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Foreword

Machine language (ML) is the native language of any com-
puter. When you program in a high-level language like
BASIC, each program statement must be translated into ma-
chine language while the program is running. That seriously
slows up execution speed.

For many applications, BASIC is the language of choice
because its slow speed doesn’t matter. But if speed is signifi-
cant, ML is the answer. What’s more, you'll gain significantly
more control over your computer when you can give it
instructions in its own language. You bypass the limitations
and blind spots of BASIC.

Unfortunately, many BASIC programmers have come to
believe that machine language is too complex to be easily
understood, that it’s beyond their reach. This is a popular mis-
conception, but it’s a misconception nonetheless. In fact,
people who learned to program in ML have claimed that
learning BASIC was about as difficult. What’s more, if you al-
ready know BASIC, you already know most of the concepts
and structures that you’ll need to program in ML.

COMPUTE!s Beginner’s Guide to Machine Language on the
IBM PC and PCjr makes learning 8088 ML easy. The authors
introduce you to the tools you'll need and start you off by
showing you, step by step, how to write simple programs.
Slowly, with numerous examples, they describe each ML com-
mand. You'll soon be telling your assembler (either MASM or
the Small Assembler) exactly what you want it to do. And, after
you've got the basics down, you'll learn everything you need
to know to write complex programs entirely in ML.

This book includes more than 15 complete ML programs
for you to type in and assemble. Each program is more com-
plex than the one before and guides you through new tech-
niques. Many programs contain routines which can be simply
lifted as is and inserted into your own programs.

Do you want to use ML and BASIC together? Do you
want to merge one of your ML routines with a Pascal pro-
gram? COMPUTE!’s Beginner’s Guide to Machine Language on
the IBM PC and PCjr shows you how. You'll even learn about
Macros: how and why they’re used in ML programs, and how
to create a library of them.



Once you've learned the techniques of 8088 ML program-
ming on the IBM, you'll find yourself returning to this book
again and again. It not only teaches, but is also an excellent
reference for the experienced programmer.

For almost every level of 8088 ML programming, from
rank beginner to veteran programmer, COMPUTE!’s Beginner’s
Guide to Machine Language on the IBM PC and PCjr can be
your guide to greater understanding of your machine and
effective, powerful programming methods. But if you're just
starting out with ML, you'll soon be writing your first ML pro-
gram and can begin to explore the amazing world in the in-
terior of your machine.

Richard Mansfield
Author of Machine Language For Beginners
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Introduction

The PC is a powerful tool, whether for business uses, math-
ematic calculations, or game playing. It is sometimes astonish-
ing to observe the speed at which some programs work,
whether spreadsheets, word processors, or flashy videogames.

Sometimes, however, BASIC is simply too slow. For fast-
moving games, complex calculations, and rapid communica-
tion with external devices, BASIC often fails to perform as you
might wish. The answer to that problem is the subject of this
book. Machine language, the computer’s native language, ex-
ecutes many times faster than BASIC or even Pascal.

BASIC is useful in many situations, and is often all you
need to write a program. BASIC (or Pascal) programs are
usually much simpler to write, modify, and debug than ma-
chine language. Furthermore, programs written in BASIC can
be transported from computer to computer almost without
modification.

There are times, though, that the benefits of machine lan-
guage outweigh the advantages of BASIC and Pascal. Machine
language is fast, faster than BASIC or any of the other high-
level languages. Machine language also provides for a greater
degree of precision and control when dealing with the com-
puter and all its associated hardware. Finally, machine lan-
guage programs are often more compact than BASIC, and
invariably far shorter than the equivalent programs would be
in Pascal. When you need speed, precision, or compactness,
machine language is the best answer.

What You’ll Need

This book assumes that you are using one of the IBM family
of personal computers (PC, PC/XT, Portable, or PCjr), or one
of the many PC compatibles. PCjrs must be the expanded ver-
sion, with a disk drive and at least 128K of RAM. Other
computers require at least 64K (with DOS 1.10) or 96K (with
DOS 2.00 and above) and a disk drive. Any programmer using
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a noncompatible version of MS-DOS can use this book, but
don’t be too surprised if some of the sample programs fail to
give the proper results.

That’s the hardware needed. Below is a list of the soft-
ware you will need.

DOS. We assume that you are using either DOS 2.00 or
2.10 (or their Microsoft equivalent); however, most of the
explanation applies to DOS 1.10 as well.

Text editor. Those who have never written a program in
an assembled or compiled language (like Pascal) may not be
familiar with text editors or source files. A text editor allows
you to enter your program (the source file) into the computer
and store it on disk. Assembly language source files are gen-
erally given the extension .ASM.

Any editor or word processor which generates standard
DOS files can be used to enter your programs. A standard
DOS file, sometimes called a pure ASCII file, doesn’t contain
any special word processor control codes. IBM’s assembler will
assemble only standard DOS files.

Some word processors (WordStar and WordPerfect, for ex-
ample) don't store their text files in this standard format;
however, most provide a way to handle DOS files. Word
processors vary considerably, so check with your manual for
the specifics. If your word processor doesn’t handle DOS files,
use EDLIN. EDLIN is quite adequate as a program editor; be-
sides, it came on your DOS disk, and you might as well use it.
If you would prefer a more powerful text editor, IBM sells
two: the Personal Editor and the Professional Editor.

The assembler. The most important software requirement
is an assembler. In this book, we’ll assume you have the IBM
assembler. The assembler is the program which converts your
assembly language source file into an object file, usually given
the extension .OBJ. This file contains the actual machine lan-
guage instructions which the computer will execute. We can
also have the assembler produce a list file. This file, with the
extension .LST, contains both the original source file and the
actual machine language program, generated by the assembler,
in the margin.

In writing the sample programs and the assembly ex-
amples, we have assumed that you are using the IBM Macro
Assembler. The Macro Assembler is available from your IBM
dealer or product center, and is nearly identical to the version
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of MASM provided free with some MS-DOS computers. Al-
though there are other assemblers available, the IBM Macro
Assembler is the most popular, as well as standard for IBM
equipment.

When you buy the IBM Macro Assembler package, you are
supplied with two assemblers, MASM.EXE and ASM.EXE.
MASM requires at least 96K of RAM, while ASM needs only
64K. If you have the memory, use MASM. There is little dif-
ference in the performance of the two assemblers; however,
MASM offers additional commands and options, which will be
detailed in Chapter 15.

The linker. Before you can execute your object file, you
must link it using the LINK program provided on your DOS
disk. The LINK program converts the object file into an ex-
ecutable file (with the extension .EXE). The LINK program can
also be used to join many object files (IBM calls these object
modules) together into a large program. These object modules
can be created with the assembler or other language compilers
such as the BASIC and the Pascal compilers.

How to Use This Book

In order to use this book to its fullest potential, we recom-
mend that you have at least some knowledge of BASIC or
Pascal, enough so that you can write your own programs. Al-
though a knowledge of BASIC is not essential, there will be
some sample programs written in BASIC when added clarity is
necessary. We assume that you know some of the computer
technical jargon, such as the words loop and subroutine. If you
are completely in the dark, take some time to read through the
glossary at the end of this book.

In addition, we assume that you are familiar with your
operating system, whether PC-DOS or MS-DOS. By this we
mean you know how to name files, to copy files from one disk
to another, and know how to format your own disks.

Machine language should not be the beginner’s first com-
puter language. It's not that it’s harder to learn than other
computer languages—it’s just less forgiving of mistakes. High-
level languages perform many error checks while executing
your program; assembly language performs almost none.
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Before You Get Started

Before you go on, make a working copy of the assembler and
your editor (whether EDLIN.COM, WordStar, or some other
word processor). You should also copy the assembler to your
working disk (either ASM.EXE or MASM.EXE; you don't need
both). You will also need LINK.EXE and DEBUG.COM from
your DOS program disks. Your work disk does not have to be
a boot disk, but cooy COMMAND.COM onto the disk any-
way, since DOS reloads it after every assembly. If you're using
a word processor, it’s a good idea to copy it and all its asso-
ciated program files onto your work disk, so you don’t have to
trade disks every time you assemble.

In the next chapter we’ll be discussing some of those
esoteric terms you may have heard from your hacker friends:
binary, hexadecimal, memory addressing, segments, registers,
and flags. If you're a hacker yourself, you should at least
glance through Chapter 2 and be sure you understand it
before starting on Chapter 3.
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Fundamentals

In this chapter we will discuss some of the basic concepts nec-
essary for learning machine language. Most of these concepts
will be general to all computers, but we will also talk about
some features specific to the 8088, the microprocessor—the
brain—of your computer. First we'll discuss the computer’s
numbering system, binary, and some related topics. Then we'll
examine the basic structure of the computer’s microprocessor,
as well as some of the ideas that must be understood to pro-
gram in machine language.

Our system of numbering is called decimal. In this sys-
tem, each digit, as we move to the left, has ten times more
weight than the preceding one. So in the number 4782 we
have a one’s digit, a ten’s digit, a hundred’s digit, and a thou-
sand’s digit, each with a value ten times the preceding one. In
other words, we have what is called a base 10 numbering
system.

The base 10 numbering system is not the system used by
computers. Microprocessors everywhere use base 2.

Binary

A computer is essentially a series of switches. Each switch is
either on or off. Thus the use of the base 2 numbering system,
in which each digit, instead of being 0 to 9, is either on or off,
either a 0 or a 1. This is the system called binary. This binary
system of numbering is responsible for much of a computer’s
architecture: the size of the largest number it can store in a
memory location, the amount of memory it can have, even the
size of the screen.

As in the decimal system, each digit, as we move to the
left, has an increased value. But instead of ten times, each
digit as we move left has a value two times the preceding
digit: a one’s digit, a two’s digit, a four’s digit, an eight’s digit,
a sixteen’s digit, and so on.
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Look at the binary number
10011

Reading from right to left, it has one 1, one 2, no 4’s or 8’s,
and one 16. Adding them allup (1 + 2 + 0 + 0 + 16), we
can see that 10011 in binary represents the number 19 in
decimal.

Table 2-1 shows the binary values of the decimal num-
bers 0 to 9.

Table 2-1. Binary-Decimal Illustration

Decimal Binary
number eight’s four’s two's one’s number
zero 0 0 0 0 0
one 0 0 0 1 1
two 0 0 1 0 10
three 0 0 1 1 11
four 0 1 0 0 100
five 0 1 0 1 101
six 0 1 1 0 110
seven 0 1 1 1 111
eight 1 0 0 0 1000
nine 1 0 0 1 1001

Table 2-1 may seem reminiscent of elementary school
lessons in addition, but in fact an understanding of binary is
critical to many aspects of 8088 programming and to com-
prehending the structure and workings of the microprocessor.

Hexadecimal
As you can see from Table 2-1, even small numbers require
three and four digits in binary. Long strings of 1’s and 0’s may
be fine for the computer, but for the human programmer they
can get a little overpowering. Base 16, or the hexadecimal (hex
for short) number system, is used to get around this problem.
In this system, as you may have guessed, each succeeding
digit to the left is greater than the last by a factor of 16. Thus,
we have the 1's digit, a 16's digit, a 256’s digit, and so forth.
For example, the number 47 corresponds to seven 1’s and four
16’s; (4 X 16) + (7 X 1) = 71.

But wait. In base 10 (our decimal system), we have ten
different characters (0-9); in base 2 we have two (0 and 1). For
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base 16 we need 16 characters. We can understand this need
more easily by thinking of what 9 and 10 represent in hex: the
decimal numbers 9 and 16. Therefore, to represent in hex the
numbers between 9 and 16, the one’s place must be able to
hold more than 9. In fact, we must be able to represent up to
15 ones in each place. For the first ten we use the base 10
digits 0 to 9. For the remaining six we use the letters A, B, C,
D, E, and F, to stand for 10, 11, 12, 13, 14, and 15 respec-
tively. This is shown in Table 2-2.

Table 2-2. Decimal-Binary-Hexadecimal Numbers

Decimal Binary = Hexadecimal
0 00000000 0
1 00000001 1
2 00000010 2
3 00000011 3
4 00000100 4
5 00000101 5
6 00000110 6
7 00000111 7
8 00001000 8
9 00001001 9

10 00001010 A
11 00001011 B
12 00001100 C
13 00001101 D
14 00001110 E
15 00001111 F
16 00010000 10
17 00010001 11
18 00010010 12

3A uses both letters and numbers; A represents 10 (10
ones). This, added to the three 16’s, gives us 58 (3 X 16 +
10) decimal.

Notice in Table 2-2 there’s a correspondence between four
binary digits and one hexadecimal digit: Four binary digits
make up one hexadecimal digit. If you think about it, this
makes sense: The most that four binary digits can represent is
1111 0or1 + 2 + 4 + 8, which equals decimal 15. And 15 is
the largest number that one hexadecimal digit can represent (F
in hex). In fact, any combination of four binary digits can be
represented by a single hex digit.
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binary 0010 = hex 2
binary 0000 = hex 0
binary 1111 = hex F
binary 1011 = hex B

For this reason hexadecimal is often used for computer
programming in lieu of binary. It's compact (one digit instead
of four) and it fits in well with binary. Thus, many aspects of
machine language are best represented by hex.

Decimal, on the other hand, doesn’t work well with bi-
nary. You would need about three and a third binary digits to
make up one decimal number, and that’s not possible. Deci-
mal, therefore, is often not the numbering system of choice
when dealing with computers. Some computers do have a
provision to handle decimal directly, for the benefit of the pro-
grammer; we'll discuss these in “Advanced Arithmetic”
(Chapter 8) later in the book.

Another system that works well with binary is base 8,
octal. In this system three binary digits make up one octal
digit, and we represent numbers in 1’s, 8’s, 64’s, and so forth.
Although it’s not very common, IBM BASIC and the IBM
assembler provide for it.

The concept of base 2 and base 16 requires an extension
to our usual way of thinking about numbers. As you have
seen, a two-digit number is not merely composed of 1’s and
10’s, but 1’s and 2’s, or 1’s and 16’s. Now that you have
gained some understanding of the binary and hexadecimal
numbering systems, we’ll turn our attention to arithmetic.
Once you've mastered the ideas inherent in using a new base,
arithmetic in that base is surprisingly simple.

Arithmetic
Addition. Since binary arithmetic is somewhat complex

and rarely used, we’ll deal only with hexadecimal in our dis-
cussion of computer arithmetic. Let’s begin with a few simple
two-digit additions:

47
+ 26

6D

The idea is exactly the same as decimal addition. First you
add the one’s digits. In this case, 7 + 6 = D. (Remember D is

8
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the hex symbol for 13.) Then, we add the sixteen’s digits, 4 +
2, and get 6.
Now for a somewhat more complex example:

1A
+ 39

53

Here, we have A plus 9 in the one’s digit. This would add
up to hex 13 (decimal 19), which is too big for a single hex
digit. So we adopt the same strategy we use in decimal: Take
only the 3 from hex 13, and add the 1 to the next column as a
carry. Thus, we have 3 in the one’s column, and in the six-
teen’s column we have 1 plus 3, plus 1 from the carry, to
equal 5 in all. Here are a few more examples of hex addition
for you to study:

31 5A A3 99
+ 48 + 5A + 3A + 2B
79 B4 DD C4
Subtraction. Subtraction in hex is also similar to decimal.
E3
— 79
6A

Here we must subtract 9 from 3. So, just as in decimal, we
borrow 10 (decimal 16) from the next column. That gives us
13 hex — 9, which works out to A. (Convert to decimal, if you
like: 19 — 9 = 10, or hex A.) Now we move to the next col-
umn, the sixteen’s. First we subtract 7 from E, to get a result
of 7 (in decimal, 14 — 7 = 7). However, we must subtract one
from this result, since we borrowed hex 10 in the one’s col-
umn. So, we have six 16’s in the final answer. Here are a few
more practice hex subtractions:

74 AA 23 F2
—42 —3B —1A —BC
32 6F 09 36

Multiplication. Multiplication and division in hex are
easier than you would think. When dealing with computers,
most multiplying and dividing is in powers of 2 or 16. Thus,
it’s often the case that you have to take some number and
multiply by 16. To do this, all you have to do is add a 0 to the
end of the number.

9



2
Fundamentals

45A9 X 10 = 45A90
or (using computer notation)
45A9 * 10 = 45A90

As you can see, multiplying by 10 hex (decimal 16) in hex
math is much like multiplying by decimal 10 in decimal math.

Division. Division works the same way; if you need to
divide a number by 16, just shift it over one digit. Since
computers rarely use fractions or decimal points, the digit on
the end just drops off:

45A9 / 10 = 45A

Again, you may notice the similarity to decimal: Dividing
a decimal number by decimal 10 also shifts the number one
place to the right.

A calculator that allows hex math can be an important
tool when programming in machine language. If you plan to
do any serious programming in ML, you should consider
purchasing one.

For the moment there are just a few important concepts
about these alternate bases to remember:

» Why it is that computers use binary at the lowest level, and
why programmers prefer to use hex.

» How to add (most important) as well as subtract and mul-
tiply in hex. This knowledge is necessary for understanding
and working with segments, which we shall discuss shortly.

Notation and Terminology

In our discussion of arithmetic, you may have been occa-
sionally confused about whether a 10, for example, referred to
decimal, binary, or hexadecimal. To distinguish between the
systems, we sometimes follow the number by the base as a
subscript. Thus,

711

would refer to 71 base 16. Computers can’t handle subscripts,
so the assembler uses a letter suffix to indicate the base. Deci-
mal numbers don’t have a suffix. Binary numbers have a B
suffix (110110B); hexadecimal numbers, an H suffix (45H or
8AH). Since the assembler does not allow a number to begin
with a letter, any hex number that begins with a letter (A-F)
must begin the number with a zero (for example, FFH is repre-

10
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sented as OFFH; AOH becomes 0AOH). A more complete dis-
cussion of the assembler’s numeric notation can be found in
Chapter 14.

Bits, bytes, and nybbles. A bit is one binary digit, a 0 or
a 1. A byte is two hex digits, eight bits.

A byte is the basic unit of 8088 memory storage, and so is
particularly important. A byte can hold values from 0 to 255
decimal (00 to FF hex, or 00000000 to 11111111 binary).

A nybble is a four-bit quantity, usually thought of as half a
byte. A nybble can be represented by a single hex digit.

Finally, a word is two bytes, four hex digits, 16 bits. A
word can have a value from 0000 to FFFF hex.

More and larger units exist, but these are uncommon and
will be discussed later.

Most and least significant. Least and most significant are
terms usually applied to the bits and bytes making up larger
numbers. For example, in a byte (eight bits) the most signifi-
cant bit (binary digit) is the leftmost one. This is the bit with
the highest value (128 in decimal) and thus the most signifi-
cant. The least significant bit is the rightmost one (with a
value of one). The other common use of these terms is in ref-
erence to words. _

As we mentioned above, a word is composed of two bytes
(each holding up to FF hex). One often refers to the two
component bytes of words as most significant and least signifi-
cant. For example, in the hex word 03AB, the 03 byte is the
most significant, and the AB byte is the least significant.

Computer Fundamentals

In order to successfully program in machine language, it is
essential to understand how to store numbers, and how to use
them when doing math. In this section, we’ll discuss the topics
relating to storing and using numbers, as well as examining
the 8088’s internal registers.

Addressing. All computers have a certain amount of
memory, consisting of RAM (read/write memory) and ROM
(read only memory). In this memory are stored both programs
and numbers. The computer keeps track of all this data (both
programs and numbers) by placing it at different addresses, or
locations, within this memory. This concept may already be
familiar to those of you who have had a need to use the
BASIC keywords POKE and PEEK. With the POKE statement,

11
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we POKE a number (a byte) into an address. PEEK, the
counterpart of POKE, tells us what number is already stored at
a specified address.

For example, load up BASIC on your computer and enter

POKE 10000,123

The POKE puts the number 123 at location 10000 (decimal).
We can use PEEK to tell us what is there:

PRINT PEEK(10000)
The computer should display

123
Ok

Try PEEKing around in memory a little more. You'll find
that addresses range from 0 to 65535 and that the numbers
that can be placed in an address range from 0 to 255. Above,
we mentioned that a word can hold 0000 to FFFF hex, which
corresponds to 0 to 65,535 decimal.

Memory. From the point of view of PEEK, all that is
stored in memory is numbers. How then does the computer
store a program? The answer is simple: as numbers. Most of
the numbers from 0 to 255 can serve both as numbers and as
machine language instructions. For example, the five numbers
198 6 16 39 123 (in decimal) represent one machine language
instruction, telling the computer to put the number 123 into
location 10000 (as you did above with POKE). Luckily, using
the assembler, you will never need to know which numbers
make up which instructions.

An enormous variety of things are stored in a computer’s
memory (machine language programs, BASIC programs, num-
bers, and text), but in the end, everything is stored as a num-
ber from 0 to 255. Of course, not all of this memory is RAM:
Some is empty space, some holds the Operating System, some
is used to display information on the screen, and so on. At
first, our programs will be using memory only as machine lan-
guage programs and the data accompanying these programs.
Later, we will discuss storage of large numbers (up to 32 bits
in length) and of strings of characters.

Segments. Since the computer uses a word to hold ad-
dresses, and a word can hold only numbers from 0 to 65,535,
many computers can therefore address only 65,536 bytes. This
is not true for the IBM’s 8088 microprocessor.

12



A

Fundamentals

Instead of using one word to address memory, the 8088
uses two. To address any particular location, the 8088 adds the
two words together to find the actual address. However, to in-
crease the amount of memory that can be accessed by a factor
of 16, the 8088 multiplies one of the words by hexadecimal 10
before adding it to the other. Multiplying by 16, as you may
recall, is the same as simply adding a 0 to the end of a hex
number. So, if one number is 1234 hex and the other (to be
multiplied) is 5678 hex, the computer would calculate the ac-
tual address as:

1234
+ 56780

579B4

This segmented memory system, as you can imagine, al-
lows a huge amount of memory to be addressed. The 8088
uses its segments to make available (in hex) 10000 * 10 =
100000 bytes or (in decimal) 65,536 * 16 = 1,048,576 bytes.
This number is known as a megabyte (metricized readers may
note the mega, or million, prefix). If you wish to put it in truly
impressive terms, think one thousand K.

The number that is multiplied by 16 is referred to as the
segment. The segment is almost always used to define the
beginning of a block of memory. Then, the offset, a word
value, is used to address one of 65,536 bytes within that seg-
ment. The segment usually remains the same throughout a
program, so machine language programs usually only need to
specify the appropriate offset. Different segments are used for
the program, the data, and so forth. We'll discuss how seg-
ments are used in more detail in a few moments.

Figure 2-1 diagrams one possible arrangement of four seg-
ments. Note that the segments can overlap. The shaded areas
indicate the possible range of the offset values within each
segment.

Registers :

Little machine language programming is done directly to
memory (in fact, some of it cannot be done directly to mem-
ory). To improve performance and to simplify programming,
the 8088 uses registers. A register is one word that the 8088
holds within itself, directly available to the microprocessor, not
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Figure 2-1. Sample Segment Locations

Memory
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in memory. Using a register is always faster than using data in
memory, because registers are, in a sense, part of the 8088.
Furthermore, less space is used in program memory to specify
one register out of, perhaps, eight, as opposed to one address
out of 65,536.

General-purpose registers. The most used registers on
the 8088 are the four general-purpose registers, AX, BX, CX,
and DX (registers are named, not numbered, to distinguish
them from memory). Each of these holds a word (0-FFFF hex),
and each is often used for a different purpose.

For now, a few mnemonics will suffice to give a necessar-
ily simplified picture. AX is the Accumulator; it often holds (or
accumulates) the values used by the various functions. As a
rule, the AX register serves as the pivotal register. BX is the
Base register (to be explained in Chapter 7, ““Addressing
Modes”). CX is the Count register (as explained in “Program
Flow,” Chapter 5, and “String Instructions,” Chapter 9) ; DX is
the Data register. Most of the time, however, you can use
these registers interchangeably.
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Byte registers. Each of the general-purpose registers can
also be used as two separate bytes. When we discussed most
and least significant above, we mentioned that a word is often
separated into its two component bytes. Likewise, for each
general-purpose register, there is a high byte (most significant)
and a low byte (least significant). If AX is holding 487A, the
high byte holds 48 and the low byte holds 7A. The high and
low byte parts of the registers are symbolized by H and L;
thus we have AL and AH, BL and BH, CL and CH, and DL
and DH. The general-purpose registers are the only registers
that can be used both as bytes and words.

Index and pointer registers. The 8088’s other registers
are more specialized, and more time will be devoted to them
in later chapters. For now, just remember that SI and DI are
index registers, and SP and BP are pointer registers. Most of
these registers can be used just like the general-purpose reg-
isters above, but they have other uses, which we’ll discuss in
due course.

Segment registers. The 8088 also has four specialized
registers it uses to hold the segment addresses of the different
parts of your program (code, data, and so forth). These seg-
ment registers are named CS, DS, SS, and ES. CS stands for
Code Segment. CS holds the segment address for your program
code. DS is the Data Segment; your program’s data is usually in
this segment. SS is the Stack Segment; this is where the stack
for the computer is based. If you're a machine language nov-
ice, don't despair; the stack is discussed in detail in Chapter 6.
Finally, ES, the Extra Segment, is used to address the screen,
the Operating System, and so forth, as the programmer
wishes.

The Instruction Pointer. The IP, or Instruction Pointer,
holds an offset value that points into the code segment. This
register can’t be directly accessed by your programs. Instead, it
serves as a pointer into your program. The 8088 uses this
pointer to execute the instructions one by one.

Learning machine language is like a giant jigsaw puzzle.
And parts of the puzzle are easier to find if you can look at
the entire picture. The problem with ML is that it is difficult to
see the whole picture before you understand the parts. At this
point the parts may seem disjointed and abstract. Don’t worry
if this discussion of registers doesn’t make sense now; as we
continue to use these registers throughout the book, their use
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will become more and more clear as you see the parts fitting
in to make the whole picture.

The flags register. One final word-sized register in the
8088 is devoted to the so-called flags. A flag is one bit, either
on or off; the on and off states of these flags tell the pro-
grammer about various states in the microprocessor. The flags
are used with conditional jumps, much like IF-THEN state-
ments, to make your program take different actions at critical
points.

Some of the flags are processor flags, telling the computer
what to do when certain situations occur (in this group are the
trap flag, the interrupt enable flag, and the direction flag). The
other flags are used for arithmetic on the computer. You'll find
that two of these other flags, the zero flag and the carry flag,
are very useful when doing math of all kinds. Two other flags
that are useful when doing signed math are the sign and over-
flow flags. Table 2-3 is a complete list of the 8088’s flags.

Table 2-3. The 8088’s Flags

carry flag trap flag

parity flag interrupt enable flag
auxiliary carry flag direction flag

zero flag overflow flag

sign flag

Each of these flags will be explained in their appropriate
chapters. For now, just remember that a flag is a signal that in-
dicates various states in the microprocessor.

Machine language is no harder to learn than BASIC.
Many of the operations in machine language are similar to
those in BASIC: moving information from variable to variable,
adding, subtracting, multiplying, dividing, dealing with strings,
and the like. In fact, many early programmers who had to
learn machine language as their first language had difficulty
making the transition to BASIC once it became available. Both
languages seem to require about as much effort to master.

Now that you have been introduced to the fundamentals
of the 8088—the numbering system, the uses of memory, seg-
ments, registers, and flags—you are ready to begin your first
program, and be introduced to your first machine language
command.
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Figure 2-2. Registers on the 8088
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Getting Started

We'll begin our discussion of the 8088 assembly language with
the simple MOV instruction and some of the assembler’s
pseudo-ops. You will also learn how to use the utility program
DEBUG.

The MOV Instruction

The MOV instruction is the most used, and often most useful,
of the 8088 instructions. (Note that, by tradition, most assem-
bly language mnemonics are three letters long.) It allows you
to move bytes or words between two registers or between reg-
isters and locations in memory. The MOV instruction takes the
following format:

MOV destination,source

MOV takes the source value and moves it to the destination.
We will examine three variations on the MOV instruction in
this chapter: MOV immediate to register, MOV between reg-
isters, and MOV with register indirect addressing.

MOV immediate to register. This first kind of MOV is
very straightforward—it moves an immediate value into a reg-
ister. An immediate value is a number that’s stored with the
machine language instruction itself, not in a separate data seg-
ment. For example, the instruction

MOV BX,1234H

moves the hex number 1234 into the BX register. The immedi-
ate value is stored as part of the instruction and is moved di-
rectly into the register. This is similar to the BASIC LET
statement BX=4&H1234.

The only limitation on the MOV instruction is that you
cannot move an immediate value into a segment register (CS,
DS, ES, or SS). Here are a few examples of valid MOV
instructions:
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MOV DX, 0A2H ;a hexadecimal number
MOV BL,4FH ;hexadecimal
MOV DL,241 ;decimal

MOV AH,10110101B ;binary

(See Chapter 2 for a discussion of the notation used to distin-
guish binary, decimal, and hexadecimal.)

The immediate value must be the same size as the
destination register. In other words, you cannot move a word
into a byte register. For example, this is illegal:

MOV DL,4567H

DL is a byte register and 4567H is a word-sized number.

Moving data between registers. Moving a value from
one register to another is also quite simple. Below are just a
few of the numerous possible register-to-register moves. No-
tice that the source and the destination registers must be the
same size (both either words or bytes).

MOV AX,BX
MOV DL,AH
MOV SI,DI
MOV ES,AX
MOV AH,CH

Register indirect addressing. This final kind of MOV
instruction uses register indirect addressing. This too is easy to
understand—once you get past the name. With this MOV the
computer uses the contents of a register as a memory address’s
offset, while the DS register provides the segment. In the first
example below, the number stored in BX is used as an offset
into the data segment. (The computer multiplies the value in
the DS register by 10 hex, 16 decimal, and adds the contents
of BX. See Chapter 2 for more details on offsets.)

MOV AX,[BX]
MOV DL,[SI]
MOV [BX],AL
MOV [DI],DX

The contents of the memory location pointed to by BX are
moved to AX. The square brackets around BX mean “use the
quantity stored in BX as an indirect address.” As we shall see
in later chapters, these square brackets are common to all in-
direct addressing modes.

In the next example above, MOV DL,[S]], SI is used as the
offset, and the contents of the memory location pointed to by
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SI are moved to DL. Notice, in the first example above, that a
word is moved, while in the second only a byte is moved. The
size of the number to be transferred is determined by the size
of the register involved. In the final two examples the destina-
tion of the data is another register indirect address. The last
example moves the number in DX to the memory location
pointed to by DI.

Only four registers can be used in register indirect
addressing: BX, BP, SI, and DI. Note that you cannot move a
number directly from one memory location to another, so
something like

MOV [DI],[SI]

is illegal. If you need to move from memory to memory, you
must use two MOV instructions and a register. As we shall
see, the sample program “Switch” uses this technique.

The 8088 offers almost 20 different ways of addressing
data. In Chapter 8 all of the addressing modes will be brought
together and examined in detail. However, now that you are
familiar with at least some aspects of the MOV command, let’s
take a look at the sample program Switch.

Writing a Program

The sample program, Switch (Program 3-1), will work with
any 8088 computer. Switch is accompanied by a brief tutorial
on the use of DEBUG, the machine language debugging tool
supplied with your DOS disk. Program 3-2 is a BASIC version
of Switch which may help improve your understanding of the
machine language version.

Switch is a fairly simple program. It copies the contents of
one eight-byte area (labeled SOURCE) to another eight-byte
area (labeled DEST, for destination). In the process, it reverses
the order of the bytes, so that the DEST area becomes a mirror
image of the SOURCE area.

Commenting the program. Before you enter Switch, take
a look at its structure. At the beginning of the program, there
are a number of lines preceded by semicolons. These are com-
ments, like the single quote (") or REM statements in BASIC
programs. They are ignored by the assembler, but are crucial
in documenting your program. The first few lines of any pro-
gram should give the name of the author and explain what
the program does. You might also want to include a date or
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version number for your own reference. Remember, each com-
ment line must be preceded by a semicolon.

Instruction lines. Lines which are not comments (instruc-
tion lines) have a definite format and can be broken down into
specific fields: :

Symbol Instruction Comment
NO_RESET: MOV [BX],AH ;store attribute
A_VERY_LONG_LABEL: ;this is a legitimate symbol
ADD AH,16
MOV AL,34 ;initialize AL

The first field contains a name, called a symbol. A symbol
can be of any length, but only the first 31 characters are rec-
ognized as significant. In other words, the first 31 characters of
each symbol must be unique. The alphabet characters (the let-
ters A to Z), the digits (the numbers from 0 to 9), and the
characters ?, @, — $, and . are all legal characters. Uppercase
and lowercase letters are considered identical; so the symbols
“sample”, “Sample”, and “SAMPLE" are all the same. The
first character in a symbol cannot be a digit; if it is, the assem-
bler thinks that the symbol should be a number. If a period is
used in a symbol, it must be the first character. When a sym-
bol is used to identify a position within a program (like
NO_RESET above), it is called a label. A label must be de-
fined with a colon after its name. When a symbol is used to
reference data, it is called a variable. A variable is never de-
fined with a colon.

The second field is the instruction field and contains the
operation and the operand. There are basically two kinds of
operations: those that produce actual machine code (opcodes,
a cryptic abbreviation for operation codes), and those that are
interpreted by the assembler and produce no machine code.
These operations which produce no code are called pseudo-ops
for false operations. Only a small number of the pseudo-ops
are detailed here. See Appendix C for a list of other pseudo-
ops available with the Macro Assembler.

The second part of the instruction field is the operand, the
information that the operation acts on. The number of oper-
ands depends on the particular operation. Some operations
- take only one operand, others take two, and a few take none.
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Comment field is the last field of the line and is optional.
Comment must be preceded by a semicolon.

On an instruction line, only the operation and any asso-
ciated operands are required. The label and the comment are
optional. Remember that the assembler considers lines which
start with semicolons comments and it ignores them entirely.

Pseudo-Operations

PAGE pseudo-op. The first operation in Switch is the
PAGE command. This pseudo-op tells the assembler the width
and length of a printed page in the list file. In Switch, PAGE
is used as follows:

PAGE ,96

The first parameter is the page length. Since none is specified,
58 is assumed. The next parameter is the width of the page.
The second operand, 96, sets the width to 96 characters,
which corresponds to a standard printed page at 12 characters
per inch.

The SEGMENT pseudo-op. The SEGMENT pseudo-op is
used three times in Switch. Its purpose is to define the various
segments for the DS, SS, and CS registers. SEGMENT first ap-
pears in the program as:

DATA SEGMENT
SOURCE DB 1,3,5,7,11,13,17,19
DEST DB 0,0,0,0,0,0,0,0
DATA ENDS

Here, SEGMENT is used to create a separate segment for
the program’s data. The label preceding the pseudo-op names
the segment DATA. The name is arbitrary; we could have
called it PAUL, ALEX, or AXZDFG, but naming the segment
DATA identifies its purpose. The ENDS pseudo-op at the end
of the segment declaration tells the assembler that the seg-
ment named by the ENDS command is ending.

Program data. The source and destination areas, named
SOURCE and DEST respectively, are within the segment
DATA. The initial values of these data areas are defined with
the DB (Define Byte) pseudo-op. The eight bytes at SOURCE
are filled with the numbers 1, 3, 5, 7, and so forth, and the
eight bytes at DEST are filled with zeros.
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Stack segment. The next use of the SEGMENT command
is to assign the stack segment. This is a special kind of seg-
ment and for now must be included in all your programs.

STACK SEGMENT STACK
DW 128 DUP (?)
STACK ENDS

We will be using this exact format in future programs for the
stack segment. Note that we have somewhat arbitrarily as-
signed the stack segment the name STACK. In Chapter 6, we
will explain how and why to use this segment.

Code segment. The last segment we define is the code
segment. This is where the machine language instructions are
located. This segment has been given the name CODE. Within
the segment CODE, however, we must define a “FAR proce-
dure.” This is accomplished with the SWITCH PROC FAR
instruction. We have named the procedure SWITCH. This pro-
cedural declaration is necessary if the program is to return to
DOS properly (right now, don’t worry about why).

The ASSUME pseudo-op. The last pseudo-op before the
actual machine language instructions is ASSUME. The AS-
SUME command tells the assembler what the segment reg-
isters are supposed to be holding. This is necessary for the
program to assemble properly. It will be explained in more de-
tail in Chapter 14.

The Machine Language

Now, finally, comes the assembly language. The PUSH DS
instruction stores DS on the stack. DS is stored this way so
that we can return to DOS. The next operation puts a zero in
the AX register (MOV AX,0). Then, we PUSH AX onto the
stack, the same way we pushed DS. This, too, is necessary in
order to return to DOS properly (this will all be explained in
Chapter 6).

Next we must set up the data segment, DS, so that we
can address our own data. We do this by assigning the DS
register to the location of our data segment. Unfortunately, the
8088 cannot move an immediate value directly into a segment
register. To overcome this limitation we first move the value
of DATA (which identifies our data segment’s position) to AX
and then from AX to DS. At this point DS points to the first
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address of our data segment. Note that setting up the DS reg-
ister is much like using the DEF SEG command in BASIC
(before using PEEKs and POKEs).

The registers SI (Source Index) and DI (Destination Index)
are now given their initial values. These registers will act as
offsets into the segment DATA. SI is set to zero so that it
points to the first byte of the SOURCE area. DI is assigned the
value 15 so that it points to the end of the DEST area. The
next instruction, MOV AL,[S]], moves into AL the byte pointed
to by SI. This is the so-called register indirect addressing that
we discussed earlier. Notice, too, that this is the first line with
a label as well as a machine language instruction.

SUB DI, 1 subtracts 1 from the value of DI. DI now points
to the next lower memory location. At the same time, we add
1 to the SI register with the ADD SI,1 instruction. SI now
points to the next piece of data in SOURCE.

Finally, we check to see if all the bytes have been moved.
If they have not, we jump to MOVE_BYTES (JNE, Jump if
Not Equal). If they have, we execute the RET (RETurn)
instruction, which returns us to DOS.

After the RET, we must tell the assembler that the proce-
dure has ended (SWITCH ENDP), that the segment has ended
(CODE ENDS), and finally, that the program has ended
(END). The block-ending statements must be in the opposite
order as the beginnings (that is, you must maintain the correct
nesting order as with BASIC’s nested FOR-NEXT structures). If
you get the ENDP and the ENDS out of order, the assembler
will give you a block-nesting error.

Entering Source Code

Now that you have at least some idea of how SWITCH works,
enter the source code into your computer. Below is a short tu-
torial on the use of EDLIN. If you have a line editor or word
processor which produces DOS-compatible files (see Chapter
1), use it and skip the EDLIN tutorial. If you're using your
own word processor, for best results set its formatting options
as follows: Set the margins at 0 and 79 and the tab stops
every eight spaces. Remember to press Enter after each line,
and to save the files as standard DOS (pure ASCII) text files.
Do not use line numbers.
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Using EDLIN
Make sure that EDLIN.COM is in the default disk, and enter
the command:

A> EDLIN SAMPLE.TST

from the DOS prompt. This will load EDLIN and open a file
named SAMPLE.TST on the default disk. If you want
SAMPLE.TST somewhere else, enter the appropriate device
(and path name for DOS 2.00 users); for example, EDLIN
B:SAMPLE.TST will put SAMPLE.TST on drive B even though
you are logged onto drive A.

If SAMPLE.TST is a new file, you will get the message
New File. On the next line, you will see an asterisk. This is
EDLIN'’s prompt. If you get the End of Input File message,
you already have a file named SAMPLE.TST and EDLIN is
ready to edit it. Since we want to edit a new file, however,
leave EDLIN with the Q (Quit) command and answer Y to the
Abort edit (Y/N)? prompt. Try a new name for the file, one
that does not already exist on the disk.

Now that you have opened a new file, you can enter text
with the I (Insert) command. Type I and press Enter. You will
see the following:

*I
1:*_

You may now enter text. You can enter only one line at a
time, and pressing Enter moves you to the next line. Note that
the star after the line number tells you that this is the current
line.

If you make a mistake while entering a line, the Back-
space key will delete the last character. Pressing the Esc key
erases the entire line (as in BASIC). Pressing F5 (or Fn-5 on
the PCjr) allows you to edit the line just as you can edit a
DOS command string. Try this as an example.

Type the text shown below and press F5.

1:* This is a sample line

An at sign (@) will appear at the end of the line. The message
“This is a sample line” is now stored as a string template.
Pressing the cursor-right key copies a character from this tem-
plate to the displayed string. Pressing the Del deletes the next
character in the template; pressing the Ins key allows you to
add text without moving the template pointer. If you press
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cursor right after you insert text, the insert mode will be
turned off and the next character will be taken from the tem-
plate and displayed. Pressing F3 copies the remainder of the
template to the input string. Pressing F2, followed by a
character, copies all of the characters in the template up to the
specified character into the input string. F4 is similar, except
that it skips all of the characters in the template up to the
specified character. This may all seem confusing, but after
some experimentation and practice, it will become clear.

For practice, use the same sample line as above and press
F5. Now press the Del key five times and press F3. The line
should now read “is a sample line”. Now, press F5 again,
. press Ins and type “That was ”, and press F3. Now the line
reads “That was is a sample line”. To correct our grammar,
press F5 again, press F2 and space, then F2 and space again,
press F4 and space, and F3. Finally, press Enter to go on to
line 2. Now the line should read “That was a sample line”.
When you are done, you should have the following on your
screen:

1:*This is a sample line@
is a sample line@
That was is a sample line@
That was a sample line
2%

You can return to the command level of EDLIN by press-
ing Ctrl-Break (or Fn-Break on the PCjr). The last line is not
inserted into your text.

Editing the entire file. Once you have entered a file with
EDLIN, you can review your work by entering the command
L (List). This will list the lines immediately before and after
the line you last entered. If you want to list other lines, pre-
cede the L command with the starting and ending line num-
bers separated by commas. For example, 3,5L will list lines 3
through 5.

If you need to insert additional lines, use the I (Insert)
command preceded by the number of the line you want to in-
sert. Remember that EDLIN will insert lines before the line you
specify. For example, if you want to insert text between lines 4
and 5, use 4I as below:
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*1,5L

1: this

2:is

3:a

4: short

5: file
*41

4:*very

Shale
*1,6L
: this

is
a
: very
: short
: file

After we inserted the new line 4, all of the lines after the
old line 3 have been moved down one to make room for the
new line 4. You can append lines to the end of the file with
the #I command.

To delete lines you merely specify the lines (as you did
with the List command) to remove and the D (Delete) com-
mand. Specifying only one line number deletes just that line;
not specifying a line number deletes the current line. For ex-
ample, if we decided that line 4 in the above sample file is not
needed after all, we can use the command 4D from the *
prompt. Line 4 will be deleted and lines 5 and 6 will auto-
matically be renumbered to lines 4 and 5. Deleting lines one at
a time can be confusing because the line numbers are con-
stantly updated. So check the line numbers carefully to avoid
deleting the wrong lines.

Editing the text. You can edit a line from the * prompt by
entering the number of the line you wish to change. The line
which you specify will be printed on the screen. On the
following line, EDLIN will print an input prompt. The text of
the specified line will be placed in the template buffer (as de-
scribed above). You can edit the line just as if you had pressed
F5. For example ,entering 3 from the * lets you edit line 3 (see
below).

%3

S U WN R

3: This is a sample line
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There are two ways to leave EDLIN. Use the Q (Quit)
command if you do not want to save the file you are working
on. Answer the prompt Abort Edit (Y/N)?, with Y if you do
not want to save your file, or with N if you have second
thoughts. The E (End) command exits EDLIN and saves your
file.

You can reenter EDLIN just as you entered it the first
time; however, you will receive an End of Input File rather
than a New File message. You can now list and edit your file.
Remember to leave EDLIN through the E command if you
want to save your changes. Your old file is automatically re-
named as a backup file (with a .BAK extension).

For a more detailed explanation of EDLIN, see your DOS
manual’s section on EDLIN.

Entering Your Source Code with EDLIN

Now that you are acquainted with EDLIN, let’s enter the
sample program Switch. From the DOS prompt, enter the
command EDLIN SWITCH.ASM (or whatever name you wish
to use). Make sure you are starting a new file (you should get
a New File message). Enter the I command and type the first
few lines of SWITCH.ASM. Your screen should look some-
thing like the text below:

A> EDLIN SWITCH.ASM
New file
|
1:* ; SWITCH.ASM
2:3c;
3:* ; Reverses an eight-byte buffer. DEBUG
4:* ; must be used to analyze the results.
5:* ; This program should work in any
ok

Enter Program 3-1, Switch. Be certain that you have en-
tered it correctly, editing the text as necessary. When you are
done, exit EDLIN. If all goes well, you should now be ready to
assemble your program.

The Assembler

After you save your source code file on disk, enter the com-
mand MASM (or ASM, depending on which assembler you
are using). The computer should respond as follows:
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A> MASM
The IBM Personal Computer MACRO Assembler
Version 1.00 (C)Copyright IBM Corp 1981

Or, if you are using ASM:

The IBM Personal Computer Assembler
Version 1.00 (C)Copyright IBM Corp 1981

Answer the questions as follows (assuming that
SWITCH.ASM is the name of your source file). The name of
the source file is SWITCH.ASM, so type SWITCH and press
Enter. The assembler will automatically use the extension
.ASM. It will also assume that the name of the object file is
SWITCH.OB], so just press Enter. We want a list file, so type
SWITCH and press Enter. The assembler will append the .LST
extension. We do not want a cross-reference file so just press
Enter. You should have the following on your screen:

Source filename [.ASM]: SWITCH
Object filename [SWITCH.OB]J]:
Source listing [NUL.LST]: SWITCH
Cross reference [NUL.CRF]:

If you prefer, you can specify different extensions. Also
note that the name of the .LST file defaults to “NUL.LST”; if
you do not want a list file, then just press Enter at this
prompt.

After you have answered all of the questions, the assem-
bly process will begin. The assembly is done in two passes.
The assembler reads the source code once, doing a mock
assembly. This first pass determines the position of all the la-
bels within the program. The second pass produces the actual
object file.

After a short while, the assembler should print:

Warning Severe
Errors  Errors
0 0

on the screen. If you received any errors, either Warning or
Severe, reenter your editor and correct the problems. Re-
assemble the program. Only when you receive no errors are
you ready to go on.

The assembler .LST file. Enter the command “TYPE
SWITCH.LST” to print the list file to the screen. You should
get a listing much like Program 3-3. If you want to send this
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to the printer, turn on the printer echo (Ctrl-PrtSc, or Fn-Echo
on the PCjr) and use the TYPE command. When the entire file
has been printed, you should turn off the printer echo by
pressing Ctrl-PrtSc (or Fn-Echo) again. If you prefer, you can
tell the assembler to output the list file directly to the printer
by naming the list file PRN (for printer). However, this latter
method often does not work on non-IBM printers. Now let’s
look at the list file’s key components.

At the top of each page the assembler prints

The IBM Personal Computer MACRO Assembler 8-18-84 PAGE 1-1

After the assembler’s name comes the date and the page num-
ber. The number before the dash is the chapter number, while
the number after the dash is the page number. The chapter
number is not important.

The numbers which are printed on the left edge of the
page are the offsets into the current segment. Notice that the
first offset number does not appear until we define the first
segment. The numbers to the right of the offset are the data
which is stored at that offset. The data and the offset values
are always printed in hexadecimal. Starting about halfway
across the page is a listing of the source file. Bear in mind that
long lines will wrap around the edge of the page. This makes
reading the printout difficult, so use as many columns as pos-
sible (96 is generally sufficient).

Also notice that on the line which moves DATA (the ad-
dress of our data segment) into AX, there is no hexadecimal
value for DATA, only four dashes. This means that the assem-
bler does not know where the segment DATA is going to be
located; the address of the data segment will be calculated
only when the program is loaded into memory.

The last page of the assembly listing is the symbol table. It
has information about the labels and variables used in the
program. They are in two groups and are arranged alphabeti-
cally within the groups. The first group, titled Segments and
Groups, is a table of the segments which we defined in the
program. Their size (again in hexadecimal), alignment, and
combine class are also given. These last two entries are not
important until you know more about the assembler. The sec-
ond list, titled Symbols, is a table of the labels and variables
which are used in the program. For now, don’t worry about
their type and attributes.
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The LINK Program

Once SWITCH assembles without errors, you are ready to link
the program. From the DOS prompt, execute the LINK pro-
gram by typing LINK and pressing Enter:

A> LINK
IBM Personal Computer Linker
Version 2.00 (C)Copyright IBM Corp 1981, 1982, 1983

If you are using DOS 1.10, you will see

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 1982

The LINK program will convert the .OBJ file generated by
the assembler into an executable .EXE file. The .EXE file can
be loaded and run like any other DOS program. Answer the
questions as follows. The name of the object file is
SWITCH.OB]J, so type SWITCH and press Enter. LINK will
automatically append the .OBJ extension. We want the .EXE
file to be called SWITCH.EXE, so just press Enter. Since we do
not want a .MAP file, nor have we defined any Libraries, just
press Enter to the last two prompts. You should have the
following on your screen:

Object Modules [.OBJ]: SWITCH

Run File [SWITCH.EXE]:

List File [NUL.MAP]:

Libraries [.LIB]:

You can specify a different extension for the object file if you
desire. However, you can’t change the extension of the run
file, which is always .EXE. It is unlikely that you will receive
an error from the LINK program other than a Cannot Find File
error. If you receive such an error, be certain that you have
entered the name of the object file correctly.

Running Switch

Now that we have assembled and linked SWITCH, you are
ready to execute it. From the DOS prompt type

A> SWITCH

and press Enter. The DOS prompt should return after a mo-
ment or two. If it does not, the computer has probably
crashed. Try pressing Ctrl-Break (Fn-Break on a PCjr). If this

does not return you to DOS, you will have to reset the com-
puter with Ctrl-Alt-Del. If the crash is very severe, even this
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may not revive the computer, in which case you will have to
turn the computer off and back on again. If your computer
crashes when you run Switch, you must double-check the
source program for any typing errors, correct them, and re-
assemble the program. Unfortunately, we still do not know if
Switch actually works since it does everything internally. How
can we tell if it is doing anything at all? We must use DEBUG,
which allows us to examine our program and to watch it exe-
cute instruction by instruction (using the Trace command). It
can also dump and unassemble memory, as well as change the
contents of registers and memory locations. DEBUG is sup-
plied on your DOS disk. '

Using DEBUG: the Unassemble Command

Type the command DEBUG SWITCH.EXE from the DOS
prompt. The DEBUG prompt, a dash (-), will appear on the
screen. Type U (for Unassemble) and press Enter. The
unassembly of the Switch program should be printed as
below:

-U

091B:0000 1E PUSH DS
091B:0001 B80000 MOV AX,0000
091B:0004 50 PUSH AX

091B:0005 B81F33 MOV AX,091D our data segment
091B:0008 SEDS MOV DS,AX

091B:000A BE0000 MOV SIO0000 start of source
091B:000D BFO0F00 MOV DIL000F end of destination
091B:0010 8A04 MOV AL,[SI]

091B:0012 8805 MOV [DIJAL

091B:0014 83EF01 SUB DI, +01

091B:0017 83C601 ADD SI 401

091B:001A 83FE08 CMP SI +08

091B:001D 75F1 JNZ 0010

091B:001F CB RETF program ends

If you are using DEBUG from DOS 1.10, the last line of the
program will look like this: '

091B:001F CB RET L DEBUG 1.10 differs
From now on, DOS 1.10 users should read RET L every time
RETF is used. Note that the number before the colon (the
091B) may be different in your computer.

Let’s take a close look at DEBUG's output. The example
below breaks a typical line down into three fields.
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Address  Bytes Assembly Instruction
091B:0012 8805 MOV [DI], AL

The first field indicates the address of the instruction in hexa-
decimal. The number before the colon is the segment address
and the number after the colon is the offset into the segment.
This is known as the segment:offset form of representing an
address.

The next field, Bytes, is the group of bytes that make up
the assembly language instruction. In the example above, the
two bytes which make up the instruction MOV [DI], AL are
88H and 05H.

If you compare the DEBUG output with the source code,
you will notice that there are no longer any labels. Also notice
that our JNE (Jump if Not Equal) has been turned into a JNZ
(Jump if Not Zero) instruction. These are identical operations.
The difference in name is for the sake of the human, not the
computer (all of the conditional jumps will be explained in
Chapter 5). Our RET has also been changed into a RETF. RETF
stands for Far Return, and will be explained in Chapter 6.

Also note how DEBUG shows bytes when a word value is
part of an operand. For example, the assembler .LST file may
unassemble an instruction as: ’

Assembler: BF 000F MOV DI,15
while DEBUG reverses the order of the last two bytes:
DEBUG: BF0F00 MOV DI,000F

(Remember that it takes two bytes to make up a 16-bit word.)
In fact, the assembler is actually reversing the bytes, not DE-
BUG. The two bytes which make up a word are stored in a
low byte/high byte format. This means that the least signifi-
cant byte precedes the most significant byte (the byte which
represents the bigger value comes last). In the actual program,
the bytes appear as OF 00, not 00 followed by OF, as the
assembler .LST file seems to imply. .

The purpose of unassembling the file was to find the data
segment. If you look carefully, DATA has been turned into the
‘hex value 091D (this value varies; it depends on how your
particular computer is configured). In our case, the data, which
is a short series of prime numbers, can be found at 91D:0.

Using the Dump command. To check to see if the data is
there, we can instruct DEBUG to display a portion of memory.
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Enter D followed by the desired segment and the offset. In
this case we would type (remember to use the segment you
determined, which might not be the same as the one given
below):

- D 91D:0 .
DEBUG should print something similar to the following;:

- D 91D:0

091D:0000 01 03 05 07 0B 0D 11 13-00 00 00 00 00 00 00 00 . ... ............
091D:0010 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 . . .........uuuuo
091D:0020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 OO0 .. ..............
091D:0030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 . ... ............
091D:0040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 . ... ............
091D:0050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 . ... ............
091D:0060 46 FE EB D5 C4 1E A0 13-B0 00 26 38 07 75 09 A2 F kUD. .0.&8.u.”
091D:0070 AC13 26 88 47 01 EB 05-C6 06 AC13 FF BO 00 A2 , . &.G. k. F., .. 0.7

The format of the memory dump can be broken down
into three sections as shown below.

Address 091D:0060

Sixteen bytes of data in hex format
46 FE EB D5 C4 1E A0 13-B0 00 26 38 07 75 09 A2

Character format F kUD. .0.&8.u.”

The first field is the address, much like in the Unassemble
command. In the next section are the 16 bytes starting from
the address shown in the first field. In the last field are the
characters which represent the 16 bytes shown in the previous
field. Any unprintable characters are represented by a period.

The Go and Enter commands. The Go command is used
to execute the program. Type G (for Go) and press Enter. DE-
BUG should print Program Terminated Normally and give you
the dash prompt. Now reexamine the data segment:

- D 91D:0
091D:0000 01 03 05 07 0B 0D 11 13-13 11 0D 0B 07 05 03 01 .....

(Only the first line is shown here; the rest is unimportant.)
Notice that the eight zero bytes (the DEST data) are now filled
with the prime numbers in reverse order.

Now that we know that the program works, let’s play
with it a little. We can use DEBUG to modify the SOURCE
memory area with the E (Enter) command. Type E 91D:0
“compute!” (remember to use your data segment address) and
press Enter. Then display the SOURCE area again:
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E 91D:0 “compute!”

- D 91D:0

091D:0000 63 6F 6D 70 75 74 65 21-13 11 0D 0B 07 05 03 01 compute! ........
Notice how the ASCII string compute! has filled the eight bytes
of the SOURCE area. The format of the E command is very
simple. The numbers after the E are the location, and the
string in quotes is the data. The ending quote is required, or
you will get an error from DEBUG. Now run Switch again, us-
ing the G command, and dump the data in the SOURCE
buffer area.

-G

Program terminated normally

- D 91D:0

091D:0000 63 6F 6D 70 75 74 65 21-21 65 74 75 70 6D 6F 63 computelletupmoc
The compute! has been reversed to letupmoc.

This has demonstrated one method of entering data into
memory. See your DOS manual for the other available options
with this command.

The Register command. Type R and press Enter. DEBUG
should respond with something similar to the following;:
A§=0000 BX=0000 CX=0080 DX=0000 SP=01FC BP=0000 SI=0000 DI=0000
DS=090B ES=090B SS=091E CS=091B IP=0005 NV UP DI PL NZ NA PO NC
091B:0005 B81D09 MOV AX,091D
(The output on a 40-column screen will be different.) The first
two lines indicate the current values of the registers. At the
end of the second line is a list of the flags and their current
statuses. Table 3-1 gives the abreviations that DEBUG uses to
indicate the statuses of the 8088’s flags (the different flags will

be explained in the following chapters).
Table 3-1. DEBUG Flag Status Names

Name of Flag Set (Flag=1) Clear (Flag=0)
Overflow OV = overflow NV = no overflow
Direction DN = decrement UP = increment
Interrupt EI = enabled DI = disabled
Sign NG = negative PL = plus

Zero ZR = zero NZ = not zero
Auxiliary Carry ~ AC = yes NA = no

Parity PE = even PO = odd

Carry CY = carry NC = no carry

The third line of DEBUG's response shows the address of
the next instruction, the bytes which make up that instruction,
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and the unassembled instruction itself (this is the same format
as the Unassemble command). This is the instruction which
will be executed first when you enter the G command.

An option of the R command allows you to change the
values of the registers. Type R AX and DEBUG will respond:

- R AX
AX 0000

DEBUG is now waiting for you to enter the desired value for
the register AX. You can enter any word-sized value to be
placed in AX. Pressing Enter without any other input means
that you do not want to change the value in AX. Any of the
registers can be changed in this way.

The Trace command. Type T (for Trace) and press Enter.
The format of the output is identical to that of the R com-
mand. If you enter T again, you will step through the next ma-
chine language instruction. You can step through more than
one instruction at a time by specifying a number after the
Trace command. For example:

-T10

will trace through the next 16 instructions (remember, DEBUG
does everything in hexadecimal).

This feature of DEBUG can be very useful in the debug-
ging of a program. You can go through the program step by
step and examine the effects of different instructions on the
flags and the contents of the registers. Note that DEBUG occa-
sionally skips instructions. There is nothing wrong with DE-
BUG; this is perfectly normal. This skipping will be discussed
in Chapter 11.

For more examples of how to use DEBUG, see Section 5,
“Sample Programs,” or your DOS manual. Play with DEBUG
and Switch. When you have had enough, you can exit the DE-
BUG utility program with the Q (Quit) command.

Writing Your Own Programs

Program 3-4 is a fill-in-the-blank program, a program tem-
plate, which you can use until you are more familiar with the
assembler and assembly language. Keep in mind that the
structure of the sample programs is not fixed, nor is it stand-
ardized. You are free to format and structure your programs as
you will. The examples are simply guides that represent a for-
mat which we like to use. Feel free to devise your own system.
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Program 3-1. SWITCH.ASM

SWITCH.ASM

Reverses an eight byte buffer.

DEBUG

must be used to analyze the results.

This program should work

Marc Sugiyama 8/15/84

data
source
dest
data

v’

stack

"stack

;
code
switch

H
s+ MS-DOS computer.
§
§

page ,96

segment

db 1,3,5,7, 13,17,19
db 0,0,0,0, »0,0
ends

segment stack
dw 128 dup (?)
ends

segment
proc far

in any

;segment which holds buffers
ssource buffer
sempty destination buffer

istack segment
;give the stack 256 bytes

;segment for code
;for proper return to DOS

assume cs:code,ds:data,ss:stack

push ds
mov ax,0

iset up for FAR RETurn to DOS

)

pauelg Junien
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push

mov
mov

mov
mov

move_bytes:

switch
code

mov
mov
sub
add
cmp
jne

ret
endp

ends
end

ax

ax,data
ds,ax

$i,0
di,15

al,[si]
[dil,al
di,1

si,1

8$i,8
move_bytes

;set up DS for data segment

;first byte of source area
;last byte of destination area

;imove from source to AL

imove from AL to destination
;jreduce dest pointer by one
sincrease source pointer by one
iymoved all of the bytes?

;if not, do more.

;return to DOS
;end of procedure declaration

;end of code segment
;end of program

paielg Bunien
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% Program 3-2. SWITCH.BAS

106 ' SWITCH.BAS

AL

120 '

130 '

140 DEFINT A-Z

150 "

160 DIM DATASEG(15)

170 FOR =0 TO 15:READ DATASEG(I):NEXT

1810 “DATA 18,15 T L, 138,07 /19" "sourc
e
190 DATA 0,0,90,0,0,0,0,0 3 'dest
200
210 PRINT"Before":GOSUB 380 'dump "memory"
220 '
230 S| =90 '
MOV S1,90
2409 DI = 15 !
MOV DI, 15
250 'MOVE_
BYTES:

260 AL = DATASEG(SI) .
MOV AL,I[S1]

270 DATASEG(DI!) = AL !
MOV [DI1,AL

pairelg Bunien
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280

290

300

310

320
330

340
350

360
370
380

390
400
410

420

Dl v=aDl = i
sSuB DI, 1

Sz %S o+ ;
ADD S ;4

ZE = (S| = "8) i
CMP S1,8

IF NOT ZF THEN 2690 =
JNE MOVE_BYTES

PRINT:PRINT"After":GOSUB 380 ’'dump "memory

END Y
RET
' Dump "memory" in hex
PRINT"memory: ";:1=0:GOSUB 410:PRINT "- ";
:1=8:GOSUB 410:PRINT
RETURN
FOR J=0 TO 7:PRINT RIGHTS$("@"+HEX$(DATASEG

Cl+dd ) ;233" "goNEXD
RETURN

paiielg Funien
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= Program 3-3. SWITCH.LST

The IBM Personal Computer MACRO Assembler 01-01-80 PAGE 1-1

SWITCH.ASM

Reverses an eight byte buffer. DEBUG
must be used to analyze the results.
This program should work in any
MS-DOS computer.

“ er ws ws e e ws we

page ,96
i
0000 data segment isegment which holds buffers
0000 01 03 05 07 0B 0D source db 1,3,5,7,11,13,17,19 ;source buffer
115113
0608 GO0 00 0G 90 006 00 dest db 0,0,0,0,0,0,0,0 sempty destination buffer
00 00
0010 data ends
f 2
0000 stack segment stack ;stack segment
0000 80 [ dw 128 dup (?) igive the stack 256 bytes
2227
]
0100 stack ends
[
0000 code segment isegment for code
0000 switch proc far sfor proper return to DOS

assume cs:code,ds:data,ss:stack

pa3ielg  Bumien)
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0000 1E
0001 B8
0004 50
0005 B8
0008 8E
000A BE
000D BF
0010
0010 B8A
0012 88
0014 83
0017 83
001A 83
001D 75
001F CB
0020
0020

The |1BM
Segments
CODE
DATA .
STACK.

0000

---- R

D8

0000
000F

04
EF 01

cé 01
FE 08

push ds
mov ax,0
push ax

mov ax,data
mov ds,ax

mov 8i,0

mov di,15
move_uytes:

mov al,[sil

mov [dil,al

sub di,1
add si,1
cmp si,8

jne move_bytes

ret
H
switch endp
code ends
end

Personal Computer MACRO Assembler 01-01-80

and groups:

N ame

Size align
0020 PARA
0010 PARA
0100 PARA

;set up for FAR RETurn to DOS

iset up DS for data segment

;first byte of source area
;last byte of destination area

smove from source to AL

imove from AL to destination
;jreduce dest pointer by one
sincrease source pointer by one
;ymoved all of the bytes?

;if not, do more.

sreturn to DOS
;iend of procedure declaration

;end of code segment
iend of program

PAGE Symbols-1

combine class

NONE
NONE
STACK

pairelg 8unien
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Symbols:
N ame
DEST: . ..
MOVE_BYTES
SOURCE
SWITCH
Warning Severe

Errors Errors
0 0

Program 3-4. Program Template

program name
description

author and date/version

@ we ws ws ws e

page ,96

data segment
[put your data ...
... in herel

data ‘ends

Type

M T

BYTE
NEAR
BYTE
PROC

Value

0008
0010
0000
0000

Attr

DATA
CODE
DATA
CODE

Length =0020

;segment for data

pa3ielg  BuniLag)
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stack

stack

3
code
program

;
program
code

segment stack
dw 128 dup (?)
ends

segment
proc far
assume cs:code,ds:data,ss:stack

push ds
mov ax,0
push ax

mov ax,data
mov ds,ax

[put your...
...program. ..
...code. ..
...in herel

ret
endp

ends
end

;stack segment
;give the stack 128 words

s;segment for code
;for proper return to DOS

;for far return to DOS

;set up your data segment in DS

;return to DOS

send of procedure declaration
s;end of segment code declaration
send of program

payelg 3unien
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Arithmetic

Computers are known for their number-crunching abilities.
The 8088 is no exception; it is a very powerful microprocessor.
In this chapter, you will be introduced to the basic mathemat-
ical operations of addition, subtraction, multiplication, and
division.

Negative Numbers

In Chapter 2 you learned that binary digits can be chained to-
gether into eight-bit bytes. You were also told that a byte
could represent the numbers from 0 to 255 (0 to FF hex). This
is the unsigned number range of the byte. A byte can also
represent the signed number from —128 to +127. There are
still eight bits to a byte; only the interpretation of the bits is
different. When a byte is meant to represent a signed number,
the most significant bit (the bit representing 128) is the sign
bit.

When the sign bit is zero, the byte is positive (0 to 127).
When the sign bit is one, the byte is negative (—128 to —1).
Signed words are similar to signed bytes. Recall that a

word is made up of 16 bits and can represent the numbers
from 0 to 65,535 (0 to FFFF hex). This is a word’s unsigned
range. The signed range of a word is —32,768 to 32,767. The
sign bit is still the most significant bit of the number (the bit
representing 32,768). As with signed bytes, a sign bit with the
value of zero means that the word is positive (0 to 32,767),
while a sign bit with the value of one means that the word is
negative (—32,768 tor—1):

The actual storage of signed numbers is complex. The
method which is used is called twos complement. This method
of representing negative numbers is very similar to the one
used by counters on tape players. Most tape recorders have a
three-digit counter which can represent the numbers from 000
to 999. Let’s pretend that the tape in the recorder is a number
line. The tape counter tells us where we are on the line.
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Try this exercise: Fast-forward the tape to the middle, and
zero the tape counter. Now, fast-forward the tape some more.
Note that the counter starts from 0 and counts up. When the
counter reads 005, we understand that we are five counts
away from 0 in the positive direction. Now rewind the tape.
The counter will begin to count down. When it passes 000, it
will start again from 999. We understand that when the
counter reads 999, we are one count away from 0; but this
time we are on the negative side. If we stop the tape when the
counter reads 990, we know that we are ten counts away from
0—we are at the position —10 on the tape.

Negative binary numbers are similar. For the moment,
consider only signed bytes. A byte can represent the numbers
from 0 to 255. You can think of a byte as a tape counter
which can count up only to 255. If we rewind from 0 with this
byte counter, the first number we will get is 255 (like we get
999 on a real tape counter), so 255 is like —1. Notice that the
most significant bit, the sign bit, is 1; thus the number is neg-
ative.

For words, the only difference is that the maximum count
is not 255 but 65,535. When our “word counter’”” counts back-
wards from 0, we get 65,535.

ADD, SUB, and NEG

ADD and SUB, add and subtract, are versatile instructions
which allow you to add to or subtract from registers or mem-
ory addresses. The format of both instructions is the same:

ADD destination,source
destination = destination + source

SUB destination,source
destination = destination — source

Notice the mathematical representations of the operations.
ADD takes the source value, adds it to the destination, and
places the sum in the destination. SUB does the same, only it
subtracts rather than adds.

The source for these instructions can be a general register
(any register except the segment registers, the flags, and IP), a
memory location, or an immediate value. The destination can
be a general register or a memory location. As with the MOV
instruction, the source and destination cannot both be memory
locations.
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Because the 8088 is a 16-bit microprocessor with an 8-bit
heritage, the ADD and SUB instructions come in two forms,
one for 16 bits and the other for 8 bits. The assembler auto-
matically determines which instruction you need to use. Below
are some examples of the ADD and SUB commands.

ADD AX,4 ;add 4 to the contents of AX

ADD BX,DX ;add contents of DX to BX, result in BX

ADD DL,DH ;8-bit addition

SUB DX,AX ;subtract AX from DX, result in DX

SUB [BX], AL ;subtract AL from indirectly addressed memory

The NEGate instruction changes the sign of a number. If
the number was positive, it is made negative, and if it was
negative, it is made positive. NEG takes the form shown below:

NEG operand

The operand can be any general byte, word register, or
memory location. This instruction can be used when you need
to subtract a register from an immediate value. For example,
you cannot use SUB to subtract AL from 100:

SUB 100,AL

This is illegal because the destination cannot be an immediate
value. Instead, you have to use something like:

NEG AL
ADD AL,100

First we negate AL (so AL = —AL), then we add it to 100. In
other words, we have:

AL = —AL ‘negate AL
AL = 100 + AL ‘add (the negated) AL to 100

There are three processor flags which are important to
addition and subtraction. These flags are used for error check-
ing and for program decision making. Decision making and
program flow are the topics of the next chapter.

The sign flag (abbreviated SF) indicates the sign of the re-
sult of the last operation; however, only certain operations,
such as addition and subtraction, set this flag. If you are un-
sure whether SF is set by an operation, check Appendix A. If
SF is set (has a value of one), the last result was negative. If it
is clear (has a value of zero), the result was positive.

The overflow flag (OF) is set whenever a mathematical op-
eration overflows the range for signed numbers. OF is set if
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the result is greater than 127 or less than —128 for bytes, or
greater than 32,767 or less than —32,768 for words. If the re-
sult is within the range of signed numbers, the overflow flag is
clear.

The last flag which should be mentioned in connection
with ADD and SUB, is the carry flag (CF). During addition, CF
is used to hold any carry out of the highest bit. Thus, for byte
addition, the carry represents the “ninth bit,” and for word
addition, the carry is the “seventeenth bit.” With subtraction,
CF is used to indicate a borrow into the highest bit. CF will be
important only when we begin to investigate advanced arith-
metic in Chapter 8.

INC and DEC

INC (INCrement) and DEC (DECrement) are used to in-
crement and decrement a register or memory location by 1.
The form of both these instructions is:

INC memory location
memory location = memory location + 1

DEC memory location
memory location = memory location — 1

INC and DEC set the sign and overflow flags, but do not set
the carry flag. Both instructions can operate on bytes or words.

INC and DEC are useful in addressing memory. We can
move a pointer up or down one byte within a table. For ex-
ample, in the program “Switch” we could have used INC SI
and DEC DI rather than the ADD and SUB instructions. They
can also be used in loops; more about loops later.

MUL

The multiply and divide functions are somewhat less versatile
than their addition and subtraction counterparts. However, the
8088 is the first microprocessor in wide use which offers mul-
tiply and divide operations. In the past—with 8080, Z80, and
6502 systems—programmers had to write special subroutines
to multiply and divide.

MUL, the multiply instruction, allows you to find the
product of two numbers. There are two MUL instructions: one
for multiplying bytes, and another for multiplying words.

Byte multiplication multiplies the AL register by another
general byte register or an addressed memory location. You
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cannot multiply by an immediate value. The format of this
instruction is:

MUL source

Since the product of two bytes can be greater than 255 (in
fact, it can be as great as 65,025), the 8088 uses all of AX to
store the result of byte multiplication; so AX = AL * source.

If the product is greater than 255, OF and CF are set (they
have the value of 1). For example, if we multiply 57 by 24,
using byte multiplication, the product is 1368, far too large to
fit in a single byte. Since all of AX is used to store the result,
the carry and overflow flags will be set, indicating that the re-
sult uses the high-order byte to store part of the product. If,
on the other hand, we multiply 45 by 4, the product is only
180, small enough to fit into one byte. The entire product will
fit in AL, so the carry and overflow flags are cleared. Note that
the other arithmetic flags are undefined.

Word multiplication multiplies the AX register by another
general word register or an addressed memory location. Again,
you cannot multiply by an immediate value. The format of
word multiplication is identical to that of byte multiplication,
only the source is a word, not a byte.

The product of two words can be considerably greater
than 65,535 (the capacity of a word), so the 8088 uses the AX
and DX registers to hold the result of word multiplication. AX
holds the least significant word, DX the most significant word.
In other words, AX and DX hold a 32-bit number. A 32-bit
number is often referred to as a double word.

If the result of word multiplication is greater than 65,535,
CF and OF are set to indicate that the high-order word (DX) is
used to hold part of the product.

You select which multiplication you want, either byte or
word, with the operand. If the operand is byte-sized, then
byte multiplication is used. If, on the other hand, the operand
is word-sized, word multiplication is used. For example, if
you use:

MUL BL
BL will be multiplied by AL. However, if you use:
MUL BX

BX will be multiplied by AX.

If you wish to square the value in AL (AL?), you can use
MUL AL
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This also works with AX.
IMUL

The IMUL instruction is identical to MUL in every respect, ex-
cept that IMUL takes the sign of the number into consid-
eration before it multiplies. In other words, MUL is used only
for unsigned numbers, while IMUL is used only for signed
numbers. It is very important that you make this distinction. If
MUL is used on signed numbers, or IMUL on unsigned num-
bers, the results are interesting, but entirely meaningless.

DIV

Using the DIV instruction, you can divide two numbers to find
the quotient and the remainder.

Byte division is used to divide a word by a byte. The gen-
eral format of byte division is

DIV source

The source can be any general byte register or a memory loca-
tion. As with MUL, the source cannot be an immediate value.
With byte division, the word stored in AX is divided by the
source byte. The quotient is stored in AL, while the remainder
is stored in AH. For example, the code:

MOV AX,97
MOV BL,13
DIV BL

divides 97 by 13. After the division, AL will hold 7 (the quo-
tient) and AH will hold 6 (the remainder). Note that all of the
arithmetic flags are undefined after division.

If you want to divide a single byte by another byte, you
have to set AH to 0 before you divide. For example, if you
would like to divide a number in AL by BL, you need to clear
AH first:

MOV AH,0
DIV BL

The second DIV instruction is used to divide a double
word by a word. The double word is stored in AX and DX, as
was described in the word multiplication discussion. The for-
mat of word division is identical to that of byte division, only
the source must be a word, not a byte. Thus, the source must
be a general word register, or a word-sized variable.
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With word division the quotient is stored in AX, and the
remainder in DX. Note that if you are only dividing a word by
another word, you must set DX to 0 before you divide. For ex-
ample, if you want to divide 15,837 by 1,343, you can use
something like:

MOV AX,15837
MOV DX,0
MOV CX,1343
DIV CX

After the division, AX will hold 11 (the quotient) and DX
1064 (the remainder). As with byte division, all of the
arithmetic flags are undefined after word division.

When using the DIV instruction you select which division
you want, byte or word, by the size of the operand. If the
operand is byte-sized, byte division is used. For example, if
you use

DIV BL

AX will be divided by BL. If, on the other hand, you use a
word-sized operand, then word division is used:

. DIV CX

Here, the double word stored in AX and DX will be divided
by CX.

The 8088 has a rather dramatic way of indicating an error
in division. If there is a divide overflow, the 8088 generates a
type zero interrupt (interrupts are discussed in Chapter 11).
This causes the computer to print the message Divide Over-
flow and exit the program. For example, the code below will
generate an overflow error:
MOV AX,900
MOV BL,3
DIV BL

In this example, the quotient is 300 (900 divided by 3).
This is a byte division (the divisor is a byte quantity), so the
quotient must fit in the AL register. As you can see, it does
not. The computer will print the message Divide Overflow and
program execution will cease.

One solution to this problem is to use word division even
though you are dividing by a byte.
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MOV AX,900
MOV DX,0
MOV CX,3
DIV CX

DOS 2.00 users note that, because of a bug in DOS 2.00,
the computer will crash when it tries to print the Divide Over-
flow error message. You will probably be unable to reset the
computer with the Ctrl-Alt-Del combination. So, you'll have to
turn the computer off and reboot. This problem has been cor-
rected in DOS 2.10. DOS 1.10 works fine as well.

IDIV

As there are signed and unsigned versions of the multiplica-
tion instructions, there are signed and unsigned divisions. DIV
only works on unsigned numbers. If you are using signed
numbers, you must use IDIV. In all other respects, IDIV and
DIV are identical.

A Sample Program

The sample program for this chapter, “Primes,” finds prime
numbers. Since it uses a word to store all of its results, it can
find primes up to only 65535 (there are over 6500 of them).
Primes was written to demonstrate some of the instructions in-
troduced in this chapter; there are more efficient ways to write
this program.

A prime number is a number that is divisible only by one
and itself. The numbers 2, 3, 5, 7, and 11 are all prime. Prime
numbers occur at uneven intervals and have been the object of
much scrutiny in recent years. As you might imagine,
determining whether or not a number is prime is not very
difficult; just divide the number in question by all the numbers
between one and itself. For example, if we were testing the
number 15, we would divide 15 by the numbers 2 through 14.
If any of the numbers divided without remainders, we would
know that 15 is not prime. For smaller numbers this is a good
system; after all, the computer is very fast. Consider, however,
what would happen with very large numbers—for instance,
2003. The computer would have to do 2001 divisions to find
out whether it is prime. Even for a computer, that would take
a noticeable amount of time.
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We must find a way to reduce the length of the search for
even divisors. To begin with, the search can be shortened by
remembering that we need only check for possible factors. If a
number is not prime, its lowest possible factors will be prime
numbers. For example, 21 has two factors, 7 and 3 (both prime
numbers). (We could limit our search for factors still further by
searching up only to the square root of the number, but then
we would have to write a square root routine.)

Outlined below is the general flow of a program which
uses this method to find prime numbers. This is not what pro-
grammers call a flow chart, but an English version of how the
program is supposed to work.

1. Divide the number in question by all of the previously
found primes.

2. If any of the numbers divide evenly, select a new number
and start checking to see if it is prime.

3. If the number is prime, add it to our list of prime numbers,
print the number, and look for the next prime.

The only hard part in our algorithm is printing the prime
numbers on the screen. DOS, however, helps out by providing
a Print Character routine. This DOS function is called by the
routine BYTE_OUT towards the end of Primes. DOS function
calls will be explained in Chapter 13.

The only difficulty in printing the number is converting
it from its binary form to a decimal form. The routine which
conducts this conversion is named DECIMAL_OUT.
DECIMAL_OUT divides the number it is trying to output
repeatedly by 10. This routine will be explained in more detail
in Chapter 6.

PRIMES.ASM

The first few lines are the comment header, common to all of
the sample programs. It identifies the program and its pur-
pose, and gives the name of the author and the last date the
program was modified. Following these comments is the
PAGE pseudo-op, which defines the size of the printed page
as discussed in the last chapter.

After the PAGE pseudo-op is a constant declaration. De-
claring a constant is much like assigning a value to a variable in
BASIC. The constant NUMBER_TO_FIND is assigned the
value 6542 through the EQU pseudo-op. NUMBER_TO_FIND
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represents the index of the last prime number we can find us-
ing unsigned words to store the prime numbers. Constants
will be discussed in more detail in Chapter 14.

The SEGMENT pseudo-op which follows sets up the seg-
ment for data. The DUP instruction in the primes declaration
tells the assembler to repeat what is inside the parentheses the
number of times specified to the left of the DUP instruction.
For details about the DUP instruction, see Chapter 14. The
question mark in the operand section of the DW and DB
pseudo-ops tells the assembler that it does not matter what is
stored in these locations during assembly and load. The
assembler simply makes note that these locations are there
and must be reserved for the program. Next we define the re-
quired stack segment (as in “Switch”), and finally, the pro-
gram segment.

Primes uses the 8088’s addition, subtraction, multiplica-
tion, and division instructions. It does so largely with unsigned
numbers. As the program shows, it is not very difficult to con-
vert this particular mathematical procedure into a program
which the computer can execute.
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Program 4-1. PRIMES.ASM
PRIMES.ASM

Finds prime numbers

MS-DOS computer

e @ ws we w0 ws we

page ,96

3
number__to_find equ 6542

H

data segment

prime_number dw 2,number__to_f
number__found dw ?

iast_check dw ?

base dw 10

data ends

¥

stack segment stack

dw 128 dup (?)
stack ends

i
code segment
primes proc far

This program should work in any

;inumber of primes to find

ind dup(?) ;has first prime
snumber of primes found

;last number to divide by
;ibase to print the numbers in

;stack segment
s;give the stack 256 bytes

;segment for code
;for proper return to DOS

assume cs:code,ds:data,ss:stack

i

oBPWIYILY
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push ds

mov ax,0
push ax

mov ax,data
mov ds,ax

di,o0
number_found, 0

mov
mov

next_prime:
inc
cmp
je done
mov ax,prime_number(dil
add di,2
mov prime_numberl(dil,ax

number_found

$
next_test:
add prime_number(dil,1
mov 8i,0
next_divisor:
mov ax,prime_number(dil
mov dx,0
div prime_numberi(sil
cmp dx,0
je next_test
add si,2
cmp si,di

number__found,number_

sfor far return to DOS

;set up data segment in DS

szero index in table of primes
;1zero number of primes found

;found another prime

to_find ;found all primes?
;yes, we're done

;take current prime from table
tpoint to next entry

;istart checking with last prime

icheck next number as prime
12ero index into primes table

iset current value
sprepare to divide
sdivide by a prime
iremainder zero?
syes, do next number
;set for next prime
srun out of primes?

RISELVp183%
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jne next_divisor

call output
jmp next_prime

done: ret
primes enqp

output

Output number_found and the pr
DI preserved

proc near
push di

mov ax,number_found
call decimal__out

mov al,':’

call character_out

mov ax,prime_numberl[dil
call decimal_out

mov al,13

call character_out

mov al,10

call character_out

pop di

ret

output endp

s Output a hex word in decimal

B T

ino, then divide by next prime

s;output the info
;and find another prime

sreturn to DOS
send of procedure declaration

ime number (with cr-I1f)

spreserve DI
iprint number of primes found

soutput a colon
iprint the last prime

sdo cr-If

srestore DI

oWy
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s CX, AX, DX destroyed
3
decimal_out proc near
mov ¢x,0
another_digit:
inc ¢x
mov dx,0
div base
push dx
cmp ax,0
jne another_digit
print_digits:
pop ax
add al,'0’
call character_out
loop print_digits
ret
decimal_out endp

;: output a single character
+ character to print in AL

; AX and DL destroyed
3

character_out proc near
mov dl,al
mov ah,2
int 21h

tcounts digits to print

sincrement counter

iprepare to divide

jdivide by base

sremainder is less sig digit
i1is the quotient zero?

;if not, more number to convert

iretrieve digit from stack
tconvert to ASCi|

iprint the character

1do all of the digits
jreturn to caller

icharacter to output
;output character function
;print character

opPWYIY
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ret

character_out endp

code

ends v ;end of segment declaration
end ;iend of program

Program 4-2. PRIMES.BAS

100
110
120
130
140
150
160
170
180
190
200
210

2290
230
240
250
260
270

BASIC VERSION OF PRIMES

DEFINT A-Z

NUMBERTOFIND = 300
DIM PRIMES(NUMBERTOFIND)

PRIMES(9)=2

NUMBERFOUND=NUMBERFOUND+1: |F NUMBERFOUND=N
UMBERTOF IND THEN END
PRIMES(DI+1)=PRIMES(DI):DI=DI+1
PRIMES(DI)=PRIMES(DI)+1:S1=0

IF (PRIMES(D!) MOD PRIMES(S1))=0 THEN 230
S1=Sl1+1:1F SI<DI THEN 2490

PRINT NUMBERFOUND;":";PRIMES(DI)

GOTO 2190

opewyIY
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Program Flow

Program flow refers to the order in which a program’s instruc-
tions are executed. Programs written in BASIC, or any other
high-level language, tend to loop back on themselves, and to
skip over portions which do not need to be executed. This is
also true of machine language programs.

In this chapter, you will be introduced to ways of chang-
ing program flow, jumps. There are two basic types of jump
instructions, conditional and unconditional. Both will be ex-
amined in this chapter. This chapter also explains how to cre-
ate machine language versions of BASIC’s IF-THEN-ELSE and
FOR-NEXT structures using assembly’s CMP and LOOP
instructions.

The CMP Instruction
In high-level languages, decision making is usually based on
the [F-THEN-ELSE construction; in machine language it is not
quite so easy. In machine language, the CMP (compare)
instruction is used with conditional jumps to change program
flow. The conditional jumps jump only if a certain condition is
satisfied. For example, JZ (Jump if Zero) jumps only if the last
operation resulted in zero; if the result was nonzero, the com-
puter “falls through” the conditional jump and executes the
next instruction following JZ. The CMP instruction corre-
sponds to the IF part of BASIC’s conditional construction,
while the conditional jumps provide for the THEN and ELSE.
The general form of the CMP instruction is:

CMP first,second

CMP compares the values of two numbers. They both must be
either words or bytes—you can’t mix and match. Any operand
legal with instructions such as MOV, ADD, or SUB is legal
with CMP. Remember that the 8088 does not allow both the
operands to be memory locations.

It is important to remember that there is only one CMP
instruction. The type of comparison (whether signed or
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unsigned) depends solely on the operands. Signed and unsigned
comparisons are identical to one another. However, the flags
after signed and unsigned comparisons must be interpreted
differently. For this reason, there are two sets of conditional
jumps, one for unsigned and another for signed comparisons.

Conditional Jumps After CMP

A comparison is often followed by one of the numerous con-
ditional jumps. The 18 conditional jumps generally used after
a CMP instruction are summarized in Table 5-1.

Table 5-1. Conditional Jumps Used after CMP

Instruction Jump if...(unsigned comparisons)

JE label  first equals second

JNE  label first not equal to second

JA label first above second

JAE  label first above or equal to second
JB label first below second

JBE label  first below or equal to second

JNA  label first not above second
JNAE label first not above or equal to second
JNB label first not below second
JNBE label first not below or equal to second

Instruction Jump if...(signed comparisons)

]G label first greater than second
JGE  label first greater than or equal to second
JL label first less than second

JLE label  first less than or equal to second

JNG label first not greater than second

JNGE label first not greater than or equal to second
JNL label first not less than second

JNLE label first not less than or equal to second

These conditional jumps can be summarized more con-
cisely, as in Table 5-2. Many of the conditional jumps come in
pairs: one with a positive condition, and another with a neg-
ative. For example, JA (Jump if Above) is identical to JNBE
(Jump if Not Below or Equal to). Intel provides these alternate
terms entirely for the programmer’s convenience.

The naming scheme of the jump instructions is very
consistent. Note that all instructions with below or above in
their names are used after the comparison of unsigned values,
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while greater or less conditional jumps are used after compar-
ing signed values. The JE and JNE instructions apply to the
comparison of both signed and unsigned values.

Table 5-2. Summary of Jumps

Jump if... Use with Use with
unsigned operands signed operands

First > Second JA/JNBE JG/JNLE

First = Second JAE/JNB JGE/JNL

First = Second JE JE

First <> Second JNE JNE

First < Second JBE/JNA JLE/ING

First < Second ]B/JNAE JL/INGE

It is important to remember that the names of the con-
ditional jumps refer to the first operand versus the second. For
example, JG means jump if the first operand is greater than
the second. Below are some examples of comparisons and con-
ditional jumping.

CMP AX,BX
JA AX_ABOVE_BX

CMP CX,AX
JB CX_BELOW_AX

CMP DX,SS
JE DX_EQUALS_SS

CMP AL,DL
JG AL_GREATER_THAN_DL

CMP BX,156H
JLE BX_LESS_THAN_OR_EQUAL_TO_156H

Machine Language IF-THEN-ELSE

The combination of the CMP instruction with conditional
jumps gives the machine language programmer the equivalent
of the high-level IF-THEN-ELSE construction. There are a
number of ways to implement such a structure in machine lan-
guage. Here are two examples:

CMP AX,10 JIF AX>10 ...
JA THEN
ADD AX,1 ;ELSE AX=AX+1
JMP CONTINUE
THEN: MOV AX,0 ;THEN AX=0

CONTINUE: (more code)
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Notice that, in the above example, the ELSE and THEN parts
of the construction are not placed as they would be in BASIC.
Unless the condition is satisfied (first is above second), the
computer falls through JA to the next instruction (ADD AX,1)
and then performs a JMP to skip over the THEN portion.

CMP AX,10 ;IF AX>10
JNA ELSE ;(a negative condition)
MOV AX,0 ;THEN AX=0
JMP CONTINUE
ELSE: ADD AX,1 ;JELSE AX=AX+1

CONTINUE: (more code)

In this example the THEN and ELSE are placed in the familiar

order of BASIC, because JNA tests for the condition opposite
that of JA. Unless this condition is satisfied (first is not above
second), we fall through JNA to MOV AX,0, and then JMP
past the ELSE portion.

Both examples produce the same result, but with reversed
logic. Some people find the first example easier to follow, be-
cause it tests for a positive rather than a negative condition.
Others find the second construction more natural. It is im-
portant that you understand both.

The unconditional jump. JMP is an unconditional jump,
like the GOTO statement in BASIC; the jump is always per-
formed. It is used to skip over the unneeded parts of the con-
ditional structure. With more complex conditional structures,
you may begin to feel that your program plays leapfrog with
itself as it executes the ELSEs and skips the THENS, and vice
versa.

Conditional Jumps After Other Instructions
So far, conditional jumps have always followed a CMP
instruction; however, they may be placed anywhere within a
program. There is no rule that says conditional jumps must
follow the CMP instruction. In fact, they can follow ADD,
SUB, or any of the other instructions that affect the flags. As
you may recall, there are six arithmetic flags in the 8088:

The zero flag is set by certain operations (such as ADD,
SUB, INC and DEC) when the result of the operation is 0.
Otherwise, this flag is clear.

The carry flag is used as the overflow flag for unsigned
arithmetic. It becomes set when the result is less than 0 or
greater than 255, for bytes, or 65535, for words. This flag is
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set by operations such as ADD and SUB. Note that INC and
DEC do not set the carry flag. In addition, the carry flag is
often used with subroutines in machine language.

The sign flag indicates the sign of the last result. When the
flag is set, the last result was negative. If the flag is clear, the
last result was positive. Again, only certain operations set this
flag; they include ADD, SUB, INC, and DEC. Essentially, this
flag mimics the most significant bit (the sign bit) of the result.

The overflow flag is used to indicate an overflow error.
When this flag is set, there has been an overflow; otherwise,
this flag is clear. An overflow error occurs when the result is
beyond the representable range of signed numbers (—128 to
127 for bytes or —32768 to 32767 for words). Only certain op-
erations such as ADD, SUB, INC, and DEC set this flag.

The other two arithmetic flags, the auxiliary carry flag (AF)
and the parity flag (PF), will not be detailed here (please refer
to the glossary); they are very rarely important to machine
language programming.

Table 5-3 lists the conditional jumps which depend solely
on the value of one flag:

Table 5-3. Conditional Jumps Relying on Only One Flag

Instruction  Jump if... Flag status
JC carry CEE =:1
JNC no carry CE,=:0
JO overflow OF =1
JNO no overflow OF =0
JS sign (negative) SF =1
JNS no sign (positive) SE =40
JZ zZero ZF =1
JNZ no zero ZE =0
JP/JPE parity PE =1
JNP/JPO no parity PE =0

These ten conditional jumps can be used after any operation
(you can even use them after the compare instruction if you
like). Below are some examples.

ADD AX,BX

JO OVERFLOW_ERROR ;if sum >32767 or <—32768
SUB CX,DX

JZ RESULT_WAS_ZERO ;if CX and DX are equal
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MUL BL
JC WORD_RESULT ;if product uses all of AX

DEC COUNTER
JNZ COUNTER_NOT_ZERO ;if counter is not zero

Instructions which do not affect the flags (such as MOV)
can be placed between an instruction which does and the con-
ditional jump itself, as shown below. See Appendix A for a
table detailing which instructions affect which flags.

CMP AX,BX ;finds which is greater...
MOV CX,AX ;...AX or BX, and stores...
JG AX_GREATER ;..larger value in CX
MOV CX,BX

AX_GREATER: (more code)
MUL BX ;perform 16 bit multiply
MOV CX,0 ;use CX to indicate

overflow...

JNO DX_CLEAR ;..into DX register
MOV CX,1

DX_CLEAR: (more code)

Conditional Jumps for Looping

Another common use of conditional jumps is controlling
loops. The most familiar looping statements in BASIC are FOR
and NEXT. In a FOR-NEXT structure, the following operations
are performed: The index (counter variable) is given an initial
value; it is incremented (or decremented) for each iteration of
the loop; and, it is checked against an end value. The BASIC
structure, FOR I=1 TO 100:(do something):NEXT, could be
coded into machine language, assuming I is a variable in the
data segment, as:

MOV L1 ;set up the index variable
LOOP:  (do something) ;do the instructions within the loop
INCI ;increment the loop variable
CMP 1,100 ;is the index variable 100?
JNE LOOP ;if so, end the loop
A more efficient version of the same loop looks like:
MOV 1,100 ;set up the index variable
LOOP: (do something) ;do the instructions within the loop
DECI ;decrement the loop variable
JNZ LOOP ;if it’s not zero, continue looping
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The second example is more efficient because there are
fewer instructions to accomplish the same task. A decremented
loop variable is more efficient because the zero flag will be set
automatically when the index becomes zero. With an in-
cremented variable you must use the CMP instruction to end
the loop. However, often a loop must increment so both tech-
niques are used.

There are many ways to structure a loop. You can in-
crement or decrement the index variable. The incrementing or
decrementing can be at the beginning of the loop or at the
end. In addition, you can increment or decrement by some
number other than one. When you use ADD or SUB it might
be necessary to use a JNC rather than a JNZ. Remember, the
carry flag acts like an overflow for unsigned operations.

LOOP, LOOPE-LOOPZ, and LOOPNE-LOOPNZ

With the loops described above you must do everything, from
adjusting the index variable to deciding which kind of jump to
use. There are other, more specialized 8088 machine language
instructions, which facilitate the looping operation. The three
loop instructions described below give the programmer a com-
pletely automatic looping system.

LOOP is the simplest looping instruction. Study the ex-
ample below. Notice that the LOOP instruction uses the CX
register as its counter. This example does “something” 300
times. The LOOP instruction automatically decrements the CX
register and loops back to START_OF_LOOP if CX is not
zero.

MOV CX,300

START_OF_LOOP: (do something)
LOOP START_OF_LOOP

Variations of the LOOP instruction, LOOPE-LOOPZ and
LOOPNE-LOOPNZ, offer added versatility to the LOOP
instruction. LOOPE (loop if equal), also called LOOPZ (loop if
zero), loops back if CX is not zero and the zero flag indicates a
zero status. LOOPNE (loop if not equal), or LOOPNZ (loop if
not zero), loops back if CX is not zero and the zero flag in-
dicates nonzero status. Thus, LOOPE can be considered loop
while equal, and LOOPNE, loop while not equal. CX merely
serves to put a limit to the number of possible loops. Both of
these instructions will be examined in more detail in the chap-
ter on string instructions.
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JCXZ and the LOOP Instructions

Unfortunately, the LOOP instructions decrement CX before
checking to see if it is zero. So, if you enter a LOOP structure
when CX is zero, the loop will be executed 65,536 times. If
this is what you intended, this is fine. If, on the other hand,
you want the loop to be skipped when CX is zero, you can use
the JCXZ (Jump if CX is Zero). Place the JCXZ instruction
before the loop as shown below. Now the loop will be skipped
when CX is zero.

JCXZ NO_LOOP
DO_LOOP: (whatever)

LOOP DO_LOOP
NO_LOOP: (continue)

The Unconditional Jump

JMP simply transfers control of the program from one place to
another, just like the BASIC GOTO statement. There is no de-
cision making involved with this instruction; in other words,
the computer jumps unconditionally.

There are five kinds of unconditional JMPs. The assembler
automatically selects the correct JMP on the basis of the op-
erand (the label you are jumping to).

Near jumps. Near jumping (referred to as an Intra Seg-
ment Direct jump by IBM literature) has the general format as
shown below.

JMP label  ;displacement to label
. ;is calculated by the

. ;assembler.

(some code)

label: (more code)

Near JMPs can jump anywhere within the code segment.
Near JMPs are called direct jumps because the position of the
next instruction is stored with the JMP instruction.

Short jumps. A short jump, or an Intra Segment Direct
Short jump, is identical to a near JMP. A short jump can be
only 127 bytes forward or 128 bytes backward. Trying to jump
too far with a short jump will result in a Relative jump out of
range error from the assembler. Note that, whenever possible,
the assembler will automatically use short jumps.
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Short jumps are important because all conditional jumps
are short jumps, and all LOOP instructions use short jumps.
The range limitation on short jumps can become a problem
when you need a conditional jump to skip a very large part of
your program. You can overcome this limitation by reversing
the logic of your jump condition and skipping over an un-
conditional (near) jump. For example, if this jump resulted in a
Relative Jump Out of Range error:

JGE SOME_PLACE
(more program)

You could replace it with:

JNGE SKIP ; (a negative condition)
JMP SOME_PLACE
SKIP: (more program)

Remember that the unconditional J]MP can jump anywhere
within the current code segment. Unfortunately, there is no
way to overcome the limitation on LOOP instructions. Just use
short loops.

Far jumps. The far jump allows you to transfer control to
another segment. This kind of jump is also known as an Inter
Segment Direct Jump. Note IBM’s careful use of the prefixes In-
ter (between) and Intra (within).

The format of the far JMP is identical to that of near JMP;
however, the operand label must have a far attribute; that is,
the label must be the name of a far procedure. You will need
to use this instruction only if you write programs with more
than one code segment, but the assembler will use far jumps
automatically if the label has a far attribute.

Indirect jumps. Indirect jumps are jumps in which the
address of the next instruction is not coded as the operand of
the JMP operation, but is held in a data table or in a general
register. There are two kinds of indirect jumps, one for Intra
Segment jumps, and another for Inter Segment jumps. Ad-
vanced programmers can use indirect jumps just as BASIC
programmers use the ON-GOTO construction.

A Sample Program

“Flash,” as its name implies, flashes the screen several times.
With a color/graphics screen adapter, the background color of
the screen is changed as it is flashed. Flash_M (Program 5-1)
is for IBM PC users who have the monochrome screen
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adapter. Flash_C (Program 5-2) is designed for a PC computer
with the color/graphics screen adapter and for the PCjr. They
should work with any of the compatibles, as long as the
screen adapters are fully compatible with the IBM boards. If
you are using a PC with both monochrome and color/graphics
adapters, try entering both programs. However, DOS 2.00
users should execute the MODE command to change to the
appropriate adapter before running the program; otherwise,
the results are unpredictable. DOS 1.10 users will have to load
BASIC and change monitors according to the BASIC manual.
Users of noncompatible systems should still look at these pro-
grams, as they are good examples of short machine language
programs.

Flash uses the register DX as a counter; it determines how
many times the screen should be flashed. The BX register acts
as a pointer into the screen memory. We will use it to read and
write the screen attributes. The CX register, the counter for the
LOOP instruction, is used to determine how many attributes to
change. It is initialized to the value of the constant
SCREENSIZE, the size of the screen page. AH is used to hold
and check the attribute.

These programs introduce our first use of the SEGMENT
command. The SEGMENT command is being used to locate
the screen memory. The AT operand tells the assembler that
we want the segment to be located at a specific segment ad-
dress; BOOOH for the monochrome screen, and B80OOH for the
color graphics screen. Note that these are not absolute ad-
dresses (0 to FFFFF hex), but segment addresses (0 to FFFF
hex).

Notice the use of the assembler pseudo-op EQU. This
pseudo-op is used to assign a constant value to a symbol (not
a memory location, but an assembler value). The format is

symbol EQU value

Symbol is equal to the value.

At this point it is important to understand how IBM
computers handle screen memory. There are 2000 characters
on an 80-column screen. IBM computers use 4000 bytes (note
that this is 4000 bytes, not 4K bytes) to represent the charac-
ters. The even-numbered bytes (0, 2, 4, etc.) hold the actual
character. The odd-numbered bytes (1, 3, 5, etc.) hold the
character’s attribute. So the character in byte 0 has the
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attribute defined by byte 1. The attribute byte of the mono-
chrome screen adapter can be broken down as shown in Fig-
ure 5-1. The F and I symbols show where flashing and
intensity attributes can be set.

The attribute byte for the color adapter is used as shown
in Figure 5-2.

Figure 5-1. Monchrome’s Attribute

0[0]JO]|]O[O]O|O] O/ -nodisplay

F 0 0 0 I 0 0 1 - underline

F 0 0 0 I 1 1 1 - white on black

F 1 1 1 0 0 0 0 - black on white

Figure 5-2. Color Attribute Byte

FIR|G|[B|I |R|G]|B

\/‘V\) \/W

L — Foreground Color
Intensity

Background Color
Flashing

You can combine the different color bits to mix your own col-
ors. For example, if blue and red are on at the same time, the
screen displays purple.

Let’s look at the basic flow of the program Flash_M. At
the start of the loop, AH is assigned the value of the normal,
white on black, screen attribute. AH is compared with the
attribute pointed to by the BX register. If AH and the attribute
are different, we use AH as the new attribute, changing the
screen attribute to normal.

If AH and the attribute are the same, we move the
reverse, black on white, attribute, into AH and use this as the
new attribute. Next, BX, the pointer into screen memory, is in-
cremented and the LOOP instruction executed. As mentioned
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above, screen memory is set up as a character byte followed
by an attribute byte, so we must add two to BX. We change
every other byte to get all of the attributes. Once this inner
loop is complete, we must manually decrement DX and jump
to LOOPO if it is not zero. When it is zero, we perform the
RET operation which returns us to DOS.

Flash_C is a little more complex. The bulk of the program
is the same; the only differences lie in the section which
changes the screen attribute. The first instruction retrieves the
current screen attribute. Next, 16 is added to the attribute byte.
This increments the background color by one. However, we do
not want to change the most significant bit, which controls the
flashing attribute of the screen. Here we can use a little trick;
remember that the most significant bit can be considered the
sign bit. If this sign bit is changed by the ADD operation, the
Overflow Flag (OF) is set, so if the OF is set, the attribute is
reloaded and the background color set to black. The rest is the
same as Flash_M.

Running FLASH

Assemble the program as FLASH.ASM. When complete, type
FLASH from the DOS prompt and press Enter. There may be
some picture snow or lightning on the color/graphics screen
when FLASH is executed in 80-column mode. This is normal.
The static can be eliminated if you use 40 columns. Remember
to be in a color mode, not a black-and-white mode. Execute
MODE CO40 or MODE CO80 before running FLASH just to
be sure (DOS 1.10 users must enter BASIC and use a SCREEN
0,1 and a WIDTH 40 or WIDTH 80 command).

If all goes well, the screen should flash for a few mo-
ments and the DOS prompt should return. If nothing happens,
and the DOS prompt does not return, the computer has prob-
ably locked up. Try resetting with the Ctrl-Alt-Del combina-
tion. If this does not work, you will have to turn the computer
off and back on. Check the program carefully before reassem-
bling. If the DOS prompt returns after a few seconds, but the
screen does not flash, check to be certain you are using the
correct version of FLASH. Monochrome screen adapter users
should have assembled Flash_M and color/graphics users the
Flash_C program. If you have both adapters, use the MODE
command from DOS to switch between the two displays
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before you execute the appropriate program. PCjr users should
have entered the Flash_C program.

If your compatible computer does not seem to be work-
ing, take a close look at the program before you assume the
hardware is at fault. Any of the full compatibles should be
able to execute these programs. If your machine is only
slightly compatible, the program may not work correctly.

Once you get the appropriate version of Flash running,
there are a number of modifications you can make to produce
your own version of Flash. You can change the number of
times the screen flashes by changing the constant FLASHES to
another value. In Flash_M, FLASHES should be an even
number if you want the screen to return to white on black; in
Flash_C, FLASHES should be a multiple of eight if you want
the screen to return to its original color. Try using Flash_M on
the color screen by changing the SCREEN segment to point to
the color screen. Try making the program flash only the top
half of the screen (easy) or only the bottom half (a little
harder).

Conditional Jumps

All 31 different conditional jumps are summarized in Table 5-
4. Note that there are really only 17 different conditional jump
instructions, but that some of the instructions have been given
more than one name. Some instructions have obvious aliases;
for example, JA (Jump if Above) is the same as JNBE (Jump if
Not Below or Equal to). Other instructions are less obvious: JC
is the same as JB. When you use DEBUG to unassemble pro-
grams, all of the conditional jumps will appear as the names
shown in Table 5-5 (since the instructions are identical, DE-
BUG has no way of knowing if your source code has JA or
JNBE).
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Table 5-4. The Conditional Jump Instructions
(* indicates conditional jumps for signed comparisons)

Operation
Name Full Explanation Jump if...
JA jump if above CF = 0andZF =0
JAE jump if above or equal CE=0
]B jump if below CF =1
JBE jump if below or equal CF = 1lorZF=1
JC jump on carry CF =1
JCXZ jump if CX zero X =0
JE jump if equal ZF = 1
*IG jump if greater ZF = 0and SF = OF
*JGE jump if greater or equal SF = OF
*JL jump if less SF <> OF
*JLE jump if less or equal ZF = 1orSF <> OF
JNA jump if not above CF= lorZF=1
JNAE jump if not above or equal CF = 1
JNB jump if not below CF =0
JNBE jump if not below or equal CF = 0 and ZF = 0
JNC jump if no carry CF=0
JNE jump if not equal ZF = 0
*ING jump if not greater ZEF = 1 or SF<>OF
*INGE jump if not greater or equal SF <> OF
*INL jump if not less SF = OF
*INLE jump if not less or equal ZF = 0 and SF = OF
*INO jump if no overflow OF = 0
JNP jump if no parity PF = 0
JNS jump if no sign (positive) SF = 0
INZ jump if not zero ZF = 0
*JO jump on overflow OF = 1
P jump on parity PF = 1
JPE jump if parity even PF = 1
JPO jump if parity odd PF = 0
*JS jump on sign (negative) SF = 1
JZ jump on zero ZF = 1
CF—Carry Flag

OF—Overflow Flag
PF—Parity Flag
SF—Sign Flag
ZF—Zero Flag
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Table 5-5. Conditional Jumps and Their Aliases

(*—for comparisons of signed values)

DEBUG names Aliases

JA JNBE
JB JC, INAE
JBE INA
G JNLE
*JGE JNL
“L JNGE
*JLE ING

JNB JAE, JNC
JNZ JNE

JPE JP

JPO JNP

1Z JE
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Program 5-1. Flash_M.ASM
; FLASH_M.ASM

This program flashes the |BM
monochrome screen. It will only work
with computers with IBM's monochrome
screen adapter or compatible product.
If you are using both a monochrome
and color graphics screen adapters,
switch to the monochrome screen
before executing this program.

“e wo ws we w8 we ws s

-

page ,96
i Constants definition
flashes equ 80 snumber of times to flash
screensize equ 2000 isize of the screen (80x25)
normal equ 7 ;normal attribute
reverse equ 112 ;reverse attribute
i
screen segment at 0BOOOhA ;screen starts at B000:0000
scrnmap dw screensize dup(?) ilength of screen

screen ends
;

stack segment stack ;stack segment

MO weidol]
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dw 128 dup (?) ;give the stack 256 bytes

stack ends
code segment ;segment for code
program proc far ;for proper return to DOS
assume cs:code,es:screen,ss:stack
push ds ;for far return to DOS
mov ax,0
push ax
mov ax,screen 1set up screen segment in ES
mov es,ax
mov dx,flashes siNumber of times to flash
loop0: mov bx,1 tWhere first attrib is stored
mov cx,screensize
loopl: mov ah,normal snormal attribute
cmp ah,es:[bx] 1is it reversed already?
jne nochange sif it is, make it normal
mov ah,reverse imake attribute reversed
nochange:
mov es:[bx],ah
add bx,2 ipoint to next attribute
loop loop1l ;loop until CX is zero
dec dx ;done all flashes?
jne loopo 3if we have not, flash again
ret sreturn to DOS
program endp 1end of procedure declaration
code ends iend of segment declaration

end send of program

moy,] weidoig
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Program 5-2. Flash_C.ASM

FLASH_C.ASM

This program flashes the IBM color

screen. It will only work with
computers with IBM’'s color/graphics
adapter or compatible product. | f

you are using both monochrome and
color graphics adapters in your
computer, switch to the color/graphics
screen before executing this program.
PCjr users should use this version of
the FLASH. If you are using a 40-
column screen, change screensize

to 1000
page ,96
f
sconstants definition
flashes equ 80 inumber of times to flash
screensize equ 80x25 ;screen size (80x25 or 40x25)

screen segment at 0B80OhN

;segment address B800

scrnmap dw screensize dup(?) ;ilength of screen
screen ends

mo[] weidol]
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stack segment para stack
dw 128 dup(?)

stack ends

3

code segment

program proc far
assume cs:code,ds:screen
push ds
mov ax,0
push ax
mov ax,screen
mov es,ax

mov dx,flashes
loop0: mov bx,1

mov cx,screensize
loop1: mov ah,es:[bx]

add ah, 16

jno no_reset

mov ah,es:[bx]

and ah,10001111b
no_reset:

mov es:[bx],ah

add bx,2

loop loop1

dec dx

;segment for the stack
;give the stack 256 bytes

;segment for code

;procedure for return to DOS
,88:8tack

;for far return to DOS

;set up screen segment in ES

;Number of times to flash
;Where first attrib is stored
;Length of screen area

;get current attribute
;increment backround color
;affect blinking (sign bit?)
;get attribute again

;zero backround color bits

;store attribute

;point to next attribute
stoop until"CX is 2ero
;done all flashes?

MmO, wre1do1g
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jne loop0 ;if we have not, flash again

ret sreturn to DOS
program endp iprocedure complete
code ends icode segment complete
end ;iprogram complete

Program 5-3. Flash_M.BAS

190 ' FLASH_M.BAS

10 '

130 '

140 DEFINT A-2

150 °

160 ’'Constants definition

179 FLASHES = 89 'numbe
r of times to flash

180 SCREENSIZE = 80x25 'size
of the screen '

190 NORMAL = 7 'norma
| attribute

200 REVERSE = 112 'rever
se attribute

210 '

220 DEF SEG = &HBOOG® ’'screen starts at BO0O:00
00

Mo} weidolg
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230
240

250

2690

279

280

290

300

310

320

330

3490

350

360

i1}
DX = FLASHES
MOV DX,FLASHES
BX = 1
: MOV BX, 1
CX = SCREENSIZE
MOV CX,SCREENSIZE
AH = NORMAL
: MOV AH,NORMAL
ZF = (AH = PEEK(BX))
CMP AH,ES:[BX]
IF NOT ZF THEN 319
JNE NOCHANGE
AH = REVERSE
MOV AH,REVERSE
POKE BX,AH
NGE: MOV ES:I[BX1],AH
BX = BX + 2
ADD BX,2
CX = CX - 1:1F NOT CX = @ THEN 270
LOOP LOOP1
DX = DX - 1:ZF = (DX = 0)
DEC DX
IF NOT ZF THEN 250
JNE LOOPO
END
RET

'LOOPO

'LOOP1

'NOCHA

/O[] ureigoig
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& Program 5-4. Flash_C.BAS

100 ' FLASH_C.BAS

210 °

220 '

230

240 DEFINT A-Z

250

260 ' constants definition

270 FLASHES = 89

280 SCREENSIZE = 80x25
'40%x25 for 40x25 screen

290 °
300 DEF SEG = &HB8@®
310 °
320 DX = FLASHES
’ MOV DX,FLASHES
330 BX = 1
’ MOV BX, 1
340 CX = SCREENSIZE
' MOV CX,SCREENS | ZE
350 AH = PEEK(BX) .
’ MOV AH,ES:([BX]
360 SF = AH AND 128:AH = AH + 16
' ADD AH, 16
370 OF = (SF XOR (AH AND 128)) > ©0:IF NOT OF T

HEN 4900’ JNO

;o[ ureigoig
S
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380

390

400

410

4290

430

440

450

Voo i
AH = PEEK(BX)

' MOV AH,ES:(BX]
AH = AH AND &HS8F

! AND AH, 1000111
POKE BX,AH :

' MOV ES:(BX1,AH
BX = BX + 2 ’

! ADD BX,2

CX = CX - 1:1F NOT CX
' LOOP LOOP

DX = DX - 1

' DEC DX

IF NOT DX = © THEN 330
' JNZ

END

18

® THEN 350

mo[] wreido1g

S



€ HeAsP “F<E R

6

Subroutines and the

Stack

The stack is quite possibly one of the most useful and dy-
namic storage methods available to a computer. Many large
computers rely solely on stacks for data manipulation. In an
effort to clarify a stack’s design, many analogies have been ap-
plied to its operation. Writers have called on everything from
dishes at a coffee shop to a programmer’s cluttered desk.

Here we will use the analogy of cafeteria trays. The last
tray put on the stack is the first tray to come off. This makes
the pile of trays a last in, first out storage system, or LIFO for
short. The computer’s stack can be thought of as this pile of
trays. The computer puts trays down one by one, and when it
needs them again, it takes them back. Notice that a stack re-
verses the order of the trays.

Computer programmers have given names to the pro-
cesses of putting something onto the stack and of taking it
back. The putting on is called PUSHing data onto the stack,
and the taking back, POPping. The 8088 has a variety of
PUSH and POP operations.

Implementing the Stack

Two registers are used to manage the stack, the SP (Stack
Pointer) and the SS (Stack Segment). SP always points to the
last piece of data PUSHed onto the stack. It starts at the high-
est possible stack location and works its way down as infor-
mation is added to the stack. SP acts as an offset from the
base of the segment pointed to by the SS register (Figure 6-1).
(See Chapter 2 if you are unfamiliar with segment:offset
addressing.)
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Figure 6-1. SP Offset from SS

Higher Memory

— Top of stack

Used Stack
«— SP points here

Offset {

«— SS points here

Lower Memory

The microprocessor (the 8088) handles the stack as words,
not as bytes. Only words can be PUSHed onto and POPped
off the stack. In a PUSH operation, the 8088 decrements SP
by two and stores the word at the memory location pointed to
by SS:SP. When the word needs to be POPped back, the 8088
retrieves the word pointed to by SS:SP and increments SP by
two. Generally, it is not very important to know the mechan-
ics of the stack; however, some types of programming require
a thorough understanding of stack manipulations (especially
when combining assembly language with Pascal or BASIC).

The maximum length of a stack is 64K (the addressing
limit of the SP register). For most machine language programs,
a stack of 256 bytes is sufficient. The DOS manual recom-
mends that you reserve at least 128 bytes beyond your
requirements if you use DOS functions (such as character
print). If the stack is too small, the results are unpredictable.
The problem is that the computer starts to store the PUSHed
data in memory that was not reserved for the stack. This
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memory may have been reserved for something else, probably
data, possibly the program itself. More often than not, the
computer will crash.

Declaring the Stack Segment

Almost all machine language programs require you to declare
a stack segment. The only exceptions are device drivers and
.COM files. You must specifically tell the assembler to declare
a stack segment, but you cannot have more than one stack
segment per program. All of the sample programs have de-
fined stack segments. Let’s take a closer look.

stack SEGMENT STACK
DW xxx DUP (?) ;where xxx can be any number
stack ENDS

The name of the stack segment is stack. The operand of
the pseudo-op SEGMENT, STACK, tells the assembler that we
are defining a stack segment. DW should be used since the
stack is defined as word-sized data. The xxx DUP (?) is a spe-
cial command that says to the assembler, “DUPlicate what’s
between the parentheses xxx times.” The question mark (?)
tells the assembler that the value stored at that location is un-
defined. The xxx can be any number which does not exceed
the maximum stack length. The stack segment can be up to
65,536 bytes long (or 32,768 words). The stack ENDS ends the
stack segment definition. In the sample programs we have
used:

stack SEGMENT STACK
DW 128 DUP(?)
stack ENDS

Here, we have defined the stack to be 128 words (256 bytes)
long.

Now you know how a stack works and how it’s defined.
Its use can be very powerful and convenient.

Subroutines

First off, you might ask, “What is a subroutine?”” This is diffi-
cult to answer, for it depends on your point of view. In a
sense, DOS considers all programs subroutines to itself, yet
parts of DOS can act as subroutines to your programs. How-
ever, it is possible to generalize. A subroutine is often a short
program which does one task. DOS, for example, includes

88



6
Subroutines and the Stack

* subroutines which print text to the screen and control disk
files. These subroutines cannot execute alone. They need a
program to call them and give them information to work on.
You can think of these subroutines as helpers. They make the
task of programming easier and less time-consuming.

Subroutines are also used to break large programs into
smaller, more manageable sections. In such a program, each
subroutine handles a specific task and the main routine calls
each subroutine as it is needed. Breaking a large program into
smaller parts makes it easier to find bugs because each sub-
routine is responsible for a specific task. If something is not
working correctly, you know which routine is to blame.

It is often useful to include a comment header at the
beginning of your subroutines. The header should state the
routine’s name and purpose. It should also indicate which reg-
isters are preserved or which are destroyed. This way, you can
easily determine which registers are being altered and which
are maintained. Although it is nice to write subroutines which
alter no registers, this is often unnecessary. For example, if
your main routine does not use SI and DI, the program’s sub-
routines can use them freely without preserving them. If you
use these subroutines in another program which uses SI and
DI, however, the subroutines will need to preserve those reg-
isters for your new program to work correctly.

CALL and RET. The 8088 implements subroutines with
two instructions, CALL and RET. There are four types of
CALLs and four types of RETs. Fortunately, the assembler se-
lects the correct commands for us.

The CALL instruction is the machine language equivalent
of BASIC’s GOSUB command. As mentioned above, there are
four different CALL commands. They all have the same gen-
eral format:

CALL operand

where the operand is either a label (direct CALL) or an ad-
dressed memory location (indirect CALL).

The actual process of CALLing a subroutine is the same in
all cases. When the 8088 executes a CALL instruction, it
pushes the current position within the program on the stack,
and jumps to the specified routine. At the end of the routine, a
RET undoes the CALL. The computer pops the stack to re-
trieve its previous program position and resume execution
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where it left off. As routines call other routines, the computer
is said to be going into deeper subroutine levels (see Figure 6-
2). As each routine comes to an end, the RET command pops
the computer up one level. The CALL and RET instructions af-
fect none of the flags and only the SP, IP, and possibly CS
registers. '

Figure 6-2. Subroutine Levels

Main CALL ~
level -
One level ~ CALL
down - RET
Two levels >
down RET

The near CALL, or a Direct Intra Segment CALL, is much
like a near JMP, in that the operand is a 16-bit displacement
to the called label. The actual calling mechanism works this
way: The IP (Instruction Pointer) register is pushed onto the
stack, then the new IP is calculated by adding a displacement
to the original IP. Program execution continues at this new po-
sition. Since this instruction alters only the IP, you cannot
move from one segment to another.

The operand of a near CALL is a label. It must have a
near attribute. Generally, this refers to the names of near
procedures (those procedures defined with the PROC NEAR
command). For more information about the PROC command,
see Chapter 14.

Far CALLs, or Inter Segment Direct CALLs, are very much
like far JMPs. The operand of a far CALL is a double word.
Note that this CALL is absolute, not relative. Far CALLs push
both the CS (Code Segment) and IP onto the stack. The con-
tents of the CS register are pushed first.

With a far CALL it is possible to CALL a subroutine in a
different code segment: The operand of a far CALL must have
a far attribute; in other words, it must be the name of a far
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procedure. Far procedures are defined with the PROC FAR
pseudo-op. See Chapter 14 for more details on the PROC
pseudo-op.

Indirect CALLs are similar to indirect JMPs. With indirect
CALLs, the address of the subroutine is not coded with the
instruction, but is held in a general register or a data table.
There are two indirect CALLs, one for Intra Segment CALLs
and another for Inter Segment CALLs. The indirect Intra Seg-
ment CALL is much like a near CALL since it pushes only IP
onto the stack. Indirect Inter Segment CALLs push both CS
and IP onto the stack. Advanced machine language pro-
grammers can use indirect CALLs just as BASIC programmers
use the ON/GOSUB construction.

There are basically two kinds of CALLs, near CALLs,
which push only IP onto the stack, and far CALLs which push
both CS and IP. As you may suspect, there are two kinds of
RETurns, one for near CALLs, and another for far CALLs. A
variation of the standard RET will be discussed with param-
eter passing.

The near RET instruction, also called an Intra Segment RE-
Turn, pops IP off the stack and thus terminates a near sub-
routine. A far RET (also called an Inter Segment RETurn, or a
long RETurn) pops both CS and IP.

It is important that subroutines accessed with near CALLs
end with near RETs, and that routines called with far CALLs
end with far RETs. Imagine the chaos if a far RET were exe-
cuted after a near CALL. The IP register would be restored
correctly, but the CS register would take the value of whatever
was PUSHed onto the stack before the near CALL. The
microprocessor would begin executing at some random ad-
dress in memory. This would almost definitely crash the com-
puter. Fortunately, the assembler takes care of this detail for
us. RETs in PROC FAR-ENDP structures are made far RETs,
and RETs in a PROC NEAR-ENDP structure, near RETs.

Programs Are Far Procedures

You may now be wondering why all programs are defined as
far procedures. Clearly, it’s to force the assembler to make the
RET at the end of the program a far RET; but why? Notice
that the first instructions in every program are to push the DS
(the data segment) register and then a zero (via AX) onto the
stack. The reason for this can be explained as follows. When
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DOS transfers control of the computer to an .EXE file, it passes
some important information. DS and ES hold the base of the
program segment prefix. This prefix holds some critical data
for DOS while the program is executing.

To return to DOS, IP must be set to zero and CS to the
base of the program segment prefix. Since neither CS or IP
can be the destination of a MOV operation, the simplest way
to change them both is with a FAR RET operation.

The sequence

PUSH DS
MOV AX,0
PUSH AX

simulates a far CALL to our program. When the far RET is
performed, the microprocessor pops zero into IP and the base
of the program segment prefix into CS. It is also possible to
use an inter segment indirect JMP, but this is more complex
and requires more programming.

Our subroutines should all be near procedures. For this
reason, any program which includes its own subroutines must
be defined in at least two parts. One, the PROC FAR, is used
to hold the main program. The other, one or more PROC
NEARSs, is used to hold the subroutines.

Using Subroutines
Before you can use subroutines effectively, there are some
considerations that need to be examined. For example, how do
you pass information from the main program to the subroutine
and from the subroutine back to the main program? How do
you write subroutines so that they do not affect any registers?
A subroutine must often use registers to perform its op-
erations. In doing so, the original values contained in the reg-
isters are destroyed. But suppose the program calling the
subroutine stored some important value in an affected register?
In addition, some subroutines require that the registers be set
to certain values before they are called (DECIMAL_OUT from
“Primes,” for example, requires that AX be set to the number
to print). The original values of the registers must be stored,
either by the calling program or by the subroutine. You could
store the values in memory locations, but then you would
have to declare memory positions for the registers in the data
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segment. The simplest method is to PUSH the values of the
affected registers onto the stack, and POP them off afterwards.

PUSH. The format of the PUSH instruction is shown be-
low. The operand can be any register or memory location. It
cannot be an immediate value.

PUSH operand
Here are some examples of legal PUSH instructions:

PUSH CS
PUSH AX
PUSH SI
PUSH [BX+3]

Note that the 8088 can push only words onto the stack. No
provision is made for pushing bytes.

POP. The POP instruction takes an identical format.
Again, there is no provision for popping byte quantities from
the stack. Remember also that the stack returns values back-
wards. If you use

PUSH AX
PUSH BX
PUSH DX

you have to use

POP DX
POP BX
POP AX

to restore the registers correctly. To PUSH all of the registers,
you have to use something like

PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH SI

PUSH DI
PUSH BP
PUSH DS
PUSH ES

All of the registers are pushed except SS, CS, SP, and IP, since
these must remain the same for the subroutine to work. To re-
store all of the registers, you would use:
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POP ES
POP DS
POP BP
POP DI
POP SI

POP DX
POP CX
POP BX
POP AX

It is not necessary to POP a value back into the register
that PUSHed it. You could (if you found it necessary) transfer
a value via the stack as below. :

(calculate a value in AX)
PUSH AX

(do some program)

POP BX

(and use the value)

If you look carefully at the DECIMAL_OUT routine in the
sample program Primes, you will find that it uses this method
to move a value from DX to AX. Often you will see programs
setting the segment registers via the stack. For example to
MOV DS,CS (an illegal operation), you could use

PUSH CS
POP DS

PUSHF and POPF. There are two specialized PUSH and
POP instructions. PUSHF pushes the flags register onto the
stack, and POPF pops it back. Although this may not be a
commonly used instruction, it is the only way you can store
the flags.

PUSHF and POPF are often used to change or examine
the status of the flags. There is no 8088 instruction to move
the entire flags register into another register. The only way to
examine all of the 8088'’s flags is to PUSHF and POP the flags
word into another register as below.

PUSHF ;to get the flags
POP AX ;AX now holds the flags register

To move a value from a register to the flags, you could use
something like

PUSH AX ;AX holds the new flag values
POPF ;sets the flags register

The flags register can be broken down into bits as in Figure 6- 3.
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Figure 6-3. The Flags Register

bit 15 bit 0

-|-]-|-|lo|p|l1|T|s|z|-|Aa|-|pP]|-]|C

The following symbols are used: —, unused bit; A, Auxiliary
Carry flag (AF); C, Carry flag (CF); D, Direction flag (DF); I,
Interrupt enable/disable flag (IF); O, Overflow flag (OF); P,
Parity flag (PF); S, Sign flag (SF); T, Trap mode (single step)
flag (TF); Z, Zero flag (ZF).

Note that, using this technique, you can set several flags
(CF, DF, TF, etc.) at the same time. Generally, however, you
will want to set only the trap flag using this method. See
Chapter 11 for an example of this technique.

Parameter Passing

Subroutines often need to receive a value from the main rou-
tine. In addition, the subroutine sometimes needs to return a
value or indicate an error condition. There are four ways that
a value or condition can be passed from the main program to
the subroutine or vice versa. Information can be passed via a
register, a memory location, the flags, or the stack. All four
have their own advantages and disadvantages.

Using registers. Passing parameters via registers is by far
the simplest approach. You load a register with the value that
you want to pass and call the routine. For example, Primes
passes a value in AX to the DECIMAL_OUT routine. Al-
though this approach is simple, it might become difficult to
remember which routines take which registers. To alleviate
this problem, it is often convenient to add a list of the
parameter-passing registers to the comment header of the sub-
routine. This way you know which registers need to be filled
with what values.

Flags. Passing parameters via the flags is also very
convenient. Although you cannot pass a specific value, you
can pass a condition. The most convenient flag to use is the
carry flag (CF). There are three instructions that can be used to
assign a value to the carry flag, CLC, STC, and CMC. CLC
(CLear Carry) makes the carry flag zero. STC (SeT Carry)
makes the carry flag one. CMC (CoMplement Carry) NOTs
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the carry: If it is zero, it is made one; if it is one, it is made
zero.

Passing information via the carry flag is most convenient
when the subroutine must return a condition to the calling
program. Many DOS functions set the carry flag on return to
indicate that an error has occurred. Another register holds the
error number. If the carry flag is clear, there is no error. You
could do something like this with your subroutines. If the sub-
routine needs to indicate an error condition, it could set the
carry. The calling program needs only to perform a JC or JNC
to determine if an error was encountered. Remember that
none of the CALLs or RETs themselves affect any of the flags.

Memory locations. If you would like to pass a large num-
ber of values, it is most convenient to use memory locations.
Since it’s impossible to pass a table or a string from a register
to a subroutine, the most common technique is to pass the ad-
dress of the data in one of the registers (usually BX). This al-
lows the subroutine to maintain its independence from the
main program, while you pass a table or string as a parameter.
In the comment header of the routine you should include a
description of the data table. This way, you know how to for-
mat the table when you use the routine in another program.

Occasionally, it is convenient to pass just a few param-
eters via memory locations, especially when the parameters
are already stored in memory. Such is the case with OUTPUT
from Primes. The OUTPUT subroutine could have been writ-
ten to receive the parameters in different registers; however,
OUTPUT was not meant to be a general-purpose subroutine,
so it could rely on the Primes structure. DECIMAL_OUT,
however, which is called by OUTPUT, is a general-purpose
routine; it can be used anytime we want to print a binary
number in decimal.

Using the stack. The last method of transferring values
from the main program to the subroutine is via the stack. This
method of passing parameters is probably the most complex,
but it does offer some advantages over the other two systems.
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The basic principle is easy to understand: Push all of the
parameters you want to pass onto the stack before you call the
subroutine. Unfortunately, the routine which is called cannot
simply pop the values off the stack because the return address
is now on top of the stack. You could pop the return address
off the stack, pop the values, then push the return address
back onto the stack (as below), but there is a far more elegant
approach.

CALLER PUSH PARAM_ONE ;store parameter one
PUSH PARAM_TWO ;store parameter two
CALL ROUTINE ;call the routine
(more code) ;finish the program

ROUTINE PROC NEAR

POP AX ;get return address
POP SI - ;get parameter two
POP DI ;get parameter one
PUSH AX ;restore return address
(do whatever) ;use the parameters
RET ;return to caller

ROUTINE ENDP

The BP (Base Pointer) register has, up to now, been unex-
plained. This register is used to address data in the stack. In its
default addressing scheme, it acts as an offset into the stack
segment (the segment pointed to by SS), just as [BX] can be
used to address memory in the data segment (the segment
pointed to by DS). To read values from the stack, we move
the SP (stack pointer) register into BP, then use BP as an offset
into the stack (see Figure 6-4). BP must be adjusted to point to
the correct data, however.
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Figure 6-4. Using BP to Address Data on the Stack

~—Top of stack
first word

second word

Used
stack
next to last word BP (SP + 2)
last word SS points here
Offset

SS points here
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As you can see from Figure 6-4, after moving SP into BP
we must add two to BP to address the last word stored on the
stack. Remember, the stack grows downward, from higher
memory locations to lower ones. For each additional word, we
must increment BP by two (if the addressing modes have you
confused, be patient; they are all explained in the next chap-
ter). Now examine the code below:

CALLER PUSH PARAM_ONE ;store parameter one
PUSH PARAM_TWO ;store parameter two

CALL ROUTINE ;call the routine
(more program) ;finish up
ROUTINE MOV BP,SP ;set BP
' MOV SIL,[BP+2] ;get parameter two
MOV DIL[BP+4] ;get parameter one
(do whatever) ;use the parameters
RET 4 ;return to caller

In this example, rather than pop the parameters off the
stack, we use BP as a pointer, and copy the parameters into SI
and DI for processing. SP does not change, so the stack
(including the parameters) remains unaltered.

Note the RET 4 at the end of this subroutine. Routines
which are passed parameters via the stack need some way of
removing them. The calling program could pop them off the
stack, but this lacks elegance. Instead, Intel has provided us
with a command which automatically pops parameters from
the stack when we return from a subroutine. This command,
RET #, comes in two forms. The first is an Intra Segment and
Add Immediate to Stack Pointer RET instruction. In other words,
it is a near RET which also pops off the number of bytes
specified in the operand

RET n

where 7 is a 16-bit displacement.

This kind of near RET pops IP off the stack and adds the
displacement to the stack pointer. For example, RET 2 would
return from the subroutine and pop two bytes (or one word)
off the stack. RET 16 would return and pop 16 bytes (or eight
words) off the stack.
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The second form of the RET n command works like the
first, but is used to return from far procedures rather than near
procedures. The label Inter Segment and Add Immediate to Stack
Pointer identifies this as a long RETurn.

Many compiled and interpreted languages (such as Pascal
and BASIC) use the stack to pass parameters. BASIC also uses
this method when machine language subroutines are called
with USR or CALL statements (see Chapter 10).

Bear in mind that it is also possible to use the stack to re-
turn values to a calling routine. The calling routine would then
pop the returned values off the stack (in this case, RET n
might not be used). Note, however, that the calling routine
must make room on the stack for the returned values if you
want to avoid popping and pushing the return address.

You might be wondering what advantages this system of-
fers over the other methods of passing parameters. The great-
est benefit comes in writing recursive routines, routines which
can call themselves. BASIC programmers will be completely
unfamiliar with this idea, since BASIC subroutines (unless
very cleverly written) cannot call themselves. In Pascal or
Logo, however, this is possible. Recursive routines are not im-
portant to beginning machine language programmers, but they
are very powerful, and particularly useful when you need to
analyze a large number of possibilities. The most common ex-
ample of a recursive routine finds the factorial of a number
(X!, the product of all the numbers from 1 to X).

Decimal Output

Now that you understand the stack and subroutines, look at
the DECIMAL_OUT routine in the program PRIMES.ASM
from Chapter 4. Before we get into the actual code, let’s con-
sider how we can convert a binary number into decimal. The
method used in DECIMAL_OUT is to repeatedly divide the
number to be printed by 10. This can be made clear with an
example.

Suppose we start with the number 567. After the first di-
vision by 10, the quotient will be 56, and the remainder 7.
Note that the least significant digit of 567 (the one’s digit) is
the remainder. Now, divide by 10 again: The remainder will
be 6 (the ten’s digit of the original number), and the quotient
5. It's clear what is going on. When we divide by 10 again, the
quotient is 0, and the remainder 5. The entire number has
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been converted. The one drawback to this system is that the
digits are converted from the least significant to the most, but
we must print the numbers starting from the most significant
to the least. We can use the stack to reverse the order of the

. digits.

The comment header at the beginning of this subroutine
says that it is passed the number to print in AX, and that CX,
AX, and DX are destroyed. In the first instruction of the rou-
tine, CX is set to zero. CX is used to count the number of dig-
its that must be printed. Then CX is incremented by one. This
means that we will always print at least one digit. DX is set to
zero in preparation for the DIV by BASE. BASE is a variable
which holds the base of the printed number. If we make BASE
ten, the number will be printed in decimal; if BASE holds
eight, the number will be printed in octal (base 8). Next we
push DX onto the stack. Remember that DX holds the remain-
der of the division, the digit that we want to print. Then we
check AX (the quotient) to see if it's zero. If AX is zero, the en-
tire number has been converted, and we go to the part of the
routine which actually prints the number.

The printing part of the routine (labeled PRINT_DIGITS)
POPs the digits off the stack one by one, adds the ASCII
value of zero (to convert a number from 0 to 9 to a character
from 0 to 9), and calls the CHARACTER_OUT routine. Note
that CX holds the number of digits which were pushed onto
the stack, so the LOOP instruction will repeat until all of the
digits have been printed.

You can use this routine in your programs when you need
to print a binary number in decimal or some other base. Note
that you cannot use this routine to print a number in hex be-
cause the characters A through F do not follow character 9 in
the ASCII character set. See Chapter 7 for a routine to print
numbers in hex.

A Few Points to Remember
When you are using the stack and writing subroutines it is im-
portant to keep the following in mind:

« All PUSHes should have corresponding POPs (RET #, or an
adjustment of the SP, such as ADD SP,n, can be substituted).
In other words, you don’t want to leave extra values on the
stack and you don’t want to POP more values off the stack
than you put on. .
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* The computer uses the same stack for CALL/RET and
PUSH/PORP. If you leave extra values on the stack, the com-
puter will use these values as the return address when it
leaves the subroutine. If you POP too many values off the
stack, you will lose one level of subroutines. Although you
can use this to bypass one level of RETurns by POPping the
return address off the stack, this style of programming is
risky and needlessly complex.

» It is not necessary to POP a value into the register that
PUSHed the value.

Programs which have stack trouble often refuse to stop
running (they seem to run fine, but then start executing over
again when they should stop), or they run for a while and
mysteriously crash the computer. If you seem to have a persis-
tent but elusive problem, check stack manipulations carefully.
Be particularly wary of PUSHing a register and jumping
around its POP. Nothing can cause more headaches than a
poorly managed stack.
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Addressing Modes

At first glance, the great variety of addressing modes available
to the 8088 machine language programmer can be mind-
boggling. To complicate matters further, there are many ways
to request the same addressing mode of the assembler. You
will find, however, that the seemingly complex address modes
are quite straightforward.

There are six addressing modes available to the 8088. The
purpose of the different modes is to give the programmer a
variety of ways to determine an effective address, the address
of the memory location which is going to be examined.

An effective address has two components, a segment ad-
dress and an offset. The segment address is stored in one of
the four segment registers (CS, DS, ES, or SS). Remember,
these registers hold the addresses of your program’s code seg-
ment, data segment, extra segment, and stack segment. The
offset portion of the effective address can be a constant value,
the value of a register, the sum of a register and a constant
value, the sum of two registers, or the sum of two registers
and a constant value.

For all of the addressing modes, the segment address
marks the beginning of the segment, and the offset address
points to a location within the segment, relative to the
beginning.

Direct Mode Addressing

The first and simplest of the six addressing modes is direct
mode addressing. In this addressing mode, the offset is a con-
stant value. This constant is usually the address of a variable
which is calculated by the assembler and is relative to the
beginning (the base) of the segment it’s defined in. For ex-
ample, if the data segment were defined as

DATA SEGMENT
SOME_DATA DW 933,9265
MORE_DATA DW 5543,839
DATA ENDS
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the offset address of SOME_DATA would be calculated as 0.
SOME_DATA is the first variable defined, thus its address is
at the base of the segment DATA. On the other hand, the off-
set address of the second variable, MORE_DATA, is 4 because
MORE_DATA begins four bytes after the base of the segment
DATA (the pseudo-op DW defines words, which are two bytes
long).

To use direct mode addressing, simply use the name of a
variable. For example, to move the value of SOME_DATA into
AX, you could

MOV AX,SOME_DATA
Remember that SOME_DATA itself is a symbol that
represents an address in memory. The above operation moves

the word pointed to by SOME_DATA into AX. In other
words, it is something like the BASIC

AX = PEEK(SOME_DATA)

If you want to move the actual address of SOME_DATA into
AX (perform AX = SOME_DATA), you have to use

MOV AX,OFFSET SOME_DATA

The OFFSET command tells the assembler that you want AX
to hold the address of SOME_DATA, not the word
SOME_DATA points to.

For tables of data, it is sometimes useful to use this
format:

MOV AX,SOME_DATA[0]
where [0] is a displacement into the SOME_DATA table. Be

careful; this is not like a BASIC array. In machine language

the number between the brackets always refers to bytes. Since
SOME_DATA is made up of words, use

MOV AX,SOME_DATA[2]

to access the second word (9265) of the SOME_DATA table.
If you prefer, you can also use
MOV AX,SOME_DATA +2
where the constant 2 is clearly added to the address of
SOME_DATA.

For the sake of clarity, the above examples use the
instruction MOV, and show different addressing modes only
in the source operand. The same rules apply to any instruction
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which accepts addressing modes; and various addressing
modes can be used in the destination operand as well as the
source. :

Register Indirect Mode Addressing

Only four of the registers can be used in register indirect
addressing: SI, DI, BX, and BP (source index, destination in-
dex, base, and base pointer). In register indirect mode address-
ing, the value contained in the register is used as the offset
address of the data. You must set the register to point to the
data you want to access.

Here are examples of this addressing mode, using each of
the four possible registers:

MOV AX,[S]]
MOV AX,[DI]
MOV AX,[BX]
MOV AX,[BP]

Of course, the destination operand can also use register in-
direct addressing:

ADD [BX],AX

MOV [DI],DL

SUB [BPAH .

It is important to remember that the 8088 cannot perform
“memory to memory” operations; thus the following com-
mands are illegal:

MOV [BX],[BP]
MOV SOME_DATA,[BX]

Programmers often use register indirect mode addressing
when they must access a one-dimensional array or table of
values. The following discussion provides examples of table
addressing.

Based Mode and Indexed Mode Addressing

Based mode addressing and indexed mode addressing are identi-
cal in concept; the only difference is the register used. Based
mode addressing uses one of the base registers (BX or BP),
while indexed mode addressing uses one of the index registers
(SI or DI). The basic principle of based mode/index mode
addressing is to add a constant to the contents of the register.
The sum becomes the offset portion of the effective address.
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The acceptable forms of based mode/indexed mode
addressing are numerous. The basic format is

MOV CX,[BX]+3
Another common format is
MOV CX,[BX+3]

Both of these take the value of BX, add 3, and use the sum as
the address of the data. The different formats are only for the
convenience of the programmer. The assembler doesn’t care
which format you use. The constant does not have to be a
positive number; the command

MOV CL,[BX-1]

is quite acceptable, and moves the byte below BX to the CL
register. :
The constant can also be the name of a variable. Consider
the following data segment:
DATA SEGMENT
BYTE_DATA DB 1,3,3,7,5,2,94,9
WORD_DATA DW 848,664,2258,753,209
DATA ENDS
We can use either
MOV ALBYTE_DATA[BX]
or
MOV AL,[BYTE_DATA +BX]

to get the BX byte in the BYTE_DATA table. For example, if
BX holds 3, AL will hold the fourth byte of BYTE_DATA, or
the number 7.

Word-sized data presents a slight problem because all
addressing is based on bytes, not words. We can use
MOV AX,WORD_DATA[BX]
to address the table WORD_DATA, but BX needs to hold 0 to
get the first word, 2 to get the second, 4 to get the third, etc.
After executing

MOV BX,6
MOV AX,WORD_DATA[BX]

AX holds 753.
Notice the similarity between based mode/index mode
addressing and register indirect mode addressing. In register
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indirect mode addressing, the value of a register alone is used
as the address of the data. With based mode/indexed mode
addressing, the value of a register is added to a constant, and
the sum is used as the address of the data. As with register in-
direct addressing, based mode/indexed mode addressing is
very useful in accessing a table or a one-dimensional array of
values.

Based Indexed Mode Addressing

You just saw how to form an address by adding a constant to
a register. You can also form an address by combining the
contents of two registers. With based indexed addressing the
contents of a base register (BX or BP) are added to the con-
tents of an index register (SI or DI). The resulting sum is used
as the address of the data. There are only four possible
combinations of these registers: BP + SI, BP + DI, BX + SI,
or BX + DI. However, each combination can be expressed in
four alternate forms. The assembler interprets these four ex-
pressions as identical:

MOV AX,[BP][SI]
MOV AX,[SI][BP]
MOV AX,[BP+SI]
MOV AX,[SI+BP]

The most common use for this kind of addressing is in
accessing a two-dimensional array (an array with two sub-
scripts). For example, the base register could hold the address
of the beginning of a row, while the index register could hold
the number of the column we are trying to access. In Figure 7-
1, BX holds the address of the row, and SI holds the number
of the column we are trying to address.

Based Indexed Mode with Displacement Addressing
The last addressing mode available to the machine language
programmer is called based indexed mode with displacement
addressing. This addressing mode is simply a combination of
the last two addressing modes. First the contents of two reg-
isters are combined; then a constant is added to the sum of the
registers to form the effective address.
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Figure 7-1. Two-Dimensional Table Access Using Based
Indexed Addressing
Values for

0 1 2 3 SI

12

Values
for BX

The assembler has a variety of possible formats for based
indexed mode with displacement addressing:

MOV AX,[BX+DI+12] ;the three can appear in any order
MOV AX,[BX+12+DI]
MOV AX,[12+DI+BX] ;etc.
MOV AX,[DI+12][BX] ;or broken up in a variety of ways
MOV AX,[BX+12][DI]
MOV AX,8+[BX][DI]+4 ;the constant can be in two parts
MOV AX,12+[BX][DI] ;or just in the beginning
and they go on and on. To the assembler, all of these instruc-
tions are identical.

Often, the value of the constant is the address of a
variable:

MOV AX,ANY_DATA[BP][D]]
MOV AX,[ANY_DATA +BP-+DI]

If you like, you can add another constant (beyond the address
of the variable): ‘

MOV AX,ANY_DATA[BX][SI]+14

As with based indexed addressing, based indexed with

displacement addressing can be useful when accessing a two-
dimensional array.
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The names of the different addressing modes we have
given here might be called the official Intel names. It is far
more important to understand how they work than to memo-
rize the names. Table 7-1 at the end of the chapter lists all of
the addressing modes and their possible register combinations.
Note that the format of the operand is the one used by
DEBUG.

Eliminating Ambiguity: The PTR Instruction
Remember that any of the addressing modes described above
can be used as the source or the destination operand of an
instruction (but not both at the same time). Remember also
that the source can be an immediate value, and that a register
can act as either the source or the destination. When one op-
erand is an immediate value, the size of the operation is some-
times ambiguous. For example, in

CMP [BX],12H

the assembler has no way of knowing if [BX] points to a word
or a byte. If you try this, the assembler will respond with error
35 (Operand must have size). Note that the error for
CMP [BX],1234H
is different. If you try this, you will get error 50 (Value is out
of range), because the word 1234H is too large for the ex-
pected use (comparison with the byte-sized memory location
addressed by [BX]).

When the size of an operation is ambiguous, the PTR
instruction is used to clarify the instruction. Our first statement
above must be replaced with

CMP BYTE PTR [BX],12H
if [BX] points to a byte, or with
CMP WORD PTR [BX],12H

if [BX] points to a word. However, the assembler can make
certain assumptions. If we define a variable in our data seg-
ment as

MORE_INFO DW 5142,3387,9808

the instruction

CMP MORE_INFO[SI],43H

is not ambiguous. MORE_INFO is defined as word data, so
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the assembler assumes that [SI] points to a word. If, however,
you want to compare 43H to the byte pointed to by [SI], you
can override the assembler’s assumption with

CMP BYTE PTR MORE_INFO|SI],43H
There is another method which is discussed in Chapter 15.

LDS/LES and the DD Pseudo-op

There are two very specialized instructions that are used to
load the DS and ES segment registers with values, LDS (Load
Data Segment) and LES (Load Extra Segment). The format for
these instructions is

LDS destination,source
LES destination,source

where destination is any general register and the source is a
memory location addressed by one of the methods described
above. The instruction moves the word pointed to by the
source into the destination register. The following (higher ad-
dressed) word is moved into DS (if LDS is used), or ES (if LES
is used). Here are some examples:

LDS S, DOUBLE_WORD_DATA[BX][DI]+2
LES DLDWORD PTR [BP][DI]

LES BX,DWORD PTR [BX]

LDS BP,DWORD PTR [BX]+4

If you do not specify DWORD PTR, the assembler will
give you error 57 (Illegal size for item). The addressed mem-
ory location must be defined with the DD (Define Double
word) pseudo-op. The operands of the DD pseudo-op can be a
label or a constant value. See the examples below.
DOUBLE_WORD_DATA DD FAR_LABEL,FAR_PROC ;FAR labels

DD 1343234,432343 ;constants

LDS and LES can be useful if your program has more
than one data segment. Remember to include an ASSUME
statement when DS or ES is changed.

Segment Overrides

All memory access is performed using an offset into a seg-
ment. The segments are defined by the four segment registers.
Machine language programs are addressed using the IP as an
offset into the segment defined by the CS register. The stack is
addressed using the SP register as an offset into the segment
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defined by the SS register. Most data is addressed using an
offset into the segment defined by the DS register. All of the
addressing modes described above are offset into the data seg-
ment, except when BP is involved. When BP is used, the offset
is added to the SS, not the DS register. In other words, BP is
generally used to access the stack segment.

However, it is not mandatory to use DS or SS. You can
tell the 8088 which segment register to use for addressing data
with a segment override command. A segment override com-
mand is sometimes called a segment prefix command, or just a
SEG command. The segment override tells the 8088 to use a
specific segment register when it addresses memory. There
are four segment override commands, one for each segment
register:

CS:
SS:
DS:
ES:

The segment override is often included with the addressing
mode. For example, if the BP register is used to address data
in the data segment rather than the stack segment, you can
use something like

MOV AX,DS:[BP]
MOV AX,DS:[BP+DI]

If the PTR command is used, it should appear before any seg-
ment overrides, as in

MOV BYTE PTR ES:[BX],0
CMP WORD PTR CS:[DI},15H.

Bear in mind that the selection of the segment is generally
automatic. The assembler uses the ASSUME pseudo-op to
determine which segment register is used to address specific
data. Consider the following data segment declarations:

DATA1 SEGMENT

FIRST DW 1,2,3,4

SOME DB ‘MORE DATA’
DATA1 ENDS

DATA2 SEGMENT

SECOND DW 0AH,0BH,0CH,0DH

THIRD DB ‘RUNNING OUT OF IDEAS’
DATA2 ENDS
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and the ASSUME:
ASSUME ES:DATA1,DS:DATA2

Now, whenever FIRST or SOME is accessed, the ES register
will be used as the segment register. All instructions involving
the FIRST or SOME labels will have an extra segment over-
ride. Any access to DATA2 uses the DS register. For example:

MOV AXFIRST[BP] ;even though BP usually uses SS
If you prefer, you can also use:

MOV AX,ES:[BP]
MOV AX,DATAI:[BP]

All three of these examples use ES as the segment register.
The following

MOV AX,SECOND[BP] ;BP is now using DS as segment register
MOV AX,DS:[BP]
MOV AX,DATA2:[BP]

use DS rather than ES. Specifying a label name, a segment
name, or a segment register tells the assembler which segment
register to use. However, in

MOV BP,OFFSET SOME
MOV AX,[BP]

MOV AX,[BP] is ambiguous. The assembler has no way of
knowing if you want to use DS, ES, or SS as the segment reg-
ister; thus the offset held in [BP] might point to an undesired
location. You must specifically tell the assembler which seg-
ment register to use:

MOV BP,OFFSET SOME
MOV AX,ES:{BP]

If you do not specify a segment register, the assembler will as-
sume the default segment. The default segment register is DS
unless BP is involved, in which case the default is SS. Again,
the segment assignment is generally automatic, but you must
be certain that you are communicating your ideas to the
assembler correctly, to avoid unpleasant surprises.-

There are many uses for segment overrides. Anytime the
BP register is used to access data in the data segment, an over-
ride is used. However, there are times when you might want
to use BX or DI to access the stack segment, or perhaps use BP
and SI to address something in the ES (Extra Segment). You
can even store data in the code segment and use the segment
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override to access the data properly (see “Hexconv,” the
sample program at the end of this chapter).

Special Consideration of the Segment Registers
The segment registers cannot be used as operands in any
instructions except MOV, PUSH, and POP. In other words,
the segment registers cannot be used in operations such as
ADD or SUB.

When the segment registers are the destination of the
MOV instruction, the source operand cannot be an immediate
value. The source can be any other register (except another
segment register) or an addressed memory location. Perhaps
this was designed for our safety. We wouldn’t want a program
to haphazardly change the values of a segment register.

Specialized Addressing

There are three rather specialized but useful instructions that
are related to memory addressing. These are LEA (Load Effec-
tive Address), XCHG (eXCHanGe), and XLAT (translate).

LEA. The Load Effective Address instruction calculates an
address and moves the calculated address into the specified
register. LEA takes the general format

LEA destination,source

where the destination can be any general word-sized register,
and the source is any addressed memory location. Remember
that the address, not the value contained in the addressed
memory location, is moved into the destination register. For
example:

LEA BX,[SI][BP]+10

moves the quantity SI + BP + 10 into BX. It does not move
the word pointed to by SI + BP + 10 into BX. The purpose of
this instruction is to allow offsets to be subscripted with reg-

isters. This is not permitted with the standard MOV instruc-
tion. For example,

MOV BX,OFFSET SOME_DATA[BX]
is illegal; you must use instead

LEA BX,SOME_DATA[BX] ;get the offset
MOV BX,[BX] ;load the data in BX
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You can also use LEA if more than two subscripting vari-
ables are required. You might use something like

LEA BX,MORE_DATA[BX][DI]
MOV AX,[BX][SI]

if what you really wanted was MORE_DATA[BX+DI+SI), a
nonexistent addressing mode. In this case, the LEA instruction
replaces the rather awkward

ADD BX,DI
MOV AX,MORE_DATA[BX][SI]

which is somewhat unclear.

You can also use LEA if you need to temporarily adjust
- an offset. For example, you might write a program which
needs to address the memory around SI-16, in which case, it
would be to your advantage to use:

LEA DL[SI-16]

and use DI for SI-16. This simplifies the code and may make
it easier to understand and follow.

XCHG. The exchange operation is much like the SWAP
operation in BASIC. XCHG takes the format

XCHG destination,source

and switches the contents of the source and destination. The
source and destination can be any general byte or word reg-
ister, or any addressed memory location. You cannot XCHG
two memory locations, so one operand of XCHG must always
be a register. No flags are affected by XCHG.

Remember that this operation is more complex than
MOV. MOV copies a value from the source to the destination,
without destroying the contents of the source. XCHG switches
the two; what was in the destination is now in the source, and
what was in the source is now in the destination.

XLAT. XLAT takes the general form

XLAT source-table

It is a one-byte instruction used to retrieve single bytes from a
table of data. The source-table operand is only for the assem-
bler. When you use DEBUG, XLAT will appear alone on a
line. XLAT “translates” a byte through a table lookup proce-
dure. The BX register must hold the address of the table, and
AL the byte which is being translated. AL is used as an offset
into the table, and the byte which is addressed is loaded into

114



7
Addressing Modes

AL. The old AL is lost. The closest approximation of XLAT’s
addressing is

MOV AL,[BX][AL] ;this is illegal, you must use XLAT

The source-table must be defined as a byte table; other-
wise, an error from the assembler will result. Using XLAT is
rather cumbersome, but straightforward.

MOV ALBYTE_TO_BE_TRANSLATED ;set byte to translate
MOV BX,OFFSET TABLE_NAME ;set base of table
XLAT TABLE_NAME ;do translation

You can use LEA BX,TABLE_NAME, rather than MOV
BX,OFFSET TABLE_NAME if you so desire. When this code
fragment is executed, AL will hold the translated value. Note
that XLAT affects none of the flags. : ‘

XLAT will only translate byte-sized quantities. Because of
this limitation, the length of the translation table is limited to
256 bytes. You do not need to create a table which is 256
bytes long; however, neither the 8088 nor the assembler
makes any boundary checks on access to the table. Boundary
checks are the responsibility of the programmer. The sample
program Hexconv uses XLAT with a short 16-byte table.

Using XLAT
Our sample program for this chapter uses the XLAT instruc-
tion in the process of converting a binary word into ASCII hex
digits. The number is printed on the screen. The routine is
given the number to print in AX.

WORD_OUT begins by saving the registers which it uses.
CH is used to count the number of hex digits that we must
convert, and CL is set to the number of rotates to perform
(ROL will be explained in the next chapter). Next, AX is
stored. We extract the lowest nybble (the nybble to convert) by
ANDing it with 15, set the base of the ASCII table (notice that
* the table is in the code segment, not the data segment), and
perform XLAT. AL, which held a number from 0 to 15, now
holds an ASCII digit. We print the digit, recover AX, and
check to see if all of the nybbles have been converted. If they
have, we restore all the stored registers, and return to the call-
ing program.

The sample calling program is not very complex; it just
sends WORD_OUT all of the numbers from 0 to FFFFH. If CX
is 0 after the INC CX command, then we have gone through
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all of the numbers and CX has cycled back to 0. The program
can be stopped at any time by pressing Ctrl-Break (or Fn-
Break on the PCjr).

WORD_OUT can be used in any of your programs which
need to output hex numbers—simply extract the routine from
this program and insert it into yours. Likewise, you can extract
the DECIMAL_OUT routine from the “Primes” program if
you need to print numbers in decimal. When you do so, don’t
forget to copy the routine CHARACTER_OUT as well.

Table 7-1. Table of Addressing Modes and Possible
Register Arrangements

Addressing Mode Possible arrangements

Direct (label)
displacement

Register Indirect BX]

BP]

SI]

DI]

Based BX+n]

BP +n]

Indexed SI+n]

DI+n]

Based Indexed BX+SI]

BX+DI]

BP+SI)

BP+DI]

Based Indexed with Displacement [BX+SI+n]

BX+DI+n]

BP+SI+n]

BP+DI+n]

n represents a signed 8- or 16-bit displacement
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Program 7-1. Hex to ASCII Conversion Using XLAT
HEXCONV .ASM

This program outputs the hex numbers
from 0000H to FFFFH.

page ,96
i
cr equ 13 - scarriage return
| f equ 10 ;line feed

i
stack segment stack

dw 128 dup(?) sstack
stack ends
)
code segment
program proc far

assume cs:code

push ds

mov ax,0

push ax
H !

mov ¢x,0 : s1zZero counter
another: ‘ ’

mov ax,cx ) " j;output the counter

SOpOJN Buissaippy
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Advanced Arithmetic

As you become a more proficient programmer, you may find
that 16 bits is not enough room to store all of your data. After
all, limiting your calculations to the numbers from —32,768 to
32,767 (or 0 to 65,535 for unsigned numbers) can be constrict-
ing. In this section you will learn how 16-bit words can be
chained together into 32-bit (or even 64-bit) quantities.

Adding Multiword Numbers

To understand how the computer can add two multiword
numbers together, consider how we add two multidigit num-
bers. For example, when adding the numbers 17 and 25, first
add the one’s digits: 7 plus 5 equals 12. The ten’s part of our
partial sum is the carry into the next digit. In other words, we
have to carry a 1 into the next (more significant) digit. When
adding the ten’s digits together, remember to include the
carry. Summing up, the 1, the 2, and the extra 1 from the
carry make 4. Remember, this is four 10’s. Our complete sum
is 42. In our example, we carried from one digit to the next.
The 8088 uses the carry flag to carry from one word (or byte)
to the next.

When the microprocessor performs an ADD, however, it
does not take the carry flag into account. A second addition
instruction, ADC (ADd with Carry), is used when the state of
the carry flag must be considered. In all other respects, such as
possible operands and resulting flags, ADC is identical to
ADD. Using ADD with ADC, we can chain bytes or words to-
gether into very large numbers.

For example, to add a 32-bit number stored in AX:DX (AX
holds the least significant word, and DX the more significant
word) to another in BX:CX (BX holds the least significant
word), you could use the following code (this stores the result
in BX:CX):

ADD BX,AX ;add the less significant words together...
ADC CX,DX ;..and the more significant words
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Note that you must start with the least significant and proceed
to the most significant word.

If you need even larger numbers (say 64-bit words), you
can use a loop to add them together. Consider this example
(for MASM only):

[in your data segment]

NUMBER_ONE DQ 1348176354  ;define a 64-bit word
NUMBER_TWO DQ 7564627653  ;define another
SUM DQ? ;undetermined value for sum
[in your code segment]
MOV CX,4 ;number of words to add
;together
MOV BX,0 ;point to least significant word
CLC ;80 first ADC is like an ADD
L1: MOV AX,WORD PTR NUMBER_ONE|[BX]
;add the two...
ADC AX,WORD PTR NUMBER_TWOI[BX]
;...corresponding...
MOV WORD PTR SUM[BX],AX
;...words together
INC BX ;point to next significant word
INC BX
LOOP L1 sfinish them all

The DQ pseudo-op defines a 64-bit word (see Chapter 14 for
more details). Two INC BX instructions are used to add two to
BX. The ADD instruction cannot be used because it changes
the state of the carry flag; INC and DEC do not affect the
carry flag. Also notice that the carry flag was cleared (CLC)
before entering the loop. If the carry is clear, ADC is just like
ADD.

Subtracting Multiword Numbers
Subtracting two multiword numbers is just as simple as add-
ing them. In subtraction, however, the carry flag is used to in-
dicate a borrow into the highest bit rather than a carry.
Consider how we subtract two multidigit numbers. To
subtract 27 from 50, first subtract the ones. 7 cannot be sub-
tracted from 0, so we borrow a 10 from the next higher digit;
10 minus 7 equals 3. When subtracting the ten’s place, 1 must
be taken for the 10 borrowed earlier. Thus, 5 minus 2, minus
another 1 for the borrow, leaves 2. Remember, this is two
10’s. The difference is 23. The 8088 uses the carry flag to in-
dicate a borrow from one word (or byte) to the next.
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When we use the SUB instruction, however, the
microprocessor does not consider the state of the carry flag
when it subtracts. You must use the SBB (SuBtract with Bor-
row) operation if you want the microprocessor to take the
state of the carry flag into account. If the carry flag is set (in-
dicating there was a borrow), SBB decrements the resulting
difference by one to take care of the borrow. SUB and SBB are
identical in terms of how they set the flags and the operands
they take. If the carry flag is clear (indicating no borrow), SBB
is just like SUB. We can subtract two multiword values using
SUB with SBB.

For example, if we want to subtract two 32-bit words, one
stored in AX:DX, the other in BX:CX (AX and BX hold the
least significant word; the result is stored in BX:CX), we can
use:

SUB BX,AX ;subtract the least significant words...
SBB CX,DX ;...and the more significant words

As with multiword addition, you must begin subtracting with
the least significant word and proceed to the most significant.
If you need larger numbers, say 64-bit quantities, you can use
a loop structure as shown above in the 64-bit word addition;
just change all of the ADCs to SBBs.

Comparing Multiword Numbers

When dealing with multiword numbers it is often convenient
to compare them with other multiword numbers. The tech-
niques are quite easy to understand. Consider how you would
compare two multidigit numbers. Suppose you were asked
which is larger, 52 or 27. Clearly, 52 is larger. All you had to
do was look at the ten’s digit (the most significant digit); you
didn’t need to look at the one’s digit to know that 52 is larger
than 27. Now, suppose you were asked how to compare 29
and 22. This time, the ten’s digits are the same; you have to
inspect the one’s place to determine which is larger.

The same techniques are used in programs that compare
two multiword numbers. Start by comparing the most signifi-
cant words. If they are the same, check the next less signifi-
cant words. Clearly, if all of the words are the same, the two
numbers are equal. The following code can be used to com-
pare two double words; one is stored in AX:DX and the other
in BX:CX:
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CMP DX,CX

JNE DO_CONDITIONAL

CMP AX,BX
DO_CONDITIONAL: JA AX_DX_ABOVE_BX_CX

Converting Between Formats

When your program uses many different number sizes (bytes,
words, and double words), it often becomes necessary to con-
vert between them. To convert unsigned numbers, you simply
put a zero into the more significant part of the number
(whether byte or word). For example, you would use MOV
AH,0 to convert an unsigned byte in AL into an unsigned
word in AX.

For converting signed numbers, the 8088 provides two
instructions, one to convert a byte to a word (CBW) and an-
other to convert a word into a double word (CWD). Neither
CBW (Convert Byte to Word) nor CWD (Convert Word to
Double word) takes an operand. CBW converts the byte in AL
into a word in AX. CWD converts the word in AX into a
double word stored in AX and DX (DX holds the more signifi-
cant word). Because their effect is to extend from smaller to
larger sizes, CBW and CWD are also known as sign extend
instructions. These operations are most often used before
signed division, when a signed word is divided by another
signed word, or a signed byte is divided by another signed
byte. For example, to divide a signed word in AX by another
signed word in BX: \

CWD ;sign extend AX into DX
IDIV BX ;divide AX:DX by the signed word in BX

You can use the techniques discussed above to perform
many elaborate mathematical operations. By chaining bytes or
words together, you can represent extremely large numbers.
However, there are other ways of representing numbers
within the 8088 microprocessor.

Binary-Coded Decimal (BCD)

The 8088 provides three methods of storing numeric data. We
have already discussed pure binary. The other two systems are
powerful extensions of the binary system.

The basic principle of these “new” numeric data storage
techniques revolves around the idea of binary-coded decimal
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(BCD) numbers. In Chapter 2 you learned that computers
store all of their numbers in binary. While this is convenient
for the computer, humans generally find it difficult to under-
stand, and even more difficult to convert to decimal. To assist
the programmer, the 8088 has been designed to use BCD as
well as pure binary. In BCD, each decimal digit is stored as a
four-bit binary number. Look, for example, at Figure 8-1.

Figure 8-1. BCD, Hex, and Binary
Binary Hex BCD

0000 0 0

0001 1 1

0010 2 2

0011 3 3

1000 8 8

1001 9 9

1010 A undefined
1011 B undefined
etc.

Notice that only the hex digits 0 to 9 are defined in BCD.
The hex digits A to F are undefined, and represent no value in
BCD. This type of numeric storage is convenient because it is
very easy to convert a BCD number into ASCII decimal. Each
four-bit number represents one decimal digit.

The 8088 uses the BCD storage technique in two ways,
packed and unpacked. In unpacked storage, each digit is given
an entire byte, the upper nybble is unused. IBM and Intel refer
to this kind of numeric storage as ASCII. Using this method,
you can store the numbers from 0 to 9 in one byte. This is far
less than is possible using binary (0 to 255), but it is extremely
easy to convert unpacked BCD into conventional ASCII (just
add 48, the ASCII code for the zero character, to the number).

Defining unpacked BCD data in a program is fairly sim-
ple. Since only the digits from 0 to 9 are valid, the simplest
method is to use the DB pseudo-op.

UNPACKED_DATA DB 53,1 ;defines 135
Unpacked BCD digits are best defined starting from the least
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significant digit and ending with the most significant. Unfortu-
nately, it is somewhat confusing because the numbers must be
read backwards.

You can also use the DW command, as in:

UNPACKED_WORD_DATA
DW 0301h ;defines 31 (unpacked)

Remember that the assembler automatically places the less
significant byte of a word first, so the order of the digits will
be correct if you use DW. '

In packed BCD data, both the upper and lower nybbles
are used to hold decimal digits—two BCD digits per byte. This
kind of number storage is referred to as decimal in IBM and
Intel literature. Packed BCD number storage allows you to
store the numbers from 0 to 99 in a single byte. This is more
than unpacked BCD storage, but it is also more difficult to
convert packed BCD numbers into ASCII for output. The
methods for this are outlined in the discussion on bit shifting
later in this chapter.

There are two data-defining pseudo-ops you can use to
define packed BCD data. DB can be used as follows:

PACKED_BCD_DATA DB 12h,43h ;defines 1243 or 4312

With packed BCD numbers, it is more conventional to have
the less significant byte follow the more significant. Note that
this is the opposite to unpacked BCD numbers.

The DT pseudo-op is designed specifically to define
packed BCD data. Note that this command is not available
with ASM, the Small Assembler. DT (for Define Ten bytes) will
define 18 BCD digits. The first byte is used to hold the sign
(O0H is positive, 80H is negative); the other nine, the data.
The data is stored as most significant first; the last byte holds
the least significant digits. For example:

LARGE_DATA DT 7893146

becomes

00 00 00 00 00 00 07 89 31 46

A negative number, defined with
NEGATIVE_EXAMPLE DT -125368953553
would assemble as:

80 00 00 00 12 53 68 95 35 53
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If you use this command, you will have to write special
addition and subtraction routines which handle the sign of the
number. It was actually designed to be used with the 8087
Numeric Data Processor. Note that you can define only 18
digits; defining more results in a 29:Division by 0 or overflow
error from the assembler.

Using BCD Math

Unlike some microprocessors (such as the 6502), the 8088
does not have decimal or ASCII math modes. Instead, an
adjustment instruction is needed before or after each
arithmetic operation (ADD, SUB, MUL, DIV, etc.). Note that it
is the responsibility of the programmer to call these instruc-
tions. There is no way to make the microprocessor perform all
of the mathematical operations in a BCD mode. There are six
adjustment instructions available; four pertain to ASCII math,
and two to decimal math.

AAA (ASCII Adjust for Addition). The AAA instruction
performs an ASCII adjustment on the result of an addition.
The instruction takes no operands and always adjusts the AL
register. Only the lower nybble of AL is considered. If the
BCD digit held in AL is valid, the upper nybble is cleared, as
are CF and AF. If the BCD digit held in AL is not valid (it is
hex A to F), the digit is adjusted to a valid digit, AH is in-
cremented by one (to handle the carry), CF and AF are set (to
indicate a carry), and the upper nybble of AL is cleared.

For example, you would use

ADD AL,BL
AAA

if you are adding two valid unpacked BCD numbers stored in
AL and BL. If the sum of AL and BL is 9 or less, AAA appears
to do nothing. If the resulting sum is greater than 9, AAA ad-
justs the sum by adding 6 (AA becomes 0, BH becomes 1,
etc.), AH is incremented by 1, and CF and AF are set. To
chain many unpacked BCD additions together you could use:

[in the data segment]

SMALL_1 DB 4,0 ;4 (least significant digit first)
SMALL_2 DB 7,0 ;7 as unpacked BCD data
SMALL_SUM DB ?? ;undefined variable to hold sum

[in the code segment]
MOV AX,WORD PTR SMALL_1 ;add the two numbers together
ADD AX,WORD PTR SMALL_2
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AAA ;ASCII adjust lower digit
MOV SMALL_SUM]J0],AL ;store adjusted digit

MOV AL AH ;adjust the other digit
AAA

MOV SMALL_SUM[1], AL ;store adjusted higher digit

Notice that 16-bit addition is used. The way the numbers are
added is unimportant. It is easier to add the numbers together
first, and then adjust the sum. Any carry resulting from AAA
is handled automatically because the next higher digit is al-
ready stored in AH. When AAA performs a carry (if the digit
is not valid), it increments the AH by one. AH is moved into
AL and then adjusted itself. Any carry resulting from this sec-
ond adjustment indicates an overflow situation, and another
byte is needed to hold the sum.

This method is fine for small BCD numbers, but using it
with larger numbers would require a great deal of code. A
loop is more efficient, as the example below demonstrates.

[in the data segment]

ONE_NUMBER DB 2,51,2,50 ;52152 in unpacked
form

TWO_NUMBER DB 0,4,6,80,0 ;8640 in unpacked
form

SUM DB 6 DUP(?) ;undefined sum of

i two numbers
[and as your code]

MOV CX.,6 ;number of digits to
add together

MOV BX,0 ;point to the least
significant digit

CLC ;simulate “ADD"” for
first ADC

L1: MOV AL, ONE_NUMBER|[BX] ;put one digit in AL

ADC AL, TWO_NUMBER[BX] ;add other digit to it

MOV SUM[BX],AL ;store the sum -

INC BX ;point to next higher
digit

LOOP L1 ;do all of the digits

MOV CX,6 ;number of digits

MOV BX,0 ;point to least signifi-
cant digit :

MOV AL,SUM[BX] ;get least significant
digit of sum

L2: MOV AH,SUM[BX+1] ;put next higher digit

in AH

AAA ;perform ASCII
adjust
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MOV SUM|BX],AL ;store the adjusted
sum

MOV AL,AH ;move next digit into
AL

INC BX ;point to next higher
digit

LOOP L2 ;do all of the digits

This code performs the same operations as the previous ex-
ample, only this time the operations are performed in a loop
rather than in a straight line. Note that the entire number is
added together first, then the entire sum is adjusted. This is
only one illustration of how the AAA instruction can be used
to sum and adjust multidigit numbers.

AAS (ASCII Adjust for Subtraction). This instruction is
the subtraction equivalent of AAA. Like AAA, AAS does not
take an operand; it always performs an ASCII adjustment on
the AL register. If the unpacked BCD digit in AL is legal, AAS
clears the upper nybble of AL and clears CF and AF. If the
digit is not legal, AAS sets CF and AF, clears the upper nybble
of AL, and decrements AH by 1.

Illegal digits are always the result of an ASCII subtraction
when the result is negative. AAS is designed to cope with the
problem of negative BCD numbers. In Chapter 4, we used the
analogy of a counter on a tape player to explain negative bi-
nary numbers. We said that 999 was like —1 (999 is one count
behind 0). A similar method is used to store negative numbers
in BCD.

Using AAS is just as simple as using AAA. For single-
digit applications, you could use code similar to the following
if you wanted to subtract an unpacked BCD digit in BL from
one in AL:

SUB AL,BL
AAS

For larger quantities, you will have to chain AAS instructions
together, as we chained AAA instructions together in the pre-
vious section. For very large quantities, it is convenient to use
loops as we did above. Of course, for subtraction you would
substitute SUB for ADD, SBB for ADC, and AAS for AAA.
AAM (ASCII Adjust for Multiplication). AAM is used to
convert the result of a multiplication into two valid BCD dig-
its. This only applies to AL, so it is used after an eight-bit
multiplication. After AAM is performed, the lower digit of the
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product is stored in AL, and the upper digit in AH. The pre-
vious contents of AH are lost. Using AAM is very straight-
forward; for example, to multiply an unpacked BCD digit in
AL by another in BL, use

MUL BL ;one of the operands for MUL is always AL
AAM

AAM will take the product of the MUL instruction and con-
vert it into two valid BCD digits; the least significant in AL,
and the more significant in AH. For BCD multiplication, you
must always use MUL, never IMUL. You can chain MULs to-
gether (like you can chain ADDs and SUBs), but the tech-
niques are rather difficult.

AAM can also be used anytime you would like to convert
a binary number from 0 to 99 into two unpacked BCD num-
bers, for a simple decimal output routine for example. An out-
put routine such as this is shown below. If AL does not
contain a binary number from 0 to 99, AAM returns invalid
BCD digits; no flags are set to indicate any kind of error.

AAM ;AL holds the number to print

ADD AX,00 ;add ASCII zero to both unpacked digits
PUSH AX ;save AX

MOV AL AH ;output the more significant digit first
CALL BYTE_OUT ;print character in AL :

POP AX ;retrieve AX

CALL BYTE_OUT ;print the less significant digit

AAD (ASCII Adjust for Division). Unlike the other
ASCII adjust instructions, AAD is used before the mathemat-
ical operation. AAD converts the two unpacked BCD digits
stored in AL and AH (AL holds the least significant digit) into
a binary number in AL. AH is set to 0. Using this instruction
is no more complicated than any of the others. To divide two
unpacked BCD numbers stored in AL and AH by another in
BL, use
AAD ;convert the two BCD digits into a binary number
DIV BL ;divide AX by BL
AAM ;convert the quotient (in AL) into a BCD number

Note that the above example destroys the remainder. If you
are after the remainder, not the quotient, you will have to
move AH (which holds the remainder after eight-bit division)
into AL before performing the AAM command, as in:
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AAD ;convert the two BCD digits into binary
DIV BL ;divide AX by BL

MOV AL, AH ;move the remainder into AL for conversion
AAM ;convert AL into valid BCD digits.

Chaining DIVs together is more difficult than chaining
MULs, although it can be done.

AAD is much like a converse of AAM. While AAM con-
verts a binary number into two unpacked BCD digits, AAD
converts two unpacked BCD digits into a binary number. One
might use AAD in a simple decimal input routine which ac-
cepts two ASCII digits, but requires a binary number for
calculations. Note that AAD does not check the validity of the
BCD digits before it performs the conversion. If the digits are
not valid, AAD will return an erroneous binary number. No
flags are set to indicate an error.

DAA (Decimal Adjust for Addition)

This instruction is similar to AAA above, but is used to adjust
the result of a packed BCD addition. It takes no operands, but
always adjusts the AL register. If the number is greater than
99, the carry is set, indicating that the next more significant
byte needs to be incremented by one.

Unlike AAA, which increments AH when a carry is nec-
essary, DAA does not affect the AH register. It is the pro-
grammer’s responsibility to adjust the succeeding digits if the
carry flag is set (the auxiliary carry flag is set only to indicate a
carry out of the lower nybble).

You can use DAA just like AAA. For example, the fol-
lowing code adds the two packed BCD numbers stored in AL
and BL:

ADD AL,BL
DAA

You can also chain decimal additions together, just as we
chained ASCII additions together. For larger numbers (such as
those defined with the DT pseudo-op), you would probably
use loops to sum the numbers together:

[in the data segment]

ONE_NUMBER DT 346346524 ;using DT command
TWO_NUMBER DT 687987346
SUM DT ? ;ten undefined bytes
[and as your code]
MOV CX,9 ;the number of bytes to add
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MOV BX,10 ) ;point to the least significant
digit

CLC ;si%nulate ADD for first ADC
L1: MOV AL,ONE_NUMBER[BX] ;put one digit in AL

ADC AL, TWO_NUMBER[BX] ;add other digit to it

MOV SUM[BX], AL ;store the sum

DEC BX ;point to next higher digit

LOOP L1 ;do all of the digits

;on exit here, carry set in-
dicates overflow

’

MOV CX,9 ;number of bytes to adjust

MOV BX,10 ;point to least significant digit

MOV AL,SUM[BX] ;get least significant digit of
sum

L2: DAA ;perform decimal adjust

MOV SUM[BX],AL ;store the adjusted sum

DEC BX ;point to next higher digit

MOV AL,SUM[BX] ;move next higher digit into

. AL

ADC AL,0 ;add in possible carry from
DAA

LOOP L2 ;do all of the digits

Note that INC does not affect the state of the carry flag, and
that DT defines the packed BCD numbers from the most
significant byte to least significant in increasing memo