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This book is intended to be an introduction to Assembly Language programming
on the IBM PC, and to provide the Assembly Language programmer with a valuable
reference for future use. Three subject areas are of interest when writing programs
for the IBM (and compatible computers). These are:

1. the 8088 microprocessor, the brain of the IBM;

2. MS-DOS or PC-DOS, the operating systems for the compatibles and the IBM;
and

3. general programming practices, which when applied to Assembly Language
programming, make the exercise worthwhile.

You should know how to operate your computer. This book will not instruct you
on where the on/off switch is located, nor will it tell you how to properly insert a
diskette and efficiently use DOS commands, such as DIR or COPY. You should
consult your operations manual if these commands do not sound familiar to you.

Why Assembly
Language?

Assembly Language is capable of creating programs that execute faster and are
more efficient in terms of memory usage than are most higher level languages, such
as BASIC. Most people have heard about Assembly Language (AL) and Assembly
Language Programming (ALP), but few may have already attempted to program
their machines using AL.

Assembly Language is intimidating to the novice programmer, but then so are
numerous other activities when attempted for the first time.

You’ll find that the skills acquired from learning to program your IBM PC will
enable you to quickly learn a different microprocessor’s architecture and instruc-
tion set. Once you become really proficient at Assembly Language programming,
learning a new microprocessor’s architecture and the instructions necessary to
program it will take about a month.

The current trend in applications development work is to use higher level lan-
guages, such as BASIC, FORTH, and Pascal, to reduce programming time. How-
ever, most applications require some portion of the application program to be
written in Assembly Language (AL).
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High level languages such as BASIC and COBOL do speed up development time, but
they do not execute as quickly as programs written in AL. Higher level languages
also require more memory than programs written in Assembly Language.

Getting to Know
Your Micro

Perhaps the most important concept any book on Assembly Language Program-
ming (ALP) must convey is that you, the programmer, will become acquainted with
the hardware that makes a computer a computer. This knowledge is essential when
writing in Assembly Language. You must know the microprocessor’s architecture,
its registers and instructions.

As this book is about 8088/IBM ALP programming, you should have access to an
IBM PC or one of the compatible computers with a minimum of 64K memory, two
disk drives, PC-DOS or MS-DOS 2.0, the IBM Macro Assembler (IBM part number
60242002), and, optionally, a full screen editor or word processing software
package such as WordStar from MicroPro Inc. The line editor EDLIN, which comes
with PC-DOS, can be used to enter the source examples given in the text; however,
a full screen editor will make source entry and editing easier and faster.

All the examples in this book were developed under MS-DOS 2.0, a system with
256K of RAM, two disk drives, and the Macro Assembler from IBM. The examples
themselves are simple enough for first time ALP programmers. Should you want to
experiment by using different or more sophisticated programming examples, by
my guest. It is the only way you’ll become proficient in writing your own pro-
grams.

ALP

A language is nothing more than a form of communication; a vehicle through
which ideas, concepts, and actions are expressed. Suppose for a moment that you
speak the language known as English, and you are trying to communicate in
Spanish. Without knowing the language you can make grandiose gestures, draw
pictures, or try some other form of audio/visual maneuvering to convey your
meaning. The easiest solution is to find someone who speaks and understands both
languages, English and Spanish. If the translation process goes smoothly and
correctly, your meaning will be conveyed to the other party.

Similarly, when you program in AL, you program in the language of the assembler.
What you type or enter from the keyboard is a language unique to the assembler for
a particular microprocessor. The assembler statements are referred to as source



code. The hitch is that the computer understands what is known as machine code,
which is in the form of binary ones and zeros (more on binary in Chapter 1). You are
faced with a similar problem; you need a translator.

The assembler translates your source program into a machine readable format that
the computer can understand and execute. Should you mistype or misspell an
entry, the assembler usually generates an error message. If, however, you enter a
valid statement, but the statement is not what you intended, the assembler will not
generate an error messsage, and the error may not be found until you try to run the
program. The intent is not translated properly; only the process described in your
Assembly Language source statement is translated.

This translation process is what must occur whenever you program in Assembly
Language. The assembler translates your source programs into what is known as
executable or object code; the binary ones and zeros the microprocessor under-
stands.

The Definition of NEW

Learning AL does not happen overnight, nor does it occur through osmosis.
Whenever you write a NEW AL program, remember that NEW is an abbreviation
for Nothing Ever Works the first time. You will most likely find that a few bugs
have crept into your program. These errors are common to all programmers and
not restricted to just the beginner’s code. More often than not your logic will be
correct, but you’ll have made a syntactical error that the interpreter translated
literally when translating your source code.

There is one bright note in making mistakes; you learn from them. After spending
considerable time poring over a section of code to find an error, you’ll find
yourself quickly learning and understanding the code in its entirety. While the
program examples in this book have been debugged for you (by yours truly), I'm
sure that a few typos will creep into your program as you enter the programming
examples.

Hardware

While it is important to understand the hardware in your PC, I will limit my
discussion to the microprocessor (8088) and a few of the support chips found in
the PC. I will not go into a great amount of detail, as it is not the purpose of this
book to delve into hardware specifics about the machine. The section will be more
to introduce you to the world where Assembly Language programs must directly
deal with such devices and program their operation. The main thrust of this text is
to demonstrate how programs are written in the PC-DOS environment.
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This implies that the operating system is responsible for initializing the support
chips and in carrying out Input and Output (I/O) through these chips. The advan-
tage inherent in presenting an introduction to ALP in this manner is that the
programs you write will be transportable to another MS-DOS or PC-DOS IBM
compatible computer. Should you attempt to directly program these chips, you
may find that the physical memory or port address where they reside is not the
same in all computers, even though the computers are said to be compatible.

Once you feel comfortable programming the PC, you’ll be ready to learn more
about programming hardware devices such as a communications interface chip
(Intel’s 8251A), a programmable timer such as the Intel 8253, or a peripheral
interface chip such as the Intel 8255.

Chapter 1 is an introductory chapter describing the different numbering systems
used in assembler programming. Chapter 2 is an introduction to concepts that
apply to all microprocessors and assemblers. Towards the end of the chapter I'll
begin to focus directly on the 8088 microprocessor with a programming example
that represents your first AL program (if you’re new to ALP, of course).

Chapter 3 looks at the 8088 architecture in detail. Registers and their usage are
defined and programming examples provided. Chapter 4 discusses the instruction
set of the 8088 and the manner in which data are accessed (addressing modes).

Chapter 5 discusses features of the IBM Macro Assembler, MASM. The main empha-
sis of this chapter is using the many advanced features of the IBM Macro Assembler
to control the assembly process. Chapter 6 describes MSDOS and macro instruc-
tions in detail: What they are and how to use them. A complete macro library is
included on the diskette that accompanies this book. The macro library contains
macro definitions for all of the functional calls supported by MS-DOS 2.0. Many
BIOS macros have also been included.

Chapter 7 demonstrates how a program is written from start to finish. Chapter 8
discusses disk programming. The chapter contains four programming examples,
including a program that reads, sorts and displays all filenames found in a diskette’s
directory.

Chapter 9 focuses on BIOS, the Basic Input/Output System of the PC. Programming
examples include graphics and sound routines. Chapter 10 discusses telecom-
munications and presents an interrupt driven telecommunications program. The



program supports disk and printer spooling while on-line and communcation baud
rates up to 9600 baud.

For those of you who are experienced at writing AL programs for the 8088, you
may want to skip directly to Chapters 6 through 10, which provide the necessary
information required to write AL programs on the PC. All the information neces-
sary to write programs that accept data from the keyboard, disk, and other I/O
devices is presented here. There is also information on the operating system, MS-
DOS, in these chapters.

I hope you find this book instructional and refer to it from time to time as one of
your reference books on the IBM PC. Should you wish to communicate with me,
you can write me:

c/o Argonaut Systems
POB 2492
Northbrook, IL. 60062

Please include a self-addressed stamped envelope if you expect a reply. You can

also leave me electronic mail on CompuServe. My user I.D. number is 71625,121. I
hope to hear from you.

XV
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It would be nice to have a computer that understood every word (spoken or typed),
interpreted its meaning, and understood our numbering system. If that were the
case, programming would be a snap. Nearly anyone could walk up to the machine,
put it into a learning mode, and program it in plain English. If this were the case,
there would be no need for this book or others like it. However, these are the
machines of the future, ones that today’s science fiction is made from.

Current technology is available that allows machines to talk and to listen to the
spoken word. However, these voice input and output devices, like the printer or
disk drive attached to your computer, receive and transmit information to and
from the computer system via two discrete voltage levels. The voltage is either ON
or OFF.

For the time being, computers understand only electrical signals that are either on
or off. The language the computer understands is in binary form, the base two
numbering system. Therefore, it is imperative that you understand binary and
other numbering systems that are commonly used in programming, before you
begin to look at Assembly Language programming on the PC. There is not one
programming application that I can think of where a basic understanding of the
different numbering systems is not important.

I'll examine numbering systems in this chapter and how data are represented using
binary and hexadecimal notation. A later chapter provides you with a program that
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can be run on the PC to convert values among the decimal, binary, and hex-
adecimal numbering systems.

Binary (Base 2)

Humans chose a numbering system for their everyday use that was convenient to
them—decimal, or base 10. As humans have ten digits (10 fingers), we chose a
numbering system which also has ten digits—O0 through 9. This is convenient for
humans, but a microprocessor understands only the presence or absence of an
electrical signal.

Since the microprocessor is concerned with only two possible states (ON or OFF),
the binary numbering system could be used to represent the two possible states as a
binary 1 for the ON condition and binary 0 for the OFF state.

This is the smallest amount of binary information in a digital system, and it is
referred to as a BIT (BInary digiT). Several bits are usually grouped together to
convey more information than can be found in a single bit. When 8 bits are grouped
together, a byte is formed. A word is a grouping of the maximum number of bits the
microprocessor can store internally. For the 8088, a word consists of 16 bits, the
maximum width of any 8088 register (an internal storage location).

Counting in Binary

Examine for a moment how a decimal number is constructed. The number three-
hundred-and-thirty-five is represented in decimal as 345. There is a one’s position,
aten’s position, and a hundred’s position. Each digit’s position is 2 multiple of the
numbering system’s base. The first position is 5 X 10 raised to the 0 power. The
next digit has the significance of 4 X 10. The hundred’s digit is expressed as 3 X
102. Each successive digit’s significance is increased by a factor of ten.

Similarly, the binary number 10 0 0 0 111 represents the decimal number 135. The
bit positions take on the following significance:
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MSB (Most Signifint Bit) LSB (Least Significant Bit)

b7 b6 bS b4 b3 b2 bl bO
1 "] " a a i 1 1 Binary
128 64 32 16 8 4 e 1 Decimal

7 6 S 4 3 e i "]

2 2 e =4 e 2 =4 e Powers of two

The decimal values for all bit positions containing a 1are added together to arrive at
the decimal number being represented. A byte of all ones would equal the decimal
value of 255. Since a byte of all zeros is possible, there are 256 total bit combina-
tions possible within a byte (8 bits). What would the decimal value of the binary
number 101010 10 be equal to? Figure 1-1 shows the bit significance in a byte.

Bit Significance in a Byte

BYTE
High Order Nibble Low Order Nibble

Hexadecimal Weight - 8 4 2 1 8 4 2 1
Decimal Weight - 128 64 32 16 8 4 2 1
Binary Weight - 27 28 25 24 | 28 22 21 20
Bit Position - B7 B6 B5 B4 | B3 B2 B1 BO
Byte #1 - 0 1 0 1 0 0 1 0
Byte #2 - 1 1 1 1 0 0 0 0
Byte # 1 (decimal) = |0+64+0+16 +0+0+2 + 0 = 82

which equals 52 HEX
Byte #2 (decimal) = 128 + 64 + 32 + 16 + 0+ 0 + 0 + 0 = 240

which equals FO HEX

Figure 1-1 A total of 256 possible states may be represented in a byte of binary. Shown are two
bytes of binary. Notice that to represent the byte in hexadecimal, the byte is divided into
two 4 bit quantities known as “nibbles”.

Table 1-1 shows the binary numbers for 0 through 255 decimal. Notice that each
time a bit position that is already set to a binary 1 has one added to it, the digit
changes to zero. A carry is generated into the next bit position. This occurs in
decimal also. It happens whenever 1is added to 9:

9 + 1 =10, 39 + 1 = 48, 99 + 1 = 100 etc.
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Table 1-1
8 Bit Binary Examples
Decimal Binary Hexadecimal
0 00000000 O00H
1 00000001 01H
2 00000010 02H
3 00000011 03H
4 00000100 04H
5 00000101 05H
6 00000110 06H
7 00000111 07H
8 00001000 08H
9 00001001 09H
10 00001010 OAH
11 00001011 OBH
12 00001100 OCH
13 00001101 ODH
14 00001110 OEH
15 00001111 OFH
16 00010000 10H
250 11111010 FAH
251 11111011 FBH
252 11111100 FCH
253 11111101 FDH
254 11111110 FEH
255 11111111 FFH

Adding numbers in binary is just as straightforward.

Carries (-

Binary Decimal
b7 b6 bS b4 b3 b2 bl b
- 1 1 - 1 1 1 1
" @ "] 1 1 "] 1 1 27
+ 1 "] 1 1 1 "] 1 1 +187
1 1 "] 1 "] 1 1 2 214

no carry)




Numbering Systems 5

Bit 1 (bl) in each of the two values to be added is set to binary 1. When they are
added together, they produce binary 0 and generate a carry out of bit 1 into bit 2.
But the carry into bit 1 from the previous addition (b0) must also be added. After
adding the carry bit to the binary ones occupying the bl position, the result is
binary 1, with a carry into the next bit position, b2. '

Binary Subtraction

To subtract two binary numbers, the concept of two’s complement notation must
be introduced. In the previous discussion, I spoke only of 8-bit unsigned numbers,
with a range of 0 to 255. I'll now introduce the manner in which signed numbers,
positive and negative, are represented. If you’re concerned only with unsigned
numbers, all eight bits of a byte or all sixteen bits of a word are available to
represent a given value. If you want to add +3 to — 1, that is to say subtract 1 from
+3, the value of —1 must be represented within the 8-bit data field. This is
accomplished by using the MSB of the data field to represent the sign bit. For byte
values, a1in the MSB position indicates that the value of b0 through b6 is negative,
while a zero in the MSB indicates that the value is positive.

Since the sign bit occupies one bit position, there are only seven bits (fifteen bits for
a word) left to hold abinary value. Therefore, the range of signed values that canbe
represented in a byte is:

Fositive Values Negative Vvalues
Q220000 @ (decimal @) 11111111 (decimal -1)
to

21111111 (decimal +127) 1 202 202 02 2 @2 (decimal -128)

It is often convenient to depict positive and negative ranges by using a number line
as follows:

8-Bit Byte Values
. I - A = 3 Unsigned Binary
-1288. ... . R -4 Sigrned Binary
16-Bit Word Values
Bervacenacneneedy768ecccccenassb63,536 Unsigrned Binary

—32,768. cccunncnn Dececevaneneest32,767 Signed Binary

I can hear you saying, ‘‘How the heck does abyte of binary one’s equal minus one?”’
Negative numbers are represented in what is known as two’s complement nota-
tion. To perform a two’s complement on a binary number, flip all the bit positions
and add a binary 1. If the bit position was a 1, change it to zero. If the bit position
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contained a zero, change it to 1. This forms the one’s complement of the binary
value. Do this for all the bit positions and add 1 to the result to form the two’s
complement. Actually, the value to be converted is subtracted from zero to form
the two’s complement, but complementing the number and adding 1 also works.
The following example illustrates how this is done.

Number to convert: 201200211 (35 decimal)
One's Complement: 1111100
Add a binary 1: 11211101 (-35 decimal)

(Form 2's complement)

To discover what negative number a signed binary field contains, perform a two’s
complement on the number as follows:

Unknown Value: 11121021 (-? decimal)

Complement : 2102010210

Add a binary 1: 12010211 75 decimal (Negative 795)
Convert binary to decimal —-—- )) -(64 + 8 +2 + 1)

By representing negative numbers in two’s complement, a subtraction is carried out by
adding the two values: (+A) + (— B). Let’s say I want to subtract 2 from 1. I would first
perform a two’s complement on the subtrahend, then add that value to 1.

1) Convert +2 to -2.

Subtrahend: oo 2d2a1 @ (+2)
Complement : 11111101
Add 1 : 1111111 8@ (-2)

&) Add -2 to 1.
o220 0d0@1 (+1)

Subtrahend: + 111111180 (-2

Check the answer by performing a two’s complement on the result, keeping in
mind that when the number is read, it has a negative magnitude.
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Result: 11111111 (1)
Complement : 20000000

Add 1 : WO @RV R21 The value is 1 (negative)

A byte of all 1's is equal to a —1, and all subtractions can be carried out through
addition.

Converting Decimal to Binary

To convert a decimal value to binary, divide the decimal value by 2. Write down
the remainder. If the quotient is zero, you are finished with the conversion. If the
quotient is not zero, repeat the process using the quotient as the dividend.

For example, convert 137 to binary:"

Step Guotient Remainder
1) 13772 = 68 1 Least Significant Bit.
2) ea/2 = 34 ) |
3) 34/2 = 17 2 :
4) 17/2 = 8 1 :
S) 8/ = 4 "} :
6) 4/2 = e " :
7) 2/ = 1 " :

I
Most Significant Bit

-

8) 1/2 = "

The binary representation of 137 is:

MSB «( LSB
B7 B6 BS B4 B3 b2 Bl BO

1 @ @ 1 ©® @ @ 1  BINARY

Hexadecimal Numbering
(Base 16)

I have purposely limited the discussion on binary values to byte-wide data fields to
keep the values used in the examples small. Binary notation is very inconvenient
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when larger values must be represented. A 16-bit value of 2498 decimal would be
represented as 0000100111000010. It’s harder to read and harder to work with large
numbers in binary form. The number can better be represented using a humbering
system that retains some similarity to the bit positions of the data field. Decimal
does not meet our requirements, as there is no direct correlation between the
decimal and binary digits.

Hexadecimal is most often used to represent binary data. Hexadecimal digits are
comprised of the digits 0-9 and A-F. By dividing the data field into 4-bit slices
called NIBBLES, you can represent a 16-bit binary number with four hexadecimal
digits, and an 8-bit number with two hexadecimal digits. The decimal weights 8, 4,
2, 1are given to each bit position of the nibble. If a nibble’s value exceeds 9, the
letters A-F are used to represent the decimal values of 10-15.

The number 2498 decimal is represented in binary and hexadecimal as follows:

2220 1001 1100 2210 Binary
8 421 8 4 21 8 4 21 8 421 NIBBLE bit values
[ I | [ I | [ I I | [ I
Pt F_1_1_1 F_t_1_1 F__i_i

N1/ \Ni/ \Ni/ \Ni/

("] 9 c 2 Hexadecimal

3 2 1 "}
i6 16 16 16 Powers of 16

@ x 4996 + 9 x 256 + 12 x 16 + 2 x 1 = Decimal 2498

The hexadecimal representation is therefore 09C2H. The H suffix denotes that the
number is expressed in hexadecimal notation. In Chapter 7, I'll show you how to
write a program which accepts decimal input from the keyboard and converts the
number to hexadecimal and binary and displays the result on the video screen.

When hexidecimal notation is used in your source program, you’ll need to
remember this next rule. When the hexadecimal digit begins with a letter (A-F),
you must precede the number with a zero. For example, if you wanted to use the
hexadecimal number FADEH, the assembler would not be able to determine
whether the characters represented a constant or a name. The leading zero informs
the assembler to treat OFADEH as a number and the lack of a leading zero (as in
FADEH) informs the assembler that the characters represent a symbolic name.

Addition of Hexadecimal
Numbers

Asin the binary and decimal numbering systems, hexadecimal digits can be added.
When the addition exceeds a digit’s capacity, the digit rolls over to zero and a carry
is generated into the next digit position. For example:
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1——- {{(-——— {Carries’
9FCe H ((=——=1
1
+ 1938 H {{———=1

B8F8 H ({(===— {Result}

Binary Coded Decimal

Often you need to store and work with numbers in a computing system that are
encoded in Binary Coded Decimal, BCD. BCD uses 4 bits to represcnt the decimal
digits 0-9. A byte can therefore contain two packed BCD digits. If a byte contains
only one BCD digit (unpacked), the other nibble must be zeroed. For example:

Unpackea BCD Facked ECD
oavd @012 = 2 (BCD) 121 @evl = 91 (BCD)
Qo 1001 = 9 (BCD) viilw @111 = 67 (BCD)

The following are illegal representations:

2ve va1v A H - Is not a digit @-9.

1112 1100

EC H — Neither nibble is a digit between 0-9.

Since BCD is used to represent the decimal digits 0-9, any 4-bit combination in
excess of the decimal value 9 cannot be considered a valid BCD digit.

BCD Addition

When the microprocessor adds numbers, it treats all values as binary. It does not
know or care if the binary values being added are BCD encoded or in some other
encoded format. The computer adds the BCD digits ]ust as if they were binary
numbsers, as follows:

2121 vvi1 = 53 BCD {83 decimal (Binary weight)}

+ 2012 @110

26 BCD {38 decimal (Binary weight) )

2111 1001 = 79 BCD { 53 + 26 = 79 BCD }

{121 decimal (Binary weight)}
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The answer is correct:

ooi1 o111

37 BCD {55 decimal (Rinary weight))

+ Q011 @v1d = 32 BCD {50 decimal (Binary weight)}

2110 1val 69 ECD { 37 + 3& = €9 BCD 1}

{185 decimal (Binary weight)}

The answer is not correct:

o211 1wal 39 BCD {57 decimal (Binary weight))

+ 0011 @oo1

31 BCD {49 decimal (Binary weight) )

2110 1vl@ 6AH {NOT A VALID EBCD DIGIT!Y

{6AH= 106 decimal (Binary Weight)}

The reason this last example is not a valid BCD digit is that the low order nibble
produced a binary combination in excess of 9. What it all means is that there has to
be a method to correct for such a condition. What would happen if you added 6 to
the low order nibble that was in error? Let’s see what result this would produce.

The original addition was to produce a result of 70 in BCD format (39 + 31). The
actual result was 6AH.

2110 1via

eAH

Now add 6 —--)) V@02 @112 = @6 {BCDY}

2111 @vwd = 7@ {BCDY

The answer is now correct, and it is represented in a BCD format. The rules are
simple. If the result of a BCD operation produces a value in excess of 9, add 6 to the
result to correct the result to proper BCD format. There is still one more case to be
considered. What would happen if the result of the addition produced a nibble
whose value has passed right through the range of 10 to 15, which is not allowed?
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Consider the following:

o202 1001 = V9 {BCDX

+ Q0eY 1091 = @9 {(BCD}

o1 0010 12 {?)

The result looks like BCD, but it isn’t correct. We passed through the range
necessary to effect an adjustment of the nibble, when the nibble’s value exceeds 10.
The former rule cannot apply since 2 is less than 10. However, there has been a
carry generated out of the low order nibble (bit 3) into the first bit position of the
high order nibble.

Let’s qualify the former rule: Whenever the result of a BCD addition causes a digit’s
value to exceed 10, OR when a carry is generated out of a nibble due to the addition,
add the value of 6 to the nibble to correct the result. When this is done, you obtain
18 BCD, the desired result of 9 plus 9. The important point to remember is that the
CPU does not know or care if the number to be added is in BCD format. To the CPU,
all forms of character encoding appear in binary form. Therefore, it is the program-
mer who makes the distinction of how the arithmetic should take place and what
graphic characters and numbers the binary groupings are to represent.

ASCII

In an attempt to standardize and formalize the manner in which computers
exchange information, a method to encode alphabetic, numeric, and special char-
acters was devised. ASCII (American Standard Code for Information Interchange)
is a 7-bit code that defines the individual bit groupings for each letter of the
alphabet and the ten numeric digits defining the decimal numbering system.

The eighth bit is used to transmit parity, a form of error checking that is dependent
on the total number of binary 1’s contained in the character transmitted. If the total
number is even, and you are using even parity, the eighth bit is zero. If the total
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number is odd, the eighth bit is set to 1, to make the total number of 1bits an even
number.

In total, there are 128 different bit groupings (27 = 128) assigned to represent
character, number, and special character graphics as well as special control codes.
The control codes are used to control how the communication between two
computing devices takes place. For example, the binary bit combinations of 001
0001 (DC1 = 11H) and 001 0011 (DC3 = 13H) are commonly used to resume or
suspend communications between two devices. These controls are commonly
referred to as XON and XOFF, for transmit on, or transmit off.

Although the programmer determines how the bit combinations the computer is
acting upon at any given moment are to be interpreted, ASCII was developed to
insure a standard means of transferring information between computing devices.
In other words, if I know before computer-to-computer communication begins,
that your terminal will be transmitting ASCII text to mine, and I receive the bit
combination 100 0001 (41H), I know that the bit combination will always be used to
represent the letter A. Similarly, if I transmit the bit combination of 011 0011 (33H)
to your terminal, you will always interpret this bit combination as the character 3.

Other Binary Codes

This would be fine if ASCII were the only coding used to represent letters,
numbers, and special characters, but it is not. There are other binary codings which
are used in international and mainframe computer communications. EBCDIC
(Extended Binary Coded Decimal Interchange Code) is widely used in the IBM
mainframe world. EBCDIC (pronounced EB-SID-IC) is an 8-bit code used to repre-
sent control, alphabetic, numeric, and special characters. The EBCDIC code can be
found in Appendix A.

Baudot Code

Baudot is another binary code used to communicate information between
machines. Baudot is commonly found in international and domestic communica-
tions involving telegraph circuits. It is a 5-bit code that is usually associated with
teletypewriters and teleprinters. Typically, these devices have limited commu-
nications speed (usually less than 110 bits per second). By using only 5 bits to
encode a character rather than the 7 bits required in ASCII or the 8 bits required in
EBCDIC, characters are transferred between communicating equipment faster.
The Baudot character set can be found in Appendix A.

I'll discuss ASCII and other binary codes further when I explain the 8088’s instruc-
tion set. The 8088 microprocessor has some powerful instructions that benefit the
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Assembly Language programmer who must work with ASCII and BCD characters
or strings. But for now, let’s turn our attention to the language of assembler.

1. Therole of an assembler is to a file into an object
file.
2. Inbinary there are possible states:
and
3. The computer subtracts two binary numbers using comple-

ment notation.
4. Give the one’s complement form of the following binary numbers:
A. 01010110 C. 10111110
B. 11110000 D. 01010101
5. What is the two’s complement of the binary numbers in problem 4?
Convert the following binary values to hexadecimal notation:
A. 10011110 C. 11111111
B. 11100111 D. 1000110000001111
7. Convert the following hexadecimal numbers to binary:
A. OFFA1H B. 2078H
C. 7FFCH D. 0003H
Why does the hexadecimal number in 7A above contain a zero prefix?

Two popular types of character encoding are and

10. The base of each numbering system is:

A. Binary is base
B. Hexidecimal is base

C. Decimalis base

11. What is wrong with the following hexadecimal number?
OFG77H



This chapter introduces novice programmers to the discipline required to be an
Assembly Language (AL) programmer. Many new programmers feel that there is
something mystical about learning to program in Assembly Language. If there were
something mystical about the language, I'm sure more programmers would be
named Merlin. Since I know only one programmer who calls himself Merlin, and
his programs are far from being mystical, it is safe to assume that most of us mere
mortals who really have the desire to program in Assembly Language will be able to
do just that by the end of this book.

Like all good things worthy of personal possession, the skills required to become
an AL programmer are not acquired without a certain degree of frustration.
However, the rewards can be considered substantial, in personal enjoyment and
financially, if you are so inclined.

15
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The fallacies surrounding ALP are as numerous as those surrounding the program-
mer. A typical characterization is as follows: ALP programmers must possess a high
degree of mathematical skills, and they must also hold higher level degrees. They
are hermits who let nothing stand in the way of finishing the project at hand,
knowing full well that software projects are rarely finished, they are merely
released.

If married, you have to pity the poor spouse of the AL programmer. Dinner
conversations revolve around bits and bytes, algorithms and code. Shopping with
such an individual can be almost as exciting, as every book store is an invitation to
“keep current” with the technology. Computer stores are sought out with 2 most
unhealthy, if not obnoxious zeal.

Contrary to the stereotype presented, a higher level degree and advanced mathe-
matical skills are not required for an individual to become proficient at AL pro-
gramming. Although the skills certainly wouldn’t hurt, they are not required.
When an application requires a tremendous amount of computational power, the
program is usually written in a high level language such as FORTRAN (FORmula
TRANGslation language). It’s rare when such an application would be coded totally
in Assembly Language.

As for the AL programmer being a hermit, nothing could be further from the truth.
Most commercial software projects are developed by a team of software engineers
in a team environment. An individual programmer has responsibility for a specific
portion of code which is later incorporated into a main program consisting of the
modules and subprograms created by the other individuals. The team is usually
composed of specialists. There may be one individual who is proficient at data
communications while another is concerned with internal data structures or the
user interface.

Obviously, if you are programming your own personal computer, you will most
likely be doing so without the aid of other programmers; hence, the purpose of this
book. Books are often your only resources when working on a section of code. The
modular programming concepts of a program written in a team environment still
apply. However, you are the one who is responsible for writing all the modules
which ultimately become the finished program.

Those who do become proficient at AL programming tend to view the world and
problems in a somewhat different perspective than those engaged in other profes-
sions. The reason may be traced to the extremely logical thought process forced
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upon the AL programmer by the very nature of his/her chosen career. There is a
tendency to apply that logic to the world and those around us. The unobvious
becomes the obvious, and problems become puzzles which are challenges to solve
and master. It is all a matter of attitude and a learned set of skills.

One thing to keep in mind is that you cannot program the computer in any
language, if you yourself do not understand the application. If you cannot explain
the problem and define a method to arrive at the solution, the computer will be of
little help. You can be the most creative and productlve programmer on your block
and not be able to write the program for a problem beyond your own expertise.

For example, if you have never flown an airplane, it would be very difficult if not
impossible to write a believable flight simulation program. For someone else who
is involved with aviation and who can program in Assembly Language, writing
such a program will be easier than for most of us. This is what makes programmers
so valuable; it is not that they know how to program in Assembly Language, but
rather that they understand an application and can define its solution through
Assembly Language.

Once you master the assembler’s language for one microprocessor (also referred to
as a CPU, or Central Processing Unit), you'll be able to transport your skills to a
different microprocessor. The process does require learning a new architecture
(registers, status flags, etc.) and a new instruction set; howcver, the basic and
fundamental concepts of programming in assembler apply to any microprocessor.
For example, to load the accumulator of the 8-bit 6800 (Motorola) with a decimal
value of 16, you would enter the following statement into your source program:

LDAA #16. The Zilog Z-80 CPU requires LD A,16. To accomplish a similar function
on the 8088/86 CPU, you would type: MOV AL,16. Notice that one micro-
processor’s assembler requires the instruction LD (LoaD), and the other requires a
MOVe instruction. The difference between these particular instructions is trivial
and easily learned. Other instructions may not be so obv1ous and may require
closer inspection.
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A computer language can be classified as either being a high level language, such as
BASIC, FORTRAN, COBOL, or Pascal, or a low level language, such as Assembly
Language. The classifications can be further refined as to whether a high level
language is interpretive or compiled. Programming languages exist only as an aid in
describing the steps necessary to solve a problem or a set of problems. Ultimately,
all but the interpreters produce the machine code the computer understands, and,
as such, they require a compromise as to the execution speed and the size of the
machine code each will produce.

Higher Level Languages

The assembler represents a2 quantum leap over programming a machine directly in
machine language, yet the human interface is still lacking. It’s more desirable to
increase a programmer’s efficiency by providing a programming language that uses
English-like statements to define the problem you want to solve. This is beneficial
for several reasons.

First and foremost, the programmer could be isolated from the hardware specifics
of the machine and not be required to learn a thing about what’s ‘‘under the hood”’
of the computer. It’s a little like the old adage of not having to be a mechanic to
know how to drive a car.

‘““Who cares about the registers anyway? Why should I care about an AX or BX or
XYZ register when all I want to do is print ‘Hi Sue, HAPPY BIRTHDAY!ILove You’
on the screen of my computer?”’ You might ask. Actually, there is no reason to
learn Assembly Language to have the computer print a simple message on the
screen. The simple BASIC statement: PRINT ‘‘Hi Sue, HAPPY BIRTHDAY! I Love
You.”’ accomplishes what will take perhaps hundreds of Assembly Language state-
ments to do—display the message on the screen of the computer. By using a high
level language, you are isolated from the hardware specifics of the system. This
allows you to concentrate on solving applications problems.

Interpretive Languages

An interpretive language, such as the BASIC interpreter supplied with many home
computers, must interpret each program statement prior to executing it. Isit a valid
statement? Is its syntax correct? After properly identifying the statement as valid,
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the actual code which performs the statement’s function is executed. However, it
must be noted that this interpretation occurs each and every time the statement is
executed. Due to the overhead involved, programs execute slower than compiled
programs or Assembly Language programs.

The interpreter occupies memory along with the application program being run.

Because both the interpreter and the application program must be in memory at the
same time, the physical size of the program is also greater than one written in AL.

Compiled Languages

Compiled languages fall somewhere between interpreted languages and Assembly
Language, in that compilers take on certain characteristics of both. Source pro-
grams are written in a high level language and translated (much like Assembly
Language) into machine code by the compiler. The object code generated by the
compiler tends to execute faster than an interpreted program, but it may not be as
fast as a program written in Assembly Language. The program’s size is, in most
cases, smaller than that of an interpreted program, yet is larger than a similar
program written entirely in Assembly Language. Compilers exist for a variety of
languages, such as BASIC, FORTH, Pascal, COBOL, and the C language.

With the many language options available, you may still find it difficult to find a
language to efficiently solve all problems in a given application. The reason is that
no one language suits all applications. FORTRAN is useful in solving scientific
oriented problems. COBOL is widely used in business applications. Pascal’s claim
to fame is that it forces a programmer to use structured programming techniques
and is of great use in teaching these concepts. BASIC is of interest because it is
widely used and is usually the first computer language an individual learns to
program in. For real-time applications where execution speed and memory conser-
vation are of prime consideration, Assembly Language is the choice.

Machine Language

When computational machines were first conceived, there were no languages that
the machine’s programmer could use to instruct the machine what it should do.
Therefore, each command or machine instruction had to be manually entered. The
process was slow, tedious and extremely error-prone.

Machine language is composed of definite digital patterns of binary one’s and
Zero’s:
Machine Language Assembly Language

10110100 0QORO1001 MoV AH, 9
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In the above example, machine language, the language a microprocessor under-
stands, is composed of finite combinations of binary ones and zeros. The micro-
processor decodes these patterns, and performs the specified function. In this
example, the internal register AH (a storage location inside of the 8088) is loaded
with a value of 9 decimal.

A grouping of 8 Binary digITS (BITS) is referred to as a byte of information. A
grouping of 2 bytes, or 16 bits, is referred to as a word. A typical microprocessor
sequentially fetches these binary values from memory and decodes them into
meaningful instructions. As each pattern represents a particular instruction to the
microprocessor or data which is required by the microprocessor to properly
execute the instruction, it is extremely important that the binary values be placed
in memory and remain in memory without alteration.

For example, the MOV instruction used in the previous example might appear in
memory as a binary sequence of bits:

i e 1 1 @ 1 @ @06 0 @ © @@ 1 2 0 1
Bit # b7 b6 bS b4 b3 b2 bl b@ b7 b6 bS b4 b3 b2 bl ba

1st BYTE énd BYTE

This sequence of bits tells the microprocessor to MOV the value of 9 into the AH
register of the microprocessor. The machine language program sample shown
below depicts a short program as it would appear in memory and in binary form.
Should abit be lost from the machine instruction, either the value moved to AH will
change, or the instruction itself will change (it will be decoded as a different
instruction) and render your program useless. It is very important that each
instruction be entered into the machine accurately.

10111001000000000001 1000 MoV CX, 24
1110100000000001020100010 CLS: CALL CRLF
1110001011111011 LOOP CLS

Only the binary one’s and zeros are stored in memory, not the English-like abbrevi-
ations to the right. The routine above is part of a larger program used to clear the
video display of the IBM. Imagine if you had to enter each one and each zero of the
larger program (see Listing 2-1) into memory manually!

As each machine instruction directly causes an action to be taken by the micro-
processor, machine language programs execute the fastest of all language types.
The speed at which an instruction executes is of great importance in many time-
critical applications and is dependent on the system clock that drives the micro-
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processor (Figure 2-1), and the manner in which the microprocessor’s designers
chose to decode a given instruction. Similar instructions executing on different
microprocessors running at the same speed do not always execute in the same
amount of time. '

NAWEWERWWAN

|__t1 } t2 } 13 : t4 :

tx = 200 nanoseconds minimum
500 nanoseconds maximum

Figure 2-1 The system clock provides a regular “heartbeat” to the micro-
processor. The clock is provided by another integrated circuit (IC),
an Intel 8284 clock generator.

As a finished program can contain hundreds or thousands of machine instructions
to solve a given problem, it would be a very tedious chore to code your program
entirely in binary. Yet, without efficient programming tools, early computers were
programmed in exactly this manner. Only a pure masochist liked programming in
machine language, but someone had to do it in order to create the first assembler.

You would think that it would be much easier to code the same instruction in a
language that was more suited to the human programmer, while maintaining the
advantage of machine language execution speed. It would have to be a language
that allowed the programmer to describe the desired action he/she wants the
microprocessor to perform. The statements the programmer types at the keyboard
create what is known as a source file. The statements are later translated to the
machine code the microprocessor understands. Rather than setting sixteen or
more switches on a computer’s front panel and loading the values directly into
memory, an assembler can translate the statements in the source file into the object
(machine) code required.

An assembiler is itself a program created to automate the many routine, repetitive,
and error-prone tasks associated with programming a computer directly in
machine language. The assembler program translates a source file of terse English-
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like abbreviations known as mnemonics into what is referred to as object code
and/or machine code.

Figure 2-2 shows the four primary steps in creating and documenting your pro-
grams:

A program called an editor is used to create a source program.

2. The source program is translated to an object file by the assembler. The
assembler optionally creates a listing and a cross-reference file.

3. The linker produces an executable file capable of being run on the IBM PC.
Library files may also be used as input to the linker.

4. The cross-reference utility can then be used to create a cross-reference of all
symbols appearing in the program and where in the program they appear.

Because there is a direct relationship between the AL source statement and the
resultant object code, programs written in AL execute as fast as if the program had
been entered into the machine in pure machine language. The assembler has
removed the chore of coding the program in binary.

1) Editor # Source File  (.ASM)
MOV AHMY_DATA ; Add value

ADD COUNTER,AH ;Add tocurrent timer count.
{ Rest of the source program }

2) Source File = Assembler — ¥ ObjectFile  (.OBJ)
(.ASM) MASM.EXE Listing File (LST)

Cross Reference File
(.CREF)

3) Object File(s) — > Linker — & Executable File (.EXE)
(.oBJ f

Library Files LINK.EXE
(LiB)

4) Cross Reference File ———— Cross Reference —— Reference
Utility File
(CRF) CREF.EXE (.REF)

Figure 2-2 Assembly Language Source to Machine Language/Executable Code.
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Another program—called an editor—is used to create the source program or code.
CP/M’s™ program ED and MS-DOS’s EDLIN are examples of line oriented editors.
They allow you to create and edit one line of source code at a time. The line forms
what is called a statement; MOV AX,16 moves the value of 16 into the accumulator
of the 8088/86 microprocessor. When a particular line of code has been edited,
you can begin editing another line.

A full screen editor is much like a word processing program, because a full screen of
text (many source lines) is displayed. By using the cursor keys, you can move freely
around within the source program. In fact, many programmers use word process-
ing software to create their source code files. Combining a full screen editor with
the advanced editing features of word processing software results in increased
efficiency by decreasing the amount of time required to create and edit a source
file. This is a vast improvement over simple-minded and primitive line oriented
editing.

One of the many complicated tasks the assembler program can do is to keep track
of the different memory locations used for data and program storage. Figure 2-3
illustrates the use of symbols that represent data and memory locations, as well as
constant numerical values required by the program. Without this ability, you
would have to keep track of each memory location and data value referenced
within the program.

For example, you may want to assign a symbol name to a numeric constant that will
be used several times in your program. Rather than hard coding the value into the
instruction, it is often more advantageous to assign the value a name at the
beginning of your program, and then use the name rather than the value in the
program. By assigning the label PTR_OUT to the value 03B8H, the program
becomes easier to read and understand.

Another example of symbolic usage is in the assignment of a name to a port address.
Port addresses are used to communicate with input and output (I/O) devices such as
a printer, video display, or keyboard. Actually, the port addresses belong to the
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PAGE 55,132
TITLE Example of Symbol Assignments
; Date: 06/05/84
; By: Gary A. Shade
; Last Revision: 06/05/84

: ©1984 by Gary A. Shade, All Rights Reserved.

; This program does a lot of nothing. That is, it is only to

; demonstrate symbolic usage in a source program.

; Italso demonstrates where each assembler field originates, and the general
; form of an assembly language program.

; Entry Conditions: Save DS then a word of 0000H on the stack.

: Required by MSDOS.

; Exit Conditions:  Registers used within the program are altered.

; KERRRR R KRR KRR KRR KRR KRR KRR R R KRR R KRR R KRR R KRR KRR KRR KRR AR R KRR R R R R R R Rk Rk kR kR kR Rk kR Kk
Definition of Assembler Fields

Operand Comments

; Label Opcode

' < > < > < > < >
EX_A_STACK SEGMENT PARA STACK ‘STACK’'

DW 125DUP(?) ; Establish Stack Area
EX_A_STACK ENDS
EX_DATA SEGMENT PARA ‘DATA
COUNTERH1 DB OFFH ; 8 BIT COUNTER
COUNTER 2 DW OFFFFH ; 16 BIT COUNTER
COUNTER3 DQ OFFFFFFFFH ; 32 BIT COUNTER

EX_DATA" ENDS ;END OF SEGMENT

EX_CODE_SEG SEGMENT PARA‘CODE’ ; Code Segment begins
ASSUME CS:EX_CODE,SS:EX_A_STACK,DS:EX_CODE,ES:EX_CODE

START - PROC FAR ; Declare as ‘FAR’
PUSH DS ; Save Code seg, passed
; by MSDOS
XOR AX,AX ; Clear AX
PUSH AX ; Save on stack.
MOV AX,EX_DATA ; Setup segment
; registers
MOV DS,AX ; Data Segment
MOV ES,AX ; Extra segment
MOV CX,COUNTER2 ; Get loop delay factor
DELAY1: LOOP DELAY1 ; Loop untilCX = 0.
MOV CL,COUNTER1 ; Get byte delay count
XOR CH,CH ; Clear High Order byte
DELAY2: LOOP DELAY2 ; Execute LOOP until
; CX=0
MoV CX,PTR WORD COUNTERS; Delay count
DELAY3: NOP ; WASTE SOME TIME
NOP
LOOP DELAY3 ; Execute last loop.

"Figure‘ 2-3 Example of Symbol Assignments
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hardware, which interfaces the microprocessor to these devices. More than likely
the port addresses given to these devices will vary from computer to computer. In
order for the program to be run on another computer using the same micro-
processor, these values and others will have to be redefined. By defining the port
addresses symbolically, you need only change the line of code which assigns the
label to a physical port number, rather than changing every occurrence of the port
address within the program.

Assume the printer for a given computer is at port address OEOH (the H means the
number preceding it is given in hexadecimal), or 224 decimal. By writing a
statement such as:

PRTOUT EQU @E@H

The printer output port (OEOH) is assigned via the EQU directive to the label
(PRTOUT). There may be a hundred different places in your program where data is
sent to the printer via port OEOH. If a label were not assigned to the port, a hundred
lines of code would have to be found, and the port’s value changed if the system’s
hardware should change.

One last example of assigning labels within a program can be illustrated by using a
label to specify a strategic entry point into a portion of the program. As an example,
consider the following source code:
START: PUSH DS ;SAVE CODE SEG PASSED FROM MS DOS

XOR AX, AX jMUST SAVE A ZERO OFFSET INTO

sCODE SEGMENT ON STACK.

PUSH AX ;SAVE WORD ON STACK
CALL INIT sINITIALIZE THE SYSTEM
JMP CLRSCN sCLEAR THE SCREEN

.« . {MORE PROGRAM STATEMENTSY

CLRSCN: PUSH DX $SAVE REGISTERS
JMP THERE sJUMP TO ANOTHER PLACE IN FROGRAM
INIT: CALL DISKINIT jINITIALIZE DISK DRIVES

CALL WHOEVER ;ETC.
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RET sRETURN TO CALLER
THERE: MOV AL, PTROUT $GET FRINTER OUT PORT
. {The rest of the program}

Nowhere within the program were absolute addresses for the instructions labeled
START, INIT, THERE, or CLRSCN defined. The assembler calculates the absolute
memory addresses where each section of code resides when assembling your
source program.

Labels are also more easily remembered than are absolute addresses and values, and
they are more easily changed should the physical values change. The assembler
remembers the values assigned to the labels used in the program and substitutes
these values when the assembler translates the source file to object code.

The IBM Macro Assembler makes two passes through the source file. On the first
pass, the assembler builds a table of all the symbolic names defined in the source
file. The assembler does not produce object code on this pass. The second pass
produces the object code for the source statement based upon the information
gathered during the initial pass.

During the first pass, the assembler may not know the exact location of a symbol it
has encountered but not defined. This is known as a forward reference. It is a little
like a writer who makes reference to an illustration while writing a book. Usually
the reference reads something like ‘‘Reference Figure 1-XX’’. During a second pass
through the manuscript, after the chapter has been written, the exact figure
number is inserted. The process is similar to the first and second pass of an
assembler through a source program. It is only during the second pass that the
assembler knows the relative addresses and what values to use in place of the
names and symbols encountered during the first pass.
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Cross assemblers are used to create object code for a microprocessor other than the
one used in the computer the code is being developed on. There are several
companies marketing cross assemblers that run on the IBM PC. By using a cross
assembler, you can create programs for other microprocessors, such as the
Motorola 68000 or 6800 series, the Zilog processors (Z-80, Z-8000), and other Intel
processors, such as the older 8080 and 8085, on your PC. The programs created
using a cross assembler cannot be executed (run) on the development system, since
the machine language of each microprocessor is unique to itself. The object code
must be downloaded, or transmitted, to the target system for execution.

Cross assemblers are of value to anyone who must learn or develop machine code
for another processor and cannot justify the added expense of another computer
system to do so. By using cross assemblers, one computer system can be used to
create programs for many others.

Previously I mentioned why it is a good idea to develop programs in a modular
form; smaller chunks of code are easier to debug and understand. Their func-
tionality is much more explicit than one large program. The purpose of the Linker
is to join these smaller chunks of code together to produce a finished program.

You can think of a program as being analogous to a chain. A chain is not a chain
until all the individual links are connected. In a similar manner, a program is not a
program until all the individual modules have been linked together.

Program libraries containing dozens of small often-used routines or programs can
be built and stored on disk. By using the linker and specifying which modules are to
be linked together to form the completed program, you can create new programs
without having to write the entire program from scratch. If, as an example, you
have already written a routine that performs bounds checking on a set of numbers,
and you need the same routine in a new program, simply include the bounds
checking module in the linkage.
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A relocatable object file as shown in Figure 2-4 is produced by the assembler. The
relocatable expressions are those marked with an R next to the object code. The
linker also resolves any relocatable expressions, including any values of data,
constants, or memory addresses that are defined in other modules. When the
program is loaded and executed, a loader program uses the information supplied
by the linker, enabling the program to be loaded and executed anywhere in
memory.

0039 C7 060000 R 0140 DRAW_IT2: MOV STARTX,320

003F C7 060002 R 00AA MOV  STOPX,170
0045 C7 060004 R 0032 MOV  STARTY,50
004B C7 060006 R 0096 MOV  STOPY,150
0051 C6 06000B R 07 MOV  COLORW_B
0056 E8 01ACR CALL DRAW_LINE

0059 E8 0242R - CALL DELAY
005C C7 060000 R 0113 DRAW_IT3: MOV STARTX,275

0062 C7 060002 R 0177 MOV  STOPX,375
0068 C7 060004 R 0064 MOV  STARTY,100
006E C7 060006 R 0064 MOV  STOPY,100
0074 C6 06000B R 07 MOV  COLOR,W_B
0079 E8 01ACR CALL DRAW_LINE
007C E8 0242R CALL DELAY

007F E8 0242R CALL DELAY

Figure 2-4 Example of Relocatable Code

You’ll notice in Listing 2-1 (see Appendix D) that there are specific fields where you
enter labels, instructions, operands, and comments to form a source statement.
The obvious deduction is that a certain syntax must be followed in order for the
assembly process to occur properly. The format in which the source code must be
entered is:

Label Operat ions—-Code Operand (s) Comment.

Listing 2-1 should be referenced as I discuss how a source program is created.
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Label Field

We have seen why labels or symbolic representation within the source program is
important. The manner in which names are assigned is of equal importance. The
IBM Macro Assembler allows you to create labels of up to 31 characters in length.
This allows you to assign meaningful names to constants and program entry points.
Not all assemblers allow you this flexibility. Labels can consist of any of the
following characters:

1. Alphabetic characters: A through Z (lower- or uppercase).

2. Numeric digits: 0 through 9

3. Special Characters: $ . _?
The IBM Macro Assembler manual states, ‘‘Labels can start with any character
except a numeric digit. If a period is used in the label, it must be the first character
of the label.”” Words and names reserved for the 8088 registers and instructions

should also be avoided, as should words reserved by the assembler (referred to as
directives) when assigning symbolic labels. Some examples of labels are:

Valid Label Invalid. —-———))> Comment.

MY_DATA omY_DATA (Digit 1st character)
?ASCII_CONVERSION ?2ASCII. CONVERSION (Illegal use of .)
LOOP@20 LOOP (8288 instruction)

Additionally, a label may contain a colon suffix if the label is used to define an entry
point into a section of code:

START: PUSH DS $SAVE DS AND AN OFFSET OF ZERO
XOR AX, AX

PUSH AX

There is another use for the colon suffix, and that is to inform the assembler that
the label is to be assigned a TYPE attribute of NEAR. NEAR attributes can be
accessed only within a given segment. The absence of a colon informs the
assembler that the label can be referenced from other segments, and a TYPE
attribute of FAR should be assigned to the label.
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Labels should not contain a colon suffix if the label is used with what is known as a
pseudo-op. This is an assembler directive that instructs the assembler how to
perform the assembly or what values to use during the assembly. For example:

PTR_OUT EQU QEQH §ASSIGNS @E@H TO FPRINTER OUT
PTR_BUFFER DW 108 DUP (?) ;DEFINES STORAGE
FLAGY EQU THIS BYTE $ASSIGNS FLAG1 TO TYPE BYTE

Furthermore, a label should not contain a colon suffix when it is used as an operand
in an instruction:

MOV AL, FLAGL sMOVES FLAG1 INTO AL

MOV PTR WORD FLAG1,AX sSTORE AX IN THE TWO BYTES

iSTARTING AT FLAG 1

A label is defined by entering its name in the first field of the source statement.
Labels must originate in column one.

Operations Code
Op-Code) Field

Op-codes are the actual mnemonics that represent the instruction you want the
microprocessor to execute. Op-codes must be entered in the second field of the
source statement, separated from the label field by at least one space. To make the
program more readable, programmers usually use tabs to align the fields of the
source program.

An example of an op-code is JMP. JMP is a mnemonic which the assembler trans-
lates to 2 machine executable instruction.

When used, Pseudo-ops must also be entered in the op-code field. You’ll notice in
the previous examples, EQU, DW, and DB are all pseudo-ops that appear in the op-
code field.
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The operand field tells the assembler what it is we want to move (MOV) or jump
(JMP) to and may require two operands, a source and a destination. An operand
may be a constant (value), a register, or a label. Some instructions are register
implicit and do not require any operands at all:

MOV AX, 10H ;TWO OPERANDS AX$azDESTINATION
$USING A CONSTANT AS THE SOURCE
MOV AX, COUNT sMOVE THE CONTENTS OF MEMORY
sLOCATION COUNT TO THE AX REGISTER
NEG AX sNEGATE (2'S COMPLEMENT) THE ACCUMULATOR
sONE OPERAND, RAX = DESTINATION
JMP THRT_PART sONE OPERAND, THAT_PART = DESTINATION
CLD sCLEAR DIRECTION FLAG - IMPLIED OPERAND

sNOT REQUIRED TO BE EXPLICIT.

The operand field must be separated from the op-code field by at least one space.

Comment Field

A comment must originate in the first column of the label field if the entire line is to
be a comment, or it must be separated from the preceding field by at least one
space. Comments must begin with a semicolon (;), as shown in the previous
examples. All characters entered after the semicolon are ignored by the assembler
and treated as a comment. Comments make your program more understandable to
you and others (should they have the fortunate task of maintaining your code after
you have moved on to greener projects).

Often, when you are writing programes, it is not practical to completely document
your code as you write it. However, there should be enough comments to describe
the code in a precise manner, so that it will be easy for you or someone else to
understand the program today or a year from now. Once the code has been
debugged and finalized, go back and more thoroughly document the program by
adding more comments wherever possible.
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I have a tendency to occasionally state the obvious in my comments such as:

JMP START sJump to start.

Nothirig infuriates me more than to read a source listing of a program which is
documented like this. It infuriates me further when I sheepishly recognize the code
as mine. Why did I jump to START? The reason is not always obvious unless you
know or remember what function the code at the label START performs. A better
comment would be:

JMP START ;Get the next character.

or whatever the reason may be. Documentation is said to be four times the cost of
actually writing the program code. In practice I have seen the ratio climb as high as
10:1 due to the cost involved in writing program documentation months after the
program was written.

Even worse is when you encounter a program listing which runs on page after page
after page, without a single comment. Woe to the poor soul whose job it is to patch
or understand that program. We’re all guilty of not documenting our programs in a
textbook manner (Listing 2-1), yet the need to properly document your programs
cannot be overestimated.

Let’s jump right into programming in Assembly Language, and I'll explain the
design process as we proceed. To enter the source program I’m about to describe,
you’ll need to use EDLIN or some type of word processing software. Once the
source file has been created, you’ll assemble, link, and debug the program.

Don’t worry about not understanding what the source statements mean at this
point. After I discuss the 8088 instruction set (Chapter 4) and MS-DOS functions in
Chapter 6, you’ll better understand the source statements found in the program.



Assembly Language Programming 33

: The First Step:
Defining the Problem

Every software project consists of several phases. A programmer I once worked
with commented after a staff meeting that there were only three major phases to
any commercial software project. The first phase is when the marketing depart-
ment commits to a customer’s schedule. The second phase is when the software
department tells the marketing department they’re nuts. And the third phase is
getting the job done. I'll discuss only what’s required to get the job done.

In reality, the first phase of any software project is to define what the program is
attempting to solve. You can do this by means of an outline, using plain English
statements to define the problem or by use of a program flow chart or state
transition diagrams.

Figure 2-5 depicts the flow charting symbols used to describe program flow

pictorially. Let’s use these symbols as a design tool to illustrate our program’s logic
after we state what we want to do.

AV

Input/Output Process Punched Card Decision

@ CC

Magnetic Tape Punched Tape On-Line Storage Auxiliary Operation Manual Operation

\/ -

Offline Tape Document Display

V
| O

Manual Input Terminal Connector Preparation

|

L

N\

Communications Link

!

Figure 2-5 Programmer’s Flow Chart Symbols
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Objective: Use system calls to read the system configuration of the computer the
program is being executed on. Then display this information on the user’s console.

It sounds simple enough. But how do we go about solving the problem? Put down
some details as to exactly what we want to know about the system configuration.
I. How many disk drives?
II. The system’s memory size.
III. The number of printers available?
IV. Communications Port?
V. Graphics board?
VI. Game Port Attached?
Create a flow chart of the program and describe each process as it relates to the

diagram. Figure 2-6 is the flow diagram I designed. You may have come up with a
different flow chart, which is perfectly legal. It’s the results that count.

The Second Step:
Writing the Source Code

This step is fairly straightforward. If you have created a good flow chart in the
previous step, all that has to be done is to choose the proper 8088/86 instructions
to accomplish the task. Listing 2-1 is the source code I used to solve the problem.
You may, after becoming familiar with the instruction set of the 8088 and MS-DOS,
have chosen a similar algorithm (solution) and similar instructions. You might also
have chosen a totally different algorithm, or set of instructions, to perform the
same task.

You’ll enter the source code using EDLIN (see your IBM DOS Operations Manual)
or another editor (the source code is also on the disk which accompanies this
book). Use the filename CONFIGSY.ASM when you open the source file. Once the
code has been entered, save the file to disk.
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INIT1:
Set up Registers

GET_MEM:

INT 12H

SAVE MEMORY SIZE
GET_SYS

INT 11H

SAVE HARDWARE TYPES
CLEAR THE SCREEN
MOV 24 to CX

DO CR/LF Combination

No LOOP
s ISCX =0

MEM_SHOW:
Display Memory Size

Ye
DCONFIG:
Get Hardware Configuration
Are Bits 4.5 =017
Yes
_O Display Video Mode

as 40 x 25 Color Card

Figure 2-6A
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No

O

Are B4,B5 = 10?

Display Video Mode
as 80 x 25 Color Card

Display 80 x 25
Black/White Card

(B) Dc2:

(2
Yes

Drives in System?

Display the Number
of Drives

~

No

Yes

Any RS232C Cards?

©

Display the Number

~

of Serial Cards

©

Figure 2-6B
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No Is the Game Port

Yes

in the System?

_O Display Message

No Are there any
Printers attached?
Yes
_O Display Message
—
END
Figure 2-6C

The Third Step:

Using the Assembler

Once the source code has been entered and the file has been saved to disk, you’ll
invoke the assembler to translate the source program to machine language. From
the MS-DOS prompt, type (Note: <CR> means press the return key):

mMS DOS PROMPT You Type
A) masm (CR)
Source Filename [.ASM]: CONFIGSY. ASM
Object Filename [.0OBJ]: CONF 1GSY. OBJ

Source Listing CNUL.LSTl: CONFIGSY.LST

Cross reference [NUL.CRF]l: CONFIGSY.CRF

(CR)

(CR>

(CR)

(CR)

If there is an error, use the TYPE command from DOS to list your CONFIGSY.LST
file. This file will contain any error messages and the line where they occurred.
Compare the listing to the one shown in Listing 2-1, correct the error, and repeat
the assembly process until the file assembles properly.
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The Fourth Step:
Using the Linker

Once the source file has been assembled, use the linker to produce an executable
program file. From DOS type:

MS DOS You Type
A Link
Object Modules [.OBJ] CONFIGSY.OBJ (CR)>

Run File [A:CONFIGSY.EXE] (CR)
List File [NUL.MAR1 CONFIGSY.MAF (CR)
Libraries [.LIB] (CR)

You have now created a file on disk, CONFIGSY.EXE, which can be used to find
the configuration of your system.

The Fifth Step:
Create a Cross Reference File

MS DOS You Type
A) CREF. EXE
Cross Reference [.CRF] CONFIGSY.CRF

Listing Cross Reference.REF] CONFIGSY. REF

When you invoked the IBM Macro Assembler, you used your source file CON-
FIGSY.ASM as the input file to the assembler. You then specified the names of three
files that were created by the assembler. CONFIGSY.OB] is the object code output
file. CONFIGSY.LST is the program listing that contains, on a line-by-line basis, the
object code generated from translating each line of the source (.ASM) file.
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The Object File

The object file, CONFIGSY.OB]J, contains information used by the linker to pro-
duce the executable file, CONFIGSY.EXE. The object file cannot be run on the
computer; whereas, the executable file can be run by typing CONFIGSY .EXE from
the MS-DOS command prompt. The linker creates an executable file by appending
the necessary information MS-DOS requires to load and execute the program.

The Listing File

Listing 2-2 in Appendix D is the printout of the listing file, CONFIGSY.LST. The
format of the listing consists of the following fields: line numbers, relative segment
offsets, object code, and source fields.

Notice that the listing produced by the assembler contains line numbers in the left-
most field. Line numbers and comments contained in the source file are not
translated by the assembler; they produce no object code.

Assembler directives, such as the PAGE and TITLE directives, also produce no
object code. Directives control and inform the assembler how to carry out the
assembly process. For example, the PAGE directive commands the assembler to
assemble the program formatted for a certain number of lines per page (56, in this
example) containing a certain number of characters per line (132, in this example).

I've used many messages and defined them in the data segment. The object code
produced by these source statements happens to produce ASCII code in the object
file. Just as the programmer makes the decision to use a specific bit pattern to
represent a signed or unsigned numeric value in binary, so is a decision made as to
whether or not the bits contained in a data byte are to be interpreted as ASCII.

Look now at the code produced by MEM_MESS. 4DH is the ASCII representation of
the letter M. 65H is the ASCII code for a lowercase e. Each letter of the message is
translated to its ASCII equivalent.

The relative offset of the object code produced by each source statement (relative
to the start of the segment) is contained in the second field. MEM_MESS begins at
the offset 0AH from the start of the data segment. That is to say, the ASCII code for
the letter M of the message block is stored at the tenth byte from the start of the
segment.
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Cross Reference File

The cross-reference file generates a detailed listing of all the symbolic names used
in the program. Next to the label’s name is the line number where the label
originates, and every line number where the symbol name is referenced. For
example, the line symbol MEM_MESS originates at line 25 and is referenced on line
128. To verify this, look at Listing 2-2 to confirm that the cross-reference listing is
indeed accurate.

To generate the cross-reference listing, you must specify a cross-reference file
name when running the assembler. You did this by specifying the file name
CONFIGSY.CRF at the appropriate prompt. Next, you ran the cross-reference
utility CREF.EXE, which used the CONFIGSY.CRF file as the input file and, in turn,
produced a file named CONFIGSY .REF.

This information is extremely useful when you have to debug a program. You'll
come to appreciate the many different types of listings the assembler and linker
create when you have to debug your first program. It’s a little like trying to read
and understand abook in the dark. Debugging a program without the aid of a listing
is just as impossible.

Chapter 3 describes the 8088’s architecture. In subsequent chapters I'll use pro-
grams similar to this one to illustrate advanced features of the assembler.

1. You must obtain a PH.D. in applied physics before you can program in
assembly language (True or False).

2. BASIC executes faster than all known language types (True or False).
3. To enter a source file, you must use an editor such as MASM (True or False).

4. Real programmers enter all their programs in machine language (True or
False).

5. If youanswered false to question four, why don’t they?
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10.

The primary advantage assemblers have over writing programs directly in
machine language is that you can use rather than
addresses.

programming allows programs to be developed in smaller
chunks, which makes the program easier to , and

Each field in a source program must be separated by at least one

A well-documented program contains many

Why are comments important?



With the introductory chapters behind us, it’s time to focus on the 8088 and the
IBM PC. In this chapter I will examine the 8088’s architecture and the architecture
of the IBM PC. The term architecture, refers to what’s inside the 8088 and the PC,
from the programmer’s point of view. In terms of the 8088, it’s the register set,
instruction set (discussed in Chapter 4), and the memory addressing modes avail-
able.

Computer architecture is composed of the three primary sections. Figure 3-1
illustrates the three main sections of a computer system: memory, input/output
(I/O), and the central processing unit (CPU). The CPU contains an arithmetic logic
unit (ALU) that carries out arithmetic operations for the CPU and storage locations
called registers. The registers are used to move data to and from the CPU to
memory and the I/O sections.

43
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MEMORY INPUT/OUTPUT
A4 4
Address Bus
Control Bus
Data Bus

: CENTRAL PROCESSING UNIT |[@-

Figure 3-1 Sections of a Micro Computer

The control section in a microprocessor-based system is the brain of the system,; it
is the microprocessor itself, the CPU. Its function is to control data transfers to and
from the microprocessor and the other sections of the computer. Most CPUs will
sequentially fetch, decode, and execute the machine instructions as they come
from memory.

The 8088 has a slightly different architecture, which speeds up this fetch/-
decode/execute cycle. This is shown in Figure 3-2.

As can be seen, the instruction fetch and execution cycles of the 8088 are overlap-
ped, allowing the 8088 to substantially increase the microprocessor’s throughput.
The 8088 implements two independent units which are internal to the chip. These
are the BIU (Bus Interface Unit) and the EU (Execution Unit). The BIU of the 8088
fetches and reads and writes data via the system’s bus. It fetches instructions from
memory and places them in a 4-byte queue (6 bytes for the 8086). (Source Intel).

The EU removes the data and instructions placed in the queue by the BIU and
executes them. This technique, which is referred to as pipelining, allows the fetch
and execution cycles to overlap. While the EU is executing instruction, the BIU is
fetching another from memory. Whenever the program branches to another part
of the program, the queue is emptied and filled with data and instructions begin-
ning at the new execution address.

The CPU also contains some general purpose and dedicated storage locations
internally. These storage locations are referred to as registers. Usually a CPU will
have at its disposal one or more accumulators that are used for arithmetic opera-
tions and one or more index registers that are used to hold addresses or pointers
into memory. Additionally, there will be other registers designed with more
specific uses in mind.
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Execution Unit Bus Interface Unit
(EU) (BUI)
General Registers Segment Registers
AX (0]
BX DS
CcX ES
DX SS
SP
DI - -
sl Instruction Pointer
P
ALU INSTRUCTION QUEUE
4 Bytes
STATUS FLAGS
. Data Bus Address, Data
Exeuc:i::on ("  nteface [¢—>
n —
Instructions
Pipelining vs. Sequential Execution
Elapsed Time: -
2nd Generation Microprocessor
CPU: Execute = Write Fetch Execute Fetch Read Execute
BUS: Busy  Busy Busy Busy
8088/8086 Microprocessor
CPU: Execute Execute Execute
BIU: Fetch  Fetch  Write Fetch Read Fetch
BUS: Busy Busy Busy Busy Busy Busy

Figure 3-2 8088 Architecture

The CPU’s instruction pointer always points to the next instruction to be executed.
The stack pointer points to the next available storage location in a RAM area known
as the stack. The CPU has a register to record the status of the instructions the CPU
executes. This register is referred to as the status, or flag, register.

Specialized Registers
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Another important part of the CPU is the Arithmetic Logic Unit (ALU). Its purpose
is to perform arithmetic calculations and set the flags in the status register accord-
ingly. If one number is subtracted from another number and the result is zero, the
ALU is responsible for setting the zero flag (ZF) in the status register. In the 8088,
the ALU is a full 16 bits wide and can be used in 8-or 16-bit arithmetic operations.

Memory

The memory section stores the program instructions in the binary format discussed
in Chapter 1. The memory section also holds data required by the program. The
amount of binary data each memory location in the PC is capable of storing is one
byte. An analogy can be drawn between the way these storage locations are
accessed and the way a mailman delivers mail to someone’s house. A unique
address is assigned to each home on a given street. The same is true for each
available storage location in memory.

The CPU is the microprocessor’s mailman. It generates the desired address by
placing the proper electrical signals at the physical pins of the processor chip
designated for this purpose. The memory section responds by allowing the CPU to
read data (accept mail) from the specified memory location or by allowing the CPU
to write data (deliver the mail) into the location being accessed. Addresses start at
memory location zero and continue to the maximum address the microprocessor
can generate. In the case of the 8088, this upper limit is FFFFFH, which is over one
million memory locations (1,048,576, to be exact). This corresponds to the total
possible binary combinations the 8088 can generate via its 20 address lines (2
raised to the 20th power = 1,048,576).

RAM, an acronym for Random Access Memory, is a type of memory that can be read
from and written to. The programs you write for the IBM PC are read from disk and
placed in RAM for execution. Unfortunately, whenever the computer’s power is
turned off, the information stored in RAM is lost.

In fact, the RAM in the IBM PC (and most computers) needs to be refreshed
periodically while the system is on. This type of memory is known as Dynamic
Random Access Memory, or DRAM. Each bit of memory can be thought of as small
capacitor which stores a charge. Without periodically refreshing each bit cell, the
cell’s charge will slowly discharge. Memory refresh is nothing more than the
system reading the contents of a given RAM location and writing that value back to
the same location, thereby replenishing the charge for that bit. Refresh is trans-
parent to the user and is something the Assembly Language programmer normally
is not concerned with.

ROM (Read Only Memory) can only be read from, not written to. The data
contained within the ROM is therefore said to be unalterable or nonvolatile. ROM is
used in the IBM PC to store the program that monitors the system’s resources when
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the computer is turned on. The program checks to see what I/O devices are
attached to the system, how much RAM is installed in the system, and if the
resources are functional. The ROM also contains the BASIC interpreter and indi-
vidual routines that form what is known as the computer’s Basic Input/Output
System or BIOS. These routines allow a convenient method for the applications
programmer to access the system’s resources: printers, disks, keyboard, video, etc.

A small program called a bootstrap loader is also contained in the ROM. Its
function is to read in the first sector of information from the diskette containing
MS-DOS. Once this information is read from disk into the system’s memory, the
ROM passes control to the program read from disk, which loads the rest of DOS
into memory.

Segmentation

The 8088 views its IM byte of memory as being comprised of segments that can be
up to 64K bytes in length. There is 2 memory segment for your code, data, and
stack. Each segment is associated with specific registers, known as code segment
registers, and pointers that contain offsets into the segment. By using the segment
and offset registers, data may be accessed anywhere within the segment. I’ll discuss
the 8088’s segment registers and memory segmentation in detail later in this
chapter.

How DataIs
Stored in Memory

The 8088 microprocessor stores 16-bit values in memory in what appears to be
reverse order. The low order byte of a 16-bit value is stored in the lower memory
location, with the high order byte being stored in the next higher memory loca-
tion. In 2 moment I'll discuss the various registers within the 8088. When we
visualize how data is stored in the registers and contrast this view with how data is
stored in memory, it appears as if it has been saved in reverse. Figure 3-3 demon-
strates how the data value OFO7H is stored in the 8088 register AX and how the
value would be stored in memory.

As can be seen from Figure 3-3, values stored in memory appear to be stored in
reverse when compared to the same value as it is stored in a register. Remember,
AX is comprised of two 8-bit registers, AH and AL. AH is the high order 8-bit
register, and AL is the low order 8-bit register. Therefore, when the entire 16-bit
word is stored in memory, AL is stored at the lower memory location, and AH is
stored in the higher memory location. When data is read from memory, the low
order memory byte is placed in AL, and the high order byte is placed into AH.
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High Low
Byte Byte
AH AL
—
Va'ue inAX = OF 07 OFO07H

Value In Memory C0000 = 07H
Value In Memory C0001 = OFH ¢———

Memory

co0000 Co0001
Low High
Byte Byte

07 | OF

Figure 3-3 Data Storage in Registers and Memory

Procedures and Stacks

Procedures, or subroutines, are specialized and often-used mini-programs. The
functions they perform may be required in several places in a large program. Rather
than writing the same instructions over and over again, the routine is made into a
procedure that is called as needed by the main program. This helps to conserve
memory and makes the program easier to maintain should the procedure ever need
to be rewritten.

RAM is also used for temporary storage of data in what is referred to as the STACK.
Stacks are areas in RAM that are used by the microprocessor to save certain registers
during special operations.

In much the same manner as memos are deposited and removed from an IN basket
on an office desk, so are addresses and data pushed and popped from the stack. The
last piece of paper put into the IN basket is the first one taken from basket. In the
8088, a register known as the stack pointer (SP) points to the top of the stack (TOS).
When values are pushed on the stack, the stack pointer is decremented by 2, and
the word value is written to the memory pointed to by the stack pointer. Each push
stores 2 bytes (a word) of information on the stack. Figure 3-4 illustrates how the
stack grows downward in memory each time data is pushed onto it.



8088 Architecture 49

Stack Pointer Memory Data
Top of Stack ————#>x6000 xxxx  (x = undefined)
Instruction: CALL SUBROUTINE
Effect:
Stack Pointer Memory Data
x6000 XXXX (Old Top of Stack)
» xSFFE P (Instruction Pointer)
Instruction: PUSH AX
Effect:
Stack Pointer Memory  Data
x6000 XXXX
xSFFE P (Old Top of Stack)
» x5FFC AX (Contents of AX)
Instruction: POP AX
Effect:
Stack Pointer Memory Data
x6000 XXXX
» x5FFE P (New Top of Stack)
x5FFC AX
Instruction: RET
Effect:
Stack Pointer Memory Data
L > x6000 xxxx  (Stack is now restored
xSFFE P to original state)
x5FFC AX

Figure 3-4 Stack Operation

When a procedure is called from the main program, the processor saves the address
of the instruction immediately following the CALL instruction. This pointer is
saved by the 8088 by pushing it onto the stack. The address of the procedure that
was called now becomes the new instruction pointer.

The last instruction executed in the procedure is the return instruction, RET. When
the RET instruction is encountered, the value previously pushed onto the stack is
retrieved (popped off the stack), replacing the contents of the instruction pointer
(IP). Control is returned to the instruction immediately following the instruction
that called the procedure. ,

When a program calls a procedure which resides in another segment, not only is
the value of IP saved on the stack, but so are the contents of the segment register CS
(code segment). CS is then loaded with the segment address of the procedure, and
IP is loaded with the offset of the first instruction in the called procedure. On
return, the previously saved register values are popped from the stack, allowing
program execution to resume with the instruction immediately following the call
instruction. ' '
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When data are popped from the stack, the word value stored at the top of the stack
is written to the register designated in the POP instruction, and the stack pointer is
incremented by 2 to point to the new top of stack.

As Figure 3-4 shows, the CALL instruction decrements the stack pointer by 2 and
places the contents of the instruction pointer in the location pointed to by the
pointer. The PUSH instruction also decrements the stack pointer by 2 and places
the contents of the AX register (in our example) onto the stack. POP and RET each
copy a word value from the top of the stack and increment the stack by 2. POP
retrieves a value and places it into the register specified. RET always fetches either a
word or double word from the stack and places it into either IP (intrasegment RET)
or into CS and IP when an intersegment return is required. Notice how the stack
grows downward in memory each time a value is pushed onto the stack and shrinks
upward with each POP.

The stack is also a convenient place for the programmer to temporarily store data.
As an example, perhaps you need to use the AX register for an operation, but the
value currently in the AX register is of importance and cannot be lost. You need a
quick and convenient place to store the current contents of AX. A commonly used
technique is to save the register’s contents on the stack, perform the required
operation and restore the register with its original contents by popping its previous
value from the stack.

I'll discuss interrupts in 2 moment, but for now, keep in mind that the CPU, on
receipt of an interrupt, saves not only the instruction pointer on the stack, but the
status flags and the code segment (CS) register as well. When the interrupt service
routine is finished, an interrupt return (IRET) instruction is executed which
restores the register’s CS, IP, and the status register with the values previously
stored on the stack.

Input/Output Section

The I/O section of a computer consists of the physical interface between the
microprocessor and some type of peripheral device, such as a keyboard, printer,
video display unit, or a disk drive.

In other applications, the microprocessor may be required to communicate with
more exotic devices, such as an analog-to-digital converter, which is designed to
translate an analog voltage level to a binary word the computer understands. The
A/D may be attached to a sensor or a transducer and incorporated in machines used
in a factory environment.

Whether the I/O device is a switch attached to the IBM or a transducer’s output
which is attached to an A/D expansion card in the IBM, some type of interface
between them and the microprocessor is required. Without an I/O section, humans
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would never be able to communicate with the computer, nor would the computer
be able to communicate with real world events.

The Control Bus

The CPU issues control signals over what is known as the control bus. These signals
control data transfers between the CPU, memory, and the I/O section of the
computer. The 8088 is capable of operating in two modes, minimum and max-
imum. The control signals generated by the 8088 are different in each of the two
modes.

The signals generated and received by the 8088 form three main bus architectures
within the system (Figure 3-5B). The address bus is composed of the signal lines
ADO0-AD7 and A8-A20. ADO-AD?7 are time multiplexed, which means that at one
particular instant they are used for transmitting an address to the memory or I/O
sections, and at some other instant in time they are used for transmitting and
receiving data. Therefore, AD0O-AD7 comprise the data bus of the computer
system. The control bus is comprised of all the other signals (with the exception of
the VCC and GND signals, which are part of the power bus and supplies the 8088
with the necessary operating voltages.)

Minimum Mode

The control signals generated by the 8088 microprocessor in minimum mode are
M+/1O, RD+, and WR+ (» means that the signal must be a binary 0 or a logic 0 to be
considered true).

M+/1O tells the system whether the operation is a memory transfer or one involving
Input/Output (I/O) devices. If the line is low, a memory access is assumed. If the
line is high (logic 1), an I/O operation is dictated. The RD * signal allows the CPU to
read data from memory, and the WR + signal, to write data into mémory. The CPU
generates all the necessary bus control commands.

Maximum Mode

In maximum mode, the signals which were used in the minimum mode are
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redefined to support multiprocessor (more than one microprocessor) configura-
tions. Fortunately for you, the configuration of the 8088 as used in the IBM PC is
the maximum mode. This allows you to add co-processors like the Intel 8087
numeric processor, which speeds up mathematical calculations.

The Address Bus

In conjunction with the control bus, the 8088 issues the appropriate address for the
operation specified. The 8088 is capable of addressing over IM (million) bytes of
memory via address lines A0-A19. The address lines are unidirectional; they are
outputs from the 8088 and serve as inputs to the memory and I/O sections of the
system.

The 8088 can generate up to 65,536 I/O port addresses by using the low order

(A0-A16) address lines of the address bus. The 8088 is also capable of byte or word
1/O, just as it is capable of performing byte or word memory transfers.

The Data Bus

The 8-bit data bus of the 8088 transfers data, 8 bits at a time to and from memory
and the CPU. The data lines of the 8088 are shared with the address lines A0-A7.
Signals SO, S1, and S2 are used to inform the 8288 bus controller of the type of bus
cycle currently being executed (Figure 3-6).

When used in 2 maximum configuration, the 8088 supplies the 8288 bus controller
with three signals, S0-S2. These signals are used to inform the 8288 of the type of
bus cycle currently being executed. The 8288 generates the appropriate signals to
demultiplex and latch the contents of the ADO-AD7 and execute the desired
function (memory or I/O read or write, etc.). (Source Intel, used with permission).

The 8288 chip decodes the status lines and generates the necessary signals to
control other support chips known as latches. Since the address lines AO-A7 may
contain either data or address information, these lines are said to be multiplexed.
The 8288 bus controller generates a signal DEN, which is used to enable data
latches when the lines contain data. A signal ALE is used to enable address latches
when the information on A0-A7 is to be interpreted as part of an address. Figure
3-7 depicts the possible states of the status lines S0-S2 and their interpretations.

A related processor manufactured by Intel is the 8086. The major difference
between the 8088, which is the microprocessor in the IBM PC, and the 8086 is that
the 8088 must always transfer data 8 bits at a time, while the 8086 is capable of
transferring data 8 or 16 bits at a time. There are other minor differences between



54 8088/IBM PC Assembly Language Programming

Command
Sso* S0* 8288 Bus
8088 Si1* st — MRDC* —p>
s2* s2* —— MWTC* —p
IAdress/Data DEN — AMWC* —>
DT/R* — IORDC —
ALE — IOWTC —»
—— AIOWC —p>
—— INTA* —
Address
gg? Latches
r (3 each)
8286 >
GND | Address
Bus to
T 8286 Mem. & /10
——p| CSs*
Trans- Data Bus
L Data €9 ceiver |4¢——————P
To Memory
and /O

Figure 3-6 8088 and 8288 Bus Controller (Maximum Mode)

o
-
N

Meaning

Interrupt Acknowledge
1/0 Read

1/0 Write

HALT

Code Access

Read Memory

Write Memory

Passive

- aaa0000W0M
—‘—‘OO—‘—"OO(I)
-0 =0 -==0-=-0W

Figure 3-7 Status Line States

the 8088 and the 8086, but they can be considered insignificant from the program-
mer’s point of view. Both microprocessors execute the same instruction set.

The primary difference between a microcomputer and microprocessor is that a
microcomputer contains the three primary sections: CPU, memory, and I/O. A
microcomputer can consist of a2 microprocessor and a separate memory and I/O
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section. This type of system architecture can be found in the PC. However, there
are single chip microcomputers available as well. The Intel 8748, 8031, 8051, and
8096 are all microprocessors that incorporate the three sections of a microcom-
puter on a single chip. Therefore, they are referred to as a microcomputer chip and
not as a microprocessor chip.

Figure 3-8 shows the memory map of the IBM PC. Notice that not all of memory is
available to you. Some of the memory is dedicated to storing values that are
required by the system to function properly. Many of these values serve as address
pointers to service routines which the 8088 vectors to under certain conditions.
Specifically, the vectors are used by the 8088 to find interrupt service routines,
routines that are executed any time the 8088 is interrupted.

Internal Architecture

The 8088 contains an internal register architecture consisting of fourteen 16-bit
registers. There are three primary classifications to the register set: data and
pointer registers, segment registers, and control registers. The data registers AX,
BX, CX, and DX can be used in 8-bit or 16-bit operations. If the X designation is
used, as in AX, the reference implies 16 bits. However, you can also reference either
the high order or low order byte of each data register by using the designations of H
orL,asin AH or AL.
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Word length in bits

AX (Accumulator)
BX (Base)

CX (Count)

DX (Data)

Index registers:

Pointer registers:

Il) Code segment registers:

1) Data registers: AX, BX, CX, DX, Sl, DI, BP, SP:

Ill) Control registers: IP, SR:

{b0-b7 = Low order half of register}
{b8-b15 = High order half of register}
{AH and AL used in 8-bit operations}
{BHand BL ” }
{CHandCL ” }
{DHand DL ” }

DI (Destination index)

” ” ”

” ” ”

” ” ”

Sl (Source index)
SP (Stack pointer)
BP (Base pointer)
DS, ES, CS, SS:
DS (Data segment)
ES (Extra segment)
CS (Code segment)
SS (Stack segment)

IP (Instruction pointer)

SR (Status register)

Segmentation

The 8088 has been shown to contain 20 physical address lines capable of address-

ing over IM byte of memory.

You'll notice, however, that the largest register

within the 8088 holds only 16 bits (16 bits can generate a maximum of 64K
addresses). How is it then, that we can access over 1 million bytes with the 8088?
The answer is not at all obvious.

The processor calculates where in the one million bytes of memory each logical

64K segment resides by using a

pointer in conjunction with a segment register. The

segment registers, CS, DS, ES, and SS point to the beginning of specific segments.
Each of the segment rcglstcrs are associated with other registers that contain an

offset into the 64K segment to
segment.

facilitate the addressing of information within the
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Address
00000

40000

A0000

C0000

F0000

F4000

FFFFF

On Board System Ram
64K to 256K Maximum
Note: Locations 00000
to 003FFH contain
Interrupt Pointers

to service routines

Up to 384K Ram
Expansion in /O
Channel

Reserved (128K)
A4000 - C0000

Video Graphics, Display
Buffer

B0000 - B4000

Used for Monochrome
Graphics

B8000 - BC000

for Color/Graphics

ROM Expansion
C8000 used for Fixed
Disk control

(192K Maximum)

Reserved (16K)

(48K Base System ROM)
F4000 - F6000

(User ROM Area)

F6000 - FE000
(Cassette Basic)

FEO000 - FFFFF

(BIOS ROM)

Figure 3-8 I1BM PC Memory Map
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For example, the CS register holds the start address of the current 64K code
segment. The instruction pointer, IP, contains an offset into the code segment,
which points to the next instruction to be executed. The 8088 calculates the
effective address by shifting the contents of the segment register left 4 bit positions
and filling the LSBs with zeros. This in effect appends 4 bits of zeros to the value
contained in the segment register. The segment offset contained in IP is added to
the 20-bit value obtained by shifting the code segment register 4 bit positions. The
result is the effective, or actual, address required by the operation.

Some examples of how a physical address is calculated follow:

Assume DS = B7A2H and SI = QO1AH

B7Az20 (-—— Shifted value of DS
+ Q01R {-—- Offset into segment
B7A3A (——— Effective address.

Assume CS = 46DDH and IP = A206H

Then --) 46DDQ (-—— Shifted value of CS
+ A206 (-—— Offset into segment
S50FD6 H (——— Effective address.

Assume S8 = 78DFH and SP or BP = D2@9H

Then --) 7QDF @ {(—=—— Shifted value of CS
+ D2@e9 (-—— Offset into segment
7DDF9 H (-—— Effective address

Figure 3-9 illustrates the concept of segmented memory. Notice which pointer
registers are associated with each segment register. In the 8088, instructions are
always accessed with CS plus the offset of IP. Similarly, the stack is always accessed
by using the SS and an offset contained in SP or BP. The data segment can be
accessed by using either DS or ES and the offset specified in SI, DI, or BX. ES points
to the extra segment and is associated with DI, while DS points to the data segment

and is associated with SI. The extra segment and data segment are both used for
data storage.

Segments can be organized in memory so that they are adjacent to each other. They
may also be arranged in such a manner that they overlap, either partially or fully.
When segments overlap, different programs, or tasks, can share data. When seg-
ments are arranged in an adjacent manner, programs can be written that allow data
to be operated on <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>