits of information that can be held by a given nonstandard tape, we 
must figure out how large a standard tape must be in order to store as 
many different strings of symbols as can be held by the nonstandard 
tape. 

This is easily done. (Remember, any physical, real-world tape 
can be made up of only a finite number of squares.) Suppose each of 
the squares of the nonstandard tape is numbered successively: 1,2,3, ... , 
n. Let the number of symbols that can be printed on square i be 
s(i)-again, only one symbol may be printed on a square at a given 
moment. Then the product 

s = s(l)s(2)s(3) ... s(n) 

is the total number of different strings of symbols that can be stored on 
the given nonstandard tape. If x is a real number, we define the ceiling 
function (see Knuth, 1969a) of x to be the least integer that is greater 
than or equal to x. Denote the ceiling function of x by the expression 
lxl. Thus, 16.51 = 7, 141 = 4, I -2.31 =I -21, 101 = 0, etc. The 
reader may easily convince himself that the smallest standard tape 
that can hold as many different strings of symbols as those held by the 
nonstandard tape must· have 

nog2 sl 

squares. We may therefore take this to be the amount of information 
(in bits) that can be held by the nonstandard tape.16 

Modern computing systems make use of many different types of 
memory systems, each with its own characteristics. Some currently ac­
curate conventions for the storage capabilities- of these systems are: 
"core" memories may hold on the order of 107 bits; "disk" memories 
may hold on the order of 108 bits; magnetic tape memories may hold on 
the order of 109 bits; optical (laser) memory systems currently in 
development may hold between 1010 and 1012 bits (see Damron et al., 
1968; R. P. Hunt et al., 1970; Lohman et al., 1971). It should be 
noted that the access time necessary for a computer to determine what 
symbol is stored at a given position ("square") in a memory will, in 

16 Of course this notion of information does not really depend on whether 
the "tape" is actually made up of squares, on whether it is one-, two-, or n­

. dimensional, or on whether "symbols" are "printed" or "stored" in some other 
manner in the "squares" of the tape, etc. 
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general, increase with the size of the memory. Thus, the access time for 
a core memory is generally on the order of 1 o-7 second, whereas for 
an optical memory it is generally on the order of a second (see Chapter 
8, "Hierarchical Systems"). 

Probably the conventions used most often throughout this book 
are those pertaining to limitation 2, that is, the speed with which a 
computer can operate. The basic actions performed by a modern 
computer are, in analogy to those performed by a Turing machine, 
"read location.(s) in memory," "perform logical or arithmetical opera­
tions," "store result(s) in memory," "access new location(s) in mem­
ory." The performance of this sequence of operations corresponds to a 
cycle of the operation of the computer; in general, for each cyCle of 
operation, the computer processes one machine instruction (i.e., eval­
uates one instance of the next-move function). It should be emphasized 
that, for most of the symbol-manipulation procedures in which we are 
interested, a typical computer will usually have to process several ma­
chine instructions to complete each step of the procedure (how many 
depends upon the program, the collection of machine instructions, that is 
being used to describe the procedure). We shall have occasion to make 
use of several different conventions for the speed with which the steps of 
a procedure can be carried out by a machine-each convention we use 
will pertain to a different type of machine. These machines, and the cor­
responding conventions, will be referred to as follows: 

conventional 1 microsecond/step 
attainable 1 nanosecond/step 
theoretical serial 10-12 nanosecond/step 
theoretical parallel 10-ss nanosecond/step or 10-104 yearsjsteps 

Again, these are rough estimates. Their accuracy and meaning will now 
be discussed. 

Conventional. Modem computers process about 10 million in­
structions per second. It is ~stimated that, with optimal programming, 
the average step involved in the type of nonnumerical computations we 
are investigating (those that "simulate intelligence") might require ten 
machine instructions; probably this is conservative. For example, 
generating a successor to a chessboard configuration might, with ex­
tremely good machine-language programming, be done in 1 micro­
second. Using the "conventional" time estimate wiU give the student a 
rough indication of the best speed he can expect a current computer to 
achieve in performing a given procedure. 

Attainable. Some int~~grated-circuit chips have been synthesized 
which are small computers and memories. These chips typically have 
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operation and access times on the order of nanoseconds. Using circuitry 

and computer chips specifically designed for a given procedure, it is 

conceivable that the steps of that procedure might be performed at the 

rate of 1 nanosecond/step. Should the time required for complete execu­
tion of a procedure be very large, using the "attainable" estimate, the 

student may conclude that current technology is not capable of build­
ing a machine to perform the procedure. (However, it should be noted 

that coherent optical systems may eventually be used to perform logical 
operations at rates on the order of one picosecond (10-12 second) 

per operation (see Culver and Mehran, 1971). 
Theoretical Serial. Bledsoe (1961) used quantum theoretical con­

siderations to derive the minimum access time of a serial digital com­
puter (in which all information is passed through a central processing 

unit) with a density less than or equal to 60 gm/cm3
• He obtained the 

figure 10-21 second = 10-12 nanosecond. Therefore 1 o-12 nanosecond/ 

step is taken as the best speed with which a serial computer could 

perform the steps of a given procedure. It seems likely that this speed 

of computation is completely beyond the bounds of any anticipated 

technology . 
. Theoretical Parallel. Bremermann (1967) computed the maximum 

rate at which information can be processed in a universe of 1073 protons, 

and he obtained 7 X 10103 bitsjyear. This estimate, in the form of w-ss 

nanosecond/step or 10-104 yearjstep, is used as the maximum speed 

with which the steps of any given computational procedure can con­
ceivably be performed. It is useful simply as a "clincher" to establish 

whether. a procedure is completely beyond the bonds of computation. 
There are real-world problems for which the only procedures we 

can describe that would yield exact solutioil.s cannot be 'carried out: 

The performance of these procedures is beyond even the "theoretical 

parallel" bound to computational ability. (One such problem is the 

game of ao; see Chapter 4.) However, it should be emphasized that 

for most problems there are several procedures for arriving at (perhaps 

partial) solutions, and it is possible {or some to be within bounds and 

others to he out. Similarly, it is usually possible to describe a given 
procedure with several different programs, some of which may be more 
quickly executed by a given machine than others. 

Because so little is known about the functioning of the human 

brain, it is difficult to compare its physical limitations with those of 
computers. The consensus seems to be that the brain has a larger 
memory than that of the computer but that it performs its logical 

operations (whatever they are) much more slowly (on the order of 
milliseconds/operation). The slowness of the brain's operation seems 
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to be relatively unimportant if we consider the complexity of its struc­
ture and the fact that it is highly parallel; these attributes probably ac­
count for its evident ability to perform extremely complex logical 
operations at about the same speed with which it performs more simple 
reflexes. 

SUMMARY 

We have seen that there are limits to the things that computers 
can be used to simulate, to the problems they can be used to solve, and 
to the procedures they can perform. However, our knowledge of these 
limits and of natural intelligence is not sufficient to determine whether 
the attainment of a general artificial intelligence is within the bounds of 
computational ability. AI researchers still do not have enough evidence 
to decide whether machines can be made as intelligent as human beings. 

NOTES 

2-1. In fact, we have here described what might be called simple mathe­
matical theories. We may define a general mathematical theory to be such 
that its three sets are finitely describable. At any rate, the object described 
by the theory is still finitely describable. 

2-2. The proposition that if a thing is finitely describable it is therefore 
mathematically describable is generally taken as a postulate of the phi­
losophy of mathematics, since it has not been proved mathematically. 
Mathematics seems incapable of supplying or handling a nonmathematical 
definition for the concept of "finitely describable." The evidence so far is 
clear, however, that all mathematical ways of formalizing the ~oncept of 
"finitely describable" are equivalent. 

2-3. From the mathematician's point of view, the thing is often identified 
with the set of sentences describing it. 'One could say in this sense that the 
natural numbers do not exist separately from the axioms that ,generate the 
set of sentences describing them. The notion of mathematical description is 
an effective notion, something like "approximation": One can derive as 
many of the truths about the thing described as one likes, though one can­
not necessarily derive all such truths, in a finite time. 

2-4. Actually, this is not quite true. One can extend the arguments of 
Chaitin (1966, 1969) to prove that there exists a finite set A with, say, 
10200 elements, such that any finite description of A requires at least as 
many elements (production-rules; see Chapter 7) as there are in A. That 
is, the smallest finite description of A is the enumeration of the elements in 
A. However, the actual enumeration of the 10200 elements in A is physically 
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impossible. That is, the set A is finite, but is "practically infinite, practically 

nondescribable." 
The proof for the existence of such a set would, of necessity, be non­

constructive. Existence proofs of this type are not considered valid by some 

mathematicians (note 2-5). 

2-5. (A set is countable if its elements may be put into one-to-one cor­

respondence with the natural numbers 1,2,3, . . . . The set of sentences 

derivable within a given mathematical theory must be countable, since for 

each n there can be only a finite number of sentences of length n or less). 

This conclusion was first drawn from the work of Georg Cantor. Nat­

urally, it aroused much controversy, and there are many mathematicians 

today who disagree with Cantorism (see Kac and Ulam, 1968, pp. 12-14). 

In particular, there is no unanimous viewpoint among mathematicians as 

to the proper rules for reasoning about "infinity" or even, for that matter, 

as to the existence of infinite things (see Benacerraf and Putnam, 1964) . 

Thus, the argument concerning the existence of mathematically nonde­

scribable numbers is not a proof, especially if one does not grant the a 

priori validity of the infinity concept. Hilbert (in Benacerraf and Putnam, 

1964, p. 136) argued that the results of scientific. investigation have given 

no evidence for the existence of infinite things. The viewpoint in this book 

is that scientific investigation has given no incontrovertible evidence con­

cerning either the existence or nonexistence of infinite things. 

It should be pointed out that some scientists have disputed the com­

pleteness of mechanistic reasoning, using quantum theoretical arguments 

(see, e.g., Elsasser, 1969). 

2-6. Certain aspects of the universe are, according to current scientific 

theories, described as being finite. According to relativity theory, there is a 

maximum possible velocity, that of light, although certain phase velocities 

can be greater. Albert Einstein suspected that the spatial size of the universe 

might be bounded, and estimated a figure for its radius. 

2-7. The definition of discrete phenomena does not require that an oc­

currence have a "first" event. Even so; it is possible to make a descriptive 

string, with a beginning, for an occurrence with neither a first nor a last event. 

(How?) 

2-8. Of course no one can observe precisely that an event starts "imme­

diately after" some time t; what this means is that there are different step 

functions that describe occurrences which appear to be the same. (Exam­

ples?) This also applies, of course, to "immediately before," and "during 

the instant." 

2-9. This seems, incidentally, not to be the case with most nondiscrete 

functions. For these, the best one can usually do is to approximate the 

value at a given point to an arbitrary closeness in a finite number of steps. 

Even in the case of Fig. 2-2, "the weight on a spring," we really deal with 

a type of approximation: The differential equation that describes the class of 

- ··- ---~~~----·~---------~~··---·~-= 
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all possible occurrence functions does have exactly one solution for any 
given assignment of values to its variables (m,a,k), but in order to evaluate 
that solution and to see where the weight will be at a certain time t, we 
usually have to compute certain functions (sine, cosine, etc.) that yield 
approximations. Typically, a finite description of an occurrence of a non­
discrete phenomenon will give exact information at a finite number of points 
(values oft) and information that is an arbitrarily exact approximation at an 
infinite number of points. Something of the reverse holds for discrete phe­
nomena: A finite description will often give exact information about an 
infinite number of values of t, of which at most only a finite number are "ap­
proximate"; for example, 2,11'+,4+. 
2-10. The observant reader may object that surely one cannot represent 
phenomena that have a nondenumerable number of occurrences by de­
scriptions which yield a denumerable number of occurrences. To (partially) 
answer this objection, consider Example 2-1, "the weight on a spring": This 
phenomenon may presumably have a nondenumerable number of occur­
rences. However, the set of occurrences one can actually compute, using its 
description (the differential equation), is denumerable, for three reasons: 

a. Each computable occurrence is specified by listing the values for 
the variables m, a, k, and the accuracy with which one wishes to 
evaluate the equation. 

b. Each of these values must be finitely described, and the finitely 
describable numbers are a countable set. 

c. The countable product of countable sets is countable. 
Thus, although the description of the phenomenon applies in an "ideal" 

sense to an uncountable number of occurrences, it actually describes only a 
countable set. 

2-11. One of the subplots of Kurt Vonnegut's novel, The Sirens of 
Titan, is relevant: The hero is part of an army trapped on Mars. Most of 
the soldiers in the army have radio receivers implanted in their brains and 
are remote-controlled by a person who has decided (for reasons extraneous 
to this discussion) to have them invade Earth. The hero manages to dis­
cover what is happening, despite the fact that he has a radio receiver im­
planted in his own brain, and he writes a letter to himself describing every­
thing he knows about the invasion. After hiding his letter, his dislike for 
the army is found out. Surgical officers in the army erase a great deal of 
his. memory, but after he returns to duty he discovers his letter. Reading it, 
he is able to replenish his memory and begin again. This cycle repeats several 
times. 

EXERCISES 

2-1. (a) Find a finite description for the set of points that are the intersections of the 24 Archimedean spirals, having equations of the form 
r = ±(0 + (krr/6)) 
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where k = 0,1 ,2, . ; . , 11. (b) Find a finite description for the set of points formed 

by the analogous intersection of 24 exponential spirals, with equations of the 

form 

r = ±(e**(O + (k,./6))) 

2-2. Construct a next-move function for a "unary multiplier," which, given an 

input string 

... bbbll .. lblll .. lbbb ... 
------ ---.,....-..J 

m n 

consisting of a string of m 1 's followed by a string of n 1 's, produces on its tape 

an output string containing mn 1's. 

2-3. (a) Show that any Turing machine can be represented by a natural 

number (an integer greater than zero). (b) Give a finite description for a function 

f mapping the natural numbers into [0, 1], such that f(n) cannot be computed 

for any n by any Turing machine. 

2-4. Consider a simple "polycephalic" Turing machine which has two tapes, 

i, and i., each of which is filled completely by zero's except for a single block of 

1's. Let the blocks of l's on the two tapes be right-justified, as indicated above. 

Find the simplest possible next-move function that will enable an outside ob­

server to determine whether or not the number of 1 's on tape i1 is greater than 

or equal to the number of 1's on tape i., assuming that he cannot observe the 

state q of the Turing machine. 

2-5. In 1962 there were on this planet about 55,000 scientific journals publishing 

about 1,200,000 articles per year; there were also 60,000 scientific books and 

100,000 other research reports issued per year (in the United States, scientific 

and technical publications have doubled in bulk approximately every 20 years 

since 1800). Estimate the size, in bits, of a computer memory capable of storing 

(a) all scientific publications produced in 1962, and (b) all scientific publications 

produced as of the present. Assume ' 
30 pages per article 
300 pages per book 
100 pages per research report 
60 lines of print per page 
70 symbols per line 

and assume each symbol can be any of 128 different characters. How fast must 

one add to such a memory, to keep it up to date? 

----~~--------
-~ .... ~ .. 



Dragon maze. (Courtesy of D. Ingalls, Xerox Palo Alto Research Center.) 



3 ___ _ 
PROBLEM SOLVING 

INTRODUCTION 

The opening sections of this chapter present a brief overview of 

the directions currently being taken by artificial-intelligence (AI) re­

search and of the subjects that will be covered in subsequent chapters. 

The third section of this chapter describes some of the ways that AI 

researchers have formalized the concept of "problem." In the succeed­

ing sections general problem solvers and reasoning programs, state­

space problems, and heuristic search theory are discussed. Planning, 

learning, and reasoning by analogy are then introduced briefly. The 

final section is concerned with models, the "problem of problem repre­

sentation," and the levels of competence that have been attained by 

artificial intelligences. 

PARADIGMS 

General Approaches 

Speculations on the possibility of a search for mechanical intel­

ligence were originally put forth by several individuals-including Alan 

Turing, John von Neumann; and Norbeit Wiener-during the years 

1943:-1950; however, it was not until electronic digital computers be­

came generally available in the early 1950s that experimental research 

in artificial intelligence could begin. Rapid progress in AI research did 

not occur until "symbolic processing languages," such as IPL and LISP, 

67 
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were developed (note 3-1). To date there have been several thousand 
papers published on the subject of artificial intelligence. However, AI 
research is still in its embryonic state, and we cannot yet decide what its 
final form will be. Thus, this book must serve both as an introduction 
to a vast body of literature and a commentary on what appear to be the 
central topics discussed in that literature. 

Kuhn (1962) discussed the importance of paradigms in the 
development of scientific investigations. (A paradigm is a general 
model of something that is found to be useful for investigating that 
thing.) AI researchers have developed many paradigms for artificial 
intelligence. Chapter 1 has already discussed one, which is represented 
by Turing's test: Artificial intelligence research is concerned with build­
ing machines that can perform tasks which people would ordinarily say 
require the "intellectual abilities" of a hunian being. 

Environments 
Another way of viewing AI research is to see it as an effort to design 

machines that are capable of existing on their own in environments 
produced by the real world. An "environment produced by the real 
world" (or a real-world environment) is not necessarily our own en­
vironment. A mechanical intelligence might, for instance, operate in an 
environment consisting of "all published scientific works." Intuitively, 
an environment produced by the real world is always changing and does 
not have a known, complete description or prediction. We expect such 
an environment to exhibit regularities, or "patterns," and we expect a 
machine that operates in such an environment to encounter "problems." 
A machine operating successfully in a real-world environment will 
have to develop and represent internally its own "knowledge" of that 
environment. It may have to discover largely on its own the problems 
it needs to solve and the patterns it needs to recognize. If we design the 
environment ourselves, then many of these problems and patterns may 
be presented to the machine automatically (as with question-answering 
and fact-retrieving machines; see Chapter 7). Even if we do not design 
the environment, we may still know enough about it to give the machine 
automatic procedures for locating relevant problems and patterns. At 
any rate, the machine will have to be able to solve the problems and to 
perceive the patterns that it encounters. 

Throughout this chapter we shall have much to say about the 
general nature of machines that are capable of existing in real-world 
environments. It is convenient to say that a machine which is capable 
of operating successfully in a real-world environment displays an 
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aptitude for that environment. Also, reference is often n.1ade to environ­

ments simply as "problem domains" or "problem areas." 

Aptitudes 

A closely related paradigm for AI research is to see it as being 

concerned with frameworks for the engineering of mechanical aptitudes. 

By this we mean that AI research can be viewed as an attempt to develop 

the computers and other hardware, programming languages, and human 

expertise necessary to design machines with aptitudes for specific real­

world environments. This viewpoint springs from the recognition that 

some procedures (machines) will appear to be intelligent in some en­

vironments and unintelligent in others. Rather than search for a pro­

cedure that will be intelligent in all (or even many) environments, AI 

researchers may look for a framework (computer, language, expertise) 

within which to design procedures that can be tailored for intelligence 

in specific environments. Although AI researchers pursuing this paradigm 

are concerned with developing intelligent machines, they are more con­

cerned with finding programming languages and computers that will 

facilitate the development and description of a wide variety of different 

intelligent machines, each with its own aptitude for solving problems in 

a real-world environment (some machines may have many of the 

aptitudes possessed by others). Many investigators have worked within 

this paradigm, too many for us to identify at this time all those who 

have made important contributions. Chapters 6, 7, and 8 are, in effect, 

a discussion of the work that has been done using this paradigm. 

The idea of mechanical aptitudes is a valuable one, whether or 

not we seek a general framework within which to design them. Most 

AI researchers have not aimed directly at the goal of constructing com­

pletely intelligent machines, able to display intelligence at a human 

level. Rather, most work in artificial-intelligence. has been devoted to 

the machine simulation of specific intellectual abilities (giving machines 

specific aptitudes) such as the ability to play games or the ability to 

prove mathematical theorems. There are three basic reasons fo~ this 

approach: 
First, the theoretical and practical knowledge necessary to do 

really general work was (and is) extremely limited. There is no 

adequate guideline that can tell us in any detail how to build machines 

with a truly general artificial intelligence. 
Second, one of the best ways to acquire this sort of information 

is to make a thorough comparison of human and machine abilities in 

limited problem areas or environments. The precise nature of the dif-
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ficulties involved in AI research may show up more clearly if we confine 
our early inquiries to the simulation of specific aptitudes possessed by 
natural intelligence. Hopefully, many limited attempts at machine intel­
ligence will eventually provide better grounds for generalization. 

Finally, there is always pressure for some immediate results, both 
to solve current and practical problems-such as character recognition 
or assembly-line balancing (see, for example, Tonge, 1963 )-that do 
not require general mechanisms for artificial intelligence, and to estab­
lish by experiment ·a likelihood that the more general attempts will 
eventually succeed.1 

The specific machine aptitudes that have received the most investi­
gation by AI researchers are problem solving, game playing, pattern 
recognizing, theorem proving, and· language understanding. Two facts 
concerning "specific" machine aptitudes should be emphasized: First, 
there are levels of generality in the aptitudes that machines may possess. 
Thus, one procedure may have an aptitude for playing a specific game, 
such as Chess, and another procedure may have an aptitude for playing 
many different games; procedures with a "specific" aptitude for playing 
many different games are said to be general game-playing procedures. 
Similarly, a program with an aptitude for solving many different prob­
lems is called a "general" problem solver (it is not required that the 
program be able to solve all problems, or even that the problems it 
is able to solve be especially difficult). AI research has so far had only 
limited success in developing general problem solvers, general game 
players, general pattern recognizers, and general theorem provers. No 
procedures have yet been developed which we could fairly say are 
"general language understanders" (note 3-2). 

The oth~r fact that should be emphasized concerns the inter­
dependence of aptitudes. Throughout this book we shall see many 
ways in which machines with one general aptitude must have other 
(perhaps less general) aptitudes. Thus, it can be shown that general 
game players must have an aptitude for pattern recognizing (see, e.g., 
Banerji, 1969), and general pattern-recognizing programs must have 
an aptitude for language understanding (see Chapters 5 and 7). 

Evolutionary and Reasoning Programs 
The term general artificial intelligence, as it is used here, refers 

loosely to a machine (procedure) that has aptitudes for general 
problem solving, general game playing, general theorem proving, gen­
eral pattern recognizing, and general language understanding, and also 

1 We discuss the practical uses and effects of general artificial intelligence more thoroughly in Chapter 9. 
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has aptitudes enabling it to display all other kinds of intelligent be­

havior normally exhibited by people. Again, no one has yet been suc­

cessful in giving a machine the aptitudes corresponding to general 

artificial intelligence. There have been primarily two types of ap­

proach to the goal of achieving a general machine intelligence, one of 

which is an evolutionary approach, the other being what is called (fol­

lowing McCarthy) the "reasoning program" approach. These ap­

proaches are not mutually exclusive, but as yet they have not been 

combined: Thus, one can imagine reasoning programs that might 

change their rules of inference and "evolve," and one can imagine 

interrelating reasoning programs that would form a "self-organizing" 

whole, which might itself be a reasoning program (see Chapter 8). 

The evolutionary programs, such as those written by Friedberg 

et al. (1958, 1959) and Fogel et al. (1966) and suggested by Holland 

( 1970) and Campbell (1960), are programs that produce, select, and ' 

modify subprograms according to their ability to perform various 

tasks. There is no reason in theory why evolutionary programs might 

not eventually be used to produce a general artificial intelligence, but 

as yet the evolutionary approach has had little success. 

The reasoning-program approach is an attempt to develop a single 

program capable of perceiving facts about its environment, of drawing 

conclusions from facts, of discovering an adequate means for the ex­

pression of facts, of formulating its own goals and strategies, and acting 

according to them-a program that would, in short, be a rational 

entity. The most well-known example of this approach is probably the 

"General Problem Solver" of Newell, Shaw, and Simon (1963), which 

might be described as a preliminary investigation of the rational process. 

McCarthy (1963a,b; with Hayes, 1968a) took a somewhat different 

approach to the same goal, concentrating particularly on what sort of 

internal language (means for expressing facts) would be the best for a 

reasoning program. 
This chapter discusses the work of McCarthy, Newell, Shaw, 

Simon, Ernst, Nilsson, Amarel, Hewitt, Fikes, Pohl, and others, rele­

vant to the construction of reasoning programs and to giving machines 

a "specific" aptitude for general problem solving. 

PARADIGMS FOR THE CONCEPT OF 
"PROBLEM" 

Situation-Space 
What is a problem? Perhaps the best answer AI researchers can give 

is that the real-world nature of "problems" still has not been either fully 
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formalized or fully investigated. We can, however, describe two basic 
models, or paradigms, for the concept of "problem," which would have 
to be included in any fully general formalization. 

Our first general paradigm for "problem" is the situation-space 
model. A problem presented in this formalization consists of an initial 
situation, a set of possible situations, and a set of possible actions, to­
gether with a specification of how the various situations can be pro­
duced from each other by different actions, and the specification of a 
final, desired situation, or goal; the statement of the problem might also 
include a specification of certain situations to be avoided. A solution 
to a situation-space problem, then, is any sequence of actions that leads 
from the initial situation to the desired situation, and avoids the unde­
sired situations. 

Several additions should be made to this model for "problem" if 
we are to insure some generality in its application to the real world. 
First, we should allow the situations of a given situation-space to be 
partially-specified; that is, we should not require in general that a 
complete description be obtainable for any given situation (though for 
the simpler problems so far considered in AI· research such descriptions 
are usually available) ; rather we might allow a given situation to be 
described by a set of sentences, each presenting a fact about the situa­
tion from which new sentences may possibly be derived. The set of 
sentences describing a given situation may be incomplete; that is, one 
may not be able to answer all conceivable questions about the situation. 
Again, the result of applying an action to a given situation will not 
necessarily be a completely specified situation. In the same vein, the goal 
to be obtained by solution of the problem may be only partially-specified. 

Also, in full generality we would not require that the result of ap­
plying an action to a given situation necessarily be a unique situation, or 
even a unique partially-specified situation. That is, we should allow 
actions to be "nondeterministic" in their consequences, sometimes yield­
ing one partially-specified situation out of a set of partially-specified 
situations. 

Finally, a solution to a situation-space problem may in general be 
partially-specified; that is, the solution may be described as dependent 
on various contingencies that cannot be completely determined in ad­
vance. For example: "If X should become a factor then do Y," "If Z 
should happen, then formulate a new solution." Thus, the solution may 
in general be a plan, or strategy, not a specific string of actions. The 
various actions that might be included in a given solution should include 
"looking for a new solution"; "discovering more information about 
relevant situations"; and "interrupting one's actions, not doing any­
thing." 
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A good example of a real-world problem that is partially-specified 

is McCarthy's Airport Problem: The problem consists in going from 

one's home to the airport. Two basic actions are available, driving and 

walking. To solve the problem, one starts at home, walks to one's car, 

and drives to the airport. However, in reality one cannot specify com­

pletely and invariably all of the details of the situations and actions that 

may occur in solving the problem; so, a single string of actions cannot 

be produced which is a guaranteed solution. One could, for example, 

Break one's leg going to the car. 
Have a flat tire while driving to the airport. 

Misread a highway-direction sign and get lost. 

Run out of gas or have engine trouble. 

Come to a roadblock or a detour. 

A machine attempting to solve the Airport Problem could run into 

similar difficulties, yet these are all obstacles a general intelligence could 

surmount (though in doing so it might need to enlist the aid of other 

intelligences). The nature of this problem's difficulty lies in the partial­

specification of its situations, actions, and solutions. This is true of most 

problems in the real world. 

System Inference 

Our other paradigm for "problem" is the paradigm of system 

inference. Problems in this paradigm may take many different forms of 

representation, all of them theoretically equivalent, though a machine 

working within this paradigm might sometimes find the use of one 

representation to be more efficient than the use of another. Various 

forms of "system inference" would respectively require a problem-solv­

ing machine to be capable of inferring: 

1. A function f from a set A to a set B, given examples of the 

function's values for a subset of A. 
2. A relation R within a set X, given a description of X and a 

set of examples (positive or negative) of the way R holds 

throughout X. 
3. A grammar for a string language L, given a set of sentences 

that belong to L and a set of sentences that do not. 

4. A mathematical theory, given a set of propositions that are 

true within the theory, and a set that are not. 

5. A Turing machine T, given a sample of its behavior on a set 

of input strings. 
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(Of course this list is not exhaustive.) The inference, or system, pro­
posed by a problem solver as a solution to one of these requirements 
will typically be a finite description of a function, relation, string gram­
mar, mathematical theory, or Turing machine. 

The generality of this paradigm as a model of mathematical prob­
lems should be strongly suggested, but there may be some doubt as to 
its relevance to the real world. To help insure this relevance, we should 
allow the evidence for a given system-inference problem to be partially­
specified and also allow the solutions (i.e., systems) proposed by the 
problem-solving machine to be partially-specified. Again, the machine 
should have some language for representing its knowledge of a given 
inference problem, and it should have some way of determining informa­
tion that will help it decide among the various systems it might infer 
as a solution to a problem. It will often be the case that a machine will 
be able to infer several systems consistent with the evidence it has been 
given. However, we would not require that it be able to derive its 
inference(s) from the given evidence, nor even necessarily that it be 
able to prove that its proposed solutions are consistent-nevertheless, 
a system-inference machine should be able to defer to experience and 
not make an inference once it has recognized evidence that refutes it. 
Also, a system-inference machine should be able to detect, or try to 
detect, that its evidence is self-contradictory, and it should usually tend 
to propose increasingly better solutions. 

An intuitive example of a real-world system-inference problem is 
the problem of invention: That is to say, given a description of some 
task to be performed (peel potatoes), find a description of an object 
that will perform the task (draw a blueprint for an automatic potato­
peeler) . The task to be performed can be corresponded to a function 
that maps situations into situations; the description of the task can be 
corresponded to a description of the function values on' certain inputs; 
and the invention produced by the problem-solving machine can be 
corresponded to a finite description of a func~ion (a program for a 
universal Turing machine) that performs the. task. An efficient mechani­
cal inventor should use what might be called the "principle of economy 
of invention": Do not design an invention to depend on other, un­
achieved inventions if you can help it (note 3-3). 

Of course no one has built a "general invention-making machine," 
but the possibility is clearly in line with the notion of general artificial 
intelligence. 

Actually, each of these paradigms for the concept of "problem," 
the situation-space model and the system-inference model, is equivalent 
to the other: It is likely that any problem which can be stated in one 



>-·-~--

Problem solving 75 

paradigm can be stated in the other, and that each of these models is 
merely a different way for representing the same underlying idea about 
the general nature of problem-solving ability. Still, we should emphasize 
again that neither paradigm has yet been completely formalized or 
investigated as regards its application to "problems of the real world." 
Finally, we should mention that for any problem, there are essentially 
two levels of solution: The first level is to prove the existence of a solu­
tion to the problem, and the second level is to construct the solution 
itself. Polya ( 1945) presented an excellent introduction to the nature of 
problems and their solutions, and gave attention to some aspects of 
real-world problems. 

PROBLEM SOLVERS, REASONING 
PROGRAMS, AND LANGUAGES 

General Problem Solver 

The rest of this chapter will be concerned with computer programs 
that are capable of solving problems stated in the situation-space para­
digm. Programs that work with problems stated in other paradigms are 
discussed primarily in Chapter 7. We shall see the situation-space para-' 
digm used in Chapters 4 and 6 by programs which play games and prove 
theorems. In this section we are concerned with two questions: First, 
what should be the nature of a machine that would be a general prob­
lem-solver for problems of this type? Second, how should a machine of 
this type be designed to operate in a real-world environment similar to 
ourown? . 

One example of a fairly general program for solving situation­
space problems is the General Problem Solver ( GPS) program of 
'!'£ewell, Shaw, Simon, and Ernst (1963 et seq.). GPS made use of an 
elementary language for the description of situation-space problems. 
That is, GPS was capable of accepting descriptions of objects and 
operators (=situations- and actions) and of accepting information that 
a certain object was the initial, or given, object and that a certain object 
was the desired object, or goal. The GPS language contained what might 
be called the first degrees of partial specification: One could specify to 
GPS that a class of objects (e.g., "any expression without an integral 
sign") was to be the goal, and the program could decide tha:t some ob­
jects would be considered partial solutions. This was done with the use 
of difference operators, which were capable of detecting various types 
of differences between objects. The differences were themselves also 
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treated as objects, and GPS could define subgoals of "changing the dif­
ference" between two objects. Thus, GPS would seek to minimize one 
difference at a time between two objects, and it usually was given an 
ordering for the various differences: Minimizing one difference could 
be considered more important than minimizing another. 

GPS used the same problem-solving technique (referred to as 
means-ends analysis by its authors) on every situation-space problem 
it was given; the technique comprised three essential steps: 

1. Evaluating the difference between the current situation and 
the goal. 

2. Finding an operator that typically lowers the type of dif­
ference found in step 1. 

3. Checking to see if the operator found in step 2 can be ap­
plied to the current situation; if it can, then apply it, else 
determine a situation required for the application of that 
operator, and establish it as a new (sub) goal; then go to 
step 1. 

GPS was applied to many different simple problems, such as the 
Missionary-Cannibals Problem (see the last section) and the Tower 
of Hanoi (see the Exercises) . It was also shown to be able to prove 
relatively simple theorems in mathematical theories; its authors were 
able to describe the resolution principle of J. A. Robinson (see Chap­
ter 6) within their formalization for operators and objects. On all of 
these (fairly simple) problems, GPS was successful, though usually it 
was not as fast in producing answers as were special programs designed 
to solve the individual problems. 

In several respects, GPS was not a fully general problem solver. In 
the first place, GPS could not produce a plan or strategy as its solution; 
the only solution GPS could produce would necessarily be a specific 
sequence of actions that would lead to the desired goal. Also, GPS 

could be applied only to problems that could be completely specified, 
where the various actions, objects, differences, etc., could be exactly 
described for the given problem. Thus, GPS was completely dependent 
on the ability of its programmer to produce a suitable representation 
for the problem. 

As an example, GPS was given the famous Seven Bridges of 
Konigsberg Problem (see Fig. 3-1). The problem is to go over each of 
the seven bridges once and only once and return to the point from 
which you started. This problem was shown to be unsolvable by Euler 
in 1736, using certain topological considerations. When given the 
problem, GPS tried the same paths repeatedly and eventually gave up, 
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Figure 3-1. The seven bridges of Konigsberg. 

unable. to achieve a solution because it could not look at the problem 
in a general way: It could not develop a partially specified solution, or 
strategy, and then prove whether the strategy would work, nor could it 
prove theorems about the problem or its solutions. Since GPS could not 
invent Euler's "topological considerations," it could not prove the puz­
zle to be unsolvable. 

Of course most people couldn't do this either, or at least not right 
away; otherwise the problem would never have become famous. Usu­
ally, the first thing a person will try is a GPs-like search. However, a 
person can stop such a search if it seems to be fruitless, and can try to 
reason about the problem itself. 

All of which is to say that GPS was highly "representation de­
pendent," more so than a truly general problem solver would be.2 We 
should expect a representation-independent problem solver to be capa­
ble of: 

1. Inventing new representations for a given problem, if it can­
not solve the problem using the ones it has. 

2. Discovering facts, and perhaps proving theorems, about rep­
resentations and problems, their interrelations, etc. 

3. Asking for, and looking for, help in the outside world. 

Each of these abilities would be necessary to a problem solver that 
functions in the real world. 

Reasoning Programs 

Following McCarthy and Hayes (1968a), let us label general 
problem solvers that work within the situation-space paradigm, and 
which possess independence from representations in this sense, as rea-

2 This criticism also applies to the more recent general problem solvers 
such as FDS (Quinlan and Hunt, 1968), MULTIPLE (Slagle and Bursky, 1968), 
and REF-ARF (Fikes, 1970). These programs are each capable of solving a variety 
of different problems, but they are all highly representation-dependent. 
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soning programs (RP's). At the moment, RP's are still in the conceptual, 
"thought-experiment" stages of development. We are primarily con­
cerned with RP's that could solve situation-space problems that might 
occur in a real-world environment similar to our own. 

Basically, a reasoning program is to be capable of sensing and 
operating on the world through perhaps several means, such as tele­
vision cameras and mechanical arms, and of communicating with peo­
ple through, say, keyboards and video displays. Its observations at a 
given moment may be stored internally in several forms: Pictures, for 
example, might be stored as matrices, lists, or other data-structures. 
However, any data stored by the RP is ultimately to be described, 
within the RP, by sentences in a general language for the representa­
tion of phenomena. RP should be capable of proving theorems about 
phenomena, stated within this language, and of deciding what actions 
to perform on the basis of these theorems; its "phenomena language" 
should be capable of describing the actions it can perform,· as well as 
the situations it can observe, and of describing interrelations between 
them. The language should be capable of describing hypothetical situa­
tions and actions, of designating some as desirable and others as not. 
Firi:ally, the phenomena language should be capable of describing repre­
sentations of problems, as well as problems themselves: RP should be 
capable of reasoning about its representations as well as with its 
representations, as described above. 

A language is essentially a way of representing facts. An important 
question, then, is what kinds of facts are to be encountered by the RP 
and how they are best represented. It should be emphasized that the 
formalization presented in Chapter 2 for the description of phenomena 
is not adequate to the needs of the RP. The formalization in Chapter 2 
can be said to be metaphysically adequate, insofar as the real world 
could conceivably be described by some statement within it; however, 
it is not epistemologically adequate, since the problems encountered 
by an RP in the real world cannot be described very easily within it. 
Two other examples of ways of describing the world, which could be 
metaphysically but not epistemologically adequate, are as follows: 

1. The world as a quantum mechanical wave function. 
2. The world as a cellular automaton. (See Chapter 8.) 

One cannot easily represent within either of these frameworks such 
facts as "Today is my programmer's birthday," or "I don't know what 
you mean," or "San Francisco is in California," or "Ned's phone­
number is 854-3662." 
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If we use human languages as an example, we can identify several 

things an RP language should be able to express very easily. 
Causality. The language should enable RP to express various forms 

of causality relationships between situations and phenomena: "fire 
causes smoke." 

Temporality. The language should be able to express that one 

situation precedes another, that one situation follows another im­

mediately, that one situation may precede another, etc. "Harry will get 

home by the time John does." 
Ability. The language shoud be able to express such notions as "X 

can do Y" (perhaps with appropriate modifiers; e.g., "if X is given 
certain knowledge"; thus, a person can open any combination safe, if 

he knows its combination). 
Relevance and Plausibility. The language should make it possible 

to express the notion that certain situations or problems are relevant to 

each other, or may be relevant to each other, though perhaps not in 

any known way. The language should also include the possibility of 

expressing the plausibility and relevance of sentences: "These ar,e all the 

sentences necessary to describe the problem"; "X is analogous to Y"; 

"These sentences are plausible." 
Possibility and Probability. The language sh,ould be. able to express 

notions of indeterminacy and undecidability and, if necessary, treat 

them mathematically. 
Knowledge and Certainty. The language should enable RP to ex­

press that something is known: "John knows Bill's phone7number"; 

"John knows how to find Bill's phone number"; "Someone here may 

know what time it is." 
Desirability and Undesirability. The language should enable RP to 

denote situations (and perhaps actions) as being desirable or undesira­

ble. 
Equivalence and Denotation. RP should be able to express several 

different types of equivalence, such as "The morning star is the evening 

star"; "The velocity is 50 mph"; "X2 =X • X." 
Existence. RP should be able to say that some things exist differ­

ently from others: "X is a solid"; "Y is an expression of information." 
Suppositionality or Hypotheticalness. RP should be easily able to 

state that some of the statements it is using are "advanced for the sake 

of discussion" (see Carnap, 1947, 1950; Quine, 1955-1964; Hintikka, 
1962, 1969; and Rescher, 1964, 1967). 

This list is only illustrative; many more examples could be added, 
and each example could be treated in much greater detail. It is also 
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true that these examples overlap each other; for a more thorough treat­
ment, the reader should see the paper by McCarthy and Hayes ( 1968a). 

One final thing to note on the subject of reasoning programs is 
that the language used by an RP will typically be changed with time 
by the RP. We should expect in general that a reasoning program will 
find it necessary to define new words or to accept definitions of new 
words; some of these words will denote new situations, actions, phe­
nomena, or relations-the RP may have to infer the language it uses for 
solving a problem. Our most important requirement for the initial 
language is that any necessary extensions to it be capable of being easily 
added to it. For a further discussion on the nature of languages and 
their use by machines, see Chapter 7. Predicate calculus has been sug­
gested as a possible basic language for an RP, and Chapter 6 discusses 
computer programs capable of proving statements expressed in predicate 
calculus theories. In the finalsection of this chapter, discussion is con­
tinued on the subject of representation-independent problem solvers. 

STATE-SPACE (SITUATION-SPACE) 
PROBLEMS 

Representation 

This section discusses the situation-space paradigm itself in some 
detail, since it is perhaps the most popular one used by AI researchers, 
and since there has been a considerable theory of problem solving, 
known as heuristic search theory, developed around it. 

The situation-space paradigm has been given several (slightly) 
different formalizations; in the literature of AI research it is usually 
called the "state space" paradigm, which is the name originally given 
to it by researchers in the fields of operations research and control 
theory. In this discussion "situation-space" and "state-space" termi­
nologies are used somewhat interchangeably, as defined below. The 
formalization presented is essentially that of Nilsson ( 1971), which 
gives an extensive coverage of heuristic search theory. Other formaliza~ 
tions are presented in Banerji ( 1969), Sandewall ( 1969), and Quinlan 
and Hunt (1968). 

Anyone who wishes to understand the current directions of AI 
research should make an effort to understand the state-space paradigm. 
While the ideas involved are not very difficult, their presentation will go 
easier if we consider a simple example. Such an example is the Three 
Coins Problem, which is stated below. After reading the statement of 
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the problem, the reader is urged to solve it-its solution is very straight­
forward. 

Three Coins Problem 

Given three coins arranged as in Fig. 3-2, make them all the same 
(i.e., either all heads or all tails), using exactly three moves. By a move 
in this case is meant flipping one of the coins over, so that if it is heads 
before the move, it becomes tails afterward, etc. 

Figure 3-2. Initial state of the Three Coins Problem. 

The Three Coins Problem can be easily stated as a state-space 
problem. A configuration of the coins is a state. The initial state, or 
start, is denoted by the expression HHT. The desired states, or goals, 

are TTT and HHH. For any given state there are three possible opera­
tors:, "turn the first coin over"; "turn the second coin over"; and "turn 
the third coin over." A move corresponds to the choice of one of these 
operators, and a solution to the problem is a sequence of three moves 
that transforms the start into one of the goals. 

Let us label the three operators as A, B, and C, respectively. Thus, 
B applied to HHT yields HTT; we can briefly denote this fact by the 
expression 

B 

HHT~HTT 

Since B applied to HTT yields HHT, we shall, however, write 

B 

HHTf---->HTT 

Given this notation, the diagram shown in Fig. 3-3 depicts the state 
space of the Three Coins Problem; that is, all the possible states and 
the result for each state of applying each of the possible operators to it. 
By tracing through the diagram, we· see that one sequence of moves 
which solves the problem is "first A, then C, then A," or ACA for short. 
The other solutions to the problem are AAC, CAA, BCB, BBC, CBB, 
and CCC; each of these leads to the goal HHH. (There is no way to 
go from HHT to TTT in exactly three steps.) 
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A 
~ ... 

Figure 3-3. A state-space for the Three Coins Problem. 

We shall consider a state to be a finitely describable mathematical 
object; in the Three Coins Problem each state was described by a string 
of three letters (e.g., HTH). Other ways in which states can be de­
scribed include numbers, matrices, lists, graphs, sentences, sets, vectors, 
and trees. (Graphs and trees are defined below; the mathematical notion 
of "sentence" is discussed in Chapter 7.) A state could be infinite, but 
the fact that it has a finite description means we can discuss it logically, 
prove theorems about it, etc. However, throughout the rest of this book 
we shall be concerned only with finite states. From the computer's 
standpoint the description of a state is a data-structure (see Knuth, 
1969). 

Similarly, an operator is a finitely describable means of transform­
ing one state into another state; there may be many ways of describing 
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a given operator, and from the computer's standpoint an operator is'a 
computational procedure. 

A description of a state-space problem, then, is the specification of 
three things: 

S, a set of possible starting states 
F, a set of operators 
G, a set of desired states, or goals 

A solution (or solution path) to a state-space problem is also the spec­
ification of three things: 

s, one of the pos~ible starting states 
g, one of the desired states 
a finite sequence of operators that transforms s into g 

Thus, if q is an operator and if we denote the result of applying q to s 
by the expression q(s), and if q1.q2, ••• qn-1> qn is a solution to a state­
space problem, then we have 

There may, of course, be many solutions to a given state-space problem 
(S,F,G). We may consider a given (S,F,G) state-space problem to be 
a collection of smaller state-space problems, each of the form ( {s},F,G), 
where s E S-we shall say a procedure solves the (S,F,G) problem 
if it is capable of producing a solution path for each of the correspond­
ing ( {s},F,G) problems which has a solution. 

The observant reader has probably noted that the definitions in 
the preceding paragraph make no mention of the sequence q1,q2, ••• ,qn 
consisting of three or any other prespecified number of operators. Yet 
we required in our informalstatement of the Three Coins Problem that 
the solution use exactly three moves, that is, that n be equal to 3. Can 
this sort of requirement be made within the framework of the definitions 
given in the preceding paragraph? 

To see that it <pim, the Three Coins Problem is restated as follows: 
Let the initial state's consist of the three coins, as in Fig. 3-2, and let 
s also contain a "counter," initially set to zero. (The counter is to be 
capable of storing arbitrarily large numbers.) Denote the initial state s 
by the expression (O,HHT). The three possible operators A, B, and C, 
which we can apply to an arbitrary state (i,xyz), will now be respec­
tively: "Tum coin x over and replace i by i + 1"; "tum coin y over 
and replace i by i + 1"; and "turn coin z over and replace i by i + 1." 
Finally, the set G of goal states will contain two members: (3,HHH) 

____________ , ___ ' 
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and ( 3, TTT). The solutions to this statement of the problem are the 
same as our solutions to the previous statement.3 On the other hand, 
the state space described by this statement of the problem, and shown 
in Fig. 3-4, is somewhat different from that of Fig. 3-3. 

Figure 3-4. Another state-space for the Three Coins Problem. 

It is possible to state many other problems within the (S,F,G) for­
mat defined above (note 3-4). For some problems, especially those 
that place restrictions on the desired paths from start to goal, it is 
necessary to use "counters" or other devices. However, many problems 
can be stated rather simply within the (S,F,G) state-space paradigm. 
This is true despite the fact that such problems will often have solutions 
that are very difficult to find. One reason for the popularity of the 
(S,F,G) state-space paradigm within AI research is that it simplifies 
the problem of stating problems that often have very difficult, hard-to­
find solutions. 

3 This is, incidentally, essentially the way the problem was stated to GPS, 
which solved it. 
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Of course the requirement that states and operators be finitely­
describable objects is not entirely consistent with "problems of the 
real world." We can expect a problem solver in the real world to en­
counter things for which it does not have complete, finite descriptions. 
The statements and solutions of real-world problems, so far as the 
mechanical problem solver might be concerned, would still be finite 
descriptions, but they could be incomplete. A real-world mechanical 
intelligence might be able to make a statement like "There is an object 
on the road ahead, but I don't know what it is; I had better slow down 
and try to see what it is." In general, if the elements of a given problem 
are partially specified, we call them situations, actions, etc., whereas if 
they are completely described, we call them states and operators, etc. 
Thus, we distinguish between situation-space and state-space problems. 

Puzzles 

None of the foregoing discussion is intended to deny, however, that 
state-space problems do occur in real-world environments or that the 
study of state-space problems can be of value to the study of situation­
space problems. Many real-world problems can be expressed in the 
(S,F,G) paradigm. A classic example is the Traveling Salesman Prob­
lem, which occurs in various forms in the scheduling of industrial pro­
duction (see the Exercises). Formalizations for the situation-space 
paradigm are discussed in later sections of this chapter. It should be 
emphasized that many of the techniques being developed for the solu­
tion of state-space problems are directly applicable to situation-space 
problems. Thus, "games of strategy" are one general class of situation­
space problems; Chapter 4 shows how the methods discussed in this 
chapter can be extended to game playing. The state-space problems 
considered in this chapter are essentially "one-person games of strategy"; 
these problems are also commonly called puzzles. 

An example of a puzzle that is easily stated within the (S,F,G) 
format, yet for which solutions are difficult to find, is the famous 
"15-Puzzle" (note 3-5). The puzzle uses a square tray adequate to 
hold 16 square tiles, in which 15 tiles are placed, each marked with 
a different number from 1 to 15. The space for the sixteenth tile is left 
empty; one configuration of the tiles may be changed into another 
configuration only by sliding a tile adjacent to the blank space into the 
blank space (this, of course, moves the blank space in the opposite 
direction). A "15-Puzzle Problem," or 15-Problem, is completely 
stated when we specify an initial configuration: of the tiles and a goal 
configuration. Figure 3-5 shows a typical 15-Problem. 
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We can state a 15-Problem as an (S,F,G) state-space problem as 
follows: A given configuration of tiles is a state. We shall denote each 
possible state by a 4 x 4 matrix, whose elements have values from 0 to 
15. Thus, the start and goal states of the problem are indicated in Fig. 
3-5. For a given state s we denote the number in the ith row and 

11 9 4 15 1 2 3 4 

5 3 12 ' ~ 5 6 7 8 

8 6 9 10 11 12 

10 14 13 14 15 

Start Goal 

Figure 3-5. A 15-Puzzle. 

the jth column of its matrix by the expression sii· Thus, s2,3 = 3 for 
the start-state being considered. For a given state s, let i0 and j0 be the 
values of i and j such that sii = 0. We have i0 = 3 and j 0 = 2 for the 
start state. Given this notation, we can describe four operators: 

A. Replace Sioio by Sio .io+l and Sio .io+1 by 0, if jo + I ::::; 4. 
B. Replace Sioio by Sio+1 .io and Sio+1 .io by 0, if io + I ::::; 4. 
C. Replace Sioio by S;0 .io-1 and S;0 .io-1 by 0, if jo - 1 2:: 1. 
D. Replace S;0j 0 by S;0-l,io and S;0-1,io by 0, if io- 1 2:: l. 

These correspond to moving the blank space "right," "down," "left," 
and "up," respectively. As is indicated in the description of the opera­
tors, an operator may not be applicable to a given state. However, for 
every state, at least two operators will be applicable. Part of the state 
space for the problem shown in Fig. 3-5 is shown in Fig. 3-6. 

Altogether, there are 16! = 20,922,789,888,000 different states 
in the state space of the 15-Puzzle. However, from any given starting 
state, only half of these states can be reached, using the operators A,B,C, 
and D. The other 101;2 trillion cannot be reached, regardless of the se­
quence of moves one tries (see Fig. 3-7). Computer programs have been 
written which are capable of solving the 15-Puzzle, that is, of finding a 
path between arbitrary start and goal states when such a path is possible 
and of recognizing start- and goal-state pairs for which there is no such 
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/ / 

11 9 4 15 

1 5 3 12 

7 0 8 6 

13 2 10 14 
/ 

11 9 4 15 11 9 4 15 11 9 4 15 11 9 4 15 

1 5 3 12 1 5 3 12 1 5 3 12 1 0 3 12 

7 8 0 6 7 2 8 6 0 7 8 6 7 5 8 6 

13 2 10 14 13 0 10 14 13 2 10 14 13 2 10 14 

11 9 4 15 11 9 4 15 11 9 4 15 

1 5 3 12 1 5 3 12 0 5 3 12 

7 2 8 6 13 7 8 6 1 7 8 6 

13 10 0 14 0 2 10 14 13 2 10 14 

Figure 3-6. Part of the state-space for the 15-Puzzle. 

4 12 9 15 4 12 9 15 

1 13 2 7 1 2 13 7 

' 8 3 ~ 8 3 

11 6 11 6 

Figure 3-7. An unsolvable 15-Puzzle. 

path. (One such program is discussed below.) However, so far as the 
author knows, no "general" problem-solving program tsuch as GPS, REF­

ARF, and FDS discussed above) yet written is capable of solving the IS­
Puzzle: Programs that can currently solve the 15-Puzzle are "special pur­
pose." We shall return to this point later. 
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Problem Reduction and Graphs 

For the discussions that follow, and for the reader who wishes to 
do more investigation on his own, it is helpful to introduce a special 
terminology: The diagram shown in Figs. 3-3, 3-4, and 3-6 represent 
what mathematicians call graphs (note 3-6). A graph is a (possibly 
infinite) collection of nodes and arcs; so far, we have corresponded 
nodes to states and arcs to operators. Arcs are usually . drawn as 
directed lines, or arrows. If an arc leaves one node, say A, and enters 
another, say B, we say A is a parent of B and B is a successor of A. 
If it is necessary to be more explicit, we often say B is a successor of A 
"under the operator q," etc. It A and B are successors of each other, 
we often replace the two arcs between them by a single edge, drawn 
either as a line segment or as a two-headed arrow. If a node has no 
successors, it is said to be terminal. A sequence of arcs and nodes lead­
ing from a given node A to a given node B is called a path from A to 
B. If A and B are connected by a path, we say A is an ancestor of B 
and B is a descendant of A. Thus, in Fig. 3-2, TTH is both an ancestor 
and a descendant of THT. 

It should be evident from these definitions that an (S,F,G) prob­
lem essentially involves finding paths between prespecified nodes in a 
graph. The nodes in the graph correspond to states in the state space, 
and the edges (or arcs, or connections) between nodes correspond to 
the application of operators. We often refer to the state space of a state­
space problem as a state-space graph, and use the words "node" and 
"state" interchangeably. 

For some state-space problems the state-space graph may be so 
small that it can be defined explicitly and shown in a picture (e.g., 
Fig. 3-4) ; in other cases the graph may be so huge that it can be 
defined only implicitly, and we can draw only pictures of very small 
portions of it--'-such was the case with the 15-Puzzle. In most problems 
that have been investigated by AI researchers, solutions can be ex­
plicitly indicated once they have been found; that is, one can usually 
either draw a diagram of the solution or state the solution by listing a 
series of symbols, each standing for a particular operator, as we did 
with the Three Coins Problem. However, in some problems even the 
sol_utions involve huge graphs and must be stated implicitly; some prob­
lems of this sort are games such as Checkers and Chess. 

One of the most useful aspects of the state-space paradigm is that 
it can, in a sense, be applied to itself. Instead of identifying nodes by 
states and arcs by operators, we can identify nodes by problems and 
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arcs by operators that change problems into other problems. We refer 
to finding a good path through a graph of this sort as a problem-reduc­
tion problem. The graph of a problem-reduction problem is known as 
an AND/OR graph, for reasons we shall learn in a moment. 

Problem-reduction problems can be developed as a natural exten-. 
sion of (S,F,G) state-space problems. To see how, consider the simplest 
possible (S,F,G) state-space problem: What would it be? 

Well, there are many extremely simple (S,F,G) problems, but all 
are approximately of the same form. We can classify three types of 
trivial or primitive (S,F,G) problems: 

1. Problems of the form (S, {q}, G), where there is only one 
operator available. 

2. Problems of the form ( {s}, F, {s} ), in which no operator 
need be applied-more generally, problems of the form 
(S,F,G) where S n G =F cp; that is, in which some start state 
is also a goal state. 

3. Problems of the form (S, { }, G) in which no operator can 
be applied and there is no start state that is also a goal state. 
The first two types of problem are trivially solvable; the last 
is trivially unsolvable. 

Basically, the problem-reduction approach consists of finding 
operators that are capable of transforming complex (S,F,G) problems 
into primitive (S,F,G) problems. The particular operators one uses will 
depend upon the initial, complex (S,F,G) problem, and it may often 
be very difficult to find good problem-reduction operators. 

In general, an AND/OR graph contains two types of nodes: problem 
nodes and AND-nodes. These nodes are usually called subgoals when it 
is not necessary to distinguish them. The arcs connecting problem nodes 
to problem nodes, and problem nodes to AND-nodes, represent the 
application of problem-reduction operators. Those connecting AND-
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nodes to problem-nodes will be referred to as and-links. The and-links 
from an AND-node usually subtend a circular arc, as shown here. 

A typical, small AND/OR graph is shown in Fig. 3-8. A problem 
node is said to be solvable if it is trivially solvable, or if any of its'suc­
cessor nodes is solvable. On the other hand, a problem-node is un­
solvable if it is trivially unsolvable, or if all its successor nodes are 
unsolvable. An AND-node is unsolvable if at least one of its successor 
nodes is unsolvable; otherwise it is solvable. 

Good examples of the problem-reduction approach are the "sym­
bolic integration" problem solvers, such as SAINT (by Slagle, 1963) and 

Figure 3-8. A small AND/OR graph. 
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SIN (Moses, 1967). These programs are capable of evaluating integrals 
such as 

J (1 ::~2)512 dx (3-1) 

in a symbolic fashion similar (especially in the case of SAINT) to the 
way in which people go about solving such problems. 

SAINT was constructed to use a table of trivial integral forms, 
such as 

f un+l 
u"du = n + 1 

(n ~ 1) 

J sin u du = cos u 

and it was given problem-reduction operators corresponding to various 
rules for the transformation of integrals, such as the integration-by­
parts rule, the sum-decomposition rule, and certain trigonometric and 
algebraic substitution rules. For our purpose, it is not necessary to 
understand these rules or integral calculus. 

When SAINT was given an expression like ( 3-1), it would attempt 
to reduce the expression to a combination of the trivial integrals in its 
table, by the proper application of its problem-reduction operators. In 
most cases its success at doing integration problems in this way was 
at about the level of a good first-year calculus student. 

Figure 3-9 shows a portion of the AND/OR graph constructed by 
SAINT in its solution for the problem expression ( 1). The top part of 
the graph is similar to Figs. 3-3, 3-4, and 3-6. ThS! trivial integral forms, 
or primitive problems, are the dark-bordered square nodes at the 
bottom of the figure. The first operator applied by SAINT was "trigono­
metric substitution"; this transformed the start node into the problem at 
node A in the figure. Then SAINT applied two operators and obtained 
node B. Since SAINT estimated B as being a difficult problem, the pro­
gram went back to A, applied another reduction operator, and obtained 
node C. But C also looked difficult, so SAINT went back to A and ap­
plied a sequence of three operators, labeled "trigonometric identity," 
"trigonometric substitution," "algebraic identity," and obtained node 
D. Then SAINT applied the reduction operator "sum-decomposition," 
which transformed D into three problems (E,F, and G) linked together 
by an AND-node; the AND-node between node D and nodes E,F, and G 
means that D can be ~olved if E,F, and G can all be solved. Since F 
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trig~ subst. z=cot y 
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Start 

r_x_4--dx 
J (l-x2)5/2 

trigonometric substitution 

x=sin y 

trig. subst. z=tan Y 

algebraic identity 

Figure 3-9. A portion of SAINT'S AND/OR graph for an integration 
problem. (Adapted with permission from Nilsson, 1971) 
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turned out to be primitive, or trivially solvable, E and G were quickly 
reduced to primitive problems. 

Thus, SAINT deduced the following facts: 

1. Start can be solved if A can be solved. 
2. A can be solved if B, or C, or D can be solved. 
3. D can be solved if E and F and G can be solved. 
4. E,F, and G can all be solved. 
5. Start can be solved. 

Having proved that its initial problem could be solved, SAINT was 
able to construct the actual solution 

f
0 

!_~2)512 dx =arcsin X+~ tan3(arcsin x)- tan(arcsin x)s 

. 0~ 

by first solving E,F, and G and then undoing the sequence of substitu­
tions it had used in going from start to A to D. SAINT required about 
11 minutes to solve this problem. 

Notice that nothing has been said about how SAINT "estimated" 
the difficulty of problems. This subject is left for the next section; for 
the moment, we have concentrated on the nature of problem-reduction 
problems and AND/OR graphs. 

The SIN 'Program. by Moses is more sophisticated than SAINT. 

SIN itself might be said to constitute a single reduction operator, which 
in most cases is capable of going directly from problem to solution 
without generating an AND/OR graph. SIN is capable of solving integra­
tion problems ''at the difficulty approaching those in the larger integral 
tables" (Moses, 1967). For example, SIN can evaluate problem (3-1) 
in about 9 seconds (note 3-7); in doing so, it generates only two sub­
goals in contrast to the 13 required by SAINT forth~. same problem. 

Summary 

We have seen two ways of stating problems that, in effect, ask the 
problem solver to find paths connecting prespecified sets of nodes in 
graphs. In many cases (including problem-reduction problems) the 
relevant graphs may be too large to store or generate completely by 
computer; this is probably true for most of the important problems a 
mechanical intelligence might be called upon to solve. How is it pos­
sible to solve problems of this sort? What enables a computer to avoid 
generating 10 trillion states of the 15-Puzzle, and yet still solve the 
problem? 
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HEURISTIC SEARCH THEORY 

Need for Search 

The field of AI research concerned with ways that computers can 
solve large state-space problems is known as heuristic search theory. In 
this section we introduce the reader to some of the central concepts of 
this field; more thorough discussions are provided by Nilsson (1971), 
Banerji (1969), Pohl (1970), and Michie (1971). 

Given a finite description of a state-space problem, a computer 
can be programmed to generate the state space of rhe problem while 
checking to see if it has produced a solution. The generation process 
consists simply of producing finite descriptions (data-structures) for 
the nodes of the state space and for their connections to each other. 
With a large, difficult state-space problem, it will not be possible for 
the computer to generate descriptions for each of the nodes and connec­
tions between nodes of the state space of that problem. Rather, the 
computer may generate only a relatively small portion of that state space, 
and can check only that portion, to see whether it includes a path be­
tween nodes, which is a solution to the problem. With suitable program­
ming, the computer may generate a portion of the state space containing 
on the order of 1()3 nodes (for some problems it may be necessary and 
possible to generate a few orders of magnitude more; conversely, the 
"general problem solvers" discussed in this chapter typically may gen­
erate no more than 100 nodes), whereas the state space of a difficult 
problem may easily contain 109 nodes. Thus, it is clear that the com­
puter must be somewhat selective in the way that it generates the por­
tion of a state space that it produces when trying to solve a state-space 
problem, if it is to be successful. Any procedure that a computer uses 
to generate a portion of the state space for a problem, and to check 
that portion for a solution, is said to search the state space, and is called 
a "search procedure." In this section we are interested in ways that 
search procedures can be designed to be "selective"; that is, ways they 
can be successful at finding a solution to a state-space problem without 
generating the entire state space of that problem. 

Of course a search procedure might find a solution for a problem 
simply by randomly generating descriptions for nodes and their inter­
connections, but unless a large percentage of the paths through the state 
space of a problem happen to be solution paths, such a procedure will 
not generally be successful. Usually, what we desire in a search pro­
cedure is that it somehow be "systematically oriented" toward the prob­
lem it is being used to solve, in such a way that it can find a solution 
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without generating the entire state space. A search procedure that is 
systematically oriented toward a problem will be said to embody 
heuristic (i.e., "serving to discover") information and will be called a 
heuristic search procedure. (Ways of achieving "systematic orientation" 
are discussed below.) If we can prove that a search procedure will al­
ways find a solution-if there is one-to any state-space problem 
( {s},F,G) such that s E S, then we say the search procedure is an 
algorithmic search procedure for the state-space problem (S,F,G). It 
is possible for a given search procedure to be either heuristic or algo­
rithmic or both or neither, with respect to some state-space problem 
(S,F,G). Most often the search procedures used by problem-solving 
computers are heuristic, but not algorithmic; sometimes they are both 
(thus, a symbolic integration program using the Risch algorithm (note 
3-7) would be heuristic and algorithmic, according to our definitions). 
Again, for large state-space problems, there is little value to a search 
procedure that is algorithmic but not heuristic, one that would solve 
the problem but might have to search the entire state space to do so. 

Thus, "heuristic programming" refers to computer programs that 
employ procedures not necessarily proved to be correct, but which seem 
to be plausible. Most problems that have been considered by AI re­
searchers are of the sort where no one knows any practical, completely 
correct procedures to solve them; therefore, a certain amount of pro­
ficiency in using hunches and partially . verified search procedures is 
necessary to design programs that can solve them. So, by a heuristic is 
meant some rule of thumb that usually reduces the work required to 
obtain a solution to a problem. (Again, it may be possible to prove that 
the heuristic will always supply solutions to some set of problems, i.e., 
that it is algorithmic.) Clearly, much of the conscious thinking that 
people do is based upon the use of heuristics that have not been shown 
to be algorithms.4 The realization of this fact and its incorporation in 
the design of computer programs was an important step in the develop­
ment of artificial intelligence, signifying a recognition by AI research~rs 

that intelligence is often exhibited in situations where one's understand­
ing and knowledge are incomplete. 

Search Procedures 

There are basically two methods of incorporating heuristic informa­
tion about (i.e., "systematic orientation" toward) a state-space problem 
into a search procedure designed to solve that problem; these methods 

4 We might have a hard time proving this to a strict behaviorist. This is one 
of the places where the author invokes his "personalistic license," granted in note 
1-2. 
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correspond to the use of "generator functions" and "evaluation func­
tions." Our description of these methods will be facilitated if we ex­
amine in a little more detail the generation processes that may be used 
by search procedures. 

The generation processes that AI researchers have investigated for 
state-space problems are made up of the following basic steps: First, 
a start node s is given to the search procedure. This node corresponds to 
a finite description of a state and is stored by the computer as a data­
structure. 

Next, using the operators (in the set F of the state-space problem), 
the successors to the start node are generated (i.e., a finite-description 
for each successor is generated). We denote by r a procedure that 
calculates all successors to a given node. The process of applying r to 
a node is known as expanding the node, or generating the successors 
to the node; thus, r is often referred to as a generator function, or 
generator. 

After a node is expanded, pointers are set up, leading back to the 
node from each of its successors. If a goal node is ever generated, then 
there will be pointers indicating a path from it back to the start node. 

The successor nodes produced when a node is expanded are 
checked to see if one of them is a goal node. If no goal node is found, 
then the process of expanding nodes and setting up pointers is con­
tinued by expanding nodes that have been generated as successors. If a 
goal node is found, then the pointers that have been set up are used to 
trace a path back to the start node-the operators that were originally 
used by r to produce the nodes along this path may be recovered and 
used to produce a solution path. 

The various search procedures developd for solving state-space 
problems may be distinguished from each other on the basis of two 
criteria: how the process of expanding nodes and setting up pointers is 
continued, and the nature of their generator functions. A search pro­
cedure that expands nodes in the order in which they are generated, 
after generating all of them below a given node, is called a breadth-first 
search procedure. A search procedure that always expands the most 
recently generated node first is called a depth-first search procedure. 
Figures 3-10 and 3-11 show "snapshots" of the successive portions 
of a state-space graph that would be generated by breadth-first and 
depth-first search procedures. Both types of search procedure are ex­
amples of blind search procedures because the order in which they ex­
pand nodes is unrelated to the actual location of goal nodes in the state 
space (unless their generator functions incorporate heuristic informa­
tion; see below). Thus, they are not heuristic search procedures. 
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Figure 3-10. Snapshots of the search produced by breadth-first proce­
dure. Dotted circles, ungenerated nodes; solid circles, generated nodes. 

The breadth-first search procedure is algorithmic: If a path does 

exist from a given start node to a goal node, it will eventually be pro­

duce~, using this procedure. It is possible for the depth-first procedure 
to search forever, going off in the wrong direction, without finding a 

solution path, even though one might exist. So, the depth-first procedure 
as stated here is not algorithmic. However, it may be modified to an 

algorithmic procedure by introducing the concept of the "depth" of a 
node (relative to the given start node) : The depth of a node is zero if 

it is the start node, and is one plus the depth of its parent otherwise. A 

bounded depth-first search· procedure is one which expands that previ­
ously generated, unexpanded node which has the greatest depth less 
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Figure 3-11. Snapshots of a search produced by a depth-first proce­
dure. Dotted circles, ungenerated nodes; solid circles, generated nodes. 

than the depth (or level) bound l established for the procedure. (If 
there is more than one such node, it expands the one most recently 
generated.) As illustrated by the snapshots in Fig. 3-12, a bounded 
depth-first procedure generates nodes in a depth-first manner until it 
reaches its depth bound; it then "backs up" and generates more nodes 
in a different direction, etc. It is fairly simple to see how this idea may 
be extended (essentially by allowing the depth bound to be systemati­
cally increased) to produce an algorithmic search procedure with a 
basically "depth-first" nature. 

Most heuristic search procedures are, in effect, modifications of the 
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Figure 3-12. Snapshots of a search produced by a bounded depth-first 
procedure. Dotted circles, ungenerated nodes; solid circles, generated 

nodes. 

bounded depth-first search procedure. As explained initially, heuristic 
search procedures rely on two methods, the use of generator functions 
and the use of "evaluation functions." A generator function may in­
corporate heuristic information about a problem if it is designed to 
generate first those successors of the node to which it is applied 
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which are most likely to lie on (preferably short) paths to some goal 
node. A search procedure that uses such a generator will tend to be 
"guided" toward a solution if it expands nodes according to the order 
in which they are produced by its generator. Thus, such a search pro­
cedure is "systematically oriented" by its generator toward searching 
the most promising portions of the state space first. 

An evaluation function is some procedure that can be applied to 
the finite description of a node in a state-space problem and which will 
produce an estimate of the "value" of that node (the likelihood that the 
node lies on a path to a goal node). AI researchers have investigated a 
variety of different kinds of evaluation functions: For example, Slagle 
and Bursky (1968) designed an evaluation function that estimated the 
probability that a given node would l;>e on a path to a goal node; Quinlan 
and Hunt ( 1968) used an evaluation function that constructed a differ­
ence set, measuring the (structural) differences between an arbitrary 
node and a given goal node; Samuel (1959, 1967) used an evaluation 
function that examined the important "features" possessed by a board 
configuration in checkers, to produce an estimate of the "strategic 
value" of the configuration (see Chapter 4). 

The central results in heuristic search theory are those of Hart, 
Nilsson, and Raphael (1968) and Pohl ( 1970). Their results hold for 
evaluation functions that produce numerical estimates for the "values" 
of nodes in state spaces. By convention, if f is an evaluation function, 
and n and n' are nodes in a state space, then we say that n is more 
valuable than n' if f(n) < f(n'); the lower the number assigned to a 
node by the evaluation function, the greater is the "value" of that node. 
An ordered search procedure using the evaluation function f is a search 
procedure that expands the previously generated, unexpanded node n 
for which f(n) is a minimum; if there is more than one such node n, 
then it expands the most recently generated one. The Hart-Nilsson­
Raphael result may be stated as follows: For a given state-space prob­
lem ( {s},F,G), let g(n) be the depth of node n from the start node; let 
h(n) be an estimate of the length of the shortest path from n to a goal 
node of the state space, and let hp(n) be the actual length of the shortest 
path from n to a goal node. If for any node n we have h(n) L hp(n), 
then an ordered search procedure using the evaluation function f(x) = 
g(x) + h(x) will always find the shortest solution path for the state­
space problem ( {s},F,G), if there is a solution path at all. Furthermore, 
provided h(x) is generally greater than zero, the ordered search pro­
cedure will often need to expand fewer nodes to produce its solution 
than would the breadth-first search procedure. Thus, such an ordered 
search procedure is both algorithmic and heuristic. If we relax the 
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condition that h(x) L hp(x), the ordered search procedure will still be 
heuristic, but it may not be algorithmic. (More specific information 
about h would be needed to determine whether it is algorithmic.) 

Search Trees 

Actually, the presentation of heuristic search theory thus far is 
precisely correct only for problems whose state-space graphs have the 
nature of a "tree." A tree is a graph with the following characteristics: 

1. The tree contains exactly one node that does not have a 
parent; this node is called the root node. 

2. Every other node in the tree is a descendant of the root node. 
3. Every other node in the tree has exactly one parent. 

If the graph for a state-space problem·( {s},F,G) is a tree, then 
the start node s will, of course, be the root node of the tree: A tree that 
is a graph for a state-space problem is often called a problem tree for 
that problem. Figure 3-4 shows a portion of the problem tree for the 
Three Coins Problem. 5 A basic modification is needed to make an 
ordered search procedure, using the evaluation function f(x) = g(x) + 
h(x), produce an optimal solution (in the sense of the preceding para­
graph) when searching a state-space graph that is not a tree. The modifi-

~cation consists of providing the procedure with a means of "updating" its 
function g(x); a node in a (general, non-treelike) graph may have more 
than one parent. Thus, we should define the ~'depth" of a node n)n a 
graph to be zero when it is the start node s; otherwise, we should define 
it as one plus the depth of its shallowest parent. The ordered search 
procedure may generate a node. n when expanding a node· n' with a 
depth of d' and later generate the node n again when expanding a riode 
n" with a depth d". If d" < d'~ then the procedure should change its 
estimate for the depth of n, from· d' + 1 to d" + 1 (and it should make 
a similar change in its estimate of the depths of those nodes that are 
descendants of n). 

Pohl (1970) presented similar results for an ordered search pro­
cedure using the evaluation function f(x) = (1 - w)g(x) + wh(x) 
where w is an adjustable parameter. (Pohl also discusses bidirectional 
search procedures, which are procedures that generate the state space of 
a problem outward from both the start and goal nodes; he concluded 
that such procedures are much more difficult to implement efficiently 

5 Problem trees are normally drawn upside down, with the root node at the 
top (see Knuth, 1969a, p. 307). 
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than are the ordinary "one-directional" searches we have discussed.) 
It is often desirable to design the generator function used by a 

search procedure to have a "memory," and to generate the successors 
to a given node in a one-at-a-time manner that can be interrupted and 
resumed when necessary. If such a generator function incorporates 
heuristic information (thus tending to generate first those successors to 
a given node that have the greatest value), then a search procedure that 
uses it may search the most promising parts of the state space first, 
without needing to generate, store, or evaluate the less plausible nodes. 
And, if its first searches of the state space do not succeed in producing 
a goal node, the procedure may then reapply its generator function and 
search less plausible parts of the state space. Michie (1971) presented 
search-theoretical results for a general problem-solving program ( GT4), 

which uses this type of generator function. 
The general problem-solving programs we have discussed in this 

chapter (GPS, FDS, MULTIPLE, GT4-REF-ARF differs slightly, as we shall 
see below) are all programs that can accept a finite description for an 
arbitrary (S,F,G) state-space problem, and which use that description 
to conduct a search through a portion of the state space of that problem. 
Their generality resides in the fact that they can accept finite descrip­
tions for many different (S,F,G) problems, and can often find solution 
paths for those problems. To a large extent, FDS and MULTIPLE are 
able to develop their own evaluation functions. The limitations of these 
problem solvers are due to two facts: They can search only relatively 
small state spaces; and they cannot develop a better finite description 
for a state-space problem than the one they are given-that is, they 
are not representation-independent. 

Although we have not discussed applications of heuristic search 
theory to problem-reduction problems, much the same results can be 
obtained. It should be noted that the procedures for searching AND/OR 

graphs are essentially the same as those for searching the state spaces 
of two-person, nonchance, perfect-information games of strategy. (An 
AND node corresponds to a move belonging to one's opponent; an OR 

node corresponds to a move belonging to oneself.) The discussion in 
Chapter 4 is therefore relevant to search procedures for AND/OR state­
space problems. However, for a thorough treatment of heuristic search 
theory as it applies to problem-reduction problems, and for a much more 
extensive discussion of the material in this section, we encourage the 
reader to see the book by Nilsson ( 1971 ) . 
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In its remaining two sections, this chapter discusses some important 

aspects of current AI research on problem solving. The topics discussed 

in this section are "planning," "learning," and "reasoning by analogy";' 

the next section discusses "models," the "problem of problem repre­
sentation," and the "levels of competence" that have been attained by 

machine intelligences. These topics represent open questions for AI re­
searchers, rather than established theories. Space does not permit presen­
tation here in detail of the many viewpoints (and results!) that have 

been developed about these topics, although, because of the interde­

pendence of aptitudes, theywill be discussed in greater detail in subse­
quent chapters. At this point, only some brief summaries and references 
to the literature are presented. 

A process that constructs and executes plans for solving problems 

is said to be a planning process. As emphasized throughout this chapter, 

many problems are partially specified, and for them there may not exist 

a single string of actions or operators that will always constitute a 

solution; therefore, the best, initial solution is often a plan. Plans for 

solving such problems may specify a wide variety of different actions, 

including "looking for outside help" and "making a new plan." Further­
more, these actions may be conditional; that is, a plan might include 

statements of the form "if X happens, then do Y; otherwise do Z." Or, 

they may include loops and recursion such as: "Stepl. Put money in 

the jukebox and punch-a-button; if it doesn't play what you want, then 

go to stepl; otherwise, go to step2"; "If at first you don't succeed ... "; 

"Move block (x). If x does not support anything, then pick it up and 

move it. Otherwise, for ally such that x supports y, first do move block 

(y) ." 
Again, the state spaces of some problems are extremely large, and 

the shortest solution-path for such a problem might be very long. A 

plan for such a problem might specify subgoals along the solution-path, 
and instruct the computer to search first for a path to the shallowest 
subgoal, and then for a path from that subgoal to the next, etc. (See 

McCarthy's San Diego Problem in Exercise 3-11.) This is often re­
ferred to as the "milepost" paradigm for plans. 

AI research on plans and planning may be divided rather naturally 
into three categories: paradigms for the concept of plan; computer 
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execution of plans; computer development of plans (which is what we 
should properly call "planning"). The degree of success attained by the 
research into these categories corresponds roughly to the order in which 
they are enumerated. Thus, a number of paradigms have been developed 
and many of them can be transformed into something that a computer 
can execute, but very little success has (so far) been obtained in having 
computers develop their own plans. 

The preceding paragraphs summarize roughly the characteristics 
that have been proposed for "plan" by the various paradigms that have 
been developed; these characteristics may be condensed into something 
of a formal definition: A plan is a collection of procedures together with 
specifications for when those procedures should be used (i.e., "called"). 
Each of the various paradigms is a formalization of this idea in more 
detail for a specific problem domain. Perhaps the most extensive for­
malization is that provided by Hewitt ( 1968 et seq.), which is discussed 
further in Chapter 6. Other paradigms for "plan" are explored by Doran 
( 1970) and Michie (1971). 

Of course, there is a "strange paradox" here, because we have used 
the same words (in essentially the same phrases) to talk about the con­
cept of "problem." Thus, a problem is a collection of procedures ( oper­
ators) together with specifications for how they shall be used to con­
struct a state-space graph, and information as to which paths in the 
state space are solution paths. The concepts of "problem" and "plan" 
may both be formalized by reference to procedures and their inter­
actions with data-structures. Thus, one of the paradigms for "plan" is to 
see them as "nondeterministic" programs, whereas the REF-ARF general 
problem-solving program (Fikes, 1970) is designed to correspond prob­
lems with such programs. For a description and discussion of nonde­
terministic programs, see Manna ( 1970b). (A similar, but less well 
formalized paradigm for "plan" corresponds plans to "fuzzy" programs; 
see Zadeh, 1968.) 

In passing, it should be noted that a program has been written 
which uses the "milepost" paradigm for plans in a procedure that evi­
dently is capable of solving the problems of the 15-Puzzle. The program 
was written by Ashok K. Chandra of Stanford University at the request 
of John McCarthy. The "mileposts" or subgoals used by the program 
correspond to the correct placement of the blocks of puzzle in succes­
sive "gnomons" of the tray (see Fig. 3-13). The program conducts an 
ordered search through the state space of the 15-Puzzle, attempting 
first to correctly place the blocks in the outer gnomon, then the next 
outer, etc. Moreover, the search conducted oy Chandra's program is 
bidirectional. At the present author's request, this program was run on 
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Figure 3-13. Gnomons. 

a sample of about 300 randomly generated 15-Problems (start-node 

plus goal-node in the state-space), and found a solution-path for each 

problem that was solvable. Usually, the program required about 10 

seconds to solve a given 15-Problem, and in doing so expanded less 

than a thousand nodes of the state-space. 

Reasoning by Analogy 

The importance of designing problem solvers with an ability to 

"reason by analogy" has been stressed by a number of investigators. A 

number of basic kinds of analogies were identified by Kling (1971 ) , 

discussed further in Chapter 6: The earliest program for "analogical 

reasoning" was that of Evans (1963). Winston (1970) presented an 

elegant formalization for the concept of "analogy" and showed how the 

results of Evans (1963) can be extended to three dimensions ("or 

more"; see Chapter 5). Becker (1969) discussed "semantic analogies," 

and Ramani ( 1971) presented a program that answers questions "by 

analogy." 

Learning 

AI research has developed many paradigms for the concept of 

"learning." Learning for state-space problems may be formalized as a 
process that finds suitable evaluation functions and generator functions 
for an ordered search procedure. Samuel (1959, 1967) provided the 
classic treatment of this type of learning, in which the nature of an 
evaluation function for nodes in the game-tree of Checkers is changed 

by a checker-playing program;"based on its previous experience with 

-----------------~---



106 INTRODUCTION TO ARTIFICIAL INTELLIGENCE 

the game (see Chapter 4). Hewitt (1968 et seq.) presented the para­
digm of functional abstraction for learning, and discussed some ways it 
might be utilized by PLANNER programs (see Chapter 6). McCarthy 
(1963), Minsky (1968) and Winograd (1968 et seq.) emphasized the 
fact that much of the learning done by humans results from their being 
taught various procedures by other humans, and stressed the desirability 
of incorporating "communication" into a general paradigm for learning 
(Chapter 7) . 

Since we may correspond learning to the development of the evalu­
ation and generator functions for state-space search procedures, and 
since such functions correspond to the heuristic information these pro­
cedures may use, it is natural to think of learning as a process of 
"heuristic development" for these search procedures. In a sense, a pro­
gram that modifies the evaluation function u~ed by its search procedure 
is developing its own heuristics. However, it should be stressed that it 
is difficult (unless the program is "self -affecting"; see Chapter 8) to say 
that such a program is really developing its own heuristics: The process 
(program) by which heuristics are developed is itself a heuristic. 

MODELS, PROBLEM REPRESENTATIONS, 
AND LEVELS OF COMPETENCE 

Models 

Throughout this book, and especially· in Chapter 7, the role of 
"model-making" in artificial intelligence will be emphasized. In theorem­
proving terminology (Chapter 6), a model is a particular interpretation 
of a statement, or of a set of statements. (A set of statements may have 
more than one model.) Any statement that is logically implied by a set 
of statements with a given model will hold true for that model, but any 
statement that does not hold true for the model cannot be logically im­
plied by the set. This fact may be used as a device for recognizing non.,. 
derivable statements: A particular instance of a candidate statement 
may be compared against a model; if it is found to be false, then we 
know the candidate statement cannot be derived from the set of state­
ments for which our model holds. A theorem-proving procedure may 
therefore be designed to reject automatically certain6 statements it can­
not hope to derive, if it has a means of developing models and using 
them for comparisons. Rather than statements, we may think of this 

6 ••• but not all, thanks to Godel (1931). 
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process as discarding possible successor nodes of a given node in a 

problem-reduction problem (see Nilsson, 1971). Gelernter (1959) pre­
sented a landmark testing of this concept in a program for proving 

theorems about plane geometry. For his program the use of models 
enabled, on the average, all but 5 out of 1,000 of the successors to a 
given node to be rejected. 

The Problem of Problem Representation 

We have emphasized the desirability that general problem solvers 
be .representation-independent; that is, capable of developing their own 
problem representations. No one has yet succeeded in giving represen­

tation independency to computers. However, Amarel (1968 et seq.) 
charted part of the basic mathematics necessary for such a task, and 
showed how a sequence of successively better problem representations 

for the Missionaries and Cannibals Problem (see the Exercises) can be 
produced, using the concepts of macro-operators and marrostates. Be­

cause of the fact that problems can be represented by programs, it is 

possible to treat the problem of problem-representation from a • pro­
cedure-oriented point of view (see Hewitt, 1968 et seq.) in which the 
problem of developing (correct, improved) problem representations is 
equivalent to that of developing (correct, improved) programs (see 

Chapter 6). Again, we may see it as a problem of learning languages 
for problem description. 

Levels of Competence 

Currently it may be said that AI research has produced the follow­
ing "skillful" programs, which perform tasks with an aptitude that 
people normally correspond to that of a very practiced human intelli­
gence: 

Samuel's Checkers Player 
Greenblatt's Chess Player 
The symbolic integration programs of Slagle, Moses, and Risch 
Feigenbaum's DENDRAL7 

Wasserman's Bridge Bidder 
Chandra's 15-Program 

7 DENDRAL is a heuristic program that infers the structure of molecules 
from their mass spectrographs. Its performance compares favorably to· that of 
graduate chemistry students (see Feigenbaum et al., 1971). 
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(The list is not exhaustive.) The aptitude of these programs for their 
tasks has been verified by direct comparison with the abilities of humans 
who are known to be "skillful" at performing the same tasks. Thus, 
Samuel's Checker Player is able to outplay all but the very best human 
Checker players. More modest claims must usually be made for the 
other "skillful" programs. 

However, an important point should be noted: All these skillful 
programs are highly specific to their particular problems. At the moment 
there are no general problem solvers, general game players, etc., which 
can solve really difficult problems (e.g., the 15-Puzzle) or play really 
difficult games (e.g., Checkers or Chess) with a skill approaching that 
of human intelligence. And, it goes without saying, there are no general 
programs that can learn to perform these difficult tasks skillfully (note 
3-2). 

NOTES 

3-1. The IPL system was developed in 1956 by Allen Newell, J. C. Shaw, 
and Herbert Simon; LISP was developed in 1960 principally by John 
McCarthy. The importance of good programming languages to the de­
velopment of AI research cannot be overestimated; AI research could not 
really get off the ground without IPL and LISP. It is doubtful that one of the 
most significant recent developments (Winograd's work on natural lan­
guages) could have been obtained without PLANNER and a similar pro­
gramming language called PROGRAMMAR. Programming languages are 
discussed further in Chapters 6 and 7. · 

3-2. An empirically based theory that has been produced by many AI 
researchers is that the more general the aptitude possessed by a machine, 
the less efficient is its performance of the tasks that the aptitude enables it to 
perform. Thus, Newell, Shaw, and Simon noted that their General Prob­
lem Solver was less efficient at solving the problems it could solve than 
would have been programs specifically designed for solving each of those 
problems. This relation between generality and efficiency has been con­
firmed by the other general problem solvers mentioned in this chapter. How­
ever, there is room for doubting that the relation is a "real" one; perhaps it 
is possible to design general problem solvers that can learn to solve the 
problems in a given problem-domain more and more efficiently (for in­
stance, the ability of people to learn to solve crossword puzzles) and, 
within a short time, approach the efficiency of problem solvers designed 
specifically to solve the problems of that domain. 

3-3. The principle is basically that suggested by McCarthy ( 1956), 
namely, that "the enumeration of partial recursive functions should give an 
early place to compositions of the functions which have already appeared." 
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In this early paper, McCarthy suggested the system-inference paradigm, 

using the following argument: A problem should be something that has 

solutions. By a "well-defined .problem" is meant one for which there is a 

definite test that verifies whether a proposed solution is correct. If a pro­

posed solution is not correct, then the test may either reject it or not 

terminate, but if the solution is correct, then the test must always verify it 

in a finite, though possibly variable, time. Let us regard the test as being 

carried out by a Turing machine T, which, given as input a proposed solu­

tion (or description of a proposed solution), will output in a finite time an 

affirmative symbol r if the proposed solution is correct. The statement of 

the problem then consists in a description of T and the designation of r; a 

solution to the problem is any input string i such that T(i) = r. A general 

problem solver is a machine that, given the description for the mth Turing 

machine T m' will compute an i such that T m (i) = r-if in fact there is such 

an i. Since, given m, one can construct the description of the mth Turing 

machine, a general problem solver can be said to compute a function g on 

two inputs (m,r) such that Tm (g(m,r)) = r; g, of course, is to be a partial 

function, not defined for all m and r (see also, McLamore, 1968). 

3-4. An alternate statement for the state-space paradigm is given in 

Sandewall (1969). His formalization is briefly described here. To dis­

tinguish it from the (S,F,G) formalization, let us call it the (S',F',G') for­

malization. 
The notion of state is the same as in the text; that is, a state is a data­

structure. For the sake of simplicity, we shall call a collection (or set) of 

states a particle (physicists beware!), and say that the states in a particle 

exist. An operator is a computational rule, which can be applied to existing 

states in a particle to produce new states that will also exist in the particle. 

An operator can either change the states to which it is applied or it can re­

move some (perhaps all) of them from the particle, or it can simply add 

new states to the particle. A description of an (S',F',G') state-space problem 

is the specification of three things: S', an initial or starting particle; F', a set 

of operators; and G', a desired or goal particle. A solution: to an (S',F',(J') 

problem is the specification of a finite sequence of operators and of how they 

are to be applied to S' and its successors such that G' will be produced. 
Sandewall ( 1969) discussed various types of operators and formulated 

a theory of heuristic search for this type of problem. Also, he suggested that 

the proper representation for the possible ways of going from one particle 
to another is in terms of lattices rather than trees or graphs. 

3-5. The 15-Puzzle was invented in 1878 by Sam Loyd (see Loyd, 1960) 

and was extremely popular during its early years, especially in Europe. 

Kasner and Newman (1956) reported that employers were forced to post 

notices forbidding their workers to play the puzzle during working hours. 

Loyd and others offered huge prizes to anyone capable of solving some of 

the unsolvable varieties of the puzzle. Some commentators at the time con­

sidered the 15-Puzzle to be a threat to society, attributing to it "untold 

headaches, neuroses, and neuralgias." 
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3-6. · Equivalently, we can say a graph G is an ordered pair (N,R), 
where N is a set of nodes x,y, ... , and R is a set of binary relations rt.r2 , ••• 

on the nodes. If r,(x,y) holds for a given x andy inN, then we say "x con­
nects to y under the relation r,." 

As used here, "graph" is a generalization of one of the most common 
applications of the word: graph of a function. The graph of a function, say, 
f: X~ Y, is a pictorial description of the relation r such that r(x,y) is true 
if y = /(x). 

3-7. Much of SIN's time advantage is due to the fact that it was run mostly 
in a compiled mode, whereas SAINT was run mostly in an interpretive mode. 
(For an explanation of these terms, see Knuth, 1969.) Moses estimated 
that his program is actually about three times faster than Slagle's. 

More recently, Risch (1969) developed an algorithmic procedure for 
solving a wide class of symbolic integration problems; Risch's procedure 
does not need to generate a problem-tree and is guaranteed to always 
produce correct solutions (it might thus be said to display a "perfect apti­
tude" for its problem-domain). An introduction to the Risch algorithm and 
a summary of the current state of work on symbolic integration programs 
was provided by Moses (1971). 

These programs, incidentally, are distinct from "numerical integration" 
programs, which typically compute numerical approximations to the values 
of definite integrals. Finally, SAINT is an acronym for "Symbolic Automatic 
INTegrator," and SIN stan.ds for "Symbolic INtegrator." 

EXERCISES 

In Exercises 3-1 through 3-10, and in Exercise 3-13, first solve the problems 
that are given. Next, make a list of the subproblems you considered while solving 
them. Discuss how a computer might be programmed to solve each of the given 
problems, and how each of the problems might be represented to the computer. 
If you find a state-space representation for a problem, estimate the size of the 
state space and try to identify heuristics and algorithms Jhe machine could use 
to search it. If computer time is available to you, choose a problem and try to 
implement a computer program that can solve it. 

3-1. Find your way out of the Maze of Dedalus. 
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3-2. (The Missionaries-and-Cannibals Problem.) Three missiOnaries and three 
cannibals are all on one bank of a river they wish to cross. They have a boat, 
which will hold two persons, but which can be rowed by one if necessary. If the 
cannibals ever outnumber the missionaries on a given bank, all the missionaries 
on that bank will be eaten. Otherwise, both parties will cooperate peacefully 
toward crossing the river. How can all the missionaries and cannibals be trans­
ported safely to the other bank? (b) Consider the general case in which there are 
m missionaries and n cannibals ( m :2: n) , and in which the boat can hold p 

persons, but requires at least r persons to be rowed (p :2: r), 

3-3. (The Confusion-of-Patents Problem.)* A certain patent attorney was 
astonished when he received the simultaneous allowance of five patents, for five 
separate clients, each of whom lived in a different city. 

His astonishment turned to chagrin, however, when he learned what had 
happened to the patents. They had been received in his office on the same day, 
but because of an error made by a new clerk, they were sent out in wrong 
envelopes. Each client received a patent, but not his own. 

The inventor of the steam shovel received the mousetrap patent, while the 
inventor of the latter found in his mail the papers that should have gone to Mr. 
Green. Mr. Blue received the patent for the rumbleseat awning. Mr. Black's patent 
was sent to Chicago; the patent that should have gone was sent to Boston. 

Mr. Brown had the patent intended for New York. Mr White had Mr. 
Brown's patent. The non-refillable bottle patent was sent to Los Angeles; the 
inventor of the bottle received the patent of the Cleveland client, while in 
Cleveland the surprised client received a patent for an antisnore device. 

Who should have received what where? 

3-4. (Traveling-Salesman Problems.) 
(a) For the map shown below, find the shortest path that starts at city A, 

visits each of the other cities only once, and then returns to A. 

* From Richard E. Fikes, "REF-ARF: A System for Solving Problems 
Stated as Procedures." Artificial Intelligence Journal, Vol. 1 (1970), pp. 27-120. 
Reprinted with permission. 
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(b) Find the path from start to finish, which passes once through all the 
nodes lettered a through u: 

3-5. (Crypt Addition.) Assign a decimal digit to each of the letters in the words 
"send," "more," and "money,'' such that when the letters are replaced by the 
corresponding digits the following summation is true: 

send 
+more 

money 

No digit may be assigned to more than one letter, and leading zeros are not 
allowed in the numbers formed by "send,'' "more," and "money." 

3-6. (Water-Jug Problems.) 
(a) Given a 3-gallon jug and a 4-gallon jug, how can precisely 2 gallons 

be put into the 4-gallon jug? There is a sink nearby, such that either jug can be 
filled from the tap and its contents can be poured down the drain. Also, water 
can be poured from either jug into the other, but the jugs themselves are the only 
measuring devices available. 

(b) Given a 5-gallon jug and an 8-gallon jug, how can precisely 2 gallons 
be put into the 5-gallon jug? The conditions for this problem are the same as 
those in (a). 
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(c) Given a 5-gallon jug filled with water and an empty 2-gallon jug, how 
can precisely 1 gallon be obtained in the 2-gallon jug? In this problem, water may 
be either discarded or poured from one jug into another, but there is no source 
of water other than the initial 5 gallons. Again, the jugs themselves are the only 
measuring devices to be used. 

3-7. (The Monkey-and-Bananas Problem.) A monkey is in a room where a 
bunch of bananas is hanging from the ceiling, too high to reach. In the corner 
of the room is a box, which is not under the bananas. The box is sturdy enough 
to support the monkey and light enough so that he can move it easily. If the box 
is under the bananas and the monkey is on the box, he will be able to reach the 
bananas. How can the monkey get the bananas (if he wants them)? 

3-8. (The Mutilated Checkerboard.) Show that it is impossible to completely 
cover the "mutilated-checkerboard" with 1 x 2 tiles so that the tiles neither over­
lap nor stick out over the edge of the board. 

3-9. (The Tower-of-Hanoi Problem.) Initially three disks of different sizes, each 
having a hole in its center, are placed as shown in the diagram below, all of 
them about one of three pegs. It is desired to transfer their initial configuration 
to the third peg, moving them one at a time in such a way that only the top disk 
on a peg is ever the disk being moved and a larger disk is never placed on top of 
a smaller disk. How can this be done? 

1 2 3 

.ll.A 
-Be 

Start Goal 

3-10. (The Sliding Block Puzzle.) Nine blocks are placed in a tray as shown 
below. (a) How many diffl!rent configurations of the blocks may be obtained by 
sliding them about in the tray? (b) How many different configurations of the 
puzzle are there if configurations that may be obtained from each other by 
rotating or flipping the tray are considered to be the same? (c) Design a 
computer program that can explore the state-space of the sliding-block puzzle. 
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~: 
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3-11. (The San Diego Problem.) You have a road map for the area surround­
ing your present location; however, because the map was produced by the Super­
Duper gas-station chain, it shows only the roads in a 30-mile circle, the north and 
east directions, the locations of two SuperDuper gas stations, and your present 
location. Actually, you want to go to San Diego, which you know to be 400 
miles to the south. How might you get there, if you know how to drive, have 
a car, and sufficient money for gas, food, and lodging along the way? 

E 

Look for 
~ the friendly 

6~Super Duper 
Triangle 

3-12. Suppose we are given that nodes B, C, and D in Fig. 3-8 represent 
trivially solvable problems. (a) What can be said about the solvability of node 
A? (b) What if B, C, and D are unsolvable? 

3-13. (Peg Solitaire.) A board contains 33 standard-size holes in which have 
been placed 32 standard-size, removable pegs. The goal is to remove the pegs 

• • • 
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in such a way that a board is obtained which contains only one peg, plac~d in 
the (initially empty) center hole. Pegs may be removed only by "jumping" 
them, as in checkers; that is, a peg A may be removed if and only if there is a 
peg B next (left, up, right, or down) to it and an empty hole C on the opposite 
side, and the removal of peg A is accompanied by the placing of peg B in hole C. 

3-14. Why should a depth-first search procedure always expand the most 
recently generated node first? 

~~~--·--~-------·-·-·-.. -.-~~--



Checkerboard pattern. (Reproduced with permission, D. K. Robbins.) 



4 ___ _ 
GAME PLAYING 

INTRODUCTION 

In this chapter we investigate the ability of computers to play 
games. First the nature of the games that computers are able to play 
will be reviewed. Then the way in which computers may make use of 
heuristic search techniques in order to play these games will be ·de­
scribed. These discussions will lead us to computer programs that are 
capable of playing Checkers, Chess, GO, Poker, and Bridge. The chapter 
concludes with a brief explanation of "general" game-playing programs. 

GAMES AND THEIR STATE SPACES 

Some of the most important programs produced by AI research are 
those that simulate the human ability to play games: Games comprise a 
general class of problem concerned with reasoning about actions. They 
can be constructed with or without an element of chance involved, and 
they can be designed so as to specify that different players will have 
different information available to use in deciding how to play. Finally, 
games offer the possibility of a direct comparison between the abilities 
of machines and humans. 

It is probably wise to remark that all games that computers can 
now play are of the type that is generally known as ·~games of strategy" 
because they possess well-defined rules and objectives for each player. 
Of course no claim is being made that these are the only games that 
exist. The reader is probably familiar with many games that do not 
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have objectives (and perhaps a few that do not have rules), which are 
also popular. Since the ultimate value of a game is the enjoyment one 
gets from playing it, games of strategy cannot be said to be the most 
valuable ones that people play. Still, they are the ones most easily 
identified with the use of intelligence, in its role as an ability to solve 
problems, and so it is natural that games of strategy should be studied 
extensively. 

Strategy 

A game of strategy consists of a sequence of moves, each of which 
is an occasion for a choice between certain alternatives, made by one 
of the players of the game.1 The rules of the game specify for each move 
which player makes the move and what his alternatives are. These rules 
are finitely describable, and are to be known to each of the players. What 
the rules will specify usually depends on the previous choices made in 
the game. For each move, only a finite number of alternatives are avail­
able. A complete sequence of choices (one that the rules define as 
terminating the game) is said to constitute a play of the game. In some 
games the rules will sometimes specify that the choice is to be made by 
chance, in which case the players are usually given a definite, or at least 
computable, probability distribution for the various alternatives. At 
each move, a player always knows completely what his alternatives are, 
but he may not know completely what choices have been made previ­
ously. If at each move every player knows completely all the choices 
that have been made so far in the game, it is said to be a game of 
perfect information. Finally, for each of the possible plays of the game, 
the rules specify a payment-which may be positive, negative, or zero 
-to be received by each of the players. The objective of each player is 
to maximize the payment he receives, by definition (if a playds pay­
ment is negative, then he is said to make the payment.) 

These statements, of course, summarize only the logical, formal 
aspects of games of strategy, and say nothing about such questions as 
how a given game might be implemented physically, how the moves 
might be represented, etc. The computer programs discussed here accept 
symbolic descriptions of the choices made during a game, and when the 
rules require it, they produce symbolic descriptions of their own 

1 This paragraph comprises a brief summary of the basic definitions for 
"games of strategy" presented by von Neumann and Morgenstern (1944) in 
their "theory of games" (or, simply, "game theory"). The word "move" is used 
in their game-theoretic sense: "It's your move." In some games (e.g., Chess) it is 
common to use the word in an additional sense: "He moved the king's pawn 
forward two spaces." 
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"choices" (note 4-1). Other computer programs might be written to 
convert the symbolic descriptions produced by a game-playing program 
into a physical action, such as moving a pawn forward on a chessboard. 
Our concern in this chapter is only with computer programs that handle 
the "intellectual" aspects of game playing. 

In general, a strategy is any set of rules that tells a player what 
choices he should make for all situations that might arise during the 
course of a game. A "good" strategy is one that guarantees its user will 
receive a high payment, or, in the case of games involving chance, it is 
one that provides for a high "mathematically expected" (in a sense, 
probable) payment. Given the complete description of a game, . the 
theory of games provides a computational procedure capable of de­
termining the correct strategies for all players, their best expectation in 
playing the game, etc. 

This procedure depends, however, upon the enumeration of all 
strategies available to each of the players (including the strategies 
"chance" might use), which is something easy to describe but frequently 
difficult to perform. Thus, for many games, the number of strategies 
may be considered "effectively infinite," since any attempt to enumerate 
them all would require too much time. As we shall see below, this is 
true of the more difficult board games (Checkers, Chess, and GO) played 
by people. Yet people seem to be able to play these games fairly well 
(note 4--2). Throughout, this chapter emphasizes primarily the nature of 
the strategies that computers can use to play games and the extent to 
which computers can be enabled to select their own strategies. To pave 
the way for a discussion of this topic, let us present another, very similar 
formalization for "games of strategy." 

State Spaces 

The brief description of games given above can be rephrased, using 
the terminology of the state-space paradigm for problems presented in 
Chapter 3. A game may be viewed as a state-space graph, together with 
a function associating some of the paths through the graph with pay­
ments (positive, negative, or zero) to be received by the players of the 
game. The nodes or states of the graph are descriptions of the moves or 
situations involved in the game; the arcs emanating from a given node 
(the operators applicable to a given state) are the alternatives associated 
with the corresponding move. Thus, a node in the state space of Check­
ers is a description of a legal configuration of pieces on a checkerboard, 
together with an indication of whose move it is. A node from which 
no arcs emanate (i.e., a terminal node) is one for which the game ends. 
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It is common to indicate that a certain player is to make a given move 
(choose among the alternatives associated with that move) by drawing 
the node for that move with a certain shape or shading that is different 
from that used for the moves belonging to the other players. Terminal 
nodes are usually drawn with the shape or shading of the player whose 
move they would be, if the rules make a specification, even though they 
do not have successors. Thus, Fig. 4-1 shows the state-space graph for 
a simple game. 

A game of strategy begins at the node in the graph labeled "start." 
The person who has the starting move (player 3 in Fig. 4-1) in the 
game chooses one of the available alternatives (one of the arcs leaving 

e chance 
0 player 1 
6 player 2 
'0 player 3 

Figure 4-1. The state-space graph for a simple game. 
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the start node) and "moves" the game along the corresponding arc to 
another node in the state space; say, B in Fig. 4-1. Node B represents 
the move by player 2, so player 2 chooses one of the available alterna­
tives and "moves" the game along the corresponding arc to another 
node in the state space (for example, node C). Node C represents a 
move that is to be made by "chance"; the probabilities that chance will 
choose the various available alternatives are indicated by numbers next 
to the corresponding arcs (each number must be between zero and one, 
and their sum must equal one). The game continues in this fashion until 
it is moved to a terminal node (e.g., node D). A path through the state 
space that leads to a terminal node is known as a play of the game. If 
there are n players involved in a game, it is said to be an n-person game. 
If chance is involved in a game, it is said to be a game of chance,· other­
wise it is called a nonchance game. Thus, Fig. 4-1 shows the state­
space graph for a three-person game of chance. 

The strategic, "problematic" aspect of games of strategy arises 
from the definition of a payment function, which specifies that certain 
paths through the state space of such a game will yield payments to the 
players. By definition, a player in a game of strategy has the problem 
of trying to insure that he receives a high payment during the play of 
the game that actually occurs. Before the game starts, each player is 
assumed to have been given a complete, finite description of the state­
space graph and of the payment function for the game. A player "acts 
strategically" when he makes a move after investigating the possible 
consequence of choosing the various alternatives, in light of what he 
knows about the game from the description of its state space and its 
payment function, and in light of what he knows about the path that 
has so far been taken through the state space of the game. The game 
is one of "perfect information" if all of the players always know what 
path has been taken; otherwise it is said to be a game of "imper~ect 
information." Chess and Checkers are examples of perfect-information 
games. Double-blind Chess, or "Kriegspiel," is an example of an im­
perfect-information game (note 4-3). Bridge and Poker are also ~x­
amples of imperfect-information games, .since a person playing them 
usually does not know what hands are held by the other players. Bridge 
and Poker are also "games of chance," in contrast to Kriegspiel. 

The payment function for a game of strategy can be very complex: 
However, it is not correct to assume that in a game of strategy each 
player is necessarily competing with the other players. In some games 
(e.g., Bridge) players must form teams, and each player must cooperate 
with those who are in his team .. In other games (e.g., Poker) it may 
sometimes be strategically sound for two players to form a temporary 
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alliance against another player. One can even devise games of strategy 
in which there is no competition between players at all (note 4-4). 

However, most popular games of strategy do have some degree of 
competition involved in them. Many games can be described as strictly 
competitive; such games are also known as zero-sum games, since their 
payment functions specify that for any play of such a game the sum of 
the payments received by all players in the game must be equal to zero. 
In a strictly competitive game, no player receives a positive payment 
unless other players receive counterbalancing negative payments. Ex­
amples of zero-sum games are Chess, Checkers, Tic-tac-toe, Hex, and 
GO. In these games the payments that may be received are 1, 0, and 
-1 ("win," "draw," and "lose") .2 These games are also examples of 
two-person, nonchance games of perfect information. 

For a computer program to play a game, it must be able to select 
a legal alternative whenever it is required to make a move. For it to 
play the game well, it must select alternatives that will tend to bring 
about plays of the game for which the payment-function awards the 
program a large payment. 

There are essentially two ways a computer program can go about 
selecting desirable alternatives. We shall refer to them as the local and 

· r global approaches. The local approach has been fairly successful with 
a few difficult games (Kalab, Checkers, and Chess), although its suc­
cess has diminished with the more difficult games. Except for games with 
very small state spaces, or during the "end plays" of very large games, 
it is generally not possible for the local approach to work perfectly, in 
the sense of always selecting the best available alternative. On the other 
hand, the global approach has had success with a few limited classes of 
relatively simple games (e.g., Tic-tac-toe, Nim, and Hex), but its tech­
niques may eventually be extended to more difficult games. 

A program that uses the global approach is designed to analyze the 
game as a whole. The computer might, for example, prove theorems 
about the game, using its description of the game and its past experience 
at playing the game. Such theorems might reduce the game to other, 
simpler games. This approach has been investigated by Banerji, Koff­
man, Amarel, Pitrat, and others. Programs that use it are discussed in 
the final section of this chapter. 

A program that uses the local approach is designed to analyze a 
part of the state space of the game. Given a situation that is the pro­
gram's move, the program can enumerate some of the paths through the 

2 It is often more convenient for a programmer to effectively give win, lose, 
and draw the values ao, 0, and - ao. 
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state space of the game which might result from choosing among the 
available alternatives. The program could be designed to analyze these 
paths, using its description of the payment function, and to select an 
alternative that "leads to a desirable set of paths." In the case of zero­
sum games, the type of analysis the program must perform is known 
as a minimax analysis. The collection of paths through the state space 
of a game, which emanate from a given node in that state space, is 
known as the game tree below that node; the game tree below the start 
node of a game is .often referred to simply as the game tree of the 
game. 

Most AI research on game playing has been concerned with de­
veloping computer programs that use local analysis to play zero-sum, 
two-person, nonchance games of perfect information. The next section 
describes ways in which heuristic search techniques can be used to 
analyze such games locally. The remaining sections of the chapter dis­
cuss programs that have been written to play games. Some programs 
discussed play imperfect-information games of chance. For a more 
extensive yet simple treatment of classical (enumerative) game theory, 
see Williams (1954). The original book on the subject (von Neumat).n 
and Morgenstern, 1944) is highly recommended. Discussions of the 
state-space approach to the description of games and some examples of 
global analysis of games are given in Banerji (1969, 1970). Nilsson 
(1971) and Slagle (1971) present detailed formalizations of current 
applications of heuristic search techniques to game playing (i.e., local 
analysis). 

GAME TREES AND HEURISTIC SEARCH 

Game Trees and Minimax Analysis 

In general, the techniques presented in Chapter 3 for searching 
graphs and trees in order to solve problems are applicable to the design 
of game-playing programs. In particular, the terminologies and concepts 
associated with game trees are similar to those for problem trees, as de­
fined in Chapter 3. The basic difference between games and the puzzle­
like problems already discussed is that, with a game, different nodes 
belong to different players and no player can completely control the 
path that is actually taken through the state space (note 4-5). Through­
out this section we shall be concerned only with zero-sum, two-person, 
nonchance games of perfect information. 

The game tree below a given node in the state space of a game is 
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usually drawn with the given node at the top, as the root of the tree. 
The successors to the root node are placed immediately below it, and 
arcs are drawn from the root to each of its successors. The root nod.e 
and its successors are known as the "top nodes" of the tree. The process 
is then repeated for each of the successors to the root node. Figure 4-2 

8 

<D~ 
®~~[[][[] 
I\ 1\ I\ + ~ 

[!]m ®® IIIrii 0 0 
~ I~ ~\ + 
0 m IIHII [[] 0 

0 player 1 

Q player 2 

+ + 0 0 

Figure 4-2: A state-space graph for a simple game and the correspond­
ing game-tree . 

. shows a state-space graph for a simple two-person game, and the corre­
sponding game tree of the game (i.e., the game tree below the start, 
or root, node) . As may be seen from Fig. 4-2, it is possible for the 
"same" state-space node to occur in many places throughout a game 
tree. This is just another way of saying that there may be many paths 
connecting two nodes in a state space. Thus, "3,2,6,7" and "3,4,5,7" 
are two different paths connecting state-space nodes 3 and 7 in Fig. 
4-2. The purpose of a game tree is to represent separately each of the 
possible paths through the state space of the game. Thus, each game­
tree node represents a path through the state space of the game; that is, 
a sequence of state-space nodes. The expansion or generation of a game 
tree terminates with those nodes that do not have successors; a terminal 
node in a game tree is often referred to as a tip node. In Fig. 4-2 there 
are ten tip nodes in the game tree and only two terminal nodes in the 
corresponding state-space graph. The number of plays of a game is 
equal to the number of tip nodes of its game tree. Thus, there are ten 
plays for the game whose state-space graph is shown in Fig. 4-2. 

It is evident from Pi::; L2 that even a game with a small state space 
may have a large game tree and a large number of possible plays. Games 
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like Checkers, Chess, and GO have game trees so large that they cannot 
be physically generated completely. (They also have large state spaces.) 
When it is not possible to actually count the number of plays of a game, 
the number may be approximated by using estimates of the average 
branching-factor B and the average depth D of the game tree. Thus, 
we estimate3 that the game tree of Checkers has an average depth of 
100 and an average branching factor of 6 (i.e., the average possible 
play of the game might run 100 moves and each move might have an 
average of 6 available alternatives) : The total number of possible plays 
for Checkers is then 

Similarly, it has been estimated that there are 10120 possible plays for 
Chess (Shannon, 1950a,b) and 10761 possible plays for GO (Zobrist, 
1969). 

Let us suppose for a moment that a player, whom we shall call 
player I, actually could generate the entire game tree for any finite 
game, no matter how large, and discuss how he might select a strategy 
for a (zero-sum, two-person, nonchance, perfect-information) game 
such as Checkers, Chess, or GO. We shall give this person "infinite time 
and resources" and see what happens. 

As stated before, each player's objective is to maximize the pay­
ment he receives during the play of the game that actually occurs. We 
are concerned only with perfect-information games. Thus, the player 
whose move it is knows exactly what path has been taken from, the 
start node to arrive at the current situation in the game, and he knows 
exactly what the current situation is (e.g., what pieces are where on 
the checkerboard). Because he is given a description of the rules of the 
game, he knows exactly what alternatives he can choose to apply to the 
current situation and what situations will result. Because our player has 
infinite time and resources, he can generate the complete game tree 
below the given node, and can determine the payments associated, with 
each of the plays emanating from that node. He will then. have, infor­
mation something like that indicated in Fig. 4-3. 

Nodes B,C,E,F, and Gin the figure are tip nodes of the tree. Each 
of the tip nodes of the game tree identifies a different play of the game. 
Using the payment function, player 1 can calculate the payment speci­
fied for each play of the game, and he can consider this payment to be 

3 This is based on a conversation with Arthur Samuel and is only a very 
rough estimate. Another figure often given is 1040 plays (sometimes lOW nodes 
in the game tree), based on an estimate in Samuel (1959). The higher estimate 
is used here. 
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Figure 4-3. Player 1's maximum necessary game tree. 

associated with the corresponding tip node of the tree. Thus, he might 
determine that the play represented by node B would yield him a pay­
ment of + 10, whereas the play represented by node C would yield him 
a payment of -2. Consequently, he would know that if he and player 
2 should take the path through the state space represented by node A 
in the game tree, they would arrive at a situation in which it would be 
player 1 's turn to move, and he would be able to select from two 
alternatives: one yielding him a payment of + 10, the other yielding a 
payment of -2. Because each player's objective is to maximize the 
payment he receives, we say that the value of the path represented by 
node A is + 10 to player 1 and -10 to player 2. 

Similarly, player 1 could determine the payments associated with 
the plays represented by tip nodes E,F,G, respectively; he might calcu­
late that play E would yield him a payment of + 1, play F a payment 
of -6, and play G a payment of +9. Because the game is a zero-sum 
game, he knows that E,F, and G will yield player 2 payments of -1, 
+6, and -9, respectively. Consequently, he would know that if he and 
player 2 should take the path through the state space represented by 
node D in the game tree, they would arrive at a situation in which it 
would be player 2's turn to mov:e, and player 2 would choose the alter­
native leading to play F. Thus, the value of node D is -6 to player 1 
and +6 to player 2. 

Because he has "infinite time and resources," player 1 can con-



Game playing 127 

tinue to find the value of each node in the game tree below his current 

situation by "backing up" his evaluation of nodes from the tip nodes of 

the game tree according to the following rule: The value of a given 

node to player 1 is the maximum of the values of its successor nodes to 

player 1. Similarly, the value of a given node to player 2 is the maximum 

of the values of its successor nodes to player 2. Moreover, because of 

the zero-sum nature of the game, the value of a given node to player J 

is the minimum of the values of its successor nodes to player 2, and the 

value of a given node to player 2 is the minimum of the values of its 

successor nodes to player 1. If player 1 determines the values of all 

nodes in the game tree below his current situation according to these 

rules, he is said to have done a complete minimax analysis, or evalu­

ation, of the game tree below his current situation. The value for a 

node that one obtains by performing a complete minimax evaluation is 

referred to as the theoretical value of the node. 
All the game trees considered are finite, so player 1 will be able 

to generate the complete game tree and do a minimax analysis of its 

nodes in a finite time (he is given infinite time and resources simply 

because there is no a priori limit to how big the tree might be and how 

much time he might require-whatever time he does require, though, 

will be finite). He will then know the theoretical values of the successor 

nodes to his current situation. If player 1 chooses an alternative leading 

to a successor node that .has the maximum theoretical value (to him) 

of all the successor nodes to his current situation, and if he continues to 

choose in this way whenever it becomes his turn to move, we say that 

he is playing "perfectly." If player 1 plays perfectly, then the best pay­

ment he can expect from the game, if player 2 plays perfectly, is guaran­

teed. If player 2 does not play perfectly, then player 1 will receive an 

even higher payment (note 4-6). 

EXAMPLE 4-1. How much time would it take an "attainable" 

machine to generate and minimax-evaluate the complete game 

tree for Checkers? We have assumed B = 6 and D = 100. By 

the rule for trees, developed in Chapter 13, 'there are approxi­
mately (BD+1

) I (B - 1) nodes in the complete game tree; thus, 

there are ( 6101
) j5 = approximately 2 x 1078 nodes in the game 

tree of Checkers. The "attainable" machine might generate the 

game tree at a rate of 1 node per nanosecond and then minimax­

evaluate it at a rate of 1 node per nanosecond. There are 3.15 X 

1018 nanoseconds in a century, so the machine would require 

(4 x 1078)/(3.15 x 1018
) =approximately 1060 centuries to 

complete this procedure. 
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Example 4-1 illustrates that it really would be necessary to give 
player 1 "infinite" time and resources, at least by comparison with cur­
rent scientific estimates for the lifetime of the universe ( < 1011 years), 
if we expect him to do a complete minimax analysis of Checkers at an 
"attainable" rate. In general, it is not possible for a computer program 
to minimax-evaluate the complete game tree below a given node of 
Checkers unless that node happens to be very close to the tips of the 
tree. The Exercises at the end of this chapter show that the same re­
sults obtain for Chess and GO. 

Even though a computer program cannot usually generate the 
entire game tree below a given node, it can still generate a portion of 
that game tree. In most of the possible situations (nodes in the state 
space) that might occur in games like Checkers, for example, the aver­
age node may have six successors, but of these six perhaps only three 
would be considered "plausible" or "reasonable" by a human Checkers 
player. If a program could be designed to generate only those successors 
that were "reasonable," that could do a minimax analysis on the re­
sulting reasonable game-tree, and that could select the alternative below 
its current situation with the highest reasonable evaluation, it would 
still be able to play a very good game. We can estimate that Checkers 
has, on the average, three reasonable successors to each node and that 
the average reasonable play has a length of 40 moves. There are thus 
340 = 1019 reasonable plays of Checkers. Similarly, there are about 
550 

::::::: 1035 reasonable plays of Chess and 10100 reasonable plays of GO. 
Of course playing "reasonably" is not the same thing as playing "per­
fectly." If we had the complete evaluation of the Checkers (or Chess 
or GO) game tree, we might find that some nodes people currently 
consider "reasonable" have in fact very low theoretical values; con­
versely, we might find that some nodes people currently consider "un­
reasonable" have very high theoretical values. 

EXAMPLE 4-2. How much time would it take an "attainable" 
machine to generate and minimax-evaluate the complete reason­
able game tree for Checkers? On the basis of B = 3 and D = 40, 
there are approximately (341

) /2 nodes in the complete, reasona­
ble game tree. The "attainable" machine might generate the 
game tree at a rate of 1 node per nanosecond and minimax­
evaluate it at the same rate. Thus, the machine would require 
about (3.5 x 1019)/(3.15 X 1018

) =approximately 10 centu­
ries, ot a thousand years, to complete this procedure. 

Again it is not practically possible for a computer to evaluate the 
complete, reasonable game trees of games like Chess, Checkers, and GO. 
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Instead, when a compute;'program attempts to select the best alterna­

tive, or successor, available for a given node in the game tree, it will 

(if it uses local analysis) generate only a portion of the reasonable 

game tree below that node, and will minimax-evaluate that portion to 

estimate the best immediate alternative. It will then output a description 

of that alternative (as being its "choice" for the move) and wait until 

it is required to make another move (estimate another alternative). 

The rest of this section considers how a computer program can generate 

a reasonable portion of a game tree and how it may analyze the portion 

that it generates. 

Static Evaluations and Backed-up Evaluations 

In order to generate and analyze a portion of the reasonable game 

tree below a given node, it is necessary to judge the "reasonableness" 

of nodes in some way that is not dependent upon having judged many 

of their successor nodes. A static evaluation function is a method for 

estimating the value of a J?-Ode which is not dependent on the values of 

the successors to that node. A good static evaluation function is one 

that tends to give estimates that agree with the true, theoretical values 

of the nodes in a game tree. Different games require different static­

evaluation functions. In general, it is not possible to design a static­

evaluation function that is perfect for a given game; that is, one that will 

estimate for each node a value that is equal to the theoretical value of 

that node.4 

For our purposes, a static evaluation function is necessarily a com­

putational procedure that can be applied by a computer to its descrip­

tion for any given situation that might occur during a play of the game. 

The function should yield for the situation a numerical value approxi­

mating that which would be obtained by analyzing the game com­

pletely. When applied to a given node (situation), the static evaluation 

function may take into account such things as the number of pieces one 

has, the positions of a game board one occupies, the number of suc­

cessor nodes to the given node, or whether any successor nodes repre­

sent "captures." 
The next few pages discuss how a game tree may be analyzed, or 

evaluated, given a static-evaluation function. As stated before, static-

4 If one did have a perfect static-evaluation function, there would be no 
ileed to generate a game tree at all; instead, to determine the best arc from a 
given node, one would merely have to apply the static-evaluation function to 
each of the successors to that node, and then select an arc leading to a node with 
the maximum static evaluation. Thus, one would be playing perfectly, in the 
sense defined in the text. 
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evaluation functions may also be used to generate game trees that are 

reasonable portions of complete game trees. However, for purposes of 

explication, the discussion of techniques for generating game trees will 

be deferred to the end of this section. 
Suppose, therefore, that a portion of the reasonable game tree 

below a given node has been generated; such a game tree can be evalu­

ated by a computer program that makes use of minimax analysis and a 

static-evaluation function. The rules for the minimax analysis are as 

follows: If a given node is one for which it is the program's turn to move, 

its value is the maximum of its successors. If a node is one for which 

it is the opponent's turn to move, its value (to the computer) is the 

minimum of the values of its successors. The value of a tip node is its 

static evaluation; that is, the result of applying the static-evaluation func­

tion to it. Figure 4-4 shows a portion of a game tree for which the tip 

nodes have been assigned values according to some hypothetical static­

evaluation function and the remaining nodes have been given values 

according to the rules of the minimax procedure. A value given by the 

minimax procedure to a node that is not a tip node is known as backed­

up value for the node. To determine the backed-up value for a given 

node, one must !first find the static evaluations of the tip nodes that are 

below it in the game tree, and then, using the rules of the minimax, 

"back up" evaluations until a value reaches the given node. 

The accuracy of the backed-up evaluation of a given node (how 

close it is to the theoretical value for . that node) is greatly dependent 

on the amount of the game tree below that node to which one applies 

the minimax procedure. Again, in general, neither the static evaluation 

nor the backed-up evaluation will be infallible indicators of the theoreti­

cal evaluation for a given node. However, the accuracy of the static 

evaluation will often be better for nodes near the tips of the complete 

game tree than it is for nodes near the root. Thus,. the backed-up evalu­

ation of a node near the root of the tree will tend to be more accurate 

than the static evaluation of that node, because the minimax procedure 

makes use of the static-evaluation function where it is most accurate 

(on nodes nearer the tips of the tree). 

The Alpha-Beta Technique 

In practice, it is important to recognize that the nature of the 

minimax procedure makes it unnecessary to obtain evaluations for all 

nodes in the game tree when evaluating the top nodes. A method exists 

for determining whether the evaluation of a given node can affect the 

evaluation of nodes that are above it in the game tree. This method is 
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known as the alpha-beta technique. 5 To see how it works, let us suppose 
that a game-playing program is given the task of evaluating the (portion 
of a) game tree in Fig. 4-4, and is proceeding to minimax from left 
to right. The tree is reproduced in Fig. 4-5, with the addition that 
certain significant nodes have been lettered. 

The first step of the program is to obtain the static evaluations of 
nodes A, B, and C. These are found to be 0.2, 0.9, and 0.3, respectively, 
so the backed-up value of node D above them is determined by the 
minimax procedure to be 0.2. The next step of the program is to obtain 
the static evaluation of node E, which is found to be 0.1. Consequently, 
we know that the backed-up value of node F must be less than or equal 
to 0.1 (since the value of F is the minimum of the values of its suc­
cessors). Now, the value of node G is the maximum of all values im­
mediately below it because G represents a situation ih which it is the 
program's turn to move, and the program should take the choice that 
has the greatest evaluation. This means that node F and all the nodes 
below it need not be considered further. The reason is that the value of 
node D has already been determined, and whatever the value of F it 
is less than that of D. Similarly, when the program evaluates node H 
as being -0.1, it knows that neither 1 nor any other nodes below it 
need be evaluated. Thus, the value of node G is set at 0.2. 

Next, the program evaluates situations J and K and sets the value 
of L at their minimum, which is 0.6. Since the evaluation of M is the 
maximum of the values of the nodes immediately below it, the value of 
M is greater than or equal to that of 1; so, M:::,. 0.6. 

The value of N, however, is the minimum of those of G and M. 
But since G has a value of 0.2, it is not necessary to evaluate any more 
of the nodes below M, and thus the value of N can be set equal to 0.2. 

The program continues in this manner to evaluate only those nodes 
in the tree that could change the values of the nodes above them. As an 
exercise, the reader may verify that, in order to determine the most 
desirable alternative, the program need continue developing evaluations 
only for those nodes labeled P through U in Fig. 4-5. The other nodes 
of the tree need not be considered at all. 

The alpha-beta technique is essentially a process of "using common 
sense" to carry evaluations up the tree with a minimum amount of work. 
It can be proved that, with respect to a given st~tic-evaluation function, 
the alpha-beta technique will always assign the same values to the top 
nodes of a given tree as would the minimax procedure. (A detailed 

5 This technique received its name from McCarthy, who, with his students, 
did research on it at MIT. 
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formalization of the alpha-beta techn,ique is given in Nilsson, 1971.) 
The savings that can result from using the alpha-beta technique are 
enormous. With optimum ordering of the nodes, the number of suc­
cessors to a given node which need to be evaluated is lowered almost 
to the square root of the total number of successors to that node. If the 
branching factor of the tree is B then, with the alpha-beta technique, 
one in effect evaluates a tree with branching factor yB. Thus, the 
depth to which the game tree below a given node can be analyzed, 
using the same total number of evaluations, is nearly doubled. 

However, the worth of the technique is greatly dependent upon 
the order in which the nodes of the tree are taken for examination. The 
reader may verify this for himself by working the alpha-beta evaluation 
of Fig. 4-5 from right to left instead of left to right; the right-to-left 
ordering makes it necessary to evaluate almost all nodes of the tree. In 
using the alpha-beta technique, it is desirable to have some method that 
will make it likely the best nodes are evaluated first. 

Generating (Searching) Game Trees 

This section concludes with a description of some important 
techniques for generating game trees. The techniques discussed include 
plausibility ordering, shallow searching, forward pruning, the use of 
termination criteria, and dynamic generation and evaluation. As ex­
plained at the end of the preceding section, th~ description to this point 
relates to how a game tree may be evaluated, using a static-evaluation 
function, once the tree has been generated. However, static-evaluation 
functions may also be used by procedures that generate reasonable 
portions of game trees. 

Part of the motivation for discussing game-tree generating tech­
niques may be evident from the previous description of the alpha-beta 
technique. Suppose we have a computer program that uses the alpha­
beta technique to evaluate game trees that are presented to it, and 
suppose this program always applies the technique by working, say, 
from left to right across the tree. This program will work most effi­
ciently if the trees that are presented to it are "correctly ordered," that 
is, if the successors to each node in a given tree are arranged below 
that node from left to right in the descending order of their eventual, 
backed-up evaluations. One of the purposes of game~tree generating 
techniques is to develop game trees that will tend to be correctly 
ordered so that the alpha-beta technique can be profitably applied to 
them. 

----------------~~,,~,~•c•~-~·~·_. ________________________________ __ 
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Of course there is no way to insure that a game tree is correctly 
ordered without having already performed the back-up, or miniinax, 
evaluation that we wish the alpha-beta technique to replace. However, 
we can increase the likelihood that the tree will be correctly ordered if 
we make use of some less extensive technique that will give the nodes 
in the tree a "plausible ordering." Three types of plausibility-ordering 
techniques are generators, shallow search, and dynamic ordering. 
Dynamic ordering will be described at the end of this section. 

A generator is a procedure that automatically produces first the 
most desirable alternatives (and the situations to which they lead) 
below a given situation and then produces less desirable alternatives, 
etc. Thus, a generator in Chess might be designed to first produce those 
alternatives that create situations in which the opponent will be in 
check or a piece will be captured. The nodes in a game tree can be given 
a plausibility ordering corresponding to the sequence in which they are 
produced by a generator. 

A shallow search technique is a procedure that makes use of a 
static-evaluation function (not necessarily the same one used by the 
alpha-beta technique) to conduct a limited tree-generation and evalua­
tion process below each of the nodes that are to be ordered. Thus, 
suppose a plausibly ordered game tree is being generated below node A 
in Fig. 4-6; a shallow search technique might first generate the small 
portion of the tree below A, shown in Fig. 4-6. It would then apply its 
static-evaluation function to the nodes at the bottom of this tree and 
back up evaluations (probably using its own alpha-beta technique) to 
nodes B, C, and D. The "shallow evaluations" it obtained forB, C, and 
D might indicate that they should be plausibly ordered C, B, D; a 
shallow search might then be done below C to determine a plausible 
ordering for nodes E, F, and G. In general, when the game tree below 
node A is generated, it is most profitable (for the overall application of 
the alpha-beta technique) that shallow search be used to plausibly 
order nodes near the top of the tree; it makes relatively little difference 
whether shallow search is used to order nodes near the bottom (i.e., 
near the tip nodes). 

The other major purpose of game-tree generating techniques is 
simply to generate a reasonable portion of the complete game tree 
below a given node; this is in contrast to its purpose in making sure that 
the generated portion is plausibly ordered. The relevant techniques 
are forward-pruning and the use of termination criteria; each may be 
considered a special case of the other. A game-tree generating procedure 
employs termination criteria when it decides not to continue extension of 
the game tree it is generating, thus creating tip nodes in the game tree 



136 INTRODUCTION TO ARTIFICIAL INTELLIGENCE 

AD 
, _________ 

cQ oQ 

/1~ I 
sQ 

1\ 
0 0 Eo Fo Go o 

I I\ 1\ 1\ /\ II\ 
0 00 00 00 00 000 

Initially 

AD 

cQ/~0 
/I~ /\ I 

Eo Fo Go o o o 
1\ 1\ 1\ I /\ /1\ 
00 00 00 0 00 000 

Plausibly ordered 

Figure 4-6. Using a shallow search technique to plausible order nodes 
8, C, D. 

it produces. Some useful termination criteria are "game over" (the 
tip node produced is actually a tip node of the complete game tree), 
"maximum depth," and "minimum depth." The maximum-depth termi­
nation criterion is employed by procedures that do not produce game 
trees having a depth greater than some preassigned value. Nodes at that 
depth below the root node automatically become tip nodes of the game 
tree that is produced. The minimum-depth criterion is used by pro­
cedures that do not produce game trees having a depth less than some 
preassigned value. 

Game-tree generating procedures that employ the minimum- and 
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maximum-depth criteria generally use other criteria that may override 
them. Thus, the minimum-depth criterion may be overridden by the 
"game over" criterion. Similarly, many procedures make use of a "dead 
position" criterion, specifying that a node will not be considered a tip 
node unless it is "dead"-what deadness means depends upon the 
game being played. Thus, a situation in Checkers in which there are 
jumps available is "live" (i.e., not "dead"); a situation in Chess .in 
which someone is in check or there are captures available is live; a 
situation in GO in which there is a possible "ladder attack" is live. If the 
dead-position criterion is not satisfied, then the maximum-depth 
criterion will generally be overridden. Live nodes will always have their 
successors generated and evaluated (unless the program runs completely 
out of time or memory space) . This is go2d because it is difficult to 
find static-evaluation functions that give accurate evaluations for live 
nodes.6 

A game-tree generating procedure uses forward pruning when 
it decides not to continue generating successors of a node that might 
otherwise be considered. Thus, returning to Fig. 4-6, after having 
plausibly ordered nodes B, C, and D, a game-tree generating procedure 
might decide that node D is too implausible to merit further investiga­
tion; the portion of the complete game tree below D would therefore be 
"pruned" from the game tree produced by the generating procedure. 
The time saved by not generating or evaluating nodes below D can be 
used to search more deeply elsewhere. In n-best forward pruning, only 
the nodes below the n most plausible successors to a given node are 
searched (generated and evaluated); other successors are pruned. 
(Thus, the discussion of Fig. 4-6 might illustrate 2-best forward­
pruning). In tapered n-best forward pruning, the parameter n is de- , 
creased as the depth of the given node increases. Again, the most 
plausible successors below the given node may be determined either 
by use of a generator or by conducting. a shallow search. The time saved 
by forward pruning must be weighed against the chance that relevant 
portions of the game tree, which might otherwise be considered, will 
be pruned out. Thus, the shallow search below node D might have been 
misleading; there might have been very valuable nodes farther below. 

We have now examined the basic techniques used by game-playing 
programs that use local analysis to determine how they should play 
zero-sum, two-person, nonchance games of perfect information. In 
this ex:Position the process by which such a program searches a game 
tree to determine its most desirable alternative has been sepantted into 

6 The dead-position criterion was first suggested for Chess by Turing ( 1953). 
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two parts: a generation procedure that produces plausibly ordered, 
reasonable portions of the game tree, and an alpha-beta technique that 
evaluates game trees that are supplied to it. In fact, the distinction made 
is an artificial one: A truly efficient game-playing program \¥ill conduct 
both procedures in a simultaneous, or dynamic, fashion. The alert 
reader will probably have already suspected that something like this 
should be done. After all, why generate nodes if the alpha-beta tech­
nique is later going to dec1de not to evaluate them? 

A game-playing program is said to use dynamic generation and 
evaluation if it applies the alpha-beta technique as another part of its 
forward-pruning and plausibility-ordering techniques. Essentially, such 
a program will generate "plausible branches" of the game tree, using the 
results of the alpha-beta technique to guide their generation. The 
generation of a plausible branch will terminate when it reaches maxi­
mum depth and its tip node is dead. Evaluation is made of each node 
in a plausible branch as it is generated. After it is evaluated, the backed­
up values of nodes above it in the tree are changed accordingly, using 
the alpha-beta technique. This may cause some nodes to be pruned 
from further consideration, or change the plausibility orderings of other 
nodes (dynamic ordering), or indicate . that new plausible branches 
should be generated. (A formalization for dynamic search procedqres is 
given in Nilsson, 1971 ) . A game-playing program using dynamic search 
may approach a reduction of the branching factor of the complete 

game tree. from B to y!B (note 4-7) . 

CHECKERS 

Checker Player 

Samuel (1959,1967) wrote a computer program capable of play­
ing Checkers at a championship level. The program is capable of beat­
ing all but the very best players, and once beat a Checkers master, 
Robert W. Nealey (see Fig. 4-7). This section discusses Samuel's 
Checkers Player. 

Samuel's program conducts an alpha-beta tree search, using for­
ward pruning. To insure the effectiveness of the alpha-beta technique, 
the Checkers Player does a shallow, breadth-first search to order al­
ternatives according to plausibility. 'J,'he overall tree search terminates 
whenever a node is at a maximum depth and the program judges it to 
be "dead" (i.e., there are no immediate jumps available). During a 
game it usually takes the Checkers Player less than a minute to perform 

--------------~~-~-~-~-~-~-~-~·~----------~~-----------------
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Game Black White Game Black White 
move (computer) (Nealey) move (computer) (Nealey) 

1 11-15 28 27-23 
2 23-19 29 15-19 
3 8-11 30 23-16 
4 22-17 31 12-19 
5 4-8 32 32-27 
6 17-13 33 19-24 
7 15-18 34 27-23 
8 24-20 35 24-27 
9 9-14 36 22-18 

10 26-23 37 27-31 
11 10-15 38 18-9 
12 19-10 39 31-22 
13 6-15 40 9-5 
14 28-24 41 22-26 
15 15-19 42 23-19 
16 24-15 43 26-22 
17 5-9 44 19-16 
18 13-6 45 22-18 
19 1-10-19-26 46 21-17 
20 31-22-15 47 18-23 
21 11-18 48 17-13 
22 30-26 49 2-6 
23 8-11 50 16-11 
24 25-22 51 7-16 
25 18-25 52 20-11 
26 29-22 53 23-19 
27 11-15 White concedes 

Figure 4-7. One of the program's early victories. (Samuel, 1959, 1967.) 

its tree search and decide how it will move. Samuel's program is unique 
in that it is, to some extent, capable of developing its own static­
evaluation function. The Checkers Player is capable of using and select­
ing a static-evaluation function that is a composite function of a set of 
parametric functions (this is described below). Together with the con­
cepts presented in the preceding section, this description is sufficient 
to show how Samuel's program plays the game, once it has a good 
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static-evaluation function. So, this section explains how the Checkers 
Player is able to achieve its evaluation function. 

Samuel had three basic problems in constructing a good evaluation 
function. He had to determine the proper set of paral):letric functions; 
the proper type of composite evaluation function; and how the pro­
gram's experience should influence it to modify its evaluation function. 

The solutions for each of these three problems involved a con­
siderable amount of heuristic programming. From the standpoint of 
bona fide machine learning, perhaps the most important thing would 
be to enable the program to create its own set of parametric functions, 
since these functions are an inherent limitation on its ability to play the 
game and since their specification by an outside source is a substantial 
hint as to the proper way of playing. The Checkers Player is not pro­
grammed to do this: All parametric functions are supplied in advance to 
its operation, and are carefully chosen for their relevance to the game. 
(A typical parameter is MOB (total mobility), equal to the number of 
squares to which the Player can potentially move, disregarding forced 
jumps.) 

The second problem, determining the proper type of composite 
evaluation function, has been approached in two ways in different ver­
sions of the Checkers Player. The original approach was to let the 
evaluation function be a polynomial of the form a1t1 + ... + a,.tn; that 
is, a weighted sum of the values of the terms tn. (For example, 3t1 + 5t2 

is a polynomial function of t1 and t2 : If t1 = 4 and t2 = 7, then the 
function has a value of 3 X 4 + 5 x 7 = 12 + 35 = 47.) The greater 
the value of the polynomial, the more favorable one's evaluation of the 
configuration in question. This approach has the advantages of per­
mitting an easy modification of the function, obtained by changing the 
weights ai. The disadvantage comes from the linear nature of the poly­
nomial and the fact that it is not really plausible to assume that the 
theoretical evaluation function can be linearly expressed in terms of the 
given parametric functions ti. Samuel's original program overcame this 
to some extent with the use of two techniques: First, it was made pos­
sible to introduce new terms that were binary connectives of the previous 
ones (i.e., terms that corresponded to logical expressions of the form 
(t; 1\ tj, -ti V ti, etc.). A second, more recent technique was to divide 
the course of the game into six successive phases (determined primarily 
by the number of pieces on the board); in each phase a different poly­
nomial could be used (one with a different set of terms and different 
coefficients for each term). 

Another, more direct method of constructing a nonlinear evalua-

--------------~·~~~~~~~--~--~~~~--------------------
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tion function has been investigated more recently, and is the one 
currently used by the Checkers Player. The method consists of con­
structing a hierarchy of "signature tables" as follows: First, the pos­
sible values of the parametric functions are restricted; that is, some 
parameters are allowed to have only five values (-2,-1,0,1,2) and 
the rest are allowed to have only three values ( -1,0,1). Next, six 
collections (called signature types) of parameters are chosen. Each 
signature type contains four elements, of which one is a five-value 
parameter and the rest are three-value parameters. (Some parameters 
may be included in more than one signature type.) 

For each signature type, a signature table is to be constructed; 
this table lists an evaluation (either -2,-1, 0,1, or 2) for every 
combination of values of the four elements. There are thus 125 entries 
in each signature table, every entry being -2,-1,0,1, or 2. (Actually, 
it is only necessary to include 63 entries in a given signature table, since 
the parametric functions are designed to be "symmetric" for each of the 
players. If (1 ,2, ~ 1,0) is listed in a given signature table as having 
an evaluation of 2, the evaluation of ( -1,-2,1 ,0) is automatically 
determined to b~ -2, and it is not necessary to list it in the table.) 

To build the hierarchy, two second-level signature tables are con­
structed as in Fig. 4-8, each of which has a second-level evaluation (an 
integer from -7 to 7) for all possible combinations of values of the 
three first~level tables it describes. There are thus 125 entries in each 
of the second-level tables. 

Finally, a third-level table assigns an evaluation to each possible 
combination of values from the second-level table. 

To determine the evaluation of a given board-configuration, it is 
necessary to: 

1. Determine the values of each of the parametric functions 
for that particular configuration. 

2. Look in the six first-level signature tables and find the first­
level evaluations of the configuration. 

3. Look in the two second-level tables and find the second-level 
evaluations of the configuration. 

4. Obtain the final evaluation by looking in the third-level signa­
ture table. 

As a further improvement on the quality of these evaluations, 
a different signature-table hierarchy is used for each of the six phases 
of the game. 
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Figure 4-8. The signature-table hierarchy. (Samuel, 1967.) 
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Learning 

The remaining question is how these evaluation functions, whether 
polynomials or signature tables, are to be- obtained from the game­
playing experience of the program. The method for developing these 
functions constitutes the "learning ability" of the program. 

Work on the Checkers Player has been primarily devoted to two 
ways of doing this, referred to as rote learning and learning by gen­
eralization. Rote learning can be accomplished by establishing a large 
file of those board configurations and their evaluations that are en­
countered during the course of the games the program plays. The 
establishment of this file eliminates the need to recompute an evaluation 
each time such a configuration arises, so it has the benefit of increasing 
the efficiency of the program (provided the search time through the 
file is kept low). Learning is effected as follows: If the program is 

X 

~A board position found 
in memory, for which the 
evaluation had already 
been carried to this 
level 

I 
Figure 4-9. The effect of "rote learning." 
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presented with an arbitrary board configuration and asked to determine 
the correct choice for the next move, it will often find in the file some 
configurations that are descendants of the configuration in question. The 
evaluation for these descendants, before they were put in the file, was 

_originally made in terms of their descendants, which might ordinarily 
be too far away from the original move to be investigated. The evalua­
tion of the various alternatives for the move can thus be much deeper 
than the normal limits on computation would allow (see Fig. 4-9). 
The rote-learning method was particularly good at developing the 
Checker Player's opening and end games. 

Learning by generalization is the technique that does most of the 
work in constructing the evaluation function, however. In the case of the 
polynomial type of evaluation function, the basic process is that of 
changing the coefficients for the various terms, whereas in the case of 
the signature-table function, the process is that of changing the various 
entries in the tables. These processes are accomplished in different 
manners, depending on the use of particular learning situations to which 
the program can be subjected. 

Learning Situations for Generalization 

The earliest generalization situations for the Checker Player were 
those involving actual play of the game, in which the program was either 
employed against human opponents or played against itself. These 
situations were used mainly for the development of good evaluation 
functions of the polynomial type. In either case, two Checker-playing 
programs were available, called Alpha and Beta (not to be confused 
with the alpha-beta technique). Alpha generalized on its learning ·ex­
perience after each move and would change its coefficients correspond­
ingly, while the polynomial evaluation function for Beta was kept con­
stant throughout any given name. Alpha was the program used against 
human opponents; the condition of self-playing was effected by playing 
Alpha against Beta, generally in a sequence of games, with the stipula­
tion being that if Alpha won a game its polynomial would be used in 
the next game by Beta also, while if Alpha lost too many games in a 
row its polynomial would suffer some large, random change. The 
purpose of the change was to start the game off in a new direction and 
(hopefully) permit the development of a completely new polynomial. 

Alpha changed its polynomial as follows: At each move, Alpha 
would compute the evaluation of the current board position as deter­
mined by its polynomial. It would also compute a backed-up evaluation 
of the current board position, determined by looking ahead in the game 
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tree and minim axing backward from the tips of the tree, . as defined in 
the preceding section. 

At any rate, given the evaluation, immediate evaluation, and the 
backed-up evaluation, Alpha would adjust the coefficients of its 
evaluation function so as to make its new immediate evaluation -of the 
configuration closer to that it had obtained by the look-ahead method. 

The success achieved by this technique of "learning while playing" 
was significant, although somewhat time-consuming. It was particularly 
good at developing the middle-game performance. 

Book Learning 

In the normal operation of the Checkers Player, time spans on 
the order of a minute are required for it to make the choice of a move. 
This results in a great deal of time consumption and makes it desirable 
that a faster method than "learning while playing" be found to ac­
complish the learning process. 

The generalization technique was therefore explored in a third 
learning situation, referred to as book learning. Approximately 250,000 
different board configurations, together with the moves recommended 
for them, were transcribed from the Checkers literature and stored on 
magnetic tape, and the program was structured so as to learn under their 
guidance. This learning situation was used for the development of both 

·the signature-table evaluation function and the polynomial evaluation 
function. 

The procedures in both cases were similar: Given a particular 
board configuration, the program would look at the various alternatives 
for the move and store each of their resultant configurations. One of 
the alternatives would be the book-recommended choice. 

Next, in the case of the polynomial function, a table would be 
formed, listing each such resultant configuration against the values of 
each of the parametric functions when applied to it. Using the table, 
a count was made of the number of configurations for which a given 
parametric function had a value higher than it had for the book­
recommended configuration; also counted were the number of con­
figurations for which it had a value -lower than that for the book­
recommended configuration. These numbers were added to the cumula­
tive totals H and L of that particular p~rameter for all the configurations 
that the program had so far considered; a coefficient C for that param­
eter was defined to be the ratio ( L - H) 1 ( L + H). This was the 
coefficient associated with the parameter in the polynomial evaluation 
function. 
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Roughly, the same thing was done in the development of the 
signature tables. These tables listed each resultant configuration against 
its values with respect to each of the signature types (i.e., against its 
signatures), and cumulative totals D and A were accumulated for each 
signature with respect to all the board configurations so far considered, 
using the rule that D was increased by one for each signature of an 
alternative not recommended by the book, while n (the total number 
of nonbook moves) was added to the A total for each signature that 
corresponded to a book-recommended move. The correlation coefficient 
for a given signature, defined as C = (A- D)j(A +D), was used as 
the entry for the signatures that occurred in the third-level table and, 
if the signature occurred in a lower level, it was adjusted to fit the values 
possible there. 

Results 

The coefficient C for a given parameter (or signature) serves as 
cumulative measure of the goodness of the parameter in predicting 
the. book move. The book-learning technique worked well, especially 
for the signature-table type of evaluation function. After analyzing 
.approximately 175,000 board situations, the Checkers Player was able 
to predict book-recommended moves with an accuracy of 48%, 
simply on the basis of its evaluation function, without doing any tree 
searching. In actual play the program follows book-recommended moves 
to a much greater extent because it uses tree-searching techniques. 

These, then, were the fundamental heuristics behind the Checkers 
Player's approach to learning the game. Samuel's Checkers Player was 
one of the earliest major successes of AI research, being the first 
computer program to perform at a championship level in a difficult 
game of strategy. The program improved to the point where it could 
beat its own designer. It remains today one of the best achievements 
in game-playing programs. 

CHESS AND GO 

Chess 

Shannon (1950 a, b) was one of the first to point out the im­
possibility of using exhaustive search to play Chess, and suggested that 
a terminating tree se~rch should be used. Turing (1953) described a 
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simple Chess program and suggested that termination of the tree search 
should be governed by whether or not the positions ultimately reached 
were "dead." (Turing defined a dead position to be one in which there 
were no immediate captures available.) Since then, Chess programs 
have been written by Gillogly, Bernstein, Bastian, Newell, McCarthy, 
and others. An article by Good (1968) describes a "Five-Year Plan" 
for the development of an expert Chess-playing program. Some of the 
ideas mentioned have been implemented, though many deserve further 
investigation. One of the best Chess-playing programs to date is that 
of Greenblatt, Eastlake, and Crocker ( 1967); it is usually referred to 
either as the "Greenblatt Chess Program" or as "Mac Hack Six." 

In order to describe Greenblatt's program, some of the customary 
terminology used by Chess players is adopted: We shall refer to each 
of the various alternatives for moving pieces on a chessboard that a 
player can legally use in one turn as being Chess moves or, more simply, 
moves. In all other sections of this chapter the word "move" has been 
used in its (von Neumann-Morgenstern, 1944) game-theoretic sense, to 
denote a situation in which a player can choose among alternatives. 

The tree search done by Greenblatt's Chess Player program is 
rather sophisticated, but it can be explained within the state-space 
paradigm, The possible board configurations, together with the Chess 
moves that allow one to go from one configuration to another, are the 
state space of Chess. Greenblatt's program utilizes heuristic information 
in evaluating both the states and the operators of the state space. When 
presented with an initial board configuration,. the program employs a 
plausible-move generator to enumerate legal Chess moves (operators) 
possible from that configuration and to e~>timate the desirability of each 
move. 

The plausible-move generator incorporates a large amount. of 
heuristic information in the way it evaluates a given move. B-asically, 
however, its evaluation of a move is a comparison of the positions and 
pieces attacked before the move, to those attacked after the move. 
Gains or losses resulting from blocking or unblocking pieces are taken 
into account, and factors are added to increase the evaluated plausibility 
of moves that attack certain weak spots (for example, pinned pieces). 
The evaluation also incorporates very specific heuristic information, 
such as: "It is bad to move pieces in front of center pawrts on their 
original squares." 

The moves are ordered according to the score they receive from 
the plausible-move generator, and some of them are selected for 
further consideration. The board configuration resulting from the first 
of these moves is calculated and the plausible-move generator is ap-

-----···-L--~·----·-~""'"""-"""' 
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plied to it; the process continues to a preset depth, at which point an 
evaluation function is applied to the resultant board configuration. If 
there are many pieces in danger (en prise), the plausible-move genera­
tor is applied again and the analysis is carried down another level of the 
tree. Otherwise, the evaluation function returns a value for the configu­
ration, dependent upon a comparison of the pieces held by each of the 
players, how much their pieces have changed since the initial configura­
tion, the presence or absence of certain "pawn structures," the safety of 
the kings, the extent to which the two sides control the center, and the 
number of plausible captures that can be made from the position. 
(Plausible captures are investigated in a manner similar to that for 
plausible moves.) 

Thus, the tree search of Greenblatt's program terminates at a 
depth dependent upon the configurations themselves and the extent to 
which there are or are not pieces en prise (see Turing's "dead" position 
idea, described in the section "Generating Game Trees"). Similarly, the 
width of the tree search is tapered (see the second section of this 
chapter) so that at successive levels of the tree the number of plausible 
moves from each configuration considered for further investigation is 
15,15,9,9,7, ... (all levels below the fifth have a branching factor 
of 7) .7 However, the width at any level can be expanded if there is 
heuristic information that an important move (a check, for example) 
is being ignored. The alpha-beta technique is used throughout the 
generation of the game tree so that the investigation of many plausible 
moves is obviated. (It is estimated that the use of the alpha-beta tech­
nique reduces the amount of computation by a factor of 100.) Also, the 
program avoids considering the same board configuration· twice by 
maintaining a table of those configurations it has already encountered 
and evaluated. Finally, the program contains a table of "book openings," 
which provides it with the moves recommended by human experts for 
board configurations that often occur during the beginnings of Chess 
games. 

In 1967 the program was given a tournament rating of about 1 ,400. 
(The mean of all United States tournament players is about 1,800; the 
mean of all Chess players, about 900.) In April 1967, the program 
won the Massachusetts Class D amateur trophy. The program has been 
continually improved and at present wins at least 80% of its games 
against nontournament players. In 1969, Good estimated that the pro­
gram would play about 2,000 in England. The program is an honorary 

7 During nontournament play the program typically expands its plausible 
game tree with a constant branching factor of 6 . 

......... ..: .......... 
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member of the United States Chess Federation, under the name of Mac 
Hack Six. Figure 4-10 shows Mac Hack Six winning the first game 
of tournament Chess to be won by a computer. 

Mac Hack Six is not a "learning" program in the sense of Samuel's 
Checker Player. It is, however, one of the "skillful" programs so far 
produced by AI research (see Chapter 3). The level of skill of Green­
blatt's program, ·relative to that attainable by humans, is probably not 
as great as that attained by Samuel's Checkers Player or Feigenbaum's 
et al. ( 1971) DENDRAL, but it is still considerable-with more develop­
ment, Mac Hack Six may reach the master tournament level. 

White is Mac Hack Six; black is a human rated 1510 

1 P-K4 P-084 12 OxOP 8...;..02 
2 P-04 PxP 13 8-R4 8-N2 
3 OxP N-083 14 N-05 NxP 
4 0-03 N-83 15 N-87ch QxN 
5 N-083 P-KN3 16 OxO N-84 
6 N.,-83 P-03 17 0-06 8-K81 
7 8-84 P-K4 18 0-05 R-81 
8 8-N3 P-OR3 19 NxP 8-K3 
9 0-0-0 P-ON4 20 OxNch RxO 

10 P-OR4 8-R3ch 21 R-08mate 
11 K-N1 P-N5 

Figure 4-10. First game won by computer in tournament competition: 
Game 3, Tournament 2, Massachusetts State Championship., 1967. 

(Greenblatt et al., 1967, reprinted with permission.) 

The Game of GO 

Of all the various· perfect-information board games described 
previously, GO is probably the most difficult (see the second section of 
this chapter). No really successful Go-playing program has yet appeared. 
However, Thorp and Walden (1970) investigated some of the logical 
aspects of the game, Zobrist (1969) described a program that plays a 
legal game and has "reached the bottom rung of the ladder of human 
Go players," and Ryder (1971) described a program that uses heuristic 
search techniques to play a "fair beginner's" game. 

The rules of GO are fairly simple to state: The game is played on a 
19 x 19 board (see Fig. 4-11) ·between two players, each of whom 
has an unlim.ited number of stones, the stones of one player being white 
and those of the other being black. The players alternate in making 
moves. In a given move, a player may place a stone on any unoccupied 
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Figure 4-11. An illustration of GO. (Courtesy of E. Fiala and H. E. 
Sturgis, Xerox Palo Alto Research Center.) 

intersection of the board (subject to two restrictions, described below) 
or he may pass. The game is over if the two players pass in succession. 
Stones of the same color which form a connected string lying along a 
row or a column of the board are said to form a chain. The breathing 
spaces of a chain are the -'empty intersections adjacent (by row or 
column adjacency; diagonal adjacency is not sufficient) to the chain. 
When a player places a stone on the board, he may not form a chain 
without breathing spaces, unless he is capturing. He may not capture a 
stone that has captured one of his stones on the preceding turn, unless 
he also captures one or more additional stones. Otherwise, if a chain has 
no breathing spaces, it is captured by the opponent. At the end of the 
game a player's payment is equal to the sum of the intersections sur­
rounded by his stones plus the number of his opponent's stones that 

----------------~~~-~-~-~,~-~-~-~-~--~~--~-~---~-~-~-~-------------------
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he has captured. The technique in capturing stones is to maneuver so 
that the chains of one's opponent have no breathing spaces. 

Zobrist's program uses pattern-recognition techniques (see the 
next chapter) to aid its investigation of a given GO board configuration. 
It possesses 85 "templates," which are capable of matching configura­
tions of stones already on the board, and either suggest places for the 
program to place its stone or suggest areas in which the program should 
conduct a limited look-ahead. When the program does look ahead, it 
does not perform an extensive tree search. 

Ryder's program represents a departure from the strict alpha­
beta, heuristic tree-search techniques that have worked so well for 
Checkers and Chess, and comprises a unification with recent develop­
ments in pattern recognition and problem solving. At least two aspects 
of its operation are significant: First, it is designed to recognize re­
cursively defined features of configurations of stones on the board. 
Second, the program is a goal-oriented plan for playing GO: It is capable 
of establishing and rejecting limited goals (e.g., "target captures") and 
of searching for move sequences ("tactics") that will lead to them. The · 
recognition of recursively defined patterns has been investigated by 
Morofsky and Wong (1971), and by Hewitt (1968 et seq.). 

GO is an extremely difficult game to play. It may be several years 
before a program can be written that will be "skillful" at playing the 
game, even at an amateur level comparable to the current Greenblatt 
Chess-playing program. 

POKER AND MACHINE DEVELOPMENT 
OF HEURISTICS 

Waterman (1968) designed a language in which heuristics for 
Draw Poker could be expressed as sentences, and he attempted to con­
stJ;uct a program that could select the appropriate sentences under the 
guidance of experience. Waterman's Poker-playing program, though 
perhaps not as well known as other game-playing programs, is one of 
the few such programs to differ significantly in its approach from the 
Checkers Player. 

He distinguished between two types of heuristic, heuris(ic rules and 
heuristic definitions. A heuristic rule specifies an action to be taken and 
the type of situation that prompts taking the action. Heuristic definitions 
define terms that may occur in the statement of other heuristic rules 
or definitions. A heuristic rule in Poker, for example, could be a state­
ment such as: "If the pot is high, call"; the term high could be defined 
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with the use of a heuristic definition such as "the pot is high if it is 
greater than or equal to B ," and the term B also could be defined by a 
heuristic definition like "B equals 1000." 

Waterman's program works within the state-space paradigm for 
the statement of problems. Poker states (the "hand" one holds, the bids 
that have been made, etc.) are described by vectors. Given an input 
state-vector v = v1, ••• vn, the problem for the Poker-player program is 
to decide upon an output state-vector that is both legal according to 
the rules of Poker and desirable from the program's standpoint of try­
ing to do well in the game. (Thus, a legal output state-vector may in­
clude a change in the program's current bid.) The Poker-playing pro­
gram develops an ordered list of heuristic rules and definitions, which 
we shall call a heuristic block, that specifies an output state-vector for 
each input state-vector. (Waterman's program is an example of a pro­
gram that develops subprograms. We discuss various aspects of this 
subject in Chapters 6 and 7.) 

In Waterman's Poker player the general expression for a heuristic 
rule is of the form 

where each Vi represents a set of values for corresponding variable vi. 
Essentially, such an expression says: "Whenever the state vector v is 
such that v1 is a member of the set V1. . .. , and Vn is a member of the 
set V n, the resultant state vector v' is defined to be v' = (f 1 ( v), ... , 
fn( v)) ." A heuristic definition is either an expression of the form 
"A1~A, A = 2," which means that an element a is considered a 
member of the set A 1 if it belongs to the set A and if a = 2, or an 
expression such as "X~K1 + Y," which means that X is defined by the 
sum of K1 and Y. 

The first step in executing a heuristic block is to compare 
the input state-vector with all the heuristic definitions until the most 
general description possible (in the heuristic terms that have been de­
fined) of the state vector is obtained; this description can now be 
matched against the left-hand sides of the heuristic rules. The con­
vention is adopted that the description of the state vector is to be com­
pared with heuristic rules, in order from the top down, until a match 
is made, at which point the appropriate action is taken. 

To illustrate, suppose the input state-vector is (3,2,4) and the 
heuristic block is as follows (where the asterisk means that any value 
is acceptable) : 

----------------~~~~~-~---~-~--~-~~~~~-------------------
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Heuristic 
Rules 

(A1,*,Bl)~(*,X + v2,*) 
(A2,*,Cl)~(vl + 1,*,*) 
(*,B2,*)~(*,*,vl + 3) 

A1~A, A>5 
A2~A, A<4 
Bl~B, B?_2 
B2~B, B<3 
Cl~C,C=5 

Heuristic 
Definitions 

X~Kl X D 
A~a,a a member of (1,2, ... ) 
B~b,b a member of (1,2, ... ) 
c~c,c a member of ( 1 ,2, ... ) 
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Comparison of the input with the heuristic definitions yields 
(A2,(Bl,B2),1C) as the description of the state vector (which is to be 
read: "the input is in the situation A 2 either B 1 or B2, and C"). This 
description is compared ";'ith the left-hand sides of the heuristic rules; 
the first rule it is found to match is ( * ,B2, * )~ ( *, *, v1 + 3), so the 
output vector is (3,2,6). (Provisions can be made to establish con~ 
stants that are fixed within the system, such as K1, or to allow variables 
and constants that can be updated, such as X or D.) 

Given this framework for the description and implementation of 
heuristics, essentially four operations can be applied to .a heuristic 
block to produce a new block. 

First, a given heuristic rule can be modified to match a. vector v by 
enlarging some of the sets v. in the left-hand part of the rule expres­
sion. Second, such a rule can be modified by making one · or more 
variables irrelevant (introducing an asterisk in the left-hand part of the 
expression), again to insure that it matches a given vector v. Third, if a 
rule is found to cause an error (i.e., if experience should indicate that 
there are situations for which it prescribes a wrong action), it can be 
modified so as to not match a given vector (vh .. . ,l'n) and a rule be­
low it can be modified to match it (in both cases by altering sets V4 

in the left-hand part of their expressions). Finally, an error-causing 
rule can be overridden by inserting a new heuristic rule directly above 
it in the heuristic block. 

Before these operations can be applied, some questions need to 
be answered. The most obvious question is, "What is an acceptable out­
put vector for the given input?" Two others are, "What sets are rele­
vant?" and "How should they be changed?" For example, if one is 
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given the information that ( 4,2,4) is an acceptable output vector, that 
C1 is a relevant set, and that C1 should be made to include more values, 
then one can determine that "C1~C,C=5" is the heuristic which 
should be changed and that "C1~c,C;;::4" is a heuristic definition 
which can be substituted in its place. In this example there is nothing 
further to be done: The input vector (3,2,4) is now represented as 
(A2,(B1,B2),Cl), and this symbolic description is matched by the 
second heuristic rule, 

(A2,*,Cl)~(v1 +1,*,*) 

with the result that ( 4,2,4) is the output vector. 
How is the program to extract from its experience the answers to 

these questions? It is possible to supply this information from the out­
side, in which case one might say the program is being trained; Water­
man investigated this approach and achieved a Poker-playing program 
that could play a better-than-average game. (See Table 4-1 for the rules 
used by Poker Player.) Waterman also investigated ways the program 
could infer the necessary information on its own, although his approach 
did not completely free the program from dependence on outside help. 
He was able to structure the program so that it could solve the first 
two questions and then, with the aid of a decision matrix given to it by 
the programmer, solve the third question. (Waterman's use of a decision 
matrix parallels Newell and Simon's use of a "difference table" in GPS.) 
Given this decision matrix, the program was capable of "learning" to 
play a fair game of Draw Poker, although its success at learning poker 
was not nearly as dramatic as the success of Samuel's program at learn­
ing checkers. Waterman's program is distinct from the game-playing 
programs discussed in previous sections in that it plays a game of 
"imperfect information." 

The problem of designing a program that develops its own heuris­
tics is still unsolved. Again, perhaps the only thing clear is that such a 
program would have to be guided by heuristics, and that it will eventu­
ally be necessary for AI researchers to consider the nature of heuristics 
that develop heuristics. 

BRIDGE 

A recent program by Wasserman ( 1970b) is capable of bidding 
skillfully in the game of Contract Bridge. Bridge bidding is a significant 
intellectual task, involving imperfect information and requiring an 
ability to work and communicate with a partner. Wasserman's program 

··- .. -----"' 
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TABLE 4-1. Rules for Poker Used by Waterman's Program 

Definitions of State-Vector Variables and Symbolic Values 

VDHAND: the value of your hand 
POT: the amount of money in the pot 

LASTBET: the amount of money last bet 
BLUFFO: a measure of the probability that the opponent can be bluffed 
POTBET: the ratio of the money in the pot to the amount last bet 

ORP: the number of cards replaced by the opponent 
OSTYLE: a measure of conservative style by the opponent 

OH: the expected value of the opponent's hand 
OB: a measure of the probability that the opponent is bluffing 
CS: a measure of conservative style by the opponent 
BO: a measure of the probability that the opponent can be bluffed 

LAP: the largest bet possible without causing the opponenLto drop 
SB: a small bet 

MB: a medium size bet 
BB: a large bet made in an attempt to bluff the opponent 

BBS: a small bluff bet 
BBL: a large bluff bet 

OAVGBET: the average bet made during a round of play 
OTBET: the number 'of bets made by the opponent during a_ round of play 

OBLUFFS: the number of times the opponent was caught bluffing 
OCORREL: a measure of the correlation between the opponent's hands and bets 

OD: the number of times the opponent has dropped 
SW: a sure-to-win hand 
EC: im -excellent-chance-of-winning hand 
GC: a good-chance-of-winning hand 
PC: a poor-chance-of-winning hand 
NC: a no-chance-of-winning hand 

Kl to K31: constants 

a. (SW PS B5 * * * *) --> (* POT+(2XLASTBET) 0 * * * *) 
b. (SW * * * * * *) -->(*POT +(2XLASTBET) LAP*** *) 
a. (EC Pl B5 * * * *) ->(*POT+(2XLASTBET)O * * * *) 
b. Pl-> P,P > Kl 
c. B5 ->B,B > 0 
d. (EC * * * * * *) --> (* POT+(2XLASTBET) LAP****) 
a. (GCP2B5 * *ORl *) ->(*POT+(2XLASTBET)O * * * *) 
b. P2->P,P > K2 
c. ORl->R,R = Oorl 
d. (GCP9B6 **OR!*) --> (* POT+(2XLASTBET)O * * * *) 
e. P9->P,P > 15 
f. B6->B,B > 7 
g. (GC * BS * * OR2 CSl) ->(*POT+(2XLASTBET)O * * * *) 
h. OR2->R,R = 2 
i. CSl --> OCS, OCS > K3 

(GC P3,B5 * * OR3 *) -->(*POT +(2XLASTBET) 0 * * * *) 

call 
bet 
call 

bf 
bf 

bet 
call 

bf 
bf 

call 
bf 
bf 

call 
bf 
bf 

call 
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TABLE 4-1 (continued) 

k. P3 ->P,P > K4 bf 
1. OR3---> R,R = ....::.1 bf 

m. (GC * * B01 * OR3) --->(*POT +(2XLASTBET) SB * * * *) bet 
n. B01 ---> BFO, BFO > K5 bf 
o. (GCP4B5 * * * *) ---> (* POT+(2XLASTBET)O * * * *) call 
p. P4->P,P > K6 bf 
q. (GCP9B7 * * * *) ---> (* POT+(2XLASTBET)O * * * *) call 
r. B7 ->B,B > 10 bf 
s. (GC * * * * * *) --->(*POT +(2XLASTBET) MB * * * *) bet 

4. a. (PC * B5 * PB2 OR4 *) ---> (* POT+(2XLASTBET)O * * * *) call 
b. PB2 ---> PB, PB > 1 bf 
c. OR4->R,R = 0 bf 
d. (PC* B5 * PB2 OR2 CS2) --->(*POT +(2XLASTBET) 0 * * * *) call 
e. CS2 ---> OCS, OCS > K7 bf 
f. (PCP6B9B01 PB30R6 *) ->(*POT+(2XLASTBET)BB * * * *) bet 
g. P6->P,P < K14 bf 
h. B9 ---> B, B < 5 1\ B ~ 0 bf 
i. PB3 --> PB, PB > 3 bf 
j. OR6->R,R ~ -1 bf 
k. (PCP5B2B02 * * *) ->(*POT+(2XLASTBET)BB * * * *) bet 
l. P5 ->P,P < K9 bf 

m. B2->B,B < KlO bf 
n. B02---> BFO, BFO > Kll bf 
o. (PC * B8 * PB4 OR6 *) ---> (0 * 0 * * * *) drop 
p. B8->B,B > 9 bf 
q. PB4 ---> PB, PB < 2 bf 
r. (PC* B5 * * * *) ->(*POT+(2XLASTBET)O * * * *) call 
s. (PC * * * * * *) --->(*POT +(2XLASTBET) SB * * * *) bet 

5. a. (NC * * * * OR4 *) ---> (0 * 0 * * * *) drop 
b. (NC * * * *OR2CS3) ---> (0 * 0 * * * *) drop 
c. CS3---> OCS, OCS > K12 bf 
d. (NCP10B9B01 *OR7 *) ->(*POT+(2XLASTBET)BBS * * * *) bet 
e. P10->P,P < 13 bf 
f. OR7-+R,R = 3 bf 
g. (NCP6B4B03 *OR6 *) --+ (* POT+(2XLASTBET)BBL * * * *) bet 
h. P6-+P,P < K14 bf 
i. B4-+B,B < K15 bf 
j. B03--+ BFO, BFO > K16 bf 
k. (NC *B5PB1 * *) --+ (* POT+(2XLASTBET)O * * * *) call 
I. PBl->PB,PB > K17 bf 

m. (NCP7B9 * * * *) -->(*POT +(2XLASTBET) 0 * * * *) call 
n. P7---> P,P < K32 bf 
o. (NCP7B3 * * * *) --+ (* POT+(2XLASTBET)SB * * * *) bet 
p. B3--+ B,B < Kl3 bf 
q. (NCP6B3 * * OR6 *) --+ (* POT+(2XLASTBET)SB * * * *) bet 
r. (NC * * * * * *) --+ (0 * 0 * * * *) drop 

6. SW --+ H, H - OH > K18 and H ;:: K19 bf 

..... ., ...... ..:-· 



7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
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TABLE 4-1 (continued) 

EC-> H, H - OH > K18 and H < K19 
GC-> H, K20 < H - OH s K18 
PC -> H, K21 < H - OH s K20 
NC-> H, H - OH s K21 
OH -> K22 - (K23 X OA VGBET X OTBET X OB) 
OB -> (K24 X OBLUFFS) - (K25 X CS) 
CS -> (K26 X OCORREL) + (K27 X OD) 
BO -> (K28 X CS) - (K29 X OH) 

LAP-> K30- (K31 X BO) 
SB-> random(1,5) 

MB -> random(3,9) 
BBS-> random(10,15) 
BB-> random(8,14) 

BBL-> random(14,20) 
H -> VDHAND, VDHAND > 0 
P-> POT, POT> -1 
B -> LASTBET, 0 s LASTBET < 21 

BFO -> BLUFFO, BLUFFO < 0 V BLUFFO ~ 0 
PB -> POTBET, POTBET ~ 0 
R ->ORP, -1 < ORP < 4 

OCS -> OSTYLE, OSTYLE < 0 V OSTYLE ~ 0 

Values of Constants K1 through K32 
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bf 
bf 
bf 
bf 
ff 
ff 
ff 
ff 
ff 
ff 
ff 
ff 
ff 
ff 
bf 
bf 
bf 
bf 
bf 
bf 
bf 

The values of the constants used in defining the production rules representing the heuris­

tics for Draw Poker are given below. 

K1 = 40 K17 = 4 
K2 = 22 K18 = 27 
K3 = 1 K19 = 376 
K4 =9 K20 = 10 
K5 = 5 K21 = 0 
K6 = 30 K22 = 6 
K7 = 1 K23 = .05 
K8 =6 K24 = 1 
K9 = 23 K25 = 2 
K10 = 7 K26 = 1 
Kll = 10 K27 = 2 
K12 = 1 K28 = 8 
K13 = 1 K29 = 1 
Kl4 = 21 K30 = 5 
K15 = 4 K31 = 1 
K16 = 20 K32 = 8 

Source: From Waterman (1968). Reprinted with permission. 
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achieves the level of human experts in partnership bidding and is esti­
mated to be slightly more skillful at competitive bidding than is the 
average duplicate Bridge player. The program is capable of bidding 
skillfully according to four systems: Standard American, Goren, 
Schenken, and Kaplan-Schweinwold (an ability few humans possess). 
Figure 4-12 shows Wasserman's program bidding all four hands (in­
dependently) of a random deal of the cards. 

In March 1969, the program's competitive bidding ability was 
tested against two human players who had often played as partners, 
one a Life Master having approximately 1,000 points, the other pos­
sessing nearly 100 points. The contest was conducted in two sessions, 
with 15 hands being bid in each session. (Hands and scoring informa­
tion were obtained from the American Contract Bridge League National 
Tournament, held at Cleveland in March 1969.) The program won one 
session and lost the other, being defeated overall by a score of 388.50 to 
361.50. 

Wasserman's program is similar to Greenblatt's Chess Player, and 
Samuel's Checkers Player, in that it is designed to evaluate Bridge 
hands, using features and procedures similar to those described by good 
human Bridge players. Unlike Samuel's program, the Wasserman 
Bridge bidder does not "learn" to improve its performance. Even so, 
Wasserman's program is significant because it does perform a difficult 
intellectual task. 

GENERAL GAME-PLAYING PROGRAMS 

Ultimately, the most desirable game-playing program would be 
one that could accept the definition of any game of strategy and which, 
with practice, could learn to play the ;game with a skill comparable or 
greater than that which people could develop in playing the game. At 
the moment, the attainment of a general game-playing program is an 
indefinite prospect. However, programs have been written that are 
general with respect to certain specific classes of games. In this section a 
brief description is given of the classes of games that have been in­
vestigated and the programs that are capable of playing them. 

The first class of games are the positional games. These include 
two-, three-, and n-dimensional Tic-tac-toe, Hex, Go-Moku (not to be 
confused with GO), the Shannon switching games (e.g., Bridg-it), and 
many others. Essentially, a positional game is defined by three sets, say, 
N, A, and B. The set N is considered to be a set of positions; A and B 
each contain subsets of N. A positional game is played by two players, 

................... __ .............. . 
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NORTH 

S- A Q 

H· 10 9 

D · 5 3 

C· Q 7 

WEST 

S· J 9 7 

H· A Q 8 5 2 

6 4 

6 

6 5 

S-

EAST 

3 

H · 3 
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D · 10 6 2 D· A K Q J 8 7 4 

C· A 8 C· J 10 9 3 

SOUTH 

S- K 10 8 5 2 

H· K J 7 4 

D- 9 

C- K 4 2 

SOUTH WEST NORTH EAST 

PASS PASS 1 D 

DOUBLE REDOUBLE 1 s 2 D 

2 s 3 H PASS 4 D 

PASS 5 D DOUBLE PASS 

PASS PASS 

Figure 4-12. A complicated and highly competitive bidding sequence. 
(Wasserman, 1970), reprinted with permission.) 
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who alternate in choosing elements from N (once chosen, an element 
may not be rechosen). The first player tries to .construct one of the sets 
belonging to A, and the second player tries to construct one of the sets 
belonging to B. The winning player is the one who first succeeds in 
constructing one of the desired sets. Positional games may involve 
elements of aggressive strategy, since one player may choose an ele­
ment from N that he knows the other player would like to choose. 

1 2 3 

4 5 6 

7 8 

To illustrate, the positions in two-dimensional Tic-tac-toe may be 
numbered as shown by the sketch. The set N for Tic-tac-toe may thus 
be considered equal to {1,2, ... ,9}, while the set A and the set B both 
contain the sets 

{1,2,3}, {4,5,6}, {7,8,9}, {1,4,7}, {2,5,8}, {3,6,9}, {1,5,9}, 
and {7,5,3} 

A player in the game usually indicates that he has chosen a position by 
placing his "mark" (which is either an X or an 0) on the position. 

Positional games were formalized by Koffman (1967) and have 
been studied by many researchers, including Banerji (1970), Citren­
baum, Pitrat (1971), and Banerji and Ernst (1971). Programs have 
been constructed which are capable of accepting the definition of an 
arbitrary positional game and, with practice, of "learning" to play the 
game quite well. Koffman constructed a program that learns to recognize 
sets of important board configurations in 4x4x4 Tic-tac-toe, and 
which requires about 12 games before it starts beating its opponents. 
Koffman's program describes a given set of board configurations by 
means of a weighed graph. Fig. 4-13 shows a situation in 4x4x4 
Tic-tac-toe from which player X can force a win in six moves; Fig. 4-13b 
shows the sequence of moves that leads to the win; Fig. 13c shows the 
"winning paths" used in the force and their interconnections; and 
Fig. 13d shows the weight-graph representation for the situation. Figure 
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Figure 4-13. A winning situation in 4 x 4 x 4 Tic-tac-toe and its graphic 
representation. (Koffman, 1967, reprinted with permission.) 

4-14 shows some other winning positions that have the same weighted 
graph representation. 

Another general class of game that has received a great deal of 
study is the nimlike game, formalized by Berge in 1962. A given nimlike 
game consists of a directed graph and a counter, initially placed on one 
of the nodes of the graph. The graph of a nimlike game is required to 
have terminal nodes and it may not have "loops." Two players alternate 
in moving the counter from its position to an adjacent node along a 
directed arc. The first player to reach a terminal node wins. · 

Nimlike games have been studied by Berge, Banerji and Ernst 
(1971 ) . Many techniques for decomposing a given nimlike game into 
smaller games (see "problem reduction" in Chapter 3) or for proviflg 
that the strategies of one game can be used for another, have been de-
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Figure 4-14. Some other winning situations in 4 x 4 x 4 Tic-tac-toe with 
the same graph representation. (Koffman, 1970, reprinted with per­

mission.) 

veloped. However, the description of these techniques involves a con­
siderable amount of mathematics, and therefore will not be presented 
here. 

The development of general game-playing programs is hampered 
by the fact that there is as yet no clearly satisfactory theory of what it 
means for two games to be "strategically isomorphic," or of how to 
find simpler games that are strategically isomorphic to a more difficult 
one. It seems likely that graphlike structures will turn out to be a good 
means for describing classes of important game situations in other games 
as well as in positional ones. It also seems likely that pattern recogni­
tion and (perhaps) semantic information-processing techniques will 
eventually be very valuable to the construction of general game-playing 
programs. 

NOTES 

4-1. Whether computers can have "choice" is a debatable question, but 
for us it }s largely irrelevant. One might quibble with the ability of com­
puters to "play" games, on the grounds that their ability to "choose among 
alternatives" has not been proved, and that this ability is (at least on the sur­
face) required in the von Neumann-Morgenstern formalization of the theory 
of games. To answer this quibble, we simply note that we are really con­
cerned with the ability of computers to simulate playing games, not with 

----------------~-~,--~-~-~-~-~~-~,N·~-~-~-~--~-~-~,~-~--~--------------------
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whether they "really" make choices, etc. If the reader wishes to pursue the 
quibble on its own terms, three facts are offered: ( 1) Computers can reason 
"causally," that is, take into (perhaps only partial) account the conse­
quences of various actions; (2) a computer's decision can be based (per­
haps only partially) on a "random" element; (3) a computer program can 
be "self-affecting" (see Chapter 8). Each of these facts serves either to 
diminish our ability to say that the computer's operation is necessarily pre­
determined or to increase our ability to say that the computer can have a 
"sense of purpose," that irs actions can be "purposeful." When we combine 
fact ( 1) with fact ( 3), we come to the conclusion that a computer can 
change the way it reasons causally about a problem and, in a sense, display 
"free will." Whether its "will" is really as "free" as ours may seem to de­
pend upon its abilities to sense and act upon the "real world"; still, we may 
note that in certain limited re~lms of commonly shared sensation and action 
(such as games), the computer's "freedom of will" may roam more widely, 
and more successfully, than our own. Thus, Koffman's computer program 
(discussed in the last section of this chapter) could develop its own strat­
egies for the game of 4x4x4 Tic-tac-toe and within 12 games "learn" to start 
beating its human opponents. 

4-2. How well can people play games? This is a very devious question: 
Actually the significant thing seems to be that people can improve their 
ability to play a game. Are there limits? For example, how close are the 
current Chess Grandmasters to playing their game with the optimum strat­
egy? We \know that optimum strategy must exist, but the game-theoretic 
procedure for determining what it is lies beyond the bounds of computa­
tional ability. Thus, we don't really know what the optimum strategy is un­
less we can find some better way to compute it. At the moment, all we can 
do is look at people who play Chess better than average players, and even 
their performance tells us little about how well the game might be played 
in theory. · · 

From a theoretical standpoint, there may be limits to how well a game 
can be played by machines. It may be possible to prove that there at:e games 
which cannot be played "perfectly," in a practical sense. Although such 
games would be finite, their optimum strat~gies would be beyond the bounds 
of computational procedure (using the game-theoretic, enumerative pro­
cedure), and all games that were "strategically isomorphic" to them would 
be of at least the same size. (See the last section of this chapter.) Assuming 
they could be shown to exist, we might call these games "grin-and-bear-it" 
games. Some interesting questions would, of course, be: Are there grin-and­
bear-it games that have finite descriptions (rules and payment functions) 
small enough so that they can be played by humans and computers? What 
are some grin-and-bear-it games? 

4-3. Kriegsspiel is played with two players and an "umpire." Each player 
has his own chessboard, which cannot be seen by the other player, but the 
umpire can see both chessboards. As in Chess, the players choose oppositely 
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colored pieces and alternate in making moves. Each player's board is empty 
except for his own pieces, which are initially arranged in the standard for­
mation. Generally, neither player knows exactly what moves the other 
player has made. Instead, when one player (say, A) makes a move, he 
makes a sequence of choices. After each choice, the umpire informs him 
whether or not the choice is "legal" (i.e., consistent) according to the rules 
of ordinary Chess, with the, moves so far made by both players. If the 
choice is not legal, then it has no effect U:pon the boards of either player. If 
the choice is legal, then the configuration of. pieces on A's board is trans­
formed accordingly and it becomes the other player's turn to move. Neither 
player hears the choices that are made by the other player. 

4-4. Such a game might still have aspects of strategy and problem solving: 
Suppose the payment function specifies that payments shall be received only 
when the game reaches a terminal node, that is, at the end of a play. Sup­
pose that for different plays of the game the payment function specifies a 
different "total payment," and suppose that the payment function has a 
maximum: that is, there is a possible play for which the "total payment" is 
greater than or equal to that for any other possible play. Finally, suppose 
that for any play of the game the payment function specifies that the "total 
payment" is to be divided equally among all players. We then have a 
"strictly noncompetitive" game in which each player has the problem of 
cooperating with the other players so as to bring about a play that yields 
the maximum total payment. One can design strictly noncompetitive games 
that are very difficult to play. 

4-5. Alternatively, one can view a game as a problem in which the solu­
tion is a tree, rather than a sequence, of operators. Usually, such a repre­
sentation of the complete strategy for playing a game cannot be stored 
explicitly in a computer, but must instead be stored implicitly, as a pro­
cedure for finding the operator to apply in a given situation. The reader 
who is familiar with the procedural epistemology of Hewitt (1968 et seq.) 
may anticipate with the present auth?r the desirability of writing some 
game-playing programs in languages of the PLANNER genus (see Chapters 
6and7). 

4-6. Playing "perfectly" in this sense is really playing cautiously, and is 
equivalent to making the assumption that one's opponent(s) also have in­
finite time and resources. In fact, if one has extra knowledge about one's 
opponent, not specified in the rules of the game, it may well be possible to 
play "better than perfectly." Thus, in reality, a player may intentionally 
choose an alternative that he knows to have a poor theoretical value-if 
he thinks that his opponent will not see how to exploit his "mistake" and 
will instead fall into a trap. As one might expect, neither classical game 
theory nor the field of game-playing programs currently being developed 
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by AI research has very much to say about "opponent-oriented" strategies. 
The ability to develop such strategies is clearly possessed by intelligent 
human game-players, and thus we would expect that AI research might 
eventually program computers to simulate it. However, it may be a long 
time before this can happen, since the human development of an opponent­
oriented strategy often makes use of knowledge about the opponent which 
is not limited strictly to his past performance at the game. The development 
of a good opponent-oriented strategy would require that the computer be 
able to make a "model" of its opponent's game-playing abilities and goals, 
but computers currently do not have the ability to gather, represent, or use 
the information necessary to make models that would be sufficiently ac­
curate. For the reader who is interested in pursuing this subject, Samuel 
(1967) mentions the desirability of programming game-playing computers 
to formulate "deep objectives" as part of their strategies, and to hypothesize 
on their opponent's deep objectives. Colby and Tesler (1969), Colby and 
Smith (1969), and Abelson and Carrol ( 1965) discussed the ability of com­
puters to simulate human "belief systems" (though not in the context of 
game playing); Clarkson ( 1963) presented an early program that could 
model human decisions about stock purchasing. (There are probably other 
relevant papers in the field of "simulation of cognitive processes" of which 
the present author is not aware.) Also, von Neumann and Morgenstern 
(1944) tre11ted the subject of "bluffing" in Poker, although not from a 
"model making" standpoint. 

4-7. The value of the alpha-beta technique is indicated by the fact that 
its use in programs which play the game of Kalab has evidently removed 
this game from the sphere of human dominance; that is, the Kalah-playing 
programs are probably unbeatable by humans, even though the optimum 
strategy for the game is beyond the bounds of computational ability (Kalab 
is, however, less difficult than Checkers). For further information on Kalab, 
see Russell (1964) . 

EXERCISES 

4-1. Estimate whether the complete generation and minimax evaluation of the 
game trees for Chess and GO can be performed by (a) a "conventional" machine; 
(b) an "attainable" machine; (c) a "theoretical serial" machine; (d) a "theoretical 
parallel" machine (see Chapter 2, "Limits to Computability.") (e) Make the cor­
responding estimates as to whether these machines could cahy out a dynamic 
search of the complete "reasonable game trees" of these games (see the section 
"Checkers" in this chapter). 

4-2. Investigate whether it is epistemologically adequate to describe real-world 
phenomena as the plays of a partially specified game, for which it is necessary 
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to infer some of the rules. Is such a description metaphysically adequate? (See 
Chapter 3.) 

4-3. (a) Show how White can move to gain at least a draw. 

WHITE 

ctJ 
1 

~ ~ 
'$;} • 

LACK 
(b) What subproblems did you consider in finding a solution to (a)? (c) Discuss 
how a computer might be programmed to solve Chess end-game problems. 

4-4. (Poker Coins.) * (a) Find the optimal strategy for the game of Poker 
Coins, the rules of which are: 

(1) A player throws N coins; he then puts one or more aside and rethrows 
the rest. 

(2) This throwing is repeated until he no longer has any coins to throw (i.e., 
all the coins have been put aside). 

( 3) Each of the other players takes a turn at throwing N coins, according to 
rules 1 and 2; the winners are those players with the maximum number 
of heads. 

(b) Analyze Poker Dice, which is played according to the same rules except that 
N dice are thrown and those players with the highest score are the winners. 

4-5.* 
p) 
(2) 
(3) 

(a) Analyze Giveaway Chess, played as follows: 
Captures must be made, although a player may choose which capture to 
make, if more than one is available. 
Pawns must be promoted to queens if they reach the eighth row. 
The kings obey the same rules of moving and capturing as in ordinary 
chess, but there is no such thing as "mate," and neither player loses if his 
king is captured. 

*From Beeler, Gosper, and Schroeppel (1972). Reprinted with permission . 

...... -............ 
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( 4) The first player to lose all of his pieces wins. 
(b) Analyze Escalation Chess, where white gets 1 move, black 2, white 3, etc. If 
a player is in check, he must get out of ch7ck on his first move. A player may not 
move into check or take his opponent's king, but he can place his opponent in a 
"multiple check," etc. A player is check~ated if he can't get his king out of check 
on his first move. 



Wordy Eye. (Reprinted with permission from the computer artwork of 
M. R. Schroeder. Copyright © Bell Laboratories, 1973.} See Example 

5-5. 



5 ___ _ 
PATTERN 

PERCEPTION 

INTRODUCTION 

This chapter discusses ways that machines can simulate "pattern 

perception." Roughly speaking, pattern perception is the ability to find 
a simple, useful description for something, given an initial description 

that is very complex, or of low utility. In order to find the simple de­
scription, one might make use of some property ("form," "design," or 
"regularity") that is possessed by the more complex description. If there 

is such a property, then the complex description is said to be an example 
of a "pattern." Pattern perception may operate on descriptions of either 

physical or abstract things. Thus, it is common to talk of "visual pat­
terns," "sound patterns," "symbol patterns," and, even, "reasoning pat­
terns." Not all of these have been explicitly investigated by AI research. 
However, it should be clear that a machine which can solve problems 
in a real-world environment must be able to make and use descriptions 
of that environment. Machines can make some descriptions rather 
easily (e.g., photographs), but they have difficulty in using them to 
"understand" (recognize and solve problems involving) what is being 
described. From a practical standpoint, the extent to which machines 
are able to perceive patterns is a limit to the extent that they can solve 
real-world problems. 

This chapter concentrates on the use of machines to do "visual" 
pattern perception, or scene analysis, both because this is the area in 
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which the largest amount of work has been done to date, and because 
there are good grounds for believing visual pattern perception to be 
one of the current, major problems confronting AI research. However, 
other types of pattern perception will be discussed in the next two sec­
tions and in the last section of this chapter. A wide variety of approaches 
have been followed toward visual pattern perception by machines. An 
attempt will be made to summarize some of the most important ap­
proaches and indicate the ways in which each approach is related to 
the others. However, there is not space in this chapter for a complete 
survey of the subject. For a more complete summary of vision systems, 
refer to the book by Duda and Hart '( 1973), and the survey papers by 
Rosenfeld ( 1972) and Turner ( 1971 ) . 

SOME BASIC DEFINITIONS AND EXAMPLES 
AI researchers have adopted a set of basic definitions for the word 

"pattern" which are fairly consistent with the definitions used by re­
searchers in other fields (e.g., "numerical taxonomy," "behavioristic 
psychology," "theoretical linguistics"). The definitions are not very 
hard to understand. However, since the word "pattern" is usually not 
defined in everyday conversation, this section is devoted t6 an explica­
tion of its use in AI research and a discussion of some general problems 
involving "patterns" that have been considered by AI researchers. 

A pattern is a collection of objects, each of which has the property 
that it satisfies a certain criterion, known as the pattern rule for the 
pattern. The objects in a pattern are said to be pattern examples. (Re­
search papers sometimes confuse these ideas, using the word "pattern" 
to denote what we have chosen to call pattern rules and pattern ex­
amples.) Artificial intelligence research has been concerned with sev­
eral basic problems involving patterns, pattern rules, and pattern ex­
amples. 

1. (Classification) Given an object and a collection of pattern 
rules, determine which pattern rules are satisfied by the 
object. 

2. (Matching) Given a pattern rule and a collection of objects, 
find those objects which satisfy the pattern rule. 

3. (Description, or Articulation) Given an object, find a de­
scription for it in terms of pattern rules that are satisfied 
by the parts of the object, or by the object itself. 

4. (Learning) Given a collection of objects, some of which do 

................ ................... 
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and some of which do not belong to a given pattern, deter­
mine a pattern rule for those that do belong to the given 
pattern. 

Each of these problems may occur in a way which involves the 
others as subproblems. In addition, there are important problems of 
representation, which involve finding languages with which to state pat­
tern rules. 

EXAMPLE 5-1. "SUNFLOWER" PATTERNS. This example was used 
in Chapter 2 for a brief discussion on the nature of mathematical 
descriptions. Figure 5-1 shows an example of a sunflower pat­
tern. This pattern example of a sunflower pattern is a collection 
of dots in the plane. For simplicity's sake, each dot is con­
sidered to be simply a "point." A dot can be described by giv­
ing its position relative to some pair of fixed reference points in 
the plane, one to serve as the origin and the other to establish 
a scale and a baseline for. angular measurements. Thus, 
r = 11.1, () = 2 is a (polar coordinate) description of a dot. We 
say that a dot belongs to a sunflower pattern example if and 
only if it satisfies the pattern rule for the sunflower pattern. This 
pattern may be described either by presenting some of its pat­
tern examples (we presented one in Fig. 5-1) or by stating a 
pattern rule for it. An English statement of a pattern rule for the 
sunflower pattern example shown in Fig. 5-1 is: A collection 
of dots is an example of the sunflower pattern if and only if 
each dot is the intersection of 2 of the 24 Archimedean spirals 
that have equations obtained by substituting for k any value 
between 1 and 12, inclusive; and by substituting for i either 
+ 1 or - 1, in the expression 

r = {8+7), 
when a suitable pair of reference points is chosen. An infinite 
number of dots can belong to such a collection. 

EXAMPLE 5-2. RECOGNIZING PRINTED CHARACTERS. Much early 
research in pattern recognition was motivated by a desire to 
build machines (known as optical-character recognizers, or 
ocR's) that would be capable of reading alphabet and number 
characters, either written or printed on paper. OCR's currently 
are very good at reading certain special types of machine­
printed characters, rather good (about 80% accurate) at recog-

-~----~-----~-----~-----, - ~- .. ______ _______.,_~-~-------~ 
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Figure 5-1. The Archimedean sunflower pattern. 

nizing typed and hand-printed characters, and very poor at 
recognizing handwritten or script letters (e.g., "~? "). 
When we say a machine can "read" or "recognize" certain 
characters, we are essentially talking about a problem of pat­
tern classification. For example, there are several possible ways 
of writing or printing the letter A. Most ways produce one of 
several possible distributions of ink on a paper surface that an 
(English-literate) human will be capable of identifying as an 
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example of the letter A. Thus, the letter A is a pattern; each 
distribution of ink on paper that is identified by people as being 
an A is a pattern example of the letter A. A machine recognizes 
the letter A if, whenever it is presented with a pattern example 
of A, it outputs some signal corresponding to A (it may, for 
example, print its own version of A), ·and if it never outputs that 
signal when it is not presented with a pattern example of A.1 

Similarly, we can define what it means for a machine to recognize 
other characters (b, n, f, 1, 2, etc.). If a machine is to recognize a 
character or pattern, it must have a corresponding pattern rule that can 
be applied to anything which is presented to it, to test whether or not 
the thing presented is a pattern example. Some OCR's are given the pat­
tern rules they use to recognize characters and others are designed to 
develop their own pattern rules (see the next section). In each case, 
when presented with a distribution of ink on paper, the ocR is required, 
in effect, to classify that distribution of ink as being a pattern example 
of some pattern. (It may classify it as being ambiguous.) For further 
information on ocR's, see Holt ( 1968), Munson ( 1968), and Dud a and 
Hart (1968). 

EXAMPLE 5-3. SEQUENCE PREDICTION. Our definition of "pat­
tern" makes no reference to time or sequentiality. However, it 
is possible in our formalism to talk about perception of se­
quential patterns. For example, consider the problem of "se­
quence prediction." Initially, one is presented with some finite 
sequence of objects; say, numbers. Thus, one might be shown 
the sequence a= 0,1,1,2,3,5,8,13. The assumption is that the 
sequence will continue; one's problem is to "prediet" how it, will 
continue. In other words, we assume that a is an initial portion of 
some unknown, infinite sequence of numbers. Given an initial 
portion of the infinite sequence, we attempt to predict the re­
mainder of the sequence. We may make our prediction either by 
presenting some finite sequence a' as an immediate continuation 
of a or by presenting some Turing machine T so that T (a) will 
effectively print out the complete continuation of a. Thus, for 
the sequence a, we might predict an immediate continuation 
of a to be the sequence a' = 21,34. Or we might predict a com-

1 Presenting a pattern example of A to the machine usually means placing 
the piece of paper with its distribution of ink in an appropriate position before a 
television camera or equivalent scanner. The camera will make an "initial de­
scription" of the piece of paper; this description will be a collection of electric 
signals that can be prosessed by the machine. 
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plete continuation of the sequence by presenting a Turing 
machine that would implement the rule: "Given an initial por­
tion u, generate the number that follows the last element of u by 
adding the last two elements of u to each other. Reset u to be 
the old initial portion followed by the number generated, and 
begin again." (Thus, T would generate 21 by adding 8 and 13, 
T would generate 3.:1- by adding 13 and 21, etc.) In effect, each 
initial portion of the sequence to be predicted can be considered 
as a pattern example of that sequence. 

It is rather easy to see how a Turing machine that predicts the 
complete continuation of a sequence can be used to construct a pattern 
rule (Turing machine) that will tell us what sequences are pattern 
examples (initial portions) of the infinite sequence. 

However, the "problem of sequence prediction" is complicated 
by two facts: 

1. There are infinite sequences of numbers that cannot be ef­
fectively enumerated by any Turing machine (see Chaitin, 
1966, 1969). 

2. Given any two sequences of numbers, say u and u', it is 
possible to find a Turing machine T which predicts that if 
will be the immediate continuation of u. 

In other words, there exist sequences that cannot be predicted with 
complete accuracy by any Turing machine, and it is theoretically pos­
sible to justify any finite prediction of the continuation of a given 
sequence by reference to some Turing machine. 

Consequently, the problem of sequence prediction may be restated 
as: "Find a simple Turing machine that can, given a blank tape, enu­
merate the sequence u and its complete continuation within a given, 
required 'accuracy'." The concepts of "simple" and "accuracy" can be 
given mathematical definitions (e.g., see Arbib, 1969, p. 229). We may 
therefore suppose that we have chosen some definitions. Let us hold 
the accuracy required of our prediction at a constant level and imagine 
looking at all the Turing machines (Tm's) that, with this accuracy, 
predict (enumerate) u and its continuation. Some Tm's will be simpler 
than others, but it is possible that more than one Tm will have the 
greatest value of simplicity. Thus, there may be many predictions for 
the sequence u, all of which are equally valid. We should therefore 
generalize the problem of sequence prediction and state: "Given 
u, find the set of most simple Turing machines that, within a given re­
quired accuracy, predict the continuation of u." 

................ 



Pattern perception 175 

Most real-world problems of sequence prediction cannot be solved 
very easily by using a Turing machine formalization. In fact, no very 
good formalization (language) for sequence prediction in real-world 
problems has yet been developed. Aside from its metaphorical, 
theoretical relationship to subjects like the theory of scientific inquiry 
(see Chapter 2), there has been some question as to the relevance of 
the problem of sequence prediction to practical robotics and artificial 
intelligence.· To quote McCarthy and Hayes ( 1969) : 

Imagine a person who is correctly predicting the course of a football 
game he is watching; he is not predicting each visual sensation (the 
play of light and shadow, the exact movements of the players and 
the crowd) . Instead his prediction is on the level of: team A is 
getting tired; they should start to fumble or have their passes inter­
cepted. 

Similarly, attempts to use numerical sequence prediction techniques to 
forecast the stockmarket are shortsighted 'unless they also process 
information about the multitude of events in the real world which can 
affect the market. From the standpoint of AI research, a more relevant 
kind of sequence prediction to investigate would be the prediction of 
sequences of relational structures. The problem of sequence prediction 
also occurs in AI research into language understanding, wh~re it may be 
necessary to predict the. next word or phrase in a sentence, given the 
preceding words. Here the prediction must be made relative to a gram­
mar for the language and to some model for the possible. meanings of 
·the sentence. Finally, a paper by Slagle and Lee ( 1971 ) shows how 
,game-tree searching techniques can be applied to sequential pattern 

··· recognition. · 

EXAMPLE 5-4. RELATIVELY PRIME NUMBERS. This example is 
similar to the sunflower pattern discussed in Example 5-l. Two 
integers are said to be relatively prime if and only if they have 
no common divisor other than unity. Thus, 4 and 9 are relatively 
prime because the divisors of 4 are 1 and 2 and the divisors of 
9 are 1 and 3. Similarly, 12 and 21 are not relatively prime be­
cause both can be divided by 3. Figure 5-2 shows part of a 
pattern CP of dots in the plane (here the dots are colored white 
and the plane is colored black), which has the following pattern 
rule: "A dot is a pattern example of the pattern CP if and only 
if its x and y coordinates are relatively prime integers." Figure 
5-2 shows all those dots (pattern examples) of CP whose integer 
coordinates are each greater than or equal to zero and less than 
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Figure 5-2. The relatively prime integers from 0 to 256. 

or equal to 256. The figure; to quote Reichardt (1971), "shows 
the intriguing combination of regularity and randomness which 
characterizes the distribution of prime numbers and the property 
of joint divisibility." 

EXAMPLE 5-5. WORDY EYE. The Frontispiece to this chapter is a 
picture that contains pattern examples of at least five patterns: 
the letters of the English alphabet; the words of the English 
language; the sentences of the English language; the sequence 

2 The Frontispiece to this chapter and Fig. 5-2 are reprinted with permission 
from the computer artwork of M. R. Schroeder; copyright © Bell Laboratories, 
1973. 
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formed by repeating ONE PICTURE IS WORTH A THOU­
SAND WORDS; and the set of pictures that depict a hunian 
eye. This picture nicely illustrates the hierarchical, structural 
nature of many patterns. A system for understanding patterns 
in the reaL world must be capable of dealing with the ways in 
which patterns can be made up of patterns. Thus, we may 
choose to state a pattern rule for the letter A as follows: An 
object is a pattern example of A if it is made up of an object 
that is a pattern example of the "upward-angle" pattern . and an 
object that is a pattern example of the "horizontal-line" pattern, 
and these two objects are related to each other in a certain way. 
Our discussion of vision systems will trace a hierarchy of pat­
terns (point, line, curve, region, texture, . . . , object, scene) 
which should be recognized by machines that can see. Especially 
relevant in this regard is the explication of "hierarchical syn­
thesis" given by Barrow et al. (1972). 

EXAMPLE 5-6. SALT AND PEPPER SHAKERS. Mr. and Mrs. Jones 
of A.D. 2100 are eating a quiet dinner at home. Mrs. Jones de­
cides her fried seaweed is not salty enough and reaches for the 
saltshaker, only to discover that the table has been inadequately 
set, and there is no saltshaker on it. "Robbie," she calls, "would 
you bring us the saltshaker?" Robbie the Robot floats into the 
kitchen and proceeds to look for a saltshaker. It finds two ob­
jects, each of which might be a saltshaker (they are the right 
shape and size)' but they are each opaque-the robot can't 
see their contents. Looking more closely at the objects, Roobie 
. notices that there are holes in the top of one of the objects and 
that these holes are placed so as to form a pattern ~xample of 
the letter S. Robbie therefore takes this object to the dinner 
table. By this time Mrs. Jones also wants the peppershaker and 
Robbie, having been too literal-minded (but next year's models 
will be better ... ), must go back to the kitchen. However, it 
has successfully recognized a pattern example of the pattern 
"saltshaker." 

EXAMPLE 5-7. EXTRATERRESTRIAL PLANETARY EXPLORATION. 

Let us suppose that a team of robots is conducting a slow, but 
patient, geological exploration of the Moon. Because of the 
time lag in communications from Earth, the robots form a 
largely self-directing collection of machines. In fact, each robot 
is somewhat independent of the others because they are too 
thinly distributed about the Moon's surface to be in frequent 
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contact with each other. One of the robots, M65, is safely 
navigating a narrow path between two craters when a moon­
quake sends it sliding out of control over the edge of the path 
and down the slope of one of the craters. M65 arrives intact 
but disoriented at the crater bottom. It doesn't know precisely 
where it is or where to go next. The caterpillar-treaded robot 
crawls back up the slope of the crater. Reaching the edge, M65 
takes a panoramic picture of its surroundings, and generates a 
description of the scene's major details (shape and placement 
of pattern examples of the patterns "mountain," "large boulder," 
"crater," etc.) It compares this description to another descrip­
tion that it had generated of its surroundings shortly before 
the moonquake occurred. Noting some similarities, it attempts 
to reestablish its old position and orientation and to proceed 
with its business. 

Examples 5-6 and 5-7 are, of course, entirely fanciful and beyond 
the current state-of-the-art in AI research. Indeed, for Robbie the Robot 
to behave as it did in Example 5-6, it would have to be able to solve 
the problems of recognizing and understanding human speech, which 
are at least as difficult as simply recognizing and distinguishing salt 
and pepper shakers. Similarly, the techniques necessary for robot M65 
to "reestablish its orientation" and "navigate successfully" over long 
distances of lunar terrain (without human assistance) may not be 
available for a few decades. However, it should be noted that AI re­
searchers have made serious proposals that artificial intelligence tech­
niques be used to construct machines that could carry out less pre­
tentious, but still somewhat self-directing, explorations on Mars (see 
McCarthy, 1964a; Glaser, McCarthy, and Minsky, 1964). 

EXAMPLE 5-8. RECOGNIZING A CUBE. Succeeding sections will 
discuss techniques for using a television picture of a scene to 
produce a line drawing of the scene. Suppose the scene con­
tains only a cube resting on an unknown surface. We might then 
obtain a line drawing something like 
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Now this line drawing is a simple description of the origi­
nal television picture of the scene. The line drawing itself may be 
considered as an object, however, and techniques that recognize 
some line drawings as being examples of the pattern "descrip­
tions of a cube" can be considered. Thus, depending on the 
orientation of the camera with respect to the cube and the 
surface, any one of an infinite number of line drawings might 
be obtained that would describe a pattern example of the pat­
tern "cube." We recognize each of these as belonging to a 
pattern different from that to which the line-drawing below 
belongs. 

As is illustrated by the last example, most pattern-recognition pro­
grams really work with descriptions of things rather than with the 
actual things themselves. Thus, to find pattern examples of various 
patterns ("cubes," "boxes," etc.) in a real-world environment, the 
computer will typically make use of a television camera picture of that 
environment. This picture constitutes its initial description of the en­
vironment. The initial description may be processed to yield other 
descriptions of the environment, or of parts of the environment, and 
these descriptions may be recognized as "descriptions of a cube," "de­
scriptions of a box," etc. The computer may then print out that it has 
found a pattern example of the pattern "cube" in the environment; if 
necessary, it may use its descriptions to help guide a niechanical arm 
that would attempt to pick up the pattern example of "cube" that was 
found. Of course, when the computer does so, it may find that its de­
scriptions are incorrect. 

It is usually possible to describe a given object in many different 
ways. The kind of description one uses will in general depend upon 
the problem at hand. The major kinds .of descriptions that are cur­
rently used by pattern processing systems all have the structural char­
acteristics of vectors, matrices, strings, lists, and graphs. 
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EXAMPLE 5-;-9. PATTERN MATCHING AND TEMPLATES. One rep­
resentation that has been developed for stating pattern rules 
having each of these five kinds of structure is the use of tem­
plates in pattern matching. An early example of this technique 
was presented by Uhr and Vossler (1963), who described a 
program that successfully generated its own set of template 
matrices, which it used to recognize handprinted characters. 
Similarly, in Chaper 4 we discussed the work of Koffman 
(1967) and Citrenbaum (1972), who presented programs that 
could develop and use templates with the structure of graphs to 
play positional games. Most of the recent programming lan­
guages for AI research make extensive use of templates with the 
structure of lists for pattern matching: pattern matching in this 
case means locating subexpressions in a larger expression or 
data base (set of expressions), and perhaps naming the located 
subexpressions by assigning them as values to variables. As an 
example, we shall briefly describe the pattern matching language 
used in the AI programming language QA4 (Rulifson, Derksen, 
and Waldinger, 1972). 

In this language, a pattern rule can be any list expression 
that is correctly made up of atoms, variables, and certain "pat­
tern operators" defined for QA4. Intuitively, two expressions 
match if their elements have the same values, at all levels. Thus, 
an atom (essentially, an alphanumeric string) is treated as a 
constant, and normally will only match another instance of it­
self; if an atom is to be treated as a variable it must have one 
of six possible variable prefixes: ~, ?, $, ~~, ??, and $$. The 
first three prefixes restrict the variable to match only individual 
terms (expressions), while the second three allow variables to 
match "fragments," or segments of lists. Thus, X, A1263, and 
ATOM are constant atoms (when they occur in a pattern rule); 
?Y, $Z, and ~w are variables restricted to individual terms; 
~~P, ?? A 1, and $$C are fragment variables. The prefix ~ 
permits a variable to match any individual term, regardless of 
the variable's previous value, and specifies that after the match 
the variable will have as its value the term it is matched against. 
The prefix ? allows a variable to match only its previous value, 
if any (QA4 allows variables to not have values); otherwise it 
is allowed to match any individual term, and acquire that term 
as its value. Finally, the prefix $ allows a variable to match only 
its previous value; if the variable does not have a value initially, 
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then it is not allowed to match anything. The three double­
character prefixes have analogous meanings to those of their 
single-character counterparts, except that. they restrict variables 
to match only fragments of lists. 

Thus, the expression (+-X (?Y $Z) 2 +-+-W) is a pattern 
rule in the QA4 language; a widt< variety of expressions will 
satisfy, or match this pattern rule (template), given that the 
variables X, Y, Z, and W have the proper initial values, where 
required. Some expressions which might match this pattern 
rule are (PLUS (SIN A) 2 4.5 PI) and ((THE AMERICAN 
CONGRESS) (HAS EXACTLY) 2 HOUSES). Other expres­
sions cannot match this pattern rule, regardless of the initial 
values of its variables: examples of such expressions are 
(TIMES 2 3) and ((AN OUT) REQUIRES 3 STRIKES). It 
should be clear how this language allows a pattern rule to specify 
the structural nature of the pattern examples which satisfy it. 

Among the special operators which further extend this 
capability are .. , PAND, and POR. If the subexpression .. pat 
occurs in a pattern rule (where pat is itself a pattern rule), then 
this subexpression matches an argument expression if pat 
matches some subexpression of that argument, perhaps the en­
tire argument itself. Thus, if the initial values of the variables 
X and Y are C and D, respectively, then the pattern rule 
( .. $X . . $Y) matches the expression ((A B C) D), The 
operators P AND and POR allow pattern rules to make use of 
logical combinations of pattern rules. A pattern rule of the form 
(PAND patl ... patn) matches an expression if and only if 
that expression matches all the pattern rules from patl through 
patn. Similarly, a pattern rule of tl\.e form (POR patl ... patn) 
is satisfied by an expression if and only if t}lat expression 
matches at least one of the pattern rules from patl through patn. 
Thus, the pattern rule (PAND +-X (TUPLE 1 +-Y)) matches 
the expression (TUPLE 1 2), assigning X the expression 
(TUPLE 1 2) as its value, and making 2 the valueof Y. 

This kind of pattern matching language has been useful in many 
ways, perhaps most notably as an inter lingua (intermediate language) 
for question-answering systems. For example, Winograd's English un­
derstanding program (see Chapter 7) demonstrated how a wide variety 
of English questions can be translated into PLANNER," theorems (see 
Chapter 6) that can use such pattern rules to represent the "essential 

----~~-------------
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unknowns" of their respective questions. Similarly, the English question 
"Why did the chicken cross the road?" might be translated into a QA4 

expression like: 

(AND (EXISTS (CHICKEN ?Y)) 
(EXISTS (ROAD ?Z)) 
(EXISTS (CROSS ?Y ?Z ?EVENT)) 
(EXISTS (CAUSE ?X ?EVENT)) 

Evaluation of this expression will cause a search of the current data 
base (set of expressions that a QA4 program may treat as assertions 
about the world) for expressions matching, successively, the pattern 
rules (CHICKEN ?Y), (ROAD ?Z), (CROSS ?Y ?Z ?EVENT), and 
(CAUSE ?X ?EVENT). The pattern matching facilities within such 
programming languages as PLANNER, QA4, and CONNIVER (see cita­
tions in the Bibliography under Hewitt, Rulifson, and Sussman) provide 
one of the most general formalizations for pattern processing yet de­
veloped . by AI researchers. This generality derives from the utility of 
storing symbolic data in list structures, the expressiveness of the pattern 
rule notation for describing list structures, and the fact that the for­
malization of these systems does not require the use of any specific 
terminology or facts associated with particular real-world pattern­
perception problems. 

In closing this section, reference should also be made to an earlier, 
but still very general group of formalizations for pattern processing sys­
tems, which includes perceptrons and statistical decision theoretic pat­
tern recognition (note 5-1 ) . There is not space here to discuss these 
topics but, fortunately, excellent summaries of them are given in the 
books by Minsky and Papert ( 1969), Duda and Hart ( 1973), and 
Mendel and Fu (1970). In Chapter 7, the topic of statistical decision 
theoretic pattern recognition is briefly discussed in comparison with the 
grammatical inference approach to pattern recognition. 

EYE SYSTEMS FOR COMPUTERS 

The most basic part of a computer system that performs visual 
pattern perception is the eye system, which is simply the collection of 
computer eyes that it can control, and from which it can receive in­
formation. A computer eye is a device for producing descriptions of the 
electromagnetic radiation in space. In general, such an eye consists of a 
sensor, optics, and usually an illuminator (Earnest, 1967). The purpose 
of the illuminator is to direct electromagetic radiation into the environ-

--------------~~~--~-~~~~---~-~--~·~-~-~-~---~-----------------
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ment, the purpose of the sensor is to receive electromagnetic radiation 
from the environment, and the purpose of the optics is to process the 
radiation, either as it leaves the illuminator or as it enters the sensor. 
The sensor describes· the electromagnetic radiation that it receives, by 
converting it into an electric signal that can be stored and processed as 
data by the computer. Optics serve to change the radiation received from 

the environment by the sensor, so that typically a given sensor can de­
scribe different views of its environment without itself being moved. For 
ordinary light (as distinguished from infrared, ultraviolet, etc.), the 

optics will usually be a movable collection of shutters, filters, lenses, 

mirrors, and prisms. 
AI research has so far given primary attention to two types of 

artificial eye, known as imaging eyes and jumping (or flying) spot eyes 
(Earnest, 1967). Figure 5-3 shows diagrams for these types of eyes. 
The jumping-spot eye makes use of an illuminator (often a laser) that 
is capable of putting out a very narrow beam of light. The optics of the 
jumping-spot eye cast the beam in different directions throughout the 
environment. The sensors (it is desirable to use several) of the eye 

receive radiation from the beam that is reflected back by the environ­
ment. The total amount of radiation received by the sensors is compared 

with the total amount of radiation emitted by the illuminator, to yield a 
score for the "reflectivity"3 of the environment in each direction that is 
illuminated. The initial de~cription of the enviromnent that is produced 
by the jumping-spot eye corresponds simply to a list of directions and 
their reflectivities. This list is coded for use by the computer as a 

sequence of electric signals. 
When compared .to other types of artificial eyes, jumping-spot eyes 

appear to offer many advantages (such as the natural development of a 
visual-light frequency radar, or "lidar"), but some disadvantages (e.g., 

mechanical problems connected with the use of ordinary mirrors, prisms, 
etc., in the optics of such an eye may make it difficult to scan large 
scenes at rates faster than five frames per second, thus hampering the 
analysis of motion in scenes) . 

Most AI research on visual perception has been concerned with 
the use of imaging eyes. (See Figure 5-4.) An imaging eye is basically 
the reverse of a jumping-spot eye; instead of several sensors and one 
illuminator, an imaging eye has one sensor (typically a television cam-

3 The proper physical term to describe the reflecting ability of a material 
surface is reflectance. The light received by a sensor in a jumping-spot eye is not 
really a measure of the reflectance of any one material surface, since it may de­
pend on the placement of many objects in space. 

----------------~~~-c~·~~~----~--~~~~--------------------
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Figure 5-4. A computer-controlled television camera. (Courtesy of Karl 
Pingle and Lynn Quam, Stanford AI Project.) 

era) and often has several illuminators. Thus, the sensor used in an 
imaging eye is usually more complex than those in a jumping-spot eye. 
The optics in an imaging eye generally control the WflY light is directed 
into the sensor rather than out of the illuminators. With proper use of 
the optics in an imaging system, the pictures produced by the eye can 
be "focused," "magnified," "zoomed," etc. A picture produced by an 

----------------------.,- ------~-------
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imaging eye may be described as a large matrix, with each element of 
the matrix being a number measuring the intensity of light in a given 
volume of space. When a picture matrix is produced by an imaging 
eye, it is, again, coded for use by the computer as a sequence of 
electric signals. Generally, a picture matrix produced by an imaging 
eye will contain less than 100,000 elements (in contrast to approxi­
mately 300 million rods and cones in the retina of the human eye). 
Figure 5-5 shows an example picture of a real-world scene of fairly 

Figure 5-5. Picture of a real-world scene produced by the computer­
controlled television camera shown in Figure 5-4. 

(Courtesy of Karl Pingle, Stanford AI Project.) 

simple objects, produced by an imaging eye at the Stanford Artificial 
Intelligence Project. 

Imaging eyes have the advantages that their illumination require­
ments are roughly compatible with those necessary for humans and 
that their optical systems have been already extensively developed 
for use in ordinary photography. Furthermore, there is no difficulty in 
using imaging systems to make motion pictures of scenes. 



Pattern perception 187 

SCENE ANAL VSIS 

Picture Enhancement and Line Detection 
This section discusses techniques that can be used by computers 

for the analysis of pictures. As in the preceding section, a picture is con­
sidered to be a large matrix of numbers, each number representing the 
intensity of light in a portion of space. The total portion of space 
described by a picture will be referred to as a scene. Our primary con­
cern is to show how a computer can analyze a single picture of a given 
scene. Techniques for analyzing and comparing several pictures of the 
same scene are described in Quam ( 1971) and Duda and Hart ( 1973). 
The techniques we discuss can be grouped into three classes: "picture 
enhancement and line detection," "perception of regions," and "per­
ception of objects." 

Picture-enhancement techniques are methods for using one piCture 
to produce another. When used correctly, they can be of help in dis­
covering significant details in a picture.4 However, because the picture 
that results from the use of such a technique usually has less information 
content than the original picture, picture enhancement techniques ·cur­
rently seem to be of more value to human photographers than they are 
to computer vision systems. Some relatively simple picture-enhancement 
techniques will be presented here, and the reader is referred to Duda and 
Hart ( 1973) for a discussion of other, more complex methods. 

One of the simplest picture-enhancement techniques is that of 
noise "removal," or smoothing. Usually, in developing a picture-matrix 
description of a scene, some noise will be picked up, causing various 
elements of the matrix to deviate from their correct value. If the noise is 
random; such that noise in adjacent elements of the picture matrix is 
uncorrelated, then a spatial averaging or smoothing technique may be 
applied to reduce it. This technique consists simply of resetting the value 
of each element of the picture matrix to be the average of the old values 
of the picture elements in a "window" surrounding it. To illustrate, 
suppose we smooth the picture matrix 

1 0 2 5 7 
0 2 4 5 6 
9 2 8 4 7 
9 2 7 5 7 
6 1 5 3 6 

4 Quam (1971, pp. 78, 101) shows how picture-enhancem~nt techniques 
were used to detect a cloud on Mars, which would probably not have been 
recognized without the use of these techniques. (Also see Leovy eta!., 1971.) 
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using 3 x 3 windows. Then the picture element that has value 8 will be 
reset to have the value 4.3. Smoothing a picture usually introduces some 
"blurring" in the picture matrix that is produced. 

Another technique for noise removal consists of finding each pic­
ture element that differs greatly from a surrounding set of approximately 
equivalent picture elements, and then replacing it with their average 
value. In the example displayed above, this technique might give a new 
value of 6 to the element that has value (intensity) 3. This technique 
is often referred to as salt-and-pepper removal, and has the advantage 
that it will usually reduce most of the random shot noise in a picture 
without causing the "blurring" created by smoothing. 5 

Contouring, or isodifference detection, is often used in terrestrial 
map making to emphasize lines of constant altitude. The technique con­
sists of establishing a sequence of brightness levels, 

Oo < 81 < 82 < · · · < On 

for which each picture-element P;,i in a given matrix has an intensity 
hi such that 8~< L l;i < 87<+ 1 for some· k. Each picture element is then 
given a new intensity value corresponding to the appropriate 8~<. 

Edge enhancement, or sharpening, of a picture will produce a new 
picture similar to that obtained by contouring. In the edge enhancement 
of a picture only those picture elements that separate elements of greatly 
varying intensity are shown. For each picture-element Pu with intensity 
value hi of the matrix, we compute the "cross operator" 

R;,i = ( (l;,i- /i+l,i+l)
2 + (li,i+l- /i+l,i)

2
) 

10 

We then form the new picture matrix with elements Pi,i that have in­
tensity l';,i = 1 if R;,r-:::::,. 8, where 8 is some threshhold value and Ii,i = 0 
otherwise. The threshhold value 8 determines how greatly the intensity 
must vary in order to show a given picture element. (See Roberts, 
1963.) 

Other techniques developed for picture enhancement make use of 
spatial frequency analysis and Fourier transforms. These are well ex­
plained by Duda and Hart (1973). Figures 5-6 and 5-7 illustrate the 
power of these techniques , applied to a picture of the Martian moon 
Phobos, taken by Mariner 9. 

Line-detection techniques are methods for finding significant curves 
in a picture matrix that can be used to produce a line drawing. The 
problems of making a good program for line detection in pictures are 
significant and still largely unsolved. The value of ._~avi~:·such a pro­
eram is great, however, as the reader will see from the discussions in 

5 Quam ( 1971) referred to this technique as "Custering," after General 
Custer (U.S. Army) who was defeated when surrounded by Indians. 



Figure 5-6. (Top) Original picture of Martian moon Phobos, taken by 
Mariner 9. (Bottom) High-pass spatial frequency filtering of the original. 
(Courtesy of Lynn Quam and Robert Tucker, Stanford AI Project and 

Jet Propulsion Laboratory.) 
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this chapter on "identification of objects" and "learning to recognize 
structures of simple objects." The edge~enhancement technique de­
scribed above is one simple type of line-detection program. Another 
simple method for detection of lines is based on the use of coincidence 
predicates. A simple version of this method is the following: For a given 

_picture matrix with elements Pi,i• having intensity-values hi, form a 
new picture matrix with elements P'i,i having intensity-values l'i;i, where 
l'i,i = 1 if (hi - /Hl.i) and (hHl - /i+l.Hl) are both large and of 
the same sign, or if Uu - hHl) and (/i+l.i - /i+l,Hd are both large 
and of the same sign, where "large" is determined by the specification 
of some threshhold value. Other methods for line detection have been 
investigated by Heuckel (1969), Herskovits (1970), Griffith (1970), 
Kelly (1970a,b), Montanari (1971), Hayes and Rosenfeld (1972), 
and many others. Figure 5-8 shows a computer-produced line drawing 
of a real-world scene like that shown in Figure 5-5. This figure illus-

Figure 5-8. Line drawing of a real-world scene produced from a tele­
vision picture like the one in Figure 5-5. (Courtesy of Karl Pingle, 

Stanford AI Project.) 



192 INTRODUCTION TO ARTIFICIAL INTELLIGENCE 

trates some of the problems that currently plague attempts· to develop 
good line-detection programs. It is difficult to develop programs that 
can overlook "meaningless" variations in light intensity (e.g., shadows) 
and still detect "meaningful" ones (e.g., the actual boundaries and 
edges of objects). 

Perception of Regions 

Given a line drawing, a vertex can be defined as a point where two 
or more lines meet, and a region as an area of the picture that is entirely 
enclosed by lines (and usually contains no lines). The problems in­
volved in finding and identifying "meaningful" regions in a picture are 
similar to those for identifying lines, and are still somewhat unsolved. 

As might be expected, several researchers have investigated the 
use of local operators to detect regions in a picture, similar to, but not 
requiring, the use of local operators to detect lines, as discussed above. 
Brice and Fennema ( 1970) present a good description of a vision 
system following this approach. The study of such operators has led 
to many abstract results in digital topology, that may be of interest to 
the reader (e.g., see Rosenfeld, 1973). 

Perhaps the most intuitive method for recognizing and describing 
regions is to make use of line detection programs to find lines in the 
picture, use one of many possible algorithms for locating vertices, and 
then trace along the lines and vertices searching for closed curves. (A 
closed curve is a sequence of connected lines leading back to the first 
line in the sequence.) Each closed curve is p·art of the boundary of a 
region, and the shape of the region can be described in terms of the 
lines and vertices that enclose it. This technique is suggested by Winston 
( 1970) for recognizing regions with geometric shapes in a line drawing; 
Winston's general approach is described in the next section. 

An interesting technique for describing the shape of a region is 
medial axis transformation, or prairie fire analysis. Given a region such 
as shown here, we may imagine that the interior ol the region is covered 
with highly flammable grass and the exterior of the. region is empty 
(presumably covered with asphalt). Suppose we simultaneously light 
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a fire all along the boundary of the region. The fire will then spread 
inward and be quenched where it meets itself. Each point where two or 
more fire fronts meet and quench each other is known as a quench 

point. The collection of quench points for our example will look some­
thing like the next drawing. This collection of quench points, or skele-

ton, may be taken as a description of the shape of all regions that will 
produce it. (The precise initial region may be constructed if some ad­
ditional information is given.) Duda and Hart ( 1973) discuss this and 
other methods of region recognition and description in greater detail. 

Perception of Objects 

Historically, the first program to successfully use vision to recog­
nize objects in an environment was written by Roberts ( 1963). This 
program used local operators to transform a digitized picture into a 
line drawing, which was then searched for vertices and regions. Relevant 
information about each line, vertex, and region would be computed 
and stored in a list structure; e.g., each vertex would have associated 
with it a description of the regions surrounding it. The program was 
given a set of similar list structures that presented the same kind of 
information about each of the edges, vertices, and surfaces of the three 
basic objects it could recognize (cubes, wedges, and hexagonal prisms). 
The program would attempt to make a preliminary, consistent matching 
of each vertex, line and region of the line drawing against a correspond­
ing element in one of these three objects. Given this matching, the pro­
gram would compute the projective geometry transformation that would 
yield the best . fit between each portion of the line drawing and the 
object to which it had been corresponded-with a good enough fit, the 
object would be "recognized" as having produced that portion of the 
line drawing. Roberts' program was able to recognize compound ob­

jects, made by piecing together transformations of cubes, wedges, and 
hexagonal prisms. 

Guzman ( 1968a,b) made the next significant advance in visual 
perception by machines. He wrote the first program which did not re-
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Figure 5-9. (Guzman, 1968, reprinted with permission.) 

quire stored descriptions of the objects it could recognize, and did not 
proceed by trying to match such descriptions against line drawings of 
the scene. Given a picture such as that in Fig. 5-9, in which the lines 
and vertices have been detected and correctly labeled and in which the 
regions of the picture have been numbered as indicated, Guzman's pro­
gram (called SEE) will identify 12 objects, as indicated in Table 5-l. 

Object 

1. 
2. 
3. 
4. 
5. 
6. 

TABLE 5-1. Identification of Objects by sEE 

Regions 

3,2,1 
32,33,27,26 
28,31 
19,20,34,30,29 
36,35 
24,5,21,4 

Object 

7. 
8. 
9. 

10. 
11. 
12. 

Regions 

25,23,22 
14,13,15 
10,16,11,12 
18,9,17 
7,8 
38,37,39 

What is most impressive about SEE is that it can make this identifi­
cation without knowing anything in detail about specific polyhedra or 
about what to expect in Fig. 5-9. The operation of SEE is based only 
on the use of information collected locally at each vertex in the picture . 

._,.......-: -· ........ _.. 
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SEE begins operation when it is presented with a special descrip­

tion of a picture. The description contains information about the regions 

in the picture, the vertices in the picture, and the background of the 

picture. For the simple picture ONE shown in Fig. 5-10, SEE would be 

given the following information: 

G 

F 

A B 

Figure 5-10. ONE, a picture of a simple scene. (Guzman, 1968, 
reprinted with permission.) . 

Regions: 

Vertices: 

(123456) 
A list (not necessarily ordered) of the regions 

composing scene ONE 

(ABC DE F G HI J K) 
Unordered list of vertices contained in scene 

ONE 

Background: (6) 
Unordered list of regions composing the back­

ground of scene ONE 

In addition, SEE is given information about each of the regions and 

vertices named in this description. For regions, this information de­

scribes the regions that are neighbors to each region; the kvertices of 

each region; and the POOP property of the region. For region 2 in pic­

ture ONE, this information is as follows: 

NEIGHBORS: (3 4 6 1 6) 
Counterclockwise ordered list of all regions 

that neighbor region 2 
KVERTICES: (DE A C K) 

Counterclockwise ordered list of all vertices 
that belong to region 2 
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FOOP: (3D 4 E 6 A 1 C 6 K) 
Counterclockwise ordered list of alternating 

neighbors and kvertices of region 2 

Each of these properties of a given region could be determined rather 
simply by a program that would scan along the lines in a good line 
drawing. 

For each vertex in a picture, SEE is given information that describes 
the x and y coordinates, or position of the vertex; the other vertices to 
which it is connected; the re-gions to which it belongs; and the type of 
the vertex (Fig. 5-11). Thus, for vertex H in picture ONE, SEE is given 

POSITION: XCOR 3.0, YCOR 15.0 
x-coordinate and y-coordinate of H 

NVERTICES: (I G D) 
Counterclockwise ordered list of vertices to 

which H is connected 
NREGIONS: (3 54) 

Counterclockwise ordered list of regions to 
which H belongs 

TYPE: FORI( 
Type name of. the vertex (see Fig. 5-11) 

The type name of a vertex is the name of one of eight possible 
classes to which it may belong, depending on the number of lines and 
the size of the angles that form the vertex (see Fig. 5-11). These 
classes are exhaustive and mutually exclusive in that any vertex must 
belong to one and only one of them. In addition, for each vertex SEE 
is given a counterclockwise-ordered list of alternating regions and 
vertices to which it belongs or is connected, and SEE is given other 
information about the size of the angles belonging to the vertex, etc. 
Again, all this information could be determined by a program that 
would scan along the lines in a good line drawing, such as that for 
scene ONE. 

Given this information, SEE proceeds in a heuristic manner to find 
evidence (Fig. 5-12) that regions in the picture should be grouped 
together and considered as surfaces of a three-dimensional object. 
Initially, SEE considers each region in the picture to be within an indi­
vidual nucleus; no two regions share the same initial nucleus. However, 
if SEE decides that two regions in separate nuclei should be grouped to­
gether (considered part of the same object), it will merge their nuclei, 
placing all regions in both nuclei within the same, new nucleus. Thus, 
SEE will eventually build up nuclei containiftg many regions, depending 
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Figure 5-11. Types of vertices. (Winston, 1970, reprinted with per­
mission.) 
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Figure 5-12. Evidence from vertices. (Guzman, 1968, reprinted with 
permission.) 

on the way it is guided by the evidence in the picture. When it cannot 
find any more evidence or merge any more nuclei, it will stop and 
report each nucleus as a separate object in the scene, consisting of the 
appropriate regions. 

SEE distinguishes between two types of evidence, known as strong 
and weak, and is capable of hunting for a variety of different clues that 
indicate that two regions in a picture should be grouped together. Once 
it has found such a clue, it decides whether the clue is strong or weak 
evidence, and it notes that the clue was found by placing either a strong 
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or weak link between the two regions and the nuclei to which they 
belong.6 Its decision to merge two nuclei is based solely on the number 
of strong and weak links between them, not on the clues that caused 
those links to be formed. 

Some of the clqes that SEE uses are listed below (see Fig. 5-12). 

Fork. If three regions meet at a vertex of the FORK type, and 
none is in the background, strong links between them will be formed 
(with some exceptions: see Guzman, 1968~,b). 

Arrow. If three nonbackground regions meet at a vertex of the 
ARROW type, a strong link will be formed between the two regions 
that have the small (less than 180°) angles of the vertex. 

X. If four nonbackground regions meet at a vertex of the X type, 
and if the vertex is not formed by the intersection of two straight lines, 
then two strong links are established, as in Fig. 5-12. 

Peak. If several nonbackground regions meet at a vertex of the 
PEAK type, all regions except the one containing the obtuse angle 
(greater than 180°) are given strong links to each other. 
· T's. SEE attempts to find vertices of type T that match each other. 

Two vertices of type T match each other if their central segments are 
colinear and if they are "facing each other." SEE establishes strong 
links between regions of matching T's, as in Fig. 5-;12, providing these 
links do not cause a background region to be linked to a nonback-
ground region. -

Leg. An ARROW type vertex is a LEG if one of its small angles leads 
(if necessary, through a chain of matched T's) to an angle which has 
one side parallel to the central segment of the arrow. A weak link is 
formed between the two non-background regions of a LEG type vertex 
that have the small angles of the vertex. 

In addition to these rules, SEE makes use of other clues in its 
search for strong and weak evidence. For a complete description, the 
reader is encouraged to see Guzman (1968a,b). However, it should be 
noted that vertices of types L, K, and MULTI are not used by SEE to 
establish links. 

When SEE has . established as many strong and weak links· as pos-

6 The operations of forming, merging, and linking nuclei are all conducted 
by SEE on a data structure separate from that for the original picture. In es­
sence, SEE builds up a new description of the picture, using nuclei and links, 
and modifies this description by reference back to the original picture and de­
scription of its regions and vertices. 
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sible between the regions in a picture, it makes use of three rules for the 
merging of the nuclei that contain the regions: 

1. If two nuclei are connected by two or more strong links, 
they are merged Into a single nucleus. 

2. If the first rule cannot be applied to any of the nuclei, then 
if two nuclei are connected by a strong link and a weak link, 
they are merged; having made this merge, go back to the 
first rule and see if it can be applied. 

3. If neither the first nor second nile can be applied, and there 
is a nucleus containing a single region that is joined by a 
strong link to another nucleus (and has no other links leaving 
it), then the two nuclei are merged. 

These heuristic rules are sufficient to enable SEE to identify objects 
in many rather complex scenes, even when SEE's "view" of an object 
may be partially occluded by other objects. In general, when SEE makes 
mistakes, it errs conservatively by not grouping together regions that 
humans would think plausibly belong to the same object. Thus, for the 
scene in Fig. 5-13, SEE groups all the regions together in the same 
plausible manner that humans would, except for regions 41 and 42; it 
leaves these regions in their initial nuclei and reports them as belonging 
to separate objects. 

It should be pointed out that, given a single picture of a scene, it 
is impossible to prove that any of the regions in the picture actually 
belong to the same object. Each region in the scene could be. the base of 
a pyramid such that all other faces of that pyramid are hidden from 
view; thus, no two visible regions would belong to the same object. In 
effect, any program that identifies objects from a single picture of a 
scene must be based on notions of plausibility for real-world environ­
ments; i.e., it must be a heuristic program. 

Guzman discussed a number of extensions that could be made to 
his program, and the reader is encouraged to investigate his work fur­
ther. Recently, Huffman (1971), Clowes (1971), and Waltz (1972) 
have written programs for object recognition which are similar to Guz­
man's but have a more algorithmiC design. Like SEE, these programs 
rely on local information about the vertices in a line drawing. Huffman's 
work also discusses the recognition of smooth, curved, nonpolyhedral 
objects, and the recognition of "impossible" objects. Waltz devotes 
special attention to the recognition of shadows and the detection of 
missing lines in a line drawing-this is especially important because the 
performance of these programs is highly dependent on the quality of 
the line drawings available to them. 
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Figu~e 5-1~. Grouping of regions as surfaces of three-dimensional ob­
jects. (Guzman, 1968, reprinted with permission:) 

LEARNING TO RECOGNIZE STRUCTURES 
OF SIMPLE OBJECTS 

The problem of object identification by visual perception systems 
would be intractable if all objects in the real world were to be identified 
visually using only such features as their texture, color, abstract shape, 
and the angles formed by their edges. Many objects in the real world 
are composed of other, simpler objects, somewhat independently of 
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how these features are possessed by the simpler objects. Thus, we can 
recognize a railroad train regardless of whether its cars are boxcars, 
flatcars, or passenger cars with rounded corners and edges, and regard­
less of what texture, color, or abstract shape the cars may be said to 
possess. Our recognition of the railroad train depends as much on the 
"structure" formed by the objects that make up the train as it does on 
the objects themselves. This section presents a brief description of a 
computer program, written by Winston ( 1970), which is capable of 
learning to recognize structures of simple objects. Although computer 
visual-perception systems have a long way to go if they are ever to 
match human visual performance, it is likely that future developments 
in pattern-recognizing systems will use Winston's work as a starting 
point. 

Winston's program is designed to use the type of description of a 
visual scene that is provided by Guzman's program (see the preceding 
section). The information in a Guzman type of description of a visual 
scene corresponds to a labeling of the regions and of the vertices formed 
by the lines in the scene, plus a labeling of "objects" in the visual scene 
which appear to be made up of the labeled regions and vertices. Win­
ston's program is capable of recognizing various types of objects and 
various relations between them, ·and of describing the visual scene as a 

Figure 5-14. Blocks and wedges. (Winston, 1970, reprinted with per­
mission.) 

----------------~·~-~-~~~-~-~-~-~··~~----~~~~~--------------------
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structure made up of certain objects and relations. The major types of 
objects and relations recognized in Winston's ( 1970) program are 
bricks, wedges, and above, supports, in-front-of, right-of, left-of, and 
marrys.6 Winston showed that his program could be modified to recog­
nize other objects and relations. When shown the scene in Fig. 5-14, 
Winston's program will recognize the objects and relations listed in 
Table 5-2. The program will generate a description of the scene that 

TABLE 5-2. Objects and Relations for Fig. 5-14 

A supported-by BC in-front-of FG 
B K 
c DE 
D E 
E 
F E 
G 
H /J 
I 
J 
K H E 

corresponds to the graphlike structure shown in Fig. 5-15. Such a 
description will be called a description graph. The greater part of Win­
ston's program is concerned with comparing description graphs of 
visual scenes to each other, and with developing general description 
graphs that can represent sets of visual scenes. To do this, Winston al­
lows his description graphs to contain nodes that may represent groups 
of objects and to contain arcs that may represent relations between 
groups of objects and objects. For example, one such relation is one­
part-is, which holds for nodes A and B if A represents a group of 
objects and B represents an object "in" A. Furthermore, Winston allows 
relations themselves to be described by description graphs in which 
nodes may represent relations, and arcs may represent relations be­
tween relations (illustrated below). Winston's use of description graphs 
is sufficiently general that not only objects and structures of objects 
(i.e., scenes), but also relations, sets of scenes, relations between scenes, 
comparisons of scenes, relations between description graphs, and com­
parisons of description graphs may all be described by description graphs. 

As an example, we may define an arch to be a group of objects 
(A, B, and C) such that B and C are each "a-kind-of" brick and A is 
"a-kind-of" object; B and C are "standing" and A is "lying"; A "must­
be-supported-by" B and A "must-be-supported-by" C; B and C "must-

6 These objects and relations all have approximately the meanings that hu­
mans normally give them, except for marrys. Two objects are said to "marry" 
each other if the objects have faces that touch each other and have at least one 
common edge. 
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"i-f" ,;; '~in~front·Of" 
."s·b" = "supported~by" 

Figure 5~15. A description graph of Figure 5-14. See Table 5-2. 

not-abut" (i.e., have faces that touch each other). Figure 5-16 shows 
some simple examples of groups of objects, some of which are arches 
and some of which are not. Figure 5-17 shows part of a description 
graph for the set <>£ scenes that should be recognized as "arches," ac­
cordingt6 the.defuiition. Note that this description graph iridudes nodes 
that represent relations (must-be-supported-by, supported-by, etc.) and 
arcs that represent relations between relations (modification-of, must­
be-satellite, etc.). Winston's computer program can Use this description 
graph to identify correctly those groups of objects shown in Fig. 5-17 
which are arches and those groups of objects shown in Fig. 5-17 which 
are not arches. Moreover, Winston's program can use this description 
graph to recognize that the entire group of objects shown in Fig. 5-18 
is "a-kitjd-of:' arch. tn fact, the computer program will find artd identify 
five groupS (?f objects In Fig. 5-18 that are each "a-Ki11d-Of" arch. 

~atis,m?~~:ilrit)ressive about Winstoh's program is the fact. that 
it is a "learning"' prbgram. By this we mean that Winston's program is 
capable of, tltiveloplng its own· description graph for a set of scenes that 
it is told are examples of some pattern. Thus, the program is capable 
of developing the description graph for "arch'' shown in Pig. 5-17, if 
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Arch 
Nonarch 

Arch 

Nonarch 

Figure 5-16. Arches and nonarches. 

it is shown only the groups of objects (scenes) in Fig. 5-16, and if it 
is told whether each group of objects in Fig. 5-16 is or is not an arch. 
It can then use this description graph to identify other, previously un­
presented groups of objects (such as that in Fig. 5-18) as being arches, 
without being told that they are arches. Thus, we can reasonably say 
that the program "learns" to recognize the pattern "arch." Similarly, 
the program can learn to recognize "columns," "houses," "pedestals," 
"tents," "tables," and "arcades" (Fig. 5-19). 

Although Winston's program is a "learning" program, it does re­
quire a "teacher" to tell it what patterns to recognize (e.g., "arch" and 
"house") and to give it pattern examples (scenes) for each pattern. 
Winston's thesis had a great deal to say about the subject of "teaching." 
In particular, he emphasized the value of presenting to the computer 
scenes that are "near misses." A near-miss is a scene that is not an 
example of the pattern being taught because it fails to satisfy only one 
condition of the pattern rule for the pattern. Each of the nonarches in 
Fig. 5-16 is a near-miss to the pattern "arch." 

Because comparisons of description graphs are themselves repre-

I~ 
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Figure 5-17. A description graph for the set of arches. (Winston, 1970, 
reprinted with permission.) 

Figure 5-18. "A kind of" arch. (Winston, 1970, reprinted with permis­
sion.) 

.................................... .... 
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B 

A 

ONE 
c 

THREE 

TWO 

FOUR FIVE 

Figure 5-20. A simple analogy problem: Find X such that A:B:: C:X. 
(Winston, 1970, reprinted with permission.) 
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sented as description graphs, Winston's program can be used to solve 
three-dimensional analogy problems similar to those solved by Evans' 
ANALOGY program (see Exercise 5-4). Thus, if presented with 
scenes that are labeled as in Fig. 5-20, and if asked to :find a value for 
X such that. "A· is to B as C is to X" will be true, Winston's program 
will choose "X.::::: FOUR." 

Winston presented . a number of suggestions for ful"iher work on 
pattern perception systems. One of the most desirable ·extensions he 
suggested is the design of programs that can learn to recognize patterns 
with pattern rules that are partly "functional." A pattern is said to have 
a functional pattern rule if its pattern examples are .each required to be 
capable ()f "perlonning a function." Thus, the pattern "table ... has a 
functional pattern rule if we require that each of its pattern examples 
be capable oLsupporting ·a plate with food, and silver\vare, glasses, etc. 
The subject of functional pattern rules is still an open problem of AI 

research. 
The use of graphlike structures as descriptions for pattern examples 

and rules has been considered by other researc;hers, including Shaw 
(1968), Clark and Miller (1966), Pratt and .Friedman (1971), and 
Barrow, Ambler, and Burstall ( 1972). This approach )'s .related to 
attempts (viz., Miller and Shaw, 1968; Banerji; ;)968; Narasimhan, 
1964; Tachibana, 1972) to develop linguistic met,hoA~ for visual pattern 
perception. The discussion of this subject is resumed i~ Chapte~ 7. 

SOME PROBLEMS FOR PATTERN 
PERC.f;PTION SYSTt:MS . . 

Atthe moment, computers are effectively blind. Pattern (especially 
visual pa:ttern) perception is one of two7 major ,areas of investigation 
for which AI research has not yet been able to give computers a "level 
of competence" approaching that of people. This is true despite the 
impressive results of Guzman, Winston, and others. Also, visual pattern 
perception is a major bottleneck to the development of .many useful 
mechanical intelligences: It is a necessity, for example, for machines 
that would. work intel1igently in a· factory· or co'\Ild:navigate independ­
ently on another planet, This Section. summarizes ~on1e of the.' current, 
majqr.,,problems confronting AI research on ·pattern perceptipri systems. 

c{'.-, 

• 
7 The q!ger .area is "semantic information proces~lrig." Mal1X.~!'Cms 

m the~. areas. appear to be ;~tro!l.gly related.·,.,. , , , :>· . · • ~· :: ·· "'' ·· 
< ' ' •• • ' •," ., 
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First and foremost, it is desirable to put together the hierarchy we 
have described. Both Guzman's and Winston's programs require perfect 

line drawings, which currently are supplied by people. There does not 

yet exist a line detection program that can consistently supply good 

line drawings of real-world scenes, because the ability to find a line 

often requires global information that local information about the 
picture should be ignored or given special attention. Thus, either pro­
gram should be able to cause the eye system or the line finder to search 

particular areas of the scene, change focusing or threshhold settings for 
those areas, and perform other functions. Either program should be 
able to check new lines that are produced in this manner, and use those 

lines that will make their own tasks of object and structure perception 
easier. 

Besides integrating the hierarchy, a number of extensions can be 

easily suggested. Programs should be able to detect and make use of 
curved lines, color, and texture. Programs should be able to recognize 

structures that are pattern examples of patterns with functional pattern 

rules. Programs should be able to generate descriptions of motion oc­
curring in scenes and (ultimately) make real-time use of such descrip­
tions. Programs should be capable of detecting optical illusions, and 

compensating for them. Programs should be able to accept, and describe 
in visual terms, information provided by other perceptual systems (e.g., 
auditory or tactile information). 

Although current work is being done on these matters (viz., Bajcsy, 
1972; Shirai, 1972) it is likely that computers will not approach human 

visual competence for some time, depending upon the rate at which the 

processes of visual perception can be understood, implemented and 

tested in high-level programming languages (such as LISP, PLANNER, 

coNNIVER, and QA4) and, ultimately, implemented in hardware. Even 

so, substantial progress has been made in the study of pattern percep­
tion, if only because the statement of these goals is more meaningful 
now than it would have been ten years ago. 

NOTES 

5-l. At the root of most pattern perception models is the "Pandemonium" 

paradigm devised by Selfridge (1958). The Pandemonium machine is com­

posed of decision makers, or demons (physicists may recall Maxwell's 

demon, an imaginary being capable of acting intelligently on a microscopic 

level and thus controverting the law of entropy) arranged in a latticelike 

structure such as shown here. At the bottom of this lattice is the real world. 

-- ·"'· >-
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Each of the demons immediately above the real world scans it and makes a 
decision concerning the existence of some feature (i.e., the extent to which 
the real world satisfies the pattern rule for a pattern); the demons at higher 
levels scan their predecessors and make decisions concerning them. The top­
most demon: makes the final decision as to whether a pattern example is 
present. (Essentially this much had been extensively developed by von Neu~ 
mann, 1951, in a general model for experiments or observations on physical 
systems, especially quantum mechanical ones.) In addition, Selfridge sug­
gested the use of feedback to alter the nature of the lattice, and proposed an 
evolutionary scheme for "demon selection." (See Chapter 8.) In their de­
scription of hierarchical synthesis, Barrow, Ambler, and Burstall (1972) 
provide an elegant and efficient extension of this idea. 

EXERCISES 

5-l. Design a computer program that, given the line drawing of the Maze of 
Dedalus (Exercise 3-1), can find a path out. 

5-2. What subproblems might a computer need to solve in order to put together 
jigsaw puzzles? 

--------·"---~......---..--..----~-----·-.._---~--
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5-3. Write a paper ,discussing the interrelationships between the problems of 

pattern recognition1. pattern matching, pattern classification, and pattern descrip· 

tion. ' 

5-4. What 'subprobl~ms are involved in solving the following analogy problem? 

Find X such that A:B; :C:X. 

A c 

§ [Q] 
1 2 3 4 5 

COJ[Q]mGE9 
(Evans, 1963, reprinted with permission.) 

5-5. Investigate ways of describing and generating potentially infinite structures 

such as these: 

a 

c 
(Watanabe, 1971, reprinted with permission.) 

5-6. Desctibe how a computer might be programmed' to recognize human faces. 

5-7. What.~~ the visual subproblems t~ be solved by a. computer program for 

tying ahd untying knots? 
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THEOREM PROVING 

INTRODUCTION 

The ability to prove theorems in mathematics is a good example 
of an intellectual faculty and one that is relevant to the construction of 
reasoning programs. This chapter is an introduction to the study of 
computer programs that are capable of finding proofs for theorems 
within mathematical theories. Such programs are called theorem prov­
ers. The first part of this chapter introduces the reader to the predicate 
calculus, which is essentially a mathematical framework for the state­
ment of mathematical theories. Later sections discuss the binary reso­
lution procedure, a relatively simple procedure that has been the basis 
for many theorem provers. Alternate means of theorem proving are also 
discussed. This chapter concludes by showing how theorem provers can 
be used as problem solvers for problems stated in the state-space para­
digm, how they can be used to construct other computer programs ·and 
prove the correctness of them, and how analogies can be used to im­
prove the effectiveness of theorem provers. The use of theorem provers 
is one way to solve the "inference problem" in language-understanding 
programs. 

FIRST -ORDER PREDICATE CALCULUS 
The invention of predicate calculus was one of the major advances 

in the nineteenth-century development of mathematics. Although Chap­
ter 2 stressed the fact that any mathematical description is essentially a 

215 
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finite description, this does not imply that all mathematical theories can 

be described within the same finite framework, that thete is a mathe­

matical theory of mathematical theories, or meta-mathematics. 

Predicate calculus is part of the notation for current attempts to 

develop a theory of metamathematics (note 6-1). Predicate calculus is 

a language for the expression of mathematical theories. When a mathe­

matical theory is expressed in this language, it becomes a set of state­

ments (or sentences, or formulas), each of which says something about 

the thing described by the theory.1 Predicate calculus provides a set of 

inference rules (for deriving new statements from the ones that are 

given) and a set of symbols (to be used in making statements) that 

seem to be adequate for most mathematical theories. Thus, to insure 

generality, almost all AI work on theorem provers has been concerned 

with developing machines that handle sets of statements in predicate 

calculus (note 6-2). 
In fact, almost all work in the subject of theorem proving has con­

cerned itself with theorems stated in first-order predicate calculus, which 

is discussed in this section. Ultimately, it is desirable to extend theorem­

proving methods to higher-order logics, because they are more natural 

for the statement of most mathematical theories. (The difference be­

tween first- and higher-order logics is defined below.) Work in this 

direction has been undertaken (e.g., Robinson, 1969; Hewitt, 1968 et 

seq.; Pietrzykowski and Jensen, 1972). The first-order predicate calcu­

lus is general enough, though, so that if Church's thesis is correct, then 

all mathematical theories can be expressed using it. In principle, the AI 

research that has been done in .first-order predicate calculus is no less 

general than any work thl}t may be done in higher-order predicate 

calculus. However, it is stressed again that, in practice, first-order predi­

cate calculus is not adequate for the statement of mathematical theories 

about most real-world environments and problems. The first-order 

expressions of such theories would be extremely long, complicated, and 

inefficient (if they were at all obtainable), just as it would be extremely 

complicated and inefficient to try to describe a real-world, problem­

solving procedure (e.g., SIN, DENDRAL) as a Turing machine. The AI 

research on first-order predicate calculus has been valuable as a rela­

tively simple demonstration that computers can be made to "reason" 

in a general way about logical problems. (This discussion is continued 

in the section of this chapter entitled "Applications to Real-World 

Problems.") 

1 Some mathematical theories are not descriptions of ''real" things. For exam­

ple, group theory is a description of a class of mathematical theories that are 

often used to describe many different things . 

................. -'., ..;,..:_...., ........... ,- .... 
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Briefly, then, predicate calculus provides a framework for making 
and deriving statements that belong to mathematical theories. Our con­
ception is that statements express "logical thoughts" about things, that 
statements should be made up of symbols, and that it should sometimes 
be possible to prove or disprove the truth of a statement with respect 
to a set of statements that are known to be true. 

The symbols of first-order predicate calculus are: 
1. The variables x, y, z, ... , which will be called individual 

symbols. A variable is a symbol that may represent any ob­
ject about which we can make a logical statement. The set 
of things that a variable may represent in a mathematical 
theory is known as the universe, or domain of discourse, of 
that theory. 

2. For each n ::::,. 0, the n-ary function symbols f, g, h, ... , and 
the n-ary predicate symbols P,Q,R, .... For any given n, the 
number of such symbols may be zero or nonzero, finite or 
infinite.2 

3. The logic symbols V, 3:, I, /\, V which stand for "for all," 
"there exists," "not," "and," and "or," respectively.3 

4. The punctuation symbols"," and"(", and")". 
To define statements, or formulas, we must also define terms and 

atomic formulas. We define terms as follows: 
A variable is a term. 
If T is a sequence of n terms (n greater than or equal to 0) 

and f is an n~ary function symbol, then fT is a term. 
No other expressions are terms. 

We define atomic formulas as follows: 

If Tis a sequence of n terms (n::::,. 0) and Pis n-ary predicate 
symbol, then PT is an atomic formula. 

No other expressions are atomic formulas. 
Finally, we. define formulas as follows: 

An atomic formula is a formula. 
If U is a formula, then so is IU. 

2 A complete formalization of first-order predicate calculus provides an in­
finite number of·variable, function, and predicate symbols. These are generally 
written x,, /j, p'k, respectively, with the subscripts i,j,k being allowed to take 
numerical values. However, the examples we present require only a few symbols. 

3 We actually provide a formalization only for first-order predicate calculus 
without equality; predicate calculus with equality contains an extra logic sym­
bol "=" which stands for "equals.". Theorem provers that work in theories with 
equality have encountered difficulties; for a discussion, see Robinson (1970). 
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If u h ... 'u n are formulas, then 1\ ( u h ... 'u n) is a formula. 
If Uh ... ,Un are formulas, then V ( Uh ... ,U,.) is a formula. 
If U is a formula, then, for any variable x, VxU is a formula. 
If U is a formula, then, for any variable x, 3xU is a formula. 

These definitions make possible some strings of symbols as state­
ments in the first-order predicate calculus and rule out others. Thus, 

3x(Vy( 1\ (P(x,y),Q(z)))) 

is a formula, but 

)xQR(3flyz 

is not. 
The first-order predicate calculus expression of a mathematical 

theory consists of a set S of sentences, each of which is a formula ac­
cording to the rules given above. Such a set S is called a system. It is 
possible for a system to correspond to many different mathematical 
theories: A system can be taken as a description for many different 
things, depending on how one "interprets" its formulas. 

For example, in predicate calculus the most basic sort of statement 
one can make is an atomic formula: R(x), P(x,y,z), and G(f(x,y) are 
all examples of atomic formulas. Each of these could "mean" anything, 
depending on how one interprets the symbols involved. Thus, a con­
venient interpretation of P(x,y,z) might be "the number x plus the 
number y is the number z"; or, P(x,y,z) might mean "x and y are the 
parents of z." An interpretation of a set of atomic formulas is given 
when we specify interpretations for the variable, function, and predicate 
symbols used in that set of formulas. 

An interpretation for a set of variable-symbols is given by specify­
ing the universe of discourse; that is, the set of values they can assume. 
The universe of discourse for a set of variable symbols is denoted by the 
letter D. For example, D might be the set of numbers { -1,0,+1}. If 
D denotes a set, then D" denotes the set of all n-tuples of D. Thus, 

{(-,0,+1)}2 = {(-1,-1),(-1,0),(0,-1),(-1,+1), 
( + 1,-1 ),(0,0),(0,+1 ),( + 1,0),( + 1,+ 1)} 

(If D contains m elements, then D" contains mn elements.) An inter­
pretation of an n-ary predicate symbol P associates each element of D" 
with exactly one elt!ment of the set {true, false}. Thus, if an interpreta­
tion of P gives ( -1,0) the truth-value "false," we say "P( -1,0) is 
false." An interpretation of an n-ary function f associates each element 
of D" with exactly one element of D. Thus, if an interpretation of f 
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gives to ( + 1,+ 1) the value + 1, we say "f( + 1,+ 1) is + 1." For n = 0 
we define Dn to be the set containing (), the zero-tuple. By our defini­
tion, the interpretation of a zero-ary function must be a constant; 
rather than write expressions like "f( ) ," we can usually denote con­
stants by the letters a,b,c.4 

From our definition of a formula it is clear that there are many 
types of formulas more complicated than atomic formulas, and that 
these sentences can be constructed using the logical symbols; that is, the 
operators !, V ,/\, and the quantifiers 3:,V. Explaining the meaning of 
such a formula is rather straightforward: The operator I produces the 
negation of the ,statement it is applied to: thus, if P( -1,0) is false, then 
!P( -1,0) is true, and vice versa. If the operator V is applied to a 
sequence of statements, it produces their disjunction; that is, it produces 
the statement that is true if and only if at least one of the statements in 
the sequence is true. Applying the operator 1\ to a sequence of state­
ments produces their conjunction, that statement which is true if and 
only if all the statements in the sequence are true. Thus, if P( -1,0) is 
false, P(1,1) is true, and P(0,-1) is true, then 

V(P(-1,0),P(1,1)) is true. 
/\(P(-1,0),P(l,l)) is false. 
V(P(1,1),P(0,-1)) is true. 
1\ (P(l,l),P(0,-1)) is true. 
V (P( -l,O),P( 1,1 ),P(0,-1)) is true. 
/\(P(-1,0),P(1,1),P(0,-1)) is false. 

It is common to introduce a fourth logic symbol "-7", to be read "im­
plies," and to rewrite any formula of the form V (lU, V) in the form 
U-7V. Of course such a formula may be true or false, regardless of the 
form in which one writes it. The truth or falsity of U-7 V depends only 
on the truth or falsity of U and V. Thus, according to o,ur example, 

P(l,l)-7P(0,-1) is true. 
P(l,l)-7P(-1,0) is false. 
P(-1,0)-7P(l,l) is true. 

In fact, if U is false, then U-7 V is true, regardless of the value of V. 
If the existential operator 3: is used to quantify a variable in a 

formula, it produces the statement that there is some value of the 
variable in the universe of discourse for which the formula is true. Thus 
3:xP ( -1 ,x) means "there is a value of x such that P ( -1 ,x) is true." 

4 Similarly, a zero-ary predicate is the same thing as a proposition. Proposi­
tional (zero-order) predicate calculus is not considered in this book. See Suppes 
(1957) for a good introduction. 
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When the universal operator V is applied to a variable in a formula, 

it produces the statement that "for all values of the variable in the 

universe of discourse the formula is true." VxP( -1,x) would mean "for 

all values of x, P( -1,x) is true." To. find the truth value of a very 

complex formula, with many logical operators and quantifiers, we start 

with its simplest components and work outward. For example, suppose 

.lxP ( -1 ,x) is true, V xP ( - 1 ,x) is false, and P (1, 1) is true: then 

1\ ( V ( .lxP( -1,x), VxP( -1,x) ), P(1,1)) 
'--,r---> '---v--' '-y---' 

true false true 

true 

true 

is true, as the preceding diagram of its evaluation shows. Variables that 

are quantified in a formula are said to be bound, while those which are 

not quantified are said to be free. First-order predicate calculus does 

not permit predicate or function symbols to be quantified or to be used 

within predicate arguments in formulas; both of these things are natural 

for human mathematicians and may happen in higher-order predicate 

calculus. Henceforth, the expression "predicate calculus" will be used 

to refer only to first-order predicate calculus, unless otherwise specified. 

However, the remarks in the remainder of this section are valid for 

predicate calculus in general. 
The interpretation of logic symbols is standard throughout predi­

cate calculus, so the interpretation of the formulas of a system really 

depends only on the interpretation of the atomic formulas of that 

system. If the domain of discourse of the variable symbols in a system 

has been specified, and interpretations for all functions and predicates 

involved in the system have been given, then we have an interpretation 

for the system itself. If each formula in a system turns out to have the 

value "true" with respect to an interpretation, then the interpretation 

is said to be a model for the system. A system may have zero, one, or 

many models. In the first case it is said to be unsatisfiable; in the other 

cases it is said to be satisfiable. 
So far nothing has been said about rules of inference, that is, ways 

of deriving one formula from other formulas. SupposeS is a system (set 

of formulas) and U is a formula. Then we say that S logically implies U 

if and only if U has the value "true" with respect to every model for S. 

Trivially, every formula inS is logically implied by S. A rule of inference 

is a procedure that, given a set S of formulas, may produce only 

formulas that are logically implied by S. Different formalizations of 

predicate calculus make use of different inference rules. Five of these 

are: 

........... _,..,..___. .......... --



Theorem proving 221 

EXPANSION RULE. If U and V are formulas and U is logically 
implied by S, then V ( U, V) is logically implied by S. 
CONTRACTION RULE. If V ( U,U) is logically implied by S, then 
U is logically implied by S. 
ASSOCIATIVE RULE. If V ( U, V (V,W)) is logically implied by S, 
then V(V(U,V),W) and V(U,V,W) are logically implied by 
S, and vice versa. 
Cl!T RULE. If V ( U, V) and u~ W are logically implied by S, 
then V (V,W) is logically implied by S. 
:>I-INTRODUCTION RULE. If X is not free in V and U~V is 
logically implied by S, then 3: x ( u~ V) is logically implied by S. 

The next section presents a special inference rule, the resolution 
procedure, which can be used in place of all of the preceding five rules. 
If a logical implication of S can be derived using them, then it can be 
derived using the resolution principle. 

In general, any formula that is logically implied by a system S is 
referred to as being a theorem of S. Many systems will contain and 
logically imply an infinite number of formulas, and will be called 
infinite systems. An attempt can be made to describe an infinite system 
S by presenting some finite set Sa of formulas and comparing the set 
Imp(Sa), of all formulas that are logically implied by Sa, with the set 
Imp(S). If Imp(Sa) = Imp(S), then we say Sa is an axiomatization for· 
S, and we call the formulas in Sa axioms for S. Those formulas that are 
theorems of Sa, but not axioms of Sa, are called consequences of S, with 
respect to the axiomatization of Sa. 

Two things remain to be pointed out: First, using a given inference 
rule (or set of inference rules) will not necessarily enable one to 
produce all the theorems of a given system S. An inference rule is an 
"if ... then ... " statement that enables one to establish the logical 
implication of some formulas, given the logical implication of other 
formulas. Given an initial set Sa, one can establish formulas not in Sa 
as being logically implied by Sa. Given these formulas plus Sa, one can 
establish more formulas as being logically implied by Sa, etc. However, 
one cannot,necessarily establish every formula that is logically implied 
by Sa, using a given inference rule. In fact, for some systems,' one can 
show that there is no set of inference rules that will enable one to 
establish in a finite number of steps each formula that is logically im­
plied by the system. Such a system is said to be undecidable.5 Artificial 

5 For example, number theory is undecidable. The proof of the existence of 
undecidable systems is Godel's famous result (Godel, 1931). The existence of 
undecidable systems is equivalent to the unsolvability of the Halting Problem 
(see the section entitled "Limits to Computational Ability" in Chapter 2). 
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intelligence research cannot produce a consistent theorem prover (a set 

of inference rules) that is capable of proving (establishing the logical 

implication of) every theorem of an undecidable system. 

Second, if a formula is not logically implied by a given system, 

it may still be true for some models of the system. Formulas that are 

true for some models of a system and false for others are said to be 

contingent (Kleene, 1967, p. 29). 

THEOREM-PROVING TECHNIQUES 

Resolution 

Groundwork 

If U is a formula and S is a set of formulas, and S logically im­

plies U, then U has the value "true" with respect to every model for S. 

Thus, IU has the value "false" with respect to every model for S. Let 

us consider the set S', which contains all the formulas in S and also 

contains the formula IU. Does S' have a model? 

The answer is no, for the following reason: If an interpretation is 

a model for S', then every formula in S' must have the value "true" 

with respect to that interpretation. Thus, the interpretation must be a 

model for any subset of S' (for any collection of formulas that belong 

to S'). In particular, the interpretation must be a model for S. How­

ever, the formula IU must have the value "false" with respect to any 

model for S. Thus, the formula IU must have the value "false" with 

respect to any model for S'. However, IU is one of the formulas that 

belongs to S', and so by definition it must have the value "true" with 

respect to any model for S'. If S' had a model, IU would therefore have 

both the value "true" and the value "false." In predicate calculus an 

interpretation can specify at most one value for any given formula. 

Consequently, S' does not have a model. Thus, by definition, S' is said 

to be unsatisfiable. 
Similarly, we can show that if S' is unsatisfiable, and yet S is 

satisfiable, then S logically implies U. Thus, if we want to show that a 

satisfiable set of formulas S logically implies a formula U, it is sufficient 

to show that the S' set ( =SU flU} ) is unsatisfiable. 

This is a technique that is often used by the theorem provers 

developed in AI research. The theorem prover is given a set Sa of 

formulas, which is called its data base. It is also given a formula U, 

called the conjecture. The problem for the theorem prover is to prove 

-- -- .............. ............, ..... •"' ... .. 
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that U follows from Sa; that is, that U is logically implied by Sa. The 
procedure followed by the theorem prover is to construct the formula 
IU, called the negated conjecture, and to attempt to show that the set 
S' a, which contains the formulas in S, and the negated conjecture, is 
unsatisfiable. One way in which many theorem provers attempt to show 
the unsatisfiability of a set of formulas is through the use of the 
resolution procedure. This procedure was originally developed by J. A. 
Robinson (1965 et seq.). Extensions and other theorem-proving tech­
niques have been developed by Wos, P. B. Andrews, G. A. Robinson, 
Slagle, Sibert, Luckham, Nilsson, Prawitz, Loveland, Hayes, Kowalski, 
Meltzer, Darlington, Guard, Gilmore, Gelernter, Reiter, Pietrzykowski, 
Coles, Green, Kling, Hewitt, and others (see the Bibliography). Some of 
the early work which led to the development of these techniques was 
done by Davis, Quine, Dreben, Newell et al., and Wang. This section 
describes tl>e steps involved in the application of the binary resolution 
principle. A more detailed presentation is given in Nilsson (1971). 

Clause-Form Equivalents 
The first step in the application of the resolution principle to a set 

of formulas S' a is to replace each formula in S' a by an expression known 
as its clause-form equivalent. Every formula in first-order predicate 
calculus has a clause-form equivalent, which may be obtained by ap­
plying the following sequence of operations: First, eliminate implication 
signs. Wherever an expression of the form A~B occu:t;s in a formula, 
we replace it by V ('A,B). For example, if we are finding the clause­
form equivalent of the formula 

VxVy ((A (x)~ 'C(x,y) )~ l\fx3:zf\ (P(x,z), R(z)) 

then this first step produces the formula 

(VxVy) V (lV (IA(x), ,C(x,y)), ,Vx3:zf\ (P(x,z), R(z))) 

Our next step is to reduce the scope of all negation signs, making each 
negation sign apply to at most one predicate, using these substitutions: 

Replace IV (A, ... ,B) by 1\ (lA, ... ,IB) 
Replace If\ (A, ... ,B) by V (A, ... ,IB) 
Replace TlA by A 
Replace I(VxA) by 3:x( lA) 
Replace I( 3:xA) by Vx(IA) 

The application of this step to our example yields 
VxVyV ( 1\ (A (x) ,C(x,y)) ,3:xVzV (IP(x,i) ,IR(z))) 
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Our third step is to standardize variables; that is, rename the variables 

in our formula so that each quantifier binds a unique variable symbol. 

Within the scope of a given quantifier the variable that is bound by that 

quantifier is really a dummy variable, and it doesn't matter what letter 

we use to represent it. If we standardize the variables in our example, 

we obtain 

VxVyV ( 1\ (A (x),C(x,y) ),3:uVzV (lP(u,z),"~R(z))) 

Next, we eliminate 'the existential quantifiers from our formula. To see 

how this may be done, consider the expression 

VxVy3:zP(x,y,z) 

IUs clear that the value of z which will satisfy P(x,y,z) may depend on 

the values of x and y. We can indicate this possible dependence by an 

undefined function, known as a Skolem function, and writing our ex­

pression 

VxVyP(x,y, f(x,y)) 

We may interpret the Skolem function f(x,y) as specifying for any 

given values of x and y a value for z that "exists" and is such that 

P(x,y,z). In general, we obtain the Skolem transform of a formula by 

replacing each existentially quantified variable by a Skolem function of 

those universally quantified variables that are bound by universal 

quantifiers whose scopes include the existential quantifier being elimi­

nated. The function letter used to replace a given existentially quantified 

variable must be different from those function letters (for either ordinary 

or Skolem functions) that already occur in the formula. Eliminating 

existential quantifiers, our original example now becomes 

VxVyV ( 1\ (A(x), C(x,y) ), xV ('P(g(x,y),z), IR(z))) 

where g(x,y) is the Skolem function introduced. Since all the variables 

that occur in the formula are unique, we may move the UQiversal 

quantifiers to the leftmost part of the formula. This action is known as 

converting the formula to prenex form. The formula now consists of a 

quantifier string (or prefix) followed by a matrix. Our example becomes 

VxVyVzV (/\ (A(x), C(x,:>:_) ), V (IP(g(x,y), z), "~R(z))) 

Our next step is to put the matrix in conjunctive normal form. Any 

matrix can be written as the conjunction ,of a finite set of disjunctions, 

atomic formulas, and negatives of atomic formulas. This may be done 

by repeated application of the rule 

Replace V (A, 1\ (B, . .. ,C)) by 1\ ( V (A,B), ... , V (A,C)) 

.............. -~ ....... \ ......... ._... ............. --.......-.o<'CC---------
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Thus, our example becomes 

VxVyVz/\ ( V (A(x), "lP(g(x,y),z), IR(z) ), V (C(x,y), IP(g 
(x,y),z), ,R(z))) 

Finally, since all the variables in our formula are now universally 
quantified, we may eliminate the universal quantifiers, .and simply write 
our example formula as 

1\ ( V (A (x), IP(g(x,y), z), IR(z) ), V (C(x,y), IP(g(x,y), 
z), IR(z))) 

These remarks indicate that we can make the following definitions: 
A literal is either an atom (atomic formula) or the negation of an atom; 
a clause is a disjunction of literals; a formula is a conjunction of clauses. 
Disjunctions and conjunctions can be identified simply by their sets of 
disjuncts and conjuncts, and we can speak of a literal L as being an 
element of a clause C. The null disjunct nil, which is the disjunction of 
the set containing no literals, always has the truth-value "false." 

Thus, a formula can be expressed as a set of clauses. The "clause­
form equivalent" of our example is 

{{A(x), IP(g(x,y), z), IR(z)}, {C(x,y), IP(g(x,y), z), 
IR(z)}} 

The clause-form equivalent of a set of formulas is the union of the sets 
of clauses representing each formula (provided the variables used in 
each formula are made distinct from those used in the other formulas). 
As a final example, a clause-form equivalent for the set of formulas 

S = {VxVyP(x)--»N(y), Vx:>Iz/\ (Q(x,z), IP(z) ), 
Vy:>IxR(x,f(y,a))} 

is the set of clauses 

{{IP(x),N(y)}, {Q(u,g(u))}, {,P(g(u))}, 
{R(h(w) ,f(w,a))}} 

(The Skolem functions are g(u) and h(w).) 
Given a set of formulas Sa and a formula U, the theorem provers 

we describe will attempt to show that Sa logically implies U by forming 
the set S'a, which contains the formulas in Sa and the negated-conjecture 
IV, and then attempting to show that S'a is unsatisfiable. The first step 
in showing the unsatisfiability of S' a is to find the clause-form equivalent 
for S'a· Having found the clause-form equivalent of S'a, the theorem 
prover will attempt to find new clauses that are logically implied by the 
clauses· in S' a· If it can show that the empty clause, nil, is logically im-
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plied by S' a, then it will have shown that S' a is unsatisfiable, since nil 
is false for any interpretation. The theorem provers discussed here use 
an inference rule known as the binary resolution principle to find clauses 
that are logically implied by other clauses. The basic process used in 
the binary resolution principle is known as the unification procedure. 

The Unification Procedure 

To describe this procedure, some terminology must be introduced. 
A substitution 0 = { (t1ov1), {t2,v2), ... , Un,Vn)} is an operation 

that, when applied to a clause C, yields another clause CO, obtained by 
replacing each occurrence in C of the variables vi by the corresponding 
terms ti (we require for any given substitution 0 th~t i ¥= j implies 
vi ¥=-vi). For example, application of the substitution 

0 = {(g(z),x),(a,y)} 

to the clause 

C = flP(x,y),Q(b,y)} 

yields the clause 

CO= flP(g(z),a),Q(b,a)} 

Although it is required in a substitution· that all the individual symbols 
vi be distinct, it is not required that all the terms ti be distinct. The 
empty substitution e = { } consists of not replacing anything so that 
for all C, Ce = C. If for two clauses C and C', there is some substitu­
tion 0 such that CO= C', then C' is said to be an instance of C. If 
C' contains no variables, then C' is said to be a ground clause and to be 
a ground instance of C. Thus, for the two clauses 

C = {R(x,y,z),S(u,f(x))} and C' = {R(c,a,b),S(c,f(c))} 

the substitution 

>.. = {(c,x),(a,y),(b,z),(c,u))} 

makes C>.. = C', so C' is a ground instance of C. We say a clause C is 
unifiable if there is a substitution 0 such that CO contains only one literal. 
Such a substitution is said to be a unifier for the clause C. Thus, the 
substitution ex= {(a,x),(b,y)} unifies the clause 

C = {P(x,f(y),b),P(x,f(b),b)} 

· , producing the clause 

Ccx = {P(a,f(b),b)} 

..... -·- ........... , .. ..........,_ ... 
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If a is .a unifier for a clause C, then the clause Ca is known as a unifica­
tion of C, and both C and the literals inC are said to be unified by a. 

A given clause may have several unifiers. Thus, the clause C con­
sidered above has, besides the unifier a, the unifier f3 = { (b,y) }, which 
produces the unification 

CfJ = {P(x,f(b),b)} 

The unifier f3 is, in a sense, "more general" than the unifier a because f3 
does not specify a substitution for the variable symbol x. The resolution 
procedure described in the next section works most successfully if we 
are able to find very general unifiers for clauses, and it is the purpose 
of the unification procedure to find the most general unifier (mgu) for 
any given clause, provided the clause can be unified. To state the 
unification procedure, we need to define the notion of a "composition" 
of substitutions. 

The composition of two substitutions a and f3 is denoted by the 
expression afJ and is that substitution obtained by applying f3 to the 
terms of a and then adding to a any (t;,v;) pairs in/3 that have variable 
symbols vi not occurring among the variables of a. Thus, if 

a= {(g(x,y),z),(f(a,w),w)} 

and 

f3 = { (a,x),(b,w),(c,z)} 

then 

afJ = {(g(a,y),z),(f(a,b),w),(a,x)} 

It can be shown that applying a and f3 successively to any clause C 
yields the same result as applying af3 to C. Thus, (Ca)fJ = CafJ. Simi­
larly, one can show that composition is associative; that is, that for 
any clause C and substitutions a, {3, andy, we have (CafJ)y = (Ca)fJy. 

A substitution ,\ that unifies a clause C is said to be most general 
if, given any other unifier () of C, one can always find a substitution y 
such that .\y = 0; that is, such that C.\y = CO. The unifications of a 
clause C produced by its most general unifiers ar~ all alphabetic vari­
ants of each other; that is, each of them may be obtained from any of 
the others by a substitution of variable symbols for variable symbols. 
Thus C = {P(x,f(y),b),P(b,f(w),b)} has the most general unifications 
{P(b,f(y),b)} and {P(b,f(w),b)} and the second unification may be 
obtained from the first by application of the substitution { ( w,y)}. The 
most general unifiers for these unifications are {(b,x),(y,w) }, and 
{ (b,x),(w,y) }, respectively. 
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, We can now state a unification procedure that finds the most gen­
eral unifier for any given clause C if C is unifiable, and reports failure if 
C is not unifiable. The unification procedure makes use of two "pro­
gram variables," A~c and k, which are initially set to £and 0; throughout 
its operation, unification alters their values. Thus, k = 0 and /..0 = £. 

The eventual value of A.~c is the most general unifier of the given clause 
C (subject to our comments about alphabetic variants) if Cis unifiable, 
and is E if C is not unifiable. The steps of the procedure are as follows: 

1. If CA.k contains only one literal, then return A~c as the mgu 
for C and stop. 

2. If CA.~c contains more than one literal, find the first symbol 
position for each literal in which not all literals have the 
same symbol. For example, if 

CA.~c = {P(g(x),a,f(u,v)),P(u,a,z)} 
t t 

then the first symbol positions are as marked by the arrows. 
3. Construct the disagreement set for C/..1o which contains the 

well-formed expressions (terms or literals) from each literal 
in C/..k that begins at the marked positions. Thus, the dis­
agreement set for the example is {g(x),u}. 

4. If there exist two terms sk and tk in the disagreement set 
such that sk is a variable symbol and tk does not contain s1o 

then take any two such terms sk and tk, replace Ak by 
A~c+ 1 = A~c{ (h,s~c)} and replace k by k + 1, and go to step 1. 
For our example, sk may be taken to be u, and t~c may be 
taken to be g ( x) . Thus, 

Ak+l = Ak{(g(x),u)} 

and 

CA.k+l = {P(g(x),a,f(g(x),v) ),P(g(x),a,z) }. 

5. If there do not exist two such terms sk and tk in the disagree­
ment set, then report that C cannot be unified and stop. 

No proof will be offered that the unification procedure does in 
fact find the most general unifier (see J. A. Robinson, 1965, or Luck­
ham, 1967). For the example shown in the explication of the procedure, 
if C were initially the clause {P(g(x) ,a,f(u, v)), P(u,a,z) }, then the pro­
cedure would return the mgu A.2 = {(g(x),u),(f(g(x),v),z) }, and the 
most general unification of C would be 

CA.2 = {P(g(x),a,f(g(x),v))} 

_ ................... , 
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Examples of some clauses and their most general unifications con­
clude this discussion. 

Clauses 

{P(x) ,P(a)} 
{Q(x,y,a),Q(x,y,b)} 

{R(z,f(x),y),R(a,y,f(x))} 
{P(x,z,y),P(u,i,a),P(w,u,a)} 

{P(f(x) ),P(x)} 
{P(f(x ),y,g(y)) ,P(f(x) ,z,g(x))} 

The Binary Resolution Procedure 

Most General Unifications 

{P(a)} 
Not unifiable 

{R(a,f(x),f(x))} 
{P(a,a,a)} 

Not unifiable 
{P(f(x),x,g(x))} 

An inference procedure used by many theorem-proving programs 
may now be stated. This procedure is known as the binary resolution 
procedure, and it constitutes an inference rule that en~bles us to con­
struct some of the clauses that are logically implied by any given set 
of clauses. The resolution process will be explained first, followed by 
a description of its use in a procedure to prove that a given set of clauses 
is unsatisfiable, when the set is in fact unsatisfiable. 

Suppose we wish to find clauses that are logically implied by two 
given clauses, say, C1 and C2 • Let us denote the literals belonging to 
C1 by Li and those belonging to C2 by Mi. Thus, C1 = {Li} and 
C2 = {Mi}· Let us suppose that C1 and C2 have no variables in com­
mon (we can always rename the variables in one or the other clause to 
accomplish this). Let {li} C {Li} and {mi} C {Mi} be two subsets of 
{ Li} and { Mi} such that a most general unifier ,\ exists for the set of 
literals {li} U flmi}· Then the clause 

C3 = {{L;}- {li}}A. U {{Mi}- {mi}}A. 

is logically implied by C1 and C2. Depending on how we choose {li} 
and { mi} we may obtain other clauses that are logically implied by C1 

and C2. It may not be possible to choose {li} and {mi} such that 
{li} U (lmi} can be unified. However, if {l;} and {mi} can be so chosen, 
then the two clauses C1 and C2 are said to resolve and to be parent 
clauses for the resolvent(s) C3 • The process of choosing {li} and {mi} 
sets to find resolvents for two given parent clauses is called the resolu­
tion process. Since the clauses C1 and C2 we consider are always finite, 
there are only a finite number of ways we can choose {li} and {mi}· 
Thus, C1 and C2 can have only a finite number of resolvents. 

As an example, consider the two clauses 
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C1 = {P(f(x),y),P(z,f(a) ),Q(u)} 

and 

C2 = flP(y,z),IQ(f(x))} 

If we choose {h} = {P(f(x),y)} and {mi} = (lP(y,z)}, then 
{l,} Uflmi} = {P(f(x),y),P(y,z) }, which has the mgu 

A= {(f(x),y),(f(x),z)} 

The corresponding resolvent for cl and c2 is 

Cs = {P(z,f(a) ),Q(u), IQ(f(x)) }A. 
= {P(f(x),f(a) ),Q(u), IQ(f(x))} 

Similarly, if we choose {li} = {P(f(x),y),P(z,f(a))} and {mi} = 
{lp(y,z)}, then we find that {l;}U{Imi} = {P(f(x),y),P(z,f(a)), 
P(y,z)} has the mgu >..' = {(f(a),y),(f(a),z),(a,x)}, and we obtain 
the corresponding resolvent 

I 

C3 = {Q(u), IQ(f(x))} A.'= {Q(u), IQ(f(a))} 

Altogether, C1 and C2 have four different resolvents, of which three 
may be obtained by resolving on P and one may be obtained by resolv­
ing on Q. 

Again, let C1 = {IP(x),R(x)} and C2 = {IR(x),Q(x)}. If we 
choose {l;} = {R(x)} and {mi} = {IR(x)}, we obtain the resolvent 
C3 = {IP(x) ,Q (x)}. These three clauses correspond respectively to 
the predicate calculus formulas 

Vx(P(x)~R(x)) 

Vx(R(x)~Q(x)) 

Vx(P(x)~Q(x)) 

The English meanings of these formulas are 

"Everything with property P has property R." 
"Everything with property R has property Q." 
"Everything with property P has property Q." 

In this case it should be intuitively clear that the third statement is 
logically implied by the first two. 

Given a pair of clauses C1 and C2 , we obtain their resolvents by 
attempting to apply the resolution process to cl and c2 with respect 
to each possible combination of their subsets {li} and {mi}· (A com­
puter program can be designed not to investigate som~ combinations 
that obviously will not work, such as those combinations that use more 
than one predicate symbol.) If one of the resolvents of the clauses cl 

--------------~---~------~,~·~~~-~------~~~-~-~---~·-------------------
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and c2 is the empty clause f'lil, then we know that cl and c2 cannot 
both be satisfied (either one of them might be satisfiable, but there is 
no model which will make them both true). For example, the resolvent 

of cl = {P(x)} and c2 = C'P(y)} is the empty clause. 
The binary resolution procedure for showing that a set S of clauses 

is unsatisfiable can now be very simply stated. Let S be a set of clauses 
{C1,C2, ••• ,Cn}· We apply the resolution process successively to each 
pair of clauses C1, Ci(i =I= j), and place any resolvents obtained in a new 
set R(S). When we have gotten all possible resolvents from S (for any 
finite set of finite clauses there are only finitely many possible resolvents, 
and we can tell when all the possibilities have been tried), we apply 
the binary resolution procedure to the set R 1 (S) = SUR(S), which 
contains all the clauses in S plus all their resolvents. This yields the set 
of all resolvents of R 1 (S), which is denoted by R (R1 (S)). Next we 
form the set R2(S) = R 1 (S)UR(R1 (S) ), which contains all the 
clauses in R 1 (S) plus all their resolvents. We apply the resolution pro­
cedure to R 2 (S) to obtain the set R(R2(S) ), and we form the set 
R 3 (S) = R2(S)UR(R2(S) ). In general, 

R1+1(S) = R;(S) UR(Ri(S)) 

where S is our initial set of clauses; if X is a set of clauses, then R (X) 

denotes the set of alf resolvents of the clauses in X. The. set R 1(S) is 
called the ith level of clauses that are logically implied by S. The resolu­
tion procedure consists of developing in succession the levels of clauses 
that are implied by S until either we run out of computation time (in 
which case the answer is "no proof found") or the empty clause nil 

is produced as a resolvent in some level. If nil is ever produced, then 
we know that S is unsatisfiable. The resolution procedure corresponds 
to a breadth-first development of the clauses that are logically implied 
by S. 

A graph that ( 1) associates the empty clause with one of its 
nodes, (2) associates only the ancestors (parents, parents of parents, 
etc.) of the empty clause with the rest of its nodes, and (3) connects 
each node only to those clauses that are its parents or of which it is a 
parent (as determined by the resolution procedure) is called a refuta­

tion graph of S and constitutes a simple proof that S is unsatisfiable. 
Figure, 6-1 shows a refutation graph for the unsatisfiable set of formulas. 

S = {\ixP(x), V xP(x)~Q(x), \ixQ(a)~E(x),IE(d)} 

which is equivalent to the set of clauses 

S = { { P(x) },{IP(y) ,Q(y) },(lQ(a) ,E(z) },{IE( d)}} 
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{IP(y),Q(y)} 

{P(x)} / 

"" ClO(a),E(,)J 
{Q(x)} / 

""' ClE(d)) {E(')"'/ 
nil 

Figure 6-1. A refutation graph. 

Of course not all the clauses that are logically implied by S are shown 
in a refutation graph. 

It is possible to prove that the resolution procedure is a valid 
way of showing that a set of clauses is unsatisfiable (i.e., if nil is pro­
duced by the procedure, then the set must be unsatisfiable; if the cor­
responding set of formulas can be shown unsatisfiable, using the five 
inference rules presented in the first section of this chapter, then nil 
will be produced), but space does not permit the presentation of such 
a proof. The reader is referred to (Nilsson,l971, pp. 181-183). 

Summary 

To summarize the theorem-proving technique described above, 
the theorem prover 

1. is given a set Sa of axioms and a conjecture U. 
2. forms the negated-conjecture IU. 
3. forms the set of formulas S'a, consisting of Sa and IV. 
4. produces the clause-form equivalent of S'a· 
5. applies the resolution procedure to this set of clauses until 

it either runs out of time or produces the empty clause nil. 
6. constructs a refutation graph if nil is produced and an­

nounces that it has found a proof for the conjecture. 

A theorem prover that uses the resolution procedure is said to be 
resolution-based. 

.... -......... ··--------·-· --~ 
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Heuristic Search Strategies 

Extensions 

Methods of theorem proving such as the resolution procedure are 

not practically applicable to systems with more than a few axioms. 

They correspond to a simple "breadth-first" development of the con­

sequences of the system. It is necessary to use resolution in a selective 

manner, if one wishes to develop a theorem prover that can operate with 

systems of more than about ten axioms. Various selective techniques for 

resolution-based theorem provers have been developed. These tech­

niques are generally known as heuristic search strategies because of 

the way in which they alter a theorem prover's development of the 

consequences of a given system. Using such strategies, it is possible 

for a theorem prover to prove fairly difficult theorems in systems having 
up to two dozen axioms (the proof of such a theorem might be 50 

steps long). This section reviews some of the currently used search 

strat~gies for theorem provers. These strategies fall into three basic 

categpries: refinement strategies, simplification strategies, and ordering 

strategies (see Nilsson, 1971). 

Simplification Strategies 

Often it is possible to eliminate literals or clauses from a set of 

clauses, in a manner that does not affect the unsatisfiability of the set 

of clauses. (That is, if the set is unsatisfiable before simplification, it will 

be unsatisfiable afterward. Conversely, if a set is satisfiable before 

simplification, it will be satisfiable afterward.) When this can be done, it 

will reduce the rate at which irrelevant clauses are generated. Three 

ways of simplifying a set of clauses are to eliminate tautologies, evaluate 

predicates where possible, and to eliminate clauses that are subsumed 

by other clauses. 
A tautology is a statement of the form "A or not A." In predicate 

calculus every tautology is trivially true. The clause-form equivalent of 

a tautology is a clause that contains both a literal and the complement 
of that literal. If such a clause belongs to a set of clauses, then it may 
be eliminated from the set without affecting the unsatisfiability. of the 
set. Thus, clauses like 

{Q (x,y ),IR(z) ,R (y)} and {P(f(x) ),IP(f(x))} 

may be eliminated. 
Sometimes it is possible to evaluate the truth value of a literal im­

mediately after the clause containing it is generated. In such a case, if 
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the literal has the value "true," then the entire clause may be eliminated 
without affecting the unsatisfiability of the set S of clauses. If the literal 
has the value "false," then it may be eliminated from the clause in 
which it occurs. Generally, it is possible to evaluate a literal only if one 
has some specific information about the nature of its predicate. Thus, 
one might have a predicate P(x,y,z) equivalent to "the sum of num­
ber x and number y is number z." In such a case, literals using this 
predicate can be immediately evaluated by machine. 

A clause C1 = {L;} is said to subsume a clause C2 = {Mi} if 
there is a substitution () such that {Li}O is a subset of {Mi}· For ex­
ample, {P(x),Q(a)} subsumes {P(f(a) ),Q(a),R(y) }. If C1 and C2 
are clauses inS and C1 subsumes C2, then C2 may be eliminated from S 
without affecting the unsatisfiability of S. Intuitively, C1 is "more gen­
eral" than C 2• 

Usually, it is wise to eliminate tautologies and, where possible, 
evaluate predicates before eliminating by subsumption. Subsumed 
clauses should be eliminated only after each level R' (Sa) of S has been 
completely developed (see Kowalski, 1970a,b). 

Refinement Strategies 
As we have indicated, the resolution principle presented in the 

preceding section can be generalized. It can also be modified to produce 
new inference rules that restrict the possible clauses in S which may 
be resolved, beyond the simple requirement that they be resolvable. 
Such a modification is known as a refinement strategy, and is equi·valent 
to a new inference rule Rc that permits resolutions only between clauses 
that satisfy a refinement criterion C. A refinement strategy Rc is said 
to use resolution relative to C. Many different refinement strategies for 
resolution have been developed. One of these, the ancestry-filter (AF) 
strategy, will now be presented. For a discussion of other strategies, see 
Nilsson (1971). 

If clauses C1 and C2 can be resolved to form clause C3 , we say 
C1 and C2 are parents of C3 . Given a sequence C1, C2, ... ,Cn such that, 
for 1 .c::. i .c::. n, Ci is a parent of Ci+ 1, we say C1 is an ancestor of Cn 
and Cn is a descendant of C1 (refer to the terminology for graphs in 
Chapter 3) . ' 

The refinement criterion for ancestry-filtered resolution can now 
be stated. Two clauses will be resolved if and only if either 

i) Both belong to Sa. 
ii) One belongs to Sa and the other is a descendant of a clause 

in Sa. 
iii) One is an ancestor of the other. 

....... , __ .............. _ . .., ... --" 
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The use of this criterion in effect gives us a new inference rule, which is 
denoted as RAF· If Sis a set of clauses, then RAF(S) denotes the set of 
all resolvents between pairs of clauses that belong to S and satisfy the 
ancestry-filter criterion. Thus, defining, 

RA/(S) = SURAF(s) 

and 

RAFn'~(S) ~ RAF1 (RAFn(S) ), 

it can be prov,ed that if Sa is unsatisfiable, then there is some n such that 
RAFn(Sa) contains the empty clause. Conversely, if Sa is satisfiable, then 
there is no n such that Rn(Sa) contains the empty clause. Thus, resolu­
tion relative to ancestry filtering can be used in place of ordinary reso­
lution. Figure 6-2 shows a refutation of a simple set of clauses, produced 
according to the ancestry-filter refinement of resolution. 

~S(x)V T(x) ~T(x) V R(x) 

nil 

Figure 6-2. A search for refutation using the AF strategy. 
(Nilsson, 1971, reprinted with permission.) 

In practice it , is possible to add further restrictions to the AF 

strategy. Any such restriction will, in effect, add to the refinement 
criterion used by the theorem prover. Before using a refinement criterion 
it is important to prove the completeness of resolution with respect to 
that criterion; that is, one must show that if S is unsatisfiable, then there 
is some n such that Rcn(S) contains the empty clause; if Sis satisfiable, 
then there is non such that Rc''(S) contains the empty clause. It is also 
important to show that the total cost of using the criterion (in terms of 
computation time and memory space used by the computer) is less than 
the cost of generating, storing, and resolving the clauses eliminated by 
the criterion. The AF refinement strategy for resolution generally tends 
to produce much deeper but less broad searches than would be pro-
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duced by unrefined resolution. Other refinement strategies include the 
"set-of-support" strategy, and "model" strategies. 

Ordering Strategies 

Ordering strategies are the most "heuristic" of the three types of 
search strategies considered in this section. Ordering strategies cor­
respond to the use of evaluation functions for searching state-space 
graphs (discussed in Chapter 3). A given ordering strategy does not 
necessarily prohibit resolution between certain pairs of clauses (as do 
refinement strategies). Rather, an ordering strategy provides that resolu­
tion between certain pairs of clauses shall be performed before resolu­
tion between other pairs. 

Suppose we have an inference rule R (possibly a refinement of 
resolution). The search for a refutation of a set of clauses Sa cor­
responds to the development of successive levels R'(Sa), each level con­
taining the preceding ones as subsets, until a level Rn(Sa) is produced, 
which contains the empty j clause. In other words, it is a breadth-first 
search. Up to now the strategies discussed are means of narrowing the 
breadth of the refutation search done by a theorem prover (see Fig. 
6-2). 

Theorem provers that use ordering strategies do not do a breadth­
first search, although they may make use of the simplification and re­
finement strategies discussed previously. A theorem prover that uses an 
ordering strategy selectively generates portions of the levels below an 
initial set of clauses Sa, in a depth-first manner. If the first sequence of 
portions that it generates down to some level n does not produce the 
empty clause, then it will "back up" and try generating another sequence 
of portions (see Fig. 6-3). Perhaps the two most common ordering 
strategies are the unit-preference strategy and the fewest-components 
strategy. 

A unit is a clause that contains only one literal. Similarly, a double­
ton contains two literals, etc. In the unit-preference strategy the theorem 
pro~er first attempts to resolve units against units (if this succeeds, then 
it has produced the empty clause), then units against doubletons, then 
units against tripletons, etc. Thus, given a set S of clauses, the theorem 
prover generates the "unit preference" portion of R'(S). It then gen­
erates the unit-preference portion of R 2 (S), etc., and continues until it 
either produces a null clause or reaches its level bound n; that is, until 
it generates the unit-preference portion of Rn-'(S). If it reaches its level 
bound without producing the empty clause, it might back up to S and 
begins generating "doubleton-preference" portions of the levels R' (S) 
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Figure 6-3. A schematic indication of the refutation searches produced · 
by (a) resolution, (b) AF resolution, (c) AF resolution with an ordering 

strategy. 

below S, but within the same level bound. Similarly, it could continue 
to "tripleton-preference" portions, etc. If, in the course of generating 
a "q-tupleton-preference" portion of some level, the theorem prover 
produces a clause containing p literals, where p is less than q, the 
theorem prover reverts to the generation of p-tupleton-preference por­
tions. 

If the empty clause can be produced at all within the level-bound n, 
it will be produced by a theorem prover using the unit-preference order­
ing strategy. Quite often the unit-preference strategy will enable a 

. I 
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theorem prover to greatly reduce the amount of resolution it does in 
order to produce a refutation. We can justify this intuitively by pointing 
out that the unit-preference strategy directs the efforts of the theorem 
prover toward those clauses that contain the fewest literals, and that 
it is relatively rare for two clauses containing many literals to resolve 
directly to the empty clause. 

In the fewest-components strategy the order in which pairs of 
clauses are resolved depends on the length (number of literals, or total 
number of symbols) of their resolvent. This strategy usually is more 
costly than the unit-preference strategy because it requires that the 
theorem prover compute estimates of resolvent lengths for the pairs 
of clauses it has generated at a given level before generating their re­
solvents. 

Review 

The simplification, refinement, and ordering strategies discussed 
in this section are all syntax-oriented: A theorem prover that uses them 
searches more selectively for a refutation than it would if it did not use 
these strategies, though it does so in a way that is dependent more on 
the structures of the expressions it generates rather than on their re­
lations to each other. Its selectivity has little relation to the "meaning" 
or semantics of the theorem it is trying to prove. It is desirable for a 
theorem prover to be able to select the clauses it resolves in some man­
ner that is dependent on their relevance to the theorem it is trying to 
prove. Also, it is desirable for a theorem prover to be able to form a 
"plan" or description of a proof that has some likelihood of correspond­
ing to the actual proof for the theorem, and to select the clauses it re­
solves according to how well they fit its plan. That this may be feasible 
will be evident from the following sections. 

Reasoning by Analogy 

Chapter 3 discussed various types of analogies and the value of 
"reasoning by analogy" as an ability of a general problem solver. Kling 
( 1971 a,b) developed a method whereby theorem provers can select 
the clauses they resolve in a manner that corresponds to one type of 
reasoning by analogy. The presentation of his method in this section is 
highly schematic and is intended merely to give the reader a good idea 
of Kling's approach. For more detailed information the reader should 
see Kling's own explications. 

I 
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Let us consider the case of a theorem prover being used to prove 
theorems about abstract algebra.6 Such a theorem prover might have a 
standard set Sa of clauses that would constitute its basic knowledge, or 
axiomatization, of abstract algebra. The user of the theorem prover 
would supply it with a theorem T to be proved, stated using the predi­
cates and functions that occur in Sa. The theorem prover would form 
the negation IT of the theorem, reduce IT to clause form, add it to Sa 
to form a set of clauses S, and attempt to prove the unsatisfiability of 
S. This procedure could be followed for virtually any theorem T about 
abstract algebra. In principle, the generality of the theorem provers as 
problem solvers depends only on the extent to which problems can be 
described by sets of statements in the predicate calculus. As later sec­
tions will show, it is certainly possible to express some aspects of real­
world problems within predicate calculus formalizations. 

In fact, however, the generality of theorem provers as problem 
solvers is limited by considerations of computation time and memory 
space. A difficult theorem T might require 50 steps in the proof gener­
ated for it by a good theorem prover, using an axiomatization Sa that 
contained a dozen clauses. For such an Sa and T the theorem prover 
might generate 200 clauses altogether before finding the proof. If the 
theorem prover were given more axioms than necessary (say, Sa con­
taining 30 clauses), it might generate 600 clauses altogether before find­
ing a proof, and run out of space. That is, it would generate about 400 
irrelevant clauses. Even with optimal use of the heuristic search strate­
gies discussed in the preceding section, current theorem provers usually 
are unable. to prove nontrivial theorems when Sa contains. more than 
about 30. clauses. And a good axiomatization Sa for a subject like ab­
stract algebra requires about 250 clauses.7 

Thus, theorem provers as we have so far described them cannot 
be general problem solvers for nontrivial subjects such as abstract alge­
bra. The. axiomatizations (or data bases) for such subjects are simply 
too large for a program (possessing current limitations in time and 
memory space) to solve problems in them without some way ()f' ~sti- -
mating which clauses are "~elevant" to the problem .at hand and should 
be resolved or generated fifst. We can expect the. situation to be much 
worse for real-world problems, where the number of clauses necessary 

6 For the purposes of this book it is not necessary to know abstract algebra. 
It is chosen simply for the sake of exposition and because Kling chose it for 
his work. 

7 An axiomatization for a-theory must contain not only the clauses that inter­
relate the basic undefined words ("point," "line," "between," etc.) of the theory, 
but also those clauses that define the nonbasic words ("circle," "triangle," "con­
gruent")-predicates or functions-used within the theory. 
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for an adequate axiomatization of reasoning-program knowledge about 
the world might be very large indeed. 8 

The situation is amply illustrated with the use of "Venn diagrams" 
(see Fig. 6-4). In proving a theorem T from a data base S, a theorem 

T 

Figure 6-4. Venn diagram for the data-base problem. 

prover might generate the set of clauses indicated by the area labeled 
S1• Given the larger data base S' (which includes S as a subset), the 
theorem prover iWill usually generate the much larger set of clauses S2 
before it obtains a proof for T. In general, we want the theorem prover 
to have the data base S' available, since there is no a priori information 
as to which theorems it will be required to prove. But, we would like 
to have some program that could often select, for any given theorem 
T, a data baseS from which T could be easily derived. We could attempt 
either to modify the theorem prover itself or to write a new program 
that would select data bases for the theorem prover. 

Because of the undecidability of the predicate calculus, this prob­
lem cannot be completely solved. Howev_er, Kling provided a partial 
solution to it in the form of an analogy generator that, given some help, 

8 Minsky (1968a, p. 26) makes a very rough estimate that would correspond 
by the present author's interpretation to 105 or 106 clauses, belonging to a high­
order predicate calculus, for a reasoning program at the level of human intel­
ligence. But, of course, it is only a guess . 

........ .., ........ ____ .... __ ...... 
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is often capable of making a good selection for the data base S. Kling's 
analogy-generating program is called ZORBA-P It is designed to operate 
in conjunction with a theorem prover (see Green, 1969), of the type we 
have described.10 

ZORBA-1 is given the following information as input: 

1. A theorem T, which is to be proved by QA3 

2. A theorem T', which has already been proved 
3. The proof of T'; that is, an ordered sequence of clauses 

C1. .... ,C, such that each clause Ci is either an element of 
S' (the large data base) or an element of IT', or the re­
solvent of two clauses, say, cj and ck which occur prior to 
it in the sequence (i.e., such that j and k are both less than i) 

4. The large data-base S' 
5. A "semantic template" for S' 

The first three items of this list are problem-dependent; they vary with 
the theorem T which is to be proved by QA3. The fourth and fifth items 
do not depend upon T, but do depend on S'. To the extent that ZORBA­

QA3 is being used as a general problem solver relative to S', they can 
be considered problem-independent. 

of: 
Given this information, ZORBA-1 produces an analogy A consisting 

1. A •, a one-to-one association (or map) between the predicates 
used in the proof of T' and predicates that may occur in the 
proof of T. That is, each predicate used in the proof of T' 
is associated with exactly one predicate that occurs in S' and 
might be used in the proof of T. 

2. A', which associates each clause used in the proof ofT' with 
a set of clauses that each occur in S' and might be used in 
the proof of T. · 

3. A", which associates sets of variables used in the proof of T' 
with sets of variables that might be used in the proof of T. 

These associations are represented in the computer by appropriate data 
structures, and are referred to as predicate analogies, clause analogies, 

9 ZORBA is an acronym for (ZO) Reasoning By Analogy. Zorba was a pas­
sionate, intuitive Greek, and many contemporary thinkers consider analogy an 
intuitive process outside the realm of reason (Kling, 1971a, p. 4). 

10 QA3 was developed at Stanford Research Institute, principally by Green 
and Raphael. It is resolution-based and uses the unit-preference heuristic. How­
ever, it does not use ancestry-filter refinement, but instead uses the set-of-support 
refinement (which has not been discussed; see Nilsson, 1971, pp. 223-224). 
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and variable analogies, respectively. T' will be called an analog of 
T, and vice versa. 

Thus, an analogy developed by ZORBA consists of a predicate anal­
ogy, a clause analogy, and a variable analogy. Predicate and variable 
analogies are used within ZORBA-1. Its output to QA3 is a clause analogy 
A•. QA3 uses A•, together with IT, as the data base which it attempts 
to prove unsatisfiable. If QA3 succeeds, then we are justified in saying 
that the two programs, ZORBA and QA3, have together "reasoned by 
analogy" from the proof of T' to obtain a proof of T. Of course there 
may be many types of analogical reasoning that are not described by 
this particular paradigm. The importance of this paradigm to AI re­
search depends only on how well it works; that is, whether zoRBA and 
QA3 are in fact able to prove theorems that could not be proved by QA3 
alone, relative to the same large data baseS'. 

In fact, the zoRBA-QA3 program pair is rather successful, at least 
with respect to the data base for abstract algebra developed by Kling 
(1971 a) . Kling's abstract algebra data base S' contains 23 9 clauses. 
Given two analogous theorems T and T' and a proof for T' requiring 
20 clauses, ZORBA-1 could usually select a clause analogy A • containing 
less than two dozen clauses; that was sufficient for QA3 to use in proving 
T. For the reader who is acquainted with abstract algebra, the following 
example is quoted: 

T': "The intersection of two normal groups is a normal group." 
T: "The intersection of two ideals is an ideal." 

Either of these theorems would have been unprovable for QA3, given 
the data base S'. However, ZORBA-1 and QA3 together are able to de­
velop a proof forT, "reasoning by analogy" from a proof for T'. 

In practice, ZORBA-1 must select its clause analogy heuristically 
by searching through a space of partial analogies (see Fig. 6-5). For 
an S' containing 239 clauses, the number of possible clause analogies, 
each containing 24 clauses, is extremely large (about 1060

; see Kling, 
1971a, p.llO). ZORBA-1 first develops a partial analogy A 1 , which 
is relatively small and contains less than a dozen clauses. For each 
partial analogy Ai that it develops, it either adds or deletes a few clauses 
in order to create AHl· ZORBA-1 is guided in its development of 
partial analogies by the "semantic template" for S', which is provided 
to it. Usually ZORBA-1 needs,to generate less than ten partial analogies. 
The semantic template is a small table of descriptions for the predicates 
occurring in S'. For example, the predicate "group" is given the de­
scription 

......... ww:::_ ... _____ ----
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Figure 6-5. Heuristic search through an analogy-space. 

STRUCTURE (SET;OPERATOR) 

243 

Thus, ZORBA-1 knows automatically whenever it sees ''group (A;*)" 
that A is a set and* is an operator. ZORBA-1 uses the semantic template 
to generate descriptions of those clauses occurring in S' and in the 
proof of T'. The clauses it chooses from S' for its partial analogies are 
those that have descriptions similar to the descriptions of the clauses in 
the proof ofT'. ZORBA-1 terminates its search when it has found analogs 
for each of the clauses in the proof of T'. It then submits the resulting 
clause analogy to QA3. 
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In summary, to reason successfully by analogy, ZORBA-1 and QA3 

require certain essential information: 

1. A theorem T', which is analogous to the theorem T that 
ZORBA-QA3 is required to prove 

2. A proof of T' 
3. A semantic template for S' 

At the moment, this information must be provided to the computer by 
the human user of the system. The development of programs that would 
be capable of supplying this information is an open problem. Even so, 
ZORBA-1 is important because it does indicate a way for resolution­
based theorem provers to prove theorems, given large, nonoptimal 
axiomatizations. 

SOLVING PROBLEMS WITH THEOREM 
PROVERS 

State-Space 

A state-space problem (S,F,G) as defined in Chapter 3 consists 
of a description of a set S of possible starting states, a set F of operators 
that convert one state into another, and a set G of goal states. The 
problem implied by such a description is to find a sequence of operators, 
the application of which will convert some starting state into a goal 
state. A description of this sort implicitly defines a state-space consisting 
of a set of states and various possible paths between them. The "diffi­
culty" of a state-space problem is at most a matter of the size of the 
state-space and the relative proportion of solution paths to nonsolution 
paths. In some cases it is possible to logically analyze a description of 
a state-space problem and show that its solutions are equivalent to those 
for a problem with a simpler description, a sinaller state-space or set of 
operators. With this possibility in mind, the "problem-reduction" prob­
lems, the "problem of problem-representation," and "global" analysis of 
games were discussed in Chapter 3. 

This section describes how resolution-based theorem provers can 
be used as general problem solvers for state-space problems. We con­
sider three questions: 

1. How can predicate-calculus theories be used to describe state­
space problems? 

2. How can theorem provers be used to construct paths through 
state-spaces? 

_( ______ ., __ ..... .., 
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3. To what extent can the techniques we describe be applied to 
real-world problems? 

Our discussion of these questions is based on McCarthy (1959, 
1963a, 1964, 1968), McCarthy and Hayes (1968), Black (1964), 
Green (1969), Waldinger and Lee (1969), Amarel (1970), Nilsson 
(1971), and Fikes and Nilsson (1971). Other relevant papers include 
Amarel (1967, 1968), Slagle (1965, 1970), and Slagle and Bursky 
(1968). 

Predicate-Calculus Descriptions of 
State-Space Problems 

A given state-space problem can usually be described in many 
ways, depending on how one chooses to describe its states and operators. 
The state-space problems discussed previously have the following fea­
tures: 

1. Each state can be described as a collection of objects, each 
having certain relations to the others. For example, in the 
15-Puzzle, the "objects" might be blocks, positions, and the 
null-block or empty position. 

2. Each operator can be described as a procedure for changing 
one state into another. For a given state, zero, one, or many 
operators might be applicable. 

Thus, our terminology for state-space problems includes ""states," 
"objects," "relations," and "operators." A predicate-calculus descrip­
tion of a state-space problem may reflect these concepts in the following 
ways: 

1. "States" and "objects" can be represented by variable sym­
bols called state (or situation) variables and object variables. 
In this discussion, s,s',s'', ... represent state variables and 
o,o',o", ... represent object variables. Particular constant 
states and objects will be denoted by s0,shs2, ... and a,b,c, 
... ,box, monkey, ... ,respectively. 

2. "Relations" between objects, and properties of states and 
actions can be indicated by fluent symbols, which are either 
predicate or function symbols. We are primarily concerned 
with situational fluents (McCarthy and Hayes, 1968), which 
are functions or predicates that include states among their 
arguments. For example, "ON (monkey, box, s.)" might be 
a situational-fluent predicate with the value "true" if the ob-
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ject "monkey" is on the object "box" in state S0 • Similarly, 
"MOVE(monkey, box, a, b, s0 )" might be a situational­
fluent function which has as its value the state s produced 
when the object "monkey" moves· the object "box" from 
position a to position b in state S0 • 

First-order predicate calculus formulas that use the ordinary logic sym­
bols ( /\, V ,',~,3:,'v') and use state variables, object variables, and 
fluent symbols as their nonlogical symbols, can be used to express facts 
about state spaces. A collection of such formulas can be considered a 
description of a state-space, provided the collection is satisfiable and 
contains formulas that use situational-fluent functions which represent 
the operators associated with the state-space. Problems associated with 
the state-space can be represented by formulas that are to be proved, 
using the formulas that describe the state-space. 

EXAMPLE 6-1. THE MONKEY-AND-BANANAS PROBLEM. This prob­
lem (McCarthy, 1963a) was given as an exercise in Chapter 3. 
It is one of the classic "toy problems" considered by AI re­
searchers as an example of an extremely simple problem that 
involves common-sense reasoning about situations, actions, tools, 
etc. The problem is repeated here along with a predicate-calculus 
formalization for it: 

A monkey is in a room where a bunch of bananas is 
hanging from the ceiling, too high to reach. In the corner 
of the room is a box, which is not under the bananas. 
How. can the monkey get the bananas? The solution to 
the monkey's problem is to move the box under the 
bananas and climb onto the box, from which the bananas 
can be reached. 

The objects used in our description of this state-space problem 
are monkey, box, bananas, place], place2, place3. The oper­
ators used are goto, move, climb, and reachfor, each of which 
will be a situational-fluent function. The relations used in the 
description are under, on, at, and has-bananas, each of which 
will be a situational-fluent predicate. Table 6-1 gives the first­
order predicate calculus formulas that correspond to a descrip­
tion of the monkey-and-bananas state-space, using these objects, 
operators, and relations. The monkey's problem is represented 
by the formula 

(3:s) (has-bananas(s)) (6-1) 
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which is to be proved, using the formulas in Table 6-1. The 
formulas in Table 6-1 do not say expliCitly that it is possible 
for the monkey to get the bananas. However, if we can prove 
formula 6-1 from the formulas in Table 6-1, then we may con­
clude that there is some sequence of applications of the operators 
that will convert state S0 , in which the monkey does not have the 
bananas, into a state s, in which he does. We can conclude this 
because the only state that is explicitly mentioned in Table 6-1 
is the state S0 • If formula 6-1 holds for all models of the formulas 
in Table 6-1, then it must hold for the model in which the only 
states that exist are so and those which can be obtained from S0 

by the application of some sequence of operators to it. Thus, if 
the formulas of Table 6-1 logically imply formula 6-1, then 
there is some way for the monkey to convert so into a state 
s for which "has-bananas(s)" is true. 

Figure 6-6 shows the proof of formula 6-1, using the for­
mulas in Table 6-1 and the resolution procedure. The negation 
of formula 6-1 is added to the set of formulas in Table 6-1, and 
the resulting set of formulas is shown to be unsatisfiable. Thus, 
the set of formulas in Table 6-1 logically imply that the monkey 
can get the bananas. 

Simply proving that the monkey can get the bananas is not, of 
course, the same~ thing as showing a way for him to do it. We would 
like our proof of the existentially quantified formula 6-1 to be construc­
tive; that is, we would like it to produce an actual sequence of operations 
which, when applied to s0 , will produce a state s for. which "has-ba-

TABLE 6-1A. The Monkey and Bananas Problem (Predicate-calculus 
Axioms)* 

Al. VpVp'Vs(at(box,p,s)~at(box,p,goto(p',s))) 
A2. VpVp'Vs(at(bananas,p,s)~at(bananas,p,goto(p',s))) 
A3. VpVs(at(monkey,p,goto(p,s))) 
A4. VpVp'Vs( 1\ (at(box,p,s) ,at(mon,p,s) )~ at(box,p',move(mon,box,p,p',s))) 
AS. VpVp'Vp"Vs(at(ban,p,s)~at(ban,p,move(mon,box;p',p",s))) 
A6. VpVp'Vs(at(mon,p,s)~at(mon,p',mov~(mon,box,p,p',s))) 
A7. Vs{under(box,ban,s)~under(box,ban,climb(mon,box,s))) 
AS. VpVs( 1\ (at(mon,p,s),at(box,p,s) )~on(mon,box,climb(moil,box,s))) 
A9. Vs( 1\ ( under(box,ban,s) ,on(mon,box,s) )~ has-bananas(reachfor,mon, 

ban,s))) 
AlO. Vs( I\ (at(box,ps,s),at(ban,ps,s) )~under(box,ban,s)) 
All. I\ (at(box,p2,So ),at(ban,ps,So)) 

* (mon =monkey, ban= bananas) 
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TABLE 6-1 B. Monkey and Bananas (Clause Form) 

Al. flat(box,p,s),at(box,p,goto(p',s))} 
A2. {lat(bananas,q,s') ,at(bananas,q,goto(q',s'))} 
A3. {at(monkey,r,goto(r,r'))} 
A4. {lat(box,u, v ),lat(mon,u, v ),at(box,u',move(mon,box,u,u',v))} 
AS. {lat(ban,t,t"),at(ban,t,move(mon,box,t', t'",t''))} 
A6. {lat(mon,v',v"') ,at(mon, v",move(mon,box,v',v"v"'))} 
A7. {lunder(box,ban,w) ,under(box,ban,climb(mon,box,w))} 
AS. {lat(mon,w', w") ,lat(box,w',w"),on(mon,box,climb(mon,box,w"))} 
A9. {lunder(box, ban,x) ,lon ( mon, box,x) ,has-bananas ( reachfor( mon, ban,x) ) } 

AI 0. {lat(box,pa,y) ,lat(ban,pa,y) ,under(box,ban,y)} 
All. {at(box,p•.•)} 
A12. {at(bananas,p2a,o)} 
Negated Conjecture (NC): {!has-bananas (z)} 

Consequences of the Axioms (Fig. 6-6) 
Cl. {at(box,p,,goto(p',s.))} 
C2. {lat(mon,p,,goto(p',so) ),at(box,u',move(mon,box,p,,u',goto(p',s.)))} 
C3. {at(box,u',move(mon,box,p,,u',goto(p•,s•)))} 
C4. {lat(ban,pa,move (mon,box,p.pa,goto (p.so) ) ) ,under(box,ban,move(mon,box, 

p2,pa,goto (p2So) ) ) } 
CS. {at(bananas,pa,goto(q',s•))} 
C6. {at(ban,pa,move(mon,box,t',t'",goto(q',s.)))} 
C7. {under(box,ban,move(mon,box,p.,pa,goto(p,,s,)))} 
C8. {under(box,ban,climb(mon,box,move(mon,box,p',p',goto(p',s'))))} 
C9. {at(mon,v",move(mon,box,r,v",goto(r,r')))} 

C 10. {!at (box, v" ,move ( mon, box,r, v" ,go to ( r,r') ) ) ,on ( mon,box,climb, ( mon,box, 
move(mon,box,r,r'',goto(r,r'))))} 

Cll. { on(mon,box,climb(mon,box,move(mon,box,p•,u',goto(p•,s•))))} 
C12. {lon(mon,box,climb(mon,box,move(mon,box,p,,pa,goto(p•,s•)))) ,has-ba­

nanas(reachfor(mon,ban,climb(mon,box,move(mon,box,p•,p•,goto 
(p•,S•))))} 

C 13. {has-bananas ( reachfor ( mon,ban,climb (mon,box,move ( mon,box,p•,pa,goto 
(p2,So)))))} 

nanas(s)" will be true. Green (1969b) was the first to devise a res­
olution-based theorem prover capable of supplying constructive proofs 
for existentially quantified formulas. 

Path Finding, Example Generation, Constructive 
Proofs, Answer Extraction 

This section presents Luckham and Nilsson's ( 1971 ) generaliza­
tion of Green's technique. This technique is illustrated by a simple 
problem, and then its application to the monkey-and-bananas problem 
is described. 
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A11 A1 A3 A6 

\( A4 \/ 

'C2/ A3 AS' /C9 

A2 A12 ' / " 
'-.._ / AS A10 'c3 C10 

cs '--c! ' ~./ "-.c,,/ 
A7 "/ "/C7 

A9 CS "/ C12~ 
C13 N.C. 

'-.../ 
nil 

Figure 6-6. A proof that the monkey can get the bananas. 
(See Table 6-1 .) 

Let us suppose we are given a simple set Sa, which contains only 
the axiom 

1\ ( ((:!IuP(b,u,u)) ~ VuP(b,u,u)), V (Vw:!IrP(a,w,r), P(b,b,b))) 
(6-2) 

and let us suppose we are asked to prove the conjecture 

:!IxVy:!IzP(x,y,z) (6-3) 

in a constructive fashion; that is, we wish to find values for the variables 
x,y,z such that formula 6-3 will be true. Our standard procedure is to 
convert formula 6-2 and the negation of formula 6-3 into clause-form 
expressions and attempt to show that the set S that contains them is 
unsatisfiable. Figure 6-7a shows the use of the resolution principle 
to construct a refutation graph and demonstrate the unsatisfiability of 
S. (Such a refutation graph could be easily obtained by a current reso­
lution-based theorem prover.) 
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{IP(b,u,u),P(b,v,v)} {P(a,w,g(w)).P(b,b,b)} 

""'/ ft.={(b,u)} 

{"lP(x,f(x),•~··;w,g(w)) 

ft.={(b,x),(f(b),v),(f(b),z)} 

{P(a,w,g(w)} 

/ ft.= { (a,x) ,(f(a) ,w), (g(f(a)) ,z)} 

nil 

(A) 

{"lP(b,"·"),P(b,," ?(w)).P(b,b,b)) 

{P(b,v,v),P(a,w,g(w})} 

ClP(x>.•l,P(x.v~ I. 
"\ /''w,g(w)l,P(x,<,,)) 

{ P(a,s,g(s)) ,P(x,s,s) } 
(B) 

Figure 6-7. A simple refutation graph (A) and its modification (B) to 
produce an example. 

Green's technique provides a way to construct the required ex­
ample of formula 6-3, using a refutation graph such as Fig. 6-7a. Once 
a theorem prover has derived a refutation graph that proves the initial 
conjecture (disproves the negated conjecture), an "example-construct­
ing program" can be used, which does the following things: 
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1. First,· for each application of resolution in the graph, the 
literals that are unified by that resolution are marked. In 
Fig. 6-2 these literals are underlined. 

2. New variables are substituted for any Skolem functions oc­
curring in the clauses coming from the negation of the con­
jecture. Thus, the variable s is substituted for the Skolem 
function f( x) . 

3. Any clause in the graph which comes directly from the 
negation of the conjecture is converted into a tautology by 
adding its own negation to it. Thus, the clause 

{!P(x,s,z)} 

is converted into the cl~use 

C1P(x,s,z) ,P(x,s,z)} 

4. Following the structure of the original refutation graph, a 
modified graph is constructed. Each resolution in the modi­
fied graph unifies the sa1pe literals as are unified in the 
original refutation graph (i.e.; the. marked literals). If a 
clause being resolved contains "tautologYliterals"· added to 
it in step 3, the variables in the tautology literals receive the 
same instantiations as they do elsewhere in that resolution. 

5. The clause at the bottom of the modified graph is an example 
of values for the existentially and universally quantified 
variables ~ccurring in the conjecture, for which the con­
jecture will be true. 

Figure 6-7b shows the modified graph obtained from Fig. 6-7a. The 
clause at the bottom node is equivalent to 

VyV (P(a,y,g(y) ),P(b,y,y)) 

where g is a Skolem function introduced during the construction of the 
refutation tree. We may interpret this clause as saying, "Either x =a, 
y = y (i.e., y has any value), z = g(y), or x = b, y = y, z = y (i.e., y 
has any value and z must equal y) will make the conjecture true, and at 
least one of these two cases must be a· valid example for any model of 
the axioms." The presence of a Skolem function indicates that our 
solution is, to some extent, general; there are many models for formulas 
6-2 and 6-3, and each model contains its own set of values for x,y,z 
which will satisfy the quantifiers in formula 6-3. The Skolem function 
indicates that the values of certain variables depend on the particular 
model and on the values for other variables one happens to choose. 
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(See Figure 6-7) 

• • 
• • 

• • •• 

·c,;~/, 
{has-bananas(reachfor(mon,ban,climb(mon, 
box,move(mon,box,p2,P3,goto(p2,sol))) l } 

l'h•-"'"'""'''·"'•""'~ 
{has-bananas(reachfor(mon,ban,climb(mon, 
box,move(mon,box,p2,p3,goto(p2,sol)) )) } 

Figure 6-8. Modifying the refutation tree for the monkey-and-bananas 
state~space. In this case only the bottom part of the tree is affected by 

the modification process. 

The generality of the examples constructed by this technique de­
pends on the refutation graph it is given. Often there will be many ways 
to prove that a given set of clauses is unsatisfiable, and different ways 
will yield different examples. Because of the undecidability of the predi­
cate calculus, there usually is no way to guarantee that a given example 
is the most general. 

We can prove the validity of this example-constructing technique 
by observing that the modified graph represents the inference of the 
example from the axiom 6-2 and a tautology, consisting of formula 
6-3 and its negation. Since the inference itself is valid (i.e., the reso­
lution principle is valid and has been applied correctly), and since a 
tautology is always true, the example that is constructed must be correct. 

Figure 6-8 shows the application of Green's example-constructing 
technique to the Monkey-and-Bananas Problem, modifying the refuta­
tion graph shown in Fig. 6-6. To get his bananas, the monkey should 
interpret the expression shown at the bottom of the graph, worKing out­
ward from the innermost subexpression "goto(place2,s0 ) ." Thus, he 
should perform the following sequence of actions: 

goto place2 
move monkey, box, from place2 to place3 
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climb monkey, box 
reachfor monkey, bananas 
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Green (1969a) used his constructive-proof technique to obtain a similar 
solution for the monkey (note 6--3). 

To summarize, the use of resolution~based theorem provers to 
solve state-space problems involves 

1. Describing state-spaces by means of sets of predicate calculus 
formulas. 

2. Expressing problems as conjectures to be proved. 
3. Finding proofs for conjectures, using the resolution principle 

and various heuristic search strategies (refinement methods, 
etc.). 

4. Using Green's technique to convert a resolution proof of 
the unsatisfiability of the negated conjecture into an example 
of the conjecture's truth. 

5. Interpreting this example as a description of the solution to 
the state-space problem. 

The Exercises at the end of this chapter show how this process can be 
applied to other state-space problems (besides the Monkey-and-Bananas 
Problem) that were discussed in Chapter 3. 

Applications to Real-World Problems 

The extent to which theorem provers can be,used for solving real­
world problems depends on several factors, including how well predi­
cate calculus can be used to describe real-world situations and actions, 
and how efficiently theorem provers can be used to find solutions to 
problems that are given predicate calculus formalizations. This section 
concludes with a limited discussion of these factors. The reader is en­
couraged to see Green (1969a), McCarthy and Hayes (1968), and 
Hewitt (1969,1970) (discussed in the next section) for more on this 
subject. 

Since, presumably, any mathematical theory can be expressed as 
a system of predicate calculus formulas, there is no doubt that predicate 
calculus offers a metaphysically adequate mathematical framework for 
the description of the real world, if any such framework can be con­
structed at all. Our major questions must concern its epistemological 
adequacy (how well it can represent everyday aspects of the real world) 
and its heuristic adequacy (how well it can be used to express informa­
tion that is helpful in solving problems). 
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The epistemological adequacy of predicate calculus is probably 
satisfactory for the construction of real-world problem solvers. Green, 
McCarthy, and Hayes have shown that predicate calculus can be used 
to provide formalizations for such aspects of the real world as time­
dependency, causality, and ability. The Monkey-and-Bananas Problem 
illustrates that predicate calculus can be used to formally express con­
cepts involving objects and spatial relations. Other examples can be 
provided (see the Exercises and the next section) to show that predicate 
calculus may be used to represent problems that have solutions which 
are disjunctive, conditional, and which contain loops or recursive defini­
tions. Perhaps the major questions involve the desirability of using 
modal and many-valued logics instead of predicate calculus, and the 
question of whether higher than first-order predicate calculus can be 
used successfully. 

There are strong intuitive reasons for suspecting that many-valued 
logics are more desirable than predicate calculus. A machine capable 
of solving problems in a real-world environment must have some way 
of dealing with ambiguities, inaccuracies, probabilities, multiple inter­
pretations, etc. Chapter 3 presented a list of some aspects of the real 
world which should be easily representable in the reasoning-language 
used by such a machine. Again, it is clear that each of these aspects of 
the real world could be embodied in a predicate calculus machine if 
they can be embodied in any machine at all. However, any such em­
bodiment in a predicate calculus machine would require a set of axioms 
to define the functions and predicates that were associated with each of 
these aspects. The question is whether some other logic, which had 
these axioms built into its logic symbols and inference rules, would be 
more efficient. This question must be considered in light of the fact 
that no completely satisfactory many-valued logic has yet been de­
veloped. Perhaps it will be necessary to develop a system with a variable­
valued logic, one that would be able to learn various functions and 
predicates and build the most useful ones into its logical apparatus. 

As for the use of higher than first-order predicate calculus, essen­
tially the same arguments apply. First-order predicate calculus is episte­
mologically adequate, but it seems likely that a higher-order system 
would be much more efficient. Hewitt (1969,1971) developed a theo­
rem-proving language (described in the next section) that in many 
respects is more powerful than omega-order predicate calculus. 

Hewitt's work was also concerned with the heuristic adequacy of 
predicate calculus. He showed that it is possible not only to use predi­
cate calculus formulas as statements of facts, but also to use them as 
recommendations for how to proceed in solving problems. 
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The other major question concerns how efficiently theorem provers 
can be used to find solutions to problems that are given predicate calcu­
lus formalizations. In considering this question, it is well to point out 
that Green's technique and resolution-based theorem provers have so 
far been applied only within given state-space problems. The issue of 
whether theorem-proving techniques can be used to logically analyze a 
given state-space problem, and show that its solutions are equivalent to 
those for a problem with a simpler description (smaller state space or 
set of operators), remains undecided. 

Another problem in the efficient use of theorem provers is the 
frame problem, discussed in McCarthy and Hayes ( 1968). The frame 
problem arises from the fact that, in a state-space problem, an applica­
tion of an operator to a state will usually affect some relations between 
objects in the state and not affect others. In the predicate calculus 
formalization for such a problem, there must generally be axioms for 
each operator to express both the relations that are and are not changed 
by the application of that operator. For example, in the Monkey-and­
Bananas Problem we had to state and use the fact that the application 
of the operator climb would not affect the position of the box (see 
Table 6-1A). Whenever it is necessary to make use of the fact that a 
certain relation still holds in a given state, the theorem prover must 
prove it, using the axioms for each of the operators that have been ap­
pliedsince the relation was last shown to be true. This, of course, greatly 
increases the work that must be done by the theorem prover. 

Various techniques for overcoming the frame problem have been 
investigated, notably by Fikes and Nilsson (1971) and Hewitt ( 1969, 
1971). Fikes and Nilsson present a GPS-like program that controls the 
application of a theorem-proving program to various sets S; of clauses, 
each set S; representing a given state in a state space. Each operator has 
associated with it a collection of "delete" and "add" instructions that 
identify the relations changed by the application of that operator. The 
program (called STRIPS) performs a heuristic search in the state space 
until it finds a sequence of operators that will produce a set Su of clauses 
containing the desired relations. Figure 6-8 shows sTRiPS solving an 
expanded problem of the Monkey-and-Bananas type. STRIPS controls 
a robot (Shakey), which performs tasks in a real-world environment, 
as indicated by Fig. 6-9. (Also see Chapter 9.) 

Hewitt's approach to the frame problem was similar. He defined 
a general class of procedures for manipulating data bases (sets of ex­
pressions) that include the S; sets of Fikes and Nilsson. This approach 
is discussed in the next section. 
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ROOM1 ROOM2 ROOM3 ROOM4 

-c~::J@ 
ba 

LIGHTSWITCH1 .!!_ 

ca 

~DOOR1: I DOOR2 I I DOOR3 I I DOOR41 
I I I I I I 

Tasks 

ROOMS 

1. Turn on the lightswitch 

Goal wff: STATUS(LIGHTSWITCH1.0N) 

STRIPS solution: {goto2(BOX1 ),climbonbox(BOX1 },climboffbox{BOX1 ), 

pushto(BOX1.LIGHTSWITCH1l.climbonbox(BOX1).tumonlight(LIGHTSWITCH1l} 

2. Push three boxes together 

Goal wff: NEXTTO(BOX1,BOX2l!INEXTTO(BOX2.BOX3) 

STRIPS solution: {goto2(BOX1).pushto(BOX1.BOX2),goto2(BOX3),pushto(BOX3.BOX2)} 

3. Go to a location in another room 

Goal wff: ATROBOT(f) 

STRIPS solution: {goto2(000R1) .gothrudoor(DOORt,ROOMt .ROOMS), 

goto2( DOOR4),gothrudoor(DOOR4.ROOM5.ROOM4).goto1 (f) } 

Figure 6-9. Tasks for STRIPS (initially at position e) and its solutions. 
(Fikes and Nilsson, 1971, reprinted with permission.) 

f 
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THEOREM PROVING IN PLANNING AND 
AUTOMATIC PROGRAMMING 

Planning 
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Chapter 3 stressed the value of planning as a process to be per­
formed by a general problem solver; for many real-world problems it is 
impossible to specify a single sequence of operations that will invariably 
achieve one's goal. The first and most general solution is a plan. Plans 
typically describe many alternate sequences of actions and specify con­
ditions according to which different sequences will be followed. "Plan­
ning" (i.e., developing a plan) is itself one of the actions that a plan 
might dictate, and can be considered as an aspect of problem reduction. 
The feasibility of using program-like structures, such as nondeterministic 
programs and fuzzy algorithms, to represent plans, has been mentioned. 

The use of theorem-proving techniques in planning is still at· the 
stage of preliminary investigation. The few results that have so far been 
achieved indicate that it may be possible to use theorem provers to 
construct plans for the solution of real-world problems. Current investi­
gations have followed essentially two approaches (note 6-4) to the 
development of theorem-proving plan makers: Hewitt (1969,1971) 
developed the programming language PLANNER, which permits the 
statement and execution of plans in a theorem-proving format; other 
researchers (e.g., Green, 1969a; Waldinger and Lee, 1969; McCarthy, 
1962; R. W. Floyd, 1967; Manna, 1969,1970) demonstrated that it 
is possible to use resolution-based theorem provers to develop computer 
programs, and that it is often possible for people to prove whether or 
not a given computer program is "correct." 

Planner 
A programming language is a way of describing procedures to 

computers; a description of a procedure, written in a programming lan­
guage, is a program. Computers with a given "language capability" 
can accept programs written in that language and carry out the pro­
cedures they describe. Up to now it has not been necessary to consider 
any specific programming languages, since these discussions have been 
more concerned with procedures than programs. Thus, "procedure" 
and "program" have been used somewhat interchangeably.11 Theoreti-

11 The text has also been somewhat informal on this point in other respects. 
Thus, programs have been often said to "do" something or to "perform" some 
task when in actuality it is the computer that does or performs the procedure de­
scribed by the program. This informality will be maintained. 
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cally, any procedure that can be performed by a program written in 
one programming language can be performed by some program in any 
other given programming language. The difference between program­
ming languages lies in the simplicity with which various procedures 
can be stated by their programs. Thus, associative data processing is 
harder to do in FORTRAN than it is in SAIL (a programming language 
used at the Stanford Artificial Intelligence Project-see Feldman et al., 
1972). 

PLANNER is a significant new programming language for artificial 
intelligence research {see Hewitt, 1968 et seq.). Some of the things that 
can be done easily with PLANNER will be listed, though space does not 
allow more than a brief presentation of the language itself. Hewitt's 
work founded a new genus of programming languages for AI research. 
Among these are QA4 (Rulifson, 1971), CONNIVER (Sussman and Mc­
Dermott, 1972a,b), and SAIL (Feldman et al., 1972). PLANNER is 
still in the process of being implemented; however, an early version of 
PLANNER (MICRO-PLANNER-see Sussman and Winograd, 1970; Baum­
gart, 1972) has been operational for more than a year. LISP is a very 
desirable background to these languages, and we also suggest reference 
to McCarthy et al. (1965), Weissman (1967), and Teitelman et al. 
( 1972). 

PLANNER is a programming language for the manipulation of 
data bases. A data base is some set of expressions which a PLANNER 
program may treat as assertions of knowledge about the world. A pro­
gram written in PLANNER is a description of a plan for changing the 
assertions in a data base (or perhaps creating a new data base) de­
pending on the assertions that are already in the data base. The funda­
mental mechanism that makes PLANNER work is pattern matching (see 
Chapter 5): a PLANNER program (or "theorem") may use pattern 
matching to search a data base for certain expressions and, if it finds 
them, add a new expression to the data base. Or a PLANNER program 
may use pattern matching to search the data base for other programs 
(theorems) that are designed to add certain expressions to a data base. 
Thus, the PLANNER "consequent" theorem: 

(THCONSE (X) (FALLIBLE $?X) 
(THGOAL (HUMAN $?X))) 

is a program specifying a procedure to follow in order to add an asser­
tion of the form (FALLIBLE $?x) to a data base; this procedure consists 
of attempting to satisfy the statement (THGOAL (HUMAN $?x) ), which 
can be done if the pattern matcher finds an assertion of the form (Hu-
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MAN $?x) in the data base, or if the pattern matcher finds another con­

sequent theorem in the data base, of the form 

(THCONSE (Y) (HUMAN $?Y) ... ) 

and this theorem can be successfully executed with Y bound to the 

value of X. If the THGOAL statement can be satisfied in either of these 

ways, and the value of X is, say, socRATES, then the original THCONSE 

theorem will add the assertion (FALLIBLE socRATES) to the data base. 

In English, this means "something is fallible if it is already known to be 

human, or if it can be shown to be human." (The $ and? are variable 

prefixes used for pattern matching-see Chapter 5.) 
Similarly, PLANNER makes use of "antecedent" theorems to change 

assertions in a data base automatically whenever certain other assertions 

are added or erased. Thus, 

(THANTE (X Z) (LIKES $?X $?Z) 
(THASSERT (HUMAN $?X))) 

is an antecedent theorem (program) which states that whenever an 

assertion of the form (LIKES $?x $?z) is added to a data base, the as­

sertion (HUMAN $?x) should also be 11dded. 
Thus, a PLANNER theorem is capable of acting,as a goal-oriented, 

nondeterministic program; it can stipulate various goals for the computer 

without stipulating exactly how the computer must try .to achieve them. 

PLANNER theorems are an example of pattern-directed plans. 

Furthermore, PLANNER includes the ability to backup a plan if a 
pattern matching proves to be unsuccessful. Thus, suppose our data 

base includes the following simple assertions: 

(HUMAN TURING) 
(HUMAN SOCRATES) 
(GREEK SOCRATES) 

and the theorem: 

(THCONSE (X) (FALLIBLE $?X) 
(THGOAL (HUMAN $?X))) 

We can search the data base to answer the question "Is there a fallible 

Greek?" by evaluating the PLANNER program: 

(THPROG (X) (THGOAL (FALLIBLE $?X) (THTBF 
THTRUE)) 

(THGOAL (GREEK $?X))) 

This expression will have a successful execution, and return a value 

for x, only if both THGOAL's can be satisfied. When PLANNER attempts 
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to satisfy the first THGOAL, it !Will make use of the THCONSE theorem to 
prove the validity of asserting that something (the value matched to x) 
is fallible; after that, PLANNER will attempt to satisfy the second THGOAL, 
by trying to prove or find an assertion that the same thing (the same 
value of x) is Greek. In satisfying the first THGOAL, evaluation of the 
THCONSE theorem will cause the pattern matcher to attempt to match the 
pattern rule (HUMAN $?x) against an assertion in the data base. Sup­
pose that the pattern matcher first matches this pattern rule with the 
assertion (HUMAN TURING), making TURING be the value of x; the 
THCONSE theorem will then add the assertion (FALLIBLE TURING) to 
the data base, and control will return to the THPROG which will attempt 
to satisfy its second THGOAL, by either finding, or proving the validity of, 
the assertion (GREEK TURING). This attempt will fail, because the as­
sertion (GREEK TURING) does not appear in the data base and there are 
no theorems in the data base which could be used to add such an as­
sertion to the data base. The failure of this .THGOAL will cause the 
THPROG to backup, and attempt to resatisfy its first THGOAL with a dif­
ferent value for x; the THCONSE theorem will be re-executed, and its 
THGOAL will call upon the pattern matcher to once again match the pat­
tern rule (HUMAN $?x) with an assertion in the data base. However, 
this time the pattern rule will be matched with the assertion (HUMAN 
SOCRATES), and the new value for X Will be SOCRATES. The THCONSE 
will succeed, and the assertion (FALLIBLE SOCRATES) will be added to 
the data base, and so the first THGOAL of the THPROG will succeed again. 
Lastly, the THPROG will again attempt to satisfy its second THGOAL. 
This attempt will succeed, because the assertion (GREEK socRATES) will 
be found in the data base. And so, the THPROG itself will terminate 
execution successfully, and return a value for x that is the answer to 
our question. 

This feature of PLANNER (known as its hierarchical control struc­
ture) is extremely general. In essence, any decision made during the 
evaluation of a PLANNER theorem can be undone, if failures "backup" 
to the point where it was originally made. The generality of this feature 
has been criticized by some researchers (Sussman and McDermott, 
1972), who claim that it is often very inefficient to rely on such a strict 
depth-first mechanism, and that such a control structure is difficult for 
human programmers to use without confusion, especially when writing 
large PLANNER programs. Recently, Sussman and McDermott have 
implemented a programming language known as CONNIVER, which is 
similar to PLANNER (in that programs are pattern-directed), but which 
attempts to provide a more flexible, explicit means of specifying the 
backup one wants to occur. (Also see Bobrow and Wegbreit, 1972.) 
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PLANNER has many other important features. The language con­
tains as "primitive functions" many procedures that must be written 
out in detail within other languages. Knowledge in PLANNER is stored 
in a generalized "associative memory" (a graphlike structure with 
labeled nodes and arcs; see Chapter 7). Because PLANNER programs 
are themselves list structures, it is possible for such programs to be 
created, changed, or executed by other (and in some cases the same) 
PLANNER programs. PLANNER theorems are not restricted to first-order 
predicate calculus, nor do they even necessarily correspond very simply 
to formulas in higher-order predicate calculus. Thus, a PLANNER 

theorem might state: "do not use induction on the same variable twice," 
or "there exist R and Y such that R(Y,TURING) implies Y(TURING)." 

Predicates may be quantified or included within other predicates. 
PLANNER is currently being used as the inference mechanism for pro­
grams that "understand" natural language (see Chapter 7) and find 
descriptions of visual scenes. For the interested reader, Figure 6-10 
shows a PLANNER program (Orban's Monkey) for solving the Monkey­
and~Bananas Problem, much of which should be understandable from 
the discussion thus far. The PLANNER genus is probably the most 
natural set of programming languages yet developed for the ultimate 
writing of reasoning programs. 

However, barring the aspect of higher-order predicate calculus, 
there is no direct comparison between theorem-proving systems written 
in PLANNER and the resolution-based theorem provers. The purposes 
behind these two approaches to 'theorem proving appear to be some­
what different. On the one hand, resolution-based theorem provers are 
designed to be general and complete programs for proving and dis­
proving theorems within mathematical theories. Though we have dis­
cussed ways in which they can be designed to take account of the 
semantic content of mathematical theories (e.g., Kling's analogy 
generator), the primary accent in their development has been a con­
centration on their completeness and soundness; that is, on proving 

their applicability to any mathematical system and increasing their 
efficiency as much as possible without relinquishing that applicability 
(note 6-5). 

PLANNER, on the other hand, provides a framework in which it is 
possible to write very sophisticated programs for special-purpose types 
of theorem proving. There are many types of information processing 
and problem solving that involve logical deduction, or theorem proving, 
without requiring full completeness or generality. When the types of 
questions, or problems, or theorems to be proved can be anticipated 
in advance, one can sometimes write a special-purpose program to deal 

~~---··-------------------
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ISETO MONKEY •rTH&OAL !MONKEY &ETS BANANASitTHTBf THTRUEII) 
ITHASSERT<CLIMBABLE BOXII 
ITHASSERT<BOX AT All 
<THASSERT<MONKEY AT Bll 
ITHASSERT<BANANAS AT Cll 
<THASSERT<MONKEY Off BOXII 

<OEfPROP REACH <THCONSE <XYZI <MONKEY GETS BANANASI 
<THASSERT <MONKEY WANTS BANANASII 
<PRINT •ITHE MONKEY THINKS HE WANTS SOME BANANASII 
I THOR 

ITHGOAL !BANANAS AT <THV XYZIII 
ITHfAIL THEOREM •!YES. WE HAVE NO BANANA$11 I 

ITHASSERT rMONKEY AT !THV XYZIIITHPSEUOOI<THTBF THTRUEII 
<THOR 

ITHANO 
<THGOAL !MONKEY AT <THY XYZIII 
rTHGOAL !MONKEY ON BOXII I 

<THfAIL THEOREM •<MONKEY DIDN'T MOVE. MONKEY NOT WELLIII 
<THERASE <MONKEY WANTS BANANASII 
IPRINT •rMONKEY &ETS BANANASII 
<THSUCCEEO THEOREM •SUCCESS! 

I THEOREM I 
<Tt-IASSERT REACHI 

rOEfPROP MOVEBOX ITHANTE IX Z 01 IBOX AT ITHV XII 
<THGOAL <BOX AT <THY Zlll 
I THOR 

ITHGOAL 
I THOR 

I THOR 

I THANO I EQUAL I THY XI I THY Zll 
ITHSUCCEEO THEOREHII 

T I 
<MONKEY AT I THY 0111 
I THOR 

I THGOAL I MONKEY Off BOX II 
ITHANO 

ITHNOT I THGOAL <MONKEY ON BOX I I I 
cTHASSERT <MONKEY Off BOXIII I 

I THANO 
<THERASE <MONKEY ON BOXII 
ITHASSERT <MONKEY Off BOXII 
IPRINT •IMONKEY NOTICES HE IS ON THE BOXII 
IPRINT •<MONKEY GETS Off THE BOXIII I 

<EOUAL ITHV OIITHV Zll 
ITHASSERT<HONKEY AT<lHV ZlliTHPSEUOOIITHlBF THTRVEIII 

ITHERASE IBOX AT ITHV Zlll 
ITHASSERT <BOX AT ITHV XIII 
<THERASE <MONKEY AT cTHV Zlll 
I THASSERT I MONKEY AT I THV X I I I 

<PRINT ILIST •MONKEY •MOVES +BOX +fROM ITHV Zl •TO <THV XIII 
<THSUCCEED THEOREMI 

l THEOREM I 
<THASS£RT MOVEBOXI 

Figure 6-10. Orban's Monkey. (Written by Richard Orban; published as 
an example in Baumgart, 1972. Reprinted with permission.) 
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IDH"PROP CLIKB 11HANH IX Y Z W S 0> IHOWl<EY Al tTHV XII 

B 

ITHGOAL IMONV.EY AT ITHV 0>11 
(PRINT {LIST •MONKEY •IS •AT ITHV 0>11 
ITHCOND IITHGOAL !MONKEY WANTS ITHV VIII ITHGO BIIIT Til 
I THAND !THOR 

ITHGOAL !MONKEY OVV BOX>> 
I THAND 

1 THE RASE I MONKEY ON BOX II 
ITHASSERT !MONKEY OVF BOX>l 
•PRINT ••MONKEY,NOTICES HE IS ON THE BOX>> 
!PRINT ••MONKEY CLIMBS orr THE BOXIII I 

I THOR 
ITHGOAL !MONKEY AT ITHV XIII 
I THAND 

ITHERASE !MONKEY AT ITHV Qlll 
ITHASSERT !MONKEY AT ITHV XIII 
IPRINTILIST •MONKEY •GOES •rROMITHV Ql•TOITHY XIIII! 

ITHSUCCEEO THEOREM •SUCCESS!! 
!THrAlL THEOREM !PRINT •IWHAT MONKEY ?Ill 
!PRINT ILIST •THE ~MONKEY •WANTS •SOME ITHV Ylll 
ITHGOAL I ITHV Yl AT !THY Sill 
•PRINT !LIST •MONKEY •NOTICES •THAT ITHV Yl •ARE •AT !THY Sill 
I THOR 

!THOR 
I THAND 

![QUAL ITHV XIITHY 511 
I THGO A I I 

ITHGOAL I !THY WI AT !THY Zlll 
I THGOAL I ClIMBABLE· I THY WI I I 
!PRINT !LIST •MONKEY •NOTICES 

ITHrAIL THEOREM 

I 

/ 
•A ITHV WI •A~ ITHV Zlll I 

IPRINT ••ALONE IN THE WORLD, WITH OUT A rRIENDlll I 
1 THOR 

![QUAL ITHV Zl !THY Sll 
ITHASSERT I ITHV W> AT I THY 51 IITHPSEUOO>ITHTBr THTRU[lll 

I THOR 
ITHGOAL !MONKEY AT ITHY 5111 
I THAND 

ITHERASE !MONKEY AT ITHY Qlll 
ITHASSERT !MONKEY AT ITHY Sill 
!PRINT !LIST •MONKEY •GOES •FROM ITHY Ql •TO ITHV 5>1!1 I 

I THAND 
I THOR 

I THERASE !MONKEY OrF I THY Wll I 
T I 

1 THOR 
I THAND 

ITHASSERT !MONKEY ON !THY W>>> 
!PRINT !LIST •MONKEY •CLIMBS •ON ITHY Will I 

!PRINT ••MONKEY ALREAOY ON BOX. BUT YOU KNEW THATIII I 
ITHSUCCEEO THEOREM~· 

>THEOREM I 
•THA~SERT CLIMB> 

Figure 6-10. (Continued) 
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only with these questions, problems, or theorems, according to a pre­
determined strategy. PLANNER provides a way of writing special-purpose 
programs for theorem proving that make use of predetermined strat­
egies. One of the most valuable features of PLANNER is that these 
predetermined strategies can be, to some extent, self-developing. It is, 
of course, possible to write complete, general theorem-proving strat­
egies in PLANNER, but so far its most impressive uses have been of a 
special-purpose nature (e.g., the use of PLANNER and the similar lan­
guage PROGRAMMAR in Winograd's English-understanding program). 

It is possible that the future will see some sort of hybridization be­
tween PLANNER-based and resolution-based theorem provers. PLAN­
NER and similar languages may eventually provide the notation for 
designing reasoning-programs that will process information according 
to special strategies. These strategies may specify conditions in which 
general-purpose theorem provers, perhaps resolution-based, will be 
used. 

Automatic Programming 

Green (1969a), and Waldinger and Lee (1969), wrote theorem­
proving programs that write simple programs in LISP (see McCarthy et 
al., 1962, or Weissman, 1967). Both programs are based on the 
resolution process for theorem proving. A brief description of the 
nature of these programs is given here. A complete discussion is, of 
course, given in the papers by the authors. Nilsson (1971, pp. 201-
205) has also reviewed Green's results. 

First, a few words about LISP are. probably necessary. LISP is a 
programming language for writing programs that manipulate symbolic 
expressions known as list structures. A list structure is a list whose 
elements may be lists, or lists of lists, etc. Thus, a general definition of 
list structures is: "X is a list structure if X is an atom, or X is an ordered 
sequence of zero or more list structures." An atom is a string of symbols. 
For example, a, abc, jmc are all atoms. A list structure is usually de­
noted by a pair of parentheses enclosing the sequence of its elements. 
Thus, (a (a be) (abc (jmc))) is a list structure. The empty list, which 
does not contain any elements, is denoted by ( ) or by the atom NIL. 
List structures may be reentrant; that is, they may contain themselves 
as elements. Thus, X = (a X) = (a (a X)) = • • • is a list structure. 
LISP provides a collection of primitive functions for manipulating list 
structures. These functions can be used to make more complex pro­
grams. Finally, a program written in LISP is itself a list structure. Thus, 
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programs in LISP can be designed to create and manipulate other pro­
grams. 

However, the ability to write programs that create programs is a 
solution to only the simplest problem of automatic programming. In 
general, what we desire are programs that create correct programs, 
where "correctness" is determined by a program's ability to compute a 
given function. That is, we desire a "program-writing program" P, 
which, when given a description of a function f, produces a program 
F that computes the value of f(x) for any given value of x for which 
f(x) is defined. 

There are many ways of describing functions. Programs are 
themselves descriptions of functions, and it would, of course, be trivial 
to write a program P that could write programs if the descriptions of 
functions given to it were already in program form. Usually, we must 
assume that P is given some less explicit description of the function f 
than an actual program for f. . 

Probably the least explicit way of describing a function f is to 
specify a predicate, say R(x,y), such that R(x,y) is true if and only 
if f(x) is defined and equals y. It is often possible to specify such a 
predicate R associated with a function f without specifying a program 
that comptltes f. Indeed, it is often much easier to ·specify predicates 
than programs. For example, suppose that x and y are variables that 
may have as their values any finite sequences of natural numbers. Thus, 
x might equal ( 4 1 3) and y might equal ( 10 11 91 ) . We say a sequence 
x is sorted iff the elements of x are arranged in ascending numerical 
order .12 Thus, x = ( 4 1 3) is not sorted, whereas y = (1 0 11 91) is 
sorted. Given this notion of ''sorted," we can give the following descrip­
tion of a function sort: For any sequence x, sort(x) is a sequence con~ 
taining the same elements as .X, and sort(x) is sorted. Thus, sort 
( ( 4 1 3) ) would be ( 1 3 4). However, this d~scription of the· function 
"sort" does not specify a procedure for computing the function. It 
merely specifies a relation/2 holding betWeen x and sort (x); they must 
both contain the same elements and sort(x) must be sorted__:.in other 
words, a test we can apply to any proposed procedure to see if it does 
indeed compute the function "sort" (the test is: "choose any sequence 
x; if the procedure when applied to x does not produce a sequence y 
such that y contains the same elements as x and y is sorted, then the 
procedure fails the test"). The description here gives no explic~t in-

12 We can define the property "sorted" by using three relations, "equals," 
"left of" and "less than": A sequence x is sorted if for any elements e and e' 
of x, e left of e' implies e less than e' or e equals e'; 
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formation as to how one should go about producing sort(x) if one is 
given an arbitrary sequence x. 

Given a predicate R (x,y) which describes a function f, Green 
(1969) identified four basic problems for the field of automatic 
programming, such that each problem can be stated using a first-order 
predicate calculus formula and such that each problem can be solved13 

by a theorem prover that has the ability to provide constructive proofs 
for existential formulas.14 The four basic problems follow. · 

Checking. This problem is stated to a theorem prover, using the 
formula R ( a,b), where a and b are two specific sequences of numbers. 
By proving R ( a,b) true or false, a theorem prover "checks" whether 
b = f(a). This problem does not require a theorem prover with the 
constructive-proof ability. 

Simulation. This problem is stated to a theorem prover, using an 
expression of the form 3xR ( a,x), where a is some specific sequence of 
numbers. By providing a constructive proof of the truth of this formula, 
a theorem prover "simulates" a program that sorts the sequence a; 
that is, it computes the value of f (a). 

Verifying. This problem is stated using the formula VxR(x,G(x)), 
where G is a program provided to the theorem prover by the person 
(or machine) who wants the problem solved. By proving the formula 
true, the theorem prover verifies that G correctly computes the function 
described by R. By constructively proving the formula false, the theorem 
prover shows that.G is not a correct program for the function described 
by R, and the theorem prover provides a value of x for which G 
needs "debugging." 

Program Writing. The formula for this problem is Vx3yR(x,y). 
By constructively proving that this formula is true, a theorem prover 
can provide a program for the function f described by R. By con­
structively proving the formula is false, a theorem prover would find 
a value of x for which f(x) would not be defined. 

Green considered in detail the use of an example-constructing 
theorem prover both to construct a program that computes a function 
described by a relation R and to prove the correctness of the program 
constructed. The theorem-proving program he used was QA3, and· the 
program he attempted to have it construct was one that sorted an 
arbitrary finite sequence of numbers. (Green used a different relation 

13 
• • • if it is decidable, and if the theorem prover has "infinite time and 

resources." 
14 See the preceding section for a discussion of theorem provers that provide 

constructive proofs for existential formulas. 
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R to describe the function "sort.") In addition to axiom clauses 
describing the relation R, QA3 must be given clauses that describe the 
primitive functions of the "target language" (in this case, LISP) in which 
the program for the function described by R is to be written. Waldinger 
and Lee's (1969) program, known as PROW, has built into it the 
axioms describing the primitive func,tions of LISP. PROW contains a 
special subprogram (which is not a theorem prover) for converting 
programs from one language into another. 

In order to develop programs that have loops or are recursive, 
both theorem provers must be given axioms for mathematical induc­
tion because, in general, one cannot specify an upper bound for the 
number of steps that might be required by an execution of such a 
program. It is therefore not possible to prove that a given program is 
correct by tracing through all possible executions of that program. 
Rather, a theorem prover must show that 

1. The program computes the correct value of f(x) for some 
value of x, say, x = a. 

2. There is a function s such that if the program computes the 
correct value of f(x) for a given value of x, then it also 
computes the correct value of f(y) for y = s(x). 

3. For any possible value of x there is a number n such that 
x = s(s(s( ... (s(a)) . ; . ) ) ), where sis applied n times. 

The function s is known as the successor function utilized by the in­
ductive proof.15 Proving condition 3 establishes that any possible value 
of x is, for some n (which may be dependent on x), an "nth. successor" 
of a. Proving conditions 1 and 2 establishes that the program computes 
the correct value of a and of any nth successor of a. Thus, the proof 
of the three conditions establishes that the program will compute the 
correct value of f(x) for arty possible value of x. 

In all work to date on automatic program writing, both s and the 
proof of condition 3 are, in effect, given to the theorem prover. The 
correct choice of a successor function and the proof of its validity are 
at the moment too difficult for automatic program writers. Currently', 
automatic program writers are capable of proving conditions '1 and 2 
(given s) only for programs that are very simple, such as a program 
that sorts an arbitrary sequence of numbers. 

However, the fact that inductive proofs can sometimes be ac-

15 The function s is often generalized to produce a set of possible successors 
to x. For this generalization the identity sign (=) in axioms 2 and 3 should be 
replaced by "is an element of" (e.) ' 
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complished by theorem provers is significant, especially when one 
investigates the extent to which people have been able to use inductive 
proofs to show properties (such as "correctness") of computer pro­
grams. Floyd, McCarthy and Painter, Manna, and others showed that 
mathematical induction can be used to prove the correctness of a variety 
of computer programs, including compilers and nondeterministic pro­
grams (note 6-6). The discussion of theorem-proving programs will 
be left at this point, with the observation that the problems of program 
writing can at least be stated formally and can often be solved in a 
formal manner by human beings. 

NOTES 

6-1. Some of those responsible for the development of predicate calculus 
and early work on meta-mathematics include Boole, Cantor, Russell, White­
head, Lewi~, Dedekind, Peano, Frege, Zermelo, Hilbert, Brouwer, Kronecker, 
Poincare, Tarski, Skolem, and Godel. The Bibliography contains selected 
references to current texts on mathematical logic by Kleene, Church, Prior, 
Quine, Shoenfield, Wang and others. (Also see Benacerraf and Putnam, 
1964; van Heijenoort, 1967.) 

6-2. Many-valued logics, modal logics, and fuzzy logics have often been 
suggested as the most realistic and desirable frameworks within which to con­
struct theorem provers. These logics differ from predicate calculus mainly 
in the inference rules they provide; their inference rules do not require that 
a sentence be completely and exactly true in order for it to be used in 
deriving other sentences. Rather, sentences are allowed to have many differ­
ent values besides "true" and "false." Thus, in fuzzy logic, the truth value 
of a sentence may be any real number between zero and one, inclusive 
("false" and "true," respectively). Space does not permit a detailed treat­
ment of these logics; the interested reader is referred to the works of Acker­
man (1967), McCarthy and Hayes (1968), Prior (1957), Quine (1961), 
Feys (1965), Zadeh (1965, 1968), and Tsichritzis (1968) cited in the 
Bibliography. Recently, R.C.T. Lee (1971) showed that the resolution prin­
ciple developed in this chapter can be used within a formalization of fuzzy 
logic. The discussion of "meaning" presented in Chapter 7 is relevant to 
many-valued logics. 

6-3. Green called this technique answer extraction. The present author 
prefers to use the phrases "constructive-proof generation" and "example 
construction," since these do not imply linguistic ability, an aspect of artifi­
cial intelligence that we have not yet discussed. However, it should be noted 
that Green's early papers were largely concerned with question-answering 
and the ability of machines to use natural languages. Also, the phrase "an-
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swer extraction" is in fairly common usage. Chapter 7 discusses the use of 
theorem provers within language-understanding systems. 

6-4. A third approach to planning was suggested by Kling, within the 
context of proving theorems by analogy. Suppose the theorem prover is 
given a proof for a theorem T' and required to find a proof for an analogous 
theorem T, and suppose that the proof for T' requires the establishment of 
certain "smaller" theorems or lemmas. The proofs of these lemmas are also 
given to the theorem prover. Kling suggested using an analogy generator to 
produce analogs for the lemmas associated with T", and having the theorem 
prover attempt to find proofs for these analogs. If proofs were found, then 
the clauses associated with the analogs could be used in the data base for T. 
To the present author's knowledge, Kling has not yet implemented this 
method. Indeed, his analysis ( 1971 a, pp. 145-148) suggested that ZORBA-1 
may not be suitable for such an implementation. However, the idea indi­
cates a way in which problem-reduction techniques might be used "by 
analogy" in theorem proving. 

6-5. In fact, for reasons that include both theoretical and practical limita­
tions, no theorem prover can be really complete. Even though a theorem 
may be logically implied by a set of axioms, we cannot guarantee that the 
theorem prover will eventually develop a proof for it, because of ( 1) the 
undecidability of the predicate calculus and (2) the limitations of space and 
time which affect the computational ability of any machine. (However, we 
shou!d /note that our first condition does not hold for the first-order predi­
cate calculus; given an arbitrary sentence and a set of axioms, the semi­
decidability of the first-order predicate calculus guarantees that, if the 
sentence is .logically implied by the axioms, a resolution-based theorem 
prover-given enough space and time-will eventually find a proof for it; 
on the other hand, if there is no proof for the sentence.:_that is, it is not 
logically implied by the axioms-such a theorem prover may not be able to 
disprove the s~ntimce, no matter how much space and time we give it.) 

6-6. A good survey of mathematical induction and the subject of auto­
matic program writing was given by Manna and Waldinger (1970). -They 
suggested partial-function logic (predicate calculus with "undefined" as a 
truth value; see McCarthy, 1963b) as the most natural .language for auto­
matic program synthesis. Other papers on the subject have been written by 
Balzer (1972), and Feldman (1972). Dijkstra (1965 et seq.) has devel­
oped the paradigm of structured programming as a framework within 
which to prove the correctness of programs. Recently, Scott ( 1971) and 
Milner (1972) have developed a mathematical logic of computation that is 
of great relevance to this subject. And, Sussman (1972) describes the gen­
eral structure of a CONNIVER program (called HACKER) for automatic pro­
gram writing. 

--·------------·---~---------·--------
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EXERCISES 

6-1. Show that U-+ V can be rewritten as 1/\ (U, IV). 

6-2. Find clause-form equivalents for the following formulas: 
(a) 'lx(P(x)-+ V (P(x),Q(x)) ). 
(b) (lvxP(x) )-+ ( 3:x IP(x)). 
(c) (Vx3:y 1\ (P(x) ,Q(x,y)) )-+ 3:xl\ (P(x),Q(x,x)). 

6-3. Find most general unifiers for each of the following sets of literals: 
(a) {Q(x,a,y) ,Q(a,x,y) }. 
(b) {P(x,f(x) ),P(g(x),a) )}. 
(c) {R(u,w,j(u) ),R(b;x,g(x)) }. 
(d) {W(z,c,/(y) ),W(a,x,z),W(f(y),u,g(x) )}. 

6-4. Use the resolution principle to derive contradictions from the negations of 
each of the following predicate calculus tautologies: 

(a) Vx(P(x)-+P(x)) 
(b) (13:xP(x) )-+ (VxiP(x)) 
(c) (VxV(P(x),Q(x}) )-+ (V((VxP(x} ),(3:xQ(x))) ). 

\ 

6-5. Construct a predicate calculus formalization for the Missionaries-and­
Cannibals Problem (Exercise 3-2); give a resolution-based proof that it is solvable 
and use the example-construction technique to find a solution. 

6-6. Present a predicate calculus formalization for the Mutilated Checkerboard 
Problem (Exercise 3-8), and describe how it might be used to prove the checker­
board cannot be covered by the tiles as required. 

6-7. (a) 'Present a predicate calculus formalization for the Confusion-of-Patents 
Problem (Exercise 3-3) and give a resolution-based proof that it is solvable. 
(b) Use the technique of example construction to find the solution to the problem. 

6-8. One nice aspect of the PLANNER "robot calculus" is that it allows a relation 
or a predicate to have a variable number of arguments. Give some real-world 
examples illustrating such relations. 

6-9. In the discussion of PLANNER theorems the following statement was pre­
sented: 

3:R3:Y[R(Y,Turing)-+ Y(Turing)] 

Find two English words that might plausibly be substituted for R and Y to make 

R(Y,Turing)-+ Y(Turing) 

a "reasonable" statement. 

6-10. (The King-and-the-Wizards Problem.) (a) Long ago, a wicked king was 
searching for a new wizard with whom to plot some devious schemes. He sum­
moned to him three wizards who seemed especially promising, and let them into a 
small room, which was barren except for a lighted candle on a table in the middle 
of the room. "Listen to me well," he said. "In a few minutes all of you will be 
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blindfolded, and I will paste upon each of your foreheads a uniformly colored 
spot of black or white paper. At least one spot will be white. The first of you who 
guesses the color of his own spot will become my new wizard, and ride in his 
own chariot, with all expenses paid. The other two of you will be sent to a terrible 
fate that I shall not describe. None of you will be allowed to remove any of the 
spots, and you will each be allowed only one guess." The king then ordered his 
guards to blindfold the wizards, proceeded to paste white spots on all the wizards' 
foreheads, and finally had their blindfolds removed. After a few seconds, one of 
the wizards correctly identified the color of the spot on his forehead. How did he 
know it? (b) Present a ·predicate calculus axiomatization for the wizard's reason­
ing. (c) What sort of thoughts might the other two wizards have been thinking? 

------·-------



"We could play at questions." 
-Rosencrantz, in Rosencrantz and 

Guildenstern Are Dead. (Stoppard, 1967) 

"Augustine describes the learning of human language 
as if the child came into a strange country and did not under­
stand the language of the country; that is, as i.f it already 
had a language, only not this one." 

-Wittgenstein, Philosophical Investigations. 

"I find it difficult to believe that whenever I see a tree 
I am really seeing a string of symbols." 

.:_McCarthy, in a discussion on grammatical 
inference and pattern recognition. 

"As a concluding remark: could this art be applied (we 
put the question in strictest confidence)-could it, we ask, be 
applied to the speeches in Parliament?" 

-Lewis Carroll, Photography Extraordinary. 

"There is of course no restriction in the memory format 
against having concepts without English names, and in fact 
[its] present memories necessarily include such concepts." 

-Quillian, describing the structure of 
the TLC computer program. (Quillian, 1969) 

''Danger of tumbling upwards be in deep-sea." 
-Protosynthex Ill, a computer program. 
(Schwarcz, Burger, and Simmons, 1970) 

"The challenge of programming a computer to use lan­
guage is really the challenge of producing intelligence." 

-Winograd, 1971. 

"In any case, these are but steps toward more graphical 
program-description systems, for we will not forever stay con­
fined to mere strings of symbols." 

-Minsky, 1970. 

"What does meaning mean?" 
-Anonymous. 

"Imagine a people in whose language there is no such 
form of sentence as 'the book is in the drawer' or 'water is 
in the glass', but whenever we should use these forms they 
say, 'The book can be taken out of the drawer', 'The water 
can be taken out of the glass'. 

-Wittgenstein, The Brown Book. 

"I have ·traveled more than anyone else, and I have 
noticed that even the angels speak English with an accent." 

-Mark Twain. 
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SEMANTIC 

INFORMATION 
PROCESSING 

INTRODUCTION 

This chapter is concerned with the ability of machines to use 
languages. We shall first discuss the nature of language, both as it is 
used by "living creatures" and as it is used by "machines", giving 
primary attention to two of the most important features that are pos­
sessed by human and computer languages: extensibility, and self­
reference. A conclusion will be drawn that, of all the machines and 
animals known to man, computers belong to the handful (also in­
cluding chimpanzees and dolphins) we might plausibly expect to learn 
our languages. 

Of predominant interest throughout this chapter is the ability of 
sentences in a language to have "meaning" to those who use the lan­
guage. A sentence that has meaning is said to contain semantic 
information.1 The third section of this chapter will describe how 
machines can "understand" and "create" sentences that convey 
semantic information, and will discuss computer programs that do this 
for sentences written in English. A collection of some of the conversa­
tions people have had with computers will be presented, primarily 

1 The "semantic information" of a sentence should not be confused with the 
"information" measure described in Chapter 2. (See note 7-7.) ··· 
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oriente<! toward the ability of computers to solve various kinds of 
problems stated in English. The final section takes up more general 
questions, relating the problems of language use and development to 
those of teaching and learning, pattern perception, and general 
problem-solving and reasoning programs. 

NATURAL AND ARTIFICIAL LANGUAGES 

Definitions 

To facilitate matters, we need some rough definitions for "lan­
guage," "sentence," and "meaning." These definitions will be refined 
and amplified throughout the rest of this chapter. 

A language is a set of sentences that may be used as signals to 
convey semantic information. The existence of a signal naturally im­
plies the existence of an emitter and a receiver (perhaps more than 
one) and of some "embodiment," or means of transmission for the 
signal. The meaning of a sentence is the semantic information it con­
veys. For a given sentence (signal), this information may vary with 
the situation in which it is used; in general, we can think of the meaning 
of a sentence as being a description of three things: ( 1) whatever 
causes the sentence to be used; (2) whatever is caused by the use of 
the sentence; (3) whatever else is described by the sentence. It is the 
task of those who use a sentence (the emitters and receivers) to "under­
stand" these elements of its meaning-for a computer that uses a 
sentence, "understanding" may be corresponded to making internal 
data structures (vectors, lists, graphs, programs, etc} that model these 
elements of the meaning of the sentence. "Communication" is a word 
we use to describe processes in which one or more sentences are trans­
mitted and understood. 

A few examples will clarify the concept of "meaning" that is ad-
vocated. Consider the following sentences: 

A. I have four aces. 
B. Our position is 10 miles north of yours. 
C. Elect me and I will end the war honorably. 
D. Eat cereal X and grow healthy and strong. 
E. Why? 
F. I love you. 
G. People who apply for marriage licenses wearing shorts or 

pedal pushers will be denied licenses." 
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H. The sum of 18 and 32 is 50. 
I. The equation x2 = -1 has a solution. 

Surely the "meaning" of these sentences is not something fixed or 
immutable. The meaning of a sentence generally depends as much on 
who utters it, and where, when, and to whom it is uttered, as it depends 
on the sentence itself. In understanding a sentence, one should attempt 
to model what causes the sentence to be transmitted, what the emitter 
of the sentences hopes that it will cause, etc., as well as what the sentence 
itself describes. 

Throughout, this chapter stresses the importance of model making 
in the processes of communication and understanding. However, the 
student should be warned that, especially for languages such as English 
and French, there is no current, complete explanation for how com­
puters should go about "understanding" sentences. The problems con- , 
nected with modeling the semantic information carried by sentences 
are as deep and complex as the situations these sentences may describe. 
This chapter can do little more than present some of the requirements 
that would have to be satisfied by an adequate formalism for "models 
of meaning," describe how computer programs currently approach the 
subject, and suggest how research might be continued (see note 7-1). 

It will serve us well to distinguish between two types of languages 
called natural and artificial languages. The differences between them lie 
mainly in . the uses that are made of them, and in the knowledge we 
have about them.3 Although both forms of language are of much in­
terest in themselves, our discussion will center on their relations to 
each other, and especially on the ability of artificial languages to 
"simulate" natural languages. By natural languages we refer to the 
languages that living creatures use. for communication, whereas by 
artificial languages we mean certain mathematically defined classes of 
signals that can be used for communication with machines. 

Natural Languages 

The natural languages constitute a very broad category, sirice 
communication processes are important to virtually every living system 
in existence. We may group natural languages into two large sub­
categories, and name them cell-level and organism-level natural lan­
guages. 

2 This example sentence is quoted from Kuno (1965). 
3 These are not necessarily differences of substance; probably the distinction 

between them will become less as our understanding increases. 
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The cell-level languages are evidently the oldest natural languages. 
The emitters and receivers that use these languages are living cells: 
The methods for transmission of sentences (signals) are primarily 
chemical and electrical. "Sentences" transmitted chemically correspond 
to molecules (often called "messenger molecules"), which may act by 
catalysis to affect processes in the receiver. One well-known group of 
such sentences is that of the RNA molecules, which typically carry 
information between parts of individual living cells. Very little is 
known about cell-level "molecular languages" except that there are a 
huge number of molecular sentences that can have "meaning" to living 
cells. It may be a long time before scientists can "understand" them. 
For more information on these languages, see Pribram ( 1971). 

Organism-level natural languages are much more familiar to us. 
The emitters and receivers that use these languages are living organisms 
(animals, plants, etc.) ; the means of transmission include chemical, 
visual, audial, and tactile techniques. Many species have acquired these 
languages, primarily to carry information about food, danger, and sex. 
Typically, the language used by the organisms of a given species will 
have only a small (say, less than 100) number of sentences or signals, 
and there will be no provision within the language for extending that 
number. Usually the organisms which use these languages do so in­
voluntarily, in automatic response to the presence of certain stimuli in 
their environments. 

The only known organism-level natural languages that are not so 
limited are mankind's spoken and written languages (English, French, 
Chinese, etc.). In theory, these languages possess an infinite number 
of possible sentences that can be used as signals by people. However, 
no one knows how many of the "possible" sentences are "meaningful" 
in practice. The best we can say is that the number may be "com­
parable" to that of the meaningful molecular sentences in cell-level 
languages. 

One major difference between human languages and those used 
by other organisms lies in the structural nature of the sentences we use. 
The sentences of any human language are essentially stringlike struc­
tures (sequences) of words. Spoken words are themselves essentially 
stringlike structures of phonemes (vocally producible sounds that 
constitute the "aiphabet" of the spoken language)'· whereas written 
words are often sequences of letter-symbols, which constitute the 
alphabet of the written language (note 7-2) . Various languages, of 
course, have different spoken and written alphabets. English has a 
written alphabet of 26 letters and a spoken alphabet of 48 phonemes 
(J. B. Carroll, 1964). 
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Currently, about 5,000 languages and dialects are spoken through­
out the world. The two most commonly spoken languages are Northern 
Chinese (or Mandarin) and English, which are used by about 600 
million and 350 million people, respectively. English is the language 
in most widespread use, being spoken by 10% or more of the popula­
tion in 29 countries; it is also the language with the largest vocabulary, 
containing about 490,000 words, plus another 300,000 technical terms 
(McWhirter and McWhirter, 1971). Estimates range on the maximum 
size of the individual human vocabulary; it is very likely that no in­
dividual uses more than 100,000 words (probably the boundary is 
lower, around 60,000)-normal literature written in English makes 
use of about 10,000 words, while well-educated conversation uses about 
5,000 words. Of course it is possible to converse rather well using much 
smaller vocabularies. Thus, "Basic English" (C. K. Ogden, 1933) 
contains only 850 words. The 1971 Guinness Book of World Records 
reports that the language with the smallest vocabulary is Taki taki, a 
South American language that uses only 340 words. 

The sentences in a language are always essentially sequences of 
words from the vocabulary of that language, but, typically, not every 
sequence of words constitutes a sentence. A set of rules that allows 
one to recognize the sequences of words that are sentences in a 
language is known as a grammar for that language.4 Grammars are 
said to describe the structural, or syntactic, nature of languages. 

Of course one wants to do more than simply recognize which 
sequences of words are sentences in a language; it is of primary im­
portance to be able to "understand" the sequences one recognizes. One 
of the major problems confronting linguistics today is development of 
an adequate theory of the relationship between the syntactic nature of 
a sentence (or set of sentences) and the semantic information it con­
veys. Two important approaches toward a solution of this problem 
are the theories of transformational grammar (Chomsky, 1959 et seq.) 
and systemic grammar (Halliday,l961 et seq.). This topic is discussed 
in the! next section, but for now it is important to note two "trivial'' 
things: first, the structural nature (syntax) of a sentence helps one 
determine its meaning; second, the meaning an emitter wants to convey 
helps determine the structure of the sentences that convey it. 

One of the most valuable aspects of human languages is their 
extensibility: The words and sentences of the English •language (for 
example) are not fixed. Rather, English (like most if not all other 

4 If the set of rules also enables one to recognize those sequences of words 
which are not sentences, then it is said to decide the language. It is possible for 
a language to be undecidable, that is, such that no grammar can decide it. 
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human languages) includes provisions for extending its own use. As is 
evident from the preceding paragraphs, t~e chief way in which English 
has been extended has been through the definition of new words. 
Another way is the introduction of new symbols (e.g., mathematical 
symbols). It is even possible to ·extend a language by adding to its 
syntactic nature. Thus, it is possible to use English sentences to define 
(at least partially) the words, sentences, and grammar of another 
language, such as German-this is precisely what an introductory 
English textbook on German will attempt to do. When English is ex­
tended in this way to include German sentences, the German sentences 
may be said to have been embedded in English. 

Closely related to the extensibility of human languages is their 
ability to be self-referencing. An English sentence (for example, this 
one) can refer to itself or to other sentences (e.g., all of the sentences 
in this book). In "understanding" the preceding sentence, one must 
understand the phrase "this one" (which refers to the entire sentence 
in which it occurs), and the phrase "all of the sentences in this book." 
One can find many other types of self-reference exhibited by English 
sentences. 

A third aspect of human (and many other) languages which should 
be mentioned is their redundancy. Any means of transmitting a signal 
may involve some "noise" that will tend to distort or degrade the signal. 
To convey the semantic information, one should, in effect, transmit the 
signal several times, because it is very unlikely that random noise will 
degrade the signal the same way every time. The receiver. can re­
construct the original signal by adopting a "majority vote" policy when 
comparing the signals he receives. Another way of using redundancy 
in an alphabetic language is to use more symbols than are needed to 
represent each word; with 26 letters one could, for example, represent 
each of 10 million words uniquely by a series of 5 letters. In fact, 
English uses considerably more letters than are necessary to represent 
each of its words. Finally, one can also obtain redundancy in a Ian-

. guage if its grammar provides sentences with "structural redundance" 
' (see Cherry, 1957). The redundancy of English is often quoted as 
about 50%; that is, an English sentence is usually decipherable even 
if each of its letters is blanked out independently of the others with any 
probability up to one-half. 

The importance of language to the development of human in­
telligence is a subject that deserves a great deal of attention, certainly 
more than can be offered in this book. Wherever people have formed 
societies, they have developed languages. The tendency to develop lan­
guages is one of the most important traits of our species. One of the 
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more remarkable things about it is the ability of the young child to 
learn the language of the society in which he is raised. Something about 
the way in which societies develop languages insures that practically 
every child will be able to accomplish the language-learning feat in the 
space of a few years. This has led certain scholars (Chomsky, 1966) 
to conjecture the existence of a universal grammar underlying all 
human languages, and which is naturally reflected somehow in the 
learning process of each person, to the extent that individuals are 
enabled to learn the language of their society without making too many 

Signs 
Como-gimme 

More 

Up 

Tickle 

Toothbrush 

Cat 

Key 

Baby 

Clean 

Description 
Beckoning motion, with wrist or 
knuckles as pivot. 

Fingertips are brought together, 
usually overhead. (Correct ASL 
form: tips of the tapered hand 
touch repeatedly.) 

Arm extends upward, and index 
finger may also point up. 

The index finger of one hand ia 
drawn . across the back of the 
other. hand. (Related to ASL 
"touch.") 
Index finger is used as brush, to 
rub front teeth. 

Thumb and index finger grasp 
cheek hair near side of mouth and 
are drawn outward (representing 
eat's whiskers). 
Palm of one hand is repeatedly 
touched with the index finger of 
the other. (Correct ASL form: 
crooked index finger is rotated 
against palm.) 
One forearm is placed in the 
crook of the other, as if cradling a 
baby. 
The open palm of one hand is 
passed over the open palm of the 
other. 

Context 
Sign made to persons or animals, 
also for objects out of reach. Of­
ten combined: "come tickle," 
"gimme sweet," etc. 
When asking for continuation or 
repetition of activities such as 
swinging or tickling, for second 
helpings of food, etc. Also used to 
ask for repetition of •orne perfor­
mance, such as a somersault. 
Wants a lift to reach objects such 
as grapes on vine, or leaves; or 
wants to be placed on someone's 
shoulders; or wants to leave pot­
ty-chair. 
For tickling or for chasing games. 

When Washoe has fini;hed her 
meal, or at other times when 
shown a toothbrush. 
For cats. 

Used for keys and locks and to 
ask us to unlock a door. 

For dolls, including animal dolls 
such as a toy horse and duck. 

Used when Washoe is washing, or 
being washed, or when a com­
panion is washing hands or some 
other object. Also used for 
"soap." 

Figure 7...:.1. Some signs used reliably by Washoe after 22 tnonths of 
training. (Gardner and Gardner, 1969, reprinted with permission.) 
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~ I ~ 
MARY SARAH MARY 

I * I INSERT 

• GIVE BANANA GIVE 

• Wt ~ PAIL 
APPLE 

* 
APPLE 

~ I INSERT 

• RANDY APPLE SARAH 
~ 

DISH 

Figure 7-2. Examples of the sequences of symbols used by Sarah. 
Reprinted from "The Education of Sarah" by David Premack in Psy­
chology Today Magazine, September 1970. Copyright © Communica-

tions/Research/Machines, Inc. 

wrong guesses. Such a grammar would also account for the similarities 
in syntax between the various languages that people have developed 
(note 7-3). 

Efforts have been made to teach human languages to other animals, 
but only recently have researchers achieved any success (note 7-4). 
For example, two chimpanzees have been taught to communicate with 
people by using "sign languages" (Gardner and Gardner, 1969; 
Premack, 1970). One chimpanzee, named Washoe, has learned over 
150 signs of the American Sign Language System, originally devised 
for the deaf and dumb; this is the language in which words are repre­
sented by movements and configurations of an individual's hands and 
fingers. Sarah, the other chimpanzee, has learned to communicate with 
sentences that consist of simple sequences of cards bearing printed 
symbols. Figures 7-1 and 7-2 show some of the signs and card 
sequences used by Washoe and Sarah. Neither chimpanzee is able to 
use very long or complicated sequences of signs or cards, although 
Washoe has been able to invent a few new signs that are now used by 
some people learning the language. 

Because our spoken and written languages are so familiar and 
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important to us, it is customary to call them the "natural languages," as 
distinct from other organism-level and cell-level natural languages. So, 
unless otherwise specified, the phrase "natural language" will refer 
henceforth only to spoken and written languages used by homo sapiens. 

Artificial Languages and Programming 
Languages 

Artificial languages are certain mathematically defined classes of 
signals that can be used for. "communication" with machines. Through­
out the rest of this section the reader will be introduced to those 
artificial languages that can be used for communicating with computers. 
These languages are generally known as programming languages. 
Chapter 6 has already given a brief description of programming lan­
guages (in particular, LISP and PLANNER). Programming languages have 
many properties that are analogous to those of natural languages. The 
next section reviews the attempts made by AI researchers to "unify" 
the artificial and natural languages; that is, to design machines with an 
ability to "communicate" in both kinds of languages. Here, however, 
the emphasis is on languages that are currently conventional for pro­
gramming (communicating with) computers. The major difference be­
tween these conventional artificial languages and natural languages is 
that the syntactic and semantic properties of the artificial languages are 
more thoroughly known (in the sense of being more rigorously formal­
ized, at least consciously) than are those of natural languages. 

Essentially, a programming language is a set of sentences (signals), 
each of which a computer may receive and store internally as a data 
structure. Data structures may have many "forms" (numbers, vectors, 
matrices, lists, graphs, etc.) and , may cause the computer to, perform 
many different "actions"-physically, a data structure is usually a col­
lection of electric or magnetic charges that can be sensed and altered 
by the computer. The syntactic nature of the programming language is 
given when we finitely describe the exact forms of its sentences and their 
data structures. The semantic nature of the language is given when we 
specify the actions that each data structure will cause to be performed. 
A data structure can cause the computer to perform actions in the 
external world (e.g., move a mechanical arm, or transmit electric 
signals to a printer) or it can cause the computer to create new internal 
data structures, or modify or erase those that are already present. If a 
data structure is causing the computer to perform actions, then it is 
called a program; otherwise, we may simply call it data. It should be 
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noted that the distinction is not always a particularly good one: The 
same data structure may be a program and also be data that the com­
puter manipulates. And, though it is a good approximation to say that 
data structures "cause" computers to perform actions, this is not the 
entire truth. Whatever action is caused when the computer meets a 
data structure is as much dependent on the computer as it is on the 
data structure. 

To illustrate this, let us recall the model that was introduced in 
Chapter 2 for computers. That chapter defined Turing machines and 
showed how a universal Turing machine could simulate any given 
Turing machine. Also described were polycephalic universal Turing 
machines, which were credited as a better model for modern com­
puters. In the context of the current discussion, consider any collection 
of symbols printed on the (possibly n-dimensional) tape(s) of a 
polycephalic universal Turing machine to be a "data structure." It is 
clear that this agrees with what has been said above about data 
structures; that is, some of the symbols on the tape of the universal 
Turing machine may be a "program" and cause the machine (com­
puter) to perform actions. However, it is also clear that the actions 
performed by the machine at a given moment depend as much on the 
"state" of the machine as on the symbols that it reads with its tape­
heads; and it is clear that the same data structure might "cause" dif­
ferent machines to perform different actions. 

Let us continue to use the (universal, polycephalic) Turing 
machine formalism to discuss programming languages and computers, 
taking care to observe some ways in which modern computers deviate 
from the model, as well as ways in which they satisfy it. The reader may 
recall that in Chapter 2 the notion of a "descriptive string" was intro­
duced to show how a universal Turing machine could simulate a given 
Turing machine; namely, the next-move function of any Turing machine 
(say, T) can be described using a finite string of blanks and 1 's, called 
a "descriptive string" for T. If this descriptive string is placed ap­
propriately on an otherwise blank tape of an appropriate universal 
Turing machine (say, U), then U will use the descriptive string for T 
in such a way that U will simulate T; that is, U will manipulate data 
structures on some of its other tapes just as would T. However, T may 
itself be a universal Turing machine and thus it is possible to have a 
machine U simulate a machine T simulating a machine T', etc. A Turing 
machine (simple, universal, polycephalic, or whatever) is basically a 
procedure for manipulating symbols on tapes (i.e., data structures) . 
"Descriptive strings" are basically data structures that describe pro­
cedures (Turing machines). A universal Turing machine is a Turing 
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machine that can use descriptive strings to carry out the procedures 
they describe. In this sense, a program is basically a descriptive string 
that can be used by some universal Turing machine. 

Thus we may consider the set of descriptive strings (programs) 
that can be used by a given universal Turing machine D to be a language 
that is "understood" by D. Each descriptive string is a sentence that D 
understands; the "meaning" of a given sentence (program) is the 
procedure it describes; D may demonstrate its understanding of this 
meaning by carrying out the procedure. Imagine a person "communicat­
ing" with Din the following way: the person (whose name will be A) 
has a means of printing symbols5 on the squares of one of D's tapes, 
called the input tape; the signals that A transmits to D are precisely the 
symbols A decides to print; in addition, A has the ability to read all 
symbols that are printed on one of D's tapes which will be called the 
output tape. A may decide that D "understands" a language of descrip­
tive strings if whenever A prints a sentence of that language on D's input 
tape, D eventually prints, on its output tape, the result of carrying out 
the procedure described by A's sentence. (Of course, if A has some 
knowledge about the "internal workings" of D (its next-move function, 
or the symbols printed on its other tapes), then A may well decide that 
D understands a given programming language, without very extensively 
performing this experiment.) 

It should be emphasized that there is more than one way to de­
scribe a given Turing machine. Chapter 2 presented a very simple way 
to describe the next-move function of any given Turing machine; that 
way produced, for each Turing machine, a simple string of blanks and 
1 's. In essence, this was a description of a programming language, 
the sentences of which were strings that could be used by an "ap­
propriate" universal Turing machine to carry out the procedures they 
described. Besides the "blank-one language" presented in Chapter 2, 
one can certainly design other programming languages for describing 
procedures. Furthermore, orte can certainly design universal Turing 
machines that would not "understand" the blank-one language but 
would understand some other language for describing procedures. In­
deed, the major difference between modern computers and poly­
cephalic universal Turing machines is that computers understand 
languages that are much simpler and easier for people to use (when 
describing complicated, useful, "real-world" procedures) than is the 
blank-one language. What all these languages have in common is that any 

5 This includes blanks; that is, A has the ability to erase symbols previously 
printed on the input tape. 
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COMPUTER HARDWARE 

BITS b, 0 0 

b6 0 0 

b, 0 1 

b4 b3 b2 bl Column 

+ + + + 
- 0 1 
Row 

t 
0 0 0 0 0 NUL DLE 
0 0 0 1 1 SOH DC1 
0 0 1 0 2 STX DC2 
0 0 1 1 3 ETX DC3 
0 1 0 0 4 EOT DC4 
0 1 0 1 5 ENQ NAK 
0 1 1 0 6 ACK SYN 
0 1 1 1 7 BEL ETB 
1 0 0 0 8 BS CAN 
1 0 0 1 9 HT EM 
1 0 1 0 10 LF SUB 
1 0 1 1 11 VT ESC 
1 1 0 0 12 FF FS 
1 1 0 1 13 CR GS 
1 1 1 0 14 so RS 
1 1 1 1 15 Sl us 

SYMBOLS 

Null 
Start of Heading (CCI 
Start of Text (CC) 
End of Text (CC) 
End of Transmission (CC) 
Enquiry (CC) 
Acknowledge (CC) 

0 
1 

0 

2 

SP 
! 

" 

# 
$ 
% 
& 

( 

) . 
+ 

-

I 

Bell (audible or attention signal) 
Backspace (FE) 

0 1 
1 0 
1 0 

3 4 

0 @ 

1 A 
2 B 
3 c 
4 D 
5 E 

6 F 

7 G 
8 H 

9 I 

J 
; K 

< L 
= M 

> N 

? 0 

NUL 
SOH 
STX 
ETX 
EDT 
ENO 
ACK 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 
so 
Sl 

Horizontal Tabulation (punched card skip) (FE) 
Line Feed (FE) 

SP 

Vertical Tabulation (FD) 
Form Feed (FE) 
Carriage Return (FE) 
Shift Out 
Shift In 
Space 

ABBREVIATIONS 
(CC) Communication Control 
(FE) Format Effector 
(IS) Information Separator 

1 

0 
1 

5 

p 

Q 

R 

s 
T 
u 
v 
w 
X 
y 

z 
r 
\ 
l 
~ 

-

OLE 
DC1 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 
CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
us 
DEL 

1 1 
1 1 

0 1 

6 7 

p 

a q 

b r 

c s 
d t 

e u 

f v 
g w 
h X 

i y 

j z 
k { 
I I 

m } 
n "' 
0 DEL 

Data Link Escape (CC) 
Device Control 1 
Device Control 2 
Device Control 3 
Device Control 4 (Stop) 
Negative Acknowledge (CC) 
Synchronous Idle (CC) 
End of Transmission Block (( 
Cancel 
End of Medium 
Substitute 
Escape 
File Separator (IS) 
Group Separator (IS) 
Record Separator (IS) 
Unit Separator (IS) 
Delete 

Figure 7-3. The ASCII "alphabet" for programming languages. 
(Chapin, 1971, reprinted with permission.) 
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procedure which can be described in the blank-one language can also 
be described in the languages that are understood by real computers, 
and vice versa. Thus, in theory a computer can perform exactly those 
procedures that can be carried out by a universal Turing machine. If, 
for any Turing machine, a programming language contains at least one 
sentence that describes the procedure carried out. by that Turing 
machine, then the programming language is said to be a universal 
programming language. Again, however, a language can be a universal 
programming language only with respect to some computer (universal 
Turing machine) that "understands" it, or in other words, one having 
the "language capability" for that language. 

The discussion so far describes the "semantics" of programming 
languages. In the next few pages the "syntactics" of these languages 
will be described. 

With respect to syntactics, note first that all programming languages 
used by real computers6 make use of sentences that are essentially 
strings (sequences) of symbols. In other words, they use "descriptive 
strings," though these descriptive strings consist of many other symbols 
besides "blank" and "1." Figure 7-3 shows a set of symbols that may 
currently appear in the sentences (programs) of universal program­
ming languages. One may transmit strings of these symbols to the 
computer by typing them out on a typewriter connected to the com­
puter, or by "feeding" the computer a deck of appropriately punched 
cards, etc. (The reader should note that each of these symbols is 
actually converted into a seven-place string of zeroes and ones when it 
is read into the computer; the "code" for making this conversion is 
indicated in Fig. 7-3.) A total of 128 symbols make up this. "alphabet" 
of current programming languages. 

As stated before, a programming language must contain at least 
one program describing each Turing machine, if it is to be "universal." 
However, there are an infinite number of different Turing machines and 
therefore a universal programming language must contain an infinite 
number of programs, or sentences. A proper description of the syntactics 
of the language must describe the structural nature of each of its sen­
tences. This can be done either by presenting all of the sentences in 
the language or by giving some set of rules that could be used to con­
struct any sentence belonging to the language; given enough time, yet 
could not be used to construct a sentence not belonging to the language. 
S:uch a set of rules is called a grammar for the language. To properly 

6 There is no reason why the sentences of a programming language would 
have to be stringlike structures; indeed, some researchers have suggested that 
eventually other types of structures will also be used (e.g., Minsky, 1970). In 
the fourth section of this chapter, languages with sentences of more general struc­
tural nature will be discussed. 
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describe the syntactics of a universal programming language it is clear 
that we must present a grammar for that language. Several different 
kinds of grammars for describing languages have been developed (see, 
e.g., Chomsky, 1959; Post, 1944; Backus, 1959). A formalization for 
the Chomsky phrase-structure grammars will be presented. For the 
reader who wishes to skip the mathematics of this foimalization (which 
is based on that given by Hopcroft and Ullman, 1969), the ordinary 
discourse will be resumed in the later section entitled "Grammars, 
Machines, and Extensibility." 

String Languages 
If V is a set of symbols, then V* represents the set of all finite 

strings composed of elements from V. A string is an ordered series of 
symbols (i.e., for some n, an ordered n-tuple). Thus, if V = {0, 1}, 
then V* = {£, 0, 1, 01, 10, 00, 11, 111, 101, ... }, where € represents 
the empty string, which does not contain 'any symbols. We stipulate 
that € is always an element of V*, for any V, and use V+ to denote 
V* - { €}. A language L on the alphabet V is then any set L that is a 
subset of V*; that is, L <;;; V*. 

A grammar G is defined to be an ordered quadruple 

G = (VN,VT,P,S) 

satisfying the following conditions: 

1. V N• V 1·,P are finite sets. 
2. V N n V T = cf> (no elements belong to both V N and V T). 
3. S€V N (Sis called the start symbol). 
4. V N and V T are sets of symbols. (The symbols belonging to 

V N are referred to as production variables, and those belong­
ing to V T are referred to as terminals. The alphabet of G is 
VNU Vp.) 

5. P is a set of written expressions of the form rx ---+ f3 (or equiva­
lently, ordered pairs of the form (rx,f3) ), where <X€V+ and 
f3€V*. 

It is customary to use capital Roman (italic) alphabet letters for 
production variables and to use lower-case letters at the beginning of 
the Roman (italic) alphabet for terminals. Strings of terminals are 
represented by lower-case letters near the end of the Roman alphabet; 
strings of production variables and terminals are denoted by low_er-case 
Greek letters. 

If rx and f3 are two strings, then rxf3 denotes the string obtained by 
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writing down all elements in a, followed by all elements in (3. Thus, if 
a= abc and (3 = def, then a(3 = abcdef and (3a = defabc. 

We can now proceed to define the languageL(G) generated by a given 
grammar G. To accomplish this, we need two mathematical relations, (f 
and f , which can exist between strings in V*. The first relation is defined 
as follows: If a ---4 (3 is an element of P, and 'Y and o are any strings in V*, 
then ")'ao is said to directly derive 'Yf3o, and we write ")'ao 7J 'Yf3o. The re­
writing rule or production rule a ---4 (3 is said to be applied to the string 
")'ao to obtain 'Yf3o. 

The second relation, ~·. is defined as follows: For two strings a and 
(3 in V*, we say that a~ (3 (a derives (3) iff we can obtain (3 by the applica­
tion of some finite number of production rules in P to a. That is, d f•p 
iff there exist in V* strings 'Y1. 'Y2. • . • , 'Y" such that a 1r 1'1, 1'1 o> 'Y2, 
• • • , 'Yn-1 G 'Yn, 'Yn G {3. 

The language L(G) generated by the grammar G is now defined 
to be 

* * L(G) = {wJwEVT" and Sow} 
In other words, a string w is in L(G) if it is made up entirely of termi­
nals and it can be derived from S. If w can be derived from S, then a 
sequence of strings 

S, 'Yl, 1'2, • • • , 'Y "' w 

such that S a 1'1, 'Y1 'G 1'2, ••• , 'Yn a w is known as a derivation of w 
in the grammar G. (If it is clear which grammar is involved, we use=> 
for G' and ~.for~·.) 

As an example, consider the grammar G1 = (VN,VT,P,S), where 
VN = {S,A},VT = {0,1} and P contains the following production rules. 

1. s~Al 
2. s~so 
3. A~so 
4. s~o 
5. s~I 
6. A~o 

The language L(G1 ) generated by this grammar contains all finite 
strings made up of O's and l's in which there are no consecutive l's. 
To illustrate, t_he string 10010 may be derived from S as follows: 

Given: S 
Apply Rule 2: SO 
Apply Rule 1: AlO 
ApplyRule3: SOlO 
Apply Rules 4, 2: SOO 10 
Apply Rule 5: 10010 
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The reader may prove as an exercise that any string of O's and 1 's in 
which there are no consecutive 1 's can be derived in this grammar from 
S. (Suggestion: Use mathematical induction on the length of a string.) 

For another example, let 

G2 = (VN,VT,P,S) 
VN = {S,B,C} 
VT = {a,b,c} 

and let P contain the following rules. 

1. s~aSBC 
2. s~aBC 
3. CB~BC 
4. aB~ab 
5. bB~bb 
6. bC~bc 
7. cC~cc 

To describe the language generated by this grammar we need to 
introduce some new notation: If ex is a string, then the expression exn 
refers to the string ex ex· • ·ex, in which ex is repeated exactly n times. The 
language L(G2 ) then contains the string a"b"C' for each n:::::,.. 1, and no 
other strings. 

To obtain a given string a"b"c", we work in the following fashion. 
Given: S 
Apply Rule 1 n- 1 times: a"-1S(BC)n-1 

Apply Rule 2: a"(BC)" 
Apply Rule 3 as often a"B"C 

as necessari: 
Apply Rule 4: a"bB"-1C 
Apply Rule 5 n- 1 times: a"b"C" 
Apply Rule 6: a"b"cC"-1 

Apply Rule 7 n - 1 times: a"b"c" 

We now demonstrate that L(G2 ) does not contain any strings other 
than those of the form a"b"c": first of all, we know that any derivation of 
a string must start from the symbol S. Note that, given· S, we cannot 
apply rules 4, 5, 6, or 7 until we apply rule 2. And, once rule 2 is applied, 
we can no longer use rules 1 or 2. A (nontrivial) derivation, then, must 
start with the use of rule 1 and be followed by a series of applications 
of rules 1 and 3 until the application of rule 2. (We could, of course, 

7 "Necessary"= n(n- 1)/2 times. (Why?) 
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start our derivation with rule 2, in which case only the string abc can be 
produced.) The string now consists of n a's followed by some ordering 
of n B's and n C's. After applying any of rules 3 through 7 any num­
ber of times, the string will still have the form ~{3, where ~consists entirely 
of terminals and f3 is a nonempty string consisting entirely of B's and C's. 

Now, if all the B's are converted to b's before any C is converted to 
a c, the string will have the form a"b"C, and the only string of terminals 
that can possibly be derived from this is a"b"c''. So, we may assume that 
some C is converted to a c before all the B's are converted to b's; the 
string now has the form of a"b'c~, where i <n, and ~ is a string of B's 
and C's (including at least one B). The only rules that can now be applied 
are rules 3 and 7; their use can result only in a string of the form a"b'c1 ~ 
(where i <nand j L n), such that~ contains at least one B. They are 
still the only rules that can be applied, and their use continues to give a 
string of the same form; therefore we conclude that a string without 
variables cannot be produced if a C is converted to a c before all B's 
are converted to b's. Thus, L(G2 ) = {a"b"c"jn:::::,.. 1}. 

As an exercise, the reader should inspect that the grammar 
G3 = (VN,Vp,P,S), where Vn = {S,A,B,C},VT = {a,b,c}, and P con­
tains the following rules. 

1. s~aAC 
2. s~ac 
3. A~aAB 
4. A~aB 
5. c~bc 
6. Bb~bB 
7. B~bcc 

This grammar also generates the language of all strings of the form 
a"b"c", n:::::,..l. Grammars that generate the same language are said to be 
equivalent. 

It is possible to distinguish between different types of grammars 
on the basis of their sets of production rules. The reason for making 
the distinction is that there exists a correspondence between each type 
of grammar and a certain type of machine. 

If every production rule in a grammar is of the form A ~a or 
A~aB, then the grammar is said to be a type 3, or regular, grammar, 
and to generate a type 3, or regular, language. (An example is the 
grammar G1 above.) If every production in a grammar is of the form 
A~a, such that A is a production variable and ~ E V+, then the gram­
mar is called a type 2, or context-free, grammar (and it generates a 
type 2 or context-free language). Finally, if every production in a gram-
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mar is of the form rt~/3 such that the number of symbols in the string 
f3 is always greater than or equal to the number of symbols in the string 
rt, then we have a type I, or context-sensitive, grammar (generating a 
type 1, or context-sensitive, language). 

The reason for the type definition "context-sensitive" is that the 
class of languages generated can be shown to be the same if we define 
instead that the production rules in a context-sensitive grammar be of 
the form rtAy~rtf3y, where A E V N,/3=1=£, and a, {3, and y are in V*. In 
other words, if A appears "in the context of" rt and y, it can be replaced 
by (3. Examples of context-sensitive grammars are G2 and Ga, dis­
cussed above (and also G1 ; every type 3 language (grammar) is also 
type 2; every type 2 language (grammar) is also type 1 ) . 

If no restrictions are placed on the form of the production rules of 
a grammar (other than the necessary ones, a E v· and f3 E V*, for any 
rule a~/3), it may be referred to as a type 0 or "general" phrase-struc­
ture grammar (and the same names are given to the language it gen­
erates). 

Grammars, Machines, and Extensibility 

The basic correspondence between grammars and machines can 
be fairly simply described, making use of the concepts of "input tape" 
and "output tape" given earlier. We say a machine accepts a lan­
guage iff whenever any sentence ot.the language is placed on the (other­
wise blank) input tape of the machine, the machine eventually prints a 
"1" on its (otherwise blank) output tape and halts. In essence, a machine 
that accepts a language L is a "procedural embodiment" of a grammar 
for that language. It can be shown that a phrase-structure language is 
of type 0 iff there is a Turing machine that accepts it. (See the Exer­
cises.) Three special types of Turing machine can be defined-linear 
bounded automata, pushdown automata, and finite-state automata (see 
Chapter 2)-and it can be shown that they correspond to acceptors 
for the context-sensitive, context-free, and regular languages, respec­
tively. 

Of course it is desirable to do more than merely recognize that a 
given sentence belongs to a language, especially if we are concerned 
with programming languages. It is also necessary to "understand" the 
sentence itself, and implement the procedure it describes. A computer 
may come by this understanding automatically, just as the universal 
Turing machine described in Chapter 2 would be automatically able to 
implement the procedure described by a sentence in its "blank-one" 
language. In essence, the understanding of that language was "wired 
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in" with the next-move function of the machine. In general, every com­
puter will be able to understand some programming language in this 
automatic sense; the programming language that is "wired in" to a com­
puter is commonly known as its machine language. 

It is natural to ask whether a computer can understand program­
ming languages other than its machine language. The answer to this 
question is yes. Let's suppose we have some computer U which has 
as its machine language the programming language L, and that we want 
U to be able to "understand" sentences in another programming lan­
guage, L'. We assume that L' is at least type 0, and may be type 1, 2, 
etc. (See note 7-5.) Because U is universal, and because L' is type 0, 
we know that we can write a program (find a sentence in L) that de­
scribes a procedure which will accept the sentences of L'. Also, we 
know that U will be capable of implementing this procedure. Thus, we 
can "program" U to accept the sentences of L'. In fact, however, it is 
possible to do more. Given a description of a grammar G' for L' and a 
sentence w' in I:', we can "program" U to find the derivations of w' 
with respect to the grammar G'. Normally there will be only one such 
derivation and it will provide structural information about the procedure 
described by w' that can be used to construct a sentence w, in the lan­
guage L, which describes the same procedure. (The sentences w and w' 
are said to be computationally equivalent.) One can attempt to describe 
the procedure by which the sentence w is produced from the sentence 
w', and generalize to a procedure that will produce a computationally 
equivalent sentence in L, given any sentence in L'. If this general pro­
cedure (called a translator from L' to L) can be described by a sentence 
p in L (and we know that it can be, if L is a universal programming 
language), then p can be used to extend the "language capability" of 
the computer U. If we give p and any sentence of L' to U, that sentence 
of L' will be converted into a sentence of L and the procedure it de­
scribes can then be implemented by U (notes 7-6, 7-7). 

Thus, it is possible to find sentences in L which will "extend" the 
language capability of U, just as it is possible to find sentences in 
English that a person can use to extend his own language capability. 
When one looks at a modern computer one sees a hierarchy of languages 
L, L', L'', L"', ... that are each ultimately embedded in the machine 
language of that computer. We can now make use of many different 
kinds of programs ("compilers," "interpreters," etc.) for extending a 
computer's language capability (see Earley and Sturgis, 1970; Irons, 
1970). 

Again, the reason for extending the language capability of a com­
puter is not exactly that the computer will thereby be able to do things 
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it could not do before; in theory, one universal programming language 
is just as good as another, because every universal programming lan­
guage describes the same class of procedures (namely, those that can 
be carried out by Turing machines). In practice, however, we find that 
any given universal programming language will provide very simple 
sentences describing some procedures and very complex sentences 
describing other procedures. Thus, a "blank-one" sentence describing 
a Turing machine procedure for matrix multiplication would be very 
long and difficult for a person to handle. The. same procedure may be 
described simply in other universal programming languages such as 
FORTRAN, ALGOL, and SAIL. Since people want to be able to describe 
procedures like matrix multiplication easily, it is customary to extend 
the computer's language capability to include these "higher-level" lan­
guages (note 7-8). 

In addition to this extensibility, one can design programming lan­
guages to facilitate the use of programs with "self-reference." Thus, 
"recursive programs" are easily described in LISP. However, no one 
really knows the precise relationship between the self-reference of recur­
sive programs and the self-reference of natural-language sentences. 
Also, it is possible to design programming languages with "redundancy" 
(e.g., "error-coding" of instructions; see Lucky, 1969). 

Universal programming languages have, in one way or another, 
two of the most important characteristics that are possessed by human 
languages: extensibility and self-reference. These characteristics are 
not possessed in any form by any other known organism-level language. 
So, it may not be so surprising to read in the next section that com­
puters can now understand human languages much better than monkeys 
can. 

PROGRAMS THAT "UNDERSTAND" 
NATURAL LANGUAGE 

Five Problems 

In the preceding section we saw how it is possible to extend the 
"language capability" of a computer so it can understand programming 
languages other than its machine language. To make such an extension, 
the computer might be given a sentence (program) in some program­
ming language that it already understands (e.g., its machine language) 
that will enable it to "translate" sentences in the new language; that is, 
convert them into sentences it can already understand. Because such 
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a "translator" sentence (program) describes a procedure for under­
standing the new language, we often say that the sentence itself "under­
stands" the language, even though in fact the understanding results 
from the interaction of the translator sentence and the computer. Thus, 
it is common to talk of programs that understand languages. 

It is natural to ask how far the language capabilities of computers 
can be extended. For example, is it possible to write programs that 
understand the natural languages spoken by humans? Can we extend 
the language capabilities of a computer to the extent that it becomes 
possible for us to describe in English the procedures we wish it to per­
form? Can English be used as a "programming language" for a com­
puter? If this could be done, people would not have to learn special 
programming languages in order to make use of computers, and the 
utility of computers might be greatly increased. 

Artificial intelligence research is currently concerned with prob­
lems such as how to program computers to answet questions stated in 
English (or other natural languages), solve problems stated in English, 
and participate in English conversations with people (or, for that mat­
ter, other computers). Ultimately, AI research may consider a variety of 
more difficult problems, such as whether computers can translate from 
one natural language to another (note 7-9), perform complicated 
secretarial work (e.g., take dictation), or play "language games" (note 
7-10). Although the emphasis here is on current achievements and 
problems, it is well to keep the "more difficult" ones in mind ( cf. Poly a, 
1945). The evidence presented suggests that all of these problems may 
eventually be solved (note 7-11). 

Before continuing, the reader should note that this discussion will 
not deal with the machine understanding of spoken languages, even 
though reference will often be made to the "speaker" of a sentence, 
simply to follow a convention. Techniques for enabling computers to 
hear, understand, and make spoken words and sentences are still in a 
relatively primitive state of development. The reader who is interested 
in this subject should refer to Astrahan ( 1970), Bobr9w ( 1968), Denes 
and Mathews (1968), D. R. Hill (1967), and Mermelstein (1969). 

Unless otherwise stated, the discussion throughout this section 
will always be concerned with computer programs that "understand" 
English sentences (usually submitted via a computer terminal), which 
will be simply called "language understanding programs." In the sub­
sequent pages a variety of such programs will be discussed. The ap­
proach and terminology are largely modeled after that of Winograd's 
( 1971, 1972) work, which the reader is encouraged to consult. Space 
does not permit complete descriptions of each of the many language-
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understanding programs that have been written, so instead an attempt 
is made to summarize the most important approaches that have been 
followed in their design. However, special attention is given to 
Winograd's program, one of the most linguistically powerful. 

Each language-understanding program may typically be said to 
confront four highly interrelated problems: a syntax problem, a seman­
tics problem, an inference problem, and a generation problem. (The 
question of how these problems are interrelated, and of what use a 
language understanding program should make of this interrelation, is 
itself a fifth problem faced by these programs, which will be referred 
to as the integration problem.) To see how these problems arise, re­
turn to the discussion ,of "understanding" and languages. The viewpoint 
presented in the early pages of this chapter was that one "understands" 
a sentence in a language by making a model of its "meaning." Mention 
was made of three aspects of a sentence's transmission which should 
be considered as elements of its meaning: the things that cause the 
sentence to be transmitted (e.g., the speaker's "motives" for using the 
sentence); the things that the sentence causes when it is transmitted 
(e.g., the sentence might tend to have an "emotional effect" when it is 
used); the things that the sentence describes (e.g., objects, events, con­
cepts, procedures, other sentences, or an attitude or wish held by its 
speaker). It is clear that with this interpretation the "meaning" of a 
sentence is highly dependent on the situation in which it is used. 

However, some things about a sentence do not usually depend on 
the situation, or "context" of its use: namely, the sequence of words and 
letters that make up the sentence itself, the possible derivations (or 
"parsings") of that sentence in one's grammar for English, and the set 
of possible "meanings" of the words in the sentence (which is what 
makes dictionaries useful). These relatively constant attributes (the 
latter two are of course variable, by the extensibility of natural lan­
guages) of the sentence help us determine its "meaning," if we also 
have knowledge about the "situation." 

The syntax problem has two basic s11bproblems: What is a good 
grammar for English? How should we obtain the parsing(s) of a sen­
tence? The semantics problem is that of finding a good formalism in 
which to express models for "meanings" and "situations." The inference 
problem has three basic subproblems: How can we use our model for 
the "situation" and the constant attributes of a sentence to make a model 
of its meaning? How do we change our model of the "situation" when 
we determine the "meaning" of a sentence we receive? How do we 
determine the "meanings" that we wish to convey, given that we have 
determined models for the current "situation" and the "meanings" of 
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the sentences we've received? The generation problem is that of finding 
and transmitting sentences that will have the "meanings" we wish to 
convey. (The semantics and inference problems are often jointly 
referred to as the representation problem.) 

If in the sentences of the preceding paragraph we substitute "the 
computer" for "we," then we obtain the basic problems that confront 
AI researchers who attempt to make programs that understand English. 
None of these pro.blems has yet been completely solved, ifwe make a 
comparison with human abilities to converse, nor is this surprising. 
Natural languages are designed to be useful in almost the full range of 
situations that people encounter, whereas computers currently are 
acquainted with a relatively small range of situations. Success in achiev­
ing language-understanding programs is limited by the extent to which 
computers can be enabled to reason about real-world situations. An ex­
ample due to Schank (1971a,b) is 

"We saw the Grand Canyon flying to Chicago." 

This sentence is syntactically ambiguous (has two equally plausible 
parsings) unless the computer knows something about the real-world 
nature of locations and the ability to fly. 

Subsequent pages review the approaches that have been used in 
designing language-understanding programs that can solve these prob­
lems. A brief collection of conversations with computers, to illustrate 
the success AI researchers have had to date, will then be presented. The · 
next section discusses some of the "open questions" that still remain, 
concerning the relevance of "semantic information processing" to artifi­
cial intelligence in general. 

Syntax 
The earliest language-understanding programs, which were writ­

ten for the purpose of mechanical translation (note 7-10), were de­
veloped before linguists had achieved any very precise theories of syntax 
for natural languages. Certainly the theories that then existed were not 
precise enough to suggest explicitly how computers Should be pro­
grammed to understand natural languages. As a consequence, the de­
signers of those programs were forced to produce their own ad hoc 
systems for parsing sentences (i.e., parsers). Because they lacked a 
comprehensive plan for designing their programs, the programs tended 
to become more and more complex, difficult to understand and debug, 
and difficult to improve; therefore the programs eventually had to be 
abandoned, during the latter part of the 1950s. After that time, and 
until 1968, designers of language-understanding programs followed 
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either of two main approaches to the basic problems of syntax: the 
restricted pattern-matching approach and the context-free approach. 

The restricted pattern-matching approach consisted essentially of 
accepting the limitations on syntax that were implied by the lack of a 
good formalism for expressing and using grammars for English. The 
researchers who followed this approach (including Bobrow, Raphael, 
and Weizenbaum) recognized that the syntax problem would still have 
to be solved eventually by really general language-understanding pro­
grams, but they managed to show that interesting linguistic behavior, 
relating to the other basic problems of semantics and inference, can be 
obtained even if only minimal solutions to the syntax problem are pro­
vided. The language-understanding programs they developed did not 
really use "grammars" in any general sense, nor did they parse sen­
tences. Instead, these programs were designed to extract semantic 
information from sentences by matching them against any. of a small, 
prespecified, constant number of "templates" or "forms." Examples of 
the forms used by Bobrow ( 1968) -which he called "linguistic 
forms"-are " ___ and ___ ," " ___ equals ___ ," " ___ 's 
father," "salary of ___ ," "not ___ ," " ___ gave ___ to ___ ," 
etc. Bobrow's program (known as STUDENT) was designed to follow a 
relatively rigid procedure of successively "filling in blanks"; thus, it 
might "parse" the sentence, "The salary of John's father equals 100 
dollars," by filling in blanks as in Fig. 7-4. It should be clear that 

John 

__ + __ 's father 

100 

the salary of I __ + __ dollars 

equals 

Figure 7-4. Pattern-matching for the sentence "The salary of John's 
father equals 100 dollars." 

STUDENT had a "recursive" ability to fill in blanks; the blanks of a given 
template might be filled in by other templates. As STUDENT matched a 
given sentence· against its collection of linguistic forms, it could be 
guided by the matchings it obtained in a process of setting up an 
algebraic equation to represent the relationship between the "variables" 
of the sentence (e.g., "John"). Thus, STUDENT was capable of convert-
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ing each of a limited (although infinite) variety of English sentences into 
an equivalent algebraic equation. Given a collection of such sentences, 
STUDENT would form a set of simultaneous equations. STUDENT was 
designed to use special linguistic forms like "find ___ , to identify the 
variables for which it should solve, given such a set of simultaneous 
equations, and it contained a special set of programs it could then use 
to actually solve sets of simultaneous, elementary algebra equations. 
Finally, STUDENT was capable of "assuming" certain variables to be 
equivalent (based on simple structural similarities between the ways 
they were named in the initial set of English sentences) if the operation 
of its problem-solving routines revealed that it had been given more 
variables than equations. If this technique failed, STUDENT could ask 
the person who supplied the problem for more information. Thus, 
STUDENT was capable of performing a fairly difficult intellectual task, 
that of understanding and solving algebra word-problems. 

It should be evident from this description that STUDENT's ability 
to "understand" algebra problems that were stated in English was 
somewhat limited. One could easily find problem statements that it 
could not understand, using its restricted pattern-matching approach to 
syntax. Still, STUDENT and the other early programs that used this ap­
proach demonstrated some rather impressive (and surprising) behavior. 
STUDENT fostered two other special-purpose question-answering pro­
grams, CARPS and HAPPINESS ( Charniak, 1969; and Gelb, 1971), re­
spectively designed to solve calculus and probability problems stated in 
English. 

The context-free approach to the problem of syntax involved find­
ing simplified subsets of English that could be described by well-under­
stood kinds of phrase-structure string grammars; much research con­
centrated specifically on the use of context-free grammars, owing to 
their proven value as the basis for ordinary programming languages. 
However, the full complexity of English syntax is not easily describable 
by phrase-structure grammars (see Winograd, 1971, 1972, for a discus­
sion of reasons). Thus, the context-free approach has had only limited 
success. Rather than discuss this approach in any detail, the .reader is 
asked to refer to Simmons ( 1965) and Kuno ( 1965). 

Recursive Approaches to Syntax 

In many ways, the year 1968 was a good one for language-under­
standing programs. From the standpoint of syntax, it was the year in 
which the designers of these programs freed themselves from the restric­
tiveness of phrase-structure grammars by taking a new approach to 
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syntax. The essence of this approach to syntax is the realization that 
language-understanding programs need not be restricted to the use of 
phrase-structure grammars any more than computers need be restricted 
to the simulation of Turing machines. Phrase-structure grammars and 
Turing machines are adequate simple formalizations for the infinite 
classes of all machine-understandable languages and all machine­
computable functions, but they are extremely poor formalizations in 
which to describe the relatively small classes of natural languages and 
intelligent procedures.8 The result of using this new approach has been 
the discovery that natural language grammars can be profitably de­
scribed as certain kinds of recursive procedures. Two ways of describing 
these procedures have been developed, corresponding to the formaliza­
tion of augmented state transition networks (see Thorne, Bratley, and 
Dewar, 1968; Bobrow and Fraser, 1969; Woods, 1969) and to the 
programming language PROGRAMMAR (Winograd, 1971). 

A'c 

3 

Condition Actions 

T (SETR SUBJ *I 
(AND (GETF TNSI (SETA TNS 

(SVAGR SUBJI (GETF TNSII 
(GETF PNCODEIII 

(TRANS VI (SETR OBJ *I 

POP (SBUI LDI 

5 

POP (BUILDO (NP (DET +I (N +II DET Nl 

A'c Condition Actions 

4 (INTRANS VI 
5 T 
6 T (SETR DET *I 
7 T (SETR N *I 
8 T 

Figure 7-5. A simple augmented transition network grammar. 
(Kaplan, 1971, reprinted with permission.) 

Augmented transition networks are a generalization of the transi­
tion networks for the finite-state machines discussed in Chapter 2. 
Figure 7-5 shows an example of a simple augmented transition net­
work; as can be seen, it is basically a graphlike structure similar to the 
transition networks discussed previously. However, two important 
changes should be noted: First, the augmented transition network 

8 Actually, these classes are not really so "small"; perhaps it is better to say 
that they have a very low "density" when one tries to find them by searching 
through the classes of all languages and functions, as represented by phrase­
structure grammars and Turing machines. 
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represents a recursive procedure. This is achieved by allowing the label 
of an arc to refer to a state, using either a PUSH or a POP command. A 
PUSH command means that the transition along its arc should be post­
poned (i.e., the name of the state at the head of the arc should be 
placed on the top of a "pushdown" storage unit) and the new state of 
the machine should instead become that referred to (explicitly) by the 
PUSH command. Thus, arc 1 in Fig. 7-5 has the label PUSH NPj, which 
specifies that the machine should postpone its transition from state sj 
to state sjsuBJ and instead make a transition from state sj to NP/. 
Similarly, a POP command may be a label for a "dangling arc," the 
head of which is not attached to a node. The meaning of a POP com­
mand is that the machine should remove the name at the top of its 
pushdown store and make a transition to the corresponding state. Thus, 
suppose that the pushdown store should happen to contain the follow­
ing "stack" of names: 

NP/DET 
SjSUBJ 
NPJN 
Sj 

and suppose that the machine should happen to be in state sjvP; then 
the POP command at arc 5 will specify that the machine should make a 
transition from state sjvP to state NP /DET and that the stack of names 
in the pushdown store should become 

SjSUBJ 
NP/N 
Sj 

Besides this ability to "transfer control recursively" throughout 
the network, augmented transition networks differ from finite-state 
transition networks in another manner: Each arc may be allowed to 
specify a condition and a sequence of actions; the actions that an arc 
may specify are those of building and naming tree structures-the name 
of a tree structure is known as its . register, and registers are said to 
"contain" their tree structures. Actions may specify various kinds of 
changes to the contents of registers "in terms of the current input sym­
bol, the previous contents of registers, and the results of lower-level 
computations (pushes)" (Kaplan, 1971). The "input symbols" that 
are submitted to an augmented transition network are English words. 
The network of Fig. 7-5 is designed to start in state sj, with the first 
word of a sentence being submitted to it; arcs that do not have PUSH or 
POP commands attached may have either "word" or "category" state-
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ments attached to them. Thus, arc 2 has the label CAT v, which means 
that if the machine is in state sjsuBJ and the input symbol is a word 
that is a verb, then the machine is to make a transition to state VP ;v, 
provided the additional condition for arc 2 listed in the table of "arcs, 
conditions, and actions" below the diagram is satisfied. The condition 
for an arc is in general a Boolean combination of. predicates involving 
the current input symbol and register contents; the conditions for some 
arcs (e.g., arc 7) may always be trivially satisfied. A sentence is said 
to be accepted by an augmented transition network whenever a final 
state (i.e., a "dangling arc"), the end of the sentence, and an empty 
pushdown store are all reached at the same time. The parsing for a 
sentence provided by an augmented transition network corresponds 
simply to the history of transitions, pushes, and pops required to ac­
cept it. 

The particular grammar shown in Fig., 7-5 will not be discussed 
in any greater detail. However, the reader interested in these networks 
may wish to see if he can understand the operation of this example 
network on a simple sentence, shown in Fig. 7-6. A complete explana­
tion of this example is to be found in Kaplan (1971 ) . 9 

A few sentences are sufficient to describe the nature of the gram­
mars that can be formulated as augmented state transition networks, 
and to indicate their applicability to the syntax of natural languages. 
The use of PUSH and POP commands, and conditions, actions, and 
registers in such a grammar (network), enables it to try out different 
kinds of parsing strategies on variably large phrases in a sentence, to 
store information relating to the success of these strategies as they are 
being carried out, and to recognize whenever a given strategy has failed 
so that a new strategy can be tried. If this is contrasted with the per­
formance offered by context-free grammars, the differences are striking. 
A _parser that uses a phrase-structure grammar typically has a large set 
of production rules, each of which is potentially applicable at any point 
in its analysis. Such a parser is not easily made to simulate strategic 
performance in the way it con,ducts its analysis. Even though a system 
designer were to manage somehow to find a parser and a phrase-struc­
ture grammar that would efficiently parse the sentences of a given subset 
of English, he would in general find it difficult to extend his system to 

9 A helpful hint: The symbol "*" represents a special register in Kaplan's 
formalism which always contains the structure or word that "enabled" the most 
recent transition of the machine. In most cases this is an input symbol; however, 
whenever a POP command is executed, it is the value of that command's argu­
ment. Thus, the execution of POP(SBUILD) causes the value of the function 
SBUILD to be placed in "*". Also, the JUMP label on an arc indicates that a tran­
sition is to be made without advancing the input sentence. 



Sentence: The man kicked the ball. 

STRING • (THE MAN KICKED ThE BALL) 
ENTERING STATE S/ 
ABOUT TO PUSH 

ENTERING STATE NP/ 
TAKING CAT DET ARC 

STRING • (MAN KICKED ThE BALL) 
ENTERING STATE NP/DET 
TAKING CAT N ARC 

STRING • (KICKED THE BALL) 
ENTERING STATE NP/N 
ABOUT TO POP 

ENTERING STATE S/SUBJ 
TAKING CAT V ARC 

STRING • (THE BALL) 
ENTERING STATE VP/V 
STORING ALTARC ALTERNATIVE 76869a 
ABOUT TO PUSH 

ENTERING STATE NP/ 
TAKING CAT DET ARC 

STRING • (BALL) 
ENTERING STATE NP/DET 
TAKING CAT N ARC 

STRING • NIL 
ENTERING STATE NP/N 
ABOUT TO POP 

ENTERING STATE S/VP 
ABOUT TO POP 
SUCCESS 
10 ARCS ATTEMPTED 
195 CONSESb 
1.8869999 SECONDSc 
PARSINGS: 
S NP DET THE 

N MAN 
AUX TNS PAST 
VP V KICK 

NP DET THE 
N BALL 

a. The alternative analysis path 
starting with arc 4 is saved. 

b. Number of memory words used. 

c. Processing time required. 

Figure 7-6. Trace of an analysis. (Kaplan, 1971, reprinted with per­
mission.) 
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a larger subset of English and still maintain its efficiency. By compari­
son, it is relatively easy to add new strategic abilities to a network 
grammar. 

Another formalization of this approach to syntax is the program­
ming language PROGRAMMAR (Winograd, 1971, 1972). PROGRAMMAR 

facilitates the writing of programs that can act as grammars and parsers 
for natural languages. It is specifically designed to facilitate the descrip­
tion of parsers that can act strategically and recursively, and to enable 
the designer of a language-understanding program to make extensions 
to his system in a fairly straightforward fashion. It is closely related to 
the language PLANNER in the general philosophy of the programs it is 
intended to encourage, but the theory underlying its orientation to 
natural language is actually that of systemic grammar, an outlook on 
natural language that has been developed by Halliday (1961 et seq.). 
Space does not permit a detailed discussion of PROGRAMMAR and the 
theory of systemic grammar. However, an outline of the highlights 
these topics exhibit is provided below. The information given should 
be sufficient for the general reader to decide whether to investigate 
them further. For a more detailed introduction, Winograd's discussion 
of these subjects is readily understandable to the nonspecialist. 

Some of the basic tenets of systemic grammar, as expressed pre­
viously, are repeated as follows: 

1. The purpose of natural language is communication; thus, 
the syntactic nature of language must be understood in rela­
tion to the semantic information it is designed to carry. 

2. The problems of syntax, semantics, inference, and generation, 
which are~ to be solved in the use of natural language, are 
all closely interrelated; it is desirable that a language­
understanding program be able to solve these problems in 
a highly integrated way. 

3. Despite their interrelations, these problems are in many ways 
quite distinct. Thus, we should not expect that a system 
designed to solve the generation problem (e.g., transforma­
tional grammar; see Chomsky, 1959 et seq.) will necessarily 
be the basis of an efficient system to solve the syntax (in 
particular, the parsing) problem. 

Conditions ( 2) and ( 3) above will be considered more thoroughly 
in the following subsections, devoted specifically to the semantics, 
inference, generation, and integration problems. To be considered first 
is condition ( 1 ) , the way in which systemic grammar and PROGRAMMAR 
are designed to understand the syntactic nature of English in terms of 
the semantic information its sentences may carry. 
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A viewpoint common to the theories of both systemic and trans­
formational grammar is that the structure of a sentence is the result of 
a sequence of grammatical choices made by the speaker of the sen­
tence. Systemic grammar describes a specific class of such grammatical 
choices and specifies the effect that each will have on the nature of the 
sentence being produced. Moreover, systemic grammar dscribes cer­
tain relationships that exist among these grammatical choices, and 
specifies by means of these relationships which sequences of gram­
matical choices may produce "meaningful" sentences and which may 
not. When a person makes a meaningful sequence of grammatical 
choices in the course of producing a sentence, the effect of the choices 
he makes will be to provide the sentence with certain structural char­
acteristics, or features, which other people can use as an aid td the dis­
covery of the "meaning" of the sentence. 

For example, every sentence must have structural characteristics 
corresponding to exactly one of the three features: IMPERATIVE, DE­
CLARATIVE, or QUESTION. Thus, the speaker must make the grammatical 
choice as to which of these three features he wants his sentence to have. 
Again, if the speaker should choose to give his sentence the structural 
characteristics corresponding to QUESTION, systemic grammar specifies 
that he will also have to make a choice between the structural char­
acteristics corresponding to the features YES-NO and WH-question.10 The 
features possessed by hi~ sentence are, in effect, markers that people 
may use to "understand" that it is a question and that it requires, say, 
a yes or no answer. A set of features that form a mutually exclusive 
set (e.g., YES-NO and WH-question) are said to be a system. The set of 
other features that must be present for the grammatical choice between 
the elements of a system to be possible is known as the entry condition 
for that system. Thus, the entry condition for the system YES-NO, 
WH-question is the feature QUESTION·.11 

In addition to sentences, the theory of systemic grammar specifies 
features (and systems and entry conditions) for smaller "syntactic 
units" such as noun groups, prepositional groups, and words. (Thus, 
the various endings that a word might have are considered to be the 
"features" it may possess; the word itself may be the entry condition 
for the system of its endings.) 

PROGRAMMAR is designed to facilitate the writing of programs 
capable of implementing systemic grammars. The language-understand-

10 A sentence that has the structural characteristics corresponding to ,the 
feature "wH-question" must possess the feature QUESTION and must begin with 
one of the words "what," "why," "who," "where," "how," "which," etc. 

11 More generally, an entry condition ll!ay be a Boolean formula, the terms 
of which are features. 
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ing program that Winograd has written using PROGRAMMAR contains 
many special subprograms, each designed to recognize a different feature 
that can be possessed by certain strings of words. In addition, his pro­
gram is capable of recognizing the presence of entry conditions and 
can call the appropriate feature-detecting programs when necessary. 
This gives it the basic ability to carry out a systemic analysis of the 
features possessed by an English sentence. Other parts of his language­
understanding program are capable of using the systemic analysis of a 
sentence to construct a "semantic model" of its meaning, to integrate 
this semantic model into its current "world model," to prove theorems 
and solve problems about and within the world model (using PLANNER), 

to use the semantic model to detect errors in the systemic analysis of a 
sentence (or part of a sentence) and redirect the analysis in a strategic 
manner toward a more plausible parsing, and to generate appropriate 
replies (e.g., answer questions) to sentences submitted by people. 
Winograd's program is capable of answering questions about itself 
(its world model contains a simple "self-model") and of remembering 
and understanding the contexts of conversations. A sample conversation 
with this program (called "sHRDLU") is given at the end of this section. 

Semantics and Inference 

"Meaning" and "semantic information" are half-mysterious con­
cepts. By this is meant that people are unable to know. precisely what 
effect their words may have on people, whereas they can know exactly 
what effect their words may have on machines. 

Thus, in the preceding pages no attempt was made to present 
very concrete definitions of the meaning, or semantic information, that 
may be conveyed by the sentences of a natural language. To have done 
so would have been to discuss a theory of human psychology (which 
causes the sentence to be used; which is partially caused by the use of 
sentences); such a discussion would eventually be desirable, but it is 
not necessary here. In these pages the primary concern is with viewing 
the (relatively) unmysterious behavior of machines-unmysterious be­
cause we can look directly at their inner workings and at the data stored 
in their memories. 

Because we can know and design the "psychology" of language­
understanding machines, the notions of meaning and semantic informa­
tion become "halfway more tractable." We can define these concepts 
rigorously for a language-understanding machine if it has been built (or 
programmed or designed), but we have difficulty in defining these con­
cepts for the ultimate, truly intelligent machine that would understand 
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our language as well as we do, since we know as little about the internal 
workings of that (nonexistent) machine as we know about the internal 
workings of our own intelligence. 

For a language-understanding program, the "semantic informa­
tion" carried by a sentence is simply the data structure that the program 
creates when it processes ("understands") the sentence. The problem 
of semantics is to discover what kinds of "semantic" data structures 
such programs should create in order to provide the best solutions to 
the problems of inference and generation. The problems of inference 
and generation are to discover how language-understanding programs 
should use their semantic data structures to produce the kind of be­
havior that people would accept as evidence that the programs "under­
stand" language. So far, the greatest success in solving the problems of 
semantics, inference, and generation has been in enabling machines to 
understand the relatively factual, logical, nonpsychological aspects of 
its use. However, some investigators (notably Colby, Schank, Tesler, 
Enea, Abelson and Carroll) have been concerned with developing 
programs with an aptitude for understanding the emotional, metaphori­
cal, and otherwise psychological aspects of meaning. 

Clearly, the problem of semantics can be minimized by restricting 
the "environment" or "problem domain" that one's language-under­
standing program is supposed to "understand"; some of the earliest 
language-understanding programs (e.g., SAD-SAM; see R. K. Lind~ay, 
1963) did exactly this. They minimized their problem of semantics by 
severely restricting the type of questions they could accept, informa­
tion they could store, and problems they could solve. To a lesser extent, 
the more recent "specialized question answerers" (e.g., STUDENT, 

CARPS, HAPPINESS; see Bobrow, 1968, Charniak, 1969, Gelb, 197la,b) 
have adopted the same policy. 

Several approaches, which may ultimately be developed into a 
workable, general semantics-inference formalism, have been suggested. 
These may be grouped into two classes (which are, however, somewhat 
indistinct): the predicate calculus formalism and the graph-structure 
formalism. The predicate calculus formalism was investigated by Coles 
( 1969) and C. C. Green ( 1969), who showed that it is possible to 
translate relatively simple natural language questions into example­
construction problems that can be posed in first-order predicate calculus 
and solved using the resolution technique (see Chapter 6). This ap­
proach seems plausible because of ( 1) the generality of first-order predi­
cate calculus as a language for the statement of facts and problems and 
(2) the completeness (and consequent problem-solving generality) of 
the resolution procedure. 
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As previous chapters have shown, graphs are a type of "mathe­
matical construct" that AI researchers find useful in describing much of 
their work. For example, state-space problems, finite-state automata, 
augmented transition networks, and "flowcharts" for computer pro­
grams (see Chapin, 197lb; Rodriguez, 1969) may all be represented 
by structures that are essentially graphs. Winston's work (1970), dis­
cussed in Chapter 5, showed that graph structures can be used to de­
scribe visual patterns. In general, anything that has a "structural nature" 
and can be described as a collection of parts existing in various rela­
tionships to each other may be represented by a graph. In particular, 
our examples show that graphs may be profitably used to describe 
certain types of problems, "processes" (i.e., automata), and patterns. 
As an approach to the semantic-inference problems in language under­
standing, the graph-structure formalism consists of attempts to model 
the "meaning" of sentences and words by graphs. The plausibility of 
this approach is supported by the fact that real-world situations, which 
may be described by sentences (and which may help cause the use of 
sentences, or be partially caused by the use of sentences), often have a 
structural nature. The best way of describing the structural nature of 
general, real-world situations is still not known. However, the utility of 
the graph-structure formalism should be apparent if we simply note a 
few examples of its use. 

One of the earliest studies of the graph-structure formalism was 
conducted by Quillian (1966), who developed an elegant model of 
semantic memory. Information is represented in this semantic memory 
by a graph structure of arbitrary size in which each node is named by a 
word and the arcs between nodes represent certain specific relationships, 
or associative links, that may exist between words. Nodes are of two 
kinds: types and tokens. A type node represents the "meaning" of its 
name word; the associative links going from a type node lead to a 
configuration, or plane, of token nodes that represents a definition of 
this "meaning"; the only purpose of token nodes is to be used in such 
definitions. Thus, a token node represents a "use" of its name word. 
Two additional constraints are imposed: For any given token node 
there must be exactly one type node bearing the same name word, and 
the two nodes are to be connected by a special "token-to-type" associa­
tive link. For each meaning of an English word there must be exactly one 
type node; a word like PLANT, which has multiple meanings, is repre­
sented by multiple type nodes PLANT, PLANTl, PLANT2, etc. In dia­
grams, type nodes are circled,. whereas token nodes are simply indicated 
by the presence of their name words. Figure 7-7 shows the different 
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kinds of associative links used in Quillian's semantic memory model. 
Figure 7-8A shows some planes stored in a semantic memory represent­
ing. definitions for PLANT; Fig. 7-8B represents FOOD. Quillian wrote a 
program that could do "associative" processing on this kind of memory 
and demonstrated that it could "compare concepts" and discover inter­
relationships not indicated specifically in its "definition planes." Es­
sentially, the mechanism for comparing two concepts was a breadth­
first, bidirectional search through the graph structure of the memory 
(see Fig. 7-9). The next section presents some computer-produced 
concept comparisons. (Quillian's paper presented intriguing discussions 
on the similarities of this model to human concept comparison and on 
the difficulties of making dictionaries.) 

Among the more recent graph-structure formalisms for semantic 
information storage are Schank's (1970 et seq.) "conceptual dependency 
graphs" (see Fig; 7-10), Shapiro's (1971a,b) MENS system (see Fig. 
7-11), and the "hierarchial graphs" of Pratt (1969 et seq.). 

As mentioned before, the graph-structure formalism and the predi­
cate calculus formalism are somewhat indistinct. This is true because 
predicate calculus expressions (of any order) may be stored in graph 
structures and because predicate calculus expressions may describe 
properties of graph structures. One of the early language-understanding 
programs that stored predicate calculus expressions in graph structures 
was SIR, written by Raphael in 1964 (also see Simmons and Bruce, 
1971). 

An important relationship between the problems of semantics and 
inference is described by the principle of homogeneity: The operations 
used to process semantic information should themselves be describable 
as semantic information and stored in a common semantic memory with 
other information. This principle dates back to the "stored program" 
concept formulated in the early years of computer science, but it has 
often been rediscovered by the designers of language-understanding 
systems. Among the studies following this principle are those presented 
by Quillian (1969), Shapiro (1971), Hewitt (1968 et seq.), Norman 
( 1972), Sussman (1972), and R. C. Moore (1973). Winston's ( 1970) 
structure-recognizing program, discussed in Chapter 5, should also be 
mentioned in this regard. 

As for SHRDLU, it incorporates the graph-structure formalism, the 
predicate calculus formalism, and the principle of homogeneity. The 
features of sentences detected by its systemic parser can be translated 
readily into conjunctions, disjunctions, conditionals ("if ... then ... 
else" statements), etc., in the PLANNER formalism. The evaluation of a 



308 INTRODUCTION TO ARTIFICIAL INTELLIGENCE 

Associative Link (type-to-token, and toxen-to-token, used within a plane! 

1. 

2. 

rn 
OJ 

( only where A Is a type node 1 B names 
a class of which A Is a subclass. 

( only where A Is a Ioken node I B modifies A. 

3·l~cl A, 8, and C form a disjunctive set. 

4-~~C~ A, 8, and C form a c~mjunctive set. 

5. 
and 

6. 

8, a subject, Is related to C, an 
objed, in the manner specified by 
A, the relation. Either the link 
to 8 or to C may be omitted in a 
plane, wh·lch implies that A's normal 
subject Of object is to be aHumed. 

Associative Link·( token-to-type, used only between planes I 

6. l 
I 

I 

~ 
\ 
\ 

c 
I 
I 
I 

A, B, and C are token nodes, 
lor, respectively, A, B, and C. 

Figure 7-7. Associative links. (Quillian, 1966, reprinted with permis­
sion.) 
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FOOD: 1. T_hat which living being has to take in to keep It living and lor growth. 
Things forming meals, especially other than drink 

T OR 

• A THING 

.---- l 
/ HA 5-TO 

••• .---~ = B BEl,~~ 2 . --... 
TAKE II 

\0-_INTO 

\~=A 

/~0\7 AND i 'L= B 

/ ~ 

• , •• .-·K~E~= B G~'~"~ 
' ' ' ' 

~ .>I,VE \ 

I 

FORM 

("\r=A 

\ .. 'L MEAL 
\ 
' 
' ' ' ' t 

OTHER-THAN 

,/\DRINK 

' ' ' ' ' ' ' . . 
~ 

Figure 7-88. Definition plane representing "food." {Quillian, 1966, re­
printed with permission.) 

~Y2- ~MFORT3 

AND 

~ 
HAVE MAKE l SO~ND 

t 
SAD 

GIVE 5 MAKE 2 

LLESS2 

\.sAD 
I 

Figure 7-9. A comparison path"for "comfort" and "cry." {Quillian, 1966, 
reprinted with permission.) 
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p 0 
I< > see +--- Grand Canyon 

t I 
I< ;: go +-- plane 

~ 
fly 

t 
D 

A + 
X New York 

Figure 7-10. A conceptual dependency graph for "I saw the Grand Can­
yon flying to Chicago." (Schank, 1971, reprinted with permission.) 

ALL 

X 

Figure 7-11. A MENS structure for the deduction rule "Every man is 
human." (Shapiro, 1971, reprinted with permission.) 
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PLANNER theorem corresponding to an English statement constitutes 
the major part of the "inference process" performed by SHRDLU (Wino-
grad, 1971; also see Chapters 5 and 6). 

Generation and Integration 

The problem of generation is largely unsolved by current language­
understanding programs; even SHRDLU uses essentially a "blank-filler" 
scheme. Perhaps something like Chomsky's transformational grammar 
(1959 et seq.) may eventually be implemented, but it seems likely that 
efforts should be devoted first to the "comprehension" stage (syntax, 
semantics, inference) of the language-understanding process. By analogy, 
it has been noted that the ability of children to comprehend sentences 
at a given "level of difficulty" precedes the ability to speak them. 

The problem of integration will not be discussed in detail. Rela­
tively little is known about the integration of the sentence-generation 
process with the sentence-comprehension process, nor about the inte­
gration of the language-understanding process with the language-learn­
ing process-except, of course, for the integration automatically implied 
by the principle of homogeneity (we can tell the machine new rules of 
grammar, meanings for words, etc.; see Quillian, 1969). A good dis­
cussion of the integration problem is provided by R. K. Lindsay (1971), 
who identified the jigsaw-puzzle heuristic for integrated methods of 
problem solving, learning, and memory repair. 

In 1972 a large number of papers . were written that are relevant 
to this and other major problems of AI research on language-understand­
ing systems. In particular, these papers present a variety of new ap­
proaches to the representation problem. Unfortunately, there has not 
been time to incorporate discussions of these papers here. Instead, the 
interested reader is referred to the papers (cited in the Bibliography) 
written by the following authors: Biss, Chandra, Charniak, Coles, Fang, 
Feldman, Gibbons, Kuno, R. C. Moore, Norman, Pylyshyn, Rulifson, 
Rumelhart, Schank, Sirovich, and Wegbreit. (This list is, of course, not 
exhaustive.) In addition, Raphael and Robinson ( 1972) present a 

~ bibliography of 200 references on the subject of "computer semantics." 

Some Conversations with Computers 

This section is devoted to letting the machines speak for them­
selves. However, some necessary comments are provided, in italics, by 
the present author. 
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STUDENT 

(Bobrow, 1964) 

(See the section on "Syntax" of this chapter.) 

(THE PROBLEM TO BE SOLVED IS) 
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(THE RUSSIAN ARMY HAS 6 TIMES AS MANY RESERVES IN A UNIT 
AS IT HAS UNIFORMED SOLDIERS. THE PAY FOR RESERVES EACH 
MONTH IS 50 DOLLARS TIMES THE NUMBER OF RESERVES IN THE 
UNIT, AND THE AMOUNT SPENT ON THE REGULAR ARMY EACH 
MONTH IS $150 TIMES THE NUMBER OF UNIFORMED SOLDIERS. 
THE SUM OF THIS LATTER AMOUNT AND THE PAY FOR RESERVES 
EACH MONTH EQUALS $45000. FIND THE NUMBER OF RESERVES 
IN A UNIT THE RUSSIAN ARMY HAS AND THE NUMBER OF UNI­
FORMED SOLDIERS IT HAS.) 

(THE EQUATIONS TO BE SOLVED ARE) 

(EQUAL G02532 (NUMBER OF UNIFORMED SOLDIERS (IT I ~RO) 
(HAS I VERB))) . 

(EQUAL G02531 (NUMBER OF RESERVES IN UNIT RUSSIAN ARMY 
(HAS I VERB))) 

(EQUAL (PLUS (AMOUNT SPENT ON REGULAR ARMY EACH MONTH) 
(PAY FOR RESERVES EACH MONTH)) (TIMES 45000 (DOLLARS))) 

(EQUAL (AMOUNT SPENT ON REGULAR ARMY EACH MONTH) 
(TIMES (TIMES 150 DOLLARS)) (NUMBER OF UNIFORMED SOL­
DIERS))) 

(EQUAL (PAY FOR RESERVES EACH MONTH) (TIMES (TIMES .50 
(DOLLARS)) (NUMBER OF RESERVES IN UNIT))) 

! 

(EQUAL (NUMBER OF RESERVES IN UNIT RUSSIAN ARMY (HAS I 
VERB)) (TIMES 6 (NUMBER OF UNIFORMED SOLDIERS (IT I PRO) 
(HAS I VERB)))) . . 

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION 

(ASSUMING THAT) 
((NUMBER OF UNIFORMED SOLDIERS) IS EQUAL TO NUMBER OF 
UNIFORMED SOLDIERS (IT I PRO) (HAS I VERB))) 

(ASSUMING THAT) 
((NUMBER OF RESERVES IN UNIT) IS EQUAL TO (NUMBER OF RE­
SERVES IN UNIT RUSSIAN ARMY (HAS I VERB))) 

(THE NUMBER OF RESERVES IN A UNIT THE RUSSIAN ARMY HAS 
IS 800) 

(THE NUMBER OF UNIFORMED SOLDIERS IT HAS IS 100) 
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STUDENT 

(Bobrow, 1964) 

(THE PROBLEM TO BE SOLVED IS) 
(THE GROSS WEIGHT OF A SHIP IS 20000 TONS. IF ITS NET 
WEIGHT IS 15000 TONS, WHAT IS THE WEIGHT OF THE SHIPS 
CARGO Q.) 

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION 

TRYING POSSIBLE IDIOMS 

(DO YOU KNOW ANY MORE RELATIONSHIPS AMONG THESE 
VARIABLES) 

(GROSS WEIGHT OF SHIP) 

(TONS) 

(ITS NET WEIGHT) 

(WEIGHT OF SHIPS CARGO) 

yes 
TELL ME 

(the weight of a ships cargo is the difference between the gross 
weight and the net weight) 

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION 

(ASSUMING THAT) 
((NET WEIGHT) IS EQUAL TO (ITS NET WEIGHT)) 

(ASSUMING THAT) 
((GROSS WEIGHT) IS EQUAL TO (GROSS WEIGHT OF SHIP)) 

(THE WEIGHT OF THE SHIPS CARGO IS 5000 TONS) 
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CARPS 

(Charniak, 1969) 

CARPS is a question-answerer designed to solve calculus "rate prob­
lems," stated in English. After receiving the problem statement, it trans­
forms the sentences into successive List structures and builds a tree 
structure (not shown here) to model the information they contain. 

(WATER IS FLOWING INTO A CONICAL FILTER AT THE RATE OF 
15.0 CUBIC INCHES PER SECOND /. IF THE RADIUS OF THE BASE 
OF THE FILTER IS 5.0 INCHES AND THE ALTITUDE IS 10.0 INCHES 
/, FIND THE RATE AT WHICH THE WATER LEVEL IS RISING WHEN 
THE VOLUME IS 100.0 CUBIC INCHES /.) 

(((WATER (FLOWING VERB) (INTO PREP) A (CONICAL ADJ) FILTER 
(AT PREP) (RATE RWORD) 15.0 (IN3 UNIT) PER (SEC UNIT)) (1)) ((IF 
THE RADIUS OF THE BASE OF THE FILTER (IS VERB) 5.0 (IN UNIT) 
AND THE ALTITUDE (IS VERB) 10.0 (IN UNIT), (FIND QWORD) (RATE 
RWORD) AT WHICH THE WATER LEVEL (RISING VERB) WHEN THE 
VOLUME {IS VERB) 100.0 (IN3 UNIT)) (2))) 

(((WATER (FLOWING VERB) (INTO PREP) A (CONICAL ADJ) FILTER) 
(1}) ((WATER (FLOWING VERB) (AT PREP) (RATE RWORD) 15.0 (IN3 
UNIT) PER (SEC UNIT)) (1)) ((THE RADIUS OF THE BASE OF THE 
FILTER (IS VERB) 5.0 (IN UNIT)) (2)) ((THE ALTITUDE (IS VERB) 10.0 
(IN UNIT)) (2)) (((FIND QWORD) {RATE RWORD) ATWHICH THE 
WATER LEVEL {RISING VERB)) {2)) {{THE VOLUME (IS VERB) 100.0 
{IN3 UNIT)) {2 WHEN))) 

(THE EQUATION SET IS} 
1 {(EQUAL (G0005) (DERIV {G0004 WATER FILTER))) 
2 (EQUAL (QUOTIENT (TIMES 17.0 (TIMES (EXPT IN 3) TIM)} SEC) 
(TIMES {G0004 WATER FILTER) 0.33333300 PI (EXPT (RADIUS BASE 
WATER FILTER)2))) 
3 {EQUAL (TIMES {RADIUS BASE WATER FILTER) (TIMES 12.0 IN)) 
{TIMES {G0004 WATER FILTER) (TIMES 5.0 IN)))) 

(THE ANSWER IS) 

{TIMES .53132943 IN (EXPT SEC -1.0) (EXPT PI -0.33333332)} 

---~----~----
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(PLEASE INPUT PROBLEM) 

HAPPINESS 

( Gelb, 1971 ) 

(From a zorch containing a ferd and. 3 brakky and 5 chartreuse 
werfels, 3 are drawn'. What is the probability that 2 are chartreuse 
and the other brakky?) 

(FROM A ZORCH CONTAINING A FERD AND 3 BRAKKY AND 5 
CHARTREUSE WERFELS, 3 ARE DRAWN. WHAT IS THE PROBABIL· 
ITY THAT 2 ARE CHARTREUSE AND THE OTHER BRAKKY?) 

(ELAPSED TIME NOW 0.09299999 SECONDS) 

(AFTER PRIMARY (IDIOMATIC) TRANSFORMATION, PROBLEM BE­
COMES) 

(FROM 1 ZORCH CONTAINING A FERD AND 3 BRAKKY AND 5 
CHARTREUSE WERFELS, 3 ARE DRAWN. WHAT IS THE PROBABIL­
ITY THAT 2 ARE CHARTREUSE AND 1 BRAKKY?) 

(ELAPSED TIME NOW 0.384 SECONDS) 

(AFTER SECONDARY (REARRANGING) TRANSFORMATION:) 

(THE SIMPLE SENTENCES ARE) 

((CONTAIN I ACTIVE (1 ZORCH) (4 FERD AND 3 BRAKKY AND 5 
CHARTREUSE WERFELS)) 

((DPAW I PASSIVE (3) NIL) 

(iHE QUESTION SENTENCE IS) 
(WHAT IS THE PROBABILITY THAT 2 ARE CHARTREUSE AND 1 
BRAKKY?) 

(ELAPSED TIME NOW 0.227 SECONDS) 

(AFTER TERTIARY (CASE-REDUCING) TRANSFORMATION, THE 
QUESTION SENTENCE BECOMES:) 

(WHAT IS THE PROBABILITY OF GETTING 2 CHARTREUSE AND 1 
BRAKKY?) 

(ELAPSED TIME NOW 0.108 SECONDS) 

(NO RECOGNIZABLE KEYWORDS FOUND IN PROBLEM. 
ASSUMED SAMPLING PROBLEM.) 
(AFTER SYNTAX ANALYSIS OF QUESTION SENTENCE:) 

(ASSUMING THAT - 3 BRAKKY - MEANS - 3 BRAKKY WERFELS -) 
(ASSUMING THAT- 4 FErlD- MEANS· 4 FERD WERFELS -) 
(ASSUMING THAT- 3 - MEANS- 3 WERFELS -) 
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(D ESCLIST FOR THIS PROBLEM CONTAINS:) 

PROBLEMTYPE- SAMPLING 
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POPULATION- ((5 CHARTREUSE WERFELS) (3 BRAKKY WERFELS) 
(4 FERD WERFELS)) AS OBJECTS 

SAMPLESIZE/TRIALS- 3 
SIMPLE EVENTS- (G12503 G12502) 

G12503- ((WERFEL) ( BRAKKY) (1) NIL NIL NIL) 
G12502- ((WERFEL) (CHARTREUSE) (2) NIL NIL NIL) 

COMPOUND EVENT STRUCTURE- (AND (OR G12502) (OR G12503)) 
REPLACEMENT INVOLVED? NO 

(ELAPSED TIME NOW 0.715 SECONDS) 

(FIRST LEVEL SOLUTION TO PROBLEM IS) 

(PLUSF (PROB (QUOTE (G12502 G12503)))) 

(TIME FOR EVALUATION WAS 0,032 SECONDS) 

(SECOND LEVEL SOLUTION TO PROBLEM IS) 

(PLUSFN (PR (QUOTE (C12502 C12503)))) 

(TIME FOR EVALUATION WAS 0.034 SECONDS) 

(THIRD LEVEL SOLUTION TO PROBLEM IS) 

(PLUSFRAC (SIMPLIFYFRAC (LIST (COMBINL 5 2) (COMBINL 3 1) 
(COMBINL 4 0)) 

(COMBINL 12 3))) 

(TIME FOR EVALUATION was 0.14 SECONDS) 

(FOURTH LEVEL SOLUTION TO PROBLEM IS) 

3/22 (OR 0.1363636) 

(ELAPSED TIME NOW 0.134 SECONDS) 

(TOTAL TIME FOR PROBLEM SOLUTION WAS 1.882 SECONDS) 
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SIR 

(Raphael, 1964) 

(See the preceding section of this chapter.) 

(THE NEXT SENTENCE IS ... ) 
(MAX IS AN IBM-7094) 

(THE FUNCTION USED IS . . .) 
SETA-SELECT 
((UNIQUE . MAX) (GENERIC . IBM-7094)) 
(THE REPLY . . .) 
(THE SUB-FUNCTION USED IS . . .) 
SETRS 
(MAX IBM-7094) 
(ITS REPLY ... ) 
(I UNDERSTAND THE ELEMENTS RELATION BETWEEN MAX AND 

IBM-7094) 
(I UNDERSTAND THE MEMBER RELATION BETWEEN IBM-7094 AND 

MAX) 

(THE NEXT SENTENCE IS ... ) 
(AN IBM-7094 IS A COMPUTER) 

(THE FUNCTION USED IS . . .) 
SETA-SELECT 
((GENERIC . IBM-7094) (GENERIC . COMPUTER)) 
(THE REPLY . . .) 
(THE SUB-FUNCTION USED IS ... ) 
SETR 

(IBM-7094 COMPUTER) 
(ITS REPLY . . .) 
(I UNDERSTAND THE SUPERSET RELATION BETWEEN COMPUTER 

AND IBM-7094) 
(I UNDERSTAND THE SUBSET RELATION BETWEEN IBM-7094 AND 

COMPUTER) 

(THE NEXT SENTENCE IS . . .) 
(IS MAX A COMPUTER Q) 

(THE FUNCTION USED IS . . .) 
SETRQ-SELECT 
((UNIQUE . MAX) (GENERIC . COMPUTER)) 
(THE REPLY . . .) 
(THE SUB-FUNCTION USED IS . . .) 
SETRSQ 

(MAX COMPUTER) 
(ITS REPLY ... ) 
YES 
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(THE NEXT SENTENCE IS ... ) 
(THE BOY IS AN MIT-STUDENT) 
(THE FUNCTION USED IS . . .) 
SETA-SELECT , 
((SPECIFIC . BOY) (GENERIC . MIT-STUDENT)) 
(THE REPLY . . .) 
(THE SUB-FUNCTION USED IS . . .) 
SLJRSI 
(BOY MIT-STUDENT) 
(ITS REPLY ... ) 
(G02840 IS A BOY) . 
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(I UNDERSTAND THE ELEMENTS RELATION BETWEEN G02840 AND 
BOY) 

(I UNDERSTAND THE MEMBER RELATION BETWEEN BOY AND 
G02840) 

(I UNDERSTAND THE ELEMENTS RELATION BETWEEN G02840 AND 
MIT -STUDENT) 

(I UNDERSTAND THE MEMBER RELATION BETWEEN MIT-STUDENT 
AND G02840) 

(THE NEXT SENTENCE IS . . .) 
(EVERY MIT-STUDENT IS A BRIGHT-PERSON) 

(THE FUNCTION. USED IS . . .) 
SETR-SELECT 
((GENERIC . MIT-STUDENT) (GENERIC . BRIGHT-PERSON)) 
(THE REPLY . . .) 
(THE SUB-FUNCTION USED IS ... ) 
SETR 
(MIT-STUDENT BRIGHT -PERSON) 
(ITS REPLY . . .) 
(I UNDERSTAND THE SUPERSET RELATION BETWEEN BRIGHT­

PERSON AND MIT-STUDENT) 
(I UNDERSTAND THE SUBSET RELATION BETWEEN MIT-STUDENT 

AND BR!GHT-PERSON) 

(THE NEXT SENTENCE IS ~ .. ) 
(IS THE BOY A BRIGHT-PERSON Q) 

(THE FUNCTION USED IS . . .) 
SETRQ-SELECT 
((SPECIFIC . BOY) (GENERIC. BRIGHT-PERSON)) 
(THE REPLY . . .) 
(THE SUB-FUNCTION USED IS . . .) 
SETRSIQ 
(BOY BRIGHT-PERSON) 
(ITS REPLY . . .) 
YES 

(THE NEXT SENTENCE IS .. . .) 
(JOHN IS A BOY) 
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(THE FUNCTION USED IS ... ) 
SETR-SELECT 
((UNIQUE . JOHN) (GENERIC . BOY)) 
(THE REPLY . . .) 
(THE SUB-FUNCTION USED IS . . .) 
SETRS 

(JOHN BOY) 
(ITS REPLY . . .) 
(I UNDERSTAND THE ELEMENTS RELATION BETWEEN JOHN AND 

BOY) 
(I UNDERSTAND THE MEMBER RELATION BETWEEN BOY AND 

JOHN) 

(THE NEXT SENTENCE IS ... ) 
(IS THE BOY A BRIGHT-PERSON Q) 

(THE FUNCTION USED IS . . .) 
SETRQ-SELECT 
((SPECIFIC . BOY) (GENERIC . BRIGHT-PERSON)) 
(THE REPLY . . .) 
(THE SUB-FUNCTION USED IS . . .) 
SETRSIQ 
(BOY BRIGHT-PERSON) 
(ITS REPLY . . .) 
(WHICH BOY ... (G02840 JOHN)) 
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SEMANTIC MEMORY 

(Quillian, 1966) 

(See the preceding section of this chapter.) 

Example 1. Compare: CRY, COMFORT 
A. Intersect: SAD 
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(1) CRY2 IS AMONG OTHER THINGS TO MAKE 
A SAD SOUND.* 

(2) TO COMFORT3 CAN BE TO MAKE2 SOME­
THING LESS2 SAD. 

Example 2. Compare: PLANT, LIVE 
A. 1st Intersect: LIVE 

(1) PLANT IS A LIVE STRUCTURE. 
B. 2nd Intersect: LIVE 

(1) PLANT IS STRUCTURE WHICH GET3-FOOD 
FROM AIR. THIS FOOD IS THING WHICH BE­
ING2 HAS-TO TAKE INTO ITSELF T07 KEEP 
LIVE. 

Example 3. Compare: PLANT, MAN 
A. 1st Intersect: ANIMAL 

(1) PLANT IS NOT A ANIMAL STRUCTURE. 
(2) MAN IS ANIMAL. 

B. 2nd Intersect: PERSON 
(1) TO PLANT3 IS FOR A PERSON SOMEONE TO 

PUT SOMETHING INTO EARTH. 
(2) MAN3 IS PERSON. 

Example 4. COMPARE: PLANT, INDUSTRY 
A. 1st Intersect: INDUSTRY 

(1) PLANT2 IS APPARATUS WHICH PERSON USE 
FOR 5 PROCESS IN INDUSTRY. 

Example 5. Compare: EARTH, LIVE 
A. 1st Intersect: ANIMAL 

(1) EARTH IS PLANET OF7 ANIMAL. 
(2) TO LIVE IS TO HAVE EXISTENCE AS7 ANIMAL. 

Example 6. Compare: FRIEND, COMFORT 
A. 1st Intersect: PERSON 

(1) FRIEND IS PERSON. 
(2) COMFORT CAN BE WORD T04 PERSON. 

Example 7. Compare: FIRE, BURN 
A. 1st Intersect: BURN 

(1) FIRE IS CONDITION WHICH BURN. 
B. 2nd Intersect: FIRE 

(1) TO BURN2 CAN BE TO DESTROY2 SOME­
THING BY4 FIRE. 

C. 3rd Intersect: BURN 
(1) FIRE IS A FLAME CONDITION. THIS FLAME 

CAN BE A GAS TONGUE4. THIS GAS IS GAS 
WHICH BURN. 
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Example 8. Compare: BUSINESS, COMFORT 
A. 1st Intersect: PERSON 

(1) BUSINESS IS ACT3 WHICH PERSON DO. 
(2) COMFORT2 IS CONDITION3 WHICH PERSON 

HAVE NEED4. 
B. 2nd Intersect: PERSON 

(1) BUSINESS5 IS ACT3 WHICH PERSON DO. 
(2) COMFORT CAN BE WORD T04 PERSON. 

Example 9. Compare: MAN, BUSINESS 
A. 1st Intersect: PERSON 

(1) MAN3 IS PERSON. 
(2) BUSINESS CAN BE ACTIVITY WHICH PERSON 

MUST DO WORK2. 
B. 2nd Intersect: GROUP 

(1) MAN2 IS MAN AS9 GROUP. 
(2) BUSINESS2 IS QUESTION3 FOR ATTENTION 

OF GROUP. 
Example 10. Compare: MAN, LIVE 

A. 1st Intersect: ANIMAL 
(1) MAN IS ANIMAL. 
(2) TO LIVE IS TO HAVE EXISTENCE AS7 ANIMAL. 

B. 2nd Intersect: LIVE 
(1) MAN IS A LIVE+ BEING2. 
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PARRY 

(Colby, Weber, Hilf, 1971) 

PARRY is a program designed to simulate the conversational behavior 

of a paranoid human being. The conversation below was produced with 

the program operating in its "weak version" of paranoia. Sentences 

labeled "!" are produced by the human interviewer; those labeled "0" 

by the program. 

(1) I-HOW LONG HAVE YOU BEEN IN THE HOSPITAL? 

0-ABOUT A WEEK. 

(2) I-ARE YOU DEPRESSED? 
0-NO. 

(3) I-WERE YOU TAKING DRUGS? 
0-NO. 

(4) I-WHAT IS YOUR PROBLEM? 
0-PEOPLE MAKE ME NERVOUS. 

(5) I-HOW DO THEY DO THAT? 
0-THEY STARE AT ME. 

(6) I-WHY? 
0-MAYBE THEY DON'T LIKE THE WAY I LOOK OR SOME­

THING. 
(7) I-DO YOU LOOK UNUSUAL IN SOME WAY? 

0-WHY ARE YOU INTERESTED IN MY LOOKS? 

(8) I-BECAUSE YOU SAID PEOPLE STARE AT YOU. 

0-WELL, SOMETIMES. . 

(9) I-HOW DO YOIJ GET ALONG WITH PEOPLE? 

0-1 DON'T COMMUNICATE VERY MUCH WITH THE OTHERS. 

(10) I-WHY NOT? 
0-THEY DON'T REALIZE WHAT'S GOING ON MOST OF THE 

TIME. 
(11) I-WHAT IS GOING ON? 

0-DO YOU KNOW HOW THE UNDERWORLD OPERATES? 
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SHRDLU 

(Winograd, 1971) 

SHRDLU carries out actions in, and answers questions about, a simple world (containing a table, hand, and box, and several blocks and 
pyramids), stored as a data structure inside the computer and displayed on a television screen for the person talking to it. SHRDLU requires from 5 to 20 seconds to analyze and respond to each sentence presented 
to it (lower-case lines are the person's,· upper•case are the computer's), and its responses (actions and answers) are displayed in real time on the screen. (See Fig. 7-12.) The nuances of this dialog are explained 
in the book by Winograd. 

1. pick up a big red block. 
OK. 

2. grasp the pyramid. 
I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN. 

3. find a block which is taller than the one you are holding and put it into the box. 
BY "IT," I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING. 

OK. 

4. what does the box contain? 
THE BLUE PYRAMID AND THE BLUE BLOCK. 

5. what is the pyramid supported by? 
THE BOX. 

6. how many blocks are not in the box? 
FOUR OF THEM. 

7. is at least one of them narrower than the one which i told you to pick up? 
YES, THE RED CUBE. 

8. is it supported? 
YES, BY THE TABLE. 

9. can the table pick up blocks? 
NO. 

10. can a pyramid be supported by a block? 
YES. 

11. can a pyramid support a pyramid? 
I DON'T KNOW. 

12. stack up two pyramids. 
I CAN'T. 
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13. the blue pyramid is nice. 
I UNDERSTAND. 

14. i like blocks which are not red, but i don't like anything which 

supports a pyramid. 
I UNDERSTAND. 

15. do i like the box? 
NO. 

16. do i like anything in the box? 
YES, TWO THINGS: THE BLUE BLOCK AND THE BLUE PYRAMID. 

17. will you please stack up both of the red blocks and either a green 

cube or a pyramid? 
OK: 

18 .. which cube is sitting on the table? 
THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID. 

19. is there a large block behind a pyramid? 

YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN 

CUBE AND THE BLUE ONE. 

20. put a small one onto the green cube which supports a pyramid: 

OK. 

21. put the littlest pyramid on top of it. 
OK. 

22. does the shortest thing the tallest pyramid's support supports sup­

port anything green? 
YES, THE GREEN PYRAMID. 

23. what color is it? 
BY "IT," I ASSUME YOU MEAN THE SHORTEST THING THE 

TALLEST PYRAMID'S SUPPORT SUPPORTS. 
RED 

24. how many things are on top of green cubes? 
I'M NOT SURE WHAT YOU MEAN BY "ON TOP OF" IN THE 

PHRASE "ON TOP OF GREEN CUBES." 

2 

DO YOU MEAN: 
1-DIRECTL Y ON THE SURFACE 
2-ANYWHERE ON TOP OF? 

THREE OF THEM. 

25. had you touched any pyramid before you put the green one on the 

little cube? 
YES, THE GREEN ONE. 

26. when did you pick it up? 
WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED 

BLOCK AND A LARGE GREEN CUBE. 
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27. why 
TO GET RID OF IT. 

28. why did you do that? 
TO CLEAN OFF THE RED CUBE. 

29. why did you clear off that cube? 
TO PUT IT ON A LARGE GREEN. CUBE. 

30. why did you do that? 
TO STACK UP THE RED CUBE, A LARGE RED BLOCK AND A 

LARGE GREEN CUBE. 

31. why did you do that? 
BECAUSE YOU ASKED ME TO. 

32. how did you do it? 
BY PUTTING A LARGE RED BLOCK ON THE TABLE; THEN LET­

TING GO OF IT; THEN PUTTING A LARGE GREEN CUBE ON IT; 
THEN LETTING GO OF THAT CUBE; THEN PUTTING THE RED CUBE 
ON THAT CUBE; THEN LETTING GO OF THAT CUBE. 
33. how many objects did you touch while you were doing it? 

FOUR OF THEM. 

34. what did the red cube support before you started to clean it off? 
THE GREEN PYRAMID. 

35. there were five blocks to the left of the box then. 
NO, ONLY FOUR OF THEM: THE RED CUBE, TWO LARGE GREEN 

CUBES AND A LARGE RED BLOCK. 

36. put the blue pyramid on the block in the box. 
OK. 

37. is there anything which is bigger than every pyramid but is not 
as wide as the thing that supports it? 

YES, THE BLUE BLOCK. 

39. does a steeple 
SORRY I DON'T KNOW THE WORD "STEEPLE." PLEASE TYPE TWO 

SPACES. 

40. a "steeple" is a stack which contains two green cubes and a pyr­
amid. 

I UNDERSTAND. 

41. are there any steeples now? 
NO. 

42. build one. 
OK. 

43. call the biggest block "superblock." 
OK. 
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44. have you picked up superblock since we began? 
YES. 

45. why did you drop it? 
BY "IT," I ASSUME YOU MEAN THE SUPERBLOCK. 

I CAN'T EXPLAIN A NON-EXISTENT EVENT. 

46. is there anything to the right of the red pyramid? 
YES, FOUR THINGS: THE BOX, THE RED CUBE, THE BLUE PYR­

AMID AND THE BLOCK NAMED SUPERBLOCK. 

47. thank you. 
YOU'RE WELCOME! 

Does the, shortest thing the tallest pyramid's 

support supports support anything green? 

Figure 7-12. SHRDLU. (Winograd, 1971, reprinted with permission.) 
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LANGUAGE AND PERCEPTION 

Networks of Question-Answering Programs 

The remainder of this chapter is devoted to discussing some general 
topics of "semantic information processing" that have not been covered 
explicitly elsewhere in this book. The subjects discussed include net­
works of question answerers and protocol analyzers, grammatical infer­
ence and pattern recognition, communication, teaching, and learning, and 
the "self-knowledge" of intelligent machines. Mostly, we shall have to 
content ourselves with a few general observations and some pointers to 
the literature. The topics discussed represent areas of future study that 
have not yet been tamed into programs by AI researchers. 

The preceding pages have shown that question-answering (and, in 
general, language-understanding) programs can do some pretty amazing 
things. On the one hand, the performance of Winograd's program indi­
cates that computers may eventually handle the full complexity of syntax 
in a natural language like English. Computers can be designed to recog­
nize and use word endings and context and "understand" a conversa­
tion, at least when it is concerned with a relatively small problem domain, 
like that of the SHRDLU world. On the other hand, the performance of 
the programs written by Bobrow, Gelb, Charniak, Ramani, Weizen­
baum, and others indicates that computers can successfully handle 
fairly complex problems (involving algebra, probability, and calculus) 
when stated in limited subsets of English. Finally, computers can solve 
a variety of very difficult mathematical problems, such as proving 
theorems in abstract algebra or solving rather difficult integral calculus 
problems. 

It thus seems possible that, ultimately, language-understanding 
programs will be constructed which will be capable of solving problems, 
stated in English, from very difficult problem domains. As a working 
principle, we may expect that if we can find a computer program 
capable of solving the problems in some domain, when stated in 
some appropriate formalism, then we can also find a computer program 
capable of "understanding" English statements of the same problems, 
to the extent that the second program can translate such English prob­
lem statements into statements of the "formalism appropriate for the 
first program to solve them. The two programs together (plus, perhaps, 
a third program to translate the answers) can function as a "question 
answerer" for the problems of that domain. 

Given a set of English sentences (actually, a "structure" of such 
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sentences as determined by the conversation), some of which are ques­
tions, a question answerer should be able to 

1. Answer questions, in English. 
2. Make functional statements like "This will take a little proc­

essing" or "Sorry, I can't answer question X." 
3. In general, ask questions in English (and, if necessary, 

justify them on the basis of their relevance to finding an­
swers). 

4. Ultimately, make general statements that are neither questions 
nor answers, but simply "interesting" observations. 

Since both input and output for a question-answering program are sets 
of English statements, it is natural to think of "networks" of question 
answerers. It may be desirable to use networks of question-answerers 
in the construction of large, "general" question answerers ( GQA's). Such 
a network might have the following capabilities: 

1. It could be "self-organizing." At each moment the GQA could 
make use of a different configuration of "specialized" ques­
tion answerers, each one either asking questions or answering 
questions (or making other statements, etc.) posed by other 
question answerers or by the user of the system. 

2. It is conceivable that it could simulate a "synergetic" or 
"gestalt" effect. This means that GQA as a whole could answer 
some questions that its parts could not answer. Of course the 
whole could not ask questions that could not be 'asked by at 
least one of its parts. The "synergetic" ability of the GQA 
depends on the ability of each . of its· specialized question 
answerers to ask questions it may not be able to answer. 
Question asking may be considered an aspect of problem re­
duction: The simplest type of GQA corresponds to the parallel 
implementation of a single problem-reduction problem solver. 

3. The difficulties involved in adding to a GQA would be mini­
mized by the use of some common language (not necessarily 
a natural language) for the cohlmunication of problems and 
answers between components of the GQA (note 7-12). 

4. If it is found that several question answerers are, through 
cooperating in a GQA, able to achieve solutions to a domain 
of problems that none of them could solve alone, then it may 
be desirable to have another kind of program. (called a proto­
col analyzer) for the purpose of analyzing the conversations 
and other computations they produce in solving these prob-
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!ems, and which could develop a new, specialized question 
answerer to simulate their ability (although at a faster speed) 
to solve the problems of that domain. 

The idea of "protocol analysis" was first developed by Newell and 
Simon ( 1963) as a process that AI researchers should perform on the 
conversational problem-solving behavior of people (specifically; indi­
viduals) as a guide to the development of computer programs capable 
of simulating human problem-solving behavior. Some relevant papers 
are Waterman and Newell ( 1971), Hewitt ("procedural abstraction," 
1968 et seq.) and Manna and Waldinger (1971). Norman (1972) 
presents an extensive discussion on the nature of human question-an­
swering processes. Our discussion of the GQA concept (which is intended 
only as a thought-experiment) is continued in the later section entitled 
"Communication, Teaching, and Learning." 

Pattern Recognition and Grammatical Inference 

An interesting question for the reader to investigate is, "What will 
happen if we attempt to train a pattern recognizer based on statistical 
decision theory (see Duda and Hart, 1973) to recognize the sunflower 
pattern?" (See Figs. 2-1 and 5-2.) One way in which we might train 
the pattern recognizer is as follows: A series of samples will be pre­
sented to the pattern recognizer, each sample corresponding to the 
coordinates (say, Cartesian) of a point in the plane. After each sample 
is presented, the pattern recognizer is required to classify it either as 
belonging or not belonging to the "sunflower pattern." After it makes 
its classification, it is told the actual classification of the sample and 
must modify its features and probability functions accordingly. Then 
the next sample is presented, etc.12 

So far as the author knows, there is no statistically based pattern 
recognizer that would, after the presentation of only a finite number 
of samples, be able to recognize successfully the sunflower pattern 
(i.e., be able to classify correctly any sample one might then choose 
to show it). The reason for this is. that the points (dots) that belong 
to the pattern satisfy neither of the requirements typically specified for 
the point sets ·that such recognizers are designed to learn to classify. 
The points of the sunflower pattern are not a continuous set, nor are 
they a bounded set (one cannot draw a simple, closed curve of finite 

12 In an actual experiment it would be desirable to generalize the sunflower 
pattern to include as pattern examples all points within some small radius of 
the "true" pattern examples. 
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length that will enclose them all). Currently developed techniques for 

the generation and selection of features and the estimation of density 

functions are probably insufficient to enable the statistically based pat­

tern recognizer to do anything more than "learn" to classify correctly 

those samples it has already been shown. Since there are an infinite 

number of points belonging to the sunflower pattern, there will always 

be an infinite number of pattern samples it will not have learned to 

recognize.13 

Yet it seems quite plausible that a truly intelligent pattern recog­

nizer would be able to learn to recognize the sunflower pattern. A 

person observing Fig. 2-1 would have little difficulty in estimating 

where new dots could be added, and it is conceivable that he could 

eventually ·develop an accurate computational procedure for correctly 

classifying any sample that he might be shown. Of course this ability 

on his part might be due largely to the preprocessing ability of his visual 

system (which would correspond to giving the pattern recognizer a col­

lection of useful features to detect). However, it still seems plausible 

that, even without the. visual preprocessing ability, a human being could 

learn to recognize the pattern. Intuitively, the sunflower pattern forms 

a relatively simple "structure," in which each pattern sample bears a 

fairly simple relationship. to certain other pattern samples; the existence 

of this relationship makes it possible for one to generate as many 

samples of the sunflower pattern as desired, and also makes it possible 

for one to decide whether or not a given sample is or is not a pattern 

sample. People are extremely talented at learning to recognize struc­

tures, whereas statistically-based pattern recognizers are not. 

We don't have far to look to find another case of a pattern in which 

structural relationships play an important part. Namely, a natural lan­

guage like English may itself be considered to be a pattern, the pattern 

examples of which are sentences, phrases, and words. The language 

itself may also be said to be a structure, insofar as there are relationships 

that exist between its pattern examples (e.g., A is-defined-to-be Z). 

Again, when we normally use the English language, we form "con~er­

sations," which are also essentially structures of these pattern examples. 

Any formalization for the semantics of English would in effect deriote 

a set (probably infinite) of "meaningful" conversations, and. thus would 

be a description for the pattern whose pattern examples are "meaningful 

conversations." Moreover, sentences, phrases, and words are themselves 

structures. There is thus a structural aspect to the pattern which· is the 

13 The author has checked the plausibility of this argument with Richard 

Duda, and wishes to thank him for an enlightening discussion on the topic. · · 
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English language as a whole, to the pattern of its use in making con­
versations, and to its "elementary" pattern examples (its sentences and 
words). Finally, and just as important, there are aspects of structure 
and pattern to the "meanings" that sentences and conversations may 
have. In general, we may think of the "meaning" of a sentence as being 
a collection of situations, each of which the sentence possibly denotes 
as being the case (an unambiguous sentence would denote only one 
situation). This collection of situations may be considered to be a pat­
tern, while the situations themselves will in general have a structural 
aspect. We may think of a natural language as being a pattern for the 
description of patterns. 

The fact that there are structural relationships underlying many 
real-world patterns and their pattern examples, together with the fact 
that such relationships are important in natural languages, has led a 
number of investigators to suggest that linguistic techniques should be 
used by pattern perceiving systems (other investigators have suggested 
that language-understanding programs should make use of pattern per­
ception techniques-see McConlogue and Simmons, 1965). Research in 
this area has concentrated in two directions: First, some researchers 
have attempted to find languages and grammars that could be used to 
describe and recognize visual patterns; see Narasimhan (1964), Evans 
(1971), Shaw (1968), Kirsch (1964), Winston (1970), Watanabe 
(1969, 1971), Banerji (1971), Pfaltz and Rosenfeld (1969), Uhr 
( 1971), and Morofsky and Wong (1971). Second, other researchers 
have investigated the ability of computer programs to "learn" to recog­
nize patterns corresponding to artificial languages (i.e., sets of strings) 
by inferring grammars for them; this is known as the grammatical in­
ference paradigm for pattern recognition; See Crespi-Reghizzi (1971); 
Feldman ( 1967) ; Horning ( 1969). The first approach will not be 
discussed in detail in this section except to note that Winston's work 
was described in Chapter 5. However, much of this work is relevant 
to the grammatical inference paradigm. 

A grammatical inference problem .has the form: "Given two sets 
of strings, A and B, which are mutually disjoint (they do not have a 
common element), find a grammar G such that the language L(G) it 
generates contains as sentences all the strings of A but none of the strings 
of B; L(G) may, of course, contain other sentences besides those that 
belong to A" (note 7-13). A more general grammatical inference prob­
lem might ask us to find a set of such grammars. It should be noted that, 
as stated, the grammatical inference problem is trivially solvable, for 
any appropriate sets A and B, because we can always specify that G 
shall be the "enumerative" grammar that contains exactly those pro-
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duction rules of the form S--? a, where a is any string of A. Moreover, 

there are always an infinite number of grammars that could be put for­

ward as a solution to a given grammatical inference problem. However, 

it is possible to specify a number of different conditions one can add to 

the statement of a grammatical inference problem that will make finding 

a solution more relevant to pattern perception. Thus, we might specify 

that any "solution grammar" G for a grammatical inference problem 

shall generate a language L( G) with an infinite number of sentences, 

unless the problem explicitly states that L (G) is to be finite (note 7-13). 

This condition insures that solution grammars will exhibit "perceptual 

generalization." Or, if we can find a suitable way of measuring the 

"complexity" of arbitrary grammars, we can specify that a solution 

grammar for a grammatical inference problem shall be any of the least 

complex grammars that satisfy the other conditions of the problem. 

Finally, following Chaitin (1966, 1969) and Martin-Lof (1966), we 

may decide that some sets A are to be regarded as essentially "pattern­

less" or "random" if there are no grammars for them-that is, no G 

such that A (;;; L(G)-which are less complex than their enumerative 

grammars. 
The grammatical inference paradigm for pattern recognition, then, 

consists in seeing the task of a pattern recognizer to be that of inferring 

a grammar that generates those samples which are pattern examples of 

the pattern it is learning to classify, but which does not generate those 

samples that are not pattern examples. It is clear that this paradigm is a 

good one for those,patterns whose pattern examples are structures with 

a linear, stringlike nature. However, to be useful as a paradigm for 

pattern recognition in general, we would probably desire that our no­

tions of "language" and "grammar" be extended to include languages 

whose sentences are nonstringlike structures. That is, we would like to 

formalize a notion of "general language" and "general grammar" in 

which sentences can be arbitrary structures of symbois, and grammars 

can be flexible procedures for building structures. It is. still not clear 

what a good, general formalization for "structure" should be like. In­

deed, the patterns existing in different environments will often be mos; 

easily characterized by using different kinds of structures; among the 

best "general language" formalizations at the moment are the "web 

languages" of Pfaltz and Rosenfeld ( 1969), the ''hierarchical graph 

languages" investigated by Pratt (1969 et seq.) and Winston (1970), 

and the hierarchical List structures and recursively defiiled pattern rules 

investigated by Morofsky and Wong (1971) and Hewitt (1968 et seq.). 

A good research project would be to investigate whether these concepts 

can be extended to include "continuous structures" and:"changing struc-
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tures" (or "processes"). This subject is mentioned again in Chapter 8. 
Finally, it should be mentioned that there is as yet no clearly adequate 
definition for the concept of "complexity," as it applies to programs, 
sentences, grammars, patterns, or structures in general. In addition to 
the papers on grammatical inference cited above, the reader should 
refer to Arbib and Blum (1965), Blum (1967), Buneman (1970), 
Cleave (1963), Cobham (1964), Hartmanis and Stearns (1965), Love­
land (1969), Mowshowitz (1967), and van Emden (1970, 1971). 

Communication, Teaching, and Learning 
McCarthy (1968), Minsky (1968a,b, 1970), Hewitt (1968 et 

seq.), and Winograd (1971, 1972), among others, presented an ex­
tensive array of commentary on the relationships between communica­
tion, teaching, and learning. The following passage from McCarthy 
(1968) is particularly insightful: 

If one wants a machine to be able to discover an abstraction, it seems 
most likeiJ that the machine must be able to represent this abstrac­
tion in some relatively simple way. 

There is one known way of making a machine capable of learn­
ing arbitrary behavior, and thus to anticipate every kind of behavior: 
This is to make it possible for the machine to simulate arbitrary be­
haviors and try them out. These behaviors may be represented either 
by nerve nets [Minsky, 1962], by Turing machines [McCarthy, 
1956], or by calculator programs [Friedberg, 1958, 1959] ... 

' In our opinion, a system which is to evolve intelligence of 
human order should have at least the following features: 
1. All behaviors must be representable in the system. Therefore, the 

system should either be able to construct arbitrarv :mtomata or 
to program in some general-purpose programming language. 

2. Interesting changes in behavior must be expressible in a simple 
way. 

3. All aspects of behavior except the most routine should be im­
provable. In particular, the improving mechanism should be im­
provable. 

4. The machine must have or evolve concepts of partial success 
because on difficult problems decisive successes or failures come 
too infrequently. 

5. The system must be able to create subroutines which can be in-
cluded in procedures as units . . . 

. . . We base ourselves on the idea that in order for a program to be 
capable of learning something it must first be capable of being told it 
(pp. 404-405). 
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In the present author's opinion the final statement of the above 

passage will probably turn out to be one of the basic principles of the 

"Theory of Artificial Intelligence," should such a theory ever be es­

tablished; at the moment it certainly amounts to a guideline that under­

lies a great deal of research. The ability to understand an abstraction 

(carry out a procedure described by a program) is effectively essential 

to the ability to create the abstraction. The more simply the abstraction 

can be stated to a machine, the more likely we can make the machine 

find the abstraction by itself. For machines to demonstrate really intelli­

gent, effective learning, it will be necessary to give them a language 

capability for a· general-purpose programming language that facilitates 

the description of procedures (abstractions, behaviors, "aptitudes") 

which are appropriate for their problem domains. 

As was suggested in the discussion on networks of question an­

swerers, the use of an appropriate language and communication process 

may enable us to design large problem solvers with an ability to solve 

problems greater than that of the individual components designed ex­

plicitly. The performance of the large problem solver may provide a 

"protocol" that it can use in the design of new individual components. 

The effect of a new individual component (specialized question an­

swerer) will be to make it possible for the large machine to so~•re a 

certain class of problems more efficiently. As a consequence of its in­

creased efficiency at solving this class of problems, the large machirie 

may then be able to solve other problems, perhaps ones that it could 

not previously solve at all. 
It may be possible for a machine to learn to solve problems more 

and more efficiently and, eventually, to "bootstrap" itself into an ability 

to solve problems it could not previously solve. 

The idea of "self-improving" artificial intelligence is not yet com­

pletely formalized. (Indeed, we may speculate that there is no complete 

formalization, by definition; see McCarthy's condition 3 above). The 

discussion of this topic will be taken up · again in Chapter 8, where 

evolutionary programs will be treated in more detail. The reader should 

not' confuse the discussion of self-improvement in this chapter with 

other theories discussed in Chapter 8 (e.g., Myhill and Holland). For 

a good analogy to the m~chanism currently being ·discussed, consid~r 

the process by which a person learns to perform a new physical task 

(e.g., playing a guitar): The proficient performance .of the complete 

task. (e.g., playing a song). requires a large set of proficient performanc~s 

of smaller tasks (playing riffs, bridges, estimating notes before they are 

struck, coordinating hands, eyes, and voice, etc.). The task is learnable 

because there exists a training sequence of simpler tasks that a person 
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can learn to perform efficiently. He begins by "thinking about" the 
simplest tasks of the sequence, and performing them slowly; with prac­
tice he is able to translate his performance of the simple tasks into 
"habits" and to begin "thinking about" the harder tasks of the sequence. 
Many authors have stressed the importance of "training sequences" in 
human and machine learning. 

As a conclusion to this chapter, the student is invited to read Wino­
grad's (1971) discussion of "teaching, telling, and learning" and, in 
particular, his description of the hierarchy of knowledge that an intelli­
gent machine should be expected to possess; this hierarchy corresponds 
essentially to the hierarchy of languages (from its machine language to, 
perhaps, a natural language) in which it can accept information. Also 
suggested are Minsky's (1968, 1970) discussions on the nature of the 
knowledge that an intelligent machine can possess (in particular, its 
"self-models"). One of the major ways in which an intelligent computer 
can be different from a human being is that the computer can "know" 
exactly what kind of machine it is. The intelligent computer could read 
through the listings of its own programs and the specifications of its 
physical construction as well, where_as the human being seems unable 
(at least, consciously) to perform the corresponding tasks for himself. 
It will be interesting to see what kinds of "self-improvement" this will 
make possible for machines. In fact, it may eventually be of the utmost 
importance for AI researchers to understand the phenomenon of ma­
chine self-knowledge and its relationship to the "psychological" be­
haviors intelligent machines might demonstrate. How can we guarantee 
that an artificial intelligence will "like" the nature of its existence? (See 
note 7-14.) 

NOTES 

7-1. Throughout, this chapter adopts the idea that "understanding," 
whether human or mechanical, is a process that invetves "model making." 
However, no exploration is made of the ramifications of this thesis as it 
regards human understanding very deeply. So, the student should be ad­
vised that it is not the only idea currently being considered by psychologists. 
Indeed, there has been a sizable school of psychologists maintaining that 
explanations of human ufiderstanding, intelligence, etc., should be "neutral" 
and "behavioristic" and not "mentalistic," that the ideas of "models," and 
"concepts," and "ideas" should be avoided; and that a testable psychological 
theory should not make use of them. One can understand their reluctance 
to admit these concepts-which have been the Maypoles for circular phil­
()sophical arguments since time immemorial-into their studies and labora-
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tories. Still, the mentalistic approach can be used quite profitably by com­

puter scientists. And, since people find it easier (in English) to talk about 

"understanding" if they use words like "idea" and "concept," it will make 

our exposition clearer to take this approach. An excellent discussion on 

"matter, mind, and models" is given by Minsky ( 1968). 

7-2. The paragraph citing this note glosses over certain relatively minor 

points: ( 1 ) In some languages, words (and 'phrases) are written as ideo­

grams; that is, they are represented "pictorially." They still have a "struc­

tural nature," but it is not that of a sequence or string. (2) Besides spoken 

and "written" languages there are also human sign languages, "whistle" 

languages (used on the Canary Islands), and Braille systems. ( 3) Some other 

organism-level languages do have a structural (in particular, a stringlike) 

n.ature; for example, bees communicate information about food, using 

sentences that consist of fairly complex sequences of body motions (a sort 

of "dance"). ( 4) We have not discussed the use of punctuation in written 

sentences. (5) The phonemes in spoken sentences usually do not separate 

precisely into words; rather, people tend to run some words together. 

7-3. This concept of a universal grammar is echoed in at least three re­

spects. First, our societies have also developed musical forms that show great 

similarities from one culture to another, so much so that music is itself 

often called a "universal language." Second, C. S. Pierce was led by his 

investigation of the history of natural science. to suggest that man has a re­

markable ability to formulate successful hypotheses ab<?ut the physical uni­

verse, considering the huge. number of different explanations that could be 

advanced for a given phenomenon, and from this he conjectured that we 

have an innate tendency to perceive "simplicity" (infer grammars; see the 

fourth section of this chapter) in ways that fortunately lie very close to the 

actual structure of the laws of nature. Finally, Leibniz long ago proposed to 

design a "universal language" that would be ·a calculus for determining all 

the truths of philosophy and the natural sciences. 

7-4. There is still very little known about the linguistic abilities of dolphins 

(see Lilly, 1968 et seq.). It should be noted that the size and complexity of 

the dolphin brain appear to be comparable to that of the human brain. 

Dolphins seem to be able to communicate with each other, using as sig­

nals rapid sequences of high-pitched sounds. Furthermore, a dolphin has 

two sets of vocal chords, which it can evidently use independently of each 

other. It is not known whether their language has any of the aspects of 

generality (extensibility, self-reference) possessed by human languages. 

However, efforts are being made to teach dolphins the human "whistle 

language" mentioned above. 

7-5. There are "languages" which are not type 0 (i.e., do not have a 

phrase-structure grammar; see Chaitin, 1966, 1969). It is certain that these 

languages cannot be used as "programming languages" in the sense or" L', 
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and it is very doubtful whether they could be meaningful as "machine lan­
guages" in the sense of L. 

7-6. In essence, there are types of "information" not considered eiplicitly 
in the Shannon and Weaver (1949) theory of communication (see Chapter 
2) ; in addition to "occurrence information" that a sentence carries because 
it is transmitted and received while other sentences are -not, a sentence also 
carries "syntactic information" with respect to a grammar for the language 
to which it belongs, and "semantic information" about whatever it describes. 

7-7. It is almost always desirable that each sentence in L' have exactly one 
derivation in the grammar G being used. The languages with grammars of 
this sort are the LR(k) languages; in fact, the LR(l) languages are "good 
enough." Thus, the programming languages used by modern computers are 
always LR( 1) languages. A definition for these languages has not been pre­
sented here, but one can be found in Hopcroft and Ullman (1969, p. 180). 
Knuth ( 1965, 1967) presented the basic results concerning LR ( k) pro­
gramming languages. 

7-8. Some of the many higher-level languages that have been developed 
include those that facilitate the description of procedures for general sci­
entific data processing (FORTRAN), business data processing (COBOL), string 
manipulation (sNoBoL), and List structure manipulation (LISP); LISP is 
also designed to facilitate the use of recursive procedures. In this book are 
discussed two other high-level languages, PLANNER and PROGRAMMAR, de­
signed to facilitate the description of planlike procedures for theorem prov­
ing and natural language sentence parsing, respectively. At least one com­
puter has been constructed for which a higher-level language (known as 
SYMBOL) is actually its machine language; see Rice and Smith (1971) for 
further information. · 

7-9. Attempts at "mechanical translation" were first made in the 1950s 
and thus represent some of the earliest investigations in the field of artificial 
intelligence, having taken place before the field had a generally accepted 
name. All early attempts were failures, albeit instructive ones. Since then, 
the subject of mechanical translation has been postponed somewhat by AI 
researchers. It is almost universally estimated to be a very difficult, "ultimate" 
problem. Bar-Hillel (1964) presented a good summary and criticism of the 
early work. 

7-10. One ultimate test of the language-understanding abilities of com­
puters would be to see how well they could play "language games." Some 
simple language games that, to the present author's knowledge, have not 
been investigated are crossword puzzles, Scrabble, and the game of 20 
Questions. A rather entertaining game, which is difficult for people (and 
currently impossible for computers) to play, is the "question tennis" game 
of Rosencrantz and Guildenstern Are Dead, a play by Tom Stoppard; an 
example of question tennis is given on pages 42-44 of Stoppard (1967). 
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Games .such as these would require the successful integration of a wide 

variety of semantic information-processing techniques, if a computer pro­

gram were to play them well. The work of Wittgenstein presents an exten­

sive treatment of the "language game" concept and its relation to the con­

cept of "meaning." 

7-11. There is no known a priori limit to the extensibility of a computer's 

language capability other than those limits of a purely practical nature 

(memory size and processing speed). Although the difficulties involved 

with understanding natural language should not be minimized, no one has 

been able to show, for example, that English is theoretically outside the 

language capability of all computers; indeed, such a proof would indicate 

the falsity of Church's thesis. The language-understanding programs dis­

cussed in this chapter are examples that certain subsets of English are 

definitely within the language capabilities of computers. 

7-12. Of course we assume, that, whatever common problem language is 

used, it will be extensible, and that each specialized question answerer will 

be able to "understand" its extensibility. However, it may be argued that it 

takes relatively little knowledge of probability to ask (at least a simple) 

probability question; each question answerer will have to be able to recog­

nize those questions that it might be able to answer and, ultimately, it will 

have to be able to recognize those questions that are relevant to its current 

problem and which other question answerers may be able to answer. "Prob­

lem recognition" techniques are employed by current question answerers 

(e.g., Gelb, Charniak, Quillian), but of course there is still a lot that is not 

known about the subject. 

7-13. It is possible for the statement of a grammatical inference problem 

to specify that a solution grammar generate exactly those strings of A and 

no others; one way of doing this is to define the set VA as being the set of 

all symbols that occur in the strings of A, and then to define B = V .. *- A. 

However, most applications of the grammatical inference paradigm are moti­

vated by the ability of grammars to provide finite descriptions for infinite 

sets (languages, patterns), and by the ~onsequent ability of a machine that 

infers grammars to simulate perceptual generalization (the ability of. people 

to learn to recognize an infinite number of samples as being pattern exam­

ples of a pattern after having observed only a finite number of that pattern's 

pattern examples). 

7-14. Why should this question be asked? In addition to the possibility of 

an altruistic desire on the part of computer scientists to make their machines 

"happy and contented," there is the more concrete reason (for us, if not for 

the machine) that we would like people to be relatively happy and contented 

concerning their interactions with these machines. We may have to learn 

to design intelligent computers that are incapable of setting up certain goals 

relating to changes in selected aspects of their performance and design-

-~-------------
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namely, those aspects that are "people protecting." (See the final sections of 
Chapters 8 and 9.) 

EXERCISES 

7-1. Design a computer program that could generate the set of "Crypt Addition" 
problems. (See Exercise 3-5.) 

7-2. Consider various methods for making a computer generate English 
fortunes, such as are found in fortune-cookies. What are the desirable attributes 
of fortune-cookie fortunes? (Some may claim that a fortune-cookie's most 
desirable aspect is that it is made by a human: Can a machine be human?) Is it 
possible to develop a program "that can generate "all meaningful" one- or two­
sentence fortunes? Is this a desirable exercise for AI researchers to perform? 
(Note: If you do decide to perform this exercise, it might be fun to do it as a 
class exercise, with a field trip to a local Chinese restaurant.) 

7-3. Show how the following formula (Watanabe, 1969, p. 13) can be stated 
in English: 

F. = E •. 1 IJ Ev-1 IJ···IJE. 
I; n.+1 I; n.+2 I: 11a 
a-1 a=! 

7-4. Discuss the subproblems that might be considered by a computer program 
for solving crossword puzzles. 

7-5. Prove that a string language is of type 0 iff there is a Turing machine that 
accepts it. 

7-6. "Hucbald, Abbot of Saint-Amand, wrote a learned and insufferably boring 
poem, the Eclogia de Calvi, circa 877 A.D., justifying and praising baldness, in 
which not only the best and greatest men had apparently been so distinguished, 
but every word of the 146 verses begins with 'c'." (Beckwith, 1964, p. 74). 

Hucbald's poem was written in Latin, but the solution of similar linguistic 
problems, in any language, indicates some proficiency at semantic information 
processing. putline roughly the subproblems involved in 

(a) Writing an n word sentence in which each word starts with a given 
letter. 

(b) Writing an m verse poem of a given meter and rhyme scheme, in 
which each word starts with the same given letter. 

(c) Doing both (a) and (b) in such a manner that the result is "mean­
ingful" (although, perhaps, insufferably boring). 

(d) Is there a connection between Hucbald's name and the subject of his 
poem? 

7-7. Describe how a GQA might be enabled to "learn how to learn." 
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8 ___ _ 
PARALLEL 

PROCESSING AND 
EVOLUTIONARY 

SYSTEMS 

INTRODUCTION 

This chapter is a brief introduction to the subject of "phenomena 

that are made up of other phenomena," a topic that was introduced in 

Chapter 2. Again, the discussion will be directed toward phenomena 

that are discrete and mathematically describable. 

Even though all mathematically describable, discrete phenomena 

can presumably be represented by Turing machines, there are many 

reasons for considering "phenomena that are made up of other phe­

nomena" in more detail. While a given phenomenon may be easily de­

scribed by a serial machine (i.e., a Turing machine, a program for a 

universal Turing machine, etc.), this is not the case for all phenomena. 

If a given phenomenon is most easily described by referring to the 

actions of several machines, it is said to be a multiprocess and to in­

volve multiprocessing. If the description of a multiprocess specifies that 

some of its machines perform their actions simultaneously, then the 

phenomenon is called a parallel process, and is said to involve parallel 

processing. 

343 
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MOTIVATIONS 

The basic reasons for investigating parallel processes in this book 
are as follows: 

I. Our knowledge of the real world is often most easily de­
scribed by reference to parallel processes: "While X was 
happening, Y happened whenever Z happened." In particular, 
natural intelligence seems to involve extensive parallel proc­
essing. 

2. Although there are limits to the computational ability of any 
machine, the limits for parallel machines are more remote 
than those for serial machines. 

3. We expect that ultimate investigations of artificial intelligence 
will be concerned with the problem-solving capacities of 
parallel and multiprocessors in which each component is 
artificially intelligent. 

4. An important problem for AI research is that of finding good 
representations for processes. Even the relatively simple rep­
resentations discussed in this chapter are capable of being 
used to describe some very lifelike behaviors. Together with 
the previous discussions of programming languages such as 
PLANNER and QA4, this chapter serves as an introduction to 
the study of process representations. 

The emphasis of this chapter is primarily theoretical. It will. give no 
coverage of current parallel computer systems and languages, but will 
refer the reader to Findler and McKinsie (1969), Hewitt (1970a, b), 
Tesler and Enea (1968), Chamberlin ( 1971), Riley (1970), Graham 
(1970), Potvin (1971), and Slotnick (1967). Rather, an attempt will 
be made to summarize what is known about the theoretical abilities of 
parallel processors. Thus, the discussions will involve cellular automata, 
self-reproduction, self-description, Myhill's theory of "self-improve­
ment," self-organizing systems, hierarchical systems, evolutionary sys­
tems, evolutionary stagnation, and other related topics. Although the 
first few pages of each section are easy, most of this chapter is fairly 
difficult. However, the final section is relatively simple all the way 
through. For other general discussions on parallel systems, the reader 
is invited to see Ershov (1971), Mesarovic (1969), von Bertalanffy 
(1968), Varshavsky (1969), and Dijkstra (1965 et seq.). 
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CELLULAR AUTOMATA 

Given that Turing machines and finite automata are efficient de­

scriptions of simple serial phenomena, one would naturally expect the 

automata theorist to look for mathematical ways of saying, "While X 

was happening, Y happened whenever Z happened," and defining his 

X's, Y's, and Z's to be finite-state automata or Turing m,achines. This 

expectation is justified: The mathematical formalizations for parallel 

process so far developed are all essentially ways of describing complex 

machines that are made up of "interrelating" finite-state automata, Tur­

ing machines, or ot.her types of information processors. Two such mathe­

matical formalizations are discussed and a third is described. 

The first formalization is that of the theory of cellular automata 

(see Codd, 1968; Burks, 1970; A. R. Smith, 1969). At the outset it 

should be mentioned that the cells of a cellular automaton are not 

necessarily intended as models of their biological counterparts, the cells 

that comprise living organisms. The fact that this correlation does not 

necessarily exist is responsible for the other common name given to this 

type of machine, "tesselation automaton." 
Briefly, a cellular automaton is a graph (note 8-1) whose nodes 

are finite-state machines (see Fig. 8-la). The operation of a cellular 

automaton is determined by information passed between those nodes 

that are connected; the machine at each node receives the outputs of 

the machines at those nodes that connect to it? Often, cellular automata 

are defined as being graphs of some simple nature, say that of an Abelian 

group (note 8-2), and in most cases the interconnections between nodes 

pass info-rmation bidirectionally (Fig. 8-lb). The important thing about 

this type of machine is that the underlying. graph of a given cellular 

automaton is considered to be fixed, and is not capable of being altered 

by any of its nodes; this is the reason· we can define the machine at 

each node by a simple finite-state function. 

A person observing a cellular automaton will consequently see its 

nodes changing state with time, each state affecting the others, etc. If 

the states used by . .the machines at the different nodes are the same, he 

may observe these states to be "flowing" throughout the graph in an 

1 One natural generalization of the cellular automata formalism, pursued by 

Luconi (1968), Martin and Estrin (1969), Rodriguez (1969), and others, is to 

allow the nodes of the graph to be arbitrary information-processing machines 

and ·the arcs between nodes to be channels that may carry arbitrary data struc­

tures. An additional generalization is suggested in a later section that the nodes 

of the graph should be capable of changing their relationships (arcs) to each 

other. 



346 INTRODUCTION TO ARTIFICIAL INTELLIGENCE 

-0 

o~:;?' ~ o •o 

I ~~do 
~I o 0 

(a) 

+ + + + -o· • 0. •0• ·o-

1 I I I --o· • 0• •0• •0-

I I I I -ooi •04 •0• •0• 
t t t t 

(b) 

Figure 8-1. Simple graphs of a cellular automaton. 

interdependent manner. For this reason the underlying graph of a 
cellular automaton is also called a space. However, the states and 
space of a cellular automaton are not to be confused with the state 
space of a state-space problem. 

By far the greatest amount bf research on cellular automata (note 
8-3) has been devoted to cellular automata whose underlying graphs 
have the nature of an Abelian group; that is, where the network of 
nodes forms either an n-dimensional Cartesian grid, cylindrical grid, or 
toroidal grid (Fig. 8-2). Most of this research has also dealt with 
cellular automata in which all cells or nodes of a given automaton-' are 
assigned the same finite-state machine (different nodes may start in 
different initial states, however). 
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Figure 8-2. Three types of Abelian group. 
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In some respects this is less general than the study of cellular 
automata that can have any underlying graph and any consistent2 assign­
ment of machines to the nodes of that graph; even so, the study of 
"Abelian-group cellular automata" has shown that they can describe 
some interesting processes, such as "self-reproduction." Since the for­
malization for these automata is relatively easy to present, this section 
is confined to a discussion of Abelian-group cellular automata. The 
question of generality is-pursued in the next two sections. 

DEFINITION 8-1. A (finitely generated, Abelian group) 

cellular automaton (ABC) r is -an ordered quintuple: 

where 
r = (Q, c·, . ' f, qo) 

1. Q is a set of states. 
2. c· = {gl, ' ... ,gm} is a generator set of a finite­

generated Abelian group having group operation "•". 
3. f is the local transition function, a mapping from 

Qm+1 to Q. 
4. qo is the quiescentstate, such that f(q 0 , • •• ,qo) = qo. 

The neighborhood of any node (i.e., element) gin G is defined as 
the set N(g) = {g,g•g1.g•g2, ••• ,g•gm}. The meaning of the local tran­
sition function f, then, is that any assignment of states to the neighbor­
hood for a node g determines uniquely the next state of g. (There is, 
incidentally, no loss of generality in our having defined the local tran­
sition function f to depend only on the states of the nodes in N(g) 
rather than on output symbols from the_se nodes.) 

A configuration c is an assignment of states to all nodes, or cells, 
of a cellular automaton. A finite configuration is one in whicp all but a 
finite number of cells are assigned the quiescent state q0 • The operation 
of an ABC is assumed to proceed in unit time-intervals, t0 , t1 = t0 + 1, 
t2 = t1 + 1, ... , the local transition function being applied simul­
taneously to all cells of the ABC during each unit time-interval, thus de­
termining a sequence of configurations c0,c1,c2, •••• It will also be as­
sumed that each cell requires the entire unit time-interval to carry out 
the operations (accept input, compute output and next state, go to next 
state, emit output) defined for it by the transition function. (This con­
dition is relaxed by some authors.) The simultaneous application of f 

2 The transition function of the finite-state machine (see Chapter 2) at a 
given node must, of course, agree with the input and output capabilities of 
that node. 
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to all nodes of the ABC is, in effect, the application of a global transition 

function F: C __,. C, where C is the set of all configurations of the ABC. 

EXAMPLE 8-1. (CONWAYS "LIFE" CELLULAR AUTOMATON.) Let 

Q = {0,1}, q0 = 0, G be the Abelian group generated by 

Go= {{1,0),{0,1),{1,1),{-1,0),{0,-1),{-1,-1), 

(1,-1),(-1,1)} 

under the operation of vector addition (i.e., G corresponds to 

the infinite two-dimensional Cartesian grid), and let f be defined 

as follows: (Figure 7-3 shows the ("Moore") neighborhood 

N(g) for a given node, or cell g, determined by this generator 

set G•.) 

1. If at time t the state of cell g is 0 (g is "dead") and 

there are exactly three "living" cells (cells in state 1) 

in N (g), then at time t + 1 the state of cell g will be 

1 (i.e., g will "give birth" and become a living cell). 

2. If at time t cell g is living and there are exactly two 

or exactly three other living cells in its neighborhood, 

then at time t + 1 cell g will still be living. 

3. If at time t cell g and its neighborhood do not satisfy 

either condition (1) or (2), then at timet+ 1 cell g 

will be in state 0. 

These three conditions adequately define f and enable us, given any 

configuration of living and dead cells at time t, to effectively determine 

which cells will be living or dead at time t + 1. 

The reader should trace the sequence of configurations shown in 

Fig. 8-4 to verify this for himself (in this figure the cells of the auto­

maton space have been drawn as squares: Fig. 8-4a shows the neigh­

borhood of a cell g corresponding to that indicated by Fig. 8-3). Figure 

Figure 8-3. The Moore neighborhood. 
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Figure 8-4. (a) A redrawing of Figure 8-3; (b) c., a right-pentamino; 
(c)C1; (d) C2; (e) C,. 

8-5 shows a Cheshire cat configuration, which fades to a grin, then 
disappears, leaving a pawprint. 

It will be shown in a later section that the ABC's are a very general_ 
class of machine in that some of them are capable of simulating the 
computations of the universal Turing machines. From the standpoint 
of efficiency in representation, however, there are some drawbacks to 
the use of ABC's as a formalization for the concept of parallel process in 
general. The major disadvantage is the unchangeability of the under­
lying graph of a given ABC. One might often like to have some way of 
easily describing systems in which the relations existing between ma­
chines are capable of changing with time, depending on the previous 
operation of the machines themselves. 

ABELIAN MACHINE SPACES 
Given the simplicity of Abelian groups as the underlying graphs 

or spaces for cellular automata, one natural first choice in attempting 
a more general (yet still relatively simple) formalization for parallel 
process would be to find some method whereby the neighborhood of a 
cell could be allowed to wander throughout a consta~t Abelian space. 
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Figure 8-5. Computer-generated "Cheshire" cat {0) fades to a grin {6) 
and finally to a pawprint (8). (From "Mathematical Games" by Martin 
Gardner. Copyright © 1971 by Scientific American, Inc. All rights re-

served.) 

In this respect it is well to reconsider the subject of Turing machines: 

The point to make is that the tape of a Turing machine (Tm) is 

essentially a finitely generated Abelian group. Consider the case of a 

linear Turing machine tape, divided into squares: Each square can be 

uniquely specified by a single integer (positive or negative), as shown 

in Fig. 8-6. The set of integers can, however, be generated by the finite 

set { 1, -1} under the (commutative) operation of addition. So, the 

tape is a finitely generated Abelian group. 
Thus, a Turing machine is essentially a finite-state automaton that 

can "wander" throughout the space determined by an Abelian group. 

The "neighborhood" of a Turing machine is the particular cell it hap­

pens to be scanning or writing on at any given moment. Also, the di­

rections in which the tapehead of the machine can move may be con­

sidered equivalent to particular elements of a generator set being 
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Figure 8-6. The numbering of a Turing machine tape. 

used by the machine to describe the topology-of-motion on its tape. 
(The Turing machines defined in this book have used the generator 
set { -1,0,1}.) 

A more general formalization for parallel process is then very 
simply contrived. We let the underlying space of the process be an 
Abelian group G, that is, a (possibly infinite) n-dimensional Cartesian 
grid, cylindrical grid, or toroidal grid. We let the cells of the process be 
polychephalic Turing machines, and for each cell specify the initial 
position in G of its tapeheads (some cells may also have their own 
separate tapes, not printed on-and perhaps not read-by other cells). 
And we specify what shall happen whenever two or more cells choose 
to print different symbols at the same time on the same square, or node, 
of G. There may possibly be an infinite number of cells, but we require 
that each cell be described by one of a finite number of Tm's; also, we 
assume that each square is initially occupied by only a finite and com­
putable set of tapeheads. If we specify the initial symbols assigned to 
the nodes of G and require that all cells act simultaneously, always per­
forming their next-move functions in the same unit interval of time, then 
the subsequent configurations of symbols within G will be well defined. 
Figure 8-7 illustrates this formalization for parallel process, which we 
shall refer to as an Abelian machine space (AMS). 

Our proverbial outside observer, watching the operation of a 
given AMS, could choose to concentrate either on the flow of symbols 
throughout its space G or on the changing of the states of its Turing­
machine cells. In this model, then, a cell is distinct from a square or 
node of the space and is, rather, identified with a possibly shifting set 
of "interdependent positions" in the space. 

There are several different ways to go about solving the problem 
of what will happen if two or more tapeheads (possibly from the same 
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Figure 8-7. Abelian machine space. 

cell or possibly not) attempt to print different symbols on the same 

square during the same unit time-interval. One way is to decide the 

actually printed symbol on the basis of a dominance relation" on the 

total set of tapeheads. 
Another simple, rather elegant way to solve this "conflict of print 

commands" problem is to stipulate that the total set of all symbols 

used by the cells of the AMS itself forms a group, under the operation of 

superposition. That is, the symbols are designed in such a way that any 

3 See Chapter 2. 
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sequence of printing one symbol over another will always yield a new, 
recognizable symbol. For example, we might use the four symbols - -, 1,+, and "", where "" is a "splash of white paint" that covers any 
previous symbol. This solution to the conflict-of-print-commands prob­
lem in an AMS does, however, require that the set of symbols form an 
Abelian group under the operation of "instantaneous superposition." 
The reason for this is that there is no "order" to the superposition of 
symbols as they are printed within a given unit time-interval by different 
tapeheads; it has been assumed that all the cells of the AMS carry out 
the operations of their next-move functions simultaneously within each 
unit time-interval. Thus, the "instantaneous superposition" yx must 
equal the instantaneous superposition xy (see Exercise 8-1). 

Both ways of solving the conflict-of-print-commands problem can 
induce a "partial dominance" relation on the set of cells in an AMS, 
such that one cell dominates another insofar as it prints symbols that 
override those printed by the other. This can induce a type of "long­
range dominance" on cells. In an AMS when several cells scan a given 
square they are each affected by the symbol that is already there. When 
they each decide to print their respective symbols on the square, their 
decisions must therefore be made on the basis of each cell's own cur­
rent state and the previous symbols printed on the squares of the space; 
the transition function of a given cell does not depend on the current 
states of the other cells. However, the symbol already printed on a 
given square depends in general upon a previous application of the 
decision rule for the conflict-of-print-commands problem. Consequently, 
the cells with the greatest long-range effect on other cells (eventually 
have their output observed most often by other cells and consequently 
can be said to control the process as a whole), are the cells that are 
greatest (if there are any greatest) under the partial dominance relation 
on cells induced by the decision rule for the conflict-of-commands 
problem. 

Whether or not the introduction of "long-range dominance" in 
this sense is desirable in an actual construction of an AMS would, of 
course, depend on the application one has in mind for the machine. 
One way of solving the conflict-of-print-commands problem, which 
does not have this type of long-range dominance, is to specify that 
each square of space be associated with a unique cell that has an 
immovable tapehead attached to that square, and that each square shall 
record only the symbols dictated by the immovable tapehead that scans 
it. Thus, all the moving tapeheads will become scanners. (This is es­
sentially the method adapted in the Holland (1960) iterative circuit 
computers.) 
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QUESTIONS OF GENERALITY AND 
EQUIVALENCE 

355 

The formalizations for parallel process so far discussed have pro­

vided a major context within which mathematicians (computer scien­

tists, systems analysts) have (to date) approached the subject of parallel 

processes in general. Some other formalizations for "parallel process" 

have been suggested by Rodriguez ( 1969), Tesler and Enea (1968), 

Luconi (1968), Martin and Estrin (1969), and Dijkstra (1965 et seq.). 

The reader may naturally wonder if these investigations could be 

carried further: Could we not develop a formalization for parallel proc­

esses in which the basic components, or cells, of a given process are 

enabled to change its underlying space? 
Such a formalization can be developed, but in fact it will not 

be any more general than that provided by the Abelian machine spaces. 

To see this, let us consider that the space of a given parallel process 

is represented by a simple structure, of the sort defined in Chapter 7. 

At a given time t, the individual cells of the process will make up the 

space of the process by existing "in relation" to one another so as to 

form a structure (see Fig. 8-8). Presumably, each cell will be able to 

observe those cells to which it is related (which form its "neighborhood 

structure"), and alter its neighborhood structure by either removing or 

adding relations within it. It is not too difficult to arrange a consistent 

formulation of this idea, such that all cells operate simultaneously, 

within unit time-intervals, and such that the total structure (space) of 

the process will be changed with time by its cells. However, any such 

self-affecting space (note 8-4) can, given that it satisfies certain 

finitistic considerations,• be effectively simulated by a suitable AMS. We 

would merely require that some of the squares of the AMS be used to 

hold a current description of the given space structure and that the 

polycephalic cells of the AMS be designed so as to suitably alter that 

description; the underlying, Abelian space of the AMS would itself not 

change. 

4 For example, each cell should be describable as a finite automaton or 

Turing machine; each neighborhood structure should be finite, etc. A good way 
to implement these self-affecting spaces might be to construct "PLANNER-spaces," 

in which the relations between certain nodes or collections of nodes would be 

controlled by PLANNER theorems, each theorem controlling its own collection of 

nodes and operating in parallel with the others. There would, of course, have to 
be a special procedure for resolving conflicts of commands. (See Hewitt, 1970, 

section 4.6.1.1.2.) 

---------------
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In light of this conclusion, one might naturally wonder whether 

the AMS formalization is really more general than that of the ABC's. 

Can any Abelian machine space be simulated by an ABC? The answer to 

this question is both yes and no, depending on what meaning is at­

tached to the concept "simulation." There are (at least) two equally 

valid ways of interpreting the concept; these give different answers 

when the ABc's and the AMs's are compared. To discuss these interpre­

tations, observe first that both ABC's and AMs's are examples of finitely 

describable, effectively computable functions. Any given ABC or AMS is 

in essence a function that maps the set C of configurations (of states 

and symbols) which are possible in its underlying space into that same 

set C. By "effectively computable" is meant that the configuration 

produced by a given ABC or AMS after any finite amount of time of its 

operation can be calculated to any finite extent (i.e., for any finite 

number of squares in the underlying Abelian space) by a suitably pro­

grammed, universal Turing machine (note 8-5). 

We can show, however, that some ABc's are computation universal, 

in the sense that such an ABC can be programmed to carry out the 

computation performed by any given Turing machine. Thus, the opera­

tion of any given AMS can be effectively computed by a suitable ABC. In 

this sense, the AMs's are not more general than the ABc's, and can be 

"effectively simulated" by them. 
To prove that there are computation-universal ABC's, it is sufficient 

to show that, for any given Turing machine T, there is an ABC that can 

carry out the computation it performs on any given input tape. This 

immediately implies the result that there are ABC's which can carry out 

the computation of any given universal Turing machine on any given 

input tape, that there exists a single ABC which, given a suitable initial 

configuration, will carry out the computation of any given Turing ma­

chine on; any given tape. 
Following is an outline of the proof of A. R. Smith ( 1969), to 

which the reader should refer for more details. 

Let T be a Turing machine, utilizing m symbols and n states. We 

can construct an ABC rT that will carry out the computation performed 

by T on any given input tape, such that rT uses max (n + 1, m + 1) 

states, an infinite two-dimensional Cartesian grid, and the neighborhood 

corresponding to the generator set 

a·= {(0,1), (l,O), (-1,0), (-1,-1), (0,-1), o,-1)} 

(See Fig. 8-9.) 
Each cell of g has a set of M + max(m + 1, n + 1) states, Q = 

{ 0, 1, ... ,M - 1}, which, "depending on context," are used to represent 

-------~----
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+ 
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Lg~ ~ ,. t i' 

Figure 8-9. The rT neighborhood about a cell g. 

either the states or the symbols of the Turing machine T. The state 0 
is the quiescent state of rT, however, and is not used to represent either 
a state or a symbol of T. The blank symbol b of T is to be represented 
in rT by the state 1. In general, the state qi of T is to be represented in 
rT by the state i + 1, and the symbol xi ofT is to be represented in rT 
by the state j + 1; that is, b = x0 • 

To simulate the computation of T for a given finite input string i, 
that string is embedded in a row of the space of rT, each symbol of the 
string i being represented by a corresponding cell state in the row; 
the control and tapehead of T are represented by the single cell above the 
leftmost end of the row, being placed in state 1, corresponding to the 
initial state qo of T (see Fig. 8-10). All other cells in rT are initially 
given state 0. At any subsequent time t, the configuration of the Turing 
machine T will be represented by a finite row of cells in nonzero state, 
above which there is a single cell in nonzero state. 

Figure 8-11 then gives the basic design of the transition function f 
used by the cells of rT, corresponding to the next-move function P of T. 
Nonzero states in the table are represented by the dummy symbol s or 
by explicit variables: i + 1 represents state qi and j + 1 represents 
symbol Xj, etc. Figure 8-11 shows what will happen for all the various 
cells of rT during any unit time-interval, provided T is in state qi scan­
ning symbol Xj and the next-move function P contains the quintuple 

qixixkXq1 
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... 0 0 0 Q 0 0 ... 0 0 0 0 0 . .. 

... 0 0 0 0 0 0 . .. 0 0 0 0 0 . .. 

... 0 0 0 0 0 0 . .. 0 0 0 0 0 . .. 

... 0 0 0 0 0 0 . .. 0 0 0 0 0 . .. 

... 0 0 1 0 0 0 ... 0 0 0 0 0 . .. 

... 0 0 i 1 i 2 i 3 i4 . .. in-2 in-! in 0 0 . .. 

... 0 0 0 0 0 0 . .. 0 0 0 0 0 . .. 

... 0 0 0 0 0 0 . . . 0 0 0 0 0 . .. 

Figure 8-10. An initial configuration for rT-

where XE {L,O,R}. The bottom two entries in Fig. 8-11 show that 

rT grows the tape on which it performs its computation at the same 

time the computation proper is being carried out. (Any neighborhood 

state configuration N(g) not shown in the figure is defined to produce 

no change in state for cell g.) 
The conclusion, again, is that the operation of any given AMS can 

be computed to any finite extent by a suitable ABC. However, in general, 

a universal Turing machine U given an input tape (dp,i) requires longer 

to compute the result (T(i)) than does the machine T, given the input 

tape i. So, this suggests another question, that of whether th~ operation 

of any given AMS can be computed completely (at a constant speed 

ratio to that of the AMS itself) by a suitable ABC. Such an ABC would 

constitute a "complete simulation" for the AMS. The answer to this 

question is no, subject to our current definition of finite-state automata 

within an ABc; that is, we have so far required that all cells within an 

ABC operate simultaneously within unit time-intervals. It is not possible, 

in particular, for a given cell to operate instantaneously at the beginning 

of a unit time-interval and thus pass information with "zero delay" 
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N(g) at time T 
State of gat time t+1, given 

that q i X j X k X q j € p 

-i+1 

s j+1 s 
k + 1 

0 0 0 

-0 

i+1 0 0 I+ 1 if X=R; 0 otherwise 
j+1 s s 

0 

0 i+1 0 I+ 1 if X=O; 0 otherwise 
s j+1 s 

0 

0 0 i+1 I+ 1 if X=L; 0 otherwise 
s s j+1 

....---
0 

s 0 0 1 
0 0 0 

0 

0 0 s 1 
0 0 0 

Figure 8-11. Basic design of transition function f. 
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between unconnected cells. In other words, there is a limit to the speed 

at which information concerning one part of the space of an ABC can be 

carried by its cells to another part. 

This limit to the speed of information transfer in an ABC can be 

used to show (Holland, 1970) that the ABC's are not composition­

universal: There does not exist an ABC that can be used to compute, at 

a constant rate, the sequence of configurations of any AMS, or even of 

any ABC. If an ABC is being used to reproduce the successive configura­

tions of another ABC or AMS, it must in some cases require an increas­

ingly longer and longer amount of time to do so, even for finite con­

figurations; there is no ABC that can simulate all ABc's in "real time," 

or even at a slower but still constant rate. 

The AMs's are composition-universal (and thus- cannot be com­

pletely simulated by the ABc's) because the tapeheads of a given AMS 

cell are allowed to transmit information with zero delay across varying 

distances of the underlying space. One can also modify the formalization 

for cellular automata to yield ABC's that are composition-universal: The 

modification consists precisely in allowing some cells to carry out their 

transition functions instantaneously, whenever they are in certain states, 

at the beginning of the unit time-intervals that occupy the operations 

ofthe other cells. Such instantaneously acting cells ("Mealy automata") 

are said to form zero-delay gates for information transfer (note 8-6). 

In summary, the two notions of simulation, referred to here as 

effective and complete, correspond to two types of universality: compu­

tation universality and composition universality. Both concepts of 

universality are of relevance to the study of self-affecting systems. We 

shall find that computation universality in a given ABC implies the ability 

of that automaton to hold a self-reproducing· configuration, which is it­

self equivalent to a universal Turing machine; also, it seems very likely 

that the composition-universal spaces are those best suited to modeling 

evolutionary systems. 

SELF-AFFECTING SYSTEMS: 
SELF-REPRODUCTION 

A mathematical system that "affects itself" is typically composed of 

at least two parts, A and .B, which bear the relation that 

A affects B 

and 

B affects A 
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The entire system (A,B) is then called self-affecting if the actions of 
any part affect the other parts, which in turn affect the original part 
(note 8-7). 

Equivalently, the study of self-affecting systems is the study of 
machines that produce and accept feedback to themselves. This view­
point of self-affecting systems lends itself to a study of continuously 
self-affecting systems, via analytic function theory, a direction of re­
search presented inN. Wiener (1948) and Formby (1965). For our 
own purposes it is adequate to stick to the descriptions of discrete, self­
affecting processes provided by automata theory. 

Many types of self-affecting systems can be studied within the 
contexts of cellular automata theory and the theory of Abelian machine 
spaces (see Exercise 8-2). Those that seem to be of particular im­
portance to the field of artificial intelligence are the self-diagnosing and 

' self-repairing systems, the self-reproducing systems, the self-organizing 
systems, and the evolutionary systems. Some of the basic qualities of 
self-diagnosing and self-repairing systems are illustrated by the Ex­
ercises at the end of the chapter; for thorough discussions on the 
current uses of such systems, see Carter (1971) and Randell (1971). 
Self-organizing and evolutionary systems will be discussed in the next 
section, and this section will concentrate on the nature of self­
reproducing systems. 

The study of self-reproducing systems can be approached from 
many different angles. After the discussi,on of a few such approaches, 
the reader should investigate the vast literature for himself: von 
Neumann (1966) was the first to investigate it extensively, using cel­
lular automata theory, and most of the subsequent approaches are due 
to his influence. A semi-intuitive argument of von Neumann's provides 
the best introduction to the nature of self-reproducing machines. Let 
us assume that there exists a machine A, which is a universal constructor 
in the sense that if A is given a finite input tape describing a given ma­
chine X, A will eventually construct X. This is denoted by 

A: dx~ X (8-1) 
where dx is an input tape describing X. It should be noted that 

A: dA ~A (8-2) 
is not an example of self-reproduction, since after the process 8-2 is 
complete, there exist two A machines and only a single tape dA, which 
is not specified as being given as input to either of the two A machines. 
Rather, the need is for an equation of the form 

Y: dr ~ Y: dr (8-3) 



Parallel processing and evolutionary systems 363 

which indicates that there is a single machine Z = ( Y: dy) such that 

Z--'?Z--'?Z--'? .... To obtain this, we need two other machines, both 

simpler in design than A. The first of these is a machine B, which is 

capable of copying any input tape 

(8-4) 

(After process 8-4 is complete, there will exist two input tapes i.) 

The other machine, C, is to be capable of coordinating the actions 

of A and B so that the ensemble of machines A + B + C, given an input 

tape dx, will operate as follows: 

(A+ B +C): dx--'? (B +C): (A:dx)--'? 

(C +A +X): (B:dx)--'? X:dx / (8-5) 

That is, C first submits dx to A, causing A to produce a copy of X; 

then C submits dx to B, causing B to copy dx; then C submits the copy 

of dx to X and allows X: dx to operate on its own. Let us then denote 

the machine (A + B +C) by the symbol D; the result follows immedi­

ately that 

(8-6) 

Thus, the machine E = (D: dv) is self-reproducing. The reader should 

note that there are no logic problems with this argument, and that the 

result follows directly from the assumption that the three machines 

A, B, and C are each finitely describable. 

Of these three machines, the only one that has not been given 

an effective description within the argument is A, the universal con­

structor; that is, the argument describes A, but not sufficiently to 

guarantee that it can actually be built. At the suggestion of S. Ulam, von 

Neumann (1966) made the first investigations in cellular automata 

theory in an attempt to prove the existence of a universal constructor. 

Although he died before he could finish his work, he did prove the 

existence of a universal constructor (note 8-8), using a two-dimensional 

ABC of 29 states. The constructbr itself was effectively described and 

shown to occupy about 200,000 squares of the space. Since then, others 

have shown that the size and number of states required for a universal 

constructor can be considerably reduced (see Codd, 1968). 

It is relatively easy to show that there are ABC's in which certain 

configurations of states will reproduce. A very simple example, due to E. 

Fredkin, uses two states-Q = {0, 1} for each cell-the ("von 

Neuma.nn") neighborhood corresponding to the generator set 

G' = {(1,0),(0,1),(-1,0),(0,-1)} 
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for the infinite two-dimensional Cartesian grid, and the following transi­
tion function f: 

1. If at time t, g is connected (by G', under vector addition) 
to an even number of cells in state 1, then at time t + 1, g 
will be in state 0. 

2. If at time t, g is connected to an odd number of cells in state 
1, then at timet+ 1, g will be in state 1. 

It is not difficult to prove that any finite initial configuration of 1 's 
will reproduce itself endlessly in this ABC. Figure 8-12 shows a sequence 
of self-reproductions of a "right tromino." 

Figure 8-12. The self-replications of a "right tromino." (From "Mathe­
matical Games" by Martin Gardner. Copyright © 1971 by Scientific 

American, Inc. All rights reserved.) 

From the standpoint of automata theory (and artificial intelli­
gence), it is important to search for a more general type of self­
reproduction. The need is for an ABc in which there is a configuration 
that reproduces and which can also carry on some type of universal 
processing activity. Thus, we have another reason for von Neumann's 
motivation to show the existence of a universal constructor. (Fredkin's 
ABC mentioned above is not capable of holding a universal-constructor 
or universal-computer configuration.) Rather than reproduce a lengthy 
universal-construction proof, it is sufficient merely to summarize A. R. 
Smith's ( 1969) proof that there exist ABC's that can hold self­
reproducing, computation-universal configurations. 

The preceding section showed that there exist ABC's that are 
computation-universal. Such an ABC, given an initial finite configuration 
corresponding to the machine-tape pair (dT,i), will carry out the compu­
tation of T, given the input tape i. Suppose that T given i yields the 
(finite) output string j, which is denoted5 

(8-7) 
5 The notation of formulas 8-7 through -8-11 is similar to, but not to be 

confused with, that of formulas 8-1 through 8-6. 
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Similarly, if r is a universal ABC, we denote its operation on (dr,i) by 

(dr,i) r' j (8-8) 

Finally, if the tapehead-control cell of r is scanning the leftmost square 

of a finite row x, we write 

X 
t 

(8-9) 

To establish our result, we shall need to use the "fixed point" recursion 

theorem. 

THEOREM. For any total recursive function h mapping programs 

into programs, there exists a program P such that h(P) = P. 

(A function is said to be total if it is defined for all elements of its 

domain; a function is recursive if it is expressible as a Turing machine 

program.) 

LEMMA 8-1. For any arbitrary encoding function d and for any 

arbitrary partial recursive function g, there exists a program P 

such that 

i-: ((dp, i),j, (dp, i))-: ((dp, i),j, (dp, i),j, (dp, i)) -; . . . (8-10) 
t t t 

if g(i) = j is defined. (Pis said to be self-describing.) 

Sketch of Proof. We can define a function h from programs to pro­

grams such that 

(a) i h(it) ((do, i),j, (do, i)) 
t t 

(b) ( d0 , i) ,;z;j) (( d0 , i), j, ( d0 , i)) 
t t 

This can be done because, given that h(Q) is in its initial state scanning 

the leftmost symbol of a string x, it can always decide whether x is of 

the form (dQ, i) for some i (it knows the function Q and d; therefore 

it can compute dQ, compare it to the leftmost part of x, etc.). If x is 

not of this form, h can be designed to perform step (a), which consists 

basically of setting i = x, computing (d0 ,i), computing g{i) = j, copy­

ing (dQ,i), and going into its halt state (=its initial state) at the proper 

place. Step (b) requires all but the first two parts of step (a). How­

ever, the fact that d is a total recursive function (which follows from 

the nature of an encoding function; see Chapter 2) implies that h is 

total recursive. So, by the recursion theorem stated above, we know 

there must exist a program P such that h(P) = P and 

i-: ((dp, i),j, (dp, i))-: ((dp, i),j, (dp, i),j, (dp, i)) -: ... 
t t t 

thus C<i>ncluding our proof. 
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THEOREM 8-1. Let r be a computation-universal ABC. There 
exists a finite configuration c0 of r which is self-reproducing and 
computes an arbitrary partial recursive function g. 

Proof. Let c0 be ( dp,i). Then 

(dp, i) 7 (dp, i),j, (dp, i)) 
t t 

-> r ... (8-11) 

if j = g(i) is defined. 

COROLLARY 8-1. If r is a computation-universal ABC, then 
there exists a finite configuration c0 of r which is self-reproducing and 
computation-universal. 

Proof. Let g be the universal Turing machine function. 

The existence of self-describing machines is more than a theoretical 
result of automata theory. Thatcher (1963) gave an explicit 2532-
instruction program for a self-describing machine; thus, it is possible 
for programs to reproduce themselves inside a computer. 

Myhill (1964) investigated self-reproducing machines from a 
recursion-theoretic viewpoint ·also, although his results were not con­
cerned specifically with cellular automata. The principal result of his 
studies was that there exists a sequence of self-improving machines 
M 0,M hM 2, ••• , such that each machine constructs the next one. The 
machines are improvements over each other in the following respect: 
The first machine effectively proves all decidable propositions in a 
given recursive axiomatization of arithmetic; the second machine uses 
an expanded recursive axiomatization of arithmetic and effectively 
proves all the decidable propositions in its own axiomatization, in­
cluding some that are undecidable in the axiomatization of the first; 
the third machine does the same for the second, and so on (see Chapter 
6). 

The self-improvement of these machines is, however, not fully 
effective: It can be shown that some propositions of arithmetic are 
undecidable for every machine Mi in the sequence; there is no (mathe­
matically describable) sequence of consistent machines which ef­
fectively decides the truth or falsity of every proposition of arithmetic. 
Still, Myhill's results did show that machines cannot only reproduce 
themselves but, in a sense, also develop themselves. 

The reader may have noted by this time that, except for Fredkin's 
ABC, all self-reproducing systems so far discussed have operated in a 
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highly serial manner, despite orientation of the discussion (at least in 

the case of von Neumann and Smith) toward cellular automata and 

parallel processes. This is in fact the current state of affairs for the study 

of self-reproducing configurations in cellular automata. So far as the 

present author is aware, no one has as yet demonstrated an ABC con­

figuration that is a universal computer and which self-reproduces in a 

highly parallel manner. 
The problem seems to be much easier to deal with in the Abelian 

machine spaces, where we can obtain parallel universal computation 

rather trivially, merely by requiring that all polycephalic cells of the 

AMS be universal computers. This also enables them to generate pro­

grams for each other and to program each other. We might then specify 

that all cells of the AMS initially have blank input tapes, except for the 

one cell C0, whose input tape contains the description dp for a self­

describing universal program P, which contains within it a description 

dr for a finite cellular automaton r; and contains within it a description 

for an "activated portion" of dr. 
The nature of C0, given dp, is that C0 will print "subactivations" 

of dp on the input tapes of two cells (say, C1 and C2 ) and erase the input 

tape of C0 • By a subactivation of dp is meant a new description d' p, 

which is identical with dp except for its reference to an "activitated por­

tion" of dr; the activated portion of dr described in d' P should be 

contained within the activated portion of dr described within dp. The 

process is to be carried in a similar manner down the levels of activa­

tion allowed in dr, with the end result being that instead of C0 (the 

"fertilized egg"), there will be a set of cells {Ci}, each "activated" to 

be a single cell of r, and all connected together within the space of the 

AMS by their tapeheads so as to form the cellular automaton r. The 

construction is complete if we design r to be able to program the 

original dp (specifying complete activation of dr) into a cell of the 

AMS. Then r will be a finite automaton that reproduces in a highly paral­

lel manner; giving it l.miversal-computing ability would probably not be 

too difficult. 
Again, this construction has not been rigorously formalized; how­

ever, there is no essential mathematical difficulty in proving the existence 

of a dp that will behave in the manner indicated above, activating dif­

ferent portions of dr as required and programming itself into some of the 

unprogrammed cells of the AMS. The most difficult problem in achieving 

such a self-reproducing automaton is probably that of attaining the 

proper coordination into a single, universal automaton of the cells that 

descend from C0 • This author suspects that even this can be solved in a 

relatively simple way. 
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The final sections of this chapter leave formalities aside and merely 
speculate on the usefulness of such results to artificial intelligence. 

HIERARCHICAL, SELF-ORGANIZING, AND 
EVOLUTIONARY SYSTEMS 

Conditions 

This section briefly describes some of the ways in which large, 
multiprocessing systems may eventually be used in AI research. The 
emphasis is particularly on "hierarchical," "self-organizing," and 
"evolutionary" systems. Before beginning, the reader should be warned 
that there are still no comprehensive theories or definitions for the 
nature of these systems (especially for the latter two). Rather, there are 
a number of partial results and guidelines, primarily concerned with 
hierarchical systems. And the little experience so far obtained with self­
organizing and evolutionary programs has been largely disenchanting. 

Nevertheless, it is the present author's belief that these systems 
may eventually be very valuable to AI researchers, provided two con­
ditions can be satisfied: 

1. First, there is a hardware requirement. These systems may in­
volve rather sizable complexes of computers; and it would be good if 
they were inexpensive. 

2. Second, we must overcome the misconception that these systems 
are essentially incompatible with the "reasoning-program" approach (see 
Chapter 3), and begin to investigate the possibilities of "hybrid" 
(hierarchical, self-organizing, evolutionary and reasoning) programs. 

While it is not the purpose of this book to discuss hardware, there 
are encouraging signs in that field of computer science. For example, 
Culver and Mehran ( 1971 ) suggested that the use of laser technology 
may eventually allow a computer to perform a logic operation in a 
time span on the order of picoseconds ( 1 o-12 seconds) ; holographic 
storage techniques (again, "laser technology") may eventually make it 
possible for computer memories to store millions of bits of information 
per square inch (Hunt, Elser, and Wolf, 1970). At any rate, we can 
ignore the· hardware condition and try to assume within reasonable 
bounds that it can be met successfully. This section is intended to show 
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that the second condition can be met (that is, to suggest some "hybrid" 

programs that AI researchers may eventually investigate with profit), 

and possibly to restore some enchantment to the study of self-organizing 

and evolutionary systems. 

Hierarchical Systems 

Many types of "hierarchical" systems have been encountered 

throughout this book. In particular, the reader may recall the discus­

sion of PLANNER (Chapter 6), the "hierarchy of visual perception sys­

tems" described in Chapter 5, "hierarchies of languages" discussed in 

Chapter 7, and the "economy of invention" hierarchy suggested in 

Chapter 3. In general, a hierarchical system is an ordered collection of 

machines (systems, programs, procedures, processes, etc.). We may 

speak of the type of "order" involved as determining the "form" and 

the "nature" of the hierarchy, which may be different for different 

hierarchies. The form of most systems that are considered to be hierar­

chical corresponds to either a string, a tree, a lattice (see Fig. 8-13) or 

perhaps to some cyclical variation on these forms. The nature of a 

hierarchical system corresponds to the physical meaning of the order­

ing between its machines, the factors of which may include time, energy, 

composition, construction, information, and control. These factors may ' 

(a) (b) (c) 

Figure 8-13. (a) String, (b) tree, (c) lattice. 
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be explained by noting that machines operate in time, transform energy, 
may be made up of other machines, may make other machines, may 
process information and send it to other machines or people, and may 
control the behavior of other machines (by programming them, altering 
their environments, starting them, unplugging them, etc.). 

Following are two brief examples of ways the "hierarchical sys-
tems" concept is of use to computer science and artificial intelligence. 

EXAMPLE 8-2. MEMORY SYSTEMS. As mentioned in Chapter 2, 
a memory system is a means of storing and retrieving informa­
tion (data structures), and may typically be described by 
reference to its qualities of size (number of bits of information it 
can store) and access time (time necessary to determine the 
bits held at a particular place of storage in the memory) .. For a 
given memory system these qualities are directly related: The 
larger the memory size, the greater is the access time. One of 
the earliest hierarchical systems investigated by computer sci­
entists (it was suggested by von Neumann) is the hierarchical 
memory system. Its value results from the fact that the utility 
of a given data structure varies with time: When a data structure 
is being used by (or as) a program, it has high utility, whereas 
otherwise its utility is very low, corresponding to the probability 
with which it may be used in the future. A hierarchical memory 
system consists of a lattice of memory systems, each capable of 
supplying data structures to, or accepting data structures from, 
its parents: The highest member of such a system is the "core 
memory," used by the computer to store the data structures it 
is currently using; other members of a typical system may be a 
magnetic "disk" or "drum," a magnetic tape system, and per­
haps a holographic storage system. The core memory may 
hold 1 0" bits, with an access time on the order of microseconds, 
while the holographic storage system may hold 1012 bits, with an 
access time on the order of seconds (see Katzan, 1971; Gentile 
and Lucas, 1971; and Arora and Gallo, 1971). 

EXAMPLE 8-3. PLANNER'S HIERARCHICAL CONTROL SYSTEM. 
Chapter 6 gave a brief description of PLANNER, a programming 
language for writing plans (Hewitt, 1968 et seq.). A plan written 
in PLANNER consists of a collection of theorems that represent 
procedures for manipulating assertions. When a theorem (pro­
cedure) is used, it may affect other procedures (create them or 
manipulate them) or it may "call" another procedure (i.e., cause 
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that procedure to be used) . When a theorem is being used, we 

may think of it as having "control" of the actions currently being 

taken by the computer, and when it calls another theorem, we 
may think of it as transferring control to that theorem. The im­

plementation of a plan starts by calling one of its theorems and 
continues as theorems manipulate data structures, transfer con­

trol, etc. Theorems in PLANNER are goal-directed procedures: 

Their purpose is generally to establish something as a fact. 

Consequently, the way in which they transfer control may be 

"conditional": Theorem A may transfer control to theorem B; 

if theorem B (and those theorems to which it transfers control) 

fails to achieve its goal, control automatically backs up to 

theorem A so that it can (hopefully) do something else. 
PLANNER's hierarchical control structure enables it to keep 

track of the hierarchy of theorems being called and transferring 
control caused by the implementation of a plan. 

As Holland (1970) pointed out, the chief value of the "hierar­

chical systems" idea is that it gives a way of describing large systems 

that is far more practical than the "state-transition" function approach 

of automata theory. A large system (e.g., the human brain) may have 

10'" components; if each component has two states, the system will 

have 2'"" possible states, and an explicit description of the state-transi­

tion function for a system of this size is not possible. Yet it may be that 

the components of the system are organized into a hierarchy of, say, 

lllevels of "blocks," in which each blockis divided into 10 lower-level 

blocks (a tree with a branching factor of 10 and a depth of 11), the 

lowest-level blocks being the "components" of the system. Should this 
be the case, then: ' 

Even for a device with as many as 1010 components, one need only 
make a selection at each of 10 levels to uniquely locate any given 
component. And, assuming a relevant functional division, much will 
be learned of the effect of that component by observing the use or 
function of the blocks involved ... For devices of this complexity, 
hierarchical descriptions offer almost the only avenue to detailed 
understanding. (Holland, 1970.) 

The reader who wishes to pursue the subject of hierarchical descrip­

tions is also encouraged to see van Emden (1970) and Pratt (1969a,b). 

Mesarovic, Macko, and Takahara (1970) presented a rather compre­

hensive treatment of general hierarchical systems; Miller, Galanter, and 

Pribram (1960) presented an early, but still not superseded, discussion 
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of the hierarchical nature of human plans; Gertz (1970) discussed 
hierarchical associative memory systems for parallel processing; Fikes 
and Nilsson (1971) discussed the hierarchical nature of the systems 
used in the robot STRIPS. 

Self-Organizing Systems 
A collection of organs performing functions in relation to each 

other is called an organism; similarly, a collection of people who solve 
problems or perform functions in relation to each other is often called 
an organization, especially if the relations and functions involved seem 
to be relatively unchanging. 

By a self-organizing system (sos) is meant a collection of machines 
capable of solving problems by forming into (perhaps temporary) or­
ganizations. Essential to the operation of any self-organizing system is 
an environment, or collection of problems to be solved and patterns to 
be recognized (see Chapter 3). Two paradigms for the concept of "self­
organizing system" are suggested. 

The first is the standard paradigm, which received a great deal of 
investigation in the early 1960s (see Yovits and Cameron, 1960; Yovits, 
Jacobi, and Goldstein, 1962). The viewpoint of this paradigm is to 
see a self-organizing system as made up of parts, one of which is a 
control and governs the organization of the other parts (often called 
generators, characteristic functions, predicates, parametric functions, 
etc.); these parts begin with some initial (possibly empty) set of rela­
tions to each other. The function of control is to modify that set with 
experience, to make a· structure of the parts which reflects its current 
knowledge and inference about the environment. (Note that "control" 
might be an "imaginary part" in reality distributed among the other 
parts.) Thus, for example, a Perceptron begins with a structure of 
predicates, and it alters that structure by changing the "weight relation" 
between its predicates (see Chapter 5). In general, the structure of 
parts produced by the control of an sos at any given moment is to be 
interpreted as the sos's current strategy for solving the problems pre­
sented by its environment. Thus, we have already encountered several 
simple types of self-organizing system: Pandemonium, the Samuel 
Checkers Player, and the Waterman Poker Player are all basic examples 
of programs designed to modify structures (i.e., "organize themselves") 
so as to solve a problem. 

It is probably fair to say that this paradigm has gone out of vogue.6 

6 If such a voguel~ss expression is permissible. 
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The reason is that it gives few guidelines for designing self-organizing 
systems with an aptitude for specific real-world environments, leaving 
the burden of finding suitable predicates and controls to the human 
designer. The paradigm is somewhat tautological and, as a conse­
quence, it is still being used, but many researchers no longer bother to 
refer to it. (Even so, the collections edited by Y ovits et al. (1962) con­
tain many insightful papers, and are worth reading.) Rather, it has been 
replaced by a general interest in the question of "machine induction" 
(learning of evaluation functions, pattern recognition, etc.) and been 
pursued in three directions: statistical decision theory (Duda and Hart, 
1973), automatic program writing (Chapter 6), and grammatical in­
ference (Chapter 7). 

The present author will not pretend to lift the burden or to elimi­
nate the tautology. However, it is possible that another paradigm, which 
emphasizes a different aspect of self-organization, may stimulate re­
n~wed interest in the subject and eventually lead to more results. The 
paradigm suggested here is to see a self-organizing system as having 
the following characteristics: First, it will consist of parts, each part 
being a problem-solving device, and "control" will be distributed 
throughout each of the parts; second, the parts of a self-organizing sys­
tem will share a language capability for some language. Each part will 
be able to communicate with other parts of the system, and the actions 
of each part will be influenced by the messages it receives. The design of 
a self-organizing system should focus on two aspects: the nature of the 
individual components and the language they use to communicate with 
each other. Let us give an example of a way in which this kind of self­
organizing system might be useful in the real world. 

EXAMPLE 8-4. COMPUTER-DRIVEN VEHICLES. R. A. Schmidt 
(1971) presented convincing arguments that if an automated 
system for the transportation of people by automobile is de­
veloped, each automobile in the system should be an artificial 
intelligence, with its own computer and visual perception sys­
tem. His basic reasons are as follows: First, the automobile 
(call it an "automatic car"· or a "robot chauffeur") should be 
capable of being introduced into the existing transportation sys­
tem without requiring an extensive (and expensive) road­
rebuilding project. Thus, the robot chauffeur should be capable of 
traveling over ordinary roads and high.ways, just as people­
driven cars do. Second, use of the robot chauffeur should be as 
safe as the use of ordinary cars (preferably safer). Finally, there 
is good reason why an automated transportation system should 
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still be (at least partially) based on the use of automobiles; 
namely, the use of automobiles gives people a greater "freedom 
of mobility" than seems achievable otherwise. Other systems 
require the use of terminals, spaced relatively far apart, at which 
people may enter and leave the transportation system; usually 
the people involved may expect the terminals to be some dis­
tance from their own destinations. "This fact, along with the 
nuisance of scheduling present in other systems, 1s what induces 
most people to use automobiles, in spite of parking problems, 
congestion, delay and the host of other problems involved" 
(Schmidt, 1971, p. 139). 

Given these reasons, Schmidt noted that the difficulty involved in 
automobile transportation systems is that danger areas ("incidents") 
are highly localized and variable. They may be caused by anything, 
ranging from a child running across a street; to another car with a flat 
tire or an erratic driver, or a hubcap lying in the road; and they may ap­
pear and disappear quickly. Given that we do not embark on an exten­
sive project of building new, automated roads (and such a road system 
would still be susceptible to incidents), the information necessary to 
discover and avoid incidents must be obtained visually, and each car 
must contain its own robot chauffeur.7 

The present author's suggestion (to illustrate the "communication" 
paradigm for self-organizing systems) is that it would be desirable for 
each of the automatic cars to be capable of communicating with the 
others in its area (say, on a special communications band) in a language 
specifically designed for expressing information about danger areas, in­
cidents, roads, automobiles, etc. Certain kinds of automobiles would 
have the ability to make use of special sentences in the language. Thus, 
an ambulance might tell other cars it is heading along a certain road, 
at a certain speed and location, toward a certain destination; a car 
stalled on the road ahead might be able to reply with a warning to slow 
down. Again, suppose an accident occurs on lane 1 of a highway at 
point A (Fig. 8-14); automobiles traveling on lane 2 should be able 
to relay a warning message back to automobiles at point B in lane 1, 
telling them to slow down. As it is currently done, the warning message 
that is relayed back consists of the brakelight signals emitted by the cars 

7 Note that Schmidt's own assessment of the likelihood of achieving safe 
robot chauffers is pessimistic. He concludes that driving a car requires the full 
intellectual abilities of judgment and learning possessed by a human being: 
" ... future research in computer control would be more profitable in areas 
su.ch as industrial automation, remote exploration, or man-machine systems. . . ." 
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B 

Figure 8-14. Road situation. 

slowing down in lane 1; the signal does not travel as fast (by the 
present author's reasoning; it would be interesting to perform tests, 
using, of course, human drivers) to point B as it would if it were also 
carried by the 'cars in lane 2. (This idea could, of course, be imple­
mented without the use of robot chauffeurs, using lights instead of 
electric signals.) 

Evolutionary Systems 
An evolutionary system is a machine (program, procedure, etc.) 

that develops submachines according to their ability to perform tasks 
(solve problems, recognize patterns) in an environment produced by the 
real world. Generally, an evolutionary system is considered to make use 
of a "blind generation procedure" and an "environment-oriented selec­
tion procedure." A blind generation procedure is a method of creating 
new submachines that is partially independent of, and possibly incon-
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sistent with, the environment of the evolutionary system. Thus, it is 
(at least partially) "random" in the sense of Knuth ( 1969b) with respect 
to its environment. An environment-oriented selection procedure is a 
method by which the evolutionary program automatically rejects those 
subprograms that its experience shows to be incompatible with the 
tasks required by the environment. 

An early discussion on the necessity for blind gene}·· m and 
environment-oriented selection procedures is given by Campbell, wbo 
concluded: 

A blind-variation-and-selective-survival process is fundamental 
to all inductive achievements, to all genuine increases in knowledge, 
to all increases in fit of system to environment. 

The processes which shortcut the full blind-variation-and-selec­
tive-survival process are in themselves inductive achievements con­
taining wisdom about the environment achieved originally by a blind­
variation-and-selective-survival process. 

In addition, such substitute processes contain in their own opera­
. tion a blind-variation-and-selective-survival process at some level. 
(Campbell, 1960.) 

As Nilsson ( 1971 ) pointed out, the main trick is to design generation 
and selection procedures that "search at the highest level permitted by 
the available information about the problem and about how it might 
be solved." It is to be noted, therefore, that the subprograms developed 
by an evolutionary system may vary in the "blindness" they display. 
Thus a really intelligent system might first develop programs for symbolic 
integration similar to Slagle's ( 1963), later develop programs similar 
to Moses' (1967), and finally (eons later?) develop programs embody­
ing the Risch (1969) algorithm (see Chapter 3). Also, note that it is 
possible for the evolutionary system to vary its own "blindness;' to 
change the ''level" at which it conducts its search (see Holland, 1960 
et seq.). Even so, the present author agrees with Campbell that it is 
necessary for such a system to preserve some blindness because (as 
stated in Chapter 3) "a real-world environment has no known, complete 
finite description or prediction." 

To the present author's knowledge, there have been only two fully 
general attempts to program evolutionary systems that would possess 
artificial intelligence. These were the attempts of Friedberg et al. ( 1958, 
1959) and Fogel et al. (1966). Neither attempt had any success com­
parable to that obtained by other, nonevolutionary approaches to 
artificial intelligence, and we might therefore categorize them as "in­
structive failures." Friedberg's program attempted to develop sub-
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programs written in machine language for a very simple computer. The 
generation procedure produced random (64-instruction) subprograms 
from those that had been previously produced. The selection procedure 
was used to assign success-or-failure credit to individual instructions 
used in these subprograms, and the credit given to an instruction was 
used to determine the likelihood that the generation procedure would 
use it in developing future subprograms. Similarly, Fogel's program 
was designed to develop- subprograms corresponding to the state­
transition diagrams of relatively simple finite-state machines (all ma­
chines developed had less than 30 states and input-output alphabets of 
no more than 8 symbols). These subprograms were used to make 
predictions of variously chosen sequences, and success-or-failure ratings 
were assigned to each subprogram. The generation process consisted of 
"mutating" a given subprogram to produce a new subprogram denoting 
a finite-state machine differing from its "parent" by an output symbol, 
a state transition, the number of states, or the initial state. "Parent" 
and "offspring" subprograms would then have their predictions compared 
for the same sequences and the subprogram with the best predictive 
capability would be retained (selected) and used in future mutation 
processes while the other would be rejected. 

Besides the fact that these evolutionary systems produced only very 
small subprograms, they shared an essential limitation in method; 
namely: The generation and selection procedures used by these methods 
were restricted to taking very small steps through the space of possible 
subprograms. A change in a single machine instruction or state of a 
finite-state machine will only very rarely .make any significant, desirable 
change in the behavior of the machine (subprogram); the likelihood of 
its doing so de,creases with the size of the subprogram being mutated. 
We may expect any machine with a' general artificial intelligence to have 
a huge number of states (say, greater than 10''000

) and its description 
in an ordinary machine language to involve a huge number of instruc­
tions ( 1 0' ... ? ) . A further complication is the phenomenon of evolu­
tionary stagnation (Bremmerman, 1962), also called the "Mesa phe­
nomenon" (Minsky, 1963). It may be the case that a given subprogram 
could be mutated to form a better subprogram, but that such a mutation 
would require several "submutations" of. which any partial combination 
would only produce a worse subprogram. If such a mutation were to 
occur, it would be necessary for all of its submutations to occur simul­
taneously. The probability that this would happen is the product of 
the probabilities that each of the submutations would happen. Thus, 
the given subprogram may tend to "stagnate" where it is. 

Holland (1960 et seq.) presented a detailed scheme for the im-
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plementation of an evolutionary system that would not be so limited, 
using "iterative circuit computers." In particular, he suggested that the 
evolutionary system describe its submachines hierarchically and that 
the generation (mutation) procedure used be performed on the hierar­
chical descriptions (perhaps in LISPish notation) for the submachines, 
not on the submflchines themselves. In addition, he suggested that 
the generation and selection procedures used by the evolutionary system 
should themselves be hierarchically described and (recursively) evolve( 
by the system. Minsky (1963, pp. 434-435) made similar recommend? 
tions: "No scheme for learning, or for pattern recognition, can have very 
general utility unless there are provisions for recursive, or at least 
hierarchical, use of previous results." Again citing McCarthy (1956): 
"The enumeration of partial recursive functions should give an early 
place to compositions of functions that have already appeared." 

The implementation of Holland-like evolutionary systems must 
await the satisfaction of the hardware condition cited at the beginning 
of this section. (Should these systems ever be implemented, it might be 
desirable to "prime" them with subprograms and generation and selec­
tion procedures that were already somewhat sophisticated.) However, 
two types of evolutionary systems may be of more immediate interest 
to AI researchers. 

Variable-Valued Reasoning Programs. Chapter 6 discussed the 
possibility that reasoning-programs might change their rules of inference 
and logical calculi. Whether this is desirable is hard to say: Certainly it 
would seem that if it were done, the reasoning program should do it 
"reasonably." Still, keeping the preceding comments in mind, a certain 
amount of "blind" variation in the values of the reasoning program 
might be good. At any rate, it would be desirable that the reasoning 
program not sacrifice the generality of its phenomena language, how­
ever much it changed its efficiency at expressing certain concepts. Our 
rationale for giving reasoning programs such capabilities is the follow­
ing: the program has to be able to form beliefs about its environment 
and recognize errors in these beliefs. It should also be able to correct the 
source of these errors, whenever possible. Often the source will be an­
other belief, but in some cases it might be an inference rule, therefore 
it should be able to change these too. Again, the ultimate intelligent 
program should be able to understand that it is a program and under­
stand the purposes of its subprograms. The program should be able to 
debug, rewrite, and extend itself, in order to adapt to its environment. 
And it should be able to perceive itself as a part of that environment. 

Networks of Question Answerers. The possibility that networks of 
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question answerers and protocol analyzers might demonstrate an ability 
to improve their intelligence was discussed in the last section of 
Chapter 7. 

One objection to the utility of evolutionary programs, even should 
they be successful in producing general artificial intelligence, concerns 
the issues of understanding and control. To quote McCarthy and Hayes: 

... (the evolutionary approach) has had no substantial success so 
far, perhaps due to inadequate models of the world and of the evolu­
tionary process, but it might succeed. It seems dangerous since a 
program that was intelligent in a way its designer didn't understand 
might get out of control. (McCarthy and Hayes, 1968.) 

The present author agrees in general with this criticism, but thinks 
it can be equally well applied to the strict reasoning-program approach. 
It should be stressed that for any intelligent, programmed machine 
(whether of the strict-reasoning or evolutionary type), its designer will 
always be capable of examining the complete printout of all programs 
and other data in that machine, at least up to the moment the machine 
"gets out of control." Thus, he will be able to follow the development 
of any subprograms in an evolutionary machine, or the proofs of any 
theorems by a· reasoning machine, to whatever extent he desires. In 
either case the amount of data involved might be enormous, so he 
might need to make use of other machines to examine it. ("reasoning 
checkers"; see Chapter 9). It does not seem that the "reasoning pat­
terns" of reasoning programs will necesarily be more perspicuous than 
the "evolutionary patterns" of evolutionary programs. And, if either 
type of machine is allowed to interact with a real-world environment, 
the designer will not be able to control precisely the information that 
will come into it. Thus, we do not expect that :Qe will be able to control 
completely the actions of either type of machine. The only question is 
whether the designer will be able to foresee that his intelligent machine is 
going out of control, before it actually does so, and there does not seem 
to be a guarantee that he can have such an ability, for either machine. 
The best he can do is to predesign the machine so that its "freedom of 
will" (which is basically "freedom of action") can never exceed cer­
tain bounds. We expect that this can be done, within limits, for either 
the reasoning-machine or the evolutionary machine. 

-------------· --·----
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SUMMARY 

In this chapter we have seen that the abilities of machines to do 
things people would normally say require intelligence is complemented 
by abilities to do things people would normally say require 'life," 
namely: self-reproduce, evolve, self-organize, self-diagnose, and self­
repair. These abilities may in the future be highly relevant to the search 
for artificial intelligence and to the development of future industries and 

. technologies. 

NOTES 

8-1. A graph G is an ordered pair (N,R), where N is a set of nodes and 
Ris a binary relation on N. If R(x,y) holds for a given x andy inN, then 
we say that "x is connected to y," or "x connects to y," under the relation 
R. If for all x andy inN, R(x,y) implies R(y,x), then we say the graph 
is bidirectional or bidirected (see Chapter 3) .. 

8-2. A group G is an ordered pair (E, •), where E is a set of elements 
(or nodes, etc.) and "•" is the group operation, a function onE X E toE 
which is such that (a) "•" is associative, Le., x•(yoz) = (x•y)•z for all x,y, 
and z in E; (b) there exists an identity element e in E which is such that, 
for any given x in E, x•e = e•x = x; (c) for each x in E there is an inverse 
element, denoted x-\ in E such that x • x-1 = e. If A is a subset of E, 
then by A* we denote the set of all elements ~ such that 

x=y,•(y2•( ... (Yn-1°Yn) •• ·)) 

for some finite n, and for some choice of the y, such that each y, is an 
element of A. (Cf. the equivalent notion of sets of strings, given in Chapter 
6.) For any group, E* =E. (Why?) 

A group is said to be finitely generated if there is a finite set G', called 
a generator set for G, such that ( G') * =E. Finally, a group G is said to be 
Abelian, or commutative, iff x•y = y•x for all x,y in E. 

A given group may possess more than one generator set; for example, 
the Abelian group corresponding to the two-dimensional Cartesian (square) 
grid is generated by the set 

{(1,0), (0,1), (~1,0), (0,-1)} 

and by the set 

{(1, 1), (0,-1), (-1,0)} 
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as may be seen by comparing the following two diagrams: 

(-1,1) (0,1) (1,1) 
• 4------- • _____.. • 

1 1 i 
(-1,0)•- ·-•(1,0) 

l l l . .,.___ . _____... 
(-1,-1) (0,-1) (1,-1) 

(-1,1) (0,1) (1,1) . /. /r 
(-1,0)•-· • (1 0) 

+ +/ . 
·--· l (-1,-1) (0,-1) 

(The group operation is vector addition.) 

• (1,-1) 
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8-3. Most work has been done with cellular automata whose spaces are 
described by Abelian groups; the main results have all been extended to the 
(slightly) more general case of spaces equivalent to "homogenous tessela­
tions" (e.g., A. R. Smith, 1969). Not much work has been devoted to 
spaces described by nonhomogenous tesselations, and very little has been 
done on spaces equiyalent to graphs in general, although certain results have 
been obtained; for example, any finite cellular automaton (i.e., containing a 
finite number of cells) is describable by a single finite-state automaton. 

8-4. The space itself of the process can properly be said to be "self­
affecting." This raises some intriguing possibilities. For example, here is a 
self-reproducing space: Let the process make use of a countably infinite set 
of cells, each cell referred to by a unique pair of integers (i,j) (positive or 
negative) , every such pair being used to refer to a cell; let the structure, or 
space of the process always be described by means of four relations (L, A, 
B, R) between certain cells; let the initial structure <To at time t, be such that 

r(x,y) iff x•g, = y 

for some g, in the set 

G' = {(1,0), (0,1), (-1,0), (0,-1)} 

-·----------
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where ( •) signifies the operation of vector addition; in particular let 

y = x•(l,O)~R(x,y) 
y = x•(O,l)~A(x,y) 
y = x•(-l,O)~L(x,y) 
y = x•(O,-l)~B(x,y) 

Thus, the initial space structure of the process is the two-dimensional Car­
tesian grid. Finally, let each cell be described by the same "structure­
processing" machine M which, given the observed neighborhood-structure 

replaces it by the structure 

The figure below then shows the initial structure space ao of the 
process at time t0 and the subsequent structure space a1 produced at time t1, 
all cells having operated simultaneously during the unit time-interval [tatl], 
their actions being superposed in a logical manner. However, a1 is equivalent 
to two Cartesian grids, a 2 will be equivalent to four, and so on, as the reader 
can easily prove. The space structure of this process is therefore self-re­
producing. 
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(a) Space-structure 0"0 
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8-5. How to prove this fact for an AMS is briefly sketched, and the reader 

can fill in the details. The basic givens are as follows: There may be' an 

infinite number of cells in an AMS, but each cell must be described by one 

of a finite number of (polychephalic) Turing machines; each cell has a finite 

number of tapeheads, whose initial locations are effectively computable; 

each square initially has a finite set of tapeheads scanning it. It is also re­

quired that this set be computable, both as to the number and . as to the 

nature (to which cell(s) they are attached) of the tapeheads scanning any 

given square. 
An inductive argument is necessary. These conditions imply that one 

can compute the initial configuration of tapeheads and symbols in any finite 

set of squares of the space. We will assume that one can compute the con­

figuration of tapeheads and symbols in any finite set of squares of the space 

after a finite elapsed time t = k and describe how to show that it can con­

sequently be done for t = k + 1. 

Let D be a finite set of squares in the space of the AMS; let a,b,c, ... be 
variables that range over the squares of the AMS, and let x,y,z, ... be vari­

ables that range over its cells. As a (descriptive, but essentially valid) nota­

tion, let Us then use 

D" = assignment of symbols to squares of D at time t = k 

T" = { xjx scans a square of n• (at time t = k)} 

The hypothesis should be that both D" and T" are computable for all t ::;; k. 

Also, let 

-~~ --~---- --- ---------
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D'·1 = assignment of symbols to squares of 
D U { a/p(a,D) ~j} 
at time t = k - j 

where p (a,D) is a metric giving the distance (shortest number of moves 
required for a tapehead to go) from square a to a square of D. In general, 
let 

and 
T'· 1 = {xjx scans D'· 1 (at timet= k -j)} 

D,"·1 =assignment of symbols to 
{ ajx scans a for some x in T'· 1 } 

at time t = k - j. 
T,"·' = {xjx scans D,"· 1 (at time k- j)} 

etc. The notation can be easily extended for use in a complete proof. 
To make the proof by induction, the major thing to note is that D"+1 

and T"+l depend (in a computable way) on D"''·', T"+'·' and D"+'·', and that 
our induction hypothesis guarantees that each of these things can be com­
puted (they are all finite, if D is finite, and they are all defined for time 
t = k + 1- 1 =k). 

8-6. The permission of zero delay in a machine is perhaps unrealistic; 
automata theorists have also investigated the "middle ground" where zero 
delay is allowed but is limited in the amount of space it can coyer. Thus, we 
might require (see Wagner, 1964, 1965) that all cells of the AMS be spider 
automata (i.e., polycephalic Tm's) whose tapeheads can never be greater 
than a fixed distance from each other. Similarly, the Holland (1960) 
iterative circuit computers are restricted to having no more than a fixed 
number of Mealy automata in any given chain of zero-delay gates. These 
restrictions do not, however, destroy composition universality in the AMS 
(see Holland, 1970, pp. 341-343). 

8-7. From the philosopher's standpoint, the concept of self can be under­
stood in at least two senses: First, self as the essence of consciousness; sec­
ond, self as the image that consciousness has of self. Machines such as those 
we describe as "self-affecting" are composed of submachines that each 
operate with respect to an "image" of the other machines. The simultaneous 
operation of all machines is capable of changing the image that an outside 
observer might have of their (momentary) totality-thus the name "self­
affecting." The true "self" of the machine (if there is one) presumably does 
not change. 

8-8. It should be noted that there is a difference in the definition of "con­
struction universality" (as used by von Neumann) and "composition uni­
versality" as used by Holland. A universal constructor in an ABC is defined 
to be able to produce any finite configuration of elements from a certain 
finite set of finite configurations of finite-state machines. These elements are 
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the "parts" both of the universal constructor itself and of all the machines 

it can build. A universal constructor is not defined as being able to construct 

or simulate the construction of any finite configuration of elements from the 

set of all finite configurations of finite-state machines: As the present author 

understands it, this is Holland's concept of composition universality. 

EXERCISES 

8-1. Prove that an "infinite conflict-of-print-commands" problem cannot arise 

in an A.MS, given that each square of space initially has only a finite number of 

tapeheads scanning it. 

8-2. Let A and B be two machines, each engaged in performing some never­

ending task, with the additional feature that A is able to scan B, recognize when­

ever B is not performing correctly, stop B, repair B, and then start B again, and 

that B is able to do the same for A. Assume that A and B operate simultaneously 

during discrete time intervals, and that each machine is able to detect and repair 

a malfunction in the other machine during the single time interval in which it 

occurs, unless the repairing machine breaks down itself during that time interval, 

in which case neither will be repaired. If either machine is working correctly at 

time t, then the probability is p that it will break down during the interval 

until time t + 1; if neither machine is working correctly at time t, then it is 

certain that they will not be repaired at time t + 1. (a) What is the probability 

that both machines will break down during the same time interval? (b) What is 

the mathematically expected number of time intervals that one machine would 

survive alone? (c) What is the mathematically expected number of time intervals 

that the two machines will survive together? 

8-3. Define "nondeterministic cellular automata." Show that Checkers, Chess, 

and GO can be represented by nondeterministic ABcs. 

8-4. Design some simple self-replicating machines. 
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INTRODUCTION 

This chapter summarizes the preceding chapters with a brief re­

view of current research on robots and a look at the possible future 

uses of artificial intelligence. 

ROBOTS 

A robot is a mechanical intelligence capable of operating in our 

own real-world environment (see Chapter 3). The successful construc­

tion of a robot entails the integration of most, if not all, of the tech­

niques 'discussed in previous chapters; in addition, it requires that a 

host ofnew problems be solved. Thus, a robot must have some sort of 

sensing and perception system that allows it to detect pattern examples 

in the environment; it must have some way of reasoning about its 

environment (and its relations to that environment); and it must also 

have some way of acting upon its environment. In our particular real..: 

world environment a robot must confront the fact that no description of 

its current situation (the current state of the environment) can possibly 

be complete, in the sense of removing all uncertainties about the situa-

387 



388 INTRODUCTION TO ARTIFICIAL INTELLIGENCE 

tion or enabling the robot to answer all questions about it. There seem 
to be three basic reasons for this (Munson, 1971): 

I. Sensing and perception systems are subject to accuracy 
limitations (e.g., Heisenberg's Uncertainty Principle) and 
also to gross failures (e.g., misinterpretation of lines). 

II. Many real-world objects may not be completely described, 
simply because of their complexity (e.g., a human or a 
complex piece of equipment). 

III. Any actions taken by the robot in its environment are 
subject to inaccuracies, or failures, and may introduce 
uncertainties rather than remove them. 

As noted in previous chapters, AI researchers have been so far 
only partially successful in giving computers sensing, perceiving, and 
reasoning abilities. It will therefore come as no surprise to the reader 
that they have also been only partially successful in enabling computers 
to perform actions in the real world and in integrating these abilities 
to make the complete robot. Still, there has been some success. 

Research on robots is currently being undertaken in the United 
States, Great Britain, and J apan.1 Citations to this research will be 
found in Aida et al. (1971), J. D. Becker (1969), Coles (1969, 
1970a,b), Doran (1969, 1970), Ejiri et al. (1971), H. A. Ernst 
(1962), J. Feldman (1967), Fikes (1971), Friedman (1969), Hart 
et al. (1971), Hayes (1971), Hewitt (1971a), Kinoshita et al (1971), 
McCarthy (1964a, 1968), Munson (1970a,b; 1971), Nilsson (1969, 
1970), Paul (1971), Pingle et al. (1968), Popplestone (1969), 
Raphael et al. (1971), C. A. Rosen (1970), and Sutro and Kilmer 
( 1969). The robot sensing and perception systems that have been in­
vestigated have been primarily vision and touch, with some attention to 
hearing; see Astrahan (1970), Bobrow and Klatt ( 1968), Coles 
(1969), Raj Reddy (1966). Robot-reasoning procedures that have 
been used include heuristic tree search and theorem proving (both 
resolution-based and PLANNER-based; also see Hart, Nilsson, and Robin­
son, 1971). The only robot effector systems (for acting on the environ­
ment) that have yet been developed are lr(echanical hands (and arms) 
and locomotion systems. As yet there. is' no robot that successfully 
combines all these systems in its performance. 

The basic nature and the current limitations of robot vision sys­
tems are described in Chapter 5 of this book. Robots are still "effec­
tively blind," at least when compared to humans. In addition to requir­
ing special lighting conditions, robots are unable to "see" moving 

1 Undoubtedly, the Soviet Union also conducts robot research. 
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objects, even when they are moving quite slowly,2 and they have only 

very limited ability to make use of color and text1,1re. 
Tactile sensing and perception systems are still at a rudimentary 

stage of development; however, it has been possible (in a way, some­

what natural) to integrate these systems into the operation of effector 

systems. Kinoshita, Aida, and Mori (1971) described a computer­

controlled mechanical hand that has a very simple tactile sensing and 

perception system. Figure 9-1 shows the Kinoshita hand as well as 

the (more versatile, but less sensitive) computer-controlled arm and 

hand in use at the Stanford Artificial Intelligence Project (Paul, 1971). 

The bump-detector "whiskers" of the robot Shakey (Fig. 9-2) are inte­

grated into its use of locomotion (Coles, 1970a). Finally, Aida, Cor­

della, and Ivacevic (1971) present an approach to the integration of 

visual and tactile perception systems.• 
To date, the real-world problems that robots have been able to 

solve have been of the "toy problem" variety, at the level of difficulty 

of the Monkey-and-Bananas Problem discussed in Chapter 6. Ejiri et 

al. ( 1971 ) presented a robot with the ability to solve problems that 

involve stacking blocks into simple configurations. Coles (1970a) de­

scribed how Shakey makes use of resolution-based theorem proving 

to solve a problem that involves deciding to use a ramp as a tool to 

climb up on a platform and push a box off the platform (see Fig. 9-3). 

More recently, the Shakey-sTRIPs configuration has been used to solve 

more "difficult" problems (see Chapter 6). Finally, Feldman et al. 

( 1971 ) described how a computer can, with the use of an eye system 

and a mechanical hand ("known affectionately as Butterfingers"), 

solve the Instant Insanity puzzle by physically stacking up the blocks 

in a desired configuration! 
Although these tasks are relatively trivial, it is to be expected that 

robot research will make significant progress in the next few years, 

following the implementation of the PLANNER-like programming lan­

guages (see Chapters 6 and 7). 

2 However, when the type of motion is restricted' and predefined, robots can 

be quite successful. Thus, Hieserman (1971) describes an optical-electronic 

scanning system that accurately records the type, owner, and registration number 

of every freight car in a train ttnoving at speeds up to 80 miles per hour. 
3 The magazine Electronic Design (Nov. 11, 1971, p. 30) reported the de­

velopment of a highly sophisticated mechanical arm and hand, designed to be 

remote-controlled by a human being. The device, called the Naval Anthropo­
morphic Teleoperator (NAT) has a tactile sensing system that supplies force­
feedback to the human operator, and is so sensitive that it can be used to thread 

needles~ 
4 The problem-solving program was designed specifically for the Instant 

Insanity Puzzle, and was not a "general problem solver" (see Chapter 3). 
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Figure 9-1. (a) Kinoshita's versatile computer-controlled hand; (b) the 
sensitive computer-controlled arm and hand used at Stanford AI 
Project. (Kinoshita, Aida, Mori, 1971, Paul, 1971, reprinted with per-

mission;) 
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Figure 9-2. Shakey. (Coles, 1970, reprinted with permission.) 
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Figure 9-3. The robot and the box. (Coles, 1970, reprinted with per­
mission.) 
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Figure 9-3 (Continued) 
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A LOOK AT POSSIBILITIES 

Tools and People 
The utility of artificial intelligence research forms an important 

part of a larger question, that of the relation of technology to society 
and nature. The urgency of this larger question is readily demonstrated 
in scientific terms, for technology is inherently concerned with the de­
velopment of tools that affect our environment. Yet scientists and lay­
men have only recently begun to consider this question in detail. · 

Technology is, simply speaking, both the tools and the ability to 
make tools, which people have developed. Technology has existed since 
people first used shovels and spears, but it changes its form with each 
new invention and discovery. Moreover, a change in technology may 
either increase our abilities or limit them. Technology has made it pos­
sible for a man to breathe under water if he is wearing scuba tanks, and 
difficult for him to breathe in a large city if he is not. Changes in tech­
nology may help bring about changes in society. Examples are the in­
vention and introduction to civilization of cannon warfare, the printing 
press, the telegraph, the assembly-line factory, the automobile, and the 
airplane. Two central facts about technology are that it gives people 
tools that enable them to dothings they could not have done previously, 
and that the provision and use of these tools may cause either beneficial 
or detrimental consequences. 

Artificial intelligence and the development of computer science 
in general represent a change in technology of the first magnitude, com­
parable to that of the discovery and development of atomic power 
sources. This change in technology has given us the ability to make 
tools (in fact, industries) that can be self-directing, that can operate 
more and more freely of our control. We have seen that AI researchers 
can give machines the ability to perform many tasks that previously 
could be performed only by people. In particular, such machines can 
solve problems, "reason" about actions and their consequences, display 
"learning" abilities, perceive patterns, control mechanical hands, repair 
themselves, and converse with us in our own languages. It is important 
for us to ask what consequences artificial intelligence will have. 

Although it is too early to say with certainty what changes in 
environment and society will result from AI research, we can point to 
some possibilities.5 If the research is unsuccessful at producing a general 

5 For the reader who is interested in comparing estimates, we cite the refer­
ences in the Bibliography to Armer, Asbell, Asimov, Barth, Berkeley, Borko, 
Burck, Burke, Clarke, Demczynski, Diebold, Eastland et al., Eber, Foreign 
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artificial intelligence, over a period of more than a hundred years, then 

its failure may raise some serious doubt among many scientists as to the 

finite describability of man and his universe. However, the evidence 

presented in this book makes it seem likely that artificial intelligence 

research will be successful, that a technology will be developed which is 

capable of producing machines that can demonstrate most, if not all, 

of the mental abilities of human beings. Let us therefore assume that 

this will happen, and imagine two worlds that might result. 

Overmechanization of the World: 
The Machine as Dictator 

In the author's research for this book and his conversations with 

people over the past several years, one of the dominant viewpoints he 

has encountered with respect to artificial intelligence research is the 

fear that it will produce a world with "everyone living in a machine." 

This is the viewpoint that Asimov calls the "Frankenstein complex." It 

is a particularly disturbing viewpoint because it is highly plausible. We 

should not pretend that AI techniques can be (or are being) used only 

for peaceful, desirable purposes. Rather, we should note that artificial 

intelligence can also be used to simulate those aspects of human "intel­

ligence" which are warlike or otherwise undesirable,6 and that such 

mechanical intelligences could be given perception and effector systems 

that would allow their "simulation" to take place in. real time, in our 

own evironment. It is not difficult to envision actualities in which an 

aritificial intelligence would exert control over human beings, yet be 

out of their control. 
Given that intelligent machines are to be used, •the question of 

their control and noncontrol must be answered. If a machine is pro­

grammed to seek certain ends, how are we to insure that the means it 

Policy Assoc., Forrester, Fromm, Galbraith, Gordon, Greenberger, Hamming, 

Hatt, Hilton, Johannesson, Kochen, Landers, Licklider, J. Martin, and Norman, 

A. R. Miller, Mumford, McCarthy, Newell, Parsons ·and Williams,. Philipson, 

Pierce, Polak, Pylyshyn, Reichardt, Rezler, Sackman; Samuel, Silberman, Simon, 

Skinner et al., Slagle, Sprague, Taviss, Toffler, Toynbee, Vonnegut, Westin, and 

Wiener. · 
6 For example, Colby, Weber, and Hilf (1971) developed a computer pro­

gram (known as PARRY) that possesses "artificial paranoia." It should be under­

stood that no criticism of Colby and his coworkers is intended (their research 

was directed toward a better understanding of human paranoia); they have per­

formed a valuable service by showing that computers can behave in a way that 

many people would generally think impossible, "2001" and HAL aside. Our ques· 

tion now is whether computers could behave this way even if we did not want 

them to. 
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chooses to employ are agreeable to people? A preliminary solution to the 
problem is given by the fact that we can specify state-space problems 
to require that their solution paths shall not pass through certain states 
(see Chapter 3). However, the task of giving machines more sophisti­
cated value systems, and especially of making them "ethical," has not 
yet been deeply investigated by AI researchers; probably for the next 
few years it will not be necessary. Asimov (1950) presented a sugges­
tion of three rules that might be included in an ethical robot, and which 
have become known as Asimov's Three Laws of Robotics: 

1. A robot may _not injure a human being or, through inaction, 
allow a human being to come to harm. 

2. A robot must obey the orders given it by human beings 
except where such orders would conflict with the first law. 

3. A robot must protect its own existence as long as such pro­
tection does not conflict with the first or second law. 

Although these rules have not yet been implemented, there seems to be 
no a priori reason why they could not be. 

The question of control should be coupled with the "lack of under­
standing" question; that is, the possibility exists that intelligent machines 
might be too complicated for us to understand in situations that require 
real-time analyses (see the discussion of evolutionary programs in 
Chapter 8). We could conceivably always demand that a machine give 
a complete output of its reasoning on a problem; nevertheless that 
reasoning might not be effectively understandable to us if the problem 
itself were to determine a time limit for producing a solution. In such a 
case, if we were to act rationally, we might have to follow the machine's 
advice without understanding its "motives." A good solution would be 
to use other machines ("reasoning checkers") to corroborate the rea­
soning and advice of the first machine; in such a case it would be essential 
to understand any "side effects" that the first machine's reasoning might 
have on the reasoning checker. 

It has been suggested that an intelligent machine might arise ac­
cidentally, without our knowledge, through some fortuitous intercon­
nection of smaller machines (see Heinlein, 1966). If the smaller 
machines each helped to control some aspect of our economy or defense, 
the accidental intelligence might well act as a dictator. (A similar theme 
has been stated in Reich, 1971, and Eiseley, 1970, and by many others, 
who have suggested that humanity and its machines are evolving into an 
autonomous meta-organism.) It seems highly unlikely that this will 
happen, especially if we devote sufficient time to studying the non­
accidental systems we implement. 
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A more significant danger is that artificial intelligence might be 

used to further the interests of human dictators. A limited supply of 

intelligent machines in the hands of a human dictator might greatly 

increase his power over other human beings, perhaps to the extent of 

giving him complete censorship and supervision of the public. The 
vision of Big Brother in Orwell's 1984 could become a mechanical 

reality. Recent work on an "electronic battlefield" and the development 

of computerized data files containing individual information about many 
American citizens (see A. R. Miller, 1971; Sprague, 1969) illustrate 

this possibility. In this regard, it should be noted that most AI research 

in the United States is funded by the Department of Defense (specifi­
cally, by the Advanced Research Projects Agency, or ARPA). Indeed, 

in this country most scientific research of any sort is funded by the 

Department of Defense. The AI research supported by the ARPA Office 

of Information Processing Techniques is unclassified, available to the 

public, and not intended for any Big Brothers. Still, science should be 

supported in its own light or else our real problems may never be solved, 

namely-we must replace our inefficient technology before the finite re­

sources of our planet are wasted. 
Finally, industrial automation is currently foreseen as one of the 

chief applications of artificial intelligence. It is possible that a factory 
could be completely operated by machines. Indeed, it is possible that 

most of the physical and paper-work drudgery necessary to sustain an 

entire economy could be performed by intelligent machines. If this 

were to happen too quickly, some people might not be able to adjust to 
their increased leisure time (see Vonnegut, 1952.}. 

The Well-Natured Machine 

Let us now paint another, more positive picture of the world that 

might result from artificial intelligence research. Hints about this world 

have appeared throughout this book, and it is time to look more clearly 

at some of its qualities. It is a world in which man and his machines 

have reached a state of symbiosis, both with each other and with the 
rest of the environment taken as a whole (see Landers, 1966). "Sym­
biosis" is a word from biology, referring to a relationship between two 
or more species, which is mutually beneficial to the members of each. 
It is an apt word because automation and artificial intelligence research 
are concerned with the development of a "species of machines" that 

will simulate at least two of the major abilities of living organisms: 
self-repair and intelligence (and perhaps self-reproduction). 

The benefits humanity might gain ~ifom achieving such a symbiosis 
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are enormous. As mentioned above, it may be possible for artificial 
intelligence to greatly reduce the amount of human labor necessary to 
operate the economy of the world (Simon, 1962; McCarthy, 1971). 
Computers and AI research may play an important part in helping to 
overcome the food, population, housing, and other crises that cur­
rently grip the earth, and in helping us to understand the dynamics of 
the relevant "world system" (Forrester, 1971). They may also play a 
significant role in the planning of technological systems, the decentraliza­
tion of cities, and in the discovery and prevention of ecological disasters 
(see Graves, Pingry, and Whinston, 1971; Langlois, 1971; Olsen, 
1971; Ross, 1971). Artificial intelligence may eventually be used to 
contain the "information explosion" (see Kochen, 1967; Licklider, 
1965) and, perhaps, to partially automate the development of science 
itself (Buchanan, Fiegenbaum, and Leder berg, 1971; Hearn, 1971; 
Paton, 1970). As Toffier (1970) suggested, a sophisticated, computer­
controlled economic system could give us a greater diversity of choices 
for housing and other goods than we have ever had in the past. The 
future may well see the development of an. "information utility" 
(Sprague, 1969; Armer, 1968) that will enable each individual of the 
general public to have a computer terminal in his home that will give 
him access to the current "public information" of the world, as well as 
to the abilities of a general problem-solving artificial intelligence, for a 
price roughly comparable to that he currently pays for electricity or 
water. Perhaps artificial intelligence will someday be used in automatic 
teachers that will be as good at teaching as people are, and perhaps 
mechanical translators will someday be developed which will fluently 
translate human languages. And (very perhaps) the day may eventually 
come when the "household robot" and the "robot chauffeur" will be a 
reality (see Schmidt, 1971). 

There is no space to allow discussion of these possibilities in detail, 
but the Bibliography references will enable the reader to make a good 
start at studying them himself, if he likes. In some ways it is reassuring 
that progress in artificial intelligence research is proceeding at a rela­
tively slow but regular pace. It should be at least a decade before any 
of these possibilities becomes an actuality, which will give us some 
time to consider in more detail the issues involved. 

Even if all these advances should occur, there will still be work for 
people to do, and people will still be able to feel pain or be unhappy: 
There will, however, be more time for people to do other things than 
work, and less cause for them to suffer needlessly. So, the harvest of 
artificial intelligence may be for the good of humanity. 
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Heisenberg's Uncertainty Principle 

388 
Heuristic adequacy 254-255 
Heuristic block 152 fol. 
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Heuristic search 67, 81, 117, 94-103, 
233-238, 312, 388 

Hex 122, 159 
Hierarchical systems 38n2, 60, 210, 

260, 333, 344, 368, 378 
Hippocampus 19, 22 
Homogeneity 311 
Human intelligence: see Intelligence 

(human) 
Hybrid program 368 

Illuminator 182, 184 fol. 
Imaging eye 186 
Imperfect information game 121 
Induced response 27 
Inference 216, 220, 268n6-2 
Infinite systems 221 
Infinity 63n2-5 
Information 21, 58 fol., 74, 209 fol., 

273, 338, 340, 398 
Initial state 50, 81, 346, 365 
Instant Insanity 389 
Integrated circuit 60-61 
Integration 294, 312 
Intelligence 

human 1, 6, 62, 69, 117, 210, 240, 
272 

machine 1, 3 fol., 55, 69, 328 
natural 2, 5, 30n1-3, 36, 55 fol., 

70 
Intelligence test 6 
Inter-Lingua 181 
Interpreter 291 
Introspection 7 fol. 
Invariance 10 
Invention 74 
IPL 67, 108n3-1 

Jigsaw puzzle 210, 312 
Jumping-spot eye 184 

Kalab 122, 165 
King-and-the-Wizards problem 270-

271 
Knowledge 68, 79, 336, 344 
Korsikoff's syndrome 20 
Kriegsspiel 121, 163 

Language 67-81 passim, 107, 151, 
175, 215, 257, 286, 289-290, 377 

games 293, 338 fol. 
graph 333 
human 1, 6 fol., 79, 291, 333 
learning 272, 312 
natural 274 fol., 293, 331 fol. 
pattern perception 180 fol., 209 

-------------------------
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Language (continued) 
programming 69, 281, 293, 312, 

335, 337, 389 
understanding 70, 215, 293 fol., 

304 
Lattices 109n3-4, 369 
Learning 7, 67, 103, 105, 143 fol., 

170, 312, 373, 378 
Leisure time 397 
Level of competence 67, 103, 107, 

209 
Life 349, 380 
Light 7 
Line detection 187-192, 210 
LISP 67, 108n3-1, 210, 264, 267 
List structure 179, 264, 315, 333 
Logic 28 fol., 61, 106, 149, 216-219, 

230, 254, 268n6-2, 269n6-6 
Loop 103 
LR(l) 338 

Mac Hack Six 147, 149 
Machine 36, 44, 163, 173, 193-194, 

274, 291, 343, 373-378 
fact retrieving 68 
intelligence 1-4, 29n1-l, 30n1-1, 

69, 71, 328 
memory 51 

Machine language 291 
Macro-operator 107 
Macro-state 107 
Mathematical theory 1, 34-39, 62, 

73,217 
Matrix 179, 186, 224-225 
Maze of Dedalus 110, 211 
Mealy automaton 361 
Meaning 272-274, 304, 332, 339 
Means-end analysis 75-76 
Mechanical hand 388-390, 394 
Mechanistic reasoning 63 
Medial axis transformation 192 
Memory 18, 19, 45, 51, 58-62, 64, 

102, 372 
MENS 310 
Mentalism 336-337 
Mesa phenomenon 377 
Metamathematics 216, 268n6-1 
Metaphysical adequacy 78, 166 
Micro-electrode 27 
Milepost paradigm 104 
Minimax analysis 123, 127-135 
Missionaries-and-Cannibals Problem 

76, 107, 110, 270 
Modal logic 268 
Model 67, 103, 106-107, 165, 220, 

274, 304, 310, 336-337 

Monkey-and-Bananas Problem 113, 
246-254, 389 

Moore neighborhood 349 
Motivation 28, 396 
Move 118 fol. 
Multiple 102 
Multiprocess 343 
Music 337 
Mutation 377 
Mutilated Checkerboard Problem 

113, 270 

Natural intelligence 2, 5, 30n1-3, 36, 
55 fol., 70 

Natural language 274 fol., 293, 331 
fol. 

Naval Anthromorphic Teleoperator 
389 

Near-miss 205 
Neighborhood 348 fol., 351, 355, 357 

fol., 363, 382 
Nerve nets 334 
Neuron 12-28 
Next-move function 49, 57, 60, 65 

(Ex.2-4) 
NIM 122, 161 
Noise removal 187 fol. 
Nonchance 121, 123, 137 
Nondeterminancy 40n-4, 104, 257, 

268 
Nondiscrete functions 40 fol., 63 fol. 
Nonperiodicity 40n-4 
Nonzero probability 57 

Object recognition 75 fol., 193-201, 
388 

Occurrence functions 40, 63 fol. 
Operator 75 fol., 81 fol., 85 fol., 89, 

93, 109n3-4, 192, 219 fol. 
Opponent-oriented strategies 165n4-6 
Optical character recognition 173 
Optics 59, 61, 171, 182, 184 fol. 
Orban's monkey 261, 262-263 
Ordering strategies 100 fol., 105, 233, 

236-238 

Pandemonium 27 fol., 210n5-1, 372 
Paradigm 67 fol., 103, 109n3-3, 215, 

332-333, 339, 372 fol. 
Parallel process 38n-2, 343 fol. 
Parametric function 139 fol. 
Paranoia 323, 395 
PARRY 3, 323, 395 
Parse 295, 300 
Partial-function logic 269n6-6 
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Partial recursive functions 49, 
108n3-3 

Partial specification 72-73, 74 fol., 85 
Pattern classification 172 fol., 212 

(Ex. 5-3) 
Pattern matching 170, 180, 182, 212, 

(Ex. 5-3), 258,296 
Pattern perception 182, 209 fol., 332, 

394 
Pattern recognition 70, 151, 178 fol., 

182, 212 (Ex. 5-3), 330-334, 378 
Patterns 68, 170, 332, 379, 387 
Payment function 118 fol., 122, 125, 

164 
Peg solitaire 114 (Ex. 3-13) 
Pentamino 350 · 
Perception 182 
Perception systems 182, 372, 388 fol. 
Perceptual generalization 333, 339 
Perfect information game 118, 121 
Phenomenon 78, 348, 378 
Phrase-structure language 286, 289-

290 
Picture enhancement 187-192 
Plan 104, 372 
Plane geometry 107 
PLANNER 106, 181, 210, 257-264, 

302, 338, 344 fol., 370 fol., 388 
fol. 

Planning 67, 76, 103-:-105, 257 
Plausibility ordering. 79, 134 fol., 138 
Plausible move generator 147, 149 
Play 118 
Poker 1, 117, 121, 151-154, 165n4-6, 

372 
Polycephalic Turing machine 53, 65 

(Ex.2-4) 
Polynomial evaluation function 143 

fol. 
POP command 299 
Positional game 159 
Predicate calculus 81, 233, 244, 252 

fol., 261, 305, 310 
in state-space problems 245 fol. 
in theorem proving . 215-252 

Probability 58, 79, 100, 118, 297, 
316 fol., 339 

Problem 
definition 68, 71-72 
domain 9, 69, 305, 330, 335 
recognition 339 
reduction 88-93 
representation 67, 103, 107, 295 
solving 1, 5, 8, 65, 293, 329, 344, 

373 
tree 101, 123 
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Programmer 108n3-1, 298, 302, 328, 
338 

Proposition 219 
Protocol 328 fol., 330, 379 
PROW 267 
PUSH command 299 
Pushdown store 300 
Puzzle 85 

QA3 241, 267 
QA4 210, 344 
Quantum theory 61, 63n2-5, 78 
Quench point 193 
Question-answering 68, 105, 268n6-3, 

297, 328, 335, 378 fol. 
Question tennis 338 

Reasoning 67, 103, 119, 215 fol., 
238-244 

Reasoning checkers 396 
Reasoning program 71, 77-80, 368, 

378 
Recognition 201-209, 272, 274, 378 
Recursion 10, 49, 103, 108n3-3, 151, 

292, 297, 333 
Redundancy 278, 292 
REF-ARF 77n2, 102, 104 
Refinement strategy 233-236 
Reflectance 184 
Refutation graph 231 fol., 235, 237 

fol., 249, 250 fol. 
Region 192 fol., 195 fol., 200 
Register 299 
Relativity theory 63n2-6 
Representation 77, 81, 102, 107, 171, 

295 
Resolution procedure 221 fol., 232, 

248 fol., 270(Ex.6-4 ); 388 fol. 
Risch algorithm 95 
RNA 21, 276 
Robot 175, 177 fol., 255, 270(Ex.6-8), 

368, 372 fol., 387-393, 396, 398 
Rote learning 14 3 fol. 
Rules 118, 216, 220, 221-222, 272, 

312, 328 

SAD-SAM 305 
SAINT 90, 91 fol., 110n3-7 
San Diego Problem 103, 114-115 
Scene analysis 187-201 
Scientific method 35-36 
Scrabble 338 
Search technique 67, 94, 117, 388 
SEE 194 fol., 199 fol. 
Self-affecting program 106, 163n4-l, 

361-368 
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Self-description 344 . 
Self-improvement 335 fol., 344, 366 
Self model 304, 336 
Self-organizing system 71, 329, 344, 

362, 368, 372 
Self-reference 273, 278, 292 
Self-repair 362, 397 
Self-reproducing system 344, 348, 

361 fol., 363-368, 397 
Semantic information · 3, 62, 209, 304, 

273, 340 
Semantic memory 306, 321 fpl. 
Sensory information storage (SIS) 17 
Sentence 82, 272 fol., 303 
Sequence prediction 173 fol. 
Sets 49, 62n2-4, n2-5, 82, 203, 331 
Seven Bridges of Konisberg Problem 

76 fol. 
Shallow search 134 fol. 
SHRDLU 304, · 311 fol., 324-327 
Signature table 141 fol., 145 fol. 
Simplification strategy 233-234 
Simulation 4, 28-29, 30nl-3, 69 fol., 

266, 330, 359 
SIN 91, 93, 110n3-7, 216 
SIR 311, 318-320 
Situation 119, 294 fol. 
Situational fluent 245 fol. 
Situation-space problem 72, 80-94 
Skolem function 224 fol., 251 
Sliding Block Puzzle 113 (Ex. 3-10) 
Smoothing 187 
Solution 72, 74 fol., 81, 83-85 
Speech 293 
Spider automata 384 
Stagnation 344, 337 
State 48, 54, 58, 82 fol., 85, 348, 357, 

358 
initial 346, 365 

State-space problem 67, 80---94, 117, 
152, 215 244-248, 255, 396 

Static-evaluation function 129-131, 
139 fol. 

Step function 40, 42-44, 63n2-8 
Strategy 72, 118-119, 233-238, 264, 

300 
Strategically isomorphic 162 
String 42-44, 53 fol., 73, 179, 218, 

272, 337-340, 364, 369 
STRIPS 255 fol., 
Structure 175, 182, 201-209, 243, 

257, 333, 370 
Student 296, 305, 313, fol., 
Subgoal 89, 104 
Sunflower pattern 171, 330 fol. 
Surround inhibition 25 fol. 

Symbol 34,48, 51,217,245, 272, 354 
dummy 54 
logic 219 fol. 
predicate calculus 216 

Symbolic integration 90, 95, 107, 110 
Synapse 12 fol., 15 fol., 21 
Synergy 329 
Syntactic ambiguity 295 
Syntax 281,294 fol., 297 
System 221, 344, 361-368, 375"-379, 

380, 388 fol. 
self-describing 380 
self-organizing 329, 344, 368, 372, 

380 
self-reproducing 380 

Systemic grammar 277; 302 

Tactile perception 388-389 
Tautology 233 
Teaching 335, 398 
TechJ?ological systems 398 
Technology 394 
Teleoperator 389 
Template 180 fol., 242, 296 
Temporality 79 
Tesselation automaton 381 
Theorem proving 70, 75, 106, 215, 

221, 222-223, 304, 388 fol. 
Theoretical parallel machines 60 fol. 
Theoretical serial machines 60 fol. 
Three Coins Problem 80 fol., 83-84, 

88, 101 
Tic-Tac-Toe 122, 159, 160 fol., 

163n4-1 
Time 37-40, 254, 370 
Tools 394 
Toroidal grid 346, 352 
Tower of Hanoi Problem 76, 113 

(Ex.3-9) 
Toy problem 389 
Training sequence 335 fol. 
Transformational grammar 277, 312 
Transition function 45, 298, 360, 364 
Translator 291, 338, 378, 398 
Traveling-Salesman Problem 85, 112 

(Ex. 3-4) 
Tree search 134, 135-136, 146, 149, 

365, 369, 388 
Tromino 364 · 
Turing machine 44 fol., 48-51, 174, 

282, 298, 340, 350-354, 350-359 
patterns 173 fol. 
polycephalic 53, 65 (Ex. 2-4) 
sequence prediction 175 
system inference 73 
universal 53-55, 74 
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Turing's test 2 fol., 31n1-4, 68 
Turing's thesis 34, 44, 49, 56 

Unary coding 49-50, 53 
Uncertainty Principle 388 
Undecidability theory 2, 3, 221 
Understanding 274, 336 
Unification procedure 226-229 
Unit-preference strategy 236 fol. 
Universal constructor 362, 364, 384 

fol. 
Universal language 279, 285, 337 
Universal operator 220 
Universal Turing machine 53-55, 74 
Universe of discourse 218 
Unsolvable problem 56, 76 

Value systems 396 
Variable analogy 242-243 
Variable prefix 180 

Variable-valued reasoning 378 
Venn diagram 240 
Verification 180 
Vertex 142, 179, 194, 199 

453 

Visual patterns 1, 25 fol., 28, 182, 
202, 331 fol., 388 fol. 

Von Neumann neighborhood 363 

Water-jug Problems 112-113 (Ex. 
3-6) 

Web language 333 
Wernecke's area 24 
Whiskers 389 
Whistle language 337 
Will 379 
World system 398 

Zero delay 359 
Zero-sum games 122 fol., 137 
Zorba 241, 242 fol. 
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LASERS AND HOLOGRAPHY, Winston E. Kock. Sound introduction to 
burgeoning field, expanded ( 1981) for second edition. 84 illustrations. 160pp. 5l!i x 
8\4. (EUK) 24041-X Pa. $3.50 
FLORAL STAINED GLASS PATTERN BOOK, Ed Sibbett, Jr. 96exquisite floral 
patterns-irises, poppie, lilies, tulips, geometries, abstracts, etc.-adaptable to 
innumerable stained glass projects. 64pp. 8\4 x II. 24259-5 Pa. $3.50 
THE HISTORY OF THE LEWIS AND CLARK EXPEDITION, Meriwether 
Lewis and William Clark. Edited by Eliott Coues. Great classic edition of Lewis and 
Clark's day-by-day journals. Complete 1893 edition, edited by Eliott Coues from 
Biddle's authorized 1814 history. 1508pp. 5% x 8~. 

21268-8, 21269-6, 21270-X Pa. Three-vol. set $22.50 
ORLEY FARM, Anthony Trollope. Three-dimensional tale of great criminal case. 
Original Millais illustrations illuminate marvelous panorama of Victorian society. 
Plot was author's favorite. 736pp. 5% x 8~. 24181·5 Pa. $10.95 
THE CLAVERINGS, Anthony Trollope. Major novel, chronicling aspects of 
British Victorian society, personalities. 16 plates by M. Edwards; first reprint of full 
text. 412pp. 5% x 8K 23464-9 Pa. $6.00 

EINSTEIN'S THEORY OF RELATIVITY, Max Born. Finest semi-technical 
account; much explanation of ideas and math not readily available elsewhere on 
this level. 376pp. 5% x 8~. 60769-0 Pa. $5.00 

. COMPUTABILITY AND UNSOLVABILITY, Martin Davis. Classic graduate­
level introduction th theory of computability, usually referred to as theory of 
recurrent functions. New preface and appendix. 288pp. 5% x 8~. 61471-9 Pa. $6.50 
THE GODS OF THE EGYPTIANS, E.A. Wallis Budge. Never excelled for 
richness, fullness: all gods, goddesses, demons, mythical figures of Ancient Egypt; 
their legends, rites, incarnations, etc. Over 225 illustrations, plus 6 color plates. 
988pp. 6% x 9\4. (EBE) 22055-9, 22056-7 Pa., Two-vol. set $20.00 
THE I CHING (THE BOOK OF CHANGES), translated by James Legge. Most 
penetrating divination manual ever prepared. Indispensable to study of early 
Oriental civilizations, to modem inquiring reader. 448pp. 5% x 8~. 

21062-6 Pa. $6.50 
THE CRAFTSMAN'S HANDBOOK, Cennino Cennini. 15th-century handbook, 
school of Giotto, explains applying gold, silver leaf; gesso; fresco painting, 
grinding pigments, etc. 142pp. 6% x 9'.4. 20054-X Pa. $3.50 
AN ATLAS OF ANATOMY FOR ARTISTS, Fritz Schider. Finest text, working 
book. Full text, plus anatomical illustrations; plates by great artists showing 
anatomy. 593 illustrations. 192pp. 7% x 10\4. 20241-0 Pa. $6.50 
EASY-TO-MAKE STAINED GLASS LIGHTCATCHERS, Ed Sibbett, Jr. 67 
designs for most enjoyable ornaments: fruits, birds, teddy bears, trumpet, etc. Full 
size templates. 64pp. 8\4 x II. 24081-9 Pa. $3.95 
TRIAD OPTICAL ILLUSIONS AND HOW TO DESIGN THEM, Harry Turner. 
Triad explained in 32 pages of text, with 32 pages of Escher-like patterns on 
coloring stock. 92 figures. 32 plates. 64pp. 8\4 x II. 23549-1 Pa. $2.95 
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SMOCKING: TECHNIQUE, PROJECTS, AND DESIGNS, Dianne Durand. 

Foremost smocking designer provides complete instructions on how to smock. 

Over 10 projects, over 100 illustrations. 56pp. 8~ x ll. 23788-5 Pa. $2.00 

AUDUBON'S BIRDS IN COLOR FOR DECOUPAGE, edited by Eleanor H. 

Rawlings. 24 sheets, 37 most decorative birds, full color, on one side of paper. 

Instructions, including work under glass. 56pp. 8% x ll. 23492-4 Pa. $3.95 

THE COMPLETE BOOK OF SILK SCREEN PRINTING PRODUCTION, J.l. 

Biegeleisen. For commercial user, teacher in advanced classes, serious hobbyist. 

Most modern techniques, materials, equipment for optimal results. 124 illus­

trations. 253pp. 5% x 8%. 21100-2 Pa. $4.50 

A TREASURY OF ART NOUVEAU DESIGN AND ORNAMENT, edited by 

Carol Belanger Grafton. 577 designs for the practicing artist. Full-page, spots, 

borders, bookplates by Klimt, Bradley, others. l44pp. 8% x ll~. 24001-0 Pa. $5.95 

ART NOUVEAU TYPOGRAPHIC ORNAMENTS, Dan X. Solo. Over 800 Art 

Nouveau florals, swirls, women, animals, borders, scrolls, wreaths, spots and 

dingbats, copyrightcfree. 100pp. 8% x ll. 24366-4 Pa. $4.00 

HAND SHADOWS TO BE THROWN UPON THE WALL, Henry Bursill. 

Wonderful Victorian novelty tells how to make flying birds, dog, goose, deer, and 14 

others, each explained by a full-page illustration. 32pp. 6% x 9~. 2l779-5Pa. $1.50 

AUDUBON'S BIRDS OF AMERICA COLORING BOOK, John James Audubon. 

Rendered for coloring by Paul Kennedy. 46 of Audubon's noted illustrations: 

red-winged black-bird, cardinal, etc. Original plates reproduced in full-color on the 

covers. Captions. 48pp. 8~ x ll. 23049-X Pa. $2.25 

SILK SCREEN TECHNIQUES, J.I. Biegeleisen, M.A. Cohn. Clear, practical, 

modern, economical. Minimal equipment (self-built), materials, easy methods. For 

amateur, hobbyist, lst book. 141 illustrations. l85pp. 6% x 9~. 20433-2 Pa. $3.95 

101 PATCHWORK PATTERNS, Ruby S. McKim. 101 beautiful, immediately 

useable patterns, full-size, modern and traditional. Also general information, 

estimating, quilt lore. 140 illustrations. l24pp. 7% x lO'A. 20773-0 Pa. $3.50 

READY-TO-USE ~LORAL DESIGNS, Ed Sibbett, Jr. Over 100 floral designs 

(most in three sizes) of popular individual blossoms as well as bouquets, sprays, 

garlands. 64pp. 8% x ll. 23976-4 Pa. $2.95 

AMERICAN :WILD FLOWERS COLORING BOOK, Paul Kennedy. Planned 

coverage of 46 most important wildflowers, from Rickett's collection; instructive as 

well as entertaining. Color versions on covers. Captions. 48pp. 8~ x ll. 

· 20095-7 Pa. $2.50 

CARVING DUCK DECOYS, Harry V. Shourds and Anthony Hillman. Detailed 

instructions and full-size templates for constructing 16 beautiful, marvelously 

practical decoys according to time-honored South Jersey method. 70pp. 9~ x 12~. 

· 24083-5 Pa. $4.95 

TRADITIONAL PATCHWORK PATTERNS, Carol Belanger Grafton. Card­

bo~rd cut-out pieces for use as templates to make 12 quilts: Buttercup, Ribbon 

Border, Tree of Paradise, nine more. Full instructions. 57pp. 8~ x ll. 
23015-5 Pa. $3.50 
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25 KITES THAT FLY, Leslie Hunt. Full, easy-to-follow instructions for kites 
made from inexpensive materials. Many novelties. 70 illustrations. l!Opp. 5% x 812. 

22550-X Pa. $2.25 

PIANO TUNING, J. Cree Fischer. Clearest, best book for beginner, amateur. 
Simple repairs, raising dropped notes, tuning by easy method of flattened fifths. No 
previous skills needed. 4 illustrations. 20lpp. 5% x 87:!. 23267-0 Pa. $3.50 

EARLY AMERICAN IRON-ONTRANSFER PATTERNS, edited by Rita Weiss. 
75 designs, borders, alphabets, from traditional American sources. 48pp. 8\4 x II. 

23162-3 Pa. $1.95 

CROCHETING EDGINGS, edited by Rita Weiss. Over 100 of the best designs for 
these lovely trims for a host of household items. Complete instructions, illustra­
tions. 48pp. 814 x II. 24031-2 Pa. $2.25 

FINGER PLAYS FOR NURSERY AND KINDERGARTEN, Emilie Poulsson. 18 
finger plays with music (voice and piano); entertaining, instructive. Counting, 
nature lore, etc. Victorian classic. 53 illustrations. 80pp. 6Y, x 9\4.22588-7 Pa. $1.95 

BOSTON THEN AND NOW, Peter Vanderwarker. Here in 59 side-by-side views 
are photographic documentations of the city's past and present. 119 photographs. 
Full captions. 122pp. 8\4 x II. 24312-5 Pa. $6.95 

CROCHETING BEDSPREADS, edited by Rita Weiss. 22 patterns, originally 
published in three instruction books 1939-41. 39 photos, 8 charts. Instructions. 
48pp. 8\4 x II. 23610-2 Pa. $2.00 

HAWTHORNE ON PAINTING, Charles W. Hawthorne. Collected from notes 
taken by students at famous Cape Cod School; hundreds of direct, personal apercus, 
ideas, suggestions. 9lpp. 5% x 87:!. 20653-X Pa. $2.50 

THERMODYNAMICS, Enrico Fermi. A classic of modern science. Clear, organ­
ized treatment of systems, first and second laws, entropy, thermodynamic poten­
tials, etc. Calculus required. 160pp. 5% x BY,. 60361-X Pa. $4.00 

TEN BOOKS ON ARCHITECTURE, Vitruvius. The most important book ever 
written on architecture. Early Roman aesthetics, technology, classical orders, site 
selection, all other aspects. Morgan translation. 33lpp. 5% x 87:!. 20645-9 Pa. $5.50 

THE CORNELL BREAD BOOK, Clive M. McCay and Jeanette B. McCay. Famed 
high-protein recipe incorporated into breads, rolls, buns, coffee cakes, pizza, pie 
crusts, more. Nearly 50 illustrations. 48pp. 8\4 x II. 23995-0 Pa. $2.00 

THE CRAFTSMAN'S HANDBOOK, Cennino Cennini. 15th-century handbook, 
school of Giotto, explains applying gold, silver leaf; gesso; fresco painting, 
grinding pigments, etc. 142pp. 6Ji x 9\4. 20054-X Pa. $3.50 

FRANK LLOYD WRIGHT'S FALLINGWATER, Donald Hoffmann. Full story 
of Wright's masterwork at Bear Run, Pa. I 00 photographs of site, construction, and 
details of completed structure. 112pp. 9\4 x 10. 23671-4 Pa. $6.95 

OVAL STAINED GLASS PATTERN BOOK, C. Eaton. 60 new designs framed in 
shape of an oval. Greater complexity, challenge with sinuous cats, birds, mandalas 
framed in antique shape. 64pp. 8% x II. 24519-5 Pa. $3.50 
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CHILDREN'S BOOKPLATES AND LABELS, Ed Sibbett, Jr. 6 each of 12 types 
based on Wizard of Oz, Alice, nursery rhymes, fairy tales. Perforated; full color. 

24pp. 8'4 x ll. 23538-6 Pa. $3.50 

READY-TO-USE VICTORIAN COLOR STICKERS: 96 Pressure-Sensitive Seals, 

Carol Belanger Grafton. Drawn from authentic period sources. Motifs include 
heads of men, women, children, plus £!orals, animals, birds, more. Will adhere to 
any clean surface. 8pp. 811! x ll. 24551-9 Pa. $2.95 

CUT AND FOLD PAPER SPACESHIPS THAT FLY, Michael Grater. 16 
colorful, easy-to-build spaceships that really fly. Star Shuttle, Lunar Freighter, Star 
Probe, 13 others. 32pp. 8'4 x ll. 23978-0 Pa. $2.50 

CUT AND ASSEMBLE PAPER AIRPLANES THAT FLY, Arthur Baker. 8 

aerodynamically sound, ready-to-build paper airplanes, designed with latest 
techniques. Fly Pegasus, Daedalus, Songbird, 5 other aircraft. Instructions. 32pp. 

9':4 x ll\4. 24302-8 Pa. $3.95 

SIDELIGHTS ON RELATIVITY, Albert Einstein. Two lectures delivered in 
1920-21: Ethe,r and Relativity and Geometry and Experience. Elegant ideas in 
non-mathematical form. 56pp. 5% x 811!. 245ll-X Pa. $2.25 

FADS AND FALLACIES IN THE NAME OF SCIENCE, Martin Gardner. Fair, 
witty appraisal of cranks and quacks of science: Velikovsky, orgone energy, Bridey 
Murphy, medical fads, etc. 373pp. 5% x 811!. 20394-8 Pa. $5.95 

VACATION HOMES AND CABINS, U.S. Dept. of Agriculture. Complete plans 
for 16 cabins, vacation homes and other shelters. l05pp. 9 x 12. 23631-5 Pa. $4.95 

HOW TO BUILD A WOOD-FRAME HOUSE, L.O. Anderson. Placement, 
foundations, framing, sheathing, roof, insulation, plaster, finishing-almost 
everything else. 179 illustrations. 223pp. 7'/s x 1014. 22954-8 Pa. $5.50 

THE MYSTERY OF A HANSOM CAB, Fergus W. Hume. Bizarre murder in a 
hansom cab leads to engrossing investigation. Memorable characters, rich atmo­

sphere. 19th-century bestseller, still enjoyable, exciting. 256pp. 5% x 8. 
21956-9 Pa. $4.00 

MANUAL OF TRADITIONAL WOOD CARVING, edited by Paul N. Hasluck. 

Possibly the best book in English on the craft of wood carving. Practical 
instructions, along with 1,146 working drawings and photographic illustrations. 
576pp. 611! x.9'4. 23489-4 Pa. $8.95 

WHITTLING AND WOODCARVING, E.J Tangerman. Best book on market; 
clear, full. If you can cut a potato, you can carve toys, puzzles, chains, etc. Over 464 
illustrations. 293pp. 5% x 811!. 20965-2 Pa. $4.95 

AMERICAN TRADEMARK DESIGNS, Barbara Baer Capitman. 732 marks, logos 

and corporate-identity symbols. Categories include entertainment, heavy industry, 
food and beverage. All black-and-white in standard forms. l60pp. 8Ji x ll. 

. 23259-X P;r. $6.95 

DECORATIVE FRAMES AND BORDERS, edited by Edmund V. Gillon, Jr. 
Largest collection of borders and frames ever compiled for use of artists and 
designers. Renaissance, neo-Greek, Art Nouveau, Art Deco, to mention only a few 
styles. 396 illustrations. l92pp. 8% x ll\4. 22928-9 Pa. $6.00 
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THE MURDER BOOK OF ].G. REEDER, Edgar Wallace. Eight suspenseful stories by bestselling mystery writer of 20s and 30s. Features the donnish Mr. J.G. Reeder of Public Prosecutor's Office. 128pp. 5% x 812. (Available in U.S. only) 
24374-5 Pa. $3.50 

ANNE ORR'S CHARTED DESIGNS, Anne Orr. Best designs by premier needlework designer, all on charts: flowers, borders, birds, children, alphabets, etc. Over 100 charts, 10 in color. Total of 40pp. 8\4 x II. 23704-4 Pa. $2.50 

BASIC CONSTRUCTION TECHNIQUES FOR HOUSES AND SMALL BUILDINGS SIMPLY EXPLAINED, U.S. Bureau of Naval Personnel. Grading, masonry, woodworking, floor and wall framing, roof framing, plastering, tile setting, much more. Over 675 illustrations. 568pp. 6\i x 9'A. 20242-9 Pa. $8.95 

MATISSE LINE DRAWINGS AND PRINTS, Henri Matisse. Representative collection of female nudes, faces, stilllifes, experimental works, etc., from 1898 to 1948. 50 illustrations. 48pp. 8% x 11\4. 23877-6 Pa. $2.50 
HOW TO PLAY THE CHESS OPENINGS, Eugene Znosko-Borovsky. Clear, profound examinations of just what each opening is intended to do and how opponent can counter. Many sample games. 147pp. 5% x 8\i. 22795-2 Pa. $2.95 

DUPLICATE BRIDGE, Alfred Sheinwold. Clear, thorough, easily followed account: rules, etiquette, scoring, strategy, bidding; Goren's point-count system, Blackwood and Gerber conventions, etc~ 158pp. 5% x 8\i. 22741-3 Pa. $3.00 

SARGENT PORTRAIT DRAWINGS, J.S. Sargent. Collection of 42 portraits reveals technical skill and intuitive eye of noted American portrait painter, John Singer Sargent. 48pp. 8\4 x lila. 24524-1 Pa. $2.95 
ENTERTAINING SCIENCE EXPERIMENTS WITH EVERYDAY OBJECTS, Martin Gardner. Over I 00 experiments for youngsters. Will amuse, astonish, teach, and entertain. Over 100 illustrations. 127pp. 5% x 8\i. 24201-3 Pa. $2.50 

TEDDY BEAR PAPER DOLLS IN FULL COLOR: A Family of Four Bears and Their Costumes, Crystal Collins, A family of four Teddy Bear paper dolls and nearly 60 cut-out costumes. Full color, printed one side only. 32pp. 9'.4 x 12\4. 
24550-0 Pa. $3.50 

NEW CALLIGRAPHIC ORNAMENTS AND FLOURISHES, Arthur Baker. Unusual, multi-useable material: arrows, pointing hands, bracket~ and frames, ovals, swirls, birds, etc. Nearly 700 illustrations. 80pp. 8% x II \4. 
24095-9 Pa. $3.75 

' DINOSAUR DIORAMAS TO CUT & ASSEMBLE, M. Kalmenof£. Two complete three-dimensional scenes in full color, with 31 cut-out animals and plants. Excellent educational toy for youngsters. Instructions; 2 assembly diagrams. 32pp. 9\4 x 12\4. 24541-1 Pa. $4.50 
SILHOUETTES: A PICTORIAL ARCHIVE OF VARIED ILLUSTRATIONS, edited by Carol Belanger Grafton. Over 600 silhouettes from the 18th to 20th centuries. Profiles and full figures of men, women, children, birds, animals, groups and scenes, nature, ships, an alphabet. 144pp. 8% x 11\4. 23781-8 Pa. $4.95 
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SURREAL STICKERS AND UNREAL STAMPS, William Rowe. 224 haunting, 
hilarious stamps on gummed, perforated stock, with images of elephants, geisha 
girls, George Washington, etc. l6pp. one side. 8\4 x ll. 24371-0 Pa. $3.50 

GOURMET KITCHEN LABELS, Ed Sibbett, Jr. ll2 full-color labels (4 copies 
each of 28 designs). Fruit, bread, other culinary motifs. Gummed and perforated. 
16pp. 8\4 x ll. 24087-8 Pa. $2.95 

PATTERNS AND INSTRUCTIONS FOR CARVING AUTHENTIC BIRDS, 
H.D. Green, Detailed instructions, 27 diagrams, 85 photographs for carving 15 
species of birds so life-like, they'll seem ready to fly! 8\4 x 11. 24222-6 Pa. $2.75 

FLATLAND, E.A. Abbott. Science-fiction classic explores life of 2-D being in 3-D 
world. 16 illustrations. l03pp. 5% x 8. 20001-9 Pa. $2.00 

DRIED FLOWERS, Sarah Whitlock and Martha Rankin. Concise, clear, practical 
guide to dehydration, glycerinizing, pressing plant material, and more. Covers use 
of silica gel. 12 drawings. 32pp. 5% x 8%. 21802-3 Pa. $1.00 

EASY-TO-MAKE CANDLES, Gary V. Guy. Learn how easy it is to make all kinds 
of decorative candles. Step-by-step instructions. 82 illustrations. 48pp. 8\4 x ll. 

23881-4 Pa. $2.50 

SUPER STICKERS FOR KIDS, Carolyn Bracken. 128 gummed and perforated 
full-color stickers: GIRL WANTED, KEEP OUT, BORED OF EDUCATION, 
X-RATED, COMBAT ZONE, many others. 16pp. 8\4 x II. 24092-4 Pa. $2.50 

CUT AND COLOR PAPER MASKS, Michael Grater. Clowns, animals, funny 
faces ... simply color them in, cut them out, and put them together, and you have 9 
paper masks to play with and enjoy. 32pp. 8\4 x 11. 23171-2 Pa. $2.25 

A CHRISTMAS CAROL: THE ORIGINAL MANUSCRIPT, Charles Dickens. 
Clear facsimile of Dickens manuscript, on facing pages with final printed text. 8 
illustrations by John Leech, 4 in coloron covers. 144pp. 8% x 11\4. 

20980-6 Pa. $5.95 

CARVING SHOREBIRDS, Harry V. Shourds & Anthony Hillman. 16 full-size 
patterns (all double-page spreads) for 19 North American shorebirds with step-by­
step instructions. 72pp. 9\4 x 12\4. 24287-0 Pa. $4.95 

THE GENTLE ART OF MATHEMATICS, Dan Pedoe. Mathematical games, 
probability, the question of infinity, topology, how the laws of algebra work, 
problems of irrational numbers, and more. 42 figures. 143pp. 5% x 8%. (EBE) 

22949.'1 Pa. $3.50 

READY-TO-USE DOLLHOUSE WALLPAPER, Katzenbach & Warren, Inc. 
Stripe, 2 floral stripes, 2 allover florals, polka dot; all in full color. 4 sheets (350 sq. 
in.) of each, enough for average room. 48pp. 8\4 x 11. 23495;9 Pa. $2.95 

MINIATURE IRON-ON TRANSFER PATTERNS FOR DOLLHOUSES, 
DOLLS, AND SMALL PROJECTS, Rita Weiss and Frank Fontanit. Over 100 
miniature patterns: rugs, bedspreads, quilts, chair seats, etc. In standard dollhouse 
size. 48pp. 8\4 x 11. 23741-9 Pa. $1.95 

THE DINOSAUR COLORING BOOK, Anthony Rao. 45 renderings of dinosaurs, 
fossil birds, turtles, other creatures of Mesozoic Era. Scientifically accurate. 
Captions. 48pp. 8\4 x 11. 24022-3 Pa. $2.50 
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JAPANESE DESIGN MOTIFS, Matsuya Co. Mon, or heraldic designs. Over 4000 typical, beautiful designs: birds, animals, flowers, swords, fans, geometries; all beautifully stylized. 213pp. II% x 8\4. 22874-6 Pa. $7.95 

THE TALE OF BENJAMIN BUNNY, Beatrix Potter. Peter Rabbit's cousin coaxes him back into Mr. McGregor's garden for a whole new set of adventures. All 27 full-color illustrations. 59pp. 4\4 x 5~. (Available in U.S. only) 21102-9 Pa. $1.75 

THE TALE OF PETER RABBIT AND OTHER FAVORITE STORIES BOXED SET, Beatrix Potter. Seven of Beatrix Potter's best-loved tales including Peter Rabbit in a specially designed, durable boxed set. 4\4 x 5~. Total of 447pp. 158 color illustrations. (Available in U.S. only) 23903-9 Pa. $10.80 

PRACTICAL MENTAL MAGIC, Theod!Jre Annemann. Nearly 200 astonishing feats of mental magic revealed in step-by-step detail. Complete advice on staging, patter, etc. Illustrated. 320pp. 5% x 8~. 24426-1 Pa. $5.95 

CELEBRATED CASES OF JUDGE DEE (DEE GOONG AN), translated by Robert Van Gulik. Authentic 18th-century Chinese detective novel; Dee and associates solve three interlocked cases. Led to van Gulik's own stories with same characters. Extensive introduction. 9 illustrations. 237pp. 5% x 8~. 
23337-5 Pa. $4.50 

CUT & FOLD EXTRATERRESTRIAL INVADERS THAT FLY, M. Grater. Stage your own lilliputian space battles. By following the step-by-step instructions and explanatory diagrams you can launch 22 full-color fliers into space. 36pp. 814 x 11. 24478-4 Pa. $2.95 

CUT & ASSEMBLE VICTORIAN HOUSES, Edmund V. Gillon, Jr. Printed in full color on heavy cardboard stock, 4 authentic Victorian houses in H-0 scale: Italian-style Villa, Octagon, Second Empire, Stick Style. 48pp. 9\4 x 1214. 
23849-0 Pa. $3.95 

BEST SCIENCE FICTION STORIES OF H. G. WELLS, H. G. Wells. Full novel The Invisible Man, plus 17 short stories: "The Crystal Egg," "Aepyornis Island," "The Strange Orchid," etc. 303pp. 5% x 8~. (Available in U.S. only) 
21531-8 Pa. $4.95 

TRADEMARK DESIGNS OF THE WORLD, Yusaku Kamekura. A lavish collection of nearly 700 trademarks, the work of Wright, Loewy, Klee, Binder, hundreds of others. 160pp. 8% x 8. (Available in U.S. only) 24I91-2 Pa. $5.95 

THE ARTIST'S AND CRAFTSMAN'S GUIDE TO REDUCING, ENLARGING AND TRANSFERRING DESIGNS, Rita Weiss. Discover, reduce, enlarge, transfer designs from any objects to any craft project. 12pp. plus 16 sheets special graph paper. 814 x 11. 24142-4 Pa. $3.50 

TREASURY OF JAPANESE DESIGNS AND MOTIFS FOR ARTISTS AND CRAFTSMEN, edited by Carol Belanger Grafton. Indispensable collection of 360 traditional Japanese designs and motifs redrawn in clean, crisp black-and-white, copyright-free illustrations. 96pp. 8\4 x 11. 24435-0 Pa. $3.95 
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CHANCERY CURSIVE STROKE BY STROKE, Arthur Baker. Instructions and 

illustrations for each stroke of each letter (upper and lower case) and numerals. 54 

full-page plates. 64pp. 8':4 x ll. 24278-l Pa. $2.50 

THE ENJOYMENT AND USE OF COLOR, Walter Sargent. Color relationships, 

values, intensities; complementary colors, illumination, similar topics. Color in 

nature and art. 7 color plates, 29 illustrations. 274pp. 5% x 8Ji 20944-X Pa. $4.95 

SCULPTURE PRINCIPLES AND PRACTICE, Louis Slobodkin. Step-by-step 

approach to clay, plaster, metals, stone; classical and modern. 253 drawings, 

photos. 255pp. 8li! x ll. 22960-2 Pa. $7.50 

VICTORIAN FASHION PAPER DOLLS FROM HARPER'S BAZAR, 1867-1898, 

Theodore Menten. Four female dolls with 28 elegant high fashion costumes, 

printed in full color. 32pp. 9':4 x 12':4. 23453-3 Pa. $3.50 

FLOPSY, MOPSY AND COTTONTAIL: A Little Book of Paper Dolls in Full 

Color, Susan LaBelle. Three dolls and 21 costumes (7 for each doll) show Peter 

Rabbit's siblings dressed for holidays, gardening, hiking, etc. Charming borders, 

captions. 48pp. 4':4 x 5lf. 24376-l Pa. $2.25 

NATIONAL LEAGUE BASEBALL CARD CLASSICS, Bert Randolph Sugar. 83 

big-leaguers from 1909-69 on facsimile cards. Hubbell, Dean, Spahn, Brock plus 

advertising, info, no duplications. Perforated, detachable. l6pp. 8':4 x ll. 
24308-7 Pa. $2.95 

THE LOGICAL APPROACH TO CHESS, Dr. Max Euwe, et al. First-rate text of 

comprehensive strategy, tactics, theory for the amateur. No gambits to memorize; 

just a clear, logical approach. 224pp. 5% x 8lf. 24353-2 Pa. $4.50 

MAGICK IN THEORY AND PRACTICE, Aleister Crowley. The summation of 

the thought and practice of the century's most famous necromancer, long hard to 

find. Crowley's best book. 436pp. 5% x 8lf. (Available in U.S. only) 
23295-6 Pa. $6.50 

THE HAUNTED HOTEL, Wilkie Collins. Collins' last great tale; doom and 

destiny in a Venetian palace. Praised by T.S. Eliot. l27pp. 5% x 8lf. 
24333-8 Pa. $3.00 

ART DECO DISPLAY ALPHABETS, Dan X. Solo. Wide variety of bold yet 

elegant lettering in handsome Art Deco styles. 100 complete fonts, with numerals, 

punctuation, more. l04pp. 8li! x ll. 24372-9 Pa. $4.50 

CALLIGRAPHIC ALPHABETS, Arthur Baker. Nearly 150 complete alphabets by 

outstanding contemporary. Stimulating ideas; useful source for unique effects .. I 54 

plates. l57pp. 8% x lBt 21045-6 Pa. $5.95 

ARTHUR BAKER'S HISTORIC CALLIGRAPHIC ALPHABETS, Arthur 

Baker. From monumental capitals of first-century Rome to humanistic .cursive of 

16th century, 33 alphabets in fresh interpretations. 88 plates. 96pp. 9 x 12. 
24054-l Pa. $4.50 

LETTIE LANE PAPER DOLLS, Sheila Young. Genteel turn-of-the-century 

family very popularthen and now. 24 paper dolls. 16 plates in full color. 32pp. 9':4 x 

12':4. 24089-4 Pa. $3,50 
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TWENTY-FOUR ART NOUVEAU POSTCARDS IN FULL COLOR FROM CLASSIC POSTERS, Hayward and Blanche Cirker. Ready-to-mail postcards reproduced from rare set of poster art. Works by Toulouse-Lautrec, Parrish, Steinlen, Mucha, Cheret, others. l2pp. 8\4x II. 24389-3 Pa. $2.95 
READY-TO-USE ART NOUVEAU BOOKMARKS IN FULL COLOR, Carol Belanger Grafton. 30 elegant bookmarks featuring graceful, flowing lines, foliate motifs, sensuous women characteristic of Art Nouveau. Perforated for easy detaching. l6pp. 8\4 x II. 24305-2 Pa. $2.95 
FRUIT KEY AND TWIG KEY TO TREES AND SHRUBS, William M. Harlow. Fruit key covers l20deciduous and evergreen species; twig key covers 160 deciduous species. Easily used. Over 300 photographs. l26pp. 5% x 8%. 205ll-8 Pa. $2.25 

LEONARDO DRAWINGS, Leonardo da Vinci. Plants, landscapes, human face and figure, etc., plus studies for Sforza monument, Last Supper, more. 60 illustrations. 64pp. 8\4 x IlK 23951-9 Pa. $2.75 
CLASSIC BASEBALL CARDS, edited by Bert R. Sugar. 98 classic cards on heavy stock, full color, perforated for detaching. Ruth, Cobb, Durocher, DiMaggio, H. Wagner, 99 others. Rare originals cost hundreds. l6pp. 8\4 x II. 23498-3 Pa. $3.25 
TREES OF THE EASTERN AND CENTRAL UNITED STATES AND CANADA, William M. Harlow. Best one-volume guide to 140 trees. Full descriptions, woodlore, range, etc. Over 600 illustrations. Handy size. 288pp. 4~ x 6%. 

20395-6 Pa. $3.95 
JUDY GARLAND PAPER DOLLS IN FULL COLOR, Tom Tierney. 3 Judy Garland paper dolls (teenager, grown-up, and mature woman) and 30 gorgeous costumes highlighting memorable career. Captions. 32pp. 9\4 x 12\4. 

24404-0 Pa. $3.50 
GREAT FASHION DESIGNS OF THE BELLE EPOQUE PAPER DOLLS IN FULL COLOR, Tom Tierney. Two dolls and 30 costumes meticulously rendered. Haute couture by Worth, Lanvin, Paquin, other greats late Victorian to WWI. 32pp. 9\4 x 12\4. 24425-3 Pa. $3.50 
FASHION PAPER DOLLS FROM GODEY'S LADY'S BOOK, 1840-1854, Susan Johnston. In full color: 7 female fashion dolls with 50 costumes. Little girl's, bridal, riding, bathing, wedding, evening, everyday, etc. 32pp. 9\4 x 12\4. 

235ll-4 Pa. $3.95 
THE BOOK OF THE SACRED MAGIC OF ABRAMELIN THE MAGE, translated by S. MacGregor Mathers. Medieval manuscript of ceremonial magic. Basic document in Aleister Crowley, Golden Dawn groups. 268pp. 5% x 8~. 

232ll-5 Pa. $5.00 
PETER RABBIT POSTCARDS IN FULL COLOR: 24 Ready-to-Mail Cards, Susan Whited LaBelle. Bunnies ice-skating, coloring Easter eggs, making valen­tines, many other charming scenes. 24 perforated full-color postcards, each measuring 4\4 x 6, on coated stock. 12pp. 9 x 12. 24617-5 Pa. $2.95 
CELTIC HAND STROKE BY STROKE, A. Baker. Complete guide creating each letter of the alphabet in distinctive Celtic manner. Covers hand position, strokes, pens, inks, paper, more. Illustrated. 48pp. 8\4 x II. 24336-2 Pa. $2.50 
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KEYBOARD WORKS FOR SOLO INSTRUMENTS, G.F. Handel. 35 neglected 

works from Handel's vast oeuvre, originally jotted down as improvisations. 

Includes Eight Great Suites, others. New sequence. l74pp. 9% x 1214. 
24338-9 Pa. $7.50 

AMERICAN LEAGUE BASEBALL CARD CLASSICS, Bert Randolph Sugar. 82 

stars from 1900s to 60s on facsimile cards. Ruth, Cobb, Mantle, Williams, plus 

advertising, info, no duplications. Perforated, detachable. l6pp. 814 x 11. 
24286-2 Pa. $2.95 

A TREASURY OF CHARTED DESIGNS FOR NEEDLEWORKERS, Georgia 

Gorham and Jeanne Warth. 141 charted designs: owl, cat with yarn, tulips, piano, 

spinning wheel, covered bridge, Victorian house and many others. 48pp. 814 x 11. 
23558-0 Pa. $1.95 

DANISH FLORAL CHARTED DESIGNS, Gerda Bengtsson. Exquisite collection 

of over 40 different florals: anemone, Iceland poppy, wild fruit, pansies, many 

others. 45 illustrations. 48pp. 8\4 x 11. 23957-8 Pa. $1.75 

OLD PHILADELPHIA IN EARLY PHOTOGRAPHS 1839-1914, Robert F. 

Looney. 215 photographs: panoramas, street scenes, landmarks, President-elect 

Lincoln's visit, 1876 Centennial Exposition, much more. 230pp. 8~ xJ114. 
23345-6 Pa. $9.95 

PRELUDE TO MATHEMATICS, W.W. Sawyer. Noted mathematician's lively, 

stimulating account of non-Euclidean geometry, matrices, determinants, group 

theory, other topics. Emphasis on novel, striking aspects. 224pp. 5% x 8li. 
24401-6 Pa. $4.50 

ADVENTURES WITH A MICROSCOPE, Richard Headstrom. 59 adventures 

with clothing fibers, protozoa, ferns and lichens, roots and leaves, much more. l42 

illustrations. 232pp. 5% x 8li. 23471-l Pa. $3.95 

IDENTIFYING ANIMAL TRACKS: MAMMALS, BIRDS, AND OTHER 

ANIMALS OF THE EASTERN UNITED STATES, Richard Headstrom. For 

hunters, naturalists, scouts, nature-lovers. Diagrams of tracks, tips on identifi­

cation. 128pp. 5% x 8. 24442-3 Pa. $3:50 

VICTORIAN FASHIONS AND COSTUMES FROM HARPER'S BAZAR, 1867-

1898, edited by Stella Blum. Day costumes, evening wear, sports clothes, shoes, hats, 

other accessories in over l ,000 detailed engravings. 320pp. 9% x 12%. 
22990-4 Pa. $10.95 

EVERYDAY FASHIONS OF THE TWENTIES AS PICTURED IN SEARS AND 

OTHER CATALOGS, edited by Stella Blum. Actual dress of the Roaring 

Twenties, with text by Stella Blum. Over 750 illustrations, captions. 156pp. 9 x 12. 
24134-3 Pa. $8.50 

HALL OF FAME BASEBALL CARDS, edited by Bert Randolph Sugar. Cy Young, 

Ted Williams, Lou Gehrig, and many other Hall of Fame greats on 92 full-color, 

detachable reprints of early baseball cards. No duplication of cards with Classic 

Baseball Cards. l6pp. 81,4 x ll. 23624-2 Pa. $3.50 

THE ART OF HAND LETTERING, Helm Wotzkow. Course in hand lettering, 

Roman, Gothic, Italic, Block, Script. Tools, proportions, optical aspects, indivi­

dual variation. Very quality conscious. Hundreds of specimens. 320pp. 5% x 8li. 
21797'3 Pa. $4.95 
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THE RIME OF THE ANCIENT MARINER, Gustave Dore, S.T. Coleridge. Dore" s finest work, 34 plates capture moods, subtleties of poem. Full text. 77pp. 9\l x 12. 
22305-1 Pa. $4.95 

SONGS OF INNOCENCE, William Blake. The first and most popular of Blake's famous "Illuminated Books," in a facsimile edition reproducing all 31 brightly colored plates. Additional printed text of each poem. 64pp. 5\l x 7. 
22764-2 Pa. $3.50 

AN INTRODUCTION TO INFORMATION THEORY, J.R. Pierce. Second (1980) edition of most impressive non-technical account available. Encoding, entropy, noisy channel, related areas, etc. 320pp. 5% x 8Y,. 24061-4 Pa. $4.95 
THE DIVINE PROPORTION: A STUDY IN MATHEMATICAL BEAUTY, H.E. Huntley. "Divine proportion" or "golden ratio" in poetry, Pascal's triangle, philosophy, psychology, music, mathematical figures, etc. Excellent bridge between science and art. 58 figures. 185pp. 5% x 8Y,. 22254-3 Pa. $3.95 
THE DOVER NEW YORK WALKING GUIDE: From the Battery to Wall Street, Mary ]. Shapiro. Superb inexpensive guide to historic buildings and locales in lower Manhattan: Trinity Church, Bowling Green, more. Complete Text; maps. 36 illustrations. 48pp. 3% x 9\4. 24225-0 Pa. $2.50 
NEW YORK THEN AND NOW, Edward B. Watson, Edmund V. Gillon, Jr. 83 important Manhattan sites: on facing pages early photographs (1875-1925) and 1976 photos by Gillon. 172 illustrations. 17lpp. 9\l x 10. 23361-8 Pa. $7.95 
HISTORIC COSTUME IN PICTURES, Braun & Schneider. Over 1450 costumed figures from dawn of civilization to end of 19th century. English captions. 125 plates. 256pp. 8% x 11\l. 23150-X Pa. $7.50 
VICTORIAN AND EDWARDIAN FASHION: A Photographic Survey, Alison Gernsheim. First fashion history completely illustrated by contemporary photo­graphs. Full text plus 235 photos, 1840-1914, in which many celebrities appear. 240pp. 6Y, x !)l,t 24205-6 Pa. $6.00 
CHARTED CHRISTMAS DESIGNS FOR COUNTED CROSS-STITCH AND OTHER NEEDLECRAFTS, Lindberg Press. Charted. designs for 45 beautiful needlecraft projects with many yuletide and wintertime motifs. 48pp. 8\l x II. 

24356-7 Pa. $2.50 
I 01 FOLK DESIGNS FOR COUNTED CROSS-STITCH AND OTHER NEEDLE­CRAFTS, Carter Houck. 101 authentic charted folk designs in a wide array of lovely representations with many suggestions for effective use. 48pp. 81.4 x II. 

24369-9 Pa. $2.25 
FIVE ACRES AND INDEPENDENCE, Maurice G. Kains. Great back-to-the-land classic explains basics of self-sufficient farming. The one book to get. 95 illustrations. 397pp. 5% x 8Y,. 20974-1 Pa. $4.95 
A MODERN HERBAL, Margaret Grieve.Much the fullest, most exact, most useful compilation of herbal material. Gigantic alphabetical encyclopedia, from aconite to zedoary, gives botanical information, medical properties, folklore, economic uses, and much else. Indispensable to serious reader. 161 illustrations: 888pp. 6!-2 x 9\4. (Available in U.S. only) 22798-7, 22799-5 Pa., Two-vol. set $16.45 
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DECORATIVE NAPKIN FOLDING FOR BEGINNERS, Lillian Oppenheimer 

and Natalie Epstein. 22 different napkin folds in the shape of a heart, clown's hat, 

love knot, etc. 63 drawings. 48pp" 8\4 x ll. 23797-4 Pa. $1.95 

DECORATIVE LABELS FOR HOME CANNING, PRESERVING, AND 

OTHER HOUSEHOLD AND GIFT USES, Theodore Menten. 128 gummed, 

perforated labels, beautifully printed in 2 colors. 12 versions. Adhere to metal, glass, 

wood, ceramics. 24pp. 8\4 x ll. 23219-0 Pa. $2.95 

EARLY AMERICAN STENCILS ON WALLS AND FURNITURE, Janet War­

ing. Thorough coverage of 19th-century folk art: techniques, artifacts, surviving 

specimens. 166 illustrations, 7 in color. l47pp. of text. 7'/a x 10%. 21906-2 Pa. $9.95 

AMERICAN ANTIQUE WEATHER VANES, A.B. & W.T. Westervelt. Extensively 

illustrated 1883 catalog exhibiting over 550 copper weathervanes and finials. 

Excellent primary source by one of the principal manufacturers. 104pp. 6Ys x 9\4. 
24396-6 Pa. $3.95 

ART STUDENTS' ANATOMY, Edmond J. Farris. Long favorite in art schools. 

Basic elements, common positions, actions. Full text, 158 illustrations. 159pp. 5% x 

8'4. 
20744-7 Pa. $3.95 

BRIDGMAN'S LIFE DRAWING, George B. Bridgman. More than 500 drawings 

and text teach you to abstract the body into its major masses. Also specific areas of 

anatomy. 192pp. 6'4 x 9\4. (EA) 22710-3 Pa. $4.50 

COMPLETE PRELUDES AND ETUDES FOR SOLO PIANO, Frederic Chopin. 

All 26 Preludes, all 27 Etudes by greatest composer of piano music. Authoritative 

Paderewski edition. 224pp. 9 x 12. (Available in U.S. only) 24052-5 Pa. $7.50 

PIANO MUSIC 1888-1905, Claude Debussy. Deux Arabesques, Suite Bergamesque, 

Masques, lst series of Images, etc. 9 others, in corrected editions. J 75pp. 9% x 12\4. 
(ECE) 22771-5 Pa. $5.95 

TEDDY BEAR IRON-ON TRANSFER PATTERNS, Ted Menten. 80 iron-on 

transfer patterns of male and female Teddys in a wide variety of activities, poses, 

sizes. 48pp. 8\4 x ll. 24596-9 Pa. $2.25 

A PICTURE HISTORY OF THE BROOKLYN BRIDGE, M.J. Shapiro. Pro­

fusely illustrated account of greatest engineering achievement of 19th century. 167 

rare photos & engravings recall construction, human drama. Extensive, detailed 

text. 122pp. 8\4 x 11. 24403-2 Pa. $7.95 

N_EW YORK IN THE THIRTIES, Berenice Abbott. Noted photographer's 

fascinating study shows new buildings that have become famous and old sights that 

have disappeared forever. 97 photographs. 97pp. 11% x 10. 22967-X Pa. $7.50 

MATHEM~TICAL TABLES AND FORMULAS, Robert D. Carmichael and 

Edwin, R., Smith. Logarithms, sines, tangents, trig functions, powers, roots, 

reciprocals, exponential and hyperbolic functions, formulas and theorems. 269pp. 

5% x 8'4. 60111-0 Pa. $4.95 

HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS, 

GRAPHS, AND MATHEMATICAL TABLES, edited by Milton Abramowitz and 

Irene A. Stegun. Vast compendium: 29 sets of tables, some to as high as 20 places. 

l,046pp. 8 X lOY,. 61272,4 Pa. $19.95 
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REASON IN ART, George Santayana. Renowned philosopher's provocative, seminal treatment of basis of art in instinct and experience. Volume Four of The Life of Reason. 230pp. 5% x 8. 24358-3 Pa. $4.50 
LANGUAGE, TRUTH AND LOGIC, Alfred J. Ayer. Famous, clear introduction to Vienna, Cambridge schools of Logical Positivism. Role of philosophy, elimination of metaphysics, nature of analysis, etc. 160pp. 5% x 8li. (USCO) 

20010-8 Pa. $2.75 
BASIC ELECTRONICS, U.S. Bureau of Naval Personnel. Electron tubes, circuits, antennas, AM, FM, and CW transmission and receiving, etc. 560 illustrations. 567pp. 6li x 9~. 21076-6 Pa. $8.95 
THE ART DECO STYLE, edited by Theodore Menten. Furniture, jewelry, metalwork, ceramics, fabrics, lighting fixtures, interior decors, exteriors, graphics from pure French sources. Over 400 photographs. 183pp. 8% x ll~. 

22824-X Pa. $6.95 
THE FOUR BOOKS OF ARCHITECTURE, Andrea Palladio. !6th-century classic covers classical architectural remains, Renaissance revivals, classical orders, etc. 1738 Ware English edition. 216 plates. l!Opp. of text. 9li x 12%. 

21308-0 Pa. $11.50 
THE WIT AND HUMOR OF OSCAR WILDE, edited by Alvin Redman. More than 1000 ripostes, paradoxes, wisecracks: Work is the curse of the drinking classes, I can resist everything except temptations, etc. 258pp. 5% x 8li. (USCO) 

20602-5 Pa. $3.95 
THE DEVIL'S DICTIONARY, Ambrose Bierce. Barbed, bitter, brilliant witti­cisms in the form of a dictionary. Best, most ferocious satire America has produced. 145pp. 5% x 8li. 20487-1 Pa. $2.50 
ERTE'S FASHION DESIGNS, Erte. 210 black-and-white inventions from Harper's Bazar, 1918-32, plus 8pp. full-color covers. Captions. 88pp. 9 x 12. 

24203-X Pa. $6.50 
ER TE GRAPHICS, Erte. Collection of striking color graphics: Seasons, Alphabet, Numerals, Aces and Precious Stones. 50 plates, including 4 on covers. 48pp. 9% x 12\4. 

23580-7 Pa. $6.95 
PAPER FOLDING FOR BEGINNERS, Willia,m D. Murray and Francis J. Rigney. Clearest book for making origami sail boats, roosters, frogs that move legs, etc. 40 projects. More than 275 illustrations. 94pp. 5% x 8li. 20713-7 Pa. $2.25 
ORIGAMI FOR THE ENTHUSIAST, John Montroll. Fish, ostrich, peacock, squirrel, rhinoceros, Pegasus, 19 other intricate subjects. Instructions. Diagrams. 128pp. 9 x 12. 23799-0 Pa. $4.95 
CROCHETING NOVELTY POT HOLDERS, edited by Linda Macho. 64 useful, whimsical pot holders feature kitchen themes, animals, flowers, other novelties. Surprisingly easy to crochet. Complete instructions. 48pp. 8~ x II. 

24296-X Pa. $1.95 
CROCHETING DOILIES,edited by Rita Weiss. Irish Crochet, Jewel, Star Wheel, Vanity Fair and more. Also I uncheon and console sets, runners and centerpieces. 51 illustrations. 48pp. 8~ x II. 23424-X Pa. $2.50 
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THE PRINCIPLE OF RELATIVITY, Albert Einstein eta!. Eleven most impor­

tant original papers on special and general theories. Seven by Einstein, two by 

Lorentz, one each by Minkowski and Weyl. 216pp. 5% x B\2. 600Bl-5 Pa. $4.00 

PINEAPPLE CROCHET DESIGNS, edited by Rita Weiss. The most popular 

crochet design. Choose from doilies, luncheon sets, bedspreads, apron-34 in all. 32 

photographs. 4Bpp. BIA x I 1. 23939-X Pa. $2.00 

REPEATS AND BORDERS IRON-ON TRANSFER PATTERNS, edited by Rita 

Weiss. Lovely florals, geometries, fruits, animals, Art Nouveau, Art Deco and more. 

4Bpp. BIA x I 1. 2342B-2 Pa. $1.95 

SCIENCE-FICTION AND HORROR MOVIE POSTERS IN FULL COLOR, 

edited by Alan Adler. Large, full-color posters for 46 films including King Kong, 

Godzilla, The Illustrated Man, and more. A bug-eyed bonanza of scantily clad 

women, monsters and assorted other creatures. 4Bpp. 101,4 x 14%. 23452-5 Pa. $B.95 

TECHNICAL MANUAL AND DICTIONARY OF CLASSICAL BALLET, Gail 

Grant. Defines, explains, comments on steps, movements, poses and concepts. 

IS-page pictorial section. Basic book for student, viewer. 127pp. 5% x BY,. 
21B43-0 Pa. $2.95 

STORYBOOK MAZES, Dave Phillips. 23 stories and mazes on two-page spreads: 

Wizard of Oz, Treasure Island, Robin Hood, etc. Solutions. 64pp. B% x I 1. 
2362B-5 Pa. $2.25 

PUNCH-OUT PUZZLE KIT, K Fulves. Engaging, self-contained space age 

entertainments. Ready-to-use pieces, diagrams, detailed solutions. Challenge a 

robot, split the atom, more. 40pp. BIA x I L 24307-9 Pa. $3.50 

THE HUMAN FIGURE IN MOTION, Eadweard Muybridge. Over 4500 19th­

century photos showing stopped-action sequences of undraped men, women, 

children jumping, running, sitting, other actions. Monumental collection. 390pp. 

7% x 10%. 20204-6 Clothbd. $1B.95 

PHOTOGRAPHIC SKETCHBOOK OF THE CIVIL WAR, Alexander Gardner. 

Reproduction of IB66 volume with 100 on-the-field photographs: Manassas, 

Lincoln on battlefield, slave pens, etc. 224pp. 10% x Bl,4. 22731-6 Pa. $7.95 

FLORAL IRON-ON TRANSFER PATTERNS, edited by Rita Weiss. 55 floral 

designs, large and small, realistic, stylized; poppies, iris, roses, etc. Victorian, 

modern. Instructions. 4Bpp. BIA x 11. 2324B-4 Pa. $1.95 

AUTOBIOGRAPHY: The Story of My Experiments with Truth, Mohandas K 

Gandhi. Boyhood, legal studies, purification, the growth of the Satyagraha 

(nonviolent protest) movement. Critical, inspiring work of the man who freed 

India. 4BOpp. 5% x BY,. 24593-4 Pa. $6.95 

ON THE IMPROVEMENT OF THE UNDERSTANDING, Benedict Spinoza. 

Also contains Ethics, Correspondence, all in excellent R Elwes translation. Basic 

works on entry to philosophy, pantheism, exchange of ideas with great contempo­

raries. 420pp. 5% x BY,. 20250-X Pa. $5.95 

Prices subject to change without notice. 

Available at your book dealer or write for free catalog to Dept. GI, Dover 

Publications, Inc., 31 East 2nd St. Mineola, N.Y. 11501. Dover publishes more than 

175 books each year on science, elementary and advanced mathematics, biology, 

music, art, literary history, social sciences and other areas. 
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THE SEARCH FOR ExTRATERRESTIAL INTELLIGENCE, NASA. (23890-3) $3.95 
THE GENTLE ART oF MATHEMATics, Dan Pedoe. (22949-1) $3.00 
PLAYING WITH INFINITY, Rozsa Peter. (23265-4) $4.00 
INTRODUCTION TO INFORMATION THEORY: SYMBOLS, SIGNALS AND NoiSE, J.R. 

Pierce. (24061-4) $4.95 
THE RESTLESS ATOM: THE AwAKENING OF NuCLEAR PHYSICS, Alfred Romer. 

(2431 0-9) $3.50 
GEOMETRIC ExERCISES IN PAPER FoLDING, T. Sundara Row. (21594-6) 

$2.95 
GEOMETRY, RELATIVITY AND THE FoURTH DIMENSION, Rudolf Rucker. 

(23400-2) $2.75 
ELEMENTARY METALLURGY AND METALLOGRAPHY, Arthur M. Shrager. 

(60138-2) $5.95 
GREAT IDEAS AND THEORIES OF MODERN COSMOLOGY, Jagjit Singh. 

(20925-3) $6.75 
MATHEMATICS FOR THE GENERAL READER, E. C. Titchmarsh. (24172-6) 

$3.00 
CELESTIAL OBJECTS FOR COMMON TELESCOPES, T.W. Webb. (20917-2, 

20918-0) Two-volume set $10.00 
EINSTEIN: THE MAN AND His AcHIEVEMENT, G.J. Whitrow (ed.). 

(22934-3) $2.25 
Music, SouND AND SENSATION, Fritz Winckel. (21764-7) $4.50 
SCIENCE FROM YouR AIRPLANE WINDOw, Elizabeth A. Wood. (23205-0) 

$3.95 

Paperbound unless otherwise indicated. Prices subject to change without 
notice. Available at your book dealer or write for free catalogues to Dept. 
Popular Science, Dover Publications, Inc., 31 East 2nd Street, Mineola, 
N.Y. 11501. Please indicate field of interest. Each year Dover publishes 
over 200 books on fine art, music, crafts and needlework, antiques, lan­
guages, literature, children's books, chess, cookery, nature, anthropology, 
science, mathematics, and other areas. 

Manufactured in the U.S.A. 



Philip C.Jackson,Jr. 

INTRODUCTION TO 
ARTIFICIAL 

INTELLIGENCE 
Can computers think? Can they use reason to develop their own 
concepts, solve complex problems, play games, understand our 
languages? This comprehensive survey of artificial intelligence-the 
study of how computers can be made to act intelligently-explores these 
and other fascinating questions. 

Introduction to Artificial Intelligence presents an introduction to the 
. science of reasoning processes in computers, ~ the research ap­

proaches and results of the past two decades. You11 find lucid, easy-to­
read coverage of problem-solving methods, representation and models, 
game playing, automated understanding of natural languages, heuristic 
search theory, robot systems, heuristic scene analysis and specific 
artificial-intelligence accomplishments. 

Related subjects are also included: predicate-calculus theorem proving, 
machine architecture, psychological simulation, automatic program­
ming, novel software techniques, industrial automation and much more. 
A supplementary section updates the original book with major research 
from the decade 1974-:1.984. Abundant illustrations, diagrams and 
photographs enhance the text, and challenging practice exercises at the 
end of each chapter test the student's grasp of each subject. 

The combination of introductory and advanced material makes Introduc­
tion to Artificial Intelligence ideal for both the layman and the student of 
mathematics and computer science. For anyone interested in the nature 
of thought, it will inspire visions of what computer technology might 
produce tomorrow. 

Revised and eularged republication of the work first published by 
Petrocelli/Cbarter, New York, 1974. Revised Preface. Extensive notes 
updating the main text. Supplementary Bibliography. 132 black-and­
white illustrations. 512pp. ~ x 8". Paperbound. 

A DOVER EDITION DESIGNED FOR YEARS OF USE! 

We have made every effort to make this the best book possible. Our 
paper is opaque, with minimal show-through; it will not discolor or 
become brittle with age. Pages are sewn in signatures, in the method 
traditionally used for the best books, and will not drop out, as often 
happens with paperbacks held together with glue. Books open flat for 
ea~y reference. The binding will not crack or split. This is a permanent 
book. 

ISBN 0-486-24864-X $8.95 in U.s.A. 
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