
8088
IBM PC
Assembly
Language
Programming

Gary Shade

Gary A. Shade

CBS Computer Books

HOLT, RINEHART AND WINSTON

New York Chicago San Francisco Philadelphia
Montreal Toronto London Sydney Tokyo

Mexico City Rio dejaneiro Madrid

Copyright® 1985 Gary A. Shade
All rights reserved.
Address correspondence to:

383 Madison Avenue, New York, NY 10017

First distributed to the trade in 1985 by Holt, Rinehart and Winston
general book division.

Libr2U*y of Congress Cataloging i|| Publication Data

Shade, Gary A.
8088/IBM PC Assembly Language Programming

(CBS computer books)
Bibliography: p.
Includes index.

1. IBM Personal Computer—Programming. 2. Intel 8088
(Microprocessor)—Programming. 3. Assembler language
(Computer programming language) I. Title. II. Series.
QA76.8.I2594S45 1985 005.2'65 85-14156
ISBN 0-03-001298-8

Printed in the United States of America

Published simultaneously in Canada

CBS COLLEGE PUBLISHING

Holt, ̂nehart and Winston
The Dryden Press
Saunders College Publishing

This book is dedicated to my son Jason. May you always communicate with
authority and intelligence, and touch those and the world around you with your
compassion and understanding.

Dad

CP/M is a trademark of Digital Research Incorporated.

MS-DOS is a trademark of Microsoft Corporation.

Z-80 is a registered trademark of Zilog Corporation.

iAPX, INTEL are registered trademarks of Intel Corporation.

6800 and 68000 are registered trademarks of Motorola Inc.

WordStar is a registered trademark of MicroPro International.

This hook and all programming examples were written using WordStar from
MicroPro International.

A special thanks to Intel for their cooperation and in granting reprint permissions
for the many illustrations, tables, and data sheets that appear in this hook.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Preface

Chapter Review xiv

Numbering Systems
Numbering Systems 2
Character Encoding 11
Chapter 1 Review 13

Assembly Language Programming
The Programmer 16
Language Differences 17
Computer Languages 18
Assemblers 21

The Editor 23

Symbolic Representation 23
Forward References 26
Cross Assemblers 27

Linkers 27

Creating a Source Program 28

Operand Field 31
Your First AL Program 32
The Files You Have Created 38

Chapter 2 Review 40

8088 Architecture

Microprocessors and Microcomputers 43
Bus Architecture (Hardware) 51
PC Memory Map 5 5
The 8088 Microprocessor 55
Chapter 3 Review 69

8088 Instruction Set

Instruction Groups 72
Data Transfer Instructions 76

Arithmetic Instructions 87

Before Y ou Continue 102

Bit Manipulation Instructions 102
Control and Transfer Instructions 112

String Manipulation Instructions 124
Processor Control Instructions 130

Chapter 4 Review 134

xi

1

15

43

71

vn

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Assembler Features 135

Assembler Format 136
Data Pseudo-ops 136
Symbolic Names 142
More Pseudo-ops 145
Conditional Pseudo-ops 155
Listing Pseudo-ops 158
Operators 162
Chapter 5 Review 168

Macros and MS-DOS 169
Macro Definitions 169

MS-DOS/PC-DOS and Macros 180

Example Program 185
Chapter 6 Review 188

Numbering Conversions: A Programming Example 189
Purpose 189
Conceptual Design 190
Segment Definitions 192
Program Logic Flow 198

Disk I/O Programming 207
The Diskette 209

MS-DOS Programming Tools 213
Methods of File Access 221

Methods of File Access Under MS-DOS 2.0 226

Absolute Disk Access 229

Prograrnming Examples 231
Chapter 8 Review 247

The Basic Input/Output System 249
Printer I/O 252

Video I/O 253

Graphic Modes 256
Sound 263
Chapter 9 Review 265

Conununications 267

Methods of Analog Data Transmission 276
A Closer Look at Duplex 278
Asynchronous versus Synchronous Communications 282
Baud Rate 285

Error Checking 285
Modems 288

The Program: COMM.ASM 292
MS-DOS RS-232C Functions 302
BIOS Communication Functions 303

A Communications Program:
COMM.ASM and DLOAD.ASM 305

In Conclusion 317

Chapter 10 Review 318

Appendix A 321

Appendix B 327

Appendix C 347

Answers to Chapter Reviews 347

Appendix D 353

Bibliography 473

Index 475

This book is intended to be an introduction to Assembly Language programming
on the IBM PC, and to provide the Assembly Language programmer with a valuable
reference for future use. Three subject areas are of interest when writing programs
for the IBM (and compatible computers). These are:

1. the 8088 microprocessor, the brain of the IBM;

2. MS-DOS or PC-DOS, the operating systems for the compatibles and the IBM;
and

3. general programming practices, which when applied to Assembly Language
programming, make the exercise worthwhile.

You should know bow to operate your computer. This book will not instruct you
on where the on/off switch is located, nor will it tell you bow to properly insert a
diskette and efficiently use DOS commands, such as DIR or COPY. You should
consult your operations manual if these commands do not sound familiar to you.

Why Assembly
Language?

Assembly Language is capable of creating programs that execute faster and are
more efficient in terms of memory usage than are most higher level languages, such
as BASIC. Most people have beard about Assembly Language (AL) and Assembly
Language Programming (ALP), but few may have already attempted to program
their machines using AL.

Assembly Language is intimidating to the novice programmer, but then so are
numerous other activities when attempted for the first time.

You'll find that the skills acquired from learning to program your IBM PC will
enable you to quickly learn a different microprocessor's architecture and instruc
tion set. Once you become really proficient at Assembly Language programming,
learning a new microprocessor's architecture and the instructions necessary to
program it will take about a month.

The current trend in applications development work is to use higher level lan
guages, such as BASIC, FORTH, and Pascal, to reduce programming time. How
ever, most applications require some portion of the application program to be
written in Assembly Language (AL).

xi

High level languages such as BASIC and COBOL do speed up development time, but
they do not execute as quickly as programs written in AL. Higher level languages
also require more memory than programs written in Assembly Language.

Getting to Know
Your Micro

Perhaps the most important concept any book on Assembly Language Program
ming (ALP) must convey is that you, the programmer, will become acquainted with
the hardware that makes a computer a computer. This knowledge is essential when
writing in Assembly Language. You must know the microprocessor's architecture,
its registers and instructions.

As this book is about 8088/IBM ALP programming, you should have access to an
IBM PC or one of the compatible computers with a minimum of 64K memory, two
disk drives, PC-DOS or MS-DOS 2.0, the IBM Macro Assembler (IBM part number
60242002), and, optionally, a full screen editor or word processing software
package such as WordStar from MicroPro Inc. The line editor EDLIN, which comes
with PC-DOS, can be used to enter the source examples given in the text; however,
a fiill screen editor will make source entry and editing easier and faster.

All the examples in this book were developed under MS-DOS 2.0, a system with
256k of ram, two disk drives, and the Macro Assembler from IBM. The examples
themselves are simple enough for first time ALP programmers. Should you want to
experiment by using different or more sophisticated programming examples, by
my guest. It is the only way you'll become proficient in writing your own pro
grams.

ALP

A language is nothing more than a form of communication; a vehicle through
which ideas, concepts, and actions are expressed. Suppose for a moment that you
speak the language known as English, and you are trying to communicate in
Spanish. Without knowing the language you can make grandiose gestures, draw
pictures, or try some other form of audio/visual maneuvering to convey your
meaning. The easiest solution is to find someone who speaks and understands both
languages, English and Spanish. If the translation process goes smoothly and
correctly, your meaning will be conveyed to the other party.

Similarly, when you program in AL, you program in the language of the assembler.
What you type or enter from the keyboard is a language unique to the assembler for
a particular microprocessor. The assembier statements are referred to as source

xu

code. The hitch is that the computer understands what is known as machine code,
which is in the form of binary ones and zeros (more on binary in Chapter 1). You are
faced with a similar problem; you need a translator.

The assembler translates your source program into a machine readable format that
the computer can understand and execute. Should you mistype or misspell an
entry, the assembler usually generates an error message. If, however, you enter a
valid statement, but the statement is not what you intended, the assembler will not
generate an error messsage, and the error may not be found until you try to run the
program. The intent is not translated properly; only the process described in your
Assembly Language source statement is translated.

This translation process is what must occur whenever you program in Assembly
Language. The assembler translates your source programs into what is known as
executable or object code; the binary ones and zeros the microprocessor under
stands.

The Definition of NEW

Learning AL does not happen overnight, nor does it occur through osmosis.
Whenever you write a NEW AL program, remember that NEW is an abbreviation
for Nothing Ever Works the first time. You will most likely find that a few bugs
have crept into your program. These errors are common to all programmers and
not restricted to just the beginner's code. More often than not your logic will be
correct, but you'll have made a syntactical error that the interpreter translated
literally when translating your source code.

There is one bright note in making mistakes; you learn from them. After spending
considerable time poring over a section of code to find an error, you'll find
yourself quickly learning and understanding the code in its entirety. While the
program examples in this book have been debugged for you (by yours truly), I'm
sure that a few typos will creep into your program as you enter the programming
examples.

Hardware

While it is important to understand the hardware in your PC, I will limit my
discussion to the microprocessor (8088) and a few of the support chips found in
the PC. 1 will not go into a great amount of detail, as it is not the purpose of this
book to delve into hardware specifics about the machine. The section will be more
to introduce you to the world where Assembly Language programs must directly
deal with such devices and program their operation. The main thrust of this text is
to demonstrate how programs are written in the PC-DOS environment.

xiii

This implies that the operating system is responsible for initializing the support
chips and in carrying out Input and Output (I/O) through these chips. The advan
tage inherent in presenting an introduction to ALP in this manner is that the
programs you write will be transportable to another MS-DOS or PC-DOS IBM
compatible computer. Should you attempt to directly program these chips, you
may find that the physical memory or port address where they reside is not the
same in all computers, even though the computers are said to be compatible.

Once you feel comfortable programming the PC, you'll be ready to learn more
about programming hardware devices such as a communications interface chip
(Intel's 8251A), a programmable timer such as the Intel 8253, or a peripheral
interface chip such as the Intel 8255.

Chapter 1 is an introductory chapter describing the different numbering systems
used in assembler programming. Chapter 2 is an introduction to concepts that
apply to all microprocessors and assemblers. Towards the end of the chapter I'll
begin to focus directly on the 8088 microprocessor with a programming example
that represents your first AL program (if you're new to ALP, of course).

Chapter 3 looks at the 8088 architecture in detail. Registers and their usage are
defined and programming examples provided. Chapter 4 discusses the instruction
set of the 8088 and the manner in which data are accessed (addressing modes).

Chapter 5 discusses features of the IBM Macro Assembler, MASM. The main empha
sis of this chapter is using the many advanced features of the IBM Macro Assembler
to control the assembly process. Chapter 6 describes MSDOS and macro instruc
tions in detail: What they are and how to use them. A complete macro library is
included on the diskette that accompanies this book. The macro library contains
macro definitions for all of the functional calls supported by MS-DOS 2.0. Many
BIOS macros have also been included.

Chapter 7 demonstrates how a program is written from start to finish. Chapter 8
discusses disk programming. The chapter contains four programming examples,
including a program that reads, sorts and displays all filenames found in a diskette's
directory.

Chapter 9 focuses on BIOS, the Basic Input/Output System of the PC. Programming
examples include graphics and sound routines. Chapter 10 discusses telecom
munications and presents an interrupt driven telecommunications program. The

XIV

program supports disk and printer spooling while on-line and communcation baud
rates up to 9600 baud.

For those of you who are experienced at writing AL programs for the 8088, you
may want to skip directly to Chapters 6 through 10, which provide the necessary
information required to write AL programs on the PC. All the information neces
sary to write programs that accept data from the keyboard, disk, and other I/O
devices is presented here. There is also information on the operating system, MS-
DOS, in these chapters.

I hope you find this book instructional and refer to it from time to time as one of
your reference books on the IBM PC. Should you wish to communicate with me,
you can write me:

do Argonaut Systems
POB 2492

Northbrook, IL. 60062

Please include a self-addressed stamped envelope if you expect a reply. You can
also leave me electronic mail on CompuServe. My user I.D. number is 71625,121.1
hope to hear from you.

XV

1

It would be nice to have a computer that understood every word (spoken or typed),
interpreted its meaning, and understood our numbering system. If that were the
case, programming would be a snap. Nearly anyone couid walk up to the machine,
put it into a learning mode, and program it in plain English. If this were the case,
there would be no need for this book or others like it. However, these are the
machines of the future, ones that today's science fiction is made from.

Current technology is available that allows machines to talk and to listen to the
spoken word. However, these voice input and output devices, like the printer or
disk drive attached to your computer, receive and transmit information to and
from the computer system via two discrete voltage levels. The voltage is either ON
or OFF.

For the time being, computers understand only electrical signals that are either on
or off. The language the computer understands is in binary form, the base two
numbering system. Therefore, it is imperative that you understand binary and
other numbering systems that are commonly used in programming, before you
begin to look at Assembly Language programming on the PC. There is not one
programming application that I can think of where a basic understanding of the
different numbering systems is not important.

I'll examine numbering systems in this chapter and how data are represented using
binary and hexadecimal notation. A later chapter provides you with a program that

2 8088!IBM PC Assembly Language Programming

can be run on the PC to convert values among the decimal, binary, and hex
adecimal numbering systems.

Binary (Base 2)

Humans chose a numbering system for their everyday use that was convenient to
them—decimal, or base 10. As humans have ten digits (10 fingers), we chose a
numbering system which also has ten digits—0 through 9. This is convenient for
humans, but a microprocessor understands only the presence or absence of an
electrical signal.

Since the microprocessor is concerned with only two possible states (ON or OFF),
the binary numbering system could be used to represent the two possible states as a
binary 1 for the ON condition and binary 0 for the OFF state.

This is the smallest amount of binary information in a digital system, and it is
referred to as a BIT (Binary diglT). Several bits are usually grouped together to
convey more information than can be found in a single bit. When 8 bits are grouped
together, a byte is formed. A word is a grouping of the maximum number of bits the
microprocessor can store internally. For the 8088, a word consists of 16 bits, the
maximum width of any 8088 register (an internal storage location).

Coimting in Binary —
Examine for a moment how a decimal number is constructed. The number three-
hundred-and-thirty-five is represented in decimal as 345. There is a one's position,
a ten's position, and a hundred's position. Each digit's position is a multiple of the
numbering system's base. The first position is 5 x 10 raised to the 0 power. The
next digit has the significance of 4 x 10'. The hundred's digit is expressed as 3 x
102. Each successive digit's significance is increased by a factor of ten.

Similarly, the binary number 10000111 represents the decimal number 135. The
bit positions take on the following significance:

Numbering Systems 3

MSB (Most Signifint Bit)

b7 bS bS b4 b3 b2 bl bd

1 0 0 0 0 1 1 1

ISa 64 3£ 16 a 4 £ 1

tSB (Least Significant Bit)

Binary

Decimal

7 6 5 4 3 £ 1 0
2 £ £ £ £ £ £ £ Powers of two

The decimal values for ail bit positions containing a 1 are added together to arrive at
the decimal number being represented. A byte of all ones would equal the decimal
value of 255. Since a byte of all zeros is possible, there are 256 total bit combina
tions possible within a byte (8 bits). What would the decimal value of the binary
number 10101010 be equal to? Figure 1-1 shows the bit significance in a byte.

Bit Significance in a Byte

BYTE

High Order Nibble Low Order Nibble

Hexadecimal Weight — 8 4 2 1 8 4 2 1

Decimal Weight - 128 64 32 16 8 4 2 1

Binary Weight - 27 26 25 24 23 22 21 20

Bit Position - B7 B6 B5 B4 B3 B2 Bl BO

Byte #1 0 1 0 1 0 0 1 0

Byte #2 - 1 1 1 1 0 0 0 0

Byte # 1 (decimal) = 0 + 64 + 0 + 16 + 0 + C► + 2 + 0 = 82
which equals 52 HEX

Byte #2 (decimal) = 128 + 64 + 32 + 16 + 0 + 0 + 0 + 0 == 240
which equals FO HEX

Figure 1-1 A total of 256 possible states may be represented In a byte of binary. Sfiown are two
bytes of binary. Notice tfiat to represent tfte byte In hexadecimal, the byte Is divided into
two 4 bit quantities known as "nibbles".

Table 1-1 shows the binary numbers for 0 through 255 decimal. Notice that each
time a bit position that is already set to a binary 1 has one added to it, the digit
changes to zero. A carry is generated into the next bit position. This occurs in
decimal also. It happens whenever 1 is added to 9:

9 + 1 10, 39 1 = 40, 99 + 1 = 100 etc-

4 80881IBM PC Assembly Language Programming

Table 1-1

8 Bit Binary Examples

Decimal Binary Hexadecimal

0 00000000 OOH

1 00000001 01H

2 00000010 02H

3 00000011 03H

4 00000100 04H

5 00000101 05H

6 00000110 06H

7 00000111 07H

a 00001000 OSH

9 00001001 09H

10 00001010 OAH

11 00001011 OEM

12 00001100 OCH

13 00001101 ODH

14 00001110 OEM

15 00001111 OFH

16 00010000 10H

250 11111010 FAN

251 11111011 FBH

252 11111100 FCH

253 11111101 FDH

254 11111110 FEH

255 11111111 FFH

Adding numbers in binary is just as straightforward.

Binary Decimal

b7 b& bS b4 b3 bS bl b0

- 1 1 - 1 1 1 1

0 0 0 1 1 0 1 1 £7

1 0 1 1 1 0 1 1 + 187

1 1 0 1 0 1 1 0 £14

Carrie (- = no carry)

Numbering Systems 5

Bit 1 (bl) in each of the two values to be added is set to binary 1. When they are
added together, they produce binary 0 and generate a carry out of bit 1 into bit 2.
But the carry into bit 1 from the previous addition (bO) must also be added. After
adding the carry bit to the binary ones occupying the bl position, the result is
binary 1, with a carry into the next bit position, b2.

Binary Subtraction
To subtract two binary numbers, the concept of two's complement notation must
be introduced. In the previous discussion, I spoke only of 8-bit unsigned numbers,
with a range of 0 to 255. I'll now introduce the manner in which signed numbers,
positive and negative, are represented. If you're concerned only with unsigned
numbers, all eight bits of a byte or all sixteen bits of a word are available to
represent a given value. If you want to add -f- 3 to -1, that is to say subtract I from
-1-3, the value of -I must be represented within the 8-bit data field. This is
accomplished by using the MSB of the data field to represent the sign bit. For byte
values, a I in the MSB position indicates that the value of bO through b6 is negative,
while a zero in the MSB indicates that the value is positive.

Since the sign bit occupies one bit position, there are only seven bits (fifteen bits for
a word) left to hold a binary value. Therefore, the range of signed values that can be
represented in a byte is:

Positive Values Negative Values

00000000 (decimal 0) 1 1 1 1 1 1 1 1 (decimal -1)

to

01 1 1 1 1 1 1 (decimal +1£:7) 1 0000000 (decimal -128)

It is often convenient to depict positive and negative ranges by using a number line
as follows:

a-Bit Byte Values

0. 128. 258 Unsigned Binary

-128..... 0. +127 Signed Binary

16-Bit Word Values

0.............. 32,768. 65,536 Unsigned Binary

-32,768..... 0 +32,767 Signed Binary

1 can hear you saying, "How the heck does a byte of binary one's equal minus one?"
Negative numbers are represented in what is known as two's complement nota
tion. To perform a two's complement on a binary number, flip all the bit positions
and add a binary I. If the bit position was a I, change it to zero. If the bit position

6 80881IBM PC Assembly Language Programming

contained a zero, change it to 1. This forms the one's complement of the binary
value. Do this for all the bit positions and add 1 to the result to form the two's
complement. Actually, the value to be converted is subtracted from zero to form
the two's complement, but complementing the number and adding 1 also works.
The following example illustrates how this is done.

Number to converts 0010001 1 (35 decimal)

One*s Complement: 1 101 1 100

Add a binary 1: 1 101 1 101 (-35 decimal)

(Form 2's complement)

To discover what negative number a signed binary field contains, perform a two's
complement on the number as follows:

Unknown Value: 101 10101 (-? decimal)

Complement: 01001010

Add a binary 1: 0100101 1 75 decimal (Negative 75)

Convert binary to decimal >> -(64+8+£+i)

By representing negative numbers in two's complement, a subtraction is carried out by
adding the two values: (+A) + (- B). Let's say I want to subtract 2 from 1.1 would first
perform a two's complement on the subtrahend, then add that value to 1.

1) Convert +£ to -2.

Subtrahend: 00000010 (+2)

Complement: I I I I I I01

Md 1 : 1 1 1 1 1 1 10 (-2)

2) Add -2 to 1.

00000001 (-1-1)

Subtrahend: '»- l i l l l l l0 (~2)

1 1 1 1 1 1 1 1 (-1)

Check the answer by performing a two's complement on the result, keeping in
mind that when the number is read, it has a negative magnitude.

Numbering Systems 7

Results l l l l l i l l (-1)

Complements 00000000

Add I s 00000001 The value is 1 (negative)

A byte of all I's is equal to a -1, and all subtractions can be carried out through
addition.

Converting Decimal to Binary

To convert a decimal value to binary, divide the decimal value by 2. Write down
the remainder. If the quotient is zero, you are finished with the conversion. If the
quotient is not zero, repeat the process using the quotient as the dividend.

For example, convert 137 to binary:

step Quotient Remainder
1) 137/iE; - 66 1 Least Significant Bit.

2) 68/e = 34 0

3) 34/2 = 17 0

4) 17/2 = 8 1

8/2 = 4 0

6) 4/2 = 2 0

7) 2/2 = 1 0

8) 1/2 = 0 1 Most Significant Bit

The binary representation of 137 is:

MSB <— lsb

B7 BS BS B4 B3 BS B1 BO

1 0 0 1 0 0 0 1 BINARY

Hexadecimal Numbering
(Base 16)

I have purposely limited the discussion on binary values to byte-wide data fields to
keep the values used in the examples small. Binary notation is very inconvenient

8 80881IBM PC Assembly Language Programming

when larger values must be represented. A l6-bit value of 2498 decimal would be
represented as 0000100111000010. It's harder to read and harder to work with large
numbers in binary form. The number can better be represented using a numbering
system that retains some similarity to the bit positions of the data field. Decimal
does not meet our requirements, as there is no direct correlation between the
decimal and binary digits.

Hexadecimal is most often used to represent binary data. Hexadecimal digits are
comprised of the digits 0-9 and A-F. By dividing the data field into 4-bit slices
called NIBBLES, you can represent a 16-bit binary number with four hexadecimal
digits, and an 8-bit number with two hexadecimal digits. The decimal weights 8,4,
2, 1 are given to each bit position of the nibble. If a nibble's value exceeds 9, the
letters A-F are used to represent the decimal values of 10-15.

The number 2498 decimal is represented in binary and hexadecimal as follows:

0 0 0 0 10 0 1 1 10 0 0 0 1 0 Binary

6 48

1 i 1

1

1

8 4 2 1

1 1 1 1

8 4 2

1 i 1

1

1

8 4 2

i 1 i

1

1

NIBBLE bit values

\i7
0

.1

\ l7
9

\l/

C

.1

\l/

2

.1

Hexadecimal

3

16

2

16

1

16

0

16 Powers of 16

0 X A096 + 9 X 2S6 + 12 x lb + £ x 1 = Decimal 2498

The hexadecimal representation is therefore 09C2H. The H suffix denotes that the
number is expressed in hexadecimal notation. In Chapter 7, I'll show you bow to
write a program which accepts decimal input from the keyboard and converts the
number to hexadecimal and binary and displays the result on the video screen.

When bexidecimal notation is used in your source program, you'll need to
remember this next rule. When the hexadecimal digit begins with a letter (A-F),
you must precede the number with a zero. For example, if you wanted to use the
hexadecimal number FADEH, the assembler would not be able to determine
whether the characters represented a constant or a name. The leading zero informs
the assembler to treat OFADEH as a number and the lack of a leading zero (as in
FADEH) informs the assembler that the characters reprfesent a symbolic name.

Addition of Hexadecimal

Numbers ' —

As in the binary and decimal numbering systems, hexadecimal digits can be added.
When the addition exceeds a digit's capacity, the digit rolls over to zero and a carry
is generated into the next digit position. For example:

Numbering Systems 9

1 << <Carries>

9FC0 H << I

I

•+• 1938 H << I

B8Fa H << <Result>

Binary Coded Decimal

Often you need to store and work with numbers in a computing system that are
encoded in Binary Coded Decimal, BCD. BCD uses 4 bits to represent the decimal
digits 0-9. A hyte can therefore contain two packed BCD digits. If a byte contains
only one BCD digit (unpacked), the other nibble must be zeroed. For example:

Unpacked BCD Packed BCD

0000 0010 = 2 (BCD) 1001 0001 = 91 (BCD)

0000 1001 = 9 (BCD) 0110 0111 = 67 (BCD)

The following are illegal representations:

0000 0010 = 0P H - Is not a digit 0-9.

1110 1100 = EC H - Neither nibble is a digit between 0-9.

Since BCD is used to represent the decimal digits 0-9, any 4-bit combination in
excess of the decimal value 9 cannot be considered a valid BCD digit.

BCD Addition

When the microprocessor adds numbers, it treats all values as binary. It does not
know or care if the binary values being added are BCD encoded or in some other
encoded format. The eomputer adds the BCD digits just as if they were binary
numbers, as follows:

0101 0011 = 53 BCD <83 decimal (Binary weight)>

+ 0010 0110 = 26 BCD <38 decimal (Binary weight)>

0111 1001 = 79 BCD < 53 + 26 = 79 BCD >

<121 decimal (Binary weight)>

10 8088!IBM PC Assembly Language Programming

The answer is correct:

0011 0111 = 37 BCD <55 decimal (Binary weight)>

0011 0010 » 3B BCD <50 decimal (Binary weight) >

0110 1001 = 69 BCD < 37 + 32 = 69 BCD >

<105 decimal (Binary weight)>

The answer is not correct:

0011 1001 = 59 BCD <57 decimal (Binary weight)>

+ 0011 0001 = 31 BCD <49 decimal (Binary weight)>

0110 1010 = 6«H <NOT A VALID BCD DIGIT!>

<6Ah'= 106 decimal (Binary Ueight)>

The reason this last example is not a valid BCD digit is that the low order nibble
produced a binary combination in excess of 9. What it all means is that there has to
be a method to correct for such a condition. What would happen if you added 6 to
the low order nibble that was in error? Let's see what result this would produce.

The original addition was to produce a result of 70 in BCD format (39 + 31). The
actual result was 6AH.

0110 1010 - 6AH

Now add 6 —>) 0000 0110 = 06 <BCD>

0111 0000 B 70 <BCD>

The answer is now correct, and it is represented in a BCD format. The rules are
simple. If the result of a BCD operation produces a value in excess of 9, add 6 to the
result to correct the result to proper BCD format. There is still one more case to be
considered. What would happen if the result of the addition produced a nibble
whose value has passed right through the range of 10 to 15, which is not allowed?

Numbering Systems 11

Consider the following:

0000 1001 s 09 {BCD>

+ 00(90 1001 = 09 <BCD>

0001 0010 a 12 <?>

The result looks like BCD, but it isn't correct. We passed through the range
necessary to effect an adjustment of the nibble, when the nibble's value exceeds 10.
The former rule cannot apply since 2 is less than 10. However, there has been a
carry generated out of the low order nibble (bit 3) into the first bit position of the
high order nibble.

Let's qualify the former rule: Whenever the result of a BCD addition causes a digit's
value to exceed 10, OR when a carry is generated out of a nibble due to the addition,
add the value of 6 to the nibble to correct the result. When this is done, you obtain
18 BCD, the desired result of 9 plus 9. The important point to remember is that the
CPU does not know or care if the number to be added is in BCD format. To the CPU,
all forms of character encoding appear in binary form. Therefore, it is the program
mer who makes the distinction of how the arithmetic should take place and what
graphic characters and numbers the binary groupings are to represent.

ASCII

In an attempt to standardize and formalize the manner in which computers
exchange information, a method to encode alphabetic, numeric, and special char
acters was devised. ASCII (American Standard Code for Information Interchange)
is a 7-bit code that defines the individual bit groupings for each letter of the
alphabet and the ten numeric digits defining the decimal numbering system.

The eighth bit is used to transmit parity, a form of error checking that is dependent
on the total number of binary Ts contained in the character transmitted. If the total
number is even, and you are using even parity, the eighth bit is zero. If the total

12 8088/IBM PC Assembly Language Programming

number is odd, the eighth bit is set to 1, to make the total number of 1 bits an even
number.

In total, there are 128 different bit groupings (T = 128) assigned to represent
character, number, and special character graphics as well as special control codes.
The control codes are used to control how the communication between two

computing devices takes place. For example, the binary bit combinations of 001
0001 (DCl = IIH) and 001 0011 (DC3 = 13H) are commonly used to resume or
suspend communications between two devices. These controls are commonly
referred to as XON and XOFF, for transmit on, or transmit off.

Although the programmer determines how the bit combinations the computer is
acting upon at any given moment are to be interpreted, ASCII was developed to
insure a standard means of transferring information between computing devices.
In other words, if 1 know before computer-to-computer communication begins,
that your terminal will be transmitting ASCII text to mine, and 1 receive the bit
combination 100 0001 (4lH), 1 know that the bit combination will always be used to
represent the letter A. Similarly, if 1 transmit the bit combination of Oil 0011 (33H)
to your terminal, you will always interpret this bit combination as the character 3-

Other Binary Codes

This would be fine if ASCII were the only coding used to represent letters,
numbers, and special characters, but it is not. There are other binary codings which
are used in international and mainframe computer communications. EBCDIC
(Extended Binary Coded Decimal Interchange Code) is widely used in the IBM
mainframe world. EBCDIC (pronounced EB-SID-IC) is an 8-bit code used to repre
sent control, alphabetic, numeric, and special characters. The EBCDIC code can be
found in Appendix A.

Baudot Code

Baudot is another binary code used to communicate information between
machines. Baudot is commonly found in international and domestic communica
tions involving telegraph circuits. It is a 5-bit code that is usually associated with
teletypewriters and teleprinters. Typically, these devices have limited commu
nications speed (usually less than 110 bits per second). By using only 5 bits to
encode a character rather than the 7 bits required in ASCII or the 8 bits required in
EBCDIC, characters are transferred between communicating equipment faster.
The Baudot character set can be found in Appendix A.

I'll discuss ASCII and other binary codes further when 1 explain the 8088's instruc
tion set. The 8088 microprocessor has some powerful instructions that benefit the

Numbering Systems 13

Assembly Language programmer who must work with ASCII and BCD characters
or strings. But for now, let's turn our attention to the language of assembler.

1. The role of an assembler is to a file Into an object
file.

2. In binary there are possible states:

and .

3. The computer subtracts two binary numbers using comple
ment notation.

4. Give the one's complement form of the following binary numbers:

A. 01010110 C. 10111110

B. 11110000 D. 01010101

5. What is the two's complement of the binary numbers In problem 4?

6. Convert the following binary values to hexadecimal notation:

A. 100 11110 C. 11111111

B. 11100111 D. 1000110000001111

7. Convert the following hexadecimal numbers to binary:

A. OFFAIH B. 2078H

C. 7FFCH D. 0003H

8. Why does the hexadecimal number in 7A above contain a zero prefix?

9. Two popular types of character encoding are and

10. The base of each numbering system is:

A. Binary is base .

B. Hexidecimal is base.

C. Decimal is base

11. What is wrong with the following hexadecimal number?

0FG77H

This chapter introduces novice programmers to the discipline required to be an
Assembly Language (AL) programmer. Many new programmers feel that there is
something mystical about learning to program in Assembly Language. If there were
something mystical about the language, I'm sure more programmers would be
named Merlin. Since I know only one programmer who calls himself Merlin, and
his programs are far from being mystical, it is safe to assume that most of us mere
mortals who really have the desire to program in Assembly Language will be able to
do just that by the end of this book.

Like all good things worthy of personal possession, the skills required to become
an AL programmer are not acquired without a certain degree of frustration.
However, the rewards can be considered substantial, in personal enjoyment and
financially, if you are so inclined.

15

16 80881IBM PC Assembly Language Programming

The fallacies surrounding ALP are as numerous as those surrounding the program
mer. A typical characterization is as follows: ALP programmers must possess a high
degree of mathematical skills, and they must also hold higher level degrees. They
are hermits who let nothing stand in the way of finishing the project at hand,
knowing full well that software projects are rarely finished, they are merely
released.

If married, you have to pity the poor spouse of the AL programmer. Dinner
conversations revolve around bits and bytes, algorithms and code. Shopping with
such an individual can be almost as exciting, as every book store is an invitation to
"keep current" with the technology. Computer stores are sought out with a most
unhealthy, if not obnoxious zeal.

Contrary to the stereotype presented, a higher level degree and advanced mathe
matical skills are not required for an individual to become proficient at AL pro
gramming. Although the skills certainly wouldn't hurt, they are not required.
When an application requires a tremendous amount of computational power, the
program is usually written in a high level language such as FORTRAN (FORmula
TRANslation language). It's rare when such an application would be coded totally
in Assembly Language.

As for the AL programmer being a hermit, nothing could be further from the truth.
Most commercial software projects are developed by a team of software engineers
in a team environment. An individual programmer has responsibility for a specific
portion of code which is later incorporated into a main program consisting of the
modules and subprograms created by the other individuals. The team is usually
composed of specialists. There may he one individual who is proficient at data
communications while another is concerned with internal data structures or the
user interface.

Obviously, if you are programming your own personal computer, you will most
likely he doing so without the aid of other programmers; hence, the purpose of this
book. Books are often your only resources when working on a section of code. The
modular programming concepts of a program written in a team environment still
apply. However, you are the one who is responsible for writing all the modules
which ultimately become the finished program.

Those who do become proficient at AL programming tend to view the world and
problems in a somewhat different perspective than those engaged in other profes
sions. The reason may be traced to the extremely logical thought process forced

Assembly Language Programming 17

upon the AL programmer by the very nature of his/her chosen career. There is a
tendency to apply that logic to the world and those around us. The unohvious
becomes the obvious, and problems become puzzles which are challenges to solve
and master. It is all a matter of attitude and a learned set of skills.

One thing to keep in mind is that you cannot program the computer in any
language, if you yourself do not understand the application. If you cannot explain
the problem and define a method to arrive at the solution, the computer will be of
little help. You can be the most creative and productive programmer on your hlock
and not be able to write the program for a problem beyond your own expertise.

For example, if you have never flown an airplane, it would be very difficult if not
impossible to write a believable flight simulation program. For someone else who
is involved with aviation and who can program in Assembly Language, writing
such a program will be easier than for most of us. This is what makes programmers
so valuable; it is not that they know how to program in Assembly Language, but
rather that they understand an application and can define its solution through
Assembly Language.

Once you master the assembler's language for one microprocessor (also referred to
as a CPU, or Central Processing Unit), you'll be able to transport your skills to a
different microprocessor. The process does require learning a new architecture
(registers, status flags, etc.) and a new instruction set; however, the basic and
fundamental concepts of programming in assembler apply to any microprocessor.
For example, to load the accumulator of the 8-bit 6800 (Motorola) with a decimal
value of 16, you would enter the following statement into your source program;

LDAA # 16. The Zilog Z-80 CPU requires LD A, 16. To accomplish a similar function
on the 8088/86 CPU, you would type: MOV AL,l6. Notice that one micro
processor's assembler requires the instruction LD (LoaD), and the other requires a
MOVe instruction. The difference between these particular instructions is trivial
and easily learned. Other instructions may not be so obvious and may require
closer inspection.

18 80881IBM PC Assembly Language Programming

A computer language can be classified as either being a high level language, such as
BASIC, FORTRAN, COBOL, or Pascal, or a low level language, such as Assembly
Language. The classifications can be further refined as to whether a high level
language is interpretive or compiled. Programming languages exist only as an aid in
describing the steps necessary to solve a problem or a set of problems. Ultimately,
all but the interpreters produce the machine code the computer understands, and,
as such, they require a compromise as to the execution speed and the size of the
machine code each will produce.

Higher Level Languages

The assembler represents a quantum leap over programming a machine directly in
machine language, yet the human interface is still lacking. It's more desirable to
increase a programmer's efficiency by providing a programming language that uses
English-like statements to define the problem you want to solve. This is beneficial
for several reasons.

First and foremost, the programmer could be isolated from the hardware specifics
of the machine and not be required to learn a thing about what's' 'under the hood''
of the computer. It's a little like the old adage of not having to be a mechanic to
know how to drive a car.

"Who cares about the registers anyway? Why should I care about an AX or BX or
XYZ register when all I want to do is print 'Hi Sue, HAPPY BIRTHDAY! I Love You'
on the screen of my computer?" You might ask. Actually, there is no reason to
learn Assembly Language to have the computer print a simple message on the
screen. The simple BASIC statement: PRINT "Hi Sue, HAPPY BIRTHDAY! I Love
You." accomplishes what will take perhaps hundreds of Assembly Language state
ments to do—display the message on the screen of the computer. By using a high
level language, you are isolated from the hardware specifics of the system. This
allows you to concentrate on solving applications problems.

Interpretive Languages

An interpretive language, such as the BASIC interpreter supplied with many home
computers, must interpret each program statement prior to executing it. Is it a valid
statement? Is its syntax correct? After properly identifying the statement as valid.

Assembly Language Programming 19

the actual code which performs the statement's function is executed. However, it
must be noted that this interpretation occurs each and every time the statement is
executed. Due to the overhead involved, programs execute slower than compiled
programs or Assembly Language programs.

The interpreter occupies memory along with the application program being run.
Because both the interpreter and the application program must be in memory at the
same time, the physical size of the program is also greater than one written in AL.

Compiled Languages

Compiled languages fall somewhere between interpreted languages and Assembly
Language, in that compilers take on certain characteristics of both. Source pro
grams are written in a high level language and translated (much like Assembly
Language) into machine code by the compiler. The object code generated by the
compiler tends to execute faster than an interpreted program, but it may not be as
fast as a program written in Assembly Language. The program's size is, in most
cases, smaller than that of an interpreted program, yet is larger than a similar
program written entirely in Assembly Language. Compilers exist for a variety of
languages, such as BASIC, FORTH, Pascal, COBOL, and the C language.

With the many language options available, you may still find it difficult to find a
language to efficiently solve all problems in a given application. The reason is that
no one language suits all applications. FORTRAN is useful in solving scientific
oriented problems. COBOL is widely used in business applications. Pascal's claim
to fame is that it forces a programmer to use structured programming techniques
and is of great use in teaching these concepts. BASIC is of interest because it is
widely used and is usually the first computer language an individual learns to
program in. For real-time applications where execution speed and memory conser
vation are of prime consideration. Assembly Language is the choice.

Machine Language

When computational machines were first conceived, there were no languages that
the machine's programmer could use to instruct the machine what it should do.
Therefore, each command or machine instruction had to be manually entered. The
process was slow, tedious and extremely error-prone.

Machine language is composed of definite digital patterns of binary one's and
zero's:

Machine Language Assembly Language

10110100 00001001 MOV AH,9

20 80881IBM PC Assembly Language Programming

In the above example, machine language, the language a microprocessor under
stands, is composed of finite combinations of binary ones and zeros. The micro
processor decodes these patterns, and performs the specified function. In this
example, the internal register AH (a storage location inside of the 8088) is loaded
with a value of 9 decimal.

A grouping of 8 Binary diglTS (BITS) is referred to as a byte of information. A
grouping of 2 bytes, or 16 bits, is referred to as a word. A typical microprocessor
sequentially fetches these binary values from memory and decodes them into
meaningful instructions. As each pattern represents a particular instruction to the
microprocessor or data which is required by the microprocessor to properly
execute the instruction, it is extremely important that the binary values be placed
in memory and remain in memory without alteration.

For example, the MOV instruction used in the previous example might appear in
memory as a binary sequence of bits:

1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1

Bit tt b7 b& bS b4 b3 bS bl b0 b7 bG bS b4 b3 bS bl b0

1st BYTE end BYTE

This sequence of bits tells the microprocessor to MOV the value of 9 into the AH
register of the microprocessor. The machine language program sample shown
below depicts a short program as it would appear in memory and in binary form.
Should a bit be lost from the machine instruction, either the value moved to AH will
change, or the instruction itself will change (it will be decoded as a different
instruction) and render your program useless. It is very important that each
instruction be entered into the machine accurately.

101110010000000000011000 MOV CX,S4

111010000000000100100010 CLSi CALL CRLF

1110001011111011 LOOP CL8

Only the binary one's and zeros are stored in memory, not the English-like abbrevi
ations to the right. The routine above is part of a larger program used to clear the
video display of the IBM. Imagine if you had to enter each one and each zero of the
larger program (see Listing 2-1) into memory manually!

As each machine instruction directly causes an action to be taken by the micro
processor, machine language programs execute the fastest of all language types.
The speed at which an instruction executes is of great importance in many time-
critical applications and is dependent on the system clock that drives the micro-

Assembly Language Programming 21

processor (Figure 2-1), and the manner in which the microprocessor's designers
chose to decode a given instruction. Similar instructions executing on different
microprocessors running at the same speed do not always execute in the same
amount of time.

■ t2 t3- -14-

tx - 200 nanoseconds minimum

500 nanoseconds maximum

Figure 2-1 The system clock provides a regular "heartbeaf to the micro
processor. The clock Is provided by another Integrated circuit (IC),
an Intel 8284 clock generator.

As a finished program can contain hundreds or thousands of machine instructions
to solve a given problem, it would be a very tedious chore to code your program
entirely in binary. Yet, without efficient programming tools, early computers were
programmed in exactly this manner. Only a pure masochist liked programming in
machine language, but someone had to do it in order to create the first assembler.

You would think that it would be much easier to code the same instruction in a

language that was more suited to the human programmer, while maintaining the
advantage of machine language execution speed. It would have to be a language
that allowed the programmer to describe the desired action he/she wants the
microprocessor to perform. The statements the programmer types at the keyboard
create what is known as a source file. The statements are later translated to the

machine code the microprocessor understands. Rather than setting sixteen or
more switches on a computer's front panel and loading the values directly into
memory, an assembler can translate the statements in the source file into the object
(machine) code required.

An assembler is itself a program created to automate the many routine, repetitive,
and error-prone tasks associated with programming a computer directly in
machine language. The assembler program translates a source file of terse English-

22 80881IBM PC Assembly Language Programming

like abbreviations known as mnemonics into what is referred to as object code
and/or machine code.

Figure 2-2 shows the four primary steps in creating and documenting your pro
grams:

1. A program called an editor is used to create a source program.

2. The source program is translated to an object file by the assembler. The
assembler optionally creates a listing and a cross-reference file.

3. The linker produces an executable file capable of being run on the IBM PC.
Library files may also be used as input to the linker.

4. The cross-reference utility can then be used to create a cross-reference of all
symbols appearing in the program and where in the program they appear.

Because there is a direct relationship between the AL source statement and the
resultant object code, programs written in AL execute as fast as if the program had
been entered into the machine in pure machine language. The assembler has
removed the chore of coding the program in binary.

1) Editor ^ Source FHe (.ASM)
MOV AH.MY_DATA ; Add value
ADD COUNTER,AH Add tocurrent timer count.

{Rest of the source program}

2) Source File
(.ASM)

-► Assembler
MASM.EXE

-►object File (.OBJ)
Listing Fiie (IS'O
Cross Reference File

(.CREF)

3) Object Fiie(s)
(.OBJ)

Library Files
(.LIB)

-► Linker

LINK.EXE

-► Executable File (.EXE)

4) Cross Reference File •

(.CRF)

Cross Reference •
Utility
CREF.EXE

Reference
File
(.REF)

Figure 2-2 Assembly Language Source to Machine Language/Executable Code.

Assembly Language Programming 23

Another program—called an editor—is used to create the source program or code.
CP/M's™ program ED and MS-DOS's EDLIN are examples of line oriented editors.
They allow you to create and edit one line of source code at a time. The line forms
what is called a statement; MOV AX,l6 moves the value of 16 into the accumulator
of the 8088/86 microprocessor. When a particular line of code has been edited,
you can begin editing another line.

A full screen editor is much like a word processing program, because a full screen of
text (many source lines) is displayed. By using the cursor keys, you can move freely
around within the source program. In fact, many programmers use word process
ing software to create their source code files. Combining a full screen editor with
the advanced editing features of word processing software results in increased
efficiency by decreasing the amount of time required to create and edit a source
file. This is a vast improvement over simple-minded and primitive line oriented
editing.

One of the many complicated tasks the assembler program can do is to keep track
of the different memory locations used for data and program storage. Figure 2-3
illustrates the use of symbols that represent data and memory locations, as well as
constant numerical values required by the program. Without this ability, you
would have to keep track of each memory location and data value referenced
within the program.

For example, you may want to assign a symbol name to a numeric constant that will
be used several times in your program. Rather than hard coding the value into the
instruction, it is often more advantageous to assign the value a name at the
beginning of your program, and then use the name rather than the value in the
program. By assigning the label PTR_OUT to the value 03B8H, the program
becomes easier to read and understand.

Another example of symbolic usage is in the assignment of a name to a port address.
Port addresses are used to communicate with input and output (I/O) devices such as
a printer, video display, or keyboard. Actually, the port addresses belong to the

24 8088!IBM PC Assembly Language Programming

PAGE 55,132

TITLE Example of Symbol Assignments

Date: 06/05/84

By: Gai7 A. Shade
Last Revision: 06/05/84

•^984 by Gary A. Shade, All Rights Reserved.

This program does a lot of nothing. That is, it is only to
demonstrate symbolic usage in a source program.
It also demonstrates where each assembler field originates, and the general
form of an assembly language program.

Entry Conditions: Save OS then a word of OOOOH on the stack.
Required by MSDOS.

Exit Conditions: Registers used within the program are altered.

Definition of Assembler Fields

^ Label ^ ^ Opcode ^ ^ Operand ^ ^ Comments ^

EX A STACK SEGMENT PARA STACK'STACIC

DW 125DUP(?) ; Establish Stack Area

EX_A_STACK ENDS

EX.DATA SEGMENT PARA'DATA'
C0UNTER1 DB OFFH ; 8 BIT COUNTER

COUNTER 2 DW OFFFFH ; 16 BIT COUNTER

COUNTERS DO OFFFFFFFFH ; S2 BIT COUNTER

EX DATA ENDS ;ENDOF SEGMENT

EX_CODE_SEG SEGMENT PARA'CODE' ; Code Segment begins
ASSUME CS:EX_CODE,SS:EX_A^STACK,DS:EX_CODE,ES:EX,CODE
START PROCFAR ; Declare as 'FAR'

PUSH DS ; Save Code seg, passed
; by MSDOS

XOR AX,AX ; Clear AX

PUSH AX ; Save on stack.

MOV AX,EX_DATA ; Set up segment
; registers

MOV DS,AX ; Data Segment
MOV ES,AX ; Extra segment
MOV CX,C0UNTER2 ; Get loop delay factor

DELAY1: LOOP DELAY1 ; Loop until CX = 0.
MOV CL,C0UNTER1 ; Get byte delay count
XOR CH,CH ; Clear High Order byte

DELAY2: LOOP DELAY2 ; Execute LOOP until

;CX=0
MOV CX,PTR WORD COUNTERS; Delay count

DELAYS: NOP ; WASTE SOMETIME
NOP

LOOP DELAYS ; Execute last loop.

Figure 2-3 Example of Symbol Assignments

Assembly Language Programming 25

hardware, which interfaces the microprocessor to these devices. More than likely
the port addresses given to these devices will vary from computer to computer. In
order for the program to be run on another computer using the same micro
processor, these values and others will have to be redefined. By defining the port
addresses symbolically, you need only change the line of code which assigns the
label to a physical port number, rather than changing every occurrence of the port
address within the program.

Assume the printer for a given computer is at port address OEOH (the H means the
number preceding it is given in hexadecimal), or 224 decimal. By writing a
statement such as:

PRTOUT EQU 0E0H

The printer output port (OEOH) is assigned via the EQU directive to the label
(PRTOUT). There may be a hundred different places in your program where data is
sent to the printer via port OEOH. If a label were not assigned to the port, a hundred
lines of code would have to be found, and the port's value changed if the system's
hardware should change.

One last example of assigning labels within a program can be illustrated by using a
label to specify a strategic entry point into a portion of the program. As an example,
consider the following source code:

START: PUSH DS ;SAVE CODE SEG PASSED FROM MS DOS

XOR AX,AX 5MUST SAVE A ZERO OFFSET INTO

5CODE SEGMENT ON STACK.

PUSH AX 5SAVE WORD ON STACK

CALL INIT ;INITIALIZE THE SYSTEM

JMP CLRSCN 5CLEAR THE SCREEN

. . -CMORE PROGRAM STATEMENTS>

CLRSCN: PUSH DX ;SAVE REGISTERS

INIT:

JMP THERE 5JUMP TO ANOTHER PLACE IN PROGRAM

CALL DISKINIT 5 INITIALIZE DISK DRIVES

CALL WHOEVER ;ETC.

26 8088IIBM PC Assembly Language Programming

RET 5 RETURN TO CftLLER

THEREs MOV ftL,PTROUT {SET PRINTER OUT PORT

. . -CThe rest of the program>

Nowhere within the program were absolute addresses for the instructions labeled
START, INIT, THERE, or CLRSCN defined. The assembler calculates the absolute
memory addresses where each section of code resides when assembling your
source program.

Labels are also more easily remembered than are absolute addresses and values, and
they are more easily changed should the physical values change. The assembler
remembers the values assigned to the labels used in the program and substitutes
these values when the assembler translates the source file to object code.

The IBM Macro Assembler makes two passes through the source file. On the first
pass, the assembler builds a table of all the symbolic names defined in the source
file. The assembler does not produce object code on this pass. The second pass
produces the object code for the source statement based upon the information
gathered during the initial pass.

During the first pass, the assembler may not know the exact location of a symbol it
has encountered but not defined. This is known as a forward reference. It is a little

like a writer who makes reference to an illustration while writing a book. Usually
the reference reads something like ''Reference Figure 1-XX'\ During a second pass
through the manuscript, after the chapter has been written, the exact figure
number is inserted. The process is similar to the first and second pass of an
assembler through a source program. It is only during the second pass that the
assembler knows the relative addresses and what values to use in place of the
names and symbols encountered during the first pass.

Assembly Language Programming 27

Cross assemblers are used to create object code for a microprocessor other than the
one used in the computer the code is being developed on. There are several
companies marketing cross assemblers that run on the IBM PC. By using a cross
assembler, you can create programs for other microprocessors, such as the
Motorola 68000 or 6800 series, the Zilog processors (Z-80, Z-8000), and other Intel
processors, such as the older 8080 and 8085, on your PC. The programs created
using a cross assembler cannot be executed (run) on the development system, since
the machine language of each microprocessor is unique to itself. The object code
must be downloaded, or transmitted, to the target system for execution.

Cross assemblers are of value to anyone who must learn or develop machine code
for another processor and cannot justify the added expense of another computer
system to do so. By using cross assemblers, one computer system can be used to
create programs for many others.

Previously I mentioned why it is a good idea to develop programs in a modular
form; smaller chunks of code are easier to debug and understand. Their func
tionality is much more explicit than one large program. The purpose of the Linker
is to join these smaller chunks of code together to produce a finished program.

You can think of a program as being analogous to a chain. A chain is not a chain
until all the individual links are connected. In a similar manner, a program is not a
program until all the individual modules have been linked together.

Program libraries containing dozens of small often-used routines or programs can
be built and stored on disk. By using the linker and specifying which modules are to
be linked together to form the completed program, you can create new programs
without having to write the entire program from scratch. If, as an example, you
have already written a routine that performs bounds checking on a set of numbers,
and you need the same routine in a new program, simply include the bounds
checking module in the linkage.

28 8088IIBMPC Assembly Language Programming

A relocatable object file as shown in Figure 2-4 is produced by the assembler. The
relocatable expressions are those marked with an R next to the object code. The
linker also resolves any relocatable expressions, including any values of data,
constants, or memory addresses that are defined in other modules. When the
program is loaded and executed, a loader program uses the information supplied
by the linker, enabling the program to be loaded and executed anywhere in
memory.

0039 C7 060000 R 0140 DRAWJT2: MOV STARTX,320

003F C7 06 0002 R OOAA MOV STOPX,170

0045 C7 06 0004 R 0032 MOV STARTY,50
004B 07 06 0006 R 0096 MOV STOPY,150

0051 C6 06000B R 07 MOV COLOR,W B

0056 E8 01ACR CALL DRAW LINE

0059 E8 0242 R CALL DELAY

005C C7 06 0000 R 0113 DRAW_IT3: MOV STARTX,275

0062 C7 06 0002 R 0177 MOV STOPX,375

0068 C7 06 0004 R 0064 MOV STARTY.lOO

006E C7 060006 R 0064 MOV STOPY,100

0074 C6 06 000B R 07 MOV COLOR,W_B
0079 E8 01ACR CALL DRAW LINE

007C E8 0242 R CALL DELAY

007F E8 0242 R CALL DELAY

Figure 2-4 Example of Relocatable Code

Syntax

You'll notice in Listing 2-1 (see Appendix D) that there are specific fields where you
enter labels, instructions, operands, and comments to form a source statement.
The obvious deduction is that a certain syntax must be followed in order for the
assembly process to occur properly. The format in which the source code must be
entered is:

Label Operations-Code Operand(s) Comment.

Listing 2-1 should be referenced as I discuss how a source program is created.

Assembly Language Programming 29

Label Field

We have seen why labels or symbolic representation within the source program is
important. The manner in which names are assigned is of equal importance. The
IBM Macro Assembler allows you to create labels of up to 31 characters in length.
This allows you to assign meaningful names to constants and program entry points.
Not all assemblers allow you this flexibility. Labels can consist of any of the
following characters:

1. Alphabetic characters: A through Z (lower- or uppercase).

2. Numeric digits: 0 through 9

3. Special Characters: $. _ ?

The IBM Macro Assembler manual states, "Labels can start with any character
except a numeric digit. If a period is used in the label, it must be the first character
of the label." Words and names reserved for the 8088 registers and instructions
should also be avoided, as should words reserved by the assembler (referred to as
directives) when assigning symbolic labels. Some examples of labels are:

Valid Label Invalid. >> Comment.

MY_DnTA 0MY_DfiTfi (Digit let character)

?ASC1I_C0NVERSI0N ?ASCII. CONVERSION (Illegal use of .)

LOOPeSS LOOP (8068 instruction)

Additionally, a label may contain a colon suffix if the label is used to define an entry
point into a section of code:

STARTI PUSH DS ;SAVE DS AND AN OFFSET OF ZERO

XOR AX,AX

PUSH AX

There is another use for the colon suffix, and that is to inform the assembler that
the label is to be assigned a TYPE attribute of NEAR. NEAR attributes can be
accessed only within a given segment. The absence of a colon informs the
assembler that the label can be referenced from other segments, and a TYPE
attribute of FAR should be assigned to the label.

30 80881IBM PC Assembly Language Programming

Labels should not contain a colon suffix if the label is used with what is known as a

pseudo-op. This is an assembler directive that instructs the assembler how to
perform the assembly or what values to use during the assembly. For example:

PTR_OUT EQU 0E0H jftSSISNS 0E0H TO PRINTER OUT

PTR_BUFFER DW 100 DUP (?) {DEFINES STORASE

FLASl EQU THIS BYTE {ASSIBNS FLASl TO TYPE BYTE

Furthermore, a label should not contain a colon suffix when it is used as an operand
in an instruction:

MOV ftL,FLftSl {MOVES FLAGl INTO AL

MOV PTR WORD FLASl.AX {STORE AX IN THE TWO BYTES

{STARTING AT FLAG 1

A label is defined by entering its name in the first field of the source statement.
Labels must originate in column one.

Operations Code
(Op-Code) Field

Op-codes are the actual mnemonics that represent the instruction you want the
microprocessor to execute. Op-codes must be entered in the second field of the
source statement, separated from the label field by at least one space. To make the
program more readable, programmers usually use tabs to align the fields of the
source program.

An example of an op-code is JMP. JMP is a mnemonic which the assembler trans
lates to a machine executable instruction.

When used, Pseudo-ops must also be entered in the op-code field. You'll notice in
the previous examples, EQU, DW, and DB are all pseudo-ops that appear in the op
code field.

Assembly Language Programming 31

The operand field tells the assembler what it is we want to move (MOV) or jump
(JMP) to and may require two operands, a source and a destination. An operand
may be a constant (value), a register, or a label. Some instructions are register
implicit and do not require any operands at all:

MOV nX,10H

MOV nX,COUNT

NEG nx

JMP TH«T_PPRT

CLD

;TWO OPERANDS AX«azDESTlNATION

5USING A CONSTANT AS THE SOURCE

;MOVE THE CONTENTS OF MEMORY

5LOCATION COUNT TO THE AX REGISTER

5NEGATE (2»S COMPLEMENT) THE ACCUMULATOR

;ONE OPERAND, AX « DESTINATION

;ONE OPERAND, THAT.PART = DESTINATION

;CLEAR DIRECTION FLAG - IMPLIED OPERAND

5NOT REQUIRED TO BE EXPLICIT.

The operand field must be separated from the op-code field by at least one space.

Comment Field

A comment must originate in the first column of the label field if the entire line is to
be a comment, or it must be separated from the preceding field by at least one
space. Comments must begin with a semicolon (;), as shown in the previous
examples. All characters entered after the semicolon are ignored by the assembler
and treated as a comment. Comments make your program more understandable to
you and others (should they have the fortunate task of maintaining your code after
you have moved on to greener projects).

Often, when you are writing programs, it is not practical to completely document
your code as you write it. However, there should be enough comments to describe
the code in a precise manner, so that it will be easy for you or someone else to
understand the program today or a year from now. Once the code has been
debugged and finalized, go back and more thoroughly document the program by
adding more comments wherever possible.

32 8088/IBM PC Assembly Language Programming

I have a tendency to occasionally state the obvious in my comments such as:

JMP STftRT ;Jump to start.

Nothing infuriates me more than to read a source listing of a program which is
documented like this. It infuriates me further when I sheepishly recognize the code
as mine. Why did I jump to START? The reason is not always obvious unless you
know or remember what function the code at the label START performs. A better
comment would be:

JMP STPRT ;Get the next character.

or whatever the reason may be. Documentation is said to be four times the cost of
actually writing the program code. In practice I have seen the ratio climb as high as
10:1 due to the cost involved in writing program documentation months after the
program was written.

Even worse is when you encounter a program listing which runs on page after page
after page, without a single comment. Woe to the poor soul whose job it is to patch
or understand that program. We're all guilty of not documenting our programs in a
textbook manner (Listing 2-1), yet the need to properly document your programs
cannot be overestimated.

Let's jump right into programming in Assembly Language, and I'll explain the
design process as we proceed. To enter the source program I'm about to describe,
youTl need to use EDLIN or some type of word processing software. Once the
source file has been created, you'll assemble, link, and debug the program.

Don't worry about not understanding what the source statements mean at this
point. After 1 discuss the 8088 instruction set (Chapter 4) and MS-DOS functions in
Chapter 6, you'll better understand the source statements found in the program.

Assembly Language Programming 33

The First Step;
Defimng the Problem

Every software project consists of several phases. A programmer I once worked
with commented after a staff meeting that there \«rere only three major phases to
any commercial software project. The first phase is when the marketing depart
ment commits to a customer's schedule. The second phase is when the software
department tells the marketing department they're nuts. And the third phase is
getting the job done. I'll discuss only what's required to get the job done.

In reality, the first phase of any software project is to define what the program is
attempting to solve. You can do this by means of an outline, using plain English
statements to define the problem or by use of a program flow chart or state
transition diagrams.

Figure 2-5 depicts the flow charting symbols used to describe program flow
pictorially. Let's use these symbols as a design tool to illustrate our program's logic
after we state what we want to do.

Input/Output Process Punched Card Decision

Magnetic Tape

Offline Tape

Manual Input

Punched Tape

Document

o
Display

CZD
Terminal Connector

Drum

Preparation

On-Line Storage Auxiliary Operation Manual Operation

X
Communications Link

Figure 2-5 Programmer's Flow Chart Symbols

34 80881IBM PC Assembly Language Programming

Objective: Use system calls to read the system configuration of the computer the
program is being executed on. Then display this information on the user's console.

It sounds simple enough. But how do we go about solving the problem? Put down
some details as to exactly what we want to know about the system configuration.

1. How many disk drives?

II. The system's memory size.

III. The number of printers available?

IV. Communications Port?

V. Graphics board?

VI. Game Port Attached?

Create a flow chart of the program and describe each process as it relates to the
diagram. Figure 2-6 is the flow diagram I designed. You may have come up with a
different flow chart, which is perfectly legal. It's the results that count.

The Second Step:
Writing the Source Code

This step is fairly straightforward. If you have created a good flow chart in the
previous step, all that has to be done is to choose the proper 8088/86 instructions
to accomplish the task. Listing 2-1 is the source code I used to solve the problem.
You may, after becoming familiar with the instruction set of the 8088 and MS-DOS,
have chosen a similar algorithm (solution) and similar instructions. You might also
have chosen a totally different algorithm, or set of instructions, to perform the
same task.

You'll enter the source code using EDLIN (see your IBM DOS Operations Manual)
or another editor (the source code is also on the disk which accompanies this
book). Use the filename CONFIGSY.ASM when you open the source file. Once the
code has been entered, save the file to disk.

Assembly Language Programming 35

(START)

p

No

INIT1:

Set up Registers

GET_MEM:
INT 12H

SAVE MEMORY SIZE
GET.SYS

INT11H

SAVE HARDWARE TYPES

CLEAR THE SCREEN

MOV24to CX

DO CR/LF Combination

LOOP

IS CX = 0

MEM_SHOW:
Display Memory Size

DCONFIG:

Get Hardware Configuration

Are Bits 4.5 = 01 ?

Display Video Mode
as 40 X 25 Color Card

Figure 2-6A

36 80881IBM PC Assembly Language Programming

No

Yes

Display Video Mode
as 80 X 25 Color Card

DC2:

Yes

Display 80 x 25
Black/White Card

8) DC2:

No
Drives in System?

Yes

Display the Number
of Drives

No
Any RS232C Cards?

Yes

Display the Number
of Serial Cards

Figure 2-6B

Assembly Language Programming 37

Is the Game Port

in the System?
No

Yes

Display Message

No Are there any
Printers attached?

Yes

Dispiay Message

Figure 2-6C

The Third Step:
Using the Assembler

Once the source code has been entered and the file has been saved to disk, you'll
invoke the assembler to translate the source program to machine language. From
the MS-DOS prompt, type (Note: < CR > means press the return key):

MS DOS PROMPT

p>

Source Filename C.ftSMli

You Type

masm <CR>

CONFIGSY.ftSM <CR>

Object Filename C.0BJ3: CONFIGSY.OBJ <CR>

Source Listing CNUL.LST3: CONFIGSY.LST <CR>

Cross reference CNUL.CRF3: CONFIGSY.CRF <CR>

If there is an error, use the TYPE command from DOS to list your CONFIGSY.LST
file. This file will contain any error messages and the line where they occurred.
Compare the listing to the one shown in Listing 2-1, correct the error, and repeat
the assembly process until the file assembles properly.

38 8088/IBM PC Assembly Language Programming

The Fourth Step:
Using the Linker

Once the source file has been assembled, use the linker to produce an executable
program file. From DOS type:

MS DOS

P>

Object Modules C.OBJl

Run File Cft:CONFIGSY.EXEl

List File CNUL.MftPl

Libraries C.LIBl

You Type

Link

CONFIGSY-OBJ <CR>

<CR>

CONFIGSY. MAP <CR>

<CR>

You have now created a file on disk, CONFIGSY.EXE, which can be used to find
the configuration of your system.

The Fifth Step:
Create a Cross Reference File

MS DOS

A)

Cross Reference C.CRFl

You Type

CREF.EXE

CONFIGSY.CRF

Listing Cross Reference.REF3 CONFIGSY.REF

When you invoked the IBM Macro Assembler, you used your source file CON
FIGSY. ASM as the input file to the assembler. You then specified the names of three
files that were created by the assembler. CONFIGSY.OBJ is the object code output
file. CONFIGSY.LST is the program listing that contains, on a line-by-line basis, the
object code generated from translating each line of the source (.ASM) file.

Assembly Language Programming 39

The Object File

The object file, CONFIGSY.OBJ, contains information used by the linker to pro
duce the executable file, CONFIGSY.EXE. The object file cannot be run on the
computer; whereas, the executable file can be run by typing CONFIGSY.EXE from
the MS-DOS command prompt. The linker creates an executable file by appending
the necessary information MS-DOS requires to load and execute the program.

The Listing File

Listing 2-2 in Appendix D is the printout of the listing file, CONFIGSY.LST. The
format of the listing consists of the following fields: line numbers, relative segment
offsets, object code, and source fields.

Notice that the listing produced by the assembler contains line numbers in the left
most field. Line numbers and comments contained in the source file are not

translated by the assembler; they produce no object code.

Assembler directives, such as the PAGE and TITLE directives, also produce no
object code. Directives control and inform the assembler how to carry out the
assembly process. For example, the PAGE directive commands the assembler to
assemble the program formatted for a certain number of lines per page (56, in this
example) containing a certain number of characters per line (132, in this example).

I've used many messages and defined them in the data segment. The object code
produced by these source statements happens to produce ASCII code in the object
file. Just as the programmer makes the decision to use a specific bit pattern to
represent a signed or unsigned numeric value in binary, so is a decision made as to
whether or not the bits contained in a data byte are to be interpreted as ASCII.

Look now at the code produced by MEM_MESS. 4DH is the ASCII representation of
the letter M. 65H is the ASCII code for a lowercase e. Each letter of the message is
translated to its ASCII equivalent.
The relative offset of the object code produced by each source statement (relative
to the start of the segment) is contained in the second field. MEM_MESS begins at
the offset OAH from the start of the data segment. That is to say, the ASCII code for
the letter M of the message block is stored at the tenth byte from the start of the
segment.

40 8088!IBM PC Assembly language Programming

Cross Reference File

The cross-reference file generates a detailed listing of all the symbolic names used
in the program. Next to the label's name is the line number where the label
originates, and every line number where the symbol name is referenced. For
example, the line symbol MEM_MESS originates at line 25 and is referenced on line
128. To verify this, look at Listing 2-2 to confirm that the cross-reference listing is
indeed accurate.

To generate the cross-reference listing, you must specify a cross-reference file
name when running the assembler. You did this by specifying the file name
CONFIGSY.CRF at the appropriate prompt. Next, you ran the cross-reference
utility CREF.EXE, which used the CONFIGSY.CRF file as the input file and, in turn,
produced a file named CONFIGSY.REF.

This information is extremely useful when you have to debug a program. You'll
come to appreciate the many different types of listings the assembler and linker
create when you have to debug your first program. It's a little like trying to read
and understand a book in the dark. Debugging a program without the aid of a listing
is just as impossible.

Chapter 3 describes the 8088's architecture. In subsequent chapters I'll use pro
grams similar to this one to illustrate advanced features of the assembler.

1.

2.

3.

4.

You must obtain a PH.D. in applied physics before you can program in
assembly language (True or False).

BASIC executes faster than all known language types (True or False).

To enter a source file, you must use an editor such as MASM (True or False).

Real programmers enter all their programs in machine language (True or
False).

5. If you answered false to question four, why don't they?

Assembly Language Programming 41

6. The primary advantage assemblers have over writing programs directly in
machine language is that you can use rather than
addresses.

7. programming allows programs to be developed in smaller
chunks, which makes the program easier to , and

8. Each field in a source program must be separated by at least one

9. A well-documented program contains many.

10. Why are comments important?

With the introductory chapters behind us, it's time to focus on the 8088 and the
IBM PC. In this chapter I will examine the 8088's architecture and the architecture
of the IBM PC. The term architecture, refers to what's inside the 8088 and the PC,
from the programmer's point of view. In terms of the 8088, it's the register set,
instruction set (discussed in Chapter 4), and the memory addressing modes avail
able.

Computer architecture is composed of the three primary sections. Figure 3-1
illustrates the three main sections of a computer system: memory, input/output
(I/O), and the central processing unit (CPU). The CPU contains an arithmetic logic
unit (ALU) that carries out arithmetic operations for the CPU and storage locations
called registers. The registers are used to move data to and from the CPU to
memory and the I/O sections.

43

44 80881IBM PC Assembly Language Programming

Address Bus

Control Bus

Data Bus

MEMORY INPUT/OUTPUT

CENTRAL PROCESSING UNIT

Figure 3-1 Sections of a Micro Computer

The control section in a microprocessor-based system is the brain of the system; it
is the microprocessor itself, the CPU. Its function is to control data transfers to and
from the microprocessor and the other sections of the computer. Most CPUs will
sequentially fetch, decode, and execute the machine instructions as they come
from memory.

The 8088 has a slightly different architecture, which speeds up this fetch/-
decode/execute cycle. This is shown in Figure 3-2.

As can be seen, the instruction fetch and execution cycles of the 8088 are overlap
ped, allowing the 8088 to substantially increase the microprocessor's throughput.
The 8088 implements two independent units which are internal to the chip. These
are the BIU (Bus Interface Unit) and the EU (Execution Unit). The BlU of the 8088
fetches and reads and writes data via the system's bus. It fetches instructions from
memory and places them in a 4-byte queue (6 bytes for the 8086). (Source Intel).

The EU removes the data and instructions placed in the queue by the BIU and
executes them. This technique, which is referred to as pipelining, allows the fetch
and execution cycles to overlap. While the EU is executing instruction, the BIU is
fetching another from memory. Whenever the program branches to another part
of the program, the queue is emptied and filled with data and instructions begin
ning at the new execution address.

The CPU also contains some general purpose and dedicated storage locations
internally. These storage locations are referred to as registers. Usually a CPU will
have at its disposal one or more accumulators that are used for arithmetic opera
tions and one or more index registers that are used to hold addresses or pointers
into memory. Additionally, there will be other registers designed with more
specific uses in mind.

8088 Architecture 45

Execution Unit

(EU)
Bus interface Unit

(BUi)

General Registers
AX

BX

CX

DX

SP

Dl

SI

Segment Registers
CS

DS

ES

SS

instruction Pointer

IP

ALU INSTRUCTION QUEUE

4 Bytes

STATUS FLAGS

Execution
Data Bus Address, Data

Unit
w Interface

Queue Unit
(EU)

(BlU) Control ^
Instructions

Pipelining vs. Sequential Execution

Elapsed Time:

CPU: Execute

BUS:

2nd Generation Microprocessor

Write Fetch Execute Fetch Read

Busy Busy Busy Busy
Execute

8088/8086 Microprocessor

CPU: Execute

BlU: Fetch Fetch
BUS: Busy Busy

Execute

Write Fetch

Busy Busy
Read

Busy

Execute

Fetch

Busy

Figure 3-2 8088 Architecture

Specialized Registers

The CPU's instruction pointer always points to the next instruction to be executed.
The stack pointer points to the next available storage location in a RAM area known
as the stack. The CPU has a register to record the status of the instructions the CPU
executes. This register is referred to as the status, or flag, register.

46 80881IBM PC Assembly Language Programming

Another important part of the CPU is the Arithmetic Logic Unit (ALU). Its purpose
is to perform arithmetic calculations and set the flags in the status register accord
ingly. If one number is subtracted from another number and the result is zero, the
ALU is responsible for setting the zero flag (ZF) in the status register. In the 8088,
the ALU is a full 16 bits wide and can be used in 8-or l6-bit arithmetic operations.

Memory

The memory section stores the program instructions in the binary format discussed
in Chapter 1. The memory section also holds data required by the program. The
amount of binary data each memory location in the PC is capable of storing is one
byte. An analogy can be drawn between the way these storage locations are
accessed and the way a mailman delivers mail to someone's house. A unique
address is assigned to each home on a given street. The same is true for each
available storage location in memory.

The CPU is the microprocessor's mailman. It generates the desired address by
placing the proper electrical signals at the physical pins of the processor chip
designated for this purpose. The memory section responds by allowing the CPU to
read data (accept mail) from the specified memory location or by allowing the CPU
to write data (deliver the mail) into the location being accessed. Addresses start at
memory location zero and continue to the maximum address the microprocessor
can generate. In the case of the 8088, this upper limit is FFFFFH, which is over one
million memory locations (1,048,576, to be exact). This corresponds to the total
possible binary combinations the 8088 can generate via its 20 address lines (2
raised to the 20th power = 1,048,576).

RAM, an acronym for Random Access Memory, is a type of memory that can be read
from and written to. The programs you write for the IBM PC are read from disk and
placed in RAM for execution. Unfortunately, whenever the computer's power is
turned off, the information stored in RAM is lost.

In fact, the RAM in the IBM PC (and most computers) needs to be refreshed
periodically while the system is on. This type of memory is known as Dynamic
Random Access Memory, or DRAM. Each bit of memory can be thought of as small
capacitor which stores a charge. Without periodically refreshing each bit cell, the
cell's charge will slowly discharge. Memory refresh is nothing more than the
system reading the contents of a given RAM location and writing that value back to
the same location, thereby replenishing the charge for that bit. Refresh is trans
parent to the user and is something the Assembly Language programmer normally
is not concerned with.

ROM (Read Only Memory) can only be read from, not written to. The data
contained within the ROM is therefore said to be unalterable or nonvolatile. ROM is

used in the IBM PC to store the program that monitors the system's resources when

8088 Architecture 47

the computer is turned on. The program checks to see what I/O devices are
attached to the system, how much RAM is installed in the system, and if the
resources are functional. The ROM also contains the BASIC interpreter and indi
vidual routines that form what is known as the computer's Basic Input/Output
System or BIOS. These routines allow a convenient method for the applications
programmer to access the system's resources: printers, disks, keyboard, video, etc.

A small program called a bootstrap loader is also contained in the ROM. Its
function is to read in the first sector of information from the diskette containing
MS-DOS. Once this information is read from disk into the system's memory, the
ROM passes control to the program read from disk, which loads the rest of DOS
into memory.

Segmentation — —
The 8088 views its IM byte of memory as being comprised of segments that can be
up to 64k bytes in length. There is a memory segment for your code, data, and
stack. Each segment is associated with specific registers, known as code segment
registers, and pointers that contain offsets into the segment. By using the segment
and offset registers, data may be accessed anywhere within the segment. I'll discuss
the 8088's segment registers and memory segmentation in detail later in this
chapter.

How Data Is

Stored in Memory —
The 8088 microprocessor stores l6-bit values in memory in what appears to be
reverse order. The low order byte of a l6-bit value is stored in the lower memory
location, with the high order byte being stored in the next higher memory loca
tion. In a moment I'll discuss the various registers within the 8088. When we
visualize how data is stored in the registers and contrast this view with how data is
stored in memory, it appears as if it has been saved in reverse. Figure 3-3 demon
strates how the data value 0F07H is stored in the 8088 register AX and how the
value would be stored in memory.

As can be seen from Figure 3-3, values stored in memory appear to be stored in
reverse when compared to the same value as it is stored in a register. Remember,
AX is comprised of two 8-bit registers, AH and AL. AH is the high order 8-bit
register, and AL is the low order 8-bit register. Therefore, when the entire l6-bit
word is stored in memory, AL is stored at the lower memory location, and AH is
stored in the higher memory location. When data is read from memory, the low
order memory byte is placed in AL, and the high order byte is placed into AH.

48 8088/IBM PC Assembly Language Programming

Value in AX >

High Low
Byte Byte
AH AL

OF 07
I
0F07H

Value In Memory COOOO = 07H
Value In Memory C0001 « OFH

Memory

COOOO 00001
Low High
Byte Byte

07 OF

Figure 3-3 Data Storage in Registers and Memory

Procedures and Stacks

Procedures, or subroutines, are specialized and often-used mini-programs. The
functions they perform may be required in several places in a large prograim. Rather
than writing the same instructions over and over again, the routine is made into a
procedure that is called as needed by the main program. This helps to conserve
memory and makes the program easier to maintain should the procedure ever need
to be rewritten.

RAM is also used for temporary storage of data in what is referred to as the STACK.
Stacks are areas in RAM that are used by the microprocessor to save certain registers
during special operations.

In much the same manner as memos are deposited and removed from an IN basket
on an office desk, so are addresses and data pushed and popped from the stack. The
last piece of paper put into the IN basket is the first one taken from basket. In the
8088, a register known as the stack pointer (SP) points to the top of the stack (TOS).
When values are pushed on the stack, the stack pointer is decremented by 2, and
the word value is written to the memory pointed to by the stack pointer. Each push
stores 2 bytes (a word) of information on the stack. Figure 3-4 illustrates how the
stack grows downward in memory each time data is pushed onto it.

8088 Architecture 49

Stack Pointer

Top of Stack

Memory

-^x6000

Instruction:

Effect:

Stack Pointer

CALL SUBROUTINE

Instruction:

Effect:

Stack Pointer

PUSH AX

Instruction:

Effect:

Stack Pointer

POP AX

Instruction:

Effect:

Stack Pointer

RET

X6000

.X5FFE

Memory
X6000

xSFFE

-►xSFFO

Memory
xeooo

-►xSFFE
X5FFC

Data

xxxx (x s undefined)

Memory Data

xxxx

IP

Data
xxxx

IP
AX

Data
xxxx

IP
AX

(Old Top of Stack)
(Instruction Pointer)

(Old Top of Stack)
(Contents of AX)

(New Top of Stack)

Memory Data
—► X6000 xxxx (Stack is now restored

X5FFE IP to original state)
X5FFC AX

Figure 3-4 Stack Operation

When a procedure is called from the main program, the processor saves the address
of the instruction immediately following the CALL instruction. This pointer is
saved by the 8088 by pushing it onto the stack. The address of the procedure that
was called now becomes the new instruction pointer.

The last instruction executed in the procedure is the return instruction, RET. When
the RET instruction is encountered, the value previously pushed onto the stack is
retrieved (popped off the stack), replacing the contents of the instruction pointer
(IP). Control is returned to the instruction immediately following the instruction
that called the procedure.

When a program calls a procedure which resides in another segment, not only is
the value of IP saved on the stack, but so are the contents of the segment register CS
(code segment). CS is then loaded with the segment address of the procedure, and
IP is loaded with the offset of the first instruction in the called procedure. On
return, the previously saved register values are popped from the stack, allowing
program execution to resume with the instruction immediately following the call
instruction.

50 8088!IBM PC Assembly Language Programming

When data are popped from the stack, the word value stored at the top of the stack
is written to the register designated in the POP instruction, and the stack pointer is
incremented by 2 to point to the new top of stack.

As Figure 3-4 shows, the CALL instruction decrements the stack pointer by 2 and
places the contents of the instruction pointer in the location pointed to by the
pointer. The PUSH instruction also decrements the stack pointer by 2 and places
the contents of the AX register (in our example) onto the stack. POP and RET each
copy a word value from the top of the stack and increment the stack by 2. POP
retrieves a value and places it into the register specified. RET always fetches either a
word or double word from the stack and places it into either IP (intrasegment RET)
or into CS and IP when an intersegment return is required. Notice how the stack
grows downward in memory each time a value is pushed onto the stack and shrinks
upward with each POP.

The stack is also a convenient place for the programmer to temporarily store data.
As an example, perhaps you need to use the AX register for an operation, hut the
value currently in the AX register is of importance and cannot be lost. You need a
quick and convenient place to store the current contents of AX. A commonly used
technique is to save the register's contents on the stack, perform the required
operation and restore the register with its original contents by popping its previous
value from the stack.

I'll discuss interrupts in a moment, but for now, keep in mind that the CPU, on
receipt of an interrupt, saves not only the instruction pointer on the stack, but the
status flags and the code segment (CS) register as well. When the interrupt service
routine is finished, an interrupt return (IRET) instruction is executed which
restores the register's CS, IP, and the status register with the values previously
stored on the stack.

Input/Output Section

The I/O section of a computer consists of the physical interface between the
microprocessor and some type of peripheral device, such as a keyboard, printer,
video display unit, or a disk drive.

In other applications, the microprocessor may be required to communicate with
more exotic devices, such as an analog-to-digital converter, which is designed to
translate an analog voltage level to a binary word the computer understands. The
A/D may be attached to a sensor or a transducer and incorporated in machines used
in a factory environment.

Whether the I/O device is a switch attached to the IBM or a transducer's output
which is attached to an A/D expansion card in the IBM, some type of interface
between them and the microprocessor is required. Without an I/O section, humans

8088 Architecture 51

would never be able to communicate with the computer, nor would the computer
be able to communicate with real world events.

The Control Bus

The CPU issues control signals over what is known as the control bus. These signals
control data transfers between the CPU, memory, and the I/O section of the
computer. The 8088 is capable of operating in two modes, minimum and max
imum. The control signals generated by the 8088 are different in each of the two
modes.

The signals generated and received by the 8088 form three main bus architectures
within the system (Figure 3-5B). The address bus is composed of the signal lines
AD0-AD7 and A8-A20. AD0-AD7 are time multiplexed, which means that at one
particular instant they are used for transmitting an address to the memory or I/O
sections, and at some other instant in time they are used for transmitting and
receiving data. Therefore, AD0-AD7 comprise the data bus of the computer
system. The control bus is comprised of all the other signals (with the exception of
the VCC and GND signals, which are part of the power bus and supplies the 8088
with the necessary operating voltages.)

Minimum Mode

The control signals generated by the 8088 microprocessor in minimum mode are
M*/10, RD*, and WR* (* means that the signal must be a binary 0 or a logic 0 to be
considered true).

M*/IO tells the system whether the operation is a memory transfer or one involving
Input/Output (I/O) devices. If the line is low, a memory access is assumed. If the
line is high (logic 1), an I/O operation is dictated. The RD* signal allows the CPU to
read data from memory, and the WR* signal, to write data into memory. The CPU
generates all the necessary bus control commands.

Maximum Mode

In maximum mode, the signals which were used in the minimum mode are

52 80881IBM PC Assembly Language Programming

MINMODE (MAX MODE)

GND1808840VCC

A14239A15

A13338A16/S3

A124CPU37A17/S4

A11536A18/S5

A10635A19/S6

A9734SSO*(HIGH)
A8833MN/MX*

AD7932RD*

AD61031HOLD(RG*/GTO*)
ADS1130HLDA(RQ*/GT1*)
AD41229WR*(LOCK*)
AD31328lO/M*(S2*)
AD21427DT/R*(SI*)
AD11526DEN*(SO*)
ADO1625ALE(QSO)
NMI1724INTA*(QS1)
INTR1823TEST*

CLK1922READY

GND2021RESET

Figure 3-5A Bus Architectures

8088

CPU

Address Bus

Data Bus

Control Bus

Control Bus

Data Bus

Address Bus

0
Memory

>

>
Figure 3-5B Diagram of the Three Main Bus Architectures

8088 Architecture 5 3

redefined to support multiprocessor (more than one microprocessor) configura
tions. Fortunately for you, the configuration of the 8088 as used in the IBM PC is
the maximum mode. This allows you to add co-processors like the Intel 8087
numeric processor, which speeds up mathematical calculations.

The Address Bus

In conjunction with the control bus, the 8088 issues the appropriate address for the
operation specified. The 8088 is capable of addressing over IM (million) bytes of
memory via address lines A0-A19. The address lines are unidirectional; they are
outputs from the 8088 and serve as inputs to the memory and I/O sections of the
system.

The 8088 can generate up to 65,536 I/O port addresses by using the low order
(A0-A16) address lines of the address bus. The 8088 is also capable of byte or word
I/O, just as it is capable of performing byte or word memory transfers.

The Data Bus

The 8-bit data bus of the 8088 transfers data, 8 hits at a time to and from memory
and the CPU. The data lines of the 8088 are shared with the address lines A0-A7.

Signals SO, SI, and S2 are used to inform the 8288 bus controller of the type of bus
cycle currently being executed (Figure 3-6).

When used in a maximum configuration, the 8088 supplies the 8288 bus controller
with three signals, S0-S2. These signals are used to inform the 8288 of the type of
bus cycle currently being executed. The 8288 generates the appropriate signals to
demultiplex and latch the contents of the AD0-AD7 and execute the desired
function (memory or I/O read or write, etc.). (Source Intel, used with permission).

The 8288 chip decodes the status lines and generates the necessary signals to
control other support chips known as latches. Since the address lines A0-A7 may
contain either data or address information, these lines are said to be multiplexed.
The 8288 bus controller generates a signal DEN, which is used to enable data
latches when the lines contain data. A signal ALE is used to enable address latches
when the information on A0-A7 is to be interpreted as part of an address. Figure
3-7 depicts the possible states of the status lines S0-S2 and their interpretations.

A related processor manufactured by Intel is the 8086. The major difference
between the 8088, which is the microprocessor in the IBM PC, and the 8086 is that
the 8088 must always transfer data 8 hits at a time, while the 8086 is capable of
transferring data 8 or 16 hits at a time. There are other minor differences between

54 80881IBM PC Assembly Language Programming

Adress/Data

Address

Latches

(3 each)

GND
Address

Bus to

Mem. & I/O

Data Bus

■"Data
To MemoryTo Memory

SIB
CS*

8286

CS'
Trans
ceiver

8288

8088 SI'
82' 82*

DEN
DT/R'
ALE

80* 8288
1 Command

Bus
MRDC* —

— Mwrc* —
AMWC* —
lORDC ^

— lowrc —
AlOWC H
INTA* -<

and I/O

Figure 3-6 8088 and 8288 Bus Controller (Maximum Mode)

SO 81 82 Meaning
0 0 0 Interrupt Acknowledge
0 0 1 I/O Read
0 1 0 I/O Write
0 1 1 HALT
1 0 0 Code Access
1 0 1 Read Memory
1 1 0 Write Memory
1 1 1 Passive

Figure 3-7 Status Line States

the 8088 and the 8086, but they can be considered insignificant from the program
mer's point of view. Both microprocessors execute the same instruction set.

The primary difference between a microcomputer and microprocessor is that a
microcomputer contains the three primary sections: CPU, memory, and I/O. A
microcomputer can consist of a microprocessor and a separate memory and I/O

8088 Architecture 55

section. This type of system architecture can be found in the PC. However, there
are single chip microcomputers available as well. The Intel 8748, 8031, 8051, and
8096 are all microprocessors that incorporate the three sections of a microcom
puter on a single chip. Therefore, they are referred to as a microcomputer chip and
not as a microprocessor chip.

Figure 3-8 shows the memory map of the IBM PC. Notice that not all of memory is
available to you. Some of the memory is dedicated to storing values that are
required by the system to function properly. Many of these values serve as address
pointers to service routines which the 8088 vectors to under certain conditions.
Specifically, the vectors are used by the 8088 to find interrupt service routines,
routines that are executed any time the 8088 is interrupted.

Internal Architecture

The 8088 contains an internal register architecture consisting of fourteen l6-bit
registers. There are three primary classifications to the register set: data and
pointer registers, segment registers, and control registers. The data registers AX,
BX, CX, and DX can be used in 8-bit or l6-bit operations. If the X designation is
used, as in AX, the reference implies 16 bits. However, you can also reference either
the high order or low order byte of each data register by using the designations of H
or L, as in AH or AL.

56 8088!IBM PC Assembly Language Programming

1) Data registers: AX, BX, CX, DX, SI, Dl, BP, SP:

Word length in bits

b15 bO (b0-b7 = Low order half of register)

(b8-b15 = High order haif of register)

AX (Accumulator) (AH and AL used in 8-bit operations)

BX (Base) (BHandBL* " " ")

CX (Count) [CHandCL' " " ")

DX(Data) (DHandDL" " " ")

index registers; Dl (Destination index)

SI (Source index)

Pointer registers: SP (Stack pointer)

BP (Base pointer)

II) Code segment registers: DS, ES, CS, SS:

DS (Data segment)

ES (Extra segment)

CS (Code segment)

SS (Stack segment)

III) Control registers: IP, SR:

IP (Instruction pointer)

SR (Status register)

Segmentation

The 8088 has been shown to contain 20 physical address lines capable of address
ing over IM byte of memory. You'll notice, however, that the largest register
within the 8088 holds only 16 bits (16 bits can generate a maximum of 64K
addresses). How is it then, that we can access over 1 million bytes with the 8088?
The answer is not at all obvious.

The processor calculates where in the one million bytes of memory each logical
64k segment resides by using a pointer in conjunction with a segment register. The
segment registers, CS, DS, ES, and SS point to the beginning of specific segments.
Each of the segment registers are associated with other registers that contain an
offset into the 64K segment to facilitate the addressing of information within the
segment.

8088 Architecture 57

Address

00000

40000

AOOOO

COOOO

FOOOO

F4000

FFFFF

On Board System Ram
64K to 256K Maximum

Note: Locations 00000

to 003FFH contain

interrupt Pointers
to service routines

Up to 384K Ram
Expansion in I/O
Chiannei

Reserved (128K)
A4000 - COOOO

Video Graphics, Display
Buffer

BOOOO - B4000

Used for Monochrome

Graphics
B8000 - BOOOO

for Color/Graphics

ROM Expansion
C8000 used for Fixed

Disk control

(192K Maximum)

Reserved (16K)

(48K Base System ROM)
F4000 - F6000

(User ROM Area)
F6000 - FEOOO

(Cassette Basic)
FEOOO - FFFFF

(BIOS ROM)

Figure 3-8 IBM PC Memory Map

58 80881IBM PC Assembly Language Programming

For example, the CS register holds the start address of the current 64K code
segment. The instruction pointer, IP, contains an offset into the code segment,
which points to the next instruction to be executed. The 8088 calculates the
effective address by shifting the contents of the segment register left 4 bit positions
and filling the LSBs with zeros. This in effect appends 4 bits of zeros to the value
contained in the segment register. The segment offset contained in IP is added to
the 20-bit value obtained by shifting the code segment register 4 bit positions. The
result is the effective, or actual, address required by the operation.

Some examples of how a physical address is calculated follow:

Assum* DS = B7A2H and SI - SSlflH

B7ft20 < Shifted value of DS

001A < Offset into segment

< Effective address.

Assume CS = 46DDH and IP « A206H

Then —> 4&DD0 < Shifted value of CS

AS06 < Offset into segment

50FD6 H < Effective address.

Assume SS » 70DFH and SP or BP » D209H

Then —> 70DF0 < Shifted value of CS

+ D209 < Offset into segment

7DDF9 H < Effective address

Figure 3-9 illustrates the concept of segmented memory. Notice which pointer
registers are associated with each segment register. In the 8088, instructions are
always accessed with CS plus the offset of IP. Similarly, the stack is always accessed
by using the SS and an offset contained in SP or BP. The data segment can be
accessed by using either DS or ES and the offset specified in SI, DI, or BX. ES points
to the extra segment and is associated with DI, while DS points to the data segment
and is associated with SI. The extra segment and data segment are both used for
data storage.

Segments can be organized in memory so that they are adjacent to each other. They
may also be arranged in such a manner that they overlap, either partially or fully.
When segments overlap, different programs, or tasks, can share data. When seg
ments are arranged in an adjacent manner, programs can be written that allow data
to be operated on locally by one task and not be shared by others. Segments must
start on a 16-byte boundary in memory and must NOT be larger than 65,536 bytes.

8088 Architecture 59

Segment Registers Offset Registers

cs IP

OS BX,SI,DI

ES BX,SI,DI

SS SP.BP

t

101D <Shift> OH

Segment

0015H

Offset

(Logical address)

101 DO OS Register
+0015 IP Register

101E5 (Hex)

Effective Address « 101E5H

Figure 3-9 Address Generation using Segment Registers + Offset

Data Registers

Another concept associated with the 8088 is that of asymmetric registers. Asym
metric registers are registers dedicated to certain functions. For example, the CX
register must contain a value which is used as a counter when using certain
instructions. Table 3-1 summarizes the types of operations associated with each of
the 8088's registers.

Pointer and
Index Registers

The pointer registers (BP and SP) and index registers (SI and DI) are used to hold
pointers to memory. They can contain either an address offset or a displacement
value which is used to access the operand. BP (base pointer) and SP (stack pointer)
are used to access data within the stack segment. BP can he used to access data in

60 8088IIBM PC Assembly Language Programming

Table 3-1

Summary of Register Operations

Register Operations

AX Word Multiply/Divide
Word I/O

AL Byte Multlply/Dlvide/IG
Translate, Decimal, Arithmetic

AH Byte Multiply/Divide
BX Translate

CX String Operations
CL Variable Shift and Rotate

DX Word Multiply/Divide
Indirect Input/Output

SP Stack Operations
SI String Operations
DI String Operations

(Source: Intel, used with written permission)

segments other than the current stack segment by specifying a segment override
prefix within the instruction. SI and DI are offsets into the current data segments.
SI is associated with the current data segment (DS), while DI is associated with the
current extra segment (ES).

Status Flags

The flag register provides you with the information necessary to make decisions
based on a previously executed instruction. Assume for a moment that you want to
execute one of two possible portions of code. The decision to execute one or the
other is based on the value stored in the accumulator, AX. If the value is zero, you
want to execute routine number 1. If the value is nonzero, you want to execute
routine number 2.

If the result is zero, the ZF (Zero Flag) is set. Your program can then use the 8088
instruction JZ (Jump if Zero), to transfer control to routine number 1.

Carry Flag — (CF) — (bO) —
The carry flag signifies that a carry out of the most significant bit has occurred from
a previous addition of two numbers. For 8-bit addition, the carry is set when the
addition causes a carry to be generated from bit 7. Similarly, the carry is set during
l6-bit addition when there is a carry out of bit 15. Subtraction causing a borrow into
the MSB also causes CF to be set. This can occur when two values are subtracted or

compared, and the destination operand is smaller than the source operand.

8088 Architecture 61

B15 B14 B13 B12 ,B11 BIO B9 B8 B7 B6 B5 B4.B3.B2 B1 BO
OF DP IF TF SF ZF AF PF CF

OVERFLOW FLAG

DIRECTION FLAG

INTERRUPT FLAG

TRAP FLAG

SIGN FLAG

ZERO FLAG

AUXILLARY CARRY FLAG ■

PARITY FLAG

CARRY FLAG

Figure 3-10 Status Register Flags

The carry can also be used to isolate a specific bit by rotating or shifting the bit into
the carry flag. The program example at the end of Chapter 1 used this technique to
determine if certain resources were available to the system. Bit 0 of the word used
by MS-DOS to describe the system's equipment configuration is used to signify
whether the system contains disk drives. By rotating bO into the carry, a test can be
made to determine whether the bit is set or reset.

Bit manipulations are not one of the strengths of the 8088 microprocessor, yet
individual bits can be tested in the manner just described.

Parity — (PF)— (b2)
The parity flag is set if, after an operation, the total number of 1 bits contained in the
result is even. If the total number of Ts is an odd number, the parity flag is reset.

Auxiliary Carry

-(AF>-(b4)
The AF flag is set whenever a carry into (on subtraction) or out of (addition) bit 3
occurs. This can occur when adding, subtracting, or comparing numbers repre
sented in packed binary coded decimal format. The 8088 sets this flag for any
operation that causes a carry out of bit 3.

Zero Flag — (ZF) — (b6)
The zero flag is set if the result of an operation yields a zero result; otherwise, ZF is
reset (0).

62 80881IBM PC Assembly Language Programming

Sign nag — (SE) — (b7)
The sign flag is set (logic 1) if the most significant bit of the result is set. If you recall
from Chapter 1, signed numbers that are represented in binary notation use the
MSB of a byte or a word as a sign bit. The bit is zero if the number is positive and 1 if
the number is negative. SF is used to indicate whether the result is positive or
negative and mirrors the MSB of the result.

Overflow Flag—
(OF) — (Ml)
The overflow flag is set whenever two signed numbers of the same sign (i.e., both
positive or both negative) produce a result larger than the destination operand (the
sign has changed). For example, when FFH is added to 80H, a result of 7FH is
returned. Bit 7 in both operands is set, as both operands are negative values, but bit
7 in the result is a binary zero. The result of the addition causes the sign bit to
change. This operation would cause an arithmetic overflow (OF = 1) and generate a
carry (CF = 1).

Multiplication Indicators
(CFandOF) —
The carry and overflow flags also provide information about a previous word or
byte multiplication. Multiplication of two 8-bit operands returns the high order
half of the l6-bit result in AH and the low order half of the result in AL. If the

operands are 16 bits in length, DX will contain the high order half of the 32-bit
result and AX will contain the low order half. In either case, CF and OF are both set
if the high order half of the result is a nonzero value for unsigned multiplication.
When signed numbers are multiplied, CF and OF are both set if the high order half
of the result is not a sign extension of the result; otherwise, CF and OF are both
cleared.

Trap Flag— (TF) — (l>8)
When the trap flag is set, the 8088 enters a single step mode of operation. This
mode is quite useful for debugging a program. You can set or reset this flag. When
this bit is set, the 8088 executes a type 1 interrupt after executing the current
instruction. The debugging program's address must be specified in the type 1
interrupt vector (see Figure 3-8).

Interrupt Flag —
(IF) - (b9)
The interrupt flag is used to enable or disable external interrupts. You can set or
reset IF. If IF is set to 1, then interrupts are enabled. When IF is zero, interrupts are

8088 Architecture 63

disabled. One interrupt which cannot be disabled in this manner is the NMI or
nonmaskable interrupt. The NMI cannot be masked or disabled by clearing the IF
bit in the flag register the way other external interrupts can.

Direction Flag —
(DF) —(blO)
The direction flag is used during string operations and can be set by the program
mer. With the 8088 it is possible to point one of the index registers (SI) to the
source string and the other index register (DI) to the destination string. Then by
using one of the string instructions which I'll discuss in Chapter 4, you can
compare or move one string to the other. The state of the direction flag automati
cally increments or decrements the index registers, SI and DI, during a string
operation. When DF is set to a binary 1, the index registers are incremented by 1. If
DF is binary zero, then the index registers are decremented each time the string
instruction is repeated.

Interrupts

Have you ever been working at the office when the telephone rings? While talking
on the telephone, someone walks up to your desk. You put the party on the
telephone on hold and find out what the person who interrupted the conversation
wants. Then while taking care of the interruption, your boss sticks his head in the
door and tells you to report to his office immediately. Let's examine this scenario
in more detail.

Whether you know it or not, you have responded to multiple interrupt sources.
You put the party on the telephone on hold and serviced the interruption of the
person who walked up to your desk. While servicing this interrupt, let's also
imagine someone brings you the mail. This interrupt is of a lower priority than the
one you are currently servicing, so you ignore it for the time being. When your boss
tells you to report to his office, you cannot ignore the interruption, and you
immediately service the boss's request for attention. Your boss has the highest
priority in this scenario.

You finish taking care of whatever it was that your boss wanted, and you return to
yourcoworker waiting patiently at your desk. "Let's see, where were we? . . . Oh
yes, I remember" You retrieve the conversation's status at the time of the
boss's interruption and continue from the point where the conversation left off.
You now finish your conversation with your coworker and return to your tele
phone conversation, "Let's see, where was I ... Oh yes, I remember"You
continue your telephone conversation from the point in the conversation where
you left off. You finish the conversation, say your good-byes, and hang up. Now

64 80881IBM PCAssembly Language Programming

you remember the mail has arrived. You look through the mail for anything of
importance and then return to your normal routine, that which you were doing
before all these interruptions occurred.

Microprocessor interrupts are not much different from what has just been
described. The microprocessor can be interrupted from its normal programming
by external events, just as if the doorbell or telephone were to interrupt you from
your normal chores. Interrupts are said to be asynchronous; they can occur at any
time without being synchronized to other system components, such as the sys
tem's clock. Characters typed from the keyboard are good examples of
asynchronous interrupt, as the characters are not precisely timed. They occur at
irregular intervals. When the 8088 receives a keyboard interrupt due to a key being
pressed or released, the processor goes to the appropriate interrupt routine to
determine what key was pressed.

Just like the human analogy, the 8088 services interrupts in the following manner:

1. The 8088 first finishes the current instruction being executed,

2. fetches the interrupt vector number from the 8259A programmable inter
rupt controller (PIC),

3. saves the status flag register,

4. clears the interrupt flag (IF) and the trap flag (TF),

5. and saves its place in the program by pushing the code segment register (CS)
and then the offset register (IP) on the stack.

When the 8088 has finished executing the interrupt routine, it restores the status,
segment, and offset registers, which were saved at the time of the interrupt, and
returns to the main program where normal program execution resumes.

Maskable and Nonmaskable

Inl:errupts (NMl)
Certain interrupts can be masked (ignored). When IF is cleared in the flag register,
the 8088 ignores external interrupt requests. When IF is set, the 8088 responds to
the interrupts. Nonmaskable interrupts cannot be masked. They always grab the
8088's attention. Typically, the NMl interrupt is used to signal a low voltage
condition or power failure.

You can think of maskable interrupts as those which can be screened. You can have
a receptionist or the company's telephone operator take messages for you while
you are in a meeting. The messages will be there after you finish your meeting.

Nonmaskable interrupts are those that must be serviced no matter what. Even
though you have told the receptionist to ''Hold all my calls while I'm in this

8088 Architecture 65

meeting," should there be an emergency or if the boss should call, you'll be
interrupted. Obviously, some interruptions will always occur and require immedi
ate service.

Addressing Modes

There are several data accessing methods available to you. The 8088 micro
processor allows any of the following modes to be used when accessing data. The
general format of addressing data is:

OP-CODE destination, source

Register Direct
Register direct addressing is used to manipulate data directly contained in two
specific registers. For example:

ADD BX,CX -CAdd the contents of CX to BX>

MOV AL, BL "CMove the 8-bit value in BL to AL>

WOV CX,AX -CMove the 16-bit value in AX to CX>

Immediate —

Immediate addressing operates on a constant value, which is contained in the
instruction itself:

MOVE AX,1000 <Moves a word of data (1000) to AX>

MOV AL, -1 <Moves the constant -1 into AL>

ADD AL,10 <Adds 10 to AL>

ADD AX, THOUS <Adds the value of THOUS (1000) to AX>

Memory Direct —
In memory direct addressing, the operand's address is specified in the instruction:

MOV AX, COUNTER -CMoves the contents of the memory location
COUNTER to AX>

MOV COUNTER, AX <Move the contents of AX to the memory location
UUUNTER>

66 8088/IBM PC Assembly Language Programming

Memory Direct with Index —
This form of memory addressing accesses values stored in memory by specifying
the start of the data structure (as in the direct addressing mode above) as an offset
contained in DI or SI. For example:

MOV SI,02H displacement of 2

MOV AXfCOUNTER CSI3 ;Moves the contents of the memory location
5 (COUNTER 1-2) into ftX.

Register Indirect —
In register indirect addressing, the BX, BP, SI, or DI register contains the address of
an operand. Using the memory location COUNTER from the previous example,
one of the registers is loaded with the address of the location COUNTER. This can
be done in one of two ways:

1) LEA SI, COUNTER -CLoads the effective addres of COUNTER
into the SI register}

or 5

2) MOV SI, OFFSET COUNTER •(Loads the segment offset value of
COUNTER into SI>

Once the address has been loaded into the SI, DI, BP, or BX register, you can use the
register to access data stored at that location. For example:

MOV AX, CSI3 •(Moves the contents from the address pointed to by
SI into the AX register}

ADD AX,CSI3 <Adds the contents of the address pointed to by SI
to the AX register}

ADD CBX},AX -(Add the contents of AX to the memory location
pointed to by BX}

Based Index (Register

Indirect with Index) —
This mode of addressing accesses an operand in a data structure, pointed to by BX
or BP, located at the offset specified by either DI or SI. For example, suppose DI
contains the value 2, and BX contains the start address of a data structure that
includes employees' hourly wages. The instruction MOV AX, |BX + DI] would load
AX with a third employee's wages. Figure 3-11 illustrates register indirect with
index addressing. Intel refers to this mode of addressing as based indexed address-

8088 Architecture 67

ing, because the effective address is calculated from the contents of one of the base
registers and an index register.

MOV DX. [BX+SI]

Register

DS-I-BX 4-SI s Effective Address

Memory

DS

BX-

81

' Segment Start

I
Base Operand

Target Operand

Based index addressing allows the programmer to specify an effective address
as the sum of a base register and an index register. A displacement value may
also be specified.

Figure 3-11 Register Indirect with Index

Register Indirect

Indexed with

Displacement Addressing
The last addressing mode is another variation of based index addressing. In register
indirect with index plus displacement, the effective address is calculated as the sum
of the contents of BX or BP, plus the contents of SI or DI, plus the specified
displacement value. For example-.

MOV AX, CBX-i-DI-t-a] -CMoves the contents of the memory location
pointed to by the sum of BX, DI, and S into
the RX register}

MOVE CBX+DI+23,CX <Moves the contents of CX into the memory
location specified by the sum of BX 4- DI +£>

The displacement can also be specified in the form a symbolic name as: MOV
MY_BYTE[BX] [DIH-2,CX.

Memory-to-memory data transfers and manipulations are not allowed, nor are
operations that specify a constant value as the destination operand.

68 80881IBM PC Assembly Language Programming

Address Calculation Time

As you might have guessed, the calculation of an effective address takes a certain
amount of time. The exact time required for address calculation depends on the
addressing mode chosen. Table 3-2 can be used to determine effective address
calculation times.

In Appendix B, you'll find the execution times of each 8088 instruction. The EA
calculation time must be added to the instruction's execution time to determine

the total execution time. For example, the NEG instruction lists an execution time
for a memory operand as 16h-EA. In all cases, four clock cycles must be added to
the value shown (16, in this example), if the operation requires a l6-bit (word)
transfer. The worst case, or longest execution time, for this instruction would then
be 32 (16 -I- 4 4- 12) clock cycles. The fastest execution time for this instruction
would be when a register is specified as the operand. Since there is no effective
address to be calculated, the instruction executes in three clock cycles.

Table 3-2

EA Components Clocks*

Displacements Only 6

Base or Index Only 5 (BX,BP,SI,DI)

Displacement + Base or Index 9 (BX,BP,SI,DI)

Base + Index 7 (BP + DI,BX + SI)

8 (BP + SI,BX + DI)

Base + Index + Displacement 11 (BP + DI + DISP)

(BP + SI + DISP)

12 (BX + SI + DISP)

(BX-fDI + DISP)

* Add two clocks for segment override.
IBM system clock = 210 ns (nanoseconds)

8088 Architecture 69

1. There are

17.

18.

19.

20.

. main sections to a computer system.

2. The main sections are the.
section.

and the.

3. The section acts like a mailman to the other sections of a

4.

5.

6.

7.

8.

computer system.

The 8088 contains.

The

. independent internal units.

removes instructions from the

and decodes and executes the instructions.

The 8088 flag register is bits wide.

The ALU of the 8088 is bits wide.

The maximum amount of memory the 8088 can directly address is
bytes.

9. The Basic Input/Output System is contained in the system's

A.

B.

RAM or

ROM.

10.

11.

The 8088 views the total memory space as being divided into
byte .

An effective address is generated by taking the base value found in one of the
registers and by adding an to that value.

12. Name at least two uses for the stack.

13. The 8088 is capable of generating

14. The 8088 is operated in the

I/O addresses.

mode in the IBM PC.

15. Name one difference between minimum and maximum mode of operation.

16. The data bus of the 8088 is bits wide.

The data bus of the 8086 is bits wide.

vectors.Low memory in the IBM PC is dedicated to storing

What is the difference between a microprocessor and a microcomputer?

There are 16-bit-wide registers in the 8088.

70 80881IBM PC Assembly Language Programming

21. The data registers of the 8088 are , ,
, and .

2 2. There are index registers.

2 3. There are pointer registers.

24. There are segment registers: , ,
, and .

2 5. The extra segment must always point to the stack (True or False).

26. and form a pointer to the next instruction to be
executed.

27. The Z flag indicates that nothing is going on (True or False).

28. When the 8088 is interrupted, it will save the register,
register and the register on the stack.

29. Some interrupts may be . When this is done, the 8088 will/will
not respond to external interrupts (circle the correct answer).

30. Name four addressing modes the 8088 is capable of employing.

31. An instruction's total execution time can be determined by looking up the
instruction execution time in the , and adding the
calculation time to it.

4

We've covered a lot of ground in the first three chapters. Now it is time to tie the
loose ends together (as far as the 8088 is concerned). We already know that the
assembler translates source statements into the machine code the 8088 under

stands, hut we have not described the 8088's instruction set, the commands which,
when used other commands, create a program.

If you are an experienced assembly language programmer, you may he surprised to
see some of the powerful instructions in the 8088's repertoire. There is much
similarity between many high level languages and some of the instructions the
8088 is capable of executing. For example, you can implement functions similar to
BASIC'S FOR and NEXT iteration loops.

I have already used some of the 8088's instructions in previous chapters. By doing
so, it is a hit like putting the proverbial cart before the horse. In order to illustrate
an assembly language program as was done in the programming examples of
Chapters 1 and 2, it was necessary to use the instructions which I am about to
discuss. After reading this chapter, you should go back to the previous chapters and
review the examples presented.

I also mentioned in Chapter 2 that an immediate value could not be used as a
destination operand in an instruction. The reason is that it would make little sense
to use immediate addressing with a destination operand of a constant. As the
general format for a source code statement is: 71

72 8088!IBM PC Assembly Language Programming

OP-CODE destination, source

the destination operand would have to be capable of being altered. Immediate
operands are constant values which are specified within the instruction. There
fore, they cannot he used as destination operands.

However, nearly all instructions allow you, the programmer, to specify memory or
register operands as either source or destination operands. What if you want to add
20 to the contents of the memory location labeled COUNTER? Most processors
first require that the value be fetched from memory and loaded into the
accumulator. Then 20 would be added to the value in the accumulator and the new

value saved in memory. The operation would require at least two instructions and
perhaps three on most microprocessors. The 8088 accomplishes this operation in
one instruction: ADD COUNTER,20. Allowing register and memory operands to
be used as either source or destination operands in an instruction results in an
overall reduction of the machine code generated by the assembler.

Table 4-1 shows the 8088 instruction set divided into six major groups.

Table 4-1

8088 Instruction Groups

Group 1
Data Transfer Instructions

General Purpose Input/Output

MOV Move byte or word IN Input byte or word
PUSH Push word onto stack OUT OUTPUT""" " "

POP Pop word off stack
XCHG Exchange byte or word
XLAT Translate byte

Address Object Flag Transfer

LEA Load effective address LAMP Load AH from flags
IDS Load pointer using DS SAHF Save AH in flags
LES Load pointer using ES PUSHF Push flags

POPF Pop flags

8088 Instruction Set 73

Group 2
Arithmetic Instructions

Addition

ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCII adjust for addition
DAA Decimal adjust for addition

Subtraction

SUB Subtract byte or word
see Subtract byte or word with borrow
DEC Decrement byte or word by 1
NEC Negate byte or word
CMP Compare byte or word
AAS ASCII adjust for subtraction
DAS Decimal adjust for subtraction

Multiplication

MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCII adjust for multiply

Division

DIV Divide byte or word (unsigned)
IDIV Divide byte or word (signed)
AAD ASCII adjust for division
CBW Convert byte to word
CWD Convert word to doubleword

Group 3
Logical, Shift, and Rotate

Logicals

NOT Complement byte or word
AND Perform logical AND on byte or word
OR Perform logical OR on byte or word
XOR Perform logical XOR on byte or word
TEST Perform logical TEST (AND) on byte or word

Shifts

SHL/SAL Shift logical/arithmetic left byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or word

Rotates

ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left, byte or word
RCR Rotate through carry right, byte or word

contirmed

74 80881 IBM PC Assembly Language Programming

Group 4
String Instructions

REP Repeat
REPE/REPZ Repeat while equal to zero
REPNE/REPNZ Repeat while not equal to zero
MOVS Move byte or word string
MOVSB/MOVSW Move byte or word string
CMPS Compare byte or word string
SCAS Scan byte or word string
LODS Load byte or word string
STOS Store byte or word string

Group 5
Program Transfer Instructions

Unconditional Transfer Instructions

CALL Call procedure
RET Return from procedure
JMP Jump

Conditional Transfer Instructions

Jump if Flag Condition

JA/JNBE Jump f above/not below (CSorZF)=0
JAE/JNB Jump f above or equal/not below CF=0

JB/JNAE Jump f below/not above or equal CF=1

JBE/JNA Jump f below or equal/not above (CForZF) = 1
JO Jump f carry CF=1

JE/JZ Jump f equal/zero ZF=1

JG/JNLE Jump f (<)/not > nor = ((SFxorOF)orZF) = 0
JGE/JNL Jump f greater or =/not < (SFxorOF) = 0
JL/JNGE Jump f less/not greater nor equal (SFxorOF) = 1
JLE/JNG Jump f < or =/not > ((SFxorOF)orZF) = 1
JNC Jump f not carry CF = 0

JNE/JNZ Jump f not equal/not zero ZF=0

JNO Jump f not overflow OF=0

JNP/JPO Jump f not parity/parity odd PF=0

JNS Jump f not sign SF=0

JO Jump f overflow OF=1

JP/JPE Jump f parity/parity even PF=1

JS Jump f sign SF=1

Iteration Control Instructions

LOOP Loop
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ Loop if not equal/not zero
JCXZ Jump if register CX=0

Interrupts

INT Interrupt
INTO Interrupt if overflow
IRET Interrupt return

8088 Instruction Set 75

Group 6
Processor Control Instructions

Flag Operations

STC Set carry flag
CLC Clear carry flag
CMC Complement carry flag
SID Set direction flag
CLD Clear direction flag

ST! Set interrupt enable flag
CLI Clear interrupt enable flag

External Synchronization

HLT Halt

WAIT Wait

BSC Escape
LOCK Lock bus during next instruction

No Operation

NOP No Operation

Data Transfer
Instructions

These instructions move data in and out of memory and the 8088's registers. They
also move data contained in AL or AX to or from an I/O port. Intel further
categorizes the data transfer instructions as:

A. general purpose data transfers,

B. I/O port transfers,

C. address-ohject transfers, and

D. flag register transfers

Arithmetic Instructions

Arithmetic instructions operate on signed or unsigned numeric operands in either
binary or packed or unpacked BCD format.

Bit Manipulation Instructions
This group of instructions performs logical, shift, and rotate operations on hyte or
word operands.

Control and Transfer Instructions

The control and transfer instructions allow conditional or unconditional jumps to

76 8088!IBM PC Assembly Language Programming

other parts of the program. Also included in this group are interrupt instructions
and status flag operations.

String Manipulation Instructions
Possibly the most powerful of all the 8088's instruction types are those used for
string manipulation. You can scan, move, or compare strings of data that are up to
64k bytes in length in these instructions.

Processor Control Instructions

This group of instructions allows you to set and clear the carry, direction, and
interrupt flags in the 8088's status register. There are also instructions which
synchronize the 8088 to other processors (referred to as co-processors) and exter
nal events.

The first group of instructions consists of those that move data from one place to
another in the PC. They move data either to or from:

1. Memory and registers,

2. One register and another register, or

3. The AL or AX register and an I/O port.

The data transfer instructions are the most fundamental and the most easily
understood and are therefore the first ones I'll discuss. All of the instructions (for
all groups) are listed alphabetically in Appendix C. They are reprinted in the
appendix with the permission of Intel Corporation. The information which fol
lows paraphrases the information contained in the appendix and expands upon it
where necessary.

General Purpose
Data Transfers

MOV

Format: MOV destination, source

The MOV (move) instruction transfers either 8 bits (I byte) or 16 bits (1 word) of data

8088 Instruction Set 77

from the source to the destination operand. Any of the addressing modes discussed
in Chapter 2 can be used to effect the transfer. This is the most frequently used
8088 instruction. Some examples of the MOV instruction are:

MQV ftX,DX ;l*love the contents of DX to AX.

MOV BL,CL ;Move the 8-bit contents of CL to BL

MGV AX,COUNTER ;Move the contents of memory to AX

MOV AL,10H ;Move the constant 16 (decimal) to AL.

MOV ES,AX ;Move the contents of AX to the

;Extra segment register.

The following forms of the MOV instruction are not allowed:

MOV 10H,AL 5You cannot use a constant as the

-dest inat ion.

MOV CS,AX 5You cannot use the code segment

;register as the destination operand.

MOV ES,A000H 5You cannot use a constant value

;as the source operand and specify

;a segment register as the destination.

MOV NEW_COUNT,COUNTER jYou cannot use memory as both the

5source and destination operands.

Let's examine each of the illegal MOVs in greater detail. I've already discussed why
an immediate value cannot be used as the destination operand, but why can't we
use the code segment register as the destination? Since the code segment register
contains the base address of the program currently being executed and the IP
register contains the offset into the code segment of the next instruction to be
executed, altering CS produces a meaningless combination of the segment register
and the instruction pointer. CS would be pointing to some new segment, while IP
would still be pointing to the old offset of the old segment. Whatever IP would be
pointing to in the new segment would not be what was desired; therefore, this
form of the MOV instruction is not allowed.

The segment registers cannot be loaded from an immediate value in the source
operand either. The assembler associates certain segment registers with the three
types of segments in your program (code, data, and stack). In order to satisfy this

78 8088/IBM PC Assembly Language Programming

assumption you must load the start address of the segment into one of the general
purpose registers, and then transfer this value to the desired segment register. For
example:

MQV AX,MY_DftTA jLoad the start address of the data

;Segment into PX.

MOV DS,PX ;Establish DS as pointer to MY_DPTP

This is the method you should use to load the DS, ES, and SS registers with the
starting address of a segment of memory. Remember, the segment registers shift
this value left by 4 bit positions and append a low order nibble of zeros to the
segment address (see Chapter 2).

Memory-to-memory transfers are also not allowed. A value must first be moved
into one of the CPU's registers, and then written to the new location.

PUSH

Format: PUSH source

The PUSH instruction allows you to temporarily save data on the stack. This
method of temporary data storage is often used when you want a register to
perform some type of operation, but you do not want to destroy its current
contents. The PUSH instruction can also be used to pass parameters (data) to
subroutines or procedures. Once in the subroutine, the BP register is used to access
the parameters that have been pushed onto the stack.

When the 8088 encounters the PUSH instruction, the stack pointer (SP) is decre
mented by two and the l6-bit source operand is transferred to the stack location
pointed to by SP.

POP

Format: POP destination

The POP instruction is the complement of the PUSH instruction. It allows you to
retrieve information that has been saved, or pushed, on the stack. When the 8088
encounters the POP instruction, the word pointed to by the stack pointer is
transferred to the destination operand, which can be any l6-bit register (except CS)
or a memory operand. SP is then incremented by two, and points to the new top of
the stack.

A common mistake is neglecting to pop all the information which was pushed onto
the stack. When a procedure is called by using the CALL instruction (which I'll

8088 Instruction Set 79

discuss later in this chapter), the return address of the calling program is automati
cally saved on the stack by the 8088.

To exit the procedure and return to next the Instruction In the program, the
procedure must issue a RET, or return, instruction. When the 8088 encounters the
RET instruction, the value pointed to by SP is transferred to the instruction pointer
IP, assuming that both the main program and the procedure reside in the same code
segment (intrasegment).

If the procedure and the calling program are not within the same segment (interseg
ment), the segment address as contained in the CS register is also saved on the
stack. When the Intersegment RET Is encountered, the word pointed to by SP is
popped off the stack into the instruction pointer. The stack is incremented by two,
and the word pointed to by SP is popped from the stack into the code segment
register. The stack pointer is again incremented by two to point to the new top of
stack.

What would happen if you wanted to use AX in the procedure, but AX might
contain a value used in the main program? Certainly you should save the value of
AX prior to using the register in the procedure. Consider the following portion of
code!

MAIN PROBRnn: CPLL MY_PROCEDURE ;Call a subroutine.

MOV BX,AX ;The procedure should return

;here.

MOV AX,CX ;etc.

The main program calls the procedure named MY_PROCEDURE. Assume for the
moment that both the calling program and the procedure reside in the same code
segment. The offset address into the current code segment is contained in IP and is
automatically saved on the stack when the 8088 encounters the CALL instruction.
A new offset value, which is the offset address of MY_PROCEDURE, becomes the
new value of the instruction pointer IP. After the procedure is finished, control
should return to the main program at the instruction which moves the contents of
AX to BX.

Consider what would happen if the procedure were written in the following
manner:

MY.PROCEDURE PRQC NEftR

PUSH «X ;Save the value of

;<The program statements of the

continued

80 80881IBM PC Assembly Language Programming

MY PROCEDURE

RET

ENDP

{procedure. >

{Oh - Oh!

Here AX was saved on the stack and never restored the stack prior to exiting the
procedure. When the RET instruction is executed, the 8088 transfers the value of
AX that was pushed on the stack to the instruction pointer. Where do you think the
8088 will return to? Certainly not to the MOV instruction in the main program. It
will try to execute whatever it finds at the memory location specified by the
combination of CS and IP. Since the value in IP is whatever was in AX, chances are
that the combination will not point to anything coherent.

The rule is: For every PUSH there must be a POP, and for every POP there must be a
PUSH. The procedure should have been written as:

MY_PROCEDURE PROC NEMR

PUSH PX

POP PX

RET

MY PROCEDURE ENDP

;Save PX

;<Rest of the procedure>

;etc.

;Restore PX

;and return to caller.

You may want to save more than just one register when a procedure has been
called. If this is the case, you must pop the words in the opposite order of that in
which they were saved. Remember that the last value pushed on the stack is the
first value to be popped.

MY.PROCEDURE PROC NEPR

PUSH PX

PUSH CX

PUSH BX

{Save PX, CX, and BX

;P11 registers have been saved

;Now execute procedure

POP BX

POP CX

;Restore the registers

8088 Instruction Set 81

POP PX

RET

MY PROCEDURE ENDP

5and return to caller.

Figure 4-1 illustrates the stack usage due to the PUSH and POP instructions. (See
also RET.)

MOV AX. 0FF82H
PUSH AX

AH AL

AX = FF 82
— " ►

SP .

Top of Stack
before PUSH

Stack Segment

82

FF

New Top of Stack
(SP)

(a) After PUSH

POP AX

Stack Segment

SP.

Top of Stack
after POP

82

FF

AL

^ AH

AX = 0FF82H

(b) After POP

Figure 4-1 Stack usage during PUSH and POP

82 80881IBM PC Assembly Language Programming

XCHG

Format: XCHG destination,source

The exchange instruction is used to exchange either byte or word data between the
source and destination operands. Legal combinations of the XCHG instruction are*.

XCHG

XCHG

XCHG

XCHG

XCHG

AX,CX

AL,CL

ftL,MEM0RY_8BITS

PX,MEM0RY_16BITS

PX,CSI3

;Exchange the contents of ftX and CX

;Exchange the contents of PL and CL

;Exchange 8 bits (byte) of PL and

;the contents of a memory location

; Exchange 16 bits (word) between

;PX and memory-

5Exchange the contents of PX and

5the word in memory pointed to by SI

You cannot use the segment registers as the operands of the XCHG instruction. For
example:

XCH6 CS,DS

XCHG DS, MEMORY.1SBITS

;Is illegal

;Is also illegal.

XLAT

Format: XLAT translation table

The translate instruction replaces the contents of the AL register with a byte from a
translation table. The offset into the table is assumed to be in AL, and the base

address (start address) of the table must be in the BX register prior to using the
XLAT instruction. This instruction is commonly used in character code transla
tions. For example, if you want to convert an ASCII character to Baudot, you could
use the XLAT instruction to perform the conversion.

8088 Instruction Set 83

I/O Port Transfers

IN and OUT

Format: IN accumulator,port
OUT port,accumulator

The IN instruction transfers either hyte or word values from a specified port
number to the accumulator. Conversely, the OUT instruction will send or transfer
data from the accumulator to the specified port number. The port number can
either be specified as part of the instruction (an immediate 8-bit value), or it can be
specified indirectly by placing the port number in the DX register. Immediate port
addressing allows up to 256 ports to be accessed (O-OFFH), while using the indirect
method allows up to 65,535 ports to he accessed (O-OFFFFH).

The IBM PC communicates to various peripheral devices such as the keyboard,
video display, cassette, and disk drives via port addresses. For example, port
addresses 3F0-3F7H are assigned to the diskette controller. Ports 378-37AH are
used to communicate with the printer interface, as are ports 3BCH-3BEH when
you are using the printer port supplied on the monochrome display and printer
adapter hoard (see the IBM technical manual for more details). Some examples of
how the IN and OUT instructions may he used are:

PRINTER EQU 3BCH ;Printer port on monochrome display and

;printer adapter board.

PRINTER.STPT EQU 3BDH 5Printer status port.

MOV DX,PRINTER ;Port address to DX

MQV BX,PRINTER_STPT 5Printer status port into BX

MOV PL,'P' 5Move PSCII letter P into PL

GUT DX,PL ;Send character in PL to the printer.

XCHG DX,BX jExchange BX and DX. DX now ^status port

IN PL,DX ;Get the printer's status.

Other examples IN and OUT ares

IN PX,OP0H ;Input a word of data from port P0H

IN PL,0B1H ;Input a byte of data from port BIH

OUT 0B3H,PX ;Output the word in PX to port B3H.

84 8088!IBM PC Assembly Language Programming

Address-Object
Transfers

Address-object transfers send address pointers to a specified register or pair of
registers. The address pointers are then used as segment and offset pointers in
calculating absolute memory addresses.

LEA

Format: LEA destination,source

The load effective address (LEA) instruction is used to transfer the offset address of
the source operand to the specified l6-hit register. The source register is always a
memory operand. You could also use the MOV instruction with the offset operator
to move an address value rather than the contents of a memory location into a
register. For example:

MOV SI,OFFSET SOURCE_DftTft

and - LEA SI,SOURCE.DATA

accomplish the same task; transferring the address offset of SOURCE_DATA to the
SI register.

String instructions, which will he discussed later in this chapter, require SI and DI
to point to memory addresses. LEA is used to move address offsets into the
registers. LEA is preferred over the MOV with offset qualifier, as it is perfectly clear
when LEA is used that you are moving an address and not the contents of the source
operand to a register. Additionally, LEA allows you to specify an address value
indirectly, using the contents of another register. For example:

LEA BX,TRANS_TABLECBP]CDI3

could he used to load the address of an entry into a translation table. In this instance
the address value is the sum of the memory address TRANS_TABLE plus the
contents of BP and DI. If BP contained 3, and SI contained 4, then the effective
address is equal to TRANS_TABLE -I- 7, or the address of the eighth entry in the
table. The MOV with Offset operator does not allow this flexibility in accessing the
source operand.

8088 Instruction Set 85

LDS

Format: LDS destination,source

The LDS (load pointer using DS) instruction transfers a 32-bit double word segment
and offset value from the source operand to DS and the specified l6-bit register. For
example:

LDS SI,MY_DfiTfi

loads SI with the offset value of MY_DATA and DS with the segment address of the
segment where MY_DATA resides. This instruction is commonly used to switch
the DS register to a new data segment and establish a pointer in SI prior to using
string instructions which require this register combination to access data. Rather
than loading AX with the start address of a new data segment and transferring the
address value from AX to DS, LDS accomplishes the same function in one instruc
tion. Additionally, it establishes an offset value that would otherwise require yet
another instruction.

Like LEA, LDS allows you to add a displacement to the source operand:

MOV Dl,05 5Move the value of 5 into DI

LDS BX,MY_DftTACDI1 ;Move the double word stored at

;MY_D«Tft + 5 into DS and BX.

LES

Format: LES destination,source

LES (Load pointer using ES) operates in the same manner as the LDS instruction,
with the exception that the segment address is transferred to the extra segment
register, ES, rather than the data segment register, DS. Similar to LDS, which
establishes source pointers to be used by the 8088's string instructions, LES can be
used to set up the ES and DI registers with pointers to the destination string:

LES D1,Y0UR_DATA ;Loads ES with the segment address of

;YOUR.DftTtt, and DI with the offset

;address of the operand.

86 80881IBM PC Assembly Language Programming

Flag Register Transfers

The 8088 contains instructions that allow the programmer to transfer a portion of
the l6-bit flag register to or from the high order half of the accumulator or to
transfer the flag bits to or from tbe stack.

LAHF

Format: LAHF

LAHF (Load register AH from Flags) transfers the carry flag (CF), parity flag (PF),
auxiliary carry flag (AF), zero flag (ZF), and sign flag (SF) into bit positions 7,6,4, 2,
and 0 of the AH register. You may wonder why these are the only flags transferred
to AH. The reason is to retain compatibility with the older 8080 and 8085 8-bit
processors from Intel; these are the status flags used by the 8080/8085.

SAHF

Format: SAHF

SAHF (Store register AH into Flags) transfers bits 7, 6, 4, 2, and 0 from AH to the
status flag register. Again, this instruction was added to the 8088 to insure com
patibility with the 8080 and 8085 processors.

PUSHF and POPF

Format: PUSHF

POPF

PUSHF (Push Flags) saves the flag bits in the l6-bit flag register onto the stack. The
stack pointer is decremented by two, and the contents of the flag register are saved
at the location pointed to by SP. POPF transfers the flag bits contained in the l6-bit
value pointed to by the stack pointer to the appropriate bit positions of the flag
register. SP is then incremented by two to point to the new top of the stack.

You would use the PUSHF instruction whenever it is necessary to preserve the
current contents of the flag register.

Consider the following code:

MOV AL,BYTE^VftL ;Move a byte into AL

CMP AL,BL ;ls it lower or higher?

CALL PR0CEDURE_1 ;Go do something with AL

JB LOW_VAL jAL BL then jump.

8088 Instruction Set 87

What's wrong with the program example above?

It's a pretty good bet that the procedure will use an instruction or two that will
change the flags. If the flag register is not saved on entering the procedure and
restored prior to exiting the routine, the flags will not be accurate when control is
returned to the main program. PUSHF and POPF can be used to save and restore the
flags on entering and exiting the procedure.

Program errors such as the one above are common to novice programmers. A
better solution to the problem is to keep a simple rule in mind: Immediately follow
the flag setting instruction with a conditional transfer instruction like this:

MOV ftL,BYTE_VftL

CMP PL,BL

JB LOW_VftL

CPLL PROCEDURE.1

;Fetch value from memory

;Is Al.<BL?

5Go to another routine if it is

;£lse go do something with Al.

With this group of instructions, the 8088 is able to perform addition, subtraction,
multiplication, and division. The operands may he signed or unsigned byte or
word values. All instructions treat the data operands as binary values, although
corrective instructions allow you to perform arithmetic operations on ASCII and
BCD data.

The carry, auxiliary carry, zero, sign, parity, and overflow flags are set or reset
according to the result of the operation. See the section on the flag register in
Chapter 2 for a description of the behavior of each of these flags.

Addition

ADD

Format: ADD destination,source

The ADD instruction adds the source to the destination operand and places the

88 8088!IBM PC Assembly Language Programming

result into the destination operand. The operands may he byte or word values; they
may both be registers, or they may he a memory and register combination. The
operands may be signed or unsigned binary data. Some examples of the ADD
instruction are:

ADD DL,3FH ;Add 63 to the contents of the DL register.

;<DL=>DL+3FH)

ADD AX,BX ;Add the contents of BX to AX (AX»> AX4-BX)

ADD UIORD_VAL,DX ;Add the contents of DX to memory location

5 WORD_VAL. (WQRD_VAL=WORD_VAL+DX)

ADD BL,BYTE PTR WORD^VAL ;ADD the low order byte of the

5word stored at WORD_VAL to BL.

In this example, the PTR operator was used to specify a byte value stored at
WORD_VAL. This is a type override; it is used to override the type attribute of an
operand. Each operand, when defined, has an attribute associated with its defini
tion. In this particular case, WORD_VAL has a type attribute of word; it is a l6-bit,
or 2-byte, value. In order to operate on either low order half of WORD_VAL, it is
necessary to use the pointer override prefix.

If you were to code the instruction as ADD BL,WORD_VAL, the assembler would
generate an error, because the attribute types of the operands do not match. I'll
discuss this and other override prefixes in the next chapter. I did, however, want to
show you that 1 byte of a word operand can be isolated and added to another 8-bit
operand.

ADC

Format: ADC destination,source

ADC (add with carry) is used to add the source to the destination operand and add 1
to the result if the carry flag is set. The result is placed in the destination operand.
The operands may be signed or unsigned binary data.

Assume for a moment that you want to add the two 32-bit numbers, as illustrated in
Figure 4-2. The destination operand(s) will be in memory at WORD_ONE (low
order 16 hits) and at WORD_TWO (high order 16 hits). The 32-hit operand you
want to add to these memory locations is in the AX (low order word) and the BX
(high order word) registers. "The following set of instructions produces the correct
result:

ADD MORD_ONE,nx ;Add AX to MORD_ONE without carry

ADC WORD_TWO,BX ;Add BX and Carry bit to MORD_TWO.

8088 Instruction Set 89

1st Operand (High Order)
2nd Operand (High Order)
1 St Operand (Low Order)
2nd Operand (Low Order)

Add 70319028 (Hex) and 3AC5E045 (Hex)

7031H = 0111 0000 0011 0001 (Binary)
3AC5H = 0011 101011000101 (Binary)
9028H = 1001 0000 00101000 (Binary)
E045H = 1110000001000101 (Binary)

Add Low Order Operands:
ADDAX.BX

Carry ~> 1

Add High Order Operands:
(With Carry)

1001 0000 00101000

11100000 01000101

0111000001101101

0111000000110001

0011 101011000101

1

101010101111 0111

ADCCX.DX

Result in CX:AX CX

101010101111 0111

2AF7(Hex)

Check Binary Add With Hex
Add

70319028 (Hex)
+ 3AC5E045(Hex)

AAF7706D (Hex)

AX

0111 000001101101

706D (Hex)

Figure 4-2 32 bit ADD, ADC Example

As the ADD instruction produced a carry out of bit 15, the ADC accounts for the
carry and adds 1 to the high order word of the result. Multiple precision addition is
possible using the ADC instruction.

INC

Format: INC destination

The increment instruction is used to add 1 to the destination operand. The incre
ment instruction does not affect the carry flag (CF), but it does update AF, OF, PF,
SF, and ZF. The operand may be either an unsigned byte or word value. Some
examples of the INC instruction are:

INC WORD VPL

INC BYTE_VftL

{Increment the 16 bit contents of

;WORD_V«L

{Increment the 8 bit contents of

{BYTE^VftL

continued

90 80881IBM PC Assembly Language Programming

INC CX 5 Increment the value in CX

INC AL ;Increment ftL

The increment instruction adds 1 to an operand faster than the ADD instruction
does. The maximum execution time is encountered when incrementing an oper
and in memory, yet even this is faster than ADD MEM_VAL,1. Compare the
execution times for these operations as given in Appendix B.

AAA

Format: AAA

AAA (ASCII Adjust for Addition) corrects the result in AL after adding two
unpacked BCD numbers. In Chapter I, I demonstrated that after adding two BCD
digits, the result may not be correct. The CPU treats all operands as binary data. We
formulated the rule that if the result in the low order nibble was greater than 9, or if
the auxiliary carry flag was set, you must add 6 to the low order nibble of the result
to correct for the addition.

If the above conditions are met, AAA adds 6 to the low order nibble of AL, clears the
high order nibble of AL, and adds 1 to the contents of AH. This in effect produces an
unpacked BCD value in AH and AL. Consider the following statements:

MOV nx, 001219 09 and 00

ADD AL,04H ;AL now = 0DH which is not BCD digit

AAA ;AL now » 03 and AH^ 01<AX»0103).This is

;the correct result of 9+4 « 13 (decimal).

DAA

Format: DAA

DAA (Decimal Adjust for Addition), corrects the value in AL from a previous
addition of two packed BCD operands. If the value in AL is greater than 9 or if the
auxiliary flag is set, 6 is added to AL and AF is set to 1. Also, if AL is greater than 9FH
or if CF is set, then 60H is added to AL, thereby correcting the high order nibble of
AL, and CF is set to 1. The following examples illustrate the DAA instruction:

Example 1

MQV AL,39H 5AL « 39 BCD

ADD AL,18H ;AL » SIH, the desired result should be 57

;BCD.

8088 Instruction Set 91

DAP

Example E:

MOV PL,79H

PDD PL,39H

DPP

5PL now = PL + 06 = 57

5PL = 79 BCD.

;Pdd 79 + 39. PL now = B2H

;Pdd 06 to PL, PL now « BdH

;Plso PPP adds &0H to BSH, PL now » 18 and

5the carry flag is set to 1.

In Example 2, 79 BCD plus 39 BCD should yield a result of 118 BCD. Due to the
binary addition of 79H and 39H, the result is B2H. DAA compensates for this error
in packed BCD addition. The carry flag, which is set due to the carry out of bit 7 of
AL, can be used to increment another register or memory operand to yield the
three-digit BCD result of 118.

Subtraction

SUB

Format: SUB destination,source

The subtraction instruction subtracts the source operand from the destination
operand and places the result in the destination operand. The operands may be
either signed or unsigned byte or word values. Some examples of the SUB instruc
tion are as follows:

SUB PL,30H

SUB BX,CX

SUB PX,WORD_VPL

SUB BYTE_VPL, PL

;Subtract 30H from PL.

5Subtract the contents of CX from the

;contents of BX.

;Subtract the contents of the memory

; 1 ocat i on U>ORD_VPL

from PX.

;Subtract the contents of PL from the

;memory location BYTE_VPL.

92 8088!IBM PC Assembly Language Programming

SBB

Format: SBB destination, source

Subtract with borrow (SBB) subtracts the source operand from the destination
operand and then subtracts 1 from the result if the carry flag is set. Just as the ADC
instruction can be used to perform multiple precision addition, SBB performs
multiple precision subtraction. An example of using SBB to perform multiple
precision subtraction is:

SUB jFirst subtract the low order 16 bits

SBB DX,CX ;then subtract the high order 16 bits

5and the carry bit.

When would the carry be set from a SUB operation? Anytime the source operand is
larger than the destination. In the example above, the carry flag is set if AX is less
than the contents of BX. The source and destination operands can be either signed
or unsigned byte or word values.

AAS

Format: AAS

The ASCII Adjust for Subtraction (AAS) instruction corrects the result produced by
the subtraction of two unpacked BCD numbers. AAS sets the high order nibble of
AL to zero and subtracts 6 from AL and 1 from AH if the value in AL is greater than 9
or if the auxiliary flag is set. AF and CP are then set, and the high order nibble of AL
is cleared. If the result in AL is 9 or less, AAS clears the high order nibble of AF and
updates the flags only:

WOV nL,06H ;Use 0000 1000

SUB AL,09H ;subtract 9 from 8 (should yield a -1)

AAS ;Adjust for BCD.*

What has occurred at the bit level is:

SUB AL,09H

0000 1000 <6 = Al>

- 0000 1001 <9>

1111 1111 -1

8088 Instruction Set 93

Don't forget how subtraction is carried out. The two's complement is performed
first on the subtrahend, and then the two's complement of the subtrahend is added
to the minuend:

0000 1000 <6>

+ 1111 0111 <;£'B complement of 9>

1111 nil -1

AAS sets the high order nibble to zero and subtracts 6 from the result, since the
value contained in the low order nibble of AL is greater than 9-

AAS

0000 1111 0FH

+ nil 1010 -6

1111 1001 Cten's complement of -"1>

Setting the high order nibble to zero yields:

0000 1001 in AL,

AF and CF are set indicating that the value contained in AL is the ten's complement
of the correct answer, -1. Your program has to account for the possibility of a
BCD digit appearing in ten's complement form after adjustment. Adjustments are
carried out on BCD digits without regard to sign. In other words, by testing CF and
AF, you can determine whether the number in AL is true BCD or a ten's comple
ment BCD value.

DAS

Format: DAS

Decimal Adjust for Subtraction corrects the accumulator (AL) after subtracting two
packed BCD digits. DAS checks the lower nibble of AL for a value which exceeds 9.
If AL is greater than 9 or if the previous subtraction set the auxiliary carry flag (AF),
6 is subtracted from AL and AF is set. Next, the high order nibble of AL is checked
for a value greater than 9. If the most significant 4 bits of AL are found to contain a
value greater than 9 or CF is set, 60H is subtracted from AL and CF is set.

94 80881IBM PC Assembly Language Programming

Just as DAA adjusts AL after the addition of two packed BCD digits, DAS corrects AL
to produce a pair of valid packed BCD digits.

DEC

Format: DEC destination

The decrement instruction subtracts 1 from the destination operand. The operand
may be a byte or word, or register or memory operand. DEC updates AF, OF, PF,
SF, and ZF. It does not affect CF. If you need to detect a carry condition due to the
subtraction, use the SUB instruction to update the carry after execution.

Examples of DEC:

DEC BX

DEC AL

DEC W0RD_VALCSI3

DEC BYTE VALCSI3

;Decrement word in register BX

;Decrement byte in register ftL.

5Decrement word in memory

;Decrement byte in memory

NEG

Format: NEG destination

The negate instruction forms the two's complement of the destination operand by
subtracting it from zero. If the destination operand is a byte equal to -128 (BOH) or
a word equal to - 32,768 (8000H), NEG sets OF without altering the operand. If
the operand is zero, the sign of the operand is not changed and the zero flag (ZF) is
set. The other flags affected are CF and SF.

Examples of NEG:

NEG AL

NEG AX

NEG WORD_VAL

NEG BYTE VAL

;perform 2's complement on the contents of AL

5 perform 2's complement on the contents of AX

;Perform 2's complement on word in memory

jPerform 2's complement on the byte in memory

CMP

Format: CMP destination, source

The CoMPare instruction subtracts the source from the destination. Unlike the SUB
instruction, which places the result in the destination operand, CMP returns no
result. You might wonder about the value of an instruction that performs an

8088 Instruction Set 95

arithmetic operation, yet does not return a result. Casual observation may lead you
to believe the instruction is of little value. However, the status flags are updated
just as if a SUB instruction were executed. This allows the testing of an operand for
a given value without altering the operand.

The CMP instruction is followed by a conditional jump instruction to pass control
to another part of the program, based on the results obtained from the comparison.
In a moment I'll discuss the conditional jump instructions, which are used in a
program to make decisions of this type.

Examples of CMP:

MOV RL,aeH

CMP RL,DL

JC THERE_PROS

JZ HERE_PROB

More examples of CMP:

Move 1£8 into RL

Compare ftL. to Dl.

If RL <DL> Jump to the portion

of the program labeled TH£R£_PROG

If RL = DL then jump to H£R£_PROG

Otherwise RL is greater than Dl.

CMP BL,0£H 5Compare BL to £ and set flags

CMP DX,WORD_VRL ;Compare register to memory

CMP BYTE_VRL,0FH ;Compare memory to 15

Multiplication
Instructions

There are three instructions designed to carry out multiplication on the 8088. Two
of these instructions accommodate either signed or unsigned multiplication; IMUL
is used when signed multiplication of two operands is to take place, and MUL is
used to multiply two unsigned operands. In either case, the multiplicand must be in
the accumulator (AL for byte x byte multiplication, and AX for word x word
multiplication).

The source operand can he either a byte or a word. If the operand is a byte operand,
it is multiplied by register AL. Since byte multiplication can result in word length
results, the result is placed in the AX register. AH will contain the high order byte of
the result, and AL will contain the low order byte of the result.

Similarly, a word multiplication can result in a 32-bit (double word) result. In this

96 80881IBM PC Assembly Language Programming

instance, the high order word of the result is placed in DX, and the resultant low
order word is placed in AX. Figure 4-3 illustrates register usage for the multiplica
tion instructions.

Format: MUL source-operand
IMUL source-operand

8 Bit Multipjies: AL = Multiplicand
Source Operand = Multiplier
Product Returned to AX

AL = Low Order 8 bits and AH = High Order 8 bits.

For the MUL instruction, if OF and OF are set, then AH contains a
non-zero result.

For the IMUL instruction, if OF and OF are set then AH is NOT the
sign extension of the low order half of the result.

16 Bit Multiplies: AX = 16 bit Multiplicand
Source Operand = 16 bit Multiplier
Product Returned to DX:AX

AX = Low Order 16 bits and DX = High Order 16 bits.

For the MUL instruction, if OF and OF are set then DX contains a

non-zero result.

For the IMUL instruction, if OF and OF are set then DX does NOT
contain a sign extension of the low order half of the result.

Figure 4-3 Register Usage for Multiply Instructions (MUL, IMUL)

MUL

Format: MUL source

MUL is used to multiply two unsigned byte or word operands. MUL sets CP and OF
when the high order half (AH for byte multiplication and DX for word multiplica
tion) of the result is nonzero. In other words, the multiplication produced a result
larger than 8 bits. If CF and OF are cleared, the high order half of the result is zero.
You cannot use an immediate value as the source. AF, PF, SF, and ZF are undefined
following a MUL operation.

Examples of MUL:

MUL BX ;Mult iply AX by BX, result in DX:AX

MUL CL ;Mult iply AL by CL, result in AH:AL

MUL UORD..VftL ;Mult iply AX by memory word, result in DX:AX

MUL BYTE..VftL ;Mult iply AL by memory byte, result in AH:AL

8088 Instruction Set 97

IMUL

Format: IMUL source

The Integer MULtiply instruction is used to multiply two signed byte or word
operands. The destination operand is the accumulator, AL or AX. Like the MUL
instruction, the result is returned to either AH and AL for byte multiplication or DX
and AX if the operands are word values.

CF and OF are set following the IMUL instruction if the most significant half of the
result is not a sign extension of the lower half of the result. This indicates that the
multiplication produced a result in excess of 8 bits for byte-wide multiplication or
in excess of 16 bits for word-wide multiplication, and that AX or DX contain the
high order half of the result.

What Are Sign Extensions? ■
When multiplication is carried out, byte-wide multiplications can produce a signed
l6-bit (word) result. Similarly, a word-wide multiplication can produce a signed
32-bit, or double word, result. The sign of the result is extended to the high order
half of the result (AH Or DX) when the product can be contained within the low
order half of the result register(s). In other words, when the multiplication pro
duces a product in the range of -128 to -I-127, or -32,768 to -I-32,767, thesignbit
is extended to the high order half of the result.

For example:

High Order Byte (HH) Low Order Byte (HL)

1111 1111 < < 1000 0000 (-1£7)

1111 1111 < < nil nil (-I)

0000 0000 < < 0000 0001 (+ 1)

0000 0000 < < 0111 nil (+128)

High Order Word (DX) Low Order Word (HX)

1111 1111 1111 nil << 1000 0000 0000 0000 (-32,768)

1111 1111 nil nil < < nil nil nil nil (-1)

0000 0000 0000 0000 < < 0000 0000 0000 0001 (+1)

0000 0000 0000 0000 < < 0111 nil nil nil (-•■32, 767)

In each instance, the sign bit of the low order half is copied into each bit of the high
order byte, thereby preserving the true value of the result.

By extending the sign of an operand, different data types may be used in signed

98 80881IBM PC Assembly Language Programming

multiplication, addition, and division operations. The 8088 instructions CBW
(convert byte to word) and CWD (convert word to double word) perform sign
extensions on the accumulator. CBW copies the sign bit (b7) of AL into each bit
position of AH. CWD copies the sign bit (bl5) of AX into each bit position of the DX
register.

I'll discuss bow the CWD is used in division in a moment, but for now consider the
following examples:

Example 1.
Add the byte value of 16H to the word value in CX:

MOV AL,IGH

CBM

ADO CX, AX

;Place the value into PL

;PL= 0001 0110 and PH = ???? ????

;PH = 0000 0000

;PL s 0001 0110

;Pdd PX to CX

Example 2.
Multiply the byte value in AL by the word stored in memory at the location
WORD VAL:

MOV AL, ai2iH

CBM

IMUL MORD VAL

;Move --l£:a into PL

;PH s 1111 1111 and PL ~ I000 0000

;Multiply by memory operand, result is

;in DX:PX

Example 3.
Subtract a word in memory from the byte value in register BL:

XCHG AL,BL

CBM

XCHG AX,BX

SUB BX,MORD_VAL

;Get value into PL in order to perform

;sign extension.

;Extend sign

;swap registers, restore Bl, and place

;extension in BH.

;P word has now been subtracted from

;what was a byte value.

8088 Instruction Set 99

AAM

Format: AAM

The instruction AAM (ASCII Adjust for Multiplication), corrects the result of a
previous multiplication of two valid unpacked BCD digits. In order for AAM to
work correctly, the high order nibbles of the operands multiplied must have been
set to zero prior to executing the multiplication instruction. AAM returns two valid
unpacked BCD digits to AH and AL.

AAM performs the correction by first dividing AL by 10. The quotient is placed in
the AH register, and the remainder is placed into the AL register. AAM affects PF,
SF, and ZF. AF, CF, and OF are undefined following the execution of the AAM
instruction.

Division

Three instructions are used for division.

DIV

Format: DIV source

The DIV instruction is used when performing an unsigned division of the
accumulator by the source operand. If the source operand is a byte value, it is
divided into the l6-bit value (word) contained in AH and AL. The quotient is
returned to AL, and the remainder is placed in AH.

Similarly, if the source operand is a word value, it is divided into the 3 2-bit (double
word) value contained in DX and AX. The quotient is placed in AX, and the
remainder is returned to DX. The source operand cannot be an immediate value
(constant).

Division by Zero ———————
As 1 discussed previously one of the interrupt vectors (type zero) is used for an error
condition, division by zero. Since division by zero is undefined, the 8088 generates
a type zero interrupt. To avoid this condition, you should test the source operand
prior to executing the DIV or IDIV instructions. You could also replace the vector
used for the type 0 interrupt with one containing the address of your own error
routine.

The type zero interrupt is executed anytime the capacity of the destination register
is exceeded by the quotient. For unsigned divisions using the DIV instruction, this

100 80881IBM PC Assembly Language Programming

condition exists when the quotient exceeds OFFH (256) for byte source operands
and OFFFFH (65,535) for word operands.

When these values are applied to signed operands using the IDIV instruction, they
become quotients where maximum and minimum values are exceeded. A type zero
interrupt is executed when byte operands exceed 7FH (+127) and 80H (-128). A
type zero interrupt is also executed when word size source operands exceed
7FFFH (+ 32,767) and 8000H (- 32,768).

When the type zero interrupt occurs, the quotient and remainder are left in an
undefined state. The DIV instruction leaves AF, CF, OF, PF, SF, and ZF in an
undefined state after execution.

Some examples of DIV are:

DIV BL ;Divide ftX by BL, quotient to ftL, remainder to AH

DIV CX {Divide DXtAX by CX, quotient to ftX, remainder to

;Dx

DIV BYTE_VftL {Divide by byte wide memory operand.

DIV WORD_VAL ;Divide DX:AX by the contents of the word wide

;memory operand WORD_VftL.

MOV CL, 10H ;Divide by a constant (16 decimal).

DIV CL ;Divide AH:AL by the contents of CL (=16)

IDIV

Format: IDIV source

The Integer Divide instruction performs division on the signed source operand
and a signed value in either AH and AL (source = byte) or DX and AX when the
source operand is a byte value.

As in the DIV instruction, a type zero interrupt is executed anytime the maximum
or minimum capacity of the destination operand is exceeded by the quotient (see
the above discussion of division by zero). This can occur when the source operand
is zero.

Some examples of IDIV are:

IDIV CL {Divide AH:PL by CL. Quotient in AL and remainder

{in AH

IDIV CX {Divide DXsAX by CX. Quotient in AX and remainder

8088 Instruction Set 101

IDIV BYTE_VftLCSI3

MOV BL,10H

IDIV BL

;in DX.

;Divide AH:AL by byte value at memory

;BYTE.VftL + the offset in SI.

;divide AH:^L by 16

I mentioned that the CWD (Convert Word to Double word) instruction can be used
to sign extend (copy) a word value to a double word value. The sign bit, bit 15, of
the word in AX is sign extended into all bit positions in the DX register. By using
CWD and IDIV, you can divide two-word values.

IDIV expects to find a 32-bit dividend in DX and AX. You cannot simply move a
signed value into the AX register and then divide by some other value. DX must
contain either the high order 16 bits of the dividend or a sign extension of the l6-bit
dividend contained in AX.

Some examples of sign extension division are:

MOV nX,MORD_VnLl ;Move 16 bit value into RX

CMD ;Sign extend RX to DX

IDIV WORD_VftL£ ;Divide by the contents of memory

5 location W0RD_VftL2

MOV ttL,BYTE^VRLl jGet dividend

CBI^ ;Sign extend to AH

IDIV BYTE_VAL£ ;Divide by the contents of memory

AAD

Format: AAD

The ASCII Adjust for Division corrects the dividend in AL prior to dividing two
unpacked BCD numbers. Essentially, the instruction multiplies the AH register by
10 and adds this value to the low order register AL. In effect, the packed value is
converted to binary. AH is then zeroed:

MOV

AAD

IDIV

AX,0309

CL

;In unpacked BCD this value represents

;39 decimal.

;Value in AX is now- AH 0000 0000

; and AL = 0010 0111

;divide by the contents of CL.

102 80881IBM PC Assembly Language Programming

AAD updates PF, SF, and ZF. All other flags are undefined after executing the AAD
Instruction.

If you decided to read this chapter straight through, I suggest that you now take a
break, go get a cup of coffee (etc.), and, by the time you get back, I'll be ready to talk
about logic instructions. We have much more to discuss in this chapter, so take a
break; you deserve one.

Logic Instructions

The logic instructions apply Boolean logic to each bit position of the source
operand and to the corresponding bit positions of the destination operand.
Whether you know it or not, the rules of logic abound in everyday life. Let's take a
look at some everyday events and relate this logic to the logical instructions AND,
OR, XOR, TEST, and NOT.

AND

Format: AND destination, source

A logical AND function is one which states that two events must be true in order for
the result of the operation to be true. Table 4-2 contains the truth table for the AND
function.

If I want to turn my IBM PC on, I must have the power cord plugged into an active
AC outlet AND I must turn the power switch on. If either of the input conditions is
not satisfied, power is not delivered to the internal power supply of the IBM PC. An

8088 Instruction Set 103

Table 4-2

Truth Table For Logic Operations

AND & TEST

Operands Result Example: AND AL, BL ;AL = 07EH

A B 0 ;BL = 023H

AL = 0111 1110

0 0 0 BL = 00100011

0 1 0

1 0 0 Result in AL = 0010 0010 (After AND only)

1 1 1 *TEST does not return the result to the

^destination operand.

OR

Operands Result Example: OR BL, CL ;BL=34H

A B C ;CL = E7H

0 0 0 CL = 11100111

0 1 1 BL = 0011 0100

1 0 1

1 1 1 Result in BL = 1111 0111 = 0F7H

XOR

Operands Result Examples: XOR AH,34H ;Find bits different
A B C

AH = 1101 0011

0 0 0 00110100

0 1 1

1 0 1 Result in AH = 11100111 = E7H = AH

0 0 0

Clear AX: XOR AX, AX

AX = 1010 001111110101

1010 001111110101

Result in AX - > 0000 0000 0000 0000

NOT

Operand Result Example: NOT AX
A B AX = 1101 0011 1101 0111

1 0 NOT-> 00101100 00101000

0 1 (Result in AX)

equation of this function can be written as:

(Active AC power outlet) AND (Power switch in the ON position) = IBM PC in the
ON condition.

When using the AND instruction in a source program, you are performing a logical
AND of either a byte of word source operand with that of the destination. Each bit
in the source is ANDed with the corresponding bit of the destination. Bit 1 is ANDed

104 80881IBM PC Assembly Language Programming

with Bit 1, b2 with b2, etc. The result of the operation is placed in the destination
operand.

For example, AND AL,72H functions in the following manner:

07 06 OS 04 03 OS 01 00

ftLs= 0F0H PND 7elH =1 1 1 1 0 0 0 0 (Binary)

AND 0 1 1 1 0 0 1 0 (Binary)

Result isinAL=0 1 1 1 0 0 0 0 (Binary) = 70H

Notice that bit? is reset in the result. When b? of the destination (AL), which
contains a 1, is ANDed with the zero contained in b? of the source, b? of the result is
zero due to the rules of logic illustrated in Table 4-2. Similarly, bl is also reset in the
result.

Some examples of the AND instruction are:

AND AL,BL ;AND the contents of AL with BL and

;place the result in Al.

AND BX,pX ;AND two 16 bit registers.

AND NORD_VAl,AX ;AND a register and memory, place result

;in memory.

AND Al,BYTE_VAL ;AND the contents of memory with Al and

;place the result in AL.

AND AL,11111000B ;AND AL with a constant

AND updates CF, OF, PF, SF, and ZF. AF is undefined following the AND instruc
tion.

You can use the AND instruction to mask bit position. A mask is a predefined bit
pattern used to set or reset certain bit positions. In the example above, AL was
ANDed with the binary pattern 11111000. This has the effect of clearing bits 0-2 in
the destination operand (AL), while leaving the other bit positions in whatever
state they were in prior to the execution of the AND instruction.

8088 Instruction Set 105

OR

Format: OR destination,source

The OR instruction sets a bit in the result, provided that the corresponding bit in
either the destination OR the source operand is set to a binary 1. It is a little like
saying I'll wake up in the morning if my alarm clock goes off OR if someone wakes
me; otherwise, I'll sleep until noon. If either situation is satisfied, independently or
simultaneously, I will awaken. Table 4-2 contains the truth table for a two-input
OR function.

Some examples of the OR function are:

OR AL,11110000B ;0R PL with a constant* This technique

;can be used to set specific bits in the

;destination operand while leaving all

;others in their previous state. Here

;bits 4-7 are set to a '1'

OR BYTE_VftL,PL 5OR memory with contents of PL

OR PX,BX ;0R PX with the contents of BX.

OR BX,WORD_VPL 5OR BX with word in memory.

The OR instruction updates CF, OF, PF, SF, and ZF. AF is undefined after execution
of the OR instruction.

The primary use of the OR instruction is to set specified bits in the destination
operand. However, the OR instruction can be used to determine if a register
contains zero. For example, OR AX,AX sets the status flags but does not alter any
bits of the AX register, since a bit ORed with itself remains unchanged (A OR A =
A). If AX is zero, the 2 flag is set after the instruction OR AX,AX. You can use this
information to effect a conditional jump (JZ, jump on zero) to another part of the
program.

XOR

Format: XOR destination, source

The exclusive OR instruction sets a bit in the result if the corresponding bit in the
source and destination operands are of opposite values (one set to 1, and one reset
to 0). In other words, if one and only one bit for a given bit position in either the
source or destination operand is true (1), then the corresponding bit position of the
result will also be true. This is known as mutual exclusion. The truth table for the

XOR function is given in Table 4-2.

106 80881IBM PC Assembly Language Programm ing

The XOR instruction can be used to determine which bits are not the same in a

source and destination operand. Bits that differ between the source and destina
tion operand are set in the result following the XOR. The XOR instruction can also
be used to clear a register to zero.

For example, XOR AX,AX zeros the AX register. Since the bits in both the destina
tion and the source are the same (it's the same register), the resultant bits are all
zero. XOR updates CP, OF, PF, SF, and ZF. AF is undefined after the execution of
the XOR instruction.

Some examples of the XOR instruction are:

XOR ni.,nL ;Set AL to zero

XOR AL, 1100O0O0B ;If bits 7 or 6 are set in Al., flip them to

;zero.

XOR BX,AX ;Set the bits which are different in original
;operands.

TEST

Format: TEST destination, source

The TpST instruction performs a logical AND on the destination and source
operands. Unlike the AND instruction, which returns the result of the operation to
the destination operand, the TEST instruction does not return a result. It does,
however, update CF, OF, PF, SF, and ZF. AF is undefined after the TEST instruction
has been executed.

Sotne examples of the TEST instruction are:

TEST AL, 0000111 IB |T«st th* Al_ register, bits 0-3 for

;a logical 1.

JNZ THERE ;If any bits are set jump to

;another part of the program.

TEST DX,BX iPNO the contents of the word wide

{registers DX and BX and set flags.

TEST PORT^DATft,ftX {HND memory and ftX, and set flags

8088 Instruction Set 107

NOT

Format: NOT destination

The NOT instruction performs the one's complement on the destination operand.
Each bit in the destination operand is reversed. No flags are affected by the NOT
instruction.

Some examples of the NOT instruction are:

NOT bits in

NOT WOF<D_V#^L ;Perform I's complement on the word stored in

5memory.

NOT BYTE_VAL ;Perform I's complement on memory operand.

NOT DX ;Invert the bits in DX.

NOT ME ;Complement memory. <I couldn't resit this

;one!).

Shift Instnictions

The shift and rotate instructions are used to isolate individual bits within a byte or a
word. Each affects the carry flag as shown in Figure 4-4. These instructions can also
be used to multiply or divide an operand by a power of two. For example, if the
value contained in AL is 8, shifting AL left one bit position has the effect of
multiplying AL by 2. This can be illustrated as:

PL~6 decimal = 0000 1000

Multiply by E: SPL PL,1 then PL = 0001 0000 = 16 decimal.

Divide by E : SPR PL,1 then PL = 0000 1000 - 6 decimal.

Shift instructions shift a bit out of the destination operand and into the carry.
Unlike the shift instructions where the MSB or LSB is shifted into the carry, the
rotate instructions recirculate the bit back into the destination operand. In this
manner, the bit is preserved.

SAR

Format: SAR destination, count

As shown in Figure 4-4, Shift Arithmetic Right (SAR) and Shift Arithmetic Left (SAL)

108 8088!IBM PC Assembly Language Programming

1)

2)

3)

4)

5)

6)

SHL and SAL

Shift Logical Left, Shift Arithmetic Left
CF Bx BO

SAR

Shift Arithmetic Right

Bx BO CF

i!_r

SHR

Shift Logical Right
Bx BO CF

O ►

ROL
Rotate Left

CF Bx BO

Bx.

ROR
Rotate Right

.BO

t

CF

RCL

Rotate through Carry Left
CF Bx BO

RCR
Rotate through Carry Right

Bx. BO CF
^

Figure 4-4 Illustration of how each bit position is shifted, or rotated the specified number of times. In
the illustrations, Bx is the MSB of the operand. For byte values Bx would be B7and for word
values, Bx would be B15. Note how the carry is used in each instruction.

8088 Instruction Set 109

are used to shift the contents of an operand right or left 1 or more bit positions. The
arithmetic shifts move the operand by a specified number of hit positions. If you
want to shift only one hit position to the right, the count can he specified by SAR
AL,1. However if the count is greater than one, register CL must be used to specify
the total number of bits to be shifted as in:

MOV CL,3 ;Shift 3 bits

SftR BL,CL 5Shi ft BL three times

SAR shifts the low order hit into the carry, and the high order sign bit remains
unchanged (h7 for byte operands and hl5 for word operands). The original sign bit
is shifted in from the left, which causes the sign bit to remain unchanged.

Be careful when you use the SAR instruction to divide a negative number by a
power of two. SAR may not produce the anticipated result. See Appendix B and the
SAR description to find out why.

SAL and SHL

Format: SAL destination, count
SHL destination,count

Shift Arithmetic Left (SAL) and Shift Logical Left (SHL) shift the destination operand
left by a specified number of bits, as shown in Figure 4-4. These instructions are
identical in operation. Both shift zero bits into the destination operand from the
right, and the bit shifted out of the MSB of the operand is transferred to the carry.
The overflow flag is set if a hit shift count of one produces a result whose sign
differs from the original operand.

For example, if AL contains 1000 OOOIB, then:

SHL HL, 1

produces 0000 OOlOB in AL. The binary 1 shifted out of the operand (h7) is
contained in the carry. Since b7, the sign bit, did not retain its original value, OF is
set. The overflow flag is not defined for bit shifts of a count other than 1. PF, SF, and
ZF are also affected by SHL and SAL, while AF is undefined.

SHR

Format: SHR destination,count

The Logical Shift Right instruction (see Figure 4-4) is used to shift the hits in the
destination operand right a specified number of bit positions. As in the case of the
other shift instructions, a count of 1 can he coded directly into the instruction. For

110 80881IBM PC Assembly Language Programming

variable shift counts, the contents of the CL register define the shift count. Zeros
are shifted into the MSB of the destination operand, while the LSB (bO) is shifted
into the carry flag.

Some examples of the SHR instruction are:

SHR ftL, 1

SHR BX,CL

SHR W0RD_VftLCSI3 CBX]I, CL

;Shift PL right X bit.

;Shift BX right by the number of bits

;specified in CL.

;Shift the contents of the memory

;located at UORD_VPL plus the

;offset of SI and BX, right by the

;number of bits specified by CL-

Rotate Instructions

The rotate instructions ROL, ROR, RCL, and RCR are used to rotate hits in a circular
fashion from left to right or right to left. Figure 4-4 illustrates the manner in which
the bits in an operand are rotated for each instruction.

Unlike the shift instructions, which shift bits into and out of the operand, rotate
instructions actually circulate a bit from one side of the operand to the other. RCL
and RCR involve the carry in the rotation of bits, whereas ROR and ROL copy the
MSB or LSB into the carry. Assume that BL contains 0001 OOllB and the carry bit is
set. After executing the instruction:

RCL BL,1

BL contains 0010 OlllB, and the carry flag contains zero, the value shifted out of b7
from the operand.

ROR, ROL

Format: ROR destination, count
ROL destination,count

Rotate Right (ROR) is used to shift the destination operand a specified number of
bit positions to the right. ROL is used to shift the contents of the operand to the left
by a specified number of bit positions. ROR shifts the LSB (bO) of the operand into

8088 Instruction Set 111

the MSB (57 for byte operands and 515 for word operands). The LSB is also copied
into the carry flag.

Similarly, ROL shifts the MSB of the operand into the LSB of the operand, while
placing a copy of the MSB in the carry flag. OF is set if the count specified is equal to
1 and the sign hit (MSB) of the operand changes value.

RCli and RCR

Format: RCL destination,count
RCR destination,count

Rotate through Carry Right (RCR) rotates the destination operand right a specified
number of bit positions. (See Figure 4-4.) CF is rotated into the MSB of the operand,
while the LSB becomes the new value of the carry flag.

Rotate through Carry Left (RCL) rotates the destination operand to the left a
specified number of bit positions. The carry flag is rotated into the LSB, while the
previous contents of the carry are rotated into the MSB of the operand.

Assume AL contains 0111 lOlOB = 7AH, the carry flag is initially reset, and CL
contains 3. The following illustrates the RCR instruction:

C b7 b6 bS b4 b3 b£ bl bO

□riginat Value inAL 0 (9 1 1 1 1 13 1 9

RCR AL,CL 1 0 9 9 1 1 1 1 0 1 (1st rotate)

{ 1 9 9 9 1 1 1 1 9 (Snd rotate)

{ 9 1 9 9 9 1 1 1 1 (3rd rotate)

The instruction rotates the AL register to the right 3 bit positions. The final value in
AL is 8FH and the carry flag is reset.

Other examples of the rotate instructions are:

ROR BX,CL {Rotate BX the number times specified in CL

RCL AL,1 {Rotate AL left one time. Include the carry {bit.

ROL WORD.VALtSIl,CL {Rotate the contents of memory, CL number of times.

112 80881IBM PC Assembly Language Programming

Control and transfer instructions allow branching to another part of the program;
program execution control is transferred to a new portion of memory. Intel
divides the control transfer group into four distinct categories:

1. Unconditional transfers;

2. Conditional transfers;

3. Iteration control; and

4. Interrupts.

Control may be passed to a portion of memory in the current segment, or control
may be passed to a new code segment.

Unconditional Transfers

Unconditional transfers do not require a condition to meet prior to transferring
control to another portion of the program. It's a little like the drill sergeant in the
army who screams "JUMP!" and you ask "How high?" The only difference is that
the 8088 needs to know "How Far?"

CALL and RET

Format: CALL procedure
RET optional POP value

The CALL instruction enables a program to invoke a procedure (also known as a
subroutine). A procedure is a frequently used portion of code. When the instruc
tions required to execute a certain function are incorporated into a procedure and
not placed into the main program every time the procedure is needed, there is an
overall reduction in the amount of code generated.

The procedure is called as required. Calls can be made to procedures within the
same code segment (intrasegment) or to procedures in a different code segment
(intersegment). When the 8088 encounters an intrasegment CALL instruction, the
contents of the instruction pointer are pushed onto the stack, and the instruction
pointer is loaded with the offset address of the procedure. Program execution then
continues with the first instruction contained in the procedure.

8088 Instruction Set 113

The RET (RETurn) instruction is used to exit the procedure and return to the calling
program at the instruction immediately following the CALL instruction. When the
8088 encounters the intrasegment RET instruction, the l6-bit offset which was
saved on the stack is popped into the instruction pointer. This causes program
execution to resume at the instruction following the original CALL instruction.

An intersegment CALL invokes a procedure contained in a code segment other than
the one currently in use. An intersegment CALL first pushes the current contents of
the code segment register onto the stack, followed hy the contents of the instruc
tion pointer. The segment address of the procedure is then placed into the CS
register, and the procedure's offset within the segment is placed into the IP
register.

When an intersegment RET is encountered within the procedure, the offset value
previously pushed onto the stack is placed in the instruction pointer, and the CS
register is restored with its previous value, which was also saved on the stack.
Program execution resumes with the instruction following the original CALL
instruction.

Figure 4-5 illustrates how an intrasegment procedure is written and how the
procedure is called from another portion of the program. Notice that the pro
cedure is defined as NEAR. This assembler pseudo-op instructs the assembler to
generate intrasegment CALL and RET instructions. If the procedure had been
defined as FAR, intersegment CALLs and RETs would have been generated. When
an intrasegment CALL is executed, only the instruction pointer is saved on the
stack. When an intrasegment RET is executed, the IP register is restored, and
program execution resumes with the instniction following the CALL to the pro
cedure.

MAIN_PROC PROC FAR
; Main program code

CALLWHATS_MY_LINE ; Call the procedure: Defined in
; this segment. Only IP is saved!

MAIN_PROC ENDP

WHATS_MY_LINE PROC NEAR
; Procedure Code

RET

WHATS_MY_LINE ENDP
; IP is restored by this instruction.

Figure 4-5 Intrasegment Procedure Example

114 80881IBM PC Assembly Language Programming

Remember the difference: Intrasegment CALLs and RETs save and restore only the
offset IP, while intersegment CALLs and RETs save and restore both the CS register
and the IP register. You can directly specify the procedure's address within the
instruction as in CALL THAT_PROCEDURE. THAT_PROCEDURE may be of either
a NEAR or FAR type.

Additionally, you may want to place a procedure's address in memory and indi
rectly call the procedure by using one of the general purpose registers. To do this,
the register is loaded with the address of the memory location containing the
address of the procedure to be called.

For example, assume the memory location KEY_BRD holds the address for a
keyboard scan routine. The routine scans the keyboard and determines if there is a
key closure. The following instructions can be used to indirectly call the procedure
through the BX register:

LEft BX,KEY_BRD ;Pddress of KEY#BRD memory location.

CALL BX ;Use the address stored at KEY_BRD as
;the procedure's start address.

It is often necessary to pass a value (or two, or more) to a procedure. The
parameters may be required to perform some type of calculation or to access data
(i.e., they may be an address parameter). In either case, the parameters can be
pushed onto the stack prior to calling the procedure. Once in the procedure, the BP
register is used with the stack pointer (SP) to address the variables.

When the procedure is finished, an optional constant can be specified in the RET
instruction. The constant is added to stack pointer. Remember our rule about
dealing with the stack: For every PUSH there is a POP, and for every POP there
must be a PUSH. The parameters that were passed to the subroutine must be
discarded. The optional constant operand effectively pops the parameters from
the stack, thereby restoring the stack pointer.

JMP

Format: JMP target

The JuMP instruction transfers control to another portion of code. The transfer
location may be in the same segment (intrasegment) or in another segment (inter
segment). JMP does not save information on the stack, as the CALL instruction
does. Like the CALL instruction, the JMP instruction can be either a JMP direct or a
JMP indirect. You can also use the assembler pseudo-op SHORT to specify that the
target operand is within -1-127 to -128 bytes of the JMP instruction. The assembler
automatically generates a 2-byte SHORT JMP if the target is within the allowable
range. If the assembler cannot make this determination or if you do not explicitly

8088 Instruction Set 115

use the SHORT operator, the assembler generates a 3-byte NEAR JMP instruction.
NEAR JMPs allow the target to be within + 32,767 to - 32,768 bytes from the JMP
instruction.

Some examples of the JMP instruction are;

JMP CX ;Jump indiract using CX

JMP THIS.SESMENT 5Jump NEOR

JMP SHORT THIS.SEQMENT jTHIS_SEBMENT is within +127 or -128
~ (bytss of this instruction.

JMP FOR PTR THftT.SESMENT jJurap to another segment.

Intersegment jumps produce five bytes of code. One byte signifies that the JMP is an
intersegment JMP, two bytes specify the code segment, and two bytes specify the
segment offset of the target operand. JMP does not affect the flags.

Conditional Transfer
Instructions

Certain instructions set or clear the status register's flag bits. Conditional transfer
instructions transfer control to another part of the program if the specified condi
tion is met. It's a little like saying 1 will meet you for lunch IF you are free today at
noon AND you are buying. If the conditions are met, I will be somewhere I would
not otherwise be—having lunch with you.

Conditional transfer instructions behave in a similar manner. If a condition is met,
the 8088 begins execution at a new address. If the condition is not met, the 8088
executes the next instruction, the one following the conditional jump instruction.
This decision-making capability is why the microprocessor is so important in real
time applications. Since the microprocessor is capable of executing hundreds of
thousands of instructions per second, decisions are made in microseconds.

The 8088 allows many different types of conditional transfer instructions (see
Table 4-3). Included in this instruction group are instructions which will jump to
another part of program memory if CF, ZF, SF, OF, or PF is set. JZ target transfers
control to another part of the program (specified by the operand target), if the zero
flag is set, while JC target transfers control to another part of the program if the
carry flag is set.

Also included in the conditional jump instruction set are instructions which trans
fer control to another part of memory when the status flags are reset. JNC target
causes program execution to begin at the specified portion of memory if the carry
flag is clear (CF = 0). JNZ target transfers control to the target operand if ZF = 0.

116 80881IBM PC Assembly Language Programming

Table 4-3

Conditional Transfer Instructions

Jump If Flag Condition

JA/JNBE Jump if above/not below (CSorZF)=0
JAE/JNB Jump if above or equal/not below CF=0
JB/JNAE Jump if beiow/not above or equal CF=1

JBE/JNA Jump if below or equal/not above (CForZF) = 1
JC Jump if carry CF=1

JE/JZ Jump if equal/zero ZF=1

JG/JNLE Jump if (< > / not > nor = ((SFxorOF)orZF)=0
JGE/JNL Jump if greater or = /not < (SFxorOF)=0
JL/JNGE Jump if less/not greater nor equal (SFxorOF) = 1
JLE/JNG Jump if < or = / not > ((SFxorOF)orZF) = 1
JNC Jump if not carry CF=0
JNE/JNZ Jump if not equal/not zero ZF=0

JNO Jump if not overflow OF=0

JNP/JPO Jump if not parity/parity odd PF=0

JNS Jump if not sign SF = 0
JO Jump if overflow 0F = 1

JP/JPE Jump if parity/parity even PF=1

JS Jump if sign SF = 1

I mentioned in a previous example that the carry flag is set when a CMP instruction
is used and the destination operand contains a value less than the source operand.
We can state this condition in several ways. We can jump if the carry flag is set 0C),
if the destination is less than the source (JB), or if the destination is not above
(greater than) or equal to the source operand (JNAE). All three instructions accom
plish the same function: jump to another portion of code if the carry flag is set.
Similarly, the instructions JNC (Jump on No Carry), JNB 0ump on Not Below) and
JAE (Jump on not below) all transfer control to another portion of the program if CP
= 0.

The status flags are set or reset as a result of a previous instruction. Some of the
8088 instructions alter the flags, while others do not. The MOV instruction does
not affect any of the flags; it simply moves data from one place to another within
the system. CMP, SUB, ADD, SBB, ADC, and the logical, shift, and rotate instruc
tions are among those which do alter the flags.

A Programming Example

Assume for a moment that you want to go to the part of the program which turns
your coffee warmer off once the coffee has reached a preset temperature. The
program flow chart might look something like that of Figure 4-6. In Chapter 2 in
Figure 2- 5, the diamond-shaped symbol designates a portion of the program where

8088 Instruction Set 117

(START)

\ \

Yes

Turn warmer on

Get temperature

Is temp » Hot?

Turn off warmer

(END)

Figure 4-6

a decision must be made. This is where you would insert one or more of the
conditional jump instructions from Table 4-3.

In our coffee warmer program, we'll make some assumptions about the hardware.
An analog-to-digital converter (ADC) is attached to the computer at some port
labeled TEMP_PORT. Another port, CONTROL_PORT, is used to turn the warmer
on and off. The exact port numbers are not important in our example.

The ADC is used to convert an analog voltage to a digital byte or word that the
microprocessor understands. The voltage fed to the ADC is a proportional repre
sentation of the coffee's temperature. The binary representation obtained by the
ADC tracks the voltage and, therefore, the temperature.

Now all you have to do is to choose the appropriate instructions to turn the warmer
on, check the temperature, and turn the coffee warmer off if the desired tem
perature has been reached. Assume that the binary value 0000 llllB is used to turn
the warmer on and 1111OOOOB turns the warmer off, and that the label HOT defines

118 8088/IBM PC Assembly Language Programming

the binary representation of the temperature the coffee must be at when the
warmer is turned off.

TEMPERATURE PROCEDURE NEAR

OUT CONTROL_PORT,eeeeilllB ;Turn warmer on.

QET^TEMPj in flL,TEMP^PORT ;Get the current temperature

CMP PL,HOT ;Is the value HOT?

JPE TURN-OFF ;Jump if the temperature is
Iabove or equal to the value
5of HOT.

JMP GET_TEMP 5 If it is not HOT, then test again.

TURN.OFFs OUT CONTROL^PORT,11110000B ;Turn the warmer off.

RET ;Return to the main program

TEMPERATURE ENDP

This example is typical of how decision-making instructions are used within a
program. Actually, the procedure above is not a very good program, because there
is no provision for what to do if the desired temperature is never reached. In other
words, my program is only looking for the temperature to reach a predetermined
level; it does not care how long it takes.

A better approach would be to check a timer and count the elapsed time that the
warmer has been on. If the temperature is not reached in a specified amount of
time, the program should terminate and shut off the timer.

Using RAM for
Communications

Another often used technique is to define each bit position in a byte or a word of
memory, giving each a special meaning. The significance of each bit position is
used to convey information to another part of the program. RAM locations are
often used for such purposes and are commonly referred to as semaphores.

If the bit is set, it means one thing; if the bit is reset, is means another. The sample
program at the end of Chapter 2 fetched a word from memory that contained the
system configuration for your computer. Each bit in the word specifies whether a
resource (such as an RS-232 card or the game port adapter) is in the system.

By rotating a bit into the carry, a decision can be made as to whether or not the
resource is available. If the bit is set, the resource is available. If the bit is reset, the
resource is not in the system.

8088 Instruction Set 119

For example, find the label DC2 in Listing 2-1. The status word is moved into the AX
register, and bO is rotated into the carry. If this bit is reset, there are no disk drives
in the system. If the bit is set, the program determines the number of available disk
drives and displays the number on the screen. 1 used the JNC 0ump on No Carry)
instruction to skip the portion of code to display the number of disk drives in the
system. The carry is cleared (no carry) if bO in the status word is clear.

Conditional transfer instructions are very powerful programming tools. Without
them, the microprocessor would be of little value.

Iteration Control Instructions

LOOP, LOOPZ, LOOPNZ
At the beginning of this chapter, 1 made the statement that the 8088 contains
instructions that allow you to perform a function similar to that of BASIC'S FOR
and NEXT program statements. FOR and NEXT are used in BASIC to repeatedly
execute the program statements that appear between the two statements, or within
the iterative loop they form. The general form of the FOR and NEXT loop is:

10 FOR I ■ 10 TO 1 STEP -1

20 PRINT "MY NOME IS QARY"

30 NEXT I

In the programming example above, line 20 will be executed ten times. That is, MY
NAME IS GARY will be printed on the video display ten times. The iteration count
is assigned to the variable 1 and is decremented by 1 each time the NEXT instruction
is executed.

In a similar manner, a source program for the 8088 can be created that allows a
series of instructions to be repeated a specified number of times. The LOOP
instruction is used for this purpose. For example:

LEA BX, SOME_PART_OF_MEMORY jPut address-into BX.

MOV CX,10 ;Set loop counter to 10.

HERE IS MOV BX,0 iStore zero at word addressed
5 by BX.

INC BX 5Point to next word.

INC BX ;INC twice for words.

LOOP HERE^IS 5Loop until. CX « zero.

120 80881IBM PC Assembly Language Programming

In the programming example above, CX specifies the number of times the loop is to
be executed. BX points to the start of a portion of memory we wish to clear. The
program clears a word of memory ten times (20 bytes). Each time through the loop,
zero is stored at the memory location pointed to the BX register and in the next
location (BX + 1). BX is incremented twice, so that it will point to the next word
location. The LOOP instruction decrements the counter, CX, by one. If CX does
not contain zero, the program loops back to the instruction at the label HERE_IS.

The LOOP instruction can only transfer control to a destination operand within
-128 to +127 bytes of the LOOP instruction.

There are three variations of the LOOP instruction:

1. LOOP, which decrements the CX register by one and transfers control to the
destination operand if CX does not equal zero,

2. LOOPZ (or LOOPE), which decrements CX by one and transfers control if
CX is not zero and the zero flag is set, and

3. LOOPNZ (or LOOPNE), which decrements CX by one and transfers control if
CX is not zero and ZF is not set (cleared).

Another example of the LOOP instruction is:

MOV CX,0FFFFH 5Set up iteration counter.

HEREI IN ftL, TEMP_PORT {Input from a port.

CMP PL,HOT {Is it equal to HOT?

LOOPNE HERE {If not equal and CX not equal
{to zero, keep trying.

OUT CONTROL_PORT,11110000B {Turn off warmer.

In this example, the program inputs data from the specified port (TEMP_PORT) up
to 65,536 times, as designated by the count in CX. If the value obtained from the
port is equal to the value assigned to the label HOT or if the CX register is zero, the
loop terminates, and the next instruction (OUT CONTROL_PORT,11110000B) is
executed.

8088 Instruction Set 121

Jump on CX
Equal to Zero

JCXZ

Format: JCXZ target

JCXZ (Jump on CX equal to Zero) transfers program control to the target operand if
the CX register is equal to zero. For example:

MY.LOQP JCXZ OUT_OF_LOOP 5 If CX is 0, do not execute the loop.

MY^LOOPl IN PL,PTR^PQRT ^Set data from port.

OR PL,PL 5Set flags.

LGGPZ MY_LGGP1 5 If data from PTR_PGRT is zero.
5Get another byte.

OUT_GF_LGGP NIL ;Program winds up here.

If CX equals zero on entry to the routine, control is passed to the program label
OUT_OF_LOOP. The loop is not executed.

Interrupts

The three interrupt instructions are used to transfer control to another part of the
program. Interrupts can be externally generated, or they can occur via the INT or
INTO instructions under program control. When the 8088 encounters one of the
two possible software generated interrupts, the 8088 pushes the flag register onto
the stack (similar to PUSHF), clears IF and TF in the flag register, and fetches a
double word entry in an interrupt vector table stored in memory at OOOOOH to
003FFH.

There are 256 different possible interrupt types, each with its own entry in the
table. Once the 8088 has cleared IF and TF, the stack pointer is decremented by 2
and the current value of the code segment register is saved on the stack. Next, the
8088 calculates the absolute memory address of where the segment vector is
stored. The interrupt type (0-255), is multiplied by 4 and added to 2 (TYPE * 4
+ 2). This is the segment address of the interrupt service routine. The word stored
at this location is then placed into CS.

In a similar manner, the stack pointer is again decremented by two, and IP is saved
on the stack. The offset vector address is calculated by multiplying the interrupt
TYPE by four. The word stored at this location is then placed into IP and becomes

122 8088!IBM PC Assembly Language Programming

the new segment offset. The next instruction to be executed is specified by the
combination of the code segment register (CS) and the instruction pointer (IP).

INT —

Format: INT interrupt type

INT (INTerrupt) is one of the more powerful instructions the 8088 is capable of
executing. With it, you are able to invoke an interrupt service routine specified by
the type operand coded into the instruction. For example:

INT aiH jPerform a type 33 interrupt.

As you'll discover in the following chapters, this interrupt type is used by MS-DOS
to handle different system services, such as sending a character to the screen.

Now direct your attention to Table 4-4. Notice that there are five reserved and
defined interrupts listed in the table. They are:

Type 0 - Reserved for division by zero

Type I - Reserved for single stepping

Type 2 - Reserved for Non-Maskable Interrupts (NMl)

Type 3 - Reserved for 1-byte INT instruction

Type 4 - Reserved for signed overflow interrupt (INTO)

Table 4-4

Intel 8088 Interrupt Vectors

Interrupt Type Memory Location (Absolute) Definition

0 0000 (IP) Divide Error

0002 (CS)
1 0004 (IP) Single Step (TF)

0006 (CS)
2 0008 (IP) Non-Maskable Interrupt

OOOA (CS)
3 0000 (IP) Breakpoint Trap

OOOE (CS)
4 0010 (IP) Overflow Trap

0012 (CS)

5

6

7

NOTE! (Types 5 -31 reserved by Intel)

0014 Screen Print

0018

001C

NOTE! Types 08H through OFH are generated by the 8259 Interrupt controller

08H

09H

0020

0024

Timer (8253)
Keyboard

8088 Instruction Set 123

Table 4-4

Intel 8088 Interrupt Vectors

Interrupt Type Memory Location (Absolute) Definition

OAH 0028 Color Board

OBH 0020 N/A

OCH 0030 Serial Adapter

ODH 0034 N/A

GEH 0038 Disk

OFH 0030 Printer

BIOS Interrupts

10H 0040 Video (BIOS)

11H 0044 Equipment Flag
(BIOS)

12H 0048 Memory Size Check

13H 0040 Disk I/O

14H 0050 Serial I/O

15H 0054 Cassette I/O

16H 0058 Keyboard I/O

17H 0050 Printer i/0

18H 0060 BASiC

19H 0064 Bootstrap

1AH 0068 Time of Day

1BH 0060 Keyboard Break

1CH 0070 Timer Tick

1DH 0074 Video

Initialization

1EH 0078 Diskette Parameters

1FH 0070 Video Graphics

MSDOS Interrupts

20H 0080 Program Terminate

21H 0084 DOS Function Call

22H 0080 Terminate Address

23H 0090 Fatal Error Vector

24H 0094 Absolute Disk Read

25H 0098 Absolute Disk Write

26H 0090 Terminate, Stay
Resident

27H-5FH 0100-017F Reserved

60H-67H 0180-019F User Interrupts

68H-7FH 01A0-01FF Not Used

80H-0F0H 0200-0303 BASIC

0F1H-0FFH 03C4-03FF Not Used

Table 4-4 Notice Intel reserves Interrupts 5-31 (05H - 20H) for future use. The 80188/86, and 80286 are
newer and more powerful processors from Intel which use the vectors which are reserved on
the 8088. However, IBM decided to use these interrupt vectors for processing many of the
BIOS (Basic Input/Output System) functions in ROM in the PC.

124 80881IBM PC Assembly Language Programming

Intel reserves interrupt types 5-31 for future use. IBM chose to use these interrupts
on the PC. This is one possible source of incompatibility when comparing a
compatible computer to an IBM PC.

INTO

Format: INTO

INTO (INTerrupt on Overflow) generates a type 4 interrupt if the overflow flag is
set in the status register. If OF is not set, the instruction following the INTO
instruction is executed. It is used to handle an overflow condition resulting from
arithmetic operations. For example:

SBB AX,BX ;Subtract with borrow BX from flX

INTO {Interrupt if overflow.

causes an interrupt type 4 to be generated if, as a result of the subtraction, the
overflow flag is set.

IRET

Format: IRET

IRET, or Interrupt RETurn, terminates every interrupt service routine. The instruc
tion passes control back to the main program by popping IP, CS, and the flags from
the stack. These values are automatically pushed on the stack anytime the 8088
receives an interrupt.

String instructions manipulate blocks of data stored in memory. They require that
the destination operand be pointed to by DI and that the source pointer be in SI. If
the direction flag (DF) is set, then DI and SI are automatically decremented after the
string operation has been executed. If the direction flag is clear, the pointers are
incremented after the string instruction has been executed.

8088 Instruction Set 125

Due to the use of the index pointers SI and DI and the association they have with DS
and ES, it is implied that the source string resides in the data segment (DS:SI) and
that the destination string resides in the extra segment (ES:DI). If there was no
flexibility allowed in the addressing of operands, these otherwise powerful
instructions would become cumbersome and awkward to use.

There is a way to overcome this otherwise serious limitation in operand string
addressing. This allows the addressing of source and destination strings that are
both in either the data segment or the extra segment. More on this in a moment.

Operands must be specified in the instruction so that the assembler can determine
what type of string instruction it is to generate, byte or word. The assembler
determines this from the TYPE attribute assigned to each operand when it is
defined. For example, MY_DATA_STRING DB OFFH assigns MY_DATA_STRING a
type attribute of BYTE. If the DW pseudo-op were used to define the string, then
the type attribute would be WORD.

Based on this information, the assembler generates either a MOVSB or MOVSW
instruction. Simply loading the index registers with the address offset of the data
referenced is not enough, however. The assembler cannot determine the type
attribute from the index registers; therefore, the operands must be included in the
instructions when using the generalized form MOVS, CMPS, SCAS, LODS, and
STOS.

If you use the short forms of the instructions, such as, MOVSB, MOVSW, CMPSB,
CMPSW, SCASB, SCASW, LODSB, or LODSW, the operands do not have to be
included in the source statement. The assembler is able to generate the proper
instruction, as the data type is specified in the source statement.

Prefix Operators

REP, REPZ, REPNZ
A prefix operator may be specified in the instruction, and it is used when you want
to repeat the string instruction a certain number of times. The instruction is
repeated until the contents of CX meet the specified criteria. For example, the REP
operator is used when repeating an operation until CX equals zero. REPZ causes the
operation to be repeated as long as the count in CX does not equal zero and ZF is set
to one. It is similar to the LOOPZ instruction previously discussed. REPNZ repeats
the specified operation as long as the count in CX is not zero and ZF is clear (zero).

126 8088!IBM PC Assembly Language Programming

Move String

MOYS, MOYSB, MOYSW

Format: MOVS destination-string,
source-string
MOVSB

MOVSW

MOVS moves a byte or word from the source string to the destination string
pointed to by SI and DI. MOVS is used to transfer a block of data from one portion
of memory to another. Although you can override the segment (DS) pointed to by
the source operand SI during a repeat operation, Intel cautions you not to do this:
"....avoid using the other two prefix bytes with a repeat-prefixed string instruc
tion. One overrides the default segment addressing for the SI operand and one
locks the bus masters. Execution of the repeated string operation will not resume
properly following an interrupt if more than one prefix is present preceeding the
string primitive."

MOV CX, 1024 |Sot up countei- foT" IK block move

STD ;Set the direction flag

LEA SIfMY_DATA_STRING ;Get source address

LEA DI»ES:DI,MY_DATA^STRING2 ;Get destination address

REP MOVS CDII,ES:CSII

The instruction above can be used to move data from one part of the extra segment
to another part of the same segment. However, the instruction is not guaranteed to
operate properly on returning from an interrupt. What can you use to move data
from one location within the same segment (ES)? Try this:

ASSUME DSs EXTRA.SESMENT,ES!EXTRA.SEGMENT

MOV AX,EXTRA_SEGMENT ;Establish seg. registers

MOV DS,AX ;Set up DS register

MOV ES,AX ;Set up ES register

MOV CX,COUNT ;Load repeat counter

STD ;Set direction flag

LEA SI,MY_DATA_STRING $Load source string DSsSI

LEA DI,ESsMY^DATA^STRINGS ;Load destination string ESsDI

REP MOVS CDI3,CSI3 ;Move data from extra seg. to extra seg.

8088 Instruction Set 127

By using the ASSUME statement, both DS and ES are set to the start of the extra
segment. When the repeated move string instruction is encountered, data is moved
from one part of the extra segment to the other. You can also use this programming
quickie to move data from one part of the data segment to another. Simply set both
DS and ES to the start of the data segment rather than using the extra segment.

Another alternative is to use the LOOP instruction to transfer a block of data from
one part of the extra segment to another part of the extra segment. Using the LOOP
instruction allows you to use the segment override operator with the source
operand. For example:

LEft DI,ESjMY_STRINS iS«t up destination string pointer

LEft SI,MY_STRING£ 5Set up source string pointer

STD ;Set direction flag

MOV CX,10£4 ;Set up iteration counter

MOVE^IT MOVS MY.STRING,ESsMY^STRINSe jMove string

LOOP MOVE_IT ;Repeat until CX = 0

This program code is shorter and less complicated than the previous example, but
it will not work when both the destination and source strings are in the data
segment. You will have to again set ES and DS to point to the start, or base, of the
data segment. This involves using the ASSUME statement as demonstrated before.

MOVSB and MOVSW do not require operands, as they specify the data type
attribute directly within the source statement.

Compare String

CMPS, CMPSB, CMPSW

Format: CMPS destination string,
source string

CMPSB

CMPSW

Often it is necessary to search or scan strings for a matching byte or word value or
for a byte or word value that differs between strings. CMPS does exactly this and
sets the appropriate flags in the status register.

REPZ and REPNZ can be used to repeat the operation until the condition is met.
REPZ continues to compare the source to the destination string as long as CX is not
zero and the operands match (ZF = 1). When the operands differ, ZF is cleared, and

128 8088/IBM PC Assembly Language Programming

the next instruction following the CMPS is executed. In most cases, the instruction
following the CMPS will be a conditional jump instruction.

REPNZ is used to compare strings for a matching byte or word. The operation is
repeated as long as CX is not zero and ZF is cleared.

An example of the CMPS instruction is:

LEfl SI,MY_STRINB

LEA DI,ESiMY_STRIN6S

STD

MOV CX,ieS4

REPZ CMPS MY.STRINSe,MY_STRINB

JZ BQT_ONE

JMP EXIT

SOT.ONEi LODS MY STRINB
EXITi RET

;Set pointer to source string

;Set pointer to destination

;Set direction flag

;Set counter to 10£4 bytes to
;compare.

5Find a byte tlrat differs.

$ ZF='1», then got a match.

$Else leave routine

;Load string value and inc. SI

The compare string instruction updates all the flags of the status register and, like
the CMP instruction, affects neither operand. CMPSB (byte compare) and CMPSW
(word compare) do not require operands, as the data type operator is specified in
the source statement.

Scan String

SCAS SCASB, SCASW

Format: SCAS destination string
SCASB

SCASW

The SCAn String instruction compares AL (byte) or AX (word) to the destination
string. If you want to search memory for the ASCII letters IBM, use the SCAS
instruction as follows:

LEA DI,E8:MY_STRINB

MOV CX,10S4

STD

;Set up destination string
;Assume Memory defined as words

{Search IK of memory

{Scan backwards

8088 Instruction Set 129

MOV " 5Set up value to search for

MOV ftL,"M" ?

SCftN^MEMs REPZ SCftS MY^STRING sScan for a match
{Continue if there is none

JZ GOT_MftTCH_l {Got it, good

JMP EXIT {Otherwise stop searching

GGT_MATCH_ONE MOV PH,"B" {Next 2 bytes must match

MOV PL,"I" {value in PX

SCPS MY^STRING {Next word match?

JZ GOT_IT_PLL {Yes jump to new part of program

EXIT: RET INo, then leave routine.

The memory scan terminates if CX = 0 or a match is not found in the loop. It also
terminates if the second scan fails to find the letters IB.

You can also use the implicit forms of SCAS; they are SCASB (scan for byte) and
SCASW (scan for word). These instructions do not require an operand, as the data
type of the destination operand pointed to by DI is specified in the instruction. The
assembler is able to generate the proper instruction (byte or word scan), as the data
type attribute is specified in the source statement.

DI is updated after the execution of the SCAS instruction to point to the next data
element. If DF is clear, DI is incremented. If DF is set, DI is decremented, as in the
example above.

Load String

LODS, LODSB, LODSW

Format: LODS source-string
LODSB

LODSW

LODS (LOaD String) transfers a byte into AL or a word into AX. SI must point to the
source string, ahd it is updated after.the instruction's execution to point to the next
data element. Although you could specify a repeat prefix as part of the instruction,
this is not usually done. Since AL would only retain the last value fetched from
memory, repeating the operation makes little sense. It is useful, however, when
you need to load a value from memory and automatically update the pointer.

130 80881IBM PC Assembly Language Programming

An example of the LODS instruction is:

LEO SI,MY_STRINS

LEO DI.ESiMYSTRINQS

STD

REPZ CMPS MY_STRINGa,MY_STRINQ

JNZ FOUND.ONE

EXITI RET

FOUND ONEi LCDS MY.STRING

;Set up source pointer

{Set up destination string

;Set direction flag

;Compare strings for
{difference

{Found one

{None found return

{Get the element that differs STGS

Store String

STOS^ STOSB, STOSW

Format: STOS destination string
STOSB

STOSW

The STOre String instruction transfers a byte from AL or a word form AX to the
destination operand pointed to by DI. STOS is most frequently used in initializing
data areas to a constant value. Often it is necessary to clear a data area prior to using
it in a program. STOS provides a convenient way of doing just that. For example:

LEfi DI,ESsMY_STRING_flREft

MOV CX,Ee46

ov px,e

REP STOS MY_STRING_DftTft

I Set pointer* to dete ar*e«

{Clear £048 words (4096 bytes).

{Value to store

{Repeat until CX - a

These instructions govern the 8088 during program execution. They control the
microprocessor and affect the manner in which the 8088 executes other instruc
tions.

8088 Instruction Set 131

No Operation

NOP

Format: NOP

The NO operation instruction can be used as a time filler or to fill an area in memory
which can be used to patch the program when hugs are discovered. When the 8088
encounters the NOP instruction, it does nothing. NOP does not affect any of the
flags.

Carry Instructions

CLC, CMC, STC

Format: CLC

CMC

These three instructions affect the carry flag. CLC clears the carry, STC sets the
carry, and CMC complements the carry hit (reverses its state). As the instructions
implicitly designate the carry bit, they require no operands.

Some examples of their usage are:

EXAMPLE 1: CLC jCondition the carry bit for the following
;rotate instruction.

RCL ;Rotate left through carry
;the 0 originally in the carry is
;now in B0.

EXAMPLE 2: STC sSet the carry flag to 1

rCR ;Stuff a 1 into b7 and put b0 in carry.

CLD/STD

Format: CLD

STD

These instructions affect the direction flag, DP. CLD is used to clear DF and causes
the index register(s) to be automatically incremented during execution of the string
instructions. STD is used to set DF and causes the string instructions to automati-

132 8088/IBM PC Assembly Language Programming

cally decrement the pointer(s). See the previous discussion on string operations for
examples of their usage.

Interrupt Instructions

CLI and STI

Format: CLI

STI

CLI (CLear the Interrupt flag) and STI (SeT the Interrupt flag) are used to enable or
disable external interrupts. CLI disables external interrupts, while STI enables
them. There are maskable and nonmaskable interrupts. Nonmaskable interrupts
are always honored; they cannot be disabled by clearing IF.

Masking interrupts is common when you don't want an external event to interrupt
the microprocessor. Going back to the human analogy of Chapter 3, using the STI
instruction is a little like hanging a sign outside your door, that says "DON'T BUG
ME, I'M BUSY!" When you are able to answer the door, you use the CLI instruc
tion, which removes the sign from the door and enables interrupts.

Delay Instructions

HLT and WAIT

Format: HLT

WAIT

Have you ever had to wait for an important message and sat around waiting for the
telephone to ring? The WAIT instruction puts the 8088 into an idle or wait state.

One of the pins on the 8088 microprocessor is used as an input signal and is called
TEST. As long as this line is inactive, the 8088 waits for either the TEST input to
become active or for an external interrupt to occur. No other instructions are
executed while the 8088 is waiting.

When the TEST input becomes active (logic 0, or 0 volts), the 8088 executes the
instruction following the original WAIT instruction. Should an external interrupt
occur, the 8088 saves the address of the WAIT instruction on the stack and vectors

to the appropriate interrupt service routine. When the interrupt has been serviced,
the address of the WAIT instruction is popped from the stack, and the 8088
reenters the wait state.

8088 Instruction Set 133

The HLT (HaLT) instruction is similar to the WAIT instruction, in that they hoth put
the 8088 into an idle condition. But unlike the WAIT instruction, HLT does not
sample the TEST input. When halted, the 8088 waits for a reset, or an enabled
maskable or nonmaskable interrupt. Once the interrupt occurs, the halt state is
cleared. Both the HLT and WAIT instructions are used to synchronize the 8088 to
external events.

Instructions to
Other Processors

ESC and LOCK

Format: ESC external
op-code, source
LOCK op-code destination
operand, source operand

BSC (Escape) is used to send instructions to other processors, such as the 8087
numeric co-processor. When the 8088 encounters the ESC instruction, the pro
cessor executes a NOP instruction. The only other operation that the 8088 per
forms is to address the source operand specified. The external op-code must be a 6-
hit number and is composed of 3 bits indicating the co-processor that the instruc
tion is intended for and 3 hits designating the instruction the co-processor is to
execute. If the operand is in memory, the 8088 reads its value and ignores it. The
co-processor, however, also reads the value and uses it as the source operand in its
operation.

LOCK is not an instruction, hut rather a 1-hyte prefix to an instruction. It is used to
LOCK other processors out of the system for the duration of the instruction. When
the 8088 encounters the LOCK prefix byte, it asserts a signal on the LOCK pin of
the microprocessor. The LOCK signal remains active during the execution of the
instruction.

It is common when two or more processors share resources, such as memory, that
RAM semaphores are used to communicate between them. LOCK prevents another
processor from inadvertently changing a semaphore while the semaphore is also
being altered or read by the first process.

Imagine what would happen if hoth you and your spouse were to make a major
purchase. Your spouse has just purchased a new car for your birthday present hut
has not changed the balance shown in your bankbook. It so happens that you too
have made a major purchase, a trip for two on a Caribbean cruise. Unfortunately,
the combined cost of both purchases is more than what you have in savings.
Perhaps what you need is a LOCK on your savings book that would have prevented

134 80881IBM PC Assembly Language Programming

one of you from making a major purchase until the balance was recalculated and
written in the checkbook. The LOCK prefix does exactly that.

1. Write the necessary program statement(s) to add 20 to the memory location
COUNTER.

2. There are major groups of 8088 instructions.

3. Write the program statements that will compare a value in the memory
location COUNTER to 20 and branch to the program label THERE if the value
in COUNTER is equal to 20.

4. What does this instruction sequence do?

XORAX,AX

5. What is wrong with this statement:

MOV 10H,AL

6. What is wrong with this statement:

MOV FACEH,AX

7. For every PUSH there must be a .

8. Write a program loop that will clear 64 bytes of memory. Begin clearing
memory at the label DATA_STRC.

9. Write two statements that will load the offset address of COUNTER into the

register EX.

10. List two variations of the LOOP instruction. What does each do when

executed?

Until now, I have refrained from using all but the minimum of assembler features in
the programming examples. Although the IBM Macro Assembler manual provides
an overview of the directives and pseudo-ops available within the assembler, the
descriptions often lack adequate examples of their usage. In fact, the manual starts
out with the statement, "This manual is a reference manual for experienced
assembler language programmers, like yourself, who use the IBM Personal Com
puter Macro Assembler." If you're not an experienced assembler language pro
grammer, you must have wondered to whom IBM was referring.

Therefore, I want to not only discuss the features available within the assembler
but also give several examples of HOW the features can be used to save you time in
your programming efforts.

You do not have to be an experienced programmer to understand this chapter.
Although this chapter stands on its own, it will be helpful to reread the IBM Macro
Assembler manual's description of the features discussed. It's not my intention to
eliminate the need for the Macro Assembler manual, but merely to provide alter
nate explanations in an attempt to clarify the many ambiguities that exist within
the manual.

135

136 80881IBM PC Assembly Language Programming

The format for entering your source programs has been given previously, but I will
repeat it here. The general form for entering source statements is:

<—NAME—> <—OP-CODE—> <--operand(s)—> <-comments-->

The assembler directives and pseudo-ops that define data or control the assembly
process are entered in the op-code field, which is normally reserved for a valid
8088 instruction. Pseudo-ops allow you to define data, associate constant values
with labels (symbolic names), and control the assembly. The types of allowable
pseudo-ops available within the IBM Macro Assembler fall into four categories:
data definition (including symbol, procedure, and segmentation definitions), con
ditional, macro (discussed in Chapter 6), and listing pseudo-ops.

Because pseudo-ops appear in the source file in the op-code field, it may be
confusing at first in differentiating between an 8088 instruction (op-code) and an
assembler directive (pseudo-op). When a name, operand, or comment is required
with a pseudo-op, the same rules apply to the name field as when a name is required
for an op-code (see Chapter 2).

The data pseudo-ops (see Table 5-1) are discussed in the IBM Macro Assembler
manual beginning on page 5-3. Some of the pseudo-ops may seem self-explanatory,
while others are not so obvious.

ASSUME

Format: ASSUME seg reg:seg
name[,....]

ASSUME tells the assembler which segment registers are to be associated with each
segment. In the general format, seg reg refers to the segment registers CS, DS, ES, or
SS. Seg name is the name you specify for the given segment. For example:

ASSUME CSIMY_CQDE,DS « MYDATA,ES s NOTHING,SS s MY_STACK

Assembler Features 137

Table 5-1

Data Pseudo-ops

Category 1 Category II
Segment Definitions Data Definitions

ASSUME DB (Define Byte[s|)
SEGMENT DW (Define Wordls))
ENDS DD (Define Double word[s])
ORG DO (Define Quad-Word(s])
GROUP DT (Define Ten-Bytes)
EVEN

Category iii Category IV
Procedure. Related Symbol Definitions

PROG EQU

ENDP =

LABEL

Category Vi Category VII
Record/Structure Related Module/Assembler Related

RECORD NAME

STRUG .RADIX

PUBLIC

EXTRN

INCLUDE

END

informs the assembler to associate the CS register with the segment defined with
the label MY_CODE, and DS with the segment labeled MY_DATA. ES is associated
with nothing. This means that any previous assumptions about the ES register are
canceled. The segment registers can appear in any sequence, and all four need not
be present.

You may want to cancel a previous assumption about the DS register; in which
case, the statement:

ASSUME DS:NOTHING

would be all that is required. Figure 5-1 illustrates how the assembler associates
segment, base, and index registers with each of the four possible segments. You
can have more than one of the segment types in your program (e.g., two code
segments), but only one of each segment type is active at any given time.

Although the assembler has been informed via the ASSUME directive to associate
certain segment registers with the various segments in a program, the segment
registers themselves must contain the proper base address for the given segment.

138 80881IBM PC Assembly Language Programming

ASSUME CS:MY_CODE.DS:MY_DATA:ES:MY_EXTRA,SS:MY_STACK

Segment Segment Segment

CS-

(IP)
r\ SS s

c
r\

(BX) D
A

(SP) T
U

D

E

(SI)
(Dl)

A

T

A

(BP) A

C

K

Segment

(Alternate Data Segment)

* Must use

Segment override
prefix, except
when using Dl
to reference destination

data using string instructions.

Figure 5-1 ASSUME Directive

Example:

ASSUME CS 8 MY.CODE,DS 8 MY.DATA,ES 8 MY.DATA,SS 8 MY^STACK

MOV AX,MY_DATA 5Set up segment registers

MOV DS,AX ITransfer seg~base to DS

MOV ES,AX ;Do the same for ES

You should notice that the segment registers cannot be used as destination oper
ands in immediate move instructions. The segment base address must first be
moved into a general purpose register (usually AX) and then transferred to the
proper segment register. Additionally, CS cannot be used as the destination oper
and of any move instruction.

SEGMENT

Format: seg name SEGMENT
[align] [combine] [class]

ENDS

Format: seg name ENDS

These pseudo-ops are used to define a segment. There must be a segment for your

Assembler Features 139

program code, data, and stack. Since there are two data segment registers, DS and
ES, your program can contain two different active data segments at a given time.
The programming example in Listing 2-1 contains a data segment, a stack segment,
and a code segment.

Use the SEGMENT and ENDS pseudo-ops in the following manner to define your
segments:

MY.STftCK SEGMENT PftRft STACK

DM lee Dup<?)

MY.STACK ENDS

MY.DATfi SEGMENT PARA "DATA'

TABLE1 DM 100 DUP(O)

'STACK'

;Define data segment

;Define 200 bytes of zeros

"CMore data definitions}

MY^DftTft ENDS

MY^CODE SEGMENT PARA «CODE' ;Define code segment

ASSUME CS 8 MY.CGDE,DSiMY^DATA,SSiMY.STACK

MY.CODE ENU^

In the preceding example, the code segment is defined to have an align type of
PARA, which aligns the segment on a boundary address that is divisible by 16. The
class type must be enclosed in single quotation marks and is used by the linker to
combine segments with identical class names. The stack segment uses the combine
type, which in this case is STACK. The linker requires there to be a stack segment
defined when the combine operator is present. See Chapter 5 in the IBM Macro
Assembler manual for a full description of the optional align, combine, and class
operands.

PROC

Format: procedure name
PROC [NEAR]

or

procedure name PROC FAR

140 80881IBM PC Assembly Language Programming

ENDP

Format: procedure name ENDP

The concept of modular programming is based upon building small, unique blocks
of code. Each block of code performs a specific task. Modularity is beneficial for
several reasons. Smaller chunks of code are easier to debug than a large program.
The code is also easier to understand. Procedures reduce the amount of code

required in a given program by generating the object code required for a specific
function once and allowing the code to be used by other parts of the program.

PROC defines a section of code as a procedure. Old-timers to ALP will recognize
that procedures are what used to be called subroutines. A RET (return) instruction
returns control to the calling program.

If the PROC is defined—as with a distance attribute of NEAR (within the same
segment as the calling program), then the assembler generates a RET instruction
that restores the offset contained in IP before the procedure is called. If the
procedure is defined as being of the FAR type, then the RET instruction restores
both IP and CS to the segment offset and segment of the calling program. NEAR is
used for intrasegment calls, and FAR is used for intersegment calls.

Example:

MY^PROC PROC NEAR ;Callable from same segment.

RET

MY_PROC ENDP ;End of procedure.

PUBLIC DIFF_SEG_PROCEDURE

DIFF_SEG_PROCEDURE FPR jProcedure to be called by other

$segments

RET

DIFF.SEG^PROCEDURE ENDP

Notice that the procedure must not only be declared FAR, but it must also be
declared PUBLIC. This allows other programs not defined in the module to refer
ence the procedure. ENDP terminates the portion of code and the definition of the
procedure.

Assembler Features 141

Defining Data

DB, DD, DW, DQ, DT

Format: name Dx expression
(Where x is either
B, D,W, Q, orT)

These pseudo-ops allow you to define a variable or initialize storage locations. The
pseudo-ops may be preceded by a symbolic name and must be followed by an
expression. The second letter of the designation defines the TYPE attribute associ
ated with the storage location(s). For example:

ONE_BYTE DB ?

defines 1 byte of storage. The ? indicates that the byte is not initialized to any
particular value. You can also define more than one byte of storage as in:

DECIMAL.TABLE DM 10000, lOOO,100, lO

These pseudo-ops are used to establish data areas and tables necessary for program
execution, character code translations, etc. In Listing 2-1, another use for the DB
pseudo-op was demonstrated: the creation of ASCII message strings. For example:

MESSOGE_ONE DB 'This is the first message 1 want to define.* .

DB

In this example, the string appears in memory exactly as it appears between the
single quotation marks. The second DB defines a byte containing 24H, the ASCII
code for the dollar sign.

Similarly, DW, DD, DQ, and DT define words, double words (4 bytes), quad words
(8 bytes), and 10 bytes of storage.

DUP

An operator which may be used with any of the data definition pseudo-ops is the
DUP (duplicate) operator. The DUP is used to create or initialize data storage. For
example:

DM 100 DUP<?>

142 8088!IBM PC Assembly Language Programming

defines 200 bytes of uninitialized storage. You can specify any valid initialization
value in the DUP clause. For example:

DM 100 DUP(0)

initializes 100 words of storage to OOH. The IBM Macro Assembler manual discusses
each of the data definition pseudo-ops in detail.

Attributes and Operators

Symbolic names carry with them more than what you put into them. You may
choose a symbolic name that really describes a function of the code where the label
is placed. For example:

FIND.SQUARESi

may do just that, find the square of a number. However, the assembler assigns its
own meaning to the label (it really doesn't know that the statements following the
label actually do find the square of a number). The meanings the assembler assigns
to the labels are known as attributes. They describe how the label is used.

Segment Attribute —
Each label has a segment attribute associated with it. It is the value of the beginning
of the segment where the label is defined. For example:

MY_DftTft 8EBMENT PflRfi '

PSCII DB 128 DUP<?>

MY.DOTft ENDS

assigns the segment attribute of ASCII the value of MY_DATA. The segment register
(DS, in this example) must contain the segment value in order to access the label
ASCII. In order to find the segment value of ASCII, you would use the value-
returning operator SEG:

MOV fix, SEB fiSCll jBet SBgfflent valua of fiSCII

MOV DS,AX {Set up segment register

Assembler Features 143

Offset Attribute

and Operator —
By now you should know that whenever there is a segment, there is an offset into
the segment. An offset attribute is associated with every label in a program. The
offset for ASCII in the above example is zero. The first byte of data defined by the
label ASCII is zero bytes from the beginning of the segment where it is defined. The
offset attribute is a l6-bit unsigned value. You can use the value-returning operator
OFFSET to load the offset value into a register:

MOV DI,OFFSET ftSCII {G«t offset of label ftSCII

Remember, this instruction moves the offset from the beginning of the segment
where the label is defined, into the specified register. It does not move the contents
of the memory word into the register.

Type Attribute
and Operator —
Along with a segment and offset attribute associated with a name, the assembler
associates a type attribute with the symbolic representation. This attribute defines
the number of bytes reserved for the symbol. If a symbol is defined as follows:

COUNTER DW ? (The TYPE attribut* is word.

The DW pseudo-op is used to Define a Word of storage for the label COUNTER.
Therefore, the type attribute is word (2 bytes).

In using the instruction:

MOV fix, TYPE COUNTER

the value of 0002H is returned to AX.

There is also a distance attribute associated with memory locations. It informs the
assembler whether the memory location is defined as a NEAR or FAR type. For
example:

SQUARESI MOV AX,VALUE (Set number to square

defines SQUARES as having a NEAR attribute. The type operator can be used to
return the value (-1 for NEAR and - 2 for FAR attributes) based on the distance
attribute of the symbol.

Example:

MOV AX,TYPE SQUARES {Will return a -1

144 80881IBM PC Assembly Language Programming

The possible type values are given in Table 5-2.

Table 5-2

Values Returned by TYPE Operator

TYPE VALUE RETURNED

DB 1

DW 2

DD 4

DQ 8

DT 10

NEAR -1

FAR -2

LENGTH and SIZE

Operators .
The value-returning operators LENGTH and SIZE are used in conjunction with the
type operator. If you define a table of data as:

MY_TflBLE DM 10 DUP(?>

the LENGTH operator returns the value used to specify the number of times you
want to duplicate the word. The SIZE operator returns the size of the data type as
LENGTH X TYPE. Since the variable in this example is a word, the type will be 2.
The operator length is 10; therefore, the size of the variable will be equal to
LENGTH X TYPE = 10 X 2 = 20 bytes.

These operators are useful in moving the LENGTH and SIZE values into the count
register (CX) prior to an iterative loop. For example:

MOV CX,LENGTH MY_TftBLE

moves the length of MY_TABLE into the CX register. In this instance, the LENGTH
operator returns the total number of word entries in the table, which is 10.

In a similar manner, the SIZE operator returns the total number of bytes allocated
to the variable. For example:

MOV CX,SIZE MY_TftBLE

returns the value 0014H (20 decimal) to the CX register. LENGTH and SIZE have
relevance only when the variable has been duplicated (DUP).

Assembler Features 145

EQU

Format: name EQU expression

The equate pseudo-op assigns the value in the expression field to the symbolic
name that precedes the EQU pseudo-op. Some examples of the use of EQU are as
follows:

THOUS EQU 1000 ;THOUS equated to 1000

NEG^VftL EQU -5000 ;NE6_VPL equated to minus value

COMP^VPL EQU TH0US*5 ;Computed as 5 thousand

COUNT^REB EQU CX ;Represent the CX register

Notice that you can use arithmetic operators within the statement and let the
assembler compute the values. I will discuss arithmetic operators later in this
chapter. The name used with the equate statement is mandatory and must not be
followed by a colon.

You can also use a label to represent another label or a register. In the examples
above, COUNT_REG is equated with register CX. If you use labels to represent the
registers of the 8088, define them prior to using them in your program. If you do
not define them prior to their usage, the assembler will generate an error. Labels
that are found to be names for the 8088's registers cannot be forward referenced.

Format: name = expression

The = (equal) pseudo-op works in a manner similar to the EQU pseudo-op with
one major exception; equal allows you to reassign the symbolic name to a new
value. You cannot do this with the EQU pseudo-op.

Assume for a moment that you want to assign different values to the name
MAIN_COUNT. The constant will be used to load a count value in one of several
different delay routines. You could use the = pseudo-op to redefine the label
within the program. Often this is done at the beginning of a module that needs to
use a label, with a different value than the one previously assigned.

146 8088/IBM PC Assembly Language Programming

Examples:

MAIN.COUNT > 1000 {Value of MAIN_COUNT > 1000

MfiIN_COUNT » 10000 {MftlN.COUNT is redefined.

LABEL

Format: name LABEL type

The LABEL pseudo-op assigns the segment, offset, and type attributes of name.
Examine the following portion of code:

ftRRfiY_BYTE LfiBEL BYTE {ftRRftY_BYTE = Current segment
;iRiith the offset ^t current

;byte, and the type attribute
|of byte.

ftRRftY_i DW 200 DUP<?> ;Thls array has 400 bytes
i tib-vtui wuras) •

Notice that ARRAY_BYTE is defined just prior to ARRAY_1. Therefore, the seg
ment is the same for both names, as is the offset of the first byte. However, the array
can now be accessed in either of two ways, by byte or word. We already know that
the statement:

MOV fit,ftRRfiY_l

generates an error, because the source and destination are not the same size
(byte/word). However, by using the LABEL pseudo-op in the manner shown above,
you can access a byte within the array, as in:

MOV AL,ARRAY.BYTE

You can also use the LABEL pseudo-op to define an entry point in your program as
FAR, which would allow other segments to call or jump to that portion of code.

Example:

PUBLIC BET_CHARF

GET.CKMRF LABEL FAR (OBfine as FAR

GET.CHARi IN AL,DATA.PORT {NEAR attribute

allows the routine to be called either by code within the segment (NEAR calls and
jumps) or by code in a different segment (FAR calls and jumps).

Assembler Features 147

EXTRN

Format: EXTERN name:type[,...]

PUBLIC

Format: PUBLIC symbol

These pseudo-ops declare symbols and names used in the present module as being
defined either in another module (EXTRN) or in this module and accessible by
others (PUBLIC). This again points to the use of structured and modular software.
You may need to use routines or data which have been defined in other modules;
EXTRN and PUBLIC allow you to do this. Both modules will ultimately reside in
the same segment.

Example:

MY.CODEl SEGMENT

PUBLIC SINE

SINEI MOV flU.VftLUE

;Sine routine defined as public.

;Routine to find the sine of an angl€

RET

MY CODEl ENDS

MY CODEl SEGMENT

EXTERN SINE:NEftR 5The name ^SINE» is not
{defined in this module.

CPLL SINE ;In other module, same segment.

MY CODEl ENDS

In the example above, the routine to find the sine of a given value is in another
module. Therefore, the label is declared PUBLIC in the module where it is defined
and external (EXTRN) in the module that calls the routine.

148 8088!IBM PC Assembly Language Programming

COMMENT

Format: COMMENT delimiter text delimiter

In previous chapters, I have always used a leading semicolon prior to a comment
line. That is one method you could use to enter comments into a source program.
However, there is another method you can use to comment your programs. Until
this chapter, all comments have been entered as follows:

MOV ;Get the segment start address

WOV DS,AX ;Initialize the data segment
;register.

The IBM Macro assembler allows you to enter a comment block without beginning
each comment line with a semicolon. The COMMENT pseudo-op can be used as
follows:

COMMENT * You can enter a block of comment lines

(as many as you like), after the delimiter

character, which is the first nonblank character

following the pseudo-op. The block must end with

the same character as that which opened the

block (asterisk). Use this pseudo-op to enter

a description of the program. *

You can choose any character you want as the delimiter character. It is a conven
ient way to document your programs.

ORG

Format: ORG expression

This pseudo-op sets the assembler's location counter to the value specified. At
times it is necessary to specify absolutely where a portion of code or data is to
reside (as in PROM resident data). ORG lets you specify where the code will be
assembled in memory. The use of the ORG pseudo-op forces the assembler to
create an absolute (nonrelocatable) object deck.

When the % (dollar sign) is used with ORG, the current value of the location counter
is referenced. You can use this feature to assemble code at some specified offset
from the current value of the location counter. For example:

Assembler Features 149

ORG

sets the location counter to the tenth byte from the current value. Figure 5-2
illustrates this concept further. Other examples of the use of ORG are:

ORG

ORG

OiF0H

0FF0H

;Sets location counter to 01F0H

;Sets the location counter to 0FF0H

ORG 100H ;Set assembier iocation

;counterto0100H

DB 20H DUP (41H) ;Define 32 bytes
ORG $+40H ;Skip 64 bytes and start

;at120H-)-40H = 160H

DB 20H DUP (42H) ;Define 32 more bytes

MEMORY

100H — > 41H Which is ASCII'A'

101H
1

— > 41H
1

1
11FH — >

1
41H End of first DB data area

120H — > ? Not defined

121H

1

— > ?

i
1

15FH
1
?

160H — > 42H Which is ASCII'B'

161H

1

— > 42H

1
1

17F -->

1
42H End of 2nd DB data area

180H — > ? Not defined

Figure 5-2 ORG Directive

The ORG statement is used to manipulate the assembler's location counter. In
Figure 5-2, a 32-byte data area is defined, starting at location lOOH. The next data
area is set to the current value of the location counter plus 40H (160H). The
locations from 120H to 15FH are not defined or initialized.

You cannot use the ORG pseudo-op within a STRUC-ENDS definition.

150 8088!IBM PC Assembly Language Programming

EVEN

Format: EVEN

(No operands)

EVEN forces the assembler to align the location counter on an even address. This is
most often used when creating programs destined for the 8086 processor, which
will fetch data from memory faster if the data is aligned to an even address.

If the location counter is at an odd location, EVEN causes the assembler to generate
a 1-byte NOP instruction and increment the location counter to the next address
location; otherwise, EVEN does nothing.

RECORD

Format: name RECORD Held
name:width[=exp],[....]

RECORD allows the definition of bit patterns used for byte or word bit packing.
RECORD creates a template for the specified bit pattern; however, you must still
allocate storage within a data segment for the pattern's storage.

The pattern can be from 1 to 16 bits in length. Any RECORD containing a bit pattern
of 8 bits or fewer will require 1 full byte of storage. A bit pattern of 9 to 16 bits will
use 2 bytes, or a word.

Once the RECORD has been defined, storage must be allocated. The general form
is:

Cname3 recordname CexpD C,.... 3

or Cname3 recordname exp DUP(Cexp3)

To allocate storage for the RECORD within the data segment use statements similar
to the following:

1. Specify your record at the beginning of your program:

MY.BITS RECORD RECAsA,RECBb4,RECC84,RECD84 ;Record template

Assembler Features 151

2. Allocate storage for the record in the data segment:

MY^DPTfl SEGMENT PftRA ^DftTA'

ERROR.BITS MY.BITS (GOOGB,001IB,1100B,111IB) ;Define bit
;patterns

;and storage.

MY^DATfl ENDS

Here a l6-bit pattern of OOOOOOllllOOllllB is defined. Each field within the record
in this example is 4 bits wide, and there are 4 fields (RECA-RECD) total. Notice that
the record name becomes the op-code for storage allocation.

The operators WIDTH and MASK are used to access and manipulate data within the
record. For example:

MOV CL,MIDTH RECA

moves the width of the field RECA (4) into the CL register. You can use the WIDTH
operator to move the width of the entire record into a register by using the record
name rather than the field name as in:

MOV AL,WIDTH MY.BITS (Moves 16 (10H) into AL.

MASK returns a field of Ts for the width of the specified field. In other words:

MOV BX,MASK RECC

moves OOOOOOOOllOOOOOOB to the BX register, and

MOV BX,MASK RECD

returns OOOOOOOOOOOOllllB to the BX register.

If you want to move a field into a register and right-justify the bit pattern for the
field, first use the field name to obtain the shift count. The shift count is the number
of bit positions the specified bit pattern must be shifted to right-justify the pattern.

Example:

MOV CL,RECB (SET SHIFT COUNT <8)

MOV BX,ERROR_BITS (SET ALL BITS IN RECORD
(Seeeesi11iseii1IB

SHR BX,CL (SHIFT 8 BITS.
;eoeeseseeeeeseiib

152 80881IBM PC Assembly Language Programming

The only important point to keep in mind is that shift counts are almost always
loaded into the CL register. When used in a shift or rotate operation, the CL register
specifies the number of bits to shift the operand (BX, in the example above).

STRUC

ENDS

Format: structure name STRUC
• • •

variable name (data
definition pseudo-op)
• • •

Structure name ENDS

The STRUC pseudo-op operates in a manner similar to RECORD but allows the
definition of storage at the byte level rather than the bit level. By using the data
definition pseudo-ops DB, DW, DD, DQ, and DT, data is defined within the
structure. Variable names used to define the data can then be used to access data

within the structure.

Storage must be allocated in a manner similar to the RECORD pseudo-op. How
ever, data that is allocated or initialized as single entries can be overridden with the
allocation statement. Multiple entries cannot be overridden. See the examples in
the IBM Macro Assembler m2in\x2i\ on page 5-43 for more details on overridable and
non-overridable entries.

You must reference data in the structure in the following manner:

1. Define the structure at the beginning of your program:

AREft STRUC

WIDTHl DM ? ;STORAGE FOR WIDTH

LENGTH DW ? 5STORAGE FOR LENGTH

AREA ENDS sEND OF STRUCTURE

2. Allocate storage within the data segment:

MY^DATA SEGMENT PARA 'DATA»

AREA.DATA AREA (E5,30)

MV^DATA ENDS 5End of the structure

Assembler Features 153

3. To reference the data, use statements similar to:

MOV fix,ftREft_DfiTft. WIDTH1

NAME

Format: NAME module name

This pseudo-op allows you to assign a unique name to a program module. It is
usually used at the beginning of the actual program, prior to the actual program
code. You cannot use a reserved word (8088 instructions or pseudo-ops) as the
module name. The linker uses either the name assigned to the module or the first 6
valid characters of the TITLE directive if the NAME pseudo-op is not used. If there
is no TITLE directive or the characters in the directive are invalid, the source
filename is used as the module name.

Example:

NAME MV.PROQRAM ;Assigns the name of MY_PR06RAM
;to the module.

INCLUDE

Format: Hlename

The INCLUDE statement causes the assembler to include the source code from the
specified file in the current assembly. The filename must be a valid MS-DOS file
specification, such as B:MATHFLE.ASM. The source statements are read from the
file MATHFLE.ASM and assembled into the current source code, beginning at the
INCLUDE statement.

The IBM Macro Assembler manual states that "nested INCLUDES are not allowed. If
they are encountered, then an error message results." A nested INCLUDE occurs
when you use the INCLUDE directive and the file specified in the directive contains
another INCLUDE statement. For example:

INCLUDE MATHFLE. ASM

causes the assembler to assemble the source statements of MATHFLE.ASM into the
current assembly. If MATHFLE.ASM contains another INCLUDE directive, such as:

NAME MATHFLE. ASM

INCLUDE FLOAT_POINT.ASM

an error message is generated by the assembler.

154 80881IBM PC Assembly Language Programming

GROUP

Format: name GROUP segname [,...]

The GROUP pseudo-op combines the specified segments (seg names) under one
name, so that they all reside in one logical 64K segment. The total length of the
combined segments must not exceed 64K.

The GROUP pseudo-op is another example of a directive which supports the
concept of modularized programming concepts. For example, you could designate
two or more code segments within a given module. Perhaps you want these code
segments and code the segment defined in another module to be combined and to
all reside in same segment. Figure 5-3 illustrates this. By using the GROUP state
ment, each specified segment is combined by the assembler into one segment.

The name field consists of an identifier used by the assembler for combining the seg
name entries in the statement. In Figure 5-3, the segments are logically combined
under the name: MAIN_SEG.

In this example source listing, all references are made via symbolic names; there are
no absolute references in the source file.

Module 1 Module 2

MAIN_SEGGROUPA SEG,B SEG
A_SEG SEGMENT

ASSUME CS:MAIN_SEG

MAIN SEG GROUP C SEG

C_SEG SEGMENf
ASSUME CS:MAIN_SEG

A_SEG ENDS
B_SEG SEGMENT

ASSUME CS:MAIN_SEG

C_SEG ENDS

B_SEG ENDS

Figure 5-3 The GROUP Pseudo-op

.RADIX

Format: .RADIX expression

.RADIX allows you to specify a new default numbering base. The assembler's
standard default is base 10, or decimal. Since the assembler normally uses base 10 as

Assembler Features 155

the default base, constants entered in binary, octal, or hexadecimal must use a
suffix character to denote the numbering base of the operand.

Example:

MOV ftX,0FFFFH I'H' for hoxadecimal

MOV PL, 277Q TQ' for Octal

MOV PL.eOlieseiB ?*B' for binary

By using the .RADIX directive, the default numbering base is changed and subse
quent entries in that base will not require the qualifying base suffix character.

Example:

.RPDIX 16 iChanga to hax

MOV ftX,0FFFF IS IN HEXPDECIMPL

•RPDIX 2 jCHPNBE TO BINfiRY

MOV PL,00110011 ;DPTP IS IN BINPRY.

END

Format: END [expression]

The END directive specifies the end of your source module. If you use an
expression in the operand field, then the assembler uses the expression as the
starting address of the program. Do not use an expression if the module is not the
main program module. Figure 5-4 illustrates the use of END in the main module and
a subordinate module.

In Figure 5-4, notice that only the main module requires the END pseudo-op with a
label. The label (START) defines the entry point of the program, where program
execution begins after MS-DOS loads the program. Subordinate modules require
the END pseudo-op only, without a label.

Often during program development you're faced with the problem of how to
assemble one portion of code if a certain condition is true and another if the

156 8088!IBM PC Assembly Language Programming

In the main module;

MY.CODE SEGMENT

START: PUSH DS

MY_CODE ENDS

END START

In a subordinate module;

MORE CODE SEGMENT

START_MORE: MOV CX,AX

MORE_CODE ENDS

END

Figure 5-4 Use of the END pseudo-op

condition is not satisfied. Conditional pseudo-ops give you this flexibility. A
common misunderstanding among novice programmers is that these statements
are run-time conditionals, that they apply to an assembled program when it is run
on the target machine. Conditional directives do not influence the manner in
which the program executes, but only what portions of code are assembled at the
time of assembly.

Table 5-3 lists the conditional pseudo-ops available to the programmer using the
IBM Macro Assembler. The conditional pseudo-ops test for a condition to be true or
false.

You can set the condition at the beginning of the module by using the = directive.
For example:

COMP_TYPE_ft - 1

COMP_TYPE_B - 1

COMP_TYPE_C - e

can be used to set conditions for the assembly of different portions of code for one
of three different computer types: A, B, or C. You can then use the conditional
directives to assemble the correct portions of code:

IFE COMP_TYPE_fi

$Assemble this code section if COMP_TYPE_A » 0

Assembler Features 157

ENDIF

IFE COMP.TYPE.B

;Then assemble this portion of code if COMP_TYPE_B « 0

ENDIF

IFE COMP_TYPE_C

^Then assemble this portion of code if COMP_TYPE_C « 0

ENDIF

Table 5-3

Conditional Pseudo-ops

Pseudo-op Condition/Function

IF expression True if expression is not 0

IFB <argument > True if the argument is blank.

IFE expression True if the expression is 0

IFNB <argument< True if argument is not blank.

IF1 True if pass one.

IF2 True if pass two.

IRON <argument1> < argument 2 > Trueif arg. 1 = arg. 2

IFDEF symbol True if the symbol has been
declared external by EXTRN
pseudo-op.

IFNDEF symbol True if symbol is not declared
external via EXTRN pseudo-
op, or if symbol is undefined.

IFDIF < argument 1 > < argument 2 > True if string arguments are
different.

ELSE Optional clause allows alter
nate code to be generated
when the condition is not sat

isfied. Only one ELSE per IF
allowed.

ENDIF Conditional block terminator.

Each IF must have an ENDIF.

158 80881IBM PC Assembly Language Programming

The previous example illustrates how one or more portions of code will be
assembled if the specified expression is true. In the preceding example, an
expression is true if it is equal to zero (IFE conditional used). This condition is
satisfied in the example for COMP_TYPE_C only. Types A and B are equal to one;
therefore, the expressions are evaluated as being false.

You can nest the conditional statements as in:

IFE COMP_TYPE_ft

;assemble this portion of code if true

MOV AL,DATA.BYTE ;Get data to send.

IFE SERIftL.PORTl

MOV DX,SER_P0RT1

;Serial portl true?

{If yes, then get port address

ELSE

MOV DX,SER_P0RT_2

END IF

END IF

{If it is not true then assemble
{using second port address

{Get port number

{Closes inner conditional

{Closes outer conditional.

The use of the ELSE clause allows an alternate portion of code to be assembled if the
preceding IF clause is not satisfied. Each nested conditional must include an ENDIF
clause which closes the conditional block properly.

The listing pseudo-ops allow you to control the manner in which various listings
are output by the assembler.

Table 5-4 depicts the listing pseudo-ops and their functions. For example, the
.XLIST can be used to halt the listing of source and object code. To re-enable the
listing, simply use the .LIST pseudo-op.

Example:

.XLIST

INCLUDE

.LIST

{Suppress listing

DOS.EGU {Include the DOS equate file

{Enable the listing

Assembler Features 159

Here the listing is suppressed so as not to list the entire DOS.EQU file. It is not
necessary that every module using the DOS equates also lists them. To do so would
create redundancy in your documentation, as several module listings would con
tain the same source statements.

Table 5-4

Listing Pseudo-ops

Pseudo-op Function

.CREF Enable cross reference output.

.XREF Disable cross reference output.

.LALL List complete macro text.

.SALL Suppress listing of macro text, and macro
object code.

.XALL List only source lines which generate
object code.

.LIST Enable listing output.

.XLIST Disable listing output.

%OUT text Display the text entry during an assem
bly.

PAGE (length], [width] PAGE with no arguments = go to the top
of the next page. With arguments, will set
page length and/or page width.

SUBTIL text Specifies subtitle to be printed on the sec
ond line of every page of the listing.

TITLE text Specifies the title to be printed on the first
line of every page of the listing.

.LFCOND List conditional blocks which evaluate as

false.

.SFCOND Suppress the listing of conditional blocks
which evaluate false.

.TFCOND Toggles the control switch for listing false
conditionals. /X option will reverse the
effect of the .TFCOND In a source file.

%OUT

Format: % OUT text

The % OUT pseudo-op allows a message to be sent to the display during assembly.
It is most often used when assembling a large source file, and you want to monitor
the progress of the assembly. By using the %OUT directive you can tell when a
portion of code is being assembled, or not being assembled, as is the case when the
directive is used during a conditional assembly.

160 8088!IBM PC Assembly Language Programming

Example:

IFE COMP_TYPE_ft asBambly for type P?

*OUT Now assembling for TfiNDY £000 ,Then display comp. type

"* icrwt--. I ur Other computer types

ELSE

IFE COMP.tYPE.B

*OUT Now assembling for COMPAQ

ELSE

IFE CGMP_TYPE_C

*QUT Now assembling for the IBM PC

ENDIF

END IF

ENDIF

.XCR£F and .CREF

Format: .XCREF

.CREF

These pseudo-ops suppress the cross-reference information (.XCREF) and enable
the cross-reference listing (.CREF). If no cross reference listing has been specified,
these pseudo-ops have no effect.

.LALL, .SALL and .XALL —
These pseudo-ops control the manner in which macro expressions are listed. .LALL
tells the assembler to list the entire macro text (including comments) during macro
expansions. .SALL suppresses the listing of all text and object code produced by
macro expansions, and .XALL permits only source lines that generate object code
to be listed. Macros are discussed in Chapter 6.

Assembler Features 161

.LFCOND, .SFCOND and
•TFCOND

This set of pseudo-ops controls the listing output of false conditional blocks.
•LFCOND enables the listing of conditional blocks that are evaluated by the
assembler as being false. .SFCOND suppresses the listing of conditional blocks that
evaluate as false, and .TFCOND toggles the current setting for the listing of false
conditional blocks. Pages 5-79 through 5-82 of the IBM Macro Assembler manual
detail these directives.

PAGE

Format: PAGE [length] [width]

The PAGE pseudo-op formats the listing file generated by the assembly. It can be
used to force a top of page or to set the page's length and the number of characters
printed on a line. When no operands are specified with the PAGE directive, the
printer performs a form feed to the next top of page. The page number is incre
mented by 1, and the listing continues.

When operands are specified, they set the number of lines printed per page and the
total number of characters printed per line. A special operand (-I-) increments the
chapter number and sets the page number equal to one. The format of the page
number printed at the top of each assembly listing is:

PfiBE CHftPTER # - PftBE #

To increment the chapter number, use the -I- operand with the PAGE directive.

Examples:

PAGE SS,132 tS«ts page length to SS lines
;and page width to 132 chars.
Sper line.

PAGE 60,80 ;Sets page » 60 lines.page
5and 80 chars_line

page ;(3o to the next page.

PAGE + ;Inc. chapter number.

TITLE

Format: TITLE text

TITLE defines the title of the listing and is listed on the first line of each page. If you
do not use the NAME directive, as explained previously, the first six characters of

162 80881IBM PC Assembly Language Programming

the title text are used as the module's name. You can enter up to 60 characters in
the text field. You can use only one TITLE pseudo-op per assembly.

Example:

TITLE Numbsr base conversions.

««*« SUBTTL *»*«

Formati SUBTTL text

The subtitle pseudo-op specifies a subtitle, which is printed on the line immedi
ately following the title. Unlike the TITLE directive, which is limited in use to once
per assembly, the SUBTTL pseudo-op can be used as many times as necessary.

Example:

SUBTTL Version 1.1.S

The IBM MACRO Assembler allows the use of operators within many of the source
statements of a program. The operators alter the manner in which the statement is
assembled. The operators can be classihed as attribute, value returning, record
specific, and those used to form arithmetic, logical, and relational expressions. The
value-returning operators SEG, OFFSET, TYPE, SIZE, and LENGTH were discussed
at the beginning of this chapter, as were the record specific operators SHIFT,
MASK, and WIDTH.

Attribute Operators

Pointer, Segment, SHORT

PTR

Format: newtype PTR exp

The pointer operator overrides the type or distance of the label. I have already used
this operator in previous programming examples to demonstrate how byte values

Assembler Features 163

can be referenced in data fields that have been defined with another type attribute
(word, double word, etc.). For example:

DECIMAL.TABLE DM 10000,1000,100,10

defines a table of decimal values with a TYPE attribute of word. By using a
statement such as:

MOV PL,BYTE PTR DECIMftL_TflBLE

you are able to access any single byte within the table. If you were to use a
statement like:

MOV PL,DECIMPL_TPBLE

an error message would be generated, since the TYPE attribute of the variable does
not match the attribute being used in the source statement. Since AL is a byte-wide
register, the DECIMAL_TABLE cannot be referenced without the use of the PTR
operator.

The LABEL pseudo-op and the operator THIS (discussed in a moment) can also be
used to allow the mixing of data types in variable access. Some examples are:

BYTE_DEFINe_T«BLE LftBEL BYTE

DECIMAL_TPBEL DM 10000,1000,100,10

or

BVTE_DEFINE_TABLE EQU THIS BYTE

DECIMHL.TPBLE DM 10000,1000,100,10

These would both allow the DECIMAL_TABLE to be accessed using byte-wide type
instructions as in:

MOV ftL,BYTE_DEFINE_TfiBLE

The segment and offset attributes of DECIMAL_TABLE are assigned to
BYTE_DEFINE_TABLE, while the TYPE attribute is changed from word to byte.

Similarly, the distance attribute (NEAR or FAR) of a label can be modified by using
the PTR operator:

FftR_ENTRY EQU FAR PTR LftBEL_ONE

LPBEE_ONE> PUSH ftX jSfiVE flCCUMULATDR

164 80881IBM PC Assembly Language Programming

This allows either intersegment or intrasegment calls and jumps to reference the
same entry point. If the label FAR_ENTRY was not defined, only intrasegment code
transfers could take place, as the label LABEL_ONE is assigned a NEAR distance
attribute due to the colon suffix used in its label definition.

THIS

Format: THIS attribute or type

The THIS operator assigns to an operand the distance attribute (NEAR or FAR) at
the current offset of the assembler's location counter. It can also be used to assign
an operand the current type and segment value designated by the location counter.

Examples:

BYTE VALUE

MV_TflBLE DM

EQU THIS BYTE

lee Dup<i0)

(assigns BYTE.VALUE
;a type attribute of BYTE

$to access bytes in table

PUBLIC

CODE ENTRY

CODE^ENTRY

EQU THIS FftR

;Oeclare as public

;PIlows another segment
gentry to this portion of
;code.

HIGH and LOW

Format: op-code operaudl
HIGH operand2
opcode operandl
LOW operaiid2

The HIGH and LOW operators allow you to isolate either the high or low bytes of a
number or an address expression. This operator allows the mixing of data types.
For example:

WORD.VAL OH ieE0H

and

MOV AH,HIGH WORD.VAL

move the high order byte lOH into the AH register. These operators were provided
to allow some degree of compatibility with the earlier Intel 8080 microprocessor.

Assembler Features 165

Segment Override Operators

DS, SS, ES
When I discussed the 8088 instruction set in the last chapter, I mentioned how
certain registers are automatically associated with each of the segment registers. At
times this can prove to be inconvenient. What if you want to use the contents of the
BP register to access data in the current data segment rather than the stack segment
BP is usually associated with? Fortunately, you are able to override this association
and are able to use the index, pointer, and base registers to reference data in other
segments.

For example, assume BP contains 20H:

MQV AX,DSsDECIMAL^TABLECBPD

This moves the 32nd word entry contained in DS:DECIMAL__TABLE into AX.
Other examples of segment override usage are:

MOV CL, BYTE PTR ES:CSn 5get byte value from
;ESsSl

MOV AXfDSsCBPl $get word value from DS:BP

Distance Attribute

SHORT

Format: JMP SHORT target

The SHORT attribute instructs the assembler to generate a 2-byte jump instruction
rather than the normal 3-byte jump instruction. The program transfer address must
be between +127 and -128 bytes from the jump instruction. This implies that the
label attribute of the target operand is of the NEAR type.

Example:

JMP SHORT THAT^LABEL 5MUST BE < (+) 127 BYTES

;FGRHARD

THAT.LABEL: MOV CX,NEW_COUNT 5

166 8088/IBM PC Assembly Language Programming

Expressions: Relational,
Logic^, Arithmetic

Relational Operators

EQ, NE, LT, LE, GT, GE
The relational operators test two operands and return a zero result if the com
parison is false and a word of all ones (OFFFFH) if the comparison is true. They are
usually combined with a bit mask, giving you a means to manipulate an instruction
(Table 5-5).

Table 5-5

Relational Operators

Format Function

argument-1 EQ argument-2 True if argument-1 = argument-2
(equals)

argument-1 NE argument-2 True If argument-1 < > argument-2
(not equal)

argument-1 LT argument-2 True If argument-1 < argument-2
(less than)

argument-1 GT argument-2 True If argument-1 > argument-2
(greater than)

argument-1 LE argument-2 True If argument-1 < argument-2
or If

argument-1 = argument-2

For example, if the label VALUE is found to be equal to 10:

OR AX,((VALUE EQ 10) AND 7) OR ((VALUE NE lO) AND 8)

it reduces to:

OR AX,7

and, if VALUE is not equal to 10, the statement is assembled as:

OR AX,a

Assembler Features 167

Logical Operators

AND, OR, XOR, NOT
I purposely used the 8088 OR instruction and a logical OR operator in the example
above. The second OR is the logical operator and is evaluated at assembly time,
whereas the first OR is the instruction generated by the assembler and is executed
by the 8088 during program execution.

Since the assembler contains the AND, OR, XOR, and NOT logical operators, it is
important that you do not confuse them with the 8088 instructions of the same
name. Although they perform the same logical functions, the operators are evalu
ated by the assembler, and the instructions are evaluated and executed hy the 8088.
This is a subtle but noteworthy distinction.

Arithmetic Operators —

MOD, SHR, SHL, +,
The arithmetic operators perform assembly time calculations on the specified
operands. MOD divides one operand by another and returns the result. For exam
ple:

VALUEi EQU 10

VALUE2 EQU 3

MOV AX,VALUE1 MOD VALUES

evaluates to;

MOV AX, 1

The SHR and SHL operators shift values either right or left a specified number of bit
positions and operate in a manner similar to the shift instructions in the 8088's
repertoire. However, the logical instructions, which have the same names, should
not be confused with the SHR and SHL operators. Remember that the operators are
used by the assembler for calculating a value to be used in an instruction or pseudo-
op.

The remaining arithmetic operators perform the basic math functions of addition,
subtraction, division, and multiplication. Some examples of their usage are:

MOV AX,i6«S0 ;Moves 4E0 into AX

MOV AX,VALUE1/VALUES ;Moves the quotient of the division
;into AX

MOV CX,TABLE_END-TABLE_START ;Number of bytes in the table

168 8088!IBM PC Assembly Language Programming

The instruction:

MOV CX,SIZE TABLE

also loads the CX register with the total number of bytes in the table.

The order in which operators are evaluated in an expression is discussed in the IBM
Macro Assembler manual on pages 4-20 and 4-21.

In the next chapter I will discuss the Macro pseudo-ops and their usage. Included in
the chapter is a complete Macro library for MS-DOS 2.0. The library is also included
on diskette and should enable you to write programs for the IBM PC and compati
bles in a more efficient and structured manner.

1. ASSUME instructs the assembler which registers to associate
with each segment in the program.

2. A procedure can either be of the type or the type.

3. Match the pseudo-ops which define data for each type listed below.

A. Ten Bytes F. DB
B. Byte G. DT
C. Double Word I. DQ
D. Quad Word J. DW
E. Word K. DD

4. Which pseudo-op allows redefinition of a symbolic name with a value?

A. EQU

B. =

5. To increment the chapter number of a listing use the directive.

Two very important concepts are discussed in this chapter, macros and the IBM
operating system, PC-DOS/MS-DOS. Tve taken the liberty of combining the two
subjects in one chapter for a good reason. Included in the chapter is a discussion of
a program containing macros for all of the MS-DOS and many of the BIOS calls used
by the IBM. By using these predefined macros, your programming time and
productivity will be increased. Because the macro definitions invoke MS-DOS
function calls, this chapter seemed to be a logical place to discuss both.

By the end of this chapter, you will know what macros are, how to create your own
macro definitions, and how to use them. You'll also understand the manner in

which MS-DOS manages the resources in your IBM PC. After reading the first part
of this chapter, which explains macro definitions, you should reread the macro
listing pseudo-ops discussed in Chapter 5.

Macros allow you to assign a series of often used source statements to a macro
name, and then reference the entire sequence by specifying the macro name in the

169

170 80881IBM PC Assembly Language Programming

op-code field of a source statement. As an example, let's say you need to repeatedly
use the following instruction sequence:

PUSH PX

PUSH BX

PUSH CX

PUSH DX

PUSHF

You would normally code the entire sequence every time it is need in a program.
By assigning the sequence to a macro definition, the instructions are defined once,
and the macro name is used to generate the instruction sequence. You define a
macro in the following manner:

SPVE^PLL.RESS MPCRO sMacro definition header

PUSH PX

PUSH BX

PUSH CX

PUSH DX

PUSHF

ENDM

Body of the macro

I

I

1

\ /

ENDM is the macro terminator

The macro is assigned the name SAVE_ALL_REGS by the macro pseudo-op. The
ENDM pseudo-op terminates the macro. Anytime you need to save all the registers
in yoiir program, use the macro name SAVE_ALL_REGS in the op-code field of an
assembly language statement. Figure 6-1 demonstrates how this macro and a macro
definition that restores all the registers can be used in a program.

Dummy Arguments

Optional dummy arguments can also be specified in the macro definition, as
depicted in Figure 6-2.

Notice in Figure 6-2 that the assembler places a plus sign to the left of any source
statements that appear as a result of the expansion.

This particular macro defines a routine that places a string of characters typed from
the keyboard in a predefined buffer area. The dummy argument KBDBUFFER is
replaced by the name of the keyboard buffer used in the program. If your program

Macros and MS-DOS 171

defines a buffer area in the data segment and you name this buffer MY_KEYS, you
would invoke the macro by specifying the macro name and the buffer name as
follows;

OKBLINE MY KEYS

SAVE_ALL REGS MACRO ; Macro header

PUSH AX ;Bodyofthe macro
PUSH BX

PUSH CX

PUSH DX

PUSH SI

PUSH Dl

PUSH DS

PUSH ES

SAVE_ALL_REGS ENDM ;Macro terminator

GET ALL REGS MACRO

POP ES

POP DS

POP Dl

POP Si

POPDX

POPCX

POPBX

POP AX

GET ALL REGS ENDM

Figure 6-1 Example Macro Usage

Define the macro:

@KBDLINE MACRO KBDBUFFER
MOV AH,F KBDLINE ;MSDOS function OAH

LEA DX.KBDBUFFER ;Address of user buffer

INT MSDOS ;Msdos type 21H interrupt
ENDM ;End of macro

Invoke the macro in the source program:

©KBDLINE MY_KEYS

At assembly time the assembler expands the macro as:

©KBDLINE MY_KEYS
+ MOV AH.F^KBDLINE ;MSDOS function OAH

+ LEA DX,MY KEYS lAddress of user buffer

-1- INT MSDOS ;Msdos type 21H interrupt

Figure 6-2 Macros which contain dummy arguments

172 8088!IBM PC Assembly Language Programming

The assembler expands the macro definition above by substituting the statements
which comprise the macro. The statements are inserted in the assembly at the point
where the macro definition is encountered. The real buffer name replaces the
dummy argument (KBDBUFFER) in the expansion. You can use more than one
dummy argument in a macro definition by separating each argument by a comma as
shown in Figure 6-3.

Define the macro:

@SETJNT VECTOR MACRO TYPE,SEG_VECTOR,OFFSET_VECTOR
PUSH DS ;Save old data segment
MOV AX.SEG VECTOR ;Segment of new interrupt vector
MOV DS,AX ;Place in DS

MOV DX,OFFSET_VECTOR ;Offset of the service routine

MOV ALJYPE ;The MSDOS type number of the interrupt
;vector to change

MOV AH, F_SET_I NT_VECTOR ;MSDOS function 25H to set new

^interrupt vector
INT MSDOS ;MSDOS interrupt 21H
POP DS ;Restore old data segment
ENDM

Invoke the macro:

@SETJNT_VECTOR MACRO OCH,MY_CODE,RSJNT_1

Figure 6-3 Macros with multiple arguments

Figure 6-3 shows how multiple dummy arguments are passed to a macro. Simply
separate each with a comma. You may optionally not specify one or more of the
parameters when you invoke the macro; in which case, the value for that param
eter is set to zero (null value). In the example shown, a macro is defined which,
when invoked, changes the interrupt vector for the specified interrupt type. The
type number specified is OCH, which happens to be the routine for the serial I/O
board of the IBM PC.

Macros extend the capabilities of the assembler by allowing you to define your own
op-codes for often used instruction sequences. Don't confuse macro definitions
with procedures. Macros generate in-line code (by macro expansion) every time
the macro is invoked. Procedures define a set of instructions which, when
assembled, reside in only one portion of memory and are called when needed.

Macros are used when the instructions are few in number, yet often used, or when
calling a procedure would cause an unacceptable delay in processing speed, the
processor has to push and pop the instruction pointer and perhaps the code
segment register from the stack.

Since one macro statement can be used in place of several instructions, source
programs that use macros are more readable and shorter in length. The object

Macros and MS-DOS 173

module is usually longer, due to the in-line code produced by the macro expan
sions.

Macro definitions are usually defined in a separate source file, thereby creating a
library of definitions. The file is included in the assembly via the INCLUDE
directive, as shown in Figure 6-4.

Page 60,132
TITLE ANY.PROGRAM
SUBTTL USE_OF_MACROJNCLUDE

.XLIST

INCLUDE B:DOSEQU.EQU

.LIST

IF1

INCLUDE B:MACFLE.MAC

ENDIF

Figure 6-4

Notice that the INCLUDE directive, which specifies the macro library, appears
within a conditional assembly block. The IFl pseudo-op includes the macro library
on the first pass of the assembler but not on the second pass. The file must be
included on the first pass, so that the assembler can resolve any macro definitions
referenced in the program. However, the IFl pseudo-op prevents the macro library
from being read on the second assembler pass, which generates any listings that
have been specified. Therefore, the macro library does not appear in the listing file.

You might wonder why this is such a big deal. The reason is quite simple. Assume
that you have created a program comprised of multiple modules. Each module
utilizes macro definitions as defined in the macro library MACFLE.MAC (Listing 6-1
in Appendix D). As each module is assembled separately, the library file would be
included in every module's listing! Needless to say, you need to list the macro
library only once (as a source file), not every time an assembly listing is generated.

Local Labels

Labels used in a macro definition must be declared local to the macro, by using the
LOCAL pseudo-op. LOCAL informs the assembler that the label is part of a macro
definition and, as such, the label should be changed each time the macro is
invoked. The reason the label must be altered is that the assembler requires that a
label be defined only once in a source program.

174 80881IBM PC Assembly Language Programming

Consider the following source statements:

dINPORT mcRQ

HERE8 IN AL,DX ;INPUT CHAR

CMP PL,IBM

JNE HERE

ENDM

eIMPORT

eIMPORT

. FROM A PORT

;ESC CHARACTER?

;M0? THEM LOOP

;Invoke a macro for port input

;Do it again.

When expanded, the macros produce the following code:

HERE8 IN AL,DX

CMP AL,IBH

JNE HERE

HERE8 IN AL, DX

CMP AL,IBH

JNE HERE

;INPUT CHAR. FORM A PORT

5ESC CHARACTER?

;N0?, THEN LOOP

;INPUT CHAR. FROM A PORT

;ESC CHARACTER?

5NO? THEN LOOP

What do you think the assembler will do? Obviously, the assembler will not be able
to distinguish which label HERE the program should branch to. In this case, the
assembler generates an error message to inform you that it has encountered a
symbol with multiple definitions—HERE.

Since macros are usually used more than once in a program, any labels appearing
within the body of the macro must be declared local to it. Failure to declare them
local causes the assembler to generate an error message. LOCAL must be used
immediately after the macro statement. It must be used before any other statements
in the macro, including comments. Figure 6-5 illustrates the use of the LOCAL
pseudo-op.

@SET^C_CHECK MACRO SWITCH1,SWITCH2

FETCH

LOCAL FETCH

MOV AL,SWITCH1 ;Set or fetch control C kbd

OR AL iChecking. Z means fetch state
JZ FETCH

MOV
1.

DL,SWITCH2 ;Set the state

1.

MOV AH,F_SET_C_CHECK ; MSDOS function 33H

INT MSDOS ;lnterrupt 21H
ENDM

Figure 6-5 Use of the LOCAL pseudo-op

Macros and MS-DOS 175

When expanded, the assembler generates a unique label in place of the label
specified as LOCAL (FETCH, in this example). This prevents a multiply-defined
symbol error message from being generated on repeated macro expansions.

Other Macro Pseudo-ops

Other macro pseudo-ops facilitate the definition of macros. Table 6-1 lists the
macro pseudo-ops available with the IBM Macro Assembler. Additionally, any of
the conditional pseudo-ops discussed in Chapter 5 may also be used in the body of a
macro definition. I'll discuss some macros that use conditional pseudo-ops later in
this chapter.

Table 6-1

Macro pseudo-op definitions

Pseudo-op Function

name MACRO dummylist Macro header. Optional arguments may be specified
In the dummylist. A macro name must always be
specified.

ENDM Macro terminator. Ends macro definition.

EXITM When encountered, the macro expansion terminates
Immediately.

LOCAL dummylist When encountered, the assembler will create a

unique name for each occurrence of any argument
listed as a dummy parameter.

REFT expression When encountered by the assembler, any statements
between REPT and ENDM are repeated by the
number of times specified In the expression field.

PURGE macro-name Deletes the specified macro from the assembly,
allowing the memory the definition occupied to be
reused.

IRP dummy, <argument-list> Specifies a number of elements (argument-list),
which are to be substituted for each occurrence of the

dummy parameter within the block. (See text for a
more complete definition).

IRPC dummy,string Specifies a number of characters which are to be
substituted for each occurrence of the dummy param
eter within the block.

Code produced by macro expansions.

Object code In the expansion.

continued

176 8088!IBM PC Assembly Language Programming

Table 6-1

Macro pseudo-op definitions

Macro Operators Function

text&text Concatenates text or symbols In the macro expan
sion.

::text inhibits the listing of a comment following the double
seml-cplon.

icharacter The character following the exclamation point Is
entered literally In the expansion.

% expression Converts the expression to a number, using the cur
rent radix.

PURGE

Format: PURGE macroname[,.

The PURGE pseudo-op deletes the specified macro definitions from the assembly.
The assembler deallocates the memory space it has reserved for the macro defini
tion. Once a macro has been purged, the memory space it occupied can be used by
the assembler for other storage requirements.

If you purge a macro from the assembly and then reuse the macro definition, the
assembler generates an error message. You can use PURGE to delete macros that
are never used in a program module, or you can use the directive to delete a macro
if it will not be used again in the source module.

REFT

Format: REFT expression

The REPT pseudo-op causes the statements appearing between REPT and ENDM to
be repeated the specified number of times.

Example:

TnSLE.BEN nnCRO INITl,MORDS

NUMBER •• INITl

REPT WORDS

SQUARE = NUMBER»NUMBER

NUMBER - NUMBER-fl

;Macro name and parameters

;Set initiral value

;Parameter specifies # of repeats

;Generate the square

;Increment to next number to square.

Macros and MS-DOS 177

DW SQUARE ;Define word in memory

ENDM ;End repeat block.

ENDM ;End Macro

This macro produces a table of squares. The macro is invoked by specifying the
macro name along with the parameters INITl and WORDS. INITl is the initial value
for the first number to square, and WORDS is the total number of squares to
generate (also the number of word entries in the table). The macro is invoked as
follows:

TABLE_GEN 1,10 iGener.te a le-entry table of squares
{beginning with 1.

The table will contain the following values: 1, 4, 9,16, 25, 36, 49, 64, 81, and 100.

You can also use the REPT and ENDM pseudo-ops outside of a macro definition.
This provides an easy means of duplicating source statements.

IRP

Format: IRP dummy,
< argument list >

The IRP pseudo-op causes each successive entry in the argument list to be sub
stituted for the dummy parameter. Let's say you want to define the table of squares,
as was done in the previous example, but this time using the IRP pseudo-op. The
table could be generated as follows:

IRP SQ_VflL, <1,4,9, 16,25, 36,49,64, 81, 100>

DW SQ_VAL

ENDM

Each value in the argument list is substituted for the symbol SQ_VAL, creating a 10-
entry table of squares.

IRPC

Format: IRPC dummy, string

This pseudo-op lets you define ASCII character strings in memory. It is similar to
the other repeat pseudo-ops, in that it causes a repetition of the block of statements

178 80881IBM PC Assembly Language Programming

appearing between the IRPC and ENDM directives. The pseudo-op can be used in a
macro definition or on its own (as can the other repetition pseudo-ops), as follows:

IRPC

DB

ENDM

MESSP6E,Help!

MESSAGE

$Character string = 'Help!'

;One byte for each byte in the

;message.

The sequence above causes the following ASCII codes in the word Help! to be
stored in memory as 48H, 65H, 6CH, 70H, and 21H.

EXITM

Format: EXITM

The EXITM pseudo-op causes the immediate termination of a macro expansion hy
the assembler. It is used after a conditional pseudo-op within the macro, which
causes the assembler to encounter the EXITM pseudo-op and terminate the expan
sion. Figure 6-6 illustrates the use of the EXITM pseudo-op.

@MY MACRO MACRO
IFETRUE

XCHGAX, BX

EXITM

ENDIF

XCHG AX.CX

ENDM

;Swap AX and BX if condition is true
;Then exit

;Else if the condition is false,
;swap AX and CX

To force the condition in a source program:

TRUE = 0 ;Set true to 0

@MY_MACRO

-H XCHG AX.BX ;Swap AX and BX if condition is true

Figure 6-6 Use of the EXITM pseudo-op

In the example shown above, EXITM is used within a conditional block. If the label
of TRUE is evaluated to he zero by the assembler, the portion of code residing in the
conditional block is assembled pCCHG AS,BX). Since we set TRUE equal to zero
prior to invoking the macro, the conditional block, which includes the EXITM
pseudo-op, is assembled. When the assembler encounters the EXITM pseudo-op,
the macro expansion is terminated as if the ENDM directive had been encountered.

Macros and MS-DOS 179

Macro Operators

Several operators enable you to construct complex macro definitions. Just as the
operators used in source statements modify the instructions generated by the
assembler, the operators used in a macro definition affect the manner in which the
assembler expands the macro.

&

Format: & expression

The ampersand (&) operator concatenates text or symbols found in the macro
definition. It can be used to dynamically define instructions, registers, or even
labels within a macro.

CLS MACRO REG,COND,LINES

CLS®i MOV fi»REG, "&COND"

MOV BX,LINES

ENDM

If the macro were to be invoked as:

CLS H,Z,S4 ;

itwouldbe expanded as:

CLSHi MOV AH,"Z"

MOV BX,£4

In this example, a register was defined by the parameter REG, the ASCII character Z
was defined by the parameter of COND, and the value to be moved into the BX
register was defined by the parameter LINES.

Another operator suppresses the expansion of a comment. When the assembler
encounters a double semicolon the comment that follows is not expanded
during assembly.

Example:

;;This line will not be part of the expansion.

180 80881IBM PC Assembly Language Programming

%

Format: % Expression

The percent operator (%) converts the specified expression to a number. The
number returned will be in the current radix. Use of the percent operator is limited
to macro arguments, as illustrated below:

ft.MPCRO MnCRO PARAMETER^l

DB PARAMETER.1

ENDM

;Define the macro.

;Define byte storage.

;End of the macro.

Once the macro is defined, invoke it and use the % operator to specify the
parameter, as follows:

X = 10

VALUE » 0

REPT X

VALUE = VALUE+i

A^MACRO %VALUE

ENDM

5NUMBER OF TIMES TO REPEAT MACRO

;SYMBOL DEFINED FOR PARAMETER

5REPEAT THE NEXT STATEMENTS ^X» TIMES

;INCREMENT VALUE

5 INVOKE MACRO, CONVERT VALUE TO

;A NUMBER IN CURREr^T RADIX

5END OF REPEAT

The above section of code invokes the macro definition A_MACRO ten times.
VALUE is substituted for the dummy argument PARAMETER_1 each time
A_MACRO is invoked. Since the label VALUE is assigned a numeric value that is
incremented prior to each macro invocation, the sequence of instructions pro
duces a 10-byte table of OIH through OAH.

The operating system (OS) of the IBM PC is an advanced and powerful operating
system. The combination of the PC's hardware design and its operating system
opened up a new world to personal computer users, programmers, and third-party
hardware suppliers. The operating system was originally developed by the Seattle
Computer Company and sold to Microsoft, which continually improves upon the
OS, with the latest version (at this writing) being MS-DOS version 2.10.

Macros and MS-DOS 181

Operating Systems

An operating system is the software that manages the resources of the computer
(hardware). It is responsible for the management of I/O devices, including the
video display, disk drives, and other functions, such as memory allocation.

The system is also responsible for the user interface, the manner in which the user
of the system receives and requests services from the OS. Utility programs that
perform specific device functions are considered to be an adjunct of the operating
system. These programs usually perform such functions as formatting a diskette,
copying one file to another, and so on. MS-DOS contains similar utilities and a
command-line user interface, in which you type a command line from the key
board that is actually a request for a system resource or service.

Aside from the user interface level, which allows you to converse with the operat
ing system, MS-DOS has standardized the method of access to the functional calls
within the operating system. These routines provide you with easy access to most
of the major operating system functions necessary to write application programs.
If you write your programs in such a manner that they interface to the hardware of
the IBM (disk drives, etc.) through MS-DOS function calls, you can be assured that
the programs will run on other MS-DOS computers with little if any modification.

This is the major advantage inherent to MS-DOS, device independence. Device
independence means that you do not have to concern yourself with the physical
aspects of the hardware for a given machine. It does not matter to you if the printer
port for the computer is at port 03C0H or at 0030H. You need only know that by
using the appropriate MS-DOS function call, the character in the register will be
sent to the printer if one is attached to the system.

MS-DOS accepts user requested function calls and links those requests to lower
level functions that are machine specific. The function calls requested are linked to
BIOS, the Basic Input/Output System of the IBM PC. BIOS is responsible for the
actual hardware interface of a given machine.

Although this description is greatly simplified as to how MS-DOS and BIOS inter
act, it illustrates the fact that the BIOS implementation may be slightly different
from one compatible computer to the next. However, MS-DOS has been standard
ized in such a manner that you are somewhat isolated from the hardware dif
ferences.

The following discussion details the functional calls found in MS-DOS and their
usage. The information describing these calls in IBM's DOS Technical Reference
Manual is minimal at best and is not well suited to novice programmers.

All of the functional calls in MS-DOS lend themselves nicely to being defined as
macros. Listings 6-1 and 6-2 (see Appendix D) define the MS-DOS macro calls used

182 80881IBM PC Assembly Language Programming

to invoke MS-DOS function calls. Before looking at the programs, let's look at the
mechanism through which MS-DOS manages the IBM PC's resources.

Function Calls

When I discussed the 8088's instruction set in Chapter 4, I described the INT
instruction as a shorthand method of calling a procedure. When the 8088 encoun
ters the INT instruction, the current contents of the IP and CS registers are saved on
the stack, and the registers are then loaded with new values that send program
execution to the appropriate interrupt service routine.

The IBM operating system, PC/MS-DOS, uses interrupt types 20H - 27H. MS-DOS
uses interrupt type 2IH almost exclusively for executing function calls. MS-DOS
expects that certain registers contain certain values, or addresses, when the type
2IH interrupt routine is encountered. Specifically, AH is used as the messenger to
inform the operating system of the function being requested.

The function specified might be to read a key from the keyboard into a buffer,
display a character, or to write a sector of information to disk. MS-DOS interprets
the value in AH as a function code and executes a specific function based upon this
value.

Other registers and, for some function calls, memory areas must be initialized prior
to using the function calls. For example, most disk functions require that a Disk
Transfer Area (DTA) or a file control block be established in memory and that the
DX register point (contain the base address) to these areas. Other registers may be
required for other specific purposes. Each function call uses the registers of the
8088 in a slightly different manner and for slightly different purposes.

The minimal format for executing an MS-DOS system call is:

MOV AH,FUNCTION.CODE ;6et function code

INT MSDOS {EXECUTE DOS INTERRUPT TYPE EIH

where FUNCTION_CODE is the MS-DOS function request number, (read from
keyboard, display a character, etc.) and the label MSDOS is equated to 2IH, the MS-
DOS interrupt type number for function requests.

If the instruction sequence depicted in the preceding example is used often within
a program, it would save you a considerable amount of time if only one source
statement had to be typed, as opposed to the two shown above. By defining the
instruction sequence as a macro name, only the macro name needs to be entered
into the source file where the instruction is required, as follows:

Macros and MS-DOS 183

eWAITKEY MACRO

MDV fiH,F_WAITKEY ;FUNCTION REQUEST

INT MSDOS ;DOS CALL

ENDM

Now the instruction sequence is assigned to the macro name ©WAITKEY. The
instruction sequence is generated (or expanded) in the assembled version of the
program wherever the assembler encounters @WAITKEY.

In the example above, the symbol F_WAITKEY is used in place of the absolute
value for the function. The label MSDOS is similarly defined elswhere in the file to
have the value 21H; the value for the MS-DOS function call interrupt type. I have
defined all such MS-DOS calls as macros in MACFLE.MAC and included them in

Listing 6-1 in Appendix D.

DOSEQU.EQU, the other file of interest, is shown in Listing 6-2 in Appendix D.
This file is the DOS equate file, which contains all of the equates used for the
function code numbers under MS-DOS 2.10. If you use the files DOSEQU.EQU and
MACFLE.MAC in your program modules, you must use the INCLUDE pseudo-op to
read them into your assembly as follows:

. XLIST

INCLUDE DOSEQU.EQU

.LIST

IFl

INCLUDE MACFLE.FLE ;In<^lvd« macro file on pass 1 only.

ENDIF ;End of conditional block.

The DOS equate file must be read on both passes of the assembler or a phase error
will result. Phase errors occur when the assembler finds a different value for a label,
variable, or procedure on the second pass than it found during the first pass.

.XLIST and .LIST inhibit the listing of the equate file for the same reason IFl and
ENDIF are used to inhibit the macro file from being included in the listing. The
difference between using the .XLIST/.LIST and IFl/ENDIF directives is that the
assembler reads the DOSEQU.EQU file on both passes but reads the MACFLE.MAC
file only during the first assembler pass. In either case, it is not necessary to include
these files in the listing file, unless you happen to own your own paper mill and are
not concerned with wasting paper when you print out the listing file.

You'll notice in Listing 6-1 that the labels BIOS and MSDOS are equated at the
beginning of the macro file. I don't believe that Microsoft will ever change the
interrupt type number for the function calls, but in keeping with earlier discussions

184 80881IBM PC Assembly Language Programming

of defining labels, a label is assigned the numeric value for the BIOS interrupt type
and the most often used MS-DOS interrupt type. Should they change, simply
change the interrupt type number assigned to the label to the new value. You won't
have to edit any of the macros if the interrupt type is redefined.

Each macro in Listing 6-1 is commented as to the MS-DOS function invoked and any
other special considerations you should be aware of. Look at the macro that defines
function code OIH in Listing 6-1. The function waits for a key to be pressed at the
keyboard and moves the character typed at the keyboard into the AL register. The
character is also echoed to the display.

Other than preparing the AH register with the function code OIH, prior to execut
ing the INT 21H instruction, no other special preparations are necessary. After
executing the function, the user program would then process the character
returned in AL.

Minimal Programming
Considerations ——

Many of the MS-DOS function calls expect dedicated areas to he established in
memory prior to issuing a function call. Within these dedicated areas there may be
several bytes or words that you must initialize to certain values prior to invoking
the MS-DOS function.

When using the character oriented keyboard functions, OIH, 06H, 07H, and 08H,
you don't need to have a special RAM area established, as the character is returned
in AL. However, there are two methods available to obtain a line of keyboard input.
You can either repeatedly use one of the single character function calls and build
the string in a buffer area or use the MS-DOS function call OAH, which waits for a
line of input to be entered from the keyboard.

If the latter function is chosen, a buffer area must be defined in the data segment as
follows (Note: You can use any valid names for the labels shown, hut the reserved
memory must remain the same):

;Maximum characters allowed.

;Number of characters typed.

;The actual buffer must be as
{large as the maximum chars
{specified in MPX.CHftRS.
{It can be larger or smaller
{than the value used in this
{example.

The buffer area consists of a defined byte which communicates to the function
OAH, the maximum number of bytes you expect to be entered from the keyboard. If
you exceed the specified number of characters when entering the input line, the

MPX.CHPRS: DB (?)

CHftRS^TYPED DB (?)

KBDBUFF DB 32

Macros and MS-DOS 185

function produces a tone at the speaker (beep) and won't accept any further input
except for a carriage return (which must terminate the input line).

On entering the function, DS:DX must point to the beginning of the buffer area
MAX_CHARS. You can use LEA DX,MAX_CHARS to load DX with the address
pointer before invoking the function. The maximum number of characters the
function is to return must be specified in MAX_CHARS prior to calling the function.
The maximum count must include the carriage return as the terminator to the
string. If the anticipated input is four characters as in GARY, then set MAX_CHARS
to 5. Four characters and the carriage return will then be accepted by the function.

On return, the number of characters actually typed from the keyboard will be in the
memory location CHARS_TYPED. You can use this information as a count factor
to move the data from the keyboard buffer to another buffer if you like (See the
MOVS instruction).

Listing 6-3 in Appendix D contains a short program that accepts a line of input from
the keyboard and displays what was typed. Notice the creation of the necessary
keyboard buffer area KBD_BUFFER at the beginning of the data segment. Notice
also that the $ terminator is defined in memory at the label DELIMITER. I'll discuss
why I used the delimiter in a moment when the display routines are discussed. The
program uses macro definitions found in the macro file, MACFLE.MAC, and the
function codes are part of the equate file, DOSEQU.EQU.

The example program KEYDSP in Listing 6-3 uses the following macro calls:

ecLS

eCHARDSP

eVDLINE

eCDN_'lNPUT2

eKBDLINE

eCRLF

eWAITKEY

-> Clears the display.

~> Displays the character in DL

-> Display a line of text pointed to by
DS:DX, and terminated by 4>.

-> Wait for a character to be typed at the keyboard, and
return it in ftL.

-> Get a line of input from the keyboard.

-> New line function, generates a carriage
return, linefeed, places the video cursor
on the 1st column, next line.

~> Waits for a key to be entered from the keyboard
and echoes the character to the display.

186 8088!IBM PC Assembly Language Programming

The program prompts you for keyboard input, accepts what you type from the
keyboard, and displays it. The program then asks you to press any key to continue
and repeats the entire program. To terminate the program, type Control-C from
the keyboard, and the program ends, returning you to DOS.

Review the macro definitions in the MACFLE.MAC listing for the keyboard func
tions OIH, 06H, 07H, 08H, OAH, OBH, OCH. All of these functions can be used to
retrieve a character from the keyboard. The difference between the functions is
that some automatically echo the keyboard character to the display while others do
not. Some functions (such as OIH) will not return until a character is entered from
the keyboard. Other functions recognize the Control-C character while others do
not check for the control character. Each function is summarized in the MAC

FLE.MAC listing.

The Stack Segment

The stack segment is established as 100 words (200 bytes), which is more than
enough for this program. If the program were more complex, the stack may have to
be allocated more memory.

The Data Segment

The data segment contains all the necessary buffers and messages used in the
program. The segment contains the keyboard buffer area already discussed and all
of the messages used to converse with the user. The delimiter $, is required by the
MS-DOS function call 09H, which displays a line of ASCII text pointed to by DX.
The delimiter terminates the text to be displayed and, when encountered during
the line display function, terminates the function and returns control to your
program. The terminator is also required for the MS-DOS function 09H.

The Code Segment

The code segment for the program in Listing 6-3 contains instructions to make the
program perform the desired task; it accepts and displays input from the keyboard.
The program logic is shown in Figure 6-7.

The source program in Listing 6-3 is comprised of mainly macro statements. It is
comparable to viewing a program which was written in a high level language, in
that the macro names describe a function and not necessarily the instructions
which comprise the function itself.

Macros and MS-DOS 187

BEGIN2:

START

Save return address in DS,

and save zero offset on stack.

Display message:
Prompt user to hit any to
continue.

Walt for a key to be entered
from the keyboard
Use MSDOS function call.

Display messages & wait for
a line of Input from the
keyboard (30 chars, maximum)

Display what was typed.
Fomiat the display.
(CRLF)

CLR BUFFER
Call the procedure to clear
the buffers.

Jump to BEGIN2:, restart
the program. Use Control-C
to end the program.

Figure 6-7 Flow Chart for KEYDSP.ASM

If you wanted to, you could define a macro language that could appear as if it were
a high level language. The only disadvantage is that the instructions comprising a
macro definition are expanded as in-line code every time a macro is encountered.
This is not a very efficient use of memory and is not a recommended programming
habit.

When repetitive instruction sequences produce more than a few bytes of code, it is
better to code the sequence as a procedure and not define the sequence as a macro
definition. This results in a reduction of executable code produced by the
assembler.

188 80881IBM PC Assembly Language Programming

The instructions that comprise the body of each macro are present in the assembled
listing of the program. They immediately follow the macro name. The assembler
places a + in column 31 of the listing, indicating that the current line was generated
due to a macro expansion.

Rather than explain each of the DOS functions in detail, I'll explain how to use the
functions in programming examples. The macro definitions have many comments
and require little explanation here. You should examine the macro definitions in
detail before experimenting with their usage. I will explain dedicated RAM buffers
or areas that must be established prior to using the functions. The explanations
appear in the programming examples as they are presented.

You are now ready to earn your wings as an Assembly Language programmer. In
Chapter 7 I'll show you a complete programming example from start to finish,
from conceptual design to actual implementation. So "Kick the tire and light the
fire," let's GO!

1. Macro definitions assign a of often used to a
macro name.

2. A macro is composed of a , a , and a .

3. ENDM the macro definition.

4. To invoke a macro, use the .

5. The LOCAL pseudo-op assigns a name to a label each time the
macro is invoked.

6. The minimal format for executing a MS-DOS function call is: (Write in the
form below)

7. Why do MS-DOS function calls lend themselves to macro definitions?

NUMBERSY.ASM, the program discussed in this chapter is like the others I have
presented, in that the program is capable of standing on its own. It is completely
interactive with the user and illustrates many of the principles that I have discussed
so far. (See Listing 7-1 in Appendix D.)

For those who are still trying to comprehend how decimal, binary, and hex
adecimal relate to each other, this program should answer your questions. The
program converts numbers between 0 and 65,536 from one base to another.

I'll discuss the program from its beginning premise to its ending statement. This
program should serve as an example for defining, implementing, and documenting
your future programs.

This program allows you to enter a number in one of three number bases, decimal,
binary, or hexadecimal, and the computer translates the number to the other two
bases and displays it in each of the numbering systems. This type of program

189

190 80881IBM PC Assembly Language Programming

illustrates the usefulness of the computer in performing repetitive and error-prone
calculations.

If you recall the discussion of numbering systems and conversions from one base to
another in Chapter 1, there were many repetitive steps involved in the translation
from one number base to another. Why not let the computer handle the conver
sion? Simply choose the number base you want to convert from (decimal, binary,
or hexadecimal), enter the number, and let the computer perform the conversions
to the remaining numbering systems.

The program performs the following:

1. Accept a number in;

A. Decimal, and convert the number to hexadecimal and binary.

B. Hexadecimal, and convert the number to binary and decimal.

C. Binary, and convert the number to decimal and hexadecimal.

2. Display the conversions.

3. Asks you if you want to repeat the program and perform another conversion.

4. ' If yes, go to step 1; else exit the program and return to MS-DOS.

One of the first things you should do is sketch out the program using a flow chart or
write down the programming steps. Both methods are shown in Figure 7-1. A flow
chart or some other written form of the program's flow helps break the program
down into its modular components. Each module performs a specific function and,
as such, allows others to better understand the program and allows easier modifica
tion of the program if necessary.

The program must translate numbers entered in decimal and hexadecimal form to
binary. The binary number must then be converted to the remaining number base.
Similarly, the program converts numbers entered in binary to decimal and hex
adecimal.

It is not enough that you are able to conceive of the algorithm, or steps required to
satisfy the application, and perform the conversion. In this program, as in others
you will write, the modules that support the application must be present and a part

Number Conversions: A Programming Example 191

INIT:

►START.HERE:

No

Yes

Call Procedure

Yes

No

Yes

No

Yes

D0NEJT_2:

Yes

No

A2. B2. or 02

END

START

FLUSH_BUFFERS

ANOTHER.ONE

Save return address
and offset. Establish
OS and ES use.

Clear the screen

Display the prompts
for the user's choice.

Get response from user.

Was the response valid?
Continue if yes.

Was it decimal to
binary and hexadecimal?

Was it binary to decimal
and hexadecimal?

Must be hexadecimal to
decimal and binary?

Run the program again.

Is the carry set?
If so, then repeat the
program.

Else end the program.

Figure 7-1 Flow Chart for NUMBERSY.ASM

192 80881IBM PC Assembly Language Programming

of the program. An interactive user interface must be defined that will display
messages and accept user input. Error-handling routines, or error trapping within
the program modules must be specified to insure that all data entered are valid.

Other commonly used subroutines or procedures must be defined as well. Routines
that clear the screen, perform bounds checking, and other functions must also be
part of the program.

The macros used in this program are in the MACFLE.MAC listing (Listing 6-1 in
Appendix D). The macros shorteh program development time and make the source
program more readable.

As illustrated in previous programming examples, there must be at least one stack
segment and one code segment in every program you write. It is not necessary for
every module within the program to use its own stack segment, but there must be a
minimum of one stack segment defined in the program. Naturally, somewhere in
one or more modules, a code segment (or segments) must be defined. Without the
code segment, there would be no executable code produced.

In NUMBERSY.ASM, the stack, data, and code segments are titled MY_STACK,
MY_DATA, and MY_CODE, respectively. 1 will discuss each of the segments as
they pertain to the program.

Data Sclent (MY_DATA)

The data segment reserves storage for a keyboard buffer (KBD_BUFFER) that is
used to accept a line of input as entered from the keyboard. The buffer area is
established to conform to the requirements of the MS-DOS function call OAH. The
function expects the maximum number of characters that will be entered to be
specified in the first byte (byte 0) of the keyboard buffer. This byte is labeled in the
program's data segment as MAX_CHARS.

The function accepts a line of input that is terminated by a carriage return. If the
number of characters entered exceeds the number specified by the contents of
MAX_CHARS, the routine rejects the character and produces a beep tone through
the internal speaker. The MS-DOS function OAH stores the actual number of
characters entered in the second byte of the buffer (CHARS_TYPED). The data

Number Conversions: A Programming Example 193

entered from the keyboard begins with the third byte of the buffer (KBD_BUFFER
+ 2) and ends with a maximum of KBD_BUFFER + MAX_CHARS. Therefore, it is
necessary to define a buffer large enough to hold the maximum number of charac
ters that will be accepted as a line of input from the keyboard.

Notice that MAX_CHARS is initialized to 32. This is done only because it is the
maximum number of characters allowed in the buffer K_BUFF. Whert the line input
function is needed in the program, MAX_CHARS should be set to the number equal
to the maximum number of characters anticipated. In other words, you can
dynamically change the number of characters that are to be entered from the
keyboard prior to using the function. You are not limited to the value MAX_CHARS
is initialized to. The only requirement is that the maximum number of characters
specified does not exceed the total buffer's length.

The function number OAH is moved to the AH register and the effective address of
the keyboard buffer (KBD_BUFFER, in this example) to DX. The macro
©KBDLINE accomplishs the register setup prior to invoking the function. Simply
invoke the macro as follows;

SKBOLINE KBD_BUFFER

The parameter specified in the invocation is the buffer where the keyboard input is
to be stored. MAX_CHARS must be set up prior to invoking the macro.

Messages
Most programs contain a number of messages that define a portion of the user
interface to the program. Messages are used to prompt you when input is required,
to confirm previous input from the user, and to display error messages. In an era of
' 'user friendly'' programming, the more messages used, the easier the program will
be for others to understand and make use of.

The message area for the program NUMBER_SY.ASM defines the messages^^ieces-
sary to obtain user input in the program. Each message is terminated by 24H (f).
You may recall from previous programming examples that the terminator is
required by the MS-DOS function 09H. If the terminator is not present, the func
tion continues to display whatever characters or data it encounters until the
terminator is found. MESSAGE_0 through MESSAGE_9 are the messages used in
NUMBERSY.ASM.

Storage Allocation
When performing the conversions from one number base to another, certain
memory locations are set aside to hold or accumulate results. When a number to be
converted is entered from the keyboard, each character is ASCII encoded. For
example, the string 35678, as entered from the keyboard, is in its ASCII equivalent
form: 33H, 35H, 36H, 37H, 38H. Although the number can be contained in two

194 80881IBM PC Assembly Language Programming

bytes in binary form, some type of storage must be allocated for the number 35678
when it is represented in ASCII. In this example, 5 bytes of storage must be
allocated for the value.

The storage locations that have been defined to hold the ASCII characters entered
from the keyboard are:

HEXADECIMAL — will store 4 ASCII digits entered in hexadecimal
format <0-9, A-F) ;

BINARY_ASCII - will store 16 ASCII digits entered in binary
format (1 or 0);

DECIMAL - will store 5 digits entered in decimal format (0-9)-

The word location BINARY stores the data which has been converted from ASCII
to true binary form. The first operation performed by any of the three conversion
routines is to convert the ASCII data entered from the keyboard to a true l6-bit
binary representation. The result of this conversion is stored in BINARY.

Defining Tables
Two tables have been defined in the data segment: DEClMAL_POWERS, and
HEXADEClMAL_POWERS. These tables define the powers for each digit position
for the particular number base. For example the number 35678 is actually:

Digit 5 » 3 x 10 to the fourth power = 30000

Digit 4 « 5 X 10 to the third power = 5000

Digit 3 as G H 10 to the second power » 600

Digit 2 » 7 X 10 to the first power = 70

Digit 1 » 6 X 10 to the zero power « q

The sum of each digit's value results in the total magnitude of the number. The
algorithms I chose for the conversion routines decompose decimal and hex
adecimal numbers in this manner.

Equates and

Other Definitions —

Aside from the usual inclusion of the DOS and BIOS equate file (DOSEQU.EQU) at
the beginning of the source file, the labels ONE, FOUR, FIVE, SIX, and SPACE are
equated to their ASCII equivalent values. They are used in the only macro defined
directly within the program.

Number Conversions: A Programming Example 195

The DISP_PROMPTS macro displays up to three messages and two numbers. It was
defined to allow you an easy method of displaying a message in a predefined
format. Specifically, it is used to prompt the user for the number to be converted.
As each type of conversion requires a different number of digits to be entered, the
macro formats the display in the following manner:

Massagal > Messages > Nuinberl > Numbers > Messages.

By invoking the macro in a manner similar to:

eOISP.PROMPTS MESSflBE.l, MESSftSE_4, MESS«QE_5, FIVE, SPACE

the following prompt appears on the video display:

I Enter the decimal value you want to converti I
I Enter 5 digits: I

You'll find the messages MESSAGE_1, MESSAGE_4, and MESSAGE_5 defined in the
data segment.

By using the macro, a prompt can be created for any of the number conversions the
program is to perform. In the example just cited, the program is prompting you for
a 5-digit decimal number which will be converted to binary and hexadecimal. As
this macro is somewhat specialized and dedicated to this application, it is not
included in the macro file MAGFLE.MAC in Listing 6-1.

Code Segment MY_CODE

Initialization —

The program begins with the usual setup of the data and extra segment registers.
After the standard program preamble, NUMBERSY. ASM begins at the program label
START_HERE.

The program begins by clearing the screen and prompting you for the type of
conversion. Respond by entering the type of conversion desired. If the entry is
valid, the program branches to the appropriate routine to perform the conversion.
Should you enter a nonexistent choice, the program traps the entry error and asks
the question again. The symbolic label INIT marks the beginning of the program; it
initializes the data and extra segment registers.

The screen is cleared by moving a count of 24 into the CX register and repeatedly
executing a carriage return/linefeed combination until the CX register is 0. This

196 80881IBM PC Assembly Language Programming

effectively clears the screen. The only disadvantage to clearing the screen in a
manner such as this is that the cursor remains positioned at the first column of the
24th line on the CRT (bottom left comer). I'll demonstrate a better way to clear the
screen and position the cursor in later chapters.

Next, the MS-DOS function to display a line of ASCII text is invoked to prompt you
for the type of conversion desired. The macro @VDLINE, when expanded,
invokes the MS-DOS function 09H. The parameter supplied to the macro must be
an ASCII message which is defined in the data segment and terminated with 24H
($).

Program Label:

RESPONSE

Once the prompts are displayed on the screen, you must enter a 1, 2, or 3.
Remember that the data returned from the keyboard using the MS-DOS keyboard
functions is in ASCII form and may not be in the form required by the program. The
macro ©WAITKEY invokes the MS-DOS function OIH; it waits for a key to be
pressed, and echoes the character back to the display. The character typed will be
in register AL after the function returns from MS-DOS.

After receiving the character typed at the keyboard, a linefeed and carriage return
is executed, which moves the cursor to the start of the next line. By moving the
cursor to the next line, the display remains neatly formatted. It is quite easy to
forget these little necessities when programming. But remember if your program
does not look nice to the user or it is difficult to use, you'll find yourself writing
programs that can only be used by one person—you!

I always try to write programs (even ones that only I will use) as if they were
commercial programs or routines I had purchased for myself. I find I am also my
own worst critic. Therefore, the program must not only be aesthetically pleasing,
but it must perform exactly as intended. If you write your programs in a similar
manner and judge them as if you had purchased them from another party, you'll
write solid programs that can be used by almost anybody.

The value entered from the keyboard is in the AX register and is temporarily saved
on the stack prior to executing the carriage return/linefeed combination. The value
is restored (popped) after the newline function is executed. Since the macro
@LFCR destroys the contents of the AL register, the register must be saved before
using the macro.

The program executes one of three possible routines, based on your entry. You
could have the program simply compare the value that was entered to its ASCII

Number Conversions: A Programming Example 197

counterpart to determine which routine to execute. However, I've used another
and more efficient way to accomplish a branch in the program. Let's say you type a
3 from the keyboard. First, the high order hits are masked by logically ANDing the
AL register with OFH. The effect of masking the high order digits is then:

Value in ftL >>> 0 9 1 1 0 0 1 1 <ftSCII 3 = 33H)

AND with 0FH >>> 0 0 0 0 1 1 1 1

Result —>>>- 0 0 0 0 0 0 1 1 (Binary 3)

What has actually happened is that the value in AL has been converted to a binary
value. This technique for ASCII to binary conversion works for single digit numeric
entries in the range of 0 to 9. When there is more than one digit to convert or the
data entered is not a numeric digit, other techniques must be employed—I'll
discuss those in a moment.

The next few statements following the label RESPONSE determine which conver
sion routine is required. Register AL is decremented by one, using the DEC instruc
tion. If the remaining value is zero, program control is transferred to the
appropriate routine. The program restarts if the value in AL is greater than 3 (an
invalid user response).

NUMBERSY.ASM does not check to see if the character typed by the user was a 1, 2,
or 3. You could have entered A, B, or C (4lH, 42H or 43H), in which case the value
obtained by the masking of the high order bits would also have produced a binary
value in AL of 1, 2, or 3.

In other programs the user's response may have to be limited to a certain range or
to specific characters. The more error trapping included in a program, the more
foolproof the program will he.

This leads to one of my laws about programming: You can make programs
foolproof but not idiot proof. There will always be someone who can find the one
weak link in a program. If there is not a weak link in the program, then the true
' 'idiot" will spill coffee on program disk! The way around this is to act as your own
' 'idiot'' tester. Do everything except spill coffee on the disk. Enter invalid data and
see how your program traps the errors. Have one of your friends or neighbors run
the program. Test every routine and every module in the program. Use the
debugging facility of MS-DOS to single step through a procedure. Set up the
registers and data areas with test data that can be checked for erroneous results.
Once you've put the program through the acid test of self-examination and exten
sive testing, your product is ready to be released.

198 80881IBM PC Assembly Language Programming

I will now discuss the program logic for the first choice presented to the user:
decimal to binary and hexadecimal conversion. The other conversion routines
follow similar logic and can be followed by using the flow charts in Figure 7-1 or by
inspecting Listing 7-1 Appendix D. As each procedure is discussed, you should look
up the procedure in the listing and follow the the source code along with the
discussion.

Decimal to Binary and
Hexadecimal Conversion

If you answer the initial prompt for a decimal to binary and hexadecimal conver
sion, the program branches to the label BIN_DEC_HEX_1, which in turn calls the
procedure to accept a decimal number from the keyboard.

Procedure:

DEC BIN HEX

This procedure prompts you for the decimal number to be converted, translates
the number to the other numbering systems, and displays the conversions. The
procedure begins by setting the MAX_CHARS memory location to 6. This allows
you to use the MS-DOS function to accept a line of input from the keyboard. As
mentioned earlier, the line input must be terminated by a carriage return. There
fore, the maximum number of characters is set to 6: 5 for the decimal number and 1
for the carriage return.

Program Label:

D_B_H_1

Once you have entered the 5-digit decimal number, the string is moved from the
keyboard buffer K_BUFF to the storage location DECIMAL. Registers SI and D1
establish the source and destination address pointers required for the MOVSB
instruction. MOVSB moves a byte of data from the location pointed to by DS:SI to
the memory location pointed to by ES:DI. As ES and DS are set to point to the base
of the same segment (data segment), MOVSB moves bytes from one part of the
segment (K_BUFF) to another (DECIMAL).

Number Conversions: A Programming Example 199

Notice that a count of 5 is moved into the CX register, which enables the MOVSB to
he repeated using the REP prefix. Each time the instruction is executed, the CX
register is decremented by 1. If the CX register does not contain zero, the instruc
tion is repeated. The net result of the operation is that the first 5 digits are moved
from [SI] to [Dlj.

Program Label:
D B H 2

A call is made to the procedure DECIMAL_BINARY, which performs the necessary
decimal to binary conversion. Another call is then made to the procedure BIN-
ARY_HEXADEC1MAL, which converts the l6-bit binary value stored at BINARY to
a 4-digit ASCII encoded hexadecimal value.

Program Label:

D_B_H_3

Once the value has been converted to binary and hexadecimal, the results of the
conversions must be displayed. Since the storage locations DECIMAL, BIN-
ARY_ASC11, and HEXADECIMAL are terminated by 24H ($), the macro @VDL1NE
can be used to display their contents on the video display. The procedure
D1SP_ASC11_B1NARY displays a binary value on the screen. The procedure
DEC_B1N_HEX then returns to the main program at the statement following the
DEC_B1N_HEX1 label.

The program again branches, this time to the label DONE_lT_2, which calls two
more procedures, FLUSH_BUFFERS and ANOTHER_ONE. FLUSH_BUFFERS clears
the keyboard buffer K_BUFF and the RAM locations BINARY, B1NARY_ASC11,
HEXADECIMAL, and DECIMAL. The buffers are cleared to insure a known state,
should the program be repeated. A common mistake in programming is neglecting
to reinitialize a data area before it is reused. For the most part, this does not create a
problem. In a few instances it can. It is always better to be safe than sorry, so
remember to reset buffers, storage locations, and pointers after they have been
used and are no longer of importance.

The procedure ANOTHER_ONE simply asks if you want to run the program again
and perform another conversion. If you enter an affirmative response, the pro
cedure returns to the calling program with the carry bit set in the flag register. If
you enter a negative response, the routine returns with the carry bit reset, and the
program terminates.

200 8088IIBM PC Assembly Language Programming

Decimal to
Binary Conversion

Procedure:

DECIMAL BINARY

The procedure DECIMAL_BINARY expects a 5-digit ASCII string to be stored in
RAM starting at the label DECIMAL. The routine further expects that each digit is an
ASCII value between 30H and 39H,or 0-9. It would make little sense for a decimal
number to contain anything but 0-9, yet the routine does not check for the digit's
validity. This would be an excellent opportunity for you to write a bounds-
checking routine that would parse the string stored at DECIMAL for proper values.

The routine fetches an ASCII digit from memory, masks the high order bits, and
multiplies the binary number 0-9 by the decimal power for the digit's position.
This was demonstrated earlier in this chapter. The result is then added to the RAM
location BINARY. The process is repeated for all five ASCII decimal digits.

The algorithm is implemented as follows: SI and DI are used as pointers to the
decimal ASCII string entered by the user and the table DECIMAL_POWERS, respec
tively. SI and DI are set to zero via the XOR statement, and the RAM location
BINARY is set to zero. BINARY must be cleared at the beginning of the conversion
routine, as it is used to accumulate the result of the decimal to binary conversion.

A value of 5 is moved into the CX register, which defines the number of times the
conversion loop CONV_BIN is executed—once for each decimal digit.

The value stored at DECIMAL -f [SI] is moved to the AL register. The ASCII digit is
stripped to its binary equivalent and multiplied by the decimal power pointed to by
DI. The result is then added to the storage location BINARY. SI and DI are then
adjusted to point to the next decimal entry and the next decimal power. Notice that
DI must be incremented twice, since the decimal powers are stored as word (2-
byte) values. The loop is then repeated for the next digit. When all 5 digits have
been converted, the routine returns to the calling procedure.

Number Conversions: A Programming Example 201

Hexadecimal to
Binary Conversion

Procedure:

HEX BIN DEC

This procedure converts a 4-digit hexadecimal number stored at HEXADECIMAL
to its binary equivalent. It is similar to the decimal to binary conversion routine.
The exception is that when a hexadecimal digit in the range of A to F is entered
from the keyboard, the digit is represented in ASCII as 4lH to 46H. Simply masking
the high order bits will not convert the ASCII digit to binary, as it will for the ASCII
digits 0-9.

What must be done is to first determine if the value is greater than or equal to 4lH. If
not, the entry is assumed to be in the range of 31H-39H, which is 0 - 9, and it does
not require any special consideration when converting the value to binary.

If the digit is equal to or greater than 41H, the digit entered is assumed to be in the
range of A - F. The procedure handles this special case with the programming
statements found at the label MULT_HEX. To convert the digit to binary, subtract 7
from the digit's value and mask the high order bits. For example:

Digit to convert: 41H » 'ft' = 0100 0001 (Binary)

Subtract 7 > - 0000 0111 (Binary)

Result > 0011 1010 (Binary)

Mask high order bits: ftND 0000 1111 (Binary mask)

Result > 0000 1010 (Binary)

The value has now been correctly converted from base 16 (hex) to base 2 (binary).
The next step is to multiply the value by the hexadecimal power for that digit's
position in the string. If the digit is the most significant digit, the value is multiplied
by 4096. The binary product is accumulated in the location BINARY. The HEX-
ADECIMAL_POWERS table contains the powers for each hex digit's position.

BX and SI are adjusted to point to the next hex digit and the next hexadecimal
power. The loop MULT_HEX is then repeated for all four hexadecimal digits.
When all the numbers have been converted, the procedure returns to the calling
routine.

The conversion assumes that the hexadecimal number which has been entered is 4

digits and in the range of 0 to F. There is no error-checking routine to test whether
or not each digit is actually in this range.A good practice exercise for you would be

202 8088!IBM PC Assembly Language Programming

to write a routine that would check for a valid entry. If the character entered is out
of range, have the program branch to an error handler routine which would
display an error message and ask the user to reenter the data. Hint: The routine,
CHECK_BOUNDS, which is part of the program DIRREAD.ASM discussed in Chap
ter 8, will perform what is required.

ASCII To Binary Conversion

Procedure:

ASCII_BINARY_CONV

When the type of conversion selected is binary to decimal and hexadecimal, the
data entered will be a 16-byte ASCII string of ones and zeros representing a l6-bit
binary value. The procedure's documentation contains the algorithm used in the
conversion and is listed in Listing 7-1.

Binary to Decimal Conversion

Procedure:

BINARY DECIMAL

Once a binary value is obtained by using any of the three binary conversion
procedures just discussed, a conversion can be made to any of the remaining
number bases. So the first step in any of the conversion procedures is to convert the
ASCII values to binary, and then convert the binary value to the other number
bases. If this were not done, specialty routines would have to be written to convert
decimal to hexadecimal, and hexadecimal to decimal.

The algorithm used to convert a binary number to a decimal string begins by
dividing the binary value by the higher decimal power, converting the result in AL
to an ASCII digit, and storing the digit. Any remainder is recovered and the next
highest decimal power is divided into the remaining binary value. The process is
repeated until a 5-character ASCII string is built in the RAM storage location
DECIMAL.

The procedure begins by clearing the 5-byte storage location at the label DECIMAL
in the data segment. A space character (ASCII 20H) is stored in each of the 5 bytes.
Next, DI and SI are set to zero and used as pointers to the DECIMAL storage area and
the DECIMAL_POWERS table, respectively.

Number Conversions: A Programming Example 203

The binary value is moved from memory (BINARY) to AX. The DX register is
cleared to accommodate the DIV instruction, which divides the decimal power
pointed to by SI into the value contained in AX. The quotient in AL (actually AX) is
then logically ORed with 30H to yield a displayable ASCII character. The contents
of register AL are stored in the DECIMAL string area at the hyte pointed to by DI.

The pointers are adjusted to point to the next storage location for the next decimal
digit and to the next decimal power. The remainder from a division is stored in DX
following the DIV instruction. Therefore, the remainder in DX is placed in AX via
the XCHG instruction, and the loop MAIN_CONV is repeated until all five decimal
digits have been constructed. The result is a 5-digit ASCII string that represents the
decimal value of the binary word stored at BINARY.

Binary to
Hexadecimal Conversion

Procedure:

BINARY HEXADECIMAL

The algorithm used to convert binary numbers to hexadecimal is a little more
involved than the binary to decimal routine. The l6-hit binary number must he
converted to 4 hexadecimal digits. The following example illustrates the conver
sion process:

Assume the binary word to convert iss

0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 (Binary)

1) Take the high order byte of the binary word:

0 1 1 0 1 1 0 1

A) Mask the low order nibble of the byte;

0 1 1 0 0 0 0 0 (60 hex)

B) Shift the high order nibble left four bit positions
to the low order nibble.

0 0 0 0 0 1 1 0

C) If the value is greater than or equal to 0AH
add 37H to the value; otherwise, logically OR
30H with the byte.

The value is less than 0AH, so we OR 30H with the value.

0 0 1 1 0 1 1 0 (3&H « ASCII *6M

continued

204 80881IBM PC Assembly Language Programming

D) Store the ftSCII-Hex digit.

E) Retrieve the first byte of the binary word.

0 1 1 0 1 1 0 1

F) Mask the high order nibble of the word.

0 0 0 0 1 1 0 1

6) Repeat step l.C for this value.

Since the value in our example is greater than
0AH, we must add 37H to the value.

0 0 0 0 1 1 0 1

•4-0 0 1 1 0 1 1 1

0 1 0 0 0 1 0 0 (44 hex)

The value is now an ASCII D, which is the value
of the low order nibble of the first byte in

hexadecimal.

H) Store the result in the next storage location.

S) Take the low order byte of the binary word.

0 0 0 0 1 0 1 0

A) Repeat steps l.A - l.H above for this byte value.

In this case, the algorithm is so close to the actual code used in its implementation
that 1 will not discuss each instruction in the routine. Rather, 1 direct your attention
to the procedure as illustrated in Listing 7-1 in Appendix D.

Displaying
ASCII-Binary Values

Procedure:

DISP ASCII BINARY

This procedure displays a binary value stored in the RAM location BINARY. Each
bit of the binary word is rotated right 1 hit position via the ROR instruction. By
using the ROR instruction, the bit rotated out of the MSB (bit 15) is copied into the
carry. This information can be used by a conditional jump instruction. If the hit is
0, the carry is clear. If the bit is 1, the carry is set. The conditional jump instruction
allows branching to the portion of the program that places the proper ASCII
character (1 or 0) in the 16-byte buffer beginning at label BINARY_ASCII in the data
segment.

Number Conversions: A Programming Example 205

In each case, the program must display the ASCII equivalent character for that
particular bit position (31H for a 1 bit and 30H for a zero bit).

Displaying the String
Once the string has been built in the RAM locations BINARY_ASCII[0] through
BINARY_ASCII[15l, the program displays each character one at a time with a space
character (2OH) between the digits. The space is inserted between the ASCII digits
to make the video display easier to read.

In Conclusion

The number conversion algorithms are useful general purpose routines that can be
incorporated in other programs. For example, it is sometimes convenient to
display the register contents of the 8088 when debugging a program. The binary to
hexadecimal routine could be altered to perform such a function. Code conver
sions (such as ASCII to Baudot) and number conversions are some of the most
common routines found in programs. These routines and the documentation
found in the source program discussed in this chapter should enable you to begin
working on more elaborate programs.

One of the most fascinating and intimidating programming chores for novice
programmers is writing programs that read from and write to disk. It really isn't
difficult to write your own routines utilizing disk I/O, especially when you use the
function calls supplied by MS-DOS. Any function accessed via the INT 21H inter
rupt, can be found in the listing of MACFLE.MAC discussed in Chapter 6 (see Listing
6-1, Appendix D). Each function is well-documented in the listing; therefore, the
conventions used in register setup, error reporting, and so on, are not repeated.
Consult the MACFLE.MAC listing for the details on the functions used. The disk
functions supported by MS-DOS interrupt type 21H are summarized in Table 8-1.
Those marked by an asterisk are found only under version 2.0.

Table 8-1

MSDOS Disk Functions

Used with INT 21H

Function Number Function

ODH Disk Reset

OEH Select Disk

OFH Open a File
10H Close a file

11H Search Directory for a file.
12H Search Directory for the next matching

entry.

13H Delete the specified file from the directory.
14H Sequential record read. 207

208 80881IBM PC Assembly Language Programming

Table 8-1

MSDOS Disk Functions

Used with iNT 21H

Function Number Function

15H Sequential record write.
16H Create a file.

17H Rename a file.

19H Fetch the current disk number.

1AH Set the disk transfer address.

1BH Get the FAT byte for version 1 .x disk (See
function 36H)

21H Random record read.

22H Random record write.

23H Get the file size.

24H Set the random record field (bytes 33-36) in
the specified FOB.

27H Block read.

28H Block write.

29H Parse a string for a filename.
2EH Verify after disk write.

2FH* Fetch the address of the current DTA.

30H* Fetch the current MSDOS version number.

36H* Read the free space available on the spec
ified drive.

39H* Create a sub-directory.

3AH * Remove a directory entry.

3BH* Change the current directory.
3CH* Create a file.

3DH* Open a file.

3EH* Close a file.

3FH* Read characters from a file or device.

40H* Write characters to a file or device.

41H*, Delete a directory entry.

42H * Move address pointer of file.
43H* Read or change a file's attributes.
45H* Duplicate a file handle.
46H * Point a file handle to a new file.

47H* Read current directory path.

4BH * Load and execute a program.

4CH* Terminate current process and close any
open files.

4EH* Find matching pathname with the attributes
specified.

4FH* Find the next matching pathname with the
attributes specified.

54H* Fetch the status of the verify flag (verify/write
flag).

56H* Rename a file.

57H* Get or set the date time stamp of the spec
ified file.

Disk I/O Programming 209

Before I discuss the routines that access files and the directory using MS-DOS, I
want to discuss the structure of the diskette itself. It is important to understand the
physical layout of the diskette when using the more advanced disk I/O program
ming techniques.

The diskette is a digital recording medium that can he thought of as a circular piece
of magnetic recording tape. The medium stores magnetic flux reversals, which
correspond to a 1 or 0 bit of data. The diskette is divided into tracks, sectors, and
clusters. There are 40 tracks on a diskette, as formatted with the IBM PC. Other MS-
DOS machines use disk drives capable of formatting 80 tracks on a diskette.

Figure 8-1 illustrates the layout of a diskette. The outermost track is track 0 and the
iimermost track is track 39. Track and sector numbering always begins with zero
rather than one. Each track is divided into either 8 (MS-DOS 1.x) or 9 sectors per
track. (MS-DOS 2.0). You can also read and write 8 sectors per track under MS-DOS
2.0, allowing you to read and write version 1.x formats. Each sector is capable of
storing 512 bytes of data.

Track 0

o

Track 0

Sector 0

Track 39

Track 39

Sector 8

Figure 8-1

210 8088!IBM PC Assembly Language Programming

Disk Drive Differences

To confuse matters more, not ail drives are the same. Some disk drives contain only
one read and write head and are referred to as single sided disk drives. When the
drive contains two read and write heads, it is referred to as a double sided drive.
Single sided disk drives are capable of reading and writing information on one side
of the diskette, while a double sided drive can store twice as much information, as
both sides of the diskette can be written to.

Single Density versus
Double Density

Another issue is the recording technique employed to encode data on the diskette.
When a technique called Frequency Modulation, or FM, is employed, the recording
technique is referred to as a single density recording format. When MFM, or
Modified Frequency Modulation, is used as the data encoding technique, it is
referred to as a double density recording technique. The recording format is
determined by the disk controller and not the disk drive, as most drives being
manufactured today are capable of recording in either single or double density.
The issue is not a major one from an application programmer's standpoint, yet the
difference is important from the standpoint of understanding how the diskette is
organized. Like the single sided versus double sided issue, double density record
ing of data allows twice the data storage of single density recording. All drive types
used with the IBM PC record data using the MFM recording format (double
density).

To calculate the total storage capacity of a 5 1/4-inch diskette as formatted under
MS-DOS, you need to know whether the drive is single or double sided, the total
number of tracks available, and whether there are 8 or 9 sectors per track. Table 8-2
summarizes the formatted storage capacities for the different types of IBM disk
formats.

Clusters

IBM PC-DOS/MS-DOS introduces a concept known as a cluster; this is either one
sector for single sided diskettes or two adjacent sectors for double sided diskettes.
The use of clusters in referring to sector numbers in a file is a result of trying to
minimize read and write head movement during disk access.

For single sided MS-DOS version 1.x and 2.0 diskettes, the sectors are numbered
from 0 to 319. Single sided disks are allocated 1 sector per cluster. For MS-DOS 2.0
double sided diskettes, the sectors are numbered from 0 to 7, starting with head 0,
0 track 0, and from 8 to 15, starting with head 1, track 0. The IBM Disk Operating
Manual states that all available sectors are used before moving on to the next track.

Disk 1/O Programming 211

Table 8-2

Diskette Capacities

Data Capacity in bytes Singie Sided 8 Sectors per Track:

Version 1.0 Version 1.1 Version 2.0

160,256 (SS8ST) 160,256 (SS8ST) 160,256 (SS8ST)
147,968 * 146,434 * 119,296 *

Data Capacity in bytes: Doubie Sided 8 Sectors per Track:

Version 1.1 Version 2.0

322,560 bytes 322,560 bytes
308,736 bytes 282,600 bytes *

Data Capacity in bytes: 9 Sectors per Track
Version 2.0 Only.
Single Sided Double Sided

179,712 bytes 362,496 bytes
138,752 bytes * 321,536 bytes *

'Capacity wtien diskette is formatted with the Is option which writes the IBMBIO.COM,
IBMDOS.COM, and COMMAND.COM files to the disk. See the disk map in Table 8-3.

Therefore, data are written to or read from disk using the lower numbered head
first (head 0) for all sectors (0-7). Then all sector numbers (8-15) are used for the
same track using the other head (head 1). Once the total number of sectors allocated
to a track has been utilized, the head advances to the next track. For double sided
disks, two consecutive sectors are allocated to each cluster.

MS-DOS version 1.1 double sided sector numbers begin with head 0, track 0, sectors
0-7. Unlike the 2.0 format, head 1, track 0 begins its numbering at sector number
320. Sector numbers are allocated sequentially on the first side of the disk from
track 0, head 0, sector 0 through track 39, head 0, sector 319. Then the sector
numbers continue sequentially from the opposite side of the disk from track 0,
head 1, track 320 to track 39, head 1, sector 639.

MS-DOS maps the cluster allocation via the file allocation table (FAT). The clusters
inform MS-DOS what clusters have been allocated to a given file. Page 4-10 in the
IBM DOS Technical Reference Manual contains the information needed to con
vert clusters to actual sector numbers for a file. Most applications do not require an
in-depth knowledge of clusters and file allocation space. It does become important
if for some reason you need to directly access a sector for a file.

Table 8-3 illustrates the numbering sequence for sectors under MS-DOS 1.x and 2.0
for the various formats found in each version. The disk map in Table 8-3 also shows
which sectors and tracks are allocated to specific system files. The files marked
with an asterisk exist whenever you have formatted a new diskette using the
system option (/s); otherwise, the sectors normally occupied by the files are
available for user data.

212 80881IBM PC Assembly Language Programming

Table 8-3

MSDOS Disk Map
Version 1.0/2.0/2.10

Sinale-Sided 8 Sectors/Track Double Sided 8 Sectors/Track

File Track Sectors File Track HD Sectors

BOOT 0 0 BOOT 0 0 0

FAT 0 1-2 FAT 0 0 1-2

DIREC 0 3-6 DIREC 0 0 3-7

0 1 320-321

BIOS* 0 7 BIOS* 0 1 322-325

1 8-10

MSDOS * 1 11-15 MSDOS * 0 1 326-327

2 16-23 1 8-15

1 1 328-330

COMMAND * 3 24-31 COMMAND * 1 1 330-335

4 32-33 2 0 16-20

User files begin on;
Track 4, Sector 34 Track 2, Head 0, Sector 21

And Continue Until:

Track 39, Sector 319 Track 39, Head 1, Sector 639

*IBMBIO.COM, IBMDOS.COM, COMMAND.COM exist when the diskette is formatted
with the /s option.

Version 2.0

Sinale Sided 9 Sectors/Track Double Sided 9 Sectors/Track

File Track Sector File Track Head Sector

BOOT 0 0 BOOT 0 0 0

FAT 0 1-4 FAT 0 0 1-4

DIREC 0 5-8 DIREC 0 0 5-8

0 1 9-12

BIOS* 1 9-17 BIOS* 0 1 13-18

2 18 1 0 19-22

MSDOS * 2 19-26 MSDOS * 1 0 23-27

3 27-35 1 1 28-36

4 36-44 2 0 37-45

5 45-52 2 1 46-54

3 0 55-56

COMMAND * 5 53 3 0 57-63

6 54-62 3 1 64-72

7 63-71 4 0 73-81

8 72-80 4 1 82-90

9 81-88 5 0 91-92

User Files Start On:

Track 9, Sector 88 Track 5, Head 0, Sector 3

And Continue Until:

Track 39, Sector 359 Track 39, Head 1, Sector 719

*IBMBIO.COM, IBMDOS.COM, COMMAND.COMM exist only if the diskette was for
matted with the /s option.

Disk I/O Programming 213

TheFUe
Allocation Table (FAT)

MS-DOS provides the applications programmer with a complete set of program
ming tools via the function calls it provides for disk access. You do not need to
know whether the drive you are working with is single or double sided, or has 8 or
9 sectors per track. MS-DOS uses a descriptor byte in the FAT (file allocation table)
to determine the format of the diskette being used.

The FAT maintains a correct mapping of the available and used space on the
diskette. The FAT occupies one sector under MS-DOS 1.x and two sectors (sector 1
and 2) under MS-DOS 2.0 and starts at track 0, logical sector 1 for ail versions. A
copy of the FAT is maintained at track 0, sector 2 for MS-DOS 1.x and at sectors 3
and 4 for version 2.0. Each entry consists of three hexadecimal entries that inform
MS-DOS as to whether a cluster in use (000) is the last cluster of a file (FF8-FFF) or
the next cluster number in a file (any other 3-digit hex number).

When you format a diskette and bad sectors, or sectors which cannot be formatted,
are found, MS-DOS writes an FF7H in the FAT entry for that cluster to indicate that
the cluster is bad. Furthermore, the first two entries in the FAT map the directory.
The first byte of the first entry indicates the format of the diskette as follows:

FftT Byte 0 « FF = Double sided, 0 sectors per track.

FE s Single sided, 8 sectors per track.

FD = Double sided, 9 sectors per track.

FC s Single sided, 9 sectors per track.

F6 » Hard disk.

The remaining two bytes of the first FAT entry are always FFFFH.

This information is not only useful to MS-DOS, which must manage different disk
formats, but you can make use of this information as well. A little later in this
chapter, I'll demonstrate how to use the media descriptor byte of the FAT in a
program that reads and sorts the directory, regardless of the diskette's format.

214 8088!IBM PC Assembly Language Programming

As mentioned previously, page 4-10 in the IBM disk operating system reference
manual contains the information necessary to convert cluster numbers into sector
numbers. Only in the most demanding programming applications will you need to
be concerned with the cluster numbers as depicted in the FAT entries.

The MS-DOS
Directory Structure

The directory for MS-DOS diskettes is found on different sectors and different
tracks for each of the different versions of MS-DOS. Ail versions begin the directory
on track 0. Table 8-4 summarizes the differences between the different diskette
formats and where the directory can be found.

Table 8-4

Where to find the Directory

Disk Format Beginning Sector Total Sectors Entries

SS8ST

DS8ST

SS9ST

DS9ST

3

3

5

5

4

7

4

7

64

112

64

112

Key: SS8ST = Single Sided 8 Sectors/Track
DS8ST = Double Sided 8 Sectors/Track

SS9ST = Single Sided 9 Sectors/Track
DS9ST = Double Sided 9 Sectors/Track

Notice that the single sided formats allow a total of only 64 directory entries per
disk, as opposed to 112 possible directory entries for the double sided formats.

Each byte of a directory entry has a particular significance. The byte significance
found in a directory entry is summarized in the listing of the directory read/sort
program discussed at the end of this chapter and shown in Table 8-5.

Working with
MS-DOS Disk Functions

MS-DOS provides a variety of disk functions to operate on files, directory entries,
and absolute sectors and tracks. Examples of how the functions are used in a
program are given in the macro file listing discussed in Chapter 6 (Listing 6-1,
Appendix D). Use the functions as macros or adapt them as in line code for use in
your programs. Version 2.0 introduces many new concepts and high level disk

Disk I/O Programming 215

Table 8-5

Format of the Directory

Byte(s)
0-7 Filename. If byte 0 = OOH then entry never used.

E5H then entry has been deleted
2EH then the entry Is for a directory

Any other character found In byte 0 Is the first character of the filename.
8-10 The file name extension.

11 The File attribute 00 = Normal File
01 = Read Only *
02 = Hidden File

04 = System File
08 = Volume Label (In bytes 0-10) *
10 = Subdirectory *
20 = Archive Bit, set whenever the file has been written to and
closed, and has not been backed up.

12-21 Reserved by MSDOS
22-23 The time the file was last updated or created.

Format: B11-15 = Hour (0-23)
B5-10 = Minutes (0-59)
BO-4 = two-second Increments

Least significant byte = Byte 22
Most Significant Byte = Byte 23

24-25 Date of file creation or update.
Format: B8-15 = Year (0-119 = 1980-2099)

B5-7 = Month (1-12)
B4-0 =Day(1-31)

26-27 Starting Cluster; See IBM DOS Technical Reference Manual
Page 4-7 and Page 4-10.

28-31 File Size In bytes (Least Significant Word = LSB of the size)

'These attributes are available under MSDOS 2.0 only. Version 2.0 contains all the
attribute types from 1.0, and adds these new attribute types.

functions that are not found under MS-DOS 1.x. You can find the functions listed by
function number in Table 8-1. Those marked with an asterisk are available only
with MS-DOS 2.0.

The Program Segment Prefix

I have postponed discussing the PS? as you did not have to know about it or use it in
the programming examples. However, when working with the disk functions
available under MS-DOS it is important to understand the PSP's function and
organization. Table 8-6 summarizes the PSP.

216 80881IBM PC Assembly Language Programming

Table 8-6

The Program Segment Prefix

Byte(s) Function

0-1 GCDH2GH = INT2GH

2-3 Memory Size
(GG1GH = 64K, GG2GH = 128K, GG4GH =
256K)

4 Reserved by MSDOS
5 9AH = Long Call to Function Dispatcher.
6-7 Offset address of dispatcher (IP)
8-9 Segment address of dispatcher (OS)
OAH-OBH Offset Terminate Address (IP)
OCH-ODH Segment Terminate Address (OS)
GEH-GFH Offset Control Break Exit Address (IP)
1GH-11H Segment Control Break Address (CS)
12H-13H Offset Critical Error Exit Address (IP)
14H-15H Segment Critical Error Exit Address (CS)
16H-5BH Reserved by MSDOS (2CH contains the seg

ment for the environment)
5CH - 6BH (or BGH) Formatted Parameter Area 1. Formatted as

an unopened FOB.
6BH-7FH Formatted Parameter Area 2.

SGH-GFFH Unformatted parameter area, acts as the
default Disk Transfer Area.

1GGH- Start of User's Program.

Each time a program is loaded and executed from disk, MS-DOS creates a PSP. It is
256 bytes in length and extends from offset 0 to lOOH of the segment where your
program resides. The first hyte of your program is therefore at lOOH in the segment.
The PSP can be used by the program and by MS-DOS to pass parameters to each
other. As an example, let's say you want to run a program, hut you want to load a
different data file for use in the main program each time the program is run. You
could type the following command from the MS-DOS prompt:

ft> CQ8TPR06.EXE DftTft_l.FLE

Here you have commanded MS-DOS to run the program COSTPROG.EXE and
passed a parameter to the program (DATA_1.FLE). The MS-DOS program loader
copies the parameter specified on the command line into the PSP at hyte 81H. The
length of the parameter is copied to the PSP offset byte 80H. A copy of the
parameter is also placed in the PSP at offset 5CH, which is used by MS-DOS as the
default file control block (more on FCBs in a moment).

The program can examine the PSP at location 80H for the length of a parameter
string and find the parameter string (if any), beginning at offset 81H in the PSP.
Notice that the first 2 bytes of the PSP consist of an INT 20H instruction. The INT

Disk I/O Programming 217

20H instruction restores the MS-DOS environment when at the end of the program.
It is the normal manner in which user programs are expected to terminate.

By now you should be accustomed to the fact that every program you write begins
by pushing the DS register on the stack, followed by a word of zeros. When you
exit a program via the RET instruction, as is the case in most of the examples thus
far, a FAR return is executed and register IP is loaded with the word of zeros that
was stored on the stack. CS is loaded with the segment of the PSP which was
pushed on the stack at the start of the program. These values form a pointer to the
first byte of the PSP. After executing the RET instruction, the INT 20H instruction
at offset OOH in the PSP is executed.

The net result is that all logic, pointers, and file buffers are restored to the
environment that existed prior to loading and executing the program.

File Control Blocks

When operating on disk files using version 1.x, you need to know what a file
control block (FCB) is and how it is organized. The FCB contains information about
the file: the drive number, the filename and extension, the date of creation, and
pointers into the file.

An FCB can take on one of two possible forms, normal or extended. The extended
FCB contains a 7-byte prefix containing the attribute of the file, as summarized in
Table 8-5. Version 2.0 supports more possible file attributes than does version 1.x.
Those attributes found in the table and marked with an asterisk are found under

version 2.0 only. Normal FCBs are 37 bytes in length, while an extended FCB is a
total of 44 bytes in length.

In the previous discussion about the PSP, 1 mentioned that MS-DOS places the first
parameter specified from a command line in the PSP as a formatted FCB (PSP offset
5CH). MS-DOS uses this as the default location for the FCB during disk I/O unless
instructed otherwise. If a second parameter is issued from the command line, it is
also copied into the PSP, but at offset 6CH. You may have noticed that 6CH is
neither 37 bytes nor is it 44 bytes from 5CH. Consequently, if you use the default
FCB at 5CH in the PSP, the second FCB is overwritten and destroyed.

You can avoid all of this by setting aside memory in your data segment for the FCBs
used in your program. If you need to have two files open at the same time in your
program, define two FCB's in your data segment. If you only have one file open at a
given time, you can get by with only one FCB. If you intend to pass parameters to
your program that are actually filenames, move them from the PSP default areas
5CH and/or 6CH, to the memory you reserved in your program's data segment for
FCBs.

218 8088!IBM PC Assembly Language Programming

The FCB bytes you must be concerned about when accessing files under MS-DOS
are denoted in Table 8-7 with an asterisk. You must set up the drive number,
filename and extension, current block number, and logical record size. The MS-
DOS access functions expect these fields to be initialized. When opening or
creating a file, MS-DOS initializes the record size to 128 bytes. Should you want to
operate on record sizes greater than or less than this default, it is necessary to
change the record size for your application.

Table 8-7

File Control Block Formats

Bvte(s)

FCB-7

FCB -6 through -2
FCB-1

FCB + 0 *

FCB -h (1 thru 8) *
FCB -H (9 thru OBH) *

FCB -h (OCH thru ODH) *

Function

OFFH = Denotes an extended FCB.

OOH

Attribute Byte (See Table 8-5)
Drive number 0 = default

1 = A

2 = B

After Open: 1 = A, 2 = B
Filename. Left justified with trailing blanks.
Extension for filename, left justified, with trailing blanks (or
all blanks).
Current block number relative to the beginning of a file.
Each block consists of 128 records, each with a size as

specified by the word at OEH. This field is used with the
current record field to perform sequential read operations. A
value of zero denotes the first 128 records (first block) of the
file. Initialized to zero by MSDOS.
Logical record size. The logical record size is specified in
bytes. It must be set after the open or the create functions.
MSDOS initializes this field to 80H after creating or opening
a file.

File size in bytes. Initialized by MSDOS from information
found in the directory.
Date Field. The date the file was created or last updated.
Reserved by MSDOS
Current Relative Record number (0-127), within the current
block. This field must be set by the user before performing
sequential record access.
Relative record number (also referred to as the random
record field). This field must be initialized by you before
performing a random R/W function call. You can use the
MSDOS function 24H to set this field based on the informa

tion in the current block and current record fields. This field

holds the relative record number from the beginning of the
file for random record or block access.

'User must initialize these fields. Consult the text for an explanation of the FCB.

FCB -h (OEH thru OFH) *

FCB -H (10Hthru13H)

FCB -H (14Hthru15H)
FCB -h (16Hthru1FH)
FCB -h 20H *

FCB + (21H thru 24H) ̂

Disk I/O Programming 219

MS-DOS also initializes the current record number to zero. If you want to start at a
record number other than zero, you have to change the value stored in this field to
the record number desired.

Specifying the FCB

Format: MS-DOS Function: OFH

Macro: @OPEN

When you use the MS-DOS function calls for disk I/O, the FCB for the file you want
to use is pointed to by DS:DX. For example, to open a file, you would use the MS-
DOS function OFH. Assuming you have established an FCB in the data segment
(let's call it MY_FCB for now), initialize the first 11 bytes as follows:

Byte 0 = Drive number (0,1, or 2),

Bytes 1-8 = File name (8 characters maximum).

Bytes 9-11= The file name's extension (3 characters maximum).

Later in this chapter, I'll show you how to prompt a user for a drive and filename,
then use the MS-DOS PARSE_STRING function 29H to move the string to an
unopened FCB. It saves you time and makes life simpler when creating or opening
files.

Next, use the following program statements to open the file:

LEft DX,MY_FCB ;flddrcss pointer to the FCB

MOV AH,BFH ;MSDOS function code

INT 21H ?Try to open the file.

If the file does not exist in the directory, AL will contain OFFH when control is
returned to your program. If AL contains OOH, the entry was found and the file was
opened. You can use this information to create a file, if the file specified is not
found in the directory. See MS-DOS function 16H in Listing 6-1, Appendix D or the
discussion of the function found later in this chapter.

The main reason you want to first use the open function rather than the create
function is that, if you attempt to create a file and the file already exists in the
directory, MS-DOS will set the file size field to zero. This in effect erases any
information previously stored in the existing file. The rule here is to study the
listing of the functions in Listing 6-1 before you use them and know what you are
doing.

220 8088!IBM PC Assembly Language Programming

When working with the disk access functions having the potential to erase the
contents of a file or a disk, use a disk with data that can easily be replaced. Never
experiment on your only copy of a diskette containing valuable data. Now that you
have been warned by someone who is an expert at erasing disks, let's move on.

When using the open or create functions, MS-DOS takes the liberty of initializing
the current block number (FCB bytes OCH-ODH) and the record size field (FCB
bytes OEH-OFH) to OOOOH and 0080H, respectively. You must change these fields
after the file has been opened if they are not suitable for your application. If you
plan to begin with the first block of the file (a block is 128 records) and the record
size of the file is 128 bytes, then do nothing and leave these fields with the values
MS-DOS supplies.

Bytes 10H-16H are also initialized by MS-DOS with the file size and date informa
tion found in the directory entry for the file. MS-DOS does not initialize the current
record number byte in the FCB (FCB byte 20H). You must initialize this byte after
opening or creating a file. Usually you will set the record number to zero to access
the first logical record within the current block.

The next step before performing a sequential read/write or random access read-
/write operation is to set the disk transfer address.

Disk Transfer Address

Another area that must be established in your data segment prior to using the disk
access functions is the Disk Transfer Address, or DTA. The DTA is the address of a
buffer used for disk I/O. It can be thought of as the holding area, or buffer, for data
that is read from or written to disk. The buffer must be at least as large as the largest
record length being used in your program. If your record length is 1 byte, then your
buffer must be 1 byte or greater in length. If your record length is 512 bytes, then the
buffer must be a minimum of 512 bytes in length.

When writing to disk, the data must be placed in the buffer. Then, by using one of
the MS-DOS disk write functions listed in Table 8-1, the data are removed from the
buffer and written to disk at the current record number specified in the FCB.
Similarly, when data are read from disk, the data are placed in the buffer. Your
program is responsible for moving data into and out of the buffer.

MS-DOS 2.0 contains functions that allow you to set or obtain the DTA. The DTA
must be set before each write and read operation when multiple files are opened at
the same time. If you do not set the DTA, MS-DOS uses the last DTA in effect. It may
be a DTA belonging to another file. When a program is initially executed from MS-
DOS, not only are the default FCBs built into the PSP but also a default DTA which
starts at the PSP offset BOH is established. Remember to set the disk transfer address

with the MS-DOS function lAH prior to using the read and write functions.

Disk I/O Programming 221

Creating a File

Function: 16H

Macro: @CREATE_FILE

The create function tries to locate the specified file in the directory. If found, the
function uses the OPEN function to open the file, and then sets the file length field
in the FCB to zero. The effect of this action is to erase the file's contents. If the
filename specified is not found in the directory, the create function creates a new
file, initializes the FCB current block and record fields to zero, and sets the record
size field to 0080H. You must change these values after the function has returned
control to your program, should they prove to he unsuitable for your application.

To invoke the function, move the MS-DOS function code 16H into AH, point
DS:DX to the FCB which contains the drive, filename, and extension, and then
issue the INT 21H instruction. On return, AL will contain OOH if an open directory
was found and OFFH if the file could not he created, as an open directory entry was
not available.

Under MS-DOS there are three principal file access mechanisms: sequential read
and write, random record read and write, and random block read and write.

Sequential Access

Sequential access operates on the record pointed to by the current block and
record number fields in the FCB. After the record has been written to or read from,
the current block and current record numbers are adjusted to point to the next
logical record in the file.

When the current record field is incremented past 128 (the total number of records
within a block), the current block number is incremented to point to the next 128
records in the file. It's a little like the way we tell time. We know there are 60
seconds to the minute, 60 minutes to the hour, and 24 hours to a day. When we
exceed 60 seconds, the minute counter of the clock is incremented.

222 8088!IBM PC Assembly Language Programming

The access logic used by MS-DOS is as follows; There are a certain number of bytes
to a record (determined by the logical record size field in the FCB), 128 records to a
block, and an indeterminate number of blocks to a file. Since the current block field
is a 2-byte field, the maximum number of blocks that theoretically could be present
in a file is limited to 65,536 blocks, each containing 128 records.

1 admit I have not pushed MS-DOS to such an extreme; yet it gives you some idea of
the amount of data MS-DOS is capable of accessing. By setting the current block and
current record fields to a value of your choice, you can begin sequential access
anywhere in the file. You do not necessarily have to start at the beginning of the
file.

Sequential Read

MS-DOS Function: 14H

Macro: @READ_SRECORD

The sequential read function is invoked by moving the address of the FCB for the
file to be read into DS:DX, moving the function code 14H into AH, and executing
the INT 21H instruction. The FCB must belong to a file that has been opened
previously or created by functions OFH or 16H. The sequential read function reads
the record pointed to by the current block and record number found in the FCB.
The logical record size field determines the size of the record that is transferred to
the DTA. See MACFLE.MAC (Listing 6-1) in Appendix D for a description of the
error codes returned by this function.

Sequential Write

MS-DOS Function: 15H

Macro: @WRITE_SRECORD

This function writes the data from the DTA to disk at the record pointed to by the
current block and record fields of the FCB. The number of bytes transferred is
determined by the logical record size field of the FCB. To invoke the function, set
DS:DX to point to the address of an FCB for the open file, set AH to 15H, and
execute the INT 21H instruction. See the description of this function in Listing 6-1
in Appendix D for a description of the possible error codes returned.

The IBM DOS reference manual states that, should the record size be smaller than a
sector (512 bytes), the data will be transferred from the DTA to a buffer. The buffer
is written to disk when the buffer is filled, when the file is closed, or when a disk
reset command is issued (MS-DOS function ODH).

Disk I/O Programming 223

I have had luck with this function only when the record size is divided evenly into
512: 1,2,4,8,16,32,64,128,256 or 512. When I used a record length of 94 or 27,
which do not divide evenly into 512, the data written to the buffer were not
transferred to disk when the file was closed.

Random Record Access

Another method of access available to the AL programmer using MS-DOS function
calls is random record access. If you have ever been involved with one of those
Saturday afternoon home construction projects, you'll understand what random
access is and how it works.

For your construction project you need to find three items: nails, a hammer, and
wood. You pick up the telephone book to call around to some of the local
hardware stores to see if they have what you need in stock. Now imagine that you
had to look for those telephone numbers by reading the phone book from the first
page to the page where the numbers are. This would be similar to sequential access.

Random access allows you to open the telephone book to the page that has Joe's
Hardware and Supplies listed, and then to the page containing the number for
Zebra Nails or YoYo's Hammers. You do not have to read or wade through every
entry. This is random access, and it is quite valuable when searching for specific
records.

In order to access a record using the random read/write functions available through
MS-DOS, the random record field of the FCB (bytes 21H-24H) must be initialized
with the record number desired. The record number specified must be in terms
relative to the beginning of the file.

The random record field can be set automatically, based on the information
contained in the current block and record fields of the FCB. Using the MS-DOS
function 24H will set the random field based on the current block and record fields.

Random Record Read

MS-DOS Function: 21H

Macro: @READ_RRECORD

To read a record from an open file using the random record read function, move
the address of the FCB to DS:DX, the function code 21H to AH, and execute the INT
21H instruction. On return from the function, the record specified in the random
record field of the FCB will have been read from disk into the DTA.

224 8088!IBM PC Assembly Language Programming

The random record number will not be altered; it will contain the same value as it
did prior to executing the random read function. The current block and current
record fields will be updated to point to the next sequential record in the file. If the
operation was successful, then AL contains OOH. If AL is nonzero an error has
occurred. See the MACFLE.MAC listing in Appendix D for a discussion of the error
codes returned by this function.

Random Record Write

MS-DOS Function: 22H

Macro: @WRITE_RECORD

This function writes to disk a record of a length specified by the record size field of
the FCB. The record written to is specified by the random record number found in
the FCB (bytes 33-36). To invoke the function, move the address of the FCB into
DS:DX, set AH equal to 22H and execute the INT 21H instruction.

When control is returned to your program, AL contains either OOH (the operation
was successful), OIH (disk was full), or 02H (insufficient space in the DTA to write
one record). The current block and record numbers are adjusted to point to the
next sequential record following the record just written to. The random record
field remains unaltered.

Random Block Access

The random block functions enable us to read to or write from disk more than one
record at a time. Actually, the records are written to or read from disk in a
sequential manner. IBM and Microsoft use the term random very loosely in describ
ing this function. Random block write means that the current block and record
numbers used in sequential access are calculated from the random record field in
the FCB. They form a pointer to the first record to be manipulated. This may be
confusing at first, but it really is not as confusing as it sounds.

The records are part of a block (or blocks) that is read or written in a sequential
manner. Therefore, it makes sense that the sequential access fields of the FCB are
used during the operation. The main point to remember is that the sequential
access fields pertaining to the current block and record are calculated from the
random record field.

After either the random block read or the random block write functions have been
executed, the current random block and random record fields will point to the
record immediately following the last record written.

Disk I/O Programming 225

Random Block Read

MS-DOS Function: 27H

Macro: @BLOCK_READ

This function reads a specified number of records into the DTA. The DTA must be
large enough to hold the maximum number of records specified. To invoke the
function, move the FCB address for the open file into DS:DX, the number of
records to be read into CX, and the MS-DOS random block read function code 27H
into AH. Then execute the INT 21H instruction.

On return, if AL contains OOH, the specified number of records has been read into
the DTA. If AL contains any other value, the operation was unsuccessful. CX
contains the actual number of records read and may be compared to the value
attempted. The MACFLE.MAC listing in Appendix D contains additional informa
tion on this function.

Random Block Write

MS-DOS Function: 28H

Macro: @WRlTE_BLOCK

This function writes a specified number of records to disk, beginning at the record
number specified in the random record field of the FCB. To invoke the function,
set DS:DX to the address of the open FCB for the file to be written to, specify the
number of records to write in CX, set the MS-DOS function code 28H in AH, and
execute the instruction INT 21H.

If the number of records specified in CX is zero, the function will not write any
records to disk. However, it will alter the file size entry in the directory. The new
file size is set to the random record field of the FCB. MS-DOS will automatically
allocate or release clusters as required.

Use this function with caution. The first time I used it, I erased half of the file I was
working on. I was trying to increase the size of the file, and somehow specified a
smaller random record number than the size of the existing file. I set CX to zero,
and my new file size was half the size of the old one. I have since come to use this
function with a great amount of respect and caution. Remember, I'm an expert at
erasing files (I'm getting quite good at restoring them also).

On return from this function, CX contains the actual number of records written. AL
contains OOH if the operation was successful and OIH if there was insufficient disk
space to write the specified number of records. The current block and record

226 8088!IBM PC Assembly Language Programming

number fields and the random record field is updated to point to the record
immediately following the last record written to disk.

Closing a File

MS-DOS Function: lOH

Macro: ©CLOSE

This function closes the file specified in the FCB pointed to by DS:DX. Files that
have been opened must be closed using this function. Failure to close a file results
in the directory not being updated correctly.

On return from the function, AL contains either OOH to indicate the entry was
found in the directory or OFFH, which indicates that the entry was not found in the
directory. To invoke the function, move the effective address of the FCB into
DS:DX, lOH into AH, and execute INT 21H.

You are directed to the IBM DOS manual and to the macro definitions found in
Chapter 6 for a description of the other MS-DOS l.X disk I/O functions found in
Table 8-1.

File Handles

MS-DOS 2.0 implements a new concept in disk access—file handles. A file handle is
a unique 2-byte number that MS-DOS assigns to a file when it is opened or created,
using the MS-DOS functions 3DH (open) or 3CH (create). The file handle is
returned in AX if the operation was successful (see MACFLE.MAC in Appendix D).
All future references to the file are then made in regards to the file handle. The
important point to remember is that you do not need to specify an FCB for any file
you want to work with under MS-DOS 2.0. Simply use the file handle when
referencing the file.

Disk I/O Programming 227

Furthermore, file access has been greatly simplified from the application program
mer's viewpoint with the release of MS-DOS version 2.0. You do not have to worry
about file control blocks wben accessing files, as MS-DOS creates its own as
needed. You still must set the DTA using MS-DOS function lAH when using the
version 2.0 system calls.

Tree Structures

Popular with many advanced operating systems such as Unix (registered trademark
of AT&T), tree or hierarchical directory structures allow a diskette to store differ
ent files under different directory names. Each directory name may contain sub
directories or files. To access a file in a given directory, you need to know the
pathname.

Pathnames

Opening a File

MS-DOS 2.0 Function: 3DH

Macro: @OPEN_FILE_2

Let's say that you maintain multiple mailing lists and have created the directory
MAIL. You store mailing lists for work and professional associates and for personal
acquaintances. The files have been named WORK and HOME. You can use the MS-
DOS 2.0 function 3BH to move to the desired directory. Once you have chosen the
proper directory, specify the pathname for the file as:

d:\MftIL\WORK or dsXMfilLVHOME

The primary motivation for the architecture of the directory was to manage the
massive amount of information the IBM PC/XT is capable of storing on the hard
disk. With 10 megabytes or more available to tbe user of the more sophisticated
machine, the tree structure was essential. There may be only a few different
working directories shown on the drive, while multiple files may be stored in each
working directory.

MS-DOS 2.0 returns a file handle after opening the file. Use the file handle and not
the pathname when accessing the file using the read and write functions provided

228 80881IBM PC Assembly Language Programming

under MS-DOS 2.0. To open a file using a pathname, use function 3DH. You must
also specify the access mode which is either:

0 for read only

1 for write only

or 2 for read/write access

The access mode must be in AL, and DX must point to the ASCIIZ pathname
(ASCIIZ is an ASCII pathname terminated with a nuli byte, OGH). CX must contain
the file attribute (see Table 8-5), and AH must contain 3DH. Then execute INT 2IH.
On return, if the carry is reset, the operation was successful, and the AX register
contains the file handle. If the carry is set, then register AX contains an error code
as follows:

ftX = 03 = Pathname not found.

PX s= 04 8= Too many open files.

PX = 05 = Pccess denied.

After using those functions unique to version 2.0, should the carry be set, an error
has occurred. Under version 1.0, several different and inconsistent methods were
employed to report errors in using the MS-DOS functions. The different methods
for reporting errors are detailed in Appendix D in the listing of MACFLE.MAC. You
should also reacquaint yourself with the disk functions listed in Table 8-1.

In most of the programming you will be involved in, the functions provided under
MS-DOS 2.0 are superior to those found in version I.x. If you are still using version
1.0, use the version 1.x macros as supplied in MACFLE.MAC and in the manner
prescribed in their documentation. MS-DOS 2.0 is compatible with those functions
found in versions 1.0 and 1.1. Therefore, programs written using the disk functions
provided under MS-DOS 1.x also work under 2.0.

Creating a File

MS-DOS 2.0 Function: 3CH

Macro: @CREATE_FILE_2

This function is similar to the 1.x function, which creates a file such that if an
existing file is specified, its length is set to zero, thereby erasing the file's contents.
To invoke the function, move 3CH into AH, point DS:DX to the ASCIIZ pathname,
CX to the file attribute (see Table 8-5), and execute interrupt 21H. On return, the
carry is reset if the operation successfully created a file and set if there was an error.
See the macro listing for this function in MACFLE.MAC for a complete description
of the error codes returned.

Disk I/O Programming 229

MS-DOS 2.0
Read/Write Functions

The read/write functions under 2.0 are:

1. Read from a file or device: 3FH,

2. Write to a file or a device: 40H.

The functions are summarized in MACFLE.MAC. The description explains the
functions and need not be repeated here.

Closing a File

MS-DOS Function: 3 EH

Macro: @CLOSE_FILE_2

As I mentioned in the description of the MS-DOS I.x CLOSE function, a file that has
been opened must be closed to insure a proper update of the directory entry for the
file. To close a file that was opened or created using the MS-DOS functions 3DH or
3CH, you must use the 2.0 CLOSE function. Put the file handle for the open file in
the BX register and the function code number 3EH into AH, and execute INT 21H.
On return, the carry is set if an error occurred. If the carry is set, AL contains the
error code 06H indicating that the file handle you supplied to the CLOSE function
was not for an open file.

The other MS-DOS functions found under version 2.0 are detailed in the MAC

FLE.MAC. I have repeated the most frequently used functions in this chapter, only
to preface the programming examples you are about to encounter. You should take
time to study those functions listed in Table 8-1 and read the description of each
function as given in Chapter 6. The MACFLE listing is quite complete and provides
you with all the information necessary to use the functions.

When it is necessary to write disk routines and procedures that directly access a
given track and sector, two methods of access are available. The first involves using
the MS-DOS interrupt types 25H (disk read) and 26H (disk write). These are not
function numbers to be used with INT 21H. They are interrupt types. Use INT 25H

230 80881IBM PC Assembly Language Programming

for absolute disk access for read operations and INT 26H for absolute disk access
for write operations.

The other option is to use the BIOS interrupt I3H for absolute disk access. Use of
the BIOS interrupt may result in your application program not running on another
MS-DOS machine due to BIOS differences. The listing MACFLE.MAC contains this
interrupt function and other BIOS routines.

Lo^cal versus
Physical Sectors

Logical sectors are numbered one less than the physical or absolute sector number.
For example, the logical sector for track 0, sector 1 is 0. The logical sector for track
10, sector 1 on a single sided disk with 9 sectors per track is 90. Since there are 9
sectors per track and we are interested in the first sector of track 10, the logical
sector number is 90. Similarly, the logical sector for track 10, sector 4 is 93. Logical
sectors must be specified when using the MS-DOS interrupts 25H and 26H. The
interrupt functions 25H and 26H of MS-DOS allow data to be read or written to any
portion of the disk.

Absolute Disk Access:
Read Operations

Set register AL with the drive number (0 or 1 for A or B, respectively), CX to the
number of sectors to read, DX to the beginning logical sector number, and DS:BX
to the DTA. Then use INT 25H to read the specified number of sectors into the
DTA. All registers are destroyed by this interrupt type (except the segment regis
ters).

You must use the FOPF instruction when the function returns control to your
program. The status flags are saved on the stack by the interrupt and are not
restored prior to returning control. If the carry is set after execution of INT 25H,
AL contains the DOS error code. The possible error codes are summarized in Table
8-8 and are the same for the absolute write interrupt (26H).

Absolute Disk Access:
Write Operations

Use interrupt 26H to write the information in the DTA to disk. The number of
sectors to write are specified in CX, AL contains the drive number, and DX must

Disk I/O Programming 231

contain the beginning relative sector for the write operation. The error codes
returned, should the operation fail, are the same as for INT 25H. Table 8-8
describes these error codes in detail.

Table 8-8

Error Codes for Absolute Disk I/O
Functions 25H & 26H

Error Code Found In AL Meaning

OOH Attempted write to a write-protected
disk.

01H Non-existent parameter

02H Drive not ready

03H Non-existent command

04H Data error

05H Bad structure length

06H Seek Error

07H Unknown Media Type

08H Sector not found

09H Printer Out of Paper

OAH Write Fault

OBH Read Fault

OCH General Failure

Here are four routines that use many of the disk function calls just discussed. New
system calls that are not disk related are also discussed and demonstrated. The
programs have been written to demonstrate how utilities are created.

Have you ever wondered what actually takes place when you type DIR or COPY or
some other command from MS-DOS? You have commanded the system to load and
execute a utility program. The program performs a specific function: DIR displays
the directory, COPY copies the contents of a file or files to another file or files. I'll
demonstrate how easy it is to write simple utilities to perform such functions.

The four programs listed in Listings 8-1 through 8-4 found in Appendix D are:

1. NEW_TYPE.ASM, Listing 8-1, a program similar to the MS-DOS TYPE com
mand. It prompts the user for a file specification, opens the text file spec
ified, and displays its contents on the screen.

2. NEW_COPY.ASM, a program similar to the MS-DOS copy command (Listing
8-2).

232 80881IBM PC Assembly Language Programming

3. FAST_COP.ASM (see Listing 8-3), a program that copies the contents of one
file to another faster than the MS-DOS copy command performs a file copy.

4. DIRREAD.ASM in Listing 8-4, a program that reads the filenames from the
directory, sorts the entries in alphabetical order, and displays the names.

Each program demonstrates different facets about disk I/O and user interface
techniques, as well as introducing you to a few handy BIOS routines. At times the
BIOS routines are a better alternative than are the MS-DOS routines to accomplish a
function. Screen graphics for many display functions are better handled by BIOS
than by MS-DOS. The same can be said of the limited communications functions
MS-DOS supplies.

Programming Example 1:

NEW TYPE.ASM

The program in Listing 8-1, simulates the MS-DOS TYPE command used in display
ing a text file's contents. The program uses the sequential file access.

The Data Segment
The data segment contains keyboard and disk buffer areas. It also allocates space
for the file control block required to access the file we want to display. Five
messages are also defined and provide the output portion of the program's user
interface.

Keyboard Buffer —
The keyboard buffer is defined in the usual manner required by the line input
function OAH. MAX_CHARS is to be initialized within the program before invoking
the line input function. It signifies the total number of characters to accept from the
keyboard.

CHARS_TYPED is the second byte of the buffer area and will contain the actual
number of characters typed by the user when the line input function of MS-DOS
returns control to your program. K_BUFF is 20 bytes in length and is initialized
with ASCII 20H, a space character. Characters entered from the keyboard are
placed here.

The Disk Buffer

DISK_BUFFER is the buffer where data read from disk is placed. The program must
set the disk transfer address to the start of this buffer before attempting to use the

Disk 1/O Programming 233

disk I/O functions of MS-DOS. The buffer is 512 bytes in length; this is also the
number of bytes in a disk sector. The DUP statement in the data definition
initializes all 512 bytes with zero.

Notice that the buffer is terminated with a $. The reason the first byte following the
buffer is the dollar sign character (24H) is not obvious yet. 1 used the MS-DOS line
display function (09H) to display the buffer's contents. The function requires a
dollar sign be used as a terminator to the string that is displayed. Using this method,
you can read a sector from disk and call the line display function to see the contents
of the disk buffer. You do not have to move the data from the buffer to another

buffer dedicated to video output.

The FCB

The next item defined in the data segment is the file control block. The FCB is
defined as a normal FCB (37 bytes in length). The labels used to describe each field
in the FCB are descriptive, as shown in the listing. All fields are initialized to zero.
As the program operates on only one file at a time, we need to define only one FCB.

Messages
All messages that are defined in the data segment are terminated with the $, as
required by the MS-DOS line display function.

The Stack Segment —
The stack segment reserves 64 words of stack area for the program. We will not be
doing a lot of pushing, nor will we be using the stack to pass parameters. Therefore,
only 64 words are reserved, more than enough for the program.

The Code Segment —
Now look at Listing 8-1. The program starts in the usual manner at label START_1 by
saving the return address on the stack and initializing the segment registers DS and
ES. Both are set to point to the base of the data segment.

The BIOS

Scroll Function

One of the handiest BIOS routines is the function used in scrolling a window or
portion of the video display. The video display is 25 rows by 80 columns wide. The
coordinates used by this function are therefore in the range of 0 to 24 for the row
designations and 0 to 79 for the columns. Row 0 and column 0 define the upper
left-hand corner of the display.

234 8088!IBM PC Assembly Language Programming

The macro definition for the scroll function is invoked at the label START_2 in our
program. The macro definition may look intimidating on its own, but a full
explanation of the function is given in the MACFLE.MAC listing and below.

Basically, the function works as follows: Register AH must contain 06H if you want
to scroll the display up, and 07H if we want to scroll the display in a down. Next,
set AL to the number of lines you want to scroll. If AL is set to zero, the entire
window is blanked.

Set register CH to the row of the upper left corner of the scroll window, CL to the
upper left column, DH to the row of the lower right corner of the window, and DL
to the lower right column number. Register BH must contain the attribute or color
byte. The attribute and color bytes are illustrated in the MACFLE.MAC listing under
BIOS video routines.

After all the registers have been initialized, execute the instruction INT lOH. It is
shown in Listing 8-1 as INT BIOS, which is really a misnomer, as BIOS has several
other interrupt types other than lOH assigned to its functions. However, with my
infinite desire to use the EQU directive, I assigned the label BIOS to the interrupt
lOH in the MACFLE.MAC file.

After the function is executed in the program at label START_2, a message is
displayed asking the user to enter the drive and filename of the file to be displayed.
Then a carriage return/linefeed is executed to advance the cursor to the next line
and the MAX_CHARS is set to 15 prior to issuing the MS-DOS function to accept a
line of keyboard input.

Program Label:

GET NAME

The program is now ready to receive the filename from the user. The macro
@KBDLINE is executed with the parameter of KEYBOARD, which defines the
buffer in the data segment that is being passed to the macro. You can enter a
maximum of 15 characters in the standard MS-DOS format for a file specification as
follows: d:filename.ext. 15 characters were specified, as the function expects the
last character accepted from the keyboard to be a carriage return. Therefore, 15
characters is the maximum that can be typed from the keyboard. The filename
given may be less than 15 characters, but it cannot exceed this number.

The PARSE.STRING

Function —

Now for a little trick in getting the filename from the keyboard buffer, K_BUFF, to
the FCB, where it must be placed before we use the MS-DOS function to open the
file.

Disk I/O Programming 235

The PARSE_STRING function (29H) parses a string for a filename and places the
string in an FCB of your designation. The FCB must not belong to a file that is
already open. The PARSE_STR1NG function requires that the effective address (EA)
of the string to be parsed be in the OS:SI registers and the EA of the FCB be placed in
the ES:D1 registers.

Register AL must contain an encoded 4-bit combination informing MS-DOS as to
how the parsing will be carried out. The options available to you are summarized in
the MACFLE.MAC. I used the encoding as follows:

Bit 0=1= ignores any file separators encountered.

Bit 1=1= leaves the default drive unaltered should the string not

contain a drive specification,

Bit 2=0= leaves the file name in the FCB unaltered should the string

not contain a file name.

Bit 3=0= leaves the FCB file extension unaltered should the user not

specify an extension.

You can specify your own method of scanning when using this function by setting
or clearing these four bits. You should set the high order nibble to zero.

After setting the register in a manner prescribed, execute the INT 29H instruction.
The macro @PARSE_STR1NG sets the registers for you when you specify the EA of
the string to parse, the FCB, and the encoded bit patterns as parameters.

Procedure Call:

OPEN FILE

This procedure invokes the MS-DOS function to open the file specified in the FCB.
The filename has been placed in the FCB by the PARSE_STRING function. When
expanded by the assembler, the macro @OPEN points DX to the FCB specified as
the macro parameter, moves the MS-DOS function code to open a file (OFH) into
the AH register, and executes the INT 21H instruction.

After MS-DOS returns control to the program, the AL register is checked for a value
of zero. If AL contains zero, the file was found in the directory and opened. If AL
contains OFFH, then the entry was not found in the directory. I used this informa
tion to either reset the carry if the entry was found or to set the carry as an indicator
to inform the main program that the file was not in the directory .

If the file is not found, a message is displayed stating such, the keyboard buffer is
cleared, and the FCB is closed. The carry is set, and control returns to the main
program. If the file is found, the carry is reset, and the procedure returns control to
the main program.

236 80881IBM PC Assembly Language Programming

The fourth source statement in Listing 8-1 following the GET_NAME label uses the
carry bit as set by the OPEN FILE procedure to ask you for another filename. The
program branches back to the label START_ 2 if the carry was set on returning from
the OPEN FILE procedure.

Program Label:
SET UP

Once a valid filename has been entered and the file opened, the disk transfer
address is set via the @SET_DTA macro. The parameter supplied to the macro is
the buffer for disk I/O, as defined in the data segment, DISK_BUFFER.

Now you must set the current block and record number to the beginning of the file.
The value zero is stored in the RECORD_NUMBER and BLOCK_NUMBER fields of
the FCB (see the data segment). The RECORD_SIZE field of the FCB is set to 512.
When the MS-DOS function to read a record is invoked, an entire sector is read to
the disk transfer address. When MS-DOS opens a file, the record size is initialized to
128 bytes (80H).

Program Label:

READ RECORD

The macro @READ__SRECORD invokes the MS-DOS function to read the record
specified in the RECORD_NUMBER and BLOCK^NUMBER fields of the FCB into
the FCB. Since the record size has been set to 512 bytes, an entire sector is read into
the DTA.

On returning from the function, register AL is checked for a value of zero, indicat
ing that the read operation was successful. A nonzero value indicates that an error
has occurred. Control is transferred to the code at the label READ_ERROR when an
error is encountered or to CONTINUE if there were no errors.

Program Label:

CONTINUE

At the program label CONTINUE, the macro @VDLINE invokes the MS-DOS line
display function (09H). This is a unique manner in which to use the function. The
function is primarily used in displaying messages on the screen. Here we use the
function to display the entire disk buffer at one time. That is why the disk buffer is
terminated with 24H ($). You can use this function to treat the disk buffer as if it
were simply an ASCII message you want to display. Can you see a potential
drawback to this technique? (Hint: Don't use the $ character in a file you want
displayed using this program. Try rewriting the portion of the program that
displays the disk buffer, and fix this potential bug.)

Disk I/O Programming 237

After displaying the disk buffer, the program performs a jump backward to the
program label READ_RECORD, and the process is repeated.

Program Label:
READ ERROR -

We've followed the program logic flow through a no-error condition after the read
operation. Now let's look at the logic flow when register AL contains a nonzero
value after a read operation.

We can determine the value in AL by using one of my favorite methods, decrement
ing the register and checking for zero. The decrement instruction for 8-bit values
requires 3 clocks to execute, compared to 4 clocks for a register immediate
compare, such as CMP AL,01H. Execution time is not a critical issue in this pro
gram, yet 1 want to bring little programming quickies like this to your attention.
Here the execution time for the DEC AL instruction is exactly half that of an
instruction that accomplishes the same function—setting the zero flag.

AL can contain one of three possible error codes on returning from the function. If
a read operation was attempted and the first byte encountered during the read was
an end of file (EOF) character (lAH), then AL will contain OIH and there will be no
data in the DTA. If AL contains 02H, there was not enough room in the DTA to
transfer one record. This can occur when the DTA is smaller than the record size in

the DTA. If AL contains 03H, then a partial record was read into the DTA before the
EOF was encountered.

When the EOF is encountered (AL =01H), the program branches to the label
EOF_FOUND. A message is displayed announcing that the sequential read opera
tion has been completed, the file is closed, and the program terminates. All files
must be closed using the MS-DOS function lOH, which closes the specified FCB and
updates the disk's directory. Should you fail to use the CLOSE function, the
diskette will not be updated correctly and some or all of your data may be lost. So
be sure to close any open files before you terminate a function.

The DTA too small (AL = 02H) error code should not occur in this program, since
the DTA is as large as the record size. However, if the error should occur, the
program branches to the label DlSK_ERROR, which displays a fatal error message
before exiting the program.

Partial record read: (AL = 03H) when files are not exactly divisible by the record
size, (512 bytes in our program). In this case, the last data in the file does not form a
complete record. Therefore, this error code informs the program that it was unable
to transfer the requested record size to the DTA prior to encountering the EOF
character.

238 8088!IBM PC Assembly Language Programming

The program branches to the program label DSP_PART1AL, which displays a
partial record before exiting the program. The DI register is used as an index into
the disk buffer to point to the next character to be processed. DI is initially set to
zero to access the first byte in the buffer. The value pointed to by the base address
of the disk buffer and DI is moved into the DL register. DL is compared to lAH,
which is the end of file character used by MS-DOS.

If the character is found, the program branches to EOF_FOUND. If the character in
DL is not lAH, then the program displays the character using the macro
@CHARDSP. DI is incremented to point to the next byte in the disk buffer, and the
program branches back to DSP_PARTIAL, which fetches the next byte from the
buffer. Notice how the indexed mode of addressing is used to access the data in the
buffer.

1 will not go into as much depth with the rest of the programming examples.
However, any new MS-DOS or BIOS functions introduced are discussed in detail
for better understanding.

Programming Example 2:
NEW COPY.ASM

This program copies the contents of one file to another and can be found in Listing
8-2. The program is slow. It is useful only for files less than 4K in length.
NEW_COPY. ASM demonstrates the sequential read and sequential write functions
found in MS-DOS 1.x and 2.0.

One note of caution: because the program illustrates how a copy conunand is
defined, it should not be used to copy large files. The program works, but at a
snail's pace. Try the program out on smaller files (4K or less), and you won't have
to go get a cup of coffee while the program executes the copy.

In the previous program (NEW_TYPE.ASM), only one FCB was required, as there
was only one open file in the program, the file being read from. To perform a copy,
we must specify two FCBs in the data segment, as there will be two files open at a
time: the source file being read from and the destination file being written to.

1 used the same format and descriptors to define the first FCB as in the previous
example, except that I refer to the first FCB with the symbolic name FCB_1. The
second FCB is naturally referred to by the name FCB_2. Notice in Listing 8-2 that
the second FCB uses a D suffix after the field definitions within the FCB. For

example, the destination drive number field is named DRIVE_NUMBER_D. The
destination fields were named in this manner to differentiate them from the source

labels of similar names.

Disk I/O Programming 239

Messages
The messages necessary to prompt the user for the source and destination files are
also defined in the data segment. The program even tells the user whether the
destination file is new or if it already exits. If it already exists, the file is overwrit
ten, and the previous contents are lost. A more well-mannered copy routine would
ask you if you really want to overwrite the file. This is not done in this program, but
it would be a worthwhile exercise for you.

Another RAM location, named BYTE_COUNT, is also defined in the FCB. The
program uses this location as a record counter when writing to disk. The program
initializes the record size field to one in both the source and destination FCBs.

Therefore, one record is 1 byte in length. The BYTE_COUNT informs the program
when 256 bytes have been written to disk.

Program Label:
START 2 —

In Listing 8-2, the second instruction following the label START_2 invokes a
macro, which sets the cursor to the specified screen location. To invoke the macro,
supply it with the screen number and the row and column coordinates. A row value
of 0-24 or column number of 0-79 is acceptable.

The macro is expanded, and the screen number passed to the macro is placed in
BH, the row number in DH, and the column number in DL. The contents of register
AH are set to the value 02H and an interrupt lOH is executed. The cursor is set to the
position specified on the screen number that was specified.

The program statements appearing at the label GET_NAME prompt the user for the
source filename, parse the string, and place the filename entered into FCB_1. If the
procedure OPEN_FlLE finds the file in the directory, it is opened and the carry flag
is reset. If the procedure is unable to locate the file in the directory, the carry is set
to indicate an error has occurred. The program displays a message to inform you
that an invalid filename was entered and you must reenter the filespec. The
program branches to the label START_2, which restarts the program.

Assuming the filename was good, the program continues at the label SET_UP. The
disk transfer address is set to point to the DISK_BUFFER, which is defined in the
data segment. Only 1 byte is allocated to the D1SK_BUFFER. The program works
with source and destination record sizes of only 1 byte. Therefore, any record read
or write operation will read or write only 1 byte from or to disk.

You might wonder why we do not need to define a second buffer for the destina
tion file. The reason is simple. Since we want to write the data read from disk, we
can use the same buffer for reading as we do for writing. When a byte of data is read
from the source file, it is written to the destination file. Other applications will no
doubt require separate buffers for each file manipulated by your program.

240 8088IIBM PC Assembly Language Programming

Next, the program invokes the macro to set the disk transfer address. The FGB
fields are initialized to the starting block and record number (zero), and the record
size is set to one. The program calls the GET_SECOND procedure, prompting the
user for the second, or destination, drive. The procedure also creates the file if it
does not exist, or, if the filename specified belongs to an existing file, the pro
cedure sets the file's size to zero, erasing the previous contents of the file.

The fields RECORD_NUMBER_D, BLOCK_NUMBER_D, and RECORD_SIZE_D of
FCB_2 are initialized to zero, zero, and one. The fields are set to the same values as
in the source FCB_1, because we want to start from the beginning of each file when
reading from the source file and writing to the destination file. The block and
record numbers in each are therefore set to zero. The record size is set to 1 in both

the source and destination FCBs to insure that what we read is what we write.

Program Label:
READ RECORD

We are now ready to read a record from disk. This portion of code reads a record
from disk and checks AL for error codes. If AL contains OOH, then there were no
errors and the program continues. The record just read is then written to disk.

Program Label:

CONTINUE

The macro @ WRITE_SRECORD writes a record to disk from the DTA. The param
eter of the FCB belonging to the file to be written to is passed to the macro. If there
are no errors after performing the write operation, the RAM location
BYTE_COUNT is incremented.

When the BYTE_COUNT equals OFFH and is incremented, the counter is said to
roll over to zero. When this happens, the zero flag is set in the flag register. The
program then executes the instructions to display an asterisk (♦) on the screen. This
lets the user know every time 256 bytes of data have been written to disk.

After the write operation is completed, the program branches back to the label
READ_RECORD, where the next record is read from disk. The entire read/write
portion of the program is then repeated.

The program checks for read errors at the label READ_ERROR and write errors at the
label WRITE_ERROR. Examine these portions of code and see how I handled errors in
the program. Notice in the READ_ERROR portion of code that if AL returns with
02H or 03H after a read operation, the program jumps to the DISK_ERROR routine.
The 02H error code signifies that the DTA was too small to hold one record as read
from disk. Since we defined a record size of 1, and the DTA size is 1, this error code
does not make much sense in this application. Therefore, if it should occur, it is
flagged as a hard, or unrecoverable, error, and the files are closed.

Disk I/O Programming 241

Similarly, if the error code is 03H, MS-DOS is informing you that an EOF was
encountered and that a partial record is in the DTA. Again, with a record length of 1
having been specified, this error makes little sense. Should it occur during this
program's execution, it is flagged as a hard error. If our record size were greater
than 1, these errors would have some relevance.

When the EOF character is encountered in the source file, a dash (-) is displayed on
the screen, and the source and destination FCBs are closed. The close operation
updates the destination file's directory entry properly before the program termi
nates.

Assemble this program, and try it out on a few small files. Then try it on a large file.
Try NEW_COPY.ASM to copy a file of at least 50K in length. Get up, go out, cut the
lawn, fix and eat dinner, and then come back and see if the program is finished. The
copy does not take quite that long as I just described, but it seems to when you're
watching the asterisk appear on the screen every time 256 bytes are written to disk.
Surely there must be a faster method to simulate the MS-DOS COPY command.
There is and the program is listed in Listing 8-3.

Programming Example 3:
FAST COP.ASM

FAST_COP.ASM uses the random block read and write functions to copy the
contents of one file to another. A little trick speeds up the copy process. The record
size specified is 1 byte as in the previous example, but rather than reading one 1-byte
record at a time, the program reads a block of 1-byte records into the DTA.

Each time the program reads from the source file, the block read function attempts
to read 32,767 records into the DTA. Since we are working with 1-byte records, the
disk buffer size is defined in the data segment as 7FFFH, or 32,767 bytes in decimal.
A key point to remember is that the disk buffer must be set to a size equal to or
greater than the product of the record size and the number of blocks read.

If you recall from the discussion of the random block read function earlier in this
chapter, the number of blocks to be read is placed in the CX register prior to
invoking the function. Be sure that the number of records is nonzero, or the file size
will be altered. Also be sure the disk buffer (as defined by setting the DTA) is large
enough to store the number of record blocks specified.

As in the previous program, only one disk buffer is used in this example. Two FCBs
are still required: one for the source file and one for the destination file.

242 80881IBM PC Assembly Language Programming

Program Labels:
SET UP and SET UP D

Macro: @SET_REL_RECORD

The macro definition invokes the MS-DOS function to set the random record field

of the FCB (bytes 21H-24H) to the relative record, as computed by the current
block and current record entries in the FCB. The current block and record numbers

are initialized to zero before using this function.

To invoke the function, use the macro @SET_REL_RECORD with the FCB you want
altered. The program invokes the function twice, once for the source file and once
to set the random record number in the destination FCB. When the macro is

expanded, the effective address of the FCB is moved into the DX register, and the
function code 24H is moved into AH. Next, the INT 21H instruction is executed.

Program Labels:
READ_RECORD and

CONTINUE

Macros: @BLOCK_RREAD and
@BLOCK_RWRITE

The random block read function is invoked via the macro @BLOCK_RREAD at the
program label READ_RECORD in Listing 8-3. To use the inacro definition, specify
the FCB of the file you want to read from, the number of record blocks you want to
read (7FFFH, in this program), and the record size. Although the record size field in
the FCB is defined after opening the source file, this macro when expanded insures
that the record size field is set as desired before the block read is performed.

The macro expansion moves the effective address of FCB_1 into the DX register,
the block count into the CX register, and the block read function code 27H into AH.
The INT 21H instruction is then executed. If there was an error, the program
branches to the label READ_ERROR. The only error that is unrecoverable is when
AL contains 02H on return. If AL equals OIH or 03H, then a partial record was read,
and CX contains the number of records read.

If the read operation is successful (no errors: AL = OOH), then the program writes
the entire block of records to the destination file. The macro @BLOCK_RWRITE is
invoked by specifying FCB_2, the number of blocks to write (7FFFH), and the
record size (OIH) in the argument field of the macro. The only error of interest
occurs when there is insufficient disk space available to write the number of
records specified.

Disk I/O Programming 243

If a partial record was read because the read operation encountered the EOF
character, CX contains the actual number of records read. This value is used by the
macro @BLOCK_RWRITE when it is invoked at the program label PARTIAL_3- In
this manner, 32K records (bytes) are read every time the program reads from the
source file, and 32K bytes are written every time the program writes to the
destination file. When a partial read occurs on the last portion of the source file, the
number of bytes read will be written to disk, as specified by the contents of CX.

The program terminates in the usual manner by closing the FCBs and returning to
DOS. Time this program against the MS-DOS COPY command. I found it to be 2 or
3 seconds faster when copying a large file. A good exercise for you would be to
modify the program so that the source and destination filenames can be specified
from MS-DOS as part of the command line as follows:

ft> FftST_COP BiTESTFILE.FLE TESTS.TXT

The filenames will reside in the default FCBs in the PSP of the program. You can
then move the names to your data segment and create new FCBs from the names
passed on the command line. Remember that when your program begins, tbe DS
register will contain the segment address of the PSP and your program.

Programming Example 4:
DIRREAD.ASM

This last program uses the absolute disk access interrupt type 25H to directly read a
specified number of sectors from whatever starting sector you specify. The func
tion was discussed earlier in this chapter. Specifically, the program will read the
directory of a specified drive, sort the directory entries into alphabetical order, and
display the names on the video screen. The source program can be found in Listing
8-4.

Procedure:

GET DRIVE TYPE

Find the procedure GET_DRIVE_TYPE, near the end of the program in Listing 8-4.
This procedure determines the characteristics for the drive number specified by
the user. The first byte in the file allocation table describes the drive type (number
of sectors per track, single or double density, etc.).

On entry to the procedure GET_DRIVE_TYPE, all registers are saved, and the
registers necessary to access the FAT are initialized with the proper values. Register
BX must point to the disk buffer where the data read from disk is transferred. AL
must contain the drive type, either 0 or 1. CX must contain the total number of
sectors to read (one, in our example), while DX specifies the beginning sector
number, which is one. Next the INT 25H instruction is executed.

244 80881IBM PC Assembly Language Programming

The FAT begins at track 0, sector 1 for all versions of MS-DOS. The FAT always
starts on the sector immediately following the boot sector. That is why DX is
initialized to 1. Since we are only interested in the first byte of the FAT, only one
sector need be read (CX = 1).

The status flags are then popped from the stack, and, if the carry is reset (no carry
condition), there were no errors. The data read from disk is in the DTA. At the label
NO_ERR2, the first byte transferred to the DTA is transferred to AL. The different
possible drive types and the corresponding FAT entries were summarized in the
discussion of the FAT earlier in this chapter. The program determines the drive
type from the value of this byte.

The data segment locations D1R_SEC, DIR_BEG, and ENTRIES are initialized to the
proper values based on the drive type. DIR_SEC contains the total number of
directory sectors possible for a given drive type, while DIR_BEG contains the
beginning sector number of the directory. ENTRIES is initialized to the total
possible directory entries for the drive type, as summarized in Table 8-4.

After the drive type is determined, the program restores the registers and returns to
the main program following the CALL instruction to the procedure (find the label
ALL_RIGHT in the source file). The absolute disk read interrupt is invoked using
the parameters recovered from the first byte of the FAT. DX is set to the value of
DIR_SEC, which specifies the number of sectors to be read, and CX is set to the
beginning directory sector, DIR_BEG. BX points to the disk buffer, and the the INT
25H instruction is executed. The entire directory is read into the disk buffer.
Assuming there were no errors, the program calls the routine to sort the directory
entries.

Procedure:

DIR SORT

The procedure DIR_SORT sorts the entries in the disk buffer in alphabetical order.
The fornaat for the directory entries is important as the filename is specified in
bytes 0-10. If byte 0 of the directory contains OOH, then the entire entry was never
used. If byte 0 contains E5H, the entry has been previously deleted.

The procedure skips empty or deleted entries. When an active entry is found, the
filename in bytes I-10 of the directory entry moved to another buffer (DIR_BUF2),
which is where the filenames will be alphabetically sorted.

At the program label MOVE_DIR, DI and SI are set to the effective addresses of the
destination buffer (DIR_BUF2) and the source buffer (DIR_BUFF). The direction
flag is cleared by the CLD instruction. This is in preparation for the MOVSB
command, which moves a byte from the DS:SI pointer to the ES:DI pointer. A
count value of II is moved into the CX register. Eleven is the total number of
characters found in the filename field of a directory entry.

Disk I/O Programming 245

Next, REP MOVSB, a repeated move instruction, is executed. Each time the instruc
tion is repeated, a byte of data is transferred from the address formed by DS;SI to
ES:DI. The pointers SI and DI are automatically incremented after each MOVSB is
executed, and register CX is decremented by one after each MOVSB. The move is
repeated as long as CX contains a nonzero value. This is a very efficient method of
moving a string from one place to another.

Next, the pointers are adjusted to point to the next directory entry in DIR_BUFF,
and the entire process is repeated. After all of the filenames belonging to active
directory entries have been moved to D1R_BUF2, the procedure begins the sorting
process.

Program Label:
DIR SORT2

Many methods have been devised to sort data efficiently. Perhaps the most popular
algorithm is the bubble sort. In effect, two adjacent entries in a list are compared. If
the second item in the list is less than the first, the entries are swapped. A flag is set
to indicate an exchange took place on this pass through the list.

Next, the second and third entries are compared. If the third is less then the second,
the entries are swapped and the flag set. This process continues for all items in the
list. After the last two items have been compared, the swap flag is checked. If the
flag is set, the list is again compared from the top down. When a pass of the list
results in no entries being exchanged, the list is said to be in order, and the sort is
complete.

Naturally, if a list can also be sorted in descending order, it can be sorted in
ascending order. The option is left to the programmer and dictated by the applica
tion.

The portion of code that is of interest in the sort routine begins at the label
DIR_SORT_3. The source string is compared to the destination string byte for byte.
As long as the characters compared are equal, the operation proceeds until all 8
characters in the filename have been compared. This is accomplished by, REPE
CMPSB.

When the procedure DIR_SORT2 is first entered, the pointers to the source and
destination strings are pushed on the stack along with the number of directory
entries the procedure is to sort. This is significant, as the procedure that swaps the
entries acesses these parameters from the stack. I used this method of parameter
passing to illustrate paramater passing via the stack.

If the destination string is lower in value than the source string, the procedure calls
SWAP_ENTRY to swap the entries. SWAP_ENTRY begins by saving the BP register
on the stack and moving the current value of the stack pointer to the BP register.
This allows us to access the stack using BP and a displacement value.

246 80881IBM PC Assembly Language Programming

Next, the source and destination pointer values are moved from the stack to the SI
and DI registers. Now for a little magic. The byte pointed to by D1 is moved into AL.
AL and the contents of the memory location pointed to by SI are exchanged (XCHG
AL,[S11). Now that AL contains the byte found in the source string, it is saved at the
same byte location in the destination string. It's a quick and efficient way to
exchange memory operands.

All 11 bytes in the source and destination filename are exchanged in this manner.
The exchange flag is set to a nonzero value to indicate that an exchange took place.
Study this procedure and the stack parameter-passing technique. You'll find it
handy in many programs you write.

After the directory entries have been sorted, the procedure returns to the main
program. You can modify this routine to fit almost any application where a bubble
sort is required.

Procedure:

CHECK BOUNDS

In Chapter 7, 1 promised you a procedure that can be used to check bounds on a
number. This is the procedure. As illustrated in Listing 8-4, the routine is very
simple. It alters no registers except the flag register where the carry bit reflects the
result of the comparisons.

The procedure expects to find a minimum byte value stored in RAM location MIN,
with the maximum value in the RAM location MAX. The procedure compares the
contents of AL against the values stored in these locations. If the value in AL is less
than MIN or greater than MAX, the carry is set to reflect that the number in AL is not
in the specified range. If AL is in range, the carry is reset when the procedure
returns to the calling program. In this program, the procedure is used to compare
AL to valid drive numbers as entered by the user.

Procedure:

DIR-DSP

This procedure displays the sorted directory entries stored in DIR_BUF2 in the
data segment. The routine formats the display so that 4 filenames are displayed on
each line. As there are 24 lines available for display on the IBM PC video screen, the
total number of entries that can be displayed at a time before the screen begins to
scroll is 4 X 24, or 96, entries.

The maximum number of directory entries on a 9-sector, double sided disk is 112.
The program pauses after displaying 96 entries and waits for you to press a key
before displaying the remaining entries. This avoids unwanted directory scroll. If a
directory contains more than 96 entries, the pause gives you a chance to read the
filenames before they are scrolled off the screen.

Disk I/O Programming 247

The program's documentation, as found in Listing 8-4 explains each program line
in detail. You will now be able to experiment with the functions MS-DOS provides
in handling disk I/O in your own programs. Use these examples as the basis for
future experimentation. In the next chapter, I'll discuss the BIOS functions as used
in the example programs presented. These functions and others can be found in the
macro file of Listing 6-1.

1. Using MS-DOS 1.0 and 1.1, a disk must be estab
lished in memory before attempting a disk read or write operation.

2. The purpose of the DTA is to provide a for data transfers to

3. Name three types of disk access. Briefly describe each. (Compare your
answer to the description given in the text.)

4. Using MS-DOS 2.0 you still need to define a DTA. (True or False)

5. Using MS-DOS 2.0 you still must define an FCB. (True or False)

6. You can find the macros for disk functions listed in Chapter .

7. A utility is actually a mini- .

In this chapter I want to deviate from the functions used under MS-DOS. While it
provides a very complete set of user functions for disk I/O and character oriented
keyboard and display processing, MS-DOS lacks routines that efficiently allow you
to use graphics and sound. The BIOS functions used in this chapter can be found in
MACFLE.MAC (Listing 6-1), following the MS-DOS functions.

The BIOS functions are one level above the actual hardware implementation of the
machine. As mentioned in previous chapters, MS-DOS functions are the highest
level (from the AL programmer's standpoint), with BIOS being the next level. MS-
DOS uses the BIOS routines to perform the functions discussed thus far, with the
exception of disk I/O, which is handled entirely by MS-DOS.

This linkage to BIOS provides you with a layer of isolation from the operating
system. BIOS communicates directly with the devices attached to the system. MS-
DOS communicates with the system resources through the Basic Input/
Output System. Portions of BIOS are implemented differently from machine to
machine. Therefore, many programs using BIOS will run on only the machine for
which the program was written. Other 8088/86 or 80186/MS-DOS machines may
not be able to run the program, due to a different implementation for a given
function.

A good example of low level incompatibility is the CONFIGSY.ASM program
discussed in Chapter 2 (see Listing 2-1, Appendix D). The program uses BIOS

249

250 80881IBM PC Assembly Language Programming

interrupt IIH to return a binary word in AX that describes the system's resources.
Each hit or combination of hits in the word is set or reset depending upon whether
a particular resource is available to the system. The significance of each hit in the
word is different on the TANDY 2000 MS-DOS machine and the IBM PC. If the

program in Chapter 2 were assembled and run on the TANDY 2000, the informa
tion returned by the function would he different than for the IBM PC. Table 9-1
summarizes the hit significance of each hit returned by this function on the two
different machines.

Tabie 9-1

Equipment Fiag Differences
BIOS interrupt IIH

Tandy 2000 IBM PC

Bit # Meaning Bit # Meaning

0 TV/Joystick 0 Disk Drives Present

1 Monochrome Graphics 1 Not Used

2 Monochrome Graphics
with Color Option

2&3 Planar Ram Size

00 = 16K,01=32K
3 Floppy Drive 1 10 = 48K, 11=64K
4 Floppy Drive 2 4&5 Video Mode

5, 6,7 Not Used

6&7

00 = Unused

01 =40 X 25

B/W, Color Card

10 = 80 X 25

B/W, Color Card

11=80 X 25

B/W, Monochrome

Number of disk

drives.

8 B/W Monitor a Unused

9 Color Monitor 9,10,11 Number of RS-232 Cards

10 TV Monitor

11 Not Used

12 Joysticks 12 Joysticks
13 Printer 13 Not Used

14 Not Used 14&15 Number of Printers

15 Not Used

Table 9-1 shows the differences between the Tandy 2000 and the IBM PC in the
interpretation of the equipment flag returned by BIOS INT IIH. Both machines are
MS-DOS compatible, although the BIOS functions are implemented differently.

BIOS must be used to perform those functions MS-DOS lacks—graphics, commu
nications, etc. While MS-DOS provides functions for sending a character to the
printer port (function 05H, INT 21H) and to the communications channel (INT 21H,
function 04H), the functions MS-DOS supplies are minimal and not suitable for a
wide variety of programs.

The Basic Input/Output System 251

For example, the serial I/O routines link themselves to BIOS and look for certain
voltage levels to be present at the RS-232 connector of the serial board. These
signals are named Clear To Send (CTS), and Data Set Ready (DSR). They are usually
supplied by a modem (Data Circuit Equipment, or DCE) attached to the PC. If you
want to transmit a character via the serial board and DSR and CTS are not present,
tbe BIOS transmit routine waits a specified amount of time for the signals to be
asserted. If after the specified time, the signals are not sent, the routine returns, and
the character is never sent.

Similarly, when you want to receive a character from the communications chan
nel, the MS-DOS function 03H could be used. Other processing chores are tem
porarily suspended while the routine waits for a character to arrive at the serial
port. This delay could prove to be critical if other processing chores must be
executed in real time (without delay).

The delay is unacceptable for another reason. Since characters arrive in an
asynchronous manner, their arrival is not predictable. Therefore, your program
must continually sample the communications port via the MS-DOS 03H function,
so as not to miss an arriving character. Given the delay inherent in the function
when a character is not ready, your program would do little else besides polling the
serial port for a character.

Since the serial I/O functions link themselves with BIOS routines, the BIOS routines

are responsible for the manner in which the call executes. For serial I/O, it is best to
skip the MS-DOS and BIOS routines altogether and directly access the serial
communications board and tbe 8250 UART (Universal Asynchronous Receiver
Transmitter), an integrated circuit responsible for handling serial communica
tions. 1 know this sounds contradictory to my previous argument of using MS-DOS
function calls to maintain compatibility between MS-DOS machines; however,
certain MS-DOS functions simply do not provide you with the power you need to
perform a function from within the program. Serial communications is the subject
of the next chapter, where I'll show you how to install your own RS-232C
interrupt handler and overcome the communications handicaps MS-DOS and BIOS
impose upon you.

Other functions, such as scrolling a portion of the display or setting the cursor to a
specified position on the display, are totally absent from MS-DOS. You must use
the BIOS routines to perform these functions, or directly program the chips that
carry out these functions. The further from MS-DOS your program deviates, the
more likely that the program will run on only one type of machine. Because the
chips themselves may not be at the same port address on every machine, the
programs written for an IBM PC may only execute on that machine and not one of
the many so called compatibles.

With all these caveats in place, I'll now discuss some of the BIOS routines as they
pertain to the video display and the printer. You can use these functions to write
graphic routines and spice up your video output. They give you complete control
over the monochrome and color adapters used in the IBM.

252 80881IBM PC Assembly Language Programming

There are two printer adapters used in the IBM PC. The first is found on the
monochrome display adapter. The printer is mapped to the following port
addresses:

Port Function

03BCH Printer data - Output

03BDH Printer status - Input

03BEH Printer control -Output

When the parallel printer adapter hoard is installed in the system the port assign
ments for the printer are as follows:

a378H Printer data - Output

0379H Printer control - Output

037AH Printer status - Input

In most of your programming endeavors, the ports will not be directly accessed.
Instead you will use one of the MS-DOS or BIOS routines to perform printer I/O.
The only MS-DOS function call for the printer port is function 05H (INT 21H). This
function outputs a character in DL to the printer, and it has been incorporated into
a macro call in Chapter 6.

If you want to exercise more control over the printer port, you can use BIOS
interrupt 17H and one of the three functions BIOS provides. You can send a
character in AL to the printer by moving the function code OOH into AH and
executing INT 17H. This method is preferred over the MS-DOS function call,
because the status of the printer port is returned in AH as follows:

b0 »

bl =

be =

b3 =

b4 »

b5 =

b& »

b7 =

= Time out

s Undefined

• Undefined

= Select error (printer off-line)

= Printer selected

= Paper out condition

= PCK

= Printer busy

The Basic Input/Output System 253

The port status is returned as above when the read status function is executed
(BIOS function 02H, INT 17H). To reset the printer, move OIH into AH and execute
INT 17H. An example of a printer I/O is given in the next chapter.

The Monochrome Adapter

Two different video boards are used with the IBM PC. The first is the monochrome
adapter and allows the display of text (alphanumeric characters) on a black and
white screen formatted as 80 columns by 25 lines. The adapter contains 4K of
video memory, starting at the absolute address of OBOOOOH.

Two bytes are required to fully describe each character appearing on the screen,
and only one 80 by 25 page of text can be held in the adapter's memory at a time.
Since 80 x 25 = 2000 characters, and 2000 characters x 2 bytes = 4K, the
memory required per screen is 4K.

Monochrome

Character Attributes

The adapter stores not only the characters that are displayed but also each char
acter's attribute. The attribute byte tells the display logic whether the character is
to be displayed in normal mode (white on black) or reverse video (black on white).
The attribute also dictates whether the character is to be underlined or blinking, or
both and specifies the intensity level (normal or high) for that character's position.
Characters are stored at even addresses in the adapter's memory buffer, and the
attribute codes are stored at odd memory locations in the buffer (i.e., OBOOOOH =
character, OBOOOIH = attribute).

The attribute byte is formed as follows:

B7 = 1, the character blinks

B6 B5 B4 = Background

1 1 1= White

0 0 0= Black

B3 = 1, then the character is displayed in high intensity
continued

254 8088/IBM PC Assembly Language Programming

B£ B1 B0 = Foreground

1 1 1 = Mhite

0 0 0 = Black

The Color/Graphics Adapter

The color/graphics adapter board allows either alphanumeric text, or graphics to
be displayed. You can use a special high resolution RGB monitor, or you can use an
RF modulator to drive a color television. The format when displaying text on a
television is limited to a 40 character by 25 line display. A television set lacks the
resolution necessary to display more than this amount of text on screen. Through
the BIOS calls listed in Chapter 6, you can specify the mode of operation. Table 9-2
summarizes those modes as used with the BIOS interrupt lOH.

Table 9-2

Modes of Video Operation
BIGSINTIOH

Function Number: OOH = Set Mode

Function Number: OFH = Read Mode

Video Mode Contents of AL

40 X 25 B/W OOH

40 x 25 Color 01H

80 X 25 B/W 02H

80 X 25 Color 03H

320 X 200 B/W Graphics 04H
320 X 200 Color Graphics 05H
640 X 200 B/W Graphics 06H

The color/graphics board contains 16K of memory, which stores alphanumeric
video information in a manner similar to the monochrome board. Since the color

adapter contains four times the amount of memory of the monochrome adapter,
up to four pages of text can be stored in the memory of the color board when using
the 80 by 25 display format, or eight pages of text when using the 40 by 25 format,
as shown below.

* 80 X £5 = £000 characters, £000 characters x £ bytes = 4K, *
* *

* 16K/4K = 4 pages, or screens, of text. *
* *

* 40 X £5 = 1000 characters, 1000 characters x £ bytes ~ £K *
* *

* 16K/£K = 8 pages, or screens, of text *

The Basic Input/Output System 255

The BIOS functions presented in MACFLE.MAC and in this chapter demonstrate
how to set the active page from the 4 or 8 possible pages in the adapter's memory.

Color

Character Attributes

The character attribute associated with each character is summarized in Table 9-3.
You can specify any one of 16 colors as the foreground color (character color), and
any one of eight possible colors as the background color. As you'll see in a moment,
the color attribute byte is slightly different depending on which of the two
available graphic modes the adapter is operated in. Should you specify a black
background and a white foreground, the attribute byte is similar to the mono
chrome attribute byte previously discussed.

Table 9-3

Color Attribute Byte

87 86 85 84 83 82 81 80

8 R G 8 1 R G 8

8link—1 1 1
1 1
1 1

8ackground Color— | Foreground Color

(Possible 8 Colors) (Possible 16 Colors)
IRG8-Color

0000 = 8lack

0001 = 8lue

0010 = Green

0011 = Cyan
0100 = Red

0101 = Magenta
0110 = 8rown

0111 = White

1000 = Gray
1001 = Light 8lue
1010 = Light Green
1011 = Light Cyan
1100 = Light Red
1101 = Light Magenta
1110 = Yellow

1111= White (High Intensity)

Table 9-3 shows the color attribute byte used when displaying alphanumeric text
with the color adapter. Also shown are the color combinations of the 16 possible
colors encoded using the IRGB field of the attribute byte.

256 8088!IBM PC Assembly Language Programming

When the color adapter is operated in the graphics mode, the display is divided
into a two-dimensional array of pixels (picture elements). The graphics resolution
can be set to either medium resolution, providing for 320 by 200 pixels (64,000
graphic points), or high resolution, offering 640 by 200 pixels (128,000 graphic
points). The high resolution graphics mode has one drawback. You can display
images in black and white only. There is not enough memory on the adapter to
describe an attribute color along with 128,000 pixels. This is because 128,000 bits is
equivalent to 16K bytes of memory, or all the memory available on the adapter.

Medium Resolution
Graphics Mode

Table 9-4 summarizes the color combinations available in the medium resolution
graphics mode. Any one of the 16 colors may be specified as the background color,
while the foreground color must be from one of the two palettes shown. A total of
four different colors can be displayed at any given time using the medium resolu
tion graphics mode of operation.

Table 9-4

Medium Resolution Color Combinations

Background Color = Any of the 16 possible colors defined in Table
9-3.

Foreground Color = Palette 1: Cyan, White, Magenta.
Palette 2: Green, Red, Brown.

Shown are the color combinations available in the medium reso

lution video mode. To set the color palette, set the registers
as follows:

AH = Function number OBH.

Register BH = OOH
Register BL = OOH = Palette 2

01H = Palette 1

and execute BIOS interrupt 10H.

The Basic Input/Output System 257

High Resolution
Graphics Mode

The high resolution mode of operation allows for a graphics display of 620
columns by 200 rows of pixels. The main advantage to this mode is that the
resolution is twice that of medium resolution. The disadvantage is that the high
resolution screen does not allow the use of color. The only colors available are
black and white.

You can output text to the video display in either the high resolution or medium
resolution graphic modes. If the characters output to the display are within the
range of OOH to 7FH, the characters will be displayed on the graphics screen (see
the ASCII chart in Appendix A for the character representation of each code).

Pixel Positioning

When specifying a pixel's position on the screen in either high or medium resolu
tion modes, a row and column coordinate must be used. A medium resolution
display consists of 320 columns by 200 rows, and the high resolution display
consists of 640 columns by 200 rows. As an example of specifying a pixel's
position, examine the statements which make up the macro ©SET in Listing 6-1.

The macro's body is comprised of the following instructions:

MOV DX,ROUI ;Get the row number <0-319 med. res.)
;(or 0-639 in high resolution mode)

MOV CX,COL 5Get the column number (0-199)

MOV AL,COLOR 5Get the color of the dot

MOV AH,0CH 5BIOS function code to set a pixel

INT 10H ;BIOS interrupt.

This function colors a pixel at the specified row and column. The function can be
used to set or reset a pixel, depending on tbe color specified. If, for example, the
mode was set to medium resolution, and you are working with a red background
and specify the pixel's color as red, the dot will disappear into the background
color. However, if you specify the color to be brown, the dot will appear in the
foreground on a red background.

The color of the pixel when using the high resolution mode must be either black on
black (OOH), white on black (07H), white on white (77H), or black on white (70H).

258 80881IBM PC Assembly Language Programming

Working with BIOS

Interrupt Type lOH —
By now you may feel that programming graphics and text is much too complicated
and is better left to BASIC. You would he right and wrong if you felt this way.
You'd be right, because the statements provided under BASIC are actually graphic
subroutines that allow you to draw lines, circles, and rectangles. They are easy to
use and quite efficient. Programming each pixel position on a high resolution
screen containing 128,000 pixels is extremely tedious.

This type of programming is repetitive and something that is ideally suited for a
computer. If BASIC already contains the routines necessary to compute arcs and
perform line drawing functions, why even contemplate writing Assembly Lan
guage graphic routines? The answer is speed. BASIC is too slow to perform
animation or other graphic chores in a reasonable amount of time.

Therefore, the BIOS functions that allow you to control the video display in both
text and graphic modes are what you need to know about when creating high level
graphic routines. These functions have been incorporated in the macro calls
presented in MACFLE.MAC and are listed in Table 9-5. You should review these
functions before continuing.

Table 9-5

BIOS Video Functions

BIOS INT10H

Function Number Function

OOH Set Video Mode

01H Define Cursor

02H Set Cursor Position

03H Return Cursor Position

04H Return Light Pen Position
05H Set Active Page
06H Scroll Screen Up
07H Scroll Screen Down

08H Return Character Attribute at Cursor

09H Set Character Attribute at Cursor

OAH Set Character at Cursor

OBH Select Palette

OCH Set/Reset Pixel

ODH Return Pixel

GEH Write Character

OFH Return Video Mode

The Basic Input/Output System 259

A Programming Example:
GRAPHIC.ASM

GRAPHIC.ASM (see Listing 9-1 in Appendix D) illustrates how higher level graphic
routines can be constructed that approach the power and ease of use of graphic
statements found in BASIC. Programming graphics in Assembly Language, and is
usually a repetitive process. By writing programs or procedures capable of drawing
a line, given start and stop values; or a circle, given the radius, aspect ratio, and
center point; graphics programming becomes a pleasure rather than a chore.

The program defines a procedure DRAW_L1NE, which draws lines on the screen. A
macro, ERASE, deletes a graphics line. The procedure and macro both require start
and stop values for row (X-axis), and column values (Y-axis). A color must also be
specified. The macro ERASE also uses the DRAW_L1NE procedure. One procedure
can serve to set or reset a range of pixels on the screen.

Since the program uses the high resolution graphics mode, the only colors available
are white and black. 1 used a black background and a white foreground when
turning a pixel on, and a black background/foreground combination to turn the
pixel off. The allowable values for row and column coordinates are 0-639 for the
column, and 0-199 for the row. If the medium resolution mode were used in the
program, the column values could range from 0-319, with a row value in the range
of0-199.

Take a look at the program label START. After the segment registers are initialized,
the program invokes a macro, @VDMODERD, which uses the BIOS interrupt type
lOH and the function number 6H to obtain the current video mode. The value
returned in AL defines the current mode as follows;

AL ~ 0 = Text 40 K 25 B/W<EP>

PL = 1 ss Text 40 X 25 Color <EP>

AL = 2 = Text 80 x 25 B/W<EP>

AL = 3 = Text 80 x 25 Color<EP>

AL = 4 = Graphics 320 x 200 B/W<EP>

AL = 5 = Graphics 640 x 200 Color<EP>

AL = 6 = Graphics 640 x 200 B/W<EP>

The active column number is in AH, and the active page is in BH. Whatever the
mode and active column is, we want to save the value. Therefore, after the mode
read function is invoked, the value returned in AX is saved on the stack. Since we
are working with screen 0, the screen that was in effect, we will not save BX on the
stack. Before the program terminates, the previous video mode will be restored.

260 80881IBM PC Assembly Language Programming

Another BIOS function to set the video mode is now invoked (function 0, INT lOH).
The video mode is set to the high resolution (640 by 200) black and white mode.
Using the table just discussed, a value of 6 is moved into the AL register, which
informs the function of the mode desired. The remaining portion of the main
procedure initializes memory locations STARTX, STARTY, STOPX, STOPY, and
COLOR before calling the procedure DRAW_LINE. These RAM locations define the
characteristic of the line to be drawn.

The procedure first draws a large A in the middle of the screen (program label
DRAW_IT to DRAW_2). Next, a line is drawn from left to rigbt on the bottom row
of the screen. The program delays for about 1/2 second, then erases the line. The
program again delays for 1/2 second before drawing a new line from the bottom left
of the screen to the top left. This process is repeated in such a manner as to give the
effect of a moving line creating a marquee around the border of the screen.

This is the simplest form of animation. An object (a line, in this program) is drawn,
erased, and redrawn somewhere else on the screen. More complex forms of
animation account for more than one object and move more tban one object
around on the display simultaneously.

After executing the border loop 40 times, the program invokes the macro
©WAITKEY, which waits for a key to be pressed. Once a key is pressed, the
program reinstates the old video mode of operation that was saved on the stack at
the beginning of the program. The program terminates and returns to DOS.

The DRAW_LINE Procedure
This procedure expects that the RAM locations STARTX, STOPX, STARTY,
STOPY,and COLOR have been set up prior to calling the procedure. The routine
automatically calculates the direction in which the line must be drawn. Since tbe X-
axis coordinates begin witb column zero on the far left of the screen and increase in
value toward the right of the screen, the direction (with reference to the X-axis)
that you want to draw the line is easily calculated from start and stop values for X.
If, for example, the starting column value of X is 99 and the stop value for X is 174,
the line must be drawn from left to right. If, however, the start value were 174 and
the stop value 99, the line would be drawn from right to left. The direction can be
calculated by subtracting tbe start value from the stop value. The direction of the
move is from left to right if the result of the subtraction is positive (STOPX -
STARTX > 0). Similarly, the direction is from right to left if the result of the
subtraction is negative (STOPX - STARTX < 0).

The direction the line is drawn along the Y-axis is calculated in an manner identical
to the X-axis. The exception is that the values stored in RAM at STARTY and
STOPY are used in the calculation. The row values begin with zero at the top of the
screen and increase in value towards the bottom of the screen (see Figure 9-1).

The Basic Input/Output System 261

COLUMN

0 -4-

S
oc

199->

319 (Medium Res)
^ 639 (High Res)

Figure 9-1 Graphic Modes

These calculations are carried out at the beginning of the procedure. The RAM
location DIRECTIONX contains a zero value if the X-axis direction is calculated as a

move from left to right across the screen (forward) or a nonzero value if the move
should be from right to left (backward). The RAM location DIRECTIONY contains a
zero value if the Y-axis move is calculated to be from the top of screen to the
bottom (down), and a nonzero value if the move is calculated as a move from the
bottom of the screen to the top (up).

Once the direction values have been set, the procedure (at label D__L_3) begins to
draw the line specified. The macro @SET is invoked to set the pixel at the X/Y
coordinates specified and in the color specified. The contents of RAM locations
STARTX, STARTY, and COLOR are the parameters used in the argument field of
the macro.

A byte in RAM (D_L_FLAG) informs the procedure whether all the values along
either the X-or-Y axis have been exhausted. Bit 0 of D_L_FLAG is set when all the X
values have been used, and bit 1 is set when all the Y values have been used. If, for
example, there are 16 points to be graphed along the X-axis and 20 along the Y-axis,
a line similar to that shown in Figure 9-2 will be drawn.

The procedure continues to increment the contents of memory locations STARTX
and STARTY until their values equal STOPX and STOPY, respectively. If the initial
values of the start positions are larger than the stop positions, STARTX and
STARTY are decremented until they equal STOPX and STOPY. The loop from label

262 8088/IBM PC Assembly Language Programming

II
O
CM

II —

I
oc11

JILL

COLUMN

16

Line specified by:
Start X « 0

Stopx = 16
Start y = 21
Stop y = 1

Figure 9-2

D_L_3 to U_2 is executed until the start and stop coordinates are equal. The
procedure then returns to the calling program.

The ERASE Macro

This macro erases a line by specifying the start and stop X/Y coordinates and a
color combination of black on black. The foreground/background color combina
tion effectively erases the pixel specified by the X and Y values. Notice in the macro
definition just prior to the code segment, a call is made to the procedure
DRAW_LINE. The same procedure that is used to set a range of pixels can also he
used to reset pixels. The only difference between setting and resetting a pixel is in
the color code specified. White on black sets the pixel, and black on black resets the
pixel.

Going Further
Study the macros used in the program (see also MACFLE.MAC). When you under
stand how a line is specified and drawn, modify the program as follows: You may
have noticed when running this program that the line drawn on the right-hand side
of the screen is not flush with the rightmost column (639). Rewrite the portion of
the program that draws this line, so that it is flush with the right side of the screen.

This program should give you some ideas of how to automate the many routine and
tedious tasks which are involved in creating what are known as graphics primi-

The Basic Input/Output System 263

lives. Currently, there are no formal standards for graphics, although there are
many proposals under study by the standards organizations. You might want to
attempt to write a general purpose procedure to draw circles or some other
geometric shapes.

Anyone could have shown you how to set a pixel on the screen through BIOS
interrupt lOH/function OCH. What I wanted to do was to go the next step in
Assembly Language graphic programming, graphics primitives.

Like graphics, MS-DOS also lacks functions to allow Assembly Language control
over the internal speaker of the IBM PC. To produce sound that varies in frequency
and tone, the 8255-A Programmable Peripheral Interface (PPI) chip must be
directly accessed. This means you can't create programs that can run on other MS-
DOS machines, since you are not dealing with MS-DOS when you go directly to the
chip to produce sound. The chances that a similar design exists in other MS-DOS
machines cannot be guaranteed (although the COMPAQ computer does have a
compatible design).

The IBM Technical Reference Manual contains a description of the PPI bit assign
ments and the speaker interface circuit on pages 1-12 and 1-23. You can turn the
speaker on and off by gating either the 8253 timer output to the speaker or by
setting and resetting bit 1 of port B of the PPI at port 6lH. The port can be read to
obtain the current setting of the bits for the B port of the chip. This value should be
restored after your program is finished generating the sounds at the speaker.

If bit 0 is set, the 8253 timer's output is gated to the speaker. Bit 1 must also be set to
enable the gating of the timer's output to the speaker. In the program SOUND.ASM
(see Listing 9-2 in Appendix D), the first method is used to generate sound via the
internal speaker.

The Data Segment

The sound generating procedure expects a frequency and a duration to be specified
in the RAM locations FREQUENCY and DURATION. The values in the table
FREQUENCY_TABLE and DURATION_TABLE produce a series of tones of varying
duration at the speaker.

264 8088!IBM PC Assembly Language Programming

The frequency table is one word larger than the duration table. I used OOOOH as a
terminator word to the table. The program terminates on seeing the end of data
value OOOOH in the frequency table. Therefore, frequency values of OOOOH are not
allowed.

The Code Segment

The program starts by clearing the screen and displaying the message "Hit any key
to begin SOUND!'' The @ WAITKEY macro is invoked (see Chapter 6), which waits
for a key to be pressed.

After a key is pressed, the program moves one value each from the frequency table
and duration table to the RAM locations DURATION and FREQUENCY. Once these
locations are set up, the procedure SOUND_GEN is called. This procedure pro
duces the tone at the speaker.

The pointers into the two tables are then adjusted, and the next value in the
frequency table is compared for OOOOH. If found, the program terminates and
returns to MS-DOS. If the value is not OOOOH, the program jumps back to the label
NEXT NOTE.

Procedure:

SOUND GEN

Sound generation occurs by setting and resetting bits 0 and 1 of port 6lH. A delay is
executed after setting the bits, and again after resetting the bits. This delay deter
mines the frequency of the note. The value stored at FREQUENCY determines the
amount of time spent in the delay loops at FREQ_OUT and FREQ_OUT_2. The
entire process is repeated by a count defined in DURATION.

Interrupts are disabled at the beginning of the procedure and enabled prior to
exiting the procedure. If this action were not taken, undesired interrupts could
occur while the speaker is either on or off, causing the duration and the frequency
of the tone to vary. The result would be an unstable tone, as the delays used in
producing the tone would no longer be predictable.

You can incorporate the SOUND_GEN procedure in your own programs. Simply
set aside storage in your data segment for FREQUENCY and DURATION. Set these
locations with the values desired and then call the procedure.

In the next chapter, I'll discuss the best of all worlds: MS-DOS, BIOS, chip level
programming, and interrupts. All the concepts discussed thus far and some new
ones will be demonstrated in a versatile data communications program.

The Basic Input/Output System 265

1. BIOS is an acronym for;

2. BIOS insures program compatibility through high level language statements.
(True or False)

3. How many pages of text can be stored using the 80 by 25 mode of the color
graphics adapter?

4. There are pixels available using the high resolution video
mode.

5. The monochrome adapter uses a 320 by 200 medium resolution display.
(True or False)

IBM is perhaps best-known in the computer industry for its ability to have its may
diverse computing devices communicate with each other. This is not easy to
accomplish. This chapter introduces you to the world of data communications and
how to write your own communication programs in Assembly Language on the
IBM PC.

1 stated earlier that it is nearly impossible to program an application if you as the
programmer do not possess a working knowledge of the application. 1 have
refrained from including application specific programming examples thus far;
however, in this chapter 1 will concentrate on a full-featured telecommunications
program.

There are several other books covering the subject of data and telecommunications
more thoroughly than 1 can in this one chapter. Most notable are those from James
Martin, whose books Telecommunications and the Computer and Design Strategy
for Distributed Data Processing, are listed in the bibliography of this book. Martin
is a recognized authority on the subject of data communications, and 1 refer you to
his books for further information on the subject.

My intent in the first part of this chapter is to provide you with a background broad
enough so that you will understand the terminology associated with data commu
nications. 1 encourage you to take this background information and the program
ming example in this chapter and improve upon both.

267

268 80881IBM PC Assembly Language Programming

The second part of the chapter details how the programs COMM. ASM (Listing 10-1)
and DLOAD.ASM (Listing 10-2) operate. These two listings can be found in Appen
dix D. To use the programs, type in the source listings. Notice that certain variables
and program entry points are marked PUBLIC and EXTRN in each module. This
allows each module to reference variables that are defined in the other.

Once you have created the source files, use the IBM Macro Assembler to assemble
the source modules into relocatable (.OBJ) modules. Once the object modules have
been created, use the linker to link the files. To link the files type:

COMM.OBJ + DLOAD.OBJ

at the linker's prompt. Name the executable output file COMM.EXE.

Communications Protocol

In order to communicate effectively, all the parties involved must agree on how
the transfer of information is to take place. This set of rules is referred to as a
communications protocol. Without it, neither party could effectively or efficiently
communicate. I like to think of a communications protocol in terms of two people
speaking different languages who are communicating without the ability to see
each other. Imagine the problems involved in trying to ask the other person for a
glass of lemonade. Without a protocol that has been agreed upon prior to commu
nications, you'd probably wait years to get your lemonade. A protocol must be
defined.

You must agree on the language you both will speak. If neither party is bilingual,
you still have a problem. For computers, the most commonly used standard is
ASCII, or the American National Standard Code for Information Interchange.
ASCII is a 7-bit coded character set defining not only characters and number
representation but also the use of control functions to facilitate the data transfer.
Yet even with computers there may be a problem if they are expected to communi
cate in an international environment. Like you and your nonbilingual counterpart,
they may require some type of code translator or a different protocol.

Code translation is a problem. Although ASCII is one of the most widely used forms
of data coding, there are other methods of coding the data for information inter
change. Telex uses the 5-bit Baudot code to represent data. IBM developed
EBCDIC, which is still another code set. If you were using an ASCII terminal and
wanted to communicate on a Telex network, code translation would be required.
The 7-bit codes sent from an ASCII terminal to one expecting to receive 5-bit
Baudot would fall on deaf ears (or modems), so to speak. Another potential
problem exists when the data are exchanged in a character set that was previously
agreed upon, such as ASCII, and there are differences in national usage of certain
characters within the set.

Communications 269

When do you talk, and when does the other party talk? Or is one party only a
listener (receive only, or RO) and never talks? For computers, this correlates to full
duplex, half duplex, and simplex operation. Full duplex allows two parties to
transmit data to each other simultaneously. Both may talk at the same time, and
they are allowed to talk about totally different subjects (remember the last time you
asked your boss for a raise?). Half duplex dictates that only one party can transmit
at a time. When the first party is finished talking (or transmitting), the other party
can begin transmitting data. Simplex is a one-way-only type of communications.
Receive-only devices (printers) or send-only devices (keyboards) are typical of
devices operated in a simplex mode (Figure 10-1).

TERMINAL I

TX/RX
TERMINAL 2

TX/RX

FULL DUPLEX

TERMINAL I

TRANSMIT

RECEIVE

LINE

TURN

AROUND

HALF DUPLEX

TERMINAL 2

RECEIVE

TRANSMIT

COMPUTER PRINTER

SIMPLEX

Figure 10-1 Full duplex, half duplex and simplex operation.

There are several other specifics that should be included in the protocol. Will there
be error checking? If so, what type? Imagine if you were asking the head of state of a
foreign country for a glass of lemonade, and your translator conveyed the wrong
information to him and told him he was a real lemon. If the translation contains

only a minor error, it may go unnoticed. If it is a big blunder, you could cause an
international incident. When your computer transmits data, an error-checking
protocol, such as parity checking, checksums, or more advanced methods, may be
employed to detect and even correct errors. Data integrity is extremely important
in communications of any type. There are many more types of protocols, some of
which ITl discuss later.

270 80881IBM PC Assembly Language Programming

Methods of Data Transmission

Computers are able to move data in and out of memory or to and from a peripheral
device, such as a printer, over multiple lines. This type of structure is referred to as
a bus and contains multiple signal-carrying lines that run in parallel (Figure 10-2).
Parallel bus structures are an efficient way to move data around inside your
computer and to devices that are connected locally to it. An advantage to parallel
transmission of data is that whole words, or bytes of information, are transferred at
one time at very high speeds.

PRINTERPRINTER

D2

D3

D4

D5

06

07

ROY

STB

00

COMPUTER

Figure 10-2 Paralell transmission of data from a computer to a printer.

Eight data lines transfer the character to be printed, and the STB signal is used to
strobe the signal into the printer's character buffer. When the printer's buffer is full
or the printer is busy printing characters, the RDY (ready) line is disabled, inform
ing the computer that the printer is not ready to receive any more characters.
When the computer senses the RDY signal to be true, further data transfers will
commence.

Each parallel line of the bus corresponds to a single bit of information of the data
being transferred. A system can have more than one bus. Data, address, and control
bus structures can all coexist as independent structures within the system.

When there is a long distance between the computer and an auxiliary device,
parallel transmission of data becomes impractical. Being susceptible to noise, each
signal also suffers from transmission line reflections, distortion, and line loss. The
physical limitations of the medium (eight or more wires, as opposed to two for
serial transmission) and the required in-line amplification to compensate for signal
loss present a justification for a different type of transmission over long distances.

Communications 271

It's also more costly to run eight or more lines than it is to run only two wires over a
long distance.

Even communicating between the computers I own, demonstrates the advantages
of serial versus parallel communication paths. One of my computers is in my
downstairs office, while the other is located on the second floor. The physical
length of the transmission path is less than 20 feet, yet serial communications gives
me the advantage of running only three wires as opposed to eight or more. I only
need one wire for the transmit data wire, one for the receive data, and a ground.
This is one of the simplest cabling schemes for serial communications, as you will
see when we investigate the RS-232C serial interface standard later in this chapter.

In serial communications, each bit of the data word is transmitted in succession,
with the LSB (least significant bit) transmitted first. This is done so over one wire
(there is another wire for common ground). As shown in Figure 10-3, a character is
transmitted in an asynchronous format by first sending what is known as a start bit
to the receiving terminal. The start bit enables the receiving terminal to recognize
the character bits which follow. The data are transmitted a single bit at a time. In
Figure 10-3 the 7-bit ASCII letter N is being transmitted. The character is framed
with start, stop, and parity bits.

TRANSMISSION PATH

CO

5!

OD

CX3 U3 OD

IS>

OD

q
CO

S
H

W

q
cn

1 1

OD

a>
u

OD

Figure 10-3 An example of serial data transmission.

272 8088!IBM PC Assembly Language Programming

Bit 0 is the first bit of the character to travel down the line to the receiving terminal.
It is followed by bit 1, bit 2, bit 3, bit 4, bit 5, and bit 6. Bit 7 would follow if the data
word were 8 bits long, instead of 7 bits. An optional parity bit can be specified as a
part of the protocol and follows the data when parity is enabled (see parity
discussion later in this chapter).

As data are transmitted one bit at a time, serial communication is slower than
parallel transmission. The main advantage is the reduced cost of the transmission
system and wire required to carry the signals. Additionally, serial communications
lends itself nicely to transmission over common carrier networks such as the
phone system or Telex network, whereas parallel communication does not. Your
telephone does not have eight wires associated with transmitting voice over the
network, it has only two or four wires. Therefore, it preludes the use of parallel
transmission of data.

TheUART

A device known as a UART (Universal Asynchronous Receiver Transmitter) con
verts the data received in parallel from the computer's bus to serial format required
for telecommunications. The UART is a fairly sophisticated device which allows a
great amount of flexibility in the character formats used in communications.

The UART is actually a dedicated microprocessor which has been designed to
handle the communications interface and protocol. The UART is an integrated
circuit consisting of a number of registers that are programmed to carry out the
desired communication functions. The UART used on the Asynchronous Commu
nications Adapter (ACA) in the IBM PC is the National Semiconductor INS 8250.

Table 10-1 lists the register ports of the ACA in the IBM PC. Programming the chip is
fairly straightforward and is done for you initially by BIOS. However, you will
have to establish the communications parameters as required by the specifics of
your communications protocol. BIOS provides you with the necessary functions
to accomplish this. I'll discuss protocol specifications in more detail when the
programming example is presented.

Telecommunications

The serial bit stream from your computer, which is in digital form, must be
converted to audio tones for transmission over the telephone system (Figure 10-4).
Originally designed to handle only voice, which is in analog form, the conversion

Communications 273

Table 10-1

Serial Board Port Assignments
Port address assignments for the optional serial I/O (RS232C)
boards found in the IBM PC.

Function I/O Board Number 1 Board Number 2

Transmitter

Holding
Register

OUT 03F8H

(Bit 7 of the line control register =
02F8H

0)

Receiver

Holding
Register

IN 03F8H 02F8H

Baud Rate

Divisor (LSB)
OUT 03F8H

(Bit 7 of the line control register =
02F8H

1)

Baud Rate

Divisor (MSB)
OUT 03F9H

(Bit 7 of the line control register =
02F9H

1)

Interrupt

Enable

Register

OUT 03F9H

(Bit 7 of the line control register =
02F9H

0)

Interrupt
Identification

Register

IN 03FAH 02FAH

Line Control

Register
OUT 03FBH 02FBH

Modem Control

Register

OUT 03FCH 02FCH

Line Status

Register
IN 03FDH 02FDH

Modem Status

Register
IN 03FEH p2FEH

process is still a prerequisite to communicating data over most telephone circuits.
The conversion is performed by a device called a modem. These frequencies (or
tones), relate to the data's binary equivalent, binary 1 or 0. The U.S. frequency
assignments are shown in Table 10-2. By dividing the audio spectrum into separate
frequency assignments, two-way communications over a single wire may take
place.

274 80881IBM PC Assembly Language Programming

DIGITAL

ANALOG

TERMINAL BTERMINAL A

MODEM

MODEM

DEMOD

RX
=7-1RS232

DEMOD

TRANSMISSION

TELECOMMUNICATIONS

Figure 10-4A Digital to analog conversion of data via modems for transmission of data over common
carrier facilities such as the telephone network.

LU
Q
D

Q.

<

I I I

300 1000 2000

FREQUENCY

3400

VOICE GRADE BANDWIDTH

Figure 10-4B Range of audio frequencies allowed over tfie telephone network (voice bandwidth).

Communications 275

DIGITAL
(ANALOG) REPRESENTATION

b6 bO

(+IV) 1 1 1 1 1 1 1

(+.7V) 1 10 1 10 1

(OV)

(-.6V)

(-IV)

0 1 1 1 1 1 1

01001 1 1

0000000

-.35V

-.85V

TIME'

0 1 0 0 1

ANALOG

IN

TO CONTROL SYSTEM

DIGITAL

OUT

FROM CONTROL SYSTEM

TIMING

AND

CONTROL

RESOLUTION = .0156V/BIT

Figure 10-4C Typical method of converting an analog signal to digital form Is through the use of an
Analog to Dloltal Converter (A/D or ADC).

276 8088!IBM PC Assembly Language Programming

Table 10-2

U.S. Frequency Assignments

Standard Baud

Modulation

Type
Transmit

Space Mark
Receive

Space Mark

Bellies 300 FSK Full Duplex 1070 1270 2025 2225

Bell 113 600 FSK Full Duplex 1070 1270 2025 2225

Bell 202 1200 FSK Half Duplex 2200 1200 — —

Secondary

Channel

5 387

Originate Answer

Bell 212 1200 PSK Full Duplex 1200 2400 2400 1200

Also shown in Table 10-2 are the modulation type and duplex mode. For the Bell
212 modems, the modulation rate is half of the baud rate shown (e.g., 600), due to
dibit encoding of the data. All transmit and receive frequencies are in hertz. (Table
based on information found in Bell publications).

Analog signals are said to have a continuous range of possibilities, whereas a digital
signal has two discrete possibilities. Figure 10-5 shows a typical analog signal, a sine
wave. When used to communicate data, the sine wave is modulated by the data. Its
amplitude, frequency, and phase are all capable of being modulated. Figure 10-6
shows the three fundamental types of modulation.

Figure 10-5

Communications 277

AMPLITUDE

FREQUENCY

F1 F2

PHASE

F1 F2

mjmiwmmmiwmmm
F1 F2 F1

180° 180^ 180° 180° 180°

t
180^

Figure 10-6 The three most common modulation techniques in use today. From top to bottom,
amplitude modulation (AM), frequency modulation (FM), and phase modulation (PM).
(Illustration based on the works of James Martin).

Frequency Modulation (FM)

Frequency Shift
Keying (FSK) —
FSK is a mode of FM whereby data is transmitted over telephone circuits by shifting
the carrier frequency in response to a binary 1 or 0. The logic level (1 or 0) is
determined by the data being sent. By allowing one frequency to designate a mark
(binary 1) and another to designate a space (binary 0), digital data can be transferred
from one point to another. The data is modulated at the sending terminal and
demodulated by the receiving station. FSK is also referred to as FX, F2 transmission.

Phase Modulation (PM)

Phase modulation is used in higher speed transmissions (typically 2400 to 4800
bps). The phase of the waveform changes in response to binary 1 or 0. Table 10-3
depicts what is known as dibit phase encoding. Two bits are grouped together,
dictating the number of degrees the carrier will change in phase. Receiving equip
ment interprets the phase shift and reinstates the proper binary grouping. Phase
encoding is also used to group more than two bits together in transmission.

A grouping of 2 binary digits causes tbe carrier wave to shift in phase by the
specified number of degrees. By grouping multiple bits of information to each

278 8088!IBM PC Assembly Language Programming

Table 10-3

DIBIT Encoding and Phase Modulation

2 bit binary grouping
(DIBIT)

Phase Shift (degrees)

0-0 90

0-1 0

1 -0 180

1-1 270

signal change, the modulation rate, or baud rate, can be lower than the total
number of bits transferred in one second.

Amplitude Modulation (AM)

This technique varies the amplitude (voltage or current) of the carrier wave in
response to the binary data. We are all accustomed to hearing this term used in
conjunction with AM radio stations. The same technique is applied in data commu
nications. Amplitude modulation requires more power and is more susceptible to
noise than the two methods previously discussed.

Another aspect of the AM signal is the bandwidth, or range of frequencies the signal
must occupy. For voice, the highest frequency used in telephony is approximately
3400 hertz (see Figure 10-4). A characteristic of AM signals is the generation of
sidebands, or new frequencies formed by the mixing of the carrier wave and the
modulating tone. Sidebands are created that are the sum and the differences of the
modulating waveform. Therefore, the total bandwidth of an AM signal modulated
by a voice is 8000 hertz, or twice the highest frequency used to modulate the
carrier. AM systems are usually not employed in data communications.

Full Duplex

On a full-duplex communications channel, data transfers are allowed in both
directions simultaneously. A four-wire circuit is most often used for full-duplex

Communications 279

operation. Two wires carry data in one direction, while two others carry data in
the opposite direction. Two-wire systems can be used if the audio spectrum is
partitioned to provide separate receive and transmit frequencies. Figure 10-7
demonstrates how transmission over a 2-wire circuit takes place.

ORIGINATE

(CALLER)

ANSWER

(CALLED)

TX

RX

SPACE = 1070 Hz

MARK = 1270Hz

SPACE = 2025Hz

MARK = 2225Hz

Z

RX

TX

in in
CN CM

CM CM

300 3400

Figure 10-7 Full-duplex frequency assignments. By segmenting the available bandwidth of a given.
communications channel, a single wire can be used for full-duplex communications.

The transmit frequencies for the originating terminal are the receive frequencies
for the answering terminal. The receive frequencies for the originating terminal are
the transmit frequencies of the answering terminal. Bandpass filters restrict the
bandwidth of each station's receiver, preventing one station from listening to its
own frequencies. One station (or modem) must assume the originate mode, while
the other terminal assumes the answer mode. If both stations were set to answer or
both were set to originate, no information would be transferred.

280 80881IBM PC Assembly Language Programming

Half Duplex

Half duplex is a communications mode whereby only one party can transmit at a
time. When the transmission is complete, the other party can transmit, while the
first can only receive. In order to accomplish true half-duplex communications,
the transmission line must be turned around when it is the other party's turn to
transmit. Line turnaround can take 250 milliseconds or more; therefore, the line is
not utilized to its fullest capacity. Remember full duplex allows simultaneous 2-
way transmission, without the need to turn the line around. There is no dead time
while the transmission line must be turned around. Full-duplex operation, there
fore, uses the transmission medium in a more efficient manner. The frequencies
used in half-duplex and simplex operation are shown in Figure 10-8.

When operating a half-duplex channel, each terminal may locally echo each
character it transmits. Local echoing to a CRT or printer is common in half-duplex
systems. Since only one station is allowed to transmit at a time, there is no echoing
of characters from the receiving terminal. It cannot transmit until the sending
station is finished. Without a local echo option when communicating over a half-
duplex channel, you would never see the characters you were transmitting.

AMPLITUDE //\ \.
300

1.07 KHz 1.27KHZ

3400Hz
FREQUENCY

SPACE MARK

STATION 1 SPACE STATION 2
i

SPACE

SO RO

.GTKHz

RO so

MARK

1.27KHZ

SIMPLEX

LINE

TURNAROUND
FOR

HALF DUPLEX

MARK

1.27KHZ

Figure 10-8

Communications 281

In full-duplex operation, the host or main computer often echoes the characters
back to your terminal as it receives them. If your terminal were to provide local
echo, two characters for every one transmitted would appear on your CRT, the
one the remote terminal sent back to you and the one your local echo function
provides.

Simplex

Simplex operation (Figure 10-9) is a one-way-only data link. Two examples of
simplex operation are line-of-sight communications and television signals that are
broadcast to a satellite and retransmitted to a ground or earth station (receiver).
Each path of the data link is one-way-only and constitutes a simplex channel.
Keyboards, printers, and other receive-only or send-only computer peripherals are
examples of simplex devices you may be more familiar with.

SIMPLEX OPERATION

Figure 10-9

282 80881IBM PC Assembly Language Programming

Asynchronous
Communications

Asynchronous transmissions are data transmissions which do not require a sepa
rate clock or other timing element to be sent by one terminal to synchronize
reception by the other. Asynchronous communications are typically irregular
(characters are transmitted on an irregular basis such as from a keyboard) and
framed by a start and stop bit. Each character, as it is transmitted, has a start bit
inserted in the data stream before the first bit (bO) is sent. After the last bit of the
data word is sent, a stop bit of a specified interval is inserted.

During idle line conditions (when no characters are being transmitted), the line
assumes the marking state, which is equivalent to a binary 1. The start bit is the
reference element that notifies the receiving terminal a character is being transmit
ted. Being opposite that of the idle line condition, or binary 0, the start bit assumes
what is known as the spacing condition. The receiving terminal interprets the data
bits following the start bit as character data and looks for a valid stop bit designat
ing the end of transmission. The stop bit may be of variable length.

For example, in 5-bit Baudot, the stop bit is 1.5 bits in length. It occupies one
complete bit timing cell and half of another bit cell to signal the end of the
character. This is the minimum amount of time the transmission line must be held
in a marking condition between characters. If another character is not ready to be
sent, the line is returned to idle and remains in the marking state until the next start
bit occurs.

A disadvantage to asynchronous communications is its inefficiency when com
pared to synchronous forms of transmission. Since two or more extra bits are
required in the transmission of each character, a great deal of time is spent sending
framing information and not the actual data. For example, if transmitting standard
7-bit ASCII, with parity checking enabled and, with I start and I stop bit, 3 out of
every 10 bits would be used to convey timing and error-checking information. That
is, 30 percent of every character transmission time is used for supervisory func
tions.

Communications 283

Synchronous
Communications

Synchronous communications can be thought of as a block oriented data transfer
technique. An entire block of data is transferred at a time, instead of a single
character as in asynchronous communications. Because transmissions occur with
out framing every character with start and stop bits, communications are faster and
the transmission is more efficient.

Sending and receiving parties must be synchronized whenever communications
are to occur. Since the data words or characters are not framed by synchronizing
bits, the entire block being transferred is framed by synchronizing characters or
flag characters. A clock or timing character must be transmitted when the line is
idle to keep the communicating terminals in synchronization.

The ASCII control code SYN is often used to begin a frame or block of data. When
the line is idle, SYN (SYNchronize) is transmitted. This control code allows the
receiving terminal to synchronize to the data frame that follows. It starts a clock in
the modem or receiver of the receiving terminal, which locks in on the control and
data characters, or bits following the SYN character. An example of a synchronous
frame is shown in Figure 10-10.

Fi BCC F2

TEXT BLOCK

• CONTROL

^ ADDRESS

OPENING FLAG

FRAME CHECK

CLOSING FLAG

Figure 10-10 A frame of information as formatted by synchronous data line control communications.

Each frame begins with an 8-bit flag sequence of binary 01111110. The frame ends
with a flag of the same binary representation. The address and control fields are
each 8 bits in length. The text block must be a multiple of 8 bits and is followed by a
frame check sequence that is 16 bits in length. The frame ends with an 8-bit flag
sequence.

284 80881IBM PC Assembly Language Programming

The frame is divided into fields, each carrying specific information ahout the text
or the communications in progress. For example, a header may precede the text
that not only contains the SYN character but also may contain address information,
the length of the block being transmitted, and a block number identifying which
block in a series of blocks is being transmitted.

The trailer usually contains error-checking information, such as a checksum which
is generted on the body of the block or a Cyclic Redundancy Check (CRC) of the
block. It may also contain a closing byte or flag. SDLC opens a block with the binary
flag 01111110 and closes the block with the same flag.

The receiving terminal keeps track of the current block number and verifies the
error-checking codes received in the frame. If it detects an error, such as the wrong
checksum, it sends a Negative AcKnowledgement (NAK) to the sending terminal.
The NAK may he in the form of a block, complete with header and BCC, or the
ASCII control code NAK may be all that is sent to the other computer.

The NAK tells the other terminal to retransmit the last block (or blocks) of informa
tion, because they were received in error. However, if the receiving computer
signals back with the control code ACK (ACKnowledgment), it is saying that it
found no errors, and it agrees with the checksum or CRC that was received. This
handshaking continues until all blocks are transferred. Usually the code EOT (End
Of Text) signals the end of the transfer.

There are several high level protocols associated with synchronous block oriented
data transfers. They also provide more sophisticated error checking than parity
checking allows for in asynchronous communications. Some of the more popular
synchronous protocols in use today are HDLC (CCITT and ISO recommendations),
ADCCP (Advanced Data Communications Message Protocol, defined by ANSI),
BISYNC (Binary Synchronous Communications Protocol), SDLC (Synchronous
Data Link Control, developed by IBM), and DDCMP (Digital Data Communications
Message Protocol, developed by Digital Equipment Corp.—DEC).

SDLC is a bit oriented protocol. The individual hit positions within the frame take
on significance as to the information they represent. Bits 0-7 are always the
opening flag character, and hits 8-15 always contain address information as to the
frame's origin or destination. The significance these hit positions represent never
changes when using this protocol. Other protocols may be classified as byte or
character oriented in nature.

Since a block of data can consist of multiple bytes, or characters, and framing
occurs only once for each block, line efficiency is increased over asynchronous
protocols. As an example, let's pick a block length of 1024 characters each consist
ing of 7 bits (7168 bits). If we assume 16 bits for beginning and ending flags, 16 bits
for the address and control fields, and a l6-bit frame check sequence, only 48 bits of
the total 7,216 hits are used for control information. Only .66 percent is spent
sending framing and nondata oriented information.

Communications 285

Baud rate is probably the most misunderstood term in telecommunications. What
baud rate describes is the modulation rate of the data being transferred. It is usually
equated with data being transferred in Bits Per Second (BPS). Baud rate actually is
equal to the total number of signal elements per second. If 300 signal elements are
sent in one second, you are transmitting at 300 baud.

There are other techniques in data communications that allow more than 1 bit to be
transmitted each time the signal changes. Therefore, the baud rate could be less
than the bits per second. By grouping binary digits into dibits and using phase shifts
to modulate the carrier, each signal change would correspond to 2 bits. Tbe baud
rate would be half the bps rate of the transfer. Table 10-3 illustrates the use of dibit
encoding to phase modulate the carrier.

Baud rate can only be equated to bits per second when a single binary digit (bit)
corresponds to a change in signal. In most low speed communications (300 bps to
1200 bps), the modulation technique used is FSK (Frequency Shift Keying), where
bps is equal to baud.

With any type of communications, error checking is extremely important. If the
ability to insure the data integrity of the channel is left to chance, it could easily
ruin or seriously degrade our communications capability. Noise is an ever-present
companion to any electrical signal. Not only are transmitted signals susceptible to
noise, they also are a source of noise to other transmissions.

This type of noice source is commonly referred to as crosstalk. It's evident when
you place a telephone call to your long-lost brother, and you can clearly under
stand another conversation being carried on another circuit. A signal generated
from another source is interfering with signals generated by you and your brother.
Noise on telephone circuits can be caused by telephone switching gear, atmo
spheric conditions, or circuits in close proximity to each other. The faster the data
transfer rate, the more bits or characters will be lost due to noise.

286 8088HBM PC Assembly Language Programming

Another type of noice source is the impulse or random source. It can be likened to a
noisy car randomly driving by your house (see Figure 10-11). If, in the middle of a
conversation you're having with a neighbor, the car backfires, a portion of the
conversation may be lost. If tbe car suffers from some other abnormality, such as a
missing muffler, many words may be lost. In data communications, this type of
impulse noise is referred to as burst noise. The higher the communications rate, the
more serious the problem. Rather than losing one or two bits (words, in our human
to human analogy), entire characters may be lost due to bursts of noise on a data
communications channel.

YOU KNOW

YOU KNOW BILL',

COMMUNICATIONS
, RATE

BILL, {MY COMPUTER WAS DOWN (LOWSPEED)

MY COMPUTER WAS DOWN

LOST DATA

IMPULSE NOISEBANG!

(HIGH SPEED)

'A
LOST DATA (3 BITS) COMMUNICATIONS

RATE

RTillnjwLnj^^ (LOW SPEED)
I t

rinjinjuutvwiiminnnnjuij^ (HIGH SPEED)
' \ '^ LOST DATA (6 BITS)

Figure 10-11

Communications 287

There are other contributing factors to the degradation of transmitted signals aside
from the noise that affects communications. Electrical properties of the transmis
sion medium can distort the signal to a point where it is rendered useless. Signal
repeaters capable of regenerating the signal must be located at reasonable distances
from the transmitting source. When the signal is regenerated, the signal's level
(amplitude), phase, and frequency characteristics are restored, noise is removed,
and the signal is retransmitted to the next repeater or to the final destination.

Parity

Parity is an error-checking technique associated with asynchronous communica
tions. It is an optional bit inserted into the data stream that is dependent on the total
number of bits set to a logic 1 in the data word. The total 1 bits, therefore, may be an
odd or even number.

The examples shown in Figure 10-12 demonstrate how parity is determined. If odd
parity is being used, the total number of logic 1 bits must be an odd value.
Conversely, the total number of logic 1 bits must be even if even parity is used.

When parity is enabled in asynchronous communications, the total number of
binary ones that occur within the word must be even or odd. The state of the parity
bit is dependent upon the parity type you choose. It is set to a binary one whenever
the total number of binary Ts in the word does not equal the parity mode (even or
odd) that you have chosen. Examples are shown for both even and odd parity in
Figure 10-12.

Assume for a moment you are communicating with odd parity. The binary repre
sentation of the ASCII letter A is 1000001. There is an even number of binary ones
in the code; therefore, the parity bit would be set to a binary 1 to make the total an
odd number. The ASCII representation for the letter C is 1 0 0 0 0 11 (43 hex) and
contains an odd number of binary ones. Thus, the parity bit is reset to zero for this
character.

Some terminals use what is referred to as marking or spacing parity. In this case the
parity bit is always set to a mark or space. It will never vary.

ASCII Parity Bit

Character Binary ODD EVEN

A 1000001 1 0

B 1000010 1 0

C 1000011 0 1

D 1000100 1 0

E 1000101 0 1

Figure 10-12 Examples of the use of parity

288 80881IBM PC Assembly Language Programming

Other error-checking techniques are more elaborate. A Cyclic Redundancy Check
(CRC) is often appended to a synchronous frame. The CRC is generated by multi
plying the transmitted data against a known polynomial. I refer you to the bibli
ography for additional reading material on higher level error-checking and
correction techniques.

Modem stands for MOdulator/DEModulator. A modem modulates or demodulates
an analog signal for data communications. The telephone system is designed to
accept an analog signal (your voice) and transmit it to a central office for further
conditioning before sending it on to the party at the other end of the line. Being
analog in nature, the system requires the data be converted from your computer's
digital signals into analog form before it is transmitted over common carrier lines.
The modem does this.

Most low speed modems (up to 1200 bps) use Frequency Shift Keying (FSK) to
translate digital binary to audio frequencies within the bandwidth of the tele
phone. The telephone company limits the bandwidth allowed for voice transmis
sions over the switched public network to between 300 and 3400 hertz. By using
different frequencies within this spectrum, each modem is able to generate or
recognize a binary 1 or 0. Table 10-2 shows the accepted US standard frequencies
for binary transmission.

By dividing this band into smaller bands of frequencies, two-way transmission can
occur over a two-wire system (one wire for signal transfer and one wire for
common ground). The operating mode of each modem (originate or answer)
dictates which set of frequencies is used for transmit and receive.

The frequencies are termed mark (binary 1) and space (binary 0). The sending
modem modulates the carrier by shifting its frequency, in response to the binary
equivalent presented to its transmit data input. The receiving modem demodulates
the signal by converting the frequency shift to the binary equivalent required by
your termirial.

Most modems are interfaced to a computer or terminal by connection to an
RS-232C interface. This interface is a well-defined standard for interconnecting
Data Terminal Equipment (DTE) and Data Circuit terminating Equipment (DCE).
Recently, there has been a number of computers boasting of internal, or Direct
Distance Dial (DDD), modems. All that is required is to connect the telephone cable
to the RJ-11 jack of the computer. The modem is built into the unit, as is the
telephone interface. Single chip modems are now available from a number of

Communications 289

manufacturers. Texas Instruments, Motorola, and Advanced Micro-Devices pro
duce single chip modems. The chips still require support circuitry, such as FCC
approved data access arrangements, which connect the modem to the phone.

An acoustic coupler is an interface consisting of a modem, but it is coupled to the
telephone system acoustically. It contains a microphone and speaker that interface
to the telephone without any wires being connected to the system. Most acoustic
couplers operate at 300 baud of less, but there are some available that allow
operation at baud rates of up to 1200 baud. To establish a call using an acoustic
coupler, first the call is manually dialed. When the answering toi^ is heard through
the telephone receiver, the handset is placed into the cradle of the coupler, and the
coupler is placed in originate mode. The microphone and speaker of the coupler
transmit and receive the frequencies required for transmission to and from the
handset acoustically.

The RS-232C Standard

The RS-232C Standard (International Standards CCITT V.24 and V.28), developed
by the Electronics Industry Association (ElA), defines pin assignments for the
connection of Data Terminal Equipment (DTE) with Data Circuit terminating
Equipment (DCE). The standard defines the electrical, mechanical, and func
tionality of interconnecting circuits. Copies of the standard may be purchased
from the ElA at 2001 Eye St., N.W., Washington, D.C. 20006.

Table 10-4 contains the signals and pin numbers where the signals appear on a
standard RS-232C connector. Although the niost popular connector is the DB-25
connector (as used on the IBM PC asynchronous communications adapter), the
standard does not specify the actual connector to be used. The international
standard 1S2110-1980 does specify the 25-pin connector and pin assignments. In
their forward to the RS-232C standard, the ElA points out there are some incom
patibilities between the RS-232C and the ISO (International Standards Organiza
tion) standard.

Whatever connector is used, the signals should be used in a uniform manner and
appear on the designated pins. You should also be aware tbat the received line
signal detector signal is commonly referred to as Carrier Detect (CD). It signals to
the DTE that a carrier has been detected by the DCE. If the signal is in the off state
(mark), then the DCE is either not receiving a valid carrier, or it is receiving one
unsuitable for demodulation.

Table 10-5 contains the electrical and logical conditions the circuits assume. Inter
change voltage refers to the voltage present at the interface connector pin for a
given circuit. For example, the circuit DTR (Data Terminal Ready) is on pin 20 of
the connector. The standard defines the circuit as being active (on), when the
voltage is positive (between -I- 3 volts and -I- 25 volts). DTR would be in what is

290 8088!IBM PC Assembly Language Programming

Tabie10-4

RS232C Signai and Pin Assignments

Reprinted with permission from the ElA's RS-232C standard.

Pin Number Circuit Description

1 AA Protective Ground

2 BA Transmitted Data

3 BB Received Data

4 OA Request To Send
5 OB Clear To Send

6 CO Data Set Ready
7 AB Signal Ground (Common Return)
8 OF Received Line Signal Detector
9 - (Reserved for Data Set Testing)
10 — (Reserved for Data Set Testing)
11 — (Unassigned)
12 SCF Sec. Rec'd. Line Sig. Detector
13 SOB Sec. Clear To Send

14 SBA Sec. Transmitted Data

15 DB Transmission Signal Element
Timing (DCE Source)

16 SBB Secondary Received Data
17 DD Receiver Signal Element Timing

(DCE Source)
18 — Unassigned
19 SCA Secondary Request To Send
20 CD Data Terminal Ready
21 CG Signal Quality Detector
22 CE Ring Indicator
23 CH/CI Data Signal Rate Selector

(DTE/DCE Source)
24 DA Transmit Signal Element Timing

(DTE Source)
25 — Unassigned

termed as the spacing condition, with a binary equivalent of 0. When put in the
marking state, the circuit's voltage is negative (- 3 volts to - 25 volts), the binary
equivalent of 1. All signals follow this convention. Furthermore, the drivers associ
ated with each signal must be able to withstand short-circuit conditions on their
outputs.

Using the IBM PC as an example (see the IBM Technical Reference Manual), DTK is
presented to the DB-25 connector through U12, an RS-232C driver. The driver
performs a voltage shift and inversion on the TTL level data presented to its input.
Therefore, to properly set DTR to the active condition on this computer, it is
necessary to set the control bit for DTR to TTL logic 0 (0 volts). Due to the voltage
translation and inversion (0 volts to +12 volts) of U12, the signal is in the spacing or

Communications 291

Table 10-5

RS232C Signal Functionality

Notation Interchange Voltage

Negative Rnsitive
Binary State 1 0

Signal Condition MARKING SPACING

Function OFF ON

on condition. If a logic 1 is output to the driver, the circuit assumes the off
condition. Table 10-6 depicts signals used on the IBM PC for data communications.

Terminals can communicate up to 50 feet using the RS-232C interface and at speeds
up to 19,200 bps. I'll discuss the RS-232C and its implications in the following text.
You are advised to write to the ElA at the address given above and obtain copies of
the standard. Related EIA interface standards are the RS-422, RS-423, and RS-449.
The RS-449 standard permits transmission speeds up to 2 million bits per second
and cable lengths of up to 60 meters.

Table 10-6

IBM PC RS-232C pin assignments

Pin Number Signal

1 PGND (Protective Ground)

2 ID (Transmit Data)

3 RD (Receive Data)
4 RTS (Request To Send)
5 CIS (Clear To Send)

6 DSR (Data Set Ready)
7 SGND (Signal Ground)
8 CD (Carrier Detect)

20 DTR (Data Terminal Ready)
22 Rl (Ring Indicator)

Figure 10-2 depicts the RS-232C signals used In the IBM PC.

Computer to Computer
Communications

Most of the previous discussions have revolved around communications over the
telephone. Computer to computer communications are also possible with the same
software used for telecommunications. A special cable is required to interconnect
two computers using the RS-232C interface. The term null cable is used to refer to

292 80881IBM PC Assembly Language Programming

such a cable. In a null cable, pins 2 and 3 (TD and RD) are exchanged (see Figure
10-3). Other signals may need to be tied together, such as DTK with DSR and RTS
with CTS at each connector. Depending on what the software requires (i.e., CTS
active, etc.) to allow communications, these signals or others are usually tied to
their counterparts at the connector of each terminal to give the appearance of
functionality to the software.

For example, connecting CTS to RTS at one terminal would give the appearance of
CTS being true. RTS is the signal the terminal would be sending to a modem if one
were connected. CTS would be the signal returning to the terminal from the
modem. By tying these two signals together, the terminal, on activating RTS,
would see CTS being returned, or also in the on condition. Nearly every applica
tion is different, requiring different signals of the RS-232 to be present to fool the
terminal's software.

Not all communications programs fully utilize all of the signals provided by the
RS-232C. Referring to Table 10-6, you'll see that not all of the RS-232C signals are
brought into the IBM PC. All of the signals are not required for most communica
tions. Even the signals available are not all used in all communications software.

Figure 10-13 shows a wiring diagram for a null modem cable that can be used to
transfer data between two computers. By using the cable and the appropriate
software, the two computers are able to share information and resources, such as
disks and printers. You are restricted to a communications distance of less than 50
feet when communicating through the RS-232C. This is not usually a problem, but
you should be aware of the limitations of the standard. Other communications
standards define communicating distances up to 4000 feet. (RS-422).

As you can see from the source listing of COMM.ASM in Listing 10-1 (Appendix D),
the program is broken down into small modules. This allows you to change or
adapt the modules relatively quickly if more features are desired or the system's
hardware or operating system should change. COMM.ASM uses several system calls
within its framework. Should changes occur to the operating system, COMM.ASM
can easily adapt to its new environment.

Because the program consists of many modules, it is necessary to provide you with
some introductory material on how the modules interact. Some are used only to
change an operational parameter, as in the terminal characteristics of the program.
Still others are integral parts of the program that are executed on every pass of the
job list.

Communications 293

1 2 3 4 5 6 7 8 9 10 11 12 13
• •••••••• • • • •

14 15 16 17 18 19 20 21 22 23 24 25

DB - 25 CONNECTOR

RS232 RS232

TD2

RD3

SIG. GND7

CD 8

RTS4

GTS 5

DTR 20

DSR6

—

2TD

3RD

7GND

8 CD

4RTS

5CTS

20 DTR

—

6DSR

—

COMPUTER 1

Figure 10-13 Null modem cable wiring diagram

COMPUTER 2

Why Not MS-DOS
Serial I/O?

Two methods that can be used to receive and transmit characters via the
asynchronous communications adapter are BIOS and MS-DOS function calls. The
third method deals directly with the communications port and reduces the por
tability of the program to other MS-DOS computers. While it may not always be
desirable to bypass the operating system and deal directly with the port, useful and
sophisticated communication programs must be written in this manner.

As 1 stated in the last chapter, the functions provided under MS-DOS for serial I/O
are minimal at best and not well suited for generalized communications. Since MS-
DOS links to the BIOS routines, the BIOS routines also prove to be inadequate
when using those skeletal functions that MS-DOS does provide.

294 8088!IBM PC Assembly Language Programming

If you inspect the BIOS listing in the IBM Technical Reference Manual on pages
A-22 - A-25, you'll find that DSR and CTS must be asserted before transmitting a
character over the communications channel. While the protocol of waiting for
these signals to be asserted is technically correct, most systems give you an option
as whether or not the protocol is desired. This type of protocol is often referred to
as electrical pacing. It is used to pace the communications line, so that if the DCE is
not prepared to receive characters from the DTE, the transmissions from the DTE
will be temporarily suspended. Many systems and lower-priced modems do not
use these signal lines. Therefore, you must prepare a null modem cable, as pre
viously described, to make the software believe that these signals are active.

The BIOS routines do not afford the necessary control over the communications
channel when operated in an interrupt driven mode. The use of interrupts is
desirable when communicating with another computer. If interrupts were not
used, the communications port would have to be periodically polled to insure the
proper reception of received characters. If the communications channel is not
polled frequently enough, characters may be lost. When the UART receiver hold
ing register is full (a character has been received) and another character arrives
before the program retrieves the first character, the UART generates an overrun
error. Therefore, when using higher communication rates (1200 to 9600 baud),
your program must be ready to accept a character as soon as it is available at the
receiver port.

This severely limits the amount of processing that can take place, since most of the
8088's time is spent polling the communications channel. The use of interrupts
allows the 8088 to perform whatever processing chores are required without
spending valuable time polling the channel. It also allows higher baud rates to be
used in communications without sacrificing processing time dedicated to other
tasks.

In order to carry out communications via the asynchronous communications
adapter in the most efficient manner, you must directly program and access the
registers of the National Semiconductor INS 8250 UART and the Intel 8259 pro
grammable interrupt controller.

BIOS routines can be used to initialize many of the communications parameters.
However, the registers of the chips must be accessed to perform other functions.
I'll first discuss the registers of interest to us and then explain what MS-DOS and
BIOS routines are acceptable when programming for data communications.

Where to Start

Refer to Listing 10-1 as I discuss COMM.ASM's operation. The listing contains bit
map assignments to the 8250 UART registers Til describe in a moment.

Communications 295

Physical
Port Assignments

If you look at Listing 10-1, the port assignments for the National Semiconductor
8250 UART found on the asynchronous communications adapter board are listed
at the beginning of the source file.

The Baud Rate

Divisor Registers

Type: Output

Ports: 03F8H (LSB of divisor word)

03F9H (MSB of divisor word)

To access the baud rate divisor registers, bit 7 of the line control register must be set
to a binary 1. The least significant byte can be accessed at port 03F8H, and the most
significant byte at port address 03F9H. These registers specify a divisor that
determines the baud rate for the communications channel. The 1.8432-megahertz
clock signal is divided by the value specified in the divisor registers to generate the
necessary baud rate timing.

Notice that simply dividing the 1.8432-megahertz clock signal by the divisor
specified does not return the baud rate. The value returned by performing this
division is 16 times the baud rate. The 8250 must sample the Receive Data input
(RD) at a rate of 16 times the baud rate to be sure the data transitions (mark to space,
etc.) are valid. On seeing a mark to space transition, the UART samples the RD line
toward the middle of the bit cell, or on the 8th of the 16 clocks, to verify that the
transition was caused by a valid start bit and not by noise being generated on the
line. If the RD input is still in a spacing condition, the initial mark to space
transition is then assumed to be generated from a valid start bit. Therefore, you can
calculate the baud rate divisor by 1,843,200/(BAUD RATE x 16). For those who do
not have a calculator handy, use the table shown in Listing 10-1.

You can program the channel for 9600-baud operation in the following manner:

MQV AL,60H ;Set bit 7 of line control register.

MOV DX,03FBH jPort address for line control register.

OUT DX,AL ;Bit 7 now set.

DEC DX sPoint to port 03F9H, MSB of divisor.

continued

296 8088!IBM PC Assembly Language Programming

DEC DX 5

MOV 00H ;MSB of divisor

OUT DX,AL ;Set up MS of divisor.

DEC DX 5Point DX to port 03F8H

MOV AL,0CH $Get LSB of divisor

;(1.843E Mhz / <9600 *

OUT DX,ftL $Set LSB of divisor.

0CH

Once the baud rate divisor is set, the remainder of the communication parameters
can be specified.

The Line

Control Register

Type: Output

Port: 03FBH

The line control register must be programmed to the communications parameters
desired. You have control over the word length, number of stop bits, and whether
to enable odd or even parity or disable parity altogether.

Bit 6 can be used to transmit a break on the communications channel. A break is a
continuous space. A line break may signal the other system to stop transmitting,
because there is an abnormality at the other end of the line.

When bit 7 in the line control register is reset, the transmitter and receiver holding
registers at port 03F8H and the interrupt enable register at port 03F9H can be
accessed. When hit 7 is set to a binary 1, those two port addresses provide access to
the baud rate divisor registers. The least significant byte of the baud rate divisor is
accessed via port 03F8H, and the most significant byte can be accessed via port
03F9H.

For example, you would output a value of OFH to port 03FBH to program the chip
for 8-bit word lengths with odd parity and 2 stop bits. Bit 7 is now reset and allows
the receiver and transmitter holding register to be accessed rather than the baud
rate divisor registers.

Communications 297

Transmitter and Receiver

Type: Input (Receiver)

Type: Output (Transmitter)

Port: 03F8H

The transmitter holding register (THR) and Receiver Holding Register (RHR) are
both assigned to port 03F8H. Data is read from the RHR by using the statements:

MOV DX,e3FaH sBet tha port address of the RHR.

IN AL,DX ;6et data from port.

Similarly, data is transmitted by using the statements:

MOV DX,03F8H 5Bet the port address of the THR

OUT DXfPL ^Transmit the character.

Each of these registers is capable of generating an interrupt. The transmitter can
interrupt the 8088 when the holding register or shift register is empty, and the
receiver can interrupt the 8088 when a character has been received (RHR full), or
when a receive error has occurred.

The Modem

Control Register

Type: Output

Port: 03FCH

The modem control register controls the setting of the modem control signals DTR
and RTS. If bO = 1, then DTR is active (space), and, if hi is set to a binary 1, RTS is set
to the on state (space). Two other signals generated by the 8250 are controlled
throiigh this register, OUTl* and OUT2*. The OUT2* signal is active when b3 in
the modem control register is set to a binary 1. Bit 3 must be set if interrupts are
enabled from the ACA board. OUT2* enables the gating of the interrupt signal to
the system bus of the PC. You can see this pictorially in the schematic on page D-88
of the IBM Technical Reference Manual (publication 6025005).

298 80881IBM PC Assembly Language Programming

When bit 4 is set, the 8250 is put into a special diagnostic mode. The receiver input
and the transmitter output are connected in the 8250. Any characters transmitted
are therefore received. The physical receiver connection to the communications
line from the chip is disconnected, and the transmitter output is set to a marking
condition. The diagnostic mode is useful to test the receive and transmit functions
of the 8250 to test interrupt service routines.

The remaining hits, h5, h6, and h7, in the modem control register must always he
set to zero.

Interrupt

Enable Register

Type: Output

Port: 03F9H

The interrupt enable register dictates what conditions (if any) will generate an
interrupt to the 8088. Bit 3 of the modem control register must be set to a binary 1 if
any of the interrupt types are enabled. Bits 4-7 of this register must always be set to
zero. If hit 3 is set, the 8250 generates an interrupt when there is a change in the
modem status register. The modem status register will he discussed in a moment.

If hit 2 is set, then the 8250 generates an interrupt when a break is detected on the
receiver input or when a character is received in error. When hit 1 is set, the 8250
generates an interrupt when the THR is empty and ready for the next character to
he transmitted. When bit 0 is set, it enables interrupts to he generated whenever a
character has been received (RHR full).

The interrupt service routine determines which of the possible interrupts
occurred. This can he easily accomplished by reading the interrupt identification
port 03FAH.

The Interrupt

Ideutificatiou Register ̂ —

Type: Input

Port: 03FAH

To check whether an interrupt has occurred, test hO of the interrupt ID port. If the
hit is set, then there is an interrupt pending. If the bit is reset, no interrupts are
pending. Bits 1 and 2 code the interrupt type and priority of the interrupts as
follows:

Communications 299

b2 b1 Type Priority Levei

0 0 Change in Modem Status 3 (lowest)

0 1 THR Empty 2

1 0 RHR Full 1

1 1 Received error, or break

detected.

0 (highest)

You must read this port after each interrupt has been serviced and prior to
returning from the current service routine to see if any other interrupts occurred
during the service routine. Failure to do so will inhibit interrupts which occurred
during a service routine from being recognized.

The interrupt ID bits are reset when the appropriate action has been taken. For
example, if a THR empty interrupt has occurred, the interrupt is reset when a
character is output to the THR. To reset the receiver full interrupt, input the
character from the RHR. Similarly, reading the line status clears level 0 interrupts,
and reading the modem status register clears level 3 interrupts.

The Line
Status Register

The line status register provides information about the communications channel.
The register can be read to determine if a character has been received or to
determine what type of error occurred, if any.

The port maps the status of the communications channel as follows:

b0 s 1 ss Receive data ready

bl B 1 SB Overrun error

bS B 1 s Parity error

b3 B 1 s Framing error

b4 B 1 s Break interrupt

bS B 1 JB thR empty

b6 B X s Transmit shift register empty

b7 is always zero.

You must check bit 5 before attempting to transmit a character. If b5 = 0, then do
not output the character to the THR. Similarly, bO should he checked prior to
attempting to input a character from the RHR.

300 80881IBM PC Assembly Language Programming

Overrun Error

If you have ever seen a baseball game when one base runner overruns the lead
runner (also known as bush league base running), you can easily visualize what
happens when a character overrun occurs in the receiver. The UART receives a
character, and, before the program has a chance to retrieve the character, another
character arrives at the receiver. The first character has been overrun by the
second. This type of error normally does not occur in a properly designed program
that uses interrupts.

Parity Error
A parity error occurs when parity error checking has been enabled, and the parity
of the received character does not match the parity type in use. If the UART detects
odd parity when even parity is enabled (or even when odd is enabled), a parity
error is generated.

Framing Error ^
This type of error is caused by an improper character framing. Each character
transmitted asynchronously is framed by start and stop bits. The stop bit returns
the communications channel to a marking condition. A framing error is most likely
to occur when the line does not return to a marking state after the character or
parity bit has been transmitted. This condition can signal the start of a received
break.

Modem

Status Register

Type: Input

Port: 03FEH

The modem status register returns the status of the signals that communicate with
the RS-232C interface. The signals are used as modem controls. The port is bit
mapped as follows:

b0

bl

b&

b3

b4

B Change in clear to send (CTS)

» Change in data set ready (DSR)

s Change in ring indicator (RI) (trailing edge from 1 to 0)

B Change in carrier detect (CD)

s Clear to send (CTS)

Communications 301

b5 s 1 B Data set ready (DSR)

b6 « 1 = Ring indicator <RI)

b7 » 1 » Carrier detect (CD)

The 8259
Interrupt Controller

Command Register

Type: Output

Port: 020H

Interrupt Mask

Register (IMR) -

Type: Output

Port: 21H

In a communications program that uses interrupts, it is necessary that the 8259
interrupt controller be set up to recognize the interrupts generated by the ACA
board. The 8259 interrupt controller can generate up to 8 vectored interrupts to
the 8088. The 8259 accepts Interrupt ReQuests (IRQs) from the peripherals
attached to the system, determines which has the highest priority, and interrupts
the 8088 CPU. A vector address is placed on the bus that the 8088 uses to obtain the
segment address and offset address to the service routine for that interrupt type.
The 8259 is initialized to provide the 8088 with interrupt types 08H to OFH, as
illustrated in Table I0-I4.

Interrupt Type Function Priority

OBH Timer (Channel Zero) 0

09H Keyboard 1

OAH Color Adapter Board 2

OBH N/A 3

OCH Serial Adapter Board 4

ODH N/A 5

OEM Disk Drives 6

OFH Printer 7

Table 10-7 8259 Interrupt Types

302 8088/IBM PC Assembly Language Programming

The communications board is assigned to the interrupt vector address OCH in the
interrupt vector table in low memory (see Chapter 3, Figure 3-8). The interrupt
type is determined by the values BIOS uses during system initialization. You should
not alter these vector types by reprogramming the 8259.

The two registers of interest in the 8259 are the command register and the
interrupt mask register. The command register accepts either initialization com
mand words or operational command words. Since BIOS initializes the 8259, 1
won't get into the many initialization options available. The information is ade
quately covered in the Intel Microsystem Components Handbook, Volume I
(# 230843-001, pages 2-120 to 2-137), should you want to delve into the initializa
tion mode further.

The only operational command word of interest to us here is the End of Interrupt
(EOI) command 20H. Actually, it is referred to in the Intel literature as a specific
EOI command. The EOI command must be output to the command register of the
8259 after an interrupt has been serviced. It is the last action taken by the service
routine prior to executing the IRET instruction. IRET returns control to the
program or task that was executed prior to the interrupt.

The interrupt mask register allows you to mask, or prevent, any of the interrupt
types from being generated (disabled). If the bit corresponding to the interrupt
type (IRQO,etc.) is set in the IMR, the interrupt type is disabled. To enable an
interrupt type, the corresponding bit in the IMR must be reset. This register can be
read (via the IN AL,21H) to determine the currently enabled interrupt types.

Although the functions MS-DOS provides for communications prove to be inadequate
except for the simplest of programming chores, I will briefly discuss each of them. The
functions can be found in the MACFLE.MAC listing discussed in Chapter 6.

Receive Function

Function: 03H(INT21H)

Macro: @ WAITAUX (See Chapter 6)

This function can be used to retrieve a character from the RHR of the 8250 UART.

You should first test bit 0 in the line status register before executing this function. If
bO is set, then a character has been received and is available in the receiver holding

Communications 303

register. If you do not check bO in the line status register, this function will wait
until a character is ready or until a BIOS-defined time limit has elapsed (time-out).

This call is relatively useless in a multitasking environment where you cannot wait
for anything. Use it if you must, and only when interrupts or other processing
chores will not suffer.

To invoke the function, move 03H into AH and execute INT 21H. The character
will be returned in AL. If a Control-Z is received, the function will execute an INT
23H which is a ControTC interrupt.

Transmitting
Characters —

Function: 04H(INT21H)

Macro: @AUXOUT (See Chapter 6)

This function transmits the character in the DL register to the communications
channel. It waits until CTS and DSR are asserted by the other computing device or
the DCE (modem). If the signals are not active, the function waits a specified
amount of time, then executes a time-out and return without having transmitted
the character. You can study the BIOS routine in the IBM Technical Reference
Manual to understand how this function operates.

1NT14H

BIOS offers more than the two functions MS-DOS does. However, BIOS still waits
for the electrical signals CTS and DSR to be asserted at the RS-232C interface
connector. BIOS adds two other functions, one of which can be used to set the
communication parameters of baud rate, word length, parity, and the number of
stop bits. The other function can be used to read the line control status and modem
status registers. The DX register must contain the serial port desired, zero for the
primary port and 1 for the secondary port (the second ACA board, if installed).

304 80881IBM PC Assembly Language Programming

Transmitting a Character
via BIOS

BIOS Function: OIH (INT 14H)

[DX] = Serial port
number

Macro: @RS_SEND

This function sends the character in the AL register to the communications chan
nel. The function waits for the DSR and CTS signals to be asserted prior to sending
the character. If bit 7 is set on return from the function, an error occurred and is
defined as follows:

AH Error code;

b0 1 B RHR full (data ready)

bl - 1 B Overrun error

bS 1 B Parity error

b3
- 1 B Framing error

b4
-

1 B Break detect

bS
- 1 B tHR empty

b6 as 1 B Transmitter shift register

Again, if your application can afford to wait for the signals DSR and CTS to be
asserted by the DCE, use this function. If your application does not care about nor
require these signals to he present, do not use this function. I'll show you how to
transmit a character directly to the port in the programming example presented
later in this chapter.

Receiving a Character

via BIOS —

Function: 02H(INTl4H)

[DX) = Serial port number

Macro: @RS_INPUT (See Chapter 6)

This function waits for a character to arrive at the serial port. It waits for DSR to be
asserted before attempting to input the character from the receiver holding register
oftheUART.

Communications 305

If the signal is not asserted, the routine returns after a specified amount of time
with bit 7 in AH set to indicate the time-out. In fact, any nonzero value in AH
indicates an error has occurred. The error is mapped in an identical manner as for
the transmit function (OIH) previously discussed. If AH is zero on returning from
this function, the character is in AL.

Setting the Communications
Parameters ———

Function: 00H(INTl4H)

[DX] = Serial port number

Macro: @RS232_INIT (See Chapter 6)

This function sets the baud rate, word length, parity, and number of stop bits
required for communications. The bit pattern must be set as shown in Listing 10-1.
Once you have decided on the character protocol, move the value into AL, zero
into AH, set DX to the serial port number, and execute INT 14H.

Reading the Line

and Modem Status —

Function: 03H(INTl4H)

[DX] = Serial port number

Macro: @RS_STATUS (See Chapter 6)

This function can be used to obtain the line status and the modem status. The line
status is returned in AH and the modem status in AL. The exact bit mapping and
significance is illustrated in Listing 10-1.

In the program COMM.ASM, 1 have tried to tie all the programming tips and tricks
discussed thus far into a real-life application, a communications program. With an

306 80881IBM PC Assembly Language Programming

assembled version of the programs in Listings 10-1 and 10-2 and a modem, you will
be able to communicate with other computers over the telephone.

The program supports a feature known as data capture, whereby all characters
received and transmitted are spooled to disk. You can print this file later when you
are off-line, saving time and money. If you must obtain an immediate hard copy of
the communications in progress, you can also route all received and transmitted
data to the printer.

Additionally, the program allows you to transmit an ASCII file via the communica
tions port. This is commonly referred to as downloading a file to another com
puter. If you own one of the many lap-top computers, such as the Radio Shack
Model 100 or 200 or the NEC 8201A, you can use this program to transfer ASCII files
from the lap-top computer to the IBM.

The program also illustrates many new concepts, such as circular and double
buffering and the installation and support of RS-232 interrupts.

The Main Program Loop

Although the program cannot be considered to be a true multitasking system where
multiple jobs or tasks are carried out simultaneously, it gives the appearance that
the keyboard disk, communications, printer, and display functions are executing
concurrently.

The main loop of the program does nothing except call each functional module
within COMM.ASM. The program label MAIN_LOOP to EXIT is the loop that is
continually executed. Within the loop, the program checks to see if there is a
nonzero value in RAM location EXIT_FLAG. This RAM location contains a nonzero
value when the keyboard routine detects an ALT - Z key combination entered from
the keyboard. This control is used to terminate the program.

Four basic routines are called from the main program loop: RECEIVE, KEYBOARD,
TX_RS232, and PRlNTER_OUT_l. I'll discuss each in detail in a moment.

The main program first calls a procedure to initialize the RS-232 and set other
functioning parameters of the program. The called procedure, INIT, prompts you
for the various parameters and initializes the communications port. This pro
cedure also installs the RS-232 interrupt vector.

Procedure:

INIT

This procedure prompts you for the baud rate desired, the parity type if any, the
number of stop bits, and the word length to be used in communications. Each

Communications 307

prompting session sets or resets the appropriate bit positions in the RAM location
CONFIGURATION. This byte in RAM specifies the character protocol to be used.

Once the parameters have been specified, the program asks you if you want
transmitted characters to be echoed to the display. If the communications channel
is half duplex, answer yes to the echo prompt. If the channel is full duplex (where
the host computer echoes back all characters received from your terminal), answer
no to the prompt. Bit 6 in the RAM location SYSTEM_STATUS is set if you answer
yes to the prompt and reset if local echo is not desired.

Now find the program label SET_CONFIGURATION in the INIT procedure. The
macro @RS232_INIT is invoked, and the parameter CONFIGURATION is passed to
the macro. The macro uses the contents of this RAM location to set the character

protocol. The macro invokes the BIOS function OOH using BIOS interrupt type
14H. I could have gone directly to the 8250 ports to initialize the character
protocol, but this particular BIOS function is easier to use and program than direct
port addressing would be.

Installing a New
Interrupt Service Routine

Once the 8250 has been initialized with the character protocol, a new interrupt
vector that points to the program's RS-232C interrupt service routine is installed.
The ES and BX registers are saved, and the MS-DOS function 35H is invoked to read
the current interrupt vector.

The macro @READ_VECTOR invokes the MS-DOS function 35H. The value OCFI is
passed to the macro. This is the interrupt type for the communications card. When
the macro is expanded (see the MACFLE.MAC listing in Appendix D), it moves the
interrupt type into AL and the MS-DOS function number 35H into AL and executes
the INT 2IH instruction. On return, the current interrupt vector for type OCH will
be in the following registers:

ES = Segment address of vector.

BX « Offset pointing to the first byte of the service routine.

These values should be saved when altering any interrupt vector in low RAM. Prior
to terminating your program, the original values should be reinstated in the vector
table. In the program, the values are saved in the data segment at RAM locations
OLD_VECTOR (segment) and OLD_VECTOR -h [2] (offset).

The contents of DS are saved on the stack and the effective address of the new

interrupt service routine is moved into the DX register (LEA DX,RS232_1NT_1).

308 80881IBM PC Assembly Language Programming

The code segment where the routine resides is moved into DS:

MOV fiX,MY_CODE

MOV D8, nx

The interrupt type is moved into AL, and the MS-DOS function code 25H is moved
into AH. Then the INT 21H instruction is executed. The program then restores DS
(POP DS).

Interrupts are disabled (CLI) until the 8250 UART and the 8259 interrupt controller
have been initialized. Since you are programming the interrupt control registers of
the 8250 UART and the 8259 interrupt controller, it is best to disable all interrupts
until your bit twiddling is completed.

RTS and DTR are set to true (space) in the modem status register of the UART. Next,
any pending interrupts are reset by performing a dummy read to the line status
register. Now it's time to enable the 8250 interrupts. A value of OIH is moved into
the AL register. This defines the interrupt mask for the 8250. Since bO is the only bit
set in the mask, only interrupts received by the 8250 are enabled. Anytime the
8250 completely receives a character, an interrupt is generated.

This value is output to the interrupt enable register of the 8250 (port 03F9H). It
would be nice and easy if this were all there was to enable interrupts from the ACA
board; however, there is one more chip that must be initialized. The 8259 must be
able to recognize not just the ACA board interrupts, but it must also recognize any
other system peripheral interrupts necessary for the program and the operating
system to function properly. In this example, 1 enabled interrupts for the disk
drive, communications board, keyboard, and the 8253 timer. If you disable any of
these interrupts, the associated device will not be able to generate an interrupt
request to the 8088, and the system will either hang or return erroneous results.

Once you have established the interrupt vector and enabled the interrupt types, the
instruction STl is executed, which enables the 8088 to respond to any of the
interrupts specified.

Program Operation

You may have come to think of program execution as being carried out one
instruction at a time. While it is true that this view of program execution is
technically correct, you do have to modify your thinking when working in an
interrupt driven environment. Since interrupts can occur at any time from a
number of different sources, care must be taken in defining how the program deals
with them.

Communications 309

When communications over a high speed channel (9600 haud or greater), a First In,
First Out (FIFO) buffer is used to store the characters as they are received via the
ACA hoard. While the ACA receiver interrupt is heing serviced, other programming
tasks are suspended. Therefore, most all of your interrupt service routines should
he kept as short as possible. Leave any processing of the data to other routines
which execute during normal program operation, not at interrupt time.

Interrupt Service Routine

The different procedures found in COMM.ASM are assigned very specific func
tions. The interrupt service routine for the RS-232C must detect any errors in the
receiver, such as framing errors, parity errors, overrun errors, or detecting a break
condition. The service routine places the ASCII code lAH in the receive buffer if an
error is detected. If no error is detected, the character is input from the UART RHR
and placed in the next empty position in the receive buffer.

Notice in the interrupt handler at the program label GET_CHAR, that the DS and ES
registers are reintialized to point to the data segment. This is important. BIOS
routines (such as disk and timer routines) reinitializes DS and ES. The routines save
the registers' contents and point them to scratch areas used by MS-DOS and BIOS.
Should an RS-232 interrupt occur when the registers are pointing to a BIOS or MS-
DOS data segment, you stand a good chance of wiping out variables used by the
operating system. Furthermore, data received during an interrupt will never he
saved in the receiver buffer, as the registers are not pointing to the proper data
segment.

The interrupt handler adjusts the input pointer RS_IN_POINT and increments the
character counter RS_CHARS. The input pointer points to the next open position
in the receive buffer. Similarly, there is an output pointer associated with the buffer
that points to the next character to be removed from the buffer for processing.

The rule here is: Never assume anything during interrupts. Save the registers on
entry, reinitialize them with the data segment of your choice, and restore the DS
and ES registers to their former values before executing the IRET instruction.

More on Data Buffers

A buffer is a dedicated portion of contiguous memory used to temporarily hold
data. By buffering the data, the devices that the data are destined for have enough
time to process the information. There always exists the possibility the devices
may be too slow to keep up with the rate at which the buffers are filled. With
proper definition at design time, the dynamics of the system can be anticipated and
enough time allocated to properly handle data processing.

310 8088!IBM PC Assembly Language Programming

The buffers used in COMM.ASM are first in, first out (FIFO) buffers. Each buffer has
two pointers and a character counter associated with it. One pointer is used as an
input pointer, which points to the next available location in the buffer. The other
pointer is the output pointer. It points to the next active character position in the
buffer. The counter is used in order to avoid lengthy computations to determine if
there are characters in the buffer awaiting processing. A routine which must
process active characters simply has to test the character count of the buffer. If the
value is zero, there are no active characters awaiting processing, and the next task
is allowed to execute.

A task which must put characters into the buffer takes the following action:

1. Fetch the buffer's input pointer address.

2. Store the desired value at the byte pointed to by the buffer's input address
pointer.

3. Increment the pointer by either 1 or 2, depending on whether a byte or a
word had been stored in the buffer.

4. Maintain pointer integrity by making sure the pointer continues to point to
the next available location in the buffer.

5. Increment the character counter by one, thus indicating a character has been
added to the buffer and awaits processing.

To maintain pointer integrity as mentioned in step four, the address pointer usually
has certain bits reset by the routine manipulating the pointer. For example, if the
maximum buffer size is 16 bytes, bits 4-15 must always be reset before the routine
saves the new value of the offset. This insures the buffer will not extend beyond its
allocated memory depth. To demonstrate further, assume we are using a 16-byte
buffer and the current offset contains the binary value 0000 0000 0000 1111. The
buffer offset is pointing to the last physical byte allocated to the buffer. After
incrementing the offset, its new value will be:

0000 0000 0001 0000 (binary);

which, when added to the virtual start address of the buffer, would be pointing one
byte past the end of the buffer.

By resetting bit 4 of the offset value, the offset is reset to 0000 0000 0000 0000, or
the first physical location of the buffer. This keeps the buffer circular. When the
last physical position of the buffer is occupied, it wraps around and points to the
first position. Figure 10-14 illustrates the concept of circular buffering further.

Another important concept is that of double buffering. By providing two or more
buffers from which to process characters or data, asynchronous tasks are able to be
synchronized to available resources within the system. Each task is assigned spe
cific responsibilities as to when and how data are deposited into a particular buffer
and when and how the data are removed from a buffer. Often the data are routed to

Communications 311

Buffer Pointer

T
\ \ \

10 11 12 13 14 15

Figure 1044

another buffer associated with a logical or physical system resource. The second
buffer can then be emptied by the task which is associated with that buffer.

Refer to Figure 10-15. Notice the UART receive buffer receives data in a random and
asynchronous manner. The arrival of the data is unpredictable as it is received from
the communications channel, which is asynchronous. COMM.ASM uses interrupt
to alert the processor when a character is received via the RS-232C interface. At
interrupt time, the character is put into a buffer associated with the UART's
receiver function. Refer now to program Listing 10-1 in Appendix D. In the pro
cedure RS232_INT the interrupt handler is defined.

When a character is put into a buffer, the input pointer to the buffer and the buffer's
character count are incremented. When a character is taken from the buffer, the

output pointer is incremented to point to the next character's position, and the
character count is decremented by one. A procedure can simply check the char
acter count to determine if there are any characters awaiting processing in the
buffer.

Find the GET_CHAR label in the program. The input pointer to the receiver buffer
is moved to the SI register. After inputting a character from the RHR, the procedure
branches to the label POINT_ADJ. The pointer is incremented and logically ANDed
with the value 07FFH. Since the buffer for the communications channel is 2048

312 8088!IBM PC Assembly Language Programming

Active Character Count +1 +2 +3 INPUT

+0 +1 +2 +3 Buffer in Pointer (Offset)

•A'l -B'! 'C'l I Next Char
Characters in

A-B-C

Byte#
A B C

OUTPUT

Characters

Out A - B - C

Buffer

Buffer Out Pointer

(Offset)
Next Char Out

+2 +1 +0Active Character Count +3

Figure 10-15

bytes in length, this action insures that the pointer will wrap around and point to
the beginning of the buffer after the last buffer position has been used.

Nothing more is done with respect to processing the character at this time. The
interrupt routine terminates and returns control to the task which was executing
when the interrupt occurred.

Procedure: RECEIVE

To demonstrate the concept of double buffering refer to the program listing at the
label RECEIVE. This is where the characters previously stored in the UART buffer
are processed. Notice that the routine immediately checks the value of RS_CHARS.
If the value is zero, there are no characters in the UART buffer, and the routine
returns to the main program loop. If there are characters waiting in the buffer, the
offset RS_OUT_POINT is added to the buffer's start address RS_BUFFER to obtain
the correct pointer value of the next character to process.

The RS_IN_POINT and the RS_OUT_POINT pointers do not have to keep pace
with each other. If for some reason the input pointer gets far enough ahead of the
output pointer, it is understood that each process has the ability to signal a possible
overflow condition and request that other routines (or even the communications
channel) be prevented from sending characters to it until it is emptied. This flow
control further synchronizes the otherwise asynchronous execution of tasks
within the system.

Communications 313

Once a character is received from the buffer, it is processed. The processing occurs
at task time. Therefore, it is possible to be buffering additional characters in the
primary buffer through interrupts while processing or putting a character into
secondary buffers at task time. The character may be routed to the video display, a
printer buffer, the capture buffer, or to a disk buffer, if the task associated with the
secondary buffer is active. If the task is not active, the character is not put into the
task's buffer (see Figure 10-16).

PRINTER

DISK

INTERRUPTER

BUFFER

SECONDARY

BUFFERS

TO DISK

Figure 10-16

Through the use of these secondary buffers, the associated tasks, when called from
the job list, must handle the processing of the character. The printer job then gets a
character from its buffer and sends it to the printer when and if the printer is ready.
The disk spooler uses yet another buffer from which the operating system (MS-
DOS) writes a 512-byte sector to disk when the buffer becomes full. It is the
responsibility of the lower level tasks to communicate flow control information to
the higher level tasks. If secondary buffers are filling up faster than they can be
emptied, communications are paced to allow the buffer to be emptied without
losing data.

All buffer management, whether at primary or secondary levels, is handled in the
same manner as shown in these examples.

314 8088/IBM PC Assembly Language Programming

Procedure: KEYBOARD

Characters typed from the keyboard are processed by the procedure KEYBOARD.
The keyboard routine uses the MS-DOS function 06H to return a character from the
keyboard if one is available. DL is set to OFFH, which informs the function not to
echo characters typed to the screen.

The routine checks for the following control characters; DCl, DC2, DC3, and DC4
(ASCII codes IIH, 12H, 13H, and 14H). These controls perform specific functions in
the program as illustrated in Figure 10-17.

Keyboard Control Function

ALT-B Download an ASCII file

ALT-D Toggle Disk Spooler On/Off
ALT-H Display the help menu
ALT-Z Exit to DOS

CTRL-Q DCl (XON)
CTRL-R DC2 (Printer On)
CTRL-S DC3(X0FF)
CTRL-T DC4 (Printer Off)

Figure 10-17 Control Codes used in COMM.ASM

The keyboard handler must test to see if the ALT key is being pressed in conjunc
tion with another key. Any other character is placed in the transmit buffer at the
program label STUFF_BUFFER. The buffer pointer is incremented and kept circular
by ANDing the input pointer value with OOFFH. The characters put into the
transmit buffer by the keyboard routine are removed from the buffer and transmit
ted by the procedure TX_RS232.

Procedure: TX_RS232
This procedure is called from the main program loop. The first action taken in this
procedure is to ascertain if any characters have been placed in the transmit buffer
by the KEYBOARD or DLOAD procedure. If the value of TX_CHARS is zero, there
are no characters in the buffer and the procedure returns to the main program loop.
If TX_CHARS contains a nonzero value, then the procedure continues.

When the receive buffer stands a chance of overflowing, as when more characters
are being received than are being removed, the program or terminal transmits a
DC3 (ASCII 13H) to the remote system. It's the computer's way of saying stop
sending for a moment. When the situation alleviates itself and the buffer has been
adjusted so that the possibility of an overflow has been eliminated or reduced, the
program sends a DCl control (ASCII IIH) to the remote to resume transmission.

Communications 315

This form of flow control, or buffer management, is character oriented as opposed
to the electrical pacing techniques that BIOS provides when using DSR with DTR
and CTS with RTS in transmission.

The program suspends transmissions when the printer buffer is about to overflow,
when the DC3 control is typed from the keyboard (Control-S), or when the remote
system sends a DC3 to you. In an ideal situation, the remote terminal would
recognize the DC3 as soon as it arrives. In reality, the remote system will have
already sent a number of characters before the DC3 is received. Therefore, be sure
to allow enough room in the buffer to account for the characters that may still be
on the way to your terminal after you have sent the DC3. As a rule of thumb, when a
buffer fills to about three-quarters of its capacity, send a DC3, and when the buffer
is about one-quarter full, send a DCl to resume transmissions.

The transmit procedure also returns to the calling program without having sent a
character if it finds that the THR of the UART is not empty. You cannot load a
character into the THR unless the register is empty.

If there are characters in the TX buffer, no DC3 has been sent and the transmitter
holding register of the UART is empty, the next character to be removed from the
TX buffer is fetched and transmitted to the communications channel. If the char
acter is a DC3 or a DCl, bit 5 of RAM location SYSTEM_STATUS is set or reset to
reflect the control was encountered.

SYSTEM_STATUS is tested to see if bit 6 is set or reset. If the bit is set, then the user
elected during the initialization portion of the program to echo all characters
transmitted to the display. If the bit is reset, then the procedure will not echo the
characters transmitted to the display.

If the character transmitted is carriage return (ODH), then the RAM location
SYSTEM_STATUS is checked to see if bit 6 is set. This bit is set during initialization
if you have elected to execute a carriage return/linefeed combination when a
carriage return is encountered; otherwise, the procedure executes the carriage
return only.

Spooling

Procedure:

TURN_DISK_ON_OFF

If you type an ALT-D from the keyboard, disk spooling is enabled. When ALT-D is
typed once the feature has been enabled, the spool file is closed and spooling to the
disk file will cease. ALT-D acts as a toggle to enable or disable the spooling feature.

316 80881IBM PC Assembly Language Programming

When invoked, you are prompted for a standard MS-DOS filename, including a
drive specification, pathname, filename, and an extension, if desired.

The procedure uses MS-DOS 2.0 disk access mechanisms to create the disk file and
write to disk. The MS-DOS function 3CH is used to create the file. The function
returns a l6-bit file handle, which must be used during subsequent file access. The
file handle is stored in the RAM location FILE_HANDLE in the data segment. The
DTA is set to point to DISK_BUFFER in the data segment. If an error occurs during
the creation of the file, an error message is displayed and the procedure is termi
nated.

Procedure: DISK IN

The procedure DISK_IN stores the character in DL in the DTA of an open file. After
each character is transferred to the buffer, the character counter DISK_IN is
incremented. When the count equals 512 bytes, a sector is written to disk. If there is
a disk error, the file is closed and an error message is displayed. The only control
characters that are stored to disk are carriage returns, linefeeds, and the backspace
character. All other control characters are ignored by this procedure.

Procedure:

PRINTER IN 1

This procedure is responsible for placing the character in DL into the printer buffer
when the printer spooling option is enabled. To enable this option, press Control-R
(DC2). To disable printer spooling, press Control-T (DC4). If the buffer fills to 200
characters, the routine automatically sends a DC3 over the communications chan
nel. The PRINTER_OUT_l procedure is responsible for sending a DCl to the
remote system when the buffer contains fewer than 100 characters.

Procedure:

PRINTER OUT 1

This procedure transmits a character stored in the printer buffer to the printer if
one is available. If you toggle the printer on, be sure you have one attached to the
system and that it is on-line. Nowhere in the routine is a check made to see if a
printer is really part of the system. The program will hang up once the printer
buffer exceeds 200 characters if a printer is not attached to the system.

The procedure checks to see if a DC3 printer condition exists and, if so, checks the
depth of the printer buffer. If there are fewer than 100 characters in the buffer, a
DCl is transmitted over the communications line, and the DC3 condition is reset.
Normal transmission and reception can then resume.

Communications 317

Downloading Files (ALT-B)

When you press ALT-B, the procedure DLOAD is activated (see Listing 10-2 in
Appendix D). This file reads a disk file one sector at a time and places the characters
read into the transmit buffer. The procedure checks the keyboard during execution
for a key closure. If a key has been pressed, the procedure aborts and returns to the
terminal mode.

When the download function is first activated, you are prompted for the drive,
pathname, filename, and extension of the file to he downloaded. If there is an error
in opening the file, the procedure displays an error message and returns to the
terminal mode.

The specified file must be an ASCII text file. It cannot he a binary file. Since the
program uses XON and XOFF flow control, you cannot transmit a file containing
either of these control characters.

Help Menu

Should you forget what the limited control key sequences are which control the
program, press ALT-H and a help menu will he displayed. The keyboard procedure
in Listing 10-1 contains the routine HELP which clears the screen and displays the
help menu.

Exiting the Program

To end the communications program press ALT-Z. This sets the exit flag, which is
checked in the main program loop (MAIN_LOOP). When the program finds the exit
flag set, the original interrupt vector for communications is restored, and you are
returned to MS-DOS.

You should study the listing of each procedure in detail in Listings 10-1 and 10-2.
Experiment and alter the routines. Add new procedures that will increase the
utility of the program.

318 80881IBM PC Assembly Language Programming

Try adding these features to the program:

1. Character filters to create your own code translation tables for keyboard and
received characters.

2. A procedure to transmit a binary file.

The list could go on. 1 suggest you take a look at some of the commercial programs
available and incorporate similar features into your own custom telecommunica
tions program. Assembly Language programming can be rewarding, money saving
(you won't have to buy as many programs), and educational. I hope you found the
programming examples in this book to be all of these and more.

There were many more programming examples and programming applications 1
wanted to cover; yet time and space would not permit. The more advanced
subjects will have to wait for the follow-up book: 80881IBM PC Assembly Lan
guage Programming—Book II.

1 • A is a device that performs parallel to serial conversion of data.

2. Hardware interrupts are prioritized by the PIC.

3. Full-duplex allows simultaneous communica
tions.

4. Simplex is a simple-minded form of conversation. True or False.

5. Asynchronous communication does/does not require a timing element to be
transmitted for synchronization.

6. Using PSK modulation, what is the modulation rate of a 1200 bit per second
communication channel?

7. The UART found on the serial I/O board is a National Semiconductor

(part number).

8. The line control register of the UART controls the RS-232C signals of the
communications line. True or False.

Communications 319

9. Define the 8-bit binary pattern which must be written to the 8259 IMR
register to enable only timer, printer, and disk interrupts.

10. The MS-DOS function can be used to transmit a character via
the serial communications adapter.

11. The function listed in question 10 will until and
are asserted prior to transmitting a character.

ASCII, BAUDOT, EBCDIC

ASCII is a 7-bit code defining character and control codes from OOH to 7FH.

Baudot is a 5-bit code that defines figures and letters from OOH to IFH. By use of
figures shift or letters shift, the number of characters represented is extended to 60
characters.

EBCDIC is an 8-bit character code that defines characters and control codes from
OOH to FFH. It is most often used by IBM mainframes in communications.

BAUDOT

Binary ASCII Figures/Letters EBCDIC Hexidecimal

0000 0000 NULL Blank Blank NULL OOH

0000 0001 SOH 3 E SOH OIH

0000 0010 STX Linefeed Linefeed STX 02H

0000 0011 ETX - A ETX 03H

0000 0100 EOT Space Space PF 04H

0000 0101 ENQ , S HT 05H

0000 0110 ACK 8 I LC 06H

0000 0111 BEL 7 U DEL 07H

0000 1000 BS CR CR 08H

322 8088!IBM PC Assembly Language Programming

BAUDOT

Binary ASCII Figures/Letters EBCDIC Hexidecimal

0000 1001 HT ENQ D 09H

0000 1010 LF 4 R SMM OAH

0000 1011 VT BEL J VT OBH

0000 1100 FF N FF OCH

0000 1101 CR $ F CR ODH

0000 1110 so : C SO OEH

0000 1111 SI (K SI OFH

0001 0000 OLE 5 T OLE lOH

0001 0001 DCl Z DCl IIH

0001 0010 DC2) L DC2 12H

0001 0011 DC3 2 W TM 13H

0001 0100 DC4 # H RES 14H

0001 0101 NAK 6 Y NL 15H

0001 0110 SYN 0 P BS 16H

0001 0111 ETB 1 Q IL 17H

0001 1000 CAN 9 0 CAN 18H

0001 1001 EM ? B EM 19H

0001 1010 SUB & G CC lAH

0001 1011 ESC [Figures Shift] CUl IBH

0001 1100 FS M IFS ICH

0001 1101 GS / X IGS IDH

0001 1110 RS ; V IRS lEH

0001 nil US [Letters Shift] lUS IFH

0010 0000 SPACE OS 20H

0010 0001 f SOS 21H

0010 0010
//

FS 22H

0010 0011 # 23H

0010 0100 $ BYP 24H

0010 0101 % LF 25H

0010 0110 & ETB 26H

0010 0111
/

ESC 27H

0010 1000 (. 28H

0010 1001) 29H

0010 1010
*

SM 2AH

0010 1011 + CU2 2BH

0010 1100
> 2CH

0010 1101 - enq 2DH

0010 1110 ACK 2EH

0010 nil / BEL 2FH

0011 0000 0 30H

0011 0001 1 31H

0011 0010 2 SYN 32H

0011 0011 3 33H

0011 0100 4 PN 34H

0011 0101 5 RS 35H

0011 0110 6 UC 36H

0011 0111 7 EOT 37H

0011 1000 8 38H

0011 1001 9 39H

0011 1010 3AH

Appendix A 323

BAUDOT

Binary ASCII Figures/Letters EBCDIC Hexidecimal

0011 1011 CU3 3BH

0011 1100 < DC4 3CH

0011 1101 = NAK 3DH

0011 1110 >
3EH

0011 nil ? SUB 3FH

0100 0000 @ SPACE 40H

0100 0001 A 41H

0100 0010 B 42H

0100 0011 c 43H

0100 0100 D 44H

0100 0101 E 45H

0100 0110 F 46H

0100 0111 G 47H

0100 1000 H 48H

0100 1001 I 49H

0100 1010 J 4AH

0100 1011 K 4BH

0100 1100 L < 4CH

0100 1101 M (4DH

0100 1110 N + 4EH

0100 nil 0 1 4FH

0101 0000 p 1 50H

0101 0001 Q 51H

0101 0010 R 52H

0101 0011 s 53H

0101 0100 T 54H

0101 0101 u 55H

0101 0110 V 56H

0101 0111 w 57H

0101 1000 X 58H

0101 1001 Y 59H

0101 1010 z
! 5AU

0101 1011 [$ 5BH

0101 1100 \
1

* 5CH

0101 1101) 5DH

0101 1110 ; 5EH

0101 nil 'X/ 5FH

0110 0000 \ -

60H

0110 0001 a / 61H

0110 0010 b 62H

0110 0011 c
63 H

0110 0100 d 64U

0110 0101 e
65H

0110 0110 f 66H

0110 0111 g
67H

0110 1000 h 68H

0110 1001 i 69H

0110 1010 j 6An

0110 1011 k ,
6BH

0110 1100 1 % 6CH

324 8088!IBM PC Assembly Language Programming

BAUDOT

Binary ASCII Figures/Letters EBCDIC Hexidecimal

0110 1101 m 6DH
0110 1110 n > 6EH
0110 nil 0 p 6FH
0111 0000 p 70H
0111 0001 q 71H
0111 0010 r 72H
0111 0011 s 73H
0111 0100 t 74H
0111 0101 u 75H
0111 0110 V 76H
0111 0111 w 77H
0111 1000 X 78H
0111 1001 y 79H
0111 1010 z 7AH
0111 1011 { # 7BH
0111 1100 1 @ 7CH
0111 1101 i 7DH
0111 1110 'V — 7EH
0111 nil RUBOUT //

7FH

(DEL)
1000 0000 80H

1000 0001 a 81H
1000 0010 b 82H
1000 0011 c 83H
1000 0100 d 84H

1000 0101 e 85H
1000 0110 f 86H
1000 0111 g 87H

1000 1000 h 88H
1000 1001 89H

1001 0001 j 91H

1001 0010 k 92H
1001 0011 1 93H

1001 0100 m 94H

1001 0101 n 95H

1001 0110 o 96H
1001 0111

P 97H

1001 1000
q 98H

1001 1001 r 99H

1010 0010 s A2H
1010 0011 t A3H

1010 0100 u A4H

1010 0101 V ASH
1010 0110 w A6H

1010 0111 X A7H

1010 1000
y A8H

Appendix A 325

Binary ASCII

BAUDOT

Figures/Letters EBCDIC Hexidecimal

1010 1001 z A9H

1100 0000 { COH

1100 0001 A CIH

1100 0010 B C2H

1100 0011 C C3H

1100 0100 D C4H

1100 0101 E C5H

1100 0110 F C6H

1100 0111 G C7H

1100 1000 H C8H

1100 1001 I C9H

1101 0000 } DOH

1101 0001 J DIH

1101 0010 K D2H

1101 0011 L D3H

1101 0100 M D4H

1101 0101 N D5H

1101 0110 O D6H

1101 0111 P D7H

1101 1000 Q D8H

1101 1001 R D9H

1110 0010 S E2H

1110 0011 T E3H

1110 0100 U E4H

1110 0101 V E5H

1110 0110 W E6H

1110 0111 X E7H

1110 1000 Y E8H

1110 1001 Z E9H

nil 0000 0 FOH

nil 0001 1 FIH

nil 0010 2 F2H

nil 0011 3 F3H

nil 0100 4 F4H

nil 0101 5 F5H

nil 0110 6 F6H

nil 0111 7 F7H

nil 1000 8 F8H

nil 1001 9 F9H

8088/86 Instruction Set

The following is the complete 8088/86 instruction set as published in the Intel
iAPX 88 Book (pages 2-51 through 2-68), Intel order number 210200-002. The
instruction set is reprinted with the permission of Intel Corporation.

327

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-20. Effective Address Calculation
Time

EA COMPONENTS CLOCKS*

Displacement Onlv 6

Base or Index Only (BX,BP,SI,01) 5

Displacement
+

Base or Index (BX,BP,SI,DI)
9

Base
1

BP + DI, BX + SI 7
"T

Index BP + SI.BX + DI 8

Displacement
+

Base
+

Index

BP + DI + DISP

BX + SI + DISP

BP + SI + DISP

BX + DI + DISP

11

12

*Add 2 clocks for segment override

that the BIU can obtain the bus on demand, i.e.,
that no other processors are competing for the
bus.)

With typical instruction mixes, the time actually
required to execute a sequence of instructions will
typically be within 5-10^o of the sum of the
individual timings given in table 2-21. Cases can
be constructed, however, in which execution time
may be much higher than the sum of the figures
provided in the table. The execution time for a
given sequence of instructions, however, is always
repeatable, assuming comparable external condi
tions (interrupts, coprocessor activity, etc.). If the
execution time for a given series of instructions
must be determined exactly, the instructions
should be run on an execution vehicle such as the
SDK-86 or the iSBC S6/\2^^ board.

Table 2-21. Instruction Set Reference Data

AAA AAA (no operands)
ASCII adjust for addition Flags ODITSZAPC

u U U X U X

Operands Clocks Transfers* Bytes Coding Example

(no operands) 4
— 1 AAA

AAD AAD (no operands)
ASCII adjust for division Flags ODITSZAPC

U X X U X u

Operands Clocks Transfers* Bytes Coding Example

(no operands) 60 — 2 AAD

AAM AAM (no operands)
ASCII adjust for multiply

Flags ODITSZAPC
^ U X X U X u

Operands Clocks Transfers* Bytes Coding Example

(no operands) 83 — 1 AAM

AAS AAS (no operands)
ASCII adjust for subtraction

Flags ODITSZAPC
U U U X U X

Operands Clocks Transfers* Bytes Coding Example

(no operands) 4
— 1 AAS

*For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer.

2-51 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

ADC ADC destination,source

Add with carry
Flags ODITSZAPC

X X X X X X

Operands Clocks Transfers* Bytes Coding Example

register, register
register, memory
memory, register
register, Immediate
memory. Immediate
accumulator. Immediate

3

9 + EA

16+EA

4

17-1-EA

4

1

2

2

2

2-4

2-4

3-4

3-6

2-3

ADC AX, SI

ADC DX, BETA [SI]
ADC ALPHA [BX] [SI], Dl
ADC BX, 256
ADC GAMMA, 30H
ADC AL, 5

ADD ADD destination,source
Addition

ODITSZAPC

X X X X X X

Operands Clocks Transfers* Bytes Coding Example

register, register
register, memory
memory, register
register. Immediate
memory. Immediate
accumulator. Immediate

3

9 + EA

16 + EA

4

17+EA

4

1

2

2

2

2-4

2-4

3-4

3-6

2-3

ADD CX, DX
ADD Dl, [BX].ALPHA
ADD TEMP,CL

ADD CL, 2
ADD ALPHA, 2

ADD AX, 200

AND AND destination,source
Logical and

Flags ODITSZAPC
0 X X U X 0

Operands Clocks Transfers* Bytes Coding Example

register, register
register, memory
memory, register
register. Immediate
memory, Immediate
accumulator. Immediate

3

9 + EA

16+EA

4

17+EA

4

1

2

2

2

2-4

2-4

3-4

3-6

2-3

AND AL,BL
AND CX,FLAG_WORD
AND ASCII [DI],AL
AND CX,OFOH
AND BETA, 01H
AND AX,01010000B

CALL CALL target
Call a procedure

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Examples

near-proc

far-proc
memptr16
regptr16
memptr 32

19

28

21 + EA

16

37+EA

1

2

2

1

4

3

5

2-4

2

2-4

CALL NEAR_PROC

CALL FAR_PROC

CALL PROC_TABLE [SI]
CALL AX

CALL [BX].TASK [SI]

CBW CBW (no operands)
Convert byte to word

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 — 1 CBW

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer.

Mnemonics © Intel, 1978
2-52

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

CLC
CLC (no operands)
Ciear carry fiag

Flags 0 D 1 T S Z A P C

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 — 1 CLC

OLD
CLD (no operands)
Clear direction flag

0 D i T S Z A P CFlags Q

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 — 1 CLD

CLI
CLI (no operands)
Clear interrupt flag

ODiTSZAPCFlags Q

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 — 1 CLI

CMC
CMC (no operands)
Complement carry flag

ODITSZAPCFlags ^

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 — 1 CMC

CMP
CMP destination,source

Compare destination to source
Flags ODiTSZAPC

X X X X X X

Operands Clocks Transfers* Bytes Coding Example

register, register
register, memory
memory, register
register, immediate
memory, immediate
accumuiator, immediate

3

9 + EA

9 + EA

4

10 + EA

4

1

1

1

2

2-4

2-4

3-4

3-6

2-3

CMP BX,CX
CMP DH, ALPHA

CMP [BP+ 2], Si
CMP BL,02H

CMP [BX].RADAR [Di], 3420H
CMP AL,00010000B

OMRS
CMPS dest-string,source-string
Compare string

Flags ODiTSZAPC
X X X X X X

Operands Clocks Transfers* Bytes Coding Exampie

dest-string, source-string
(repeat) dest-string, source-string

22

9+ 22/rep
2

2/rep
1

1

CMPS BUFF1,BUFF2
REPECMPS ID, KEY

*For the 8086, add four clocks for each 1&-blt word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-53 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

CWD
CWD (no operands)
Convert word to doubleword

Flags 0 D 1 T S Z A P C

Operands Clocks Transfers* Bytes Coding Example

(no operands) 5 — 1 CWD

DAA
DAA (no operands)
Decimal adjust for addition

ODITSZAPC

X X X X X X

Operands Clocks Transfers* Bytes Coding Exampie

(no operands) 4 — 1 DAA

DAS
DAS (no operands)
Decimal adjust for subtraction

Plane ODITSZAPC
U X X X X X

Operands Clocks Transfers* Bytes Coding Exampie

(no operands) 4 — 1 DAS

DEC
DEC destination

Decrement by 1
p. ODITSZAPC

X X X X X

Operands Clocks Transfers* Bytes Coding Example

reg16
regS
memory

2

3

15 + EA 2

1

2

2-4

DEC AX

DEC AL

DEC ARRAY [SI]

DIV
DIV source

Division, unsigned
Plane ODITSZAPC

u U U U U U

Operands Clocks Transfers* Bytes Coding Example

reg8
reg16
mem8

mem16

80-90

144-162

(86-96)
+ EA

(150-168)
+ EA

1

1

2

2

2-4

2-4

DIV CL

DIV BX

DIV ALPHA

DIV TABLE [SI]

BSC ESC external-opcode,source
Escape

Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Exampie

immediate, memory
immediate, register

8 + EA

2

1 2-4

2

ESC 6,ARRAY [SI]
ESC 20,AL

*For the 8086, add four clocks for each 18-blt word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978 2-54

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

HLT HLT (no operands)
Halt

Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 — 1 HLT

IDIV IDIV source

Integer division
ODITSZAPC

u U U U U U

Operands Clocks Transfers* Bytes Coding Example

regS
reg16
memS

mem16

101-112

185-184

(107-118)

+ EA

(171-190)
+ EA

1

1

2

2

2-4

2-4

IDIV BL

IDIV OX

IDIV DIVISOR_BYTE [Si]

IDIV [BX].DIVISOR_WORD

IMUL IMUL source

Integer multiplication
ODITSZAPC

X U U U U X

Operands Clocks Transfers* Bytes Coding Example

reg8
regie
memS

mem16

80-98

128-154

(88-104)

+ EA

(134-180)
+ EA

1

1

2

2

2-4

2-4

IMUL CL

IMUL BX

IMUL RATE_BYTE

IMUL RATE_WORD [BP] [Dl]

IN IN accumulator,port

Input byte or word
ODITSZAPC

Flags

Operands Clocks Transfers* Bytes Coding Example

accumulator, immedS
accumulator, DX

10

8

1

1

2

1

IN AL,OFFEAH
IN AX,DX

INC INC destination

Increment by 1
Fi^nc ODITSZAPC

X X X X X

Operands Clocks Transfers* Bytes Coding Example

regie
reg8
memory

2

3

15+EA 2

1

2

2-4

INC CX

INC BL

INC ALPHA [Dl] [BX]

*For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer.

2-55
Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

INT
INT interrupt-type
Interrupt

ODITSZAPC

0 0

Operands Clocks Transfers* Bytes Coding Example

ImmedS (type = 3)
immedS (type # 3)

52

51

5

5

1

2

INT 3

INT 67

INTRt INTR (external maskable Interrupt)
Interrupt if INTR and IF=1

FUnc; ODITSZAPC^"9® 0 0

Operands Clocks Transfers* Bytes Coding Example

(no operands) 61 7 N/A N/A

INTO INTO (no operands)
Interrupt if overflow

FlAn^ ODITSZAPC'^'®9® 0 0

Operands Clocks Transfers* Bytes Coding Example

(no operands) 53 or 4 5 1 INTO

IRET IRET (no operands)
Interrupt Return

Fl«n^ ODITSZAPC
® RRRRRRRRR

Operands Clocks Transfers* Bytes Coding Exampie

(no operands) 24 3 1 IRET

JA/JNBE JA/JNBE short-label

Jump if above/Jump if not below nor equal
Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JA ABOVE

JAE/JNB JAE/JNB short-label

Jump if above or equal/Jump if not below
Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Exampie

short-label 16or4 — 2 JAE ABOVE_EQUAL

JB/JNAE JB/JNAE short-label

Jump if below/Jump if not above nor equal
Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Exampie

short-label 16or4 — 2 JB BELOW

*For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

tINTR is not an instruction; it is included in table 2-21 only for timing information.

Mnemonics © Intel, 1978
2-56

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

JBE/JNA
JBE/JNA short-label

Jump If below or equal/Jump if not above
ODITSZAPC

Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JNA NOT_ABOVE

JC JC short-label

Jump if carry

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JC CARRY_SET

JCXZ
JCXZ short-labei

Jump if OX is zero

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 18or6 — 2 JCXZ COUNT_DONE

JE/JZ JE/JZ short-label

Jump if equal/Jump if zero
ODITSZAPC

Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JZ ZERO

JG/JNLE JG/JNLE short-iabei

Jump if greater/Jump if not iess nor equal
ODITSZAPC

Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JG GREATER

JGE/JNL
JGE/JNL short-label

Jump if greater or equal/Jump if not iess
ODITSZAPC

Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JGE GREATER_EQUAL

JL/JNGE
JL/JNGE short-iabei

Jump if iess/Jump if not greater nor equai
ODITSZAPC

Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JL LESS

*For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-57
Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

JLE/JNG
JLE/JNG short-label

Jump If less or equal/Jump if not greater
ODITSZAPC

Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JNG NOT_GREATER

JMP
JMP target
Jump

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

short-label

near-label

far-label

memptr16
regptr16
memptr32

15

15

15

18 + EA

11

24 + EA

1

2

2

3

5

2-4

2

2-4

JMP SHORT

JMP WITHIN_SEGMENT

JMP FAR_LABEL

JMP [BX].TARGET
JMP OX

JMP OTHER.SEG [SI]

JNC
JNC short-label

Jump If not carry

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JNC NOT_CARRY

JNE/JNZ
JNE/JNZ short-label

Jump If not equal/Jump if not zero
ODITSZAPC

Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JNE NOT_EQUAL

JNO
JNO short-label

Jump if not overflow

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JNO NO_OVERFLOW

JNP/JPO
JNP/JPO short-label

Jump if not parity/Jump if parity odd

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JPO ODD_PARITY

JNS
JNS short-label

Jump If not sign
ODITSZAPC

Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JNS POSITIVE

•For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer.

Mnemonics © Intel, 1978 2-58

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

JO
JO short-label

Jump If overflow

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JO SIGNED_OVRFLW

JP/JPE
JP/JPE short-label

Jump If parity/Jump If parity even

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JPE EVEN_PARITY

JS
JS short-label

Jump If sign

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 16or4 — 2 JS NEGATIVE

LAHF
LAHF (no operands)
Load AH from flags

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

(no operands) 4 — 1 LAHF

LDS
LDS destination,source

Load pointer using OS

ODITSZAPC
Flags

Operands Clocks Transfers Bytes Coding Example

reg16, mem32 16 + EA 2 2-4 LDS SI,DATA.SEG [Dl]

LEA
LEA destination,source

Load effective address

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Exampie

reg16, mem16 2 + EA — 2-4 LEA BX, [BP] [Dl]

LES
LES destination,source

Load pointer using ES

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Exampie

reg16, mem32 16 + EA 2 2-4 LES Dl, [BX].TEXT_BUFF

'For the 8086, add four clocks for each 18-blt word transfer with an odd address. Forthe8088, add four clocks for each 18-bit word transfer.

2-59
Mnemonics © Intel. 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

LOCK
LOCK (no operands)

Lock bus

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 — 1 LOCK XCHG FLAG.AL

LODS
LODS source-string
Load string

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

source-string
(repeat) source-string

12

9 + 13/rep
1

1/rep
1

1

LODS CUSTOMER_NAME

REP LODS NAME

LOOP
LOOP short-label

Loop

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 17/5 — 2 LOOP AGAIN

LOOPE/LOOPZ
LOOPE/LOOPZ short-label

Loop if equal/Loop if zero
ODITSZAPC

Flags

Operands Clocks Transfers* Bytes Coding Example

short-label 18or6 — 2 LOOPE AGAIN

LOOPNE/LOOPNZ
LOOPNE/LOOPNZ short-label

Loop if not equal/Loop if not zero
Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Example

short-label 19 or 5 — 2 LOOPNE AGAIN

NMit NMI (external nonmaskable interrupt)
Interrupt if NMI = 1

0 S 1 T S Z A P C

0 0

Operands Clocks Transfers* Bytes Coding Example

(no operands) 50- 5 N/A N/A

• For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
tNMI is not an Instruction; it is included in table 2-21 only for timing information.

Mnemonics © Intel, 1978
2-60

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

MOV MOV destination,source

Move

GDITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

memory, accumulator
accumulator, memory
register, register
register, memory
memory, register
register, immediate
memory, immediate
seg-reg, reg16
seg-reg, mem16
reg16, seg-reg
memory, seg-reg

10

10

2

8+EA

9-1-EA

4

10-1-EA

2

8-fEA

2

9-fEA

1

1

1

1

1

1

1

3

3

2

2-4

2-4

2-3
3-6

2

2-4

2

2-4

MOV ARRAY [Si], AL
MOV AX,TEMP_RESULT

MOV AX,OX

MOV BP, STACK_TOP
MOV COUNT [Di], OX
MOV CL, 2
MOV MASK[BX][Si],2CH
MOV ES, OX

MOV DS,SEGMENT_BASE

MOV BP, 88

MOV [BX].8EG_8AVE,C8

MOVS MOVS dest-string,source-string
Move string

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

dest-string, source-string
(repeat) dest-string, source-string

18

9-1-17/rep

2

2/rep
1

1

MOVS LINE EDiT_DATA

REP MOVS SCREEN, BUFFER

MOVSB/MOVSW MOVSB/MOVSW (no operands)
Move string (byte/word)

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

(no operands)
(repeat) (no operands)

18

9-Fl7/rep
2

2/rep
1

1

MOVSB

REP MOVSW

MUL MUL source

Multiplication, unsigned
ODITSZAPC

X U U U U X

Operands Clocks Transfers* Bytes Coding Example

reg8
reg16
mem8

memlB

70-77

118-133

(76-83)
-fEA

(124-139)
■fEA

1

1

2
2

2-4

2-4

MUL BL
MUL CX
MUL MONTH [SI]

MUL BAUD_RATE

*For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-61
Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

NEG
NEG destination

Negate
ODITSZAPC

® X XXXX1*

Operands Clocks Transfers* Bytes Coding Example

register
memory

3

16 + EA 2

2

2-4

NEG AL

NEG MULTIPLIER

*0 if destination = 0

NOP
NOP (no operands)
No Operation

Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Example

(no operands) 3 — 1 NOP

NOT
NOT destination

Logical not
Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Example

register
memory

3

16 + EA 2

2

2-4

NOT AX

NOT CHARACTER

OR
OR destination,source

Logical inclusive or
Fian« ODITSZAPC

® 0 X X U X 0

Operands Clocks Transfers* Bytes Coding Example

register, register
register, memory
memory, register
accumulator, immediate

register, immediate
memory, immediate

3

9 + EA

16 + EA

4

4

17+EA

1

2

2

2

2-4

2-4

2-3

3-4

3-6

OR AL, BL

OR DX, PORT_ID [Dl]
OR FLAG_BYTE,CL

OR AL,01101100B

OR fB^xr(DMD_WORD,OCFH

OUT
OUT port,accumulator
Output byte or word

Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Example

immedS, accumulator

DX, accumulator

10

8

1

1

2

1

OUT 44, AX

OUT DX, AL

POP
POP destination

Pop word off stack
ODITSZAPC

Flags

Operands Clocks Transfers* Bytes Coding Example

register
seg-reg (CS illegal)
memory

8

8

17+EA

1

1

2

1

1

2-4

POP DX

POP DS

POP PARAMETER

•For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978
2-62

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

POPF POPF (no operands)
Pop flags off stack

Flaos ODITSZAPC
RRRRRRRRR

Operands Clocks Transfers* Bytes Coding Example

(no operands) 8 1 1 POPF

PUSH PUSH source

Push word onto stack

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

register
seg-reg (CS legal)
memory

11

10

16 + EA

1

1

2

1

1

2-4

PUSH SI

PUSH ES

PUSH RETURN_CODE[SI]

PUSHF PUSHF (no operands)
Push flags onto stack

Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Example

(no operands) 10 1 1 PUSHF

RCL RCL destination,count

Rotate left through carry
ODITSZAPCFlags X

Operands Clocks Transfers* Bytes Coding Example

register, 1
register, CL
memory, 1

memory, CL

2

8 + 4/bit

15 + EA

20 + EA +

4/bit

2

2

2

2

2-4

2-4

RCL CX, 1

RCL AL, CL

RCL ALPHA, 1

RCL [BP].PARM,CL

RCR RCR designation,count
Rotate right through carry

ODITSZAPCFlags ^ X

Operands Clocks Transfers* Bytes Coding Example

register, 1
register, CL
memory, 1
memory, CL

2

8 + 4/bit

15 + EA

20 + EA +

4/bit

2

2

2

2

2-4

2-4

RCR BX,1

RCR BL,CL

RCR [BXJ.STATUS, 1
RCR ARRAY [DI],CL

REP REP (no operands)
Repeat string operation

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 — 1 REP MOVS DEST, SRCE

'For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-63 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

REPE/REPZ
REPE/REPZ (no operands)
Repeat string operation while equal/while zero

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 — 1 REPE CMPS DATA, KEY

REPNE/REPNZ
REPNE/REPNZ (no operands)

Repeat string operation while not equal/not zero

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 —
1 REPNE SCASINPUT_UNE

RET
RET optional-pop-value
Return from procedure

ODITSZAPC
Flags

Operands Clocks Transfers* Bytes Coding Example

(intra-segment, no pop)
(Intra-segmeht, pop)
(inter-segment, no pop)
(inter-segment, pop)

8

12

18

17

1

1

2

2

1

3

1

3

RET

RET 4

RET

RET 2

ROL
ROL destination,count

Rotate left

ODITSZAPCFlags X X

Operands Clocks Transfers Bytes Coding Examples

register, 1
register, CL
memory, 1
memory, CL

2

8 + 4/bit

15 + EA

20 + EA +

4/bit

2

2

2

2

2-4

2-4

ROL BX, 1

ROL Dl, CL
ROL FLAG_BYTE[DI],1
ROL ALPHA , CL

ROR
ROR destination,count
Rotate right

ODITSZAPCFlags X x

Operand Clocks Transfers* Bytes Coding Example

register, 1
register, CL
memory, 1
memory, CL

2

8 + 4/bit

15+EA

20 + EA +

4/bit

2

2

2

2

2-4

2-4

ROR AL, 1

ROR BX,CL

ROR PORT_STATUS, 1
ROR CMD_WORD, CL

SAHF
SAHF (no operands)
Store AH into flags

ODITSZAPC

R R R R R

Operands Clocks Transfers* Bytes Coding Example

(no operands) 4 — 1 SAHF

•For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer.

Mnemonics © Intel, 1978 2-64

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

SAL/SHL SAL/SHL destination,count

Shift arithmetic left/Shift logical left
ODITSZAPCFlags ^

Operands Clocks Transfers* Bytes Coding Examples

register,1
register, CL
memory,1
memory, CL

2

8+4/bit

15+EA

20 + EA-i-

4/bit

2

2

2

2

2-4

2-4

SAL AL,1

SHL DI,CL
SHL [BXl.OVERDRAW, 1
SAL STORE_COUNT, CL

SAR SAR destination,source
Shift arithmetic right

ODITSZAPC

X X X U X X

Operands Clocks Transfers* Bytes Coding Example

register, 1
register, CL
memory, 1
memory, CL

2

8 + 4/bit

15 + EA

20+EA +

4/bit

2

2

2

2

2-4

2-4

SAR DX, 1

SAR Di,CL

SAR N_BLOCKS, 1

SAR N_BLOCKS, CL

SBB SBB destination,source
Subtract with borrow

ODITSZAPC

X X X X X X

Operands Clocks Transfers* Bytes Coding Example

register, register
register, memory
memory, register
accumuiator, immediate
register, immediate
memory, immediate

3

9 + EA

16 + EA

4

4

17+EA

1

2

2

2

2-4

2-4

2-3

3-4

3-6

SBB BX,CX

SBB Dl, [BX].PAYMENT
SBB BALANCE, AX

SBB AX, 2

SBB CL,1

SBB COUNT [SI], 10

SCAS SCAS dest-string
Scan string

ODITSZAPC

X X X X X X

Operands Clocks Transfers* Bytes Coding Example

dest-string
(repeat) dest-string

15

9 + 15/rep
1

1/rep
1

1

SCAS INPUT_LINE

REPNE SCAS BUFFER

SEGMENlt SEGMENT override prefix
Override to specified segment

Flag. ODITSZAPC

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 — 1 MOV SS:PARAMETER, AX

*For the 8086, add four clocks for each 18-blt word transfer with an odd address. For the 8088, add four clocks for each 18-blt word transfer.

tASM-86 Incorporates the segment override prefix Into the operand specification and not as a separate Instruction. SEGMENT Is included in table

2-21 only for timing information.

Mnemonics © Intel, 1978

2-65

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

SHR
SHR destination,count

Shift logical right

ODITSZAPC
Flags X

Operands Clocks Transfers* Bytes Coding Example

register, 1
register, CL
memory, 1
memory, CL

2

8 + 4/bit

15 + EA

20 + EA-i-

4/blt

2

2

2

2

2-4

2-4

SHR 81,1
SHR SI,CL
SHR ID_BYTE[SI][BX],1
SHR INPUT_WORD, CL

SINGLE STEPt SINGLE STEP (Trap flag Interrupt)
Interrupt lfTF = 1

ODITSZAPCFlags Q Q

Operands Clocks Transfers* Bytes Coding Example

(no operands) 50 5 N/A N/A

STC
STC (no operands)
Set carry flag

ODITSZAPC
Flags ^

Operands Clocks Transfers* Bytes Coding Exampie

(no operands) 2 —
1 STC

SID
STD (no operands)
Set direction flag

ODITSZAPC
Fiags ^

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 —
1 STD

STI
STI (no operands)
Set Interrupt enable flag

ODITSZAPC
Flags ^

Operands Clocks Transfers* Bytes Coding Exampie

(no operands) 2 — 1 STI

STOS
STOS dest-string

Store byte or word string

ODITSZAPC
Fiags

Operands Clocks Transfers* Bytes Coding Example

dest-string
(repeat) dest-string

11

9 + 10/rep

1

1/rep

1

1

STOS PRINT_LINE

REP STOS DISPLAY

'For the 8086, add four clocks for each 18-bit word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer.
fSINGLE STEP is not an instruction; it is included in table 2-21 only for timing information.

Mnemonics © Intel, 1978 2-66

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

SUB SUB destination,source
Subtraction

Fiao« ODITSZAPC
X X X X X X

Operands Clocks Transfers* Bytes Coding Example

register, register
register, memory
memory, register
accumulator. Immediate

register. Immediate
memory. Immediate

3

9 + EA

16 + EA

4

4

17-l-EA

1

2

2

2

2-4

2-4

2-3

3-4

3-6

SUB OX, BX
SUB DX, MATH_TOTAL [SI]
SUB [BP + 2],CL
SUB AU10
SUB SI, 5280
SUB [BP].BALANCE, 1000

TEST TEST destination,source

Test or non-destructive logical and
c, ODITSZAPC
'^"8® 0 X X U X 0

Operands Clocks Transfers* Bytes Coding Example

register, register
register, memory
accumulator. Immediate

register. Immediate
memory. Immediate

3

9 + EA

4

5

11 + EA

1

2

2-4

2-3

3-4

3-6

TEST SI, Dl

TEST SI,END_COUNT

TEST AL, 00100000B

TEST BX, 0CC4H
TEST RETURN_CODE,01H

WAIT WAIT (no operands)
Wait while TEST pin not asserted

Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Example

(no operands) 3 + 5n
— 1 WAIT

XCHG XCHG destination,source

Exchange
Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Example

accumulator, reg16
memory, register
register, register

3

17+EA

4

2

1

2-4

2

XCHG AX, BX

XCHG SEMAPHORE, AX
XCHG AL, BL

XLAT XLAT source-table

Translate
Flags ODITSZAPC

Operands Clocks Transfers* Bytes Coding Example

source-table 11 1 1 XLAT ASCII_TAB

'For the 8086, a(jd four clocks for each 16-bit word transfer with an odd address. For the 6066, add four clocks for each 16-blt word transfer.

2-67
Mnemonics © Intel, 1976

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

XOR
XOR destination,source
Logical exclusive or

ODITSZAPC

0 X X U X 0

Operands Clocks Transfers* Bytes Coding Example

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

3

9 + EA

16 + EA

4

4

17 + EA

1

2

2

2

2-4

2-4

2-3

3-4

3-6

XOR CX, BX
XOR CL, MASK_BYTE

XOR ALPHA [SI], DX
XOR AL,01000010B

XOR Si, 6oC2H
XOR RETURN_CODE, 0D2H

*For the 8086, acl(j four clocks for each 16-blt word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978 2-68

Answers Chapter 1 Review

1. translate, source

2. two, one, and zero

3. two's

4.

A. 10101001

B. 00001111

C. 01000001

D. 10101010

5.

A. 10101010

B. 00010000

C. 01000010

D. 10101011
347

348 80881IBM PC Assembly Language Programming

6.

A. 9EH C. FFH

B. E7H D. 8C0FH

7.

A. 1111111110100001 C. 0111111111111100

B. 0010000001111000 D. 0000000000000011

8. So the assembler will not confuse the number with a label.

9. ASCII, BAUDOT

10.

A. 2 B. 16 C. 10

11. It contains the letter G, which is not a valid hexadecimal number.

Answers to Chapter 2 Review

1. False

2. False

3. False, MASM is the IBM Macro Assembler. It is not an editor.

4. False

5. Only when absolutely necessary is program code ever entered directly in
machine language. Machine language entry of programs is tedious and error
prone.

6. Symbols, absolute

7. Modular, understand, maintain, debug

8. space

9. comments

10. Comments help document the program flow, which makes the program
easier to understand and maintain by others.

Appendix C 349

Answers to Chapter 3 Review

1. three

2. CPU, memory, I/O

3. CPU

4. two (EU and BIU)

5. Execution unit (EU), queue

6. 16

7. 16

8. 1,048,576 (one megabyte)

9. B

10. 65,536-byte segments

11. segment, offset

12. Temporary storage of variables and a place to store the instruction pointer
and code segment register during procedure calls.

13. 65.536 (64K)

14. Maximum

15. In mavimiifn mode, the 8088 uses a bus controller (8288) to control the
address and data bus. In minimum mode, the 8088 is responsible for generat
ing all the control signals required by the system. Maximum mode allows the
8088 to be used with co-processors such as the Intel 8087 math processor.

16. 8

17. 16

18. interrupt

19. A microprocessor requires memory and I/O. A microcomputer not only
contains the CPU but also the memory and I/O sections of a computer.

20. 14

21. AX, BX, CX, DX

22. 2

23. 2

24. 4, CS, DS, ES, SS

25. False

350 80881IBM PC Assembly Language Programming

26. CS and IP

27. False

28. Flag, CS, and IP

29. Disabled, will not

Or you may have answered: Enabled, will

30. Direct, immediate, register indirect, base with offset

31. appendix, effective address

Answers to Chapter 4 Review

1. ADD COUNTER, 20

2. six

3. CMP COUNTER,20H

JE THERE

4. Clears the AX register (zeros it).

5. You cannot specify a constant, as the destination operand in an instruction.

6. Nothing. AX is stored at the memory location defined by the label FACEH.
The use of labels such as this is confusing. If a zero preceded the label as in
OFACEH, the assembler would have generated an error, since OFACEH repre
sents a hexadecimal number and cannot be used as the destination operand
of a MOV instruction.

7. POP

8. XOR SI,SI ;Zero pointer for first byte

MOV CX,64 ;Number of bytes to clear

CLR: MOV COUNTERlSll,OOH ;Store zero

INC SI ;lncrement the pointer

LOOP CLR ;Continue until CX = 0

9. LEA BX,COUNTER

MOV BX,OFFSET COUNTER

10. LOOPE, LOOPZ

Appendix C 351

Answers to Chapter 5 Review

1. Segment 4. = (equal)

2. NEAR or FAR 5. PAGE

3. A-G

B-F

C-K

D-I

E-J

Answers to Chapter 6 Review

1. Sequence, instructions

2. Header (name), body, terminator

3. terminates

4. macro's name

5. unique

6. MOV AH,FUNCTION_NUMBER ;MS-DOS function number

INT 21H ;MS-DOS function request.

7. A single name can be used to reference several statements required to define
an MS-DOS function cell.

Answers to Chapter 8 Review

1. transfer area 4. True

2. buffer, disk 5. False

3. Sequential record 6. six
Random record 7. program

Random block

(See the text for a description of each)

352 8088!IBM PC Assembly Language Programming

Answers to Chapter 9 Review

1. Basic Input/Output System

2. False

3. Four

4. 128,000

5. False. The graphics adapter allows for a 320 by 200 medium resolution
graphics display.

Answers to Chapter 10 Review

1. UART 7. 8250

2. 8259 8. False

3. two-way 9. 1 1000001

4. False 10. 04H

5. does not 11. wait, DSR and CTS

6. 600 baud

Program Listings

Listing 2-1
Listing 2-2
Listing 6-1
Listing 6-2
Listing 6-3
Listing 7-1
Listing 8-1
Listing 8-2
Listing 8-3
Listing 8-4
Listing 9-1
Listing 9-2
Listing 10-1
Listing 10-2

CONFIGSY.ASM 355

CONFIGSY.LST 361

MACFLE.MAC 369

DOSEQU.EQU 396
KEYDSP 399

NUMBERSY.ASM 401

NEW_TYPE.ASM 412
NEW_COPY.ASM 416
FAST_CPY.ASM 421
DIRREAD.ASM 426

GRAPHIC .ASM 435

SOUND .ASM 440

DLOAD.ASM 443

COMM.ASM 447

353

Appendix D 355

Listing 2-1
CONFIGSY.ASM

Page 56,132
TITLE ROUTINE TO RETURN CONFIGURATION OF SYSTEM

** Written: 06-15-84
** By: Gary A. Shade
** (c) Gary A. Shade, 1984
** Last Revised: 03-03-85

** THIS ROUTINE WILL RETURN THE CURRENT CONFIGURATION
** OF THE SYSTEM AND DISPLAY THE INFORMATION IN THE SCREEN

** USE IT AS A STAND ALONE ROUTINE, OR AS A PROCEDURE
** WHICH CAN BE USED TO RETURN STATUS TO A LARGER PROGRAM.
USES BIOS CALLS INT IIH, AND INT 12H TO FETCH EQUIPMENT CONFIG.
AND MEMORY SIZE.

THIS PROCEDURE WILL NOT RECOGNIZE THE PRECENSE OF A
WINCHESTER DISK IN THE SYSTEM. IT ALSO ASSUMES THAT THE
SWITCHES SET ON THE PC MOTHERBOARD ARE CORRECTLY SET TO REFLECT
THE NUMBER OF FLOPPY DISK DRIVES IN THE SYSTEM.

SEE IBM TECHNICAL REFERENCE MANUAL SYSTEM BIOS, PAGE A-73
FOR A DESCRIPTION OF THE BIT ASSIGNMENTS USED AS
EQUIPMENT FLAGS (Also illustrated in Chapter 10).

MY DATA SEGMENT PARA
MEM SIZE DW

HDWR TYPES DW

TEMPI DW

MEM MESS DB

VIDEO MODE DB

TOTAL DRIVES DB

RS232 PORTS DB

GAME PORT DB

PRINTER DB

MEM 64K DB

MEM 96K DB

MEM 128K DB

MEM 256K DB

MEM 320K DB

MEM 352K DB

MEM 384K DB

MEM 448K DB

MEM 512K DB

MEM 576K DB

MEM 608K DB

MEM_640K DB

VIDl DB

'DATA'
? ;STORAGE FOR MEMORY SIZE
? ;STORAGE FOR HARDWARE TYPES
3 DUP(?) ;MISCELLANEOUS STORAGE
'Memory Available
'Initial Video Mode
'Number of Disk Drives
'Number of RS-232 Cards
'Game Port

'Number of Printers

'64K Bytes','$'
'96K Bytes','$'
'128K Bytes','$'
'256K Bytes','$'
'320K Bytes','$'
'352K Bytes','$'
'384K Bytes','$'
'448K Bytes','$'
'512K Bytes','$'
'576K Bytes','$'
'608K Bytes','$'
'640K Bytes','$'

'40 X 25 BW Using Color Card','$'

• , '$■
' , '$•

336 80881IBM PC Assembly Language Programming

Listing 2-1 continued

VID2 DB '80

VID3 DB •80

IN_SYS DB 'In

MY DATA ENDS ;END OF SEGMENT

My_STACK
DW

TOP__OF_STACK
MY STACK

SEGMENT PARA

100 DUP(?)
EQU $
ENDS

DEFINE PROGRAM EQUATES

DISP LINE EQU 09H

STACK •STACK'

;WHERE TO START STACK

;MSDOS FUNCTION CODE

;T0 DISPLAY LINE ->DX

DISP CHAR EQU 02H ;MSDOS FUNCTION CODE

7TO DISPLAY CHAR IN DL

MY_CODE SEGMENT PARA 'CODE'

ASSUME CS:MY CODE,DS:MY DATA,SS:MY STACK,ES:MY DATA

START PROC FAR ■7 ENTRY POINT
INITl: PUSH DS 7 SAVE OLD CODE SEGMENT

7 PASSED IN DS
XOR AX, AX 7 SAVE A ZERO OFFSET
PUSH AX 7 FOR MSDOS RETURN

INIT2: MOV AX,MY DATA 7 SET UP SEGMENT REGISTERS
MOV DS,AX
MOV ES,AX

************ Qet the memory size in system# ****************

GET_MEM : INT 12H 7GET MEMORY SIZE IN K BYTES
MOV MEM SIZE,AX 7 RETURNED IN AX REGISTER

GET__SYS : INT IIH 7GET SYSTEM CONFIGURATION
MOV HDWR TYPES,AX 7 RETURNED IN AX

;A BIT SET MEANS
;THE ITEM IS PRESENT
;IN THE SYSTEM

*********** Clear the screen *******************************

CLR__SCREEN: MOV
CLS: CALL CRLF

LOOP CLS

CX,24 7 SET UP LOOP COUNTER
;D0 CARRIAGE RETURN LINEFEED
;FOR CX NUMBER OF TIMES

*********** Show available memory ***************************

Jz LEA DX,MEM MESS 7MEMORY MESSAGE
MOV AH,DISP LINE 7DISPLAY CODE FOR MSDOS
INT 21H
MOV AX,MEM SIZE 7GET SIZE
TEST AH,00000010B 7TEST B1 OF AH - IF SET

7MEM > 256k
JNZ M BIG f

TEST AH,00000001B ;TEST B8 OF AX (BO OF AH)
JNZ M256K ;256K SYSTEM
TEST AL,10000000B ;TEST B7 OF AX IF SET

Appendix D 357

JNZ M128K ;THEN 128 K SYSTEM

TEST AL^OllOOOOOB ;TEST B6 AND B5, IF SET

JNZ M96K ;THEN 96K SYSTEM

M64K: LEA DX,MEM 64K ;DISPLAY MESSAGE FOR 64K

CALL DISP MESS

JMP DCONFIG

M96K: LEA DX,MEM 96K ;DISPLAY MESSAGE FOR 96K

CALL DISP MESS

JMP DCONFIG

M128K: LEA DX,MEM 128K ;DISPLAY 128K MESSAGE

CALL DISP MESS

JMP DCONFIG

M256K:

TEST AL.llOOOOOOB ;THEN 256+ 128 + 64 = 448K

JNZ M448K

TEST AL,10000000B ;THEN 256k + 128k = 384k

JNZ M384k

TEST AL.OllOOOOOB ;THEN 256K+96K = 352K

JNZ M352K

TEST AL^OIOOOOOOB ;THEN 256+64K = 320K

JNZ M320K

LEA DX,MEM 256K ;DISPLAY MESSAGE FOR 256K

CALL DISP MESS

JMP DCONFIG

M448K:

LEA DX,MEM 448K
CALL DISP MESS

JMP DCONFIG

M320K: LEA DX,MEM 320K

CALL DISP MESS

JMP DCONFIG

M352K: LEA DX,MEM 352K
CALL DISP MESS ;Display message

JMP DCONFIG

M384K: LEA DX,MEM 384K ;Display the message for
CALL DISP MESS

JMP DCONFIG

TEST AL.IOOOOOOOB ;640k?

JNZ M640K

TEST AL^OllOOOOOB ;608k?

JNZ M608K

TEST AL,01000000B ;576k?

JNZ M576K

;Assume 512k

M512K:

LEA DX,MEM_512K ;Display message for memory
;size.

CALL DISP MESS

JMP DCONFIG

M576K:

LEA DX,MEM_576K

CALL DISP MESS

JMP DCONFIG

358 8088!IBM PC Assembly Language Programming

Listing 2-1 continued

M608K:

M640K:

LEA DX^MEM 608K

CALL DISP MESS

JMP DCONFIG

LEA DX,MEM 640K
CALL DISP MESS

;****** Show the system configuration next. *********
; Do video mode first.

DCONFIG:

MOV

INT

DCl: MOV

MOV

ROR

AND

DEC

JZ

DEC

JZ

BWCARD_8025:
CALL

JMP

BWC__8025:
CALL

JMP

BWC_4025:
CALL

• -k-k "k it-k-k-k-k-k-k JJOW

LEA DX,VIDEO MODE ;GET MESSAGE
AH,DISP_LINE
21H

AX,HDWR_TYPES
CL,4
AX,CL

AL,00000011B
AL

BWC_4025
AL

BWC_8025
LEA DX,VID3

DISP_MESS
DC 2

LEA DX,VID2
DISP_MESS
DC 2

LEA DX,VID1

DISP MESS

;DISPLAY THE LINE

GET SYS CONFIG.

SHIFT BITS 4,5 TO 0,1
TEST FOR VIDEO MODE

MASK BITS ONLY 0,1 IMPORTANT
IF 01, THEN 40 X 25 BLACK/WHITE
YES THEN GO DISPLAY IT

IF 02 THEN 80 X 25 B/W
YES THEN DISPLAY IT

MUST BE 80 X 25 USING BW CARD

Display the card type
GO GET NEXT FUNCTION

80 X 25 BW USING COLOR CARD

Display the card type
GET NEXT VALUE

40 X 25 BW USING COLOR CARD

_ DISPLAY THE CARD TYPE
test for the number of disk drives int he system.

DC2:

MOV AX,HDWR_TYPES
ROR AX,1
MOV TEMPI,AX
JNC DC3

LEA DX,TOTAL_DRIVES
MOV AH,DISP LINE
INT 21H

MOV AX,TEMPI
MOV CL,5

ROR AX,CL
AND AL,00000011B
INC AL

OR AL,30H
MOV DL,AL
MOV AH,DISP_CHAR
INT 21H

;GET STATUS BYTE

;ROTATE BO INTO CARRY

;STOR VAL IN TEMP 1

;NOT IN SYSTEM, CONTINUE
;MESSAGE FOR DRIVES

;MSDOS FUNCTION CODE
;MSDOS CALL

;RECOVER VALUE

;ROTATE 5 MORE BITS

;GET BITS 6,7 TO 0,1
;ROTATE 5 TIMES

;MASK BITS

;ADD 1 TO VALUE

;CONVERT TO ASCII

;SET UP VALUE TO DISPLAY

;MSDOS FUNCTION CODE

;MSDOS CALL

.********** jiQy, many RS-232C serial ports in system?

DC3: CALL CRLF

LEA DX,RS232_PORTS
MOV AH,DISP_LINE
INT 21H

MOV AX,HDWR_TYPES
MOV CL,9

;NEWLINE

;OPTION IN SYSTEM?

;DISPLAY FUNCTION CODE

;MSDOS CALL

;ROTATE 9 TIMES

Appendix D 359

ROR AX,CL BITS 9,10,11 TO 0,1,2

AND AL,00000111B MASK BITS

OR AL,30H CONVERT TO ASCII

MOV DL,AL SET UP DL WITH CHAR TO E

MOV AH,DISP CHAR MSDOS FUNCTION CODE

INT 21H MSDOS CALL

.*********** Is the game port in the system?

DC4: CALL CRLF :?NEWLINE

LEA dx,game port ?GAME PORT IN SYS?

MOV AH,DISP LINE ?FUNCTION CODE FOR DSPL

INT 21H

MOV AX,HDWR TYPES ?GET CONFIGURATION CODE

MOV CL,13 ;INITIALIZE ROTATE COUNT

RCR AX,CL ;IN SYSTEM?

JNC DCS ;IF NOT, CONTINUE.

CALL YES IN SYS ;SAY IT IS ON DISPLAY

How about printers? How many?

DCS: CALL CRLF ;NEWLINE

LEA DX,PRINTER ;HOW MANY PRINTERS?

MOV AH,DISP LINE ?FUNCTION CODE FOR DSP

INT 21H

MOV AX,HDWR TYPES ;GET STATUS WORD

MOV CL,14 ;INITIALIZE ROTATE COUNT

ROR AX,CL ;IS IT IN THE SYS?

AND AL,00000011B ;MASK BITS

OR AL,30H ;CONVERT TO ASCII

MOV DL,AL ;SET UP DL FOR DISPLAY

MOV AH,DISP CHAR ;MSDOS FUNCTION CALL

INT 21H

DONE: RET

START ENDP

Procedure to

show that the resource is available.

YES_IN_SYS
LEA

MOV

INT

RET

YES IN SYS

PROC NEAR

DX,IN_SYS
AH^DISP LINE

21H

;SHOW THAT IS IN THE SYSTEM
;MSDOS FUNCTION CODE
;FOR DISPLAYING LINE
;POINTED TO BY DX
;MSDOS FUNCTION CALL
;RETURN TO CALLER

ENDP

* * ***

Carriage return linefeed procedure. Use a similar procedure,
or this one to generate a carriage return and a line feed
to move the cursor to the 1st column of the next line
(also known as a new line function).

CRLF PROC NEAR

MOV DL,OAH
MOV AH, DI SP_CHAR

INT 21H

;NEWLINE FUNCTION FOR
;VIDEO
;LINEFEED CODE

;MSDOS FUNCTION CODE
;T0 DISPLAY CHARACTER
;MSDOS CALL

360 8088HBM PC Ass^bly Language Programming

Listing 2-1 continued

MOV DL,ODH ;CARRIAGE RETURN CODE
MOV AH,DISP_CHAR ;DISPLAY THE CHARACTER
INT 21H

RET

CRLF ENDP

;**** PROCEDURE TO DISPLAY MEMORY SIZE - DX MUST BE POINTING
.**** TO THE BEGINNING OF A MESSAGE STRING ON ENTRY.

DISP_MESS PROC NEAR
MOV AH,DISP_LINE ;384K of RAM in system
INT 21H

CALL CRLF

RET

DISP_MESS ENDP
• -k'k-k-kifk'k'klfklcifk-k'kit'kifk'kifkifk'k-klfk'k'k-kifkic'k'kie-k'k'k-kit'k-k'k'k'kifk-k'k-klt

MY_CODE ENDS
END INITl

Appendix D 361

Listing 2-2
CONFIGSY.LST

The IBM Personal Coiputer MACRO Asseebler 03-03-85

ROUTINE TO RETURN C(»iFIGURATION OF SYSTQ9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0000

0000 0090

Paqe 56,132

TITLE ROUTINE TO RETURN CONFIGURATION OF SYSTEM

tt Written; 06-1.5-84

tt By; Gary A. Shade

tt ic) Gary A. Shade, 1984

tt Last Revised; 03-03-85

** THIS ROUTINE WILL RETURN THE CURRENT CONFIGURATION

** OF THE SYSTEM AND DISPLAY THE INFORMATION IN THE SCREEN

tt USE IT AS A STAND ALONE ROUTINE, OR AS A PROC^URE

tt WHICH CAN BE USED TO RETURN STATUS TO A LARGO) PROGRAM.

USES BIOS CALLS INT IIH, AND INT 12H TO FETCH EQUIPMENT CONFIG.

AND MEMORY SIZE.

THIS PROCEDURE WILL NOT RECOGNIZE m PRECENSE OF A

WINCHESTER DIO(IN THE SYSTOI. IT ALSO ASSUMES THAT THE

SWITCHES SET ON THE PC MOTHERBOARD ARE CORRECTLY SET TO REFLECT

THE NUMBER OF FLOPPY DISK DRIVES IN THE SYSTEM.

SEE IBM TECHNICAL REFO)ENCE MANUAL SYSTEM BIOS, PAGE A-73

FOR A DESCRIPTION OF THE BIT ASSIGNMOITS USED AS

EQUIPMENT FLAGS (Also illustrated in Chapter 10).

MY DATA SEGMOfT PARA

MEM SIZE DW

'DATA'

0 tSTORAGE FOR MOIORY SI^E

26 0002 ???? HDWR.TYPES DW ? ;STORAGE FOR HAifflWARE TYPES

27 0004 03 C tempi" DW 3 DUP(?) ;MISOa.LANEOUS STORAGE

28 ????

29 3

30

31 OOOA 4D 65 6D 6F 72 79 MEM.MESS DB 'Memory Available ; ','t'

32 20 41 76 61 69 60

33 61 62 60 65 20 20

34 20 20 20 20 20 20

35 20 20 20 20 20 20

36 20 20 3A 20 24

37 002D 49 6E 69 74 69 61 VIDEO.MODE DB 'Initial Video Mode ; ','1'

362 80881IBM PC Assembly Language Programming

Listing 2-2 continued

38 60 20 56 69 64 65

39 6F 20 40 6F 64 65

40 20 20 20 20 20 20

41 20 20 20 20 20 20

42 20 20 3A 20 24

43 0050 4E 75 60 62 65 72 TOTAL.DRIVES DB 'Nuiber of Disk Drives

44 20 6F 66 20 44 69

45 73 6B 20 44 72 69

46 76 65 73 20 20 20

47 20 20 20 20 20 20

48 20 20 3A 20 24

49 0073 4E 75 60 62 65 72 RS232^PORTS DB 'Nueber of RS-232 Cards

50 20 6F 66 20 52 53

51 20 32 33 32 20 43
52 61 72 64 73 20 20

53 20 20 20 20 20 20

54 20 20 3A 20 24

55 0096 47 61 60 65 20 50 GAME.PCM DB 'Case Port

56 6F 72 74 20 20 20

57 20 20 20 20 20 20

58 20 20 20 20 20 20

59 20 20 20 20 20 20

60 20 20 3A 20 24

61 00B9 4E 75 60 62 65 72 PRINTER DB 'Nuftber of Printers

62 20 6F 66 20 50 72

63 69 6E 74 65 72 73

64 20 20 20 20 20 20

65 20 20 20 20 20 20

66 20 20 3A 20 24

67

68 OODC 36 34 4B 20 42 79 HEH_64K DB '64K Bytes',

69 74 65 73 24

70 00C6 39 36 4B 20 42 79 HEM.96K DB '96K Bytes','!'

71 74 65 73 24

72 OOFO 31 32 38 4B 20 42 NEMJ28K DB '128K Bytes','!'

73 79 74 65 73 24

74 OOPB 32 35 36 4B 20 42 NEN.256K DB '256K Bytes','!'

75 79 74 65 73 24

76 0106 33 32 30 4B 20 42 HEN.320K DB '320K Bytes','!'

77 79 74 65 73 24

78 0111 33 35 32 4B 20 42 NEH.352K DB '352K Bytes','!'
79 79 74 65 73 24

80 one 33 38 34 4B 20 42 I0.384K DB '384K Bytes','!'

81 79 74 65 73 24

82 0127 34 34 38 4B 20 42 HEH.448K DB '448K Bytes','!'

83 79 74 65 73 24

84 0132 35 31 32 4B 20 42 MEMJ12K DB '512K Bytes','!'

85 79 74 65 73 24

86 0130 35 37 36 4B 20 42 NEM.576K DB '576K Bytes','!'

87 79 74 65 73 24

','V

Appendix D 363

88 0148 36 30 38 4B 20 42 MEM_608K D6 '608K Bvte5','i'

89 79 74 65 73 24

90 0153 36 34 30 4B 20 42 MEM.640K DB '640K Bytes','!'

91 79 74 65 73 24

92

93 015E 34 30 20 58 20 32 VIDl DB '40 X 25 BW Usinq Color Card','!'

94 35 20 42 57 20 55

95 73 69 6E 67 20 43

96 6F 6C 6F 72 20 43

97 61 72 64 24

98 017A 38 30 20 78 20 32 VID2 DB '80 X 25 BW Using Color Card','!'

99 35 20 42 57 20 55

100 73 69 6E 67 20 43

101 6F 6C 6F 72 20 43

102 61 72 64 24

103 0196 38 30 20 78 20 32 VID3 DB '80 X 25 BV Using BV Card','!'

104 35 20 42 57 20 55

105 73 69 6E 67 20 42

106 57 20 43 61 72 64

107 24

108 OlAF 49 6E 20 53 79 73 IN.SYS DB 'In Sysiet','!'

109 74 65 6D 24

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

01B9

0000

0000

= 00C8

00C8

= 0009

= 0002

0000

HY DATA ENDS ;END OF SE6NENT

64 [

MY.STACK SEGMENT PARA STACK 'STACK'
D« 100 DIIP(?)

9999

TOP_OF_STACK ECU $
MY STACK ENDS

DEFINE PROGRAM EQUATES

DISP.LINE EQU 09H

DISP CHAR EQU 02H

;WHERE TO START STACK

;MSDOS FUNCTION CODE

;T0 DISPLAY LINE ->DX

;MSDOS FUNCTION CODE

;T0 DISPLAY CHAR IN DL

MY CODE SEGMENT PARA 'CODE'

ASSUME CS;MY.CODE,DS;MY.DATA,SS;MY_STACK,ES;MY.DATA
133 0000 START PROC FAR ;ENTRY POINT

134 0000 IE INITl; PUSH DS ;SAVE OLD CODE SEGMENT

135 ;PASSED IN DS

136 0001 33 CO XQR AX,AX ;SAVE A 2ERQ OFFSET

137 0003 50 PUSH AX ;FOR MSDOS RETURN

138 0004 B8 R INIT2I MOV AX,MY_DATA ;SET UP SEGMDIT REGISTERS

139 0007 8E D8 MOV DS,AX

364 80881IBM PC Assembly Language Programming

Listing 2-2 continued

140 0009 8E CO HOV ES^AX

141

142 Get the neAory siie' in systei. mtttntmntt

143

144 OOOB CD 12 GET_MEM; INT 12H ;GET HEHORY SIZE IN K BYTES

145 OOOD A3 0000 R HOV HEH SIZE,AX ;RETURNED IN AX REGISTER

146 0010 CD 11 GET.SYS; INT IIH ;GET SYSTEH CONFIGURATION

147 0012 A3 0002 R HOV HONR TYPES,AX ;RETURNS) IN AX

148 ;A BIT SET HEANS

149 ;THE ITEH IS PRESENT

150 ;IN THE SYSTQI

151 itmtmtt Clear the screen tmttmmmtmtttmmm

152

153 0015 B9 0018 CLR SCREQI: HOV CX,24 UP LOOP omm

154 0018 E8 0170 R CLS; CALL CRLF .!00 CARRIAGE RETURN LINEFEED

155 OOIB E2 FB LOOP CLS :.?m CX NUHBER (F TIHES

156

157 Show available eeiory mmmtmumnttmn

158

159 OOID 80 16 OOOA R HQ! SHOV: LEA OX,HQ!_HESS ;HEHORY HESSAGE

160 0021 B4 09 HOV AH,OISP^LINE ;DISPLAY CODE FOR HSDOS

161 0023 CO 21 INT 21H

162 0025 A1 0000 R HOV AX,HEH.SIZE .:GET SIZE

163 0028 F6 C4 02 TEST AH,00000010B ;TEST B1 OF AH - IF SET

164 ;HEH > 256k

165 002B 75 60 JNZ H.BIG ;

166 002D F6 C4 01 TEST AH,00000001B ;TEST B8 OF AX (BO OF AH)

167 0030 75 26 JNZ H256K ;256K SYSTQ!

168 0032 A8 80 TEST AL,10000000B ;TEST B7 OF AX IF SET

169 0034 75 18 JNZ H128K ;THEN 128 K SYSTEH

170 0036 A8 60 TEST AL,01100000B ;TEST B6 AND B5, IF SET

171 0038 75 OA JNZ H96K ;THEN 96K SYSTEH

172 003A 80 16 OOOC R N64K: LEA 0X,HEHJ4K DISPLAY HESSAGE FOR 64K

173 003E E8 018A R CALL DISP_H^
174 0041 E9 OOCB R JHP OCONFIG

175 0044 80 16 00E6 R H96K; LEA 0X,HEH_96K ;DISPLAY HESSAGE FOR 96K

176 0048 E8 018A R CALL DISP^HESS

177 004B m 7E 90 JHP OCONFIG

178 004E 80 16 OOFO R N128K; LEA DX,HEH 128K .!DISPLAY 128K HESSAGE

179 0052 E8 018A R CALL OISP.HESS

180 0055 EB 74 90 JHP OCONFIG

181

182 0058 N256K:

183 0058 A8 CO TEST AL,11000000B ;TH0l 256+ 128 + 64 = 448K

184 005A 75 16 JNZ H448K

185 005C A8 80 TEST AL,10000000B ;THEN 256k + 128k = 384k

186 005E 75 30 JNZ H384k

187 0060 A8 60 TEST AL,01100000B ;THEN 256K+96K = 352K

188 0062 75 22 JNZ H352K

189 0064 A8 40 TEST AL,01000000B ;THEN 256+64K = 320K

190 0066 75 14 JNZ H320K

Appendix D 365

191

192 0068 80 16 OOFB R LEA OX,HEH 256K ;OISPLAY HESSAGE FOR 256K

193 006C E8 018A R CALL OISP.HESS

194 006F EB 5A 90 IMP OCONFIG

195 0072 n448K:

196 0072 80 16 0127 R LEA OX^HEH 448K

197 0076 E8 018A R CALL OISP^HESS

198 0079 EB 50 90 JHP OCONFIG

199

200 007C 80 16 0106 R H320K: LEA OX,HEHJ20K

201 0080 E8 018A R CALL OISP_HESS

202 0083 EB 46 90 JHP OCONFIG

203

204 0086 80 16 0111 R H352K: LEA OX,HEH 352K

205 008A E8 018A R CALL OISP H^ ;0isplay oessaQe

206 008D ^ 3C 90 IMP OCONFIG

207

208 0090 8016 one R H384K: LEA OX,HEH 384K ;0isplay the aessaqe for

209 0094 E8 018A R CALL OISP.HESS

210 0097 EB 32 90 JHP OCONFIG

211

212 009A H.BIG;

213 009A A8 80 TEST ALnOOOOOOOB ;640k?

214 009C 75 26 INZ H640K

215 009E A8 60 TEST AL^OllOOOOOB ;608k?

216 OOAO 75 18 JN2 H608K

217 00A2 A8 40 TEST AL^OIOOOOOOB ;576k?

218 00A4 75 OA JNZ H576K

219 ;AssuAe 512k

220 00A6 N512K;

221 00A6 80 16 0132 R LEA 0X,HEHJ12K ;0isplay eessage for leAory

222 ;size.

223 OOAA E8 018A R CAa OISP.HESS
224 OOAO EB IC 90 JHP OCONFIG

225 OOBO H576K:

226 OOBO 80 16 0130 R LEA 0X,HEHJ76K

227 00B4 E8 018A R CALL OISP.HESS

228 00B7 EB 12 90 JHP OCC»iFIG

229 OOBA H608K:

230 OOBA 80 16 0148 R LEA OX,HD1.608K

231 OOBE E8 018A R CALL OISP^HESS

232 OOCl EB 08 90 JHP OCONFIG

233 00C4 H640K:

234 00C4 80 16 0153 R LEA OX^HEH 640K

235 00C8 E8 018A R CALL OISP_H^
236

237 .'tttttt Show the systoA conf iquration next, ttttttttt

238 ' Oo video node first.

239

240 OOCB 80 16 0020 R OCOHFIG: LEA OX,VIOEO.NOOE ;GET HESSAGE
241 OOCF B4 09 HOV AH,OISP.LINE ;OISPLAY THE LINE

242 OODl CO 21 INT 21H

366 80881IBM PC Assembly Language Programming

Listing 2-2 continued

243 00D3 A1 0002 R OCl: MOV AX,HOWRJYPES ;GET SYS CONFIG.

244 00D6 B1 04 MOV CL,4 ;SHIFT BITS 4,5 TO 0,1

245 00D8 03 C8 ROR AX,CL ;TEST FOR VIDEO MODE

246 OODA 24 03 AND AL,0000001 IB ;MASK BITS ONLY 0,1 IMPORTANT

247 OODC FE C8 DEC AL :IF 01, THEN 40 X 25 BLACK/NHITE

248 OODE 74 18 J2 BNCJ025 ;YES THEN GO DISPLAY IT

249 OOEO FE C8 DEC AL ;IF 02 THEN 80 X 25 B/V

250 00E2 74 OA 11 BVC 8025 ;YES THEN Oia»LAY IT

251 00E4 80 16 0196 R BVCAR0.8025: LEA 0X,VI03 ;MUST BE 80 X 25 USING BV CARD

252 00E8 E8 018A R CALL OISP^MESS ;0isplay the card type

253 OOEB EB 12 90 JMP 0C2 .!G0 GET NEXT FUNCTION

254 OOEE 80 16 017A R m 8025: LEA 0X,VI02 ;80 X 25 BN USING COLOR CARD

255 00F2 E8 018A R CAa OISP MESS ^Display the card type

256 00F5 EB 08 90 JMP 0C2 ;GET NEXT VALUE

257 00F8 80 16 015E R BVC_4025: LEA 0X,VI01 ;40 X 25 B¥ USING COLOR CARD

258 OOFC EB 018A R CALL OISP^MESS ;DISPLAY THE CARD TYPE

259 Now test for the nuaber of disk drives int he systea.

260

261 OOFF DC2:

262 OOFF A1 0002 R MOV AX.HDNRTYPES ;GET STATUS BYTE

263 0102 01 C8 ROR AX,1 ;ROTATE BO INTO CARRY

264 0104 A3 0004 R MOV TEMPI,AX •STOR VAL IN TEMP 1

265 0107 73 IB JNC DC3 .:N0T in system, CONTINUE

266 0109 80 16 0050 R LEA DX,TOTAL„DRIVES ;MESSAGE FOR DRIVES

267 OlOD B4 09 MOV AH,DISP.LINE iMSDOS FUNCTION CODE

268 OlOF CD 21 INT 21H ;msdos call

269 0111 A1 0004 R MOV AX,TEMPI ;RECOVER VALUE

270 0114 B1 05 MOV CL,5 ROTATE 5 MORE BITS

271 ;GET BITS 6,7 TO 0,1

272 0116 03 C8 ROR AX,CL ;ROTATE 5 TIMES

273 0118 24 03 AND AL,0000001 IB ;MASK BITS

274 OllA FE CO INC AL ;A00 1 TO VALUE

275 one OC 30 OR AL,30H ;CONVERT TO ASCII

276 OllE 8A 00 MOV OL,AL .!Set up value to display

277 0120 B4 02 MOV AH,OISP_CHAR ;MSDOS FUNCTION CODE

278 0122 CD 21 INT 21H iMSOOS CALL

279

280 A' tttmttt How aany RS-232C serial ports in systea?

zol

282 0124 E8 0170 R 0C3: CALL CRLF ;NEVLINE

283 0127 80 16 0073 R LEA 0X,RS232 PORTS ;OPTION IN SYSTEM?

284 012B B4 09 MOV AH,DISP_LINE ;DISPLAY FUNCTION CODE

285 012D CD 21 INT 21H ;MSDOS CAa

286 012F A1 0002 R MOV AX,HO»R_TYPES

287 0132 B1 09 MOV CL,9 ;ROTATE 9 TIMES

288 0134 03 C8 ROR AX,CL ;BITS 9,10,11 TO 0,1,2

289 0136 24 07 AND AL,00000111B .:MASK BITS

290 0138 00 30 OR AL,30H CONVERT TO ASCII

291 013A 8A DO MOV OL,AL :SET UP OL ¥ITH CHAR TO DISP

292 013C B4 02 MOV AH,OISP_CHAR .tMSDOS FUNCTION CODE

293 013E CD 21 INT 21H tMSDOS CAa

Appendix D 367

294

295 :.mmnm Is the gaee port in the syste#?

296

297 0140 E8 0170 R 004: GALL ORLF .:NE«LINE

298 0143 80 16 0096 R LEA DX,GAHE.PORT ;GAHE PORT IN SYS?

299 0147 64 09 MOV AH,DISP.LINE ;FUNCTION CODE FOR DSPL

300 0149 CO 21 INT 21H

301 014B A1 0002 R HOV AX,HD«RJYPES ;GET CONFIGURATION CODE

302 014E 61 00 HOV 0L,13 INITIALIZE ROTATE COUNT

303 0150 03 08 ROR AX,OL ;IN SYSTEH?

304 0152 73 03 JNO D05 ;IF NOT, CONTINUE.

305 0154 E8 0174 R GALL YESJN.SYS :SAY IT IS ON DISPLAY

306

307 •txttm Hov about printers? How aany?

308

309 0157 E8 0170 R 005; OAa ORLF ;NENLINE

310 015A 80 16 0069 R LEA DX,PRINT0{ ;HOV HANY PRINTERS?

311 015E 64 09 HOV AH,DISP.LINE ;FUNOTION CODE FOR DSP

312 0160 GO 21 INT 21H

313 0162 A1 0002 R HOV AX,HD«RJYPES ;GET STATUS VORD

314 0165 61 OE HOV 0L,14 INITIALIZE ROTATE COUNT

315 0167 03 08 ROR AX,OL ;IS IT IN THE SYS?

316 0169 24 03 ANO AL,000000116 ;HASK BITS

317 0166 00 30 OR AL,30H ;OONVERT TO ASCII

318 016D 8A 00 HOV DL,AL ;SET UP DL FOR DISPLAY

319 016F 64 02 HOV AH,DISP_OHAR ;hsdos function call

320 0171 GO 21 INT 21H

321 0173 06 OONE: RET

322 0174 START ENOP

323

324 Procedure to show that the resource is available.

325 ittttmtnttttnnttttnntttttntnttttnttnntttttttttttt

326

327 0174 YESJN_SYS PROG NEAR

328 0174 80 16 OlAF R LEA DX,IN.SYS .;SHOU THAT IS IN THE SYSTEH

329 0178 64 09 HOV AH,DISP,LINE ;HSDOS FUNCTION CODE

330 ;FOR DISPLAYING LINE

331 ;POINTED TO BY DX

332 017A GO 21 INT 21H iHSDQS FUNCTION CALL

333 one 03 RET ;RETURN TO CALL£R

334 0170 YES IN,SYS ENDP

335

336 ^Oarrlage return linefeed procedure. Use a sinilar procedure,
337 ;or this one to generate a carriage retufn and a tine feed

338 ;to aove the cursor to the 1st coluan of the next line

339 Matso known as a new tine function).

340 •tmtmmmmmmtmxmmmmtmmmm

341

342 0170 ORLF PROG NEAR tNENLINE FUNCTION FOR

343 :VIDEO

344 0170 62 OA HOV [L,OAH ;LINEFEQ) CODE

345 017F 64 02 HOV AH.DISP.OHAR ;HSDOS FUNCTION CODE

368 8088!IBM PC Assembly Language Programming

Listing 2-2 continued

346

353

354

355

356

357

;T0 DISPLAY CHARACTER

347 0181 CD 21 INT 21H .!Msdos call

348 0183 B2 OD MOV DL,0DH :CARRIAGE mm CODE

349 0185 B4 02 MOV AH,DISP.CHAR :DISPLAY THE CHARACTER

350 0187 CD 21 INT 21H

351 0189 C3 RET

352 018A CRLF ENDP

PROCEDURE TO DISPLAY MEMORY SIZE - DX MUST BE POINTING

A' tXt TO THE BEGINNING OF A MESSAGE STRING ON ENTRY.

358 018A DISP MESS PROC NEAR

359 018A B4 09 MOV AH,DISP.LINE ;384K of RAM In sysiet

360 018C CD 21 INT 21H

361 018E E8 017D R CALL CRLF

362 0191 C3 RET

363 0192 DISP_MESS ENDP

364 ittmmttmmtmtmmmnmtmmmtmmt

365

366 0192 MY CODE 0IDS

367 END INITl

Appendix D 369

Listing 6-1
MACFLE.MAC

;***** This file will establish functional calls which can be
;invoked through the use of a macro call- The Macros will
;utilize the necessary registers, without saving the register's
;orevious contents. Therefore it is necessary for the droDrarnrner
;to save any usable data orior to invoking the rnacro-
;See the DOS Technical Reference Manual (MSDOS or PCDOS) for
;reqister usage. You must also INCLUDE DOSEQU. EQU when using this file

;Created 03/17/84
5Last Updated: 10/03/84
;By: Gary P. Shade

BIOS EQU 10H ;BIOS VIDEO INTERRUPT.
MSDOS EQU £1H ;MSDOS INTERRUPT

THIS MPCRO WILL TERMINATE P USER PROGRAM.
CS REGISTER MUST BE SET TO -"HE SEGMENT ADDRESS IN THE PSP
PRIOR TO INVOKING THIS CALL. SEE IBM TECHNICAL REFERENCE
MANUAL PAGE 5-17.

Function 0

MSDOS CALL

©TERMINATE MACRO

MOV AH,EXTERMINATE ;TERMINATE USbR PROGRAM
INT MSDOS

ENDM
.**^
THIS MACRO WILL WAIT FOR A KEY TO BE PRESSED AND ECHOES THh
CHARACTER TO THE DISPLAY. ON RETURN THE CHARACTER IS IN PL
IF A CONTROL-C IS TYPED, AN INT E'3H IS EXECUTED.
Function 1

©WAITKEY MACRO

MOV AH,FxWAITKEY ;FUNCTION REQUEST
INT MSDOS ?DOS CALL
ENDM

**

THIS MACRO WILL DISPLAY THE CHARACTER IN DL.

Function 2

©CHARDSP MACRO

MOV AH, FxCHARDSP -,006 FUNCTION CODE
INT MSDOS ?

ENDM
.**

5THIS MACRO WILL WAIT FOR A CHARACTER TO BE INPUT FROM THE

370 80881IBM PC Assembly Language Programming

Listing 6-1 continued

flUX DEVICE.

F urtct i on 3

CdWPITfiUX MftCRO

WlOV AH, F_^WftITAUX ;FUNCTION CODE
INT MSDOS ;DOS CALL

ENDM

**

This macro will send the characterr in DL to the AUX device-

Function 4

C-AUXOUT MACRO

MOV AH,F^AUXOUT
INT MSDOS ?DOS CALL
ENDM

**

This macro will out out a character in DL to the orinter

if one is attached to the systern-
The character must be in DL before the macro is invoked-

Function 5

C-PRINTER__OUT MACRO
MOV AH,F^PRINTER^OUT 5MSDOS FUNCTION CODE
INT MSDOS ;SYSTEM CALL
ENDM

• **

;This macro will return a keyboard character if one is ready-
;If DL = 0FFH then the routine will return a cnaracter fov^rn the
;Keyboard, if one is available (If AL= 00H on return,
;no character was available- If DL does not = 0FFH,
;then the routine will display the character in DL-
;Function S

C-CON^IO MACRO
MOV AH,F CON_.IO 5MSDOS FUNCTION CODE
INT MSDOS ;SYSTEM CALL
ENDM

This macro will wait for a character from the keyboard.
The routine does not check for a control - C-

The character is returned in AL and is not echoed to the display-

Function 7

C«iCGN_ INPUT MACRO
MOV AH,F_CON_INPUT
INT MSDOS

ENDM

This macro will wait for a keyboard character, and return
it in AL without echoing the character to the disolay-
If a control -c is pressed, the routine executes
an interrupt (INT), £3H-

Function 8

©CON INPUTS MACRO

Appendix D 371

MOV ftH,F_CON_INPUT£ ;MSDOS FUNCTION CODE
INT MSDOS ;MSDGS FUNCTION CPLL
ENDM

Macro to display a line of information on the video display.
Uses DX and AH registers.
The label of the message must be passed to the macro as
parameter.
The string must be terminated with a ' (£4H)
All function codes (F__x><x) can be found in the equate file
dos. equ.

Function 9

©VDLINE MACRO MESSAGE

MOV AH,F^VDLINE ;FUNCTION CODE FOR
;LINE DISPLAY

LEA DX,MESSAGE
INT MSDOS

ENDM
**

MACRO TO ACCEPT A LINE OF INPUT FROM THE KEYBOARD TERMINATED
BY A CARRIAGE RETURN.

A KEYBOARD BUFFER MUST BE ESTABLISHED WHICH IS DEFINED AS

FOLLOWS: BYTE 0 = LENGTH OF THE BUFFER.

BYTE £ = CHARACTERS ENTERED (RETUNED VALUE)

BYTE 3 THROUGH N = BUFFER, WHERE N IS LAST BYTE

5MSDOS CALL

:GET DOS FUNCTION CALL

;GET ADDRESS 0^ KBUFFER
-.EXECUTE CALL

Function 0AH

©KBDLINE MACRO KBDBUFFER

MOV AH,F^KBDLINE
LEA DX,KBDBUFFER
INT MSDOS

ENDM

This macro invokes a routine to check for an available
character from the keyboard's type ahead buffer. On return
AL = 0FFH, means there are characters in the buffer.
AL = 00H then there are no characters in the buffer.
If the routine encounters a control-C, then INT £3H is
executed.

Function 0BH

MACRO

AH, F__PEEK_BUFFER
MSDOS

;MSDOS FUNCTION CODE

;SYS. CALL

0PEEK^BUFFER
MOV

INT

ENDM

;This macro will clear the type ahead buffer and invoke
;the function whose code is in the AL register at entry.
;The allowable functions are: 1, 6, 7, 8, 0A. If AL
;contains any other value, only the buffer is cleared, and
5the routine takes no other action.
;0n return AL will contain 00H,if the buffer was cleared,
;and there was no other function executed.

;Function 0CH

372 8088!IBM PC Assembly Language Programming

Listing 6-1 continued

©KBD^FLUSH MACRO FUNCTION
MOV AH, F__KBD_FLUSH ;FUNCTION CODE
MOV AL,FUNCTION ;READ FUNCTION

;IF ANY-

INT MSDOS ;D0 THE CALL

ENDM

;***

;This macro will invoke the routine which flushes all file
;buffers by writing modified files to disk. The directory
;is not updated, use the close function to uodate
;the directory properly-
5Function ©DH

©DISK^RESET MACRO
MOV AH,F DISK__RESET ;FUNCTIOM CODE
INT MSDOS ;SyS. CALL
ENDM

This macro will select the specified disk drive as the
default disk drive. The logical drive number is in DL
C0= drive A, 1= drive B etc.3. On return AL contains the
total number of disk drives in the system. See also BIOS
interrupt 11H which returns the equipment configuration for
your computer-
The DRIVE_NUMBER parameter must be an caoital ASCII letter
'A' or 'B' etc. do not specify the drive number in lower
case.

Function ©EH

C-SELECT^DISK MACRO DRIVE^NUMBER
MOV AH,F^SELECT^DISK ;FUNCTION CODE
MOV DL,DRIVE_^NUMBERC-4©H3 ;DRIVE LETTER
INT MSDOS ;SVS. CALL
ENDM

This macro will invoke the MSDOS function which will open

a disk file control block. DS:DX must point to the FCB.

the FCB will be initialized as follows (assuming the file
is found in the directory);
BYTE in FCB Initialized to:

©C-©D ©©©©H (Current Block Number)

©E~©F ©©8©H (Record Size)

10H-16H Set by directory inforrnation.
(File Size (1©H), date last updated (14H), and time last
updated (16H), are set from information contained
in the directory.
After opening the file, set bytes ©EH-0FH in the FCB to
the desired record size,
byte £©H to the current record number (sequential access),
byte 21H must be set to the relative record
number (random access).

On exit? AL = ©©H then directory entry was found-
AL = ©FFH then directory entry not found.

Function ©FH

C-OPEN MACRO FCB

LEA DX,FCB ;Get the FCB.

Appendix D 373

MOV PH, F_.OPEN 5MSDOS FUNCTION CODE.
INT MSDOS ;INT £1H.
ENDM

.***

;This macro will close a file and uodate the directory.
;DS:DX must point to an open FCB.
;0n return, PL = 00H then entry was found in the directory.
; PL = 0FFH then entry was not found in the directory
;Function 10H

©CLOSE MPCRO FCB
MOV PH,F^CLOSE
LEP DX,FCB
INT MSDOS

ENDM

This macro will search a directory for the first entry
which matches the file name specified in the FCB.
If it is found, an unopened FCB of
the same type will be created at the disk transfer address.
See the IBM Technical Reference Manual for a description
of this function.

DS:DX Must point to an unopened FCB of the file to
search the directory for.

On exit PL = 00H if the directory entry was found.
PL = 0FFH if the directory entry was not found.

Function 11H

©DIR_SEPRCH MPCRO FCB
LEP DX,FCB 5 POINT TO THE FCB
MOV PH,F^DIR_S£PRCH •,MSDOS FUNCTION CODE
INT MSDOS ;SYSTEM CPLL
ENDM

.***

;This macro will invoke the MSDOS function to search the
^directory for the next entry which matches the file name
;specified in the FCB. It is normally used after the
;©DIR_SEPRCH. If the file name specified in the unopened FCB
;matches an entry in the directory, an unopened FCB is created
;at the DTP.
;If on return PL = 00H then the entry was found in the directory.
;If PL = 0FFH, then the entry was not found.
;See page 5-23 of the IBM Technical Manual for a complete
;description of this function.
5 F unct i on 1£H
@SEPRCH_NEXT MPCRO FCB

LEP DX,FCB
MOV PH, F__SEPRCH_NEXT ;DOS FUNCTION CODE
INT MSDOS ;SYS. CPLL
ENDM

• **

;This macro will invoke the MSDOS function which will
;delete all entries matching the file spec contained in the
;FCB pointed to by DS:DX-
;0n return PL = 00H then entv^y found.
;If PL = 0FFH then the entry was not found.
;See IBM Technical Reference Manual page 5--23.
;Function 13H

374 8088IIBM PC Assembly Language Programming

Listing 6-1 continued

®DELETE_FILES MftCRO FCB
LEfl DX.FCB
MOV AH,F_DELETE_FILES
INT MSDOS

ENDM
**

This macro will read a seauertial record- The record read

will be the one specified by the current block (byte 0CH of
the FCB, and the current record (byte £0H of the FCB). The
record is transferred to the DTfl- The record size is soecified

by the value contained in byte 0EH of the FCB-
DS;DX must point to the FCB on entry to this function.
On return, AL = 00H then read was successful.

01H then EOF was encountered; No data in record.
02H DTA contained insufficient space to

read a record. Operation canceled.
03H EOF encountered, partial record read,

record padded with zeros.
F unct i on 14H

C-READ^SRECORD MACRO FCB
LEA DX,FCB ;POINT TO THE FCB.
MOV AH,F_READ^SRECORD ;MSDOS FUNCTION CODE
INT MSDOS ;SYS. CALL
ENDM

**

This macro will write a sequential record to disk.

On entry, the opened FCB must be pointed to by DS:DX
on exit, AL = 00H write was successful.

01H disk was full, operation canceled.
0£H there was not enough room in the DTA

operat i on cance1ed-

Function 15H

C-WRITE^SRECORD MACRO FCB
LEA DX,FCB ;POINT TO FCB
MOV AH, F WRITE__SRECORD ;WRITE FUNCTION CODE
INT MSDOS

ENDM

;**

;This macro will invoke the MSDOS function to Create a file
;or it will erase the contents of an existing file and
;the FCB is opened for the new file.
;DS:DX must point to the unopened FCB.
;0n return, AL = 00H then an empty directory entry was found.
; 0FFH then an ernoty directory entry was not found.
;Function 16H

C-CREATE_FILE MACRO FCB
LEA DX,FCB ;MOVE FCB TO DX
MOV AH,F CREATE^FILE 5MSDOS FUNCTION CODE
INT MSDOS ;SYS. CALL
ENDM

This macro will invoke the MSDOS function to rename an existing
file. The current drive and filename are located in the FCB

at bytes 00 = current disk drive.
01-08 = file name

09-0BH = file name extension

DS:DX+11H = START OF NEW FILENAME.
On return, AL = 00H = Success

Appendix D 375

MfiCRO FCB

DX,FCB
AH, F_RENfil»tE_FILE
MSDOS

;FUNCTION CODE

; 0FFH = No directory entry or match found-
;Function 17H
©RENftME^FILE

LEft

MOV

INT

ENDM
.***

;This macro will fetch the code of the currently selected
;disk drive- The code is returned in ftL as 00 = 'A', 01 = 'B'
;etc.
;Function 19H
©CURRENT DISK MACRO

MOV AH,F^CURRENT^DISK ;MSDOS FUNCTION CODE
INT MSDOS ;

ENDM

;**
;This macro set the disk transfer address to the address
;supplied in DS:DX-
;If this function is not set then the default DTA at 60H
;in the PSP is used-
5Function lAH

MACRO

DX,DTA
AH,F.SET^DTA
MSDOS

;MOVE ADDRESS OF DTA TO DX
©SET^DTA MACRO DTA

LEA

MOV

INT

ENDM
.***

;This macro will invoke the MSDOS function to read
;the File Allocation Table information. On return, DS:BX
5points to the FAT byte containing the default drive.
5DX contains the number of allocation units
;AL contains the number of sectors per allocation unit, and
;CX contains the size of the physical sector. This is only
;true for MSDOS version 1.0- For MSDOS £.0 and £.1 use function
-,3&H

MACRO

AH,F GET^FAT
MSDOS

5Function IBH
©GET FAT

MOV

INT

ENDM
5***

This macro will invoke the random record read function of
MSDOS. DS:DX must point to an opened FCB for the file to
be read.

On return AL = 00H then read was successful
01H then EOF, no data returned.
0£H then DTA contained insufficient space

to read a record. Operation aborted.
03H then EOF encountered, partial record

read and padded with zeros.

Function £1H

©READ^RRECORD
LEA

MOV

INT

ENDM
.***

;This macro will invoke a function to write a random record

MACRO FCB

DX,FCB
AH,F READ RRECORD
MSDOS

376 8088/IBM PC Assembly Language Programming

Listing 6-1 continued

;to disk. The current block (FCB + 0CH), current record
;(FCB + 20H) are set according to the relative record field
; (FCB 4- 21H). The record written is'contained in the DTft.
;See'page 5-26 of the IBM technical reference manual for
5further information.

MACRO

DX,FCB
FCB

AH, F__WRITE_RRECORD
MSDOS

;MOVE FCB INTO DX

;Function 22H
C-WRITE_RRECORD

LEA

MOV

INT

ENDM

This function will invoke the MSDOS function to determine
the number of records in a file. The filename in contained

in an unopened FCB. YOU MUST SET THE FCB RECORD SIZE FIELD
(FCB + 0EH) BEFORE USING THIS FUNCTION!

The FCB must be unopened.
On return AL = 00H means the directory entry was found.

AL = 0FFH means the directory entry was not found.
Function 23H

©GET^FILE SIZE
LEA

MOV

INT

ENDM

MACRO FCB

AH,F^GET^FILE^SIZE
DX,FCB
MSDOS

le access.

;***

;This macro will set the relative record for random file
;The relative record field (FCB + 21H) is set to the same
;address as the current block (FCB + 0CH), and current record
;field (FCB + 20H).
;DS:DX points to an open FCB
;Function 2AH

©SET REL^RECORD MACRO FCB
LEA DX,FCB
MOV AH,F SET_REL RECORD
INT MSDOS

ENDM

This macro will set a new interrupt vector for the
specified type.
AL = TYPE number of interrupt to set vector for.

DS:DX =4 byte interrupt handler address.

Function 25H

©SET_INT_.VECTOR MACRO TYPE, SEG^VECTOR, OFFSET^VECTOR
PUSH DS ;SAVE OLD DATA SEG.
MOV AX,S£G_VECTOR ;GET SEGMENT ADDRESS
MOV DS,AX ;PUT INTO DS
MOV DX,OFFSET^VECTOR ;GET OFFSET INTO SEGMENT
MOV AL,TYPE
MOV AH,F SET__INT_VECTOR ;MSDOS FUNCTION CODE
INT MSDOS

POP DS ;RESTORE OLD DATA SEG.
ENDM

;***

Appendix D 377

This macro will perform a random block read.
CX contains the number of records to be read
DS:DX point to tHe open FCB-
On return CX = number of records read-

If ftL = 00H then block read was successful.
01H then EOF encountered, last record intact.
02H address wrap above FFFFH in DTA
03H EOF encountered last record only partially read

Function 27H

C-BLOCK^RREPD MftCRO FCB, REC^COUNT, RECORD^SI ZE
LEP DX,FCB ;Point to FCB
MOV CX,REC_COUNT ;How Many records?
MOV FCBC0EH3,RECORD_SIZE ;find what Size?
MOV PH, F__BLOCK_RREfiD
INT MSDOS

ENDM

This macro invokes the random block write function
under MSDOS control. See IBM technical reference manual
Page 5-29 for a description of this function-
CX = number of records to write
If CX is zero on entry, then file size is set according to
the random record field and the logical record size.
DS:DX = pointer to FCB
On return, PL = 00H block write was successful

01H = no records written because disk is full.

Function 28H

©BLOCK^RWRITE MPCRO FCB, REC^COUNT, RECORD__SIZE
LEP DX,FCB
MOV CX,REC_COUNT
MOV FCBC0EH3,RECORD^SIZE
MOV PH,F_BLOCK_RWRITE
INT MSDOS

ENDM

This function will parse a string for a specified filename.
See page 5-28 of the IBM technical reference manual for a
description of this function.

DS:SI point to the command line to parse
ES:DI point to a portion of memory to be used as the FCB
Bits 0-3 of PL are used to control the parsing.
BIT 0 = 0 = Stop parsing if a file separator encountered.

= 1 = Ignore file separators.
BIT 1 = 0 = Set drive in the FCB to default drive (0)

if the string does not contain a drive number.
1 = Default Drive is not changed if the string

does not contain a drive number.

BIT 2 = 0 = Do not change the filename in the FCB if the
string does not contain a name.

1 = Change file name in FCB if string contains
a file name.

BIT 3 = 0 = The file extension in the FCB is not changed
if the string does not contain an extension.

1 = Change the extension if the command line contains
an extension.

378 8088!IBM PC Assembly Language Programming

Listing 6-1 continued

;Function £9H

@PftRSE_STRING MfiCRO NAME__STRING, FCB_.PRE«, PfiRSE_BITS
LEP SI,NPME STRING ;STRING TG PPRSE
LEP DI,FCB PREP
PUSH ES ;SPVE SEG REGISTERS ES
PUSH DS

PGP ES ;SET ES = DS
MOV PL,PPRSE BITS ;HGW DG WE PPRSE?
MGV PH,F PPRSE STRING ;
INT MSDGS

POP ES ;Restore seg register
ENDM

;This macro will invoke the MSDOS function to read the
;date and return the date in the following registers;
;CX: = Year in binary
;DH: = Month in binary (1 = Jan- etc-)
;DL: = Day of the month in binary

C-GET^DOTE MPCRO
MOV PH, F__GET_DATE
INT MSDGS

ENDM

This macro will set the date according to the binary information
contained in the repisters as follows-

CX: = Year

DH: = Month (1 = Jan. etc-)

DL: = Day of the month

;0n return PL = 00H then the i

; PL = 0FFH then the

aborted-

;Function £BH

©SET DPTE MPCRG YEPR, 1
MGV PH,F SET DPTE
MGV CX,YEPR
MGV DH,MONTH
MGV DL,DPY
INT MSDGS

ENDM

;GET MSDGS FUNCTIGN CGDE
;LGPD YEPR IN CX
;MGNTH IN DH

This macro will get the current time and return it in the
registers as depicted below-
CH: = Hour (£4 hour format)

CL: = minutes

DH: = Seconds

DL: = hundreths of a second

Function £CH

C-GET_TIME MACRG
MGV PH,F GET^TIME
INT MSDGS

ENDM

;***

;This macro will invoke the MSDGS function to set the time

Appendix D 379

jThe following registers are used to soecify the time on
; irivoking this function.
;CH: = HOUR <£A HOUR FORMfiT)
;CLs = MINUTES
;DH: = SECONDS
;DL: = HUNDRETHS OF ft SECOND

•FORMftT 2DH

0SET_TIME MftCRO HOUR,MINUTES,SECONDS,HUNDRETHS_SEC
MOV ftH,F^SET^TIME
MOV CH,HOUR
MOV CL,MINUTES
MOV DH,SECONDS
MOV DL,HUNDRETHS^SEC
INT MSDOS

ENDM

This macro will set the verify flag used when writing data
to disk. When on, it causes a verify ooeration after each
write. On entry ftL = 00H then do not verify.

01H then verify.

Function 2EH

@VERIFY_WRITE MftCRO ON OR OFF
MOV ftH,F^VERIFY
MOV ftL,ON^OR^OFF
INT MSboS
ENDM

This macro will return a pointer to the DTft.
ESsBX will contain the pointer on return-

Function 2FH

©GET DTft MftCRO
MOV ftH,F^GET^DTft
INT MSDOS

ENDM

This macro will get the version number of MSDOS.
On return ftL contains the major revision level, and ftH
will contain the minor rev. number.

Function 30H

@GET_VERSION MftCRO
MOV ftH,F_GET_VERSION
INT MSDOS

ENDM

This macro will invoke the MSDOS terminate/keeo resident
function. See page 5-31 of the IBM DOS Technical Reference
Manual. On return, DX contains the memory size in paragraohs.
ftL = exit code.

Function 31H

C-TERMINftTE^RESIDENT MftCRO MEM_SI ZE, EX IT_CODE
MOV ftL,EXIT^CODE

380 80881IBM PC Assembly Language Programming

Listing 6-1 continued

MOV DX,MEM_SIZE
MOV ftH,F^TERMINftTE RESIDENT
INT MSDOS

ENDM

This macro will invoke the MSDOS function to either
read the current state of •'^C (Control C) checking
(ON/OFF) or to set the state of •'^C checking. If the state
is set to ON, then functions 06H and 07H cannot be used.
If = 00 then the current state is returned in DL which is.
00 = off, 01H = ON.
If ftL ®01 then set the state as defined by the contents of DL
<00H = Set checking Off which is the defAulf.

checking On)

checking durinp all ooerations.

5(01H = Set ^C checking On)
jUse this function to enable Control C (

»

5Function 33H

C-SET C CHECK MAC RO SWITCH1,SWITCH2
LOCAL FETCH

MOV AL,SWITCH1
OR AL

JZ FETCH

MOV DL,SWITCH2

FETCH: MOV AH,F SET C CHECK
INT MSDOS

ENDM

;SET OR FETCH?
;SET FLAGS
;Z, THEN GET CURRENT STATE
;ELSE LOAD DL WITH ON OR
;OFF.

;MSDOS FUNCTION CODE

;This macro will return an interrupt vector for a oiven
;interrupt type- Use this call to retrieve a vector and
;function call S5H to set a vector. The old vector read by
;this function should be saved and restored prior to exiting
;a user program and returning to DOS.
;AL contains the interrupt number on entry.
;And ES:BX contain the vector on return.

5

;Function 35H

C-READ_ VECTOR MACRO TYPE
MOV AL,TYPE
MOV AH, F^READ_,VECTOR
INT MSDOS

ENDM
;***

;This macro will invoke the MSDOS function which returns
;the amount of free space remaining on a disk (in BX).
;It also returns the total number of allocation units on the
;drive(in DX), bytes per sector (in CX), Sectors per allocation
;unit (in AX).
;If AX contains 0FFFFH on return then the drive number was
;invalid. This call is to be used instead of function IBH for
;DOS 2.0.

5
;Function 36H

®GET_FREE_SPflCE MfiCRO DRIVE
MQV DL,DRIVE ;6ET DRIVE NUMBER (0=fl ETC.)
MOV AH,F_GET_FREE_SPfiCE

Appendix D 381

INT MSDOS
ENDM

This macro will create a sub-directory at the end of a
user supplied path riame.
DS:DX must point to an PSCII string terminated with a null
00H byte (fiSCIIZ string). The string must contain drive and
pathname.

On return if the carry is set, fiX contains an error code:
If fix = 03H then the pathname was not found.
If fix = 05H then access was denied to the parent directory.

Function 39H

eMK__DIR MftCRO PftTH^NAME
LEP DX,PftTH^NAME
MOV PH,F_MK DIR
INT MSDOS

ENDM

**

;This macro will remove a directory entry from the parent.
;DS:DX point to the ftSCIIZ pathname.
;0n return if the carry is set, there was an error. The
;error value in PX is the same as for function 39H above,
;with the addition of 10H which would mean that the path soecified
;was the current directory of on a drive.
5
;Function 3PH

C-RM_DIR MPCRO PPTH^NPME
LEP DX,PPTH^NPME
MOV PH,F^RM.DIR
INT MSDOS

ENDM

This function will change the current directory.
DS:DX points to an PSCIIZ string which contains the new
directory name. If on return the carry flag is set,
PX will contain an error code. 03H means that the pathname was
not found, or was not valid.

Function 3BH

©CH^DIR MPCRO PPTH^NPME
LEP DX,PPTH_NPME
MOV PH,F_CH_DIR
INT MSDOS

ENDM
.***

;This macro will invoke a function to create a file.
;The file is created if not found in the directory,
;or set to a null file (sets length to zero) if the entry
;already exists in the directory.
;DS:DX point to the PSCIIZ path name and CX contains
;the file attributes:
.01 = set = read only

• 02 ss set = hidden file
.04 ss set = system file
•0fl = set = entry contains the volume label
5I0H = set = entry defines sub~directory

382 80881IBM PC Assembly Language Programming

Listing 6-1 continued

£0H = set = set whenever the file has been written to and closed.
File attributes can be combined.

On return if the carry is set, AX will contain an error code
as follows: 03 = path name not found (invalid)

04 = Too many open files-
05 = Access denied

If the carry is not set, the operation was successful, and
AX will contain a file handle number which is required
For future file access functions-

Function 3CH

eCREATE^FILE £ MACRO PATH__NAME, ATTRIBUTES
LEA DX, PATH__NAME
MOV CX,ATTRIBUTES
MOV AH,F_CREATE^FILE_£
INT MSDOS

ENDM

This macro will open a file. AL contains the desired
access code as follows:

;00 =5 file is to be opened as read only.
01 = the file is opened as write only.
0£ = the file is opened as read/write.

DS:DX points to an ASCIIZ pathname.
The record size is initialized to 1 byte, and the R/W pointer is set
to the first byte of the file.
On return if the carry is set, AX contains an error code as
follows: 0£ = File not found

04 = Too many open files
05 = Access denied

1£ = Invalid Access (Code in AL not between 0 ~£)
If the operation was successful, then AX will contain a
16 bit file handle which must be used to access the file
during subsequent operations.
©OPEN^FILE £ MACRO PATH__NAME, ACCESS

LEA DX,PATH_NAME
MOV AL,ACCESS
MOV AH,F OPEN^FILE_.£
INT MSDOS

ENDM
5***

;This macro will close a file.
;BX must contain the file handle number of the file to be
;closed.
5On return, if the carry is set there was an error and the
5error code 06 will be in AX which indicates the file handle
;was not for an open file.

5
;Function 3EH

®CL0SE_FILE_2 MPCRO HANDLE
MOV BX,HfiNDLE
MOV PH,F_CLOSE_FILE_£
INT MSDOS

ENDM

Appendix D 383

This macro will read from a file or device-
DS:DX points to a buffer for the ooeration.
CX = the number of characters to read.
BX = file handle number
Not all characters specified in CX need be read. See oage u
of the IBM DOS technical reference manual,
this function.

On exit if the carry flag is set, then AX will contain
an error code as follows:
05 = Access denied.
06 = Invalid Handle

If the carry is not set then AX will epual the number of bytes
read from the file or device.

Function 3FH

@READ FILE_£ MACRO HANDLE,BUFFER,BYTES
LEA DX,BUFFER
MOV BX,HANDLE
MOV CX,BYTES
MOV AH,F^READ^FILE^a
INT MSDOS

ENDM
**
This macro will write a specified number of bytes to a file
or to a device. DS;DX must point to the buffer from which the
data is transferred, CX contains the total number of bytes to
write to the file, and BX must contain the file handle number.
On return, if the carry is set then ftX will contain an error code
number as in the read function above (function # 3FH).

If the carry is not set then fiX equals the number of bytes written
to the file or device.

F unct i on 40H

FILE £ MACRO BUFFER,HANDLE,BYTES
LEA DX,BUFFER
MOV AH,F WRITE FILE__£
MOV CX,BYTES
MOV BX,HANDLE
INT MSDOS

ENDM

**
This macro will invoke the MSDOS function to delete a directory
entry. DS:DX must point to the pathname of the entry to delete.
If the carry is set on return, there was an error. AX will contain
one of the following error codes: 02 = File not found.

05 = Access denied.

This function only will work on files that are closed, and
have the proper attributes (i.e. R/W).

F unct i on 41H

@DELETE^FILE_£ MACRO PATH^NAME
LEA DX,PATH_NAME

384 8088IIBM PC Assembly Language Programm ing

Listing 6-1 continued
MOV OH,F_DELETE FILE_a
INT MSDOS

ENDM

This macro will move the oointer which is used
for read and write operations into the soecified file
by 1 of 3 methods.
If AL = 0 then the pointer will be moved the specified

nurnbeh of bytes (in CX:DX) from the becinninc of
the file (absolute seek).

If PL = 1 then the file pointer will be moved the
specified number of bytes (in GX:DX) from
the current pointer position.

If PL = £ then the file pointer will be moved the
specified number of bytes (in CX:DX) from
the end of the file. Use an offset of zero
to determine the end of the file.

CX and DX must contain the distance to move the pointer in oytes.
(CX = MSW, DX = LSW).

PL = type of rnoye.
BX = file handle.
On return if the carv^y is not set, then the operation was
successful and DXsPX contains the new pointer position.
If the carry is set, then PX contains ah error code as follows:
PX = 01 then the value in PL was not in the range of 0-£.
PX = 06 then the handle was invalid (an unopen file).

Function 4£H

0MOVE_POINTER MPCRO MSW^DISTPNCE, LSW__D I STANCE, TYPE, HANDLE
MDV CX,MSW^DISTANCE ;HIGH ORDER WORD FOR DISTANCE
i*tOV DX, LSW^D I STANCE -,LOW ORDER WORD FOR DISTANCE
MOV PL,TYPE ;HOW WE MOVE THE POINTER
MOV BX,HANDLE ;HAMDLE NUMBER OF OPEN FILE.
MOV AH, F__MOVE_POINTER
INT MSDOS

ENDM
^(.^(.*^^^^^^^

This macro will invoke the MSDOS function to either read
a file's attributes or chanqe thern as defined by the contents
of CX.

PL contains-.00H to read the file attributes, or
01H to set the_attributes.
DS:DX must point to the files path name.
If the attributes are read, then they are returned in
the CX register (if there were no errors during the operation).
If an error occurred, the carry bitwill be set and PX will
contain one of the following error codes.
If PX = 1 then the value in PL on entry was not 00 or 01H

PX = 3 then the path name was invalid.
PX = 5 then access was denied.

Function 43H

CHPNGE^PTTRIBUTES MACRO PPTH^NPME, ATTRIBUTES, "l^YPE
LEA DX,PPTH NAME
MOV CX,ATTRIBUTES
MOV AH, F__CHANGE_PTTRIBUTES
MOV PL,TYPE

Appendix D 385

I NIT jvtSDOS

ENDM

**

This macro will duplicate a file handle of an open file-
BX = file handle number to be duplicated

Function 45H

©DUP^HPNDLE MACRO HANDLE
MOV BX,HANDLE
MGV AH,F_DUP_HANDLE
INT MSDOS

ENDM

This macro will point an existing file handle to a new file-
CX = new file handle number

BX = existing file handle number
Qn return:

If the carry is set then AX contains an error code as follows;
04 = Too many files open.
06 = Invalid handle.

If the caY-^ry is not set, both handles will point to the same
(new) file.

Function 46H

@DUP_HANDLE__2 MACRO OLD^HANDLE, NEW^HANDLE
MOV CX,NEW_HANDLE
MOV BX,OLD_HANDLE
MOV AH,F_DUP HANDLERS
INT MSDOS

ENDM

This macro will get the current directoY-^y (the full path)
and read it into a 64 byte buffeY" pointed to by DS:SI
DE must contain the drive number (0=A etc.)
On return DS;DI will point to the buffer containing the
diY-^ectoY^y.
If the carY^y is set then an error occurred in that the CY-^ive
specified in DL was invalid (AX == 15H)

Function 47H

©CURRENT^DIR MACRO BUFFER,DRIVE^NUM
MOV DL, DRIVE_,NUM
LEA SI,BUFFER
MOV AH, F^CURRENT^^DIR
INT MSDOS

ENDM
**

This macro will invoke the MSDOS function to return a pointer
to a free block of memory of a specified size.
(Almost sounds like multitasking!)
BX contains the amount of memory to be allocated (in paY^aoY-^aphs).
On return the carry will be set if there was an error and
AX contains 07 then the memory control blocks were destroyed.

08 = Recuested size largeY-^ than availaole RAM.
BX will contain the maximum size that was allocated (in paragraphs).
If the carry is not set on retuY"^n, then the operation was
successful, and AX contains the pointer to the allocated block.

386 80881IBM PC Assembly Language Programming

Listing 6-1 continued

;Function ASH

@PLLOCPTE_MEM MftCRO BLOCK^SIZE
MOV BX,BLOCK_SIZE
MOV F^PLLOCftTE MEM
INT MSDOS
ENDM

This rn^cro will return (deallocate) a block of memory
which was previously allocated.
On entry, ES must contain the segment address of the block to
be returned.

On returning from the routine, if the carry is set then
AX will contain one of the following error codes:
AX = 07 then memory control blocks were destroyed.
AX = 09 then the block contained in ES was not one

allocated through the AlLOCATE_MEM (ASH) function.
If the carry bit is not set, then the operation was successful.

Function A9H

©DEALLOCATE MEM MACRO BLOCK_.NUM
MOV ES,BLOCK^NUM
MOV AH, F_DEALLOCATE__M£M
INT MSDOS

ENDM

This macro will invoke the MSDOS function which modifies
an allocated block of memory. ES must contain the segment of
block to modify, and BX contains the new block size (in oaragraohs).
If the new size of the block is less than that which is allocated,
then MSDOS will attempt to reduce the size of the block. If the
requested block size is larger than that which is already
allocated then MSDOS will attempt to enlarge the amount of
memory allocated. Microsoft refers to this process as
"shrinking", or "growing" allocated memory blocks.
On retuY^n of the carr-^y is set then AX will contain an error
code as follows:

AX = 07H then Memory Control Blocks were destroyed.
08H then theY^e was not enough memory to enlarge the block.
09H then the block specified in ES was invalid.

BX will also contain the maximum rnernoY-^y (in oaragraDhs) that
is available if the specified block size was unavailable (AX = 07).

If the carry is not set, then the operation was successful.

Function AAH

@NEW_BLK_SI ZE MACRO NEW_.SIZE, OLD^BLOCK
MOV ES,OLD^BLOCK
MOV BX,NEU) SIZE
MOV AH, F NEW__BLK^SIZE
INT MSDOS

ENDM

;**

;This macro will load and/or execute a program.
;0n entry DS:DX will point to the pathname of the file to load
;and/or execute. The pathname must be in ASCII and terminated
;with a null byte (00H). ES:BX must point to a parameter block
; (See IBM Technical Reference Manual page 5--A3). AL must contain

Appendix D 387

the function code (00 = load and execute the program,
03H = load the oronrarn, do not begin execution-
ftgain, see the IBM DOS Technical Reference Manual for a cornolete
description of this function.

Function 4BH

©LGAD^EXECUTE MftCRO PATH_NAME,PARPM^BLK, FUNCTION
LEft DX,PfiTH NftME
LEft BX,PPRPM^BLK
MOV PL,FUNCTION
MOV PH,F^LOPD^EXECUTE
INT MSbOS
ENDM

This macro will terminate the current process. Control is returned
to the process which invoke the terminated one. AL is used to
return a code to the parent process.
This operation will also close any and all open files.

Function 4CH

kxiT MACRO RETURN^CODE
MOV AL,RETURN^CODE
MOV AH,F^EXIT
INT MSDOS
ENDM

This macro will retrieve the return code of the child process
which terminated via the ©EXIT function (4CH).
A non-rnult itasking child process which is executed using the
@LOAD_EXECUTE function (ABH), will terminate using the
©EXIT function (4CH). The ©EXIT function returns a one byte
return code on execution. This code can be used to convey
status information from the child process to the parent process.
Therefore, the parent program should use the ©GET_RET_CODE function
to retrieve this status byte passed from the child process.
This function can only be used once to obtain the return code.
On return, AL will contain the return code, and AH will contain
another code as follows:
AH = 00 = Child process terminated/aborted (normal return)

01 = A control C caused process termination.

02 = A critical error has occurred.

03 = If the child process was terminated via
the ©TERMINATE_RESIDENT function (3iH).

Function 4DH

©GET RET^CODE MACRO
MOV AH,F^GET^RET__CODE
INT MSDOS
ENDM

-***

•This macro will invoke the MSDOS function which will find the
; first matching pathname (dri ve/path/f i lenarne) whicn has the
5attributes specified in the CX register. This function is
;described on page 5-46 of the IBM DOS Technical Reference Manual.
;The function will create a data block of information about the file
iin the DTA- DS:DX must ooint to the pathname on entry.
;0n return, if the carry is set then AX contains an error code
;as follows:

388 80881IBM PC Assembly Langtuige Programming

Listing 6-1 continued

fix = 02 then the pathname was invalid-
ftX = 18 then there were no files found-

Function AEH

©FIND^FILE mCRO PPTH^NftME, ATTRIBUTES
MOV CX,ATTRIBUTES
LEA DX,PATH_NAME
INT MSDOS

ENDN

This macro will find the next file with matching oathnarne
and attributes- It is used after the &FIND_FILE function <4EH)-
If the carry is set and AX contains ISH on return
then there were no more files found-

Function 4FH

©FIND^NEXT^FILE MACRO
MOV AH,F_FIND_NEXT_FILE
INT MSDOS

ENDM

This macro will read the verify flag and return it's status in
AL- If AL = 00H then the verify flag is off-
If AL = 01H then the verify flag is on-

Function 54H

©READ^VERIFY FLAG MACRO
MOV AH, F READ^VERIFY^FLAG
INT MSDOS

ENDM

This macro will invoke the MSDOS function to rename a directory
entry- DS:DX must point to an ASCI 12 string wnich contains the
pathname of the file to be renamed- ES:DI Doints to the new
pathname of the file, "^he cisk soecification must be the same
In both the old and new pathnames-
On return if the carry is set then an occurred and AX contains
the error code as follows:
If AX = 3 then the pathname specified by DS:DX was not found-
If AX = 5 then access was denied either to the souv^ce or

destination file-
If AX = 17 then the source and destination pathnames exist

on different drives.

Function 56H

@RENAME_FILE£ MACRO SOURCE,DESTINATION
LEA DX,SOURCE
LEA DI,DESTINATION
MOV AH,F^RENAME^FILES
INT MSDOS

ENDM
• ***

5This macro will invoke the MSDOS function to read or set the date

Appendix D 389

and time stamp of the last write for a specified file-
The file's handle must be in BX on entry, and the desired
function code in ftL (00H = get date and time, 01H = set oate
and time). CX will contain the time to be set and DX will
contain the date to be set.

If the function specified was to read the date and time,
then CX will contain the time and DX will contain tne date
of the last write operation, on return from the function.
If the carry is set on return then AX will contain an error code
as follows:

AX == 01 then the argument in AL on entry was invalid, it was
not 00 or 01H.

AX = 0& then the file handle passed in BX was invalid.

Function 57H

@GET SET DT MACRO FUNCTION

MOV AL,FUNCTION
MOV BX,HANDLE
MOV CX,TIME
MOV CX,TIME
MOV DX,DATE
MOV AH,F GET SET DT
INT MSDOS

ENDM

**

******** VIDEO DISPLAY MACROS *********************

******** USING BIOS CALLS FOR VIDEO CONTROL **********

******** BIOS INTERRUPT TYPE: 10H

POSSIBLE ATTRIBUTE BYTES AS DEFINED IN IBM TECHNICAL
REFERENCE MANUAL ARE:

B7 B6 B5 B4 B3 BE B1 B0

33 = FOREGROUND

36 = BACGROUND

BLACK 1 = BLUE

GREEN 3= CYAN

RED 5= MAGNETA

BROWN 7= WHITE

GRAY 9= LIGHT BLUE

= LIGHT GREEN 11= LIGHT

CYAN

12= LIGHT RED 13= LIGHT

MAGNETA

14= YELLOW 15= WHITE

HIGH INTENSITY

MONOCHROME EXAMPLES:

B R G B I R G B B0-

Imm E R L N E R j__ B4-

I D E U T D E U 0 =

N E E E E E

K N N

S

I

T

Y

N 4 :

6 ̂

a =

10

0 0 0 0 0 0 0 0 NO DISPLAY BLACK/BLACK

0 0 0 0 0 0 0 1 UNDERLINE CHARACTER

0 0 0 0 0 1 1 1 = NORMAL WHITE/BLACK

0 1 1 1 0 1 1 1 = NO DISPLAY WHITE/WHITE

1 1 1 1 1 0 0 0 ss BLINK, REVERSE VIDEO,HIGH
INTENSITY

COLOR CHARACTER EXAMPLE:

0 1 0 1 1 0 0 1 Magneta background,
Character is Light blue

390 80881IBM PC Assembly Language Programming

Listing 6-1 continued

THIS MACRO WILL SET THE VIDEO MODE. PASS THE ARGUMENT AS

FOLLOWS: AL= 0

AL= 1

AL=

AL=

AL=

AL=

AL=

2

3

A

5

6

TEXT 40

TEXT 40

TEXT 60

TEXT 60

GRAPHICS,
GRAPHICS,
GRAPHICS,

25-B/W

25-COLOR

25~B/W

25-COLOR

320 X 200-B/W

320 X 200-COLOR

640 X 200-B/W

THIS IS A BIOS CALL AND AS SUCH MAY NOT WORK WITH
ALL PC "COMPATIBLES".

Function 00H

©VDMODE MACRO MODE

MOV AH,F MGDESET ;MODE SET
MOV AL,MODE
INT BIOS ;BIOS CALL
ENDM

5***

;THIS MACRO ALLOWS YOU TO CHANGE THE CURSOR.
;LOAD THE VALUE OF THE START SCAN LINE INTO CH
;AND THE END SCAN LINE INTO CL.
;VALID PARAMETERS ARE: 0-13 OR 0-7 FOR COLOR MONITOR

5
;Function 01H

C-CURCHG MACRO SLINE,ELINE
MOV CH,SLINE

CL,ELINE
AH, F__CURCHG
BIOS

;GET START LINE
;GET END LINE
:CHANGE CURSOR FUNCTIO

MOV

MOV

INT

N

;BIOS CALL
ENDM

**

THIS MACRO WILL SET THE CURSOR POSITION

BH = PAGE, DH= ROW, DL= COLUMN
PAGENUM ROW COL

Function: 02H

C-CURSET MACRO PAGENUM, ROW, COL
MOV BH,PAGENUM 5GET THE PAGE NUMBER
MOV DH,ROW ;GET ROW (0-24)
MOV DL,COL ;GET COL (0-79)

;FUNCTION CODE TO SET CURSOR
;BIOS CALL

MOV AH,F_CURSET
INT BIOS

ENDM

THIS MACRO WILL FETCH THE CURSOR POSITION. ON RETURN
THE ROW/COL COORDINATES WILL BE IN DX (DH^ROW,DL=COL)

Function: 03H

C-CURRD MACRO

MOV AH,F^CURRD

INT BIOS

ENDM

;G£T FUNCTION CODE TO READ
;POSITION
?BIOS call

He0 :uoii).3unj

3inai«xi« =ia 'aaxawawHa ="ib sNaniay no
aaawoN 39Wd =Ha

■Noiiisod aosano iNaaano 3Hi
i« SI H3IHM a313babH3 3H1 NaOiSa "niM 0a3bW SIHX

**
WaN3

11U3 so19
3iAe 3inaidii«

NiAiniOO 1331 d3dcin
MOy 1331 dSdcin

NWniGO IHSIW dlMOl
Moa iHSia aimi

MOQNIM NI S3NI1 lid = 0
iioaas 01 S3NI1 30 asawoN

NMoa/do iioaos is3no3a

soia
3xnaiaxx«'Ha

10330'13
Moain 'H3
i03ai 'la
Moaai'HO

S3NIl'lb
N0IX33aia'Hb

HxnaiaxxH 'loin 'Moa^n 'io3ai 'waai 's3nii 'N0ix33aia

XNI
AOiAl
oow
AOW
AOW
AOW

AOW
AOW
oaoww iioaoss

UMOQ = HX0
Gi-i Ttouos = h90 W0I:^^und

•S3ND13 3d

lib HXIM 3iaiXbdW03 33 XON AbW QNb llb3 3013 b SI SIHX
■N33a3S 3HX ab313 OX

33 ainoM sa3X3Wbabd 3S3hx 30 X33333 3H^ "(X0) 3xn3iaxxb
aaxobabHO ibwaoN b hxim '(sx = H3<i' =i03 'V3 = mqi = Moa)

a3Nao3 XHSia aanoi 3hx ox '(0 =Nwnio3 '0=Moa) aawaoo
1331 dOX 3HX W0a3 '(00) MOQNIM NI S3NI1 lib a03 '(90) dO

N33a3S 3HX llOaOS QinOM SIHX -oaobw 3HX ox Sa3X3Wbabd
Sb X0'00'00'H3V'H9T'00'90 SSbd ox 33 QIOOM 31dWbX3 N®

■3XA3 3xn3iaxxb a3I3I33dS
b HXIM 'S3XbNiaa0a03 30 X3S N3AI9 b a03 'NOIXOaaiG N3AI9

b NI S3NI1 30 aaawoN Nibxaao b iioaos him oaobw sihx

iibo soias
asawoN 39bd =a3X3Wbabd5

N0IX3Nn3 X3S 39bd^

WGNS
S0I3 XNI

WnN39bd'lb AOW
X3S9d~3'Hb AOW

WnN39bd OaObW X3S9dGA0

HS0 uoT^.3wnj

39bd 03GIA 3AIX3b 3HX X3S HIM OaObW SIHX
»#*«**«»**»»********«»*********•*****************

WaN3
Hb3 S0I3' _S0I3 XNI

NOIXISOd N3d GbSa' GaN3d 3'Hb AOW
oaobw GaN3d0

HV0 uoi^-ownj

(S3a H91H -6E9-0)
(S3a MOi- 6IS-0) Nwmoo i3xid=xa

(66T-0) MOa Nb3S=H3
103=ia 'MOa=HG GNb T=Hb !3SIMa3HX0

G3a399iax XON N3d 0=Hb SNaOXSa NO
■G3ddin03 OS SI W3XSAS 3HX 31

NOIXISOd N3d XH9I1 3HX Gb3a HIM OaObW SIHX
**

I6i axipu3ddv

392 80881IBM PC Assembly Language ProgramiHing

Listing 6-1 continued

0CHftRRD MACRO PAGEIMUM

MOV AH,F^CHARRD
MOV BH,PAGENUM
INT BIOS

ENDM

**

THIS MACRO WILL SEND A CHARACTER IN AL TO THE VIDEO

DISPLAY. BH=PAGE CX= NUMBER OF CHARACTERS TO OUTPUT

AL= CHARACTER , BL= ATTRIBUTE BYTE

Function: 09H

C-VDCHAR2 MACRO PAGENUM, CHARACTERS, ATTRIBUTE
MOV BH,PAGENUM
MOV BL,ATTRIBUTE
MOV CX,CHARACTERS
MOV AH,F_VDCHAR2
INT BIOS

ENDM

**

THIS MACRO WILL SEND THE CHARACTER IN AL TO THE

VIDEO DISPLAY. THE EXISTING VIDEO ATTRIBUTE IS USED

BH= PAGE NUMBER, CX= NUMBER OF CHARACTERS

Function: 0AH

0VDCHAR1 MACRO PAGENUM, CHARACTERS
MOV BH,PAGENUM
MOV CX,CHARACTERS
MOV AH,F_VDCHAR1
INT BIOS

ENDM

**

THIS MACRO WILL SET EITHER FOREGROUND OR BACKGROUND

COLORS. THE CHOICE OF COLOR FOR BACKGROUND IS PUT

INTO BL (0-15); AND TO SELECT ONE OF TWO COLOR
PALETTES FOR FOREGROUND, SET BL TO 0 = GR, RED, BRN

1 = CY, MAGNETA, WHITE
BH= 0 = BACKGROUND

BH= 1 = FOREGROUND (PALETTE)

Function: 0BH

0COLORSET MACRO GROUND, COLOR
MOV BH,GROUND ;BACK OR FOREGROUND?
MOV AH, F__COLORSET :FUNCTION CALL NUMBER
MOV BL,COLOR ;GET COLOR OR PALETTE TYPE
INT BIOS

ENDM

• **

;THIS MACRO WILL SET (TURN ON) A GRAPHICS PIXEL
;GIVEN IT'S POSITION AND COLOR.
;DX = ROW = 0 TO 199, CX = COL = 0 TO 319 (MED RES)
; 0 TO 639 (HIGH RES)
;See the video definitions at the beoinninc of the video
;macros.

;Use this function to reset a pixel by soecifyinc a foreprouna
;color the same as the background color.

Appendix D 393

Function: 0CH

©SET MftCRO ROW,COL,COLOR
MOV AH,F SET
MOV DX,ROW
MOV CX,COL
MOV ftL,COLOR
INT BIOS

ENDM

;ShT DOT FUNCTION CODE

**

THIS MfiCRO WILL TEST ft DOT POSITION- THE COlOR IS RETURNED

IN ftL. DX=RQW, CX= COL.

Function: 0DH

©POINT MftCRO ROW, COL
MOV DX,ROW
MOV CX,COL
MOV fiH,F__POINT
INT BIOS

ENDM
**

THIS MftCRO WILL OUTPUT ft CHftRftCTER IN ftL TO THE VIDEO

DISPLftY. BH= PftGE NUMBER, BL= COLOR (GRAPHICS MODE),
ftL=CHftRftCTER (MUST BE IN ftL PRIOR TO

INVOKING THE MftCRO).

Function: 0EH

©VDCHftRS MftCRO PftGENUM, COLOR

MOV BH,PftGENUM
MOV BL,COLOR
MOV ftH,F_VDCHftR3 sBIOS FUNCTION NUMBER
INT BIOS

ENDM
**

THIS MftCRO WILL RETURN THE CURRENT VIDEO MiODE IM Hl..

ON RETURN ftL= MODE, BH= ACTIVE PAGE, ftH= ACTIVE COLUMN

Function: 0FH

©VDMODERD MftCRO

MOV ftH, F__MODERD ; READ FUNCTION MODE
INT BIOS

ENDM

**

These macros Drovide an interface to the BIOS routines

which can be used to access the printer.
BIOS INTERRUPT TYPE: 17H

*****************^************************************

The first macro will return the printer's status in ftH.
b7 ss 1 = Printer busy
bS = 1 = ftcknowledde

65 = 1 = Paper out

b4 = 1 = Printer selected

63 = 1 = I/O Error

bS = X = Unused

61 = X = unused

60 = 1 = Time Out

394 8088!IBM PC Assembly Language Programming

Listing 6-1 continued

•See page of the IBM Technical Reference manual for
;a description of the routines used for printer BIDS I/O.

©PRINTER STATUS MACRO

MOV AH, F_,PRINTER_STATUS ;Get function coce
INT 17H :Go throuch BIGS

ENDM

• ***

;This macro will send a character in AL to the printer.
;After executing the BIOS routine, the status will be returnee
;in AH.

C-PRINTER_OUT_B MACRO
MOV AH,F__PRINTER OUT„B sBIOS function code
INT 17H

ENDM

• ***

;This macro function will reset and initialize the printer
; pov^t.
C-PRINTER^INIT MACRO

MOV AH,F_PRINTER INIT
INT 17H

ENDM

;***

;BIOS INTERRUPT TYPE: i4H
; RS-23EC cornrnunicat ion functions
- ***

;These macros will handle serial I/O through BIOS calls.
;See page A22 of the IBM Techniacl reference manual for a
;detailed expalnation of the bit assignments used in the
5RS INIT rnacro-
@RS232_.INIT MACRO CONFIG, PORT

MOV AL,CONFIG ;Get the confiouration.
MOV DX,PORT ;1 OR 2
MOV AH,F^RS232 INIT
IMT 14H ;BIOS call

ENDM

• **

5This macro will get a character from the serial port.
5No check in the macro is made to see if there is one ready-
;your program should do this before invoking this macro.
;use the RS_STATUS to see if there is a character reacy.
;AH will be zero on return, if a character was recieved
;without error, and is in AL. If AH <> 0 then AH = the status of the port.

C-RS^INPUT MACRO PORT
MOV DX,PORT 5Which port?
MOV AH,F_RS INPUT 5Function code
INT 14H " 5BIOS call
ENDM

.«««^««««.««««««««**********************««««««««.««.K.

;This macro will send a character via the serial channel.
;The character to be transmitted is in AL on invoking the macro.
;If b7 of AH is set on return, an error occurred and bS-bO = status.

@RS SEND MACRO PORT
MOV DX,PORT
MOV AH,F_RS_OUT ;Function code
INT 14H

ENDM

;***
;This macro will read the serial port status.

Appendix D 395

The status is returned in AX and is described in the

IBM technical reference manual on pace A-£3.

C-RS^STATUS MACRO PORT
MOV DX,PORT
MOV AH, F_,RS_STATUS ; Function code
INT 14H

ENDM

**

;The following macros are provided as an aid in procrarnrning-
;They provide many commonly used VIDEO functions.
• **

? _
;This macro provides the NbW LINb function (CR,LF) cornbinat ion.
C-CRLF MACRO

CARRIAGE RETURN

DISPLAY CHARACTER MACRO

LINE FEED

MOV DL,0DH
0CHARDSP

MOV DL,0AH
eCHARDSP

ENDM

©NEWSLINE MACRO
C-CRLF

ENDM

;This macro provides a line feed and carriage return combination
0LFCR MACRO

MOV DL,0AH ;LINEFEED
©CHARDSP

MOV DL,0DH ;CARRIAGE RETURN
C-CHARDSP

ENDM

5This macro does a carriace return only.
C-CR MACRO

MOV DL,0DH ;D0 CARRIAGE RETURN
0CHARDSP

ENDM

;This macro does a line feed only
C-LF MACRO

MOV DL,0AH ;D0 A LINE FEED QNi-V
C-CHARDSP

ENDM

396 80881IBM PC Assembly Language Programming

Listing 6-2
DOSEQU.EQU

Filename: DOSEQU.EQU

MSDOS and BIOS eauate file.

Last revised: 10-24-84

(c) Gary P. Shade

THIS FILE ALSO CONTAINS MANY BIOS SYSTEM CALL FUNCTION

NUMBERS. IT SHOULD BE NOTED THAT UNLESS A "COMPATIBLE"

PC EMULATES THESE BIOS CALLS WHICH ARE PART OF THE BIOS ROM

IN THE IBM PC, PROGRAMS WRITTEN USING THESE CALLS MAY NOT BE
"COMPATIBLE" WITH OTHER COMPUTERS.

************ BIOS EQUATES FOR INT 10H - VIDEO FUNCTIONS ***

F_,MODESET EQU 0
F^CURCHG EQU 1
F^CURSET EQU 2
F CURRD EQU 3

F PENRD EQU 4

F PGSET EQU 5

F^DIRECUP EQU 6
F DIRECDWN EQU

F CHARRD EQU 8

F VDCHARl EQU 9

F^VDCHAR2 EQU 0AH
F COLORSET EQU

F^SET EQU 0CH
F^POINT EQU 0DH
F_VDCHAR3 EQU 0EH
F MODERD EQU 0FH

0BH

SETS VIDEO MODE

CHANGES CURSOR

SET CURSOR POSITION

GETS CURSOR POSITION

READS LIGHT PEN IF INSTALLED

SETS ACTIVE VIDEO PAGE

SCROLLS THE SCREEN UP

SCROLLS THE SCREEN DOWN

GET CHAR AT CURSOR

DISPLAY CHAR WITH ATTRIBUTE

DISPLAY CHARACTER W/0 ATTRIBUTE

SET GRAPHICS COLOR

SET A GRAPHICS PIXEL

GET THE COLOR OF PIXEL

OUTPUT CHARACTER AT CURSOR

READ ACTIVE VIDEO MODE

;***

;BIOS INT 14H function codes.
F_RS232 INIT EQU 00H
F^RS^INPUT EQU 01H
F^RS^OUT EQU 02H
F RS STATUS EQU 03H

Used in serial I/O

;Initiali2e serial port
;Get character from port
:Transmit function

;Read the port status
;***

;BIOS INT 17H function codes.
F^PRINTER^INIT EQU 00H
F^PRINTER^OUT^B EQU 01H
F PRINTER STATUS EQU 02H

Used in printer I/O.

;Initialize printer port
;Send a character to the printer

:Fetch status function

**

;DOS FUNCTIONS NEXT,,,,,,, INT 21H ***********************
• ***

EXTERMINATE EQU 00 :TERMINATE USER PROGRAM
FxWAITKEY EQU 01H ;WAIT FOR KEY INPUT

Appendix D 397

F CHARDSP EQU 0£H 5DISPLAY CHAR IN DL

F WAITAUX EQU 03H ;WAIT FOR CHAR FROM AUX DEVICE

F AUXGUT EQU 04H ;LIKE VALSPEAK OK? GET CHAR. FROM AUX DEVICE
F PRINTER GUT EQU 05H ;CHAR TO PRINTER

F CGN IG EQU 0&H 5KBD/DISPLAY ROUTINE
F CGN INPUT EQU 07H ;KBD INPUT

F.__CGN^INPUT2 EQU 0dH ;KBD INPUT

F _VDLINE EQU 09H ;DISPLAY LINE TO DELIMITER

;0N VIDEO DISPLAY

F„.KBDLINE EQU 0AH ;ACCEPT A LINE OF INPUT FROM THE

;KEYBOARD

F PEEK BUFFER EQU 0BH ;SEE IF CHAR IN TYPE AHEAD BUFFER

F KBD FLUSH EQU 0CH ;FLUSH TYPE AHEAD BUFFER.

f" DISK RESET EQU 0DH ;FLUSH FILE BUFFERS

F SELECT DISK EQU 0EH 5LOG ON NEW DRIVE

F OPEN EQU 0FH ;OPEN FOB
F CLOSE EQU 10H ;CLOSE FOB

F DIR SEARCH EQU IIH ;SEARCH DIRECTORY

F SEARCH NEXT EQU 1£H ;SEARCH FOR NEXT ENRTY

F DELETE FILES EQU 13H sDELETE FILE(S)

F READ SRECGRD EQU 14H ;READ SEQUENTIAL RECORD
F. WRITE SRECGRD EQU 15H ;WRITE SEQUENTIAL RECORD

F CREATE FILE EQU 16H ;CREATE/OR OPEN FILE

f' RENAME FILE EQU 17H 5 RENAME AN EXISTING FILE
p'CURRENT DISK EQU 19H -,READ THE CURRENT DRIVE CODE
p SET DTA EQU lAH ;SETS THE DTA TO SPECIFIED ADDRESS

F* GET FAT EQU IBH ;GET THE FILE ALLOCATION TABLE

F READ RRECGRD EQU £1H ;READ A RANDOM RECORD

F"write RRECGRD EQU ££H :WRITE A RANDOM RECORD

F GET FILE SIZE EQU £3H ;RETURNS THE NUMBER OF RECORDS IN A FILE

F SET REL RECORD EQU £4H ;SETS RELATIVE RECORD.

F SET INT VECTOR EQU £5H :SET'S A TYPE'S VECTOR

F^ BLOCK RREAD EQU £7H ;RANDOM BLOCK READ

F BLOCK RWRITE EQU £8H ;RANDOM BLOCK WRITE

F PARSE STRING EQU £9H ;PARSE STRING FOR FILENAME

F GET DATE EQU £AH ;READ THE CURRENT DATE

f"SET DATE EQU £BH ;SET THE DATE

F GET TIME EQU £CH ;GET THE TIME

F SET TIME EQU £DH ;SET THE TIME

f" VERIFY WRITE EQU £EH ;SET THE VERIFY FLAG (ON/OFF)
F GET DTA EQU £FH ;FETCH THE DTA

F GET VFERSIGN EQU 30H ;GET MAJOR/MINOR REV LEVEL

f'TERMINATE RESIDENT EQU 31H ;TERMINATE USER PROGRAM BUT

KEEP PROGRAM RESIDENT

F SET C CHECK EQU 33H ;SET/RESET CNTL C CHECKING

F READ VECTOR EQU 35H 5 READ INTERRUPT VECTOR

F GET FREE SPACE EQU 36H ;RETURNS THE FREE SPACE OF A DISK

F MK DIR EQU 39H ;CREATE A DIRECTORY

f" RM DIR EQU 3AH ;REMOVE A DIRECTORY

f" CH DIR EQU 3BH 5CHANGE THE CURRENT DIRECTORY

F CREATE FILE £ EQU 3CH ;CREAT£ A FILE (VER. £.0)

f" OPEN FILE £ EQU 3DH ;OPEN A FILE (VERSION £.0)

F"close FILE £ EQU 3EH sCLOSE A FILE (VERSION £.0)

F.̂ READ_FILE_,£ EQU 3FH ;READ A NUMBER OF CHARACTERS

sFROM A FILE.

F_̂ WRITE^FILE__£ EQU 40H 5WRITE A NUMBER OF BYTES TO

;A FILE

F DELETE FILE £ EQU 41H ;DELETE THE SPECIFIED FILE

F.,MOVE„POINTER EQU 4£H ;MOVE THE FILE POINTER

F CHANGE ATTRIBUTES EQU 43H CHANGE A FILE'S ATTRIBUTES

398 80881IBM PC Assembly Language Programming

Listing 6-2 continued

F DUP HftNDLE EQU ASH ;DUPLICATE A FILE'S HANDLE
F_DUP_HANDLE_2 EQU A6H 5 POINT EXISTING HANDLE TO

;NEW FILE
F CURRENT DIR EQU A7H ;GET THE CURRENT DIRECTORY PATH

F PLLOCATE MEM EQU ASH ;ALLOCATE MEMORY TO A PROGRAM
F DEALLOCATE MEM EQU A9H {DEALLOCATE (FREE) MEMORY

F NEW BLOCK SIZE EQU AAH {GROW OR SHRINK BLOCK SIZE

F LOAD EXECUTE EQU ABH {LOAD AND/OR EXECUTE A PROGRAM

F EXIT EQU ACH {TERMINATE PROCESS

F_.GET_RET_^CODE EQU ADH {GET THE RETURN CODE FROM

5FUNCTION F EXIT (ACH)
F FIND FILE EQU AEH {FIND FIRST FILE SPECIFIED

F FIND NEXT FILE EQU AFH ;FIND THE NEXT FILE AS SPECIFIED
F READ VERIFY FLAG EQU 5AH ;READ THE VERIFY FLAG
F RENAME FILEE EQU 56H ;RENAME A FILE OR PATHNAME
F^GET^SET^DT EQU 57H ;GET OR SET THE DTA

Appendix D 399

Listing 6-3
KEYDSP

PfiGb 60,

TITLE EXAMPLE KEYBOARD AND VIDEO DISPLAY PROGRAM-

.XLIST

include BzDOSEQU.equ

. LIST

IFl

INCLUDE B:MACFLE.MAC

END IF

DISPLAY A LINE, GET KEYBOARD CHOICE.

DISPLAY 4 LINES, GET KEYBOARD INPUT.

DISPLAY PROMPT-WAIT FOR INPUT-DO THE FIRST PROCESS AGAIN

USE CONTROL-C TO RETURN TO MSDOS

**

MY^STACK SEGMENT PARA STACK 'STACK'
DW 100 DUP(?)

TOP STACK EQU $

MY^STACK ENDS
• **

MY DATA SEGMENT PARA 'DATA'

KBD^BUFFER LABEL BYTE
MAX_CHARS DB 50
CHARS TYPED DB ? ;ACTUAL NUMBER TY^ED

K^BUFF DB 30 DUPC ') :INIT TO ZERO 46 BYTES
DELIMITER DB • ' ;END OF BUFFER

MESSAGEl DB 'Enter what you like anc I will dieolay it.'
DB 0AH,0DH,

MtSSAGEE DB 'Hit any key to continue',0AH,0DH,'^'
MESSAGES DB 'This is messace number 3',0AH,0Dh,'$'
MESSAGE4 DB 'This is rnessaoe number 4', 0AH, 0DH, ' $'
MESSAGES DB 'ENTER UP TO 30 CHARS. MAX. ',0AH,0DH,'$'

MY^DATA ENDS
;***

MY^CODE SEGMENT PARA 'CODE'

START PROC FAR

ASSUME CS: MY_CODE, DS: MY^DATA, SS 3 M^Y^STACK, ES: MY DA":"A
PUSH DS 2 SAVE RETURN

XOR AX, AX 3 AND 0!~FSE"f
PUSH AX

BEGIN; MOV AX,MY CODE :INITIALIZE REGISTERS

MOV AX,MY DATA

400 80881IBM PC Assembly Language Programming

Listing 6-3 continued

MOV ES, AX

MQV DS.PX

!*♦*** DEMONSTRATE MACRO USAGE. INS=.R! MACROS IM MAIN
■«*»** A LITTLE LIKE A HIGH LEVEL LANGUAGE,

cods

BEGINS:
MESSAGE! :DISP_AY '"■-!£ FIRST MESSAGE
MESSAGES :ETC.

;1<AIT FOR KEYBOARD INPUT
;Go to the next line

MESSfiGE3 ;DISPLAY l^iESS 3-5
MESSftGE4 ;DISPLAY wrgs a
MESSAGES :MESSAGE 5

KBD BLii^FER ;GET LINE FROM KBD

C-VDLIME
C-VDLINE
0WAITKEY
C-CRLF
C-VDLINE
eVDLINE
©VDLINE
C-KBDLINE
LEA BX,CHARS_TYPED

I

;Use as an offset to last char.
;entered.
;Terminate the character-^ strinc.
jDisolay the strinc.
;co to the next video line.
;Clear the keyboard buffer
:DQ IT ALL AGAIN

MOV K_BUFFCBX3,
©VDLINE K_BU-F
©CRLF
CALL CLRBUF
JMP BEGINS

START ENDP
;**
;Clear the keyboard buffer. Intitialize to soaces.
;***
CLR_BUFFER
CLRBUF: MOV

MOV
CLR^LOOP: MOV

INC

CLR BUFFER

PROC NEAR
CX, 30
DI,0000
K^BUFFCDI3,20H
DI

LOOP CLR_^LOOP
RET

ENDP

;CLEAR THE KEYBOARD BUFFER
;SET DI TO ZERO OFFSET

;BLANK BUFFER POSITION
:INCREMENT POINTER
;LOOP FOR 30 TIMES
;RETURN TO CALLER
:END OF PROCEDURE

MY CODE ENDS
END START

Appendix D 401

Listing 7-1
NUMBERSY.ASM

PAGE 60,132
TITLE PROGRAM USING MACRO CALLS

SUBTTL Numbering Systems

.XLIST

INCLUDE BsDOSEQU.EQU

.LIST

IFl

INCLUDE BrMACFLE.MAC

END IF

Created 08-06-84

By; Gary A. Shade
<c) 1984 All Rights Reserved

Last Updated: 09-23-84

This program will convert numbers entered from the keyboard
to other number bases. MACFLE.ASM file,
and the DOS equate file are used in this file.
The numbers entered may either be decimal, binary, or hexadecimal
numbers. You must enter all digits for each number base to be converted.
Failure to do so will result in erroneous results.

For example: to convert a decimal number, you must enter
5 digits between 0 and 9. The maximum value you can
enter is 65536, and the minimum is 0. Negative numbers are not
allowed.

HEXADECIMAL numbers must be a number (0-9) or a letter (A-F) only.
The hex entry must be 4 digits in length. Example: F07F.

BINARY values must be 16 digits in length and consist of either a
'1' or a '0* (Enter only 1 or 0). No spaces between bits.
16 bit Example: 0100011100110101

8 bit Example: 0000000010010101

(You must enter 8 leading for 8 bit binary numbers)

All keyboard entries must terminate with a carriage return.

MY^DATA SEGMENT PARA 'DATA'
KBD_^BUFFER LABEL BYTE
MAX_CHARS DB 32 ;MAXIMUM ALLOWED
CHARS_.TYPED DB ? ; NUMBER OF CHARS TYPED

402 8088!IBM PC Assembly Language Programming

Listing 7-1 continued

K^BUFF DB 3£ DUPC ') ; KEYBOARD BUFFER

DELIMITER DB '$' ;STRING TERMINATOR

MESSAGE^0 DB '1) Convert decimal to binary &• hex. '
DB

MESSAGE_01 DB '£) Convert binary to decimal & hex. '
DB '$'

MESSAGE^0£ DB '3) Convert hexadecimal to binary and decimal. '
DB

MESSAGE_1 DB 'Enter the decimal value you want to converts '
DB

MESSAGE_^£ DB 'Enter the binary value you want to converts '
DB

MESSAGE_,3 DB 'Enter the hexadecimal value you want to convert:
DB

MESSAGE^4 DB 'Enter '

DB

MESSAGE_.5 DB 'dioits: '

DB

MESSAGE^6 DB 'Binary '
DB

MESSAGE__7 DB 'Dec i ma1 '

DB

MESSAGE^a DB 'Hexadecimal '

DB

MESSAGE^S DB 'Do another conversion? (Y/N) s '

DB

HEXADECIMAL DW £ DUP (?)

DB '$'

BINARY DW 9

BINARY^ASCII DB 16 DUP(£0H)

DB '$'

DECIMAL DB 5 DUP(?)

DB

DECIMftL^POWERS DW
HEXftDECIMftL POWERS DW

MY DATA ENDS

10000, 1000, 100, 10, 1
4096,256, 16, 1

;*************** DEFINE STACK AREA ********************
MV^STACK SEGMENT PARA STACK 'STACK'

DW 100 DUP(?)

TOP OF STACK EQU %

my^tack ends
;**

*********** MAIN PROGRAM STARTS HERE *****************

Convert a base 16 (hex), or a base £ (binary), or a
base 10 (decimal) number to the other number bases.

There are four routines which will convert value fv^om one base

to another.

BINARY^HEXADECIMAL
BINARY^DECIMAL

DECIMAL BINARY

HEX^BIN^DEC

**

Appendix D 403

5 Program specific equates-
ONE ' EQU 31H
FOUR EQU 34H

FIVE EQU 35H

SIX EQU 36H

SPPCE EQU £0H
**

ft macro definition which is used to disolay multiole rnessapes-
It is used here in this program and is not part of the l*!PC
file on disk-

@DISP_PRGMPTS MftCRO
0VDLINE MESBl

0LFCR

eVDLINE MESS2

MOV DL,NUMBER
C-CHfiRDSP

MOV DL,NUMBER_£
0CHARDSP

MOV DL,£0H
0CHARDSP

0VDLINE MESS3

0LFCR

0LFCR

ENDM

MESSl, MESS2, MESS3, NUMBER, NUMBER^E*
sDISPLfiY PROMPT

;CPRRIPGE RETURN LINEFED
sDISPLPY MftX DIGIT MESSPGE

;MPXIMUM CHPRftCTERS TO
;DISPLPY IN DL

;DISPLfiY 2ND NUMBER I~ PNY.

;SPftCE CHPRACTER

;DISPLAY MESSAGE

;CR, LF

Start of code segment

MY_CODE SEGMENT PARA 'CODE'
START PROC FAR

ASSUME CS: MY_CODE, DS: MY_^DATA, SS: MY_STACK, ES: MY^DATA

INIT:

PUSH DX ;SAVE DOS RETURN

XOR AX, AX :SAVE AN OFFSET OF ZERO

PUSH AX

MOV AX, MY DATA ;INITIALIZE DS AND ES

MOV DS, AX
MOV ES, AX

START^HERE:
MOV

START^HEREl:
0LFCR

LOOP

MENU:

CX,24 ;CLEAR SCREEN USING CARRIAGE RETURNS

;CARRIAGE RETURN LINE FEED ROUTINE
START HEREl

00VDLINE MESSAGE

0LFCR

0VDLINE MESSAGE^©1
0LFCR

0VDLINE MESSAGE_02
0LFCR

RESPONSE:

0WAITKEY ;WHICH
PUSH AX

©LFCR

POP AX

AND AL,0FH

;D0 UNTIL CX= 0

DISPLAY MAIN MENU

GO TO NEXT LINE.

NEXT MESSAGE

;LAST LINE OF MENU.

FUNCTION IS DESIRED?

SAVE AX AND DO LF~CR

NEXT LINE

RESTORE VALUE

MASK BYTE

404 8088!IBM PC Assembly Language Programming

Listing 7-1 continued

MENUl!

START

DEC AL CONVERT DEC TO OTHER?

JZ DEC BIN HEXl IF SO THEN GO CONVERT

DEC AL IF THE NUMBER WAS £ THEN

JZ BIN DEC HEXl GO THE OTHER WAY

DEC AL IF NOT 3 THEN RESTART

JNE START HERE

CALL
o.

GET HEX OTHERWISE, DO A HEX CONVERSION
c.:

CALL FLUSH.,BUFFERS ;ZERO ALL BUFFERS
CALL ANOTHER ONE ;D0 ANOTHER CONVERSIO?

JC MENUl sIF CARRY SET THEN YES

RET ;ELSE END

JMP MENU ;THIS IS AN ISLAND wTUMP

;T0 REACH THE MENU ROUTINE.
HEXl:

CALL BIN DEC HEX ;D0 BINARY CONVERSIONS

JMP DONE.,IT.,£ ;COMMON RETURN POINT

HEXl:

CALL DEC BIN HEX :DECIMAL CONVERSIONS

JMP DONE...IT.^£ ;ALL DONE
ENDP ;END OF MAIN PROCEDURE

This routine will get Hexadecimal digits from the keyboard and
convert them to decimal and binary.
Reauires orocedures: HEX^BIN^DEC, BINARY_,DECIMAL, AND

DISP^ASCII^BINARY

NEAR

HEX BIN DEC

DISP ASCII BINARY

GET^HEX PROC
CALL

DSP ASC^BIN:
CALL

©LFCR

CALL BINARY__DECIMAL
@VDLINE DECIMAL

MOV DL,£0H
eCHARDSP

C-VDLINE MESSAGE_7
RET

GET HEX ENDP

;GET HEX DIGITS

;DISPLAY ASCII STRING

;CONVERT TO DECIMAL

;DISPALAY STRING
;SPACE
sDISPLAY CHAR IN DL

DECIMAL'

;RETURN TO CALLER
;END OF PROCEDURE

;****** Convert decimal to binary and hexadecimal. **************
;This is the entire routine to fetch the keyboard entry of a
;decimal number (5 digits), and convert that number to binary,
;ASCI I-Binary, and ASCII-Hex, and to display the conversions
;on the screen. The procedures which actually perform
;the conversions are called from this section of code.

DEC BIN^HEX PROC NEAR
MOV MAX_CHARS,6 ;ACCEPT 5 CHARACTERS
@DISP_PROMPTS MESSAGE,. 1, MESSAGE^A, MESSAGE._5, FIVE, SPACE
0KBDLINE KBD.,BUFFER ;GET THE STRING FROM KBD.
@LFCR ;D0 NEW LINE

Appendix D 405

D B H 1:

D B H £:

LEft

LEA

MOV

CLD

REP

CALL

CALL

D B H 3:

SI,K BUFF
DI,DECIMAL
CX,05H

MOVSB

DECIMAL^BINARY
BINARY HEXADECIMAL

C-VDLINE HEXADECIMAL

MOV DL,20H
C-CHARDSP

eVDLINE MESSAGE^e
@LFCR

CALL DISP ASCII BINARY

RET

DEC BIN HEX ENDP

;MOVE INPUT FROM KEYBD BUFFER
;T0 DECIMAL STRING BUFFER
5 MOVE 5 CHARACTERS
5CLEAR DIRECTION FLAG

5AUTO INCREMENT POINTERS
;MOVE THE STRING

;CONVERT DECIMAL TO BINARY
?CONVERT BINARY TO HEX

;DISPLAY HEXADECIMAL
;DISPLAY A SPACE
;DISPLAY CHAR. IN DL.
;DISPLAY 'HEX'
;CARRIAGE RETURN LINEFEED
;DISPLAY ASCII BINARY STRING

;ALL DONE RETURN TO CALLER
;END OF PROCEDURE

***** Binary to decimal and hexadecimal routine. ******************
Convert an ASCII-binary entry from the keyboard into ASCII-Decimal,
and ASCII-HEX for display.

BIN_DEC_HEX PROC NEAR
MOV MAX^CHARS,17 ;MUST ENTER 16 CHARACTERS
C-DISP_PROMPTS MESSAGE^a, MESSAGE_4, MESSAGE 5, ONE, SIX
C-KBDLINE KBD BUFFER

@LFCR

LEA SI,K^BUFF
LEA DI,BINARY_ASCII
MOV CX,16
CLD

REP MOVSB

CALL ASCII^BIN_.CONV

CALL BINARY^HEXADECIMAL
©VDLINE HEXADECIMAL

MOV DL,£0H
eCHARDSP

C-VDLINE MESSAGE^e
@LFCR

CALL BINARY^DECIMAL
C-VDLINE DECIMAL

MOV DL,20H
0CHARDSP

©VDLINE MESSAGE^?
@LFCR

RET

BIN DEC HEX ENDP

GET INPUT

GO DOWN TO NEXT LINE

MOVE STRING TO ASCII BUFFER

DO IT 16 TIMES

Clear df, auto increment
MOVE BYTE STRING

CONVERT ASCII BINARY TO

BINARY

CONVERT TO ASCII HEX

DISPLAY HEX STRING

SPACE CHARACTER

DISPLAY CHAR IN DL

'HEXADECIMAL'

NEW LINE

CONVERT BINARY TO DEC. STRING

DISPLAY STRING

ASCII SPACE

DISPLAY IT

'DECIMAL'

NEWLINE

************** Convert hexadecimal number to decimal and binary.

1) A 4 digit hexadecimal number is entered from the keyboard.
2) Because the number is in ASCII, set the high order nibble of

each number to zero, and multiply by the base 16 power that
the number occupies, and accumulate the products of the 4 digits.
The number will have been converted to binary.

3) To display the number, test each bit position (shift into carry).

406 8088!IBM PC Assembly Language Programming

Listing 7-1 continued

if it is a zero then display a 30H (ftSCII zero) followed by a space.
If the bit value is M', then display 31H (ASCII one) followed by a
space.

4) The number which is in binary format, can then converted to
decimal as follows:

A) Divide the binary number by the highest decimal digit's power.
B) Use the Logical 'OR' function to convert the BCD (0-9) value

obtained from the division, to an ASCII digit. Store the
result.

C) Repeat the operation for the remaining powers of ten (1000, 100,
10, and 1).

D) Display the decimal string.

HEX_BIN__DEC PROC NEAR
MOV MAX CHARS 5

C-DISP_PROMPfs MESSAGE_3, MESSAGE^A, MESSAGE^S, FOUR, SPACE
©KBDLINE

C-LFCR

LEA S

KBD BUFFER

LEA

MOV

CLD

REP

XOR

MOV

XOR

MOV

MULT HEX:

MOV

CMP

JL

SUB

ASC NUMERAL:

I,K_BUFF
DI,HEXADECIMAL
CX,4

MOVSB

BX,BX
BINARY,BX
SI,SI
CX,4

POINT TO KEYBOARD BUFFER

DO A LINEFEED, CARRIAGE RET.
GET INPUT

AND MOVE IT

5CLEAR DF, AUTO INCREMENT
;MOVE STRING TO BUFFER
;CLEAR BASE REGISTER
;CLEAR RAM ACCUMULATOR
;POINT TO 1ST ENTRY
;LOOP FOR 4 DIGITS

AL,BYTE PTR HEXADECIMALCBX3
AL,41H

ASC^NUMERAL
AL,7

;GET VALUE
IF >= 41H THEN IT IS

AN ASCIT A-F

IF NOT, THEN IT'S A NUMBER
OTHERWISE SUB 7 ADJUST FOR

ASCII

AND AL,0FH ;MASK HIGH ORDER NIBBLE
XOR AH, AH ;ZERO HIGH ORDER NIBBLE
MUL HEXADECIMAL POWERSCSI3 ;MULTIPLY VALUES (UNSIGNED)
ADD BINARY,AX ;IGNORE HIGH ORDER RESULT
INC SI 5 POINT TO NEXT POWER
INC SI :(WORD VALUE)
INC BX ;POINT TO NEXT HEX DIGIT
LOOP MULT_.HEX ;MULTIPLY ALL POSITIONS
RET ;OTHERWISE QUIT.
DEC ENDP

;zeros and then the byte value.

ASCII^BIN^CONV
XOR

MOV

XOR

MOV

PROC

AX, AX
BINARY,AX
SI,SI
CX, 16

NEAR

;ZERO RAM LOCATION BINARY.

;CLEAR INDEX REGISTER
;NUMBER OF ITERATIONS.

NEXT_.BYTE:
MOV

AND

JZ

STC

AL, BINARY^ASCI I CSn
AL,0FH
CLEAR CARRY

;WORK ASCII MSB TO LSB
;MASK HIGH ORDER NIBBLE

:IF ZERO THEN CLEAR THE CARRY

;OTHERWISE SET THE CARRY

Appendix D 407

EXEC^LOOP:
RCL

INC

LOOP

RET

BINftRY,1

SI

NEXT BYTE

;ROTftTE CPRRY BIT LSB TO MSB.
;LOCftTION 'RPM^

;INCREMENT POINTER
;D0 ALL 16 BITS
;RETURN WHEN ALL DIGITS DONE

CLEAR CARRY:

CLC

JMP EXEC LOOP

;CLEAR FLAG
;CONTINUE TILL DONE

ASCII BIN CONV ENDP

.***

;This conversion routine will convert a 5 digit decimal string *
;at RAM location 'DECIMAL' to a binary word. *
;The converted binary word will be stored at RAM location 'BINARY'.*
.***

DECIMAL BINARY PROC NEAR
XOR

MOV

XOR

MOV

SI,SI
BINARY,SI
DI,DI
CX,05H

ZERO SI REGISTER

ZERO RAM LOCATION

POINT TO TABLE

DO IT FOR 5 DIGITS

CONV^BIN;
MOV

AND

MUL

ADD

INC

INC

INC

LOOP

RET

DECIMAL BINARY ENDP

AL,DECIMALCSn
AX,000FH
DECIMAL_P0WERSCDI3
BINARY,AX
SI

DI

DI

CONV BIN

GET 1ST DIGIT

MASK TO BCD

MULTIPLY BY POWER

ADD TO ACCUMULATOR

POINT TO NEXT DECIMAL DIGIT

POINT TO NEXT POWER

;LOOP FOR ALL DIGITS
;ALL DONE

**

THIS PROCEDURE WILL CONVERT THE BINARY VALUE *
IN RAM LOCATION 'BINARY' TO A 5 DIGIT DECIMAL STRING. *
THE ASCII DECIMAL STRING WILL BE STORED AT RAM LOCATION 'DECIMAL'- *

CONVERT THE BINARY VALUE TO ASCII BINARY FOR
DISPLAY.

DISP_ASCII_BINARY PROC

MOV

MOV

MOV

AX, BINARY
DI, 16
CX, DI

NEAR

;GET VALUE TO DISPLAY
;POINT TO LAST LOCATION
;NUMBER OF BITS TO ROTATE

FETCH^BIN_BIT:
ROR

JC

MOV

JMP

A^ONE_BIT:
MOV

AX, 1 5 ROTATE LSB n IN CARRY
A^ONE^BIT ;IF CARRY = 1 THEN A '1' BIT
BINARY_.ASCII CDI~13,'0' :STORE ASCII ZERO
LOOPING ;D0 NEXT LOCATION AND BIT

BINARY^ASCIICDI-n,' 1' ?SAVE AN ASCII ONE

408 8088!IBM PC Assembly Language Programming

Listing 7-1 continued

LOOPING:

DEC DI

LOOP FETCH_BIN^BIT

DSP^ftSC^BIN^VPL:
MOV CX,16
XOR DI,DI

DSP__NEXT^CHfiR:
MOV DL,BINARY^fiSCIICDIl
C-CHPRDSP

MOV DL, am
©CHRRDSP

INC DI

LOOP DSP^NEXT^CHPR
C-VDLINE MESSAGE_6
C-LFCR
RET

DISP PSCII BINARY ENDP

;POINT TO NEXT LOCATION
;D0 FOR ALL 16 BITS

;DISPLAY 16 BYTES

;ZERO POINTER

;GET BYTE TO DISPLAY
^DISPLAY IT.

;DISPLAY SPACE

5DISPLAY CHAR. IN DL

INCREMENT POINTER TO NEXT CHAR.

;LOOP TILL ALL CHARS. DISPLAYED
:DISPLAY WORD 'BINARY'

;DO CARRIAGE RETURN LINE FEED.

*********** ASCII BINARY to BINARY CONVERSION ******************

This procedure will convert an 16 bit ASCII-Binary number
into it's true binary equivalent. The 16 byte ASCII buffer,
BINARY_ASCII (In RAM), is assurnmed to hold the ASCII value as entered
from the keyboard-
The routine will mask the ASCII character and test B® for a '1' or '0'

For example if the ASCII byte is 31H (for a binary 1), then
the byte is anded with 0FH, leaving a result of 01H. Thus B0 will
contain either a '1' (if the value was 31H) or a ' 0'

(if the value was 30H). The carry is then set for a ' 1' or cleared
for a '0', and the carry bit rotated into the LSB of the RAM
location BINARY. This is done for all 16 bit positions of the word.

Data entered must be for 16 bits and not less than 16 bits. If
it is desired to enter a binary byte value, enter 8 leading
**

BINARY^DECIMAL PRQC NEAR
BIN DEC:

^ XOR

MOV

DEC_CLEAR:
MOV

INC

LOOP

MOV

XOR

MOV

MOV

MAIN^CONV:
XOR

DIV

OR

MOV

INC

INC

INC

SI,SI
CX,05H

DECIMALCSI1,'
SI

DEC__CLEAR
CX,04H
SI,SI
DI,SI
AX, BINARY

DX,DX

DECIMAL POWERSCSII

AL,30H
DECIMALCDI3,AL
SI

SI

DI

;CLEAR OTHER POINTER
;5 BYTES IN LOOP

;STORE ASCII SPACE
;NEXT LOCATION TO CLEAR
;CLEAR 5 LOCATIONS
;4 DIGITS IN LOOP
;CLEAR POINTER
;T0 POWER TABLE AND STORAGECDI3

;GET BINARY VALUE TO CONVERT

5Dx must be clear prior to
;DIV INSTRUCTION

;DIVIDE AX BY TABLE ENTRY
;CONVERT TO ASCII
;STORE RESULT
;INCREMENT TABLE POINTER

■,T0 NEXT DECIMAL VALUE
;POINT TO NEXT STORAGE LOCATION

Appendix D 409

XCHG

LOOP

OR

MOV

RET

BINPRY DECIMAL ENDP

AX,DX
MAIN CONV

AL,30H
DECIMALCDI3,AL

;GET REMAINDER FROM DX
;D0 ALL 4 MAJOR DIGITS
5STORE LAST DIGIT
;SAVE RESULT
;DONE WITH CONVERSION

;**

;This procedure will convert a binary value to a hexadecimal *
;string. *

; *
;The binary value is stored in RAM at 'BINARY', and the *
;ASCII-hex string will be stored at 'HEXADECIMAL' *

BINARY.HEXADECIMAL PROC NEAR
CLR HEX s

"mOV CX,0£ ;CLEAR FOUR BYTES
XOR SI,SI ;RESET POINTER

CLR HEX^i:
MOV

INC

LOOP

HEXADECIMALCSI3,00H ;STORE NULL BYTE
SI ;POINT TO NEXT BYTE
CLR^HEX_1 ;CLEAR ALL LOCATIONS

BIN^HEX^l:
;*** Convert the high order byte of the word, high order nibble
;*** followed by the low order nibble.

XOR SI,SI ;ZERO INDEX REGISTER
MOV AX,BINARY ;GET VALUE TO CONVERT
PUSH AX ;SAVE IT ON STACK

AND AH,0F0H ;MASK LOW ORDER NIBBLE

MOV CL,04H ;NUMBER OF BITS TO SHIFT
SHR AH, CL ;SHIFT RIGHT 4 POSITIONS
MOV BYTE PTR HEXADECIMALCSI3,AH ;SAVE MASKED VALUE
POP AX ;RETRIVE BINARY VALUE

PUSH AX ;SAVE IT AGAIN

AND AH,0FH •,MASK HIGH ORDER NIBBLE
INC SI

MOV BYTE PTR HEXADECIMALCSI3,AH ;SAVE MASKED VALUE
Now do the same for the low order byte.
HEX 2:

POP AX

PUSH AX

AND AL,0F0H ;MASK LOW ORDER NIBBLE

MOV CL,04H ;4 BITS TO SHIFT
SHR AL,CL ;SHIFT 4 BITS

INC SI ;POINT TO NEXT PLACE TO SAVE
;HEX CHARACTER

MOV BYTE PTR HEXADECIMALCSI3,AL ;SAVE MASKED VALUE
POP AX ;LAST NIBBLE TO DO

AND AL,0FH ;MASK H.O. NIBBLE
INC SI

MOV BYTE PTR HEXADECIMALCSI3,AL

MOV CX,04 5NUMBER OF HEX DIGITS
XOR SI,SI ;ZERO INDEX REGISTER

• ONE:

MOV AL,BYTE PTR HEXADECIMALCSI3 ;GET PSEUDO HEX BYTE
CMP AL,0AH ;IS IT > OR = 0AH?
JGE ADD37 5 IF IT IS ADD 37 TO BYTE

410 80881IBM PC Assembly Language Programming

ADD37:

ADD

;CONVERT BYTE TO ASCII

Listing 7-1 continued

OR BYTE PTR HEXADECIMALCSI3,30H
INC SI

JMP NEXT^DIGIT ;D0 TILL ALL 4 BYTES ARE
;CONVERTED.

AL,37H

MOV

INC

NEXT^DIGIT:
LOOP NEXT_.ONE
RET

BINARY HEXADECIMAL ENDP

;ADD 37 TO VALUE TO
;CONVERT IT TO ASCII

BYTE PTR HEXADECIMALCSI3,AL ;SAVE IT
SI ;INCREMENT POINTER

;CONTINUE FOR ALL DIGITS

;***

;Procedure to flush the DECIMAL, HEXADECIMAL, BINARY and
;BINARY_.ASCII buffers.
**

FLUSH__BUFFERS PROC NEAR
BIN^FLUSHs

XOR AX,AX
MOV BINARY,AX

5 ZERO AX
;BINARY STORAGE IS CLEARED

ASCII BIN FLUSH:

A B F:

MOV

XOR

MOV

INC

LOOP

HEX^FLUSH:
MOV

MOV

DEC^FLUSH:
MOV

XOR

D__F:
MOV

INC

LOOP

CX, 16

SI, SI

BINARY^ASCII,AH
SI

A B F

;CLEAR 16 BYTES

5 ZERO POINTER

;STORE A ZERO

INCREMENT POINTER

;CLEAR ALL BYTES

HEXADECIMAL,AX ;STORE ZERO WORD
HEXADECIMALC23,AX ;AND AGAIN

CX,5
SI,SI

DECIMALCSI3,AH
SI

D F

;CLEAR 5 DIGITS

;ZERO POINTER

;STORE A ZERO BYTE
;INCREMENT POINTER

5CLEAR ALL FIVE BYTES

K^BUFF^FLUSH:
MOV

MOV

XOR

K^B^F:
MOV

INC
LOOP

RET

FLUSH BUFFERS

CX, 32
AH,20H
SI,SI

K^^BUFF, AH

SI
K^B^F

ENDP

;CLEAR 32 BYTES
;ASCII SPACE

-,CLEAR POINTER

5STORE BYTE

5 INCREMENT POINTER
•CLEAR ALL BYTES IN BUFFER

;Procedure to ask user if they want another conversion to take olace.
5On return, the carry flag will be set if the user wants to do another

Appendix D 411

;conversiori. If 'NO', then the carry is reset.
.**

ANOTHER ONE PROC NEPR
C-LFCR •,NEW LINE FUNCTION
eVDLINE MESSftGE^9 ;DISPLPY PROMPT
eWftlTKEY ;WflIT FOR INPUT
CMP PL,'Y' ,-IS IT YES?
JZ SET_CF 5 IF IT IS THEN SET CPRRY
CMP PL,'y'
JZ SET_CF

;PNY OTHER KEY ENTRY WILL CPUSE THE PROGRPM TO END.

©LFCR

CLC

RET

SET CFs

C-LFCR

STC

RET

PNOTHER ONE

NEW LINE FUNCTION

CLEPR THE CPRRY FLPG

PND RETURN

-,00 NEW LINE
?SET CPRRY FLPG

ENDP

MY^CODE ENDS
END STPRT

412 80881IBM PC Assembly Language Programming

Listing 8-1
NEW TYPE.ASM

PAGE 60,132
TITLE NEW^TYPE.ASM
SUBTTL SEQUENTIAL READ EXAMPLE

.XLIST

INCLUDE B:DOSEQU.EQU
.LIST

IFl

INCLUDE B:MACFLE.MAC
END IF

;Sequential Read Example.
5By: Gary A. Shade
;Date: 07-10-84
;Last Updated: 08-21-84
;(c) All rights reserved.
jThis program will sequentially read a text file from disk.
The program is similar to the TYPE command available at the
user level to MSDOS. The program sets up the DTA and prompts
the user for a drive and filename spec. This program will
work with either MSDOS 1.x or 2.0.

The program terminates when an end of file character is encountered
(HEX lAH).

;**

;Define the data segement.

MY DATA SEGMENT PARA

KEYBOARD LABEL

MAX CHARS DB

CHARS.TYPED DB

K.BUFF DB

DISK^BUFFER DB
DB

FCB 1 LABEL

DRIVE^NUMBER DB

FILE NAME DB

'DATA'

BYTE

9

20 DUP<20H)

512 DUP<0)

BYTE

8 DUP<0)

;Maximum characters
5for keyboard line input
;funct ion.
;Actual number of characters
;typed by user-
;20 byte buffer

;Disk transfer area.
;Terminate for display function
;Disk FCB definition
50 = default drive
51 = A
;2 = B
;Filename spec.

Appendix D 413

EXTENSION DB 3 DUP<0) ;Extension for filename
;(i.e. .ASM)

BLOCK NUMBER DUI 0 ;Current block number

RECORD SIZE DN 0 ;Logical record size

FILE.SIZE DM 2 DUP(0) ;Double word for size of
5file in bytes.

FILE.DATE DN 0 ;Date of last access.

RESERVED DT 0 ;Ten reserved bytes for DOS

RECORD NUMBER DB 0 ;Current record number

RANDOM^NUMBER DUI 2 DUP<0) ;4 byte random record number

MESSAGE1 DB 'Enter the drive and filename '
DB

MESSAGE2 DB 'Invalid filename, please reenter. '
DB

MESSAGES DB 'ERROR! Operation aborted.'
DB

MESSAGE4 DB 'Sequential read complete.'
DB

MESSAGES DB 'File not found.'

DB

MY DflTfi ENDS
.***

;Define stack area-

STftCK 'STfiCK'

;64 words of stack.
MY^STACK SEGMENT PARA

DW 3S DUP<0)

MY STACK ENDS

Define the program.

MY CODE SEGMENT PARA
START PROC FAR

ASSUME

START 1:

'CODE'

CS:MY^CODE,DS:MY^DATA, ES:MY^DATA,SS:MY^STACK

START a I

PUSH DS

XOR AX, AX
PUSH AX

MOV AX,MY DATA
MOV DS, AX
MOV ES, AX

©SCROLL 06,00, 18H,'
©VDLINE MESSAGE1

©CRLF

;Save segment of PSP
;Zero offset to stack

5 Initialize DS and ES

MOV MAX^CHARS,15

GET NAME:

©KBDLINE KEYBOARD

ePARSE.STRING K^BUFF,FCB^l,03H

CALL

JC

OPEN_FILE
START 2

SET UP:

eSET^DTA DISK_BUFFER

Clear the screen

Ask for the filename

Go to the next line.

15 Characters maximum

as in B:TESTFILE.TXT<CR>

Get line from keyboard.

Parse the filename

and place it in the FCB
Go open the file
If the carry is set then
TRY AGAIN! File not found.

Set the Disk transfer address

414 80881IBM PC Assembly Language Programming

Listing 8-1 continued

MOV

MOV

MOV

READ^RECGRD:
@REftD SRECORD FOB 1

RECGRD_.NUMBER, 0
BLGCK^NUMBER, 0
RECORD SIZE,512

;lst record
;lst block
;Record size equal to 512 bytes

; Seq uent i a 1 read f urct i ori
;using the FCB defined
;in the data segrnent-

CMP PL,00H ;If zero then OK.
JZ CONTINUE

REPD ERROR:

DEC PL 5 If PL = 1 then EOF encountered
;no data in record.

JZ EOF FOUND

DEC PL 5 If PL = 2 then no room in the
;DTP

JZ DISK ERROR

DEC PL ;If PL = 3 then EOF encountered
;part i a1 record read.

JNZ DISK^ERROR ;If not 03 then unrecoverable
;disk error occurred.

XGR DI,DI ;Zero the index register
DSP PPRTIPL:

MOV DL,DISK BUFFERCDIl ;Get the character from buffer
CMP DL,IPH ;EOF character?
JZ EOF FOUND ;exit if so.
©CHPRDSP ;Display the character.
INC DI ;Point to the next character.
JMP SHORT DSP^PPRTIPL ;Cont inue.

CONTINUE:

0VDLINE DISK_.BUFFER ;DisDlay the record.
C-CRLF

JMP REPD^RECORD •Go read the next record.

EOF FOUND:

eVDLINE MESSPGEA ;Display end of program message.
eCRLF

JMP SHORT EXIT 5 DONE
DISK ERROR:

C-VDLINE MESSPGE3 ;Display error message
C-CRLF

EXIT:

eCLOSE 1FCB^l ;Close the file.
RET

STPRT ENDP 5End of this procedure

;**

5 Procedure to open a file specified in the FCB-

OPEN FILE

@GPEN

CMP

JZ

PROC NEAR

FCB^l
PL,00H
RESET CPRRY

;Gpen the file
;If zero then open was success

eVDLINE MESSPGE2

0CRLF

XGR DI,DI
MOV CX, 15

ful
;Reset the carry to indicate to
5calling procedure the oDeration
;worked.
5 Reenter f i lenarne.

;Clear the keyboard buffer.
;Clear the keyboard buffer

Appendix D 415

CLR:

MOV K_BUFFCDI3,20H
INC DI

LOOP CLR

C-CLOSE FCB^l
STC

JMP SHORT

o
1

UJ
z
o
Q

RESET CPRRY:
CLC

DONE 0 F:
RET

5 Point to th^ next byte.
;Continue till CX = 0
jClose the file
;Set the carry to indicate error

5Clear the carry

;Pnd return.

OPEN FILE ENDP
.***

MY^CODE ENDS
END STPRT

4l6 8088!IBM PC Assembly Language Programming

Listing 8-2
NEW COPY.ASM

PAGE 60,132
TITLE NEUI_CdPY. PSM
SUBTTL SEQUENTIAL READ/WRITE EXAMPLE

.XLIST

INCLUDE BrDOSEQU. EQU
.LIST

IFl

INCLUDE B:MACFLE.MAC
END IF

;*********************************#**************************

{Sequential Read/Uirite Example.
{By: Gary A. Shade
{Date: 07-10-84
{Last Updated: 08-21-84
(c) All rights reserved.

This program will copy the contents of one file to another.
The user is prompted for the source filename, and then for the
dest i nat i on f i1ehame.

{If the destination file already exists, the file length is set
{to zero, effectively erasing the previous contents of the file.
{If the source filename is not found, the program will terminate-
;
This function is similar to the copy command used in MSDOS.
It serves to illustrate the sequential read and write functions
available under MSDOS.

The macros used in this file can be found in the MACFLE.MAC

file. MACFLE.MAC expects that the DOSEQU.EQU file is present
in the assembly.

**

Define the data segement.

MY^DATA SEGMENT PARA
KEYBOARD

MAX CHARS

CHARS^TYPED

K^BUFF

DISK BUFFER

LABEL

DB

DB

DB

DB

'DATA'

BYTE
9

32 DUP<?)

0

{Maximum characters
{for keyboard line input
{funct ion.
{Actual number of characters
{typed by user.
{32 byte buffer

{Source and dest i nat i on

Appendix D 417

;disk transfer area.

FCB 1 LftBEL B>

DRIVE^NUMBER DB 0

FILE^NftME DB a

EXTENSION DB 3

BLOCK NUMBER DW 0

RECORD SIZE DW 0

FILE^SIZE DW £

FILE DftTE DW '0

RESERVED DT 0

RECORD NUMBER DB 0

RftNDOM_.NUMBER DW £

FCB £ LftBEL BYTE

DRIVE^NUMBER^D DB 0

FILE NftME D DB a

EXTENSION^D DB 3

BLOCK NUMBER D DW 0

RECORD SIZE D DW 0

FILE^SIZE_D DW £

FILE DftTE D DW 0

RESERVED D DT 0

RECORD NUMBER D DB 0

RftNDOM__NUMBER_D DW £

MESSftGEl DB 'i

DB

MESSftGEl^l DB '1

DB

MESSftGE£ DB t

DB 1

MESSftGES DB '1

DB

MESSftGE4 DB ' 1

DB 1

MESSftGES DB 'i

DB

MESSftGEG DB

DB

MESSftGE? DB »

DB 1

MESSftGES DB

DB

MESSftGES DB

DB

MESSftGE10 DB »

DB

DB 1

BYTE COUNT DB 0

MY DftTft ENDS

E

Disk FCB definition

0 = default drive

1 = ft

£ = B

Filename spec.

Extension for filename

(i.e. .ftSM)

Current block number

Logical record size

2 DUP(0) ;Double word for size of
file in bytes.
Date of last access.

Ten reserved bytes for DOS
Current record number

4 byte random record number

Dest i nat i on FCB

0 = default drive

1 = ft

£ = B

Fi1ename spec.

Extension for filename

(i.e. .ftSM)

Current block number

Logical record size

£ DUP(0) ;Double word for size of
file in bytes.
Date of last access.

Ten reserved bytes for DOS
Current record number

4 byte random record number

nter the source drive and filename '

Enter the destination drive and filename '

Invalid filename, please v^eenter. V

ERROR! Operation aborted.'

File copy complete.'

File not found.'

New File!'

$'

Existing File Over Written. '

Copy has started . . '
$'

Disk full, operation aborted!'
$'

Not enough room in DTft to write 1 record. '
Operation aborted.'

I ;Used as a byte counter during disk writes.

418 8088!IBM PC Assembly Language Programming

Listing 8-2 continued

;Define stdck area.

STPCK 'STACK'

;64 words of stack.
MY^STACK SEGMENT PARA

Dkl 38 DUP<0)

MY^STACK ENDS

Define the program.

MY CODE SEGMENT PARA 'CODE'

START PROC FAR

ASSUME CS:MY CODE, DSsMY^^DATA, ES:MY DATA, SS: MY^STACK

START li

PUSH DS ;Save segment of PSP
XOR AX, AX ;Zero offset to stack
PUSH AX

MOV AX,MY DATA ;Initialize DS and ES
MOV DS^ AX
MOV ES, AX

START 8:

©SCROLL 06,00, ieH,4FH, 00,00,07
©CURSET 0,0,0
©VDLINE MESSAGE1

©CRLF

MOV MAX^CHARS,15

GET NAME:

©KBDLINE KEYBOARD

©CRLF

©PARSE^STRING K^BUFF,FCB^l,03H

CALL

JNC

OPEN FILE
SET UP

SET UP:

©VDLINE MESSAGE4

©CRLF

JMP SHORT START^S

©SET DTA DISK BUFFER

MOV RECORD NUMBER,©
MOV BLOCK NUMBER,0
MOV RECORD SIZE,1

GET DESTINATION:

CALL GET^SECOND
©VDLINE MESSAGES

©CRLF

READ^RECORD:
©READ SRECORD FCB 1

CMP

JZ

READ^ERROR:

CMP

AL,00H
CONTINUE

AL,01H

;Clear the screen
;Set the cursor.
5Ask for the source filename
;Go to the next line.
;15 Characters maximum
;as in B:TESTFILE.TXT<CR>

;Get line from keyboard.

Parse the filename

and place it in the FCB
Go open the file
If the carry is set then
TRY AGAIN! File not found.

Display error message

;Try again.

5Set the Disk transfer address
;for the destination drive
;1st record
;lst block
;Record size equal to 1 byte

5Get the second drive spec.
;Display copy started message

;Sequential read function
5using the FCB defined
;in the data segment.
;If zero then OK.

5 If AL = 1 then EOF encountered
;no data in record.

Appendix D 419

ERR 3:

JE

JMP

EOF^FOUND

DISK ERROR

CONTINUE:

@WRITE_SRECORD FCB_2
CMP PL,00H
JNZ WRITE ERROR

INC BYTE^COUNT
JNZ GET NEXT

MOV DL,»
©CHftRDSP

GET^NEXT:
JMP READ^RECORD

EOF FOUND:

MOV DL,'
C-CHARDSP

C-CRLF

©VDLINE MESSAGE4

eCRLF

JMP SHORT EXIT

WRITE ERROR:
DEC AL

JNZ CHK.DTA ERROR
C-VDLINE MESSAGES

eCRLF

JMP SHORT EXIT

CHK DTA ERROR:

DEC AL

JNZ DISK ERROR

0VDLINE MESSAGE10

C-CRLF

JMP SHORT EXIT

DISK^ERROR:
eVDLINE MESSAGES

©CRLF

EXIT:

START

©CLOSE FCB_1
©CLOSE FCB_£
RET

ENDP

5disk error occurred.
;Else a partial record was
;read.

;Write the record to disk
;00 = Success
;If not zero then there was an error
;Increment memory.
;If byte rolls over to zero
;then display asterisk
;represents £56 bytes written
;so far.
5Display * for show

;Go read the next record.

;Show a - for end of file

;next display line
;Display end of program message.

;DONE

;If AL = 01 then disk full

;Display error message

;Leave program

5lf AL = 0£ then not enough
;room in the DTA
;Undefined condition if AL>2
;Display error message

5Display error message

;Close the file.
;Close the file.

;End of this procedure

;Procedure to open a file specified in the FCB.

;
GPEN_FILE

©OPEN

CMP

JZ

PRGC NEAR

FCB.l
AL,00H
RESET CARRY

©VDLINE MESSAGE2

©CRLF

CALL CLR KEYS

;Open the file
;If zero then open was successful
;Reset the carry to indicate to
;calling procedure the operation
;worked.
;Reent er f i1ename.

;Clear the keyboard buffer

420 8088!IBM PC Assembly Language Programming

Listing 8-2 continued

©CLOSE FOB 1

STC

JMP SHORT

RESET CftRRY:

DON. □ rr
RET

OPENERILE ENDP
;***
;Procedure to obtain destination filename and create the file.

;Close the file
;Set the carry to indicate error

D0NE_0_F ;and ret urn

;Clear the carry

;ftnd return.

GET SECOND PROC NEfiR

eVDLINE MESSPGEl 1
eCRLF
MOV MPX^CHARS,15

GET NAME^D:
CALL CLR^KEYS
©KBDLINE KEYBOARD

;Ask for the destination filename
;Go to the next line.
;15 Characters maximum
;as in B:TESTFILE.TXT<CR>

;Clear keyboard buffer
;Get line from keyboard.

©CRLF
C-PARSE^STRING K_.BUFF, FCB^2, 03H ; Parse the filename

;and place it in the FCB
@CREATE_FILE FCB_£ ;Open the file
CMP AL,0OH ;If zero then open existing file
JNZ NEWSFILE ;If not zero then a new file
0VDLINE MESSAGE? ;Existing File message
©CRLF

SET UP Ds
MOV RECORD NUMBER D, 0 ;lst record
MOV BLOCK.NUMBER^D,0 ;lst block
MOV RECORD_SIZE_D, 1 5Record size equal to 1 byte
JMP SHORT DONE 0 F_D 5Return with carry clear

NEU FILE:
eVDLINE MESSAGES ;New file
©CRLF
JMP SHORT SET UP D ;Set up destination FCB

DONE.O.F^D:
RET ;And return.

GET SECOND ENDP

;Clear the keyboard buffer area
CLR KEYS

CLR:

XOR
MOV

MOV
INC
LOOP
RET

CLR KEYS

PROC
DI,DI
CX, 15

NEAR

K BUFFCDI3,20H
DI
CLR

ENDP

;Clear the keyboard buffer.
;Clear the keyboard buffer

;Point to the next byte.
;Continue till CX = 0
;A11 done

j**

MY^CODE ENDS
END START

Appendix D 421

Listing 8-3
FAST CPY.ASM

P«GE 60,132
TITLE FAST_^COP-PSM
SUBTTL RPNDOM BLOCK REPD/WRITE EXAMPLE

.XLIST

INCLUDE B:DOSEQU.EQU

-LIST

IFl

INCLUDE B:MACFLE.MAC

END IF

.**

;Random Block Read/Write EKarnole.
;By: Gary A- Shade
;Date: 07-10-84
Last Updated: 08-21-84
<c) All rights reserved.

This program will copy the contents of one file to another.
The user is prompted for the source filename, and then for the
dest i nat i on f i1ename.

If the destination file already exists, the file length is set
to zero, effectively erasing the previous contents of the file.
If the source filename is not found, the program will terminate.

This function is similar to the copy command used in MSDOS.
It serves to illustrate the sequential read and write functions
;available under MSDOS.

The macros used in this file can be found in the MACFLE. MAC

file. MACFLE.MAC expects that the DGSEQU.EQU file is oresent
;in the assembly.

I**
;Define the data segement.

MY DATA SEGMENT PARA

KEYBOARD

MAX CHARS

CHARS_TYPED

K^BUFF

DISK BUFFER

LABEL

DB

DB

DB

DB

'DATA'

BYTE
9

32 DUP<?)

7FFFH DUP<0)

;Maximum characters
;for keyboard line inout
;funct ion-
;Actual number of characters
;typed by user.
;32 byte buffer

;Source and dest i nat i on

422 8088!IBM PC Assembly Language Programming

Listing 8-3 continued

FCB 1 LABEL

DRIVE NUMBER DB

FXLE^NAME DB a

FILE NAME DB a

EXTENSION DB 3

BLOCK NUMBER DN 0

RECORD SIZE DW 0

FILE^SIZE DN 2

FILE DATE DN 0

RESERVED DT 0

RECORD NUMBER DB 0

RANDOM^NUMBER DN 2

FCB 2 LABEL BYTE

DRIVE_NUMBER^D DB 0

FILE NAME D DB a

extensionId DB 3

BLOCK NUMBER D DN 0

RECORD SIZE D DN 0

FILE^SIZE^D DUt 2

FILE DATE D DN 0

RESERVED 5 DT 0

RECORD NUMBER D DB 0

RANDOM NUMBER D DN 2

a

2

2

BYTE

0

 DUP(0)

 DUP(0)

 DUP(0)

disk transfer area.

Disk FCB definition

0 = default drive

1 = A

2 = B

Filename soec.

1 = A

2 = B

Filename spec.
Extension for filename

(i.e. .ASM)

Current block number

Logical record size
Double word for size of

file in bytes.
Date of last access.

Ten reserved bytes for DOS
Current record number

4 byte random record number

Dest i nat i on FCB

0 = default drive

1 = A

2 = B

Filename soec.

Extension for filename

(i.e. .ASM)

Current block number

Logical record size
Double word for size of

file in bytes.
Date of last access.

Ten reserved bytes for DOS
Current record number

4 byte random record number

MESSAGE1 DB 'Enter the source drive and filename '

DB

MESSAGE l_.l DB 'Enter the destination drive and filename

DB

MESSAGES DB 'Invalid filename, please reenter. '
DB

MESSAGES DB 'ERROR! Ooeration aborted.'

DB '$'

MESSAGE4 DB 'File cooy complete.'
DB

MESSAGES DB 'File not found.'

DB

MESSAGES DB 'New File!'

DB '$'

MESSAGE? DB 'Existing File Over Written. '
DB

MESSAGES DB 'Copy has started .. '
DB

MESSAGES DB 'Disk full, operation aborted!'
DB

MY DATA ENDS

Appendix D 423

Define stack area.

ST«CK 'STQCK'

?64 words of stack.
MY_STftCK SEGMENT PftRft

DW 3£ DUP(0)

MY^STPCK ENDS

Define the program.

MY^CODE SEGMENT PARft 'CODE'
STPRT PRGC FAR

ASSUME CS:MY_CODE,DS:MY_DATA,ES:MY^DATA,SS:MY_STACK

START l!

PUSH DS ;Save segment of PSP
XOR

X
a

X
a

;Zero offset to stack

PUSH AX

MOV AX,MY DATA ;Initialize DS and ES

MOV DS, AX
MOV ES, AX

START £:

C-SCROLL 06,00, 18H,4FH, 00, 00,07
C-CURSET 0,0,0
C-VDLINE MESSAGE 1

0CRLF

MOV MAX^CHARS,15

GET^NAME:
©KBDLINE KEYBOARD

;Clear the screen

;Set the cursor.
;Ask for the source filename
;Go to the next line-
;15 Characters maximum

;as in B:TESTFILE. TXT<CR>

;Get line from keyboard.

C-CRLF

0PARSE_STRING K_BUFF,FCB^l,03H

CALL

JNC

OPEN^FILE
SET UP

SET UP:

0VDLINE MESSAGE4

0CRLF

JMP SHORT START^a

0SET__DTA DISK_BUFFER

MOV RECORD NUMBER,0
MOV BLOCK_NUMBER,0
0SET REL RECORD FOB 1

GET_DESTINATION:
CALL GET^SECOND
0VDLINE MESSAGES

C-CRLF

READ_RECORD:

0BLOCK_RREAD FCB_1,7FFFH,1

CMP

JZ

AL,00H
CONTINUE

;Parse the filename
;and olace it in the FOB
;Go open the file
;If the carry is set then
;TRY AGAIN! File not found.

;Display error message

;Try again.

;Set the Disk transfer address
;for the destination drive
51st record

;lst block

;Set the random relative record
;field in the FCB.

;Get the second drive soec.
5Display copy started message

;Random Block Read
;using the FCB defined
5 in the data segment.
;If zero then OK.

424 8088!IBM PC Assembly Language Programming

Listing 8-3 continued

REPD ERROR:

CMP PL,01H :If PL = 1 then EOF encountered

;LPST RECORD COMPLETE
JE PPRTIPL_3

ERR 3:

CMP PL,03H 5 If PL = 0£H then EOF with
;partial record read-

JZ PPRTIPL 3

JMP DISK_ERROR 5disk error occurred-

PPRTIPL 3:

CMP CX,0 ;If no records read then skio
JZ EOF FOUND

MOV BX,CX ;Put record count in BX

©BLOCK RWRITE FCB 2,BX,1 ;Write the partial block to disk
JMP SHORT EOF__FOUND

CONTINUE:

©BLOCK RWRITE FCB £,7FFFH,1 ;Write the record to disk
CMP PL,00H •00 = Success

JNZ WRITE^ERROR ;If not zero then there was an erroi
GET NEXT:

JMP REPD_RECORD •Go read the next record.

EOF FOUND:

MOV DL :Show a - for end of file

©CHPRDSP

©CRLF ;next display line

©VDLINE MESSPGE4 ;Display end of program rnessage-
©CRLF

JMP SHORT EXIT ;DONE
WRITE ERROR:

DEC PL ;If PL = 01 then disk full
JNZ CHK SIZE ERROR ;Disk full error
©VDLINE MESSPGE9 ;Display error message
©CRLF

JMP SHORT EXIT ;Leave program
CHK__SIZE_ERROR:

©VDLINE MESSPGE9 ;Display error message
©CRLF

JMP SHORT EXIT

DISK ERROR:

©VDLINE MESSPGE3 ;Display error message
©CRLF

EXIT:

©CLOSE FCB 1 ;Close the file.
©CLOSE FCB^E ;Close the file.
RET

STPRT ENDP ;End of this procedure

:**

;Procedure to ooen a file soecified in the FCB.

OPEN^FILE
©OPEN

CMP

JZ

PROC NEPR

FCB^l
PL,00H
RESET CPRRY

C-VDLINE MESSPGEE

;Operi the file
;If zero then ooen was successful
;Reset the carry to indicate to
;calling procedure the operation
5 worked-
;Reenter f i1ename.

Appendix D 425

@CRLF

CALL

t-CLOSE FCB^l
STC

CLR_KEYS 5Clear the keyboard buffer
;Close the file
;Set the carry to indicate error

SHORT D0NE__0_F ;and return

;Clear the carry

;And ret urn.

JMP

RESET CARRY:

CLC

DONE 0 F:

RET

OPEN^FILE ENDP

;Procedure to obtain destination filename and create the file.

GET SECOND PROC NEAR

©VDLINE MESSAGEl^l
eCRLF

MOV MAX_^CHARS, 15

GET^NAME^D:
CALL CLR^KEYS
©KBDLINE KEYBOARD

;Ask for the destination filename
;Go to the next line.
515 Characters maximum
;as in B:TESTFILE.TXT<CR>

5Clear keyboard buffer
5Get line from keyboard-

51st record
51st block
5Record size equal to 1 byte
5Set the relative record field
5 Return with carry clear

C-CRLF

©PARSE^STRING K^BUFF,FCB^E,03H ;Parse the filename
;and dace it in the FCB

C-CREATE^FILE FCB^E ;Open the file
CMP AL,00H 5 If zero then ooen existing file
JN2 NEWSFILE ;If not zero then a new file
©VDLINE MESSAGE? ;Existing File messape
C-CRLF

SET_UP_D:
MOV RECORD^NUMBER D, 0
MOV BLOCK_NUMBER_D, 0
MOV RECORD^SIZE D, 1
©SET^REL^RECORD FCB 2
JMP SHORT DONE_,O^F__D

NEWSFILE:
@VDLINE MESSAGES ;New file
0CRLF

JMP SHORT SET_UP_D ;Set up destination FCB
DONE^O.F^D:

RET 5And return.

GET^SECOND ENDP

;**«**«********

;Clear the keyboard buffer area
CLR KEYS PROC NEAR

CLR:

CLR._KEYS
;**

XOR DI,DI ;Clear the keyboard buffer.
MOV CX, 15 5Clear the keyboard buffer

MOV K BUFFCDi:,20H 5
INC DI ;Point to the next byte.
LOOP CLR 5Continue till CX = 0
RET 5All done

ENDP

MY^CODE ENDS
END START

426 8088!IBM PC Assembly Language Programming

Listing 8-4
DIRREAD.ASM

PAGE 60,132
TITLE Directory Read Routine.
SUBTTL Directory Sort-

.XLIST

INCLUDE B:DOSEQU.EQU

.LIST

IFl

INCLUDE BrMACFLE.MAC

END IF

This program will read and sort the directory from the
specified disk drive. The number of entries which are

displayed is limited to the the screen size.
Entries are listed four accross, for a total of
4 X £4 directory entries.
This program uses DOS interrupt type £5H for
absolute disk reads.

DIRESORT is the routine which will alphabetize and sort
the entries prior to display.

Possible disk formats are:

Single Sided/S sectors per track (SS8ST)
Double Sided/8 sectors per track (DS8ST)
Single Sided/9 sectors per track (SS9ST)
Double Sided/9 sectors per track (DS9ST)

Use the first byte of FAT to determine the drive type:
FF = DS8ST

FE = SS8ST

FD = DS9ST

FC = SS9ST

F8 = Hard disk.

The procedure GET_DRIVE_TYPE will set the parameters for
the drive type requested dependent upon the 1st byte of the
FAT.

Version 1.0 formats.

IF SS8ST

DIR_SEC = 4 ;Number of directory sectors
DIR_BEG = 3 ;Where the directory begins
ENTRIES = 64 ;Number of directory entries

ELSE

IF DS8ST

DIR SEC = 7

Appendix D 427

DIR BEG = 3

ENTRIES = 112

Version 2.0 and 2.1

IF SS9ST

DIR^SEC = A
DIR BEG = 5

ENTRIES = 64

; ELSE
IFE DS9ST

DIR^SEC = 7
DIR^BEG = 5
ENTRIES = 112

**

Define Stack Seqment.

MY STACK SEGMENT PARA STACK 'STACK'

DW 100 DUP(?)

TOP_OF_STACK EQU «
MY^STACK ENDS
**

MY DATA SEGMENT PARA 'DATA'

;***** Keyboard buffer *********************************
K^BUFFER LABEL BYTE
MAX CHARS DB 0 ;INITIALIZE TO 0.
CHARS_TYPED DB 0 ;SAME HERE.
K^BUFF DB 32 DUP<' ') ;32 BYTES = ASCII SPACE

;********* Buffer for Directory read ********************

BUFF

DIR^BUF2

MESSAGE1

MESSAGE2

MESSAGES

ENTRY_CGUNTER
ERR^CGUNT
DRIVE

MIN

MAX

EXCHANGE

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

40 DUP(0)

4096 DUP(0)

2048 DUP(0)

'Disk Error, ret

'Which drive (A,

'Invalid entry! Please reenter '

;File Control Block
;Disk Transfer Address
;Secondary buffer used
;for sorting,
urning to MSDGS'
5MESSAGE TERMINATOR.
B)? '

00H

00H

00H

00H

00H

00H

00H

00H

00H

00H

07FFH

0100H

NAMES^DISPLAYED DB

DIR^SEC DW
DIR^BEG DW
ENTRIES DW

DELAY^COUNT DW
LOOREVALUE DW

MY^DATA ENDS
;**

Entry count.
Error counter

Drive number (0=A)

Minimum value for bounds

Max. value for bounds check

Swap flag for sort
00 = no swap

01 = swap
Number of names on the

display.
Number of sectors to read

Beginning directory number
Number of possible entries for
drive format

Inner loop delay count
Number of times to execute

the outer loop of the delay.

MY CODE SEGMENT PARA 'CODE'

428 8088!IBM PC Assembly Language Programming

Listing 8-4 continued
ASSUME CS: MY^CODE, DS: MY_DATA, ES: MY_.DATA, SS: MY_.STACK

START

BEGINli

PROC

PUSH

XOR

PUSH

MOV

MOV

MOV

PUSH

@SET__DTA
POPr-wr-

FAR

DS

AX, AX
AX

AX,MY DATA
DS, AX
ES, AX
ES

DIREBUFF
ES

;SAVE RETURN ADDRESS
5 ZERO ACCUMULATOR
5SAVE RETURN SEG. OFFSET.
;SET UP SEG REGISTERS

;Save ES
;Set the disk transfer address
;Restore value— w

;******** Clear the screen and set the cursor **********************

BEGIN2: NOP

("•SCROLL 06, 00, IBH, 4FH, 00, 00, 07 ;Clear the screen
NOP

C-CURSET 0,0,0

PROMPT: NOP

eVDLINE MESSAGES

©WAITKEY

AND AL,0101111 IB

MOV

MOV

MIN,41H
|vlAX,44H

CALL CHECK^BOUNDS
JNC ALL-RIGHT

ENTRY_ERROR: NOP
C-VDLINE MESSAGES

CALL LONG DELAY

JMP

ALL RIGHT:

DEC

MOV

CALL

LEA

MOV

MOV

INT

POPF

JNC

CALL

JC

JMP

NO ERR: CALL
CALL

eCRLF

QUIT^IT: JMP
TOO MANY: NOP

0VDLINE

CALL

BEGINS

AND

AL

AL,0FH

DRIVE,AL
GET^DRIVE^TYPE
BX,DIREBUFF
CX,DIR SEC
DX,DIR^BEG
S5H

NO^ERR
ERR_.ROUTINE
TOO MANY

BEGINS

;Set the cursor to row 0, col 0,
;screen 0.

Ask user which drive-

Get the response in AL.
Reset bit 5, convert
to uppercase
Ascii 'A' is minimum

Ascii 'D* is maximum

See if response is valid.
If carry not set then continue.

Display error message
Twiddle some thumbs, leave
the message on the screen.
Restart Program.

Mask high order nibble
Decrement AL register.
If Drive A, then AL =0
B = 1, C = 2, etc.
Save drive number

Determine the drives format

Disk Transfer Address

Number of sectors to read

Beginning relative sector.
Perform absolute sector read.

Retrieve status.

If no error then continue.

Otherwise go to error handler
Too many errors, abort
And restart the program.

DIRESORT ;Go sort directory.
DIR_DSP ;Go display it.

Go to the next line

SHORT ALL^DONE ;Return to DOS exit ooint

MESSAGEl 5Error message.
LONG_DELAY ;Wait for a awhile (display mssg)

Appendix D 429

©SCROLL 06,00,ISH, 4FH,00,00,07 ;Clear the screen
«LL_DGNE: RET ?Return to DOS

STPRT ENDP

;**

;Bounds checking routine. This routine will comoare the
;binary value in AL to the upper and lower limits set in
;RAM locations MIN and MAX. If the routine finds the value
;out of bounds, the carry will be set- Otherwise the
;routine will return control with the carry reset.

CHECK^BOUNDS
CMP

JB

CMP

JA

CLC

JMP

GUT BOUNDS

CB^DONE:
CHECK BOUNDS

S

PROC NEAR

AL,MIN
OUT_BOUNDS
AL,MAX
OUT_BOUNDS

SHORT CB DONE

TC

RET

ENDP

;Is AL < MIN?
sJurno if AL is below-

;Is AL > Max?
;JumD if AL is above max.
;Otherwise, clear carry.
;Ret urn do i nt
;Set the carry flag.
;Return to caller.

;This routine will orovide for a software delay of variable
;length. Uses BX and CX. All registers used are restored
;prior to exiting this routine.

LONG^DELAY
PUSH

PUSH

MOV

IN^LOOPls MOV
IN^LOOPE: DEC

JNZ

LOOP

POP

POP

RET

LONG DELAY

PROC NEAR

BX

CX

CX,DELAY_COUNT
BX,LOOP_VALUE
BX

IN^LOOPS
IN^LOOPl
CX

BX

ENDP

Save registers used in routine.

Get count value

Get looD value

Decrement inner loop count

Loop if BX is not zero.

Loop if CX is not zero.

Restore registers

All done, return to caller.

**

;This routine is the error handler for disk access. If there
;is an error during disk access, the memory location
;ERR__COUNT is incremented. If the count is greater than
;10, the operation is aborted, and the program is restarted.
;If the count is less than ten, the operation is retried.
5The main program determines this from the state of the carry flag
;on return from this routine. If the carry is set, then the
5operation should be aborted.

ERR^ROUTINE
INC

CMP

JAE

CLC

JMP

MORE^TEN:
ERR_DONE:
ERR ROUTINE

PROC NEAR

ERR^COUNT
ERR^COUNT, 11
MORE^TEN

SHORT ERR__DONE
STC

RET

ENDP

; I ncrernent memory
;More than 10 errors?
;If so, then set carry
5Else clear the carry
; Ret urn do i nt
;Set the carry flag.
;Ret urn to ca11er

**

430 80881IBM PC Assembly Language Programming

(in bytes 0-10)

Listing 8-4 continued
This routine will sort the directory read in from disk.
The directory will reside in the memory buffer area DIREBUFF
after the disk read operation.
The format of the directory is:
Track 0, Sectors 4-7
Bytes 0—7 Filename. If byte 0 = 00H then entry never used.

E5H then entry has been deleted
£EH then the entry is for a directory

Pny other character found in byte 0 is the first
character of the filename.

8-10 The file name extension-

11 The File attribute 01 = Read Only
02 = Hidden File

04 = System File
08 = Volume Label

10 = Subdirectory
£0 = Archive Bit, set whenever

the file has been written to and

closed, and has not been backed uo
1£-£1 Reserved By MSDOS
££-£3 The time the file was last updated or created.

Format: Bll-15 = Hour (0-£3)
B5-10 = Minutes (0-59)

B0-4 = two-second increments

Least significant byte = Byte ££
Most Significant Byte = Byte £3

£4-£5 Date of file creation or update.

Format: B8-15 = Year (0-119 = 1980-2099)

B5-7 = Month (1-12)

B4-0 = Day (1-31)

£6-27 Starting Cluster; See IBM DOS Technical Reference Manual
Page 4-7 and Page 4-10.

£8-31 File Size in bytes (Least Significant Word = LSB of the size)

The first part of the procedure extracts the directory filenames
from the DTP which is DIREBUFF
and places it in DIR_BUF£.
This is where the directory will be sorted.

DIR SORT PROG NEAR

MOVE DIR:

MOVE_DIR£:

M0VE_DIR3:

REP

MOV

LEA

LEA

CLD

SUB

CMP

JZ

CMP

JZ

PUSH

MOV

MGVSB

ADD

ADD

CX,ENTRIES

DI,DIR^BUF£
SI, DIREBUFF

BX,BX
DIREBUFFCBX3
GET_NEXT
DIREBUFFCBX3
GET__NEXT
CX

CX, 11

BX,3£
SI,32-11

;Number of entries in dir.
;move.

;Set destination register
;Source DS:SI
;Clear direction flag
;for auto increment
:Zero base register

,00H ;Entry never used?
;If so then get next record

,0E5H ;EmDty due to deletion?
;If so then get next entry
;Save number of entries
;Filename and extension
;Move filename
;Offset to next entry
;Point to next entry

Appendix D 431

POP CX ;Recover number of entries
JMP SHORT GET NEXT2 ;Continue from here

GET^NEXT: ADD BX,32 ;Point to next entry
ADD SI, 32 ;If we did not find an entry

GET_NEXT2: INC ENTRY COUNTER ;Increment entry found count(
LOOP MOVE DIR2 ;Continue for all entries

;Now sort the entries into alphabetical order.

;Use bubble sort technique.

DIR_S0RT2: MOV CL, ENTRY_COUNTER ;Nurnber of entries to
MOV CH,0 ;sort.
MOV EXCHANGE,00H ;Clear the swap flag.
LEA DI,DIR BUF2C113 ;Destination of compare
LEA SI,DIR_.BUF2 ;Source for compare
PUSH SI •Store pointers on stack
PUSH DI

DIRESORTS: PUSH CX :Save the number of times to

;execute this routine.
MOV CX,8 5Number of bytes to compare

REPE CMPSB 5Compare entire string
JNA NO^SWAP ;If source > destination

;Else, swap entries
CALL SWAP ENTRY ;Go swap entries

NO^SWAP: CALL ADJ POINTERS ;Adjust pointers
POP CX ;Retrieve count
LOOP DIR S0RT3 ;Loop for all entries
POP DI ;Clean up stack
POP SI

CMP EXCHANGE, 0H ;If not equal to zero
;then make another pass

JNE DIR^S0RT2 ;Redo routine if there
;was an entry swapped.

RET ;Otherwise return
DIR SORT ENDP

;**

Procedure to swap directory entries. Expects the stack to be
arranged as follows:
SP ~> TOP OF STACK

~ Base Pointer (Pushed by this routine) Bytes 0 It 1
- Return Address 1 - Bytes 2 & 3
- Count Register - Bytes 4^5
- Destination Pointer - Bytes 6 & 7
- Source Pointer - Bytes 8 & 9

- Return Address 2 - Bytes 10 & 11

Uses the pointers which are saved on the stack.

SWAP ENTRY PROC NEAR

SWAP BYTES:

PUSH BP ;Save BP
MOV BP,SP ;Point to stack
MOV DI, CBPH-63 ;Recover do i nt ers
MOV SI,CBP+83 ;from stack
MOV CX, 11 ;Number of bytes to exchange
MOV AL, CDI3 ;Get byte to exchange
XCHG AL,CSI3 ;Bytes exchanged
MOV CDI3,AL ;Save byte from source in dest.
INC SI ;Point to next byte(s)
INC DI 5

432 80881IBM PC Assembly Language Programming

Listing 8-4 continued

LOOP SWAP BYTES ;Cont inue unt i1 zero.
MOV EXCHANGE, 01 ;Show there was an exchange.

POP BP ;Recover bas register
RET ;Return to caller

SWAP ENTRY ENDP
**

ADJ^POINTERS PROC NEAR

PUSH BP ;Save base register
MOV BP, SP ;Point to base of stack
MOV DI,CBP+63 ;Get destination pointer
MOV SI,CBP+83 ;Get source pointer
ADD DI, 11 ;Point to next filename
ADD SI, 11 ;Point to next filename to compare
MOV CBP+63,DI 5 Resave po i nt er
MOV CBP+83,SI ;Resave po i nt er
POP BP ;Restore base register
RET ;Return to caller

ADJ POINTERS ENDP

-***

;This procedure will display the directory entries stored in
:DIR BUF2. The procedure will display up to 64 names on the

;screen at a time, and wait for the operator to press any key before
;display any remaining entries. As the double sided formats

;allow up to 112 directory entries, the pause between screen displays
;prevents the screen from scrolling before the operator can read
;the directory names-

DIR_DSP PROC NEftR
©SCROLL 06,00, iaH,AFH, 00, 00,07

eCURSET 00,00,00
MOV

INC

MOV

LE«

DIR_DSP£: PUSH
MOV

CMP

JNE

POP

CL,ENTRY COUNTER
CL

CH,0
SI,DIR_BUF2
CX

CX,8
BYTE PTR CSn,00
DSP__NEXT_CHfiR
CX

ADD SI, 11
LOOP DIR__DSP2

DSP^NEXT^CHAR: MOV DL, CSIl
©CHARDSP

INC SI

LOOP DSP_NEXT__CHAR
MOV DL,».»
C-CHARDSP

MOV CX,3
DSP^EXT: MOV DL, LSI3

C-CHARDSP

INC SI

LOOP DSP_EXT
MOV CX,8
MOV DL,20H

DSP^SPACE: ©CHARDSP
LOOP DSP^SPACE
INC NAMES DISPLAYED

Clear screen

Then set the cursor

Screen 0, row 0, col 0
Number of entries in dir.

Get start of buffer address

Save entry counter
Display 8 character filename
If zero then skip

If not, then display filename
Retrieve # of times to execute

this loop.

Point to next field-

Scan all ent r i es

Get character in filename

Display character in DL
Increment source pointer
Loop till al chars are dsp

Fi 1 enarne de 1 imiter

Display '.»
3 character extension

Get character from buffer

Display the character
Point to the next character

Display all 3 characters
Display 8 spaces
ASCII Space

Do all 6 spaces

Inc number of names on screen

Appendix D 433

CMP NPMES^DISPLAYED, 8®

JB CONT DSP
©WftlTKEY

MOV

COIMT^DSP: POP
LOOP

NAMES^DISPLftYED,0
cx

DIR^DSPE

NAMES^DISPLAYED,0

;80 NAMES DISPLAYED?

;If < 80, then continue.
;Wait for a key to be hit.
;Clear filename counter
;Recover outer looo count
;Continue until all files
;disDlayed
;Clear name counter
;A11 done, go home

are

MOV

RET

DIR^DSP ENDP

;This procedure will read the FAT (track 0, sector 1) via
;MSDOS interrupt type 25H. The byte is the key for the drive type
;(i.e- single sided/double sided 8/9 sectors/track etc.)
;See the beginning of this file for the possible drive configurations
;based on the ist byte value of the file allocation table (FAT).
GET DRIVE TYPE PROC NEAR

PUSH

PUSH

PUSH

PUSH

LEA

MOV

MOV

MOV

INT

POPF

JNC

STC

JMP

NO„ERR£:
MOV

INC

JI

INC

JI

INC

JZ

JMP

SET SS8ST:

MOV

MOV

SET

JMP

DS8ST:

SET DS9ST:

SET SS9ST:

DONE WITH TYPE:

AX

BX

CX

DX

BX,DIR_^BUFF
AL,DRIVE
CX,01
DX,01
25H

NO_ERR£

DONE^WITH TYPE
LEA sT,DIREBUFF
AL,BYTE PTR CSI3
AL

SET_DS8ST
AL

SET^SS8ST
AL

SET_DS9ST
SHORT SET SS9ST

MOV DIR_SEC,A
DIR_BEG,3
ENTRIES,64

SHORT DONE^WITH^TYPE
MOV DIR^SEC,7
MOV DIR^BEG,3
MOV ENTRIES,112
JMP SHORT DONE_WITH_TYPE
MOV DIR^SEC,7
MOV DIR_BEG,5
MOV ENTRIES,112
JMP SHORT DONE WITH^TYPE
MOV DIR^SEC,4
MOV DIR^BEG,5
MOV ENTRIES,64
CALL CLR^DTA
POP DX

POP CX

POP BX

POP AX

;Clear

;Save ALL REGISTERS!

DTA

Get drive number

Read one sector

AT SECTOR 1

Absolute disk read

Any errors?
NO ERRORS, CONTINUE
Else set the carry and return
Leave this routine.

Set pointer to first byte
What tyoe of drive is it?
Increment byte, was it FFH?
0FFH = DS 8 SECTORS/TRACK

Was it 0FE?

0FEH = SS 8

Was it 0FD?

0FDH = DS 9

Else it is SS 9 Sectors/track

Number of directory sectors
Directory start sector
Number of possible directory
entries.

All done, return to caller

Sectors/track

Sectors/track

the DTA
;Restore registers

434 80881IBM PC Assembly Language Programming

Listing 8-4 continued

RET ;EKit this procedure
GET^DRIVE.TYPE ENDP

CLR.DTA PRQC NEAR

MGV CX,LENGTH DIR BUFF ;Number of bytes to clear
LEA SI,DIR BUFF ;Point to first byte of buffer

CLR.DTA2: MOV BYTE PTR CSI3,00H 5Clear the byte
INC SI ;Increment the address pointer
LOOP CLR DTAS ;Clear all bytes
RET

CLR.DTA ENDP

MY CODE ENDS

END START

Appendix D 435

Listing 9-1
GRAPHIC.ASM

PfiGE 60,132
TITLE Graphic Routine

SUBTTL BY: Gary A. Shade

-XLIST

INCLUDE B:DOSEQU.EQU

.LIST

IFl

INCLUDE B:MACFLE.MAC

END IF

Graphic ROUTINE

Creat ed: 09-01-84

By: Gary A. Shade
Date last revised: 09-02-04

<c) 1904 Gary A. Shade. All rights reserved.

This file will define a program which demonstrates the use
of a procedure to draw lines on the IBM PC.

As MSDOS does not offer adeouate graphic routines, the
routine found here will utilize BIOS calls. This may cause some degree
of incompatibility to exist when these macro calls are executed on
the so called 'compatible* computers. The routine has been tested

on an IBM PC and a Compaq computer.

**

This procedure will draw a line from a specified start position,
to the specified stop position. There is no check to see if the
parameters supplied are within bounds (i.e. row and column min/max
values). You must be sure they are within the range for the current
graphics mode selected. (320x200 medium res.)
and (640 x 200 high res).
Use the ©VDMODE macro in MACFLE.MAC to set the video mode

as desired.

The routine expects the following RAM locations to contain the
values for the starting X-Y, and ending X-Y coordinates.

STARTX = starting x coordinate
STARTY = »" y
STOPX = ending x coordinate
STOPY = ending y coordinate
DIRECTIONX = 00H = FORWARD MOVE: IF (> 00H THEN BACKWARD MOVE
DIRECTIONY = 00H = MOVE UP : IF <> 00H THEN MOVE DOWN.

Define a macro to be used in this routine to erase an object (line)
on the screen.

436 80881IBM PC Assembly Language Programming

Listing 9-1 continued

ERASE MACRO STARTPX,STOPPX,STARTPY,STOPPY,COLORP

MOV STARTX, STARTPX
MOV STOPX,STOPPX
MOV STARTY, STARTPY
MOV STOPY,STOPPY
MOV COLOR,COLORP
CALL DRAW LINE

ENDM

**

MY STACK SEGMENT PARA STACK 'STACK'

DW 100 DUP(?)

MY_STACK ENDS

;**

MY DATA SEGMENT PARA 'DATA'

STARTX DW 320 ;START at center screen
;use high res rnode-

STOPX DW 470 ;stop Doint-
STARTY DW 100 ;Start of y = center screen
STGPY DW 4 ;Go UP-
DIRECTIONX DB 0 ;Initial2e direction as fwd
DIRECTIGNY DB 0 ;and up-
D L FLAG DB 0 ;flag for reaching the end

?of X and Y- Bit 0=1=
send of X reached-

sBit 1 = 1 then end of Y
;Reached-

COLOR DB 0 5Used to specify the color
;attribute of the dot-

MY_DfiTft ENDS

;ThB color combinat ions in this exarnole are white on black, and
; black on black due to using the high res- mode of ooeration-
?you can specify other color combinations if using the
;medium resolution mode- See the text for an exolanation of the
;possible modes of operation-
;**

W_B EQU 07H ;White on black
B_B EQU 00H ;Black on black
;**

;The main procedure is simply a test program for the
;graphic procedure DRfiW_LINE. The programmer must define the
;start and stop positions of the X and Y axis- The coordinates
;must be within the capabilities of the graohics mode- For
;medium resolution disolays this means an X value from 0-319,
;and a V value of 0-199- In high resolution mode, the X values
;mu5t lie in the range of 0-639, and must contain Y values
;between 0-199- The graphic routines do not oerform bounds
;checking on the values suoolied!
m

5

;This orograrn will draw a large 'A' on the screen and
;create a moving border to create the effect of animation-

MY^CODE SEGMENT PftRfi 'CODE'
ASSUME CS s MY_CODE,DS:MY^DATA,ES:MY^DATA,SS:MY_STACK

MAIN PROG PRGC FAR

Appendix D 437

STORT; PUSH DS ;Save code segment
XGR

X

n
X

;Zero offset return

PUSH fix ;Save offset

NOV fiX,MY_DfiTfi ;Set upsegrnent registers
MOV DS,fiX

MGV ES,fiX
;******

■ ******

Get the current

new video mode,

reso 1 Lit i on mode,

©VDMODERD

PUSH fix

MOV CX,40

©VDMODE 6

video mode, save it, and establish the
For this example, use mode 6; the high

:Get the current status

;Bave the video mode
;which was returned in fiL
;Do the procedure A0 times.
;Set high res mode.

• ****** Start of the test program ******************************
Draw the letter ' fi' on the screen **********************

DRfiW ITE

DRfiW IT3

MGV STfiRTX,320 ;Set parameters to draw

MGV STGPX,470 :£nd point

MGV STfiRTY,50 ;Now define Y axis
MGV STGPY,150
MGV CGLGR,W B ;White on black
CfiLL DRfiW LINE ;Go draw the line defined.

:: MGV STfiRTX,320 ;Define next iine-
MGV STGPX,170
MGV STfiRTY,50 5Define Y axis

MGV STGPY,150
MGV CGLGR,W_B
CfiLL DRfiW LINE

CfiLL DELfiY ;Delay a while

MGV STfiRTX,275 ;Horizontal line

MGV STGPX,375 ?Bar foY*^ the ' fi'.
MGV STfiRTY,100

MGV STGPY,100

MGV CGLGR,W B ;WHITE GN BLfiCK
CfiLL DRfiW LINE ;Draw it.

CfiLL DELfiY ;Delay awhile
CfiLL DELfiY

******* Now draw a border around th

******* erase the line, and redraw

This is known as animation.

DRfiW 2: MGV STfiRTX,0

e letter, fifter a snort delay,
the shape elsewhere on the screen.

DRfiW 3:

;Draw a straight line
MGV STGPX,540
MGV STfiRTY,199

MGV STGPY,199
MGV CGLGR,W B

CfiLL DRfiW LINE ;Draw the line.

CfiLL DELfiY ;Wait awhile

ERfiSE 0,540, 199, 199, B B ;Erase the line.
CfiLL DELfiY ;delay a bit.
MGV STfiRTX,540 ;draw a new line

MGV STGPX,540 ;from bottom up on right
MGV STfiRTY,199

MGV STGPY,0

MGV CGLGR,W B ;White on black

CfiLL DRfiW LINE sdY^aw the line

CfiLL DELfiY ;delay awhile
ERfiSE 540,540, 199, 0,B B ;and erase the line.

438 8088/IBM PC Assembly Language Programming

Listing 9-1 continued

CALL DELAY

DRAW^ MOV STARTX,540 ;Draw line from top right
MOV STOPX,0 •to top left of screen

MOV STARTY,0
MOV STOPY,0
MOV COLOR,W B
CALL DRAW LINE

CALL DELAY

ERASE 540, 0, 0, 0, B B :Now erase it.

CALL DELAY

DRAW,^5 5 MOV STARTX,1 :draw line from too to bottom on

MOV STOPX,1 ;of the screen

MOV STARTY,0
MOV STOPY,199
MOV COLOR,W B
CALL DRAW LINE

CALL DELAY

ERASE 1, 1,0, 199, B B 5And erase this line.

CALL DELAY

DEC CX ;Deerement co unt er

JNZ DRAW.. I T_ ISLAND ;Jump to the island.

©WAITKEY ;Wait for a key closure before
;ending.

POP BX ;Restore old video mode
C-VDMODE BL ;Oid mode is in BL

RET ;A11 done - return to MSDOS

DRAW..XT..ISLAND: JMP DRAW..2 ;This is an island jump point
;to jurno to the start of orograrn.
:see the text for an exoianation

3of why islands are sometimes
- needed.

lvi«IN__PROG ENDP
;**

;This is the line drawing routine which will draw a line on the
;selected craohics screen by setting a range of dots soecified
;by start and stop, X and Y values. The routine automatically
;determines if the dots must be drawn in a forward or reverse,
;or down or up direction. Sirnoly supply the start and stop
;X and Y values in the RPM locations, STPRTX, STOPX, STARTY, and STOPY.
;The routine also needs scratch pad RAM for DIRECTIONX, DIRECTIONY,
3and storage fov^ a flag byte D_L_FLAG which is used for X, Y
;graphic control.

DRAW^LINE
PUSH

MOV

SUB

JNC

MOV

JMP

PROC NEAR

CX

AX,STOPX
AX,STARTX
FORWARDX

DIRECTIONX,01

SHORT D L £

FORWARDX: MOV DIRECTIGNX,0H

D^L^S: MOV AX,STOPY

SUB AX,STARTY

;Save count.

;Calculate direction

:If no carry then move forward

;Direct ion = 01 = backwards
;And continue past next part
;of code.

5

;Calculate direction of Y

;(up or down)

•IF STOP > START THEN MOVE

;DOWN

Appendix D 439

DO^NY;

D L 3:

J|\iC DOWNY

DIRECTIONY,0H
JNP SHORT D^L_3
NOV DIRECTIONY,01H

C-SET STARTY, STARTX, COLOR
CNP D^L..FLAG,03H
JE D L 4

NOV AX,STARTX
C!V!P AX,ST0PX

JNE D^L^S
OR D^L FLAG,01H
JNP SHORT

CfviP DIRECTIONX,00H

JNE BACKWARD^l
INC STARTX

JtAO SHORT B 2

BACKWARD 1: DEC STARTX

UP,, is

U_£:

D L 4;

HOY

CMP

JNE

OR

JMP

CMP

JZ

INC

JMP

DEC

JMP

AX,STARTY
AX,STOPY

D^L 6
D^L^FLAG,0£H
SHORT U^£
DIRECTIONY,00H

UP^i
STARTY

SHORT

STARTY

D L 3

U £

DIRECTIONX,00
DIRECTIONY,00

D^L^FLAG, 0
CX

ENDP

;Move dowri

:AND CONTINUE

;01 means move down.

;ROW, COLUMN AND COLOR
:See if bit 0 and 1 set

;If set, exit

;Cornoare to end

;If eouai set flag
;If not, then skio.
5Set the flan

;Go check Y

;Which way are we goinn?
;Draw backwards

; i ncrernent co 1 umn

;AND CONTINUE
;Decrement co1umn

;are we at the end of rows?

;If not do not set flan-

:Set bit £

;SkiD inc. or dec. of Y

;Which way for Y?
;00H means ud.

51 ncrernent row

;AND CONTINUE

;Decrement Y position

5 Repeat operat i on

;Reset routine directives

;Retrieve count.
;Exit procedure

MOV

MOY

MOV

POP

RE"i"

DRAW^LINE
;**

5This routine nenerates a fixed delay.
DELAY PROC NEAR

PUSH CX

MOV CX,50
DELAY_.LOOP: LOOP

POP CX

RET

DELAY ENDP

• ***

;Save register
;COUNT = 50 for delay loon.

DELAY^LOOP sAporox delay = 50 * .01 Sec. = l/£ sec
;Restore register

440 80881IBM PC Assembly Language Programming

Listing 9-2
SOUND.ASM

PAGE 60,13a
TITLE SOUND GENERATION

SUBTTL A SOUND PROGRAM

-XLIST

INCLUDE B:DOSEQU.EQU

-LIST

IFl

INCLUDE B:MACFLE.MAC

END IF

**

So und Proced ure

Creat ed: 06-14-84

By: Gary A. Shade
Last Revised: 00-12-84

(c) 1984 Gary A- Shade. All Rights Reserved

This program will produce a soecified tone, of a soecified
duration from the IBM PC's internal soeaker.

It must directly address the 8a55A which is the interface chio
that controls the soeaker- Bits 0, and 1 of the Programmable
Peripheral Interface (PPI), turn the soeaker on and off.
Bit 1 directly drives the speaker, while bit 0 gates the output
of the 8253 programmable timer to the soeaker.
The clock input to the timer is 1.19 MHz, and the timer provides
a system clock tick 18.2 times/second should you want to program
the 8253 timer directly. See the IBM Technical Reference Manual
(# 6025005) for more details.

;The PPI is located at the following port addresses:
60H -> Input port used for keyboard scans
61H -> B0 = Speaker gate from timer 2 of 8253

B1 = Speaker data

62H -> Inout used for system functions see IBM Technical
Reference Manual (#6025005) page 1-12 for more details.

Define speaker output port

SPEAKER EQU 61H

Define

MY^STACK SEGMENT PARA STACK 'STACK'
DW 100 DUP<?)

Appendix D 441

MY^STACK ENDS

'DATA'

100,3 DUP (530,&62,694,&&£),3 DUP(503)
£ DUP(694,694, 694, 530, 592, 592)
2 DUP(530,662,694,662),4 DUP(530)
2 DUP(494,494,330,434, 492)
00 ;END OF TABLE

MV^DATA SEGMENT PARA
FREQUENCV^TABLE DW

DN

DN

DM

DM

DURATION TABLE

DURATION

FREQUENCY

MESSAGE!

DW 15 DUP(25),50
DW 4 DUP(25,25,50)
DW 10 DUP(25),100, £00
DW 10 DUP(64)
DW 0

DW 0

DB 'Hit any key to begin SOUND

;Used in sound routine

MY^DATA ENDS
**

MY^CODE SEGMENT PARA 'CODE'
SOUNDS PROC FAR

ASSUME CS:MY CODE,DSsMY DATA,ES:MY_DATA,SS:MY_STACK
BEGIN_,SOUND:

XOR

PUSH DS

AX, AX

;SAVE MSDOS RETURN SEGMENT
;ZERO AX AND SAVE OFFSET

PROMPT:

NEXT NOTE

PUSH AX 5

MOV AX,MY DATA •,SET UP SEGMENT REGISTERS

MOV DS, AX
MOV ES, AX
XOR SI,SI 5

XOR D1,D1 ;Zero pointers

?Prompt user to hit any key.

©SCROLL 06,00,16H,4FH,00,00,07 ;Clear the screen

©VDLINE MESSAGE!

©WAITKEY 5Wait for a key to be pressed.

FE: MOV AX,FREQUENCY TABLECS13 ;Set up RAM for sound routine
MOV FREQUENCY,AX 5

MOV AX,DURATION TABLECD13 ;Set duration of note
MOV DURATION,AX

CALL SOUND GEN ;CALL THE SOUND GENERATOR
INC SI ;Point to the next entry
INC SI

INC D1 ?

INC D1

CMP FREQUENCY^TABLE CSl3, 00H 5 If 00 encountered, then
;the value is a stop code

JNE NEXT__NOTE 5Play another note.
RET

ENDP ;End of main procedureSOUNDS

Sound generator procedure. Must have the memory locations
sound, and frequency set with the proper values before
calling this procedure. All registers are saved on entry, and
restored on exit from this routine.

SOUND GEN PROC NEAR

442 8088!IBM PC Assembly Language Programming

Listing 9-2 continued

PUSH

PUSH

PUSH

PUSH

MOV

IN

PUSH

CLI

GENERATE:

OUT

GEN_.COUNT: MOV
FREQ OUT:

OR

OUT

MOV

FREQ.OUT^E:

DEC

JNZ

POP

OUT

ST I

POP

POP

POP

POP

RET

SOUND GEN

AX
BX

CX

DX

BX,DURATION
AL,SPEAKER

AX

AND AL,0FCH
SPEAKER, AL
CX,FREQUENCY
LOOP FREQ OUT

AL,03H
SPEAKER, AL
CX,FREQUENCY
LOOP FREQ^OUT^E

BX

GENERATE

AX

SPEAKER, AL

DX

CX

BX

AX

ENDP

;Save registers

;Set UD duration value
;Get current value and
;save it for later.

5
;Disable interruots
;Reset bit 1 & 0 of PPI

:Defines inner loop count

; Inner delay looo = 10 rns
;Turn soeaker off.

;Keep it off for a while
;Looo value = 10 ms.

;Decrement outer Iood count
;If not done, repeat sequence
5Get old value of the port
;Restore original oort values
;Restore interrupts
;Restore registers

;Return to caller
;End of this procedure

MY^CODE ENDS
END BEGIN SOUND

;End of segment
;Define program entry point

Appendix D 443

Listing 10-1
DLOAD.ASM

60, 132

TITLE DLOAD.ASM

SuBTTL FILE DOUlNLOAD EXAMPLE

.XLIST

INCLUDE B:DOSEQU-EQy

.list

IFl

INCLUDE B:MACFLE.MAC
END IF

- **

;File download examDle
;By: Gary A. Shade
;Date: 07-10-84

;Last Uodated: 03-07-85

5(c) All riohts reserved-
sThis oroDram will seauent ial 1 v v^ead a text file from disk.
:This orocram will work with MSDOS £.0.
sit is to be used in con.iunction with
;the telecornrnunicat ions oroDram module: COMM. ASM. The orocram
srnodule here routes all disk outout to the TX BUFFER defined in
:the telecom module.

.-See the external list for a list of the labels and rnessaoes whicn
5 must be defined int he telecornrnunicat ions module as PUBLIC.

5The procedure terminates when an end of file character is
5encountered (HEX lAH) when readino from the disk file.

EXTRN DISK BUFFER^S:BYTE, TX_BUFFER^IN:WORD, TX._BUFFER^.OUT:WORD
EXTRN TX_CHARSs BYTE,TX^BUFFER:BYTE
EXTRN SYSTEM^STATUS^SsBYTE,FILE__HANDLE_S:WORD,MESSAGE17sBYTE
EXTRN MESSAGE£0:BYTE, MESSAGE4E'sBYTE
EXTRN MESSAGE41sBYTE.MAX CHARS:BYTE

EXTRN KBUFFER:BYTE,CHARS,TYPED:BYTE
EXTRN KBDBUFFERrBYTE,MESSAGE£0:BYTE
EXTRN MESSAGE45:BYTE,MESSAGE46:BYTE,MESSAGE44:BYTE
EXTRN MESSAGE47:BYTE

PUBLIC START,TX,.FILE

MY CODE SEGMENT PARA PUBLIC 'CODE'

444 80881IBM PC Assembly Language Programming

Listing 10-1 continued

STPRT TX FILE

STfiRT 1:

PROC FAR

ASSUME CS:MY CODE

TEST SYSTEM__STATUS_^S, 10000000B ;See if send bit
;already set.
:Skio file name fetch

sand ooen routine if it

; is.

JZ START £

JMP READ FILE

START £;

MOV TX BUFFER INL0

MOV TX BUFFER OUT,0

MOV TX CHARS,0

sReset tx buffer dointers

eSCRGLL 06,00,18H, 4FH,00, 00,07
0VDLINE MESSAGE17

@CRLF

MOV MAX CHARS,40D

GET.NAME:
C-KBDLINE

XOR B

G N £s

KBUFFER

H,BH

MOV

MOV

BL,CHARS_TYPED
KBDBUFFERCBXl,00H

©OPEN FILE 2 KBDBUFFER,00H
JNC G N_£
JMP OPEN ERROR

MOV FILE.HANDLERS,AX

:Clear the screen

sAsk for the filename

sGo to the next line.

;15 Characters maximum

sas in BsTESTFILE.TXT<CR>

sGet the filename.

sZero hinh order of BX

:register since the
soffset to the first char

styoed is zero.

!Terminate ASCII filename

swith a zero (NUL) byte,
sMacro call to ooen file

sSkiD if no errors

sif the carry is set then
; File ooen error

sSave the file handle

SET UP:

©SET^DTA DISK_BUhFER_S sSet the Disk transfer
;address

OR SYSTEM..STATUS_S, 10000000B sSet high bit to
;indicate file ooen for

;readino.

READ RECORD:

@CRLF

©VDLINE MESSAGE£0 {File ooen rnessaoe

READ FILE:

MOV DL,0FFH

0CON_IO
JZ R F 0

:See if a character is

;ready

:Z flag set if char, not
:ready

Appendix D 445

R F

JMP

CMP

JZ

JMP

EOF FOUND

TX CHftRS,®

R F 1

EXIT

R F l!

C-READ^FILE £ FILE HPNDLE S, DISK
jc reSd error

CMP

JNZ

JMP

READ ERROR:

CMP

ftX,00H

CONTINUE

EOF FOUND

fiL,05H

CHK HftNDLEJNZ

ACCESS_DENIED:
C-CRLF

eVDLINE MESSfiGE45

C-CRLF

JMP SHORT CONT ERROR

CHK^HQNDLE:
CMP AL,06H

CONT ERRORJNZ

C-CRLF

C-VDLINE MESSAGEAl

C-CRLF

CONT ERROR:

JMP

CONTINUE

C_l:

C 2:

MOV

LEft

LEA

CLD

REP

MOV

MOV

MOV

JMP

EOF„FOUND

CX, AX

SI,DISK_BUFFER^S

DI,TX^.BUFFER

MOVSB

TX^CHARS,AL

TX_BUFFER_^IN,0
TX^BUFFER^OUT,0
EXIT 2

OPEN ERROR:

CMP AX,02H
JNZ 0_E_1
eCRLF

©VDLINE MESSAGE42

eCRLF

JMP EXIT 2

:tlse abort if a key was
;Dressed

:Are all chars transmitted?

;If not then return

;without reading-

„BUFFER„S.255D
:If carry set then a

:read error

:If zero then EOF

:Else continue

;If AL = 05 then
:ACCESS DENIED

:Take action-

:New 1i ne

:Access denied

:If AL = 08 then

;invalid file handle

:If not then continue

:Invalid handle

:Number of bytes to move

:Move from disk buffer to

;transmit buffer.

;Set for auto inc-

;Set the number of

:characters in the buffer

;Zero oointers

:File not found?

:N0? Then continue

446 8088!IBM PC Assembly Language Programming

Listing 10-1 continued

0. E 1:

0 E 2;

0 E 3:

CMP AX,04H

JNZ 0^E_2
C-CRLF

eVDLINE MESSAGE44

C-CRLF

JMP EXIT^.2

CMP AX,05H
JNZ 0^E_3
C-CRLF

eVDLINE MESSAGE45

C-CRLF

JMP EXIT^a

CMP AX,12H
JNZ 0^E_4
eCRLF

©VDLINE MESSAGE4&

C-CRLF

JMP EXIT^a

C-CRLF

©VDLINE MESSAGE47

C-CRLF

JMP EXIT £

0 E 4:

EOF FOUND:

C-CRLF

eVDLINE MESSAGE42

@CRLF

PND

MOV

MOV

MOV

:Too many ooen files

:Access denied

:Invalid access code?

;Else undefined error

:Undefined error trao-

: Disc lay end of oroararn
:me5saDe.

SYSTEM^STATUS^S,00111lllB :Reset bit 7 & 6 to
;show that

TX^BUFFER_.IN,0
TX BUFFER^OUT,0
TX CHARS,0

EXIT:

EXIT £:

RET

START TX FILE

C-CLOSE FILE 2 FILE HANDLE S

ENDP

5transmissions are
;inact ive.

;Zero buffer oointers

:Close the file.

:End of this procedure

**

MY CODE ENDS

END START^TX FILE

Appendix D 447

Listing 10-2
COMM.ASM

PAGE 60,132

TITLE CoMunicat ions prograo
SUBTTL By: Gary A. Shade

.JILIST

IHGLUI^ B:DOSEQU.EQU

.LIST

IFl

INCLUDE BINACFLE.NAC

mi?

JCooaunicat Ions Nodule

.'Created 08-03-84

;By; Gary A. Shade
MC) 1984 By Gary A. Shade, All rights reserved.
;Last Revised: 2-25-85

:This prograe allows autonatic buffering of incoaing data to
:disk and to the printer. It uses XON/XOFF (DCl and DC3)

:handshake protocols for flow control.
.'After initializing the coMuni cat ions paraaeters, the
:prograa will then allow the opening of a disk file via ALT - D.
;The printer can be toggled on and off via a control-R
;and control-T sequence. To exit the prograa use ALT - Z.
;To see a 'help' aenu use ALT - H.
:To transait a file use ALT - B.

PUBLIC DISK_BUFFS?.S
PUBLIC TX.BUFFrajM
PUBLIC TX.BUFFER.OUT
PUBLIC TX CHARS

PUBLIC TX.BUFFER
PUBLIC SYSTEH,STATUS.S
PUBLIC FILE HANDLERS
PUBLIC HESS^EIT
PUBLIC NESSAGE20

PUBLIC NESSAGE42

PIM.IC NESSAGE41

448 80881IBM PC Assembly Language Programming

Listing 10-2 continued

PUBLIC NESSAGC45

PUBLIC lfESSAGE46

PUBLIC IfESSAGE44

PUBLIC)IESSAGE47

PUBLIC KBIFTCR

PUBLIC NAX.CHARS
PUBLIC CHARS TYPED

PUBLIC KBDBU^

EXTRN START TX FILEiFAR

This proQrai lodule will allow the user to configure the
coeeunicat ions channel (serial I/O), as to baud rate, parity,

and other paraeeters.

To set the coMunicat ions paraeeters set AL to the desired
bit pattern as follows:
b7 bh bS b4 b3 b2 bl bO

-> Word length: 0 0 = 5 bits
0 1 = A bits

-> Stop bits:

-> Par i ty :

10 = 7 bits

1 1=8 bits

1 stop bit.

2 stop bits.

= No parity

0

1

0

0 1 = Odd

1 0 = No Parity

1 1 = Even

> Baud Rate:

0 0 0 = 110 Baud

0 0 1 s 150 Baud

0 1 0 = 300 Baud

0 1 1 = 600 Baud

1 0 0 = 1200 Baud

1 0 1 = 2400 Baud

1 1 0 = 4800 Baud

1 1 1 r 9600 Baud

I = If 5 bit word length selected, and b2 = 1, then stop bits
will be 1.5 per word transiitted. (BAUDOT and TTY).
Use BIOS interrupt 14H to set the coeeunicat ions paraeeters.

Vith AH set to function nueber 00

Use BIOS interrupt 14H, Function nueber 01 to transeit a
character.

02 to receive a

character.

And BIOS interrupt 14H, Function nueber 03 to read the
coeeunicat ion's port status.

Appendix D 449

The serial port and iodei status are returned as follows:

Function status is returned in AX es:

AH AL

Line Status ; Modem Status

b7 = Tiie out Carrier detect (CD)

b6 = Transmitter shift register empty Ring Indicator <RI)

b5 = Transmitter holding register is empty Data Set Ready (DSR)

b4 = Break Detect Clear to send (CTS)

b3 = Framing Error Delta CD

b2 = Parity error Trailing edge RI
bl = Overrun error Delta DSR

bO = Data Ready Delta CTS

tmmmmmmmmmmmnmtmmmmmmmm

Define stack segieni

MY STACK

OV

MY STACK

SEGMENT PARA

256 DUP(?)

ENDS

STACK 'STACK'

;256 word stack

immmtmtmmtmtmmtmmmmtmtmtmmmm

;Define the data segient.
MY DATA SEGMENT PARA PUBLIC 'DATA'

msm LABEL

MAX.CHARS
CHARS JYPED
KBDBU^

BYTE

DB

OB

DB

42D ;42 Characters laxiiui

? ̂ Characters entered

42D DUP(OO) ;32 byte buffer

Define iessaqes used to proipt user etc.
MESSAGEl 'Enter the desired Baud Rate ','i'

MESSAGE2 DB M!) - !!0 Baud (2) = !50 Baud '

•' DB

MESSAGES DB '<3) 300 Baud <4) = 600 Baud '

DB 't'

MESSAGE4 DB '(5) = !200 Baud (6) ̂ 2400 Baud

MESSAGES DB '(?) = 4800 Baud (8) ̂ 9600 Baud '1'

MESSAGC6 DB 'Use parity? (Y/N) ',

MESSAGE? DB '(!) Even (2) Odd

MESSAGES DB 'How many stop bits?
MESSAGE? DB '(!) ! Stop bit (2) ̂ 2 Stop bits'
NESSAGEIO DB 'Nord length?
MESSAGE!! DB '(!) 7Blt5 (2) 8 Bits ','r

MESSAGE!2 DB '15 Bit and 6 bit transmission are not supported)
DB

450 80881IBM PC Assembly Language Programming

Listing 10-2 continued

IIESSAGC13 IB 'CoAiunicaiions port has been initialized '

HESSA6C14 DB 'Teriinal proqrai for IBH PC (c) 1984 Gary Shade'
DB 'I'

HESSAGE15 DB 'Disk error! - Closing file'/t'

lfESSAGC16 DB 'Printer is not selected! Print spooling is off

DB 'f

NESSAGC17 DB 'Please enter the pathnaae for the file ','t'
HESSAGE18 DB 'tXXt Printer is ON «m',0dh,0ah,'$'

NESSAGEi9 DB 'XXXX Printer is OFF ««',0dh,0ah,'f

NESSAGE20 DB 'XXXX Disk file is now open ,0dh,0ah,'f

NESSAGE2i OB 'XXXX Disk file is now closed ****',0dh,0ah,'i'

NESSAGE30 DB 'Local echo all characters transeitted? (Y/N> ','1'

NESSAGE31 OB 'Do a Carriage return linefeed on receipt of a CR? '
DB MY/N)','f

NESSAGE41 DB 'XX Invalid File Handle - Returning to ter#inal aode '

DB ODH,OAH,'f

NESSAGE42 DB 'End of File found - Returning to teriinal iode '
DB ODH,OAH,'f

NESSAGE44 DB 'Too iany files open - returning to teriinal iode '
DB 0DH,0AH,07H,'f

NESSAGE45 DB 'File Access Denied! ',ODH,OAH,'f

KESSAGE46 DB 'Invalid access code ',ODH,OAH,'l'

MESSAGE47 DB 'Undefined error code ',ODH,OAH,'f

HHESi DB 'ALT - B = Transiit a disk file'

DB ODH,OAH,'f

HNES2 DB 'ALT - D = Open disk file for spooling'

DB ODH,OAH,'f

HnES3 DB 'ALT - H = Display help ienu'

DB ODH,OAH/f

HHES4 DB 'ALT - 2 = Exit the prograi'

DB ODH,OAH,'f

HMES5 DB 'DC1/DC3 = XON/XOFF',Odh,Oah

DB 'DC2/DC4 = Printer ON/OFF',0dh,0ah
db 'i'

HHES6 DB 'ALT - A = Display directory'
DB ODH,OAH,'f

HMES7 DB 'ALT - X = XMODQ! file transfer'

DB ODH,OAHf('

HHES8 DB 'ALT - S = Set/Change teriinal characteristics'
DB ODH,OAH,'f

EXIT_FLAG DB 00 ;Flag to signal an end to the prograi
;If set to 01 then return to HSDOS

RS_IN_POINT ON 00 Input pointer to the RS232 buffer

RS.OUT.POINT DV 00 ;Output pointer to the RS232 buffer
RS CHARS DV 00 .!Nuiber of characters in RS buffer

PRINTERJN DV 00 ;Printer buffer input pointer

PRINTER OUT DV 00 .:Printer buffer output pointer

PRINTER CHARS DB 00 .:Nuiber of characters in buffer

DISK IN DV 00 ;POINTER INTO THE DISK BUFFER

Appendix D 451

TX^CHARS DB 00

TX BUFFER_OUT D¥ 00

TX^BUFFERJN DV 00

MIN DB 00

MAX DB 00

DISK STATUS DB 00

SYSTEM STATUS DB 00

.:Characier5 in buffer

.'Buffer output pointer

;Buffer input pointer

;HiniiUA value used in NINHAX routine.

;Maxisue value used by einnax routine.

;If zero then ve are DCi'd for disk I/O.

;If non-zero then ve have sent a DC3 to the

;other tereinal to indicate we are near or

;at a buffer full condition.

;Bit napped status as follovs

bO = printer status: 0 = printer off
1 = printer on

bl = disk spooler; 0 = off, 1 = on

b2 = printer flov control: 0 = ve are not DC3'd
1 = we are 0C3'd

b3 = Receive DC3 status: 0 = we are not DC3'd

1 = ve are 0C3'd

b4 = receive buffer status 0 = we are not DC3'd

1 = we are I)C3'd

b5 = self sent DC3 0 = we have not sent a DC3

1 = we have sent a DC3 fron the keyboard.

bb ' local echo of characters transnitted. (True half duplex)

if this bit - 1 then echo.

b7 ~ newline function - on receipt of a carriage return ODH,
do a carriage return/1inefeed conbination.
(Only if this bit is set. If not do only)

SYSTEH^STATUS.S DB
(X)NFIGURATION DB

FILC.HANDLE DV

FILE.HANDLE.S D¥

DISK BUFFER S DB 512 DUP(O)

;Down load status byte

.:Conf iguration for RS-232
:File handle of an open file

:stored here. (Receive)

;File handle of file

;being transiitted here.
:Buffer for transiit.

RS.BUFFER DB
PRINTER BUFFER DB

DISK.BU^ DB
TX BUFFER DB

07FFH DUP(O)

256 DUP(O)

512 DUP(O)

256 DUP(O)

;RS-232 buffer

;Printer buffer

;Disk buffer

;Transiit buffer

OLD VECTOR DD ;&torage for old RS232
interrupt vector

452 8088!IBM PC Assembly Language Programming

Listing 10-2 continued

HY.DATA ENDS

;Define equates used in this file.

DCl EQU ilH ;ASCII CONTROLS

DC2 EQU i2H

DC3 EQU i3H

DC4 EQU 14H

SOH EQU OIH

SECTOR EQU 512 ;512 byte sectors
SERIAL.PORT EQU 00 ;Use serial port 1

itttttt Dart reqister absolute addresses.
;THR and RHR selected for output and input if bit 7 of the

;control reqister - 0.

;THR is output and RHR is input.

THR EQU 03F8H ;Transeitter Holdinq Reqister
;for the UART

RHR EQU 03F8H .'Receiver Holdinq Reqister

;BAUD.RATE.LSB, and BAUD.RATE.NSB are selected if bit 7
;of the control reqister = 1
;Both are output ports

.'Baud rate MSB LSB

;50 09H OOH

;75 06H OOH

;110 04H 17H

;134.5 03H 59H

;150 03H OOH

;300 OIH BOH

;600 OOH OCOH

;i200 OOH 60H

;1800 OOH 40H

;2000 OOH 03AH

;2400 OOH 20H

;3600 OOH i8H

:4800 OOH 18H

;7200 OOH iOH

;9600 OOH OCH

BAUD^RATE.LSB EQU 03F8H

BAUD RATE MSB EQU 03F9H

;Baud rate divisor. Selected

of baud rate divisor.

;The Interrupt task reqister is selected if bit 7 of the control
treqister ^ o. Otherwise BAUD^RATE MSB above is selected.
;Bits 7-4 iust be 2ero.

;Bit 3 - Interrupt on delta soden status

;Bit 2 = Interrupt on break received, or recieve error

Appendix D 453

;Bit 1 = Interrupt vHen THR is eipty.
;Bit 0 - Interrupt on received character ready.
Mf any of the bits above are set to one, the interrupt type is enabled,

zero bit eeans the interrupt type is disabled.

INTQffiUPT.ENABLC EQU 03F9H ;Interrupt task register

The Interrupt ID register is a read only register and contains
the source of the interrupt.

If bit 0 s 1 then there is an interrupt pending.
Bits 1 and 2 contain the interrupt type, coded as folloes:
Bit 2 1

0 0 Delta Hodee Status

0 1 THR eepty
1 0 RHR full

1 i Rx error, or break detected

INTERRUPTJD EQU 03FAH interrupt source

The l ine control register specifies the paraeeters to be used
in the coMunications channel.

Nord Length
bits 1 0

0 0 5 bit vord length

0 1 6 bit word length
1 0 7 bit word length

1 1 8 bit word length

Stop bits.

bit 2 - 0 - one stop bit
= 1 * two stop bits if word length = 6, 7, or 8 bits.

one and one-half stop bits if word length is - 5 bits.

Parity

bit 3 - 0 = No parity (disabled)

1 s Parity enabled

Parity type

bit 4 = 0 = odd parity
1 - even parity

Force parity bit

bit 5 = 1 = Force spacing parity (bit 3 iust 1 and b4 -1)
Force iarking parity (bit 3 oust - 1 and b4 -0)

Transoit break

bit 6 s 1 = Force break on TX line

0 - disable break on TX line

454 80881IBM PC Assembly Language Programming

Listing 10-2 continued

bit 7 = 1 = Access for baud rate divisor latch

0 = Acess for THR and Interrupt enable register

LINE.CONTROL EQU 03FBH

The iodee control register is bit iapped as follows:
bits 7 - 5 aust be a zero

bit 4 = 1 = Loop back, diagnostic aode
bit 3 1 = Auxiliary user defined output,

bit 2 = 1 = Auxiliary user defined output,
bit 1 = 1 = RTS = logic 0 (Space = circuit on)

0 = RTS = logic 1 (Mark = circuit off)
bit 0 = 1 = DTR = locic 0

0 = DTR = logic 1

MODEM^CONTROL EQU 03FCH

;The line status register returns the status of the coaaunicat ions

.tchannel as depicted in the discussion earlier, about BIOS
;call 14H which returns the status of both the aodea and line in AX.

;The line status port, contains only the line status as depicted

;in the previous discussion.

;The aodea status register contains only the inforaation

;pertinent to the aodea status (also discussed previously).

LINE STATUS EQU 03FDH

MODEM.STATUS EQU 03FEH

)%%%%%%%%%%%%%%%

;8259 INTERRUPT CONTROL PORTS.

INT.CONTROL EQU 21H interrupt aask register
INT^COMMAND EQU 20H .:Goaaand register

•tmmmmmtmmmmmtmmmmmmttmmmmm

^Define code segaent. The procedure HAIN^PROG, is the aain prograa
;loop used for this coaaunicat ions prograa.
;It will set a new interrupt vector for receiver interrupts.

:Use NSDOS function calls wherever possible and BIOS routines

;for coaaunicat ions, and graphic control.

MY CODE SEGMENT PARA PUBLIC 'CODE'

ASSUME cs;my^code,ds;my_data,es;my.data,ss:my.stack

TELE^COMM PROC FAR
START:

PUSH DS ;Save segaent
XOR AX,AX ;Save returning offset
PUSH AX

Appendix D 455

MOV

MOV

AX,MY,DATA
DS^AX

JSet up segaeni registers

MOV

CALL

ES,AX

INIT ;lnliia1lze coaaunicat ions port

MAIN LOOP:

CALL RECEIVE ;See if any characters in RX buffer
CALL KEYBOARD :See if there are.any characters

;to transait.

CALL TX RS232 :Se if we should send any characters

CMP EXiT_FLAG,01H ;Leave the prograa?

J2 EXIT .;lf = 01 then leave

CALL PRINTER.OUT.l :Send to the printer routine

JMP MAIN LOOP ;Go check aain loop.

EXIT;

;disable RS232 interrupts. Reset bit 3 of the aodea status register
m AX,AX

MOV DX,HODQI.CONTROL
OUT DX,AL

nmm

disable RS232 interrupts via the UART interrupt enable register

MOV DX,INTSiRUPT.0IABLE
OUT DX,AL

;Mask coaaunicat ions interrupts by writing to the 8259's interrupt
;aask register.

MOV AL,i0i01000B :Leave disk, tiaer, keyboard,
;and graphics bd., interrupts
;enabled.

MOV DX,INT.CONTROL
OUT DX,AL

^Establish old RS232 interrupt vector before leaving.
PUSH DS ;Save vector

MOV DX,¥ORD PTR OLD VECTOR ;Get the old offset
MOV AX,»ORD PTR OLD.VECTOR+2 ;Set up new vector
MOV DS,AX ;Get old vector segaent

MOV AL,OCH ;CONM. interrupts

MOV AH,F.SET_INT.VECTOR
INT 21H

POP DS ;Get old vector

RET

TELE C^HM ENDP

;This procedure will transait characters froa the TX_,BUFFER.

456 80881IBM PC Assembly Language Programming

Listing 10-2 continued

2 PROG NEAR

GHP TX_GHARS,OOH ;If there are no characters

;to transnit, exit this

;procedure.

JZ EXIT TX RS232 ;

HOV DX,SERlk.PORT ;Get port nuiber
^RS.STATUS ;Get the RS232 status

TEST AH,00100000B ;ls the THR enpty?
JZ EXITJX_RS232 .'If not, then leave this

;procedure

TEST SYSTEH.STATUS,OOiliiOOB ;See if we are DG3'd by the

6 s 0;

;keyboardi printer, or receive
;buffer fuH.

JNZ EXITJX_RS232 ;lf any are set, then exit-
;do not send.

MOV SI,TX_BUFFER,OUT ;Get the pointer into the buffer
MOV AL,BYTE PTR fx.BUFFERCSIl ;Get the character froe

;the buffer.

GHP AL,DC3 ;Are ve sendino a DG3?

JNZ G.S.O ;No, then check for DCl
OR SYSTEH.STATUS,0D100000B ;Set bit 5 to indicate we sent

;a DC3 froo the keyboard.

JHP SHORT GODSEND iSend the DC3

GHP AL,1AH ;End of file qarbaqe durinq
.'S~record downloads.

JNZ G S,0 1
GALL TXili
JNP EXITJX.RS232

GA0J5

GHP AL,DC1 ;A DGl?

JNZ GO_SQ«)

AND SYSTEN.STATUS,liOiiiliB ;Reset bit 5 to clear kybd DC3

GODSEND:
PUSH AX ;Save character

NOV DX,THR ;Transiitter holding register
;of UART

OUT DX,AL ;Send the character

POP OX ;Retrieve character

PUSH OX

eghojest;
TEST SYSTEH_STATUS,01000000B ;If bit A is reset, then do not

;echo character.

JZ N0_EGH0_3 ;IFZ then skip display.
GHP DL,11H "
JZ NO.EGHO 3

GHP DL,13H

Appendix D 457

NO E T;

iZ

CHP

INZ

HOV

NO.ECHOJ

DLiODH

N0^EJ_2
DL,0^

«CHARDSP

HOV DL,ODH

E TJ:

CMP DL,OAH

JZ NO_EGHOJ

#GHARDSP

;Do not display pacing chars*

;If char = OR and the

;ldca1 echo option is on,

;do a 1inefeed.

;If not, then skip.

;If char = LF and local echo

;is on, then skip.

NO EGHOJ;
POP

ING

AND

DEC

EXItTX.RS232;
RET

TX.GLR;
MOV

MOV

MOV

RET

TX RS232

AX

TX.BUFFER^OUT
TX.BUFFS?.OUT,OOFFH
TX CHARS

TX,GHARS,0
TX,BUFFERJN,0
TX BUFFS? OUT,0

ENDP

;Retrieve character

;Inc. the pointer
'Keep < = 25A bytes
jDecreeent nueber of chars.

;in the buffer.

;Zero pointers to buffer

iThis procedure will fetch a character froe the keyboard if one is
;ready. If one is not, the routine will return to the eain prograe.
KEYBOARD PROG NEAR

TEST SYSTEM.STATUS_S,11111111B ;If non-iero then go read
;froi disk file.

;If not set, then read keys.JZ mj
GALL START TX.FILE ;Read froe disk.
IMP DONE KEYBOARD lixM.

KEY 2;

KEY 3;

MO<f DL,OFFH
BOON 10

JNZ KEY_3
JMP DONE KEYBOARD Hf ZF ̂ 1 then no character

;Select keyboard read.

;See if a character is ready

CMP

JNE

AL,OOH

K 1

;lf 00 then EXTENDED character

GHES(.EXTEND:
BOON 10 ;Get the keyboard extended scan code

458 80881IBM PC Assembly Language Programming

Listing 10-2 continued

CMP AL,4dD ;a]i-b = read froa disk

JNZ C.K.2 ;90 check next code
CALL STAW.TX.FILE
JHP DONE KEYBOARD

E K 2;

E K 3:

E K 4;

K i:

K 0:

K 2;

CMP AL,32D ;lf ALT-D then enable/disable disk spool.
JNE E,K^3 ^Continue if not.
CALL TURN.DISK ON.OFF ;Go open file.
JHP SHORT DOHE.KEYBOARD ;

CMP AL,44D ;lf alt - i then exit proqraa.
JNE E,KJ
NOV EXIT_FLAG,01 ;Set flag to leave prograa
JHP SHORT DONE.KEYBOARD

CMP ALr35D ;Help coanand?

JNE DONE^KEYBOARD .Hf not then leave
CALL HELP ;Otherwise display coaaands
JNP SHORT DONE KEYBOARD

CMP AL,X1 ;Send a DCl?

JNZ K.O ;Go if not.

TEST SYSTQ!^STATUS,00100000B ;Are we DC3'd?
JZ K,0 ;If not then go to next portion of code.
HOV DX,THR ;Transait the control

OUT DX^AL ;Send it.

AM) SYSTQf.STATUSdlOiiiilB ;Reset the keyboard DC3 flag bit
JHP DONE.KEYBOARD ;Do not put into buffer.

CMP AL,DC2 ;Turn printer on?

JNZ K.2 ;If not then continue.

CALL PRINTER.ON ;Go turn the printer on.

;Send this character to the coaa buffer.

JHP DONE.KEYBOARD ;Do not store character in TX buffer

CMP AL,DC4 ;See if DC4 = turn printer off

JNZ KJ
CALL PRINT0?_OFF ;Go turn the printer off.
JHP DONE KEYBOARD ;Do not store in buffer

K.4;

STUFF.BUFFER;
HOV SI,TX.BUFFERJN ;Put the characxter in AL into

;the transait buffer.

MOV TX_BUFFERCSI3,AL ;
INC TX BUFFER IN Jlncreaent the pointer
AND TXIbUFFERJN,OOFFH ;Keep the buffer circular

Appendix D 459

INC TX_CHARS 'and nuaber of characters in the buffer.
WOV DL,AL ;See if we need to put the character

Mn the print buffer or disk buffer

TEST SYSTEH,STATUS,01000000B ;lf no echo, then skip
JZ DONE^KEYBOARD ;Skip if no echo.
CALL PRINTffiJNJ
GALL DISKJN.l

done.keyboard;
RET

HELP;

^SCROLL 06,00,18H,4FH,00,00,07

BVDLINE HNESi ;Display help aessages-ALT B
BmiNE HMES2 ;ALT-D

«VDLINE HMES3 ;ALT-H

BVDLINE HHES4 ;ALT-Z

BVDLINE HIIES5 ;DG1,DC2,DC3,DC4

RET

KEYBOARD ENDP

tmtmmtmmttmttmmmmttmmmnmmmmmm

This routine will set the printer status to on for printer spooling

PRINTER.ON PROG NEAR
PUSH AX -Save character

OR SYSTai.STATUS,00000001B ;Set bO to 1 to indicate
;the printer is on.

eCRLF

BVILINE MESSAGE18 ^Display printer on aessage

POP AX

RET

PRINTER ON ENDP
:tm%t%mnmmmmtmnmmtmmmmmmtmmmm

PRINTffl^OFF PROG NEAR
PUSH AX ^Save character

AND SYSTEH_STATUS,OFEH ;Reset systea status
8GRLF

BVDLINE NESSAGE19 ;Sho» printer is off

POP AX jRestore character

RET -Bit 0 to indicate the printer
;spoo1ing is off.

PRINTER OFF ENDP
A' tmtittmmmmmtmmmmtmmmmmmtmmmt
;This procedure will toggle the disk spooling feature.
;If the procedure is off, it will ask for the file naae, and
.:open a buffer for character routing to disk.
;If the feature has already been selected, the procedure will
;turn the spooling feature off, and close the file.
;Assu«es a file handle to be stored in aeaory location

; TILE HANDLE'.

460 80881IBM PC Assembly Language Programming

Listing 10-2 continued

TURN DISK ON OFF PROC NEAR

TEST SYSTEN.STATUS^OOOOOOIOB ;If bl = 1 then disk is on
;so turn it off and close file.

JZ TDISK^i ;Zero? then turn it on.
JNP TURN DISK OFF ;6o turn the disk off.

TDISK l;

HOV DL,DC3 ;Send a DC3 to the other teroinal

;suspend coiaunicat ions for a aooent.

;Go to the next line

;Ask for the filenaoe

;6et the pathnaoe.

;Zero hiqh order half of BX reqister.
/'Offset to last char typed

KBDBUFFER[BX],OOH ;Teriinate uith a zero

DX,KBDBUFFER ;Point to file naae

CXiOOH ;Read write access

AH,F,CREATE FILE 2
21H

BCRLF

9VDLINE HESSAGE17

BKBDLINE KBUFFER

XOR BH^BH

NOV BL,CHARS TYP0)

HOV

LEA

HOV

HOV

INT

JNC GOOD^OP^ING ;No carry oeans file open and
;AX holds the file handle.

BCRLF

BVDLINE HESSAGE15 ^Display error eessaqe.
BCRLF

JHP DONE.DISK ;All done
GOOD.QPENING:

rm FILE.HANDLE,AX ;Save the file handle
BSET.DTA DISK.BUFFER ;Set the DTA
OR SYSTEH.STATUS,OOOOOOiOB ;Set status to disk on.
BCRLF

BVDLINE HESSAGE20 ;Show the file is open
JHP DONE.DISK

TURN_DISK.OFF;

AND SYSTEH.STATUS,1111U01B ;Reset bl to indicate disk
;spoolinq is off.

BVDLINE HESSAGE2i

LEA

HOV

HOV

HOV

INT

DX,DISK.BUFF0?

CX,DISK,IN

BX,FILE.HANDLE
ah,f,nrIte file,
21H

BCL0^,FILE,2 FILE HANDLE
JNC DONE.DISK
BVDLINE HESS^IS

DONE.DISK;
LEA SI,KBI»UFFER

HOV OX,32

;P

^Display file closed eessaqe
/'Write reeaininq buffer
;to disk.

;Nueber of characters to write.

;Get the file handle

;HSDOS function code

;HSDOS function interrupt.

/'Close the file

;Co if no errors

;Display error nessaqe.

oint to the keyboard buffer

;Clear the pathnaee fore the buffer

Appendix D 461

BYTE PTR CSI3,0 ;C1ear the buffer

SI ;Potnt to next location to clear

CLEAR mJFFER

GLEAR.KBUFm):
NOV

IRC

LOOP

RET

TURN DISK.ON.OFF DIDP

M' tnmmtmmmmtmmmtttnmtmttmmmttmmm

;Thi5 procedure is the recive handler. It will process characters
;received froi RS-232 interrupts vhich vere placed in the RS-BUFFER.
;The procedure is executed at task tiee and not at interrupt tiee.

RECEIVE PROC

CNP

JNE

JHP

NEAR

RS.CHARS,00

GET BUFF CHAR

DONE RECEIVE

;lf RS.CHARS = 0 then return, there
;are no characters in the buffer

;Exit if zero

GET BUFF CHAR;

G B 2;

NOV SI,RS.OUT.POINT ;Point to the next character to

;reiove

NOV DL,RS.BUFF0?CSI3 ;Get the character

AND DL,OiilUiiB ;Reset bit 8 - display only ASCII

QVP DL,iAH ;Is it an ASCII sub?

JNZ G^B.2 ;lf not then continue

NOV DL,'?' ;Use ? character

;to signify an error

IWP SHORT DSP.CHAR! ;Go display the character

CNP DL,20H ^Control or character?

JAE DSP.CHAR ^Character then go display it.

CNP DL,ODH ;Carriage return?

JZ CRLF ;Do a carriage return linefeed
CNP DL,07H ;rax?

JZ DSP.CHAR ;Go display

CNP DL,08H ;BACKSPACE?

JZ DSP.CHAR

CNP DL,09H ;TAB?

JZ DSP.CHAR

CNP DL,OBH ;VERTICAL TAB?

JZ DSP.CHAR ;If so, display the control

CNP DL,ilH ;DCi?

JZ TX.TOGGLE.DCl ;Go toggle the TX control

CNP DL,i3H ;DC3?

JZ TX TOGGLE DC3 ;Toggle the control

JNP G B 3.1 Hgnore other controls

DSP CHAR:

eCHARDSP ;Disp1ay the character in IN.

G B 3:

462 8088!IBM PC Assembly Language Programming

Listing 10-2 continued

CALL PRINTER IN 1

GALL DISK IN 1

G B 3 l:

;See if ve should place the
;character into the printer buffer

;See if ve should place the
/'character in the disk buffer.

GRLF;

ING RS.OUT.POINT
AND RS OUT POINT,07FFH
DEC RS.GHARS

JMP SHORT DONE.REGEIVE

TEST SYSTEH.STATUS,80H

J2 GR.ONLY
HOV DL,OAH

8(»ARDSP

GALL PRINTER IN 1

GR ONLY;

GAa DISKJNJ

NOV DL,ODH

8GHARDSP

;Increeent pointer

;Keep circular
;Decrenent nueber of characters

;ln the buffer.

;And exit

;If bit 7 is set then display

;new line.

;If not, then display only the GR

;Do a LINEFEED (OA HEX)

^Display it.

;&ee if ve should place the
;character into the printer buffer

;See if ve should place the

;Nov the carriage return

;Increeent pointersJHP SHORT G_BJ
TXJOGGLE.DGl;

Afro SYSTEH.STATUS,11110111B .iReset bit 3 to reflect

^receiving a DGl

JHP SHORT G_B 3 1
TX_T0GGLE_DG3:

OR SYSTEHJTATUS,00001000B ;Set bit 3 to reflect receiving
;DG3

JHP SHORT G B 3 1

D(»IE_REGEIVE;
RET

RECEIVE ENDP

This procedure vill place the character in DL into the printer buffer
if the printer is enabled.

PRINTH?.IN_1
PU^
pm

PUSH

TEST

JZ

HOV

HOV

ING

AND

PROG NEAR

SI

DX

AX

SYSTEH.STATUS,01H
EXIT_PRINTER_IN
SI,PRINTS?^ lii
PRINTER.BU^CSn,DL
PRINTERJN
PRINTER IN,OOFFH

;Save SI

;Saye DX

;See if the printer is on

;If not, then exit this procedure.
;Get the pointer

;Put character in the printer buffer

;Inc pointer

;Keep circular

Appendix D 463

INC PRINTD?_CHARS Active chars in buffer incremented.

CHP PRINTER_CHARS,200 .:lf chars > 200 then halt until

;buffer clears

JBE EXIT^PRINTERJN .;If not see exit the routine

MOV AL,DC3 ;Send a DCS to halt transmissions

MOV DX,THR .;Send the control

OUT DX^AL

OR SYSTEH.STATUS,04H ;Set bit 2, to show printer DCS'd

EXIT.PRINTERJN;
POP AX

POP OX ;Retrieve registers
I?OP SI

RET

PRINTER IN 1 QIDP
:.%nttmmmnmt%%mmnmmtmmmmmnummm

;Thj5 procedure will place the character in DL into the disk buffer
;if the buffer is opened. If not, the routine is terminated.
.:The routine will perfori a write to disk if the character count
;ln the buffer equals one 512 byte sector.
;If there is an error, the routine will report such, and close

;the file.

DISK INJ PROC NEAR

PUSH SI ;Save registers

PUSH AX

PUSH DX

PUSH BX

HOV BX,THR ;Use as port address

;to send character to when

;pacing is required.

TEST SYSTEM^STATUS,02H ;See if bit 2 is set

; if non-iero result, then

;disk spooling is on

12 EXIT,DISK_i ;Leave routine

CHP DL,20H ;If less than 20H, do not

.;sehd to disk buffer

JAE GOTO_DISK ;If > = to 20H then skip

control character check.

CHECK.CONTROLS:
CHP DL,OAH :

JZ GOTO DISK tSend to disk

CHP DL,0bH ;CR is ok to send to disk

JZ GOTO_DISK *

CMP DL,OAH ;Backspace is ok.

JZ GOTO^DISK

IMP EXIT.DISKJ ;Any other controls are tossed.

GOTO DISK;

CMP DISK^IN,SECTOR-10 ;Start pacing if near end of buffei

464 80881IBM PC Assembly Language Programming

Listing 10-2 continued

JB CONT^DISKJN
xcHG OX,ex

;keep going oihervise
;Transoitier port address to

;DX, and save character in BL

HOV

OUT

INC

XCHG

GONT.DISK IN;
HOV

HOV

INC

JZ

JHP

DISK VRITE:

DISK

AL,DG3

DX,AL

DISK.STATUS
DX,BX

SI,DISK JN
DISK BU^CSn,DL
DISK IN

CHP DISK IN,SECTOR

DISK.VRITE
^iORT EXIT DISK 1

;Send control character

;Control sent to other teriinal

;Non-2ero byte ieans DC3'd
.'Retrieve character

;G(?t pointer into buffer

.;Save character in buffer

;Incre«ent the nueber of characters

;in the DTA

;lf the characters in buffer are

512 then it is tite to

;«rite a sector to disk.

;Leave routine if the nuiber is below

PUSH DX ;Save registers
PUSH CX

PUSH AX

PUSH BX

LEA DX,DISK BUFFER ;Set up registers for disk write
HOV CX,SECTOR ;5i2^BYTES TO VRITE
HOV AH,F,NRITE.FILE.2 ;HSDOS function code

HOV BX,FILE_HANDLE ' ;File handle of open file

INT 21H ;HSDOS function interrupt
POP BX ;Retrieve registers
POP AX

POP CX

POP DX

INC VRITE DONE .;The write has been perforied

BVDLINE HESSAGE15

BCLO^ FILE 2 FILE HANDLE

;Display disk write error

;Cldse the file.

AND SYSTEH.STATUS,OFDH ;Reset bit 1 to show d

.'access is off.

VRITE.DONE;
HOV DISKJN,0 ;Reset pointer

EXIT.DISK.l;
CHP DISK STATUS,OOH ;If zero then leave

JZ DISK.EXITJ
S0ID.DC1;

XCHG DX,BX .;Get the port address
HOV AL,DC1 ;for the transeitter

OUT DX,AL .'Send the control char

XCHG DX,BX ^Restore character

HOV DISK.STATUS,OOH ;Clear eeiory
DISK.EXITJ;

POP BX

Appendix D 465

;Restore reqisters

FOR DX

POP AX

POP SI

RET

DISK IN 1 ENDP

itttmitmmtmmttttmmmtmtmmmmmmtmmmt
;Thi5 routine will reiove a character froa the printer buffer
;and send it to the printer if the printer option is enabled.
;This routine uses BIOS to send a character to the printer.

;The character to print iust be in AL.

PRINTER.OUTJ
pusii
PUSH

PUSH

TEST

JZ

FROG NEAR

DX

SI ;Save registers

AX

SYST0! STATUS,OOOOOOOIB ;If bit 0 is a 1 then printer is on.
EXIT PRINTER OUT

SPRINTER STATUS

TEST AH,10000000B

JZ

OK CONTINUE:

EXIT PRINTER OUT

;If bO = 0 then off, so leave

;See if the printer is on line
;and ready.
;If the printer is busy then
;skip this routine for now.
;bit 7 = 0 = busy

; 1 = not busy

CMP PRINTER.CHARS,OOH
JZ EXIT.PRINTQi.OUT
MOV SI,PRINTER.0UT
MOV AL,PRINTER.BUFFERCSI3
CMP AL,ODH

JNZ CONT_PRT
SPRINTER OUT B

MOV CX,7000H

G STATI

#PRINTER,STATUS
TEST ^,80H
JNZ CONT_PRT.O
LOOP G.STAT

CONT PRT 0; MOV AL,OAH

;Any in buffer?
;If none in buffer, exit.

;Get out pointer
;Get character

^Carriage return?

;No? Then continue.

;Nait value if busy.

;Nait till printer is ready.
.:lf not ready, then loop.

;0k, do next character

;nait till cx = 0, and try anyway

;Now do the linefeed

CONT^PRT: WPRINTffi.OUT^B

INC PRINTER.OUT
AND PRINTER.OUT,OOFFH
DK PRINTER.CHARS
CMP PRINTQ?.CHARS,100

JB CHK.

EXIT PRINTS? OUT:

POP AX

POP SI

POP DX

P DC3

;BIOS call to send printer

;a character in AL.

;Inc pointer to next character
;Keep circular
;Dec nuaber of characters in buff.

;If less than 100 characters

;go see if we are DC3'd

;Restore registers

466 80881IBM PC Assembly Language Programming

Listing 10-2 continued

RET

CHK,P_DC3;
TEST

JZ

AND

MOV

MOV

OUT

JHP

PRINTER OUT 1 QIDP

SYSTEN^STATUS,00000100B ;See if ve were DC3'd
EXIT PRINTER OUT ;No, then exit routine.

SYSTra^STATUilllllOllB .'Reset bit 2 clearing DC3
AL^DCl ;Send a DCl

DXJHR .!

DX,AL

EXIT.PRINTER OUT ;Exit this routine.

;This procedure is the RS232 interrupt handler.
;If the interrupt is due to a received character, the character is

.'read froe the RS232 and placed into a circular buffer which
;will process the received characters at task tiee, not at interrupt tiie.
^gThis procedure assuies that a buffer is established in the

;current data segient.

RS232 INT PROG

RS232 INTJ;
PUSH SI

PUSH AX

PUSH DX

PUSH BX

PUSH ES

PUSH OS

FAR

ASSUNE

GET.CHAR:
HOV

NOV

MOV

MOV

GET RS CHAR;

DS;HY.DATA,ES:MY.DATA

AX,HY.DATA
DS,AX

ES,AX

SI,RSJN,POINT ;Get pointer into the buffer

12

MOV

IN

DX,LINE^STATUS ;Check for any errors or a
;break condition.

;Get the status.

;b4 = break

;b3 = framing error

;b2 = parity error

;bl = overrun error

;If non-iero then there is an

terror.

;If bit 0 = 1 then rev. char, interrupt

;has occurred. If bO - 0 then skip routine

MOV

IN AL,DX

TEST AL,00011U0B

JNZ ERROR

TEST AL,01H

EXITJNTJ

DX,RHR

AL,DX

;Receiver port

;Get the character

Appendix D 467

HOV

JMP

HOV

IN

HOV

HOV

POINT.ADJ;
INC

AND

INC

RS_BUFFERCSn,AL ;Save character in buffer
SHORT POINT_ADJ ;Leave the interrupt routine

DX,RHR jDumy read to reset the interrupt
AL,DX

ALdAH ;Gode for ASCII SUB (Substitute)
RS_BUFFERESI],AL ;Save it in buffer

RS_IN_POINT ;Incretent pointer
RsjN'POINT,07FFH ;Keep circular
RS_CHARS ;Increment nuiber of characters

;in the buffer

EXIT.INT;
HOV

IN

EXIT INT l:

liov
OUT

POP

POP

POP

POP

POP

POP

IRET

#CRLF

^VAITKEY

D

A

X,INTERRUPT ID .;Get any other pendinq interrupts

AL,DX ' ;AND TOSS THEN!

L,20H

INT.COHHAND,AL
DS

ES

BX

DX

AX

SI

HOV

HOV

CALL

JNC

JHP

HIN,31H

HAX,39H

HINHAX

SET_BAUD
INlf i

;Send an end of interrupt to the 8259

;Restore registers

;Return froe the interrupt

;Get user response

;HiniiUft value is M'

;Haxiaui value allowed = '9'

;Check bounds

;Go to the next proopt if in bounds
;else go ask again.

itttt Response was in bounds, so proceed.
SET BAUD: AND

DEC

HOV

m

AND

OR

GET.PARITY;
CALL

;Strip ASCII character to binary
;Adjust for desired bit pattern
;Rotate b0-b2 to b7-b5

AL,OFH

AL

CL,3

AL,a ;

CONFIGURATI(»i,0001iillB ;Reset b0<b5 of configuration byte

CONFIGURATION,AL

CLEAR SCRrai

#CURSET 0,0,0

9VDLINE HESSAGEA

8CRLF

8VAITKEY

AND AL,11011111B

CHP

JNE

AL,'Y'

SET NONE

;0R in bits.

;Clear screen and ask for

;Parity.
;Set cursor top of screen
;Ask Parity?

;Get response

;Reset bit 5, convert to

;uppercase.
;If yes, then continue
;If not go to the next
;proapt.

EVEN ODD:

468 8088!IBM PC Assembly Language Programming

Listing 10-2 continued

RS232JMT EMDP

M' mmmmtmmttmtttmtmmmmtmmtmttmmm

:Thi5 is the initialiiation nodule which will pronpi the user for the
;vafious paraneters required for connunicat ions.

;This routine expects a dedicated area of RAN to be reserved for the
.'storage: CONFIGURATION.

INIT PROG

INITJ;
CALL

NEAR

CLEAR SCRrai ;Clear the screen

«CURSET 0,0,0

GET BAUD:

SET ODD:

AND

OR

JNP

EVEN^P: OR
JNP

;Set cursor to page 0,
;row 0, colunn 0

#VDLINE NESSAGEl ;A5k for baud rate

eCRLF

8VDLINE NESSAGE2 ;Show possible rates.

8VDLINE NESSAGE3

eCRLF

8VDLINE NESSAGE4

BCRLF

8VDLINE NESSAGE5

CALL CLEAR.SCREEN :C1ear the screen

fCURSET 0,0,0 ;Position the cursor

8VDLINE NESSAGE7 :Ask even or odd parity?
§CRLF

miTKEY ;Get response
AND AL,OFH :Nask to binary
CNP AL,1 ;Even?

JE EVEN P .:Then set it

CNP AL,2 ;Odd?

JNE EVEN ODD :lf neither 1 or 2 then

CONFIGURATION,1110111 IB

CONFIGURATION,OOOOIOOOB

SHORT GET^STOPS
CONFIGURAflON,00011000B
SHORT GET STOPS

SET.NONE: AND CONFIGURATION,1110011 IB

GET.STOPS:
CALL CLEAR_SCRE0I
OCURSET 0,0,0

^VDLINE NESSAGE8

:reask the question.

;Reset bit 4

:And set bit 3

;Go to the next pronpt
.'Set both bits 4 and 3

:Go to next pronpt

;Reset both bits 4 and 3

How nany stop bits?

Position cursor

Ask how nany

Appendix D 469

eVDLlNE NESSAGE9 ;Show options

9CRLF

fWAlTKEY ;Get response

AND AL,0FH ;Strip to binary

DEC AL ;Vas the response a 'T?

JZ ONE STOP ;Then setup 1 stop bit

DEC AL r\? IT HAS NOT A '2' THOI

;l£ASK THE ̂ TION.

JNE GET^STOPS

TNO STOPS:

OR CONFIGURATION,OOOOOIOOB :Set bit 2 for 2 stop bits

JNP SHORT VORD.LENGTH ;Gei word lenqth
ONE STOP:

AND CONFIGURATI(»l,1111101iB ;Reset b2 for 1 stop bit

V0RD.LEN6TH:
CAa CLEAR.SCREEN ;Clear the screen

eCURSET 0,0,0 ;Set the cursor

9VDLINE NESSAGEIO ;Ask word length

«CRLF

9VDLINE NESSAGEli ;Show options

#CRLF

»VDL1NE NESSAGEi2

«CRLP

miTKEY ;Get user response

CNP AL,'l' ;7 bits?

JZ SEVEN.UP ;

CNP AL,'2' ;If not 2 then reask the

;quest ion.

JNE VORD.LENGTH
EIGHT.BITS:

OR CONFIGURATION,0000001 IB ;Set both bits 0 and 1

JNP SHORT TO_ECHO.(».NOT.TO ;Next question.
SEVEN UP:

AND CONFIGURATION,!11llilOB ;Reset bit 0

OR CONFIGURATION,OOOOOOiOB ;Set bit 1

TO ECHO OR NOT TO:

CALL CLEAR SCRrai ;Ask the next question.

«CURSET 0,0,0 ;Set the cursor position

»VDLINE NESSA6E30 ;Ask if the user wants

;ihe characters typed locally
;echoed to the screen. Used in

;half duplex coenunicat ions.

#CRLF ;Next line

WAITKEY 'Wait for a Yes or No answer.

AND AL,il011111B ;Reset bit 5, convert to upper case.
CNP ALj'Y' 'Yes? Then set bit A of

;systei_status to reflect such.

JNZ NO_ECHO nf not, then clear the bit.
OR SYSTEH^STATUSjOiOOOOOOB ;Set bit A in response to Yes.
JNP SHORT NCV LINE.Q ;Ask the next question.

470 80881IBM PC Assembly Language Programming

Listing 10-2 continued

NO.ECHO:
AND SYSTEH.STATUSdOllilliB ;Re&ei bit A, no local echo.

m LINE Q:

CHP

JNZ

OR

JHP

NO^NEN^LINE;
AND

CALL CLEAR.SCRE0<
«GUR^ 0,0,0

BVDLINE HESSAGE31

BCRLF

iVAITKEY

AND AL,110iiillB

AL,'Y'

NO NEN LINE

;C1ear the screen and set the cursor.

;Ask the question, do a CRLF
;coibination on receipt of a OR?

;Vait for a Y or N

;Convert to upper case

;Yes? then set bit 7. Else clear bit

;7 in SYSTEH^STATUS.
;If not then reset the bit.

SYSTEM.STATUS,10000000B ;New line function on.
SHORT SET.CONFIGURATION

SYSTEM.STATUS,01111111B ;Reset the bit.

SET^GONFIGURATION:
gRS232 INIT CONFIGURATION ;Set the RS-232 port

;Now set a new RS-232 interrupt vector. Save the old.

PUSH ES ;Save extra seqeent value

PUSH BX ;And BX

^READ„VECTOR OCH ;Get the vector for

;RS232 interrupts
HOV WORD PTR (MJ3_VECT0R,BX ;Save old vector

HOV NORD PTR OD VECTORC23,ES ;Save Old seqient addr.
POP BX ;Retrieve BX and ES

POP ES

LEA DX,RS232.INTJ ;Get new offset

PUSH DS ;Save data seqient
HOV AX,HY.CODE ^Seqient of int. routine
HOV DS,AX ;Seq of int. routine
HOV AL,OCH interrupt Type
HOV AH,F.SETJNT VECTOR ^Function code

INT 21H 'Go set new vector

POP DS ;Retrieve DS

CLI ^disable interrupts

;No« set RTS and DTR true, (loqic 0).
;Bit 3 oust be a 'T to enable interrupts to the

HOV AL,00001011B

NOV

OUT

DX,HODQ!.CONTROL
DX,AL

;Set RTS, DTR, true and

;enable interrupts (bit 3)

;Set up the lodei control register

Appendix D 471

;Set up the seria) board for receiver interrupts.
iFirst clear any pending interrupts.

HOV DX,LINE_STATUS

IN AL,DX

MOV AL,0000000iB

HOV DX,INTERRUPT.ENABLE
OUT DX,AL

;Clear the line status int.

;if any, by reading the

;register (dueiy read)
;Heans nothing.

;Enable interrupts on

;coAi. board when received

;character is ready.

mmt

Now set the 8259 to enable the desired interrupt types.

HOV AL,10101i0OB ;Enable disk, com,
;keyboard, and tieer interrupts.

OUT INT.CONTROL,AL ;Send to 8259

STI ;Enable 8088 interrupts

eCRLF

BVDLINE NESSAGE13

eCRLF

CALL DELAY

GALL DELAY

GALL DELAY

CALL GLEAR.SCftEEN
8CURSET 0,0,0

9VDLINE HESSAGE14

8CRLF

RET

;Go to the next line

;Show Mssage that port was set

;Leave tessage on the screen
:for awhile

;and erase and show copyright

;A11 done

INIT ENDP

M' tttmnmtttmtmtmmtmmmtmmttmttttmtmt

;Gheck bounds on the character in AL. If in bounds, reset carry,

;if out of bounds, set the carry and return.

NINHAX PROG

GHP

JB

GHP

JA

GLG

JHP

set.garry;
STG

NEAR

AL,HIN

SET GARRY

AL,HAX

SET GARRY

.:If below, set the carry

;If above, set the carry

;Else clear the carry

SHORT DONE HINHAX

472 80881IBM PC Assembly Language Programming

Listing JO-2 continued

DONE.HINMAX: RET
mnm cndp

;Procedure to clear the screen.

CLEAR.SCRmi PROG NEAR
PU^ AX ;Save registers
PUSH BX

PUSH CX

PUSH DX

^SCROLL OA,00,18H,4FH,00,00,07 ;C1ear the screen

POP DX ;Restore registers
POP CX

POP BX

POP AX

RET

GLCAR.SGRCEN ENDP

iThis routine will provide a delay for a fixed duration,

^all registers used are saved.
DELAY PROG NEAR

PUSH GX ;Save the registers
MOV GX,7000H

OaAYj: LOOP DOAYJ
NOV GX,3000H

Da.AY_2; LOOP DELAY 2
POP GX

RET

DELAY 0IDP

itmtmmnmtmmmmmtmmmmmmmmttmm

MY^GODE ENDS
0iD START

1. The IBM Macro Assembler Manual by Microsoft, #6024002. Boca Raton,
FL:IBM, 1981.

2. The IBM Technical Reference Manual #6025005, Boca Raton, FL: IBM,
1983.

3. The IBM 2.10 DOS Technical Reference Manual by Microsoft, # 6024125.
Boca Raton, FL: IBM, 1983.

4. Intel ASM86Reference Manual, Intel Corporation, Order Number 121703-
002.

5. Intel iAPX88Book, Intel Corporation, Order Number 210200-002.

6. Intel iAPX 86,88 User's Manual, Intel Corporation, Order Number
210201-001.

7. Intel iAPX 86188, 1861188 User's Manual—Programmer's Reference, Intel
Corporation, Order Number 210911-001.

8. Intel Microprocessor and Peripheral Handbook, Intel Corporation, Order
Number 210844-001.

9. Martin, James. Design and Strategy for Distributed Processing. Englewood
Cliffs, NJ: Prentice Hall Inc., 1981.

10. Martin, James. Telecommunications and the Computer. Englewood Cliffs,
NJ: Prentice Hall Inc., 1976.

473

Index

AAA (ASCIIAdjust for Addition)
instruction, 90, 328

AAD (ASCII Adjust for Division)
instruction, 101, 328

AAM (ASCII Adjust for Multiplica
tion) instruction, 99, 328

AAS (ASCII Adjust for Subtraction)
instruction, 92, 328

absolute disk access, 229, 243
ACK (acknowledgement), 284
acoustic coupler, 289
ADC (add with carry) instruction, 88,

329
ADD (addition) instruction, 87, 329
addition

binary, 4
binary coded decimal, 9
hexadecimal, 8

addition instructions 73, 87-91
address bus, 51, 53
address-object transfers, 72, 84
addressing modes, 65-68
time calculation and, 68

AF (auxiliary carry flag), 61
AH register, 20, 47
AL register, 47
ALE signal, 53
ALU (Arithmetic Logic Unit), 46
ampersand (&), 176,179
amplitude modulation, 278
analog data transmission, 276-278
AND instruction, 102, 329
AND operator, 167
architecture

defined, 43
arithmetic instructions, 73, 87-102
arithmetic operators, 167
ASCII (American Standard Code for

Information Exchange), 11,
321

communications and, 268
conversion to binary system, 202

assembler, xii, 21
cross, 27
format for, 136
use of, 37

ASSUME statement, 127,136
asterisk (*) operator (multiplication),

167
asymmetric register, 59
asynchronous communications, 282
attribute operators, 162
attributes for labels, 142
auxiliary carry flag, 61
AX register, 47, 50
POP instruction and, 79

bandwidth, 278
base pointer register, 59
based indexing addressing, 66
baud rate, 285
baud rate divisor registers, 295

Baudot code, 12, 321
BCD (binary coded decimal system),

9
binary coded decimal system, 9
binary system, 2-7
conversion from ASCII to, 202
conversion from decimal to, 198
conversion to decimal, 202
conversion to hexadecimal, 203

BIOS (Basic Input/Output System),
47, 249-264

communications functions in, 303
scroll function in, 233
video functions in, 258

bit, defined, 2
BIU (Bus Interface Unit), 44
bootstrap, 47
bounds checking, 246
BP (base pointer) register, 59
BPS (bits per second), 285
buffers, data, 309
bus architecture, 51-55
bus controller, 53
byte, defined, 2

calls, function, 182
CALL instruction, 49, 50, 112-114,

329
carry flag, 60
CBW (convert byte to word) instruc

tion, 98, 329
CP (carry flag), 60
characters, encoding of, 11
CLC (clear carry)instruction, 131, 330
CLD instruction, 330
CLI (Clear Interrupt flag) instruction,

132,330
clusters, defined, 210
CMC (complement carry bit) instruc

tion, 131, 330
CMP (compare) instruction, 94, 330
CMPS (compare string)instructions,

127, 330
code segment, programming and,

192, 233
code segment register, 49
colon suffix, 29
color character attributes, 255
color combinations, 256
color/graphics adapter, 254
COMM.ASM program, 443
comment field in source statement,

31
COMMENT pseudo-op, 148
communications, 267-318
asynchronous, 282
data transmission methods and,

270

computer to computer, 291
error checking in, 285

errors in, 300
parallel, 270

parameters for, 305
program for, 292-302, 305-317
protocols for, 268
RAM and, 118
serial, 271
synchronous, 283

compiled languages, 19
computer languages, types of, 17-21
conditional pseudo-ops, 155-158
conditional transfer instructions, 74,

115-119
CONFIGSY.ASM program, 355
CONFIGSY.LST program, 361
control bus, 51
control signals, 51
copying files, 238-243
CPU (Central Processing Unit), 17

defined, 43
memory management and, 46

.CREF pseudo-op, 159,160
cross assemblers, 27
cross reference file, 38, 40
CS register, 58
CWD (convert word to double word)

instruction, 98, 331

DAA (Decimal Adjust for Addition)
instruction, 90, 331

DAS (Decimal Adjust for Subtraction)
instruction, 93, 331

data buffers, 309
data bus, 51, 53
data pseudo-ops, 136-140
data register, 59
data segment, programming and,

192,232
data storage, memory and, 47
data transfer instructions, 72, 75-87
general purpose, 76-82

data transmission methods, 270
analog, 276

DB pseudo-op, 141
DD pseudo-op, 141
DEC (decrement) instruction, 94, 331
decimal system, 2
conversion from binary, 202
conversion to binary, 7,198
conversion to hexadecimal, 198

definitions, programming and, 194
DEN signal, 53
destination operand, 71
DF (direction flag), 63
dibit phase encoding, 277
direction flag, 63
directory in MS-DOS, 214
format of, 215

DIRREAD.ASM program, 426
disk access, absolute, 229
disk buffer, programming and, 232
disk drives, 210
disk I/O, 207-247
MS-DOS functions and, 207-208

475

476 8088!IBM PC Assembly Language Programming

disk sectors, 230
disk transfer address (DTA), 220
diskette, 209

capacities of, 211
displacement addressing, 67
displaying data, 204
distance attribute, 143,165
DIV instruction, 99, 331
division instructions, 73, 99-102
DLOAD.ASM program, 447
documentation, comment field and,

31
dollar sign ($), 148
DOSEQU.EQU program, 396
downloading files, 317
DQ pseudo-op, l4l
DRAM (Dynamic Random Access

Memory), 46
drawing lines, 260
DS operator, 165
DT pseudo-op, 141
dummy arguments, 170
DUP pseudo-op, l4l
duplex, 269
DURATION of sound, 263
DW pseudo-op, l4l

8086 microprocessor, 53
instruction set for, 327-345. See

also name of instruction

8088 microprocessor
architecture of, 55
instruction set for, 71-134,

327-345. See also name of
instruction

interrupts and, 63,123
segmentation of, 56

8288 bus controller, 53
EBCDIC code, 12, 321
editor, 23
electrical pacing, 294
ELSE pseudo-op, 157
END pseudo-op, 155
ENDIF pseudo-op, 157
ENDM pseudo-op, 175
END? pseudo-op, 139
ENDS pseudo-op, 138
ENDS pseudo-op, 152
EQ operator, 166
EQU (equate) pseudo-op, 145
equal (=) pseudo-op, 145
equates, programming and, 194
erasing lines, 262
error checking in communications,

269, 285-288
error codes for absolute disk I/O, 231
errors in programming, 237
ES operator, 165

ESC (escape) instruction, 133,
331

EU (Execution Unit), 44
EVEN pseudo-op, 150
exchange (XCHG) instruction, 82,

343
exclamation point (!), 176

exclusive OR (XOR) instruction, 105,
345

EXITM pseudo-op, 175,178
expressions, 166
extensions, signed, 97
external mask interrupt (INT)

instruction, 333
external synchronization, 75,

132-134
EXTRN pseudo-op, 147

FAR procedure, defined, 113
FAST—CPY.ASM program, 421
fields, 28-32
comment, 31
label, 29
op-code, 30
operand, 31

file

access to, 221-229
closing of, 226, 229
created with assembler, 38-40
creation, 221, 228
opening of, 227, 235

file allocation table, 213
file control blocks (FCB), 217
formats of, 218
programming and, 233
specifying, 219

file handles, 226
flag operations, 75,131-132
flag register, 45, 60
flag register transfers, 72, 86
flow chart

programming techniques and, 190
source code and, 34-37
symbols used in, 33

FOR statement, 119
format for assembler, 136
forward references, 26
framing error, 300
frequency modulation, 277
FREQUENCY of sound, 263
FSK (frequency shift keying), 277,

285, 288
full duplex, 269, 278
full screen editor, 23
function calls, 182

GE operator, 166
GRAPHIC.ASM program, 435
graphics, 254, 256-263
GROUP pseudo-op, 154
GT operator, 166

half duplex, 269, 280
hardware requirements, xii
hexadecimal system, 7, 321
conversion from binary to, 203
conversion from decimal to, 198

high level languages, 18
high resolution graphics mode, 257
HIGH operator, 164
HLT (Halt) instruction, 132, 332

IBM PC memory map, 55, 57
IDIV (Integer Divide) instruction,

100, 332

IF (interrupt flag), 62
IF pseudo-ops, 157
immediate addressing, 65
immediate operand, 72
IMUL (Integer Multiply) instruction,

97,332
IN instruction, 83, 332
INC (increment) instruction, 89, 332
INCLUDE pseudo-op, 153

macros and, 173
index register, 59
initialization of programs, 195
instruction pointer, 45, 49, 58
INT instruction, 122, 333
interpretive languages, 18
interrupts, 63, 74, 121-124. See also

name of interrupt
interrupt controller, 301
interrupt enable register, 298
interrupt flag, 62
interrupt identification register, 298
interrupt service routine, 307, 309
interrupt vectors, 123
INTO instruction, 124, 333
INTR (external mask interrupt)

instruction, 333
I/O (input/output), 50

disk, 204-247
IRET (interrupt return) instruction,

50,124, 333
IRP pseudo-op, 175,177
IRPC pseudo-op, 175,177
iteration control instructions, 74,

119-121

JCXZ instruction, 121, 334
JMP instruction, 30, 31,114
Jump if... instructions, 116, 333-336

keyboard buffer, programming and,
232

KEYDSP program, 399

label field, 29
labels for numerical values, 23-26,

142

local, 173
syntax for, 29

LABEL pseudo-op, 146
LAHF (load register AH from flags)

instruction, 86, 336
.LALL pseudo-op, 159,160

languages, types of, 17-21
LDS (load pointer using DS) instruc

tion, 85, 336
LE operator, 166
LEA (load effective address) instruc

tion, 84,336
LENGTH operator, 144
LES (load pointer using ES) instruc

tion, 85, 336
LFCOND pseudo-op, 159, l6l
line control register, 296
line drawing, 260
line status register, 299
linkers, 27

use of, 38

478 80881IBM PC Assembly Language Programming

SCAS (Scan String) instructions, 128,
342

scroll function in BIOS, 233
SDLC protocol, 284
segment attribute for labels, 142
segment override operators, 165, 342
segment register, 56
SEGMET pseudo-op, 138
segmented memory, 58
programming and, 193

semi-colon (;), 176
sequential file access, 221
serial I/O functions, 251
serial board port assignments, 273,

295
serial data transmission, 271
SF (sign flag), 62
.SECOND pseudo-op, 159, l6l
shift instructions, 73,107-110
SHE (Shift Logical Left) instruction,

109,342
SHL operator, 167
SHORT operator, 165
SHR (Logical Shift Right) instruction,

109

SHR operator, 167
sign extensions, 97
sign flag, 62
simplex, 269, 281
SINGLE STEP interrupt, 343

SIZE operator, 144
slash (/) operator (division), 167
sorting, 244
sound generation, 263
SOUND.ASM program, 440
source code

creation of, 28-32

defined, xii
flow charting and, 34-47

SF (stack pointer) register, 59
spooling, 315
SS operator, 165
stacks, 48
stack pointer, 45, 48
stack pointer register, 59
stack segment, programming and,

192, 233
status flags, 60
status register, 45
STC (set carry) instruction, 131, 343
STD (set direction flag) instruction,

343
STl (Set Interrupt flag)instruction,

132, 343
STOS (Store String) instructions, 130,

343
string instructions, 74,124-130
STRUG pseudo-op, 152
SUB (subtraction) instruction, 91,

344
subroutines, 48
subtraction, binary, 5
subtraction instructions, 73, 91-95
SUBTTL pseudo-op, 159
symbolic representation for numer

ical values, 23-26
SYN control code, 283
synchronous communications, 283
syntax of source statement, 28-32

TANDY 2000 MS-DOS, 250
telecommunications, 272-276
frequency assignments for, 276

TEST instruction, 106, 344
.TFCOND pseudo-op, 159, l6l

THIS operator, 164
THR (transmitter holding register),

297

TITLE pseudo-op, 159, l6l
TR (trap flag), 62
translate (XLAT) instruction, 82, 344
transmitting characters function,

303
via BIOS, 304

trap flag, 62
tree structures, 227
type attribute for labels, 143
type zero interrupt, 99

UART (Universal Asynchronous
Receiver Transmitter), 272

unconditional transfer instructions,
74,112-115

video I/O, 253

WAIT instruction, 132, 344
word, defined, 2
WR signal, 51
writing blocks, 225
writing files, 222
writing records, 224

.XALL pseudo-op, 159,160
XCHG (exchange) instruction, 82
XLAT (translate) instruction, 82
.XLIST pseudo-op, 159
XON/XOFF, 12
XOR (exclusive OR) instruction, 105,

345
XOR operator, 167
.XREF pseudo-op, 159,160

ZF (zero flag), 46, 61

Index 477

.LIST pseudo-op, 159
listing file, 39
listing pseudo-ops, 158
local labels, 173
LOCAL pseudo-op, 173
LOCK prefix, 133, 337
LODS (Load String) instructions, 129,

337
logic instructions, 73,102-107
logical disk sectors, 230
logical operators, 167
Logical Shift Right (SHR) instruction,

109,343
LOOP instructions, 119,127, 337
LOW operator, 164
LSB (least significant bit), defined, 3
LT operator, 166

MACFLE.MAC program, 369
machine code, xiii
machine language, 19
macro definitions, 169
MACRO pseudo-op, 175
maskable interrupts, 64
maximum mode control signals, 51
medium resolution graphics mode,

256
memory, 46
addressing of, 56
map of, 55,57
segmentation of, 47, 56

memory direct addressing, 65
with index, 66

memory refresh, 46
messages, programming and, 193,

233
microprocessors, 17
minimum mode control signals, 51
minus sign (-) operator, 167
M/IO signal, 51
mnemonics, 22, 30
MOD operator, 167
modems, 288-292
modem control register, 297
modem status register, 300
monochrome character attributes,

253
MOV instruction, 17, 20, 31, 76, 338
MOVS (move string) instructions,

126, 338
MS-DOS, 181-188

directory structure of, 214
disk functions in, 207
disk map of, 212
file access in, 221-229
programming tools in, 213-221
RS-232C functions in, 302
serial I/O in, 293

MS-DOS function, 219
MSB (most significant bit), defined, 3
MUL instruction, 96, 338
multiplication indicators, 62
multiplication instructions, 73,

95-99

NAK (negative acnowledgement),
284

NAME pseudo-op, 153
names, symbolic, 142
NE operator, 166
NEAR procedure, defined, 113
NEG (negate) instruction, 94, 33
NEW—COPY program, 4l6
NEW—TYPE.ASM program, 412
NEXT statement, 119
nibble, defined, 8
NMl interrupt, 64, 337
no operation instruction, 75, 131,

339
noise on line, 285
nonmaskable interrupt, 64
NOT instruction, 107, 339
NOT operator, 167
null cable, 291
number conversions, program for,

189-205
numbering systems, 2-13
program fr conversions of,

189-205
NUMBERSY.ASM program, 401

object file, 39
OF (overflow flag), 62
OFFSET attribute for labels, 143
op-codes, 30
operands, 31

destination, 71
operating systems, 181-188
operators, 162-168. See also name of

operator

OR instruction, 105, 339
OR operator, 167
ORG pseudo-op, 148
OUT instruction, 83, 339
%OUT pseudo-op, 159
overflow flag, 62
overrun error, 300

PAGE pseudo-op, 19, l6l
parallel data transmission, 270

parity, 287
parity error, 300
parity flag, 6l
parsing a string, 235
pathnames, 227
percentage sign (%), 176,180
PF (parity flag), 61
phase modulation, 277
physicaldisk sectors, 230
pipelining, 44
pixel positioning, 257
plus sign (+) operator, 167
pointer register, 59
pointers, 45
POP instruction, 50, 78, 339
POPF instruction, 86, 340
port addresses, 25
IN and OUT instruction and, 83

port assignments, serial board, 273,
295

power bus, 51
printer I/O, 252
PROG pseudo-op, 139
procedures, 48

processor control instructions, 75,
130-134

program segment prefix (PSP),
215-217

program transfer instructions, 74,
112-124

programmer, 16
programming techniques, 189-205
BIOS and, 259-263
disk I/O and, 207-247

protocols for communications, 268
pseudo-ops, 136-140, 145-162. See

also name of pseudo-op
PTR (pointer) operator, 162
PUBLIC pseudo-op, 147
PURGE pseudo-op, 175,176
PUSH instruction, 50, 78, 340
PUSHF (push flags) instruction, 86,

340

.RADIX pseudo-op, 154
RAM (Random Access Memory), 46
communications and, 118

random block access, 224
random record access, 223
RCL (Rotate through Carry Left)

instruction. 111, 340
RCR (Rotate through Carry Right)

instruction. 111, 340PRD sig
nal, 51

reading blocks, 225
reading files, 222
reading records, 223, 236
receive function, 302

via BIOS, 304
RECORD pseudo-op, 150
registers, 43, 44. See also name of

register
specialized, 45

register direct addressing, 65
register indirect addressing, 66

with displacement addressing, 67
relational operators, 166
REP instructions, 125, 340-341
REPT pseudo-op, 175,176
RET instruction, 49,112-114, 31
POP instructions and, 79

RHR (receiver holding register), 297
ROL (Rotate Left) instruction, 110,

341
ROM (Read Only Memory), 46
ROR (Rotate Right) instruction, 110,

341
rotate instructions, 73,110
RS-232C, 251, 289

signal and pin assignments for,
290, 291

SAKE (store register AH into flags)
instruction, 86, 341

SAL (Shift Arithmetic Left) instruc
tion, 107-109, 342

.SALL pseudo-op, 159,160
SAR (Shift Arithmetic Right) instruc

tion, 107, 342
SBB (subtract with borrow) instruc

tion, 92, 342

Source Code Offer

Gary A. Shade has made available to interested readers the complete source code
for every programming example used in his book 8088 IBM PC Assembly Lan
guage Programming.

Why spend hours entering the source examples found in this book when you can
order the source code on IBM PC compatible media? The entire source code for the
macro library found in Chapter 6 is worth the price of the diskette alone. You can
use the macro library in each and every one of your own programs—use routines
from any of the examples included in your own programs with no royalties to pay!

To order:

Include |i29.95 money order, certified check, or persoiial check (*). Mail your
check (made payable to Argonaut Systems) and the form below to;

Argonaut Systems
FOB 2492

Northbrook, IL 60065

Send me the complete source library to "8088 IBM PC Asseinbly Language Pro
gramming" by Gary A. Shade. 1 have enclosed a certified check, money order or
personal check for S29.95 made payable to Argonaut Systems.

Name.

Address.

City

State Zip.

Allow 3-4 weeks for delivery. Personal checks - allow 4-5 weeks for delivery.

FPT >^17.TS

8088
IBM PC
Assembly
Language
Programming

Gary Shade

The Nuts 'N Bolts

of Assembly Language Programming

Professionals and hobbyists! Whether you're a serious computer
user or just love to tinker with your PC, this guide shows you the
best ways to attack Assembly Language programming.
You'll get a step-by-step introduction to microprocessors . . .
numbering systems . . . and character encoding to give you the
boost you need to get the most out of ALP.
And that's not all! The book covers MS DOS function calls and

features number conversion charts . . . ASCII and BAUDOT

character encoding charts . . . and a complete set of original Intel
Corporation data sheets!

	2020_07_18_15_17_41.pdf
	2020_07_18_16_35_16
	2020_07_18_16_37_52

